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THESIS ABSTRACT 

Conventional experimental techniques are sometimes limited in their ability to assess the 

actual risk of chemical exposures. Therefore, there is a rising awareness of mathematical, 

computational, and statistical approaches to provide insight into the adverse effects of 

environmental contaminants.  Richard Bach once wrote: “Any powerful idea is absolutely 

fascinating and absolutely useless until we choose to use it.” Likewise, any data may be viewed as 

absolutely fascinating and absolutely useless until we choose to understand and use it. Recent 

advances in science and technology provide alternative paths to develop effective risk-assessment 

methods for environmental contaminants. Moreover, these methods are more efficient in terms of 

time and cost. Therefore, I develop three Chapters to show the importance of statistical methods 

in environmental-health risk assessment, and highlight the potency of data-driven knowledge and 

multidisciplinary research for the future of environmental science and engineering.  

In Chapter 1, I review the potential risks of missing chemical data and concentration 

variability on mixture toxicity by developing 27 occurrence scenarios based on data from the 

literature. The @RISK software simulates random concentrations, assuming multivariate 

lognormal distributions for the mixture components. In Chapter 2, I demonstrate how a 

performance analysis can be implemented for a Bayesian Network (BN) representation of a dose-

response relationship. I explore the effect of different sample sizes on predicting the strength of 

the relationship between true responses and true doses of environmental toxicants. In Chapter 3, I 

characterize the risk factors of a prenatal arsenic exposure network by using Bayesian Network 

(BN) modeling as a tool for health risk assessment. 
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ABSTRACT  

Assessing chemical mixture toxicity presents serious challenges to human and 

ecosystem health scientists. To provide insight into the potential implications of chemical co-

occurrence, as well as the effects of incomplete chemical identification and/or inclusion that 

could occur in a risk assessment, this study characterizes the risk implications of concentration 

variability and correlation among co-acting compounds, considering the effect of missing 

chemical data. The potential risks of missing chemical data and concentration variability on 

mixture toxicity are explored by developing a set of multiple occurrence scenarios for mixtures, 

including a range of low to high toxicity chemicals, exhibiting low to high concentration 

variability, varying degrees of inter-chemical correlation, and omission of different chemicals 

in the mixture toxicity calculation.  

The calculations are performed for hypothetical mixtures of a group of ten synthetic 

antibiotics (“aquinolones”) that have been tested on marine bacterium for the endpoint of long-

term bioluminescence inhibition to fit dose-response relationships for each, with mixture 

toxicities computed and compared for the assumptions of independent joint action theory and 

concentration/dose addition theory. These methods yield different toxicity estimates, but a 

similar direction and magnitude of effects from concentration variability and compared 

omission. I recommend a pre-assessment of the effect of different chemical occurrence patterns 

on mixture toxicity computed using different models for chemical interaction. This will help 

prioritize the experiments needed to differentiate between these models when estimating 

mixture effects.  
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1. INTRODUCTION  

Problems associated with chemical mixture occurrence and toxicity pose a number of 

challenges to human and ecological risk assessment and management. Currently,  

approximately 85,000 unique chemicals are registered under the Toxic Substances Control Act 

(TSCA) (USEPA 2015), yet only a small part of this group is well characterized, that is, their 

toxicities are defined for regulatory actions (Judson et al. 2008). Currently, laboratory methods 

used to characterize environmental risks for the majority of these chemicals can only measure 

toxicities above a certain concentration; additionally these methods are expensive and time 

consuming (Jin et al. 2014). Consequently, these experimental methods have been applied to 

only a very small number of chemicals or groups of chemicals (Ryker and Small 2008),  

suggesting that we are only seeing the tip of a vast iceberg, with the undefined chemicals 

constituting the invisible part and posing potential risks. Another challenge associated with 

human and ecological risk management is that chemicals in the real world work in mixtures, 

so understanding the combined effect (mixture toxicity) of a group of chemicals is also 

important for regulatory actions (Konemann and Pieters 1996; Altenburger et al. 2012). 

However, it is impossible to test and characterize all possible combinations of chemicals 

through experimental methods (Cassee et al. 1998; Hadrup 2014).  In addition, both single 

chemicals and those in mixtures often occur below the detection limit, and thus are generally 

omitted from chemical assessment (Zwart and Posthuma 2005; Beyer et al. 2014; Altenburger 

et al. 2015). Finally, regulated limit values are generally specified for single compounds even 

though humans are exposed to mixtures of chemicals (Evans et al. 2015).  

A growing awareness about chemical mixtures has shown the limitations of experimental 

methods on mixture toxicity, and a need for an integrated risk assessment approach. These 

include a lack of knowledge of which chemicals to include in a comprehensive mixture 
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assessment; the large number of combinations under which these different chemicals can occur; 

the time and resources required to perform assays (that measure cellular toxicity) for all or even 

some of these combinations; and a lack of knowledge of occurrence patterns of groups of 

chemicals in the environment and associated exposure media.  Recently, regulatory actions 

have demonstrated an awareness that single chemical risk assessment may underestimate the 

actual toxicity of chemicals (Altenburger et al. 2012).  

The growing field of computational toxicology is successful in estimating the unknown 

toxicities of single chemicals; however, this method has limitations for mixture toxicity 

prediction (Kim et al. 2012), in part because only highly restrictive assumptions such as those 

made in additivity theory, provide feasible and efficient results for mixture toxicity prediction. 

In particular, the inclusion of interaction terms (e.g., synergism and antagonism) among 

chemicals creates too many degrees of freedom for estimation from limited toxicity studies 

(Altenburger et al. 2009; Molgaard et al. 2012), especially those based on field studies in which 

chemical concentrations vary over time and space, and some are below detection limits for 

measurement. Prior to characterizing these effects on model identification and parameter 

estimation, it is necessary to understand their implications in a predictive model of mixture 

toxicity. This study aims to identify the effect of concentration (and exposure) variability and 

correlation on mixture toxicity, as well as the effects of missing chemical data. Data from a 

recent study of quinolones (Backhaus et al. 1999) are used to predict single and mixture 

toxicities, and an extensive set of statistical occurrence scenarios are generated to investigate 

the effects of concentration variability, correlation and missing data on toxicity estimates.    
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2. METHODS 

The mixture model used in this study was built on the experimental work of Backhaus et 

al. (1999) from which, 10 (ten) different compounds were selected: conixacin, enoxacin, 

flumequine, lomefloxacin, nalidixic acid, norflozacin, ofloxacin, oxolinic acid, pipedimic acid, 

and piromidic acid. All these chemicals belong to an important group of synthetic antibiotics 

called quinolones and these chemicals have been tested on marine bacterium Vibrio fischeri 

(Backhaus et al. 1999). The study has analyzed the long-term bioluminescence inhibition of V. 

fischeri and tested each quinolone at different concentrations to determine individual and 

mixture toxicities. Also, they estimated mixture toxicities by concentration addition and 

independent action theories; there is a small difference between the effect concentrations of the 

two predictions. The main reasons for choosing this paper are the detailed documentation of 

compounds, their chemical structures, and conducting both experimental and modeling studies. 

Therefore, we can use the paper to establish our predicted individual toxicities and develop the 

mixture scenarios based on those results. 

As a first step, I compute concentration-response relationships for individual chemicals and 

mixtures of these chemicals as identified in Section 2.1. To develop a base case of no variability 

in concentrations, median values were chosen for each chemical’s concentration as determined 

in Section 2.1. Twenty-seven (27) variability scenarios were then generated (Section 2.2) to 

analyze the effect of concentration variability on toxicity. The effects of concentration 

correlation on toxicity and examined in Section 2.3.  

In general, there are two theoretical additivity models for mixture toxicities: i) 

concentration/dose addition; and ii) independent joint action (IA) (Bliss 1939; Drescherand and 

Boedeker 1995; Altenburger et al. 2012). What is important here is that both theories assume 
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that there is no interaction between single substances in a mixture in the biological environment 

(Gregorio et al. 2013).  

Independent joint action theory (IA) assumes the mixture toxicity of independently acting 

chemicals can be estimated by the product of single responses of substances (toxicities) denoted 

by (E(ci) (Bliss 1939; Ashford 1981; Kamo and Yokomizo 2015): 

E(cmix) = E(c1 +⋯+ cN) = 1 − ∏ [1 − E(ci)]
n
i=1                                             

(1) 

Alternatively, concentration/dose addition theory assumes that the effect of a mixture 

of these chemicals (E(cmix)) can be predicted by the sum of the equivalent concentrations 

(doses) (Ci) (Bliss 1939; Liu et al. 2015). This approach is usually limited to compounds with 

similar modes of action. To implement concentration addition (CA) a reference compound is 

first selected, often the most toxic of the mixture component compounds, which is ofloxacin in 

the application that follows. Then equivalent concentrations of the reference compound (Cref,i) 

are computed for each compound, yielding the same toxicity. The total effect of the mixture 

Eref(Cref,eq) is then calculated with the dose-response equation for the reference component. For 

ofloxacin this is the Weibull dose-response function, so that Weibull regression model:       

𝐶𝑟𝑒𝑓,𝑖 = 𝐸𝑟𝑒𝑓
−1 {𝐸𝑖[𝐶𝑖]} 

𝐶𝑟𝑒𝑓,𝑒𝑞 =∑𝐶𝑟𝑒𝑓,𝑖

𝑛

𝑖=1

 

𝐸(𝑐𝑚𝑖𝑥) = 1 − exp⁡(− exp (𝜃1 + 𝜃2𝑙𝑜𝑔10(𝐶𝑟𝑒𝑓,𝑒𝑞))) 

(2) 
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In this study, it is first assumed that mixture toxicity follows the independent joint 

action model in Equation 1, and is not influenced by interactions among the chemicals, 

providing a baseline characterization of the effects of chemical variability and omission on 

toxicity prediction for independently acting chemicals. Another reason of choosing IA model 

is analyzing each compounds’ effect on mixture scenarios. For comparison, concentration 

addition theory is applied to a subset of the scenarios those with no correlation.   

2.1 Concentration-response relationships  

The individual toxicity concentration-response models (see Table 1) and the 

concentration-response relationship parameters (see Table 2) were obtained from Backhaus et 

al. (1999). The half-maximal concentrations (EC50) were calculated for each compound and 

added to Table 2 for toxicity comparison in other sections. According to the EC50 values, 

ofloxacin is the most, and pipedimic acid is the least toxic of the  compounds. Oxolinic acid 

was chosen to represent the intermediate toxicity compounds for some of the comparisons that 

follow.   

First, individual toxicities and the total mixture toxicity were calculated for selected 

concentrations (0.0001 µmole/L – 10 µmole/L) to generate concentration-response curves for 

each compound (see Figure 1).  
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Table 1. Concentration-response models used for calculating the concentration response 

relationships for the long-term bioluminescence inhibition of V. fischeri (Backhaus et al. 

1999) 

Regression model Formula 

Weibull 𝐄(𝐜) = 𝟏 − 𝐞𝐱𝐩⁡(−𝐞𝐱𝐩(𝛉𝟏 + 𝛉𝟐𝐥𝐨𝐠𝟏𝟎(𝐜))) 

Generalized Logit 
𝑬(𝒄) =

𝟏

(𝟏 + 𝐞𝐱𝐩(−𝜽𝟏 − 𝜽𝟐𝒍𝒐𝒈𝟏𝟎(𝒄)))𝜽𝟑 ⁡⁡
 

Box-Cox Weibull 
𝑬(𝒄) = 𝟏 − 𝐞𝐱𝐩⁡(−𝐞𝐱𝐩(𝜽𝟏 + 𝜽𝟐

𝒄𝜽𝟑 − 𝟏

𝜽𝟑
)) 

aE(c) denotes the effect of a concentration c, given the two (θ1, θ2) or three (θ1, 

θ2,θ3) parameters for the relationships. 

    Table 2. Concentration-response relationship parameters of the ten compounds (adapted 

from Backhaus, Scholze, & Grimme, 1999) 

 Mixture components 

 Fit 𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟑 

Pipedimic acid Box-Cox 

Weibull 

-3.942 2.153 0.495 

Nalidixic acid Generalized 

Logit 

-8.213 128.48 0.042 

Cinoxacin Generalized 

Logit 

0.848 6.289 0.437 

Piromidic acid Weibull 1.018 3.687  

Enoxacin Generalized 

Logit 

16.557 26.812 0.133 

Oxolinic acid Generalized 

Logit 

145.193 159.45 0.0297 

Flumequine Generalized 

Logit 

100.582 103.12 0.0413 

Norfloxacin Weibull 7.497 6.77 - 

Lomefloxacin Generalized 

Logit 

71.694 72.11 0.0475 

Ofloxacin Weibull 4.829 3.648 - 

A relationship for the total mixture toxicity with each component (assumed to be at the given 

concentration) was also computed using Equation 1 and was plotted in Figure 1. The total 

mixture toxicity curve exceeds that of any individual component, although only by a moderate 
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amount compared to the most toxic compound, ofloxacin (the total mixture has ~2 times higher 

toxicity than ofloxacin alone, over much of the indicated concentration range). 

 

Figure 1. Concentration-response Relationships 

2.2 Effect of Concentration Variability  

Several factors affect the concentration variability of chemicals in a natural water system. 

Some are climatic features (e.g. temperature, precipitation, and seasonal changes such as 

photoperiod), anthropogenic events, and the physico-chemical character of a site. The first step 

of model evaluation was to identify the effect of concentration variability on mixture toxicity 

in conjunction with the concentration-response relationships. The multivariate lognormal 

distribution was chosen to describe the joint distribution of chemical concentrations at a 

hypothetical site. 

0.0001
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A lognormal distribution defines the concentrations of compounds (c). Different median 

(C50) and coefficient of variation (ν) values were chosen to determine the lognormal parameters 

a and b, corresponding to the mean and standard deviation of ln(c), respectively. The values of 

a and b may also be determined from the median concentration (C50) and the coefficient of 

variation of the concentration (υ) as: 

𝑎 = ln(𝐶50) 

𝑏 = {ln[𝜐2 + 1]}
1
2 

 (3) 

The median and coefficient of variation are used to describe the 27 scenarios in Table 3. 

Simulated compound concentrations and calculated mixture toxicities for each scenario 

were generated for 1000 samples by the @RISK software and repeated for the twenty-seven 

(27) scenarios in Table 3. The simulation sample size (N) was selected to yield sufficient 

convergence after comparing different sample size results. Latin hypercube sampling (LHS) 

was used for the simulation. LHS sampling is a stratified sampling method designed to 

represent multidimensional distributions with a smaller sample size than can be achieved with 

random sampling (USEPA 1997).  

The joint lognormal concentration distribution of the ten component species is thus 

specified as: Ci; i=1,10 ~ LN(ai; i=1,10; bi; i=1,10; [rij]) where the ai are determined from the 

selected median values, the bi are calculated with coefficient of variations, and [rij] is the 

correlation coefficient matrix between the ln concentration ofchemical i and j. Table 3 shows 

that each of the 27 cases assumes a common lognormal concentration distribution that applies 

to each of the 10 component species, ranging from the case of very low concentrations and no 
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variability (Case 1: median=0.0001 µmole/L, ν=0) to the case with very high concentrations 

and high variability (Case 27: median=5 µmole/L, ν=3).  

Median (C50) and coefficient of variation (ν) values apply to all ten component species for each 

case. For these cases species concentrations are assumed to be independent; rij=0. 

Table 3. Summary of twenty-seven (27) scenarios 

Scenario Median(C50) 

µmole/L 

ν  Scenario Median(C50) 

µmole/L 

ν Scenario Median(C50) 

µmole/L 

ν 

1 0.0001 0 10 0.0001 1 19 0.0001 3 

2 0.001 0 11 0.001 1 20 0.001 3 

3 0.003 0 12 0.003 1 21 0.003 3 

4 0.01 0 13 0.01 1 22 0.01 3 

5 0.03 0 14 0.03 1 23 0.03 3 

6 0.1 0 15 0.1 1 24 0.1 3 

7 0.3 0 16 0.3 1 25 0.3 3 

8 1.0 0 17 1.0 1 26 1.0 3 

9 5.0 0 18 5.0 1 27 5.0 3 

In this study, the mixture chemical interaction mechanism was first considered an 

independent joint action, that is, it is assumed that there is no interaction among the chemicals. 

The mixture toxicities were calculated by independent joint action theory using single toxicities 

of compounds (E(ci)) as stated in Equation 1 (Backhaus et al. 1999). 

2.3 Effect of Chemical Omission 

Omission scenarios were generated to determine the effect on the estimated toxicity of 

missing (unmeasured) observations and the effect of chemicals that were measured but were 

below the detection limit and assumed to be not present (ci=0). 

Omission factors were calculated as stated in 4 to analyze the effect of omitting compounds in 

a chemical mixture. 
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OFj = omission⁡factor⁡for⁡chemical⁡j = {
1−∏ [1−E(Ci)]

n
i=1,i≠j

1−∏ [1−E(Ci)]
n
i=1⁡

}                       

(4) 

 As indicated, OFj is the ratio of the mixture toxicity computed with compound j omitted to the 

total mixture toxicity.  

2.4 Effect of Concentration Correlation 

As a final step of the model, the effects of correlated concentrations on toxicity were 

analyzed. A joint lognormal distribution is assumed with correlation coefficients (rij) of +0.4 

and +0.9 between ln(Ci) and ln(Cj). Correlated concentrations were simulated for 5000 samples 

by the @RISK software for each of the 27 scenarios, to predict individual and mixture 

toxicities. The full set of scenarios simulated includes 27 cases with no correlation between 

species (see Table 3), 27 cases with moderate correlation between species (rij=0.4), and 27 

cases with high correlation (rij=0.9). 
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3. RESULTS AND DISCUSSIONS 

3.1 Effects of Variability and Correlation 

As was pointed out in Section 2, single concentration-response relationships were 

modeled to be used for mixture toxicity simulation.  

The effect of variability in all components on individual and mixture toxicity was tested 

by generating different sets of simulated concentrations using two alternative coefficients of 

variation (ν=1 and ν=3). Plots of toxicity versus median concentration for three of the ten 

compounds (representative of high, medium and low toxicity) are shown for graphic 

comparison: ofloxacin, oxolinic acid and pipemidic acid shown in Figures 2b, c, and d. The x-

axis represents each single component’s median concentration as previously shown in Table 3; 

the median concentration for the total mixture (Figure 2a) is thus ten times that of each single 

component concentration.  

As shown in Figure 2, I found that higher variability in concentrations does cause higher 

effective (average) mixture toxicity when low to intermediate toxicity is associated with the 

median of the concentration distribution. The biggest enhancement of toxicity due to variability 

occurs at lower concentrations, since the presence of variability allows for occasional high 

concentrations and very high associated toxicity. However, if the coefficient of variation is 

very high, toxicity is slightly lower for high median concentration values because occasionally 

high and low concentration values occur in the system and the effect of very high 

concentrations is capped as E[ci] approaches 1.0 over much of the range of median 

concentrations considered. The total mixture E[ci] (Figure 2a) increases by a factor of 2.2 in 

changing from the case of no variability (ν=0 to ν=1) and by a factor of 11.5 in changing from 

ν=0 to ν=3. In this high variability case (ν=3), estimates of total mixture toxicity based on 

median concentrations will significantly underestimate the expected toxicity. 
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As Figure 2a shows, the total mixture toxicity is very similar to the response in 

ofloxacin (2b), which means that the most toxic compound is the dominant component in the 

total mixture.   

Figure 3 outlines the results of IA theory versus CA theory. IA results are slightly lower than 

the CA results and the occurrence of different levels of variability does not affect this trend. 

Note that the mixture toxicity prediction results for the CA model are somewhat higher than 

for the IA predictions. However, the increased toxicity effect due to concentration variability 

(moving from υ=0 to υ=3) is similar for the IA and CA models.    

Figure 2. Effect of varying median concentration and coefficient of variation on individual chemical 

toxicity and total mixture toxicity, E[Ci]; i=1,10, r=0 
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Figure 3. Independent action versus concentration addition, effect of varying median 

concentration and coefficient of variation on total mixture toxicity, E[Ci]; i=1,10, 

r=0 

Figure 4 and 5 show the results of the simulations for estimating the effect of correlated 

concentration. Contrary to our original hypothesis, our findings show that positively correlated 

concentrations do not systematically lead to increased mixture toxicity. In the low variability 

scenario (ν=1), a change in correlation coefficients causes differences in toxicity at high 

concentrations, but correlated median concentrations decrease the mixture toxicity: E(ci)ν=1,r=0> 

E(ci)ν=1,r=+0.4> E(ci)ν=1,r=+0.9 (see Figure 4). The high coefficient of variation (ν=3) case follows 

a similar trend as the low coefficient of variation (ν=1) case, although causes higher mixture 

toxicity for the same median concentrations. However, a part of this toxicity occurred as a 

result of the higher coefficient of variation (Figure 5). Thus, in Figure 5, the gap between the 

trend for ν=0 and ν=3r=0 shows the effect of the coefficient of variation on toxicity as analyzed 

in Figure 2a. The gap between r=0, r=+0.4 and r=+0.9 delineates the effect of correlation 

coefficient in both Figures 4 and 5. This gap is bigger for higher correlation.  
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Figure 4. Effect of correlated concentrations on total mixture toxicity, ν=1, E[Ci]; i=1,10, IA 

model 

 

Figure 5.  Effect of correlated concentrations on total mixture toxicity, ν=3, E[Ci]; i=1,10, IA 

model 

As shown, the correlation coefficient has only a slight effect on mixture toxicity.  
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These results evoke a question: Is the risk of estimation of mixture toxicity higher for higher 

variability scenarios? To answer that question the effects of omission were analyzed.  

3.2 Effects of Species Omission 

First, omission factors (OF) are compared for each component at the fixed (no 

variability) concentrations of all components. Table 4 indicates that there is no significant 

difference between omission factors for C=0.001 µmole/L and C=0.01 µmole/L component 

concentrations. The OF results suggest that the increasing individual component concentrations 

(when ν=0) do not substantively change the impact of the omitted component’s toxicity on the 

mixture toxicity. Second, the effect of variation on the omission scenarios is analyzed. Figure 

6 outlines the estimated toxicity for the total mixture and three omitting scenarios under the 

occurrence of variability. As Figure 6 shows, omitting the least toxic compound in the system 

does not significantly affect the mixture toxicity. However, omitting the most toxic compound 

(ofloxacin) causes a notable decrease in the mixture toxicity. The ν=1 scenario yields a smaller 

reduction in the estimated toxicity (compared to the total mixture toxicity) for the compounds 

than do the ν=0 or ν=3 scenarios. 

Table 4. Omission factors for ten components, ν=0, C=0.001 µmole/L and C=0.01 µmole/L 

 

Omission Factor 

(OF) for C=0.001 

µmole/L, ν=0

Omission 

Factor (OF) 

for C=0.01 

µmole/L, ν=0

Omission 

Factor (OF) 

for C=0.001 

µmole/L, ν=0

Omission Factor 

(OF) for C=0.01 

µmole/L, ν=0

IA/CA 

C=0.001

IA/CA 

C=0.01

Pipemidic acid 0.93 1 0.85 0.98 1.09 1.02

Nalidixic acid 1 1 1 1 1.00 1.00

Cinoxacin 0.91 0.96 0.82 0.91 1.10 1.06

Piromidic acid 0.99 0.99 0.95 0.96 1.04 1.03

Enoxacin 0.95 0.96 0.88 0.90 1.08 1.07

Oxolinic acid 0.99 0.97 0.95 0.91 1.04 1.06

Flumequine 0.96 0.92 0.89 0.85 1.08 1.08

Norfloxacin 1 0.99 0.99 0.95 1.01 1.04

Lomefloxacin 0.76 0.8 0.68 0.74 1.12 1.09

Ofloxacin 0.5 0.47 0.51 0.52 0.99 0.90
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Figure 7 shows that variability has only a relatively small effect on the omission factor. 

Moreover, the OF does not change significantly with baseline concentration. Omitting 

pipemidic acid in the case of low median concentrations causes lower OF (i.e., 0.93) than in 

the case of high median concentration (i.e., 1.00), because pipemidic acid exhibits a different 

shape dose-response curve than the other compounds. A low concentration of pipemidic acid 
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Figure 6. Omitting scenarios for different coefficient of variations (C=0.01 µmole/L), EC50 values shown 

in parenthesis 

Figure 7. Omission factor (OF) for different omitting scenarios and for different coefficient of 

variations, v=0, v=1 and ν=3, x-axis: omission factor 
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causes higher toxicity than other chemicals but this relationship changes for high 

concentrations.  

An important limitation of this study is that the models are based on a specific set of 10 

chemicals, with results that may not be representative of other mixtures. However, we tried to 

generalize the outcomes by categorizing the compounds as the most, moderate, and least toxic. 

Also, for this study, mixture toxicity is dominated by the most toxic compound, ofloxacin, but 

this result could be different if no chemical dominates the mixture toxicity.  
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4. CONCLUSION 

Current measurement and assessment techniques are limited in their ability to provide 

enough information about chemical mixtures’ toxicities. This predictive occurrence model 

study indicates that the occurrence of variability in the system and correlated concentrations 

might have an important effect on mixture toxicities under specific conditions. There are 

several natural and anthropogenic reasons for concentration variability, so these results can be 

useful to analyze real case scenarios. In addition, omitting compounds (especially those with 

toxicities) can cause large underestimation of the mixture toxicities although not in all cases. 

These findings show that mixture occurrence and toxicity estimation should be explored 

concurrently to prioritize exposure sampling and mixture toxicity studies, and to conduct more 

accurate risk assessments for mixtures.                                  
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5. APPENDIX A 

EXTRA CALCULATIONS AND FIGURES 

 

Effect of Single Chemical Omission, EC50 shown in parenthesis, C=0.001 µmole/L, ν=0 

Omit two compounds; OFi,j 

𝑂𝐹𝑗,𝑘 = 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛⁡𝑓𝑎𝑐𝑡𝑜𝑟⁡𝑓𝑜𝑟⁡𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙⁡𝑗⁡𝑎𝑛𝑑⁡𝑘 = {
1 − ∏ [1 − 𝐸(𝐶𝑖)]

𝑛
𝑖=1,𝑖≠𝑗,𝑘

1 − ∏ [1 − 𝐸(𝐶𝑖)]
𝑛
𝑖=1⁡

} 
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OFofloxacin * OFlomefloxacin = 0.47*0.80 = 0.376 ≠ OFofloxacin,lomefloxacin 

OFoxolinic acid * OFenoxacin = 0.97*0.96 = 0.931 close to OFoxolinic acid,enoxacin 

OFpipemidic acid * OFcinoxacin = 1.00*0.96 = 0.96 = OFpipemidic acid, cinoxacin 

OFofloxacin * OFpipemidic acid = 0.47*1.00 = 0.47 close to OFofloxacin, pipemidic acid 

 

Case 

Assumed 

median, 

r=+0.4 

Simulated 

median, 

r=+0.4 

Assumed 

median, 

r=+0.9 

Simulated 

median, 

r=+0.9 

c.o.v. 

1 0.0001 0.0001 0.0001 0.0001 1 

2 0.0005 0.0005 0.0005 0.0005 1 

3 0.001 0.001 0.001 0.001 1 

4 0.002 0.002 0.002 0.002 1 

5 0.003 0.003 0.003 0.003 1 

6 0.005 0.005 0.005 0.005 1 

7 0.008 0.008 0.008 0.008 1 

8 0.01 0.01 0.01 0.01 1 

9 0.03 0.03 0.03 0.03 1 

10 0.1 0.1 0.1 0.1 1 

11 0.3 0.3 0.3 0.3 1 

12 1 1 1 1.0 1 

13 5 5 5 5.0 1 

14 0.0001 0.0001 0.0001 0.0001 3 

15 0.0005 0.0005 0.0005 0.0005 3 

16 0.001 0.001 0.001 0.001 3 

17 0.002 0.002 0.002 0.002 3 

18 0.003 0.003 0.003 0.003 3 

19 0.005 0.005 0.005 0.005 3 

20 0.008 0.008 0.008 0.008 3 

21 0.01 0.01 0.01 0.01 3 

22 0.03 0.03 0.03 0.03 3 

23 0.1 0.1 0.1 0.1 3 

24 0.3 0.3 0.3 0.3 3 

25 1 1.0 1 1.0 3 

26 5 5.0 5 5.0 3 
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Assumed correlation matrix, r=+0.4 

 Ofl. Lomef. Norflo. Flume. Oxol. Enox. Pirom. Cinox. Nalid. Pipem. 

Ofloxacin 1          

Lomefloxacin 0.4 1         

Norfloxacin 0.4 0.4 1        

Flumequine 0.4 0.4 0.4 1       

Oxolinic Acid 0.4 0.4 0.4 0.4 1      

Enoxacin 0.4 0.4 0.4 0.4 0.4 1     

Piromidic 

Acid 
0.4 0.4 0.4 0.4 0.4 0.4 1    

Cinoxacin 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1   

Nalidixic Acid 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1  

Pipemidic 

Acid 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1 

 

Simulated correlation matrix, r=+0.4 (example case 1) 

 Ofl. Lomef. Norflo. Flume. Oxol. Enox. Pirom. Cinox. Nalid. Pipem. 

Ofloxacin 1.00          

Lomefloxacin 0.39 1.00         

Norfloxacin 0.39 0.40 1.00        

Flumequine 0.40 0.40 0.40 1.00       

Oxolinic Acid 0.39 0.39 0.40 0.40 1.00      

Enoxacin 0.41 0.39 0.38 0.39 0.39 1.00     

Piromidic 

Acid 
0.40 0.40 0.41 0.41 0.39 0.39 1.00    

Cinoxacin 0.41 0.41 0.39 0.40 0.38 0.39 0.39 1.00   

Nalidixic Acid 0.41 0.39 0.38 0.40 0.37 0.39 0.40 0.39 1.00  

Pipemidic 

Acid 
0.40 0.41 0.38 0.38 0.39 0.39 0.39 0.39 0.38 1.00 

 

Assumed correlation matrix, r=+0.9 

 Ofl. Lomef. Norflo. Flume. Oxol. Enox. Pirom. Cinox. Nalid. Pipem. 

Ofloxacin 1          

Lomefloxacin 0.9 1         

Norfloxacin 0.9 0.9 1        

Flumequine 0.9 0.9 0.9 1       

Oxolinic Acid 0.9 0.9 0.9 0.9 1      

Enoxacin 0.9 0.9 0.9 0.9 0.9 1     

Piromidic 

Acid 
0.9 0.9 0.9 0.9 0.9 0.9 1    

Cinoxacin 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1   

Nalidixic Acid 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1  

Pipemidic 

Acid 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 
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Simulated correlation matrix, r=+0.9 (example case 1) 

 Ofl. Lomef. Norflo. Flume. Oxol. Enox. Pirom. Cinox. Nalid. Pipem. 

Ofloxacin 1.00          

Lomefloxacin 0.90 1.00         

Norfloxacin 0.90 0.90 1.00        

Flumequine 0.90 0.90 0.90 1.00       

Oxolinic Acid 0.90 0.90 0.90 0.90 1.00      

Enoxacin 0.90 0.90 0.90 0.90 0.90 1.00     

Piromidic 

Acid 
0.90 0.90 0.90 0.90 0.90 0.90 1.00    

Cinoxacin 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.00   

Nalidixic Acid 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.00  

Pipemidic 

Acid 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of varying median concentration and coefficient of variation on individual chemical toxicity and 

total mixture toxicity, E[Ci]; i=1,10, r=0, Concentration Additivity Theorem 
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CHAPTER 2: NETWORK-BASED FRAMEWORK FOR DOSE-RESPONSE STUDY 

DESIGN AND INTERPRETATION 

 

Chapter 2, written by Nur H. Orak and co-authored by Mitchell J. Small, and Marek J. Druzdzel, 
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ABSTRACT  

Conventional environmental-health risk-assessment methods are limited in their analyses of 

the actual risks of contaminant exposure. These methods are also incapable of interpreting the 

different sizes of datasets, which could lead to a better understanding of uncertainties (Wilson 

2001a; USNRC 2013a). Therefore, I aim to demonstrate how a performance analysis can be 

implemented for a Bayesian Network (BN) representation of a dose-response relationship. I 

explore the effect of different sample sizes on predicting the strength of the relationship between 

true responses and true doses of environmental toxicants.  

The results can guide the use of dose-response studies in regulatory decision-making by 

determining if data analysis is valid in certain cases, according to the strength of interactions 

between variables in a network and the sample size. The results will promote the use of model-

based dose-response assessment for the dose-selection process and could help to inform the 

determination of future regulations and guidelines for toxic substances.  
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1. INTRODUCTION  

Dose-response assessment is one of the most critical steps of the environmental risk-

assessment process (see Figure 8). It gives information about the adverse health effects of different 

exposure levels. However, the assessment has uncertainty and variability problems due to 

experimental error (e.g., an imperfectly controlled environment, human factors, etc.), animal-to-

human uncertainties, and other uncertainties (Dong et al. 2015).  One primary cause of these 

uncertainties is that the relation between the actual dose level of a toxicant and the actual response 

is very difficult to estimate by direct measurements (Brown 1978; Gustafson 2004). Generally, 

experiments are done with high-dose compound exposure in laboratory animals, and these results 

are used to predict the potential adverse health endpoint(s) in humans, assuming that similar effects 

would be expected. However, the levels of chemical exposure in real life are generally much lower 

than tested levels (Andersen and Krewski 2009; Dong et al. 2015). Decisions about setting 

maximum contaminant limits are biased by these measured responses. Therefore, this study starts 

with one of the best known uncertainty problems in experimental studies: How should prior 

knowledge be used to learn about the strength of the relationship between true exposure and true 

response? And how do measurement errors in exposure and response affect experimental design 

for toxicological and epidemiological studies, in particular, the sample sizes needed to determine 

whether a significant dose (or exposure)-response relationship is present? 

We know that a better understanding of prior knowledge can increase the likelihood of successful 

experimental designs for future trials and for clinical use. In order to achieve this goal, I propose 

a Bayesian Network (BN) model-based approach to analyze the probabilistic relationship between 

true exposure and true response. BNs provide a simple yet holistic approach to the use of both 
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quantitative and qualitative knowledge, with the distinct advantage of combining all available 

information (Pollino and Henderson 2010).  

 

 

 

 

 

 

Figure 8. Components of the risk-assessment process (Source: https://epa.gov/) 

Measurement error in statistical science is a well-studied topic in the literature (Rhomberg 

et al. 2011). However, effects of measurement error on the strength of concentration-response 

relationships in toxicological studies have been limited. BNs can help to understand the effects of 

measurement errors on the dose-response relationship network. There are three effects of 

measurement error in covariates: (1) it causes bias in parameter estimation, (2) it leads to a loss of 

power for the prediction of a relationship, and (3) it makes graphical-model analysis difficult 

(Carroll et al. 2006). Sonderegger et al. (2009) investigated the effects of unmeasured temporal 

variation, and they suggest temporal variation in contaminant concentrations causes important bias 

in the dose-response relationship.  

In the next section we discuss our model, giving background on BNs and our estimation of 

model parameters. In section 3, I present our results. Section 4 discusses the possible applications 

of our results and adds a brief conclusion. 
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2. MODEL PROCESS 

Using BNs as a risk-assessment tool allows us to investigate and quantify the causal 

relationships between several interacting variables and outcomes because there is a theoretical 

relation between causality and probability (Taroni et al. 2006; Mittal and Kassim 2007). Therefore, 

I aim to predict the strength of relationship between True Exposure (TE) and True Response (TR) 

based on different levels of exposure and different sample sizes.  

BNs capture cause-and-effect relationships through influence diagrams, so understanding and 

designing the diagrams is critical. Figure 9 shows the influence diagram of a theoretical dose-

relationship assessment. This simplified influence diagram considers several limitations under 

different nodes. Accuracy of exposure measurement includes experimental limitations, human 

error factors, and the limitations of animal models. Accuracy of response measurement includes 

similar limitations in measurements of responses. True exposure and true response are the actual 

exposure and response levels in the real world; regulations and limitations, however, are based on 

the measured exposure and measured response.  

 

Figure 9. Influence diagram for a dose-response assessment 
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2.1 Background on Bayesian Networks 

Bayesian Networks were developed in the late 1980s to visualize probabilistic dependency 

models via directed acyclic graphs (DAG) in order to understand the joint probabilistic 

relationships between variables (Pearl 1988; Newton 2009). BNs are strong modeling tools and 

are relatively simple compared to other modeling approaches (Pollino and Henderson 2010). The 

characterization of linkages between variables is typically probabilistic, rather than deterministic, 

so that BNs allow use of both quantitative and qualitative information (Newton 2009). Bayesian 

models are particularly appropriate for environmental systems because uncertainty is inherent, and 

BN’s have been used widely for ecological applications (McCann et al. 2006). Similar potential 

exists in the field of human health risk assessment (Kraisangka et al. 2016). 

BNs have been used to analyze problems, and to plan, monitor, and evaluate diverse cases 

of varying size and complexity in several different disciplines (Weber et al. 2012; Beaudequin et 

al. 2015; Yang et al. 2016). They also have been used for environmental-related prediction, 

evaluation, diagnosis, and classification in the literature (Liu et al. 2011; Weber et al. 2012). 

Specifically, a few studies have investigated the relationship between true exposure and true 

response through BNs (Marella and Vicard 2013). There are also a few examples of BN 

applications in health-risk assessment (Woodworth 2004; Mittal and Kassim 2007). A few studies 

investigated interactions among cancer risk components caused by environmental exposure by 

using a probability tree approach (Sielken and Valdez-Flores 1999; Small 2008). The authors focus 

on dose-response predictions as a part of fundamental assumptions of the cancer risk network.  

BNs apply Bayes’ theorem (also known as Bayes’ rule or Bayes’ law), which was first 

derived by Thomas Bayes and published in 1764 (Murphy 2012). According to Bayes’ theorem, a 
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prior probability provides information about the likelihood of a parameter, and the posterior 

probability is calculated based on the conditional probability of that likelihood (Su et al. 2013). 

This feature of the theorem differentiates Bayesian statistical models from ordinary non-Bayesian 

statistical models because the Bayesian approach is a mixture of ordinary linear models and a joint 

distribution over the measured variables, and it may incorporate subjective prior beliefs (Spirtes et 

al. 1993). Bayes’ rule (Eq. 5) continuously updates the belief probability of each node in the 

network (Murphy 2012; Tang et al. 2016). 

𝑝(𝑋 = 𝑥|𝑌 = 𝑦) =
𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑝(𝑌 = 𝑦)
=

𝑝(𝑋 = 𝑥)𝑝(𝑌 = 𝑦|𝑋 = 𝑥)

∑ 𝑝(𝑋 = 𝑥′)𝑝(𝑌 = 𝑦|𝑋 = 𝑥′)𝑥′
 

(5)  

BNs bring a holistic approach to understanding the important pathways in networks, which 

are not easily expressed by mathematical equations, by integrating qualitative expert knowledge, 

equations, probabilistic modeling, and empirical data (Pearl 1988; Gat-Viks et al. 2006; Tighe et 

al. 2013). This classification approach is used when the response is categorical, as in our case 

(Denison et al. 2002). 

I developed a BN (Figure 10) based on the preliminary influence diagram (Figure 9) by using the 

Graphical Network Interface (GeNIe) software package (bayesfusion.com 2016a). I chose this 

software because of its flexible data-generation feature and its user-friendly interface. The 

accuracy of exposure-measurement and response-measurement levels are represented by AcEM 

and AcRM, respectively. These accuracy levels can be affected by experimental limitations, 

animal-to-human differences, or human factors. The measured (observed) values of exposure and 

response are termed ME and MR, respectively. The true exposure (TE) and true response (TR) 

values are the actual exposure and response levels. The node R represents the complex relationship 

between TE and TR. For instance, if R is strong, then the degree of causal influence of TE on TR 

is high and the correlation between TE and TR approaches 1; in other words, an increasing strength 
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of relationship indicates an increased health risk associated with exposure. The state none assumes 

there is no potential linkage between true exposure and true response. For instance, the response 

to an environmental exposure can be high even for low measurement accuracy level if R is strong. 

On the other hand, if R is none, increasing exposure levels do not change the risk of the targeted 

health effect. The node ER Match takes into account the potential nine combinations of ME and 

MR outcomes. When the measured exposure and measured risk are the same (i.e., states ll, mm, or 

hh) this lends support to the belief that a relationship exists between the true exposure and the true 

risk, especially when the measurement errors are low.  When the states do not match, this lends 

support to the belief that the relationship is not strong, and possibly there is no relationship at all 

(or the relationship is masked by measurement error). 

2.2 Bayesian Network Model Parameters Estimation  

I assume that there is no prior information about the distributions of nodes in the network. 

Therefore, I use the uniform prior probability distribution over each variable, i.e., I assume that 

each state in a node with three outcomes has a 33% probability of occurrence, except the 

relationship (R) node. The R node prior probability is designed to investigate any potential 

relationship in addition to the strength of relationship. There is a 50% probability of an existing 

relationship (medium or strong) or of no relationship (see Figure 10).  
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Figure 10. BN model for dose-response assessment with prior probabilities 

For the prior network shown in Fig. 10, the conditional probability tables (CPTs) are 

estimated for ME, MR, and TR to represent the effect of different strength of relationship (none, 

medium, strong) and different accuracy levels of measurement and response (low, high, perfect) 

on TE and TR. The CPT of ME (Table 5) outlines the probabilities for ME based on AcEM and 

TE. In case of low accuracy, the probability of accurately predicting ME or MR is 50%, this value 

increases to 80% and 100% for high and perfect accuracy levels, respectively.  

Table 5. Conditional probability distributions for measured exposure, ME 

    

In the case of no relationship (none), the probability distribution over all states of the TR 

variable is uniform. Increasing the level of relationship increases the probability of predicting TR; 

60% for medium and 90% for strong.  
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Table 6. Conditional probability distributions for true response, TR 

   

The default belief updating algorithm in GeNIe is the clustering algorithm, the fastest-known 

exact algorithm for Bayesian networks. The clustering algorithm was originally proposed by 

Lauritzen and Spiegelhalter (1988) and improved by several researchers (Jensen et al. 1990; Dawid 

1992).   

2.3 Data Simulation and Analysis 

  I simulate several random cases for 9 potential combinations of strength of relationships, 

accuracy level, and sample size summarized in Table 7. GeNIe allows the user to generate random 

cases that are representative of the network, and it also allows the user to generate these cases with 

different states selected for some of the network nodes. Each case represents a hypothetical 

individual in a group of N that was exposed to a potential amount of toxicant in an environment. 

A “true” population is first simulated with an assumed strength of relationship (none, medium, or 

strong) and specified levels of exposure and effect measurement error (low, medium or high for 

each).  Given multiple sets of random cases with each (true) specification, I use each of the case 

sets to update a new “blank” copy of the network (that is, one with the prior specifications) and 

infer the posterior probability that the strength of relationship (informed by the case set) is none, 

medium, or strong.  If the inferred probabilities align with the true strength of relationship used to 

generate the cases, then I conclude that the simulated study has the power to properly infer the 

strength of relationship. This power depends on the accuracy of the measurements and the sample 

size (N), i.e., the number of random cases in each case set.  As N increases, the power for proper 
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inference likewise increases.  In order to demonstrate the comparative results for different sample 

sizes, I simulated several N values: 20, 50, 100, and 1000.     

The simulation analysis involves the following steps: 

1- Assign a true state for R, AcEM, and AcRM (e.g., scenario Figure 11),  

2- Generate a dataset D of size N for the selected scenario, and repeat for 10 trials, 

3- Count the frequency for each state of ER Match, and calculate the average, 

4- Calculate the posterior distribution for each state of R based on prior knowledge 

generated by the selected scenarios, and sequential network updates calculated for each 

case in the dataset D, and 

5- Repeat steps 1–4 for different sample sizes (N). 

Table 7.  Nine scenarios for power evaluation 

 Scenario 

Simulation 

No 

Relationship 

(R) 
AcEM - AcRM 

1 None Low-Low 

2 None High-High 

3 None Perfect-Perfect 

4 Medium Low-Low 

5 Medium High-High 

6 Medium Perfect-Perfect 

7 Strong Low-Low 

8 Strong High-High 

9 Strong Perfect-Perfect 

To understand the potential value of new information and to predict a probability 

distribution for R, each case is used as evidence and assigned as the prior for the next case. The 

Bayes factor (BF) is used as an updating factor to predict the cumulative posterior probability for 

both the null and the alternative hypothesis. In other words, the BF is a weighted average of the 

likelihood ratio of the null hypothesis over the alternative hypothesis (Jarosz and Wiley 2014): 
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𝐵𝑎𝑦𝑒𝑠⁡𝐹𝑎𝑐𝑡𝑜𝑟(𝐵𝐹) =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑑𝑎𝑡𝑎⁡𝑔𝑖𝑣𝑒𝑛⁡𝐻0⁡(𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟⁡𝑂𝑑𝑑𝑠)

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑑𝑎𝑡𝑎⁡𝑔𝑖𝑣𝑒𝑛⁡𝐻1⁡(𝑃𝑟𝑖𝑜𝑟⁡𝑂𝑑𝑑𝑠)
 

(6) 

An increasing BF indicates increasing evidence in support of the null hypothesis. Posterior 

probabilities of 10 trials for each scenario are calculated based on BFs. One important advantage 

of BF is that it is not affected by sample size or other factors, because it is a ratio of probabilities. 

This feature means that two BFs of equal value provide the same amount of evidence for the 

alternative hypothesis. Posterior odds of each state of R are calculated by multiplying the prior 

probabilities by the BF, then calculating posterior probabilities based on those outcomes. Then, 

cumulative posterior probabilities along the sample size are calculated by adding up the posterior 

probabilities for each case.  

 

Figure 11. An example: updated BN model for AcEM-AcRM: low-low associated relationship 

(R) assessment and a single ll case 

Different scenarios are compared with power analysis of the false negative rate and determination 

of false positive rates (FPRs) as defined below. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐹𝑃𝑅 = 1 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃[𝑚𝑒𝑑𝑖𝑢𝑚] + 𝑃[𝑠𝑡𝑟𝑜𝑛𝑔] 



39 

 

(7) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒⁡(𝐹𝑁𝑅)(𝑚𝑒𝑑𝑖𝑢𝑚) = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃[𝑛𝑜𝑛𝑒]⁡ 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐹𝑁𝑅(𝑠𝑡𝑟𝑜𝑛𝑔) = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃[𝑛𝑜𝑛𝑒]⁡ 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑜𝑤𝑒𝑟 = 1 − 𝐹𝑁𝑅⁡ 

(8) 

Average power provides important information about the performance of classifiers by plotting 

the 1-FNR vs. sample size. The accuracy level of prediction increases with increasing power. 
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3. RESULTS 

I evaluate the efficiency of the model by how well it predicts the strength of relationship based 

on synthetic ER Match results. Three figures summarize the outcomes based on different cases 

generated under three AcEM and AcRM scenarios (low-low, high-high, perfect-perfect).    

In each figure, the title line represents the predicted posterior probabilities of R; each column 

is for prediction of one class (none, medium or strong). The y-axis indicates the actual R that cases 

generated. A thick trend line shows the average value of 10 trials. The noise on the graph visualizes 

the variance as a result of 10 trials.  

Figure 12 compares posterior probabilities of predicting R for the actual R cases (none, 

medium, and strong) under the low-low AcEM-AcRM scenario over 1000 cases. Increasing actual 

strength of relationship increases the probability of accurately predicting R classification. Also, 

increasing the sample size increases the accuracy level for the predicted R for all three scenarios. 

For example, for the actual case none, posterior P[none] goes up from 50% prior to 75% after 

N=400.        

Figure 13 shows posterior probabilities of predicted R for the actual R class over 1000 cases. 

Posterior P(none) from the actual none rises dramatically from 50% to 100% after N=150. The 

previous scenario, AcEM-AcRM: low-low, could reach a maximum of 80% average posterior 

P(none); increasing the accuracy level significantly contributes to the efficiency of R prediction. 

The number of occasional high and low posterior probabilities increase compared to the low-low 

scenario.  
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Figure 12. Posterior probabilities of different strength of relationship for the case of low-low accuracy level (title indicates the actual strength of 

relationship of dataset) 
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Figure 13. Posterior probabilities of different strength of relationship for the case of high-high accuracy level (title indicates the actual strength 

of relationship of dataset) 
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Figure 14 summarizes the outcomes of posterior probabilities of predicted R over different 

sample sizes under perfect-perfect accuracy levels. A perfect accuracy level means that there is a 

100% relationship between TR and MR or TE and ME.  The average trend line converges to 100% 

more quickly than in other accuracy scenarios. To learn more from different accuracy level 

scenarios, average power and FPR are calculated. Table 8 lists power for the actual medium for 

four different sample sizes. Prediction power is significantly lower for a very small sample size 

(N=20), and increasing accuracy levels do not help the effectiveness. For instance, power for the 

perfect accuracy level increases by only 8%. On the other hand, this gap increases dramatically for 

big (N=100) and very big sample sizes (N=1000).  

Table 8. Average power (medium) vs. sample size (N) for three accuracy levels 

Accuracy Level\Sample size 20 50 100 1000 

Low 0.50 0.51 0.53 0.61 

High 0.47 0.56 0.67 0.87 

Perfect 0.58 0.79 0.89 0.98 

Table 5 summarizes average power for predicting strong cases at different accuracy levels. 

Power is higher even for small sample sizes when compared to Table 9. Big sample size is enough 

to reach almost 100% prediction accuracy with high experimental accuracy. 

Table 9. Average power (strong) vs. sample size (N) for three accuracy levels 

Accuracy Level\Sample size 20 50 100 1000 

Low 0.57 0.60 0.62 0.82 

High 0.97 0.99 0.99 1.00 

Perfect 1.00 1.00 1.00 1.00 

Table 10 indicates FPRs vary with accuracy level and sample size. The average false 

positive ratio decreases with increasing accuracy levels and sample sizes.    
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Table 10. Average FPR vs. sample size (N) for three accuracy levels 

Accuracy Level\Sample size 20 50 100 1000 

Low 0.49 0.47 0.46 0.33 

High 0.25 0.19 0.13 0.02 

Perfect 0.19 0.11 0.06 0.01 

Table 11 shows the sample size needed to (on average) infer with 90% posterior probability 

the correct strength (for the three true strengths of relationship) and the three accuracy levels. 

Increasing accuracy levels requires smaller sample sizes to predict the strength of true relationship. 

For instance, increasing accuracy level causes a dramatic decrease of sample size (1000+ to 6) for 

the case of strong relationship. 

Table 11. The sample size needed to infer with 90% posterior probability of the correct strength 

 True strengths of relationship 

Accuracy Level None Medium Strong 

Low 
1000+ 1000+ 1000+ 

High 
133 983 25 

Perfect 
32 205 6 
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Figure 14. Figure 7. Posterior probabilities of different strength of relationship for the case of perfect-perfect accuracy level (title 

indicates the actual strength of relationship of dataset)
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4. DISCUSSION AND CONCLUSION 

Current environmental-health risk-assessment approaches are not effective in 

understanding actual dose-response relationships and the effects of measurement errors in 

different sample sizes. Directed graphs can provide a powerful approach for visualizing 

dependencies between variables in a network.  In this study, we present a novel method to 

answer fundamental uncertainty questions in toxicological/epidemiological studies. I use BN 

as a tool to understand hidden biases due to unobserved covariates. Dose-response relationships 

are investigated among individual cases and within individuals.  

Our findings show that increasing actual strength of relationship increases the accuracy 

level of predicting relationship (R) classification. Also, increasing the sample size increases 

the accuracy level for the predicted R for all scenarios. Moreover, increasing the experimental 

accuracy level significantly contributes to the efficiency of R prediction. These results can be 

applied to various contexts in toxicological and epidemiological studies.  
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5. APPENDIX B  

 

Figure 15. Data Simulation-Scenario AcEM-AcRM: low-low, R: none 

 

 

 

 

Figure 16. Data Simulation-Scenario AcEM-AcRM: low-low, R: medium 
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Figure 17. Data Simulation-Scenario AcEM-AcRM: low-low, R: strong 

 

 

 

 

Figure 18. Data Simulation-Scenario AcEM-AcRM: high-high, R: none 
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Figure 19. Data Simulation-Scenario AcEM-AcRM: high-high, R: medium  

 

 

 

 

Figure 20. Data Simulation-Scenario AcEM-AcRM: high-high, R: strong 
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Figure 21. Data Simulation-Scenario AcEM-AcRM: perfect-perfect, R: none 

 

 

 

 

 

Figure 22. Data Simulation-Scenario AcEM-AcRM: perfect-perfect, R: medium 
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Figure 23. Data Simulation-Scenario AcEM-AcRM: perfect-perfect, R: strong 

 

Table 12. Bayes Factor-AcEM-AcRM: low-low 

 For None For Medium For Strong 

Data PostP PostOdds BF None PostP PostOdds BF PostP PostOdds BF 

ll 0.47 0.90 0.90 0.25 0.34 1.01 0.27 0.38 1.13 

lm 0.50 1.01 1.01 0.25 0.34 1.01 0.25 0.32 0.97 

lh 0.52 1.10 1.10 0.24 0.32 0.97 0.23 0.30 0.90 

ml 0.51 1.05 1.05 0.25 0.33 0.98 0.24 0.32 0.96 

mm 0.49 0.95 0.95 0.25 0.34 1.02 0.26 0.35 1.05 

mh 0.50 1.01 1.01 0.25 0.33 0.99 0.25 0.33 0.99 

hl 0.52 1.11 1.11 0.24 0.32 0.96 0.23 0.30 0.91 

hm 0.50 1.01 1.01 0.25 0.34 1.01 0.25 0.32 0.97 

hh 0.48 0.91 0.91 0.25 0.34 1.02 0.27 0.37 1.11 

Table 13. Bayes Factor-AcEM-AcRM: high-high 

 For None For Medium For Strong 

Data PostP PostOdds BF  PostP PostOdds BF PostP PostOdds BF  

ll 0.37 0.58 0.58 0.27 0.37 1.10 0.37 0.58 1.73 

lm 0.55 1.24 1.24 0.25 0.34 1.02 0.19 0.24 0.71 

lh 0.67 2.01 2.01 0.21 0.26 0.79 0.12 0.14 0.42 

ml 0.58 1.36 1.36 0.24 0.31 0.93 0.19 0.23 0.69 

mm 0.41 0.69 0.69 0.27 0.36 1.09 0.33 0.49 1.46 

mh 0.58 1.36 1.36 0.24 0.31 0.93 0.19 0.23 0.69 

hl 0.67 2.01 2.01 0.21 0.27 0.80 0.12 0.14 0.42 

hm 0.55 1.25 1.25 0.25 0.34 1.02 0.19 0.24 0.71 

hh 0.37 0.58 0.58 0.27 0.37 1.10 0.36 0.57 1.72 
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Table 14. Bayes Factor-AcEM-AcRM: perfect-perfect 

 For None For Medium For Strong 

Data PostP PostOdds BF  PostP PostOdds BF PostP PostOdds BF  

ll 0.31 0.44 0.44 0.28 0.38 1.15 0.42 0.71 2.13 

lm 0.68 2.08 2.08 0.25 0.34 1.02 0.07 0.08 0.23 

lh 0.79 3.71 3.71 0.18 0.21 0.64 0.04 0.04 0.11 

ml 0.73 2.66 2.66 0.22 0.28 0.84 0.05 0.06 0.17 

mm 0.31 0.44 0.44 0.28 0.38 1.15 0.42 0.71 2.13 

mh 0.73 2.67 2.67 0.22 0.28 0.84 0.05 0.06 0.17 

hl 0.79 3.70 3.70 0.18 0.22 0.65 0.04 0.04 0.11 

hm 0.68 2.08 2.08 0.25 0.34 1.02 0.07 0.08 0.23 

hh 0.31 0.45 0.45 0.28 0.38 1.15 0.42 0.71 2.13 
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CHAPTER 3: A PROBABILISTIC METHODOLOGY FOR RISK ASSESSMENT OF 

ARSENIC EXPOSURE AND ADVERSE REPRODUCTIVE OUTCOMES 

 

Chapter 3, written by Nur H. Orak and co-authored by Mitchell J. Small, will be submitted to 

the Journal of Environmental Science and Technology.  
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ABSTRACT  

Arsenic contamination of drinking water affects more than 137 million people and has been 

linked to several adverse health effects including cognitive, cardiovascular, and metabolic 

disorders (Caldwell et al. 2015). Prior research has shown that arsenic poisoning can be 

attributed to arsenic concentration, human metabolism and arsenic species (arsenicals). 

However, conventional health-risk assessment methods are not very effective in analyzing the 

actual risk of arsenic exposure. These methods are also not capable of interpreting large 

amounts of data, the interpretation of which could lead to a better understanding of 

uncertainties. (Wilson 2001b; USNRC 2013b). The complex, integrated systems, where 

physical-biological-human systems interact, require a multidisciplinary approach. Therefore, 

we aim to explore the prenatal, inorganic arsenic-exposure network, the strength of 

interactions, and the potential causal relationships by combining Hypothesis Based Weight of 

Evidence (HBWoE) and Bayesian Network (BN) modeling. Our analysis demonstrates how 

BN can be used to quantify HBWoE evaluation.   

First, I give some background information about the HBWoE framework, and inorganic 

arsenic (iAs) exposure, metabolism of iAs. Section 2 explains the model process steps, and 

sections 3-4 outline the results and potential implications. Because I provide detailed 

information about BNs in Chapter 2, I do not give detailed information in this chapter. 
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1. INTRODUCTION 

The traditional toxicological approach, “dose-response” graphs, is limited in its ability to 

unveil the relationship between potential risk factors of arsenic exposure and adverse human 

health outcomes, which is critically important to understanding the risk at low arsenic exposure 

levels. The U.S. National Research Council (USNRC 2013b) published a report that 

recommends data-driven approaches over default practices for assessing multiple effects of 

inorganic arsenic. Therefore, to provide insight on the potential interactions of different 

variables in the arsenic-exposure network, this study characterizes the risk factors by 

combining an HBWoE framework with BN modeling as a tool for health risk assessment. The 

goal of this chapter is to design a BN to incorporate different types of information on arsenic 

exposure in drinking water and its effects on pregnant women.  

1.1 Background on the Hypothesis-Based Weight of Evidence (HBWoE) Methodology 

It is challenging in a systematic literature review to collect and evaluate the weight of 

evidence in each study. Hypothesis-based weight of evidence (HBWoE) provides an objective, 

operational, and transparent weight-of-evidence concept (Rhomberg 2013; Bailey et al. 2016). 

The main goal is integrating all the sources of evidence to support causality between variables. 

The secondary goal is providing procedures for evaluating evidence for given outcomes, Figure 

24 shows the procedure of the HBWoE. We complete our litrature review and data collection 

by following the steps of Figure 14. 

.                             
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Figure 24. Seven steps of the Hypothesis-Based Weight-of-Evidence (HBWoE) approach 

(Rhomberg and Bailey 2015) 

1.2 Literature Review on Inorganic Arsenic (iAs) Exposure and Metabolism of iAs 

Natural water contamination by arsenic exposure is a global threat to public health (Stanton 

et al. 2015). Arsenic is the 20th most abundant element in the earth’s crust, the 14th in seawater 

and the 12th in the human body. In other words, arsenic also occurs naturally (Mandal and 

Suzuki 2002). The most common forms of inorganic arsenic, arsenate (As5+) and arsenite 

(As3+), are more toxic than organic arsenic (Qi et al. 2014). High levels of arsenic exposure 

cause adverse effects on human health, such as dermal, respiratory, pulmonary, cardiovascular, 

gastrointestinal, hematological, hepatic, renal, neurological, immunologic, genotoxic, 

mutagenetic, and carcinogenic effects (WHO 2011; USNRC 2013b). In addition, prenatal 
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inorganic arsenic exposure is potentially linked with infant development and survival (Gardner 

et al. 2011; Rager et al. 2014). Therefore, for drinking water, the maximum permissible arsenic 

concentration is 10 µg/L by the U.S. Environmental Protection Agency (EPA), and the 

recommended value is 10 µg/L by the World Health Organization (WHO) (Stanton et al. 2015).  

 

Figure 25. Pathway of arsenic metabolism 

The literature documents the relationship between arsenic exposure in drinking water 

and adverse pregnancy outcomes. High concentrations of arsenic can cross the placental barrier 

and cause negative reproductive and developmental effects, such as spontaneous abortion, 

preterm birth, stillbirth, and decreased birth weight (Ahmad et al. 2001; Bailey and Fry 2015; 

Punshon et al. 2015). The adverse health outcomes are caused by several factors (variables), 

such as arsenic concentration in drinking water and characteristics of women, such as genetic 

components (sex, age, and body weight) and lifestyle (smoking habits, alcohol consumption, 

etc.) (NRC 2001; Laine et al. 2015). In addition, genetic factors can also affect the metabolism 

of arsenic to form different arsenic metabolites (arsenicals). Yet even though the interactions 

between these variables and the underlying reason of arsenic partitioning are extensively 

studied in the literature, the current dose-response methods do not explain these relationships 

well.  

The metabolism of inorganic arsenic has been well studied in the literature. The metabolism of 

inorganic arsenic is complex, and the process forms several different arsenicals, that have 

different toxicities (USNRC 2013b). Prior research on arsenic detoxification has shown that an 

effective method is methylation (Thomas et al. 2001; Vahter 2002; Wanibuchi et al. 2004). 
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Inorganic arsenic compounds can be methylated to monomethylarsonic acid (MMA), 

dimethylarsinic acid (DMA) and trimethylarsine oxide (TMAsO) (Mandal and Suzuki 2002; 

Qi et al. 2014). These highly methylated species have fewer toxic effects compared to less 

methylated compounds (Wanibuchi et al. 2004; Laine et al. 2015). Several studies show that 

the partitioning of inorganic arsenic metabolites in the human body is 20-30% inorganic 

arsenic, 10-20% MMA, and 60-80% DMA (Gardner et al. 2011) (see Figure 13). Women are 

more efficient in converting inorganic arsenic to DMA than men; this efficiency may be higher 

during pregnancy (Vahter et al. 2006). There are several biomarkers of arsenic exposure in the 

human body; the most common ones are blood arsenic and urinary arsenic (Jarup 2003).  
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Figure 26. Levels of urinary arsenicals of the participants of the BEAR study, adapted from Laine et 

al. (2015) 



61 

 

 

 

2. MODEL PROCESS 

The model development starts with setting goals for the prenatal arsenic exposure BN 

model (A-BN) (see Figure 27), which explore the causal relationships in the inorganic arsenic 

(iAs) exposure network and the effects of drinking water iAs exposure (DW-iAs) on low birth 

weight. For the second and third steps, I use knowledge from HBWoE to design the conceptual 

model and, identify and parameterize the model variables. The last step aims to evaluate the 

model.  

 

Figure 27. Steps to develop the Arsenic-Bayesian Network (A-BN)  

2.1 Objectives  

The first aim of the A-BN model is to explore the relative importance of each variable 

in the network. Using BN as a risk-assessment tool allows us to investigate and quantify the 

causal relationships between several interacting variables and outcomes because there is a 

1. Objectives of 
the model

2. Developing 
the 

Conceptual 
Model

3. Parameterize  
the model

4. Evaluation of 
the model

                 Iteration steps 

                 Updating step 
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theoretical relation between causality and probability. Therefore, I aim to improve the 

understanding and prioritization of risk factors in the arsenic network by using BN.  

2.2 Developing the Conceptual Model and Parameterization  

We develop a conceptual model after defining the objectives, which has two important 

steps: first, identifying the network variables and, second, developing an influence diagram 

(model structure) using those variables. BNs capture cause-and-effect relationships through 

influence diagrams. Therefore, understanding and designing the influence diagram is critical. 

There are several different approaches; I develop an influence diagram based on evidence in 

the literature by following the first five steps of HBWoE. I collect data on DW-iAs, 

arsenicals in the human body, and demographic characteristics from different studies. I 

develop several BNs with GeNIe Software (bayesfusion.com 2016b) based on the 

preliminary influence diagram, and I predict conditional probability tables (CPTs) based on 

the outcomes of HBWoE. I compare different BNs to reach the most accurate prenatal 

arsenic-exposure network model.  

This step requires several iterations to understand the significance of each variable and 

simplify the influence diagram. I organize the outcomes for the selected final four literature 

studies in Table 16.  This table is the main information source for simplifying the arsenic 

network and finding the best discretization for each variable. In other words, I develop an 

evidence chart to prioritize the variables and understand the direction of a potential relation 

between two variables (y causes x to be more likely to occur). If this relationship is clearly 

known, then I keep it in the diagram.   

When the influence diagram is ready, I update the nodes with BN algorithms, which 

are categorized in GeNIe as Exact algorithms or Stochastic algorithms. Exact algorithms 

include the clustering algorithm and the polytree algorithm. Stochastic sampling algorithms 
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have 7 types: Probabilistic Logic, Likelihood, Self-Importance, Heuristic Importance, 

Backward, AIS, and EPIS Samplings. The estimated posterior importance sampling (EPIS) 

algorithm is almost always the best sampling algorithm available, so I will focus on EPIS. This 

algorithm computes the posterior probability over all nodes with a loopy belief propagation, 

and later it uses Importance Sampling to refine the estimate (Druzdzel 2003).  

I select a hypothesis for the first demonstration: does arsenic exposure affect low birth 

weight? I restructure the influence diagram to answer this question by comparing four literature 

studies.  

2.3 Evaluation and Test 

After I complete the development of A-BN, I need to see how much the results differ for 

the different conditional probability tables (CPTs) that are estimated based on Table 16. I 

calculate the false positive rate (FPR) and the power (TPR=1-FNR) of the evidence provided 

by the model.  

Table 15. Table of Error Types 
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3. RESULTS 

First, I develop a preliminary A-BBN to identify all the important variables of the arsenic 

network (Figure 28): DW-iAs (µg/L), total arsenic (tAs) (µg/L), DMA (p_DMA) (%), MMA 

(p_MMA) (%), iAs (p_iAs) (%), gestational age (ges_age) (weeks), baby weight 

(baby_weight) (g), smoking status (smoker), alcohol consumption (alcohol), and mother age 

(age). 
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Figure 28. Influence diagram of the arsenic-exposure network (A-BN) 
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Second, I examine the literature for low birth weight risk and I ask several hypotheses based 

questions to understand the most important variables and the mechanism of risk. I implement 

the A-BN model inherited from the preliminary influence diagram on four literature studies 

(Table 16). I simplify the influence diagram to compare the four different studies because 

complex diagrams increase the uncertainty of the final outcome. Figure 29 shows the revised 

A-BN that I use to compare four literature studies: Gelmann et al. (2013), Hopenhayn et al. 

(2003), Punshon et al. (2015), and Laine et al. (2015). 

Table 16. Comparison of four literature studies for Arsenic-Bayesian Network 

Variables* Punshon et al. Hopenhayn et al. Laine et al. Gelmann et al. 

Year 2015 2003 2015 2013 

Sample size (N) 766 424 200 1870 

Cohort region U.S. Chile Mexico Romania 

Exposure (water µg/L) 0.38 40 24.6 >10 

Urinary As (µg/L) 3.62 54.3 37.5  

DMA (%) 80.8 - 87.6 67 

MMA (%) 9.1 - 6.4 18 

iA (%) 10.1 - 6.1 15 

Age 31.3 29.8 24 26.6 

Smoking status (%) 6 53 7 11.1 

Alcohol status (%) - 15 20.5 0 

Infant sex F (%) 50 51 96 21.9 

BMI (kg/m2) 25.3 32.3 34.7 24.0 

Birthweight (g) 3455 3396 3339 2405 

Low birth weight (%) 4 -57 g 2  

Gestational age (weeks)  39.2 39  

MCL for country (µg/L) 10 10 25 10 

*Detailed information for each study is documented in Appendix C. 
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Figure 29. Preliminary revised Updated Arsenic Bayesian Network (A-BN) I use to compare 

four literature studies 

The Arsenic Exposure Affects Birth weight node represents the hypothesis that exposure 

influences different outcomes for each study, which has a 50% prior distribution between “yes” 

and “no” outcomes. Quality of study considers all variables that affect the experimental results 

(e.g., sample size, limitations, etc.). I predict CPTs based on the provided information from 

each study (see Appendix C).  

Figure 30 shows the updated network where different combinations of the states of the four 

study nodes surrounding the middle Arsenic Exposure Affects Birthweight are selected (based 

on the respective study outcomes), yielding an update of the middle box. A-BN outcome 

suggests there is no existing relationship between arsenic exposure and low birth weight 

(FPR=32%).  On the other hand, Figure 31 shows that increasing arsenic concentration in 
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drinking water significantly increases the probability of an existing correlation between arsenic 

exposure and birth weight (FNR=6%).  

 

 

Figure 30. Updated Arsenic Bayesian Network (A-BN), DW-iAs < 1µg/L 
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Figure 31. Updated Updated Arsenic Bayesian Network (A-BN), DW-iAs: 1-10 µg/L 

These results can be used to design a better experimental plan and understand the value of 

information in each study. The joint risk tells more about a potential linkage between arsenic 

exposure and low birth weight. A-BN can be used for several potential scenarios to understand 

and evaluate each literature study to learn more about the arsenic-exposure network.  

4. DISCUSSION AND CONCLUSION  

The objective in conducting this study is to promote a broader understanding of BNs as one 

health risk-assessment tool. There is limited evidence in the literature about the effect of arsenic 

exposure on infant birth weight. There is a need to combine different outcomes from literature 

studies to understand and predict the potential risks. I develop A-BN to demonstrate how to 

implement BN to quantify the HBWoE method. The results show that this framework provides 
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objective and comparable outcomes to evaluate a large amount of data from the literature. This 

framework can be implemented in several other environmental contaminant exposure health-

risk problems.  

The next step for this task is combining more studies in A-BN because arsenic exposure is 

a well-studied problem, and I can potentially find more evidence about the effects of arsenic 

on human health. Also, another task will be analyzing arsenicals to try to find evidence on 

whether monomethylated arsenic can be an indicator of low birthweight risk.   
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6. APPENDIX C 

  

 

 

 

 

 

 

  

 

Figure 32. Assumed CPT, baby weight, Laine et al. 

Figure 33. Assumed CPT, baby weight, Punshon et al. 

Figure 34. Assumed CPT, baby weight, Gelmann et al. 

Figure 35. Assumed CPT, baby weight, Hopenhayn et al. 
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Table 17. Literature study 1: Laine et al, 2015 
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Table 18. Literature study 2: Punshon et al, 2015 
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Table 19. Literature study 3: Gelmann et al, 2013 
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Table 20. Literature study 4: Hopenhayn et al, 2003 
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Table 21. Literature study 4: Hopenhayn et al, 2003 (continue) 
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CHAPTER 4: THESIS CONCLUSIONS AND FUTURE WORK 
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The overall objective of this dissertation was to highlight the importance of statistical 

modeling and data driven knowledge for environmental-health risk assessment. This was 

accomplished by (1) reviewing the potential risks of missing chemical data and concentration 

variability by developing 27 occurrence scenarios. (2)  Demonstrating how a performance 

analysis can be implemented for a Bayesian Network (BN) representation of a dose-response 

relationship. (3) Analyzing the risk factors of a prenatal arsenic exposure network by 

combining BN modeling and Hypothesis Based Weight of Evidence method as a tool for health 

risk assessment.  

1. CONCLUSIONS 

Chapter 1 of the thesis focused on a predictive occurrence model to analyze the effects of 

concentration variability in the system and correlated concentrations on mixture toxicities. I 

found that higher variability in concentrations causes higher effective (average) mixture 

toxicity when low to intermediate toxicity is associated with the median of the concentration 

distribution. The biggest enhancement of toxicity due to variability occurs at lower 

concentrations, however, if the variability is very high, toxicity is slightly lower for high 

median concentration values. Our findings showed that correlated concentrations do not 

systematically lead to increased mixture toxicity. The increased toxicity effect due to 

concentration variability is similar for concentration addition and independent action models. 

These results show that mixture occurrence and toxicity estimation should be explored to 

prioritize exposure sampling and mixture toxicity studies.  

Chapter 2 explored the effect of different sample sizes on predicting the strength of the 

relationship between true responses and true doses of environmental toxicants. Our findings 

show that increasing actual strength of relationship increases the probability of accurately 

predicting relationship (R) classification. Also, increasing the sample size increases the 
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accuracy level for the predicted R for all scenarios. Increasing the experimental accuracy level 

significantly contributes to the efficiency of R prediction. The findings can guide the use of 

dose-response studies in regulatory decision-making by determining if data analysis is valid in 

certain cases, according to the strength of interactions between variables and the sample size. 

Chapter 3 explored the prenatal, inorganic arsenic-exposure network, the strength of 

interactions, and the potential causal relationships by combining Hypothesis Based Weight of 

Evidence (HBWoE) and Bayesian Network (BN) modeling. Our analysis demonstrates how 

BN can be used to quantify HBWoE evaluation. I used four literature studies to predict the risk 

of low birth weight. Results can be used to design a better experimental plan and understand 

the value of information in each study. There is limited evidence in the literature about the 

effect of arsenic exposure on infant birth weight. This approach can be used for several 

potential scenarios to understand and evaluate each literature study to learn more about the 

arsenic-exposure network.        

2. FUTURE WORK 

Although this study advances the understanding of statistical methods in environmental-

health risk assessment, this research could be further improved by additional work not 

addressed in this study. An important limitation of Chapter 1 is that the models are based on a 

specific set of 10 chemicals, with results that may not be representative of other mixtures. Also, 

for this study, mixture toxicity is dominated by the most toxic compound, ofloxacin, but this 

result could be different if no chemical dominates the mixture toxicity. Some advancements 

include the addition of different chemicals in the model and trying different mixtures.  

Chapter 2 could be improved by including more categories in each node and repeating the 

process for different conditional dependencies. Also, our model outcomes are based on 

matching exposure-response accuracy levels, so an important future step could be trying 
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different combinations of accuracy levels. Findings could change for different prior 

distributions. Moreover, definition of medium and strong relationship could potentially change 

the outcomes, so different scenarios could help learning more information.  

The next step for Chapter 3 could be combining more studies in A-BN because arsenic 

exposure is a well-studied problem, and I can potentially find more evidence about the effects 

of arsenic on human health. Also, another task will be analyzing arsenicals to try to find 

evidence on whether monomethylated arsenic can be an indicator of low birth weight risk. The 

A-BN could include more variables to objectively and systematically prioritize the variables in 

the network. This methodology could be applied to other environmental contaminant 

exposures.  

 

 


