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Abstract 
 

Uncertainty in rainfall forecasts affects the level of quality and assurance for decisions made to 

manage water resource-based systems. However, eliminating uncertainty in a complete manner 

could be difficult, decision-makers thus are challenged to make decisions in the light of 

uncertainty. This study provides statistical models as an approach to cope with uncertainty, 

including: a) a statistical method relying on a Gaussian mixture (GM) model to assist in better 

characterize uncertainty in climate model projections and evaluate their performance in matching 

observations; b) a stochastic model that incorporates the El Niño–Southern Oscillation (ENSO) 

cycle to narrow uncertainty in seasonal rainfall forecasts; and c)  a statistical approach to determine 

to what extent drought events forecasted using ENSO information could be utilized in the water 

resources decision-making process. This study also investigates the relationship between 

calibration and lead time on the ability to narrow the interannual uncertainty of forecasts and the 

associated usefulness for decision making. These objectives are demonstrated for the northwest 

region of Costa Rica as a case study of a developing country in Central America. This region of 

Costa Rica is under an increasing risk of future water shortages due to climate change, increased 

demand, and high variability in the bimodal cycle of seasonal rainfall. First, the GM model is 

shown to be a suitable approach to compare and characterize long-term projections of climate 

models. The GM representation of seasonal cycles is then employed to construct detailed 

comparison tests for climate models with respect to observed rainfall data. Three verification 

metrics demonstrate that an acceptable degree of predictability can be obtained by incorporating 

ENSO information in reducing error and interannual variability in the forecast of seasonal rainfall. 

The predictability of multicategory rainfall forecasts in the late portion of the wet season surpasses 
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that in the early portion of the wet season.  Later, the value of drought forecast information for 

coping with uncertainty in making decisions on water management is determined by quantifying 

the reduction in expected losses relative to a perfect forecast. Both the discrimination ability and 

the relative economic value of drought-event forecasts are improved by the proposed forecast 

method, especially after calibration. Positive relative economic value is found only for a range of 

scenarios of the cost-loss ratio, which indicates that the proposed forecast could be used for specific 

cases. Otherwise, taking actions (no-actions) is preferred as the cost-loss ratio approaches zero 

(one). Overall, the approach of incorporating ENSO information into seasonal rainfall forecasts 

would provide useful value to the decision-making process - in particular at lead times of one year 

ahead.  
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Chapter 1: Introduction 

1.1 Overview  

Water regulation and planning decisions are mainly made for maintaining a sustainable water, 

food, and energy nexus, as well as for achieving some economic and environmental purposes. The 

sustainability of water resource-based systems including hydropower generation, farming, and 

water supply, relies on making well-informed, reliable decisions toward more resilient systems 

that can cope with potential extreme conditions. These decisions are limited in their efficacy by 

constraints imposed by the accuracy of weather and climate information. Due to the difficulty of 

completely eliminating uncertainty in this kind of information, decision-makers must make 

decisions in the light of uncertainty. Hence, interest in narrowing uncertainty associated with 

weather and climate information (e.g. rainfall, surface temperature) has grown, particularly in 

many developing nations (e.g., Conway et al., 2015) where there is increasing water stress arising 

from climate change and variability, population growth, and the expansion in agricultural and 

industrial sectors. Reducing uncertainty through better information and forecasts can improve the 

decision-making process by avoiding undesirable environmental and socioeconomic losses 

including: blackouts and interruptions in the hydropower supply, deterioration of water supply for 

drinking and sanitation, and crop failure.  

 

Future changes in the amount, timing and seasonal cycle of precipitation provide useful 

information to the process of making short and long-time scale planning and regulating decisions. 

This information in turn has critical implications for the effectiveness of some decisions made in 
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many water-based sectors. For example, decisions related to the selection of appropriate crop 

cultivars and varieties, the timing of agricultural operations, fertilizer implementation, and 

livestock management strategies are all critical to agricultural revenues. Recent advances in the 

parameterization of Coupled General Circulation Models (CGCMs), together with their cross-

comparison in the Coupled Model Intercomparison Project (CMIP), now provide the potential for 

improved future precipitation projections. However, global climate model projections remain 

uncertain on the regional scale, in particular for precipitation (Lobell and Burke, 2008). Methods 

are needed to better characterize the uncertainty in future precipitation outcomes. This study 

provides a statistical approach (Chapter 2) for characterizing and evaluating uncertainty associated 

with climate model projections for the long-term change in seasonal rainfall pattern.  

 

Narrowing uncertainty in seasonal precipitation predictions to reduce the complexity in a decision-

making process could help inform the development of more efficient strategies and regulations. 

The failure of most prediction models in fully addressing the interannual variability of seasonal 

precipitation might be due to a failure to incorporate the effect of large-scale climate variables 

(Woolhiser, 1992; Katz and Parlange 1998), such as the El Niño–Southern Oscillation (ENSO). 

ENSO is the main natural source of interannual climate variability in the tropical Pacific region 

(Vecchi and Wittenberg, 2010). This phenomenon is recognized by an interchangeable cycle that 

consists of three phases including a warm phase known as El Niño, a cold phase known as La 

Niña, and a neither warm nor cold phase called neutral. The ENSO cycle has been related to the 

drying and wetting of rainfall at annual and interannual time-scales across Central America 

(Karmalkar et al., 2011). Therefore, incorporating the influence of interannual variability could be 

a possible approach to narrow uncertainty in seasonal precipitation forecasts. In this study, a 
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statistical method (Chapter 3) is developed to determine the degree of predictability of 

multicategory probabilistic seasonal precipitation forecasts through incorporating ENSO 

information. The multicategory forecasts serve to quantify the uncertainty associated with a 

prediction by providing the likelihood of having dry, wet, and normal rainfall amounts during the 

forecast period.  

 

The level of quality in a forecast system does not ensure ultimate benefit to the decision-making 

process (Palmer et al., 2000; Hartmann et al. 2002). This poses the question of how to distinguish 

between beneficial and non-beneficial forecast systems in the context of making decisions. 

Tradeoffs among decisions often involve economic factors in terms of gains or losses, which 

emphasizes that forecast value could be deduced by the resultant expenses/returns associated with 

decisions (including action or inaction). Therefore, the approach to quantify the level of usefulness 

of a forecast system could be described by a relative economic value (Murphy 1977) that provides 

an indication of the achieved amount of savings relative to the perfect forecast system. This study 

assesses (Chapter 4) the relative value of seasonal drought-event forecasts that are predicted by 

incorporating ENSO information. It also analyzes to what extent this kind of forecast system could 

be utilized in the decision-making process.  

 

The study is demonstrated for the northwest region of Costa Rica as a case study of many 

developing nations. The objectives of this dissertation are: a) characterizing uncertainty associated 

with regional climate model projections of future changes in seasonal cycle of precipitation, b) 

demonstrating the potential for reducing uncertainty in seasonal precipitation forecasts by 
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incorporating ENSO information, and c) assessing the relative (economic) value of an ENSO-

based forecast of drought events in the context of decision-making.   

 

In Chapter 2, a statistical method is developed to characterize possible changes in the bimodal 

cycle of seasonal precipitation based on the outcomes of 19 Coupled General Circulation Models 

(CGCMs). The proposed method relies on a Gaussian Mixture (GM) model that is applied to both 

current observations and climate projections. The study develops a new metric to measure and 

compare the degree of bimodality in the seasonal precipitation cycle. Three other metrics are also 

used to evaluate the performance of these CGCMs over an area centered on the northwest region 

of Costa Rica (9-15 N and 90-84 W) with respect to observed precipitation during the period 1979-

2005. Then monthly bias-corrected and spatially disaggregated (BCSD) rainfall projections of the 

best performing models as well as the multi-ensemble mean (MEM) for a high emissions climate 

scenario, the representative concentration pathway RCP8.5, are used to quantify future changes in 

the seasonal cycle over the region (9.5-11 N and 85-86 W) surrounding northwest Costa Rica. The 

projected future changes are characterized in terms of nine features of the bimodal cycle, as a 

further step towards model comparison and uncertainty characterization.  

 

In Chapter 3, a stochastic weather generation (WG) model is developed to examine the 

predictability of seasonal precipitation forecast models conditioned on ENSO cycle. The proposed 

WG model consists of: a) a bivariate normal (BVN) model that is fitted to the early and late wet 

season precipitation over the period 1916-1975 conditioned on ENSO phase, and b) an ENSO 

occurrence model that is formulated as 1st order Nonhomogeneous Markov Chain. The 

predictability of the raw and calibrated probabilistic forecasts of three precipitation categories (dry, 
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normal, and wet) are measured through three verification metrics over the period 1996-2015. The 

verification metrics include the ranked probability score skill (RPSS), root mean square error 

(RMSE), and multicategory reliability diagram (MCRD). The relationship between the calibration 

and verification of the forecast is discussed and the effect of different lead times on the verification 

is demonstrated. Furthermore, six climate model outputs for the Nino3.4 SSTs are employed to 

test the degree of predictability and reliability conditioned on the generated ENSO pattern.  

 

Chapter 4 presents an analysis of the relative (economic) value of water management decisions 

that can be made based on a probabilistic dry-event forecast in the early and late wet season 

conditioned on ENSO phase. A Relative Operating Characteristic (ROC) curve is drawn to 

measure the ability of the raw and calibrated forecast to discriminate between the two alternative 

outcomes. Then, a decision-analytic model (or cost-loss decision model) is constructed for each 

possible cutoff point with respect to the cost/loss ratio, which is ranging from 0 to 1. Furthermore, 

the analysis aims to determine to what extent the raw, calibrated, and climatological forecasts can 

be reliable through studying the relationship between expected expense and cost/loss ratios.  The 

effect of different lead times on the gained relative value is also investigated. The objective of this 

chapter is to provide a statistical tool that copes with the uncertainty associated with the dry-event 

forecast in the two portions of the wet season in order to make water-related decisions.  

 

Chapter 5 summarizes the major conclusions of this research, highlights contributions to the state-

of-the science.   
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1.2 Case Study  

1.2.1 Seasonal Cycle of Precipitation 

Northwest Costa Rica (9.5-11.0 N and 85-86 W) (Figure 1) experiences a tropical Savanna climate, 

where the wet season lasts from May through October (Hastenrath, 1967). The seasonal cycle of 

precipitation has a bimodal pattern in which the wet season can be divided into three portions: a) 

early wet season, b) midsummer drought (MSD), and c) late wet season. The bimodality in the 

seasonal cycle of precipitation is related to the topography of Costa Rica, in which a chain of 

mountains divide the country into two different slopes each with different climate (Maldonado et 

al., 2013). The northeasterly trade winds drive moisture and rains to the Caribbean slope, while 

rain shadows occur on the Pacific slope (Waylen et al., 1996). However, early wet season rains 

take place by the northward migration of the Intertropical Convergence Zone (ITCZ), which brings 

Pacific moisture embedded in a southwesterly flow to the Pacific slope (Waylen et al., 1996; 

Maldonado et al., 2013).  

 

Recent studies point out that the evolution of the midsummer drought is related to a westward 

extension and intensification of the North Atlantic Subtropical High (NASH) and a strengthening 

of the pacific-Atlantic sea surface temperature (SST) gradient, which result in an intensification of 

the easterly winds and the Caribbean Low-Level Jet (CLLJ) (Curtis and Gamble, 2008; Rauscher 

et al., 2008; Ryu and Hayhoe, 2014; Hidalgo et al., 2015). An alternative hypothesis reported by 

Magaña et al (1999) proposes that the MSD evolution can be explained by feedbacks between 

solar radiation, sea surface temperature (SST), and convection. Specifically, the enhanced 

convection due to the northward migration of the ITCZ during the early wet season reduces the 
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solar insolation which in turn increases cloud cover and cools SST. The cooler SSTs reduce 

convection and initiate the MSD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of the case study in Costa Rica in green (the northwest region) 

 

 

1.2.2 Large scale variability  

The influence of ENSO phenomenon over Costa Rica has been related to flooding (Waylen et al., 

1996; Waylen and Laporte, 1999) and to fluctuations in monthly and interannual precipitation 

(George et al., 1998). Waylen et al. (1994) found that annual and seasonal precipitation at San Jose 
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in Costa Rica appears to be conditioned on ENSO. There is a tendency of having dry (wet) events 

during El Niño (La Niña) years (Waylen et al., 1996). Babcock et al., (2016) conducted semi-

structured interviews across groups of stakeholders in the northwest Costa Rica to study their level 

of perceptions towards a number of water-related issues. The authors found that climate change 

and ENSO are the major concerned drivers of rainfall and groundwater resources. Tropical 

cyclones in the Caribbean Sea are also found to play a role in strengthening the southwesterly flow 

during the summer (Vargas and Trejos, 1994; Harrison and Waylen, 2000).   
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Chapter 2: Bimodal Seasonal Rainfall Model for Evaluating of 

Long-term Climate Model Projections 

 

This chapter is the basis of an article that is under-review by the International Journal of 

Climatology (IJC) 

 

Abstract 

Increasing water scarcity due to rising demand and changes in climate and land use are expected 

to exert significant stress on water resources in many parts of the world.  In many areas, distinctive 

patterns of seasonal precipitation play an important role in regional ecosystems, economies, and 

food and energy supplies. This study assesses the potential impact of climate change on the 

bimodal seasonal pattern of precipitation in northwest Costa Rica. A Gaussian mixture model is 

employed to describe the bimodal pattern and quantify changes in the seasonal precipitation cycle 

projected by 19 Coupled General Circulation Models (CGCMs). The model simulations for the 

current period (1979-2005) are compared to observed monthly precipitation data based on four 

goodness-of-fit metrics. The monthly bias-corrected and spatially disaggregated (BCSD) climate 

projections of the best performing models are employed to investigate the projected change in the 

bimodal seasonal pattern, seasonal mean precipitation and interannual variability at the late 

twenty-first century. Under a high emissions climate scenario, the representative concentration 

pathway RCP8.5, all but one of the selected BCSD CGCMs and the multi-ensemble mean (MEM) 

indicate intensification of the midsummer drought (MSD) and with some degree of uncertainty in 

the MSD-onset. The models project three alternative responses in the seasonal pattern: a) lower 

and shorter early season (ES) peak with a higher and longer late season (LS) peak, b) higher and 
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longer ES peak with higher and shorter LS peak; or c) reductions in both the ES and LS peaks, 

associated with the greatest reductions in wet season precipitation.  

2.1 Introduction 

Future changes in the amount, timing and seasonal distribution of precipitation have the potential 

to cause major impacts on ecosystems, water management decisions, and economic activities 

dependent upon these decisions (Bates et al., 2008; Jacobs and Snow, 2015; Watts et al., 2015; 

Arnell et al., 2016). However, projections of changes in precipitation that might result from future 

climate change, in particular on the regional level, remain highly uncertain (Lobell and Burke, 

2008; Knutti and Sedláček, 2013; Zhao and Dai, 2016).  Methods are needed to better characterize 

the uncertainty in future precipitation outcomes, the potential for reducing this uncertainty, and the 

implications for water management decisions.  Recent advances in the parameterization of 

Coupled General Circulation Models (CGCMs), together with their cross-comparison in the 

Climate Model Intercomparison Project (CMIP), now provide the potential for improved 

characterization of the uncertainty in future precipitation projections.  In this paper we discuss a 

method for multi-model selection and application to predict changes in specific features of 

seasonal regional precipitation patterns under future climate change. The method is demonstrated 

for a region in northwest Costa Rica, where distinctive patterns of dry and wet seasons exert a 

strong influence on water management decisions and economic behavior.  

 

Like many portions of developing nations (e.g., Conway et al., 2015; Frumhoff et al., 2015; 

Whitehead et al., 2015; Porkka et al., 2016), Costa Rica has experienced growing water demand 

in the agricultural, municipal, electric power, and tourist sectors, exerting considerable stress upon 
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surface and groundwater supplies. Forecasts and planning based on the seasonal precipitation 

pattern have critical implications for community development as well as energy and food security. 

Changes in these patterns are likely to be especially important in the context of an expected overall 

regional drying under future climate change (Rauscher et al., 2008).  

 

Northwest Costa Rica experiences a tropical Savanna climate, where the wet season lasts from 

May through October (Hastenrath, 1967) and accumulates approximately 84% of the annual total 

precipitation. The wet season is interrupted by a relative midsummer drought (MSD) which forms 

the trough of the bimodal distribution of the seasonal cycle (Waylen et al., 1996b; Magaña et al., 

1999). The wet season thus consists of three recognizable periods: (a) early season (ES), (b) 

midsummer drought (MSD), and (c) late season (LS). The onset and end of the wet season affects 

the success and failure of most local agricultural practices (Magaña et al., 1999, Alfaro, 2002). 

Anticipation of the start of the early wet season and the MSD is of great value to farmers, as it 

helps them decide when to plant and start investing in land and seedbed preparation. As such, it is 

reported that farmers pay particular attention to the MSD-onset, even more than its duration and 

severity (Allen et al., 2010; Gamble et al., 2010), as this occurs at a critical time for young crops. 

In addition, the region’s climate is strongly influenced by large-scale climate variability, in 

particular the El Niño Southern Oscillation (ENSO) phenomenon (Waylen et al., 1996b; Rauscher 

et al., 2011). El Niño (La Niña) years are characterized by below (above) average precipitation 

(Waylen et al., 1996b). 

 

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) 

emphasizes that climate models can be used as a tool to investigate future projections over the 



   

13 

 

coming century and beyond (Flato et al., 2013). The skill and accuracy of climate models within 

the third and fifth phase of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) in 

simulating precipitation have been evaluated over Central America and larger subdivisions of 

Central America (Rauscher et al., 2008; Karmalkar et al., 2013; Hidalgo and Alfaro, 2014; Ryu 

and Hayhoe, 2014). Hidalgo and Alfaro (2014) ranked 107 runs from 48 CMIP5 models according 

to their performance in reproducing the mean and standard deviation of both precipitation and 

surface temperature over Central America, as well as the ENSO-precipitation teleconnection of 

the observation and reanalysis dataset. Ryu and Hayhoe (2014) assessed the ability of 18 CMIP3 

and 26 CMIP5 models to simulate the seasonal cycle of precipitation over three Caribbean regions 

(Central America, Greater Antilles, Lesser Antilles), and the role of the models’ ability to simulate 

the CLLJ, NASH and SST patterns. They suggested grouping climate models into three categories, 

those that (1) simulate a bimodal distribution, (2) reproduce the MSD and the late season 

maximum, and (3) simulate only one precipitation maximum. They reported that most of the 

models in group 1 and 2 tend to underestimate the early wet season precipitation and overestimate 

that of the late wet season. Rauscher et al. (2008) assessed the ability of 17 CMIP3 general 

circulation models (GCMs) to capture the pattern of the seasonal cycle, the summer season 

precipitation (JJA), and the evolution of the MSD over Central America and the Inter-America 

Seas. They also discussed the role of large-scale dynamics in the evolution of the MSD.  

 

A number of studies have projected future changes in precipitation over Central America for 

different time scales (e.g. seasonal, annual); such studies have pointed out the likelihood of 

decreasing precipitation, and increasing incidences of extreme weather conditions (Rauscher et al., 

2008; Anderson et al., 2008; Neelin et al., 2006; Maldonado et al., 2013; Karmalkar et al., 2013). 
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Recent studies predict that the number of dry days over the tropical savanna regions will increase 

in the twenty-first century (Polade et al., 2014; Pascale et al., 2015). Pascale et al. (2015) estimated 

an increase in the annual number of dry days over South and Central America of up to 1 month by 

the end of the twenty-first century. Rauscher et al. (2008) projected a reduction in summer 

precipitation over Central America by 25% in the twenty-first century, with the greatest reduction 

experienced in June and July, as well as a longer MSD with an earlier onset. Hidalgo et al. (2013) 

identified a reduction in the runoff over Central America of 10 to 30% through employing 

downscaled runs from 30 GCMs.  

 

In this paper, a Gaussian mixture model is used to describe and quantify the timing, duration, and 

intensity of the seasonal precipitation cycle both in observed data and in CMIP5 model projections. 

The model parameters are determined by fitting to monthly precipitation. The outputs of 19 

CGCMs are evaluated over a box centered on the northwest region of Costa Rica (9-15 N and 90-

84 W) with respect to observed precipitation during the period 1979-2005 according to four 

proposed metrics. Then, the RCP8.5 monthly bias-corrected and spatially disaggregated (BCSD) 

projections (0.5° resolution) of the best performing models, including the MEM are used to project 

future changes in the seasonal cycle over the region (9.5-11 N and 85-86 W) surrounding northwest 

Costa Rica. The average seasonal cycles of BCSD simulations in the period (2074-2100) are 

compared to the historical BCSD simulations in the baseline (1979-2005) period.  

 

The paper is divided into the following sections: section 2.2 introduces the data sets and coupled 

GCM simulations; section 2.3 presents information on the study area and the used statistical 
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methods used for model evaluation; section 2.4 discusses the results of the model evaluation and 

presents future projections in the seasonal precipitation cycle; and section 2.5 presents conclusions.  

2.2 Data and model inputs 

2.2.1 Precipitation data 

This study uses version 2.2 of the Global Precipitation Climatology Project (GPCP) monthly 

precipitation from 1979 to 2005 as the reference data (Huffman et al., 2012). The GPCP combines 

observations from over 6,000 rain gauge stations, satellite precipitation data, and sounding data. 

This combination provides the most complete analysis of rainfall to date over global oceans, as 

well as providing spatial detail over land. Adjusting the bias of satellite precipitation using data 

from land gauges provides a better land product (Adler et al., 2003). It was previously noted that 

GPCP underestimated precipitation over land in some regions due to the relative lack of rain 

gauges, especially in mountainous areas (Adler et al., 2003). However, Ryu and Hayhoe (2014) 

compared the GPCP version 2.0 with station-based precipitation over Central America, including 

Guanacaste, and found that GPCP agrees with station data, with the exception of the late wet 

season peak precipitation, which was thought to be due to the limited number of stations. The latest 

version (2.2) has reduced or eliminated a number of these sources of bias (Huffman et al., 2012).   

 

2.2.2 CMIP5 models and simulations  

CMIP5 simulations provide higher resolution models and new forcing scenarios that include new 

socioeconomic, technological, and environmental data (Moss et al. 2010); the simulations can be 
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used to identify a broad range of climate change expectations and adaptation strategies (Brekke et 

al., 2013). The treatment of atmospheric chemistry and response to aerosols has also been 

improved with CMIP5 (Yeh et al., 2012). Knutti and Sedláček (2013) identified large 

improvements in the robustness of precipitation projections of CMIP5 in the tropics, including 

Central America, compared to CMIP3.   

 

This study employs the ‘raw’ outputs of 19 CMIP5 models (Taylor et al., 2012) (Table 1) in 

simulating the observed seasonal cycle of precipitation and in evaluating their performance. 

Possible changes in the seasonal precipitation cycle of the smaller subregion of Guanacaste (9.5-

11 N and 85-86 W) in the late 21st century are derived by comparing the future and historical 

outputs of the best performing models according to the selected criteria. Since the spatial resolution 

of CMIP5 GCMs is still too coarse to support characterizing long-term changes in the seasonal 

precipitation cycle over such a small subregion, the monthly bias-corrected and spatially 

disaggregated (BCSD) projections (0.5° resolution) are used rather than the raw outputs of the 

GCMs. BCSD projections are obtained from the “Downscaled CMIP3 and CMIP5 Climate and 

Hydrology Projections” archive, a collaboration of the United States Bureau of Reclamation, the 

Climate Analytics Group, Climate Central, Lawrence Livermore National Laboratory, Santa Clara 

University, Scripps Institution of Oceanography, U.S. Army Corps of Engineers, and the U.S. 

Geological Survey. BCSD has been applied to CMIP3 and CMIP5 model outputs to assess climate 

change impacts (Cayan et al., 2008, Barnett et al., 2008, Girvetz et al., 2009, Cavazos et al., 2012, 

Demirel and Moradkhani, 2015). The procedure used in applying the bias correction and spatial 

disaggregation to GCM data is introduced in Wood et al. (2004), and Maurer (2007). Future 

climate change projections are based on the RCP8.5 scenario, which is considered a high radiative 
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forcing scenario leading to 8.5 W/m2 in 2100 (Moss et al., 2010). Table 1 lists general information 

(modeling groups, atmospheric resolution, and number of ensembles) for the 19 models used in 

the study. 

 

Due to random internal variability within models the multi-ensemble mean (MEM) can yield better 

agreement with observations than individual models (Phillips and Gleckler, 2006; Knutti et al., 

2010; Miao et al., 2013). While the use of the MEM does reduce the error variance of the estimate 

of the mean, it also smoothes and underestimates the extent of interannual variability in model 

predictions and fails to adequately consider the implications of occasional extreme outcomes (e.g., 

very wet or very dry months). For an individual model, the mean of its ensembles is expected to 

lower the error by mutual cancelation. Therefore, the multi-ensemble mean (MEM) (mean of 37 

ensembles) is included in the analysis and individual models are represented by the mean of their 

respective ensembles.  

 

2.3 Materials and Methods 

2.3.1 Gaussian mixture model and fitting 

The Gaussian mixture model has been utilized for data processing and pattern recognition in areas 

including nuclear spectroscopy, electrokinetic capillary chromatography, speech recognition and 

pharmacokinetics (e.g., Reynolds, 1995; Abdel-Aal, 1998; Godfrey et al., 2010). Recently, Steyn 

et al. (2016) applied the Gaussian mixture model to the seasonal rainfall pattern of Costa Rica. 

Here, we apply and compare a single and double Gaussian model in fitting the seasonal cycle of 
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precipitation both in the current and in projected future climate regimes. Equation 1 is the general 

Gaussian function for a mixture of multiple Gaussians (𝑖 = 1, 𝑛𝑝).  

 

Table 1. CMIP5 models used in this study 

Model Name 
Model Groups 

(Country) 

Horizontal  

spatial 

Resolution 

(°lon × °lat) 

Number 

Ensembles 

ACCESS 1.0 

ACCESS 1.3 

Commonwealth Scientific and Industrial Research 

Organization) and Bureau of Meteorology 

(Australia) 

1.875 ×1.25 

1.875 ×1.25 

1 

1 

BNU-ESM Beijing Normal University (China) 2.81× 2.81 1 

CanESM2 
Canadian Center for Climate Modeling and Analysis 

(Canada) 
2.8 ×2.8 5 

CESM1-CAM5 NSF-DOE-NCAR (USA) 1.4 × 1.4 3 

CNRM-CM5 

Centre National de Recherches Meteorologiques and 

Centre Européen de Recherche et Formation 

Avancées en Calcul Scientifique (France) 

1.4 × 1.4 5 

FIO-ESM 
The First Institute of Oceanography, State Oceanic 

Administration (China) 
2.8 × 2.8 3 

FGOALS-g2 

FGOALS-s2 
Flexible Global Ocean-Atmosphere-Land System 

2.8 × 2.8 

1.6 × 2.8 

1 

2 

HADGEM2-AO 
National Institute of Meteorological Research and 

Korea Meteorological Administration (Korea) 
1.8 × 1.25 1 

HADGEM2-ES 

HADGEM2-CC 
UK Met Office Hadley Centre (UK) 

1.8 × 1.25 

1.8 × 1.25 

4 

1 

MIROC5 

MIROC-ESM-

CHEM 

University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology (Japan) 

1.4 × 1.4 

2.8 × 2.8 

1 

1 

MPI-ESM-LR 

MPI-ESM-MR 
Max Planck Institute for Meteorology (Germany) 

1.9 × 1.9 

1.9 × 1.9 

3 

1 

MRI-CGCM3 Meteorological Research Institute (Japan) 1.1 × 1.1 1 

NorESM1-M Norwegian Climate Centre (Norway) 2.5 × 1.9 1 

Inmcm4 
Russian Institute for Numerical Mathematics 

(Russia) 
2 × 1.5 1 
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𝑓(𝑡) = 𝑦𝑜+ ∑
𝐴𝑖

𝜎𝑖√2𝜋
 𝑒𝑥𝑝 (

(𝑡−𝑡𝑐𝑖)
2

2𝜎𝑖
2

)
𝑛𝑝
𝑖=1          (1) 

 

The Gaussian components are assumed to be superimposed upon a baseline rainfall rate  y
o
. The 

parameters for each component 𝑖 are shown in Figure 2: the area under the curve 𝐴𝑖, the peak 

location   𝑡𝑐𝑖, and the temporal standard deviation 𝜎𝑖. 𝑛𝑝 denotes the number of the simulated 

peaks, so a single and double peak can be fitted with four and seven parameters, respectively. If a 

CGCM reproduces a single peak with an MSD, the simulation profile is fitted as a single peak 

only.  

 

 

 

 

 

 

 

 

Figure 2. Single Gaussian distribution curve 

 

 

To estimate the parameters for the model the least squares method is applied by minimizing the 

square difference between the climate models simulated monthly precipitation yj for month j (j =

y
o
 

𝜎𝑖  

𝑡𝑐𝑖  

𝐴𝑖  
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1, N) and the Gaussian mixture model prediction  fj. The nonlinear function requires the use of a 

search and optimization method in which a large number of initial guesses are made for the 

function parameters in order to be reasonably certain that the global minimum is reached.  

The fit is deemed acceptable when the root mean squared error (RMSE) is less than 1 mm/d. In 

cases when the seasonal cycle produces a single peak with an MSD, the RMSE is found to be 

higher relative to double and single peaks. 

 

2.3.2 The nine features of the bimodal seasonal cycle of precipitation                              

After obtaining the best estimate for the Gaussian mixture model parameters, we can quantify the 

changes in nine proposed features of the bimodal distribution. These features (Figure 3) can be 

categorized into three general groups: (a) maximum/minimum rainfall rates (mm/d), (b) seasonal 

period durations (days), and (c) seasonal transition times (days). The maximum/minimum rainfall 

rate group consists of three rainfall rates: 𝐻1 denotes the maximum (peak) rainfall rate of the early 

wet season precipitation (ES), 𝐻2 the maximum rainfall rate of the late wet season precipitation 

(LS), and 𝐻𝑑 the minimum rainfall rate of the MSD (Equation 3). The rainfall rate of early (first) 

and late (second) wet season peaks can be approximated using Equation 2, whereas the MSD-

rainfall rate is computed by finding the minimum between the two peaks.      

 

𝐻𝑖 =
𝐴𝑖

𝜎𝑖√2𝜋
       (2) 
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Figure 3. The nine features of the seasonal cycle: maximum/minimum rainfall rates   (𝐻1, 𝐻𝑑 ,  𝐻2), 

seasonal period durations (𝐿1, 𝐿𝑑 , 𝐿2), and seasonal transition times (𝑡𝑠, 𝑡𝑑 ,  𝑡𝑒). (Note: 𝐿𝑤denotes the wet 

season duration) 

 

 

The seasonal transition time parameters consist of the onset  𝑡𝑠  and ending  𝑡𝑒  times of the wet 

season, and the MSD onset  𝑡𝑑. We assume the wet season starts (ends) when monthly precipitation 

is above (below) a threshold value  𝑃ℎ. Since the wet season typically begins in May, we set the 

threshold   𝑃ℎ to be 4 mm/d, which is the first quartile of May precipitation (Figure 4). Therefore, 

both   𝑡𝑠  and  𝑡𝑒  can be determined when the fitted bimodal curve (double Gaussian) is intersected 

with a straight line drawn from the threshold precipitation (4 mm/d). The first (last) intersection 

point is the start 𝑡𝑠  (end  𝑡𝑒 ) of the wet season. The MSD onset is determined as the second 

intersection point between the fitted bimodal curve and a horizontal straight line 𝑃𝑑, representing 

a 33% (𝐻1 − 𝐻d) + 𝐻d.  

 𝐻2 
𝐻1 

𝐿𝑑 

𝐿𝑤 

𝑡𝑑 

𝑡𝑒 

𝐿1 𝐻𝑑 

𝑡𝑠 

𝑃ℎ 
𝐿2 

𝑃𝑑 
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It is assumed that at that level the onset of the drought is apparent. After finding these transition 

times, the seasonal period durations (early wet season duration 𝐿1, late wet season duration  𝐿2, 

and MSD duration  𝐿𝑑) can be determined as the differences in the time line. 

 

 

Figure 4. Boxplot of the GPCP observed seasonal cycle of precipitation (9-15 N and 90-84 W) over the 

(1979-2005) period and the solid line represents its average seasonal cycle.  (The box represents 

maximum (Q3 + 1.5×IQR), third quartile (Q3), median, first quartile (Q1), and minimum (Q1 – 

1.5×IQR)). 

 

2.4 Results 

2.4.1 Model evaluation  

Four measures are proposed to compare climate model simulations with observations over the 

baseline (1979-2005) period: (1) annual mean precipitation, (2) interannual variability of 
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precipitation, (3) mean length of the dry season, and (4) the degree of bimodality in the seasonal 

pattern of precipitation.    

 

We use the relative bias to measure the ability of a given model to simulate the observed annual 

mean precipitation (Su et al., 2013) and an interannual variability index 𝐼𝐴𝑉 to judge agreement 

between the modeled and observed interannual variability (Gleckler et al., 2008; Scherrer, 2011) 

for the period 1979-2005.  The relative bias  𝑅𝐵 in the annual precipitation is computed by 

Equation 3, where Pm and Po are the annual mean precipitation for a given model m and the 

observation respectively. A negative (positive) 𝑅𝐵𝑚  indicates underestimation (overestimation) 

relative to the GPCP annual mean. Table 2 shows the simulated annual mean and the relative bias 

of the 19 CMIP5 models and the MEM.  

𝑅𝐵𝑚 = 
Pm−Po

Po
             (3) 

The bias of the CMIP5 models relative to the observed annual mean precipitation (51 mm/day) 

ranges from -0.64 to 0.54. Eleven models underestimate the observed mean, while the other eight 

models overestimate the mean. NorESM1-M exhibits the most negative bias (𝑅𝐵 = -0.64); MPI-

ESM-MR exhibits the most positive bias (RB = 0.54); and CNRM-CM5 and CESM1-CAM5 

produce the least (RB = 0.02 and 0.03, respectively). The underestimation of the annual mean 

precipitation by CGCMs is due to the underestimation of local SSTs (Dai 2006; Martin and 

Schumacher 2011) and the associated early onset of the Atlantic warm pool (Wang 2007). 

 

The simulated and observed interannual variations in yearly precipitation are compared using the 

𝐼𝐴𝑉 (the observed interannual standard deviation is 6.4 mm/day).  Table 2 also shows the predicted 
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standard deviation and coefficient of variation (standard deviation divided by the mean, as a 

percent) for each model.  

 

Models with higher relative bias (overestimating the mean) also tend to overestimate the standard 

deviation (except MPI-ESM-MR and MPI-ESM-LR), so that the predicted coefficients of variation 

of the annual precipitation are more stable across models than is the case for the standard 

deviations.  For the interannual variability evaluation, the 𝐼𝐴𝑉 index is computed between 

observation and model 𝑖 output from the ratio of the standard deviation of the model divided by 

that of the observation (Equation 5).  

                             𝐼𝐴𝑉𝑖 = (
𝜎𝑖

𝜎𝑜
−

1
𝜎𝑖

𝜎𝑜

)

2

               (4) 

 

The IAV ranges from Zero (when 𝜎𝑖 = 𝜎𝑜) to infinity (when 𝜎𝑖 is either much larger than, or much 

smaller than, 𝜎𝑜). Scherrer, (2011) proposed an accurate representation of observed interannual 

variability by model 𝑖 with a IAV less than 0.5. Six models (HadGem2-AO, ACCESS1.0, 

ACCESS1.3, NorESM1-M, inmcm4, Fgoals-g2) obtain an IAV below 0.5. The lowest IAV 

indexes are determined for the CNRM-CM and CanESM2 models (IAV=0.0003 and IAV=0.0015, 

respectively). Other models that simulate a good representation for the observed interannual 

variability of the annual precipitation record include MRI-CGCM3 (IAV = 0.01) and MPI-ESM-

LR (IAV = 0.02), as well as the MEM (IAV = 0.05).The high spatial resolution models (MRI-

CGCM3, CESM1-CAM5, CNRM-CM5 and MIROC5) perform well in capturing the annual mean 

and interannual variability. However, some of the low spatial resolution models (e.g. HadGem2-
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ES and HadGem2-CC) produce better performance than MRI-CGM3 (MIROC5) in matching the 

observed annual mean (interannual variability). This suggests some difficulty in determining 

whether there is a link between a model’s regional performance and horizontal spatial resolution.  

 

A change in the length of the dry season could significantly influence agriculture and tourism in 

northwest Costa Rica. We evaluated the models’ performance in simulating the observed mean 

length of the dry season over the period 1979-2005.  We define the length of the dry season as the 

remainder of a year after subtracting the length of the wet season  𝐿𝑤 (see section 2.3). Table 2 

shows the mean length of the simulated dry season and the bias in the simulated versus observed 

dry season length. MPI-ESM-LR and MPI-ESM-MR underestimate the mean length of the dry 

season by 33 and 31 days respectively, whereas all other models and the MEM overestimate the 

dry season length by 3-79 days. It can be noted that low performance in simulating mean dry 

season length is associated with low performance in capturing the annual mean precipitation. This 

may be due to the tendency of GCMs to underestimate the intensity of heavy precipitation (>10 

mm/d) and overestimate the frequency of light precipitation (1-10 mm/d) (Sun et al., 2006).  

 

To quantify models’ ability to capture the observed bimodal pattern of the seasonal precipitation 

cycle, a yearly pattern coefficient α𝑝𝑘 is defined as follows: 

    𝛼𝑝𝑘 =
A1k

A1k+A2k
         (5) 

 

A1k and A2k denote the area under the early and late wet season’s peaks, respectively, for a given 

year 𝑘. Hence, a model producing a single peak with or without an MSD over the seasonal cycle 
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for a year 𝑘  would have α𝑝𝑘=1, since A2k is zero (see section 2.3). In the case of a bimodal cycle, 

α𝑝𝑘 ranges from near 0 (most of the rain during the late wet season, A2k ≫ A1k ) to near 1 (most 

of the rain during the early wet season, A1k ≫ A2k). A two-sided Kolmogorov-Smirnov (KS) test 

(Smirnov, 1939) is used to compare the cumulative distribution of the yearly pattern coefficient 

𝛼𝑝𝑘 of the observed data to that of the simulations for the period 1979-2005. Its test statistic 

represents the maximum distance 𝐷𝑚𝑎𝑥 between the two cumulative distributions. In this study, 

we note that (for the period 1979-2005) 𝐷𝑚𝑎𝑥 below 0.4 is approximately associated with p-value 

at the 0.01 significance level. Figure 5 displays the two-sample KS test statistic for the 19 models 

and the MEM, along with the corresponding value of the interannual variability index.  

 

 

Figure 5. The interannual variability index (IAV) (horizontal axis) and the test statistic (𝐷𝑚𝑎𝑥) of the 

seasonal pattern KS test (vertical axis). Models in the lower left quadrant exhibit acceptable performance 

for simulating both features of the annual and monthly rainfall (1979-2005) 
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Table 2. Indicators of statistical agreement between CGCMS (and their MEM) predicted and observed 

GPCP precipitation over the period 1979-2005.  

 

Observation/ 

Climate model 

Annual precipitation Dry season 

Mean 

precipitation 

(mm/d) 

Relative 

bias 

Interannual 

standard 

deviation 

(mm/d) 

Coefficient 

of 

variation 

IAV 

Mean 

length 

(days) 

Relative 

bias 

GPCP 50.8 0 6.2 12.3 0 187 0 

CNRM-CM5 51.8 0.02 6.3 12.2 
0.00

03 
216 0.13 

HadGem2-ES 57.9 0.14 8.6 14.9 0.43 243 0.3 

HadGem2-CC 54.4 0.07 7.9 14.5 0.22 177 0.02 

HadGem2-AO 46.4 -0.09 13.2 28.4 2.65 204 0.09 

MIROC5 45.7 -0.1 8.8 19.2 0.48 189 0.02 

MIROC-ESM-

CHEM 
25.9 -0.49 5.5 21.0 0.07 255 0.37 

MPI-ESM-LR 73.7 0.45 5.9 8.0 0.01 153 -0.18 

MPI-ESM-MR 78.0 0.54 5.3 6.8 0.11 156 -0.16 

MRI-CGCM3 36.9 - .0 27 6.6 17.9 0.01 228 0.21 

CanESM2 31.1 - .0 39 6.1 19.7 
0.00

1 
228 0.23 

FIO-ESM 31.1 - .0 39 5.3 17.1 0.10 228 0.24 

ACCESS1.0 61.5 0.21 10.1 16.4 0.99 192 0.03 

ACCESS1.3 62.8 0.24 12.1 19.2 1.98 213 0.14 

CESM1-CAM5 52.5 0.03 7.3 14.0 0.10 192 0.03 

NorESM1-M 18.4 - .0 64 3.7 20.0 1.24 276 0.39 

inmcm4 28.7 - .0 43 2.8 9.7 3.2 255 0.38 

BUN-ESM 21.2 - .0 58 4.7 22.1 0.35 273 0.42 

Fgoals-g2 27.8 -0.45 3.3 11.8 1.91 249 0.35 

Fgoals-s2 19.9 -0.61 5.1 25.7 0.16 264 0.41 

MEM 44.4 -0.13 7.0 15.7 0.05 188 0.01 

 

 

Six models (CNRM-CM5, MIROC5, MPI-ESM-LR, MPI-ESM-LR, MRI-CGCM3 and 

CanESM2), as well as the MEM, show a good ability to reproduce the distribution of the observed 

coefficient α𝑝𝑘 over the 27 years, as their KS test statistics 𝐷𝑚𝑎𝑥 are below 0.4. Thus, the null 

hypothesis that the observed αpk and their distributions are sampled from the same population 

cannot be rejected. The agreement between the predicted and observed bimodal distributions is 



   

28 

 

most pronounced for the CNRM-CM5, while four models (CESM1-CAM5, ACCESS1.0, and 

HadGem2-CC) exhibit poor agreement with the observed seasonal pattern distribution. Figure 5 

also indicates that both Fgoals-g2 and NorESM1-M have the capability to simulate the observed 

pattern of the seasonal cycle, but with low skill to match the observed interannual variability. All 

selected models and the MEM generate a bimodal distribution over the averaged seasonal cycle 

for the baseline (1979-2005) period as shown in Figure 6, though even among these, MPI-ESM 

models systematically overestimate the monthly precipitation, while other models systematically 

underestimate it. 

 

Figure 6. Distribution of average simulated (by CGCMs) and observed monthly precipitation (mm/d) 

over the baseline (1979-2005) period 

 

Based on the four metrics compared, we are able to determine that six models (CNRM-CM5, 

MIROC5, MPI-ESM-MR, MPI-ESM-LR, MRI-CGCM3 and CanESM2) and the MEM show a 
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good overall agreement with the tested characteristics of the GPCP observations over the period 

1979-2005.  

 

2.4.2 Future climate projections 

This sub-section analyzes the projected future changes in the seasonal cycle of precipitation 

according to the BCSD of the selected CGCMs and the MEM over the (9.5-11 N and 85-86 W) 

region. In addition, it determines the contribution of these predicted changes to the seasonal 

(mm/d) mean precipitation and the interannual variability. The projected long-term changes in the 

seasonal cycle under RCP8.5 can be quantified by comparing the average of the baseline test period 

(1979-2005) with the future projection period (2074-2100).  

 

Long-term changes in the distribution of the ES precipitation are quantified by changes in the peak 

ES rainfall rate  𝐻1, ES duration  𝐿1, and ES onset time  𝑡𝑠. Changes in the distribution of 

precipitation during the MSD and LS are similarly quantified. Figure 7 shows the change in 

monthly precipitation projected to occur from the baseline (1979-2005) to the future (2074-2100) 

based on the selected BCSD CGCMs and the MEM. The MPI-ESM-MR is found to be the only 

model that is sensitive to the selected region, so by shifting longitude toward the mountains (0.5o 

to the right) this model predicts a one peak seasonal cycle. As shown in figure 7, the changes in 

predicted precipitation vary considerably across models and time of year, through a relatively even 

reduction is predicted across the wet season by the MEM.  
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Figure 7. Change in average monthly precipitation (BCSD) for the (2074-2100) period relative to the 

baseline (1979-2005) period for the selected models and the MEM 

 

 

 

Table 3 shows the projected changes in the nine features of the bimodal seasonal cycle of 

precipitation in the future (2074-2100) period with respect to the baseline (1979-2005) period. 

Four of the selected BCSD CGCMs and the MEM predict a reduction in the peak ES rainfall rate 

𝐻1 and a shortening in the duration 𝐿1 of the ES ranging from 2 to 42 % and 4 to 14 days, 

respectively. MIROC5 is the only model that predicts an earlier ES onset, while the other models 

project a late onset, from 1 to 13 days.  
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Table 3. Percentage changes in the maximum/minimum rainfall rates, seasonal period duration and 

seasonal transition times of early, middle, and late wet season (actual changes in parentheses) 

 

Model/Feature 

Early Wet Season 

Maximum rainfall 

rate, 𝐻1% (mm/d) 

Duration, 

𝐿1% (days) 

Starting time, 

𝑡𝑠% (days) 

MEM -23 (2) -7 (4) 2.5 (4) 

CNRM-CM5 -6 (0.5) -4 (3) 0.2 (1) 

MIROC5 -15 (1.5) -22 (14) -2 (4) 

MPI-ESM-LR -2 (0.2) 19 (13) 8 (10) 

MPI-ESM-MR 21 (2) 31 (15) 5 (8) 

MRI-CGCM3 3 (0.2) 25 (12) 4 (7) 

CanESM2 -42 (3.6) -23 (14) 9 (13) 

Model/Feature 

Midsummer drought 

Minimum rainfall  

rate, 𝐻𝑑 % (mm/d) 

Duration, 𝐿𝑑% 

(days) 

Starting time,       

𝑡𝑑 %  (days) 

MEM -26 (1.8) -5 (3) -0.3 (1) 

CNRM-CM5 -15 (1) -9 (4) -1 (2) 

MIROC5 -15 (1.0) -15 (8) -9 (18) 

MPI-ESM-LR -18 (1.1) -10 (5) 11 (22) 

MPI-ESM-MR -5 (0.3) -2 (1) 13 (25) 

MRI-CGCM3 -10 (0.6) -27 (14) 11 (22) 

CanESM2 -40 (2.5) -15 (7) -0.2 (1) 

Model/Feature 

Late Wet Season 

Maximum  rainfall 

rate, 𝐻2 % (mm/d) 

Duration, 𝐿2% 

(days) 

Ending time,    

 𝑡𝑒 % (days) 

MEM -10 (1) 3 (4) 0.1 (1) 

CNRM-CM5 8 (0.9) 8 (8) 0.6 (3) 

MIROC5 14 (1.5) 30 (28) 6 (19) 

MPI-ESM-LR -3 (0.3) -9 (9) 3 (10) 

MPI-ESM-MR 30 (3.3) -23 (24) 0.8 (3) 

MRI-CGCM3 24 (2.5) -12 (11) -0.8 (3) 

CanESM2 -24 (2.5) -8 (10) -4 (15) 
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For the MSD, the selected BCSD CGCMs plus the MEM predict a decrease in the minimum 

rainfall rate 𝐻𝑑 and a reduction in the duration 𝐿𝑑  of the MSD. In contrast, they disagree on the 

change in its onset with three models (CNRM-CM5, MIROC5, and CanESM2; and the MEM) 

projecting an earlier onset and the other three models (MRI-CGCM3, MPI-ESM-MR and MPI-

ESM-LR) project a later onset. Low agreement is also found in the projected change of both the 

maximum rainfall rate 𝐻2 and the duration 𝐿2 of the LS. MRI-CGCM3 and CanESM2 project a 

late end of the wet season  𝑡𝑒, while the other models and the MEM project an early end.  

 

The changes in the seasonal mean precipitation (mm/d) for the ES, MSD, and LS are shown in 

Figure 8. Note the predominant decrease in the seasonal mean precipitation is pronounced in the 

MSD, which implies a more severe relative drought. The projected changes in the MSD agree with 

Rauscher et al. (2008), who found an intensification for the MSD based on the analysis of CMIP3 

models and the A1B emissions scenario. Figure 8 shows that the selected BCSD CGCMs and the 

MEM predict a reduction in the MSD precipitation ranging from -11% to -51% except for MPI-

ESM-MR, which predicts an increase in the MSD precipitation of about 8.5%. There is less 

agreement on the projections for both ES and LS precipitation, with three models (MRI-CGCM3, 

MPI-ESM-MR, and MPI-ESM-LR) projecting an increase in the ES, and the other three models 

(MIROC5, CNRM-CM5 and MPI-ESM-MR) predicting an increase in the LS precipitation.  
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Figure 8. Percentage change in the seasonal mean precipitation over the (2074-2100) period relative to 

the (1979-2005) period under RCP8.5 

 

 

The full representation of the change in the seasonal precipitation under global climate change 

cannot be determined only by relying on the climatology, but must also consider interannual 

variability (Fu, 2012; Menon et al., 2013). In fact, the complexity of northwest Costa Rica's climate 

places particular importance on interannual variability (Alfaro, 2002). Figure 9 presents the 

percentage changes in the interannual variability of the three seasonal (ES, MSD, and LS) 

precipitation periods based on the selected BCSD CGCMs and the MEM. The change in the 

interannual variability is determined by the percentage change in the standard deviation of the 
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(integrated) mean precipitation for the period 2074-2100, with respect to that of the period 1979-

2005. The percentage change is given as ((
σ(2074−2100)

σ(1979−2005)
∗ 100) − 100).  

 

 

Figure 9. Percentage change in the standard deviation of (2074-2100) period relative to that of the (1979-

2005) period under RCP8.5 

 

CanESM2 projects a consistent increase in the interannual variability of seasonal precipitation, 

while MRI-CGCM3 predicts a consistent decrease. The other models exhibit less agreement on 

the change in the interannual variability for the ES and LS precipitation, through considerable 

agreement on more interannual variability for the MSD precipitation.  

-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0 100.0

MEM

CNRM-CM5

MIROC5

MPI-ESM-LR

MPI-ESM-MR

MRI-CGCM3

CanESM2

Percentage of Change

ES

MSD

LS



   

35 

 

2.5 Conclusions 

Changes in the seasonal cycle of precipitation over northwest Cost Rica are expected to have a 

significant impact on the region’s water budget, agricultural production, and energy security. This 

paper presents a method to better characterize the uncertainty in the future seasonal precipitation 

cycle in northwest Costa Rica projected by climate models. The performance of 19 CMIP5 

CGCMs is evaluated with regard to their capacity to simulate four characteristics of the observed 

precipitation (GPCP) over the region 9-15 N and 90-84 W during the 1979-2005 period. The 

considered characteristics of the seasonal cycle are: (1) the annual mean precipitation, (2) the 

interannual variability, (3) the mean length of the dry season, and (4) the degree of bimodality in 

the seasonal cycle. Six CGCMs (CNRM-CM5, MIROC5, MPI-ESM-MR, MPI-ESM-LR, MRI-

CGCM3 and CanESM2) and the multi-ensemble mean (MEM) show the closest agreement to the 

observed characteristics. The role of the horizontal spatial resolution in the model performance is 

not yet clear, since the high resolution models do not always perform better than low resolution 

models. Thus, determining the optimum resolution is not possible because it is difficult to 

distinguish between the level of interaction between resolution, physical parameterizations and the 

models' convergence (IPCC, 2013).  

 

The study finds that all the selected BCSD CGCMs and the MEM (except MPI-ESM-MR) agree 

on an intensification of the MSD associated with a reduction in its duration. A degree of 

uncertainty in the MSD-onset projection has been noted as three (four) models predict a later 

(earlier) MSD-onset ranging from 22 to 25 (1 to 18) days. The future projections for ES and LS 

precipitation can be summarized in three possible scenarios as follows: a) lower and shorter ES 
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peak with higher and longer LS peak associated with an increase (decrease) in the LS (ES) 

precipitation, b) higher and longer ES peak with higher and shorter LS peak associated with an 

increase (decrease) in ES (LS) precipitation, and c) reduced ES and LS peaks with a reduction in 

the ES and LS precipitation.  

 

With the exception of CanESm2, the MEM and the selected BCSD CGCMs all project an increase 

in the interannual variability of the MSD precipitation. The ES (LS) precipitation interannual 

variability is projected to be reduced (increased) according to MPI-ESM-LR and CNRM-CM5 and 

CanESM2 (MRI-CGCM3 and MIROC5), while the other models project the opposite.   

Acknowledgments  

We acknowledge the World Climate Research Programme's Working Group on Coupled 

Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in 

Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. 

Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides 

coordinating support and led development of software infrastructure in partnership with the Global 

Organization for Earth System Science Portals. The first author work’s was supported by Kuwait 

University. The second and third author received support from the Belmont Forum / NSF, 

G8MUREFU3FP-2200-139, through the international project ‘FuturAgua: Enhancing adaptation 

and resilience to drought in dry tropical social-ecological systems’. We acknowledge also the idea 

and motivation shared with our colleagues in the FuturAgua project, especially Professor Douw 

Steyn (University of British Columbia). The authors also declare that there is no conflict of 

interest. 



   

37 

 

References 

 

Abdel-Aal, R.E., 1998. Automatic fitting of Gaussian peaks using abductive machine 

learning. IEEE Transactions on Nuclear Science, 45:1-16. 

Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.P., Janowiak, J., Rudolf, B., Schneider, 

U., Curtis, S., Bolvin, D. and Gruber, A., 2003. The version-2 global precipitation 

climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of 

hydrometeorology, 4:1147-1167. 

Alfaro, E.J., 2002. Some characteristics of the annual precipitation cycle in Central America and 

their relationships with its surrounding tropical oceans. Tópicos Meteorológicos y 

Oceanográficos, 9: 88-103. 

Allen, T.L., Curtis, S. and Gamble, D.W., 2010. The midsummer dry spell's impact on vegetation 

in Jamaica. Journal of Applied Meteorology and Climatology, 49:1590-1595. 

Anderson, E.R., Cherrington, E.A., Tremblay-Boyer, L., Flores, A.I. and Sempris, E., 2008. 

Identifying critical areas for conservation: Biodiversity and climate change in Central 

America, Mexico, and the Dominican Republic. Biodiversity, 9: 89-99. 

Arnell, N.W., Brown, S., Gosling, S.N., Gottschalk, P., Hinkel, J., Huntingford, C., Lloyd-Hughes, 

B., Lowe, J.A., Nicholls, R.J., Osborn, T.J. and Osborne, T.M., 2016. The impacts of 

climate change across the globe: A multi-sectoral assessment. Climatic Change, 134: 457-

474. 

Barnett, T.P., Pierce, D.W., Hidalgo, H.G., Bonfils, C., Santer, B.D., Das, T., Bala, G., Wood, 

A.W., Nozawa, T., Mirin, A.A. and Cayan, D.R., 2008. Human-induced changes in the 

hydrology of the western United States. science, 319: 1080-1083. 

Bates, B., Kundzewicz, Z.W., Wu, S. and Palutikof, J., 2015. Climate change and water: technical 

paper VI. Intergovernmental Panel on Climate Change (IPCC). 

Brekke, L.D., Maurer, E.P., Anderson, J.D., Dettinger, M.D., Townsley, E.S., Harrison, A. and 

Pruitt, T., 2009. Assessing reservoir operations risk under climate change. Water 

Resources Research, 45. 

Cavazos, T., Torres, A. and Arriaga-Ramirez, S., 2012, December. Climate change scenarios for 

the North American monsoon using CMIP3 and CMIP5 models. In AGU Fall Meeting 

Abstracts (Vol. 1, p. 06). 

Cayan, D.R., Maurer, E.P., Dettinger, M.D., Tyree, M. and Hayhoe, K., 2008. Climate change 

scenarios for the California region. Climatic change, 87: 21-42. 

Conway, D., van Garderen, E.A., Deryng, D., Dorling, S., Krueger, T., Landman, W., Lankford, 

B., Lebek, K., Osborn, T., Ringler, C. and Thurlow, J., 2015. Climate and southern Africa's 

water-energy-food nexus. Nature Climate Change, 5: 837-846. 



   

38 

 

Curtis, S. and Gamble, D.W., 2008. Regional variations of the Caribbean mid-summer 

drought. Theoretical and Applied Climatology, 94: 25-34. 

Dai, A., 2006. Recent climatology, variability, and trends in global surface humidity. Journal of 

Climate, 19: 3589-3606. 

Demirel, M.C. and Moradkhani, H., 2016. Assessing the impact of CMIP5 climate multi-modeling 

on estimating the precipitation seasonality and timing. Climatic Change, 135: 357-372. 

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W.J., Cox, P., Driouech, 

F., Emori, S., Eyring, V. and Forest, C., 2013. Evaluation of Climate Models. In: Climate 

Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 

2013, 5: 741-866. 

Frumhoff, P.C., Burkett, V., Jackson, R.B., Newmark, R., Overpeck, J. and Webber, M., 2015. 

Vulnerabilities and opportunities at the nexus of electricity, water and 

climate. Environmental Research Letters, 10: 080201. 

Fu, Y., 2013. The projected temporal evolution in the interannual variability of East Asian summer 

rainfall by CMIP3 coupled models. Science China Earth Sciences, 56: 1434-1446. 

Gamble, D.W., Campbell, D., Allen, T.L., Barker, D., Curtis, S., McGregor, D. and Popke, J., 

2010. Climate change, drought, and Jamaican agriculture: local knowledge and the climate 

record. Annals of the Association of American Geographers, 100: 880-893. 

Giannini, A., Kushnir, Y. and Cane, M.A., 2000. Interannual variability of Caribbean rainfall, 

ENSO, and the Atlantic Ocean*. Journal of Climate, 13: 297-311. 

Girvetz, E.H., Zganjar, C., Raber, G.T., Maurer, E.P., Kareiva, P. and Lawler, J.J., 2009. Applied 

climate-change analysis: the climate wizard tool. PLoS One, 4: e8320. 

Gleckler, P. J., Taylor, K. E., & Doutriaux, C., 2008. Performance metrics for climate models. 

Journal of Geophysical Research: Atmospheres, 113. 

Godfrey, K.R., Arundel, P.A., Zhu, W., Dong, Z. and Bryant, R., 2012. Modelling the double peak 

phenomenon. Journal of Bioequivalence & Bioavailability, 2011. 

Harrison, M. and Waylen, P., 2000. A note concerning the proper choice for Markov model order 

for daily precipitation in the humid tropics: A case study in Costa Rica. International 

Journal of Climatology, 20: 1861-1872. 

Hastenrath, S., 1976. Variations in low-latitude circulation and extreme climatic events in the 

tropical Americas. Journal of the Atmospheric Sciences, 33: 202-215. 

Hastenrath, S.L., 1967. Rainfall distribution and regime in Central America. Archiv für 

Meteorologie, Geophysik und Bioklimatologie, Serie B, 15: 201-241. 

Hidalgo, H.G. and Alfaro, E.J., 2015. Skill of CMIP5 climate models in reproducing 20th century 

basic climate features in Central America. International Journal of Climatology, 35: 3397-

3421. 

Hidalgo, H.G., Amador, J.A., Alfaro, E.J. and Quesada, B., 2013. Hydrological climate change 

projections for Central America. Journal of Hydrology, 495: 94-112. 



   

39 

 

Huffman, G.J., Bolvin, D.T. and Adler, R.F., 2012. GPCP version 2.2 SG Combined Precipitation 

Data Set (last updated 2012). World Data Center for Meteorology (Asheville), 

NCDC.[Available online at https://www. ncdc. noaa. gov/wdc/wdcamet-ncdc. html.]. 

Jacobs, K.L. and Snow, L., 2015. Adaptation in the Water Sector: Science & 

Institutions. Dædalus, 144: 59-71. 

Karmalkar, A.V., Taylor, M.A., Campbell, J., Stephenson, T., New, M., Centella, A., Benzanilla, 

A. and Charlery, J., 2013. A review of observed and projected changes in climate for the 

islands in the Caribbean. Atmósfera, 26: 283-309. 

Knutti, R. and Sedláček, J., 2013. Robustness and uncertainties in the new CMIP5 climate model 

projections. Nature Climate Change, 3: 369-373. 

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. and Meehl, G.A., 2010. Challenges in combining 

projections from multiple climate models. Journal of Climate, 23: 2739-2758. 

Lobell, D.B. and Burke, M.B., 2008. Why are agricultural impacts of climate change so uncertain? 

The importance of temperature relative to precipitation. Environmental Research 

Letters, 3: 034007. 

Magaña, V., Amador, J.A. and Medina, S., 1999. The midsummer drought over Mexico and 

Central America. Journal of Climate, 12: 1577-1588. 

Maldonado, T., Alfaro, E., Fallas-López, B. and Alvarado, L., 2013. Seasonal prediction of 

extreme precipitation events and frequency of rainy days over Costa Rica, Central 

America, using Canonical Correlation Analysis. Advances in Geosciences, 33: 41-52. 

Mapes, B.E., Liu, P. and Buenning, N., 2005. Indian monsoon onset and the Americas midsummer 

drought: Out-of-equilibrium responses to smooth seasonal forcing. Journal of climate, 18: 

1109-1115. 

Martin, E.R. and Schumacher, C., 2011. The Caribbean low-level jet and its relationship with 

precipitation in IPCC AR4 models. Journal of Climate, 24: 5935-5950. 

Maurer, E.P., 2007. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, 

California, under two emissions scenarios. Climatic Change, 82: 309-325.  

Menon, A., Levermann, A., Schewe, J., Lehmann, J. and Frieler, K., 2013. Consistent increase in 

Indian monsoon rainfall and its variability across CMIP-5 models. Earth System 

Dynamics, 4: 287-300. 

Miao, C., Duan, Q., Sun, Q. and Li, J., 2013. Evaluation and application of Bayesian multi-model 

estimation in temperature simulations. Progress in physical geography 37: 727-44. 

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, 

T.R., Emori, S., Kainuma, M., Kram, T. and Meehl, G.A., 2010. The next generation of 

scenarios for climate change research and assessment. Nature, 463: 747-756. 

Neelin, J.D., Münnich, M., Su, H., Meyerson, J.E. and Holloway, C.E., 2006. Tropical drying 

trends in global warming models and observations. Proceedings of the National Academy 

of Sciences, 103: 6110-6115. 



   

40 

 

Pascale, S., Lucarini, V., Feng, X., Porporato, A. and ul Hasson, S., 2016. Projected changes of 

rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate 

Dynamics, 46: 1331-1350. 

Phillips, T.J. and Gleckler, P.J., 2006. Evaluation of continental precipitation in 20th century 

climate simulations: The utility of multimodel statistics. Water Resources Research, 42. 

Polade, S.D., Pierce, D.W., Cayan, D.R., Gershunov, A. and Dettinger, M.D., 2014. The key role 

of dry days in changing regional climate and precipitation regimes. Scientific reports, 4. 

Porkka, M., Gerten, D., Schaphoff, S., Siebert, S. and Kummu, M., 2016. Causes and trends of 

water scarcity in food production. Environmental Research Letters, 11. 

Rauscher, S.A., Giorgi, F., Diffenbaugh, N.S. and Seth, A., 2008. Extension and intensification of 

the Meso-American mid-summer drought in the twenty-first century. Climate 

Dynamics, 31: 551-571. 

Rauscher, S.A., Kucharski, F. and Enfield, D.B., 2011. The role of regional sst warming variations 

in the drying of meso-america in future climate projections*. Journal of Climate, 24: 2003-

2016. 

Reclamation, 2013. Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release 

of downscaled CMIP5 climate projections, comparison with preceding information, and 

summary of user needs, US Dept. of the Interior, Bureau of Reclamation, Technical 

Services Center, Denver. (Archive, 

http://gdodcp.ucllnl.org/downscaled_cmip_projections) 

Reynolds, D. A., 1995. Speaker identification and verification using Gaussian mixture speaker 

models. Speech communication, 17: 91-108. 

Ryu, J.H. and Hayhoe, K., 2014. Understanding the sources of Caribbean precipitation biases in 

CMIP3 and CMIP5 simulations. Climate dynamics, 42: 3233-3252. 

Scherrer, S. C., 2011. Present‐day interannual variability of surface climate in CMIP3 models and 

its relation to future warming. International Journal of Climatology, 31:1518-1529. 

Small, R.J.O., De Szoeke, S.P. and Xie, S.P., 2007. The Central American Midsummer Drought: 

regional aspects and large-scale forcing. Journal of Climate, 20:4853-4873. 

Smirnov, N.V., 1939. On the estimation of the discrepancy between empirical curves of 

distribution for two independent samples. Bull. Math. Univ. Moscou, 2.  

Steyn, D., Moisseeva, N., Harari, O., and Welch, W.J., 2016. Temporal and Spatial Variability of 

Annual Rainfall Patterns in Guanacaste, Costa Rica. FuturAgua internal project report. 17 

p.  

Su, F., Duan, X., Chen, D., Hao, Z. and Cuo, L., 2013. Evaluation of the global climate models in 

the CMIP5 over the Tibetan Plateau. Journal of Climate, 26: 3187-3208. 

Sun, Y., Solomon, S., Dai, A. and Portmann, R.W., 2006. How often does it rain?. Journal of 

Climate, 19: 916-934. 

Taylor, K.E., Stouffer, R.J. and Meehl, G.A., 2012. An overview of CMIP5 and the experiment 

design. Bulletin of the American Meteorological Society, 93. 

http://gdodcp.ucllnl.org/downscaled_cmip_projections


   

41 

 

Vargas, A.B. and Trejos, V.F.S., 1994. Changes in the general circulation and its influence on 

precipitation trends in Central America: Costa Rica. Ambio.  

Wang, C., 2007. Variability of the Caribbean Low-Level Jet and its relations to climate. Climate 

Dynamics, 4: 411-422. 

Watts, G., Battarbee, R.W., Bloomfield, J.P., Crossman, J., Daccache, A., Durance, I., Elliott, J.A., 

Garner, G., Hannaford, J., Hannah, D.M. and Hess, T., 2015. Climate change and water in 

the UK–past changes and future prospects. Progress in Physical Geography, 39: 6-28. 

Waylen, P.R., Caviedes, C.N. and Quesada, M.E., 1996a. Interannual variability of monthly 

precipitation in Costa Rica. Journal of Climate, 9: 2606-2613. 

Waylen, P.R., Quesada, M.E. and Caviedes, C.N., 1996b. Temporal and spatial variability of 

annual precipitation in Costa Rica and the Southern Oscillation. International Journal of 

Climatology. 

Whitehead, P.G., Barbour, E., Futter, M.N., Sarkar, S., Rodda, H., Caesar, J., Butterfield, D., Jin, 

L., Sinha, R., Nicholls, R. and Salehin, M., 2015. Impacts of climate change and socio-

economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna 

(GBM) river systems: low flow and flood statistics. Environmental Science: Processes & 

Impacts, 17: 1057-1069. 

Wood, A.W., Leung, L.R., Sridhar, V. and Lettenmaier, D.P., 2004. Hydrologic implications of 

dynamical and statistical approaches to downscaling climate model outputs. Climatic 

change, 62: 189-216. 

Yeh, S.W., Ham, Y.G. and Lee, J.Y., 2012. Changes in the tropical pacific SST trend from CMIP3 

to CMIP5 and its implication of ENSO*. Journal of Climate, 25: 7764-7771. 

Zhao, T. and Dai, A., 2016. Uncertainties in historical changes and future projections of drought. 

Part II: model-simulated historical and future drought changes. Climatic Change. 

 

 

 

 

 

 

 

 



   

42 

 

Chapter 3: Predictability of Multicategory Seasonal Probabilistic 

Forecast of Precipitation Conditioned on ENSO Phase 
 

This chapter will be submitted to the Water Resource Research journal 

 

Abstract 

High dependence on seasonal precipitation puts emphasis on the need to improve the quality of 

seasonal forecasts, which in turn enables decision making to avoid potential losses or to gain more 

benefits in the municipal, agriculture, hydropower generation, and tourism sectors. This study 

develops a stochastic weather generation model to predict seasonal precipitation by linking a 

Nonhomogeneous Markov Chain Model that describes the ENSO cycle to a bivariate normal 

distribution model that represents seasonal precipitation conditioned on ENSO phase. Three 

verification metrics are suggested to measure the degree of predictability of raw, calibrated, and 

climatological seasonal rainfall forecasts. The results indicate the potential to narrow the 

uncertainty of seasonal rainfall forecasts by incorporating ENSO cycle information. Rainfall 

during the late part of the wet season has a higher degree of predictability than rainfall during the 

early part of the wet season. In addition, obtaining ENSO cycle information from climate models 

can also lead to a suitable degree of predictability for subsequent model rainfall in both portions 

of the wet season. The proposed calibration method improves predictability, which decreases with 

an increase in lead time for the forecast.  
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3.1 Introduction 

The annual variation in the intensity and duration of seasonal precipitation has significant impacts 

on the reliability of water, food, and energy supplies. Particularly, most decisions made in the 

municipal, hydropower generation, agriculture, and tourism industries to avoid or mitigate 

potential losses are dependent on predicted future changes in the seasonal cycle of precipitation. 

Interannual variability in weather outcomes is found to be the dominant source of uncertainty 

associated with regional seasonal precipitation projections across the globe for at least the next 

decade (Hawkins and Sutton, 2011). Therefore, understanding the influence of internal variability 

is of great value to decision makers in regulation and planning. El Niño–Southern Oscillation 

(ENSO) is the main natural source of interannual climate variability observed globally (Trenberth 

et al., 1998; Meehl et al., 2007; Collins et al. 2010; Hidalgo et al., 2015), and particularly in the 

tropical Pacific region (Vecchi and Wittenberg, 2010). The ENSO phenomenon is commonly 

monitored by the periodic change in sea surface temperature anomalies (SSTAs) across the 

equatorial Pacific Ocean (McCABE and Dettinger, 1999; Ghil and Zaliapin, 2013). A number of 

studies have found a significant relationship between SSTAs and interannual precipitation 

variability in Central America (Enfield 1996; Waylen et al. 1996; Enfield and Alfaro 1999; 

Giannini et al. 2000; Rauscher et al., 2011). The periodicity cycle of the ENSO phenomenon varies 

from two to seven years (Knutson et al., 1997; Bellenger et al., 2014; Muñoz et al., 2014) and is 

defined by three phases: a) a warm phase known as El Niño, b) a cold phase known as La Niña, 

and c) a neither warm nor cold period called neutral. 
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 The failure of most stochastic models to reproduce the observed interannual variability of seasonal 

precipitation might be due to a failure to incorporate the effect of large-scale climate variables 

(Katz and Parlange 1998), such as ENSO. Thus, it is essential to verify the potential to narrow 

uncertainty in seasonal precipitation predictions by incorporating ENSO cycle information. ENSO 

teleconnection has been incorporated as an attempt to reduce uncertainty and improve streamflow 

forecasts (Hamlet and Lettenmaier, 1999; Grantz et al., 2005; Regonda et al., 2006; Gobena and 

Gan, 2006, Sharma et al., 2015), and seasonal precipitation forecasts (Gutzler et al., 2002; Gissila 

et al., 2004; Zaroug et al., 2014). For instance, Gutzler et al. (2002) found that the ENSO cycle 

provided more seasonal predictability of winter anomalies of precipitation than the Pacific Decadal 

Oscillation (PDO) index over western North America.  Sharma et al. (2015) also found that an 

ENSO-conditioned weather generation model provided suitable performance for monthly 

streamflow forecasting with a three-month lead time, especially for low-flow conditions. ENSO 

information can also be applied for reducing the risk associated with decision making in the 

agricultural sector (Letson et al., 2005; Cabrera et al., 2006), and for natural gas purchasing 

(Changnon et al., 2000). Cabrera et al. (2006) found that predictability of seasonal climate 

variability with respect to ENSO has the potential to minimize risk by informing necessary changes 

in planting dates and guiding the purchase of appropriate crop insurance in a farm in Jackson 

County, Florida.  

 

ENSO climate information can be highly valuable for the process of making operational decisions 

in water resource systems. Although, the ENSO mechanism is not yet fully understood, a number 

of statistical and dynamical models have been developed to forecast the ENSO cycle. The former 

approach can be classified into models which use regression, neural networks, or Markov models 
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(Flügel and Chang, 1998; Chen and Cane, 2008), while the latter approach ranges from 

intermediate to fully coupled ocean-atmosphere models (Latif et al., 1994; Barnston et al., 2012). 

For characterizing predictability in future climate regimes projected by General Climate Models 

(CGCMs) , we adopt a simpler and less expensive approach that uses the SST field from climate 

models to construct a Markov chain (MC) model describing the cycle of ENSO phases. This model 

is embedded into a weather generation (WG) model that forecasts seasonal rainfall rates depending 

on the ENSO-rainfall teleconnection. The ability of CGCMs to simulate this teleconnection has 

been verified across the globe (Doherty and Hulme 2002; Joseph and Nigam 2006; Cai et al., 2009; 

Langenbrunner and Neelin, 2013; King et al., 2015; Dieppois et al., 2015). Hidalgo and Alfaro 

(2015) developed a number of metrics to evaluate the capability of 48 CGCMs CMIP5 (107 runs) 

to generate the observed ENSO rainfall teleconnection pattern over Central America as well as 

other climatic variables. The authors found that some of the runs produce suitable capability to 

simulate the ENSO-precipitation teleconnections both in the June-July-August (JJA) and 

September-October-November (SON) seasons and on an annual basis.  

 

In order to demonstrate the objectives and methodology of this study, the northwest region of Costa 

Rica has been used as a case study. The topographic characteristics of this region influence the 

evolution of a bimodal seasonal cycle of precipitation (Waylen et al., 1996; Magaña et al., 1999). 

The region experiences a dry season that lasts for six months and a relative midsummer drought 

(MSD) episode that interrupts the wet season. In addition, ENSO is one of the major of concern 

drivers of rainfall and groundwater resources in the northwest Costa Rica (Babcock et al., 2016). 

It has been related to flooding (Waylen et al., 1996; Waylen and Laporte, 1999) and to fluctuations 

in monthly and interannual precipitation over Costa Rica (George et al., 1998). Waylen et al. 
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(1994) found that annual and seasonal precipitation at San Jose in Costa Rica appears to be 

conditioned on ENSO. Besides that, agricultural production and other activities depend 

significantly on precipitation during the wet season, which all emphasize the need for high-quality 

forecasts, especially for the two rainy portions of the wet season. Improving seasonal precipitation 

forecasts can support make cost-effective decisions. For instance, it helps decision makers decide 

effective ways to manage tradeoffs between power generation and water supply. It can also be 

used by stakeholders to improve their decisions, particularly in selection of appropriate crop 

cultivars and varieties, the purchase of crop insurance, timing of agricultural operations, fertilizer 

implementation, and livestock management strategies.  

 

This study develops a statistical method to reduce the uncertainty associated with multicategory 

(dry, wet, and normal) probabilistic seasonal precipitation forecasts at medium temporal range and 

with different lead times by incorporating ENSO cycle information. Its objectives are a) 

demonstrating the potential to reduce uncertainty in seasonal precipitation forecasts by 

incorporating observed ENSO cycle information, and b) evaluating the skill that can be obtained 

by incorporating simulated ENSO cycle information from climate models. The second objective 

aims to verify the opportunity for decision makers to use climate models in building future 

scenarios of potential changes in seasonal precipitation, especially under the influence of global 

warming. The multicategory probabilistic forecast would make important contributions by 

providing the likelihood of having dry, wet, and normal rainfall rates, whereas the different lead 

time analysis would help in determining the optimal lead time.   
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Three verification metrics are proposed to assist the decision makers (e.g. water managers and 

farmers) to determine whether or not to rely on the forecast and to estimate its level of 

predictability over the period of 1996-2015: 1) the ranked probability score skill (RPSS), 2) the 

root mean square error (RMSE), and 3) a multicategory reliability diagram (MCRD). The 

relationship between the calibration and verification of the forecast is discussed and the effect of 

different lead times on the verification is demonstrated. Furthermore, the degree of predictability 

of the multicategory probabilistic prediction conditioned on ENSO information obtained from 

selected climate models is compared and evaluated.  

 

The paper is divided into the following sections: section 3.2 presents the data and climate models 

used; section 3.3 information about models formulation; section 3.4 discusses the results of the 

predictability measurement by incorporating observed and simulated ENSO cycle information; 

and section 5 contains conclusions. 

3.2 Data and climate models inputs  

Observed monthly precipitation data are obtained from the Climatic Research Unit (CRU) TS 3.24 

over the domain of (9.5-11 N and 85-86 W) from 1916 to 2015. The monthly precipitation is 

calculated on high-resolution (0.5x0.5 degree) grids, which are based on information gathered 

globally from more than 4000 weather stations (Jones and Harris, 2008). Sea surface temperatures 

(SSTs) for the Nino 3.4 (5S to 5N; 170W to 120W) region are used to monitor the ENSO pattern 

(Trenberth, 1997). The observed Nino 3.4 SSTs are extracted from a 0.5x0.5 degree grid dataset 

of the Extended Reconstructed Sea Surface Temperature (ERSST) version 3b of the National 

Oceanic and Atmospheric Administration (NOAA) (Smith et al, 2008). On the other hand, the 
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simulated Nino 3.4 SSTs are obtained from a selective sample of CGCMs participating in CMIP5 

(Table 4), in which each climate model is represented by the mean of its ensembles. For both 

observed and simulated Nino 3.4 SSTs, the monthly values from 1916 to 2015 are used to construct 

SST anomalies with respect to the averaged SSTs of the 1951-1980 period. The reference period 

is selected to avoid the use of the 1980s, which may result in a negative bias due to unusually 

strong El Niño events (Pozo-V´azquez et al., 2001, 2005).  

 

A number of indices have been applied in the literature to monitor the ENSO phenomenon. The 

Oceanic Nino Index (ONI), one of the commonly used indices (Gergis and Fowler, 2005), is used 

to distinguish between three different ENSO phases. An El Niño event is defined to occur when 

the three month averages of the SST anomalies are greater than (or equal to) 0.5 𝐶°for five 

consecutive 3-month periods or more, b) a La Niña event for averages smaller than (or equal to) -

0.5 𝐶° for five consecutive seasons or more and c) a Neutral phase otherwise. ENSO status during 

the early and late wet season is evaluated independently due to their high dependence on the 

precipitation (Karnauskas and Busalacchi, 2009) in the studied area. Thus, the ENSO phase in the 

April-June season represents the early season`s ENSO phase, whereas the ENSO phase in the 

September-November season denotes the late wet season`s ENSO phase.  

3.3 Materials and Methods  

3.3.1 Model training, validation, and testing 

The methodology of this study is implemented over three time periods: a training period from 1916 

to 1975, a validation period from 1976 to 1995, and a testing period from 1996 to 2015. The 
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training period (60 years long) is used to: a) determine the best Markov chain model to represent 

the observed ESNO phase cycle, b) construct a joint distribution model between the proposed 

theoretical distribution of the early and late wet season precipitation conditioned on each ENSO 

phase, c) determine 25th and 75th percentiles to classify the amount of seasonal precipitation in the 

three categories of dry, wet, and normal, and d) compute the long-run probability of each ENSO 

phase based on a selected ENSO occurrence model. Given that a raw forecast may not always be 

the best choice due to the chance of having systematic errors, the data for the period from 1976 to 

1995, that is called the validating period, are employed to verify the skill of the Distribution-Based 

Scaling (DBS) method (Yang et al., 2010) in correcting bias in seasonal precipitation forecasts. In 

this period, a weather generation (WG) model is used to forecast seasonal precipitation at different 

lead times conditioned on ENSO phases. A set of parameters are estimated by the DBS method 

over this period, and then are used to calibrate the raw forecasts over the testing period.  

 

Table 4. The selected CMIP5 CGCMs used in the study 

 

Model Name 
Model Groups 

(Country) 

Number 

Ensembles 

CNRM-CM5 

Centre National de Recherches Meteorologiques and 

Centre Européen de Recherche et Formation 

Avancées en Calcul Scientifique (France) 

5 

HADGEM2-ES UK Met Office Hadley Centre (UK) 
4 

 

MIROC5 

University of Tokyo, National Institute for 

Environmental Studies, and Japan Agency for Marine-

Earth Science and Technology (Japan) 

1 

 

MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 
3 

 

NorESM1-ME Norwegian Climate Centre (Norway) 1 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory 1 
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Lastly, the testing period (20 years long) is used to judge the predictability and reliability of the 

multicategory probabilistic raw and calibrated forecast of seasonal precipitation over the period 

1996-2015. Three verification measures are proposed to assist decision makers (e.g. water 

managers and farmers) to determine whether or not to rely on the forecast and to estimate its level 

of confidence. The verification metrics include the ranked probability score skill (RPSS), the root 

mean square error (RMSE), and the multicategory reliability diagram (MCRD). Three types of 

forecast are generated, the raw, calibrated, and climatological forecasts. The climatological 

forecast is the seasonal precipitation forecast using only the long-run probability of the ENSO 

phase cycle (i.e., it is not based on the current ENSO information).    

 

3.3.2 ENSO occurrence model  

The occurrence of an ENSO phase is modeled as a first-order Non-Homogeneous Markov Chain 

(NHMC) process. The transition probability between two sequential states embodies the influence 

of both mechanistic and random factors (e.g. climate change, natural variability) that control any 

dynamic process such as ENSO. The dynamic evolution of ENSO is represented using three 

different discrete states 𝑆 = {El Niño, Neutral and La Niña}. To capture the seasonal occurrence 

of these phases, the model is constructed for both the early and late wet season states.  

The NHMC is a stochastic process characterized by a set of states {𝑖, 𝑗} and their transition 

probabilities. A single transition matrix 𝑃𝑖𝑗
𝑛,𝑛+1 has elements representing the probability of 

transiting from state 𝑖 at season 𝑛 and to state 𝑗 at season 𝑛+1. The transition matrix for season n 

is a 3×3 matrix with the following properties:   

∑ 𝑝𝑖𝑗
𝑛,𝑛+1 = 1 ,   𝑆

𝑗 for each 𝑖    (1) 
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0 ≤  𝑝𝑖𝑗
𝑛,𝑛+1 ≤ 1    (2) 

The transition probability in the 1st order NHMC implies dependence of the next state on only the 

present state rather than any, or a sequence of past states:  

𝑝𝑖𝑗
𝑛,𝑛+1 = P(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖)  (3) 

The transition probability of a second order of NHMC 𝑝ℎ𝑖𝑗
𝑛−1,𝑛,𝑛+1 represents the probability of 

moving to state 𝑗  in season 𝑛 + 1 given state ℎ in season 𝑛 − 1 and state 𝑖 in season 𝑛. The 

maximum likelihood method (see Appendix 1) is used to estimate the transition probabilities for 

the two orders of the NHMCs. In order to find the best representation for ENSO occurrence, we 

compare predictions using a first and second order NHMC, as well as the multinomial model in 

which ENSO states in sequential seasons are independent, according to the results of both Akaike’s 

information criterion (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) 

(Schwarz, 1978) (see Appendix 1 for more information).  

 

3.3.3 Rainfall intensity model 

A Gaussian mixture model (Steyn et al., 2016; AlMutairi et al., 2016) is employed to represent the 

bimodal pattern of seasonal precipitation over northwest Costa Rica, for the rainfall rate as a 

function of time 𝑡, 𝑓(𝑡):  

𝑓(𝑡) = 𝑦𝑜+ ∑
𝐴𝑘

𝜎𝑘√2𝜋
 𝑒𝑥𝑝 (

(𝑡−𝑡𝑐𝑘)2

2𝜎𝑘
2

)𝑛𝑝
𝑘=1                 (4) 

The Gaussian components (Equation 4) are assumed to be superimposed upon a baseline rainfall 

rate  y
o
. The parameters for each component 𝑘 are shown in Figure 2: the area under the curve 𝐴𝑘, 

the peak location   𝑡𝑐𝑘, and the temporal standard deviation 𝜎𝑘. 𝑛𝑝 denotes the number of 
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components. These parameters are estimated for each yearly seasonal cycle of precipitation from 

1916 to 2015 by the least squares method, which is applied to minimize the square difference 

between the observed monthly precipitation ym for month m (m = 1, 12) and the Gaussian 

mixture model prediction  f(𝑡𝑚), where for month m, 𝑡𝑚  is assigned the midpoint of the month. 

The 𝐴1𝑡 (𝐴2𝑡) is used, in this study, to represent the early (late) wet season precipitation at year 𝑡 

(𝑡 = 1, 𝑇). In order to consider interannual variation in the influence of ENSO on seasonal 

precipitation, a lognormal probability distribution is fitted to the early and late wet season 

precipitation conditioned on ENSO phase. Equation 5 shows the cumulative distribution function 

(CDF) of the lognormal distribution.     

𝐹(𝑥, 𝜇, 𝜎) = ∫
1

 𝑥 𝜎 √2𝜋
exp (

−(ln 𝑥 − 𝜇)2

2𝜎2
)  𝑑𝑥 

𝑥

0

                (5) 

where 𝑥 denotes the amount of seasonal precipitation (that is the area parameter 𝐴), and 𝜇 and 𝜎 

are the respective mean and standard deviation of the normal distribution for ln 𝑥. These 

parameters are estimated by fitting the empirical cumulative distribution function (ECDF) of the 

observations to the lognormal CDF using the maximum likelihood estimation method as an initial 

guess for random selections in a least-square optimization. The ECDF is given by the Blom 

plotting position formula (
𝑖−0.375

𝑁+0.25
), where 𝑖 denotes the rank of the given observation in an 

ascending order and 𝑁 represents the sample size (Hamed and Rao, 2000).   

 

A bivariate normal (BVN) distribution is used to describe the joint distribution of probability 

density for the logarithms of the early and late wet season rainfall rates (Yue, 2000; Estrella, 2013). 

The BVN model is constructed based on the given mean vector and covariance matrix conditioned 

on ENSO phase. Random generation of bivariate normal variables can be implemented using linear 
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combinations of two standard BVN column vectors and the given mean vector and covariance 

matrix. Cholesky decomposition factorization of the covariance matrix is employed to transform 

a set of uncorrelated variables into variables with the given covariances. For more detail about the 

BVN, see Appendix 1. 

3.3.4 Bias correction method 

The Distribution-Based Scaling (DBS) method (Yang et al., 2010) is adopted to bias-correct 

(adjust) the predicted seasonal precipitation over both the validating and the testing periods. The 

DBS method has been used to correct the bias in annual precipitation over Europe (Piani et al., 

2010) and seasonal precipitation over Sweden (Yang et al., 2010), Finland (Olsson et al., 2015), 

and Mumbai (Rana et al., 2014). Rana et al. (2014) found that DBS improved the representation 

of rainfall statistics in Mumbai. Basically, The DBS is a version of a quantile mapping technique 

that matches observed and simulated frequency distributions, which are assumed to follow a 

theoretical distribution (e.g. gamma, or lognormal). The gamma distribution is commonly used in 

the DBS method to correct bias in two partitions of the frequency distributions. Since this study 

classifies the seasonal precipitation into three categories (dry, normal, wet), DBS is used to match 

the simulated lognormal density distribution over these three categories to the observation. Thus, 

the seasonal precipitation distribution is divided into three partitions separated by the 25th and 75th 

quantiles. For more information about the DBS method, see Appendix 1.  

3.3.5 Stochastic weather generation model  

A stochastic weather generator (WG) is employed to simulate the time-series of seasonal 

precipitation over northwest Costa Rica according to the statistical characteristics of the filled 
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ENSO-dependent bivariate model. The common approach of the WG models relies on dry-wet 

occurrence and precipitation intensity models in simulations (e.g., Katz 1977; Richardson 1984; 

Wilks 1989; Wilks, 1998), but it has been found that most studies based on this approach could 

not fully address the interannual variability of precipitation (Woolhiser et al., 1993; Boughton, 

1999; Schoof, 2008), which might be due to large-scale climate variability (Woolhiser, 1992). 

Therefore, incorporating the influence of interannual variability could be a possible approach to 

narrow uncertainty in seasonal precipitation forecasts. Woolhiser (1993) examined the effect of 

ENSO on rainfall in the southwestern United States by using a lagged linear function of the 

Southern Oscillation Index (SOI) to perturb parameters of a stochastic daily rainfall model. The 

perturbations of the logits of the dry-dry transition probabilities resulted in statistically significant 

improvements in the log likelihood function for 23 stations. A study conducted by Grondona et 

al., (2000) found that conditioning a weather generation model on ENSO phase provide a useful 

approach to explore ENSO impacts on sectors of interest. Their work tested both ENSO 

conditional and unconditional weather generation models in simulating the characteristics of 

rainfall in six meteorological stations over southeastern South America. Both approaches involve 

a dry-wet days occurrence model represented by a first-order Markov chain and a rainfall intensity 

model, whereas the parameters of the intensity model in the conditional approach are estimated 

conditioned on ENSO phase. Clark et al. (2004) used the resampling-type weather generation 

model to produce sequences of climate variables that are conditioned on the Nino 3.4 index over 

the contiguous United States. This approach was found to be appropriate for use as input to 

hydrologic models to produce multiseason forecasts of streamflow.  

 



   

55 

 

The models mentioned above, and others available in the literature generally translate ENSO 

effects by modifying the intensity model of rainfall, while the occurrence model is fixed for dry-

wet rainfall cycle. Recently, Wasko et al. (2015) modified a Hierarchical Random Pulse Bartlett 

Lewis stochastic generation model (HRBLM) to simulate low-frequency continuous rainfall 

associated with ENSO phases. A first-order Markov chain model was employed to generate the 

occurrence of ENSO states in a yearly pattern. The HRBLM was able to replicate observed wet 

spell statistics as well as observed long-term variability. In this study, the proposed stochastic WG 

model (Figure 10) is applied to predict seasonal precipitation during a specific period (validation 

or testing) of 20 years duration. The model relies on the ENSO occurrence model (1st order 

NHMC) constructed based on the ONI of the specific period and the statistics of the three BVN 

models. Each of the three BVN models is constructed based on all historical records of seasonal 

rainfall rates occurring in an ENSO phase. For example, all seasonal precipitation data for both ES 

and LS during an El Niño (La Niña) event are used to construct the El Niño-BVN (La Niña-BVN) 

model. The neutral-BVN model is constructed based on all historical records of both the ES and 

LS rainfall rates, unconditioned on any ENSO phase. Sharma et al. (2015) stated that there is a 

high variability in precipitation during neutral conditions in which a neutral condition preceded by 

an El Niño condition is different than that of a neutral condition preceded by a La Niña condition.  

 

The WG model simply inputs an observed ENSO phase during the late wet season, and then 

generates N time-series of rainfall rates for both the early and late wet season at a lead time 𝐿. The 

forecast process is repeated for T time periods (T = 20 years over the validating/testing period), in 

which an observed ENSO phase in the late wet season is re-input at the end of each lead time.  
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Figure 10. Flowchart of the process taken by the WG to forecast seasonal precipitation with different lead 

time (N=1000; T=20 years; L=1, 2, or 3 years) 
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Three different lead times are demonstrated in this study including lead 1 (one year) forecast 

(forecasting two seasons ahead), lead 2 forecast (forecasting four seasons ahead), and lead 3 

forecast (forecasting six seasons ahead). Although the most used forecast type by the majority of 

interviewed groups of stakeholders in the northwest Costa Rica is the 3-month/6-month forecasts 

(Babcock et al., 2016), the study here evaluates the predictability for longer lead times in order to 

a) determine the limitation and strength of the proposed forecast and b) provide a flexible 

operational platform that is expected to be of greater benefit to stakeholders than forecasts based 

on one single lead time. If skillful seasonal precipitation predictions are found for a longer lead 

time ahead, the capability would give decision-makers more time to modify water management 

decisions to increase benefits or to decrease unwanted impacts.  

 

3.3.6 Verification metrics  

Forecast skill can be measured by skill scores that aim to describe the reduction of the forecast 

error relative to a reference forecast, which is typically based on less information. As a result, users 

can rely on the method with the best forecast skills in order to plan for future conditions. For multi-

categorical event  forecasts that distinguish dry, normal, and wet events, a ranked probability score 

(RPS) (Epstein, 1969; Wilks, 1995) is used to measure the squared average difference between the 

cumulative probability distribution of the forecast and that of the observation over a number of 

categories 𝑁𝑐𝑎𝑡.  

𝑅𝑃𝑆𝑖 = ∑(𝐶𝐷𝐹𝑗
𝑓𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑 − 𝐶𝐷𝐹𝑗

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2       (6)

𝑁𝑐𝑎𝑡

𝑗=1
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𝑅𝑃𝑆 =
1

𝑇
∑𝑅𝑃𝑆𝑖     (7)

𝑇

𝑖=1

 

where 𝐶𝐷𝐹𝑓𝑜𝑟𝑐𝑎𝑠𝑡 (𝐶𝐷𝐹𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) represents the cumulative distribution of the forecast (observed) 

probability for the three assumed categories. To compare the skill of a forecast system to that of 

the reference forecast, the ranked probability score skill (RPSS) is analyzed. The RPSS has been 

found to be a proper skill score (Weigel et al., 2007) due to its sensitivity to distance between 

𝐶𝐷𝐹𝑖
𝑓𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑

 and  𝐶𝐷𝐹𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (Wilks, 1995). It measures the forecast error relative to a 

reference forecast as shown in Equation 8. A climatology forecast is often used as the reference 

and is based on the long-term probability for observed ENSO phases. An RPSS of 1.0 indicates a 

perfect forecast, while an RPSS of 0.0 implies the forecast does not add any more skill to the 

climatology forecast. Negatives values of the RPSS are also possible when the forecast method 

exhibits less skill than the reference forecast.  

 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆𝑟𝑒𝑓

            (8) 

 

The RMSE (Equation 9) metric is also used to assess the ability of the forecast system to produce 

the observed amount of seasonal precipitation over the testing (1996-2015) period. Although this 

metric is not used to measure the skill of a probabilistic forecast, it is adopted in this study to 

provide more informative comparisons.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑅𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2

𝐿𝑡
𝑖=1

𝐿𝑡
    (9) 
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where 𝑖 denotes year number and 𝐿𝑡 represents the total number of years (20 years in total). The 

predicted seasonal precipitation 𝑅𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 here is just the average prediction in the WG model 

(see sub-section 3.3.5).   

 

Furthermore, a multicategory reliability diagram (Hamill, 1997) is applied to measure the 

reliability of the categorical probabilistic forecasts generated by incorporating ENSO information 

into the seasonal precipitation forecasting. The diagram can be used to a) examine the performance 

obtained using ENSO information in comparison to the use of climatology (the long-term 

probability of ENSO phases), b) understand how calibration can improve the reliability, and c) 

determine the effect of forecast lead time on reliability. A reliability line, averaged over a number 

of forecast years, is considered perfect when all quantiles of the observation are aligned with the 

quantiles of the forecast distribution. The diagram has the power to show the type and location of 

the errors in the forecast probability distribution over all of the predefined quantiles. Thus, when 

the reliability line is above (below) the diagonal, there is a wet (dry) bias over these quantiles. For 

how this diagram is calculated, see Appendix 1.  

 

3.4 Results and discussion  

3.4.1 Modeling ENSO occurrence  

ENSO occurrence is modeled by two different orders of a Nonhomogeneous Markov Chains. The 

1st (2nd) order NHMC determines the ENSO probabilistic distribution for a season 𝑖 conditioned 

on each ENSO phase during the previous one (two) season(s). The NHMC matrices for the two 
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orders are shown in Tables 14 and 15 (Appendix 2). The selection for the best occurrence model 

is based on the result of both the AIC and BIC, which are constructed on the ENSO pattern over 

the training (1916 -1975) period (shown in Table 5). For more detail about the AIC and BIC, see 

Appendix 1.  In Table 5, the multinomial (equivalent to a zeroth order NHMC) is compared to the 

1st and 2nd NHMC models. The 1st order NHMC is found to fit the observed cycle of ENSO phases 

most successfully with the lowest AIC and BIC (Table 5). This result indicates that the ENSO 

phase in a season highly depends on the phase during the previous season.  

 

Table 5. The log-likelihood, number of parameters, AIC and BIC for the two orders of the NHMC and 

the multinomial model that are compared in this study. A lower value of the AIC and BIC indicates a 

preferred model; the number of parameters is computed (with each order) for two Markov Chains: from 

early to late wet season and vice versa 

 

 

 

 

 

 

The long-run probabilities (basis for the multinomial model) for three ENSO phases are computed 

according to the 1st order NHMC built on the training (1916-1975) period. They are 0.23, 0.37, 

and 0.4, for El Niño, Neutral, and La Niña, respectively.  It should be noted that the NHMC is 

constructed for any period by including the LS-ENSO phase (ENSO phase in the late wet season) 

of a year before in order to not break the relationship between ENSO phase in the late and early 

wet season. The NHMC for the testing period from 1996 to 2015 is shown in Table 16 (Appendix 

2).   

Markov Chain 
Log-

likelihood 

Number of 

Parameters 
AIC BIC 

Multinomial Model -122.7 2 249.5 247.7 

1st  order NHMC -97.3 12 218.5 229.2 

2nd  order  NHMC -89.4 32 251 322.6 
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Stationarity in this Markov Chain must be maintained in order to ensure that a correct judgement 

about predictability can be made. Thus, the likelihood ratio test (Anderson and Goodman 1957; 

Wilks, 1995; Bickenbach and Bode 2003) is applied to the NHMCs over both the validation and 

testing periods to examine the stationarity (see Appendix 1 for more information). The constructed 

NHMCs are found to be stationary over the assigned periods as shown in Table 6.  

 

Table 6. The likelihood ratios and associated p-values based on the 1st order NHMC for the validation 

and testing periods 

 

 

 

 

 

3.4.2 Seasonal precipitation modeling 

The early and late wet season rainfall rates over the training period (1916-1975) are fitted to a 

lognormal distribution conditioned on the ENSO phase (see Figure 20 - Appendix 2). The 

goodness of fit to the lognormal distribution is tested by the chi-squared test. Table 7 shows the p-

values of the chi-squared test (see Appendix 1) used to verify the goodness of fit of these rainfall 

rates to a lognormal distribution. The 𝑝-values for 𝜒2 tests indicate that the null hypothesis cannot 

be rejected at a 0.05 level of significance for all the time series conditioned on each of the three 

ENSO phases. This result of lognormal behavior for both portions of the wet season supports the 

assumption of adopting the BVN model in joining the rainfall distributions and of using the 

lognormal distribution in the bias correction (DBS) method.    

Markov Chain Likelihood Ratio P-value 

Validation period 12.1 0.42 

Testing period 7.41 0.83 
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Table 7. The p-values for 𝝌𝟐 test for the lognormal distribution goodness of fit  

 

 

 

 

 

 

 

 

The bivariate normal distribution is constructed according to the good fit of each seasonal rainfall 

to a lognormal distribution, which indicates that their logarithm follows a normal distribution. 

Figure 11 shows the probability density function for each of these three joint distributions. From 

this figure, the fitted joint distribution conditioned on El Niño has the smallest mean with respect 

to both of the marginal distributions, while these means are larger in the case of conditioning on 

La Niña. In terms of standard deviation, the joint distribution conditioning on El Niño (La Niña) 

is shown to have a smaller (larger) standard deviation in the late precipitation than that in the early 

precipitation, whereas the joint distribution during Neutral shows that the standard deviations in 

both directions are almost equal, with somewhat higher values for the late wet season.   

 

 

 

Precipitation El Niño Neutral La Niña 

Early wet season 0.77 0.95 0.85 

Late wet season 0.84 1.00 0.67 
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Figure 11. Joint probability density function of the bivariate model conditioned on a) El Niño phase, b) 

Neutral phase, and c) La Niña phase. 

 

a) 

c) 

b) 
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3.4.3 Predictability and calibration  

The DBS method is employed to correct systematic bias in the seasonal precipitation forecast, so 

it is calibrated over the period 1976-1995 and then tested over the period 1996-2015. The method 

performs well over the calibration period by matching the cumulative distribution function of a 

forecast system with that of the observation. Over the testing period, the predictability of the 

probabilistic forecasts is measured by the three verification metrics explained in sub-section 3.3.6. 

The RPSS values are shown in Figure 12, which presents the measured skill of raw and calibrated 

forecasts relative to the climatological forecast for the early and late wet season precipitation over 

the 20 years of the testing (1996-2015) period. It can be seen that all scores in Figure 12 are above 

zero, which indicates that using the current ENSO information adds more value to the forecast 

than that obtained by climatology alone. The climatology here means the long-run probability for 

the three ENSO phases that were constructed based on ENSO pattern during the training period. 

Although the obtained RPSS values are not very high, obtaining a RPSS above zero could lead to 

greater benefit for decision makers (forecast users) than that obtained by relying on the 

climatological forecast system. Furthermore, the RPSS is increased by calibration (using the DBS 

method). The RPSS of the late wet season precipitation forecast jumps from 0.12 to 0.17, which 

represents a 42.8 % improvement. On the other hand, the early precipitation forecast is shown to 

have a lower RPSS, but its percentage of improvement by calibration is much higher 

(approximately 62%). 

 

To understand the implication of different RPSS values, it is helpful to examine other RPSS values 

obtained in literature. Tippett  et al. (2014) found that a linear regression correction approach 
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improved the ranked probability skill score (RPSS) values of the December–February (DJF) 

precipitation forecasts over Costa Rica that are obtained from the National Oceanic and 

Atmospheric Administration (NOAA) Climate Forecast System version 2 (CFSv2). The resulting 

RPSS values ranged from -0.1 to 0.1. A study for Ethiopia, Korecha and Sorteberg (2013) found 

a positive but low predictability for seasonal rainfall forecasts issued by the National 

Meteorological Agency (NMA), measured by the RPSS values that ranged from 0 to 0.09. As such 

the RPSS values obtained for seasonal precipitation forecasts in our study (ranging, from 0.08 to 

0.17) were comparable to, and in some cases better than, theses obtained in other related 

forecasting applications.  

 

Another verification metric applied in this study is the RMSE (shown in Figure 13), which is 

measured by mm of rainfall and is computed between the raw, calibrated, and climatological 

predictions and observation. The calibrated forecasts for both portions of the wet season are shown 

to have a lower RMSE than that of the raw and climatological forecasts. The early wet season 

calibrated forecast reduces the RMSE raw and climatological forecasts by 18.7 % and 16 %, 

respectively. The late wet season calibrated forecast produces a RMSE of about 8.9 mm, which is 

also lower in comparison to that obtained by other forecast systems. In this study, RMSE test is 

used not to measure predictability, but to demonstrate the quality of a given forecast. This is 

because RMSE may mislead the judgment about predictability by showing a low RMSE for the 

forecasted rainfall rates that are close to the observed rates, but are not in the same category. 

Therefore, although the RMSE of the late wet season is larger than that of the early wet season, 

the predictability by incorporating ENSO cycle information into seasonal precipitation forecast is 

higher in the late than in the early portion of the wet season.   
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Figure 12. RPSS values of the raw and calibrated rainfall forecasts in the early and late wet seasons 

relative to the climatological reference. 

 

Figure 13. RMSE computed between the raw, calibrated, and climatological rainfall forecasts and 

observations  
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Overall, it can be noted that the predictability in the late wet season conditioned on ENSO is higher 

than that in the early wet season, which can be seen from Figures 12 and 13 (higher RPSS and 

lower RMSE, respectively). That might be because SST anomalies in the tropical Pacific have a 

greater impact on the late wet season precipitation than on the early wet season precipitation 

(Waylen et al., 1998; Rauscher et al., 2008; Hidalgo al., 2015; Maldonado et al., 2016). However, 

the early wet season precipitation is still affected by tropical SST anomalies through Atlantic SSTs 

(Taylor et al. 2002).  

 

The RPSS and RMSE verification metrics may not be sufficient to judge the predictability of the 

proposed forecast system, thus the multicategory reliability diagram (MCRD) is suggested to be 

applied as another verification metric. The MCRD indicates the weakness and strength of the 

forecast distribution, which provides an opportunity for users to improve the seasonal forecast. 

Figure 14 shows the MCRD drawn for the raw, bias-corrected, and climatological rainfall forecasts 

for the early and late wet season. It can be seen that relying on the climatological forecast always 

results in a wet bias over all the quantiles. The reliability line of the raw forecast indicates a wet 

(dry) bias in the early (late) wet season rainfall forecast. The reliability line of the raw rainfall 

forecast of the early wet season matches the climatological reliability line for 0.3 and below and 

for 0.8 and above. The calibration improves the reliability of the rainfall forecast in the early (late) 

portion of the wet season as shown by moving their reliability lines closer to the 1:1 line, and 

results in a small wet (dry) bias in the lower quantiles with a dry bias in the upper quantiles.    
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Figure 14. Reliability diagram of the raw, calibrated, and climatology rainfall forecasts in the a) early wet 

season, and b) late wet season. The perfect reliable system are shown as black solid line and the error bars 

on the reliability curves are not shown for readability (see Appendix 2). 
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The reliability line in Figure 14 represents the average reliability (over 20 years), so the confidence 

in such average reliability at any quantile can be expressed as an error bar at that quantile. Error 

bars were developed representing the 5th and 95th percentiles of resampled multicategory 

reliabilities produced via a bootstrap test (1000 runs). In Appendix 2, the difference between the 

two sides of the error bars is calculated as a readable way to show the degree of confidence at each 

quantile. Despite the increase in reliability due to calibration, the confidence in the reliability with 

higher quantiles is reduced as compared to raw and climatological forecasts for both portions of 

the wet season (shown in Figure 21-Appendix 1).  

 

3.4.4 Predictability and lead times 

The objective of this section is to determine the effect of an increase in lead time on the 

predictability of the calibrated seasonal forecast conditioned on ENSO phase. Table 8 shows the 

RPSS and RMSE of the calibrated rainfall forecast of the early and late wet season with respect to 

three different lead times. It should be noted that the RPSS for lead time 𝐿 is computed relative to 

the RPSS of the climatological forecast at the same lead time 𝐿. With increased lead time, a 

reduction in the RPSS is shown for both portions of the wet season. The RPSS of the calibrated 

rainfall forecast in the early (late) wet season is reduced by about 20% (29%) from lead 1 (one 

year) to lead 2 (two years). The RMSE associated with the calibrated forecasts for the two portions 

of the wet season increases gradually with the increase in lead time.  
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Table 8. RPSS and RMSE (mm/d) for the calibrated forecasts of both early and late wet season 

performed with different lead times (year) 

 

 

 

 

 

 

 

 

 

 

 

Similarly, the reliability of the calibrated forecast of both portions of the wet season is reduced 

with the increase in lead time as shown in Figure 15. For the early wet season, the lead 2 reliability 

shows a dry-bias-increase in the medium-high quantiles, while the lead 3 reliability indicates a 

wet-bias-increase in the low-medium quantiles with a dry-bias-increase in the high quantiles. The 

reliability of the calibrated rainfall forecast in the late wet season results in more dry bias with 

respect to the increase in lead time. By comparing the reliability lines of both portions of the wet 

season in Figure 15, the influence of the increase in the lead time appears to be more significant in 

the early rather than the late portion of the wet season.  

 

 

RPSS Lead 1 Lead 2 Lead 3 

Early wet season 0.13 0.10 0.07 

Late wet season 0.17 0.12 0.09 

RMSE Lead 1 Lead 2 Lead 3 

Early wet season 5.9 6.46 6.76 

Late wet season 8.9 9.5 9.84 
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Figure 15. Multicategory reliability diagram for the calibrated rainfall forecast in the a) early wet season 

and b) late wet season computed with respect to different lead times (year). The perfect reliable system 

are shown as black solid line.  
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3.4.5 Predictability for climate model simulations 

This section demonstrates the predictability of seasonal precipitation forecasts at a lead time of 

one year obtained by incorporating ENSO cycle information from a selective sample of six climate 

models. Table 9 presents the RPSS computed for both the raw and calibrated rainfall forecasts in 

the early and late wet season. The calibration improves the raw forecast against the climatology as 

it increases the value of RPSS for both portions of the wet season. The RPSS value for the 

calibrated rainfall forecast in the early wet season is found to be higher than that in the late wet 

season by MIROC5 and HadGem2-ES. The CNRM-CM5 produces an RPSS of 0.13 for the 

calibrated rainfall forecast in the late wet season. GFDL-ESM2G results in a low RPSS of 0.09 in 

both the early and late wet season. It is noted that the climatological forecast shows better skill 

than the raw forecast by the NorESM1-ME, since it has a negative RPSS. Overall, the highest 

predictability is found by incorporating ENSO cycle information in projections with four climate 

models:  MIROC5, CNRM-CM5, HadGem2-ES, and MPI-ESM-LR. These models yield 

simulated rainfall in which the ENSO-enhanced forecasts exhibit RRPSS values (~0.1-0.15) 

similar (through somewhat smaller than) to those obtained using the observed rainfall data (~0.1-

0.2).      

 

Table 10 displays the RMSE between each of the raw and calibrated rainfall forecasts that are 

obtained using the SST field from the respective climate models relative to the observations. The 

RMSE is reduced by calibration in the two portions of the wet season. The NorESM1-ME, GFDL-

ESM2G, and MIROC5 all generate a larger RMSE than that obtained by the climatological 

forecast (7.26 mm) for the raw rainfall forecast in the early wet season.  
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The calibrated rainfall forecast by the HadGem2-ES produces a RMSE (5.9 mm) equal to that 

generated by the observed calibrated forecast. The percentage of improvement by calibration in all 

six models is higher in the early than in the late wet season as shown in Tables 9 and 10.   

 

 

Table 9.  RPSS values for the raw and calibrated forecasts computed based on ENSO information from 

climate models 

 

CGCM 
Early wet season Late wet season 

Raw Calibrated Raw Calibrated 

MIROC5 0.01 0.13 0.09 0.10 

CNRM-CM5 0.02 0.11 0.10 0.13 

GFDL-ESM2G 0.03 0.09 0.04 0.09 

HadGem2-ES 0.03 0.13 0.09 0.11 

MPI-ESM-LR 0.03 0.11 0.08 0.12 

NorESM1-ME -0.02 0.08 0.09 0.11 

 

 

 

Figure 22 (23) (Appendix 2) shows the multicategory reliability diagram for the calibrated rainfall 

forecast in the early (late) wet season at lead 1 according to the six selected climate models. All 

models determine better reliability than those obtained by climatological forecast in both portions 

of the wet season. For the calibrated rainfall forecast in the early wet season, five of the selected 

six models produce a wet (dry) bias in the low (high) quantiles. 
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Table 10. RMSE (mm/d) computed between both raw and calibrated forecasts and observations 

 

CGCM 
Early wet season  Late wet season 

Raw Calibrated Raw Calibrated 

MIROC5 7.27 6.07 9.83 9.6 

CNRM-CM5 7.23 6.03 10.06 9.33 

GFDL-ESM2G 7.3 6.03 9.6 9.4 

HadGem2-ES 6.9 5.9 9.51 9.43 

MPI-ESM-LR 7.2 6.24 9.59 9.51 

NorESM1-ME 7.4 6.1 10.39 9.93 

 

 

The exception is for MPI-ESM-LR, which generates a wet bias in the low-medium quantiles. In 

the case of the calibrated rainfall forecast in the late wet season, all six climate models produce a 

dry bias over all quantiles. Figure 24 (in Appendix 2) shows that the level of confidence is higher 

with low quantiles for both portions of the wet season.  

 

3.5 Conclusions 

Seasonal fluctuations in precipitation have the potential to impact the effectiveness of water 

management decisions related to municipal, agriculture, and power generation industries. Since 

these fluctuations are found to be strongly influenced by large-scale climate variability such as the 

ENSO phenomenon, this study investigates the potential of incorporating ENSO-rainfall 

teleconnections to narrow the uncertainty in the seasonal rainfall prediction on the timescale of 1-
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20 years (in a categorical form) over northwest Costa Rica as a case study. A statistical method 

relying on a stochastic weather generation model is constructed to generate a synthetic time-series 

for each of the early and late wet season rainfall rates. The generation is simply determined 

according to a prediction for ESNO phase by a Nonhomogeneous Markov Chain (1st order) and a 

prediction for a rainfall rate based on a bivariate normal distribution conditioned on ENSO phase.  

 

According to three multicategory verification metrics, the results exhibit the degree of 

predictability that can be obtained by incorporating ENSO cycle information into the 

multicategory probabilistic forecast of seasonal precipitation. The multi-categorical prediction of 

the late wet season precipitation shows a higher degree of predictability than that of the early wet 

season. The reliability of the rainfall forecasts in the early and late wet season is better than that of 

the climatological forecast. Given the possibility of having systematic errors in seasonal 

precipitation forecasts, the DBS method is employed to correct systematic bias in the forecast. The 

DBS method, over the testing period, improves the predictability and reliability associated with 

the rainfall forecast in the two portions of the wet season. The percentage of improvement by 

calibration is higher in the early compared to the late wet season. The study also finds that, as 

expected, the degree of predictability decreases with an increase in the lead time forecast.  

 

In order to pave the road for using ENSO cycle information from CCGMs in seasonal precipitation 

forecasts, the study investigates their predictability over a historical period (1996-2015) of time. 

The results indicate that a suitable degree of predictability can be obtained by incorporating the 

simulated ENSO cycle information from four climate models: MIROC5, CNRM-CM5, HadGem2-

ES, and MPI-ESM-LR. These results are obtained by calibrating the raw forecast, whereas the raw 
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forecast produces low predictability skills. However, the results emphasize the role that could be 

played by climate models in reducing uncertainty associated with seasonal precipitation forecasts, 

and in building multiple future scenarios for seasonal precipitations, which would provide great 

value for planning and managing water and agricultural resources. Given these results, this 

indicates that there may be potential for similar approaches in other regions as well.  
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Chapter 4:  The Relative Value of Seasonal Drought-event Forecasts 

Conditioned on ENSO Phase for Water Management Decisions 
 

This chapter will be submitted to the Environment Systems and Decisions journal 

 

Abstract  

Predicting seasonal drought events in advance provides the opportunity to make proper decisions 

in a range of applications. Stress has been put on decision-makers by the uncertainty in seasonal 

rainfall forecasts, which is commonly associated with the variable cycle of the El Niño Southern 

Oscillation (ENSO). Methods that incorporate ENSO information into the process of seasonal 

rainfall prediction have shown the potential to narrow this uncertainty. However, the usefulness of 

forecasts to the process of making decisions cannot be guaranteed by forecast quality. This study 

investigates to what extent seasonal drought-event forecasts can be utilized in the process of 

making decisions. Two statistical measures are applied including the Relative Operating 

Characteristic (ROC) and the value of information in a cost-loss decision model. The ROC 

measures the ability of a forecast to predict dry vs. non-dry events, while the decision model 

estimates the relative value that provides an indication of the economic benefit provided by a 

proposed forecast system relative to the perfect system. The findings indicate that: a) the proposed 

calibration method improves both of the discrimination ability and relative value of the raw 

forecasts, b) an increase in lead time results in a reduction in the usefulness of the forecasts, c) the 

lead time of one year provides the potential for suitable benefits to the decision-making process, 

d) improvements in the relative value could be obtained by enhancing the ability of discrimination, 

e) the drought-event forecast in the late part of the wet season results in a higher potential benefit 
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to the decision-making process than that in the early part of the wet season, f) the positivity in the 

relative value never remains for the whole range of cost-loss ratio, which implies usefulness for 

certain cases only. Overall, incorporating ENSO information into seasonal rainfall forecasting 

would be beneficial to the decision-making process.   

4.1 Introduction 

Interest in reducing uncertainty in the prediction of drought event occurrence has grown due to the 

increased stress arising from climate change, population growth, and agricultural and industrial 

expansions across a large region of the globe. Improper mitigation strategies in handling drought 

events are frequently related to inaccurate seasonal rainfall forecasts that led to inappropriate 

decisions. In a developing nation like Costa Rica, inappropriate decisions in handling drought 

events may lead to blackouts and interruptions in the hydropower supply, deterioration of water 

supply for drinking and sanitation, harvest failure, and losses in lucrative tourism. In addition, they 

may affect the effectiveness of decisions made in agricultural business related to the selection of 

appropriate crop cultivars and varieties, the purchase of crop insurance, the timing of agricultural 

operations, fertilizer implementation, and livestock management strategies. Due to limitations in 

the existing statistical and dynamical prediction models (Krzysztofowicz, 2001; Gneiting, et al., 

2007), or to the difficulty in addressing the irregular interannual variability of seasonal rainfall 

(Katz and Parlange 1998; DeChant and Moradkhani, 2014), uncertainties can be reduced but not 

completely eliminated. A question arising, then, is how to cope with remaining uncertainty-in 

particular to what extent seasonal dry-event forecasts can be utilized in the process of making 

decisions.  
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An analysis of the value of drought event forecasts should be of particular interest to decision-

makers in northwest Costa Rica given that recent studies project reduced rainfall and intensified 

of extreme weather conditions over Central America in a climate change scenario (Rauscher et al., 

2008; Anderson et al., 2008; Neelin et al., 2006; Maldonado et al., 2013; Karmalkar et al., 2013). 

Rauscher et al. (2008) projected a reduction in summer precipitation over Central America by 25% 

in the twenty-first century, with the greatest reduction experienced in June and July. Pascale et al. 

(2015) estimated an increase in the annual number of dry days over South and Central America of 

up to 1 month by the end of the twenty-first century. Hidalgo et al. (2013) identified a reduction 

in the runoff over Central America of 10% to 30% through employing downscaled runs from 30 

General Circulation Models. 

 

Typically, dry event forecasts could be communicated to a user either in a deterministic or 

probabilistic form. The latter form is more preferable in making decisions (Krzysztofowicz, 2001; 

Madadgar et al., 2014; Demargne et al., 2014) since it provides likelihood of having dry and non-

dry events that assist decision makers in considering a range of possible outcomes. Hence, 

evaluating the ability of a probabilistic forecast system to discriminate between dry and non-dry 

events occurrence would be critical to maintain reliable and sustainable services with a range of 

sectors. A discrimination-based graphical verification called Relative Operating Characteristic 

(ROC) has been applied in psychology (Swets, 1973), clinical diagnosis (Swets and Pickett, 1982), 

and in weather forecast quality (Mason, 1982). The ROC curve measures discrimination ability in 

a forecast system for the purpose of decision making. Trambauer et al. (2015) employed the ROC 

method in measuring the discrimination ability of three proposed forecast scenarios to distinguish 

between the occurrence and non-occurrence of seasonal hydrological drought in the Limpopo 
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River basin, southern Africa. Lloyd‐Hughes et al. (2013) investigated the reliability of the Met 

Office Hadley Centre Unified Model (HadGEM1) in predicting the occurrence of observed 

drought events by adopting the ROC method.  

 

The seasonal cycle of precipitation over northwest Costa Rica has a bimodal pattern (Waylen et 

al., 1996; Magaña et al., 1999) that consists of  dry and wet seasons lasting six months each 

(Hastenrath, 1967). The bimodality pattern appears in the wet season, in which an early and late 

wet season is separated by a midsummer drought. The strength of bimodality in the seasonal cycle 

is found to be related to the interchangeable phases of El Niño Southern Oscillation (ENSO) 

(Waylen et al., 1996; Rauscher et al., 2011). Three phases of the ENSO cycle have been 

recognized: a) a warm phase known as El Niño, b) a cold phase known as La Niña, and c) a neither 

warm nor cold episode called neutral. There is a tendency of having dry (wet) events during El 

Niño (La Niña) years (Waylen et al., 1996). Waylen et al. (1994) found that annual and seasonal 

precipitation at San Jose in Costa Rica appears to be conditioned on ENSO. Incorporating ENSO 

cycle information into prediction processes has been applied worldwide as an attempt to narrow 

uncertainty in streamflow predictions (Hamlet and Lettenmaier, 1999; Grantz et al., 2005; 

Regonda et al., 2006; Gobena and Gan, 2006, Sharma et al., 2015), in seasonal rainfall predictions 

(Gutzler et al., 2002; Gissila et al., 2004; Zaroug et al., 2014), in reducing the risk associated with 

decision making in the agricultural sector (Letson et al., 2005; Cabrera et al., 2006) and in natural 

gas purchasing (Changnon et al., 2000). Hamlet and Lettenmaier (1999) pointed out an increase in 

lead time and forecast specificity over climatology by incorporating ENSO and the Pacific Decadal 

Oscillation (PDO) into Columbia River streamflow forecasts. Gutzler et al. (2002) found that the 

ENSO cycle provided more seasonal predictability of winter precipitation anomalies than that of 
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the PDO index over western North America. As it can be indicated from Chapter 3, an increase in 

the degree of predictability of seasonal rainfall forecast over northwest Costa Rica by incorporating 

ENSO information. Cabrera et al. (2006) found that the predictability of seasonal climate 

variability with respect to ENSO has the potential to minimize farm risk by informing farmers of 

necessary changes in planting dates and guiding their purchasing of appropriate crop insurance.  

 

The usefulness of a forecast system to the process of making decisions cannot be guaranteed by 

forecast quality (Palmer et al., 2000; Hartmann et al. 2002; Cabrera et al., 2009). In fact, drought 

event forecasts used in decision making often involve economic purposes, which are interpreted 

either by gaining or losing. To determine how beneficial a forecast system is, the expected returns 

must be better in comparison to the use of any other systems. A cost-loss decision model (Murphy 

1977; Katz and Murphy 1997; Richardson 2000) has been employed to assess the usefulness of a 

forecast system to the decision making process. The model determines a value called “economic 

or relative value” 𝑅𝑉 that provides an indication for the amount of saving relative to the perfect 

forecast scenario. Richardson (2000) examined the relative economic value of the European Centre 

for Medium Range Weather Forecast (ECMWF) ensemble prediction system. Palmer et al. (2000) 

discussed the relationship between the skill and value of seasonal ensemble forecasts in a 

probabilistic framework. Jones et al. (2011) evaluated the relationship between Madden-Julian 

Oscillation (MJO) and the relative value of a deterministic forecast of extreme precipitation over 

the contiguous United States. In addition, the relationship between the quality and relative value 

of a weather forecast system has been studied (Murphy and Ehrendorfer 1987; Richardson 2001). 

Chang et al. (2015) suggested that the 𝑅𝑉 of a forecast system can be increased only by improving 

its discrimination ability. 
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This study addresses the quality of seasonal drought-event forecasts in the context of making 

decisions over northwest Costa Rica. The study applies a forecast system developed by AlMutairi 

et al. (2017) (in-preparation - see Chapter 3), which is constructed based on a stochastic weather 

generation (WG) model that forecasts the likelihood of drought-event occurrences during both the 

early and late wet season. The model relies on the teleconnection relationship between ENSO and 

seasonal rainfall cycle, thus it links a joint distribution of seasonal rainfall in the two portions of 

the wet season conditioned on ENSO phase with an ENSO occurrence model represented by a (1st 

order) Nonhomogeneous Markov Chain. The raw forecasts of the proposed model are calibrated 

using the Distribution-Based Scaling (DBS) method (Yang et al., 2010). Climatological forecasts 

are generated by conditioning the proposed model on the long-run probability of the ENSO cycle 

rather than today’s ENSO cycle. For 20 years of data from 1996 to 2015, a Relative Operating 

Characteristic (ROC) curve is drawn to measure the ability of the raw, calibrated, and 

climatological forecast scenarios to discriminate between the two alternative outcomes of a 

drought-event. Then, a cost-loss decision model is constructed for all possible cutoff points with 

respect to the cost-loss ratios (0-1). The relationship between the resulting skills-based decision 

making and lead time is also investigated. Overall, the analysis of this paper aims to determine 

whether or not incorporating ENSO into seasonal rainfall forecasts would be beneficial to the 

process of making decisions over northwest Costa Rica.  

 

In this chapter, section 4.2 presents information about the data used; section 4.3 explains model 

construction and the used verification metrics; section 4.4 shows the results on the usefulness of 

drought-event prediction by incorporating ENSO cycle information for decision making; and 

section 5 presents conclusions. 
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4.2 Data used  

Observed monthly precipitation data is obtained from the Climatic Research Unit (CRU) TS 3.24 

(Jones and Harris, 2008) over the domain (9.5-11 N and 85-86 W) from 1916 to 2015. These 

monthly precipitation data are fitted to a Mixture Gaussian model (Steyn et al., 2016; AlMutairi et 

al., 2016) and then the outputs parameters utilized in the study. Sea surface temperatures (SSTs) 

for the Nino 3.4 (5S to 5N; 170W to 120W) region are used to monitor the ENSO pattern 

(Trenberth, 1997). Observed Nino 3.4 SSTs are extracted from a (0.5x0.5 degree) grid dataset of 

the Extended Reconstructed Sea Surface Temperature (ERSST) version 3b of the National Oceanic 

and Atmospheric Administration (NOAA) (Smith et al, 2008). Monthly SST values from 1916 to 

2015 are used to construct SST anomalies with respect to the averaged SSTs of the 1951-1980 

period. The reference period is selected to avoid the use of the 1980s, which may result in a 

negative bias due to strong El Niño events (Pozo-V´azquez et al., 2001, 2005).  

 

The Oceanic Nino Index (ONI) is used to distinguish between three different ENSO phases. An El 

Niño event is defined to occur when the three month averages are greater than (or equal to) 0.5 

𝐶°for five consecutive seasons or more, b) a La Niña event for averages smaller than (or equal to) 

-0.5 𝐶° for five consecutive seasons or more and a Neutral phase otherwise. ENSO status during 

the early and late wet season is evaluated independently. Thus, the ENSO phase in the April-June 

season represents the early season`s ENSO phase, whereas the ENSO phase in the September-

November season denotes the late wet season`s ENSO phase.  
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4.3 Materials and Methods 

4.3.1 Model construction 

The study uses a methodology developed by AlMutairi et al. (2017) (in-preparation - see Chapter 

3). A Bivariate Normal (BVN) Distribution was constructed as a joint distribution of normal 

density functions for the logarithm of the early and late wet season rainfalls. To address the 

influence of the interannual variability, the BVN model was conditioned on each ENSO phase 

over a training period from 1916 to 1975. The ENSO cycle is represented by three different discrete 

states 𝑆 = {El Niño, Neutral and La Niña}, where the transition probability between these states 

is determined from a first-order Non-Homogeneous Markov Chain (NHMC), which was found as 

the best representation for the ENSO cycle (see Chapter 3). In the 1st order NHMC, The transition 

probability implies dependence of the next state on only the present state rather than any, or a 

sequence of, past states:  

𝑝𝑖𝑗
𝑛,𝑛+1 = P(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖)  (1) 

 

The maximum likelihood method is used to estimate the transition probabilities as follows: 

𝑝𝑖𝑗
𝑛,𝑛+1 = P(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) =

𝑁𝑖𝑗
𝑛,𝑛+1

𝑁𝑖
𝑛         (2) 

where 𝑁𝑖𝑗
𝑛,𝑛+1 is the total number of times being in state 𝑖 at season 𝑛 and transitioning to state 𝑗 

at season 𝑛+1; 𝑁𝑖
𝑛is the total number of times being in state 𝑖 at season 𝑛.  

 

The bimodal pattern of seasonal precipitation, as a function of time, is represented by a Gaussian 

mixture model (Steyn et al., 2016; AlMutairi et al., 2016). Seven parameters of the Gaussian 
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mixture model are estimated for each yearly seasonal cycle of precipitation from 1916 to 2015 by 

the least squares method, which is applied to minimize the square difference between the observed 

monthly precipitation and the Gaussian mixture model prediction. The parameter that is 

demonstrating the area under the first (second) peak is used, in this study, to represent the early 

(late) wet season precipitation. These two parameters conditioned on ENSO phase showed to 

follow a lognormal distribution (see Chapter 3). The dry-event occurrence was defined as the 25th 

percentiles to the lognormal distribution of each of the rainfall of the two portions of the wet 

season. The Bivariate Normal (BVN) Distribution is employed to describe the joint distribution of 

normal density functions for the logarithm of these two parameters conditioned on ENSO phase. 

The logarithm is used to transform the lognormal behavior of seasonal rainfall to normal, while 

the exponential is also used to transform the BVN output to the seasonal rainfall form. For more 

detail about BVN construction and random generation, see Appendix 1.  

 

This proposed stochastic weather generation (WG) model (Figure 10) is employed to predict the 

future occurrence of dry events in the early and late wet season over the time period from 1996 to 

2015. The model has been adopted as it demonstrates the potential to narrow uncertainty in 

seasonal rainfall forecasts over northwest Costa Rica (AlMutairi et al., 2017 (in-preparation – see 

Chapter 3)). Given that incorporating ENSO into the process of seasonal rainfall forecast cannot 

completely remove uncertainty, this study develops a statistical approach that allows decision 

makers to determine to what extent the forecasts can still be utilized in making decisions as an 

approach to cope with the remaining uncertainty. The WG model consists of an ENSO occurrence 

model (1st order NHMC) and three BVN models. Each of the three BVN models maps the joint 

distribution of rainfall occurring in the early and late wet season conditioned on ENSO phase. The 
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exception is only for the BVN model conditioned on neutral phase, where, in fact, it is 

unconditioned on any ENSO phase. It has been found that rainfall during the neutral phase has a 

high rate of variability in which a rainfall preceded by an El Niño phase is different than that 

preceded by a La Niña phase (Sharma et al., 2015). The Distribution-Based Scaling (DBS) method 

(Yang et al., 2010) is used to correct the bias of seasonal rainfall predictions of the WG model (For 

more information about the DBS method, see Appendix 1).  

 

The suggested WG model inputs an observed ENSO phase in the late wet season, and then 

generates N time-series of the seasonal rainfall in the early and late wet season for a lead time 𝐿. 

The forecast process is repeated for T time, in which the observed ENSO phase is re-input at the 

end of each lead time. When 𝐿 = 1 (lead 1), the model forecasts one wet season of two portions 

(early and late). Similarly, lead 2 (3) simply means to forecast 2 (3) wet seasons (each with two 

portions). Babcock et al. (2016) found that most members of an interviewed groups of stakeholders 

in northwest Costa Rica use 3- 6-months forecasts, which represents lead 1 forecast in this study.  

However, this study investigates the extent that the proposed forecast system can benefit the 

decision making processes with different lead times. In other words, if benefits can be observed 

by using the proposed forecasts with a longer lead time ahead, it would provide decisions makers 

with enough time to modify decision in a way to increase benefits or to decrease unwanted impacts.  
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4.3.2 Relative operating characteristic (ROC)  

The occurrence and nonoccurrence of an adverse event (e.g. dry event) can be summarized by a 

2x2 contingency table (Table 11). The contingency table represents a two-dimensional discrete 

joint distribution between forecasts and observations that consists of four outcomes: Hit, Miss, 

False-alarm, and Correct-negative. Each cell of this table gives a count of the respective outcome 

over a medium range time frame. A perfect forecast scenario thus would have zero count in both 

the Miss and False-alarm outcomes. Based on the contingency table, the Hit (𝐻𝑅) and False-alarm 

(𝐹𝑅) rates can be computed for a given adverse event as follows: 

 

Hit rate = 
Hit

Hit+Miss
            (3) 

 

False-alarm rate = 
False−alarm

False−alarm + Correct−negative
            (4) 

 

 

Table 11. Contingency table of an adverse event forecast performance over a set of cases during a range 

of time frames 

 

 

 

 

 

  
Event forecast 

  Yes No 

Event 

observed 

Yes Hit Miss 

No False Alarm Correct Negative 
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In a probabilistic forecast system, a forecasted probability of an event to occur can be unclear 

(ambiguous) to decision makers. Thus, the probabilistic system can be transformed into a 

deterministic system through defining a cutoff point (threshold probability) 𝜃, in which an event 

is predicted to occur if its probability forecast is greater than the defined cutoff point. By giving 𝜃 

values from 0 to 1, both the Hit and False-alarm rates can be defined as 𝐻𝑅 = 𝐻𝑅(𝜃) and 𝐹𝑅 =

𝐹𝑅(𝜃).  

 

 The relative operating characteristic (ROC) (Swets, 1973; Mason, 1982) is adopted in this study 

to assess the ability of a forecast system to separate dry from non-dry events in the early and late 

wet season. The ROC curve is given by 𝐻𝑅(𝜃) versus 𝐹𝑅(𝜃), so that a trade-off relationship is 

presented such that if the Hit rate increases, the False-alarm rate decreases. In fact, the Hit (False-

alarm) rate indicates the probability of a warning that was provided correctly (incorrectly). Hence, 

a score value of interest is the area under the ROC curve (AUC), which gives an indication of the 

ability of a forecast system to discriminate (Murphy, 1993) between the alternative outcomes. A 

perfect forecast scenario would have an AUC equal to 1, while a no-skill forecast system, for 

which 𝐻𝑅 = 𝐹𝑅, would have an AUC equal to 0.5. The no-skill forecast system can be seen if the 

ROC curve lies on the diagonal line, which means that the given forecast system does not provide 

any useful information regarding dry-event occurrence. If the ROC curve lies below the diagonal 

line, the given forecast system would have a negative skill.  

 

There are two methods to estimate the AUC (ROC score): a) a non-parametric approach by 

constructing a trapezoid under the curve as an approximation of the area, and b) a parametric 

approach that fits a smooth curve line to the data points. The trapezoidal approach may result in 
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underestimation of the ROC area (Hanley and McNeil, 1982). One of the most appropriate 

approaches adopted in meteorological verification practice is the bi-normal method (Mason, 1982; 

Swets, 1986). Its accuracy has been empirically validated in many different fields (Swets, 1986). 

However, when verification samples are small, specifically when the number of occurrences of the 

event is small, the trapezoidal rule is a suitable alternative to compute the area. Thus, the 

trapezoidal rule has been adopted in this study to measure the AUC. 

 

In this study, the ROC metric is adopted to assess the ability of the three proposed forecast 

scenarios (raw, calibrated, and climatology) over 20 years of the period (1996-2015) to distinguish 

between the occurrence and nonoccurrence of dry-events in the early and late wet season. In 

addition, the influence of different lead time forecast on the ability of discrimination in the best 

forecast scenario is addressed.  

 

4.3.3 Relative (Economic) value  

Given uncertainty inherent in forecasts, decision makers need a method to reduce the possible loss 

associated with a decision that could be made. A cost-loss decision-analytic model (Murphy 1977; 

Katz and Murphy 1997; Richardson 2000) can be applied to compare between different forecast 

systems in order to determine the best available system that reduces losses and maximizes benefits 

associated with a given decision. Taking preventive measures (actions) depending on a given 

forecast system will incur a Cost 𝐶, irrespective of whether or not an adverse event (dry-event) 

occurs. However, if the dry-event occurs, a Loss 𝐿 will be incurred in the absence of preventative 
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measures. Table 12 shows four possible combinations of decisions and dry-event outcomes given 

in the decision model.  

 

Table 12. Expense matrix for the four combinations of decisions and dry-event occurrence  

 

 

 

 

 

* Some amount of loss might be added due to unexpected damages. 

 

 

In fact, decision makers have the choice to either use a forecast system or not. When they do not 

rely on a forecast system to make a decision, such a case is called (in this study) a “no-forecast” 

scenario. Therefore, the Cost-loss decision model would be applied to compare the performance 

of four forecast scenarios (options): raw, calibrated, climatology, and no-forecast. Figure 16 shows 

a decision tree that simplifies the output strategies that can be made according to these forecast 

scenarios. Consider a potential forecast user who decides to not rely on any forecast system. The 

strategy that could then be taken would be to either always, or never protect. Always taking a 

protective action will always incur 𝐶, whereas never taking a protective action will incur 𝐿 when 

a dry-event occurs. The expected (average) expense of the no-forecast scenario 𝐸𝑛𝑜−𝑓𝑐𝑠𝑡 thus 

would either equal 𝐶 or 𝐿 multiplied by the observed relative frequency 𝑂𝑟𝑓 of the dry-event. As 

a result, the optimal strategy that can be made by this scenario (option) is given by: 

 

 Action taken No action taken 

Event occurs C* L* 

Event does not occur C 0 
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𝐸𝑛𝑜−𝑓𝑐𝑠𝑡 = min[𝑂𝑟𝑓 ×  𝐿 , 𝐶]      (5) 

The expected expense of a forecast system 𝐸𝑓−𝑓𝑐𝑠𝑡 over a number of forecasts (20 years) can be 

expressed by both the Hit rate 𝐻𝑅 and False-alarm rate 𝐹𝑅 of the given forecast system, and the 

observed relative frequency of the dry-event 𝑂𝑟𝑓 (shown in Equation 6).  

 

𝐸𝑓−𝑓𝑐𝑠𝑡 = 𝐹𝑅 × 𝐶 × (1 − 𝑂𝑟𝑓) − 𝐻𝑅 × 𝑂𝑟𝑓 × (𝐿 − 𝐶) + 𝑂𝑟𝑓 × 𝐿      (6) 

 

This equation is employed to determine the expected expense associated with the use of each of 

the three forecast systems: raw, calibrated, climatology. A perfect operation strategy can be 

produced if a preventive action is only taken when a dry-event occurs. Thus, the expected expense 

of a perfect forecast 𝐸𝑝−𝑓𝑐𝑠𝑡 can be expressed as follows:   

𝐸𝑝−𝑓𝑐𝑠𝑡 = 𝑂𝑟𝑓 × 𝐶     (7) 

Given imperfect in forecasts, users will either take action or not based on an available forecast, so 

having an expected expense that is lower than that of the no-forecast scenario would be a better 

choice for decision makers (Zhu, 2002). For generalizing the Cost-loss decision model, all the 

expected expense are expressed per unit loss, so that a cost-loss ratio 
𝐶

𝐿
  is generated. Thus, 

Equation 6 is written as:  

𝐸𝑓−𝑓𝑐𝑠𝑡 = 𝐹𝑅(𝜃)  × 𝐶 × (1 − 𝑂𝑟𝑓) − 𝐻𝑅(𝜃) × 𝑂𝑟𝑓 × (𝐿 − 𝐶) + 𝑂𝑟𝑓 × 𝐿    (8) 

 

The potential relative (economic) value 𝑅𝑉 is provided by the Cost-loss decision model with 

respect to a cost/loss ratio of the user’s interest. Since this study does not interpret this value into 

dollar amounts (see e.g. Palmer et al., 2000; Räisänen and Palmer, 2001; Jones and Morse, 2010; 
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Jones et al., 2011; Griesser and Spillman, 2016), it would be called a relative value instead of an 

economic value.  

The 𝑅𝑉 can be obtained as a relative fraction of the difference in expected expenses generated by 

both a given forecast and no-forecast scenarios to that generated by both the perfect forecast no-

forecast scenarios as shown in Equation 9. In other words, RV determines the amount of savings 

earned by adopting a given forecast scenario relative to the maximum saving obtained by the 

perfect forecast scenario with respect to the case of no-forecast.  

𝑅𝑉 =
𝐸𝑛𝑜−𝑓𝑐𝑠𝑡−𝐸𝑓−𝑓𝑐𝑠𝑡

𝐸𝑛𝑜−𝑓𝑐𝑠𝑡−𝐸𝑝−𝑓𝑐𝑠𝑡
    (9) 

 

The 𝑅𝑉 can also be expressed by the Hit rate 𝐻𝑅, False-alarm rate 𝐹𝑅, observed relative frequency 

of the dry-event 𝑂𝑟𝑓, and cost-loss ratio 
𝐶

𝐿
. Given that each of the 𝐻𝑅 and 𝐹𝑅 is a function of the 

cutoff point 𝜃 as shown in the subsection 4.3.2, the 𝑅𝑉  is a function of both the cost-loss 

ratio 
𝐶

𝐿
 and the cutoff point 𝜃 as expressed as follows:  

 

𝑅𝑉 (
𝐶

𝐿 
, 𝜃) =

min(
𝐶

𝐿 
 , 𝑂𝑟𝑓)−𝐹𝑅(𝜃) (

𝐶

𝐿
) (1−𝑂𝑟𝑓)+𝐻𝑅(𝜃) 𝑂𝑟𝑓 (1− (

𝐶

𝐿
))− 𝑂𝑟𝑓

min(
𝐶

𝐿 
, 𝑂𝑟𝑓) − 𝑂𝑟𝑓 (

𝐶

𝐿
)

       (10) 

 

Since the dry-event forecast information is expressed in a probabilistic form, decision makers need 

an optimal cutoff point 𝜃 to determine how high a dry event forecast probability should be in order 

to process an action in preparation for a dry event. In this study, the optimal 𝜃𝑜𝑝𝑡 for each forecast 

scenario is determined by maximizing 𝑅𝑉 as shown in Equation 11.  Since  
𝐶

𝐿
  varies between 0 
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and 1, 𝜃𝑜𝑝𝑡 could be simply found as max𝑅𝑉(𝜃). A random walk search is developed by selecting 

random values for 𝜃 from 0 to 1 with respect to the full range of  
𝐶

𝐿
.  

 

𝜃𝑜𝑝𝑡 ≅ 𝑚𝑎𝑥 𝑅𝑉 (
𝐶

𝐿
,  𝜃)          (11) 

 

The horizontal axis in an 𝑅𝑉 plot represents the cost-loss ratio ranging from 0 to 1, whereas the y-

axis is the respective relative value. It should be noted that the cost associated with any decision 

is assumed to never exceed losses so that the cost-loss ratio is only defined between 0 and 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Decision tree demonstrating strategies associated with the use of a forecast scenario F. 

Decision: Action or Inaction; Dry-event occurrence: Y (yes) or N (no); Expense: C (cost), L (loss), or 0 

(nothing). 

 

Decision 

C 

C 

L 

0 

F 

Occurrenc Expense 
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The cost-loss ratios provide a platform for tradeoffs which helps decision makers to determine 

whether or not to take an action. For example, if decision makers find that the estimated cost 

associated with a given action is larger than the estimated loss when no action is taken, they would 

prefer to not take the given action. A 𝑅𝑉 of 1.0 indicates that the forecast is perfect while a no-

forecast scenario has a value of 0. Thus, a beneficial forecast should be close to 1.0, while a 

negative 𝑅𝑉 indicates the given forecast system is costly as compared to the no-forecast scenario. 

Overall, the purpose of the Cost-loss decision model can be summarized as: a) determining the 

optimal cutoff point associated with the 𝑅𝑉𝑚𝑎𝑥 for each forecast system, and b) comparing the 

maximum relative value 𝑅𝑉𝑚𝑎𝑥 generated by all the proposed forecast systems in order to find the 

best system that is associated with the lowest expense over a number of cases (Palmer et al., 2000) 

that occur over the time period 1996 to 2015.  

4.4 Results and discussion 

4.4.1 Effect of calibration  

The ROC test is not sensitive to bias in any given forecast system (Trambauer et al., 2015), but it 

measures the ability of the forecast to discriminate between two alternative outcomes (occur or 

non-occur). As mentioned in the subsection 4.3.2, forecast quality can be interpreted by 

considering the area under the ROC curve (AUR).The ROC curve for dry-event forecasts based 

on the raw, calibrated, and climatological forecast scenarios in both early (𝐴1) and late (𝐴 2) wet 

season constructed over the period (1996-2015) are shown in Figure 17. Dry-event forecasts in the 
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early wet season based on the climatology are shown to have an AUC = 0.5, which indicates no-

skill.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. ROC curve generated based on the raw calibrated, climatology dry-event forecast in the a) 

early, and b) late wet season over the 1996-2015 period  
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However, the climatological forecast scenario shows little improvement in the skill (AUC = 0.57) 

to distinguish between dry and non-dry events in the LS. Overall, it can be noted that a dry-event 

forecast in the late wet season produces a higher AUC than that in the early wet season according 

to all three forecast scenarios as shown in Figure 17. This indicates greater ability in predicting 

dry events in the late rather than in the early wet season by conditioning on ENSO information. 

The calibration method (DBS) enhances the distinguishing ability between dry and not-dry events 

in both portions of the wet season through increasing the AUC. The AUC of the calibrated dry-

event forecast increases in the early (late) wet season by approximately 17 % (10 %) as compared 

to the raw forecast. The results show that calibration is most effective in the early wet season.  

 

Given the ROC curve and the resultant tradeoff between the 𝐻𝑅 and 𝐹𝑅, the optimal cutoff point 

𝜃 can be estimated to help decide whether a dry event is predicted to occur or not. In fact, the 

optimal cutoff point is a choice of forecast users (e.g. stakeholders) based on the given tradeoff 

relationship. For example, picking a high 𝜃 would result in a high 𝐻𝑅 with a high 𝐹𝑅, which means 

that there is a lower chance of missing dry events, but a high number of false dry events. The most 

common approach used to estimate the optimal cutoff point from the ROC is Youden’s index 

(Youden, 1950). This index aims to maximize the vertical distance between the equality line 

(diagonal line) and a point on the ROC curve. In fact, this approach maximizes the difference 

between the Hit rate 𝐻𝑅 and false-alarm rate 𝐹𝑅 such that 𝑀𝑎𝑥  𝑑 = 𝐻𝑅 − 𝐹𝑅. Another approach to 

determine the optimal threshold is to minimize the distance between a point on the curve and the 

upper left corner point. This point is just the (1, 1) point, which by concept is the best cutoff point 

that could be selected. However, the optimal cutoff point, in this study, is determined by 

considering the relative value associated with decisions that might be taken according to the 

a) 
b) 
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selected cutoff point. As such, the optimal cutoff point of a forecast system is the point that results 

in the maximum relative value. A Monte Carlo optimization model is applied to search for the 

optimal cutoff point lying in a range of points from 0 to 1 with respect to the full range of cost/loss 

ratios (0-1). Then, a cutoff point  𝜃 that is associated with the maximum 𝑅𝑉 is considered the 

optimal 𝜃 for the corresponding forecast system.  

 

It is clear that relying on the ROC alone cannot ensure selecting the cutoff point associated with 

the maximum economic benefit (relative value). As shown in Table 13, the optimal cutoff points 

are not always close to the upper left corner point (1, 1) of the ROC curve. For predictions of dry-

events in the early wet season, the optimal 𝜃 of the raw forecast is associated with a 𝐻𝑅 (𝐹𝑅) that 

is larger (smaller) than that of the calibrated forecast. Specifically, the 𝐻𝑅 (𝐹𝑅) of the raw forecast 

is approximately 17% (40%) above (below) the calibrated forecast.  In the case of dry-event 

forecasts in the late wet season, the calibrated forecast is found to have the largest (smallest) 𝐻𝑅 

(𝐹𝑅) among all three of the forecast scenarios. It should also be noted that the climatological 

forecast has the smallest 𝐻𝑅 and the largest 𝐹𝑅 with forecasting dry events in the two partitions 

of the wet season.  

 

The relative values of the probabilistic dry-event forecast in both partitions of the wet season are 

drawn in Figure 18 for the three proposed forecast scenarios. These values are shown according to 

the corresponding optimal 𝜃 shown in Table 13. The calibration, as shown in this figure, improves 

the relative value of the dry-event forecast in the early and late wet season. For example, the 

relative value of the calibrated forecast is higher than that of the raw forecast by 79% (156%) in 

the early (late) wet season. The lower percentage of improvement in the early wet season compared 
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to the late wet season could be due to the lower 𝐻𝑅 in the calibrated forecast as shown in Table 

13.  

 

 

Table 13. Optimal cutoff points and associated Hit and false-alarm rates for the raw, calibrated, and 

climatology forecasts of dry events in the early and late wet season. 

 

Early wet season Cutoff Point (𝜃)  Hit rate False-alarm rate 

Climatology 0.28 0.43 0.45 

Raw 0.35 0.57 0.42 

Calibrated 0.33 0.47 0.25 

Late wet season Cutoff Point Hit rate False-alarm rate 

Climatology 0.23 0.35 0.36 

Raw 0.31 0.52 0.23 

Calibrated 0.37 0.86 0.22 

 

 

The relative values of both the raw and calibrated dry-event forecasts are larger than that of the 

climatological forecast in both portions of the wet season, which indicates the skill that can be 

obtained by incorporating the current ENSO information in seasonal precipitation forecasts. In 

fact, the skill of the climatological forecast is close to that of the no-forecast scenario for which 

𝑅𝑉 = 0.  

 

In addition, it can be seen that the relative values of the three forecast scenarios (raw, calibrated, 

and climatology) are found to be larger in the late than in the early portion of the wet season, which 
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emphasizes the degree of predictability that can be gained by incorporating ENSO information, 

particularly in forecasting rainfall in the late wet season.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Relative value of the raw, calibrated and climatological dry-event forecasts in the a) early and 

b) late wet season according to the use of optimal cutoff points (Table 13) 
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This might be because ENSO has a greater effect on precipitation during the late portion than that 

of the early portion of the wet season. The greater effect during the late wet season has been 

attributed to the relationship between ENSO and the Caribbean Low Level Jet (CLLJ) (Waylen et 

al., 1998; Amador and Magana, 1999; Wang, 2007; Rauscher et al., 2008; Hidalgo et al., 2015; 

Maldonado et al., 2016). A warm ENSO event is found to be associated with a strengthening of 

the CLLJ, which induces drying from July through October. Warm events are also associated with 

a southward displacement of the eastern Pacific Intertropical Convergence Zone (ITZC) (Waylen 

et al. 1996; Rauscher et al., 2011; Hidalgo et al., 2015). 

 

 

The positive relative values occur when the expected expense of a given dry-event forecast system 

is below that obtained by the no-forecast scenario. The calibration, as shown in Figure 19, performs 

well in reducing the expected expenses associated with dry-event forecasts in both portions of the 

wet season, especially in the early portion. It also increases the number of situations where the 

forecast can be beneficial to the process of making decisions by enlarging the cost-loss ratio range 

associated with a positive 𝑅𝑉. The calibrated dry-event forecast scenario remains valuable for the 

cost-loss ratio range of 0.2-0.52 (0.2-0.67) in the early (late) wet season. Beyond this range, the 

given forecast should be ignored because it could result in a large loss or cost. When  𝐶/𝐿 < 0.2, 

the no-forecast scenario would be preferable. Decisions makers, in this scenario, have to either 

always or never take action, so that it would be beneficial to take action because the potential loss 

is approximately five times larger than the expected cost in both portions of the wet season. When 

approaching a cost-loss ratio of 1, accepting loss is a possible choice (Griesser and Spillman, 2016) 

since taking an action or not will not make a difference. 
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Figure 19. Expected expense generated by forecasting dry events in both the a) early, and b) late wet 

season based on the raw, calibrated, climatology, perfect (dash gray), and no-forecast (dark black) 

scenarios. 
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 Overall, to benefit from the RV analysis, decisions should be made based on: a) accurate 

knowledge about the situation, especially the loss and cost estimations, and b) correct selection for 

the appropriate forecast system.  

 

4.4.2 Effect of lead times 

This subsection analyzes the influence of lead time forecast on the discrimination ability and 

relative value of the calibrated forecast scenario in the two partitions of the wet season. Figure 25 

(Appendix 3) shows the ROC curve of dry-event forecast (calibrated) in the early and late wet 

season with respect to different lead times. It can be seen that the AUC decreases with lead time 

increases. For example, the AUC of the calibrated forecast for a dry event in the early (late) wet 

season drops from 0.76 (0.87) at a lead time of 1 year (lead 1) to 0.52 (0.63) at a lead time of 3 

years (lead 3). For lead 3, a dry-event forecast in the early portion of the wet season produces an 

AUC of 0.52, which means that almost half of the observed dry-events were not predicted.  

 

Similarly, an increase in lead time results in a reduction in the relative value obtained at the selected 

optimal cutoff points (Table 13) as shown in Figure 26 (Appendix 3). The 𝑅𝑉 of a dry-event 

forecast in the early (late) wet season reduces to 0.04 (0.2) at lead 2, which is associated with a 

reduction of about 84% (51%). At lead 3, a dry-event forecast in the early wet season results in a 

negative 𝑅𝑉 =  −0.05, which implies that using the given forecast information will not be 

beneficial to the decision making.   
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4.5 Conclusions 

Drought events can cause major negative impacts on ecosystems and socioeconomic systems, 

especially if ineffective mitigation decisions have been made. There is a need for predicting the 

occurrence of drought events accurately at significant lead times in order to provide decision-

makers with a greater opportunity to improve the resilience of systems that rely on the water-food-

energy nexus. The proposed methodology in the work of (AlMutairi et al., 2017) (see Chapter 3) 

was found to have the potential to narrow the uncertainty in seasonal rainfall forecasts over 

northwest Costa Rica. However, an increase in predictability does not guarantee higher benefits to 

decision making processes. This study thus investigates to what extent the proposed forecasts 

might be utilized in the process of making decisions.  

 

The raw forecast shows a higher AUC than that of the climatological dry-event forecast in both 

the early and late wet season, which implies a higher ability to separate dry and non-dry events.  

The climatological forecast has an AUC =0.5 for a dry-event forecast in the early wet season, 

which indicates that no skill can be obtained from forecasts based solely on climatology. The 

calibration method enhances the discrimination ability associated with the raw forecast scenario 

for both portions of the wet season. In spite of a larger percentage of improvement in the 

discrimination ability in the early wet season, the measurable ability in discrimination is found to 

be higher in the late wet season than in the early wet season. Additionally, the discrimination 

ability of all three forecast scenarios, as expected, is reduced with increased lead time. The results 

show a relationship between the ability of discrimination and the relative value. Hence, as long as 
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the ability of discrimination of a forecast improves, the contribution to decision making processes 

as measured by a relative value is enhanced.    

 

The optimal cutoff point for each of the three forecast scenarios is assumed to be associated with 

the corresponding maximum relative value. Therefore, the optimal cutoff point for any of the three 

forecast scenarios does not always have the best hit or false-alarm rate. The climatological forecast 

has an optimal cutoff point that is found to correspond to the smallest hit rate and the largest false-

alarm rate in the two portions of the wet season. Due to the reported effect of ENSO on the late 

season rainfall, the study indicates that the positive relative value of dry-event forecasts in the late 

wet season is higher than in the early wet season for all three forecast scenarios.  

 

Although the maximum relative values obtained by all proposed forecast scenarios are positive, 

the positivity never remains for the whole range of the cost-loss ratio. This indicates that these 

forecast scenarios would be a useful tool for decision-makers at certain cases only. By calibration, 

the usefulness of the forecast appears only if the cost-loss ratio is between 0.2 and 0.52 (0.2 and 

0.67) in the early (late) wet season. When C/L is less than the lower value, the decision makers 

should take preventative action no matter what the forecast is. When C/L is greater than the upper 

value, accepting loss is a possible choice since taking an action or not will not make a difference. 

The findings also show that the relative value reduces as long as the lead time increases, which 

implies that a forecast with a lead time of one year could be most beneficial to the process of 

making decisions.  
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Chapter 5: Conclusion 
 

Future changes in the seasonal cycle of precipitation have the potential to cause major impacts on 

ecosystems, socioeconomic systems, and water management decisions. Thus, there is a need for 

predicting changes in precipitation, in particular for developing countries, due to climate change. 

Objectives of this study are demonstrated for northwest Costa Rica, which is an example of a 

developing country where distinctive patterns of dry and wet seasons exert a strong influence on 

water management decisions and economic activities. A statistical method relying on a Gaussian 

Mixture (GM) model is developed (see Chapter 2) to better characterize climate models projections 

and evaluate their performance. The rainfall projections are found to be uncertain in both sign and 

magnitude, especially for the early and late wet season. However, the proposed method provides 

a) suitable skills in characterizing uncertainty associated with climate model projections, b) more 

information can be obtained from the seasonal cycle of precipitation, and c) the possibility of 

performing detailed comparison tests among climate models over a set of simulations and 

projections.  

 

The region’s climate is found to be strongly influenced by large-scale climate variability, in 

particular the El Niño Southern Oscillation (ENSO) phenomenon. Therefore, this study also (see 

Chapter 3) investigates to what extent incorporating ENSO-rainfall teleconnection would assist to 

narrow the uncertainty in the seasonal precipitation predictions (in a categorical form) over a 

timescale of 20 years. A stochastic weather generation model is constructed to simulate a synthetic 

time-series for each of the early and late wet season rainfall rates. The generation is based on an 

ESNO occurrence model represented by a Nonhomogeneous Markov Chain (1st order) and a 
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precipitation intensity model specified by a bivariate normal distribution conditioned on ENSO 

phase. By using three multicategory verification metrics, the results exhibit that a degree of 

predictability and reliability can be obtained by incorporating ENSO information into the 

multicategory probabilistic forecast of seasonal precipitation. The multi-categorical predictions of 

the late wet season precipitation (i.e., dry, normal, and wet) shows a higher degree of predictability 

than that of the early wet season. The study also finds that almost the same degree of predictability 

can be obtained by incorporating the simulated ENSO information from four coupled AOGCMs: 

MIROC5, CNRM-CM5, HadGem2-ES, and MPI-ESM-LR in forecasting seasonal precipitation 

over northwest Costa Rica. This emphasizes the role that could be played by coupled climate 

models in reducing uncertainty associated with seasonal precipitation forecasts on timescales up 

to 20 years, and in building multiple future scenarios for seasonal precipitations, which would 

provide great value for planning and managing of water resource-based systems.    

   

Like many portions of developing countries where climate variability exerts stress on the available 

water resources, early anticipation for drought events-in particular during a well-known rainy 

season would reduce the operational stress involved in water allocation processes. Two verification 

metrics (see Chapter 4) are applied, in which the ROC test is used to measure the ability of the 

drought-event forecast system to distinguish between the two alternative outcomes and a cost-loss 

decision model is adopted to determine the relative value of the forecast system. The optimal cutoff 

point is determined by developing a Monte-Carlo search for the point associated with the 

maximum relative value. The study shows that a) a positive relative value is obtained by all three 

of the forecast systems (raw, calibrated, and climatological), which indicates possible benefits can 

be gained by incorporating ENSO information in forecasting seasonal precipitation, b) both the 
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discrimination ability and the relative value for the three drought event forecast systems in the late 

wet season are higher than that in the early wet season, c) improvement in the relative value could 

be obtained by enhancing the discrimination ability, and d) the largest relative value is obtained 

by the calibrated forecast, which is found to be valuable only if the cost-loss ratio is between 0.2 

(0.2) and 0.52 (0.67) in the early (late) wet season. Beyond this range, the given forecast system 

is not recommended since it may result in a large loss or increased costs. The results indicate that 

ENSO information can be useful to anticipate dry-event occurrences in the two portions of the wet 

season.   

 

Given the possibility of having systematic errors in seasonal precipitation forecasts, the DBS 

method is employed to correct any systematic bias in them. The method is validated over the period 

1976-1995 and then is tested over the period 1996-2015. The method performs well over the 

validating period by matching the cumulative distribution function of a forecast system with that 

of the observation. The calibration method, over the testing period, improves the predictability and 

reliability associated with the probabilistic categorical seasonal precipitation forecast. The 

discrimination ability and relative value for the drought-event forecast in the two portions of the 

wet season are also enhanced by calibration. Regardless of skills found with the calibration forecast 

in the late wet season, the percentage of improvement in skills by calibration is higher in the early 

wet season.  

 

Flexibility in making any operational decision relies on having an accurate forecast system with 

different lead times. This study thus investigates the effect of three lead times on the predictability 

of seasonal precipitation forecast (calibrated), and on the ability of discrimination and relative 
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value of the calibrated drought-event forecast in the early and late wet season. This kind of 

investigations aims to determine the limitation and strength of the proposed forecast systems and 

provide a flexible operational platform of greater value to decision-makers rather than one single 

lead time. It has been indicated that the increase in lead time results in a reduction in the skills of 

the forecast systems. Overall, the study suggests that the lead time of one year could reflect suitable 

benefits to the decision-making process related to water-management in the early and late wet 

season.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

120 

 

Appendix 1: Detailed information about the methods used to 

construct the multicategory seasonal probabilistic forecast model of 

precipitation 
 

1 ENSO occurrence model  

1.1 Transition probability estimating 

 

The maximum likelihood method is used to estimate the transition probabilities for the two orders 

of the NHMCs as follows: 

𝑝𝑖𝑗
𝑛,𝑛+1 = P(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖) =

𝑁𝑖𝑗
𝑛,𝑛+1

𝑁𝑖
𝑛         (A1) 

𝑝ℎ𝑖𝑗
𝑛−1,𝑛,𝑛+1 = P(𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖,  𝑋𝑛−1 = ℎ) =

𝑁ℎ𝑖𝑗
𝑛−1,𝑛,𝑛+1

𝑁ℎ𝑖
𝑛−1,𝑛           (A2) 

where 𝑁𝑖𝑗
𝑛,𝑛+1 is the total number of times being in state 𝑖 at season 𝑛 and transitioning to state 𝑗 

at season 𝑛+1; 𝑁𝑖
𝑛is the total number of times being in state 𝑖 at season 𝑛.  

 

1.2 ENSO occurrence model selection 

 

The best representation for ENSO occurrence is selected according to the results of both Akaike’s 

information criterion (AIC) and the Bayesian information criterion (BIC). The criteria are 

computed using the following equations for the mth order NHMC model:  

𝐴𝐼𝐶  =   2 𝑆𝑚(𝑆 − 1) −   2 𝑙𝑛 𝐿                (A3) 

 

𝐵𝐼𝐶  =   𝑆𝑚 𝑙𝑛 𝑞   −  2 𝑙𝑛 𝐿                  (A4) 
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𝐿 = {      

∑ ∑ 𝑁𝑖𝑗 ln(𝑝𝑖𝑗)
𝑆
𝑗=1

𝑆
𝑖=1                1𝑠𝑡  𝑜𝑟𝑑𝑒𝑟 𝑁𝐻𝑀𝐶

∑ ∑ ∑ 𝑁ℎ𝑖𝑗 ln(𝑝ℎ𝑖𝑗)
𝑆
𝑗=1

𝑆
𝑖=1

𝑆
ℎ=1    2𝑛𝑑  𝑜𝑟𝑑𝑒𝑟 𝑁𝐻𝑀𝐶

       (A5) 

where 𝐿 is the log-likelihood function for the transition matrix and 𝑞 is the total number of 

observations. The best model is the one which has the minimum value of either the AIC or BIC, 

or both. The first-order model has 𝑆2 − 𝑆 = 6 parameters, while the second-order model has 

𝑆2 (𝑆 − 1) = 18 parameters.  

 

1.3 Markov Chain Stationary test  

 

The stationary property of the preferable Markov Chain model is tested through applying the log-

likelihood ratio (LR) test. The main objective of this test is to verify whether the assumption of 

constant transition probabilities over time is correct. The pattern of ENSO phases over a given 

period of time (e.g. validation or testing periods) thus is divided into 𝑇 different equal length 

subintervals. Then, the probability of a given ENSO phase (e.g. in the 1st order NHMC) transiting 

from state 𝑖 at season 𝑛 and to state 𝑗 at season 𝑛+1 estimated for each of the 𝑇 subintervals are 

statistically tested to be equal to that estimated for the full period. Therefore, the null hypothesis 

𝐻𝑜 of this test can be written as  𝑝𝑖𝑗
𝑛,𝑛+1(𝑡) = 𝑝𝑖𝑗

𝑛,𝑛+1  , where 𝑡 = (1,… , 𝑇).The LR test statistic 

(Equation A6) is found to follow a chi-square distribution under the null hypothesis with a degree 

of freedom  𝑑𝑓 = (T − 1)𝑆(𝑆 − 1), given that 𝑆 is the total number of states.   

𝐿𝑅 = 2∑∑∑𝑓𝑖𝑗,𝑡

𝑆

𝑗=1

𝑆

𝑖=1

𝑇

𝑡=1

[ln(𝑝𝑖𝑗
𝑛,𝑛+1(𝑡)) − ln(𝑝𝑖𝑗

𝑛,𝑛+1)]            (A6) 
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where 𝑓𝑖𝑗,𝑡 denotes the number of times ENSO transitions from state 𝑖 at season 𝑛 and to state 𝑗 at 

season 𝑛+1 with a transition probability 𝑝𝑖𝑗,𝑡 over period 𝑡. The LR test uses 𝛼 = 0.05 as a level 

of significance in which a 𝑝 –value below 0.05 represents a rejection of the null hypothesis.  

 

2 Rainfall intensity model 

 

2.1 Lognormal distribution and goodness of fit 

 

It should be noted that the mean 𝑚 and variance 𝑣 of the lognormal distribution can be obtained 

through Equation A7 and A8.  

𝑚 = exp(𝜇 +
𝜎2

2
)            (A7) 

𝑣 = exp(2𝜇 + 𝜎2) (exp(𝜎2) − 1)               (A8) 

In addition, the goodness of fit is measured by a chi-squared test, which is a statistical hypothesis 

test used to determine whether there is a significant difference between the expected frequencies 

based on the fitted CDF and the observed frequencies in 𝑐 bins (𝑐 = 5) (Equation AB1.9). Chi-

square 𝒳2 has 𝑐 − 𝑘 − 1 degrees of freedom, where 𝑘 is the number of estimated parameters.  

𝒳2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑐

𝑖=1

                (A9) 

Therefore, the hypothesis that the two datasets are from the same distribution is rejected if a  𝑝 –

value is below the level of significance 𝛼.  
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2.2 Bivariate Normal (BVN) Distribution construction 

To construct a BVN distribution, 𝑢1 and 𝑢2 are assumed to follow a bivariate normal 

distribution 𝒩(𝜇𝐵𝑉𝑁 , Σ𝐵𝑉𝑁), where 𝜇𝐵𝑉𝑁 is a vector of the means, and Σ𝐵𝑉𝑁 is the covariance 

matrix.  

𝜇𝐵𝑉𝑁 = [
𝜇1

𝜇2
]                (A10)  

 

Σ𝐵𝑉𝑁 = [
𝜎1

2 𝜌 𝜎1𝜎2

𝜌 𝜎1𝜎2 𝜎2
2 ]                (A11) 

The probability density function for the bivariate normal distribution for 𝑈 = [
𝑢1

𝑢2
] can be written 

as: 

𝑓𝑈(𝑈) =
1

2𝜋|Σ𝐵𝑉𝑁|
1

2⁄  
𝑒

−1
2

 (𝑈−𝜇𝐵𝑉𝑁)𝑇 Σ−1(𝑈−𝜇𝐵𝑉𝑁)          (A12) 

Σ𝐵𝑉𝑁
−1 =

1

(1 − 𝜌2)

[
 
 
 

1

𝜎1
2

−𝜌

𝜎1𝜎2

−𝜌

𝜎1𝜎2

1

𝜎2
2 ]
 
 
 

                 (A13) 

 

|Σ𝐵𝑉𝑁| = 𝜎1
2𝜎2

2 (1 − 𝜌2)             (A14) 

 

Random bivariate normal variables can be generated as linear combinations of two standard BVN 

column vectors 𝑍𝐵𝑉𝑁 ~ 𝒩(0, I), where I is the identity matrix. The set of the generations is 

computed for a given mean vector and covariance matrix. Cholesky decomposition factorization 

of the covariance matrix is employed to transform a set of uncorrelated variables into variables 

with the given covariances. The Cholesky decomposition for the positive definite covariance 
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matrix is defined such that  Σ𝐵𝑉𝑁 = 𝐿𝐿𝑇, where 𝐿 is the lower triangular elements. Then a set of 

the generated random variables 𝑈𝑅 can be computed as:  

 

𝑈𝑅 = 𝐶ℎ𝑜𝑙(Σ𝐵𝑉𝑁) 𝑍𝐵𝑉𝑁 + 𝜇𝐵𝑉𝑁             (A15) 

 

The parameters 𝜇 and 𝜎 obtained for seasonal precipitation with respect to each ENSO phase are 

used to obtain both the 𝜇𝐵𝑉𝑁 and Σ𝐵𝑉𝑁 required to construct the BVN model as: a) 𝜇1 (𝜇2) in the 

vector 𝜇𝐵𝑉𝑁 is assumed to be the estimated mean parameter 𝜇 for the individual ES (LS) 

precipitation conditioned on a given ESNO phase and b) Σ𝐵𝑉𝑁 is computed between ten-thousand 

randomly generated normal variables for ES and LS precipitation along with their estimated 

parameters (𝜇 and 𝜎) with respect to the given ENSO phase.  

 

3 Distribution-Based Scaling (DBS) method  

 

DBS is a version of quantile mapping technique that matches observed and simulated frequency 

distributions, which are assumed to follow a theoretical distribution (e.g. gamma, or lognormal). 

The gamma distribution is commonly used in the DBS method to correct bias in two partitions of 

the frequency distributions. Since this study classifies the seasonal precipitation into three 

categories (dry, normal, wet), DBS is used to match the simulated lognormal density distribution 

over these three categories to the observation. Thus, the seasonal precipitation distribution is 

divided into three partitions separated by the 25th and 75th quantiles. As a results, three sets of 

parameters (𝜇𝑙𝑤 , 𝜎𝑙𝑤; 𝜇𝑖𝑚 , 𝜎𝑖𝑚;  𝜇ℎℎ , 𝜎ℎℎ) are estimated for each of the observed and simulated 
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precipitation amounts over the validating (1976-1995) period. The observed three parameter sets 

are then applied to correct the seasonal precipitation over the testing period (1996-2015) according 

to the following equations: 

𝑃𝐷𝐵𝑆 = 𝐹−1 (𝜇𝑜𝑏𝑠,𝑙𝑤 , 𝜎𝑜𝑏𝑠,𝑙𝑤, 𝐹(𝑃, 𝜇𝑠𝑖𝑚,𝑙𝑤 , 𝜎𝑠𝑖𝑚,𝑙𝑤))   if 𝑃 ≤ 25th quantile value      (A16) 

𝑃𝐷𝐵𝑆 = 𝐹−1 (𝜇𝑜𝑏𝑠,𝑖𝑚 , 𝜎𝑜𝑏𝑠,𝑖𝑚, 𝐹(𝑃, 𝜇𝑠𝑖𝑚,𝑖𝑚 , 𝜎𝑠𝑖𝑚,𝑖𝑚))   if 25th < 𝑃 < 75th quantile value  (A17) 

𝑃𝐷𝐵𝑆 = 𝐹−1 (𝜇𝑜𝑏𝑠,ℎℎ , 𝜎𝑜𝑏𝑠,ℎℎ, 𝐹(𝑃, 𝜇𝑠𝑖𝑚,ℎℎ , 𝜎𝑠𝑖𝑚,ℎℎ))   if  𝑃 ≥ 75th quantile value   (A18) 

where 𝑜𝑏𝑠 denotes the parameters estimated from observation and 𝑠𝑖𝑚 denotes parameters 

estimated from the simulated seasonal precipitation over the testing period. 𝐹−1 represents the 

inverse lognormal distribution.  

 

4 Multicategory reliability diagram  

 

A multicategory reliability diagram is applied to measure the reliability of the categorical 

probabilistic forecasts generated by incorporating ENSO information into the seasonal 

precipitation forecasting. Hence, the diagram is constructed for three mutually exclusive categories 

𝐽 (𝑗 = 1,… , 𝐽) (dry, normal, and wet) as follows: for each 𝑖th forecast year (𝑖 = 1,… ,𝑁), there is 

a probability forecast vector 𝑦𝑖𝑗, where N is the total number of forecasted years and 𝐽 is the total 

number of forecasted categories.   

A) The probability for each category j in the 𝑦𝑖𝑗 vector is rounded to the nearest 10% and a 

vector 𝑞 is defined to represent the preset quantiles at the middle of each 10% increment 

of the forecast (𝑞 is 1x 𝑄, where 𝑄 is the tenth quantile) 
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B) The vector 𝑦𝑖 is converted into a vector 𝑧𝑖 that represents the forecast category number at 

each quantile (𝑧𝑖 is 1x𝑄).  

C) The reliability 𝐶𝑞 for each given quantile is the probability that the observed category 𝑜𝑖 is 

less than the forecast category 𝑧𝑖𝑞 at the given quantile 𝑞, averaged over all N forecasts 

[such that 𝐶𝑞 = avg𝑁 (P(𝑜𝑖 < 𝑧𝑖𝑞))].  

D) The probability for each  𝑖th forecast year can be computed as follows :  

  P(𝑜𝑖 < 𝑧𝑖𝑞){

= 0 𝑖𝑓 𝑜𝑖 > 𝑧𝑖𝑞

=
𝑞−𝑞min

𝑞𝑚𝑎𝑥−𝑞min
       

=  1 𝑖𝑓 𝑜𝑖 < 𝑧𝑖𝑞

𝑖𝑓 𝑜𝑖 = 𝑧𝑖𝑞  

E) The diagram is constructed by plotting 𝐶𝑞 versus  𝑞; and error bars are generated by 

bootstrapping (1000 resampling).  
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Appendix 2: Supporting Materials for Chapter 3: Predictability of 

Multicategory Seasonal Probabilistic Forecast of Precipitation 

Conditioned on ENSO Phase 

 
 

 

 

Table 14. The 1st order Nonhomogenuos Markov Chain for training period 1916-1975 

 

Early wet season El Niño Neutral La Niña 

El Niño 0.38 0.46 0.15 

Neutral 0.08 0.79 0.13 

La Niña 0.14 0.55 0.32 

Late wet season El Niño Neutral La Niña 

El Niño 0.70 0.10 0.20 

Neutral 0.16 0.54 0.30 

La Niña 0 0.25 0.75 
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Table 15. The 2nd order Nonhomogenuos Markov Chain for training period 1916-1975 

 

Early wet season El Niño Neutral La Niña 

El Niño - El Niño 0.29 0.57 0.14 

El Niño - Neutral 0.00 1.00 0.00 

El Niño - La Niña 0.00 1.00 0.00 

Neutral - El Niño 0.50 0.33 0.17 

Neutral - Neutral 0.10 0.80 0.10 

Neutral - La Niña 0.09 0.45 0.45 

La Niña - El Niño 0.33 0.33 0.33 

La Niña - Neutral 0.00 0.67 0.33 

La Niña - La Niña 0.22 0.56 0.22 

Late wet season El Niño Neutral La Niña 

El Niño - El Niño 0.40 0.20 0.40 

El Niño - Neutral 0.00 0.50 0.50 

El Niño - La Niña 0.00 0.00 1.00 

Neutral - El Niño 1.00 0.00 0.00 

Neutral - Neutral 0.16 0.53 0.32 

Neutral - La Niña 0.00 0.00 1.00 

La Niña - El Niño 1.00 0.00 0.00 

La Niña - Neutral 0.25 0.58 0.17 

La Niña - La Niña 0.00 0.43 0.57 
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Table 16. The 1st order Non-homogeneous Markov Chain for the testing (1996-2015) period  

 

Early wet season El Niño Neutral La Niña 

El Niño 0.57 0.43 0 

Neutral 0.33 0.67 0 

La Niña 0 0.75 0.25 

Late wet season El Niño Neutral La Niña 

El Niño 0.71 0.14 0.14 

Neutral 0.25 0.58 0.17 

La Niña 0 0 1.00 
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Figure 20. Cumulative distribution functions (CDF) for both the observations and fitted lognormal 

distributions 
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Figure 21.  Difference between error bars in the MCRD generated by the raw, calibrated, climatological 

forecast for dry events in the a) early and b) late portion of the wet season. 
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Figure 22. Multicategory reliability diagram for the calibrated rainfall forecast in the early wet season 

driven by the output of six climate models (separated into two plots for readability) 
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Figure 23. Multicategory reliability diagram for the calibrated rainfall forecast in the late wet season 

driven by the output of six climate models (separated into two plots for readability) 
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Figure 24. Difference between error bars in the MCRD generated by the calibrated forecast- based ENSO 

information obtained from climate model in the a) early and b) late portion of the wet season. 
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Appendix 3: Supporting Materials for Chapter 4: The Relative Value 

of Seasonal Drought-event Forecasts Conditioned on ENSO Phase for 

Water Management Decisions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. ROC curves of the calibrated forecast of dry events in both the a) early and b) late wet season 

with respect to three different lead times 
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Figure 26. Relative value obtained by optimal cutoff points of the calibrated forecast of dry events in 

both the a) early and b) late wet season with respect to different lead times 
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