

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
INDUSTRIAL ADMINISTRATION
(OPERATIONS MANAGEMENT)

Titled

“STOCHASTIC ANALYSIS OF MAINTENANCE AND
ROUTING POLICIES IN QUEUEING SYSTEMS”

Presented by

Sherwin Doroudi

Accepted by

Mustafa Akan 5/2/16
___ _________________

Co-Chair: Prof. Mustafa Akan Date

Mor Harchol-Balter 5/4/16
___ _________________

Co-Chair: Prof. Mor Harchol-Balter Date

Approved by The Dean

Robert M. Dammon 5/11/16
___ _________________

Dean Robert M. Dammon Date

April 22, 2016
DRAFT

Stochastic Analysis of Maintenance and
Routing Policies in Queueing Systems

Sherwin Doroudi

April 2016

Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mustafa Akan, Co-chair, Carnegie Mellon University

Mor Harchol-Balter, Co-chair, Carnegie Mellon University
Hayriye Ayhan, Georgia Tech

Mohammad Mousavi, University of Pittsburgh
Alan Scheller-Wolf, Carnegie Mellon University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2016 Sherwin Doroudi

This work was funded by NSF-CMMI-1334194 as well as a Computational Thinking grant from Microsoft Re-
search.

April 22, 2016
DRAFT

Keywords: Queueing Theory, Stochastic Processes, Markov Chains, Computer Security,
Malware, Call Centers, Game Theory, Routing, Server Farms

April 22, 2016
DRAFT

For my parents, Aladdin and Azar, and my wife, Shirin.

April 22, 2016
DRAFT

iv

April 22, 2016
DRAFT

Abstract

April 22, 2016
DRAFT

This dissertation focuses on reexamining traditional management problems that
emerge in service systems where customers or jobs queue for service. In particular,
we investigate how a manger should make maintenance and routing decisions in
settings where there is a departure from traditional modeling assumptions.

In many cases, the performance evaluation of a management problems has, at its
heart, a complex, infinite Markov chain which must be solved before any optimiza-
tion can begin. Unfortunately, most Markov chains are not analytically tractable. In
the first essay, we address the solution of infinite state Markov chains. We focus on
class M Markov chains, a broad class of chains which is representative of a wide
array of problems arising in the management of computer, service, and manufactur-
ing systems where queueing parameters change over time according to a restricted
stochastic pattern. We develop a new method, called Clearing Analysis on Phases,
for the limiting probability distribution of such chains in exact closed form.

In the second essay, we apply the CAP method to answer the question of how
a manager should maintain a system in a setting where an online customer-facing
service is vulnerable to persistent malware infections. These infections can cause
performance degradation and facilitate data theft, both of which have monetary
repercussions. Infections can go undetected and can only be removed by a time-
consuming cleanup procedure, which takes the service offline and causes all exist-
ing jobs to be discarded without service. In particular, we provide recommendations
for when (and in response to what events) a manager should initiate cleanup proce-
dures by solving an infinite state maintenance problem. We quantify the efficiency
of various cleanup (maintenance) policies by proposing a revenue model which in-
corporates both delay-based pricing and data theft costs.

In the third essay, we examine queueing systems in call centers and answer the
question of a how a manager should route customers to strategic staff who choose
their own service rates in response to workload incentives. We address this problem
using game theoretic techniques. In particular, we introduce a utility model where
the servers choose their service rate in order to maximize a tradeoff between an
“effort cost” and a “value of idleness.” We find that relaxing the classical assumption
that all servers work at a fixed rate renders traditional routing policies inadequate.
Our approach allows us to recommend novel routing policies that are both fair for
the staff and efficient for the customers.

In the fourth essay we look at web server farms and answer the question of how
jobs should be immediately routed to computer servers in a setting where some jobs
are more valuable or more important than others. Such settings arise when some
jobs are generated by users who are paying for a premium service. We address how
a manager should incorporate information about a job’s value when making routing
decisions in order to minimize expected value-weighted response times. The hetero-
geneity in job values greatly the dimensionality of this problem. Via a combination
of exact analysis, asymptotic analysis, and simulation, we are able to deduce many
unexpected results regarding routing.

vi

April 22, 2016
DRAFT

Acknowledgments
First and foremost I cannot thank my dissertation advisors—Mustafa Akan and

Mor Harchol-Balter—enough. Mustafa provided invaluable guidance that always
kept me headed in the right direction. His deep insight into strategic models made it
especially rewarding to have him as an advisor. Mor was not only an instrumental
collaborator on Chapters 2, 3, and 5, but her mentorship helped me develop as a
researcher, collaborator, writer, presenter, and teacher. Mor’s infectious enthusiasm
for research made her a joy to work with and her unending encouragement and sup-
port helped ensure that I kept things moving during my PhD. I am also indebted to
Alan Scheller-Wolf, whom I consider my “third advisor.” I fondly recall our many
meetings, where we would either tackle challenging theoretical problems together,
or he would pass on sage advice on navigating life in academia.

Next, I would like to thank my two external committee members, Hayriye Ayhan
and Mohammad Mousavi. They never hesitated in offering useful feedback on my
work and both were extremely helpful with my job search.

Moreover, I would like to thank my collaborators for their essential contributions
to the work presented in my dissertation: Thanassis Avgerinos, Brian Fralix, Raga
Gopalakrishnan, Esa Hyttiä, Amy Ward, and Adam Wierman. I learned an immea-
surable amount from these great researchers. I want to thank Adam in particular for
introducing me to queueing theory and encouraging me to pursue a PhD.

Throughout my PhD, I greatly benefited from having regular opportunities to
present (and receive feedback on) my ongoing research during SQUALL lunches.
My thanks go out to the participants of these lunches, including Daniel Berger, Mo-
hammad Delasay, Michele Dufalla, Anshul Gandhi, Kristy Gardner, Varun Gupta,
Leela Nageswaran, Katsunobu Sasanuma, Siddharth Singh, Ying Xu, and Timothy
Zhu. In particular, Anshul and Kristy were my collaborators on a variety of projects
that were just as vital to my PhD experience as the chapters found in this dissertation.

I would like to express my gratitude for all the hard work put in by Lawrence
Rapp in making my experience as a PhD student a smooth one. I am also grateful
for the administrative support provided by Nancy Conway and Nicole Stenger.

The friendships I forged in the PhD program made my PhD much more man-
ageable. Afshin Nikzad, Aabha Verma, and Xin Wang provided some much-needed
camaraderie during the process of preparing for the Tepper qualifying exams (and in
Xin’s case, also during the job search), and I could always count on Majid Bazarbash
for enlightening and inspiring conversation. Of course, the friends I made before
coming into the program—Nima Beheshti, Daniel Cullina, and Khalil Mohseni—
supported me just as much as the new ones I found in Pittsburgh.

I would not be where I am now or even who I am now if not for my infinitely
supportive family: my parents, Aladdin and Azar, and my brother, Shayan. It is
wonderful knowing that I also have the support of a second family: my father-in-
law, Parviz Razavian, and my brothers-in-law, Pooya and Payam. Finally, I thank
my lovely and loving wife, Shirin, who supported me in more ways than I can count.

April 22, 2016
DRAFT

Contents

1 Introductory Remarks 1

2 Clearing Analysis on Phases 5
2.1 Introduction . 5
2.2 The Model and Literature Review . 6

2.2.1 The matrix-geometric approach . 7
2.2.2 Our approach: Clearing Analysis on Phases (CAP) 10
2.2.3 Recursive Renewal Reward, ETAQA, and other techniques 12

2.3 Examples of class M Markov chains . 12
2.3.1 Single server in different power states 13
2.3.2 Server fatigue . 14
2.3.3 Server with virus infections . 14

2.4 Results . 15
2.4.1 A key idea . 15
2.4.2 Preliminaries . 17
2.4.3 The case where all nonzero bases are distinct 19
2.4.4 The case where all bases agree . 22
2.4.5 The case where all bases except rM agree 25

2.5 Analysis of the M/M/1/clearing model . 26
2.5.1 Preliminary results on clearing models 27
2.5.2 Applying clearing model analysis toward proving Theorem 2 30

2.6 Extending the scope of the CAP Method . 33
2.6.1 Chains with “catastrophes” . 33
2.6.2 Skipping levels when transitioning between phases 33
2.6.3 Chains with an infinite number of phases 34

2.7 Conclusion . 34

3 The Malware Cleanup Problem 36
3.1 Introduction . 36
3.2 Literature Review . 38

3.2.1 Machine interference problems . 39
3.2.2 Condition-based maintenance . 39
3.2.3 Methods for solving quasi-birth-death process Markov chains 40

3.3 The Case of Visible Malware . 41

viii

April 22, 2016
DRAFT

3.3.1 Visible Malware Model . 41
3.3.2 Visible Malware Analysis . 44
3.3.3 Visible Malware Results . 49

3.4 The Case of Hidden Malware . 52
3.4.1 Hidden Malware Model . 53
3.4.2 Hidden Malware Analysis . 58
3.4.3 Hidden Malware Results . 63

3.5 Approximate Analysis . 70
3.6 Conclusion . 74

4 Routing when Servers are Strategic 75
4.1 Introduction . 75

4.1.1 Contributions of This Chapter . 76
4.1.2 Related Work . 77

4.2 A Model for Strategic Servers . 78
4.3 The M/M/N Queue with Strategic Servers . 80
4.4 Routing to Strategic Servers . 82

4.4.1 Idle-Time-Order-Based Policies . 82
4.4.2 Rate-Based Policies . 85

4.5 Conclusion . 93

5 Routing with Heterogeneous Job Values 95
5.1 Introduction . 95
5.2 Prior work on value-driven dispatching . 98
5.3 Model for PS server system . 98
5.4 Description of simple dispatching policies . 99

5.4.1 Random dispatching (RND) . 99
5.4.2 Join-the-Shortest-Queue dispatching (JSQ) 99
5.4.3 Value-Interval-Task-Assignment (VITA) 100
5.4.4 C-MU . 100
5.4.5 Length-and-Value-Aware (LAVA) . 101

5.5 Simulation results and intuitions . 102
5.6 Analytic results . 105

5.6.1 RND and JSQ under high load . 105
5.6.2 Stability and instability . 106
5.6.3 Results under sharply bimodal distributions 107

5.7 A (sometimes) far better policy: Gated VITA (G-VITA) 111
5.7.1 G-VITA . 112
5.7.2 G-VITA simulations . 114

5.8 More complex policies via the First Policy Iteration (FPI) 114
5.8.1 FPI policies . 116
5.8.2 Enhancing FPI policies using discounting 117
5.8.3 FPI simulations . 117

5.9 Conclusion . 118

ix

April 22, 2016
DRAFT

6 Concluding Remarks 119

A Supplement to Chapter 2 121
A.1 An alternative interpretation of the Laplace transform 121
A.2 Complete proof of Theorem 2.3 . 121
A.3 Negative binomial lemmas . 126

B Supplement to Chapter 5 130
B.1 Proof of Proposition 5.4 . 130
B.2 Proof of Lemma 5.10 . 132
B.3 Proof of Lemma 5.14. 136
B.4 Proof of Proposition 5.16 . 137
B.5 Proof of Proposition 5.17 . 138

Bibliography 140

x

April 22, 2016
DRAFT

Chapter 1

Introductory Remarks

Queueing theory, which studies waiting times and queue lengths under stochastic uncertainty,
is an area of applied probability which has been studied for just over a hundred years.1 De-
spite the age of this discipline, queueing-theoretic modeling and analysis techniques continue to
prove useful as new problems where waiting times are a concern are constantly emerging. These
techniques are applied to problems emerging from service systems as diverse as manufacturing
systems, transportation systems, two-sided markets, healthcare services, web server farms, su-
percomputing systems, cloud computing platforms, and online matchmaking services, among
others. This dissertation in particular considers problems arising from computer security, and
from the management of call centers and web server farms.

Contributions to the analysis of queueing models are typically either descriptive or prescrip-
tive in nature. Descriptive work in this area typically seeks to answer performance analysis
questions about given queueing systems such as the following:
• What is the average waiting time?
• What percentage of customers will experience a waiting time of less than 10 seconds?
• What is the distribution of the queue length?
• What is the average number of servers that will be utilized at any given time?

Prescriptive work, on the other hand, seeks to answer questions of how queueing systems should
be designed to achieve particular goals, which typically revolve around reducing waiting times
(or waiting costs) subject to feasibility constraints. Examples of operational levers that can be
adjusted in the design of queueing systems include the following:
• Staffing: how many servers should be employed?
• Capacity: how fast should the server(s) operate?
• Scheduling: which customer or job should be processed first?
• Admissions: which customers should be served at all?
• Routing: which server (or queue) should an incoming customer or job be sent to?
• Redundancy: how many queues should a job be sent to?

1An unpublished manuscript dealing with queueing models due to Tore Olaus Engset (1865–1943) dates back to
1915 [120].

1

April 22, 2016
DRAFT

• Availability: when should the service be available?
• Pricing: how much should be charged for the service?

In particular, there has been a growing interest in prescriptive problems such as these in settings
that allow for agents (customers, service providers, servers, etc.) that behave strategically.

This dissertation comprises four essays (Chapters 2–5), each of which deals with the topic
of queueing systems. Chapter 2 presents a methodological contribution to descriptive queueing
analysis that allows for finding closed-form solutions for the limiting probability distributions
of Markov chains that arise in the analysis of a variety of queueing systems; many such chains
were previously solved only via numerical, rather than exact, methods. The contribution in
this chapter also allows for new insights into the behavior of quasi-birth-death Markov chains.
However, our proposed solution method is also extremely practical: in Chapter 3, this method
is utilized to address the prescriptive problem of optimizing computer security management. In
computer security, there is a fundamental tradeoff between taking maintenance actions (which
we call cleanup procedures) and ensuring service availability; our Markov chain solution tool
allows for the quantification of this tradeoff so that we can make recommendations to managers
regarding when maintenance actions should be taken. Meanwhile, Chapters 4 and 5 address
prescriptive routing problems in the very different contexts of call centers and web server farms,
respectively. We explore how simple twists in how we view servers or jobs can have a profound
impact on the manager’s problem of implementing an optimal routing policy. The remainder of
this introduction presents a more detailed overview of the contents of these chapters.

Chapter 2 introduces a class of infinite Markov chains that are useful in modeling a variety of
Markovian queueing systems where the system parameters can change over time in a Markov-
modulated fashion. An example of a queueing system that can be modeled by such chains is a
system where a human server grows fatigued (or a computer server declines in efficiency) over
time in a random Markovian fashion, which effectively reduces the rate at which the server can
process customers. The primary contribution of Chapter 2 is the introduction of the Clearing
Analysis on Phases method, which can be used to determine the limiting probability distribution
of such Markov chains in exact closed form. Such chains are notoriously difficult to solve in exact
closed form, and existing methods for solving such chains largely resort to numerical solutions.
Our method also is highly intuitive and exploits the structure of much simpler chains known
as clearing models. Viewing these more complicated chains as a sequence of inter-connected
clearing models allows us to draw new insights into the stochastic evolution of these chains. The
contents of this chapter originally appeared in the working paper [43], which was written by the
author in collaboration with Brian Fralix (Clemson University) and Mor Harchol-Balter (CMU).

Motivated by omnipresent cybersecurity concerns, Chapter 3 addresses the question of when
a system manager should undertake cleanup procedures to repair an online service system that
has potentially been compromised by performance degrading cyber attacks such as malware.
This online service system is one in which customers queue for service, while the system can be-
come compromised by progressively more serious attacks in a (possibly unobservable) Markov-
modulated fashion. We consider, analyze, and compare a variety of cleanup policies by which the
manager can take the system offline in response to observable criteria, and return the system on-
line after all persistent effects of the attack have been removed. The comparisons of the policies
are made with respect to a revenue function that simultaneously captures the manager’s desires

2

April 22, 2016
DRAFT

to maintain high availability, low waiting times, and minimal security risks associated with being
compromised. In particular, the system is modeled in such a way that the analysis of each cleanup
policy requires the analysis of a Markov chain is amenable to the Clearing Analysis on Phases
method introduced in Chapter 2. This cleanup problem can be viewed as a condition-based
maintenance problem with the added complexity of having to track the (potentially unbounded)
queue length. Therefore, Chapter 3 (together with the analytic technique introduced in the pre-
vious chapter) makes up the “maintenance” portion of the dissertation alluded to in the title.
This added complexity makes the problem much more challenging to solve, as unlike traditional
work in conditioned-based maintenance, this model features an infinite state space. The work
in this chapter represents crucial first steps in bridging a gap between the traditional computer
security literature and techniques from the operations management and operations research liter-
ature. This chapter highlights how stochastic analysis and optimization techniques can be used
to address real tradeoffs between security and availability that were previously explored only via
heuristics rather than via stochastic analysis. As of the time of the writing of this dissertation, the
content presented in Chapter 3, which was written by the author in collaboration with Thanassis
Avgerinos (co-Founder of the security company ForAllSecure, Inc.) and Mor Harchol-Balter
(CMU), is in preparation for submission to a journal.

The next two chapters of this dissertation address the managerial problem of routing in queue-
ing systems. That is, which servers should we use to serve incoming jobs? Chapter 4 reexamines
the consequences of routing policies implemented in call centers staffed by human servers who
can respond to workload incentives. Rather than uphold the traditional assumption that all servers
in a server farm operate at a fixed service rate, we consider human servers that are free to choose
their own service rates. Not only do servers choose their own strategic rates in order to strike a
balance between idle times and the effort associated with working at faster speeds, but they also
make their choices strategically, taking the choices of their co-workers into consideration. We
find that a manager cannot afford to ignore such strategic behavior when choosing what routing
policy to implement. In order to reevaluate routing policies in this new context, we use a com-
bination of game-theoretic and queueing-theoretic analysis. Our investigation also allows us to
explore how a manger can implement policies that are both fair for the servers and efficient for
the customers. For example, we find that the traditionally efficient Fastest Server First policy un-
fairly punishes the hardest working servers, highlighting the need for robust routing policies that
allow for fair outcomes even in the presence of strategic servers. One of our primary contribu-
tions in this chapter is proposing a new class of robust routing policies that are suitable for use in
a strategic setting. The content contained in Chapter 4 is a subset of that presented in [61], which
was written by the author in collaboration Ragavendran Gopalakrishnan (Xerox Research Centre
India), Amy R. Ward (USC), and Adam Wierman (Caltech). While Chapter 4 is concerned only
with routing under the presence of strategic servers, [61] also addresses the question of staffing
call centers when servers are strategic.

The final essay of the dissertation, Chapter 5, considers a very different routing problem in
the context of web server farms composed of multiple computer servers. In web server farms it is
traditional that computer servers use the processor-sharing scheduling discipline with jobs being
dispatched to servers immediately, rather than being held in a central queue. Our work departs
from the preexisting work on routing in web server farms by considering heterogeneity in jobs
values, which greatly increases the dimensionality of our problem. Considering heterogeneity

3

April 22, 2016
DRAFT

in job values is crucial when modeling scenarios where jobs originate from a variety of users,
each of which is paying for one of several distinctly priced tiers of service. In the presence
of such value heterogeneity, the goal is not to simply minimize mean response times, but rather,
value-weighted response times, a metric which takes the relative importance of jobs into account.
Essentially, the goal of Chapter 5 is to identify heuristic routing policies that perform well with
respect to this metric, and to compare such policies across a variety of settings using both analytic
techniques, and simulations. Developing strong routing policies in such a setting is challenging
as one has no control over the scheduling that occurs at the servers, so one must leverage routing
to achieve what would normally be easily accomplished via priority scheduling (e.g. via the
famous cµ rule). The contents of this chapter have been published in [42], which was written by
the author in collaboration with Esa Hyttiä (Aalto University) and Mor Harchol-Balter (CMU).

We present concluding remarks in Chapter 6, highlighting some directions for future work in
all of the areas explored in this dissertation.

4

April 22, 2016
DRAFT

Chapter 2

Clearing Analysis on Phases

2.1 Introduction

Markov chains frequently arise in modeling and analyzing queueing systems, especially those
systems that operate at intermediate load. In fact, all of the queueing systems explored in this
dissertation are modeled as Markov chains. A particularly rich class of Markov chains that are
used to model a variety of management problems arising in computing, service, and manufac-
turing systems are known as quasi-birth-death processes (QBDs). Unfortunately, despite the
modeling power of QBDs, they are notoriously difficult to solve in exact closed-form.

In this chapter, we introduce and solve a large subclass of QBDs, which we call Class M
chains (defined in Section 2.2). These chains are most appropriate for modeling queueing sys-
tems where certain queueing parameters (such as arrival rates, service rates, the number of oper-
ating servers, etc.) change over time according to a restricted stochastic pattern. These changes
can be a result of uncontrollable outside factors, policies implemented by the system’s manager,
or a combination of the two. Several examples of such chains are illustrated in Section 2.3,
while the entitreity of the following chapter of this dissertation is focused on a computer security
problem that is modeled by a Class M chain.

The primary contribution of his chapter is our solution method, Clearing Analysis on Phases
(CAP), which allows for determining the exact limiting probability distribution of any Class M
chain in exact closed form. While some subsets of Class M Markov chains could be solved
analytically, previously proposed methods for determining the limiting probability distribution
of many Class M were restricted to numerical solutions. Moreover, the exact solution provided
by the CAP method is in a compact linear combination form that is extremely convenient for the
calculation of performance metrics such as the mean and variance of the queue length. Therefore,
the CAP method is a novel tool for practitioners to use in evaluating performance metrics for
their queueing systems, and to use these evaluations to make informed managerial decisions
with regards to staffing and availability.

Our key breakthrough in making this methodological contribution is in viewing the seem-
ingly formidable class M Markov chains as being composed of sequentially connected clearing
models (defined in Section 2.5). This approach provides an alternative way of conceptualizing
the stochastic evolution of general QBDs that can complement existing frameworks for under-

5

April 22, 2016
DRAFT

standing such as those used by previously proposed methods.

2.2 The Model and Literature Review
This chapter studies the stationary distribution of Class M Markov chains, which are continuous
time Markov chains (CTMCs)1 having the following properties (see Fig. 2.1 and Fig. 2.2):
• The Markov chain has a state space, E , that can be decomposed as E = R ∪ N , where
R represents the infinite repeating portion of the chain, andN represents the finite nonre-
peating portion of the chain.2

• The repeating portion is given by

R ≡ {(m, j) : 0 ≤ m ≤M, j ≥ j0}

where both M and j0 are finite nonnegative integers. We refer to a state (m, j) ∈ R as
currently being in phase m and level j. For each j ≥ j0, level j is given by

Lj ≡ {(0, j), (1, j), . . . , (M, j)}.

Throughout this chapter, we index phases by i, k, m, and u, and we index levels by j and
`.

• Transitions between a pair of states in N may exist with any rate.
• Transitions from states in N to states in R may only go into states in Lj0 , but may exist

with any rate.
• Transitions from states inR to states inN may only come from states in Lj0 , but may exist

with any rate.
• Transitions between two states in R that are both in the same phase, m, (e.g., the “hori-

zontal” transitions in Fig. 2.1 and Fig. 2.2) are described as follows, with q(x, y) denoting
the transition rate from state x to state y:

λm ≡ q((m, j), (m, j + 1)) (0 ≤ m ≤M, j ≥ j0)

µm ≡ q((m, j), (m, j − 1)) (0 ≤ m ≤M, j ≥ j0 + 1).

• We express transition rates between two states in R, which transition out of a state in
phase m to a state in another phase (e.g., the “vertical” transitions in Fig. 2.1 and the
“vertical” and “diagonal” transitions in Fig. 2.2) using the notation αm〈∆1; ∆2〉, where
∆1 ≥ 1 is the increase in phase from m to m + ∆1 (i.e., the “vertical” shift) and ∆2 ∈
{−1, 0, 1} is the change in level, if any, from j to j+ ∆2 (i.e., the “horizontal” shift). Note
that ∆1 ≥ 1 indicates that only transitions to higher-numbered phases are allowed, while
∆2 ∈ {−1, 0, 1} indicates that each transition may change the level by at most 1 in either

1The methodology presented in this chapter can easily be modified to apply to discrete time Markov chains.
2We note that this partition is not unique.

6

April 22, 2016
DRAFT

direction. More specifically, these transitions are described as follows:

αm〈i−m;−1〉 ≡ q((m, j), (i, j − 1)) (0 ≤ m < i ≤M, j ≥ j0 + 1)

αm〈i−m; 0〉 ≡ q((m, j), (i, j)) (0 ≤ m < i ≤M, j ≥ j0)

αm〈i−m; 1〉 ≡ q((m, j), (i, j + 1)) (0 ≤ m < i ≤M, j ≥ j0).

We will also use the shorthand notation

αm =
M∑

i=m+1

(αm〈i−m;−1〉+ αm〈i−m; 0〉+ αm〈i−m; 1〉)

throughout the chapter to represent the total outgoing transition rate to other phases from
states in phase m with level j ≥ j0 + 1.

• The Markov chain must be ergodic.
Markov chains in class M are examples of quasi-birth-death processes (QBDs), with incre-

ments and decrements in level corresponding to “births” and “deaths,” respectively. We say that
transitions in class M chains are skip-free in level, in that the chain does not allow for the level
to increase or decrease by more than 1 in a single transition. We also say that transitions in class
M chains are unidirectional in phase, in that transitions may only be made to states having either
the same phase or a higher phase in the repeating portion. Note however that phases may be
skipped: for example, transitions from a state in phase 2 to a state in phase 5 may exist with
nonzero rate.

Many common queueing systems arising in computing, service, and manufacturing systems
can be modeled with CTMCs from class M. For such systems, one often needs to track both the
number of jobs in the system and the state of the server(s), where each server may be in one of
several states, e.g., working, fatigued, on vacation, etc. When modeling a system with a class
M Markov chain, we often use the level, j, of a state (m, j) to track the number of jobs in the
system, and we use the phase, m, to track the state of the server(s) and/or the arrival process. For
example, a change in phase could correspond to (i) a policy modification that results in admitting
more customers, as captured by an increase in “arrival rate” from λm to λi, where λi > λm or (ii)
a change in the state of the servers leading to an increase or decrease in the service rate from µm
to µi. A few examples of systems that can be modeled by Class M Markov chains are presented
in Section 2.3.

2.2.1 The matrix-geometric approach
One way of studying the stationary distribution, π, of a class M Markov chain is to observe that it
exhibits a matrix-geometric structure onR. More specifically, if we let ~πj represent the limiting
probability of the states in Lj , that is, ~πj ≡ (π(0,j), π(1,j), . . . , π(M,j)), then for j ≥ j0

~πj+1 = ~πjR

where R ∈ R(M+1)×(M+1) is referred to as the rate matrix associated with the chain. If we let
the sojourn rate of state x be defined by

νx =
∑
y 6=x

q(x, y),

7

April 22, 2016
DRAFT

level, j

ph
as

e,
m

N

(0, 0) (0, 1) (0, 2) · · ·

(1, 0) (1, 1) (1, 2) · · ·

...
...

...

(M, 0) (M, 1) (M, 2) · · ·

α0〈1; 0〉

λ0

λ1

λM

µ0

µ1

µM

α1〈M -1; 0〉

α0〈M ; 0〉

α0〈1; 0〉

λ0

λ1

λM

µ0

µ1

µM

α1〈M -1; 0〉

α0〈M ; 0〉

α0〈1; 0〉

λ0

λ1

λM

µ0

µ1

µM

α1〈M -1; 0〉

α0〈M ; 0〉

R

Figure 2.1: The structure of class M Markov chains. In this case j0 = 0 and, for simplicity,
αm〈i−m;±1〉 = 0. The chain is made up of a non-repeating portion, N (shown here as an
aggregation of states), and a repeating portion, R. Within R, each phase, m, corresponds to
a “row” of states, and each level, j, corresponds to a “column” of states. Transitions between
levels in each phase of the repeating portion,R, are skip-free: all such transitions move only one
step to the “left” or “right.” Transitions between phases in each level of R are unidirectional:
all such transitions move “downward.” The thicker arrows denote sets of transitions (transitions
rates for these sets are omitted from the figure).

8

April 22, 2016
DRAFT

...
...

...

· · · (m,j-1) (m, j) (m,j+1) · · ·

· · · (m+1,j-1) (m+1,j) (m+1,j+1) · · ·

· · · (m+2,j-1) (m+2,j) (m+2,j+1) · · ·

...
...

...

λm

µm

αm〈1; 0〉

αm〈2; 0〉

αm〈1;−1〉 αm〈1; 1〉

αm〈2;−1〉 αm〈2; 1〉

Figure 2.2: Another more detailed look at the transition structure of class M Markov chains. For
simplicity, only the set of transitions that are possible from state (m, j) (where j ≥ j0 + 1) to
states in phases m, m+ 1, and m+ 2 are shown. Note that all transitions from (m, j) are either
to the left, to the right, or downward. Furthermore, all transitions can decrease or increase the
level by at most one.

9

April 22, 2016
DRAFT

then we can describe the elements of R probabilistically as follows: the element, Ri,m, in row
i, column m of R can be interpreted as ν(i,j) times the expected cumulative amount of time the
chain spends in state (m, j+ 1) before making a transition into a level strictly below j+ 1, given
the chain starts in state (i, j). For most QBDs, one cannot derive an exact expression for each
element of R, but there are many ways to compute an approximation of R numerically: see for
example [22, 94]. Readers interested in further details should consult the matrix-analytic texts
of Neuts [105], Latouche and Ramaswami [93], and He [75]. Queueing textbooks of a broader
scope that also discuss matrix-analytic methods include Asmussen [13] and Harchol-Balter [70].
Once R—or good approximations for R—have been found, then ~πj = ~πj0Rj−j0 for j ≥ j0, and
so all remaining limiting probabilities, πx, for x ∈ N , can be found using the balance equations
and the normalization constraint.

There are many examples of QBDs with a rate matrix, R, that can be computed exactly
through a finite number of operations. One class of QBDs having a closed-form rate matrix is
presented in Ramaswami and Latouche [109], with an extension to Markov chains of GI/M/1-
type given in Liu and Zhao [98]. Other classes of QBDs having explicitly computable rate
matrices are considered in the work of van Leeuwaarden and Winands [125] and van Leeuwaar-
den et al. [126], with both of these studies being much closer to our work, since most (but not
all) of the types of Markov chains studied in [125], and all of the chains discussed in [126] be-
long to class M. In [125, 126] combinatorial techniques are used to derive expressions for each
element of R that can be computed exactly after a finite number of operations, but their methods
are not directly applicable to all class M Markov chains as they further assume that λm and µm
are the same for 0 ≤ m ≤ M − 1, and they also assume that for each 0 ≤ m ≤ M − 1, any
transitions leaving phase m must next enter phase m+ 1 (i.e., they assume phase transitions are
skip-free—in addition to being unidirectional—within the repeating portion of the chain).

Even closer to our work is the work of Van Houdt and van Leeuwaarden [124], which presents
an approach for the explicit calculation of the rate matrix for a broad class of QBDs including
those in class M. This approach involves solving higher order (scalar) polynomial equations, the
solutions to which are expressed as infinite sums, which typically cannot be computed in closed-
form. However, [124] also gives an approach for calculating closed-form rate matrices for a
class of Markov chains called tree-like QBDs. Tree-like QBDs neither contain nor are contained
by class M, although there is significant overlap between the two. Transitions between phases
(within a level) in tree-like QBDs form a directed tree, while transitions between phases in class
M Markov chains form a directed acyclic graph. Specifically, unlike class M chains, tree-like
QBDs do not allow for a pair of phases i 6= k to both have transitions to the same phase m (i.e.,
tree-like QBDs do not allow for both αi〈m− i; ∆〉 > 0 and αk〈m− k; ∆′〉 > 0 when i 6= k and
∆,∆′ ∈ {−1, 0, 1}).

2.2.2 Our approach: Clearing Analysis on Phases (CAP)
In this study we introduce the CAP (Clearing Analysis of Phases) method for evaluating the
stationary distribution of class M Markov chains. This method proceeds iteratively among the
phases, by first expressing all π(0,j) probabilities, for j ≥ j0, in terms of πx probabilities for
x ∈ N . Once each element π(m,j) for a fixed phase m, j ≥ j0 has been expressed in terms
of {πx}x∈N , we then do the same for all π(m+1,j) terms. After each π(M,j) expression has been

10

April 22, 2016
DRAFT

determined, we use the balance equations and normalization constraint to solve for the remaining
{πx}x∈N probabilities. CAP takes its name from the fact that, between two phase transitions,
class M Markov chains behave like an M/M/1/clearing model, that is, each phase is likened
to a birth-death process that experiences “clearing” or catastrophic events in accordance to an
independent Poisson process. In our model, these “clearings” corresponds to a change in phase.

One major advantage of the CAP method is that it avoids the task of finding the complete
rate matrix, R, entirely, while yielding expressions for π(m,j) that only involve raising M + 1
scalars to higher powers. There exists one such scalar, rm, for each phase, m ∈ {0, 1, . . . ,M}.
These scalars, referred to throughout as base terms, are actually the diagonal elements of the rate
matrix, R, i.e.,

rm = Rm,m, (0 ≤ m ≤M)

and the transition structure of class M Markov chains makes these elements much easier to com-
pute than any of the other nonzero elements of R. Furthermore, the structure of π(m,j) depends
entirely on the number of base terms that agree with one another. For example, when all nonzero
base terms are distinct, one can show that

π(m,j) =
m∑
k=0

cm,kr
j−j0
k , (2.1)

for 0 ≤ m ≤M , where the {cm,k}0≤k≤m≤M values are constants that do not vary with j, and can
be computed exactly by solving a linear system of O(M2 + |N |) linear equations.

In the case where all base terms agree, we instead find that

π(m,j) =
m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j00 , (2.2)

where again, the cm,k terms can be computed by solving a linear system.
In retrospect, it is of no surprise that π(m,j) can be expressed as a linear combination of

scalars, each raised to the power of j − j0, as in Equations (2.1) and (2.2): R must be upper-
triangular for class M chains. This follows by observing that Ri,m is ν(i,j0) times the expected
cumulative amount of time spent in state (m, j0 + 1) before returning to Lj0 , given initial state
(i, j0), and this value is 0 when i > m. Since R is upper-triangular, its eigenvalues are simply its
diagonal elements, which are also the diagonal elements of the Jordan normal form of R—see
e.g., Chapter 3 of Horn and Johnson [77]—from which we know that π(m,j) can be expressed as a
linear combination of scalars, each raised to the power of j−j0. Although in theory, our solution
form could be recovered by first computing R and then numerically determining R in Jordan
normal form, such a procedure is often inadvisable. The structure of the Jordan normal form of
a matrix can be extremely sensitive to small changes in one or more of its elements, particularly
when some of its eigenvalues have algebraic multiplicity larger than one, as is the case for all of
the models discussed in [125, 126]. Fortunately, the CAP method can handle these cases as well
with little additional difficulty.

The statement and proofs of this chapter’s main results are presented in Section 2.4. This
proof relies on some results regarding M/M/1/clearing models; the proofs of these results are
deferred to Section 2.5. In Section 2.6 we briefly touch upon how the CAP method may be
applied to chains beyond those in class M.

11

April 22, 2016
DRAFT

2.2.3 Recursive Renewal Reward, ETAQA, and other techniques

We briefly review existing techniques for solving QBDs beyond the matrix-geometric approach
and comment on their connection to the CAP method.

Gandhi et al. [53, 54] use renewal theory to determine exact mean values and z-transforms of
various metrics for a subclass of chains in M via the Recursive Renewal Reward (RRR) method.
The class of chains they study do not allow for “diagonal” transitions (i.e., αm〈i−m;±1〉 = 0).
Unlike our method, RRR cannot be used to determine a formula for a chain’s limiting probability
distribution in finitely many operations. While there is overlapping intuition and flavor between
CAP and RRR—both methods make use of renewal reward theory—CAP is not an extension of
RRR and does not rely on any of the results from [53, 54].

The Efficient Technique for the Analysis of QBD-processes by Aggregation (ETAQA), first
proposed by Ciardo and Simirni [33], combines ideas from matrix analytic and state aggregation
approaches in order to compute various exact values (e.g., mean queue length) for a wide class
of Markov chains. By design, ETAQA yields the limiting probability of the states in the non-
repeating portion, N , along with the limiting probabilities of the states in the first level (or first
few levels) of the repeating portion, R. The limiting probabilities of the remaining states (i.e.,
higher level states) are aggregated, which allows for the speedy computation of exact mean values
and higher moments of various metrics of interest. In particular, ETAQA involves solving a
system of onlyO(|N |+M) linear equations. Although originally applicable to a narrow class of
chains (see [33, 35] for details), ETAQA can be generalized so as to be applicable to M/G/1-type,
GI/M/1-type, and QBD Markov chains, including those in class M (see the work of Riska and
Smirni [112, 113]). Stathopoulos et al. [119] show that ETAQA is also well suited for numerical
computations; ETAQA can be adapted to avoid the numerical problems alluded to in Section
2.2.1. Unlike the CAP method, ETAQA (like RRR) cannot be used to determine a formula for a
chain’s limiting probability distribution (across all states) in finitely many operations.

For certain class M Markov chains, one can also manipulate generating functions to derive
limiting probabilities, such as in the work of Levy and Yechiali [95] and the work of Phung-
Duc [106], where this type of approach is used to solve multi-server vacation and setup models,
respectively. This approach is covered in greater generality in a technical report by Adan and
Resing [5]. We note that although generating function approaches can yield solutions of a form
similar to those found using the CAP method, the two approaches differ in methodology.

2.3 Examples of class M Markov chains

In this section we provide several examples of queueing systems which can be modeled by class
M Markov chains. In each example we will use the phase, m ∈ {0, 1, . . . ,M}, to track the
“state” of the server(s) and/or the arrival process, and the level, j, to track the number of jobs
in the system. Of course, there are many systems beyond those covered in this section that can
be modeled by class M Markov chains. For example, class M chains were recently used to
model medical service systems in [40], [31], and [116]. In particular, Chapter 3 of this disser-
tation focuses on employing class M chains to model computer systems that are susceptible to
performance degrading cyber attacks under a variety of cleanup policies.

12

April 22, 2016
DRAFT

number of jobs, j

off

sleep

on

(0, 0) (0, 1) (0, 2) (0, 3) · · ·

(1, 0) (1, 1) (1, 2) (1, 3) · · ·

(2, 0) (2, 1) (2, 2) (2, 3) · · ·

λ

λ

λ

µ

λ

λ

λ

µ

λ

λ

λ

µ

λ

λ

λ

µ

γ

δ

γ

δ

γ

δ

β

β

Figure 2.3: The Markov chain for a single server in different power states. State (m, j) indicates
that the server is in state m (0=off, 1=sleep, 2=on) with j jobs in the system.

2.3.1 Single server in different power states

Consider a computer server that can be in one of three different power states: on, off, or sleep.
In the on state, the server is fully powered and jobs are processed at rate µ. In the off state, the
server consumes no power, but jobs cannot be processed. When the server is idle, it is desirable to
switch to the off state in order to conserve power, however there is a long setup time, distributed
Exponential(γ), needed to turn the server back on when work arrives. Because of this setup
time, it is common to switch to a state called the sleep state, where the server consumes less
power than the on state, but where there is a shorter setup time, distributed Exponential(δ), for
turning the server on. It is also common to purposefully impose a waiting period, distributed
Exponential(β), in powering down a server (from on to sleep, and again from sleep to off) once
it is idle, which is useful just in case new jobs arrive soon after the server becomes idle. See [52]
for more details.

Fig. 2.3 shows a Markov chain representing this setting. This is a class M chain withM+1 =
3 phases: off (m = 0), sleep (m = 1), and on (m = 2). For this chain, j0 = 1 and the non-
repeating portion of the state space is N = {(0, 0), (1, 0), (2, 0)}, while λ0 = λ1 = λ2 = λ,
µ0 = µ1 = 0, µ2 = µ, α0〈2; 0〉 = γ, and α1〈1; 0〉 = δ > γ (all other αm〈m− i; ∆〉 transition
rates are zero).

The system becomes much more interesting when there are multiple servers, where each can
be in one of the above 3 states. In the case of 2 servers, there will be 6 phases, corresponding
to: (off,off), (off,sleep), (off,on), (sleep,sleep), (sleep,on), (on,on). Note than in this case, phase
transitions will include transitions with rates 2γ, γ+δ, and 2δ, as both servers may be attempting
to turn on at the same time. In general, a system with a servers and b server states will have(
a+b−1
a

)
phases.

13

April 22, 2016
DRAFT

number of customers, j

full
speed

reduced
speed

slow
speed

(0, 0) (0, 1) (0, 2) (0, 3) · · ·

(1, 0) (1, 1) (1, 2) (1, 3) · · ·

(2, 0) (2, 1) (2, 2) (2, 3) · · ·

λ

λ

µF

µS

µR

γ

δ

λ

λ

µF

µS

µR

γ

δ

λ

λ

µF

µS

µR

γ

δ

λ

λ

µF

µS

µR

γ

δβ

Figure 2.4: The Markov chain for a server susceptible to fatigue. State (m, j) indicates server
state m (0=full speed, 1=reduced speed, 2=slow speed) with j customers in the system.

2.3.2 Server fatigue

Consider a human server who starts her shift full of energy and works quickly (at rate µF). As
time passes and fatigue sets in, she gets slower and slower (first she slows down to a reduced rate
µR and eventually to a very slow rate µS , where µS < µR < µF). At some point it makes sense
to replace her with a fresh human server. However, before we can do that, she needs to finish
serving her queue of existing customers, while no longer accepting further arrivals. We assume
that the time it takes for the new replacement to start working is distributed Exponential(β).

Fig. 2.4 shows a Markov chain representing this setting. This is a class M chain withM+1 =
3 phases: full speed (m = 0), reduced speed (m = 1), and slow speed (m = 2). For this chain,
j0 = 1 and the non-repeating portion of the state space is N = {(0, 0), (1, 0), (2, 0)}, while
λ0 = λ1 = λ, λ2 = 0, µ0 = µF , µ1 = µR < µF , µ2 = µS < µR, α0〈1; 0〉 = γ and α1〈1; 0〉 = δ
(all other αm〈m− i; ∆〉 transition rates are zero).

Again, the system becomes much more interesting when there are multiple servers, where
each can be in one of the above 3 states.

2.3.3 Server with virus infections

Imagine a computer server that is vulnerable to viruses. We present a stylized model where
normally, the server is uninfected and receives jobs with rate λ and processes them with rate µ.
While most jobs are normal (i.e., not virus carriers), arriving at rate λN , every once in a while,
one of the arriving jobs brings with it a virus, with rate λV = λ − λN . The virus causes the
server to become infected, reducing the server’s service rate from µ to µI . It takes a duration
of time distributed Exponential(γ) for the server to detect that it is infected. Once the infection
is detected, the server stops accepting new jobs, and once all remaining jobs are processed,

14

April 22, 2016
DRAFT

number of jobs, j

uninfected

undetected
infection

detected
infection

(0, 0) (0, 1) (0, 2) (0, 3) · · ·

(1, 0) (1, 1) (1, 2) (1, 3) · · ·

(2, 0) (2, 1) (2, 2) (2, 3) · · ·

λN

λ

µ

µI

µI

λV

γ

λN

λ

µ

µI

µI

λV

γ

λN

λ

µ

µI

µI

λV

γ

λN

λ

µ

µI

µI

λV

γβ

Figure 2.5: The Markov chain for a server vulnerable to viruses. State (m, j) indicates server
state m (0=uninfected, 1=undetected infection, 2=detected infection) with j jobs in the system.

the server is able to use antivirus software to remove the virus in a duration of time distributed
Exponential(β). Once the virus is removed, the server is again uninfected and will resume
accepting jobs, processing them at a restored service rate of µ. We model a single server as being
in one of 3 states, each of which will make up a phase of our Markov chain: uninfected (m = 0),
undetected infection (m = 1), and detected infection (m = 2).

Fig. 2.5 shows a class M Markov that represents this setting. For this chain, M = 2, j0 = 1,
N = {(0, 0), (1, 0), (2, 0)}, λ0 = λN , λ1 = λ = λN + λV , λ2 = 0, µ0 = µ, µ1 = µ2 = µI ,
α0〈1; 1〉 = λV , and α1〈1; 0〉 = 0 (all other αm〈m− i; ∆〉 transition rates are zero).

In Chapter 3 of this dissertation, class M Markov chains are used to study alternative models
of computer systems that are susceptible to performance degrading cyber attacks.

2.4 Results
In this section we first present a key theorem from the literature that enables the CAP method
(Theorem 2.1). We then introduce some preliminary notation, and an original result, Theorem
2.2. Finally, we present the main results of the chapter, Theorems 2.3, 2.5, and 2.7, the proofs of
which will depend on both Theorems 2.1 and 2.2.

2.4.1 A key idea
Consider an ergodic CTMC with state space, S, and consider a nonempty proper subset, A (S,
with states x, z ∈ A. The CAP method involves calculating quantities of the form

Ez
[
TAx
]
≡ E

[cumulative time spent in state x until next
transition leaving set A, given initial state z

]
15

April 22, 2016
DRAFT

S

A•y

•
z

q(y, z)

•x

Figure 2.6: For any x ∈ A, Theorem 2.1 gives πx as a linear combination of quantities Ez
[
TAx
]

by conditioning on the states y ∈ Ac, by which one may transition to states z ∈ A. This figure
shows one such (y, z) pair.

in order to determine the limiting probabilities of the Markov chain of interest. Theorem 2.1
(from Theorem 5.5.1 of [93]) gives an expression for the limiting probabilities of the Markov
chain in terms of the quantities Ez

[
TAx
]
.

Theorem 2.1. Suppose A (S. Then for each x ∈ A, the limiting probability of being in state
x, πx, can be expressed as

πx =
∑
y∈Ac

∑
z∈A

πyq(y, z)Ez
[
TAx
]
,

where q(y, z) is the transition rate from state y to state z and Ac ≡ S\A.

Proof. See Theorem 5.5.1 of [93].

Intuitively, we are expressing the long run fraction of time that we reside in state x, πx, as a
weighted average of the cumulative time spent in state x during uninterrupted visits to states in
A, Ez

[
TAx
]
, conditioned on the choice of state, z ∈ A, by which we enter A. The weights in this

average represent the rate at which visits to A via z occur, which involves conditioning on the
states y ∈ Ac by which one may transition to z ∈ A. We illustrate S, A, y, z, and x in Fig. 2.6.

As an example, consider the simple case where A = {x}. In this case, Theorem 2.1 yields

πx =
∑
y∈Ac

∑
z∈A

πyq(y, z)Ez
[
TAx
]

=
∑
y 6=x

πyq(y, x)Ex
[
T {x}x

]
=

∑
y 6=x πyq(y, x)∑
y 6=x q(x, y)

,

and so
πx
∑
y 6=x

q(x, y) =
∑
y 6=x

πyq(y, x),

which is simply the balance equation associated with state x.
Theorem 2.1 is used in [93] to establish the matrix-geometric structure of the stationary

distribution of QBD chains. The same argument can be used to establish the matrix-geometric

16

April 22, 2016
DRAFT

structure satisfied by the stationary distribution, π, of a class M Markov chain on R. Fix a level
j ≥ j0, and define A =

⋃
`≥j+1 L`. Then for each state (m, j + 1) ∈ Lj+1, we have

π(m,j+1) =
M∑
i=0

M∑
k=0

π(i,j)q((i, j), (k, j + 1))E(k,j+1)

[
TA(m,j+1)

]
=

M∑
i=0

ν(i,j)π(i,j)

M∑
k=0

(
q((i, j), (k, j + 1))

ν(i,j)

)
E(k,j+1)

[
TA(m,j+1)

]
=

M∑
i=0

π(i,j)Ri,m,

thus proving that ~πj+1 = ~πjR, since Ri,m is ν(i,j) times the expected amount of time the chain
spends in state (m, j + 1) before returning to Lj , given it starts in state (i, j), and R is the rate
matrix whose (i,m)th element is given by Ri,m.

We will soon see that the CAP method consists of applying Theorem 2.1 by choosing the
set A in a different manner, while simultaneously observing that the resulting expected val-
ues of the form Ez

[
TAx
]

can be reinterpreted as tractable expected values associated with an
M/M/1/clearing model.

2.4.2 Preliminaries
Our main results, and their proofs, will rely on the following notation:
• Pm ≡ {(m, j0 + 1), (m, j0 + 2), (m, j0 + 3), . . .} is the set of states in phase m with level
j ≥ j0 + 1 (i.e., the set of states in phase m ofR excluding state (m, j0)).

• ρm ≡ λm/µm.
• φm(·) is the Laplace Transform of the busy period (time to first reach state 0, given that

one starts in state 1) of an M/M/1 Markov chain with arrival rate λm and departure rate
µm:

φm(s) ≡
s+ λm + µm −

√
(s+ λm + µm)2 − 4λmµm

2λm
.

• The bases of our main theorem, rm, are given by

rm ≡

ρmφm(αm) if µm > 0
λm

λm + αm
if µm = 0,

(2.3)

recalling that

αm ≡
M∑

i=m+1

1∑
∆=−1

αm〈i−m; ∆〉.

• For convenience, we define the following quantity, which will appear frequently in our
analysis:

Ωm ≡
rm

λm(1− rmφm(αm))
. (2.4)

17

April 22, 2016
DRAFT

As a consequence of the ergodicity assumption on class M Markov chains, we have
• for any phase m, λm ≥ µm implies αm > 0,
• and for any phase m, λm = 0 implies that there exists a phase, i < m, and ∆ ∈ {−1, 0, 1}

such that αi〈m− i; ∆〉 > 0.
We also make the following observations:
• rm < 1 for all phases, m ∈ {0, 1, . . . ,M}.
• rm = 0 if and only if λm = 0.
• rm = ρm whenever αm = 0 (e.g., when m = M , as αM = 0). This is because αm = 0

implies that µm > λm by the ergodicity assumption, which yields φm(0) = 1.
• φm(s) = 0 for all swhenever λm > µm = 0, which follows from the expression for φm(s).

Alternatively, this follows by observing that the busy period of a degenerate (non-ergodic)
M/M/1 Markov chain with arrival rate λm = 0 is infinite.

We have the following fundamental result on class M Markov chains, which together with
Theorem 2.1, will enable us to prove the main results of of the chapter (Theorems 2.3, 2.5, and
2.7).
Theorem 2.2. For any Markov class M Markov chain, if λm, µm > 0 and `, j ≥ j0 + 1, we have

E(m,`)

[
T Pm(m,j)

]
=

{
Ωmr

j−`
m

(
1− (rmφm(αm))`−j0

)
if ` ≤ j

Ωmφm(αm)`−j (1− (rmφm(αm))j−j0) if ` ≥ j.
(2.5)

with rm as given in (2.3) and Ωm as given in (2.4).

Proof. The proof of this result is deferred to Section 2.5, which is entirely focused on proving
this result via clearing model analysis.

The remainder of this section will present our main results, giving the stationary distribution
of class M chains via the CAP method in three different cases. In Section 2.4.3, we consider the
case where all bases, rm, are distinct whenever they are nonzero. Distinct bases arise in many
models where there is no structure connecting the transition rates associated with each phase.
For example, the class M Markov chain representing the “server in different power states” model
presented in Section 2.3.1 has distinct bases. In Section 2.4.4 we consider the case where all
bases are the same (i.e., r0 = r1 = · · · = rm), while requiring that λm, µm > 0, for simplicity.
We study this setting because it is the simplest case featuring repeated nonzero bases. Finally, in
Section 2.4.5 we proceed to the case where all bases except for rM are the same (i.e., r0 = r1 =
· · · = rM−1 6= rM). This structure, which is studied in [125, 126], is common in settings where
phase transitions are analogous across all phases, except for the final phase where there are no
transitions to a further phase before the process transitions to the non-repeating portion. In this
case, we again assume that λm, µm > 0, for simplicity. While in principle, the CAP method can
be used to determine the limiting probabilities of any class M Markov chain, for simplicity, we
do not cover other cases (e.g., r1 = r2 6= r3 = r5 = r7 6= r4 = r6 6= r1), as the computations
become increasingly cumbersome.

18

April 22, 2016
DRAFT

2.4.3 The case where all nonzero bases are distinct

We are now ready to present our main result for the case where all nonzero bases, rm, are distinct.
Theorem 2.3 expresses the stationary distribution of such class M Markov chains as the solution
to a finite system of linear equations.
Theorem 2.3. For any class M Markov chain such that all nonzero bases r1, r2, . . . , rM—given
in Equation (2.3)—are distinct (i.e., rm 6= ri implies either m 6= i or rm = λm = 0), for all
j ≥ j0 + 1, we have a limiting probability distribution of the form

π(m,j) =
m∑
k=0

cm,kr
j−j0
k ,

where {cm,k}0≤k≤m≤M are constants with respect to j. Moreover, together with {π(m,j0)}0≤m≤M
and {πx}x∈N , the {cm,k}0≤k≤m≤M values constituteM(M+5)/2+|N |+2 “unknown variables”
satisfying the following system of M(M + 5)/2 + |N |+ 3 linear equations:

cm,k =

rkrm

m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

λm(rk − rm)(1− φm(αm)rk)

(0 ≤ k < m ≤M : rm, rk > 0)

cm,k =

m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

µm(1− rk) + αm
(0 ≤ k < m ≤M : rk > rm = 0)

cm,k = 0 (0 ≤ k < m ≤M : rk = 0)

cm,m = π(m,j0) −
m−1∑
k=0

cm,k (0 ≤ m ≤M)

π(m,j0) =

µm

m∑
k=0

cm,krk +
∑
x∈N

q(x, (m, j0))πx +

m−1∑
i=0

0∑
∆=−1

αi〈m− i; ∆〉π(i,j0−∆)

λm +
M∑

i=m+1

1∑
∆=0

αm〈i−m; ∆〉+
∑
x∈N

q((m, j0), x)

(0 ≤ m ≤M)

πx =

M∑
m=0

q((m, j0), x)π(m,j0) +
∑
y∈N

q(y, x)πy

M∑
m=0

q(x, (m, j0)) +
∑
y∈N

q(x, y)

(x ∈ N)

1 =
∑
x∈N

πx +
M∑
m=0

m∑
k=0

cm,k

1− rk
,

where q(x, y) denotes the transition rate from state x to state y.
We note before proving Theorem 2.3 that solving this system of equations symbolically will

yield closed-form solutions for the limiting probabilities. Alternatively, if all parameter values
are fixed and known, an exact numerical solution can be found by solving the system numerically
using exact methods. Note that there is one more equation than there are unknowns, as is often the
case in representations of limiting equations through balance equations. Although one equation
can be omitted from the system, the normalization equation must be used in order to guarantee a
unique solution.

19

April 22, 2016
DRAFT

It is also worth observing that once the values {πx}x∈N and {π(m,j0)}0≤m≤M are known, all
other cm,k terms can be computed recursively, without having to apply Gaussian elimination to
the entire linear system given in Theorem 2.3.

This recursion may also simplify further for some types of class M Markov chains. For
example, if αm〈∆1; ∆2〉 = 0 for all ∆1 ≥ 2, ∆2 ∈ {−1, 0, 1}, and 0 ≤ m ≤ M , then when all
bases are positive, for any k < m, we have

cm,k = cm−1,k
rkrm

λm(rk − rm)(1− φm(αm)rk)

1∑
∆=−1

αm−1〈1; ∆〉r∆
k

which further implies, for k < m,

cm,k = ck,k

m−k∏
`=1

rkrk+`

λk+`(rk − rk+`)(1− φk+`(αk+`)rk)

1∑
∆=−1

αk+`−1〈1; ∆〉r∆
k

meaning that only the {ck,k}0≤k≤M terms need to be computed recursively.

Proof of Theorem 2.3. For simplicity, we present the proof for the case where λm, µm > 0 for
all phases m ∈ {0, 1, 2, . . . ,M}. The complete proof that includes the cases where one or both
of λm and µm may be 0 for some phases, m, is given in Appendix A.2.

We prove the theorem via strong induction on the phase, m. Specifically, for each phase m,
we will show that π(m,j) takes the form π(m,j) =

∑m
k=0 cm,kr

j−j0
k for all j ≥ j0 + 1, and show

that {cm,k}0≤k≤m−1 satisfies

cm,k =
rkrm

λm(rk − rm)(1− φm(αm)rk)

(
m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

)

while cm,m = π0 −
∑m−1

k=0 cm,k. Finally, after completing the inductive proof, we justify that the
remaining linear equations in the proposed system are ordinary balance equations together with
the normalization constraint.
Base case:

We begin our strong induction by verifying that the claim holds for the base case (i.e., for
m = 0). In this case, Equation (2.5) yields

E(0,j0+1)

[
T P0

(0,j)

]
= Ω0r

j−j0−1
0 (1− r0φ0(α0)) =

rj−j00

λ0

.

We can now apply Theorem 2.1, yielding

π(0,j) = π(0,j0)λ0E(0,j0+1)

[
T P0

(0,j)

]
= π(0,j0)λ0

(
rj−j00

λ0

)
= π(0,j0)r

j−j0
0

= c0,0r
j−j0
0 ,

where c0,0 = π(0,j0). Hence, π(0,j) takes the claimed form. Moreover, c0,0 satisfies the claimed
constraint as c0,0 = π(0,j0) −

∑m−1
k=0 cm,k = π(0,j0) − 0 = π(0,j0), because the sum is empty when

20

April 22, 2016
DRAFT

m = 0. Note that when m = 0, {cm,k}0≤k<m≤M is empty, and hence, there are no constraints on
these values that require verification.
Helpful computations:

Before proceeding to the inductive step, we compute two useful expressions: First, we have
λmE(m,j0+1)

[
T Pm(m,j)

]
= rj−j0m , which follows from applying Equation (2.5). Next, we have

∞∑
`=1

r`−j0k E(m,`)

[
TPm(m,j)

]
=

j∑
`=j0+1

r`−j0k E(m,`)

[
TPm(m,j)

]
+

∞∑
`=j+1

r`−j0k E(m,`)

[
TPm(m,j)

]

= Ωm

 j∑
`=j0+1

r`−j0k rj−`m

(
1− (rmφm(αm))`−j0

)

+
∞∑

`=j+1

r`−j0k φm(αm)`−j
(
1− (rmφm(αm))j−j0

)
=

rkrm(rj−j0k − rj−j0m)

λm(rk − rm)(1− φm(αm)rk)
,

where the last equality follows from well known geometric sum identities. Note that this ex-
pression is well-defined because rk 6= rm by assumption and rmφm(αm) 6= 1.
Inductive step:

Next, we proceed to the inductive step and assume the induction hypothesis holds for all
phases i ∈ {0, 1, . . . ,m− 1}. In particular, we assume that π(i,j) =

∑i
k=0 ci,kr

j−j0
k for all i < m.

Applying Theorem 2.1, the induction hypothesis, and our computations above, we have3

π(m,j) = π(m,j0)λmE(m,j0+1)

[
TPm

(m,j)

]
+

m−1∑
i=0

∞∑
`=1

1∑
∆=−1

π(i,`−∆)αi〈m− i; ∆〉E(m,`)

[
TPm

(m,j)

]

= π(m,j0)r
j−j0
m +

m−1∑
i=0

∞∑
`=1

1∑
∆=−1

αi〈m− i; ∆〉

(
i∑

k=0

ci,kr
`−j0−∆
k E(m,`)

[
TPm

(m,j)

])

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)(∞∑
`=1

r`−j0k E(m,`)

[
TPm

(m,j)

])

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)(
rkrm(rj−j0k − rj−j0m)

λm(rk − rm)(1− φm(αm)rk)

)

=

m∑
k=0

cm,kr
j−j0
k ,

where we have collected terms with

cm,k =

rkrm

(
m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

)
λm(rk − rm)(1− φm(αm)rk)

(0 ≤ k < m ≤M)

3 Note that we have also used the fact that π(i,j0) also satisfies the claimed form for all i < m, which is true as
ci,i = π(i,j0) −

∑i−1
k=0 ci,k (from the inductive hypothesis) implies that π(i,j0) =

∑i
k=0 ci,k =

∑i
k=0 ci,kr

0
k.

21

April 22, 2016
DRAFT

and cm,m = π(m,j0) −
∑m−1

k=0 cm,k, as claimed. This completes the inductive step and the proof
by induction.
The balance equations and normalization constraint:

The equations with π(m,j0) and πx in their left-hand sides in our proposed system are ordinary
balance equations (that have been normalized so that there are no coefficients on the left-hand
side).

It remains to verify that the final equation, which is the normalization constraint:

1 =
∑
x∈N

πx +
M∑
m=0

π(m,j0) +
M∑
m=0

∞∑
j=j0+1

π(m,j)

=
∑
x∈N

πx +
M∑
m=0

M∑
k=0

cm,k +
M∑
m=0

m−1∑
k=0

∞∑
j=j0+1

cm,kr
j−j0
k

=
∑
x∈N

πx +
M∑
m=0

m∑
k=0

cm,krk
1− rk

.

2.4.4 The case where all bases agree
The CAP method can also be used in cases where some of the base terms coincide. We assume,
for the sake of readability, that λm and µm are both positive for each phase m, but analogous
results can still be derived when this is no longer the case.

In order to derive our result, we will make use of the following lemma: we omit the proof,
but each formula can be derived using the lemmas contained in Appendix A.3.
Lemma 2.4. For a class M Markov chain with all λm, µm > 0 and r0 = r1 = · · · = rM , for
each integer u ≥ 0 and each integer j ≥ j0 + 1, we have the following three identities:

•
∞∑

`=j0+2

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`−1)

[
T Pm(m,j)

]
=

u+1∑
k=1

Ωmr0

(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j00 ,

•
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`)

[
T Pm(m,j)

]
= Ωm

(
j − (j0 + 1) + u+ 1

u+ 1

)
rj−j00

+
u∑
k=1

Ωmr0φm(αm)

(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j00 ,

22

April 22, 2016
DRAFT

•
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`+1)

[
T Pm(m,j)

]
=

Ωm

r0

(
j − (j0 + 1) + u+ 1

u+ 1

)
rj−j00 −

(
j − (j0 + 1) + u

u

)
rj−j00

λm

+
u∑
k=1

Ωmr0φm(αm)2

(1− r0φm(αm))u+1−k

(
j − (j0 + 1) + k

k

)
rj−j00 .

Theorem 2.5. For a class M Markov chain with all λm, µm > 0 and r0 = r1 = · · · = rM , for
all 0 ≤ m ≤M , j ≥ j0, we have

π(m,j) =
m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j00

where the {cm,k}0≤k≤m≤M values satisfy the system of linear equations

cm,0 = π(m,j0), (0 ≤ m ≤M)

cm,k = Ωmr0

m−1∑
u=k

m−1∑
i=u

ci,u

[
1∑

∆=−1

αi〈m− i; ∆〉φm(αm)∆+1

(1− r0φm(αm))u+1−k

]

− 1

λm

m−1∑
i=k

ci,kαi〈m− i; 1〉

+ Ωm

m−1∑
i=k−1

ci,k−1

[
1∑

∆=−1

αi〈m− i; ∆〉r−∆
0

]
(1 ≤ k ≤ m− 1)

cm,m = cm−1,m−1Ωm

1∑
∆=−1

αm−1〈1; ∆〉r∆
0 (1 ≤ m ≤M),

together with the usual balance equations and normalization constraint.

Proof. Starting with phase 0, we observe as before that, for j ≥ j0 + 1,

π(0,j) = π(0,j0)λ0E(0,j0+1)

[
T P0

(0,j)

]
= π(0,j0)r

j−j0
0

and this equality is clearly also valid when j = j0.
We now proceed by induction. Assuming the result holds for π(i,`) for 0 ≤ i ≤ m−1, ` ≥ j0,

23

April 22, 2016
DRAFT

we have

π(m,j) = π(m,j0)λmE(m,j0+1)

[
TPm(m,j)

]
+
m−1∑
i=0

∞∑
`=j0+2

π(i,`)αi〈m− i;−1〉E(m,`−1)

[
TPm(m,j)

]

+
m−1∑
i=0

∞∑
`=j0+1

π(i,`)αi〈m− i; 0〉E(m,`)[T
Pm
(m,j)]

+

m−1∑
i=0

∞∑
`=j0

π(i,`)αi〈m− i; 1〉E(m,`+1)[T
Pm
(m,j)]

= π(m,j0)r
j−j0
0 +

m−1∑
i=0

ci,0Ωm

[
1∑

∆=−1

αi〈m− i;−1〉r−∆
0

](
j − (j0 + 1) + 1

1

)
rj−j00

+
m−1∑
u=1

m−1∑
i=u

ci,uαi〈m− i;−1〉
∞∑

`=j0+2

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`−1)

[
TPm(m,j)

]

+

m−1∑
u=1

m−1∑
i=u

ci,uαi〈m− i; 0〉
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`)

[
TPm(m,j)

]

+
m−1∑
u=1

m−1∑
i=u

ci,uαi〈m− i; 1〉
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(m,`+1)

[
TPm(m,j)

]
and after applying Lemma 2.4 and simplifying, we conclude that

π(m,j) = π(m,j0)r
j−j0
0

+

m−1∑
k=0

m−1∑
i=k

ci,kΩm

[
1∑

∆=−1

αi〈m− i; ∆〉r−∆
0

](
j − (j0 + 1) + k + 1

k + 1

)
rj−j00

+

m−1∑
k=1

m−1∑
u=k

m−1∑
i=u

ci,uΩmr0

[
1∑

∆=−1

αi〈m− i; ∆〉φm(αm)−∆+1

(1− r0φm(αm))u+1−k

](
j − (j0 + 1) + k

k

)
rj−j00

− 1

λm

m−1∑
k=1

m−1∑
i=k

ci,kαi〈m− i; 1〉
(
j − (j0 + 1) + k

k

)
rj−j00

=

m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j00 ,

where we have collected terms so that for 1 ≤ k ≤ m− 1 we have

cm,k =
m−1∑
u=k

m−1∑
i=u

ci,uΩmr0

[
1∑

∆=−1

αi〈m− i; ∆〉φm(αm)−∆+1

(1− r0φm(αm))u+1−k

]

− 1

λm

m−1∑
i=k

ci,kαi〈m− i; 1〉

+ Ωm

m−1∑
i=k−1

ci,k−1

[
1∑

∆=−1

αi〈m− i; ∆〉r−∆
0

]
,

while cm,0 = π(m,j0) and cm,m = cm−1,m−1Ωm

[∑1
∆=−1 αm−1〈1; ∆〉r−∆

0

]
, as claimed.

24

April 22, 2016
DRAFT

2.4.5 The case where all bases except rM agree

We conclude this section by considering the case where r0 = r1 = · · · = rM−1 6= rM , as this
case is satisfied by the Markov chains studied in [125, 126]. The following lemma can be used
to compute the limiting probability distribution. The proof is again omitted, but as with Lemma
2.4, each formula can be derived using the lemmas contained in Appendix A.3.
Lemma 2.6. For a class M Markov chain with all λm, µm > 0 and r0 = r1 = · · · = rM−1 6= rM ,
for each integer u ≥ 0, we have the following three identities:

•
∞∑

`=j0+2

(
`− (j0 + 1) + u

u

)
r`−j00 E(M,`−1)

[
TPM(M,j)

]

= −ΩMr0

[
1

(1− r0)u+1
− 1

(1− r0
rM

)u+1

]
rj−j0M

+
u∑
k=0

ΩMr0

[
1

(1− r0)u+1−k −
1

(1− r0
rM

)u+1−k

](
j − (j0 + 1) + k

k

)
rj−j00 ,

•
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(M,`)

[
TPM(M,j)

]

= −ΩMr0

[
1

(1− r0)u+1
− 1

rM (1− r0
rM

)u+1

]
rj−j0M

+
u∑
k=0

ΩMr0

[
1

(1− r0)u+1−k −
1

rM (1− r0
rM

)u+1−k

](
j − (j0 + 1) + k

k

)
rj−j00 ,

•
∞∑

`=j0+1

(
`− (j0 + 1) + u

u

)
r`−j00 E(M,`+1)

[
TPM(M,j)

]

= −ΩMr0

[
1

(1− r0)u+1
− 1

r2
M (1− r0

rM
)u+1

]
rj−j0M −

(
j − (j0 + 1) + u

u

)
rj−j00

λM

+
u∑
k=0

ΩMr0

[
1

(1− r0)u+1−k −
1

r2
M (1− r0

rM
)u+1−k

](
j − (j0 + 1) + k

k

)
rj−j00 .

Our next theorem gives an expression for the stationary distribution of a class M Markov
chain when r0 = r1 = · · · = rM−1 6= rM . As the proof is similar to those of Theorems 2.3 and
2.5, we omit the proof.

Theorem 2.7. Suppose a class M Markov chain has all λm, µm > 0 and r0 = r1 = · · · =

25

April 22, 2016
DRAFT

rM−1 6= rM . Then, for all 0 ≤ m ≤M − 1, j ≥ j0,

π(m,j) =
m∑
k=0

cm,k

(
j − (j0 + 1) + k

k

)
rj−j00 ,

π(M,j) =
M−1∑
k=0

cM,k

(
j − (j0 + 1) + k

k

)
rj−j00 + cM,Mr

j−j0
M

where the {cm,k}0≤k≤m≤M values satisfy the system of linear equations

cm,0 = π(m,j0) (0 ≤ m < M)

cm,k = Ωmr0

m−1∑
u=k

m−1∑
i=u

ci,u

[
1∑

∆=−1

αi〈m− i; ∆〉φm(αm)∆+1

(1− r0φm(αm))u+1−k

]

+ Ωm

m−1∑
i=k−1

ci,k−1

[
1∑

∆=−1

αi〈m− i; ∆〉)r−∆
0

]

− 1

λm

m−1∑
i=k

ci,kαi〈m− i; 1〉 (1 ≤ k < m < M)

cm,m = cm−1,m−1Ωm

[
1∑

∆=−1

αm−1〈1; ∆〉r∆
0

]
(1 ≤ m < M)

cM,0 =

M−1∑
i=0

ci,0ΩMr0

[
1∑

∆=−1

[
1

1− r0
− 1

r∆+1
M (1− r0

rM
)

]
αi〈m− i; ∆〉

]

+

M−1∑
u=1

M−1∑
i=u

ci,uΩMr0

[
1∑

∆=−1

αi〈M − i; ∆〉

[
1

(1− r0)u+1

− 1

r∆+1
M (1− r0

rM
)u+1

]]

cM,k = −
M−1∑
i=k

ci,k
αi〈M − i; 1〉

λM

+

M−1∑
u=k

M−1∑
i=u

ci,uΩMr0

[
1∑

∆=−1

αi〈m− i; ∆〉

[
1

(1− r0)u+1−k

− 1

r∆+1
M (1− r0

rM
)u+1−k

]]
(1 ≤ k < M)

cM,M = π(M,j0) − cM,0,

together with the usual balance equations and normalization constraint.

2.5 Analysis of the M/M/1/clearing model
In this section we present an analysis of the M/M/1/clearing model Markov chain in order to
prove Theorem 2.2 (presented in Section 2.4.2), which we used in the proof of Theorems 2.3 2.5,
and 2.7. This analysis provides the framework on which the CAP method is built.

26

April 22, 2016
DRAFT

0 1 2 3 · · ·
λ

µ

λ

µ

λ

µ

λ

µ+ α

α

α

Figure 2.7: Markov chain for the M/M/1/clearing model. For any state j ≥ 0, there is a clearing
rate with rate α. Note that the transition rate from state 1 to state 0 is µ+ α as either a departure
or a clearing can cause this transition. The thicker arrow denotes a set of transitions.

Like the ordinary M/M/1 model, the M/M/1/clearing model Markov chain (see Fig. 2.7) has
state space {0, 1, 2, 3, . . .}, with an arrival rate of λ ≡ q(j, j + 1) (for all j ≥ 0) and a departure
rate of µ ≡ q(j, j−1) (for all j ≥ 2). In addition, all nonzero states in the M/M/1/clearing model
have an additional transition to state 0 representing a clearing (also known as a catastrophe or
disaster). All clearing transitions occur with the same rate α ≡ q(j, 0) (for all j ≥ 2), which
we call the clearing rate. Note that from state 1, there are two “ways” of transitioning to state
0—a departure or a clearing—and hence, q(1, 0) = µ + α. We observe that each phase, m, of
a class M Markov chain (for levels j ≥ j0 + 1) behaves like an M/M/1/clearing Markov chain,
with clearing rate

αm ≡
M∑

i=m+1

1∑
∆=−1

αm〈i−m; ∆〉,

except with “clearings” transitioning to a different phase.

2.5.1 Preliminary results on clearing models

In this section we present two preexisting results from the literature that will aid us in proving
Theorem 2.2. Our first result gives the limiting probability distribution of the M/M/1/clearing
model: see e.g., Corollary 4.2.2 of [4], as well as Exercise 10.7 of [70].
Lemma 2.8. In an M/M/1/clearing model with arrival, departure, and clearing rates λ, µ, and
α, respectively, the limiting probability distribution is given by

πj = (1− ρφ(α))(ρφ(α)j),

where ρ = λ/µ and φ(·) is the Laplace transform of the busy period of an M/M/1 system:

φ(s) =
s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ

2λ
.

27

April 22, 2016
DRAFT

Proof. See the proof of Corollary 4.2.2 of [4].

The next result is also known, and gives an expression for a probability that is useful in
computing values of the form E`

[
TAj
]

in the M/M/1 clearing model. A similar result, presented
in the context of Brownian motion, is given in Problems 22 and 23 from Chapter 7 of [87].
Lemma 2.9. In an M/M/1/clearing model with arrival, departure, and clearing rates λ, µ, and
α, respectively, the probability that one reaches state j > 0 before state 0, given that one starts
in state ` > 0, is given by

p`→j =

(ρφ(α))j−`(1− (ρφ(α)2)`)

1− (ρφ(α)2)j
if ` ≤ j

φ(α)`−j if ` ≥ j.

Proof. First, note that in the degenerate case where ` = j, we are already at state j from the start,
and so we reach state j before reaching state 0 surely, yielding p`→j = 1. Substituting ` = j in
either branch of the claimed expression for p`→j yields 1, validating the claim in this case.

Next, we consider the case where ` > j, which will be the simpler of the two remaining cases.
In this case, p`→j can be viewed as the probability that the sum of ` − j independent M/M/1
busy periods (without clearing), B1, B2, . . . , B`−j , do not exceed the exponentially distributed
“clearing” random variable ζα:

p`→j = P

(
j−`∑
n=1

Bn ≤ ζα

)
= E

[
e−α

∑j−`
n=1 Bn

]
= φ(α)j−`

as claimed, with the next-to-last equality following from the alternate interpretation of the Laplace
Transform (see Appendix A.1 for details).

Now let us consider the remaining case where ` < j. In this case, it will be helpful to
consider two Poisson processes, one associated with arrivals, occurring with rate λ, and the other
associated with departures, occurring with rate µ. Departures can happen even at state 0, although
at state 0 departures do not cause a change of state. Let NA(t) and ND(t) be the number of such
arrivals and departures during time interval [0, t], assuming that we are in state ` at time 0.

Next, let τ0 = inf{t : ` + (NA(t) − ND(t)) = 0} be the first time after 0 until we have
` departures in excess of arrivals, and let τj = inf{t : ` + (NA(t) − ND(t)) = j} be the first
time after 0 until we have j − ` arrivals in excess of departures. Although there may be positive
probability that one of of these two events may never happen (i.e., max{τ0, τj} = +∞), at least
one of these events will happen almost surely. Moreover, if either of these events happens before
a clearing, which will occur at time ζα ∼ Exponential(α) (independent of both τ0 and τj), then
τ0 and τj describe the first time that we will reach state 0 and j, respectively.

Given this notation, we can express p`→j , the probability that one next reaches state j > `
before state 0 in an M/M/1/clearing model, given that one starts in state ` > 0, by

p`→j = P(τj ≤ min{τ0, ζα}) = E[e−ατ0 · I{τ0 < τj}],

28

April 22, 2016
DRAFT

where I{·} is the indicator function. Similarly, if we let p`6→j be the probability that we reach
0—via departures, rather than via a clearing—before reaching j and before a clearing, we have

p 6̀→j = P(τ0 ≤ min{τj, ζα}) = E[e−ατj · I{τj < τ0}].

At this point, it will be useful to compute the quantities E[e−ατ0] and E[e−ατj]. Observe that
τ0 is the time until we first have ` departures in excess of arrivals. We can think of each time “de-
partures minus arrivals” increments by one as the completion of an M/M/1 busy period. Hence,
τ0 corresponds to the time until we have completed ` consecutive independent busy periods.
Meanwhile, τj is the time until we first have j − ` > 0 arrivals in excess of departures. Just as
we can think each time “departures minus arrivals” increments by one as the completion of an
M/M/1 busy period, we can also think of the each time “arrivals minus departures” increments
by one as the completion of an M/M/1 busy period where we think of arrivals as “departures”
occurring with rate λ and departures as “arrivals” occurring with rate µ. Hence, τj corresponds
to the time until we have completed j − ` consecutive independent busy periods with arrival rate
µ and departure rate λ. Consequently

E[e−ατ0] = φ(α)`, E[e−ατj] = η(α)j−`,

where φ(·) and η(·) are the Laplace transforms of the M/M/1 busy periods with arrival and
departure rate pairs (λ, µ) and (µ, λ), respectively. We observe that for all s > 0,

η(s) =
s+ µ+ λ−

√
(s+ µ+ λ)2 − 4µλ

2µ

=

(
λ

µ

)(
s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ

2λ

)
= ρφ(s).

Note that in the case that ρ 6= 1, we must have η(0) 6= φ(0), and in particular one of these
transforms will not evaluate to 1. This is not a problem as if ρ < 1 (respectively, ρ > 1), the
underlying random variable of η (respectively, φ) has positive probability mass at infinity, and
will thus not satisfy the “usual” condition of Laplace transforms evaluating to 1 at 0.

We proceed to use these expectations to determine p`→j:

φ(α)` = E[e−ατ0]

= E[e−ατ0 · I{τ0 < τj}] + E[e−ατ0 · I{τj < τ0}]
= E[e−ατ0 · I{τ0 < τj}] + φ(α)j · E[e−ατj · I{τj < τ0}]
= p` 6→j + φ(α)jp`→j,

(ρφ(α))j−` = E[e−ατj]

= E[e−ατj · I{τ0 < τj}] + E[e−ατj · I{τj < τ0}]
= (ρφ(α))j · E[e−ατ0 · I{τ0 < τj}] + E[e−ατj · I{τj < τ0}]
= (ρφ(α))j(p`6→j) + p`→j.

29

April 22, 2016
DRAFT

We justify E[e−ατ0 · I{τj < τ0}] = φ(α)j · E[e−ατj · I{τj < τ0}] by observing that given
that τj < τ0, we reach state j before state 0 (ignoring clearings), so we can only reach state 0
by performing j consecutive busy periods after reaching j. We justify the analogous equality
E[e−ατj · I{τ0 < τj}] = (ρφ(α))j · E[e−ατ0 · I{τ0 < τj}] by observing that given that τ0 < τj ,
we reach state 0 before state j (ignoring clearings), so we can only reach state j by performing j
consecutive “busy” periods in an M/M/1 model with arrival rate µ and departure rate λ.

We now have a system of two linear equations in the two unknowns, p`→j and p` 6→j . Solving
the system for p`→j and simplifying, we find that

p`→j =
(ρφ(α))j−` − (ρφ(α))jφ(α)`

1− (ρφ(α))jφ(α)j
=

(ρφ(α))j−`(1− (ρφ(α)2)`)

1− (ρφ(α)2)j
,

which proves the claim.

2.5.2 Applying clearing model analysis toward proving Theorem 2

We now use Lemmas 2.8 and 2.9 to compute E`
[
TAj
]

in an M/M/1/clearing model, where A is
the set of nonzero states. This result is presented in Lemma 2.10. Finally, we will recast Lemma
2.10 in the context of class M Markov chains, allowing us to prove Theorem 2.2 from Section
2.4.2.
Lemma 2.10. In an M/M/1/clearing model with arrival, departure, and clearing rates λ, µ, and
α, respectively, if A = {1, 2, 3, . . .} denotes the set of nonzero states of the state space of the
underlying Markov chain, then

E`
[
TAj
]

=

(ρφ(α))j−`+1

(
1− (ρφ(α)2)`

)
λ(1− ρφ(α)2)

if ` ≤ j

ρφ(α)`−j+1 (1− (ρφ(α)2)j)

λ(1− ρφ(α)2)
if ` ≥ j.

Proof. We first consider the case where ` ≤ j. We claim that

E1

[
TAj
]

= (p1→`)E`
[
TAj
]
, (2.6)

recalling that p1→` is the probability that one reaches state ` before state 0 given initial state 1.
Equivalently, in our setting, we may interpret p1→` to be the probability that one reaches state `
before leaving A, given initial state 1, as 0 is the only state not in A. The claim in Equation (2.6)
follows from conditional expectation and the fact that given that we start in state 1, we either

• reach state ` before leaving A, in which case the the expected cumulative time spent in
state j before leaving A is E`

[
TAj
]

(note that no time is spent in j before reaching `, as
` ≤ j),

• or we do not reach state ` before leaving A, in which case we also do not reach state j, and
hence we spend 0 time in state j before leaving A.

30

April 22, 2016
DRAFT

From Lemma 2.9, we know that for ` ≤ j, we have

p`→j =
(ρφ(α))j−`

(
1− (ρφ(α)2)`

)
1− (ρφ(α)2)j

. (2.7)

Hence, in order to determine E`
[
TAj
]

from Equation (2.6), we need only determine E1

[
TAj
]
. We

compute this quantity via the renewal reward theorem. Let us earn reward in state j at rate 1, and
consider a cycle from state 0 until one returns to 0 again (after leaving 0). We also use the fact
from Lemma 2.8 that the limiting probability of being in state j in an M/M/1/clearing model is
given by (1− ρφ(α))(ρφ(α))j . Hence, by the renewal reward theorem, we have

E1

[
TAj
]

E[BC] + 1/λ
= (1− ρφ(α))(ρφ(α))j, (2.8)

where BC denotes the busy period of an M/M/1/clearing model. To determine E[BC], observe
that BC = min{B, ζα}, where B is an independent random variable distributed like the busy
period of an M/M/1 model without clearing, and ζα ∼ Exponential(α) is an exponentially
distributed clearing time. Taking the expectation, we have

E[BC] = E[min(B, ζα)] =

∫ ∞
0

P(B > t)P(ζα > t) dt =

∫ ∞
0

P(B ≥ t)e−αt dt

=
1

α

∫ ∞
0

P(B ≥ t)
(
αe−αt

)
dt =

P(B > ζα)

α
=

1− P(B ≤ ζα)

α

=
1− φ(α)

α
,

where the final step follows from an alternate interpretation of the Laplace transform (see Ap-
pendix A.1 for details), noting that φ(·) is the Laplace transform of B.

Returning to Equation (2.8), we find that

E1

[
TAj
]

=

(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α))(ρφ(α))j =

(ρφ(α))j

λ
, (2.9)

where we make use of the identity(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α)) =

1

λ

in our simplification. This identity can be verified algebraically by using the explicit form of
φ(s). Alternatively, let E0[T0] be the expected duration of time spent in state 0 in a cycle starting
from state 0, and ending with a return to state 0 from a nonzero state. Then by the renewal reward
theorem,

E0[T0] =

(
E[BC] +

1

λ

)
(1− ρφ(α)) =

(
1− φ(α)

α
+

1

λ

)
(1− ρφ(α)).

We can also observe that during such a cycle, the only time spent in state 0 is during the initial
residence, as a revisit to state 0 ends the cycle, so E0[T0] = 1/λ. Setting these quantities equal
to one another yields the claimed identity directly.

31

April 22, 2016
DRAFT

We proceed to use Equation (2.6) in determining E`
[
TAj
]

(in the case where ` ≤ j), by
substituting in values from Equations (2.7) and (2.9):

E`
[
TAj
]

=
E1

[
TAj
]

p1→`
=

(
(ρφ(α))j

λ

)(
1− (ρφ(α)2)`

(ρφ(α))`−1(1− ρφ(α)2)

)
=

(ρφ(α))j−`+1
(
1− (ρφ(α)2)`

)
λ(1− ρφ(α)2)

.

Next, we consider the case where ` ≥ j (note that the two branches in the claimed expression
coincide when ` = j). We again use conditional expectation, this time obtaining

E`
[
TAj
]

= (p`→j)Ej
[
TAj
]

=
(
φ(α)`−j

)(ρφ(α)(1− (ρφ(α)2)j)

λ(1− ρφ(α)2)

)
=
ρφ(α)`−j+1(1− (ρφ(α)2)j)

λ(1− ρφ(α)2)
,

which completes the proof of the claim. Note that we have obtained Ej
[
TAj
]

by substituting
` = j into the expression for E`

[
TAj
]
, which we found for ` ≤ j, and we have also used the fact

from Lemma 2.9 that p`→j = φ(α)`−j whenever ` ≥ j.

Finally, we use Lemma 2.10 to prove Theorem 2.2.
Theorem 2.2. For any class M Markov chain, if λm, µm > 0 and `, j ≥ j0 + 1, we have

E(m,`)

[
T Pm(m,j)

]
=

{
Ωmr

j−`
m

(
1− (rmφm(αm))`−j0

)
if ` ≤ j

Ωmφm(αm)`−j (1− (rmφm(αm))j−j0) if ` ≥ j.
(2.10)

Proof. Observe that the time spent in state (m, j) before leaving phase m, given initial state
(m, `) in a class M Markov chain with λm, µm > 0 is stochastically identical to the time spent
in state j − j0 before reaching state 0, given initial state `− j0 in an M/M/1/clearing model with
arrival, departure, and clearing rates λm, µm, and αm, respectively. That is,

E(m,`)

[
T Pm(m,j)

]
= E`

[
TAj
]
,

where the quantity on the left-hand side is associated with the class M Markov chain, and the
quantity on the right-hand side with the M/M/1/clearing model Markov chain (with the appro-
priate transition rate parameters and A = {1, 2, 3, . . .}).

We proceed to complete the proof by applying Lemma 2.10. Recall when λm, µm > 0,
we have the notation ρm = λm/µm, rm = ρmφm(αm), and Ωm = rm/(λm(1 − rmφm(αm))).
Applying Lemma 2.10 when ` ≤ j yields

E(m,`)

[
T Pm(m,j)

]
=

(ρmφm(αm))(j−j0)−(`−j0)+1
(
1− (ρmφm(αm)2)`−j0

)
λm(1− ρmφm(αm)2)

=
rj−`+1
m

(
1− (rmφm(αm))`−j0

)
λm(1− rmφm(αm))

= Ωmr
j−`
m

(
1− (rmφm(αm))`−j0

)
,

32

April 22, 2016
DRAFT

while when ` ≥ j, Lemma 2.10 yields

E(m,`)

[
T Pm(m,j)

]
=
ρmφm(αm)(`−j0)−(j−j0)+1 (1− (ρmφm(αm)2)j−j0)

λm(1− ρmφm(αm)2)

=
rmφm(αm)`−j (1− (rmφm(αm))j−j0)

λm(1− rmφm(αm))

= Ωmφm(αm)`−j
(
1− (rmφm(αm))j−j0

)
,

as claimed.

2.6 Extending the scope of the CAP Method

In this section we briefly touch upon ways in which the CAP method can be extended beyond
class M Markov chains.

2.6.1 Chains with “catastrophes”

Recall that the M/M/1 clearing model is used to model a system where there can be a catastrophe
from any nonzero state causing an immediate transition to state 0. Similarly, we can consider
a modification of a class M Markov chain where from any state (m, j) with j ≥ j0 + 1, a
catastrophe can occur taking one to state x ∈ N with rate αm〈x〉 ≡ q((m, j), x).4 That is, each
phase can have several catastrophe rates, one for each state in the non-repeating portion. In this
case, it will be useful to redefine αm as follows:

αm ≡
∑
x∈N

αm〈x〉+
M∑

i=m+1

1∑
∆=−1

αm〈i−m; ∆〉.

The CAP method can easily be modified to give limiting probabilities for these types of Markov
chains.

2.6.2 Skipping levels when transitioning between phases

Although the assumption that transitions from state (m, j) to state (m, `) can only occur only if
` = j±1 is essential to the CAP method, the assumption that transitions from state (m, j) to state
(i, `) (where i > m) can only occur if ` = j±1 is much less important. That is, the CAP method
may be extended to allow for nonzero transition rates of the form αm〈∆1; ∆2〉 with d ≤ ∆2 ≤ D
for some d,D ∈ Z. However, it is advisable to treat the levels Lj0 , Lj0+1, . . . , Lj0+max{|d|,|D|}−1

as special cases, just as Lj0 was treated as a special case in the analysis presented throughout this
chapter.

4Whether or not catastrophes can also occur in states (m, j0) will not change the analysis as arbitrary transitions
from states (m, j0) to states x ∈ N are already allowed in class M Markov chains.

33

April 22, 2016
DRAFT

2.6.3 Chains with an infinite number of phases

Consider a chain with the structure of a class M chain, except with infinitely many phases (i.e.,
m ∈ {0, 1, 2, . . .}), and a possibly infinite non-repeating portion, N . The CAP method may be
used to determine the {cm,k}0≤k≤m values in terms of {πx}x∈N for the firstK phases by solving a
system of at most O(K2) equations. This is because the CAP method provides recurrences such
that each {cm,k}0≤k≤m value can be expressed in terms of {ci,k}0≤k≤i≤m−1 values; that is, only
information about lower-numbered phases (and the non-repeating portion) is needed to compute
each cm,k. We can first express such values for phase m = 0, then phase m = 1, and so on. Once
these values—along with the easily determined corresponding base terms—have been obtained,
we can use the CAP method to find the limiting probabilities for all states in the first K phases
as long as we know the {πx}x∈N values.

Such a procedure is typically not useful, as the {πx}x∈N values are usually determined via
the normalization constraint, which requires expressing limiting probabilities, π(m,j), in terms
of {πx}x∈N for all phases, rather than for only the first K phases. However, there are settings
where sufficient information about the structure of {πx}x∈N may be obtained via other analytic
approaches, allowing for the CAP method to compute the limiting probability of the first K
phases (where K can be as high as desired, subject to computational constraints). For example, a
two-class priority queue can be modeled by an infinite phase variant of a class M Markov chain.
In that setting, queueing-theoretic analysis provides sufficient information about the structure of
the limiting probabilities in the non-repeating portion (see [118]), making the CAP method a
useful tool for that problem.

2.7 Conclusion

This chapter presents a study of the stationary distribution of quasi-birth-death (QBD) continuous
time Markov chains in class M. Class M Markov chains are ergodic chains consisting of a finite
nonrepeating portion and an infinite repeating portion. The repeating portion of a class M chain
consists of an infinite number of levels and a finite number of phases. Moreover, transitions in
such chains are skip-free in level, in that one can only transition between consecutive levels, and
unidirectional in phase, in that one can only transition from lower-numbered phases to higher-
numbered phases. Despite these restrictions, class M Markov chains are used extensively in
modeling computing, service, and manufacturing systems, as they allow for keeping track of
both the number of jobs in a system (via levels), and the state of the server(s) and/or the arrival
process to the system (via phases).

This chapter develops and introduces a novel technique, Clearing Analysis on Phases (CAP),
for determining the limiting probabilities of class M chains exactly. This method proceeds iter-
atively among the phases, by first determining the form of the limiting probabilities of the states
in phase 0, then proceeding to do the same for the states in phase 1, and so on. As suggested by
its name, the CAP method uses clearing model analysis to determine the structure of the limiting
probabilities in each phase.

Unlike most existing techniques for solving QBDs, which rely upon the matrix-geometric
approach, the CAP method avoids the task of finding the complete rate matrix, R, entirely.

34

April 22, 2016
DRAFT

Instead, the CAP method yields the limiting probabilities of each state, (m, j), in the repeating
portion of the Markov chain as a linear combination of scalar base terms (with weights dependent
on the phase, m), each raised to a power corresponding to the level, j. These base terms turn out
to be the diagonal elements of the rate matrix, R. The weights of these linear combinations can
be determined by solving a finite system of linear equations. We also observe that the structure
of the weights of these linear combinations can depend on the multiplicity structure of the base
terms.

The CAP method can be applied to Markov chains beyond those in class M, as discussed
in Section 2.6. For example, the CAP method can be used to determine limiting probabilities
in chains where one or more phases allow for immediate “catastrophe” transitions to states in
the non-repeating portion. As another example, the CAP method can also be applied to Markov
chains where transitions between phases can be accompanied with a change in level exceeding
1. The CAP method can also be used to study some chains with an infinite number of phases.
There is ample room for future work to extend the CAP method in a variety of directions.

The CAP method and the solution form it provides offer several impactful advantages. First,
while many existing methods for determining the limiting probabilities of QBDs exploit the rela-
tionship between successive levels, the CAP method exploits the relationship between successive
phases, thereby offering complementary probabilistic intuition on the structure and steady state
behavior of class M Markov chains. This method also provides an additional tool for practition-
ers who are studying systems that can be modeled by class M Markov chains. Depending on the
application domain, the scalar solution form of the CAP method may have advantages over other
solution forms for computing certain metrics of interest (e.g., mean values, higher moments, tail
probabilities, etc.). While this chapter does not cover using the solution of the CAP method to
derive metrics of interest, as such metrics are often application specific, we hope that future work
can find novel uses for the CAP method in a variety of settings.

35

April 22, 2016
DRAFT

Chapter 3

The Malware Cleanup Problem

3.1 Introduction

In this chapter, we tackle a computer security problem by adapting and applying CAP method,
which we introduced in the previous chapter. Our problem is motivated by the fact that cyber-
crime is an increasingly costly problem for individuals, corporations, and governments alike.
The total cost of cybercrime in 2014 is estimated at $375–$575 billion worldwide, with the av-
erage country experiencing cyber crime costs amounting to 0.5% of its GDP (see [29]). In this
chapter, we focus in particular on cyber attacks with persistent effects that target an online service
provider. The effects of such attacks do not cease until some cleanup actions are undertaken by
the service provider. These attacks often take the form of malware (malicious software), includ-
ing viruses, code injections, worms, trojan horses, etc. For simplicity, throughout we will refer
to these persistent attacks as malware.

Malware attacks are concerning primarily for two reasons: attacks pose a security threat,
while also potentially compromising system performance; both are costly. For an online ser-
vice provider, security threats include the direct theft of money as well as data breaches, which
expose customers to fraud. These breaches lead to substantial legal expenses, tarnish the ser-
vice provider’s reputation, and where applicable, negatively affect the parent company’s stock
price [58]. We refer to these combined monetary losses as security losses. Meanwhile, malware
also often leads to performance degradation [80], which effectively reduces the rate at which a
service provider can serve its customers’ requests (hereafter, jobs). Service rate reductions lead
to lengthier response times, create an inferior service experience for the customers, and reduce
their willingness to pay for the service. The removal of malware, although necessary, leads to
additional performance costs: reboots and lengthier cleanup procedures require temporarily tak-
ing the system offline, causing discarded jobs and downtimes [21, 41, 99]. Malware infections
also often act as a scaffolding for even more serious malware attacks. Malware infections of-
ten develop in stages that grow worse over time, and hence security and performance costs can
increase sharply if infections are left unaddressed [24, 79]. More severe malware can also take
longer to remove, leading to even longer downtimes during cleanup procedures [121].

Consider a system administrator that is providing an online service. At a certain point in
time, she receives an automated warning that her server is currently overloaded. This could be

36

April 22, 2016
DRAFT

a consequence of (i) a traffic spike, (ii) a software bug, or (iii) a security breach that consumes
system resources. The system administrator can take several actions: she could do nothing,
which could have negative effects on user experience, user privacy, and ultimately revenues.
Alternatively, she could reboot the system, at the cost of existing clients, with some chance of
resolving the issue. Or she could take the system down, investigate what went wrong, and take
time-consuming steps to maximize the likelihood that the issue is resolved. These dilemmas are
faced by system administrators on a regular basis. System administrators are not the only ones
that face such security-availability tradeoffs; similar dilemmas exist in every deployed system
where resources are limited [17] and figuring the right balance is currently an open research
question (see for example, [38]).

In this chapter we investigate how an online service provider should respond to observable
changes in the system—whether direct evidence of a malware infection or performance degra-
dation that merely suggests the possibility of an infection—in order to maximize revenue after
accounting for security losses. In essence, we develop a mathematical model that addresses the
question of “what level of threat necessitates a response?” At a first glance, it may appear that
removing malware as early as possible is always revenue-optimal: early cleanups reduce aver-
age security costs, minimize performance degradation, and lead to less time-consuming cleanup
times. However, frequent cleanup procedures can be detrimental, as they can increase the fre-
quency at which jobs are discarded and lead to more downtime (even if individual downtimes are
shorter).

We quantify this tradeoff by presenting a stylized, but detailed Markovian stochastic model
of the service provider’s operations and vulnerability to malware. Customers wait in a queue for
service and pay a price that depends on the system’s historic average response time. Over time,
the system becomes infected by malware in stages. Each successive malware state causes greater
security losses, further slows down service, and takes longer to clean up. Undertaking a cleanup
action requires discarding all jobs currently in the system (the customers are compensated), and
taking the system offline for a prolonged (random) period of time, before resuming service.
Using exact stochastic analysis, we quantify the revenue rate associated with cleaning up the
system at each stage and determine the optimal cleanup policy.

In reality, malware is often difficult to detect, so we also consider the case where performance
degradation can occur due to reasons other than malware, and only the service rate is visible to the
service provider; the malware state is hidden. By observing the service rate, the service provider
can infer probabilistic beliefs regarding malware infection and take cleanup actions based on the
duration of time spent in the current performance degradation state.

Both the visible and hidden malware models provide an analytic challenge. In order to quan-
tify the revenue rate under each potential policy, we must understand not only the relative pro-
portion of time spent in each malware state, but also the mean number of jobs in the system. We
determine this quantity by finding the exact limiting probability distribution of a continuous time
Markov chain that simultaneously tracks the number of jobs in the system (an unbounded quan-
tity) and the system’s current malware state. This is a quasi-brith-death process Markov chain
with a two-dimensional state space that is infinite in one dimension. While chains of this form
are notoriously difficult to analyze, we employ a novel adaptation of the Clearing Analysis on
Phases (CAP) methodology—developed in Chapter 2—to obtain the exact limiting probability
distribution, by which we obtain exact revenues under various cleanup policies.

37

April 22, 2016
DRAFT

While problems closely related to malware cleanup have been addressed in the literature
(see, for example, [79]), to date work in this area has focused on heuristic solutions. We are
the first to introduce and solve a mathematical model for the malware cleanup problem. Aspects
of our model resemble models studied in the literature on the machine interference problem
and condition-based maintenance, but with several distinguishing features (see Section 3.2 for
details).

Our primary contributions are four-fold: (i) on the modeling front, we provide the first
stochastic model for determining when an online service provider should perform cleanups; (ii)
on the theoretical front, we derive the revenue rate for various cleanup policies in closed form
– this requires solving a complex quasi-birth-death process, which requires first developing an
adaptation of the CAP method; (iii) on the practical front, we provide a decision tool that allows
practitioners to evaluate optimal cleanup policies for their systems; (iv) on the case study front,
we use our decision tool to highlight some interesting cases and insights by studying parameter
sets provided by the security company ForAllSecure, Inc.

The remainder of the chapter is structured as follows. In Section 3.2, we review the related
literature. In Sections 3.3 and 3.4 we present, solve, and show results for the visible and hidden
malware models, respectively. In Section 3.5, we highlight the importance of exact analysis
by comparing the effectiveness of our technique to a technique making use of a simplifying
approximation. We conclude in Section 3.6.

3.2 Literature Review

To date, problems very closely related to the malware cleanup problem have been addressed in
the computer security literature only in terms of heuristic approaches. A notable example is in
the work of [79], which proposes a policy where a subset of the servers being used by service
provider are rotated out for cleaning, while ensuring that enough servers are running at any
given time. This policy is not a result of stochastic analysis. By contrast, our model assumes
a single server system, or a system where the servers work together and are prone to becoming
simultaneously compromised (e.g., due to unknown exploitable bugs that are common to all
servers).

The bulk of the literature on the stochastic analysis of malware and intrusions focuses on ei-
ther malware propagation (see for example, [56]) or intrusion detection (see for example, [132]).
Neither stream of work is applicable to our problem, where the focus is on maintaining and
removing potential infections from a single vulnerable system.

Although the application is different, the literature on the repair and maintenance of ma-
chines is analytically related to our work. We briefly review the related literature on machine
interference problems and condition-based maintenance in Sections 3.2.1 and 3.2.2, respectively.
Finally, in Section 3.2.3, we provide a little background on the CAP method for solving quasi-
birth-death chains, and we explain why alternative analytical methods in the literature are not
suitable for our problem.

38

April 22, 2016
DRAFT

3.2.1 Machine interference problems

The classical machine interference problem, also known as the machine repairman problem (see
[67] for a survey), features n machines and r workers. Machines occasionally break down, and
a worker can spend some time with a machine and restore it. If the number of machines that
have broken down at any point exceeds the number of workers r, then some machines will have
to wait until they go into repair (e.g., the machines interfere with one another). When machines
exhibit heterogeneity, the problem is to identify which machines should be repaired in any given
situation.

In contrast, our problem involves only a single server (machine), or equivalently a set of
servers that work together and become compromised together. Many successful cyber attacks
involve exploiting a fundamental software-level problem, and therefore an entire system might
become infected, or otherwise degrade in performance, at the same time. Therefore, the malware
cleanup problem asks the question of when to repair a system, rather than which of many sub-
systems (machines) to repair. Nonetheless, there is a small body of work within this stream of
literature which, like our work, features potentially unbounded queues. The analysis of problems
with multiple machines subject to breakdowns often requires the analysis of a quasi-birth-death
process Markov chain. Our Markov chain has certain features, however, that make it distinct
from the works cited below. For example, our Markov chain features infinite collections of
states which transition directly to one of several states in the finite “non-repeating portion” of
the Markov chain, corresponding to the fact that all customer requests (jobs) must be discarded
when a cleanup procedure is initiated.

In [30], the machines are servers in a multi-server queueing system, each contributing its
own service rate to serving the jobs, and each with its own breakdown and repair rates. The
goal is to repair servers in such a manner than the total service rate is maximized. The analysis
of this problem requires solving for the limiting probability distribution of a quasi-birth-death
process Markov chain. In general, the chains required for this problem do not have closed-form
solutions, as the solutions require solving higher-order polynomials. The authors use the spectral
expansion method to obtain numerical solutions in this setting. A similar model is considered in
[128], with each server serving its own parallel queue.

In [44], the machines play the role of jobs in a single server queueing system, coming from
two classes, one from a finite population (forming a closed system), and the other from an infinite
population (forming an open system), with the infinite population having priority over the finite
population. The descriptive analysis of this model requires solving for the limiting probability
distribution of a quasi-birth-death process Markov chain, falling within the category of chains
that can be solved via the CAP method. The limiting probability distribution is determined
explicitly using eigenvalues, which the CAP method invokes implicitly.

3.2.2 Condition-based maintenance

Condition-based maintenance problems ask when one or more failure-prone components of a
system should be repaired. These components will degrade in performance over time. One must
determine at which condition level one or more machines must be repaired. There is a natural
tradeoff between repairing components early and often (preventative maintenance) and repairing

39

April 22, 2016
DRAFT

components only when necessary (corrective maintenance). The former can yield more frequent
downtimes, while the latter leads to more severely degraded components and “unplanned down-
time.” For a recent overview of work in this area, see the Ph.D. thesis [133].

The malware cleanup problem proposed in this paper can be thought of as a type of condition-
based maintenance problem. The fundamental difference between our problem and the literature
in this domain is that we consider a single component system, where the component serves jobs
in a potentially unbounded queue. Therefore, our problem has an infinite state space, whereas
the work in this area primarily focuses on finite state spaces. Maintenance actions (cleanup
procedures) require the removal of all jobs in the queue, triggering an additional loss of revenue.
We can avoid tracking queue in our model, and instead resort to steady-state analysis at each
performance state, but this leads to an approximation that is often woefully imprecise (see Section
3.5).

Prior work, however, has considered condition-based maintenance in the presence of hidden
variables. For example, in [23] decisions and inferences are made in a condition-based mainte-
nance setting using a Hidden Markov Model (HMM), while [96] use a modified HMM where
the failure state is completely observable. In [102], an optimal stopping time framework is used
to approach a similar problem. Modeling differences and complexities that arise in our revenue
rate function, due to dealing with an infinite state space problem, make the methods used in these
papers unsuitable for our setting.

3.2.3 Methods for solving quasi-birth-death process Markov chains
Quasi-birth-death (QBD) processes are used in modeling a variety of phenomena. Despite the
difficulties associated with determining the limiting probability distributions of such Markov
chains, a variety of techniques are available for analyzing various subclasses of QBDs, with the
matrix-geometric methods being the most common (see the surveys in [105] and [93]). These
methods are typically implemented numerically and do not generally allow for closed-form so-
lutions.

Within the matrix-geometric stream of literature, there are special classes of Markov chains
that allow for closed-form solutions. One such method, given in [124], can be used to solve for
the limiting probability distribution of the chain describing our visible malware model, but is not
directly applicable to our hidden malware model, as phase transitions in the hidden case exhibit a
directed acyclic graph (DAG) structure, whereas the method in [124] is presented in the context
of tree-like phase transition structures.

Additional methods exist for solving QBD Markov chains in closed form. For example, in
[5], a general method is given for finding explicit solutions to a large class of chains, but this
method is again not directly applicable to chains exhibiting a DAG phase transition structure.
Another solution method is Recursive Renewal Reward (RRR) (see [53] and [54]). While RRR
can find closed-form solutions for chains with a DAG phase transition structure, it only provides
means and transforms, rather than complete distributions.

In this paper we employ the Clearing Analysis on Phases (CAP) method, first introduced in
[43]. The CAP method yields exact closed-form solutions for the chain’s entire limiting proba-
bility distribution by viewing each phase of a QBD as acting like an M/M/1 model with clearing
events. This makes the CAP method a natural fit for our model, as it features clearing events

40

April 22, 2016
DRAFT

(correspond to the start of a cleanup procedure, which requires discarding all jobs). To the best
of our knowledge, this is the first applied work which makes use of the CAP method.

3.3 The Case of Visible Malware
When a host becomes infected by malware, there are two possibilities: (i) the system adminis-
trator knows of the infection and needs to make a decision regarding whether a cleanup process
should be initiated and (ii) the system administrator does not know that the host has been in-
fected. In this section, we deal with the first case, where malware infections are always visible.
While this case is certainly simpler, it is of interest for two reasons: (i) it provides a stylized
simplification of the malware problem, which will lend itself to easier analysis and interpretation
and (ii) it is an appropriate model for “unsophisticated malware,” which serves as more of a nui-
sance, than a real threat (i.e., malware that does not pose serious security threats, but still leads
to considerable performance degradation and service disruptions).

3.3.1 Visible Malware Model
In the visible malware model, the system can be in one of four states depending on the level of
malware, if any, that the system is infected with: normal (uninfected), bad, worse, and dead.
In each successive state, (i) the security cost rises, (ii) the performance level, or service rate,
becomes slower, and (iii) the amount of time necessary to clean the malware increases. For
tractability, all transition rates in this system are Markovian (i.e., memoryless).

Queueing model.

We consider a revenue-maximizing online service provider, facing a stream of incoming cus-
tomers. Customer requests (hereafter, jobs) arrive to a first-come-first-serve queue according to
a Poisson process with rate λ, and are served by a single server1 at some service rate µ (i.e., it
takes an average of 1/µ seconds to serve a job), which can change due to the state of the system;
service times are exponentially distributed. We let T be the response time experienced by a job
(i.e., T is the time elapsed from when the job first arrives until it either receives service or it is
discarded). We assume that the steady-state average response time, E[T]—which will be based
on the service provider’s decisions—is known to both the service provider and the customers
(e.g., via historically available data).

Visible malware evolution.

The server can become infected by malware in stages. Initially, the system is in the normal
state, but will become infected by bad malware after an amount of time that is exponentially
distributed with rate αbad (i.e., on average such a transition takes 1/αbad units of time to occur).
Similarly, there is a transition from bad to worse with rate αworse and from worse to dead with
rate αdead. We restrict attention to the case where malware infections occur in sequential stages,

1The single-server assumption is for simplicity; our methodology can accommodate multiple servers.

41

April 22, 2016
DRAFT

number of jobs, N

normal

bad

worse

dead

0 1 2 3 · · ·

0 1 2 3 · · ·

0 1 2 3 · · ·

0 1 2 3 · · ·

λ

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

Figure 3.1: The continuous time Markov chain (CTMC) tracking the malware state and the
number of jobs in the system, assuming no system administration. Transitions across malware
states preserve the number of jobs. The service rate drops with each successive malware state.
Note that since there are no cleanups, this chain is not ergodic.

and no stage can be skipped.2 The model’s accuracy can be increased by considering more than
these four states, but we maintain that this number of states allows for an appropriate level of
detail, given our aim of providing a stylized model.

Malware causes the service provider to incur losses (e.g., monetary theft, data theft, loss of
good will, etc.) due to having an insecure system. The average rate (in dollars per second) at
which the server incurs losses is 0, `bad, `worse, and `dead, in the normal, bad, worse, and dead
states, respectively, where 0 ≤ `bad ≤ `worse ≤ `dead. Malware also causes a decrease in the
service rate: the service rate is µfast, µslow, µslower, and µdead = 0 in the normal, bad, worse, and
dead states, respectively, where µfast ≥ µslow ≥ µslower > µdead = 0.3

The Markovian transition structures allow us to model the entire system as a continuous time
Markov chain (CTMC) tracking the malware state of the system along with the number of jobs in

2Our methodology can accommodate skipping malware states, and can even allow for multiple types of malware
that can simultaneously infect the system. The sequential escalation formulation of malware simplifies the exposi-
tion of the base technique and captures the real-world phenomena where “tamer” malware that is more likely to go
unnoticed is used as a scaffolding to deploy more disruptive software.

3Being in the dead state means that the service provider (and the customers) are unable to use the system, and
so the service rate has dropped to zero. Moreover, we assume that in all non-dead states, the system is stable: that
is µfast, µslow, µslower > λ.

42

April 22, 2016
DRAFT

the system. The CTMC for our model, assuming no cleanup events, is shown in Figure 3.1. Note
that without cleanup events, the resulting Markov chain is non-ergodic, as the number of jobs
will grow without bound once we reach the dead state. We next introduce the cleanup policies
that are available to us, which will lead to modifications of this chain that will make the chain
ergodic.

Visible malware cleanup.

A system infected by malware can be restored to full speed by a cleanup procedure during which
all existing jobs are discarded (refused service and refunded q), and the system stops admitting
jobs for a random duration of time. When the cleanup is complete, the system is restored to the
normal state and resumes accepting jobs. The length of time devoted to the cleanup procedure
depends on the current malware state, as more severe malware takes longer to remove. The
cleanup procedure lasts an amount of time that is exponentially distributed with rate βbad, βworse,
or βdead (i.e., average length 1/βbad, 1/βworse, or 1/βdead) when initiated in the bad, worse, or
dead states, respectively.4 The more severe the malware, the more time consuming it is to remove
(e.g., a simple reboot is not enough to restore a dead system back to normal). For simplicity, we
assume that there are no security losses during the cleanup procedure.5

In the setting with visible malware, we have the three following natural cleanup policies that
the service provider can employ to maintain their system:
• clean@bad: Clean once the system transitions to the bad malware state.
• clean@worse: Clean once the system transitions to the worse malware state.
• clean@dead: Clean once the system transitions to the dead malware state.

Each of these policies initiates a cleanup procedure only when the target malware state is
reached. More sophisticated policies are studied when we address hidden malware in Section
3.4.

Pricing and revenue model.

We assume that each customer is willing to pay a price

p ≡ q − c · E[T], (3.1)

in order for her job to be served, where
• q is the hypothetical price that customers would pay (in dollars) for a zero delay service,
• c is a parameter capturing customer delay sensitivities (in dollars per second),
• and E[T] is the expected response time (in seconds).

4We note that the cleanup durations can actually take on any other distribution (e.g., deterministic or uniform).
The analysis and results will remain unchanged, as long as the mean cleanup duration is given by 1/βbad, 1/βworse,
and 1/βdead when initiated in the bad, worse, and dead state, respectively.

5Our model can accommodate the case where there are security losses during the cleanup procedure without
additional difficulty. From a modeling perspective, security losses during the cleanup procedure could be associated
with good-will losses due to the service being down, tarnishing the reputation of the service provider.

43

April 22, 2016
DRAFT

Since the service provider seeks to maximize revenue, the provider charges each customer
the full amount, p, upon arrival. Should a job be discarded (either while waiting in the queue or
while in service), the customer is refunded q (i.e., she pays nothing and keeps q− p = c ·E[T] as
compensation for waiting some time before being informed that her job will not be served) and
the firm incurs a revenue loss of c · E[T] for that customer.6

The objective of the service provider is to implement a malware cleanup policy so as to
maximize the rate at which it earns revenue; we can express the service provider’s revenue rate
by observing that the service provider earns q for each customer that completes service, while
incurring a loss of c per second for each job in the system (whether or not that customer is
ultimately served; recall that customers whose jobs are not served are still compensated c ·E[T]),
and potentially incurring additional security losses each second. Hence, the server’s revenue rate
is

R ≡ qχ− c · E[N]− L, (3.2)

where q and c are as previously defined and
• χ is the system’s throughput, or average rate at which jobs are served,
• E[N] is the steady-state expected number of jobs in the system, and
• L is the average rate at which the service provider incurs security losses.

We shall see that all three of χ, E[N], and L will depend on the service provider’s decisions for
combating malware and maximizing revenue.

3.3.2 Visible Malware Analysis
In order to analyze R, it is helpful to define some additional notation. We define πnormal, πbad,
πworse, and πdead to be the limiting probability associated with the (i.e., the long-run steady-state
proportion of time spent in) normal, bad, worse, and dead states (ignoring time spent in cleanup
procedures), respectively, under any of the policies of interest. From the definition of our policies,
we can immediately observe that πbad = 0 under the clean@bad policy, πworse = 0 under both
the clean@bad and clean@worse policies, while πdead = 0 under all policies. Recalling that
`bad, `worse, and `dead are the average rates at which the server incurs losses in the bad, worse,
and dead states, respectively, the overall average security loss rate, L, may be reformulated as

L = `badπbad + `worseπworse + `deadπdead.

Using the new notation defined above, we can writeR as follows:

R = qχ− c · E[N]− L
= qχ− c · E[N]− (`badπbad + `worseπworse + `deadπdead)

= qχ− c · E[N]− `badπbad − `worseπworse,

6Equivalently, each customer might be refunded an amount such that the customer nets c ·T , where T is the exact
amount of time the customer waited before her job was terminated. Since we are only concerned with the service
provider’s expected revenue rate, this modified assumption would leave the analysis unchanged.

44

April 22, 2016
DRAFT

establishing the fact that `dead is irrelevant to the revenue rate under our assumption that a system
will never be permitted to persist in the dead state under any policy. In order to determine R
for each of the policies of interest, it remains to determine χ, E[N], πbad, and πworse, under these
policies. While πbad and πdead can be found by analyzing a finite-state Markov chain tracking
only the malware state of a system, the exact determination of χ and E[N] require analyzing a
two-dimensional infinite state Markov chain.

number of jobs, N

Phase 0: normal

Phase 1: bad

Phase 2: worse

dead

0 1 2 3 · · ·

0 1 2 3 · · ·

0 1 2 3 · · ·

clean

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdead

λ

λ

λ

µ

µslow

µslower

αbad

αworse

αdeadβdead

Figure 3.2: The continuous time Markov chain (CTMC) tracking both the malware state and the
number of jobs under the clean@dead policy. Each phase (pictured as a “row” of states) is an
infinite collection of states (tracking the number of jobs, N) associated with one of the malware
states. Transitions from one phase to another preserve the number of jobs and always move to
a higher-numbered phase (pictured as “downward”). Rather than transitioning to another phase,
the states in Phase 2 transition to the clean state, where all jobs are discarded.

In order to find these quantities, we use the Clearing Analysis on Phases (CAP) method. In
the interest of brevity, we primarily restrict attention to analyzing the most complicated policy,
clean@dead. The analysis of the clean@dead policy requires examining more malware states
than the the other policies, and so the analysis of the simpler clean@bad and clean@worse
policies follow from straightforward variants of the same approach. For each cleanup policy we
view our model as a CTMC with a state space tracking the malware state and the number of jobs
present in the system. Figure 3.2 shows the CTMC corresponding to the clean@dead policy.

Each malware state corresponds to a phase of the CTMC, an infinite collection of states
that comprise a birth-death process (with arrivals with rate λ and departures with some rate µ,

45

April 22, 2016
DRAFT

depending on the phase), but with additional transition rates to other phases. For example, in
the clean@dead CTMC, Phases 0, 1, and 2 correspond to the normal, bad, and worse malware
states, respectively. We also introduce the clean malware state, which captures when the system
is undergoing a cleanup procedure. The clean state is a single state, rather than an entire phase,
as there are no jobs to track (i.e., N = 0) when cleaning.

We call attention to the fact that transitions only exist from lower-numbered phases to higher-
numbered phases, which is essential for obtaining exact solutions via the CAP method. The CAP
method treats each phase as an M/M/1 clearing model—an M/M/1 chain with identical rates from
each state leading to a clearing event—where clearing events either lead to a higher-numbered
phase or directly to the clean state.

In order to apply the CAP method, it is helpful to introduce the following notation:
• π(m,j) is the limiting probability of being in Phase m with j ≥ 0 jobs in the system,
• πclean is the limiting probability of being in the clean state,
• µm is the service rate in Phase m (i.e., µ0 = µfast, µ1 = µslow, µ2 = µslower), and
• αm is the rate at which the system leaves Phase m (i.e., α0 = αbad, α1 = αworse, α2 =
αdead).

We will solve for limiting probabilities in the following form

π(m,j) =
m∑
k=0

am,kr
j
k,

• where rk is shorthand notation for the following base term associated with Phase k:7

rk ≡
λ+ µk + αk −

√
(λ+ µk + αk)2

2µk
;

• am,k is a quantity capturing the relationship between Phasesm and k, where 0 ≤ k ≤ m ≤
2.

This form is particularly useful as the probability of being in a particular malware state with j
jobs in the system is represented as a linear combination of base terms, rk (one associated with
each of the preceding and current malware states), each raised to the power of j, where the am,k
coefficients are the weights of this linear combination. Informally, the am,k coefficients capture
a relationship between Phase m and Phase k. Note that neither am,k, nor rk depend on j. This
form also allows for the convenient computation of E[N] and χ, via the use of standard infinite
series.

Determining the complete limiting distribution of the clean@dead CTMC requires only de-
termining the am,k coefficients, together with πclean. These variables, together with the redundant
π(m,0) variables, are the solutions to a system of equations, which are a combination of balance
equations and relationships which are derived via the CAP method. In [43], the CTMCs of inter-
est do not feature clearing events which return directly to the non-repeating portion (in the case
of the clean@dead policy, these are the transitions with rate αdead from Phase 2 to the clean

7Our method requires that all rk be distinct, which is the case for all but a zero measure set of parameter settings
(for the application of the CAP method when this is not the case, see [43]).

46

April 22, 2016
DRAFT

state), although it is mentioned that the CAP method can be extended to cover such transitions.
We adapt the CAP method to allow it to apply to such CTMCs by modifying the balance equation
associated with πclean to take into account the additional transitions into πclean and by considering
αdead as a component of α2, the total outgoing transition rate leaving Phase 2 (in fact, in this case,
we simply have αdead = a2, although this is a simplification that will not necessarily apply in all
settings, such as when malware can be hidden). This adaptation of the CAP method yields the
following system of equations that must be satisfied by the limiting probability distribution and
the am,j coefficients:

a0,0 = π(0,0)

a1,0 =
r0r1α0a0,0

(λ− µ1r0r1)(r0 − r1)

a1,1 = π(1,0) − a1,0

a2,0 =
r0r2α1a1,0

(λ− µ2r0r2)(r0 − r2)

a2,1 =
r1r2α1a1,1

(λ− µ2r1r2)(r1 − r2)

a2,2 = π(2,0) − a2,0 − a2,1

π(0,0) =
βdeadπclean + µ0r0a0,0

λ+ α0

π(1,0) =
µ1(r0a1,0 + r1a1,1) + α0π(0,0)

λ+ α1

π(2,0) =
µ2(r0a2,0 + r1a2,1 + r2a2,2) + α1π(1,0)

λ+ α2

πclean =
α2

βdead

(
a2,0

1− r0
+

a2,1

1− r1
+

a2,2

1− r2

)
1 = πclean +

a0,0 + a1,0 + a2,0

1− r0
+
a1,1 + a2,1

1− r1
+

a2,2

1− r2
.

Closed-form solutions for the limiting probability distribution of the CTMC can be obtained
by symbolically solving the system above, although the resulting expressions will not be concise.
Most importantly, the solutions will be exact, rather than approximations. With the limiting
probabilities determined in a convenient (if not concise) form, we can compute E[N] and χ
in terms of πclean and the am,k coefficients. Starting with E[N], we use straightforward sum

47

April 22, 2016
DRAFT

identities to find that

E[N] =
∞∑
j=0

j · P(N = j)

=
∞∑
j=0

j(π(0,j) + π(1,j) + π(2,j))

=
∞∑
j=0

j
(
(a0,0r

j
0) + (a1,0r

j
0 + a1,1r

j
1) + (a2,0r

j
0 + a2,1r

j
1 + a2,2r

j
2)
)

=
∞∑
j=0

(
(a0,0 + a1,0 + a2,0)jrj0 + (a1,1 + a2,1)jrj1 + (a2,2)jrj2

)
=

(a0,0 + a1,0 + a2,0)r0

(1− r0)2
+

(a1,1 + a2,1)r1

(1− r1)2
+

a2,2r2

(1− r2)2
.

Next, we must compute χ, the rate at which jobs are served, excluding those jobs that are
discarded from service, due to being in the system at the start of a cleanup procedure. We
observe that every job that enters the system is eventually either served or discarded. Moreover,
jobs enter the system only when the system is not in the clean state, so the long run average
arrival rate is λ(1 − πclean). Hence, if η is the rate at which jobs are discarded from the system,
then χ = λ(1 − πclean) − η: the rate at which jobs are served is the rate at which jobs enter the
system less the rate at which jobs are discarded.

In order to compute χ, we must compute η: we observe that since jobs are only discarded
when the system transitions to clean, η is simply the rate at which the system transitions to clean
multiplied by the expected number of jobs in the system at that time. Under the clean@dead
policy, this rate is αdead ·πworse: the product of the probability that the system is in the worse state
and the rate with which the system transitions from worse to clean. Meanwhile, the expected
number of jobs at the time of clearing is E[N |worse], the expected number of jobs in the system
conditioned on being in the worse state. Consequently, we have

χ = λ(1− πclean)− η
= λ(1− πclean)− αdeadπworse · E[N |worse]

= λ(1− πclean)− αdead

∞∑
j=0

jπ(2,j)

= λ(1− πclean)− αdead

(
a2,0r0

(1− r0)2
+

a2,1r1

(1− r1)2
+

a2,2r2

(1− r2)2

)
.

Computing R also requires finding πbad and πworse. These values can be found by analyzing
a finite state Markov chain (that cyclically alternates between the normal, bad, worse, and clean
states with the appropriate rates), but we can also express these quantities, as well as πnormal, in

48

April 22, 2016
DRAFT

terms of the am,k coefficients as follows:

πnormal =
∞∑
j=0

π(0,j) =
a0,0

1− r0

,

πbad =
∞∑
j=0

π(1,j) =
a1,0 + a1,1

1− r1

,

πworse =
∞∑
j=0

π(2,j) =
a2,0 + a2,1 + a2,2

1− r2

.

Finally, we have the following exact determination of R under the clean@dead policy, again in
terms of πclean and the am,k coefficients:

R = qχ− c · E[N]− `badπbad − `worseπworse

= λq(1− πclean)− qαdead

(
a2,0r0

(1− r0)2
+

a2,1r1

(1− r1)2
+

a2,2r2

(1− r2)2

)
− c

(
(a0,0 + a1,0 + a2,0)r0

(1− r0)2
+

(a1,1 + a2,1)r1

(1− r1)2
+

a2,2r2

(1− r2)2

)
− `bad

(
a1,0 + a1,1

1− r1

)
− `worse

(
a2,0 + a2,1 + a2,2

1− r2

)
.

We can now use our exact expression for the revenue rate,R, in order to investigate the effect of
various parameters on both revenue and on the optimal choice of clean-up policy.

3.3.3 Visible Malware Results

In this section, we use our exact analyses of the revenue rate, R, under the clean@bad,
clean@worse, and clean@dead policies in order to determine the impact of various parame-
ters on the revenue and on the choices of optimal policy. Our calculations are exact modulo
numerical precision (including measures taken to avoid badly condition matrices).

Due to our large parameter space (12 dimensions after normalizing time and money), we
cannot exhaustively study the impact of all parameters on R. While no single parameter set
is representative of all systems, after consulting with the security company ForAllSecure, Inc.,
we chose a “default” parameter set that would be realistic in actual deployments. The default
parameter set allows us to keep most parameters fixed while varying one parameter at a time,
in order to observe the impact of various real-world phenomena on our system. This parameter
set, P1 (presented in Table 3.1), corresponds to the case of a mid-sized service provider facing
frequent customers that has intermediate susceptibility to attacks (on the order of hours, days, and
weeks for the three levels of infection, with cleanups taking minutes, hours, or days). Security
loss rates are relatively low, as expected for visible malware, which is often a nuisance rather than
extremely dangerous. Under the unaltered P1 parameter set, the clean@bad policy dominates
the clean@worse policy, which dominates the clean@dead policy.

49

April 22, 2016
DRAFT

Visible Malware Default Parameter Set
1/second $ $/second

λ µfast µslow µslower αbad αworse αdead βbad βworse βdead q c `bad `worse

P1 10 30 14 10.1 10−4 10−5 10−6 10−2 10−4 10−5 1 .05 .01 .05

Table 3.1: Table of the default parameter set, P1, used in this section. Recall the various families
of parameters: λ (arrival rate), µ (service rates), α (malware infection rates), β (cleanup rates), q
(hypothetical price of delay-free service), c (waiting cost rate), and ` (security loss rates).

100

200

300

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 0.01 0.02 0.03 0.04

Waiting cost rate, c ($/second)

clean@bad

clean@worse

clean@dead

Figure 3.3: Revenue rate, R, in millions of dollars per year, under the default parameter set P1,
as a function of the waiting cost parameter, c; clean@bad clearly outperforms the other policies,
and the impact of c on clean@bad and clean@worse is negligible compared to the impact of c
on clean@dead.

The impact of the waiting cost rate.

We first investigate the impact of the waiting cost rate, c, on the revenue rate R (see Figure
3.3). Here we see that for all policies there is a linear decline in R as a function of c, which
is expected from the definition of R. Right away, it is obvious that clean@bad is the optimal
performing policy in terms of revenue maximization over all c. This is largely due to the fact that
cleanup times become substantially higher as the system goes into the worse and dead malware
states, which leads to greater downtime. Finally, we realize that the impact of c is much more
pronounced on clean@dead, due the fact that in the worse state (which is avoided by the other
two policies), the load is very high (about 99%), leading to substantially longer waiting times.
The takeaway is that the more impact a malware state has on performance, the more important
the waiting cost becomes.

50

April 22, 2016
DRAFT

100

200

300
A

nn
ua

lr
ev

en
ue

(m
ill

io
ns

of
$)

0 2000 4000 6000 8000

Mean time to bad malware infection, 1/αbad (fixing 1/αbad = 10/αworse = 100/αdead)

clean@bad

clean@worse

clean@dead

Figure 3.4: Revenue rate, R, in millions of dollars per year, under the default parameter set
P1, as a function of the mean time to a bad malware infection, 1/αbad, keeping 1/αbad =
10/αworse = 100/αdead fixed; clean@bad clearly outperforms the other policies, but the revenue
under clean@worse approaches that of clean@bad as infections become less frequent.

The impact of infection rates.

Next, we investigate the impact of the malware infection rates on R. We fix the relationship
1/αbad = 10/αworse = 100/αdead and observe how R changes as we vary these parameters
(see Figure 3.4). Here we observe that clean@bad is again the optimal policy over the entire
parameter range. However, as infections become rarer and rarer, the clean@worse policy does
not lag too far behind clean@bad, with the difference in the revenue under these policies even-
tually vanishing. Improvement under the clean@dead policy, on the other hand, is much slower.
We can draw two conclusions from Figure 3.4. First, cleaning up as frequently as possible can
prevent escalation to more serious attacks, which means that detecting such attacks early (e.g.,
via intrusion detection) is valuable (and quantifiable in terms of annual revenue). In 3.4 we will
revisit the importance of knowing whether the system is compromised or not. Second, if attacks
are extremely infrequent, the effect of the choice of cleanup policy on revenue will not be sub-
stantial (so long as security loss rates are not too high, that is, so long as malware is primarily a
nuisance rather than extremely dangerous).

The impact of cleanup rates.

We proceed to investigate the impact of the cleanup rates on R. Here we leave βbad fixed, as
the first level of cleanup usually corresponds to something amounting to a system reboot, which
typically takes on the order of 100 seconds. However, we fix 1/βworse = 10/βdead, and vary
these parameters to observe how different cleanup times for the worse and dead malware states
might impact the revenue and the choice of optimal policy. For sufficiently low 1/βworse, the

51

April 22, 2016
DRAFT

100

200

300

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 2000 4000 6000 8000

Mean time to clean worse malware, 1/βworse (fixing 1/βworse = 10/βdead)

clean@bad

clean@worse

clean@dead

Figure 3.5: Revenue rate, R, in millions of dollars per year, under the default parameter set P1,
as a function of the mean time to clean worse malware, 1/βworse, keeping 1/βworse = 10/βdead

fixed; clean@bad is again the best policy except at very low values of 1/βworse, with the policies
diverging near linearly from one another as 1/βworse grows.

clean@worse policy can actually negligibly outperform the clean@bad policy, but once again,
the clean@bad policy proves to be dominant over the parameter range, and there is a nearly
linear decline in the revenue of all policies as the cleanup times grow larger, with clean@bad
not being impacted at all since it never has to clean at the worse and dead malware states.

In all cases examined, clean@bad is clearly the optimal policy and clean@dead is always
the worst. That said, we can crate artificial examples which reverse these trends, but these ex-
amples require parameters featuring unrealistically low levels of infection rates or fast cleanup
times that are unlikely to correspond to real system configurations. Hence, for the visible mal-
ware model, it is indeed in the interest of revenue to clean the system at the first sign of trouble.
We shall see that trends reverse for even reasonable systems under the hidden malware model.

Essentially, if you know you have been infected, you should clean up the system as soon as
possible. This observation validates common practices among practitioners when an infection
occurs. The best courses of action under hidden malware, however, will be much more subtle
and complex.

3.4 The Case of Hidden Malware

In this section we consider hidden malware, which is not detectable in the non-dead states.
This case is of interest because it more accurately models the types of malware that pose se-
rious threats to a system’s security. Attackers often want their attacks to go undetected, but
even stealthy malware attacks can have observable effects on the system, including performance
degradation. While the service provider cannot know whether they have been infected by mal-

52

April 22, 2016
DRAFT

ware or not, they can still monitor their system and observe performance degradation. However,
malware is not the only reason that a system may be suffering from performance degradation;
the degradation may be due to the system load, outdated software, or other external factors. For
this reason, we model performance degradation and malware separately. At any given time, the
system’s performance state is observable but its malware state is unobservable.

As in the previous section, we first introduce the hidden malware model, then present an
analysis, and conclude with select results, highlighting our observations.

3.4.1 Hidden Malware Model

In the hidden malware model, as in the visible malware model, the system can be in one of four
malware states: normal (uninfected), bad, worse, and dead, with each successive malware state
leading to higher security costs and slower performance. Additionally, a non-dead system can
be in one of three performance states: fast, slow, or slower, serving jobs at rates µfast, µslow,
and µslower, respectively. While the performance state can be observed by the service provider,
the malware state is, as the name suggests, hidden, unless the system is dead. However, there is
a correlation structure between the performance state and the malware state.8 In particular, we
assume that due to the resource-hungry nature of malware,9 a fast system is necessarily normal,
but a slow system can be either in the normal or bad state, and a slower system can be in any of
the non-dead states.

The queueing, pricing, and revenue models are identical to those in the visible malware case;
the objective remains to maximize the revenue rate, given by

R = qχ− c · E[N]− L = qχ− c · E[N]− `badπbad − `worseπworse. (3.3)

While the service rate of the system depends on the system’s performance state, it is the malware
state of the system determines the security loss rate L, as L directly depends on πdead and πbad,
and does not directly depend on πslow and πslower.

Hidden Malware Evolution

The server can become infected by malware and/or degrade in performance in stages, as shown
in Figure 3.6 (note that the chains of interest must still track the number of jobs), but only the
performance state is observable. Initially, the system is normal and fast. Performance degra-
dation occurring due to reasons other than malware causes a fast system to become slow with
rate γslow and a slow system to become slower with rate γslower. A system also evolves form
normal to bad to worse to dead with rates αbad, αworse, and αdead, respectively. Moreover, if a

8In the visible malware model proposed in the previous section of this paper, there is a perfect correlation
between the malware state and the performance state; in particular a fast system is always normal, a slow system
is always bad, a slower system is always worse. By contrast, the hidden malware model features an imperfect
correlation between malware and performance.

9Note that our framework can also model fully stealthy malware with no performance degradation. In this paper
we specifically investigate malware that has a performance degradation effect.

53

April 22, 2016
DRAFT

Performance (speed) state

M
al

w
ar

e
st

at
e

hidden

normal

bad

worse

dead

fast slow slower dead

fast slow slower

slow slower

slower

dead

αbad αbad αbad

αworse αworse

αdead

γslow γslower

γslower

Figure 3.6: The CTMC for the evolution of performance degradation and malware infection on
a system under the hidden malware model without system administration. The number of jobs
have been omitted, but can be viewed as being tracked by states coming “out of the page” in
the third-dimension. The system transitions from fast to slow with rate γslow and from slow to
slower with rate γslower. The system transitions from normal to bad with rate αbad (limiting the
maximum speed to slow), from bad to worse with rate αworse (limiting the maximum speed to
slower), and from worse to dead with rate αdead. Unless the system is dead, the malware state
is hidden.

fast system just became bad, the resource-hungry nature of the malware will cause it to imme-
diately become slow (a slow or slower system does not change speed when it becomes bad).10

Similarly, if a slow system just became worse, it immediately becomes slower. Unlike the other
malware states, the dead state is not hidden.

Hidden malware cleanup

A system potentially infected by hidden malware can be purged of malware (if any) and restored
to full speed by a cleanup procedure. As before, such a cleanup procedure requires that all
existing jobs are discarded from the system (customers are refused service and refunded q), and
the system stops admitting customers for a duration of time until the system is restored to the

10If a system is already slow when it becomes bad, we assume that the system is slow enough to obfuscate the
impact of malware on performance, and hence does not cause a drop in performance. Alternatively, we could model
this complexity with additional states if desired.

54

April 22, 2016
DRAFT

normal and fast state. The length of time devoted to the cleanup procedure depends on the
worst possible malware that could have infected the system—based on our model—and hence,
this duration actually depends on the performance state. We call this the pessimistic cleanup
assumption (e.g., a normal slower system takes the same amount of time to clean as a worse
slower system). The cleanup procedure lasts an amount of time that is exponentially distributed
with rate βbad, βworse, or βdead when initiating the procedure in the slow, slower, or dead states,
respectively;11 that is, due to the pessimistic cleanup assumption, we clean up a slow system as
if it was bad and a slower system as if it was worse. For simplicity, we again assume that there
are no security losses during the cleanup procedure.

In the setting with hidden malware, we can again consider the clean-up policies that we
examined in the case of visible malware, but modifying them to respond to a change in the
performance state, rather than the now unobservable malware state. This results in the following
policies:

• clean@slow: Clean once the system transitions to the slow malware state.
• clean@slower: Clean once the system transitions to the slower malware state.
• clean@dead: Clean once the system transitions to the dead malware state.

Hidden malware cleanup: delayed policies

Motivated by the idea that the service provider may be content with slower performance, but not
with malware infections, we introduce policies that delay cleanup actions after transitioning to a
particular cleanup state. For example, if αbad � γslow, a transition to the slow state is unlikely to
suggest that the system has been infected by bad malware, and one can persist in a slow system
for a considerable period of time with little risk of being unknowingly infected. The delayed
policies we consider are as follows:

• delayed-clean@slow(ξ): After the system transitions to the slow state, wait an amount
of time that is exponentially distributed with rate ξ, then clean; if a transition to slower
occurs, clean immediately.

• delayed-clean@slower(ξ): After the system transitions to the slower state, wait an amount
of time that is exponentially distributed with rate ξ, then clean; if a transition to dead oc-
curs, clean immediately.

• hybrid-delay(ξ1, ξ2): After the system transitions to the slow state, wait an amount of
time that is exponentially distributed with rate ξ1, then clean, unless a transition to slower
occurs, in which case, disregard the wait so far and instead wait an amount of time that is
independently exponentially distributed with rate ξ2, then clean up the system; if a transi-
tion to dead occurs, clean immediately.

Interpreting exponentially distributed random waiting times with rates 0 or∞ to be the con-
stant durations of infinite and zero time, respectively, we have the following observations:
• delayed-clean@slow(∞) corresponds to clean@slow,

11As in the case of visible malware, the analysis and results remain unchanged if the cleanup durations are drawn
from non-exponential distributions with the same means.

55

April 22, 2016
DRAFT

• delayed-clean@slow(0) and delayed-clean@slower(∞) correspond to clean@slower,
• hybrid-delay(ξ,∞) corresponds to delayed-clean@slow(ξ),
• delayed-clean@slower(0) corresponds to clean@dead, and
• hybrid-delay(0, ξ) corresponds to delayed-clean@slower(ξ) for all rates ξ.
Consequently, the family of policies hybrid-delay(ξ1, ξ2) spans the other two delay-based

policies, along with clean@slow, clean@slower, and clean@dead, and it is sufficient to deter-
mineR under this policy.

If the delays were deterministic rather than random, one could potentially obtain even greater
revenue rates: a random delay is a lottery over a continuum of deterministic delays (with a
potentially new outcome after every cleanup event), and so the best policy among the support of
this lottery will do no worse than the lottery itself. However, we restrict attention to exponentially
distributed delays for the purpose of tractability, in order to maintain a Markovian structure.12

Hidden malware cleanup: dynamic policies

Thus far we have only considered policies that make use of the performance state of the system,
but we can also make cleanup decisions based on j, the instantaneous number of jobs in the
system. For example, we may wish to perform cleanups only when the queue length is relatively
short in order to avoid discarding too many jobs at the start of each cleanup procedure.

To this end, we extend the class of cleanup policies under consideration to include dynamic
policies that take the current number of jobs, j, into account. There are a rich family of such
dynamic policies in this space. For example, when there are j jobs in the system, we can clean
up a system after waiting an amount of time that is exponentially distributed with rate f(j) or
g(j) when we are in the slow or slower performance state, respectively. For such policies, when-
ever we transition to a new performance state or the number of jobs in the system changes, we
disregard the wait so far and begin to wait for a new and independently drawn random duration
of time before cleaning. Determining the optimal policy among this rich class would require
solving an intractable dynamic program.

In this paper, we will instead consider two much simpler families of dynamic policies that
are variants of the hybrid-delay(ξ1, ξ2) family of delay policies. We call the policies in these
families threshold policies, as they depend on a threshold parameter, Θ. The threshold policies
are defined as follows:

• hybrid-delay≥Θ(ξ1, ξ2): After the system transitions to the slow state, wait an amount of
time that is exponentially distributed with rate ξ1, then clean, unless a transition to slower
occurs. Once the total amount of time in the slower state with j ≥ Θ jobs exceeds an
(independent) exponentially distributed random variable with rate ξ2, clean the system; if
a transition to dead occurs, clean immediately.

• hybrid-delay≤Θ(ξ1, ξ2): This is the same as the preceding policy, except when in the
slower state, we clean based on having spent sufficient time with j ≤ Θ.

12One could more closely approximate deterministic delays by implementing them as multi-phase Erlang dis-
tributions, which approach deterministic distributions as the number of (identical) phases tends to infinity, while
keeping the mean fixed.

56

April 22, 2016
DRAFT

The hybrid-delay≥Θ(ξ1, ξ2) policy (respectively, the hybrid-delay≤Θ(ξ1, ξ2) policy) is like
the hybrid-delay(ξ1, ξ2) policy, except that the transition from the slower state to the corre-
sponding cleanup state occurs with rate ξ2 only when the number of jobs in the system is at
least Θ (respectively, at most Θ); otherwise, this transition cannot occur. Consequently, the
hybrid-delay≥0(ξ1, ξ2) and hybrid-delay≤∞(ξ1, ξ2) policies correspond to the
hybrid-delay(ξ1, ξ2) policy.

Finally, we introduce one additional dynamic policy. The drain@slower policy is like the
clean@slow policy, except that when the system transitions to the slower state, a cleanup proce-
dure will only be initiated if there are j = 0 jobs in the system. Otherwise, we must wait until the
system is empty, but while in the slower state no new jobs are admitted into the system (i.e., the
arrival rate drops from λ to 0). Note that unlike the other policies, this policy exhibits an element
of admission control.

Hidden malware cleanup: the omniscient policy

Finally, we also consider the omniscient cleanup policy, a hypothetical policy that is aware of the
malware state of the system. The omniscient policy is of interest as it serves as a benchmark that
we compare our other policies to and also allows us to quantify the benefits of perfect intrusion
detection. This policy will clean-up the system as soon as it transitions to a particular subset of
the joint malware-performance states, choosing the (for simplicity, non-delaying, non-dynamic)
policy that maximizes R among those that are feasible in a “visible malware setting” under the
“hidden malware correlation structure” presented in this setting. In particular, omniscient results
in one of the following policies, depending on the parameters of interest:

• a variant of (i) clean@slow or (ii) clean@slower, where the cleanup duration depends on
the malware state when the system transitions to the slow or slower performance state,13

effectively ignoring the pessimistic cleaning assumption
• (iii) clean@bad or (iv) clean@worse, which require omniscience because malware is

hidden
• (v) a hybrid of clean@slower and clean@bad, which initiates a cleanup procedure as soon

as the system enters either the slower performance state or the bad malware state
• (vi) a more restrictive version of clean@slower, which initiates a cleanup procedure on a

slower system only if it is also infected (i.e., in the bad or worse state)
• (vii) clean@dead, which does not require omniscience, but is possibly (albeit rarely) op-

timal.

We reiterate that the omniscient policy will mimic whichever of these policies maximizes the
revenue rate for a particular parameter set.

With our cleanup policies defined, we turn our attention toward analyzing the revenue rate,
R, under these policies.

13For these variants, we assume that a cleanup of a normal system is assumed to take as long as the cleanup of a
bad system (i.e., the duration is exponentially distributed with rate βbad); we assume that βbad is the fastest possible
cleanup rate.

57

April 22, 2016
DRAFT

3.4.2 Hidden Malware Analysis
We restrict attention to the analysis of R under the hybrid-delay(ξ1, ξ2) class of policies. With
the exception of the dynamic policies,14 revenues under the other policies can be computed by
taking the appropriate limits (and in the case of omniscient, by choosing the best among several
candidate policies).15

As in the case of visible malware, we wish to compute,

R = qχ− c · E[N]− `badπbad − `worseπworse,

and the difficulty again lies in computing χ and E[N], as they again require the analysis of a
two-dimensional infinite state Markov chain (this time with six, rather than three, phases).

The first step in our approximation relies on determining the limiting probability associated
with the six joint malware-performance states (see Figure 3.6) and each of three separate clean
states: clean-short, clean-med, and clean-long, which return to the normal fast state with rates
βbad, βworse, and βdead, respectively. For notational convenience we label the phases and states of
interest with the numbers 0–8, as follows:
• Phase 0 corresponds to the normal state of a fast system
• Phases 1 and 2 correspond to the normal and bad states of a slow system, respectively,
• Phases 3, 4, and 5 corresponds to the normal, bad, and worse states of a slower system,

respectively, and
• states 6, 7, and 8 correspond to clean-short, clean-med, and clean-long states, respec-

tively.
With this notation, we proceed to apply the Clearing Analysis on Phases (CAP) method to

the hidden malware model under the hybrid-delay(ξ1, ξ2) policy. The CTMC we study looks
like a more complicated version of the chain depicted in Figure 3.2 (from the analysis of the
clean@dead policy for the visible malware model), except that it consist of six phases, and
three cleanup states, with some transitions across phases “skipping over” intermediate phases,
and multiple phases transitioning directly to cleanup states. Our CTMC consists of an infinite
repeating portion and a finite non-repeating portion.

The repeating portion of our CTMC is made up of the six phases, one corresponding to
each of the joint malware-performance states, 0–5. Each phase is an infinite collection of states
making up a birth-death process tracking the number of jobs in the system. Each birth-death
process has an arrival rate of λ, and departure rate of µfast (in Phase 0), µslow (in Phases 1 and
2), or µslower (in Phases 3, 4, and 5). Each state in the repeating portion of the Markov chain is
denoted by (m, j), where m is the phase and j denotes the number of jobs in the system. We
observe that the transitions across these phases are unidirectional in nature (i.e., when moving
from one phase in {0, . . . , 5} to another, the phase number always increases), which makes the

14Revenues for the threshold policies, hybrid-delay≥Θ(ξ1, ξ2) and hybrid-delay≤Θ(ξ1, ξ2), are calculated by
following a modification of the procedure described in this section that involves expanding the non-repeating portion
of the Markov chain of interest to encompass all states where the number of jobs in the system is less than Θ.

15There can be computational advantages to determining R under the other policies directly (rather than taking
limits of R under the hybrid-delay(ξ1, ξ2) policies). Such direct calculations are possible through simple modifi-
cations to the analyses presented in this section.

58

April 22, 2016
DRAFT

number
of

job
s

tra
ck

ed
“o

ut of
pag

e”
Performance (speed) state

M
al

w
ar

e
st

at
e

hidden

normal

bad

worse

clean

fast slow slower dead

0 1 3

2 4

5

6 7 8

αbad αbad αbad

αworse αworse

γslow γslower

γslower

ξ1

ξ1

ξ2

ξ2

ξ2

αdead

βbad βworse βdead

Figure 3.7: The CTMC governing the system under the hybrid-delay(ξ1, ξ2) cleanup policy.
States and phases are labeled by the numbers 0–8, for notational convenience, with Phases 0–5
denoting the six joint malware-performance states, and states 6–8 denoting the three possible
clean states (clean-short,clean-med, and clean-long). The transitions due to intentional delays
imposed by the cleanup policy are shown in color for clarity. Note that each phase (denoted by
a thicker border) is actually an infinite collection of states that evolves according to a birth-death
process.

59

April 22, 2016
DRAFT

CTMC amenable to the CAP method. Moreover, transitions across these phases are independent
of the number of jobs in the system, with associated transition rates depicted in Figure 3.12
(e.g., a transition from Phase 2 to Phase 5 occurs with rate αworse, regardless of the number of
jobs in the system). When any such transition occurs the number of jobs in the system remains
unchanged.

The non-repeating portion of our CTMC is made up of the three cleanup states: clean-short
(6), clean-med (7), and clean-long (8). Unlike phases, these are single states. As these states
represent the system undergoing a cleanup procedure, they always transition directly to state (0,0)
(i.e., Phase 0 with an empty queue). Transitions to one of cleanup states from one of the phases
are independent of the queue length at the time of the transition, with associated transition rates
depicted in Figure 3.12. Once such a transition is made, the queue length is reset to zero (as the
jobs are discarded). As with transitions across phases, transitions from a phase to a cleanup state
are independent of the number of jobs in the system; the associated transition rates are depicted
in Figure 3.12 (e.g., a transition from Phase 6 to state 8 occurs with rate ξ2).

We use the following notation:
• π(m,j) is the limiting probability of being in Phase m ∈ {0, . . . , 5} with j ≥ 0 jobs
• π6, π7, π8 are the limiting probabilities of being in cleanup states 6, 7, and 8, respectively,
• µm is the service rate in Phase m (µ0 = µfast, µ1 = µ2 = µslow, µ3 = µ4 = µ5 = µslower),

and
• αm is the rate at which the system leaves Phase m:

? α0 = αbad + γslow

? α1 = αbad + γslower + ξ1

? α2 = αworse + γslower + ξ1

? α3 = αbad + ξ2

? α4 = αworse + ξ2

? α5 = αdead + ξ2.

We again solve for limiting probabilities in the form

π(m,j) =
m∑
k=0

am,kr
j
k,

with

rk ≡ λ+ µk + αk −
√

(λ+ µk + αk)2

2µk)

(where the rk values are assumed to be distinct). Determining the complete limiting distribution
of the CTMC requires determining the am,k coefficients (for 0 ≤ k ≤ m ≤ 5), together with
π6, π7, π8. These variables, together with the redundant π(m,0) variables, are the solutions to a
linear system of equations, which are a combination of balance equations, the normalization
equation, and relationships, which are derived via the CAP method. This system of equations
is more complicated than the corresponding system for the case of visible malware, because in
the present model, some phases can directly transition to more than one other phase and multiple

60

April 22, 2016
DRAFT

phases can transition to cleanup states. Consequently, one visits phases in a non-deterministic
order. The linear system is as follows:

a0,0 = π(0,0)

am,m = π(m,0) −
m−1∑
k=0

am,k (1 ≤ m ≤ 5)

a1,0 =
r0r1γslowa0,0

(r0 − r1)(λ− µ0r0r1)

a2,0 =
r0r2αbad(a0,0 + a1,0)

(r0 − r2)(λ− µ0r0r2)

a2,1 =
r1r2αbada1,1

(r1 − r2)(λ− µ1r1r2)

a3,k =
rkr3γslowera1,k

(rk − r3)(λ− µkrkr3)
(0 ≤ k ≤ 1)

a3,2 = 0

a4,k =
rkr4(γslowera2,k + αbada3,k)

(rk − r4)(λ− µkrkr4)
(0 ≤ k ≤ 2)

a4,3 =
r3r4αbada3,3

(r3 − r4)(λ− µ3r3r4)

a5,k =
rkr5αworse(a2,k + a4,k)

(rk − r5)(λ− µkrkr5)
(0 ≤ k ≤ 2)

a5,3 =
r3r5αworsea4,3

(r3 − r5)(λ− µ3r3r5)

a5,4 =
r4r5αworsea4,4

(r4 − r5)(λ− µ4r4r5)

π(0,0) =
1

λ+ α0
(βbadπ6 + βworseπ7 + βdeadπ8 + µ0r0a0,0)

π(1,0) =
1

λ+ α1

(
µ1

1∑
k=0

(rka1,k) + γslowπ(0,0)

)

π(2,0) =
1

λ+ α2

(
µ2

2∑
k=0

(rka2,k) + αbad(π(0,0) + π(1,0))

)

π(3,0) =
1

λ+ α3

(
µ3

3∑
k=0

(rka3,k) + γslowerπ(1,0)

)

π(4,0) =
1

λ+ α4

(
µ4

4∑
k=0

(rka4,k) + γslowerπ(2,0) + αbadπ(3,0)

)

π(5,0) =
1

λ+ α5

(
µ5

5∑
k=0

(rka5,k) + αworse(π(2,0) + π(4,0))

)

π6 =
ξ1

βbad

2∑
m=1

m∑
k=0

am,k

1− rk

π7 =
ξ2

βworse

5∑
m=3

m∑
k=0

am,k

1− rk

π8 =
αdead

βdead

5∑
k=0

a5,k

1− rk

1 =

(
5∑

m=0

m∑
k=0

am,k

1− rk

)
+ π6 + π7 + π8

In theory, one can obtain closed-form solutions for the limiting probability distribution of
the CTMC by symbolically solving the system above, although this solution will likely be very
unwieldy. This system can also be used to solve exact numeric solutions; various techniques can

61

April 22, 2016
DRAFT

be used to circumvent badly conditioned matrices. With the limiting probabilities determined in
a convenient form, we can compute E[N] and χ in terms of the π6, π7, π8 and am,k values. E[N]
is given as

E[N] =
∞∑
j=0

j · P(N = j) =
5∑

m=0

5∑
k=0

am,krm
(1− rk)2

. (3.4)

Recalling that η is the rate at which customers are discarded, and letting X(m) be the rate of
initiating a cleanup event in Phase m, that is

X(m) =

0, m = 0

ξ1, m ∈ {1, 2}
ξ2, m ∈ {3, 4}
ξ2 + αdead, m = 5,

(3.5)

we have the following expression for χ:

χ = λ(1− πclean)− η = λ(1− π6 − π7 − π8)−
5∑

m=0

m∑
k=0

X(m) · am,k
1− rk

. (3.6)

Computing R also requires finding for πbad and πworse. We can either analyze a finite-state
Markov chain or express these quantities (and πnormal) in terms of the am,k coefficients as follows:

πnormal =
∞∑
j=0

π(0,j) =
a0,0

1− r0

+
1∑

k=0

a1,k

1− rk
+

3∑
k=0

a3,k

1− rk
,

πbad =
∞∑
j=0

π(1,j) =
2∑

k=0

a2,k

1− rk
+

4∑
k=0

a4,k

1− rk
,

πworse =
∞∑
j=0

π(2,j) =
5∑

k=0

a5,k

1− rk
.

Finally, observing that states 2 and 4 correspond to the bad malware state, while state 5 corre-
sponds to the worse state, we have the following exact expression for R under the
hybrid-delay(ξ1, ξ2) policy:

R = qχ− c · E[N]− `badπbad − `worseπworse

= λq(1− π6 − π7 − π8)−
5∑

m=0

m∑
k=0

(qX(m) + crm)am,k

(1− rk)2
− `bad

(
2∑
k=0

a2,k

1− rk
+

4∑
k=0

a4,k

1− rk

)
− `worse

(
5∑
k=0

a5,k

1− rk

)

With this expression, we can evaluate the hybrid-delay(ξ1, ξ2) family of cleanup policies, in-
cluding many simple policies such as clean@slow, clean@slower, and clean@dead.

62

April 22, 2016
DRAFT

Hidden Malware Default Parameter Set
1/second $ $/second

λ µfast µslow µslower αbad αworse αdead γslow γslower βbad βworse βdead q c `bad `worse

P2 10 30 14 10.1 10−3 10−4 10−7 10−2 10−3 10−2 10−3 10−4 1 .05 .5 5

Table 3.2: Table of default parameter set, P2, used in this section. Recall the various families
of parameters: λ (arrival rate), µ (service rates), α (malware infection rates), γ (non-malware
degradation rates), β (cleanup rates), q (price of hypothetical delay-free service), c (waiting cost
rate), and ` (security loss rates).

3.4.3 Hidden Malware Results
In this section, we use our ability to compute exact revenue rates under the hidden malware
model in order to evaluate and compare various cleanup policies. Our results will be presented in
the form of a case study for a system under the default parameter set, P2, a stylized parameter set
developed after consulting with the security company ForAllSecure, Inc. This parameter set is
presented in Table 3.4.3. Unlike P1, P2 features non-malware related performance degradation
and substantial security loss rates. Due to the high security costs, clean@dead performs poorly
on all realistic cases, so for simplicity, we omit this policy from our results figures.

Our case study will focus on answering the following questions:
1. Can we gain more by improving cleanup speeds or improving intrusion detection?

2. Should we act immediately upon a performance degradation event or delay our cleanup
actions?

3. What do we gain from incorporating queue length information into cleanup decisions?
In answering these questions for our particular case, we draw several insights regarding the
malware cleanup problem.

Can we gain more by improving cleanup speeds or improving intrusion detection?

There are several ways in which a service provider can invest resources into delivering a more
robust service with the hopes of generating greater revenue. In the setting of hidden malware, two
such avenues of improvement are (i) improving cleanup speeds (e.g., by hiring additional staff
when a potential problem is identified, or by automating more steps associated with the cleanup
procedure) and improving intrusion detection (e.g., by developing or purchasing in intrusion
detection software which can reliably inform the system administrator of an attack). We explore
the benefits that arise from both of these approaches.16

In order to quantify the benefits of improving cleanup speeds under the P2 parameter set, we
leave βbad fixed at 10−2 per second, and let βworse = βbad/z and βdead = βworse/z = βbad/z

2,
and subsequently evaluate R (under both the clean@slow and clean@slower policies) as the
free parameter z varies from 1 to 20. The lower z is, the faster a slower (or dead) system can be
cleaned. In particular, z = 10 corresponds to the default cleanup rates under P2 without modifi-
cations. Therefore, z � 10 corresponds to a significant investment in improving cleanup speeds.

16For simplicity, we do not make claims about how much such improvements cost and to what extent they are
feasible.

63

April 22, 2016
DRAFT

50

100

150

200

250

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 5 10 15 20

Cleanup duration ratio, z = βbad/βworse = βworse/βdead (for fixed βbad)

clean@slow

clean@slower

omniscient

Figure 3.8: Revenue rate, R, in millions of dollars per year under default parameters P2, as a
function of z, where z = βbad/βworse = βworse/βdead, with βbad kept fixed at the P2 level of 10−2.
The clean@slow policy exhibits constant performance (as it only depends on the cleanup rate
βbad, which is fixed), while clean@slower exhibits a convex decline, outperforming clean@slow
for lower values of z. The hypothetical omniscient policy outperforms all other policies. The
unlabeled curve is a hypothetical policy that can gain most of the benefits of omniscient by using
sequential cleanups.

64

April 22, 2016
DRAFT

Meanwhile, we quantify the maximum possible benefits from improving intrusion detection by
also evaluating R under the hypothetical omniscient policy across the same range of values for
z. Recall that the omniscient policy chooses an optimal subset of joint malware-performance
states on which to initiate cleanups. The revenue rates are plotted in Figure 3.8.

We first observe that clean@slow exhibits a constant performance, because it depends on
βbad, and not on βworse or βdead; henceR is constant in z for the clean@slow policy. Meanwhile,
clean@slower outperforms clean@slow for low values of z, exhibiting a convex decline. This
shape is apparent across a wide range of realistic system parameters (and it can be proven to be
a hyperbola). We also observe that at z = 1, R under clean@slower matches that under omni-
scient. To understand why, we note that omniscient behaves like clean@slower for low values
of z, except that omniscient circumvents the pessimistic cleaning assumption (it cleans based
on the actual malware state rather than the performance state). At z = 1, however, omniscient
and clean@slower achieve the same revenue rate, because cleaning a slower system does not
take less time if one is aware of the kind of malware present (if any) under the assumption that
βbad = βworse, which is the case when z = 1. Eventually (visible in the Figure at z ≈ 13.2),
the omniscient policy will clean up a system as soon as it is slower or bad. We can conclude
that intrusion detection can significantly improve the profitability of a system, but so can reduc-
ing the time required to cleanup more serious problems on a system. In this case, the benefits
from perfect intrusion detection outweigh those from all but the most extreme improvements in
cleanup speeds, suggesting that improving intrusion detection should be a higher priority.

In fact, it turns out that much of the benefit in the hypothetical omniscient policy is due
to the fact that it is not bound by the pessimistic cleaning assumption (i.e., it does not need to
implement a lengthy cleanup procedure if a slower system is not in the worse malware state).
It can be tempting to mimic this advantage even when malware is not observable by cleaning a
slower system by using a shorter cleanup (i.e., with cleaning rate βbad). Then, if at the conclusion
of that cleanup the system is still sluggish (observed to be in the slower state due to lingering
malware that was not removed by the quick cleanup), one can implement a lengthier cleanup (i.e.,
with cleaning rate βworse) that is guaranteed to remove the malware. The impressive performance
of this “sequential cleanup policy” is shown by the unlabeled curve in Figure 3.8. Unfortunately,
such a policy may not always be implementable in practice, as it might be a poor security practice
to perform an insufficient cleanup procedure when there is risk of a serious infection. However,
in contexts where such a policy can be considered sufficiently safe, it can be a great alternative
to improving intrusion detection. For example, before formatting a system that appears to be
potentially infected by malware, it may pay off to perform a quick reboot to see if the problem
persists. In practitioners’ terms, this is equivalent to “trying the easy solution first.”17

We conclude that for our case study, intrusion detection is preferable to improving cleanup
speeds (if one must choose only one and the two improvement costs are comparable) whenever
near-perfect intrusion is possible, unless it is safe to use a sequence of progressively lengthier
cleanups when dealing with a system in the slower state.

However, we must acknowledge that the omniscient policy is a hypothetical policy, and that

17Note that while this is an acceptable practice in several contexts and applications, it could be unimplementable
for security reasons (e.g., performing a reboot in an infected host could permanently remove valuable forensics
data).

65

April 22, 2016
DRAFT

155

160

165

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 500 1000 1500 2000

Mean cleaning delay, 1/ξ

delayed-clean@slow(ξ)

delayed-clean@slower(ξ)

Figure 3.9: Revenue rate, R, in millions of dollars per year, under the default parameter set P2,
as a function of the mean delay before initiating cleanup actions, 1/ξ, both policies exhibit a
benefit from introducing a small delay, but eventually attain a local maximum and subsequently
decrease in profitability as 1/ξ increases.

perfect intrusion detection cannot exist in practice.

Should we act immediately upon a performance degradation event or delay our cleanup
actions?

It is natural to ask whether a system should be cleaned as soon as one reaches a “target” per-
formance degradation state, or if the cleanup procedure should be delayed once such a “target”
state has been reached. The rationale for such a delay is that the service provider may be content
with slower performance, but not with malware infections. In particular, since αbad = 10γslow

under P2, a transition to the slow state is unlikely to suggest that the system has been infected by
bad malware, and one can persist in a slow system for a considerable period of time with little
risk of being unknowingly infected. But how much of an improvement inR can we expect if we
introduce such delays?

We explore the benefits of such delays by evaluating R under the delayed-clean@slow(ξ)
and delayed-clean@slower(ξ) policies for the parameter set P2. Figure 3.9 shows a comparison
of the revenue rates under these cleanup policies as a function of the mean cleanup delay, 1/ξ.

We observe that for this parameter set, there is a significant benefit to implementing a delay
under both policies. In fact, introducing such delays is beneficial in nearly all systems, except
those where performance degradation and/or malware is so costly, that these costs dwarf the detri-
mental impact of frequent cleanups. Here, the best performing policy is
delayed-clean@slower(1/696), attaining a revenue rate ofR ≈ 166.64 (in the units of millions
of dollars per year). This revenue can be improved further by using the
hybrid-delay(1/678, 1/749) policy, which yields R ≈ 167.84. By using delays in both the

66

April 22, 2016
DRAFT

slow and slower states, we have a modest improvement of less than 1%, although such improve-
ments can be more pronounced across a variety of parameter settings. Using deterministic delays
can increase revenues even further. We will refer to the optimal hybrid delay policy a number of
additional times, so for notational convenience, we let

ξ∗1 = 1/678 and ξ∗2 = 1/749.

One benefit of delaying cleanups, is of course decreasing the frequency of cleanup actions,
while adding little additional risk of residing or entering a malware state. For example, if one
has already transitioned to say the slower state, one has already effectively “paid” the sunk cost
of a lengthier cleanup duration (which is unlikely to grow any longer if one imposes a reason-
able delay, as transitions to the dead state are typically very low). In this case, one may as
well decrease the frequency of cleanup procedures by spending additional time in the slower
state. However, this is not the only benefit to implementing cleanup delays. When a change in
performance level occurs, waiting times gradually increase over time, rather than increasing im-
mediately. Therefore, if an average response time of less than t∗ is “acceptable,” (i.e. profitable,
and worth operating, in the interest of engaging in less frequent cleanups) and one is transition-
ing from a performance state with a steady-state response time of t1 � t∗ to one with t2 � t∗,
one can delay a cleanup event and still enjoy “acceptable” response times for some additional
time while “spacing out” cleanup procedures. Hence, delaying cleanup procedures can even be
beneficial in the case of visible malware.

We can conclude that in this case we should not act immediately upon a performance degra-
dation event. Waiting for an appropriate amount of time (as given by our framework) can lead to
significantly gains in revenue.

What do we gain from incorporating queue length information into cleanup decisions?

In the preceding discussion, the gradual transition from one steady-state response time to a higher
steady-state response time is actually due to the gradual buildup of the queue. Consequently, the
benefits of delaying cleanups motivates the consideration of dynamic cleanup policies that take
the number of jobs into account in determining when to initiate a cleanup procedure? But how
much can the service provider benefit from taking queue lengths into account?

We shed light on the potential benefits of dynamic policies by evaluating revenue rates for the
special cases of dynamic policies that we call threshold policies. We use the best hybrid policy
identified in the preceding section, hybrid-delay(ξ∗1 , ξ

∗
2) as a baseline policy. We consider modi-

fications of the baseline policy with various thresholds, Θ. Recall that the hybrid-delay≥Θ(ξ∗1 , ξ
∗
2)

family of policies are like the hybrid-delay(ξ∗1 , ξ
∗
2) policy, except that when we are in the slower

state, we only clean up the system after spending sufficient time with the number of jobs in the
system, j, meeting or exceeding the threshold Θ. Figure 3.10 depicts the revenue rates under the
hybrid-delay≥Θ(ξ∗1 , ξ

∗
2) policies, for various choices of the threshold parameter Θ.

First, note that the baseline from the previous section corresponds to the policy with a thresh-
old of Θ = 0. Meanwhile, among the plotted policies,18 an optimum revenue rate ofR ≈ 171.61

18Naturally, we can expect to do better if we jointly optimize the delays ξ1 and ξ2 together with the threshold Θ,
or consider dynamic policies beyond simple threshold policies. We do note, however, that allowing for two separate

67

April 22, 2016
DRAFT

168

170

172

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 20 40 60 80

Cleaning threshold, Θ

hybrid-delay≥Θ(ξ∗1 , ξ
∗
2)

•••
•••
•••
•••
•••
•••
•••
•••
•••
••••
••••
••••••

••

Figure 3.10: Revenue rate,R, in millions of dollars per year, under the default parameter set P2,
as a function of the the threshold Θ, for the hybrid-delay≥Θ(ξ∗1 , ξ

∗
2) family of policies, where

cleanups in the slower state are only permitted if the number of jobs, j, exceeds the threshold Θ.

is achieved at the threshold Θ = 47, representing an additional improvement of over 2% over
the baseline policy. This non-negligible yet modest improvement highlights the power of dy-
namic policies and suggests that we cannot capture all of the benefits of dynamic policies by
simply using cleaning delays. This realization also underscores the advantage of tracking the
number of jobs in the system as opposed to treating the malware cleanup problem as a standard
condition-based maintenance problem.

Recall that we also introduced the hybrid-delay≤Θ(ξ1, ξ2) family of policies, which initiate
a cleanup procedure in the slower state only when the number of jobs, j, falls at or below the
threshold Θ. We would expect such policies (for small values of Θ) to perform poorly for the
same reasons the preceding policies performed well.19 These alternative threshold policies allow
the system to persist in the slower state for far too long, as the system is rarely occupied by only
a few jobs in the slower state.

Naturally, we ask if there exist scenarios where the hybrid-delay≤Θ(ξ1, ξ2) policies outper-
form their hybrid-delay≥Θ(ξ1, ξ2) counterparts. As one can imagine, the hybrid-delay≤Θ(ξ1, ξ2)
policies excel at minimizing the number of discarded jobs when a cleaning procedure is initiated.
In fact, they limit this number to Θ per cleanup events triggered in the slower state. Unfortu-
nately, it turns out that the costs associated with discarded jobs is often relatively insignificant.
Even if hundreds of jobs are discarded at once, the number of jobs served between cleaning
procedures may be orders of magnitude higher than this figure. However, one can imagine a
modified setting where there is a much stronger desire to minimize discarded jobs.

Consider a variation of the model explored in this paper where each discarded job not only

thresholds (below which we cannot clean the system), one for the system in the slow state and the other for the
system in the slower state did not appear to yield any benefits in this case.

19We have verified that this is the case under P2 for the hybrid-delay≤Θ(ξ∗1 , ξ
∗
2) family of policies.

68

April 22, 2016
DRAFT

80

100

120

140

160

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 20 40 60 80

Cleaning threshold, Θ

hybrid-delay≥Θ(ξ∗1 , ξ∗2)

hybrid-delay≤Θ(ξ∗1 , ξ
∗
2)

••
••
••
••
•••
••••
•••••••

•••

drain@slower

Figure 3.11: Revenue rate, R, in millions of dollars per year, under the default parameter set
P2 with a job discarding penalty of y = $100, as a function of the the threshold Θ, for the
hybrid-delay≥Θ(ξ∗1 , ξ

∗
2) and hybrid-delay≤Θ(ξ∗1 , ξ

∗
2) families of policies. Also plotted is the

revenue under the drain@slower policy (which is constant in Θ).

represents a missed opportunity for the service provider to collect q for serving an additional cus-
tomer request, but also a penalty y (in dollars), associated with tarnished reputation or goodwill
loss. That is, rather than interpreting the revenue rate as

R = qχ− c · E[N]− `badπbad − `worseπworse,

we could interpret it as

R = qχ− c · E[N]− `badπbad − `worseπworse − yη,

where we recall that η is the rate at which jobs are discarded.
Now let us consider the default parameter setting P2, except that we will let y = $100, rather

than y = $0 (which is the case everywhere else in this paper). Note that this is an extreme value
chosen for illustrative purposes; we are assuming that any given customer is only willing to pay
$1 for service, but that the service provider is somehow liable for an additional $100 for every
customer that is discarded from service (and rejecting a customer due to cleaning downtimes is
without a cost, other than the missed opportunity to serve a customer). Such a setting may exist
when extremely strict service level agreement contracts are in place.

We again use a baseline policy of hybrid-delay(ξ∗1 , ξ
∗
2), but this time we evaluate revenues

for both the hybrid-delay≥Θ(ξ∗1 , ξ
∗
2) and hybrid-delay≤Θ(ξ∗1 , ξ

∗
2) families of policies. Due to the

extreme value of y, we see in Figure 3.11 that R is decreasing in Θ for hybrid-delay≥Θ(ξ∗1 , ξ
∗
2)

and initially increasing (and subsequently decreasing) in Θ for hybrid-delay≤Θ(ξ∗1 , ξ
∗
2), with

the latter family of policies dominating for sufficiently high Θ. In fact, comparing the opti-
mal policies (among the ones examined) from each family, hybrid-delay≤44(ξ∗1 , ξ

∗
2) outperforms

69

April 22, 2016
DRAFT

hybrid-delay≥0(ξ∗1 , ξ
∗
2) (in terms of R) by over 14%. The strongest policy overall from these

families, hybrid-delay≤44(ξ∗1 , ξ
∗
2), allows for cleanups in the slower state only when there are no

more than 44 jobs present in the system, while the strongest policy in the other family is actually
the hybrid-delay(ξ∗1 , ξ

∗
2) policy without any threshold. Meanwhile, the drain@slow policy out-

performs all policies from these two families by a significant margin, indicating that admissions
control is especially valuable in this context. The strong performance of the
hybrid-delay≤Θ(ξ∗1 , ξ

∗
2) family of policies together with the drain@slow policy suggests that

cleanup procedures should only be undertaken when the queue length is relatively short in this
particular setting. The common intuition that “the more highly utilized a system is, the more
costly it is to take it offline” is justified in this setting.

The observation that both families of threshold policies can outperform the other depending
on the setting suggests that even further gains are possible by considering more sophisticated dy-
namic policies. However, as previously stated, determining the optimal dynamic policy requires
solving an intractable dynamic program. We are able to obtain results for these threshold policies
by extending the non-repeating portion of the Markov chain when applying the CAP method. A
similar approach can be used to evaluate other simple dynamic policies, but without a concrete
way of identifying the best such policies in what is a highly multi-dimensional policy space.

In the following section, we investigate whether insights and recommendations, such as those
presented in this section, can be obtained by circumventing exact analysis and instead relying on
approximate analysis.

3.5 Approximate Analysis

In this section, we present a method for approximating R in the case of hidden malware20 un-
der the hybrid-delay(ξ1, ξ2) policy by viewing the system as a finite state CTMC, which does
not explicitly track the number of jobs in the system. The approximation instead makes steady-
state assumptions regarding the queueing dynamics at each joint malware-performance state to
approximate E[N]. We show how this approximation is derived, and proceed to show that this
technique is often inadequate for evaluating cleaning policies and determining which policy is
optimal. This observation highlights the advantages of the exact analysis presented in the previ-
ous section.

The first step in our approximation is determining the limiting probability distribution across
the joint-malware performance states and cleanup states of the CTMC of interest (ignoring the
number of jobs in the system). That is, we must determine the quantities π0, π1, . . . , π8, exactly
(with states 0–8 defined in Section 3.4.2), but we may do so without using the CAP method. The
CTMC governing the transitions between these states is shown in Figure 3.12, if we interpret the
phases as merely being states, since we are no longer tracking the number of jobs in the system.
We can determine these values exactly by solving the balance equations of the Markov chain:

20Similar techniques can be employed in the case of visible malware.

70

April 22, 2016
DRAFT

(αbad + γslow)π0 = βbadπ6 + βworseπ7 + βdeadπ8

(αbad + γslow + ξ1)π1 = γslowπ0

(αworse + γslow + ξ1)π2 = αbadπ0 + αbadπ1

(αbad + ξ2)π3 = γslowπ1

(αworse + ξ2)π4 = γslowπ2 + αbadπ3

(αdead + ξ2)π5 = αworseπ2 + αworseπ4

(βbad)π6 = ξ1π1 + ξ1π2

(βworse)π7 = ξ2π3 + ξ2π4 + ξ2π5

(βdead)π8 = αdeadπ5

8∑
i=0

πi = 1

This finite linear system has a straightforward (if somewhat unwieldy) closed-form solution.
With these limiting probabilities determined exactly, we next turn our attention to approxi-

mating the steady-state expected number of jobs, E[N]. We reformulate E[N] by conditioning
on the current state (e.g., state 0, the normal fast state):

E[N] =
8∑
i=0

E[N |state i] · πi, (3.7)

We then approximate the conditional expectation of N given a particular joint malware-perfor-
mance (or cleanup) state by finding E[N] as if the system would continue to be in this state
forever. That is, given a particular state, we approximate E[N] conditional on being in that
malware state as being equal to the E[N] for an M/M/1 queue with arrival rate λ and the service
rate µ corresponding to the service rate of the given state, which is given by the formula

E[N]M/M/1 =
λ

µ− λ
. (3.8)

We observe that in state 0, the system is fast, in states 1–2 the system is slow, and in states 3–5,
the system is slower, while in states 6–8 the system is undergoing a cleanup procedure where N
is all 0. Hence, these facts, together with Equations (3.7) and (3.8) yield the approximation

E[N] =
8∑
i=0

E[N |state i] · πi

= E[N |fast] · π0 + E[N |slow] · (π1 + π2) + E[N |slower] · (π3 + π4 + π5) + 0

≈ λ

(
π0

µfast − λ
+

π1 + π2

µslow − λ
+
π3 + π4 + π5

µslower − λ

)
, (3.9)

in terms of π0, . . . , π5.

71

April 22, 2016
DRAFT

Recall that χ = λ(1−πclean)−η = λ(1−π6−π7−π8), where η is the rate at which customers
are discarded. To approximate η and hence χ, we approximate the number of jobs in the system
at the start of a cleanup procedure by using the steady-state number of jobs in the corresponding
joint performance-malware state at which the cleanup procedure was initiated (i.e., we adapt the
technique used to approximate E[N]):

η = E[N |slow] · ξ1(π1 + π2) + E[N |slower] · (ξ2(π3 + π4 + π5) + αdeadπ5)

≈ λ

(
ξ1(π1 + π2)

µslow − λ
+
ξ2(π3 + π4 + π5) + αdeadπ5

µslower − λ

)
χ ≈ λ

(
1− π6 − π7 − π8 −

ξ1(π1 + π2)

µslow − λ
− ξ2(π3 + π4 + π5) + αdeadπ5

µslower − λ

)
(3.10)

Finally, we computeR by observing that states 2 and 4 correspond to the bad malware state,
while state 5 corresponds to the worse state, which yields

R = qχ− c · E[N]− `badπbad − `worseπworse

≈ λq

(
1− π6 − π7 − π8 −

ξ1(π1 + π2)

µslow − λ
− ξ2(π3 + π4 + π5) + αdeadπ5

µslower − λ

)
− λc

(
π0

µfast − λ
+

π1 + π2

µslow − λ
+
π3 + π4 + π5

µslower − λ

)
− `bad(π2 + π4)− `worse(π5)

The quality of this approximation depends on how closely the distribution of N , the number
of jobs in the system, conditioned on being in a particular malware state, matches the steady-state
distribution of N for that malware state given the assumption that one will always persist in that
particular malware state. In particular, in approximating conditional distributions (e.g., N given
one is in the worse state), our approximation does not take into account the distribution over N
by which one first transitions to a particular malware state (e.g., is one more likely to transition
to worse when one has 5 jobs in the system or when one has 20 jobs in the system?). Similarly,
our approximation does not take into account how long one spends in that malware state; the
more time one spends in a malware state, the more likely the distribution over N conditioned
on being in that malware state begins to match the corresponding steady-state distribution. In
particular, relatively high values of ξ1 and/or ξ2 can lead to a poor approximation, because such
values will dictate short residence times in certain states. These shorter residence times may not
provide sufficient time forN to “mix” to a distribution resembling its steady-state distribution for
a particular joint malware-performance state, which will potentially result in significant errors.

We now turn toward investigating the predictive power of the approximation for R. Figure
3.12 depicts the same scenario as Figure 3.9, but with additional curves showing the approxi-
mated revenue under these two policies. While the approximation for R under the
delayed-clean@slow(ξ) family of policies is reasonable, the approximation for R under the
delayed-clean@slower(ξ) family of policies is largely erroneous, especially as the approxima-
tion suggests that R is decreasing in 1/ξ across the entire parameter space, when in reality R is
initially increasing in 1/ξ. The reason for this is largely due to the reason as one of the benefits of
delayed cleanups (and dynamic policies) that we discovered earlier: it takes time to “mix” from
an acceptable steady-state to an unacceptable one. In this case, we have a steady-state response

72

April 22, 2016
DRAFT

140

150

160

A
nn

ua
lr

ev
en

ue
(m

ill
io

ns
of

$)

0 500 1000 1500 2000

Mean cleaning delay, 1/ξ

delayed-clean@slow(ξ)

delayed-clean@slow(ξ) approx.

delayed-clean@slower(ξ)

delayed-clean@slower(ξ) approx.

Figure 3.12: Revenue rate,R, in millions of dollars per year under default parameter set P2, as a
function of the mean delay before initiating cleanup actions, 1/ξ. The solid lines show the actual
R under the two policies, with the dotted lines showing the value of R approximated by the
method presented in this section. The approximation for clean@dead especially is very poor.

time of 0.25 seconds in slow, and one of 10 seconds in slower, with the approximation “making
this adjustment” immediately upon the transition, leading to an always decreasing approximation
forR (as a function of 1/ξ) under the delayed-clean@slower(ξ) policy.

The policy that is suggested as the strongest policy from the approximations (even con-
sidering the hybrid-delay(ξ1, ξ2) family of policies), is delayed-clean@slow(1/367), which
is approximated to attain a revenue rate of R ≈ 155.39, but in reality, does better, yielding
R ≈ 156.60. This is still a loss of over 7% compared to the optimal hybrid delay policy of
hybrid-delay(1/678, 1/749). Across various test cases of systems experiencing frequent per-
formance degradation and malware infections, revenue losses of 1–10% due to the use of the
approximation are typical. Such differences can be very substantial, as the difference in profits
will be even greater, once we account for the cost of running the service in the first place. The
poor performance of the approximations based on finite state systems highlights one of the ad-
vantages of exact analysis. It is worth noting that the approximation errors are often much larger
than 10%, but in cases whereR is largely insensitive to the choice of policy (among “reasonable”
policies), suboptimal decisions are not too costly. Moreover, on “timescales” where performance
degradation, infection, and cleanup events happen very infrequently (e.g., if we consider P2, but
scale all of the performance degradation, infection, and cleanup rates by a factor of 1/10 or less,
while keeping other parameters fixed), the approximation error becomes negligible. Therefore,
the appropriateness (or lack thereof) of this approximation depends strongly on the “timescale”
a system is operating under.

73

April 22, 2016
DRAFT

3.6 Conclusion
This paper presents the first analytic study of the problem of determining when to clean up a
customer-facing system that is susceptible to cyber attacks, such as malware. We consider both
the case where the threat level of malware infecting the system is directly observable, and the
case where malware is not detectable, and its presence can only be imperfectly inferred through
monitoring the level of performance degradation experienced by the system.

Our contributions include proposing a Markovian model for the evolution of malware on
a customer-facing system, and evaluating the performance of various cleanup policies using a
combination of queueing-theoretic techniques. We find that in many realistic cases, one should
not cleanup a system at the first indication of the presence of malware. In such cases, one should
either wait for things to get worse, delay cleanup actions for some duration of time, or wait until
the queue lengths exceeds a certain threshold. We also find that simpler approximations, which
eschew tracking queue lengths in favor of steady-state queueing analysis with a finite state space,
often lead to significantly suboptimal revenues (losing 1-10% of the revenue possible). The poor
performance of these approximations, especially in the case of hidden malware highlights the
importance of exact analysis for modeling this problem, and establishes that using techniques
form the study of condition-based maintenance without incorporating queueing dynamics are
insufficient.

One of our key discoveries is that the best policies are not necessarily those that act only when
a new phenomenon is observed, and rather, there are significant benefits to delaying a response
for some time after witnessing a performance degradation event. One reason that these delays
are beneficial is that by delaying a cleanup, one reduces downtime, while enjoying acceptable
waiting times before convergence to a new steady-state with unacceptable waiting times. Another
way that one can harness the benefits of persisting in a system before reaching unacceptably high
waiting times is to incorporate queue length information into the decision of when to clean a
system, that is, to use a dynamic cleanup policy. Determining the optimal dynamic cleanup
policy involves the analysis of an intractable Markov decision process. However, we are able to
evaluate various dynamic policies, in particular threshold policies, and find that they provide a
substantial improvement over their static (non-dynamic) counterparts. Therefore, we believe that
the further analytic investigation of such dynamic policies is a natural direction for future work
in this area.

74

April 22, 2016
DRAFT

Chapter 4

Routing when Servers are Strategic

4.1 Introduction
In this chapter, and the one that follows, we turn our attention from answering the managerial
question of maintenance to the question of routing, especially under the relaxation of classical
assumptions regarding routing in queueing systems.

There is a broad and deep literature studying the routing and staffing of service systems
that bridges operations research, applied probability, and computer science. This literature has
had, and is continuing to have, a significant practical impact on the design of call centers (see,
for example, the survey papers [55] and [7]), health care systems (see, for example, the recent
book [76]), and large-scale computing systems (see, for example, the recent book [68]), among
other areas. Traditionally, this literature on routing1 and staffing has modeled the servers of
the system as having fixed (possibly heterogeneous) service rates and then, given these rates,
scheduling and staffing policies are proposed and analyzed. However, in reality, when the servers
are people, the rate a server chooses to work can be, and often is, impacted by the routing and
staffing policies used by the system.

For example, if requests are always scheduled to the “fastest” server whenever that server
is available, then this server may have the incentive to slow her rate to avoid being overloaded
with work. Similarly, if extra staff is always assigned to the division of a service system that is
the busiest, then servers may have the incentive to reduce their service rates in order to ensure
their division is assigned the extra staff. The previous two examples are simplistic; however,
strategic behavior has been observed in practice in service systems. For example, empirical data
from call centers shows many calls that last near 0 seconds [55]. This strategic behavior of the
servers allowed them to obtain “rest breaks” by hanging up on customers – a rather dramatic
means of avoiding being overloaded with work. For another example, academics are often guilty
of strategic behavior when reviewing for journals. It is rare for reviews to be submitted before
an assigned deadline since, if someone is known for reviewing papers very quickly, then they are
likely to be assigned more reviews by the editor.

Clearly, the strategic behavior illustrated by the preceding examples can have a significant
impact on the performance provided by a service system. One could implement a staffing or

1Within this literature routing is often referred to as scheduling.

75

April 22, 2016
DRAFT

scheduling policy that is provably optimal under classical scheduling models, where servers are
nonstrategic, and end up with far from optimal system performance as a result of undesirable
strategic incentives created by the policy. Consequently, it is crucial for service systems to be
designed in a manner that provides the proper incentives for such “strategic servers”.

In practice, there are two approaches used for creating the proper incentives for strategic
servers: one can either provide structured bonuses for employees depending on their job perfor-
mance (performance-based payments) or one can provide incentives in how routing and staffing
is performed that reward good job performance (incentive-aware scheduling). While there has
been considerable research on how to design performance-based payments in the operations
management and economics communities; the incentives created by scheduling and staffing poli-
cies are much less understood. In particular, the goal of this chapter is to initiate the study of
incentive-aware routing policies for strategic servers.

The design of incentive-aware routing policies is important for a wide variety of service sys-
tems. In particular, in many systems performance-based payments such as bonuses are simply
not possible, e.g., in service systems staffed by volunteers such as academic reviewing. Further-
more, many service systems do not use performance-based compensation schemes; for example,
the 2005 benchmark survey on call center agent compensation in the U.S. shows that a large
fraction of call centers pay a fixed hourly wage (and have no performance-based compensation)
[10].

Even when performance-based payments are possible, the incentives created by routing poli-
cies impact the performance of the service system, and thus impact the success of performance-
based payments. Further, since incentive-aware routing does not involve monetary payments
(beyond a fixed employee salary), it may be less expensive to provide incentives through rout-
ing than through monetary bonuses. Additionally, providing incentives through scheduling and
staffing eliminates many concerns about “unfairness” that stem from differential payments to
employees.

Of course, the discussion above assumes that the incentives created by routing can be signif-
icant enough to impact the behavior. A priori it is not clear if they are, since simply changing the
routing may not provide strong enough incentives to strategic servers to significantly change ser-
vice rates, and thus system performance. It is exactly this uncertainty that motivates this chapter,
which seeks to understand the impact of the incentives created by routing, and then to design
incentive-aware routing policies that provide near-optimal system performance without the use
of monetary incentives.

4.1.1 Contributions of This Chapter
This chapter makes two main contributions. We introduce a new model for the strategic behavior
of servers in service systems and, additionally, we initiate the study routing in the context of
strategic servers. Each of these contributions is described in the following.

Modeling Strategic Servers (Sections 4.2 and 4.3): The essential first step for an analysis of
strategic servers is a model for server behavior that is simple enough to be analytically tractable
and yet rich enough to capture the salient influences on how each server may choose her service
rate. Our model is motivated by work in labor economics that identifies two main factors that
impact the utility of agents: effort cost and idleness. More specifically, it is common in labor

76

April 22, 2016
DRAFT

economics to model agents as having some “effort cost” function that models the decrease in
utility which comes from an increase in effort [27]. Additionally, it is a frequent empirical
observation that agents in service systems engage in strategic behavior to increase the amount
of idle time they have ([55]). The key feature of the form of the utility we propose in Section
4.2 is that it captures the inherent trade-off between idleness and effort. In particular, a faster
service rate would mean quicker completion of jobs and might result in a higher idle time, but it
would also result in a higher effort cost. In Section 4.3 of this chapter, we apply our model in the
context of an M/M/N system, where all servers behave strategically in a game setting.

Routing to Strategic Servers (Section 4.4): The second piece of this chapter studies the impact
of strategic servers on the design of routing policies in multi-server service systems. When
servers are not strategic, how to route (i.e., dispatch or schedule) jobs to servers in multi-server
systems is well understood. In particular, the most commonly proposed policies for this setting
include Fastest Server First (FSF), which dispatches arriving jobs to the idle server with the
fastest service rate; Longest Idle Server First (LISF), which dispatches jobs to the server that
has been idle for the longest period of time; and Random, which dispatches the job to each
idle server with equal probability. When strategic servers are not considered, FSF is the natural
choice for reducing the mean response time (though it is not optimal in general; see [39, 97]).
However, in the context of strategic servers the story changes. In particular, we prove that FSF
has no symmetric equilibria when strategic servers are considered, even when there are just two
servers. Further, we prove that LISF, a commonly suggested policy for call centers due to its
fairness properties, has the same, unique, symmetric equilibrium as random dispatching. In fact,
we prove that there is a large policy-space collapse – all routing policies that are idle-time-order-
based are equivalent in a very strong sense (Theorem 4.2).

With this in mind, one might suggest that Slowest Server First (SSF) would be a good dis-
patch policy, since it could incentivize servers to work fast; however, we prove that, like FSF,
SSF has no symmetric equilibria (Theorem 4.4). However, by “softening” SSF’s bias toward
slow servers, we are able to identify policies in the two-server setting that are guaranteed to have
a unique symmetric equilibrium and provide mean response times that are smaller than that under
LISF and Random (Theorem 4.5).

A key message provided by the results described above is that routing policies must carefully
balance two conflicting goals in the presence of strategic servers: making efficient use of the
service capacity (e.g., by sending work to fast servers) while still incentivizing servers to work
fast (e.g., by sending work to slow servers). While these two goals are inherently in conflict, our
results show that it is possible to balance them in a way that provides improved performance over
Random.

4.1.2 Related Work
While this chapter focuses on routing in the presence of strategic servers, this question is closely
tied to how one must staff in the presence of strategic servers. As we have already described, the
question of how to route and staff in many-server systems when servers have fixed, nonstrategic,
service rates is well-studied. In general, this is a very difficult question, because the routing de-
pends on the staffing and vice versa. However, when all the servers serve at the same rate, the
routing question is moot. Then, [19] show that square-root staffing, first introduced in [47] and

77

April 22, 2016
DRAFT

later formalized in [66], is economically optimal when both staffing and waiting costs are linear.
Furthermore, square root staffing is remarkably robust: there is theoretical support for why it
works so well for systems of moderate size ([85]), and it continues to be economically optimal
both when abandonment is added to the M/M/N model ([57]) and when there is uncertainty in
the arrival rate ([90]). Hence, to study the joint routing and staffing question for more complex
systems, that include heterogeneous servers that serve at different rates and heterogeneous cus-
tomers, many authors have assumed square root staffing and show how to optimize the routing
for various objective functions (see, for example, [11, 14, 64, 122, 123]). In relation to this body
of work, this chapter shows that scheduling and routing results for classical many-server systems
that assume fixed service rates must be revisited when servers exhibit strategic behavior because
classical routing policies may no longer be feasible in the strategic setting (see Section 4.4).

Importantly, the Fastest Server First routing policy mentioned earlier has already been rec-
ognized to be potentially problematic because it may be perceived as “unfair”. The issue from
an operational standpoint is that there is strong indication in the human resource management
literature that the perception of fairness affects employee performance (see [36, 37]). This has
motivated the analysis of “fair” routing policies that, for example, equalize the cumulative server
idleness [15, 111], and the desire to find an optimal “fair” routing policy [12, 127]. Another ap-
proach is to formulate a model in which the servers choose their service rate in order to balance
their desire for idle time (which is obtained by working faster) and the exertion required to serve
faster. This leads to a non-cooperative game for an M/M/N queue in which the servers act as
strategic players that selfishly maximize their utility.

Finally, the literature that is, perhaps, most closely related to this chapter is the literature on
queueing games, which is surveyed in [74]. The bulk of this literature focuses on the impact of
customers acting strategically (e.g., deciding whether to join and which queue to join) on queue-
ing performance. Still, there is a body of work within this literature that considers settings where
servers can choose their service rate, e.g., [25, 26, 60, 86]. However, in all of the aforementioned
papers, there are two servers that derive utility from some monetary compensation per job or
per unit of service that they provide. In contrast, our work considers servers that derive utility
from idle time while paying a cost for exerting effort. The idea that servers value idle time is
most similar to the setting in [59], but that paper restricts its analysis to a two server model. Per-
haps the closest previous work to the current paper in analysis spirit is [8], which characterizes
approximate equilibria in a market with many servers that compete on price and service level.
However, this is similar in theme to [25, 86] in the sense that they consider servers as competing
firms in a market. This contrasts with the current chapter, where our focus is on competition
between servers within the same firm.

4.2 A Model for Strategic Servers
The objective of this chapter is to initiate an investigation into the effects of strategic servers on
classical management decisions in service systems, e.g., staffing and routing. We start by, in this
section, describing formally our model for the behavior of a strategic server.

The term “strategic server” could be interpreted in many ways depending on the server’s goal.
Thus, the key feature of the model is the utility function for a strategic server. Our motivation

78

April 22, 2016
DRAFT

comes from a service system staffed by people who are paid a fixed wage, independent of per-
formance. In such settings, one may expect two key factors to have a first-order impact on the
experience of the servers: the amount of effort they put forth and the amount of idle time they
have.

Thus, a first-order model for the utility of a strategic server is to linearly combine the cost of
effort with the idle time of the server. This gives the following form for the utility of server i in
a service system with N servers:

Ui(µ) = Ii(µ)− c(µi), i ∈ {1, . . . , N}, (4.1)

where µ is a vector of the rate of work chosen by each server (i.e., the service rate vector), Ii(µ)
is the time-average idle time experienced by server i given the service rate vector µ, and c(µi) is
the effort cost of server i. We take c to be an increasing, convex function which is the same for all
servers. We assume that the strategic behavior of servers (choosing a utility-maximizing service
rate) is independent of the state of the system and that the server has complete information about
the steady state properties of the system when choosing a rate, i.e., they know the arrival rate,
scheduling policy, staffing policy, etc., and thus can optimize Ui(µ).

The key feature of the form of the utility in (4.1) is that it captures the inherent trade-off
between idleness and effort. The idleness, and hence the utility, is a steady state quantity. In
particular, a faster service rate would mean quicker completion of jobs and might result in higher
idle time in steady state, but it would also result in a higher effort cost. This trade-off then creates
a difficult challenge for staffing and routing in a service system. To increase throughput and
decrease response times, one would like to route requests to the fastest servers, but by doing so
the utility of servers decreases, making it less desirable to maintain a fast service rate. Our model
should be interpreted as providing insight into the systemic incentives created by scheduling and
staffing policies rather than the transitive incentives created by the stochastic behavior of the
system.

Our focus in this chapter will be to explore the consequences of strategic servers for staffing
and routing in large service systems, specifically, in the M /M /N setting. However, the model is
generic and can be studied in non-queueing contexts as well.

To quickly illustrate the issues created by strategic servers, a useful example to consider is
that of a M /M /1 queue with a strategic server.

Example 4.1 (The M/M/1 queue with a strategic server). In a classicM /M /1 system, jobs arrive
at rate λ into a queue with an infinite buffer, where they wait to obtain service from a single server
having fixed service rate µ. When the server is strategic, instead of serving at a fixed rate µ, the
server chooses her service rate µ > λ in order to maximize the utility in (4.1). To understand
what service rate will emerge, recall that in a M /M /1 queue with µ > λ the steady state fraction
of time that the server is idle is given by I(µ) = 1 − λ

µ
. Substituting this expression into (4.1)

means that the utility of the server is given by the following concave function:

U(µ) = 1− λ

µ
− c(µ).

We now have two possible scenarios. First, suppose that c′(λ) < 1/λ, so that the cost
function does not increase too fast. Then, U(µ) attains a maximum in (λ,∞) at a unique point

79

April 22, 2016
DRAFT

µ?, which is the optimal (utility maximizing) operating point for the strategic server. Thus, a
stable operating point emerges, and the performance of this operating point can be derived
explicitly when a specific form of a cost function is considered.

On the other hand, if c′(λ) ≥ 1/λ, then U(µ) is strictly decreasing in (λ,∞) and hence does
not attain a maximum in this interval. We interpret this case to mean that the server’s inherent
skill level (as indicated by the cost function) is such that the server must work extremely hard just
to stabilize the system, and therefore should not have been hired in the first place.

For example, consider the class of cost functions c(µ) = cEµ
p. If c(λ) < 1

p
, then µ? solves

µ?c(µ?) = λ
p
, which gives µ? =

(
λ
cEp

) 1
p+1

> λ. On the other hand, if c(λ) ≥ 1
p
, then U(µ) is

strictly decreasing in (λ,∞) and hence does not attain a maximum in this interval.

Before moving on to the analysis of the M /M /N model with strategic servers, it is important
to point out that the model we study focuses on a linear trade-off between idleness and effort.
There are certainly many generalizations that are interesting to study in future work. One partic-
ularly interesting generalization would be to consider a concave (and increasing) function of idle
time in the utility function, since it is natural that the gain from improving idle time from 10% to
20% would be larger than the gain from improving idle time from 80% to 90%. A preliminary
analysis highlights that the results in this chapter would not qualitatively change in this context.2

4.3 The M/M/N Queue with Strategic Servers
Our focus in this chapter is on routing decisions in service systems, and so we adopt a classical
model of this setting, the M/M/N , and adjust it by considering strategic servers, as described in
Section 4.2. The analysis of routing policies is addressed in Section 4.4, but before moving on
to the question of routing, we start by formally introducing the M/M/N model, and performing
some preliminary analysis that is useful both in the context of staffing and routing.

In a M/M/N queue, customers arrive to a service system having N servers according to a
Poisson process with rate λ. Delayed customers (those that arrive to find all servers busy) are
served according to the First-Come-First-Served (FCFS) discipline. Each server is fully capable
of handling any customer’s service requirements. The time required to serve each customer is
independent and exponential, and has a mean of one time unit when the server works at rate one.
However, each server strategically chooses her service rate to maximize her own (steady state)
utility, and so it is not a priori clear what the system service rates will be.

In this setting, the utility functions that the servers seek to maximize are given by

Ui(µ;λ,N,R) = Ii(µ;λ,N,R)− c(µi), i ∈ {1, . . . , N}, (4.2)

where µ is the vector of service rates, λ is the arrival rate, N is the number of servers (staffing
level), and R is the routing policy. Ii(µ;λ,N,R) is the steady state fraction of time that server
i is idle. c(µ) is an increasing, convex function with c′′′(µ) ≥ 0, that represents the server effort
cost.

2Specifically, if g(Ii(µ)) replaces Ii(µ) in (4.1), all the results in Section 4.3 characterizing equilibria service
rates are maintained so long as g′′′ < 0.

80

April 22, 2016
DRAFT

Note that, as compared with (4.1), we have emphasized the dependence on the arrival rate
λ, staffing level N , and routing policy of the system, R. In the remainder of this article, we
expose or suppress the dependence on these additional parameters as relevant to the discussion.
In particular, note that the idle time fraction Ii (and hence, the utility function Ui) in (4.2) depends
on how arriving customers are routed to the individual servers.

There are a variety of routing policies that are feasible for the system manager. In general, the
system manager may use information about the order in which the servers became idle, the rates
at which servers have been working, etc. This leads to the possibility of using simple policies
such as Random, which chooses an idle server to route to uniformly at random, as well as more
complex policies such as Longest/Shortest Idle Server First (LISF/SISF) and Fastest/Slowest
Server First (FSF/SSF). We study the impact of this decision in detail in Section 4.4.

Given the routing policy chosen by the system manager and the form of the server utilities
in (4.2), the situation that emerges is a competition among the servers for the system idle time.
In particular, the routing policy yields a division of idle time among the servers, and both the
division and the amount of idle time will depend on the service rates chosen by the servers.

As a result, the servers can be modeled as strategic players in a noncooperative game, and
thus the operating point of the system is naturally modeled as an equilibrium of this game. In
particular, a Nash equilibrium of this game is a set of service rates µ?, such that,

Ui(µ
?
i ,µ

?
−i;R) = max

µi>
λ
N

Ui(µi,µ
?
−i;R), (4.3)

where µ?−i = (µ?1, . . . , µ
?
i−1, µ

?
i+1, . . . , µ

?
N) denotes the vector of service rates of all the servers

except server i. Note that we exogenously impose the (symmetric) constraint that each server
must work at a rate strictly greater than λ

N
in order to define a product action space that ensures

the stability of the system.3 Such a constraint is necessary to allow steady state analysis, and
does not eliminate any feasible symmetric equilibria. We treat this bound as exogenously fixed,
however in some situations a system manager may wish to impose quality standards on servers,
which would correspond to imposing a larger lower bound (likely with correspondingly larger
payments for servers). Investigating the impact of such quality standards is an interesting topic
for future work.

Our focus in this chapter is on symmetric Nash equilibria. With a slight abuse of notation,
we say that µ? is a symmetric Nash equilibrium if µ? = (µ?, . . . , µ?) is a Nash equilibrium
(solves (4.3)). Throughout, the term “equilibrium service rate” means a symmetric Nash equi-
librium service rate.

We focus on symmetric Nash equilibria for two reasons. First, because the agents we model
intrinsically have the same skill level (as quantified by the effort cost functions), a symmetric

3One can imagine that servers, despite being strategic, would endogenously stabilize the system. To test this,
one could study a related game where the action sets of the servers are (0,∞). Then, the definition of the idle time
Ii(µ) must be extended into the range of µ for which the system is overloaded; a natural way to do so is to define it
to be zero in this range, which would ensure continuity at µ for which the system is critically loaded. However, it is
not differentiable there, which necessitates a careful piecewise analysis. A preliminary analysis indicates that in this
scenario, no µ ∈

(
0, λN

]
can ever be a symmetric equilibrium, and then, the necessary and sufficient condition of

Theorem ?? would become U(µ?, µ?) ≥ limµ1→0+ U(µ1, µ
?), which is more demanding than (??) (e.g., it imposes

a finite upper bound on µ?), but not so much so that it disrupts the staffing results that rely on this theorem (e.g.,
Lemma ?? still holds).

81

April 22, 2016
DRAFT

equilibrium corresponds to a fair outcome. As we have already discussed, this sort of fairness is
often crucial in service organizations ([12, 36, 37]). A second reason for focusing on symmetric
equilibria is that analyzing symmetric equilibria is already technically challenging, and it is not
clear how to approach asymmetric equilibria in the contexts that we consider. Note that we
do not rule out the existence of asymmetric equilibria; in fact, they likely exist, and it would be
interesting to study whether they lead to better or worse system performance than their symmetric
counterparts.

4.4 Routing to Strategic Servers

Thus far we have focused our discussion on staffing, assuming that jobs are routed randomly to
servers when there is a choice. Of course, the decision of how to route jobs to servers is another
crucial aspect of the design of service systems. As such, the analysis of routing policies has
received considerable attention in the queueing literature, when servers are not strategic. In this
section, we begin to investigate the impact of strategic servers on the design of routing policies.

In the classical literature studying routing when servers are nonstrategic, a wide variety of
policies have been considered. These include “rate-based policies” such as Fastest Server First
(FSF) and Slowest Server First (SSF); as well as “idle-time-order-based policies” such as Longest
Idle Server First (LISF) and Shortest Idle Server First (SISF). Among these routing policies, FSF
is a natural choice to minimize the mean response time (although, as noted in the Introduction,
it is not optimal in general). This leads to the question: how does FSF perform when servers
are strategic? In particular, does it perform better than the Random routing that we have so far
studied?

Before studying optimal routing to improve performance, we must first answer the following
even more fundamental question: what routing policies admit symmetric equilibria? This is a
very challenging goal, as can be seen by the complexity of the analysis for the M /M /N under
Random routing. This section provides a first step towards that goal.

The results in this section focus on two broad classes of routing policies idle-time-order-
based policies and rate-based policies, which are introduced in turn in the following.

4.4.1 Idle-Time-Order-Based Policies

Informally, idle-time-order-based policies are those routing policies that use only the rank or-
dering of when servers last became idle in order to determine how to route incoming jobs. To
describe the class of idle-time-order-based policies precisely, let I(t) be the set of servers idle
at time t > 0, and, when I(t) 6= ∅, let s(t) = (s1, . . . , s|I(t)|) denote the ordered vector of idle
servers at time t, where server sj became idle before server sk whenever j < k. For n ≥ 1,
let Pn = ∆({1, . . . , n}) denote the set of all probability distributions over the set {1, . . . , n}.
An idle-time-order-based routing policy is defined by a collection of probability distributions
p = {pS}S∈2{1,2,...,N}\∅, such that pS ∈ P|S|, for all S ∈ 2{1,2,...,N}\∅. Under this policy, at
time t, the next job in queue is assigned to idle server sj with probability pI(t)(j). Examples of
idle-time-order-based routing policies are as follows.

82

April 22, 2016
DRAFT

1. Random. An arriving customer that finds more than one server idle is equally likely to be
routed to any of those servers. Then, pS = (1/|S|, . . . , 1/|S|) for all S ∈ 2{1,2,...,N}\∅.

2. Weighted Random. Each such arriving customer is routed to one of the idle servers with
probabilities that may depend on the order in which the servers became idle. For example,
if

pS(j) =
|S|+ 1− j∑|S|

n=1 n
, j ∈ S, for sj ∈ S, for all S ∈ 2{1,2,...,N}\∅,

then the probabilities are decreasing according to the order in which the servers became
idle. Note that

∑
j p

S(j) =
|S|(|S|+1)− 1

2
|S|(|S|+1)

1
2
|S|(|S|+1)

= 1.

3. Longest Idle Server First (Shortest Idle Server First). Each such arriving customer is routed
to the server that has idled the longest (idled the shortest). Then, pS = (1, 0, . . . , 0) (pS =
(0, . . . , 0, 1)) for all S ⊆ {1, 2, . . . , N}.

Policy-Space Collapse.

Surprisingly, it turns out that all idle-time-order-based policies are “equivalent” in a very strong
sense — they all lead to the same steady state probabilities, resulting in a remarkable policy-
space collapse result, which we discuss in the following.

Fix R to be some idle-time-order-based routing policy, defined through the collection of
probability distributions p = {pS}∅6=S⊆{1,2,...,N}. The states of the associated continuous time
Markov chain are defined as follows:
• State B is the state where all servers are busy, but there are no jobs waiting in the queue.
• State s = (s1, s2, . . . , s|I|) is the ordered vector of idle servers I. When I = ∅, we identify

the empty vector s with state B.
• State m (m ≥ 0) is the state where all servers are busy and there are m jobs waiting in the

queue (i.e., there are N +m jobs in the system). We identify state 0 with state B.
When all servers are busy, there is no routing, and so the system behaves exactly as anM /M /1

queue with arrival rate λ and service rate µ1 + · · ·+µN . Then, from the local balance equations,
the associated steady state probabilities πB and πm for m = 0, 1, 2, . . ., must satisfy

πm = (λ/µ)mπB where µ =
N∑
j=1

µj. (4.4)

One can anticipate that the remaining steady state probabilities satisfy

πs = πB
∏
s∈I

µs
λ

for all s = (s1, s2, . . . , s|I|) with |I| > 0, (4.5)

and the following theorem verifies this by establishing that the detailed balance equations are
satisfied.
Theorem 4.2. All idle-time-order-based policies have the steady state probabilities that are
uniquely determined by (4.4)-(4.5), together with the normalization constraint that their sum
is one.

83

April 22, 2016
DRAFT

Proof. It is sufficient to verify the detailed balance equations. For reference, it is helpful to
refer to Figure 4.1, which depicts the relevant portion of the Markov chain. We require the
following additional notation. For all I ⊆ {1, 2, . . . , N}, all states s = (s1, s2, . . . , s|I|), all
servers s′ ∈ {1, 2, . . . , N}\I, and integers j ∈ {1, 2, . . . , |I|+ 1}, we define the state s[s′, j] by

s[s′, j] ≡ (s1, s2, . . . , sj−1, s
′, sj, . . . , s|I|).

s[s′, 1] s− s1

s[s′, 2] s− s2

s+ s′ s− s|I|

s

... ...

λp I∪{s ′}
(1) λp

I (1)

λpI∪{s
′}(2) λpI(2)

λp
I∪
{s
′ } (|I|

+
1)

λp I
(|I|)

µs′ µs|I|

For each s′ 6∈ I

Figure 4.1: Snippet of the Markov chain showing the rates into and out of state s = (s1, . . . , s|I|).
For convenience, we use s− sj to denote the state (s1, s2, . . . , sj−1, sj+1, . . . , s|I|) and s+ s′ to
denote the state s[s′, |I|+ 1] = (s1, s2, . . . , s|I|, s

′).

We first observe that:

Rate into state s due to an arrival = λ
∑
s′ 6∈I

|I|+1∑
j=1

πs[s′,j]p
I∪{s′}(j)

= λ
∑
s′ 6∈I

|I|∑
j=0

µs′πB
λ

∏
s∈I

(µs
λ

)
pI∪{s

′}(j)

=
∑
s′ 6∈I

µs′πB
∏
s∈I

µs
λ

=
∑
s′ 6∈I

µs′πs

= Rate out of state s due to a departure.

84

April 22, 2016
DRAFT

Then, to complete the proof, we next observe that for each s′ 6∈ I:

Rate into state s due to a departure = µs|I|π(s1,s2,...,s|I|−1)

= µs|I|πB
∏

s∈I\{s|I|}

µs
λ

= λπB
∏
s∈I

µs
λ

= λπs

= Rate out of state s due to an arrival.

Theorem 4.2 is remarkable because there is no dependence on the collection of probability
distributions p that define R. Therefore, it follows that all idle-time-order-based routing policies
result in the same steady state probabilities. Note that, concurrently, a similar result has been
discovered independently in the context of loss systems (see [65]).

In relation to our server game, it follows from Theorem 4.2 that all idle-time-order-based
policies have the same equilibrium behavior as Random. This is because an equilibrium service
rate depends on the routing policy through the server idle time vector (I1(µ;R), . . . , IN(µ;R)),
which can be found from the steady state probabilities in (4.4)-(4.5). As a consequence, if there
exists (does not exist) an equilibrium service rate under Random, then there exists (does not
exist) an equilibrium service rate under any idle-time-order-based policy. In summary, it is not
possible to achieve better performance than under Random by employing any idle-time-order-
based policy.

4.4.2 Rate-Based Policies

Informally, a rate-based policy is one that makes routing decisions using only information about
the rates of the servers. As before, let I(t) denote the set of idle servers at time t. In a rate-based
routing policy, jobs are assigned to idle servers only based on their service rates. We consider
a parameterized class of rate-based routing policies that we term r-routing policies (r ∈ R).
Under an r-routing policy, at time t, the next job in queue is assigned to idle server i ∈ I(t) with
probability

pi(µ, t; r) =
µri∑

j∈I(t)

µrj

Notice that for special values of the parameter r, we recover well-known policies. For example,
setting r = 0 results in Random; as r → ∞, it approaches FSF; and as r → −∞, it approaches
SSF.

In order to understand the performance of rate-based policies, the first step is to perform an
equilibrium analysis, i.e., we need to understand what the steady state idle times look like under
any r-routing policy. The following proposition provides us with the required expressions.

85

April 22, 2016
DRAFT

Proposition 4.3. Consider a heterogeneous M /M /2 system under an r-routing policy, with ar-
rival rate λ > 0 and servers 1 and 2 operating at rates µ1 and µ2 respectively. The steady state
probability that server 1 is idle is given by:

Ir1(µ1, µ2) =
µ1(µ1 + µ2 − λ)

[
(λ+ µ2)2 + µ1µ2 +

µr2
µr1+µr2

(λµ1 + λµ2)
]

µ1µ2(µ1 + µ2)2 + (λµ1 + λµ2)
[
µ2

1 + 2µ1µ2 −
µr1

µr1+µr2
(µ2

1 − µ2
2)
]

+ (λµ1)2 + (λµ2)2
,

and the steady state probability that server 2 is idle is given by Ir2(µ1, µ2) = Ir1(µ2, µ1).

Proof. In order to derive the steady state probability that a server is idle, we first solve for the
steady state probabilities of the M /M /2 system (with arrival rate λ and service rates µ1 and µ2

respectively) under an arbitrary probabilistic routing policy where a job that arrives to find an
empty system is routed to server 1 with probability p and server 2 with probability 1− p. Then,
for an r-routing policy, we simply substitute p =

µr1
µr1+µr2

.
It should be noted that this analysis (and more) for 2 servers has been carried out by [91].

Prior to that, [115] carried out a partial analysis (by analyzing an r-routing policy with r = 1).
However, we rederive the expressions using our notation for clarity.

The dynamics of this system can be represented by a continuous time Markov chain shown
in Figure 4.2 whose state space is simply given by the number of jobs in the system, except when
there is just a single job in the system, in which case the state variable also includes information
about which of the two servers is serving that job. This system is stable when µ1 + µ2 > λ and
we denote the steady state probabilities as follows:

• π0 is the steady state probability that the system is empty.
• π(j)

1 is the steady state probability that there is one job in the system, served by server j.
• For all k ≥ 2, πk is the steady state probability that there are k jobs in the system.

0

1 (1)

1 (2)

2 3 · · ·

λp

λ(1− p)

λ

λ

λ

µ1 + µ2

λ

µ1 + µ2

µ1

µ2

µ2

µ1

Figure 4.2: The M /M /2 Markov chain with probabilistic routing.

86

April 22, 2016
DRAFT

We can write down the balance equations of the Markov chain as follows:

λπ0 = µ1π
(1)
1 + µ2π

(2)
1

(λ+ µ1)π
(1)
1 = λpπ0 + µ2π2

(λ+ µ2)π
(2)
1 = λ(1− p)π0 + µ1π2

(λ+ µ1 + µ2)π2 = λπ
(1)
1 + λπ

(2)
1 + (µ1 + µ2)π3

∀k ≥ 3: (λ+ µ1 + µ2)πk = λπk−1 + (µ1 + µ2)πk+1,

yielding the following solution to the steady state probabilities:

π0 =
µ1µ2(µ1 + µ2 − λ)(µ1 + µ2 + 2λ)

µ1µ2(µ1 + µ2)2 + λ(µ1 + µ2)(µ2
2 + 2µ1µ2 + (1− p)(µ2

1 − µ2
2)) + λ2(µ2

1 + µ2
2)

(4.6)

π
(1)
1 =

λ(λ+ p(µ1 + µ2))π0

µ1(µ1 + µ2 + 2λ)

π
(2)
1 =

λ(λ+ (1− p)(µ1 + µ2))π0

µ2(µ1 + µ2 + 2λ)
.

Consequently, the steady state probability that server 1 is idle is given by

I1(µ1, µ2; p) = π0 + π
(2)
1 =

(
1 +

λ(λ+ (1− p)(µ1 + µ2))

µ2(µ1 + µ2 + 2λ)

)
π0.

Substituting for π0, we obtain

I1(µ1, µ2; p) =
µ1(µ1 + µ2 − λ)

[
(λ+ µ2)2 + µ1µ2 + (1− p)λ(µ1 + µ2)

]
µ1µ2(µ1 + µ2)2 + λ(µ1 + µ2) [µ2

2 + 2µ1µ2 + (1− p)(µ2
1 − µ2

2)] + λ2(µ2
1 + µ2

2)
. (4.7)

Finally, for an r-routing policy, we let p =
µr1

µr1+µr2
to obtain:

Ir1(µ1, µ2) = I1

(
µ1, µ2; p =

µr1
µr1 + µr2

)

=
µ1(µ1 + µ2 − λ)

[
(λ+ µ2)2 + µ1µ2 +

µr2
µr1+µr2

λ(µ1 + µ2)
]

µ1µ2(µ1 + µ2)2 + λ(µ1 + µ2)
[
µ2

2 + 2µ1µ2 +
µr2

µr1+µr2
(µ2

1 − µ2
2)
]

+ λ2(µ2
1 + µ2

2)
.

By symmetry of the r-routing policy, it can be verified that Ir2(µ1, µ2) = Ir1(µ2, µ1), completing
the proof.

Note that we restrict ourselves to a 2-server system for this analysis. This is due to the fact
that there are no closed form expressions known for the resulting Markov chains for systems
with more than 3 servers. It may be possible to extend these results to 3 servers using results
from [103]; but, the expressions are intimidating, to say the least. However, the analysis for two
servers is already enough to highlight important structure about the impact of strategic servers
on policy design.

87

April 22, 2016
DRAFT

In particular, our first result concerns the FSF and SSF routing policies, which can be obtained
in the limit when r → ∞ and r → −∞ respectively. Recall that FSF is asymptotically optimal
in the nonstrategic setting. Intuitively, however, it penalizes the servers that work the fastest by
sending them more and more jobs. In a strategic setting, this might incentivize servers to decrease
their service rate, which is not good for the performance of the system. One may wonder if by
doing the opposite, that is, using the SSF policy, servers can be incentivized to increase their
service rate. However, our next theorem (Theorem 4.4) shows that neither of these policies is
useful if we are interested in symmetric equilibria.

Recall that our model for strategic servers already assumes an increasing, convex effort cost
function with c′′′(µ) ≥ 0. For the rest of this section, in addition, we assume that c′(λ

2
) < 1

λ
.4

Theorem 4.4. Consider an M /M /2 queue with strategic servers. Then, FSF and SSF do not
admit a symmetric equilibrium.

Proof. We first highlight that when all servers operate at the same rate µ ∈
(
λ
N
,∞
)
, both FSF

and SSF are equivalent to Random routing. Henceforth, we refer to such a configuration as a
symmetric operating point µ. In order to prove that there does not exist a symmetric equilibrium
under either FSF or SSF, we show that at any symmetric operating point µ, any one server can
attain a strictly higher utility by unilaterally setting her service rate to be slightly lower (in the
case of FSF) or slightly higher (in the case of SSF) than µ.

We borrow some notation from the proof of Proposition 4.3 where we derived the expressions
for the steady state probability that a server is idle when there are only 2 servers under any
probabilistic policy, parameterized by a number p ∈ [0, 1] which denotes the probability that a
job arriving to an empty system is routed to server 1. Recall that I1(µ1, µ2; p) denotes the steady
state probability that server 1 is idle under such a probabilistic policy, and the corresponding
utility function for server 1 is U1(µ1, µ2; p) = I1(µ1, µ2; p) − c(µ1). Then, by definition, the
utility function for server 1 under FSF is given by:

UFSF
1 (µ1, µ2) =

U1(µ1, µ2; p = 0) , µ1 < µ2

U1

(
µ1, µ2; p = 1

2

)
, µ1 = µ2

U1(µ1, µ2; p = 1) , µ1 > µ2.

Similarly, under SSF, we have:

USSF
1 (µ1, µ2) =

U1(µ1, µ2; p = 1) , µ1 < µ2

U1

(
µ1, µ2; p = 1

2

)
, µ1 = µ2

U1(µ1, µ2; p = 0) , µ1 > µ2.

Note that while the utility function under any probabilistic routing policy is continuous every-
where, the utility function under FSF or SSF is discontinuous at symmetric operating points.
This discontinuity turns out to be the crucial tool in the proof. Let the two servers be operating

4The sufficient condition c′(λ2) < 1
λ might seem rather strong, but it can be shown that it is necessary for the

symmetric first order condition to have a unique solution. This is because, if c′(λ2) > 1
λ , then the function ϕ(µ),

defined in (4.10), ceases to be monotonic, and as a result, for any given r, the first order condition ϕ(µ) = r could
have more than one solution.

88

April 22, 2016
DRAFT

at a symmetric operating point µ. Then, it is sufficient to show that there exists 0 < δ < µ − λ
2

such that

UFSF
1 (µ− δ, µ)− UFSF

1 (µ, µ) > 0, (4.8)

and

USSF
1 (µ+ δ, µ)− UFSF

1 (µ, µ) > 0. (4.9)

We show (4.8), and (4.9) follows from a similar argument. Note that

UFSF
1 (µ− δ, µ)− UFSF

1 (µ, µ) = U1(µ− δ,µ; p = 0)− U1

(
µ, µ; p =

1

2

)
=
(
U1(µ− δ,µ; p = 0)− U1(µ, µ; p = 0)

)
+

(
U1(µ, µ; p = 0)− U1

(
µ, µ; p =

1

2

))
Since the first difference, U1(µ − δ, µ; p = 0) − U1(µ, µ; p = 0), is zero when δ = 0, and is
continuous in δ, it is sufficient to show that the second difference, U1(µ, µ; p = 0)−U1(µ, µ; p =
1
2
), is strictly positive:

U1(µ, µ; p = 0)− U1

(
µ, µ; p =

1

2

)
= I1(µ, µ; p = 0)− I1

(
µ, µ; p =

1

2

)
=

λ(2µ− λ)

(µ+ λ)(2µ+ λ)
> 0

(
using (4.7)

)
.

Moving beyond FSF and SSF, we continue our equilibrium analysis (for a finite r) by using
the first order conditions to show that whenever an r-routing policy admits a symmetric equi-
librium, it is unique. Furthermore, we provide an expression for the corresponding symmetric
equilibrium service rate in terms of r, which brings out a useful monotonicity property.
Theorem 4.5. Consider an M /M /2 queue with strategic servers. Then, any r-routing policy that
admits a symmetric equilibrium, admits a unique symmetric equilibrium, given by µ? = ϕ−1(r),
where ϕ : (λ

2
,∞)→ R is the function defined by

ϕ(µ) =
4(λ+ µ)

λ(λ− 2µ)
(µ(λ+ 2µ)c′(µ)− λ) . (4.10)

Furthermore, among all such policies, µ? is decreasing in r, and therefore, E[T], the mean
response time (a.k.a. sojourn time) at symmetric equilibrium is increasing in r.

Proof. The proof of this theorem consists of two parts. First, we show that under any r-routing
policy, any symmetric equilibrium µ? ∈ (λ

2
,∞) must satisfy the equation ϕ(µ?) = r. This is

a direct consequence of the necessary first order condition for the utility function of server 1
to attain an interior maximum at µ?. The second part of the proof involves using the condition
c′(λ

2
) < 1

λ
to show that ϕ is a strictly decreasing bijection onto R, which would lead to the

following implications:

89

April 22, 2016
DRAFT

• ϕ is invertible; therefore, if an r-routing policy admits a symmetric equilibrium, it is
unique, and is given by µ? = ϕ−1(r).

• ϕ−1(r) is strictly decreasing in r; therefore, so is the unique symmetric equilibrium (if it
exists). Since the mean response time E[T] is inversely related to the service rate, this
establishes that E[T] at symmetric equilibrium (across r-routing policies that admit one) is
increasing in r.

We begin with the first order condition for an interior maximum. The utility function of
server 1 under an r-routing policy, from (4.2), is given by

U r
1 (µ1, µ2) = Ir1(µ1, µ2)− c(µ1)

For µ? ∈ (λ/2,∞) to be a symmetric equilibrium, the function U r
1 (µ1, µ

?) must attain a global
maximum at µ1 = µ?. The corresponding first order condition is then given by:

∂Ir1
∂µ1

(µ1, µ
?)

∣∣∣∣
µ1=µ?

= c′(µ?), (4.11)

where Ir1 is given by Proposition 4.3. The partial derivative of the idle time can be computed and
the left hand side of the above equation evaluates to

∂Ir1
∂µ1

(µ1, µ
?)

∣∣∣∣
µ1=µ?

=
λ(4λ+ 4µ? + λr − 2µ?r)

4µ?(λ+ µ?)(λ+ 2µ?)
. (4.12)

Substituting in (4.11) and rearranging the terms, we obtain:

4(λ+ µ?)

λ(λ− 2µ?)
(µ?(λ+ 2µ?)c′(µ?)− λ) = r.

The left hand side is equal to ϕ(µ?), thus yielding the necessary condition ϕ(µ?) = r.
Next, we proceed to show that if c′(λ

2
) < 1

λ
, then ϕ is a strictly decreasing bijection onto R.

Note that the function

ϕ(µ) =
4(λ+ µ)

λ(λ− 2µ)
(µ(λ+ 2µ)c′(µ)− λ)

is clearly a continuous function in (λ
2
,∞). In addition, it is a surjection onto R, as evidenced by

the facts that ϕ(µ)→ −∞ as µ→∞ and ϕ(µ)→∞ as µ→ λ
2
+ (using c′(λ

2
) < 1

λ
).

To complete the proof, it is sufficient to show that ϕ′(µ) < 0 for all µ ∈ (λ
2
,∞). First,

observe that

ϕ′(µ) =
4ψ(µ)

λ(λ− 2µ)2
,

where

ψ(µ) = µ(λ+ µ)(λ2 − 4µ2)c′′(µ) + (λ3 + 6λ2µ− 8µ3)c′(µ)− 3λ2.

90

April 22, 2016
DRAFT

Since c′(λ
2
) < 1

λ
, as µ→ λ

2
+, ψ(µ) < 0. Moreover, since c′′′(µ) > 0, for all µ > λ

2
, we have

ψ′(µ) = −4µ(λ+ µ)

(
µ2 −

(
λ

2

)2
)
c′′′(µ)− 4

(
µ−

λ

2

)
(λ2 + 6λµ+ 6µ2)c′′(µ)− 24

(
µ2 −

(
λ

2

)2
)
c′(µ) < 0.

It follows that ψ(µ) < 0 for all µ > λ
2
. Since ϕ′(µ) has the same sign as ψ(µ), we conclude that

ϕ′(µ) < 0, as desired.

In light of the inverse relationship between r and µ? that is established by Theorem 4.5, the
system manager would ideally choose the smallest r such that the corresponding r-routing policy
admits a symmetric equilibrium, which is in line with the intuition that a bias towards SSF (the
limiting r-routing policy as r → −∞) incentivizes servers to work harder. However, there is
a hard limit on how small an r can be chosen (concurrently, how large an equilibrium service
rate µ? can be achieved) so that there exists a symmetric equilibrium, as evidenced by our next
theorem.
Theorem 4.6. Consider an M /M /2 queue with strategic servers. Then, there exists µ, r ∈ R,
with r = ϕ(µ), such that no service rate µ > µ can be a symmetric equilibrium under any
r-routing policy, and no r-routing policy with r < r admits a symmetric equilibrium.

Proof. From Theorem 4.5, we know that if a symmetric equilibrium exists, then it is unique, and
is given by µ? = ϕ−1(r), where ϕ establishes a one-to-one correspondence between r and µ?

(µ? is strictly decreasing in r and vice versa). Therefore, it is enough to show that there exists a
finite upper bound µ > λ

2
such that no service rate µ > µ can be a symmetric equilibrium under

any r-routing policy. It would then automatically follow that for r = ϕ(µ), no r-routing policy
with r ≤ r admits a symmetric equilibrium. We prove this by exhibiting a µ and showing that if
µ ≥ µ, then the utility function of server 1, U r

1 (µ1, µ), cannot attain a global maximum at µ1 = µ
for any r ∈ R.

We begin by establishing a lower bound for the maximum utility U r
1 (µ1, µ) that server 1 can

obtain under any r-routing policy:

max
µ1>

λ
2

U r
1 (µ1, µ) ≥ U r

1

(
λ

2
, µ

)
= Ir1

(
λ

2
, µ

)
− c

(
λ

2

)
≥ −c

(
λ

2

)
= U r

1

(
λ

2
,
λ

2

)
. (4.13)

By definition, if µ? is a symmetric equilibrium under any r-routing policy, then the utility func-
tion of server 1, U r

1 (µ1, µ
?), is maximized at µ1 = µ?, and hence, using (4.13), we have

U r
1 (µ?, µ?) ≥ U r

1 (
λ

2
,
λ

2
). (4.14)

Next, we establish some properties on U r
1 (µ, µ) that help us translate this necessary condition

for a symmetric equilibrium into an upper bound on any symmetric equilibrium service rate. We
have,

U r
1 (µ, µ) = 1− λ

2µ
− c(µ),

which has the following properties:

91

April 22, 2016
DRAFT

• Since c′(λ
2
) < 1

λ
, U r

1 (µ, µ), as a function of µ, is strictly increasing at µ = λ
2
.

• U r
1 (µ, µ) is a concave function of µ.

This means that U r
1 (µ, µ) is strictly increasing at µ = λ

2
, attains a maximum at the unique µ† > λ

2

that solves the first order condition µ2
†c
′(µ†) = λ

2
, and then decreases forever. This shape of the

curve U r
1 (µ, µ) implies that there must exist a unique µ > µ†, such that U r

1 (µ, µ) = U r
1 (λ

2
, λ

2
).

Since U r
1 (µ, µ) is a strictly decreasing function for µ > µ†, it follows that if µ? > µ, then,

U r
1 (µ?, µ?) < U r

1 (µ, µ) = U r
1 (λ

2
, λ

2
), contradicting the necessary condition (4.14). This estab-

lishes the required upper bound µ on any symmetric equilibrium service rate, completing the
proof.

This proof is constructive, as we exhibit an r, however, it is not clear whether this is tight,
that is, whether there exists a symmetric equilibrium for all r-routing policies with r ≥ r. We
provide a partial answer to this question of what r-routing policies do admit symmetric equilibria
in the following theorem.
Theorem 4.7. Consider an M /M /2 queue with strategic servers. Then, there exists a unique
symmetric equilibrium under any r-routing policy with r ∈ {−2,−1, 0, 1}.

Proof. A useful tool for proving this theorem is Theorem 3 from [32], whose statement we have
adapted to our model:

Theorem 4.8. A symmetric game with a nonempty, convex, and compact strategy space, and util-
ity functions that are continuous and quasiconcave has a symmetric (pure-strategy) equilibrium.

We begin by verifying that our 2-server game meets the qualifying conditions of Theorem 4.8:

• Symmetry: First, all servers have the same strategy space of service rates, namely, (λ
2
,∞).

Moreover, since an r-routing policy is symmetric and all servers have the same cost func-
tion, their utility functions are symmetric as well. Hence, our 2-server game is indeed
symmetric.

• Strategy space: The strategy space (λ
2
,∞) is nonempty and convex, but not compact, as

required by Theorem 4.8. Hence, for the time being, we modify the strategy space to be
[λ

2
, µ+ 1] so that it is compact, where µ is the upper bound on any symmetric equilibrium,

established in Theorem 4.6, and deal with the implications of this modification later.
• Utility function: U r

1 (µ1, µ2) is clearly continuous. From Mathematica, it can be verified
that the idle time function Ir1(µ1, µ2) is concave in µ1 for r ∈ {−2,−1, 0, 1}, and since the
cost function is convex, this means the utility functions are also concave. (Unfortunately,
we could not get Mathematica to verify concavity for non-integral values of r, though we
strongly suspect that it is so for the entire interval [−2, 1].)

Therefore, we can apply Theorem 4.8 to infer that an r-routing policy with r ∈ {−2,−1, 0, 1}
admits a symmetric equilibrium in [λ

2
, µ + 1]. We now show that the boundaries cannot be

symmetric equilibria. We already know from Theorem 4.6 that µ + 1 cannot be a symmetric
equilibrium. (We could have chosen to close the interval at any µ > µ. The choice µ + 1 was
arbitrary.) To see that λ

2
cannot be a symmetric equilibrium, observe that c′(λ

2
) < 1

λ
implies that

U r
1 (µ1,

λ
2
) is increasing at µ1 = λ

2
(using the derivative of the idle time computed in (4.12)), and

hence server 1 would have an incentive to deviate. Therefore, any symmetric equilibrium must

92

April 22, 2016
DRAFT

log10(E[T])

r

1
3

2
3

1

0-18 -12 -6 6 12 18

•

• c(µ) = µ

•

• c(µ) = µ2

•

• c(µ) = µ3

Figure 4.3: Equilibrium mean response time (a.k.a. sojourn time) as a function of the policy
parameter, r, when the arrival rate is λ = 1

4
, for three different effort cost functions: linear,

quadratic, and cubic.

be an interior point, and from Theorem 4.5, such an equilibrium must be unique. This completes
the proof.

Notice that we show equilibrium existence for four integral values of r. It is challenging to
show that all r-routing policies in the interval [−2, 1] admit a symmetric equilibrium. Theorem
4.7 provides an upper bound on the r of Theorem 4.6, that is, r ≤ −2. Therefore, if the specific
cost function c is unknown, then the system manager can guarantee better performance than
Random (r = 0), by setting r = −2. If the specific cost function is known, the system manager
may be able to employ a lower r to obtain even better performance. For example, consider a 2-
server system with λ = 1/4 and one of three different effort cost functions: c(µ) = µ, c(µ) = µ2,
and c(µ) = µ3. Figure 4.3 shows the corresponding equilibrium mean response times (in red,
blue, and green, respectively). It is worth noting that the more convex the effort cost function,
larger the range of r (and smaller the minimum value of r) for which a symmetric equilibrium
exists.

4.5 Conclusion
The rate at which each server works in a service system has important consequences for service
system design. However, traditional models of service systems do not capture the fact that human
servers respond to incentives created by scheduling and staffing policies, because traditional
models assume each server works at a given fixed service rate. In this chapter, we initiate the
study of a class of strategic servers that seek to optimize a utility function which values idle time
and includes an effort cost.

Our focus is on the analysis of routing policies for an M/M/N queue with strategic servers,
and our results highlight that strategic servers have a dramatic impact on the optimal routing

93

April 22, 2016
DRAFT

policies. In particular, policies that are optimal in the classical, nonstrategic setting can perform
quite poorly when servers act strategically. We find that by considering a new family of policies,
namely rate-based policies, we can achieve much better system performance.

Finally, it is important to note that we have focused on symmetric equilibrium service rates.
We have not proven that asymmetric equilibria do not exist. Thus, it is natural to wonder if there
are routing policies that result in an asymmetric equilibrium. Potentially, there could be one
group of servers that have low effort costs but negligible idle time and another group of servers
that enjoy plentiful idle time but have high effort costs. The question of asymmetric equilibria
becomes even more interesting when the servers have different utility functions. For example,
more experienced servers likely have lower effort costs than new hires. Also, different servers
can value their idle time differently. How do we design routing and staffing policies that are
respectful of such considerations?

94

April 22, 2016
DRAFT

Chapter 5

Routing with Heterogeneous Job Values

5.1 Introduction

In this chapter, we address routing in queueing systems where the servers are computers, rather
than humans. In particular, we investigate how a manger should route jobs in a server farm.
Server farms are commonplace today in web servers, data centers, and in compute clusters.
Such architectures are inexpensive (compared to a single fast server) and afford flexibility and
scalability in computational power. However, their efficiency relies on having a good algorithm
for routing incoming jobs to servers.

A typical server farm consists of a front-end router, which receives all the incoming jobs and
dispatches each job to one of a collection of servers which do the actual processing, as depicted in
Figure 5.1. The servers themselves are “off-the-shelf” commodity servers which typically sched-
ule all jobs in their queue via Processor-Sharing (PS); this cannot easily be changed to some other
scheduling policy. All the decision-making is done at the central dispatcher. The dispatcher (also
called a load balancer) employs a dispatching policy (often called a load balancing policy or a
task assignment policy), which specifies to which server an incoming request should be routed.
Each incoming job is immediately dispatched by the dispatcher to one of the servers (this imme-
diate dispatching is important because it allows the server to quickly set up a connection with the
client, before the connection request is dropped). Typical dispatchers used include Cisco’s Local
Director [1], IBM’s Network Dispatcher [107], F5’s Big IP [48], Microsoft Sharepoint [2], etc.
Since scheduling at the servers is not under our control, it is extremely important that the right
dispatching policy is used.

Prior work has studied dispatching policies with the goal of minimizing mean response time,
E[T]; a job’s response time is the time from when the job arrives until it completes. Several
papers have specifically studied the case where the servers schedule their jobs via PS (see [9, 18,
20, 49, 63, 83, 100, 104]). Here, it has been show that the Join-the-Shortest-Queue (JSQ) policy
performs very well, for general job size distributions. Even picking the shortest of a small subset
of the queues, or simply trying to pick an idle queue if it exists, works very well. Interestingly,
such simple policies like JSQ are superior even to policies like Least-Work-Left, which route
a job to the server with the least remaining total work (sum of remaining sizes of all jobs at
the queue), rather than simply looking at the number of jobs [70]. In addition, there have been

95

April 22, 2016
DRAFT

Incoming Jobs Dispatcher

PS

PS

PS

Figure 5.1: Dispatching in server farms with Processor-Sharing (PS) servers.

many more papers studying dispatching policies where the servers schedule jobs in First-Come-
First-Served (FCFS) order (see e.g., [6, 16, 28, 34, 45, 46, 49, 69, 71, 89, 101, 129, 130]). Here
high job size variability can play a large role, and policies like Size-Interval-Task-Assignment
(SITA) [71], which segregates jobs based on job size, or Least-Work-Left [73], which routes job
to the queue with the least total remaining work (rather than the smallest number of jobs), are far
superior to JSQ.

However, all of this prior work has assumed that jobs have equal importance (value), in that
they are equally sensitive to delay. This is not at all the case. Some jobs might be background
jobs, which are largely insensitive to delay, while others have a live user waiting for the result
of the computation. There may be other jobs that are even more important in that many users
depend on their results, or other jobs depend on their completion. We assume that every job
has a value, V , independent of its size (service requirement). Given jobs with heterogeneous
values, the right metric to minimize is not the mean response time, E[T], but rather the mean
value-weighed response time, E[V T], where jobs of higher value (importance) are given lower
response times.

The problem of minimizing E[V T], where V and T are independent, is also not new, although
it has almost exclusively been considered in the case of server scheduling, not in the case of
dispatching (see Prior Work section). Specifically, there is a large body of work in the operations
research community where jobs have a holding cost, c, independent of the job size, and the goal
is to minimizing E[c · T] over all jobs. Here it is well-known that the cµ rule is optimal [50].
In the cµ rule, c refers to a job’s holding cost and µ is the reciprocal of a job’s size. The cµ
rule always runs the job with the highest product c times µ; thus, jobs with high holding cost
and/or small size are favored. However, there has been no cµ-like dispatching policy proposed
for server farms.

In this paper, we assume a server farm with a dispatcher and PS servers. Jobs arrive according
to a Poisson process and are immediately dispatched to a server. The value, V , of an arrival is
known, but its size, S, is not known. Furthermore, we assume that value and size are independent,
so that knowing the job’s value does not give us information about the job’s size. We assume
that we know the distribution job values. Furthermore, job sizes are exponentially-distributed
with unit mean. By requiring that jobs are exponentially distributed, we are consistent with
the assumption that there is no way to estimate a job’s size; otherwise, we could use “age”
information to update predictions on the remaining size of each job, and some of the policies

96

April 22, 2016
DRAFT

of interest would become much more complex.1 Nothing else is known about future arrivals.
In making dispatching decisions, we assume that we know the queue length at each server (this
is the number of jobs at the PS server) as well as the values of the jobs at each server. In this
context, we ask:

“What is a good dispatching policy to minimize E[V T]?”
Even in this simple setting, it is not at all obvious what makes a good dispatching policy. We

consider several policies (see Section 5.4 for more detail):
• The Random (RND) dispatching policy ignores job values and queue lengths. Arrivals

are dispatched randomly.
• The Join-Shortest-Queue (JSQ) dispatching policy ignores values and routes each job to

the server with the fewest number of jobs. This policy is known to be optimal in the case
where all values are equal [63].

• The Value-Interval-Task-Assignment (VITA) dispatching policy is reminiscent of the
SITA policy, where this time jobs are segregated by value, with low-value jobs going to
one server, medium value jobs going to the next server, higher-value jobs going to the next
server, and so on. The goal of this policy is to isolate high value jobs from other jobs, so
that the high value jobs can experience low delay. The distribution of V and system load ρ
are used to determine the optimal threshold(s) for minimizing E[V T].

• The C-MU dispatching policy is motivated by the cµ rule for scheduling in servers. Each
arrival is dispatched so as to maximize the average instantaneous value of the jobs complet-
ing, assuming no future arrivals, where the average is taken over the servers. This policy
makes use of the value of the arrival and the values of all the jobs at each server.

• The Length-And-Value-Aware (LAVA) dispatching policy is very similar to the C-MU
policy. Both policies incorporate queue length and job values in their decision. However,
whereas C-MU places jobs so as to maximize the expected instantaneous value of jobs
completed, LAVA places jobs so as to explicitly minimize E[V T] over jobs. Both policies
make their decisions solely based on jobs already in the system.

This paper is the first to introduce the VITA, C-MU, and LAVA policies.
Via a combination of asymptotic analysis, exact analysis, and simulation we show the follow-

ing in Sections 5.5 and 5.6. We find that generally RND is worse than VITA, which is worse than
JSQ, which is worse than LAVA. In fact, under an asymptotic regime we prove that as system
load ρ → 1, the ratio E[V T]RND : E[V T]VITA : E[V T]JSQ : E[V T]LAVA approaches 4 : 2 : 2 : 1.
The C-MU policy, on the other hand, avoids neat classification. There are value distributions and
loads for which C-MU is the best policy of those we study, and others for which C-MU is the
worst. In fact, C-MU can become unstable even when system load ρ < 1. Finally, while VITA is
generally not a great policy, we find that there are certain regimes under which VITA approaches
optimality under light load (ρ < 1/2), performing far better than the other policies we study.

But is it possible to do even better than the above dispatching policies? We find that under a
particularly skewed value distribution, there is a policy, “Gated VITA,” which can outperform all

1We do in fact carry out a set of simulations assuming an alternative job size distribution, with policies that
ignore “age” information. The qualitative results remain the same as those under exponentially distributed job sizes;
see Section 5.5.

97

April 22, 2016
DRAFT

of the aforementioned policies by an arbitrary factor. The idea behind this policy is to split high
and low value jobs, while using a “gate” to place a limit on the number of low-value jobs that can
interfere with high-value jobs (see Section 5.7 for details). If one is willing to forego simplicity
in the dispatching policies, one can further use first policy iteration to significantly improve upon
simple policies (see Section 5.8 for details).

5.2 Prior work on value-driven dispatching

The problem of finding dispatching policies with the aim of minimizing value-weighted response
time has received very little attention in the literature. Below we discuss the few papers in this
setting, which are (only tangentially) related to our own.

One paper concerned with the minimization of an E[V T]-like metric is [9], where a constant
value parameter is associated with each server. In this setting, job values are not treated as
exogenous random variables determined at the time of arrival; instead, the value of a job is set
to the value associated with the server serving the job, and hence, a job’s value is determined by
where the dispatcher sends it.

Another research stream that considers heterogeneity in the delay sensitivity of jobs is the
dispatching literature concerned with minimizing slowdown, E[1

X
·T], where X is a job’s service

requirement (size) [72, 84, 131]. This body of literature differs from our work in two key ways.
First, unlike our work, the “value” of each job is deterministically related to (in particular, is
the multiplicative inverse of), rather than independent of, the job’s size. Second, the slowdown
metric necessitates the examination of dispatching policies that can observe job sizes.

Finally, settings similar to ours are considered in [81, 82]. Unlike this chapter, however, these
papers do not provide a comprehensive comparison of dispatching policies: [81] is concerned
with deriving one specific policy (the lookahead policy), while [82] only considers the simple
random and round robin policies, together with FPI improvements on these policies, which make
use of job sizes.

5.3 Model for PS server system

The basic system, illustrated in Fig. 5.1, is as follows:
• We have m servers with Processor-Sharing (PS) scheduling discipline and service rate µi.

Throughout the simulation and analytic portion of this chapter, we give particular attention
to the case where m = 2 and µ1 = µ2.

• Jobs arrive according to the Poisson process with rate λ and are immediately dispatched to
one of the m servers.

• Job j is defined by a pair (X(j), V (j)), where X(j) denotes the size of the job and V (j) is
its value.

• Job sizes obey exponential distribution with unit mean, E[X] = 1, preventing us from
using the “age” of a job to learn about its remaining size.

98

April 22, 2016
DRAFT

• The system load is given by ρ ≡ λ/(
∑m

i=1 µi). When m = 2 and µ1 = µ2, we have
ρ = λ/(2µ).

• We can observe the number of jobs in each server (queue length), but not their service
times.

• The values {V (j)} are drawn from a known distribution with finite mean and nonzero
variance. A job’s value becomes known upon arrival. We can also observe the values of
jobs at each server.

• Jobs are i.i.d., i.e., (X(j), V (j)) ∼ (X, V), where X(j) and V (j) are independent. In partic-
ular, it is not possible to deduce anything about a job’s size based on its value.

• The objective is to minimize the mean (or time-average) value-weighted response time,
given by E[V T] ≡ limn→∞

(
1
n

∑n
j=1 V

(j)T (j)
)
, where T (j) is the response time experi-

enced by job j.
Notation: Throughout, it will be convenient to use ni to denote the number of jobs that an

arrival sees at server i; vi,j to be the value of the jth job at server i; vsum
i ≡

∑ni
j=1 vi,j to denote

the total values of jobs that an arrival sees at server i; and v̄i ≡ vsum
i /ni to denote the average

value of jobs at server i.

5.4 Description of simple dispatching policies
In describing our dispatching policies, it will be convenient to use the following terms.
Definition 5.1. The state of a queue consists of its queue length and the specific values of jobs
at the queue.
Definition 5.2. A dispatching policy is called static if its decision is independent of the queue
states and independent of all past placement of jobs.2

Definition 5.3. A dispatching policy is called value-aware if the policy requires knowing the
value of a new arrival.

5.4.1 Random dispatching (RND)
The RND policy dispatches each incoming job to server i with probability 1/m, where m is the
number of servers.

5.4.2 Join-the-Shortest-Queue dispatching (JSQ)
The JSQ policy dispatches each incoming job to the server with the shortest queue length. If
multiple queues have the same shortest length, JSQ picks among them at random. Like RND,
JSQ does not make use of the value a job. JSQ is typically superior to RND in that it balances

2Note that a policy such as Round-Robin is not considered static in this chapter. The placement of a job in the
Round-Robin policy is determined by the placement of the previous job: if the Round-Robin policy sends an arrival
to server j, then it sends the next arrival to server j+ 1 mod m. In particular, a static policy ensures that the arrival
process to each server is a Poisson process.

99

April 22, 2016
DRAFT

the instantaneous queue lengths. It is known to be either optimal or very good for minimizing
E[T] in a variety of settings [63]. Observe that E[T] = E[V T] in the case where all values are
equal.

5.4.3 Value-Interval-Task-Assignment (VITA)
The VITA policy is our first value-aware policy. The idea is that each server is assigned a “value
interval” (e.g., “small,” “medium,” or “large” values), and an incoming job is dispatched to that
server that is appropriate for its value. Specifically, assume that the value distribution has a
continuous support without atomic probabilities, ranging from 0 to ∞. In this case, we can
imagine specifying value “thresholds,” ξ0, ξ1, . . . , ξm, where 0 = ξ0 < ξ1 < . . . < ξm−1 < ξm =
∞. Then VITA assigns jobs with value V ∈ (ξi−1, ξi) to server i.3 In the case where there is
a nonzero probability mass associated with a particular value, v, it may be the case that jobs
with value v are routed to a subset n > 1 of the m servers. In this case, we also must specify
additional “thresholds” in the form of probabilities, p1, p2, · · · , pn, where

∑
i pi = 1, and jobs of

value v are routed to the ith server of the n with probability pi.
Thus we can see that VITA may depend on various threshold parameters. Throughout we

define VITA to use those thresholds which minimize E[V T]. VITA is a static policy, and thus
practical for distributed operation with any number of parallel dispatchers.

The intuition behind VITA is that it allows high-value jobs to have isolation from low-value
jobs. Given that our goal is to provide high-value jobs with low response times, it makes sense
to have some servers which serve exclusively higher-value jobs, so that these jobs are not slowed
down by other jobs. Of course the optimal choice of thresholds depends on the value distribution
and the load.

It turns out that VITA is the optimal static policy for minimizing E[V T]. For clarity, we
will prove that VITA is the optimal static value-aware policy in the case of m = 2 servers with
identical service rates; however this result easily extends to m > 2 servers.
Proposition 5.4. VITA is the optimal (i.e., E[V T]-minimizing) static policy for any two-server
system with identical service rates. Furthermore, VITA unbalances the load, whereas all load
balancing static policies achieve the same performance as RND.

Proof. Deferred to Appendix.

5.4.4 C-MU
The classic cµ rule for scheduling in servers prioritizes jobs with the highest product of value
(c) and inverse expected remaining service requirement (µ). This policy for server scheduling is
known to be optimal in many scheduling contexts [50].

Our C-MU dispatching policy is inspired by the cµ scheduling rule, in that it aims to maxi-
mize the value-weighted departure rate.

As always, we use ni to denote the number of jobs that an arrival sees at server i; vsum
i =∑ni

j=1 vi,j for the sum of job values at server i; and v̄i = vsum
i /ni to denote the average value of

3Since it is preferable to send high-value jobs to wherever they can be served fastest, we assume without loss of
generality that µ1 ≤ · · · ≤ µm.

100

April 22, 2016
DRAFT

jobs at server i. Since PS scheduling provides all jobs equal service rate, v̄iµi denotes the current
“rate of value departing” from server i. The total rate of value departing is of course

∑
i v̄iµi.

The C-MU dispatching rule greedily routes each incoming job so as to maximize the instan-
taneous total rate of value departing. This policy is myopic in that it makes its routing decision
solely based on jobs already in the system, not taking into account future arrivals or departures.
Specifically, an incoming job of value v is routed to that server, i, whose rate of value departing
will increase the most (or decrease least) by having the job. That is, i satisfying

argmax
i

µi
ni + 1

(vsum
i + v)− µi

ni
· vsum

i = argmax
i

v − v̄i
ni + 1

µi = argmin
i

v̄i − v
ni + 1

µi.

Let αC-MU(v) denote the server to which a job of value v is routed under C-MU dispatching.
Then

αC-MU(v) = argmin
i

v̄i − v
ni + 1

µi. (5.1)

Note that if some value jobs are common, then v̄i = v may occur frequently and the numerator
in (5.1) becomes zero. In such cases C-MU is “clueless”. For example, it cannot decide between
a server with a billion jobs with value v and a server with a single job with value v. We use
random splitting to resolve ties, but note that in some specific (asymptotic) cases significant
improvements can be achieved if ties are resolved in some other manner, e.g., via JSQ.

As an example of C-MU, suppose that there are 2 jobs of value 10 at server 1 and 4 jobs
of value 1 at server 2. Suppose also that µ1 = µ2 = 1. The current value-weighted departure
rate at server 1 is 10, and that at server 2 is 1. Consider an incoming arrival of value v. If the
arrival is routed to server 1, then it will increase the mean value-weighted departure rate at server
1 to (20 + v)/3. The total rate of value departing from the system will increase from 11 to
(23 + v)/3. If, on the other hand, the arrival is routed to server 2, then it will increase the mean
value-weighted departure rate at server 2 to (4 + v)/5. The total rate of value departing from the
system will then increase from 11 to (54 + v)/5. Thus the new arrival should be routed to server
1 if (23 + v)/3 > (54 + v)/5; to server 2 if (23 + v)/3 < (54 + v)/5; and to each server with
probability 1/2 if (23 + v)/3 = (54 + v)/5. These cases correspond to v greater than, less than,
and equal to 47/2, respectively. Note that the value of the incoming job has to be very high (i.e.,
47/2 or greater) before C-MU is willing to send it to server 1.

5.4.5 Length-and-Value-Aware (LAVA)
Like the C-MU policy, LAVA is state-aware, using both the queue lengths and the values of all
jobs at each server. Also like C-MU, LAVA is myopic with respect to further arrivals. The key
difference is that LAVA attempts to directly minimize the metric of interest, E[V T], whereas
C-MU aims to maximize the total rate of value departing, which is related to minimizing E[V T]
but not the same.

LAVA routes an arriving job so as to minimize E[V T], averaged over all jobs currently in the
system, including the current arrival, assuming that no future jobs arrive. Similar myopic policies
have been considered in [18, 63] where values are homogeneous, and the goal is minimizing
E[V T].

101

April 22, 2016
DRAFT

Before formally defining LAVA, it is useful to compute E[V T] for an arbitrary system state
under the assumption that there will be no further arrivals. The jobs at a server are equally
likely to leave in any order. Hence the sum of the response times of jobs currently at server i
is ni(ni+1)

2
· 1
µi
, and the expected response time for each job at server i is ni+1

2µi
. Thus the mean

value-weighted response time of the jth job at server i is ni+1
2µi
·vi,j. Recall that E[V T] is a per-job

average. Thus, if n is the total number of jobs in the system, (i.e., n =
∑m

i=1 ni), then

E[V T] =
1

n

m∑
i=1

ni∑
j=1

{
ni + 1

2µi
· vi,j

}
=

1

n

m∑
i=1

ni + 1

2µi
·vsum
i =

m∑
i=1

Si where Si =
ni + 1

2µi
·vsum
i .

We proceed to formally define LAVA. Given an arriving job with value v, we want to dispatch
this job so as to minimize the resulting E[V T], as expressed above. That is, we want to send the
arriving job to whichever server iwill experience the least increase in Si. If we send a job of value
v to server i, then the expected response time of jobs at server i will increase from (ni+1)/(2µi)
to (ni + 2)/(2µi), resulting in a new value of Si: Snewi = ni+2

2µi
(v + vsum

i). This means that

Snewi − Si =
1

2µi
((ni + 2)v + vsum

i) .

Let αLAVA(v) denote the server to which a job of value v is routed under LAVA dispatching.

αLAVA(v) = argmin
i

1

2µi
((ni + 2)v + vsum

i) . (5.2)

With identical servers µi = µj , we can extract common constants and simplify the description of
the policy to

αLAVA(v) = argmin
i

niv + vsum
i . (5.3)

As usual, ties are broken via random assignment.
Using this final formula (5.3), we return again to the example that we considered for C-MU,

where there are 2 jobs of value 10 at server 1 and 4 jobs of value 1 at server 2. Under LAVA, a
new arrival of value v prefers to go to server 1 if 2v + 2 · 10 < 4v + 4 · 1, i.e., if v > 8. So a new
arrival of value greater than 8 will join the value 10 jobs, while a new arrival of value less than
8 will join the value 1 jobs (a new arrival of value exactly 8 will pick randomly). Contrast this
with C-MU, where the cutoff was 47/2 rather than 8 for the same example.

5.5 Simulation results and intuitions
In this section, we report our findings from simulation in a two-server system (with identical ser-
vice rates) for the value distributions given in Table 5.1. We also provide intuition for the results.
Formal proofs will be given in the next section. In all cases, E[V] = 1, and the continuous dis-
tributions (a)–(c) are presented in increasing order of variability, as are the discrete distributions
(d)–(f). The variance is particularly high for distributions (e) and (f). Note that while the fraction

102

April 22, 2016
DRAFT

of high-value jobs is the same in distributions (e) and (f), the low-value jobs contribute about 100
times as much to E[V] under (e) than under (f). Distribution (f) has a “sharply bimodal” form (to
be defined in Section 6.3), whereby the high value jobs are extremely rare, yet comprise almost
all of the value.

(a) Uniform, V ∼ Uniform(0, 2)
(b) Exponential, V ∼ Exp(1)
(c) Bounded Pareto, V ∼ Pareto(min = 0.188,max = 10 000, α = 1.2)
(d) Bimodal, V ∼ Bimodal(99%, 0.1; 1%, 9.01)
(e) Bimodal, V ∼ Bimodal(99.9%, 0.1; 0.1%, 900.1)
(f) Bimodal, V ∼ Bimodal(99.9%, 1/999; 0.1%, 999)

Table 5.1: Value distributions considered in the examples. E[V] = 1 in all cases.
Bimodal(x%, v1; y%, v2) indicates that x% of jobs have value v1 and y% of jobs have value
v2.

The simulation results are presented in Fig. 5.2, where for each of the distributions (a)–(f),
we have plotted the performance of each policy, P, normalized by the performance of JSQ (i.e.,
E[V T]P/E[V T]JSQ), as a function of ρ. In all of these experiments, job sizes are exponentially
distributed with mean 1. We ran additional simulations where (i) job sizes follow a Weibull
distribution and (ii) job sizes follow a deterministic distribution. For these additional simulations,
we continued to use the same implementation of LAVA and C-MU which do not attempt to learn
a job’s remaining service time. The results under these additional simulations were qualitatively
similar to those under with exponentially distributed job sizes, suggesting that our findings are
largely insensitive to the job-size distribution, as might be expected under Processor-Sharing
service.

It is immediately apparent that RND is far worse than JSQ in all figures, and that E[V T]
under RND converges to twice that under JSQ as load approaches 1. This factor 2 result will
be proven in Proposition 5.5, however it is understandable since under high load the two servers
under JSQ function similarly to a single server with twice the speed.

Given our result in Proposition 5.4 showing that VITA is the optimal static policy, it may
seem surprising that VITA offers only a modest improvement over RND in Fig. 5.2 (a)–(d) and
is so inferior to JSQ, despite JSQ not even using value information. To see what is going on,
notice that under low load, there are only a few jobs in the system. Here VITA can mess up by
putting these jobs onto the same server (if they have the same value), whereas JSQ never will.
In fact dynamic policies like JSQ, CMU and LAVA are all “idle-eager,” in that they will always
route a job to an idle server if one exists. This gives them an advantage over VITA for low load.
Under high load, VITA does not have much flexibility over protecting high-value jobs, since it
is forced to balance load. Here, the performance under VITA is close to that under RND, even
though VITA is the optimal static load balancing policy (cf. Proposition 5.4).

Fig. 5.2(f) is the exception. Here, under moderate load VITA outperforms all the other poli-
cies examined. The reason is that when nearly all of the value in the system is made up by a very
small fraction of the jobs, VITA can maintain a much shorter queue for the most valuable jobs,
without paying a big penalty for the resulting additional delays faced by the other jobs. This

103

April 22, 2016
DRAFT

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~U(0,2)

RND

VITA
C-M

U

JSQ

LAVA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Exp(1)

RND

VITA

JSQ
C
-M

U

LAVA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Pareto(0.188,10000,1.2)

RND

VITA

JSQ

C
-M

U

LAVA

(a) (b) (c)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Bimodal(99%,0.1; 1%,9.01)

RND

VITA C
M

U

JSQ

LAVA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Bimodal(99.9%,0.1; 0.1%,900.1)

RND

VITA

CMU

JSQ

LAVA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Bimodal(99.9%,1/999; 0.1%,999)

RND

VITA

CMU

JSQ

LAVA

(d) (e) (f)

Figure 5.2: Performance relative to JSQ in a two-server system, with value distributions taken
from Table 5.1 (a)–(f). Each point corresponds to the mean performance averaged over 100
million jobs.

effect is particularly potent when ρ < 1/2, because the valuable jobs do not need to share the
server “reserved” for them, since all low value jobs can be directed to the other server without
violating stability constraints. Even under high load, we see that VITA performs similarly to
JSQ, rather than RND. Although VITA has very limited flexibility for protecting high-value jobs
under high load, the high value jobs under distribution (f) are so extremely valuable that even
giving them a slight reduction in load (say 0.97 for the high value jobs and 0.99 for the low value
jobs), will buy a factor of 2 improvement over RND. We formalize these notions in Theorems
5.8 and 5.9 of Section 5.6.

LAVA often outperforms all of the other policies. It is also the only policy that outperforms
JSQ in all cases examined. Its consistent improvement over JSQ can be attributed to the fact that
LAVA behaves like JSQ when all values are the same (or very close), but LAVA also uses value
information to dispatch in favor of the most valuable jobs. Specifically, when an extremely valu-
able job enters the system, LAVA places the job somewhere and then essentially ceases sending
jobs to that server (because it is crucial to the E[V T] metric that this job not be slowed down).
Thus, this particularly valuable job ends up timesharing with an average of n/2 jobs over its life-
time under LAVA, where n denotes the number of jobs the high value job saw when it arrived.
This “stopper” effect under LAVA is particularly important for sharply bimodal distributions like

104

April 22, 2016
DRAFT

(f), where, as ρ→ 1, LAVA approximately obtains a 50% reduction in the E[V T] over JSQ. We
formalize this result in Corollary 5.12.

Finally, turning to the C-MU policy, we notice that E[V T] diverges, suggesting that the sys-
tem is unstable, for some values of ρ < 1 under distributions (a)–(d), while C-MU is the best
performing policy under distributions (e) and (f). C-MU’s good and bad performance can be
attributed to the same protectiveness of high value jobs that we saw in LAVA. Specifically, the
presence of a single high-value job at a server can prohibit the entry of any low-value jobs to
that server. On the one hand, this is beneficial because the high-value jobs are protected; on the
other hand, the server with the high-value job may be underutilized, giving rise to instability at
the other server. While LAVA also exhibits such “stoppering” behavior, under C-MU this prohi-
bition is more severe as it occurs regardless of the length of the queue at the other server. For
value distributions (a)–(d), C-MU’s extreme protectiveness of high-value jobs leads to instability
at the other server. For distributions (e) and (f), the high-value jobs are much rarer; so much so
that the “stoppering” periods are a lot less frequent and instability does not occur. Observation
5.7 and Theorem 5.11 of Section 5.6 shed more light on C-MU’s behavior.

5.6 Analytic results
Motivated by the observations in the previous section, we proceed to present and prove analytic
results.

5.6.1 RND and JSQ under high load
We start by noting that V and T are independent under both RND and JSQ, yielding
E[V T] = E[V]E[T]. Using a result from [130] that E[T]RND ≥ E[T]JSQ for all ρ, it follows that
E[V T]RND ≥ E[V T]JSQ for all ρ. The proposition below provides an asymptotic comparison of
RND and JSQ as ρ→ 1.
Proposition 5.5. As ρ→ 1, E[V T]RND/E[V T]JSQ → 2.

Proof. We start by recalling a result by Foschini and Salz [51], stating that as ρ→ 1, the response
time for a two-server system under JSQ with servers operating at rate µ approaches that of a
single-server operating at rate 2µ, i.e.,

lim
ρ→1

E[T]JSQ

1/(2µ− λ)
= 1.

Next, we use the fact that V and T are independent under both RND and JSQ, yielding

E[V T]RND = E[V]E[T]RND =
E[V]

µ− λ/2
and E[V T]JSQ = E[V]E[T]JSQ,

and complete the proof by applying the result from [51]:

lim
ρ→1

E[V T]RND

E[V T]JSQ
= lim

ρ→1

((
E[V]

µ− λ/2

)/(
E[V]

2µ− λ

))
= lim

ρ→1

(
2µ− λ
µ− λ/2

)
= 2.

105

April 22, 2016
DRAFT

5.6.2 Stability and instability
A dispatching policy is called stable if the resulting system has a finite response time (i.e.,
E[T] < ∞), otherwise we say that it is unstable. A lack of stability can lead to infinitely poor
performance with respect to E[V T]. In fact, if the value distribution has positive lower and upper
bounds, then E[V T] is finite if and only if E[T] is finite (i.e., if and only if the dispatching policy
is stable). Hence, it is important to avoid implementing unstable policies. The following result
shows that if the value distribution has positive lower and upper bounds, then all of the policies
we have studied, with the exception of C-MU, are stable if and only if ρ < 1:
Theorem 5.6. Let the value distribution have lower bound a > 0 and upper bound b <∞. Then
for a two-server system with identical service rates, RND, JSQ, VITA, and LAVA are stable if
and only if ρ < 1.

Proof. First we note that all dispatching policies are unstable when ρ ≥ 1.
Clearly, E[T]RND = 1/(µ− λ/2), so this policy is stable whenever µ > λ/2, or equivalently,

whenever ρ < 1, as required. Next, recall that E[T]JSQ ≤ E[T]RND < ∞ by [130], establishing
that JSQ is also stable. Since VITA is the optimal static policy by Proposition 5.4, E[V T]VITA ≤
E[V T]RND = E[V]E[T]RND < ∞ for all ρ < 1. Moreover, since the value distribution has
positive upper and lower bounds, E[V T]VITA < ∞ implies E[T]VITA < ∞, establishing that
VITA is stable for all ρ < 1.

Next, we consider stability of LAVA: let Nshort (Nlong) be the time-varying random variable
giving the number of jobs at whichever queue happens to be shorter (longer) at a given point in
time. Clearly, Nshort ≤ Nlong at all times. Moreover, LAVA is stable if and only if E[Nlong] <∞.
Assume by way of contradiction that LAVA is actually unstable and E[Nlong] =∞. In this case,
E[Nshort] < ∞, because at least one of the servers must have an incoming time-average arrival
rate of no more than λ/2 < µ. Now observe that whenever bNshort < aNlong, LAVA sends
all jobs to the shorter queue, setting the arrival rate to the longer queue to 0. However, since
E[Nshort] < ∞, while E[Nlong] = ∞, this condition will hold almost always, contradicting the
fact that E[Nlong] =∞.

Unlike the other policies, C-MU can give rise to unstable systems even when ρ < 1.
Observation 5.7. There exists a value distribution with positive upper and lower bounds such
that C-MU is unstable for some load ρ < 1.

We now provide some theoretical justification for Observation 5.7. Our theoretical justifi-
cations are motivated by what we have witnessed in simulation. Consider a value distribution
which is bimodal with values (for example) 1 and 10, where the value 1 jobs are extremely rare.
Imagine a two-server system under C-MU dispatching with ρ ∈ (3/4, 1). For a long time, all
arrivals have value 10, and these are randomly split between the two queues by the C-MU policy.
Eventually, a value 1 job arrives and is dispatched to the server with the longer queue. Without
loss of generality, we assume that this is server 2. At this point the C-MU policy enters a partic-
ular overload regime, in which all subsequent arrivals are sent to server 2.4 The reason for this
is that the average value of jobs at server 1 is 10, while the average value of jobs at server 2 is

4We are ignoring the rare case where server 2 has many completions of value 10 jobs, making its queue length
sufficiently less than that of server 1, causing value 1 jobs to be sent to server 1, while the queue at server 2 is shorter.

106

April 22, 2016
DRAFT

less than 10; hence, the average departing value across servers will be maximized by routing to
server 2. During the overload regime, server 2’s queue grows rapidly, as it receives all jobs.

Our simulations suggest that for sufficiently high ρ, we enter this overload regime frequently.
Furthermore, although there are times when we are not in this overload regime, during which
server 2’s queue will shrink, we enter the overload regime so frequently that eventually server
2’s queue grows beyond the point of no return, and server 2 heads off to instability.

To understand why this happens, consider what causes the overload regime to end. The most
common cause is that server 1, which is receiving no jobs, becomes idle, dropping its average
value to 0. In this case, the very next arrival will be dispatched to server 1. With very high
probability, that arrival will be a value 10 job, which will again send us back to the overload
regime, where all arrivals are sent to server 2. In fact, server 1 will likely repeatedly alternate
between having no jobs and a single value 10 job, setting the effective arrival rate at server 2
to 2λ/3, which is greater than the departure rate µ, as ρ > 3/4. The only catch is that with
extremely low probability, when server 1 is idle, a value 1 job might be the next arrival, rather
than a value 10 job. This creates a new regime where all value 10 jobs start going to server 1;
however, with high probability this regime is (relatively) short-lived because it only lasts until
that value 1 job leaves the system, which will happen quickly since the value 1 job was the first
to join the queue at server 1. Once server 2 has built up enough jobs, this rare event barely affects
its queue length.

A less common cause for the overload regime to end is that server 2 loses its value 1 job. This
turns out to be unlikely for two reasons: (i) The value 1 job at server 2 arrives into an already
busy queue, so if ρ is sufficiently high, it will take a while until it departs (given PS scheduling).
(ii) While server 2 has a value 1 job and server 1 does not, new value 1 arrivals are twice as likely
to come to server 2 (remember that server 2’s effective arrival rate is 2λ/3), thus server 2 is more
likely to get any new value 1 job that arrives, hence “replenishing” its supply of value 1 jobs.

Again, the point is that once the queue length at server 2 builds sufficiently, any departure
from the overload regime is quickly reversed, returning us to the overload regime.

5.6.3 Results under sharply bimodal distributions

In this section we explore the efficacy of policies under a class of value distributions exhibiting a
high degree of variability. These distributions are of interest for two reasons. First, some of the
policies are amenable to asymptotic analysis under these distributions, allowing us to formally
establish trends seen in Section 5.5, albeit in a more limited setting. Second, the VITA and C-MU
behave quite differently in this regime, as typified by Fig. 5.2 (f) and it is insightful to formally
explore these observations.

We write V ∼ SBD(p), indicating that V obeys a sharply bimodal distribution with a “sharp-
ness” parameter p > 1/2, such that

V ∼

1− p
p

= “low-value” w.p. p

p

1− p
= “high-value” w.p. 1− p.

107

April 22, 2016
DRAFT

This distribution satisfies the convention E[V] = 1, where the low-value jobs (i.e., those with
value (1− p)/p) constitute a 1− p fraction of the total value, and the high-value jobs (i.e., those
with value p/(1− p)), constitute a p fraction of the total value. We are typically interested in this
distribution in the asymptotic regime where p → 1; here high-value jobs are extremely rare yet
comprise essentially all of the value. Note that as p→ 1/2, SBD(p) converges to a constant; we
name this family of distributions for their “sharp” behavior that emerges only when p ≈ 1.

Our first result for sharply bimodal distributions concerns the asymptotic optimality of VITA
when V ∼ SBD(p) as p→ 1 and ρ < 1/2.
Theorem 5.8. Let 0 < ρ < 1/2 and V ∼ SBD(p) in a system with two identical servers. As p→
1, VITA is asymptotically optimal in the sense that for any policy P, we have
limp→1 E[V T]VITA/E[V T]P ≤ 1.

Proof. Consider a static dispatching policy, P′, that reserves server 1 for low-value jobs and
server 2 for the high-value jobs. The system will be stable since, when ρ < 1/2, either server
can process all arrivals even if operating alone. Since VITA is the optimal static policy, the
performance of P′ gives an upper bound on the performance of VITA. Taking the limit as p→ 1,
we have the bound

lim
p→1

E[V T]VITA ≤ lim
p→1

E[V T]P
′
= lim

p→1

(
1− p
µ− pλ

+
p

µ− (1− p)λ

)
=

1

µ
.

Finally, under any policy P, we have E[V T]P ≥ E[V]/µ = 1/µ, so
limp→1 E[V T]VITA/E[V T]P ≤ 1.

Next, we prove that although VITA may not be an asymptotically optimal dispatching policy
under higher loads, it continues to dominate the performance of JSQ for all ρ < 1, as long as the
value distribution is sufficiently “sharp.”
Theorem 5.9. Let V ∼ SBD(p) in a system with two identical servers. As p → 1, VITA
asymptotically performs as well as JSQ, if not better. That is, limp→1 E[V T]VITA/E[V T]JSQ ≤ 1.
Moreover, this inequality is tight as ρ→ 1.

Proof. The case where ρ < 1/2 is a direct consequence of Theorem 5.8.
Now consider the case where ρ > 1/2. We will upper bound the performance of VITA by a

family of static policies, P(r), parametrized by r ∈ (0, 1). The VITA-like policy P(r) sends as
many high-value jobs to server 2 as possible, while setting the arrival rate of jobs to server 1 at
λ1(r) ≡ λ/2 + (µ− λ/2)r and the arrival rate of jobs to server 2 at λ2(r) ≡ λ/2− (µ− λ/2)r.
Note that P(r) is a stable policy. Since ρ > 1/2, for p sufficiently close to 1, we must have
p > µ/λ = 1/(2ρ), which ensures that the arrival rate of high-value jobs, λ(1 − p), is less than
the total arrival rate of jobs to server 2, λ2(r) = λ/2 − (µ − λ/2)r, for all r. Consequently,
whenever p is sufficiently large (i.e., p > 1/(2ρ)), P(r) sends all high-value jobs to server 2 for
all r ∈ (0, 1).

Consider an arbitrary arrival that enters a system and is dispatched via P(r). There are three
mutually exclusive possibilities when p > 1/(2ρ):

• with probability λ1(r)/λ we have a low-value arrival that is sent to server 1,
• with probability λ2(r)/λ− (1− p), we have a low-value arrival that is sent to server 2,

108

April 22, 2016
DRAFT

• and with probability 1− p, we have a high-value arrival that is sent to 2.

Using this information, we find that

E[V T]P(r) =

(
λ1(r)

λ

)(
1− p
p

)(
1

µ− λ1(r)

)
+

[(
λ2(r)

λ
− (1− p)

)(
1− p
p

)
+ (1− p)

(
p

1− p

)](
1

µ− λ2(r)

)
.

Now recall that E[V T]JSQ ≥ 1/(2µ − λ), while P(r) upper bounds the performance of VITA,
yielding

lim
p→1

(
E[V T]VITA

E[V T]JSQ

)
≤ lim

p→1

(
E[V T]P(r)

1/(2µ− λ)

)
=

2

1 + r
.

Taking an infimum over r ∈ (0, 1), we have the desired result.
To see that the inequality is tight as ρ → 1, first observe that the family of static policies

P(r) subsumes VITA, as this family of policies includes all static policies that isolate the high-
value jobs. Next, observe that limρ→1

(
E[V T]JSQ · (2µ− λ)

)
= 1. Consequently, both the

upper bound on the performance of VITA (after optimizing for r) and the lower bound on the
performance of JSQ are tight as ρ→ 1, completing the proof.

Remark: Note that although JSQ outperforms VITA in Figure 5.2 (f) as ρ → 1 (i.e., for the
highest values of ρ), this does not contradict Theorem 5.9. Under distribution (f), we only have
p ≈ 1, while Theorem 5.9 holds in the limit as p→ 1.

We proceed to state a result comparing the asymptotic performance of LAVA with that of JSQ
under the E[V T] metric, but we first state a Lemma that will be helpful in proving this result.
Lemma 5.10. Let V ∼ SBD(p) in a system with two identical servers. As p→ 1:
• The limiting distribution of the number of low value jobs, N`, under LAVA converges

weakly to the limiting distribution of the total number of jobs, N , under JSQ, and
E[N`]

LAVA → E[N]JSQ.
• The limiting distribution of the number of high-value jobs, Nh, under LAVA converges

weakly to the zero distribution, and E[Nh]
LAVA → 0.

• The limiting distribution of the length of the shorter queue (i.e., the instantaneous minimum
length of the two queues), Nshort, under LAVA converges to the limiting distribution of
Nshort under JSQ, and E[Nshort]

LAVA → E[Nshort]
JSQ.

Proof. Deferred to appendix.

Theorem 5.11. Let V ∼ SBD(p) in a system with two identical servers. As p→ 1, LAVA asymp-
totically performs at least as well as JSQ. That is, limp→1 E[V T]LAVA/E[V T]JSQ ≤ 1. Moreover,
there exists an asymptotic regime where ρ → 1 and p → 1, such that E[V T]LAVA/E[V T]JSQ →
1/2.

Proof. First, fix ρ ∈ (0, 1), and consider a two-server system with values V ∼ SBD(p). Let T`
and Th be the response time of a low-value and high-value job respectively. As p → 1, from
Lemma 5.10, we have that E[N`]

LAVA → E[N]JSQ, from which Little’s Law yields

lim
p→1

(
E[T`]

LAVA
)

= lim
p→1

(
E[N`]

LAVA

λp

)
=

E[N]JSQ

λ
= E[T]JSQ = E[T`]

JSQ.

109

April 22, 2016
DRAFT

That is, a low-value job under LAVA experiences a mean response time asymptotically equal to
that experienced under JSQ as p→ 1. We proceed to show that high-value jobs experience even
lower response times, which is sufficient to show that LAVA asymptotically does no worse than
JSQ with respect to the E[V T] metric as p→ 1.

Observe that under all value distributions, E[T |V = v]LAVA (i.e., the mean response time of
a job with value v under LAVA) is a nonincreasing function of v: when a job arrives to a system,
if its value, v, were any higher, the job would either be routed to the same queue or a queue of
equal or shorter length. Once a job is in the system, if its value, v, were any higher, it would
reduce (or keep fixed) the arrival rate of new jobs coming into its queue. Hence, jobs with higher
values are no worse off than jobs with lower values with respect to mean response times, so
E[Th]

LAVA ≤ E[T`]
LAVA → E[T]JSQ = E[Th]

JSQ as p→ 1. Since both types of jobs are no worse
off under LAVA than under JSQ, it follows that limp→1 E[V T]LAVA/E[V T]JSQ ≤ 1 as claimed.

In order to prove the remaining claim that LAVA can outperform JSQ by a factor of two
under heavy traffic, we must more accurately quantify E[T`]

LAVA as p → 1, rather than simply
providing a bound as we have done above. We proceed by considering the state of the LAVA
system seen by a high-value arrival. By PASTA, this high-value arrival sees a system in steady
state, and as p → 1, N` will be distributed like the number of jobs, N , in a JSQ system, and
E[Nh]

LAVA → 0. Since this job sees only low-value jobs, it will be routed to the shorter queue,
say server 2’s queue, which will cease to accept further low-value jobs, in accordance with the
LAVA policy. Server 2 will only accept high-value jobs, which arrive at a rate of (1− p)λ→ 0.5

Hence, the high-value job must share server 2 only with those low-value jobs already present in
the system when it arrives. The shorter queue contains Nshort jobs (of independent exponentially
distributed sizes Si, each with mean 1/µ). By Lemma 5.10, E[Nshort]

LAVA → E[Nshort]
JSQ,

yielding

lim
p→1

(
E[T`]

LAVA
)

= E

[∑Nshort+1
i=1 Si
Nshort + 1

]JSQ

=
(E[Nshort]

JSQ + 2)E[Si]

2
=

E[Nshort]
JSQ + 2

2µ
.

Consequently, we have

lim
p→1

E[V T]LAVA = lim
p→1

(
p

(
1− p
p

)
E[T`]

LAVA + (1− p)
(

p

1− p

)(
E[Nshort]

JSQ + 2

2µ

))
=

E[Nshort]
JSQ + 2

2µ
,

where we use the fact that limp→1

(
(1− p)E[T`]

LAVA
)

= 0 · E[T]JSQ = 0.
Now consider the case where ρ is no longer fixed, and we in fact have ρ → 1. Then we can

evaluate the following iterated limit:

lim
ρ→1

(
lim
p→1

(
E[V T]LAVA

E[V T]JSQ

))
= lim

ρ→1

(
E[Nshort]

JSQ + 2

2µ · E[T]JSQ

)
= lim

ρ→1

(
ρ · E[Nshort]

JSQ + 2

E[N]JSQ

)
=

1

2
,

where we have used the facts that E[N]JSQ → ∞ and E[Nshort]
JSQ/E[N]JSQ → 1/2 as ρ → 1.

The first fact is clear, and the latter fact follows form Foschini and Salz [51]: as ρ → 1 the

5Since p→ 1, the high-value jobs are arbitrarily more valuable than the low-value jobs by a factor of
(

p
1−p

)2

→
∞, so server 1’s queue will never grow so long as to resume the arrival process of low-value jobs into server 2’s
queue during the high-value job’s residence.

110

April 22, 2016
DRAFT

JSQ instantaneous queue lengths are asymptotically balanced, so the length of the shorter queue
is on the order of half the total number of jobs in the system. The convergence of the iterated
limit implies the existence of a sequence of pairs {(pn, ρn)}∞n=1 → (1, 1) (i.e., an “asymptotic
regime”) under which E[V T]LAVA/E[V T]JSQ → 1/2, as claimed.

Corollary 5.12. Let V ∼ SBD(p) in a system with two identical servers. There exists an asymp-
totic regime where ρ → 1 and p → 1, such that we have the following ratio between the perfor-
mance of various policies:

E[V T]RND : E[V T]VITA : E[V T]JSQ : E[V T]LAVA → 4 : 2 : 2 : 1.

Proof. The result follows immediately from Proposition 5.5 and Theorems 5.9 and 5.11.

We explain why C-MU also performs well in this regime. Just as LAVA essentially employs
JSQ until the arrival of a rare high-value job, C-MU essentially employs a variant of RND (where
a job is sent to an idle server whenever possible, but dispatching is otherwise random) until the
arrival of such a job. Under both LAVA and C-MU, a high-value job is subsequently sent to the
server with the shorter queue. The server receiving the high value job will essentially cease to
receive arrivals until the completion of that job. It may appear that despite all this LAVA should
outperform C-MU because queue lengths under JSQ are shorter than those under RND. We note,
however, that under RND, the time-average length of the shorter queue is half that of an arbitrary
queue.

Finally, we ask what would happen if the two-server system was replaced by a single server
with twice the service rate, resulting in an M/M/1/PS system. At first it might seem that the single
server is superior, but we need to remember that our metric is E[V T]. Corollary 5.13 shows that
there are regimes for which a two-server system is superior.
Corollary 5.13. Let V ∼ SBD(p) in a system with two identical servers operating at rate µ.
Then there exist ρ∗ < 1 and p∗ < 1, such that E[V T]LAVA < E[V T]SINGLE, where SINGLE
refers to a single PS server operating at rate 2µ.

Proof. From Theorem 5.11, there exists a regime with ρ → 1, where the performance of LAVA
is strictly better than JSQ. Moreover, we know from [51] that when ρ → 1, the mean response
times under JSQ and SINGLE are arbitrarily close, and since V and T are independent under both
JSQ and SINGLE, their performance under E[V T] is also arbitrarily close. Hence, by continuity
there exist ρ∗ < 1 and p∗ < 1 such that E[V T]LAVA < E[V T]SINGLE.

5.7 A (sometimes) far better policy: Gated VITA (G-VITA)
In Sections 5.5 and 5.6, we saw that the VITA policy often performs poorly relative to most of
the other policies, except under sharp bimodal value distributions such as distribution (f) (cf. the
definition of SBD(p) in Section 5.6.3). For such distributions, VITA is asymptotically optimal
(as the value distribution grows increasingly sharp) for ρ < 1/2. Although VITA continues to
perform modestly well for these distributions when ρ > 1/2, it does not perform nearly as well
as LAVA when ρ→ 1.

111

April 22, 2016
DRAFT

To understand why VITA does not perform as well under high loads, observe that the VITA
policy’s strength lies in isolating the highest value jobs. However, when load is particularly
high, the relative efficacy of this isolating effect is limited because high-value jobs must share
their “dedicated” server with too many low-value jobs, in order to ensure system stability. In
this section, we explore how adding a “non-static component” to VITA can greatly reduce the
number of low-value jobs utilizing this “dedicated” server, without sacrificing system stability
at higher loads. We present a policy, Gated VITA (G-VITA), that outperforms LAVA by an
arbitrary factor under a particular high load regime.

5.7.1 G-VITA

We define the G-VITA policy with parameter g for two-server systems with bimodal value dis-
tributions.
• G-VITA sends low-value jobs to server 2 if and only if the number of low-value jobs

present at server 2 is at most g.
• G-VITA always sends high-value jobs to server 2.
We can interpret server 2 as having a limited number of slots reserved for use by low-value

jobs. When all of these slots are occupied, a “gate” will close and bar the entry of any further
low-value arrivals (sending them to server 1). The gate remains closed until a low-value jobs
departs. Note that the gate never bars the entry of high-value jobs. Moreover, while the queue at
server 2 can hold up to g low-value jobs and any number of high-value jobs, the queue at server
1 only holds low-value jobs.

While we have defined G-VITA only for bimodal value distributions, the G-VITA policy can
be extended to general value distributions by classifying jobs as “low-value” and “high-value”
jobs in an appropriate manner.

There exist values of ρ < 1 for which the G-VITA policy with fixed parameter g is unstable;
however, we will show that for any ρ < 1, stability can be guaranteed by requiring g to be
sufficiently high.
Lemma 5.14. Let V ∼ SBD(p) in a system with two identical servers. As p → 1, the G-VITA
policy with parameter g under load ρ is stable whenever ρ < 1 and either

g > − log(2− 2ρ)

log(2ρ)
− 1, or alternatively, g > log2

(
ρ

1− ρ

)
.

Proof. Deferred to appendix.

Recall that when V ∼ SBD(p) in a regime where ρ → 1 and p → 1, high-value jobs under
RND, JSQ, VITA, or LAVA share their server with an average number of low-value jobs on the
order of ρ

1−ρ . Meanwhile, we have just shown that there exist stable G-VITA policies in the

same regime such that high-value jobs need only share their server with about log2

(
ρ

1−ρ

)
low-

value jobs. That is, in this regime, G-VITA “protects” high-value jobs by having them share
their server with exponentially fewer low-value jobs. This phenomenon lies at the heart of the
following result.

112

April 22, 2016
DRAFT

Theorem 5.15. Let V ∼ SBD(p) in a system with two identical servers and let
P ∈ {RND, JSQ,VITA,LAVA}. There exists an asymptotic regime with ρ → 1, p → 1,
and (G-VITA parameter) g →∞, s.t. E[V T]G-VITA/E[V T]P → 0.

Proof. We prove the result in the case where P is RND by giving an upper bound on E[V T]G-VITA,
then dividing by E[V T]RND = 1/(µ−λ/2) and taking a limit as ρ→ 1. We will express p and g
as parametric functions of ρ. The result for the remaining policies follows from the fact that the
performance of RND is within a bounded factor of that of the other policies in this regime (cf.
Corollary 5.12).

Let T` and Th be the response times of low-value and high-value jobs, respectively. In order
to give an upper bound on E[V T]G-VITA, we first consider the mean response times of high-
value jobs under G-VITA, E[Th]

G-VITA. High-value jobs arrive to server 2 according to a Poisson
process with rate (1 − λ)p, and when one or more such jobs are present, they depart server 2
with rate h2 · µ/(`2 + h2), where `2 and h2 are the number of low-value and and high-value
jobs present at server 2, respectively. Since `2 ≤ g and h2 ≥ 1 (when departures of high-value
jobs from server 2 are possible) we can lower bound the departure rate of high-value jobs by
µ/(g + 1). Consequently,

E[Th]
G-VITA ≤ 1

µ/(g(ρ) + 1)− (1− p(ρ))λ
.

Now consider the mean response time of low-value jobs under G-VITA, E[T`]
G-VITA. From

Lemma 5.14, we know that as p → 1, this quantity is finite for all ρ < 1, as long as g >
log2(ρ/(1− ρ)). Consequently, within this asymptotic regime we allow p and g to vary with ρ as
ρ→ 1, subject to

p(ρ) ≥ 1− 1

E[T`]G-VITA
and g(ρ) ≥ log2

(
ρ

1− ρ

)
(g(ρ) ∈ N),

where the first constraint ensures that (1 − p(ρ))E[T`]
G-VITA ≤ 1 and the second constraint

guarantees stability. Note that these constraints imply that p(ρ)→ 1 and g(ρ)→∞ when ρ→ 1
as claimed.6 We proceed to complete the proof by taking the required limit:

lim
ρ→1

E[V T]G-VITA

E[V T]RND
≤ lim
ρ→1

p(ρ)
(

1−p(ρ)
p(ρ)

)
E[T`]

G-VITA + (1− p(ρ))
(

p(ρ)
1−p(ρ)

)(
µ

g(ρ)+1 − (1− p(ρ))λ
)−1

1/(µ− λ/2)

≤ lim
ρ→1

1 + log2

(
ρ

1−ρ

)/
µ

(µ(1− ρ))−1

 = 0.

6Note that the right-hand side of the formula bounding p(ρ) actually depends on p(ρ) (i.e., “computing” the
bound on p(ρ) involves solving a fixed point problem), but the effect of p(ρ) on this bound vanishes when p(ρ)→ 1,
as argued in the proof of Lemma 5.14, so a p(ρ) satisfying this constraint may be found without any problems.

113

April 22, 2016
DRAFT

5.7.2 G-VITA simulations

In this section we use simulations to numerically compare the performance of G-VITA with JSQ
and LAVA under the value distribution (f). We have held the G-VITA parameter fixed at g = 5
for all values of ρ plotted. As shown in Fig. 5.3, G-VITA performs very well as ρ→ 1, strongly
outperforming both JSQ and LAVA, as expected. However, the performance of G-VITA is very
poor at low loads. This is because the relatively high G-VITA parameter, g, forces high-value
jobs to share their server with unnecessarily many low-value jobs under low loads. Even if we
vary g with ρ, consistently strong performance is still unattainable because g ∈ N.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Bimodal(99.9%,1/999; 0.1%,999)

G
-V

IT
A

LAVA

JSQ

Figure 5.3: G-VITA dominates JSQ and LAVA under value distribution (f) as ρ → 1 in accor-
dance with Theorem 5.15.

One can, however, come up with “G-VITA inspired policies” that do very well across all
loads under sharply variable (if not all) distributions. For, example, we could redefine G-VITA
to be less “eager” in occupying all g available slots at server 2, e.g., as long as there are fewer
than g low value jobs at server 2, dispatch low-value jobs using JSQ, rather than always sending
them to server 2. Alternatively, consider a policy that routes low value jobs so as to maintain a
fixed ratio between the queue lengths at servers 1 and 2 (e.g., attempt to keep server 1 four times
as long as server 2), while sending all high-value jobs to the server with the shorter expected
queue length. Such a policy would help isolate high-value jobs from low-value jobs to a greater
extent than VITA or LAVA (although not as much as G-VITA), while not hurting high-value jobs
too much at lower loads. We have verified via simulation that such policies perform well for all
ρ (not shown due to lack of space).

5.8 More complex policies via the First Policy Iteration (FPI)

Thus far, we have considered only simple, intuitive dispatching policies. In this section, we
analyze the value-aware dispatching problem in the framework of Markov decision processes
(MDP) [78, 108, 114]. This will lead us to policies that often perform better than our existing
policies, but are more complex and less intuitive.

114

April 22, 2016
DRAFT

We start with a tutorial example to explain the FPI approach. Consider a two-server system.
If this system were to use the RND dispatching policy, arrivals would be randomly split between
the two servers. Instead of using RND, we propose a “first policy iteration” on RND, which we
shall call FPI-RND, whereby, an arrival is dispatched so as to minimize the overall E[V T] (given
the current state of system), under the assumption that all future arrivals will be dispatched via
RND.7 Note that the assumption on how future jobs are routed is actually inaccurate, as future
arrivals will continue to be routed via FPI-RND. Here, RND is referred to as the basic policy
that is improved upon by FPI.

The central notion of FPI is the value function,8 denoted by ηz(α), where z is the system
state (i.e., the number of jobs at each server and their values) and α is the basic policy being
improved (e.g., RND, VITA, etc.). In defining the value function we view the system as incurring
a “penalty” of magnitude v for each unit of time a job of value v spends in the system, so that
minimizing E[V T] is equivalent to minimizing the expected rate at which penalty is incurred.
Let Cz(α, t) denote the cumulative penalty incurred under policy α during the time interval (0, t)
when the initial state is z, and let r(α) denote the mean (equilibrium) rate at which penalty is
incurred under α. More formally,

Cz(α, t) ≡ E

[∫ t

0

(
m∑
i=1

vsum
i (τ)

)
dτ

∣∣∣∣∣ the state at time τ = 0 is z

]α
,

r(α) ≡ E

[
lim
t→∞

(
1

t

∫ t

0

(
m∑
i=1

vsum
i (τ)

)
dτ

)]α
= lim

t→∞

(
λt · E[V T]α

t

)
= λ · E[V T]α,

where vsum
i (τ) denotes the sum of the values of the jobs at server i at time τ . With this framework,

we can define the value function, ηz(α), as the expected difference in cumulative (infinite time-
horizon) penalties incurred between a system initially in state z and a system in equilibrium,

ηz(α) ≡ lim
t→∞

(Cz(α, t)− r(α) · t) .

Hence, ηz2(α) − ηz1(α) quantifies the benefit of starting in z2 rather than z1. In general, value
functions enable policy iteration, a procedure that, under certain conditions, converges to the
optimal policy. Here, due to the complexity of the system, we are limited to only the first policy
iteration (FPI) step.

In our case, the value function depends on the dispatching policy, α, and the system state,
z ≡ (z1, . . . , zm), where each zi ≡ (vi,1, . . . , vi,ni), gives the state of server i. The key idea with
policy iteration is to consider the optimal deviation from the basic policy α for one decision, that
is, dispatching one new arrival with value v, and then returning to α so that the expected future
costs are given by the value function. The optimal decision corresponds to a new improved policy
α′,

α′(z, v) = argmin
z′∈A(z,v)

ηz′(α)− ηz(α), (5.4)

7Actually implementing such a policy requires some calculations, which will be shown later in this section.
8The word “value” in “value function” is not directly related to the use of the word “value,” as used elsewhere in

the chapter.

115

April 22, 2016
DRAFT

where A(z, v) denotes the states that can result from dispatching a value v arrival to one of the
m servers. Note that the resulting policy, α′(z, v), also depends on the value of the new arrival,
v, and although α′(z, v) always assumes further arrivals will be routed according to α, the actual
policy will continue to dispatch according to the one-step optimal deviations described above.

Note that LAVA, discussed in Section 5.4.5, is based on the assumption that no jobs arrive
afterwards. In contrast, FPI assumes that after the current decision, each server continues to
receives a stream of arrivals, based on how they would be dispatched by the dispatching policy
α.

5.8.1 FPI policies

In this section we first determine the value function of a basic policy α and subsequently use it
to derive the FPI policy. Due to the complex state-space, it is difficult to determine the value
function of an arbitrary basic policy (e.g., LAVA). Therefore, as in [92], we use a static basic
policy (e.g., RND or VITA). In this case, the arrival process decomposes to m independent
Poisson processes, and it is sufficient to derive the value function for each M/M/1-PS queue
separately as ηz(α) =

∑m
i=1 η

(i)
zi (α), where η(i)

zi (α) denotes the value function of server i in
state zi. Letting vsum be the sum of the values of all jobs in an M/M/1-PS queue in state z, the
corresponding value function is given by Proposition 5.16.
Proposition 5.16. The value function for the M/M/1-PS queue with arrival rate λ, service rate
µ, and values V is given by

ηz =
λn(n+ 1)

2(µ− λ)(2µ− λ)
E[V] +

n+ 1

2µ− λ
vsum + c, (5.5)

where c is a constant.

Proof. Deferred to appendix.

As previously mentioned, we assume a static basic policy α. Since α is static, it necessarily
defines an independent server-specific Poisson arrival process at each server with arrival rate λi
and value distribution Vi. Consequently, these server-specific arrival processes (λi, Vi), allow us
to use the value function from (5.5) to derive the FPI policy using (5.4).
Proposition 5.17. For a static basic policy α, yielding server-specific arrival processes (λi, Vi),
the corresponding FPI policy routes a job of value v to the server given by

α′(v) = argmin
i

1

2µi−λi

(
λi E[Vi](ni+1)

µi − λi
+ vsum

i + (ni + 2)v

)
. (5.6)

Proof. Deferred to appendix.

Remark: We note that letting λi → 0 in (5.6) reduces to LAVA given in (5.2), and letting
λi → µi in (5.6) reduces to JSQ.

116

April 22, 2016
DRAFT

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~U(0,2)

JSQ

FPI-a

LAVA F
P

I-b

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Exp(1)

JSQ

LA
V
A

FPI-a

F
P

I-b

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 0 0.2 0.4 0.6 0.8 1

E
[V

T
]P

 /
 E

[V
T

]J
S

Q

Offered load ρ

V~Pareto(0.188,10000,1.2)

JSQ

FPI-a

LA
V
A

F
P

I-b

(a) (b) (c)

Figure 5.4: Performance of FPI-a, FPI-b, and LAVA relative to JSQ in a two-server system,
with value distributions (a) Uniform, (b) Exponential, (c) Pareto from Table 5.1. Each point
corresponds to the mean performance with about 100 million jobs.

5.8.2 Enhancing FPI policies using discounting
In this section we provide a novel idea for enhancing FPI policies. Inspired by LAVA, which
ignores future arrivals completely, we consider modifications of FPI policies where we discount
the impact of future arrivals on dispatching. We identify the terms corresponding to the harm
caused to future jobs (the term with E[Vi]) the present jobs (the terms with vsum

i and v) in (5.6),
and introduce an additional weight parameter γ to discount the former. This yields

α′γ(v) = argmin
i

1

2µi−λi

(
γ · λi E[Vi](ni+1)

µi − λi
+ vsum

i + (ni + 2)v

)
. (5.7)

Suppose that the servers are identical, µi = µ, and the basic policy α balances the load
(λi = λ/m). Then,

α′γ(v) = argmin
i

(
γ · λE[Vi](ni+1)

µ− λ/m
+ vsum

i + niv

)
. (5.8)

We observe that when γ = 1, this results in the original FPI policy presented in Proposition 5.17,
while when γ = 0, this results in the LAVA policy (regardless of the basic policy used).

5.8.3 FPI simulations
In this section we use simulations to numerically compare the performance of two FPI policies
with JSQ and LAVA:

1. FPI-a uses a weight parameter of γ = 1 (i.e., the FPI policy presented in Proposition 5.17)
and is based on RND.

2. FPI-b uses a weight parameter of γ = 1/20 (i.e., future arrivals are heavily discounted).
Rather than being based on RND, this policy is based on a variation of VITA where load
is equalized between the two servers.

117

April 22, 2016
DRAFT

The numerical results relative to JSQ are shown in Fig. 5.4. When ρ is low, all FPI policies
perform like LAVA. Meanwhile, the performance of FPI-a converges to that of JSQ as ρ→1, in
accordance with the remark made after Proposition 5.17. Consequently, FPI-a performs worse
than LAVA. The FPI-b policy, however, outperforms LAVA under high ρ.

5.9 Conclusion
This chapter presents the first comprehensive study of dispatching policies that aim to minimize
value-weighted response times under Process-Sharing scheduling. We propose a large number
of novel dispatching policies and compare these under a range of workloads, showcasing the
fact that the value distribution and load can greatly impact the ranking of the policies. We also
prove several intriguing results on the asymptotic behavior of these policies. Note that while we
have assumed that job values are known exactly, most of our results generalize easily where jobs
belong to classes and only the mean value of each class is known.

As value-driven dispatching is a very new problem, there remains ample room for future
work on analyzing the policies in this chapter and proposing new ones. Other directions for
extending the results in this chapter include considering more complicated arrival processes and
job size distributions, possibly with correlations between consecutive arrivals. Additionally, one
could consider alternative value-weighted response time metrics, including higher moments and
distribution tails.

118

April 22, 2016
DRAFT

Chapter 6

Concluding Remarks

In this dissertation, we presented a new methodological contribution, Clearing Analysis on
Phases (CAP) for solving a broad class of multi-dimensional Markov chains (Chapter 2), with
applications to the analysis of a variety of queueing systems. We then applied CAP to address
what we have called the malware cleanup problem (Chapter 3), where one must address a trade-
off between availability and the maintenance of security. We also explored routing problems in
the presence of strategic servers in call centers (Chapter 4), and in the presence of heterogeneous
values in web server farms (Chapter 5). We conclude by discussing broad directions for future
work in these areas.

We believe that the development of the CAP method (as presented in Chapter 2) is of in-
terest to the research community primarily for two reasons. First, it is a new tool that can be
employed by practitioners to obtain exact closed-form or exact numerical solutions for the lim-
iting probability distribution of queue lengths in queueing systems that can be modeled by class
M Markov chains. Second, it represents an additional way that one can view quasi-birth-death
process Markov chains, that can hopefully further theoretical understanding of these Markov
chains. In order to further advance CAP as a computational tool for practitioners, it would be of
interested to initiate an extensive computational study that compares CAP without other state-
of-the-art exact and inexact methods for solving Markov chains. This would require the careful
fine-tuned implementations of the CAP method along with spectral methods, matrix analytic
methods, ETAQA, RRR, and chain truncation approaches.

In developing and analyzing the CAP method, it became clear that there are fundamental
connections between CAP and other exact methods such as exact matrix-geometric methods and
RRR, and the chains that can be solved by these methods. In fact, there seems to be a hierarchy
of QBDs in terms of the “difficulty” of solving these chains in exact closed-form, and chains
exhibiting certain features (such as bi-directional phase transitions), seem to only have solutions
that require one to solve higher-order polynomials. Future research could focus on classifying
this hierarchy and formally identifying how certain features contribute to the “algebraic com-
plexity” of the limiting probability distributions of such chains.

Our work in Chapter 3 on the malware cleanup problem represents early steps in using tools
from the operations research community (i.e., queueing theory) to better understand tradeoffs
that are of interest to the computer security community. Moreover, our work highlights the need
to jointly consider performance concerns and security concerns, especially at attack timescales

119

April 22, 2016
DRAFT

where the two concerns are comparable in importance. Future steps in this direction would
likely involve an empirical component with as many parameters as possible based on measured
observations, followed by an implementation and comparison of several of the cleanup policies
described in Chapter 3 of this dissertation.

In Chapter 4 of this dissertation, we introduced a call center model in which servers behave
strategically, and addressed the problem of routing in such a setting. Several natural questions
arise from this work: How do our findings generalize to other contexts in which workers behave
strategically? To what extent do our findings have real-world implications in settings where
perhaps not all servers are identical in their talents or capabilities? How can a manager implement
(or at least mimic) the rate-based routing policies examined in our paper when only empirical
service completion rates, and not actual service rates can be accurately observed? What changes
if servers can dynamically adjust their service rates in real time? Moving beyond these questions,
there appears to be a growing need to model real-world queueing systems as being composed
of strategic servers, especially with the rise of sharing economies where the “employees” of a
service system are private contractors who choose when and how they work. We hope that the
ideas presented in Chapter 4 will prove useful in the study of these newly emerging contexts.

Chapter 5 considered a problem of identifying how to immediately route jobs to one of sev-
eral a priori identical servers employing the processor sharing scheduling discipline in a setting
where job values were assumed to be heterogeneous. Job heterogeneity can exist across other
dimensions, which would also create interesting consequence for how jobs should be routed in
a “PS server farm” setting. One such dimension would be varying job affinities for different
servers. What if, say due to data locality, some jobs would run faster on one server than another.
How should this source of heterogeneity influence the optimal design of routing policies? An
extreme variation on this setting would be if some jobs could only be served by a subset of the
servers. How would this extreme variation affect routing policy design? Yet another direction for
exploring the design of routing policies would be studying the impact of routing policies in con-
texts one can also control the scheduling policy at each server (e.g., if one could employ priority
scheduling based on job values at the servers instead of being forced to use processor sharing).
Does the choice of routing policy become inconsequential once one has control over schedul-
ing? We believe that the interaction between routing and scheduling represents an intriguing and
largely unexplored area in queueing theory.

120

April 22, 2016
DRAFT

Appendix A

Supplement to Chapter 2

A.1 An alternative interpretation of the Laplace transform
Let X be a nonnegative random variable, with well-defined Laplace transform ψ(·) (i.e., ψ
is defined on all positive reals), cumulative distribution function, FX(·), and probability den-
sity function, fX(·); note that X may have nonzero probability mass at +∞, in which case∫∞

0
fX(t) dt < 1 (where we interpret the integral as being evaluated on {t ∈ R : 0 ≤ t < ∞}).

Then for any constant w > 0, we have the following interpretation of ψ:

ψ(w) =

∫ ∞
0

e−wtfX(t) dt

= e−wtFX(t)
∣∣∞
0

+

∫ ∞
0

FX(t)
(
we−wt

)
dt

= P{X ≤ ζw},

where ζw ∼ Exponential(w) is a random variable independent of X .

A.2 Complete proof of Theorem 2.3
Proof. We prove the theorem via strong induction on the phase, m. Specifically, for each phase
m, we will show that π(m,j) takes the form π(m,j) =

∑m
k=0 cm,kr

j−j0
k for all j ≥ j0 + 1, and show

that {cm,k}0≤k≤m−1 satisfies

cm,k =

rkrm
λm(rk − rm)(1− φm(αm)rk)

(
m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

)
if rm, rk > 0

m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

µm(1− rk) + αm
if rk > rm = 0

0 if rk = 0,

while cm,m = π0 −
∑m−1

k=0 cm,k. Finally, after completing the inductive proof, we justify that the
remaining linear equations in the proposed system are ordinary balance equations together with
the normalization constraint.

121

April 22, 2016
DRAFT

Base case:
We begin our strong induction by verifying that the claim holds for the base case (i.e., for

m = 0). By the ergodicity requirement on class M Markov chains, λ0 > 0, leaving two sub-cases
when m = 0: the case where µ0 > 0, and the case where µ0 = 0. In the first case, where µ0 > 0,
Equation (2.5) yields

E(0,j0+1)

[
T P0

(0,j)

]
= Ω0r

j−j0−1
0 (1− r0φ0(α0)) =

rj−j00

λ0

.

Now consider the other sub-case, where µ0 = 0, recalling that in this case, we have r0 =

λ0/(λ0 +α0). We calculate E(0,j0+1)

[
T P0

(0,j)

]
for this case, by noting that transitions within states

in P0 cannot decrease the level, as follows: starting at state (0, j0 + 1), we either never visit state
(0, j) before leaving P0, or we visit state (0, j) exactly once before leaving P0. The latter occurs
with probability (

λ0

λ0 + α0

)j−j0−1

= rj−j0−1
0 ,

in which case, we spend an average of 1/(λ0 + α0) = r0/λ0 units of time in state (0, j). Hence,
we find that

E(0,j0+1)

[
T P0

(0,j)

]
= rj−j0−1

0

(
r0

λ0

)
=
rj0
λ0

,

which coincides with our finding for the case where µ0 > 0.
In both cases, applying Theorem 2.1 yields

π(0,j) = π(0,j0)λ0E(0,j0+1)

[
T P0

(0,j)

]
= π(0,j0)λ0

(
rj−j00

λ0

)
= π(0,j0)r

j−j0
0

= c0,0r
j−j0
0 ,

where c0,0 = π(0,j0). Hence, π(0,j) takes the claimed form. Moreover, c0,0 satisfies the claimed
constraint as c0,0 = π(0,j0) −

∑m−1
k=0 cm,k = π(0,j0) − 0 = π(0,j0), because the sum is empty when

m = 0. Note that when m = 0, {cm,k}0≤k<m≤M is empty, and hence, there are no constraints on
these values that require verification.

Inductive step:
Next, we proceed to the inductive step and assume the induction hypothesis holds for all

phases i ∈ {0, 1, . . . ,m− 1}. In particular, we assume that π(i,j) =
∑i

k=0 ci,kr
j−j0
k for all i < m.

For convenience, we introduce the notation

Υm,j ≡ λmE(m,j0+1)

[
T Pm(m,j)

]
and Ψm,k,j ≡

∞∑
`=1

r`−j0k E(m,`)

[
T Pm(m,j)

]
.

122

April 22, 2016
DRAFT

Using this notation, we apply Theorem 2.1 and the induction hypothesis, which yields1

π(m,j) = π(m,j0)λmE(m,j0+1)

[
TPm

(m,j)

]
+

m−1∑
i=0

∞∑
`=1

1∑
∆=−1

π(i,`−∆)αi〈m− i; ∆〉E(m,`)

[
TPm

(m,j)

]

= π(m,j0)Υm,j +

m−1∑
i=0

∞∑
`=1

1∑
∆=−1

αi〈m− i; ∆〉

(
i∑

k=0

ci,kr
`−j0−∆
k E(m,`)

[
TPm

(m,j)

])

= π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)(∞∑
`=1

r`−j0k E(m,`)

[
TPm

(m,j)

])

= π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)
Ψm,k,j . (A.1)

We proceed to compute Υm,j and Ψm,k,j separately in the following cases:

• Case 1: λm, µm > 0
• Case 2: λm > µm = 0
• Case 3: µm > λm = 0
• Case 4: µm = λm = 0

Computations for Case 1 (λm, µm > 0):
When λm, µm > 0, Equation (2.5) yields Υm,j = λmE(m,j0+1)

[
T Pm(m,j)

]
= rj−j0m . We also find

that

Ψm,k,j =
∞∑
`=1

r`−j0k E(m,`)

[
T Pm(m,j)

]
=

j∑
`=j0+1

r`−j0k E(m,`)

[
T Pm(m,j)

]
+

∞∑
`=j+1

r`−j0k E(m,`)

[
T Pm(m,j)

]

= Ωm

(
j∑

`=j0+1

r`−j0k rj−`m

(
1− (rmφm(αm))`−j0

)
+

∞∑
`=j+1

r`−j0k φm(αm)`−j
(
1− (rmφm(αm))j−j0

))

=
rkrm(rj−j0k − rj−j0m)

λm(rk − rm)(1− φm(αm)rk)
,

1 Note that
∑1

∆=−1 αi〈m− i; ∆〉r∆
k is not well-defined when rk = 0, as 0−1 and 00 are not well-defined.

However, this is just a convenient formal manipulation which will remain true if we assign any real value to∑1
∆=−1 αi〈m− i; ∆〉r∆

k as Ψm,k,j = 0 in the rk = 0 case, and the “contribution” to the sum by an index k
such that rk = 0 is also 0. One can verify that this is “harmless” by examining such k indices in isolation. Note
further that we have also used the fact that π(i,j0) also satisfies the claimed form for all i < m, which is true as
ci,i = π(i,j0) −

∑i−1
k=0 ci,k (from the inductive hypothesis) implies that π(i,j0) =

∑i
k=0 ci,k =

∑i
k=0 ci,kr

0
k, except

that once again values of rk = 0 yield undefined quantities of the form 00. Once again, this is a convenient formal
manipulation that will not affect our results if we simply assign 00 = 1 in this context.

123

April 22, 2016
DRAFT

where the last equality follows from well known geometric sum identities. Note that this expres-
sion is well-defined because rk 6= rm by assumption and rmφm(αm) 6= 1.

Computations for Case 2 (λm > µm = 0):

When λm > µm = 0, we recall that rm = λm/(λm + αm) and compute E(m,`)

[
T Pm(m,j)

]
as

follows: starting at state (m, `), we either never visit state (m, j) before leaving Pm, or we visit
state (m, j) exactly once before leaving Pm. If ` > j, we never visit state (m, j) before leaving
Pm (and so E(m,`)

[
T Pm(m,j)

]
= 0), but if ` ≤ j, we visit state (m, j) exactly once before leaving

Pm with probability rj−`m , and this visit will last an average time of 1/(λm + αm) = rm/λm,
yielding

E(m,`)

[
T Pm(m,j)

]
= rj−`m

(
rm
λm

)
=
rj−`+1
m

λm
.

In particular, Υm,j = λmE(m,j0+1)

[
T Pm(m,j)

]
= rj−j0m , coinciding with the expression for Υm,j

from Case 1, and furthermore, we have

Ψm,k,j =
∞∑

`=j0+1

r`−j0k E(m,`)

[
T Pm(m,j)

]

=

j∑
`=j0+1

r`−j0k E(m,`)

[
T Pm(m,j)

]
+

∞∑
`=j+1

r`−j0k E(m,`)

[
T Pm(m,j)

]

=

j∑
`=j0+1

r`−j0k rj−`+1
m

λm

=
rkrm(rj−j0k − rj−j0m)

λm(rk − rm)
=

rkrm(rj−j0k − rj−j0m)

λm(rk − rm)(1− φm(αm)rk)
.

which coincides with the expression for Ψm,k,j that we found in Case 1. The last equality follows
by noting that in this case we have φm(s) ≡ 0, and hence 1− φm(αm)rk = 1.

Computations for Case 3 (µm > λm = 0):

When µm > λm = 0, we have Υm,j = λmE(m,j0+1)

[
T Pm(m,j)

]
= 0. Next, we compute

E(m,`)

[
T Pm(m,j)

]
as follows: starting at state (m, `), if ` < j, we never visit j before leaving

Pm, while if ` ≥ j we will visit j exactly once with probability µ`−jm /(µm +αm)`−j and this visit
will last an average duration of 1/(µm + αm) units of time. Consequently, E(m,`)

[
T Pm(m,j)

]
= 0 in

the former case and

E(m,`)

[
T Pm(m,j)

]
=

µ`−jm

(µm + αm)`−j+1

124

April 22, 2016
DRAFT

in the latter case. Finally, we have

Ψm,k,j =
∞∑

`=j0+1

r`−j0k E(m,`)

[
T Pm(m,j)

]

=

j−1∑
`=j0+1

r`−j0k E(m,`)

[
T Pm(m,j)

]
+
∞∑
`=j

r`−j0k E(m,`)

[
T Pm(m,j)

]
=
∞∑
`=j

r`−j0k µ`−jm

(µm + αm)`−j+1
=

rj−j0k

µm(1− rk) + αm
.

Computations for Case 4 (µm = λm = 0):
When µm = λm = 0, we again have Υm,j = λmE(m,j0+1)

[
T Pm(m,j)

]
= 0, as in Case 3. Next,

we compute E(m,`)

[
T Pm(m,j)

]
as follows: in this case any visit to Pm will consist entirely of one

visit to the initial state in Pm, as there are no transitions to other states in the same phase. Hence,
E(m,`)

[
T Pm(m,j)

]
= αm if ` = j, and E(m,`)

[
T Pm(m,j)

]
= 0 otherwise. Consequently,

Ψm,k,j =
∞∑
`=1

r`−j0k E(m,`)

[
T Pm(m,j)

]
= rj−j0k E(m,j)

[
T Pm(m,j)

]
=
rj−j0k

αm

=
rj−j0k

µm(1− rk) + αm
,

which coincides with the expression for Ψm,k,j that we found in Case 3. The last equality follows
by noting that µm = 0, and hence µm(1− rk) = 0.
Completing the inductive step:

We now proceed to substitute the results of our computations into Equation (A.1). Since Υm,j

can be given by the same expression for both Case 1 and 2, and the same holds for Ψm,k,j , we
consider these two cases together, and note that they jointly make up the case where rm > 0. For
j ≥ j0 + 1,

π(m,j) = π(m,j0)Υm,j +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)
Ψm,k,j

= π(m,j0)r
j−j0
m +

m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)(
rkrm(rj−j0k − rj−j0m)

λm(rk − rm)(1− φm(αm)rk)

)

=

m∑
k=0

cm,kr
j−j0
k ,

where we have collected terms with

cm,k =

rkrm

(
m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

)
λm(rk − rm)(1− φm(αm)rk)

(0 ≤ k < m ≤M : rm, rk > 0)

125

April 22, 2016
DRAFT

and cm,k = 0 when rm > rk = 0 and cm,m = π(m,j0) −
∑m−1

k=0 cm,k, as claimed.
The expressions for Υm,j and Ψm,k,j also coincide across Cases 3 and 4 (although they are

distinct from their Case 1 and 2 counterparts), so we also consider these two cases together,
noting that they jointly make up the case where λm = rm = 0:

π(m,j) = π(m,j0)Υm,j +
m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)
Ψm,k,j

= 0 +
m−1∑
k=0

m−1∑
i=k

(
ci,k

1∑
∆=−1

αi〈m− i; ∆〉r∆
k

)(
rj−j0k

µm(1− rk) + αm

)

=
m∑
k=0

cm,kr
j−j0
k

where we have collected terms with

cm,k =

m−1∑
i=k

1∑
∆=−1

ci,kαi〈m− i; ∆〉r∆
k

µm(1− rk) + αm
(0 ≤ k < m ≤M : rm, rk > 0)

and cm,k = 0 when rm = rk = 0. Observe that since rm = 0, it appears that we can allow cm,m
to take any real value, so in order to satisfy the induction hypothesis, we set cm,m = π(m,j0) −∑m−1

k=0 cm,k in the rm = 0 case as well. Also note that we have set cm,k = 0 when rk = 0 in both
the rm > 0 and rm = 0 cases. This completes the inductive step and the proof by induction.
The balance equations and normalization constraint:

The equations with π(m,j0) and πx in their left-hand sides in our proposed system are ordinary
balance equations (that have been normalized so that there are no coefficients on the left-hand
side).

It remains to verify that the final equation, which is the normalization constraint:

1 =
∑
x∈N

πx +
M∑
m=0

π(m,j0) +
M∑
m=0

∞∑
j=j0+1

π(m,j)

=
∑
x∈N

πx +
M∑
m=0

M∑
k=0

cm,k +
M∑
m=0

m−1∑
k=0

∞∑
j=j0+1

cm,kr
j−j0
k

=
∑
x∈N

πx +
M∑
m=0

m∑
k=0

cm,krk
1− rk

.

A.3 Negative binomial lemmas
These lemmas are used to derive our main results, and are likely known, but to make the paper
self-contained we both state and prove them.

126

April 22, 2016
DRAFT

Lemma A.1. For each β ∈ (0, 1), we have

∞∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1) =

β

(1− β)n+1
.

Proof. Having a negative binomial distribution with parameters n + 1 and (1 − β) in mind, we
observe that

∞∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1) = β

∞∑
`=j0

(
`− j0 + n

n

)
β`−j0

=
β

(1− β)n+1

∞∑
`=j0

(
`− j0 + n

(n+ 1)− 1

)
β`−j0(1− β)n+1

=
β

(1− β)n+1

∞∑
k=0

(
(k + n+ 1)− 1

(n+ 1)− 1

)
βk(1− β)n+1

=
β

(1− β)n+1

∞∑
`=n+1

(
`− 1

(n+ 1)− 1

)
β`−(n+1)(1− β)n+1

=
β

(1− β)n+1
.

The next lemma shows how to compute a truncated version of the above series.

Lemma A.2. For β 6= 1, we have

j−1∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1) =

β − βj−(j0−1)

(1− β)n+1

−
n∑
k=1

[(
j − j0 + k

k

)
−
(
j − j0 + k − 1

k − 1

)]
βj−(j0−1)

(1− β)n+1−k .

127

April 22, 2016
DRAFT

Proof. Starting with the left-hand-side, we have
j−1∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1) =

j−1∑
`=j0

∑̀
x=j0

(
x− j0 + n− 1

n− 1

)
β`−(j0−1)

=

j−1∑
x=j0

j−1∑
`=x

(
x− j0 + n− 1

n− 1

)
β`−(j0−1)

=

j−1∑
x=j0

(
x− j0 + n− 1

n− 1

)
βx−(j0−1)

j−1∑
`=x

β`−x

=
1

(1− β)

j−1∑
x=j0

(
x− j0 + n− 1

n− 1

)
βx−(j0−1)(1− βj−x)

=
1

(1− β)

j−1∑
x=j0

(
x− j0 + n− 1

n− 1

)
βx−(j0−1)

− 1

1− β

(
j − j0 + n− 1

n

)
βj−(j0−1)

=
1

(1− β)

j−1∑
x=j0

(
x− j0 + n− 1

n− 1

)
βx−(j0−1)

− 1

1− β

[(
j − j0 + n

n

)
−
(
j − j0 + n− 1

n− 1

)]
βj−(j0−1).

Setting

an =

j−1∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1),

bn =

[(
j − j0 + n

n

)
−
(
j − j0 + n− 1

n− 1

)]
βj−(j0−1)

we see that for each n ∈ {1, 2, 3, . . .} we have

an =
an−1

1− β
− bn

1− β
where

a0 =
β − βj−(j0−1)

1− β
.

The solution to this recursion is given by

an =
a0

(1− β)n
−

n∑
k=1

bk
(1− β)n+1−k

or, equivalently,

an =
1− βj−(j0−1)

(1− β)n+1
−

n∑
k=1

[(
j − j0 + n

n

)
−
(
j − j0 + n− 1

n− 1

)]
βj−(j0−1)

(1− β)n+1−k ,

which completes our derivation.

128

April 22, 2016
DRAFT

The next lemma can be viewed as a generalization of Lemma A.1.
Lemma A.3. For β ∈ (0, 1),

∞∑
`=j

(
`− j0 + n

n

)
β`−j =

1

(1− β)n+1
+

n∑
k=1

[(
j − j0 + k

k

)
−
(
j − j0 + k − 1

k − 1

)]
1

(1− β)n+1−k .

Proof. The key to deriving this series is to use both Lemmas A.1 and A.2. Here
∞∑
`=j

(
`− j0 + n

n

)
β`−j = βj0−j

∞∑
`−j0

(
`− j0 + n

n

)
β`−j0

− β(j0−1)−j
j−1∑
`=j0

(
`− j0 + n

n

)
β`−(j0−1)

=
βj0−j

(1− β)n+1
− β(j0−1)−j

[
β − βj−(j0−1)

(1− β)n+1

]
+

n∑
k=1

[(
j − j0 + k

k

)
−
(
j − j0 + k − 1

k − 1

)]
1

(1− β)n+1−k

=
1

(1− β)n+1
+

n∑
k=1

[(
j − j0 + k

k

)
−
(
j − j0 + k − 1

k − 1

)]
1

(1− β)n+1−k .

thus proving the claim.

129

April 22, 2016
DRAFT

Appendix B

Supplement to Chapter 5

B.1 Proof of Proposition 5.4
Proposition 5.4. VITA is the optimal (i.e., E[V T]-minimizing) static policy for any two-server
system with identical service rates. Furthermore, VITA unbalances the load, whereas all load
balancing static policies achieve the same performance as RND.

Proof. First observe that any static policy can be described by a measurable function ϕ(·), such
that ϕ(v) is the probability that a job with value v is routed to server 1, and consequently, 1−ϕ(v)
gives the probability of routing a job to server 2. For example, RND is given by ϕ(v) = 1/2 for
all v, while VITA is given by ϕ(v) = 1 for all values v above some threshold and ϕ(v) = 0 for
all values v below that threshold.

Describing static policies by such functions, the E[V T]-minimizing policy is given by ϕ(·)
in the solution of the following minimization problem:

min
pi;mi;ϕ(·)

m1

µ− p1λ
+

m2

µ− p2λ

s.t. ϕ : R+ → [0, 1] is measurable

m1 =

∫ ∞
0

vϕ(v) dF (v), m2 =

∫ ∞
0

v(1− ϕ(v)) dF (v)

p1 =

∫ ∞
0

ϕ(v) dF (v), p2 =

∫ ∞
0

(1− ϕ(v)) dF (v)

p1λ < µ1, p2λ < µ2

p1 ≥ p2

where F is the c.d.f. of the value distribution. Here, we can interpret pi as the fraction of jobs
sent to server i and mi as the average value of the jobs sent to server i weighted by the fraction
of jobs sent to server i (i.e., the average value of the jobs sent to server i multiplied by pi). We
note that p1 + p2 = 1 and m1 + m2 = E[V]. Moreover, we note that although the constraint
p1 ≥ p2 need not hold for all feasible static policies, this restriction is without loss of generality,1

1If p1 < p2, one can interchange p1 and p2, interchangem1 andm2, and replace ϕ with 1−ϕ to obtain the same
objective value with p1 > p2, as required)

130

April 22, 2016
DRAFT

and simplifies the feasible region.

Now fix p1 and p2 at their optimal values, which simplifies the optimization problem: we
must now minimize a weighted sum of m1 and m2 subject to m1 + m2 = E[V] and bounds on
m1 and m2. Since p1 ≥ p2, we have 1/(µ − p1λ) ≥ 1/(µ − p2λ), and hence, the coefficient
of m1 in this weighted sum is greater than that of m2. Consequently, since m1,m2 ≥ 0, the
objective function is minimized by making m1 as small as possible, subject to the lower bound
on m1 imposed by the fixed value of p1. This means that we want to send as many higher value
jobs to server 2 as possible, so we must have an optimal ϕ function given by

ϕ(v) =

1 v < ξ

ϕ(ξ) v = ξ

0 v > ξ

,

where ξ and ϕ(ξ) satisfy

∫ ξ

0

dF (v) + ϕ(ξ)P{V = ξ} = p1,

with the integral is evaluated on an open interval. Since p1 was chosen optimally, by assumption,
we can conclude that ξ is the optimal dispatching threshold. Therefore, the optimal ϕ function
describes the VITA policy exactly; so we may conclude that VITA is the optimal static policy.

Since the load at server i is piλ/µ, in order to prove that VITA unbalances the load, we need
only prove that p1 > p2 (i.e., p1 > 1/2) in the optimal solution. Assume, by way of contradiction,
that p1 = p2. Under VITA (and hence, in the optimal solution), m1 (m2) corresponds to the
portion of E[V] made up of jobs lying below (above) the median of V , and hencem1 < m2. Now
consider increasing p1 (and consequently, decreasing p2) by some small δ > 0, while preserving
a VITA-like threshold policy (i.e., ϕ(v) is monotonically decreasing and {0, 1}-valued for all v,
except at perhaps one threshold point).

Consequently, m1 will increase and m2 will decrease by some value ε(δ), since the δ/2 least
valuable fraction of jobs that were being sent to server 2 will be rerouted to server 1. We argue
that for sufficiently small δ > 0, we must have ε(δ) ≤ cδ for some constant c. For example, if
δ < 1/4, we must have ε(δ) ≤ cδ, where c is the upper quartile of the value distribution, as all
rerouted values will have value at most c.

Finally, let ∆ be the change in the objective function due to increasing p1 from 1/2 to 1/2+δ.
For δ > 0 small enough to ensure that µ > λ(1/2 + δ), we must have

1

µ− λ(1/2 + δ)
− 1

µ− λ(1/2− δ)
≥ 0,

131

April 22, 2016
DRAFT

which allows us to establish that

∆ ≡ m1 + ε(δ)

µ− λ(1/2 + δ)
+

m2 − ε(δ)
µ− λ(1/2− δ)

− m1 +m2

µ− λ/2

≤ m1 + cδ

µ− λ(1/2 + δ)
+

m2 − cδ
µ− λ(1/2− δ)

− m1 +m2

µ− λ/2
,

lim
δ→0

(
∆

δ

)
≤ lim

δ→0

(
1

δ

)(
m1 + cδ

µ− λ(1/2 + δ)
+

m2 − cδ
µ− λ(1/2− δ)

− m1 +m2

µ− λ/2

)
=

4λ(m1 −m2)

(µ− λ/2)2
< 0,

as m1 < m2. Hence, the objective function can be decreased by a slight increase in p1, which
provides the desired contradiction: a load balancing policy is suboptimal, and since we have
shown VITA to be optimal, it unbalances load.

Finally, any load balancing static policy, including RND, that dispatches according to some
function ϕ obtains

E[V T] =

∫∞
0
vϕ(v) dF (v) +

∫∞
0
v(1− ϕ(v)) dF (v)

µ− λ/2
=

∫∞
0
v dF (v)

µ− λ/2
=

E[V]

µ− λ/2
,

which does not depend on ϕ, completing the proof.

B.2 Proof of Lemma 5.10
2 Lemma 5.10. Let V ∼ SBD(p) in a system with two identical servers. As p→ 1:
• The limiting distribution of the number of low value jobs, N`, under LAVA converges

weakly to the limiting distribution of the total number of jobs, N , under JSQ, and
E[N`]

LAVA → E[N]JSQ.
• The limiting distribution of the number of high-value jobs, Nh, under LAVA converges

weakly to the zero distribution, and E[Nh]
LAVA → 0.

• The limiting distribution of the length of the shorter queue (i.e., the instantaneous minimum
length of the two queues), Nshort, under LAVA converges to the limiting distribution of
Nshort under JSQ, and E[Nshort]

LAVA → E[Nshort]
JSQ.

In proving Lemma 1, we make use of Sublemma 1 below. This result is a special case of a result
due to Karr [88].
Sublemma 1.Let M1,M2, . . . ,Mn, . . . be a sequence of ergodic Markov chains defined on the
same countable space A, each with its own transition rate matrix Qn and unique nowhere-zero
limiting distribution πn, uniquely solving πnQn = 0 and πn · 1 = 1. Furthermore, let M
be a (possibly non-ergodic) Markov chain with transition rate matrix Q and unique limiting
distribution π, uniquely solving πQ = 0 and π · 1 = 1 such that Qn → Q uniformly. Then
πn → π in the sense of weak convergence.

2I would like to thank Gautam Iyer for his assistance with some technical details that have been used in this
proof.

132

April 22, 2016
DRAFT

Proof of Sublemma 1. If πn uniquely solves the linear system πn(1, Qn) = (1,0) while π uniquely
solves the linear system π(1, Q) = (1,0), and Qn → Q uniformly (and thus, (1, Qn) → (1, Q)
uniformly), we must have πn → π uniformly. It follows that πn → π in the sense of weak
convergence.

Note that since M may not be ergodic, π may be zero somewhere. This occurs when all
transitions (in Qn) into some nonempty proper subset of states B (A converge to 0. Note that
since π is unique, it is guaranteed that there are paths made up of transitions with nonzero rates
(in Q) from all states in B to the non-transient portion of the state space of M .

Proof of Lemma 5.10. The three individual results follow in a straightforward way after the
proper application of Sublemma 1 to the Markov chains of interest.

For p ∈ (1/2, 1), let the Markov chain M (p) (with transition rate matrix Q(p)) denote the
underlying Markov chain of the two-server system under LAVA when V ∼ SBD(p), with state
space A ≡ {(`1, h1, `2, h2) : `1, h1, `2, h2 ∈ N≥0}, where `i and hi track the number of low-value
and high-value jobs at server i, respectively. By Theorem 5.6, the LAVA policy is stable (so
long as the value distribution has a nonzero lower bound and a finite upper bound, as is the case
here). Moreover, all states communicate with one another, so these Markov chains are ergodic.
Consequently, each Markov chain, M (p), has a unique nowhere-zero limiting distribution, π(p),
which uniquely solves π(p)Q(p) = 0 and π(p) · 1 = 1.

Next, define the Markov chain M (1) over the state space A by letting its transition rate ma-
trix, Q(1), be given by replacing every instance of p in Q(p) with 1.3 Observe that the states
(`1, h1, `2, h2) with h1 = h2 = 0 all communicate with one another, but states with h1 > 0
or h2 > 0 are inaccessible from the aforementioned states (transition rates entering these states
from the other states in the chain are zero), making this a non-ergodic Markov chain. The non-
transient states of M (1) are exactly those states where h1 = h2 = 0. Since all transition rates of
M (p) are either constant in p or equal to λp, λp/2, λ(1 − p), or λ(1 − p)/2 (in accordance with
the LAVA policy), we see that as p→ 1, the transition rate matrices Q(p) → Q(1) uniformly.

Now let MJSQ (with transition rate matrix QJSQ) denote the underlying Markov chain of
the two-server system under JSQ, with state space {(j1, j2) : j1, j2 ∈ N≥0}, where ji tracks the
number of jobs at server i. Note that the composition of jobs is unimportant to the evolution of the
system under JSQ, and hence, this Markov chain does not track this composition, and nor does
not depend on p. Observe that MJSQ is exactly the same Markov chain as M (1) with the transient
(inaccessible) portion removed: we identify states (j1, j2) with states (j1, 0, j2, 0), and remove
the other states. Now observe that by Theorem 5.6, we know that the JSQ system is stable, and
moreover all states communicate with one another, so MJSQ has a unique nowhere-zero limiting
distribution πJSQ, which uniquely solves πJSQQJSQ = 0 and πJSQ · 1 = 1. It follows that M (1)

also has a unique limiting distribution, π(1), uniquely solving π(1)Q(1) = 0 and π(1) · 1 = 0,
where π(1) coincides with πJSQ on the states (`1, h1, `2, h2) where h1 = h2 = 0, and is equal to
zero on all other states.

Now consider an arbitrary increasing sequence p1, p2, . . . pn, . . . ∈ (0, 1), such that pn →
1. Define a sequence of Markov chains M1,M2, . . . ,Mn, . . . (with transition rate matrices

3We cannot associate M (1) directly with the two-server system under LAVA when V ∼ SBD(1), as SBD(1) is
not a well-defined distribution.

133

April 22, 2016
DRAFT

Q1, Q2, . . . , Qn, . . .), where Mn = M (pn), and let M = M (1), Q = Q(1) and π = π(1). We
may now apply Sublemma 1, obtaining πn → π in the sense of weak convergence, from which
it follows that as p → 1, π(p) → πJSQ on the states (`1, h1, `2, h2), where h1 = h2 = 0 (using
the identification previously explained), and π(p) converges to the zero distribution, elsewhere. It
follows from this convergence that as p→ 1:

• The limiting distributions of N` ≡ `1 + `2 under LAVA converges to the limiting distribu-
tion of N ≡ j1 + j2 under JSQ.

• The limiting distribution of Nh ≡ h1 + h2 converges to the zero distribution.
• The limiting distribution of Nshort ≡ min{`1 + h1, `2 + h2} converges to limiting distribu-

tion of Nshort ≡ min{j1, j2} under JSQ.

To complete the proof, we must show that the expectations also converge. This does not
follow immediately from the convergence of the limiting distributions, as N`, Nh, and Nshort

are unbounded functions on the state space A ≡ {(`1, h1, `2, h2) : `1, h1, `2, h2 ∈ N≥0}. Now
observe that for any p ∈ (1/2, 1), at any given time we have N`, Nh, Nshort ≤ N ≡ `1 +
h1 + `2 + h2 under LAVA. Using the convergence of limiting probabilities established above,
together with the fact that N bounds the random variables of interest, we may apply the de la
Vallée-Poussin Lemma (cf. [110]) to obtain a sufficient condition for E[N`]

LAVA → E[N]JSQ,
E[Nh]

LAVA → 0, and E[Nshort]
LAVA → E[Nshort]

JSQ. In order for the expectations to converge as
claimed, it is sufficient to show that for any fixed ρ ∈ (0, 1), there exists some δ > 0 andK <∞,
such that for all p ∈ (1 − δ, 1), we have E[N2]LAVA < K. That is, we want to show that the
second moment of the number of jobs in the LAVA system is bounded for all p in a neighborhood
of 1.

In proving that this sufficient condition holds, it will be useful to introduce a policy, which
we call LAVA′, defined form V ∼ SBD(p), as follows:

• if there are no high-value jobs in the system, low-value jobs are dispatched randomly (i.e.,
according to RND);

• if there are one or more high-value jobs in the system, low-value jobs are routed to server
1;

• high-value jobs are always routed to server 2.

We argue that N under LAVA with load ρ < 1, is stochastically no greater than N under LAVA′

with load ρ′ ≡ 2ρ/(1+ρ) < 1. In the absence of a high-value job, LAVA dispatches according to
JSQ, while LAVA′ dispatches according to RND. Moreover, observe that each queue in a system
under RND with load ρ′ has as many jobs (in expectation) as an entire two-server system under
RND with load ρ, and hence, more jobs than either queue of a system under JSQ with load ρ.
Therefore, ignoring the effect of high-value jobs, each queue of the LAVA′ system with load ρ′

is stochastically longer than either queue of the LAVA system under load ρ.
Meanwhile, LAVA′ sends high-value jobs to the same server, and allows them to always

create a “stopper” effect at that server (i.e., all low-value jobs are sent to the other server). This
“stoppering” behavior causes the queue at the other server to be much longer than it otherwise
would be. Although a similar phenomenon occurs under LAVA, this effect is more pronounced

134

April 22, 2016
DRAFT

under LAVA′, as the latter policy sends all high-value jobs to server 2.4 Hence, N under LAVA′

with load ρ′ (with associated arrival rate λ′ ≡ 2µ · ρ′ and service rate µ) stochastically dominates
N under LAVA with load ρ.

We proceed to show that E[N2]LAVA′ is finite for any given ρ′ < 1 and p sufficiently close to
1. Clearly, the contribution to E[N2]LAVA′ from server 2 is bounded, because (for all p sufficiently
close to 1) server 2 receives jobs with mean interarrival that are always less than 1/µ.

Turning our attention to server 1, we may view the arrival process to server 1 as alternating
between a Poisson process with rate λ′p/2 (when there are no high-value jobs at server 2), and
a Poisson process with rate λ′p (when there are one or more high-value job at server 2). The
duration during which server 1 receives jobs at the higher arrival rate of λ′p corresponds to
a “high-value busy period” started by the arrival of the first high-value job to server 2, and
concluded when server 2 is no longer serving any high-value jobs. We write Bh to denote the
length of this busy period. We upper bound N by assuming that all additional arrivals which
would arrive during this high-value busy period arrive at the same time as a “batch arrival.”5

That is, we can view server 1 as receiving jobs according to a Poisson process with a fixed rate,
except whenever server 2 receives a high-value job (when it previously had none), server 1 will
receive many jobs at once. The number of jobs, ABh , making up this batch of “many jobs,”
will be distributed like the number of additional arrivals server 1 would have received in Bh

time. Hence, we can upper bound the queue length at server 1 with the number of jobs, N , in an
MY /M/1 system (cf. [62]),6 with arrival rate λ′p/2 + λ′(1− p) = λ′(1− p/2) and “batch size,”
Y , distributed as follows:

Y ∼

1 w.p.

p

2− p

ABh w.p.
2− 2p

2− p
.

Here, we are again overestimating N by assuming that each high-value arrival sent to server 2
(rather than only the first high-value arrival to start each high-value busy period) causes ABh
additional jobs to be sent to server 1.

Next, we show that for all p sufficiently close to 1, Bh has all finite moments, and hence ABh
and Y have finite moments, and finally, N has finite moments. We may overestimate Bh with
B∗h, the duration of a high-value busy period under the assumption server 2 serves low-value jobs
ahead of high-value jobs, rather than employing Processor-Sharing. Note that this alternative
scheduling policy can only lengthen the busy period, so B∗h is indeed stochastically greater than
Bh. Under this alternative scheduling policy, when a high-value job arrives to server 2, it starts a
busy period of length B∗h, with Laplace transform

B̃∗h(s) = W̃
(
s+ λ′(1− p)

(
1− B̃h(s)

))
,

4The higher load under LAVA′ (i.e., ρ′ > ρ) also contributes to longer queue lengths under LAVA′.
5We note that receiving these additional arrivals at once may (rarely) allow for server 1 to work on jobs before

they would arrive in the original system without batching. Even with this possibility, sending future arrivals earlier
can only cause N to (stochastically) increase, rather than decrease.

6We use the notation MY /M/1 to refer to the system more commonly denoted by MX/M/1 in order to prevent
ambiguity in the use of the random variable X in this paper, as X has previously denoted service requirements.

135

April 22, 2016
DRAFT

where W is the random variable giving the amount of work at server 2 seen by the first high-
value arrival [70]. We know that for all p sufficiently close to 1, W has all finite moments and its
Laplace transform, W̃ (s), exists. Hence, B̃∗h(s) is well-defined, and B∗h has all finite moments.
Since B∗h stochastically dominates Bh, it follows that Bh must also have all finite moments, and
its Laplace transform, B̃h(s), exists. Consequently, the z-transforms of both ABh and Y exist
(establishing that both have all finite moments) and are given by

ÂBh(z) = B̃h(λ
′p/2 · (1− z)),

Ŷ (z) =
pz

2− p
+

2− 2p

2− p
· ÂBh(z).

Moreover, for all p sufficiently close to 1, the aggregate arrival rate to server 1, λ′(1−p/2) ·E[Y],

is less than the departure rate, µ. This fact, combined with the existence of Ŷ (z), guarantees that
the number of jobs, N , in the MY /M/1 system of interest has a well-defined z-transform, and
hence, N has all finite moments (see [62] for details). Therefore, the number of jobs at server
1 under LAVA′ has all finite moments for all p sufficiently close to 1, and hence, E[N2]LAVA′ is
finite.

Finally, for any ρ′ < 1, E[N2]LAVA′ must be bounded for all p sufficiently close to 1, because
an increase in p leads to shorter high-value busy period durations, Bh, smaller batch sizes, Y ,
and less frequent batch arrivals of size ABh , in exchange for a vanishingly higher “low-traffic”
arrival rate to server 1. Hence, E[N2]LAVA′ is eventually decreasing in p as p→ 1. It follows that
for each ρ′, there exists some K < ∞ such that E[N2]LAVA′ < K for all p in a neighborhood of
1. Consequently, E[N2]LAVA is bounded for any ρ < 1, which establishes that the expectations
of interest converge as claimed.

B.3 Proof of Lemma 5.14.
Lemma 5.14. Let V ∼ SBD(p) in a system with two identical servers. As p → 1, the G-VITA
policy with parameter g under load ρ is stable whenever

g > − log(2− 2ρ)

log(2ρ)
− 1, or alternatively, g > log2

(
ρ

1− ρ

)
.

Proof. As p → 1, server 2 is clearly stable, as there are at most g low-value jobs at this server
by definition, and high-value jobs arrive according to a Poisson process with rate (1− p)λ→ 0.
Hence, the question of stability primarily concerns server 1. The arrival process to server 1
is non-Poisson, but we can still measure the time-average arrival rate to this server. Observe
that server 1 receives jobs whenever there are exactly g low-value jobs at server 2. Moreover,
as p → 1, the impact of the high-value jobs on the number of low-value jobs at server 2 be-
comes negligible. Consequently, we may view the number of low-value jobs at server 2 as being
distributed like the total number of jobs in an M/M/1/g system, with arrival rate pλ → λ and
departure rate, µ. Hence, we may treat the arrival process to server 1 as the “loss process” of this

136

April 22, 2016
DRAFT

M/M/1/g system. The time-average arrival rate associated with this loss-process is known to be
(cf. PASTA)

λ

(
(λ/µ)g(1− λ/µ)

1− (λ/µ)g+1

)
= λ

(
(2ρ)g(1− 2ρ)

1− (2ρ)g+1

)
.

The system is stable if and only if the time-average arrival rate is less than the service rate, µ,
which corresponds to the condition

(2ρ)g+1(1− 2ρ)

1− (2ρ)g+1
< 1.

Simplifying, we have the stability condition g > − log(2 − 2ρ)/ log(2ρ) − 1. The alternative
condition is stronger, but still valid because it can be shown that − log(2 − 2ρ)/ log(2ρ) − 1 <
log2(ρ/(1−ρ)) for all ρ ∈ (1/2, 1) (algebra omitted), while when ρ ∈ (0, 1/2), any g ≥ 0 would
suffice as both bounding quantities are negative.

B.4 Proof of Proposition 5.16
Proposition 5.16. The value function for the M/M/1-PS queue with arrival rate λ, service rate
µ, and values V is given by

ηz =
λn(n+ 1)

2(µ− λ)(2µ− λ)
E[V] +

n+ 1

2µ− λ
vsum + c,

where c is a constant.

Proof. In proving this result, we invoke two earlier results. First, in an M/M/1-PS queue with n
jobs, the mean response time of each job is given by (Sengupta and Jagerman, [117]),

E[T |n] =
n+ 1

2µ− λ
, (B.1)

which interestingly is finite even if the system is somewhat overloaded (i.e., µ < λ < 2µ).
Second, the value function with respect to mean response time (rather than value-weighted mean
response time) in an M/M/1 system under any work-conserving scheduling discipline (e.g., FCFS
or PS) is given by (see [3, 92])

n(n+ 1)

2(µ− λ)
+ c′, (B.2)

where c′ is some constant. The value function (B.2) can be broken into the sum of (i) the total
mean response time of the n jobs, and (ii) the expected total additional response time experienced
by all future arrivals due to the n jobs currently in the system. Here, (i) is given by

n · E[T |n] =
n(n+ 1)

2µ− λ
, (B.3)

and hence, (ii) is obtained by subtracting (B.3), from (B.2), yielding(
n(n+ 1)

2(µ− λ)
+ c

)
− n(n+ 1)

2µ− λ
=

λn(n+ 1)

2(µ− λ)(2µ− λ)
+ c′. (B.4)

137

April 22, 2016
DRAFT

Next observe that since V and T are independent in an M/M/1-PS, we obtain the expected
total additional penalty incurred by all future arrivals due to the n jobs currently in the system by
multiplying (B.4) by E[V]:

λn(n+ 1)

2(µ− λ)(2µ− λ)
· E[V] + c′ · E[V]. (B.5)

Moreover, the mean penalty incurred by the n jobs currently in the system is obtained by multi-
plying (B.1) by the total value of those jobs, vsum:

n+ 1

2µ− λ
· vsum. (B.6)

Finally to obtain the value function of interest (the one with respect to E[V T]), we add (B.5)
and (B.6), yielding the desired result (with c = c′ · E[V]), completing the proof.

Note that Proposition 5.16 is a new result. In contrast to our setting, [3, 92] give a value
function for the M/M/1/-PS queue with respect to E[T] rather than E[V T]. Meanwhile [83] gives
a value function where the state-information includes the (remaining) service times.

B.5 Proof of Proposition 5.17
Proposition 5.17. For a static basic policy α, yielding server-specific arrival processes (λi, Vi),
the corresponding FPI policy, routes a job of value v to the server given by

α′(v) = argmin
i

1

2µi−λi

(
λi E[Vi](ni+1)

µi − λi
+ vsum

i + (ni + 2)v

)
.

Proof. First, recall that with a static basic policy, the system decomposes to m independent
M/M/1-PS queues, and the value function of the whole system is therefore the sum of the queue-
specific value functions,

ηz(α) = η(1)
z1

(α) + . . .+ η(m)
zm (α). (B.7)

Each η(i)
zi (α) is given by (5.5) with the queue-specific (λi,E[Vi]) defined by α, and the queue-

specific service rate µi.
Given the value function is available, we can carry out the FPI step (5.4). For clarity, we omit

the basic policy α from the notation. The admission penalty of a job with value v is equal to the
change in the value function,7

a(v, i) = ηz⊕(v,i) − ηz,
where z ⊕ (v, i) denotes the resulting state when a job with value v is added to server i. Given
ηz is the sum of queue-specific terms (B.7), the change in ηz(α) is local to server i, and the
admission penalty becomes

a(v, i) =
(
η(1)
z1

+ . . .+ η
(i)
zi⊕v + . . .+ η(m)

zm

)
−
(
η(1)
z1

+ . . .+ η(m)
zm

)
= η

(i)
zi⊕v − η

(i)
zi
. (B.8)

7There are no immediate penalties associated with any state changes.

138

April 22, 2016
DRAFT

From Proposition 5.16 and (B.8) we have

a(v, i) =
λi E[Vi](ni + 1)

(µi − λi)(2µi − λi)
+

vsum
i

2µi − λi
+

(ni + 2)v

2µi − λi
, (B.9)

where the first and second terms corresponds to the expected total additional penalty incurred by
the future arrivals and the ni jobs currently at server i, respectively. The last term is the expected
penalty incurred by the new arrival of value v. FPI chooses the queue with the smallest expected
penalty, α′(v) = argmin

i
a(v, i), yielding (5.6).

139

April 22, 2016
DRAFT

Bibliography

[1] Cisco systems localdirector. http://www.cisco.com/c/en/us/products/routers/localdirector-
400-series/. 5.1

[2] Microsoft sharepoint 2010 load balancer. http://www.loadbalancer.org/sharepoint.php. 5.1

[3] S. Aalto and J. Virtamo. Basic packet routing problem. In The thirteenth Nordic teletraffic
seminar NTS-13, pages 85–97, Trondheim, Norway, August 1996. B.4, B.4

[4] Joseph Abate and Ward Whitt. Transient behavior of the M/M/1 queue via Laplace trans-
forms. Advances in Applied Probability, pages 145–178, 1988. 2.5.1, 2.5.1

[5] I. Adan and J Resing. A class of Markov processes on a semi-infinite strip. Techni-
cal Report 99-03, Eindhoven University of Technology, Department of Mathematics and
Computing Sciences, 1999. 2.2.3, 3.2.3

[6] I.J.B.F. Adan, G.J. van Houtum, and J. van der Wal. Upper and lower bounds for the
waiting time in the symmetric shortest queue system. Annals of Operations Research, 48:
197–217, 1994. 5.1

[7] Z. Aksin, M. Armony, and V. Mehrotra. The modern call-center: A multi-disciplinary
perspective on operations management research. Prod. Oper. Manag., 16(6):665–688,
2007. 4.1

[8] G. Allon and I. Gurvich. Pricing and dimensioning competing large-scale service
providers. M&SOM, 12(3):449–469, 2010. 4.1.2

[9] E. Altman, U. Ayesta, and B.J. Prabhu. Load balancing in processor sharing systems.
Telecommunication Systems, 47(1):35–48, 2011. 5.1, 5.2

[10] J. Anton. One-minute survey report #488: Agent compensation & advancement, 2005.
Document Tracking Number SRV488-080305. 4.1

[11] M. Armony. Dynamic routing in large-scale service systems with heterogeneous servers.
Queueing Syst. Theory Appl., 51(3-4):287–329, 2005. 4.1.2

[12] M. Armony and A. R. Ward. Fair dynamic routing in large-scale heterogeneous-server
systems. Operations Research, 58:624–637, 2010. 4.1.2, 4.3

[13] Søren Asmussen. Applied probability and queues, volume 51. Springer Science & Busi-
ness Media, 2003. 2.2.1

[14] R. Atar. Scheduling control for queueing systems with many servers: Asymptotic opti-
mality in heavy traffic. Ann. Appl. Probab., 15(4):2606–2650, 2005. 4.1.2

140

April 22, 2016
DRAFT

[15] R. Atar, Y. Y. Shaki, and A. Shwartz. A blind policy for equalizing cumulative idleness.
Queueing Syst., 67(4):275–293, 2011. 4.1.2

[16] Eitan Bachmat and Hagit Sarfati. Analysis of size interval task assigment policies. Per-
formance Evaluation Review, 36(2):107–109, 2008. 5.1

[17] Matt Bishop. Computer security: art and science, volume 200. Addison-Wesley, 2012.
3.1

[18] Flavio Bonomi. On job assignment for a parallel system of processor sharing queues.
IEEE Trans. Comput., 39(7):858–869, July 1990. 5.1, 5.4.5

[19] S. Borst, A. Mandelbaum, and M. I. Reiman. Dimensioning large call centers. Operations
Research, 52(1):17–34, 2004. 4.1.2

[20] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with general service
time distributions. In Proceedings of the ACM Special Interest Group on Computer Sys-
tems Performance, SIGMETRICS 2010, June 2010. 5.1

[21] Larry Bridwell. Computer virus prevalence survey. ICSA Labs, 2004. 3.1

[22] L Bright and Peter G Taylor. Calculating the equilibrium distribution in level dependent
quasi-birth-and-death processes. Stochastic Models, 11(3):497–525, 1995. 2.2.1

[23] Carey Bunks, Dan McCarthy, and Tarik Al-Ani. Condition-based maintenance of ma-
chines using hidden markov models. Mechanical Systems and Signal Processing, 14(4):
597–612, 2000. 3.2.2

[24] Maximiliano Caceres. Syscall proxying - simulating remote execution,
2002. URL http://www.coresecurity.com/files/attachments/
SyscallProxying.pdf. 3.1

[25] G. P. Cachon and P. T. Harker. Competition and outsourcing with scale economies. Man-
age. Sci., 48(10):1314–1333, 2002. 4.1.2

[26] G. P. Cachon and F. Zhang. Obtaining fast service in a queueing system via performance-
based allocation of demand. Manage. Sci., 53(3):408–420, 2007. 4.1.2

[27] P. Cahuc and A. Zylberberg. Labor Economics. MIT Press, 2004. 4.1.1

[28] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip Yu. The state of
the art in locally distributed web-server systems. ACM Computing Surveys, 34(2):1–49,
2002. 5.1

[29] Center for Strategic and International Studies. Net losses: Estimating the global
cost of cybercrime, June 2014. URL http://www.surfline.com/surf-news/
maldives-surf-access-controversy-update_75296/. [Online; posted 9-
June-2014]. 3.1

[30] Ram Chakka and Isi Mitrani. Heterogeneous multiprocessor systems with breakdowns:
performance and optimal repair strategies. Theoretical Computer Science, 125(1):91–109,
1994. 3.2.1

[31] Carri W Chan, Vivek F Farias, and Gabriel Escobar. The impact of delays on service times
in the intensive care unit. Technical report, Working Paper, 2014. 2.3

141

http://www.coresecurity.com/files/attachments/SyscallProxying.pdf
http://www.coresecurity.com/files/attachments/SyscallProxying.pdf
http://www.surfline.com/surf-news/maldives-surf-access-controversy-update_75296/
http://www.surfline.com/surf-news/maldives-surf-access-controversy-update_75296/

April 22, 2016
DRAFT

[32] S.-F. Cheng, D. M. Reeves, Y. Vorobeychik, and M. P. Wellman. Notes on equilibria in
symmetric games. In International Workshop On Game Theoretic And Decision Theoretic
Agents (GTDT), pages 71–78, 2004. 4.4.2

[33] Gianfranco Ciardo and Evgenia Smirni. ETAQA: an efficient technique for the analysis
of QBD-processes by aggregation. Performance Evaluation, 36:71–93, 1999. 2.2.3

[34] Gianfranco Ciardo, Alma Riska, and Evgenia Smirni. Equiload: a load balancing policy
for clustered web servers. Performance Evaluation, 46:101–124, 2001. 5.1

[35] Gianfranco Ciardo, Weizhen Mao, Alma Riska, and Evgenia Smirni. ETAQA-MG1: an
efficient technique for the analysis of a class of M/G/1-type processes by aggregation.
Performance Evaluation, 57(3):235–260, 2004. 2.2.3

[36] Y. Cohen-Charash and P. E. Spector. The role of justice in organizations: A meta-analysis.
Organ. Behav. and Hum. Dec., 86(2):278–321, 2001. 4.1.2, 4.3

[37] J. A. Colquitt, D. E. Conlon, M. J. Wesson, C. O. L. H. Porter, and K. Y. Ng. Justice at
the millennium: A meta-analytic review of 25 years of organizational justice research. J.
Appl. Psychol., 86(3):425–445, 2001. 4.1.2, 4.3

[38] Darpa Cyber Grand Challenge, 2016. URL https://cgc.darpa.mil/. 3.1

[39] F. de Véricourt and Y.-P. Zhou. Managing response time in a call-routing problem with
service failure. Operations Research, 53(6):968–981, 2005. 4.1.1

[40] Mohammad Delasay, Armann Ingolfsson, and Bora Kolfal. Modeling load and overwork
effects in queueing systems with adaptive servers. Technical report, Working paper, 2015.
2.3

[41] J.R. Diamant, W.Y. Hsu, D.H. Lin, and E.C. Scoredos. Automatic detection of vul-
nerability exploits, May 27 2014. URL https://www.google.com/patents/
US8739288. US Patent 8,739,288. 3.1

[42] Sherwin Doroudi, Esa Hyytiä, and Mor Harchol-Balter. Value driven load balancing.
Performance Evaluation, 79:306–327, 2014. 1

[43] Sherwin Doroudi, Brian Fralix, and Mor Harchol-Balter. Clearing analysis on phases: Ex-
act limiting probabilities for skip-free, unidirectional, quasi-birth-death processes. arXiv
preprint arXiv:1503.05899, 2015. 1, 3.2.3, 3.3.2, 7

[44] Steve Drekic and Winfried K Grassmann. An eigenvalue approach to analyzing a finite
source priority queueing model. Annals of Operations Research, 112(1-4):139–152, 2002.
3.2.1

[45] Muhammad El-Taha and Bacel Maddah. Allocation of service time in a multiserver sys-
tem. Management Science, 52(4):623–637, 2006. 5.1

[46] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing problem. IEEE
Transacactions on Autonomic Control, AC-25(4):690–693, 1980. 5.1

[47] A. K. Erlang. On the rational determination of the number of circuits. In E. Brockmeyer,
H. L. Halstrom, and A. Jensen, editors, The Life and Works of A. K. Erlang, pages 216–
221. The Copenhagen Telephone Company, 1948. 4.1.2

142

https://cgc.darpa.mil/
https://www.google.com/patents/US8739288
https://www.google.com/patents/US8739288

April 22, 2016
DRAFT

[48] F5 Products. Big-IP. http://www.f5.com/products/big-ip. 5.1

[49] Hanhua Feng and Vishal Misra. Mixed scheduling disciplines for network flows. SIG-
METRICS Perform. Eval. Rev., 31:36–39, September 2003. 5.1

[50] Dennis W. Fife. Scheduling with random arrivals and linear loss functions. Management
Science, 11(3):429–437, January 1065. 5.1, 5.4.4

[51] G. J. Foschini and J. Salz. A basic dynamic routing problem and diffusion. IEEE Trans-
actions on Communications, 26(3):320–327, 1978. 5.6.1, 5.6.3, 5.6.3

[52] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch. Au-
toscale: Dynamic, robust capacity management for multi-tier data centers. ACM Transac-
tions on Computer Systems (TOCS), 30(4):14, 2012. 2.3.1

[53] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf. Exact
analysis of the M/M/k/setup class of Markov chains via recursive renewal reward. In Pro-
ceedings of the ACM SIGMETRICS/international conference on Measurement and mod-
eling of computer systems, pages 153–166. ACM, 2013. 2.2.3, 3.2.3

[54] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf. Exact
analysis of the M/M/k/setup class of Markov chains via recursive renewal reward. Queue-
ing Systems, 77(2):177–209, 2014. 2.2.3, 3.2.3

[55] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and
research prospects. M&SOM, 5(2):79–141, 2003. 4.1, 4.1.1

[56] Michele Garetto, Weibo Gong, and Don Towsley. Modeling malware spreading dynamics.
In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, volume 3, pages 1869–1879. IEEE, 2003. 3.2

[57] O. Garnett, A. Mandelbaum, and M. Reiman. Designing a call center with impatient
customers. M&SOM, 4(3):208–227, 2002. 4.1.2

[58] Kevin M Gatzlaff and Kathleen A McCullough. The effect of data breaches on shareholder
wealth. Risk Management and Insurance Review, 13(1):61–83, 2010. 3.1

[59] X. Geng, W. T. Huh, and M. Nagarajan. Strategic and fair routing policies in a decentral-
ized service system. Working paper, 2013. 4.1.2

[60] S. M. Gilbert and Z. K. Weng. Incentive effects favor nonconsolidating queues in a service
system: The principal-agent perspective. Manage. Sci., 44(12):1662–1669, 1998. 4.1.2

[61] Ragavendran Gopalakrishnan, Sherwin Doroudi, Amy R. Ward, and Adam Wierman.
Routing and staffing when servers are strategic. Operations Research, 2016. To appear. 1

[62] Donald Gross, John F Shortle, James M Thompson, and Carl M Harris. Fundamentals of
queueing theory. John Wiley & Sons, 2013. B.2

[63] Varun Gupta, Mor Harchol-Balter, Karl Sigman, and Ward Whitt. Analysis of join-the-
shortest-queue routing for web server farms. Performance Evaluation, 64(9-12):1062–
1081, October 2007. 5.1, 5.1, 5.4.2, 5.4.5

[64] I. Gurvich and W. Whitt. Scheduling flexible servers with convex delay costs in many-
server service systems. M&SOM, 11(2):237–253, 2007. 4.1.2

143

April 22, 2016
DRAFT

[65] B. Haji and S. M. Ross. A queueing loss model with heterogenous skill based servers
under idle time ordering policies, 2013. Working paper. 4.4.1

[66] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers.
Operations Research, 29(3):567–588, 1981. 4.1.2

[67] Lani Haque and Michael J Armstrong. A survey of the machine interference problem.
European Journal of Operational Research, 179(2):469–482, 2007. 3.2.1

[68] M. Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013. 4.1

[69] Mor Harchol-Balter. Task assignment with unknown duration. Journal of the ACM, 49
(2), 2002. 5.1

[70] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013. 2.2.1, 2.5.1, 5.1, B.2

[71] Mor Harchol-Balter, Mark Crovella, and Cristina Murta. On choosing a task assignment
policy for a distributed server system. IEEE Journal of Parallel and Distributed Comput-
ing, 59:204–228, 1999. 5.1

[72] Mor Harchol-Balter, Karl Sigman, and Adam Wierman. Asymptotic convergence of
scheduling policies with respect to slowdown. Perform. Eval., 49(1-4):241–256, Septem-
ber 2002. 5.2

[73] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew Young. Surprising results on task
assignment in server farms with high-variability workloads. In ACM Sigmetrics 2009
Conference on Measurement and Modeling of Computer Systems, pages 287–298, 2009.
5.1

[74] R. Hassin and M. Haviv. To Queue or Not to Queue: Equilibrium Behavior in Queueing
Systems. Kluwer, 2003. 4.1.2

[75] Qi-Ming He. Fundamentals of matrix-analytic methods. Springer, 2014. 2.2.1

[76] W. Hopp and W. Lovejoy. Hospital Operations: Principles of High Efficiency Health
Care. Financial Times Press, 2013. 4.1

[77] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press,
2012. 2.2.2

[78] Ronald A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and Deci-
sion Processes. Wiley Interscience, 1971. 5.8

[79] Yih Huang, David Arsenault, and Arun Sood. Closing cluster attack windows through
server redundancy and rotations. In Cluster Computing and the Grid, 2006. CCGRID 06.
Sixth IEEE International Symposium on, volume 2, pages 12–pp. IEEE, 2006. 3.1, 3.2

[80] Lorine A Hughes and Gregory J DeLone. Viruses, worms, and trojan horses: Serious
crimes, nuisance, or both? Social science computer review, 25(1):78–98, 2007. 3.1

[81] Esa Hyytiä. Lookahead actions in dispatching to parallel queues. Performance Evaluation,
70(10):859–872, 2013. (IFIP Performance’13). 5.2

[82] Esa Hyytiä and Samuli Aalto. Round-robin routing policy: Value functions and mean per-

144

April 22, 2016
DRAFT

formance with job- and server-specific costs. In 7th International Conference on Perfor-
mance Evaluation Methodologies and Tools (ValueTools), Torino, Italy, December 2013.
5.2

[83] Esa Hyytiä, Jorma Virtamo, Samuli Aalto, and Aleksi Penttinen. M/M/1-PS queue
and size-aware task assignment. Performance Evaluation, 68(11):1136–1148, November
2011. (IFIP Performance’11). 5.1, B.4

[84] Esa Hyytiä, Samuli Aalto, and Aleksi Penttinen. Minimizing slowdown in heterogeneous
size-aware dispatching systems. ACM SIGMETRICS Performance Evaluation Review, 40:
29–40, June 2012. (ACM SIGMETRICS/Performance conference). 5.2

[85] A. J. E. M. Janssen, J. S.H. van Leeuwaarden, and B. Zwart. Refining square-root safety
staffing by expanding Erlang C. Operations Research, 59(6):1512–1522, 2011. 4.1.2

[86] E. Kalai, M. I. Kamien, and M. Rubinovitch. Optimal service speeds in a competitive
environment. Manage. Sci., 38(8):1154–1163, 1992. 4.1.2

[87] S Karlin and HM Taylor. A first course in stochastic processes. Acadmic Press, New York,
1975. 2.5.1

[88] Alan F Karr. Weak convergence of a sequence of markov chains. Probability Theory and
Related Fields, 33(1):41–48, 1975. B.2

[89] J.F.C. Kingman. Two similar queues in parallel. Biometrika, 48:1316–1323, 1961. 5.1

[90] L. Kocaga, M. Armony, and A. R. Ward. Staffing call centers with uncertain arrival rates
and co-sourcing, 2013. Working paper. 4.1.2

[91] B. Krishnamoorthi. On Poisson queue with two heterogeneous servers. Operations Re-
search, 11(3):321–330, 1963. 4.4.2

[92] K. R. Krishnan. Joining the right queue: a state-dependent decision rule. IEEE Transac-
tions on Automatic Control, 35(1):104–108, January 1990. 5.8.1, B.4, B.4

[93] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic
Modeling. ASA-SIAM, Philadelphia, 1999. 2.2.1, 2.4.1, 2.4.1, 2.4.1, 3.2.3

[94] Guy Latouche and V Ramaswami. A logarithmic reduction algorithm for quasi-birth-death
processes. Journal of Applied Probability, pages 650–674, 1993. 2.2.1

[95] Y. Levy and U. Yechiali. An M/M/s queue with servers’ vacations. INFOR, 14:153–163,
1976. 2.2.3

[96] Daming Lin, Viliam Makis, et al. Recursive filters for a partially observable system subject
to random failure. Advances in Applied Probability, 35(1):207–227, 2003. 3.2.2

[97] W. Lin and P. Kumar. Optimal control of a queueing system with two heterogeneous
servers. IEEE Trans. Autom. Contr., 29(8):696–703, 1984. 4.1.1

[98] D. Liu and Y.Q. Zhao. Determination of explicit solution for a general class of Markov
processes. Matrix-Analytic Methods in Stochastic Models, page 343, 1996. 2.2.1

[99] Patricia Y Logan and Stephen W Logan. Bitten by a bug: a case study in malware infec-
tion. Journal of Information Systems Education, 14(3):301, 2003. 3.1

[100] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R. Larus, and Albert Greenberg.

145

April 22, 2016
DRAFT

Join-idle-queue: A novel load balancing algorithm for dynamically scalable web services.
Perform. Eval., 68(11):1056–1071, November 2011. 5.1

[101] J.C.S. Lui, R.R. Muntz, and D.F. Towsley. Bounding the mean response time of the min-
imum expected delay routing policy: an algorithmic approach. IEEE Transactions on
Computers, 44(12):1371–1382, 1995. 5.1

[102] V Makis and X Jiang. Optimal replacement under partial observations. Mathematics of
Operations Research, 28(2):382–394, 2003. 3.2.2

[103] G. S. Mokaddis, C. H. Matta, and M. M. El Genaidy. On Poisson queue with three het-
erogeneous servers. International Journal of Information and Management Sciences, 9:
53–60, 1998. 4.4.2

[104] A. Mukhopadhyay and R. R. Mazumdar. Analysis of load balancing in large heteroge-
neous processor sharing systems. http://arxiv.org/abs/1311.5806, November 2013. 5.1

[105] Marcel F Neuts. Matrix-geometric solutions in stochastic models: an algorithmic ap-
proach. Courier Dover Publications, 1981. 2.2.1, 3.2.3

[106] Tuan Phung-Duc. Exact solutions for M/M/c/Setup queues. arXiv preprint
arXiv:1406.3084, 2014. 2.2.3

[107] Marco Pistoia and Corinne Letilley. IBM websphere performance pack: Load balancing
with IBM secureway network dispatcher, October 1999. IBM Redbooks. 5.1

[108] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 2005. 5.8

[109] V Ramaswami and Guy Latouche. A general class of Markov processes with explicit
matrix-geometric solutions. Operations-Research-Spektrum, 8(4):209–218, 1986. 2.2.1

[110] Malempati M Rao and Randall J Swift. Probability theory with applications, volume 582.
Springer, 2006. B.2

[111] J. Reed and Y. Shaki. A fair policy for the G/GI/N queue with multiple server pools.,
2013. Preprint. 4.1.2

[112] Alma Riska and Evgenia Smirni. Exact aggregate solutions for M/G/1-type Markov pro-
cesses. In ACM SIGMETRICS Performance Evaluation Review, volume 30, pages 86–96.
ACM, 2002. 2.2.3

[113] Alma Riska and Evgenia Smirni. ETAQA solutions for infinite Markov processes with
repetitive structure. INFORMS Journal on Computing, 19(2):215–228, 2007. 2.2.3

[114] Sheldon M. Ross. Applied Probability Models with Optimization Applications. Holden-
Day Inc., 1970. 5.8

[115] T. L. Saaty. Time-dependent solution of the many-merver Poisson queue. Operations
Research, 8(6):755–772, 1960. 4.4.2

[116] Jori Selen, Ivo Adan, Vidyadhar Kulkarni, and Johan van Leeuwaarden. The snow-
ball effect of customer slowdown in critical many-server systems. arXiv preprint
arXiv:1502.02856, 2015. 2.3

[117] B. Sengupta and D.L. Jagerman. A conditional response time of M/M/1 processor-sharing

146

April 22, 2016
DRAFT

queue. AT&T Bell Lab. Techn. J., 64(2):409–421, February 1985. B.4

[118] Andrei Sleptchenko, Jori Selen, Ivo Adan, and Geert-Jan van Houtum. Joint queue length
distribution of multi-class, single server queues with preemptive priorities. arXiv preprint
arXiv:1411.3176, 2014. 2.6.3

[119] Andreas Stathopoulos, Alma Riska, Zhili Hua, and Evgenia Smirni. Bridging ETAQA and
ramaswami’s formula for the solution of M/G/1-type processes. Performance Evaluation,
62(1):331–348, 2005. 2.2.3

[120] KJELL Stordahl. The history behind the probability theory and the queuing theory. Telek-
tronikk, 103(2):123, 2007. 1

[121] Symantec. Severity assessment, 2016. URL https://www.symantec.
com/content/en/us/about/media/securityintelligence/
SSR-Severity-Assesment.pdf. 3.1

[122] T. Tezcan. Optimal control of distributed parallel server systems under the Halfin and
Whitt regime. Mathematics of Operations Research, 33:51–90, 2008. 4.1.2

[123] T. Tezcan and J. Dai. Dynamic control of N-systems with many servers: Asymptotic
optimality of a static priority policy in heavy traffic. Operations Research, 58(1):94–110,
2010. 4.1.2

[124] B. Van Houdt and J.S.H. van Leeuwaarden. Triangular M/G/1-Type and Tree-Like Quasi-
Birth-Death Markov Chains. INFORMS Journal on Computing, 23(1):165–171, 2011.
2.2.1, 3.2.3

[125] J.S.H. van Leeuwaarden and E.M.M. Winands. Quasi-birth-and-death processes with an
explicit rate matrix. Stochastic models, 22(1):77–98, 2006. 2.2.1, 2.2.2, 2.4.2, 2.4.5

[126] J.S.H. van Leeuwaarden, M.S. Squillante, and E.M.M. Winands. Quasi-birth-and-death
processes, lattice path counting, and hypergeometric functions. Journal of Applied Prob-
ability, 46(2):507–520, 2009. 2.2.1, 2.2.2, 2.4.2, 2.4.5

[127] A. R. Ward and M. Armony. Blind fair routing in large-scale service systems with hetero-
geneous customers and servers. Operations Research, 61:228–243, 2013. 4.1.2

[128] Pieter Wartenhorst. N parallel queueing systems with server breakdown and repair. Euro-
pean Journal of Operational Research, 82(2):302–322, 1995. 3.2.1

[129] R.W. Weber. On optimal assignment of customers to parallel servers. Journal of Applied
Probability, 15:406–413, 1978. 5.1

[130] W. Winston. Optimality of the shortest line discipline. Journal of Applied Probability, 14:
181–189, 1977. 5.1, 5.6.1, 5.6.2

[131] Shanchieh Yang and G. de Veciana. Size-based adaptive bandwidth allocation: optimizing
the average QoS for elastic flows. In IEEE INFOCOM, volume 2, pages 657–666, 2002.
5.2

[132] Wei T Yue and Metin Çakanyıldırım. A cost-based analysis of intrusion detection system
configuration under active or passive response. Decision Support Systems, 50(1):21–31,
2010. 3.2

147

https://www.symantec.com/content/en/us/about/media/securityintelligence/SSR-Severity-Assesment.pdf
https://www.symantec.com/content/en/us/about/media/securityintelligence/SSR-Severity-Assesment.pdf
https://www.symantec.com/content/en/us/about/media/securityintelligence/SSR-Severity-Assesment.pdf

April 22, 2016
DRAFT

[133] Q Qiushi Zhu. Maintenance optimization for multi-component systems under condition
monitoring. PhD thesis, Technische Universiteit Eindhoven, 2015. 3.2.2

148

	Dissertation Doroudi.pdf
	sdoroudi_Tepper_2016
	1 Introductory Remarks
	2 Clearing Analysis on Phases
	2.1 Introduction
	2.2 The Model and Literature Review
	2.2.1 The matrix-geometric approach
	2.2.2 Our approach: Clearing Analysis on Phases (CAP)
	2.2.3 Recursive Renewal Reward, ETAQA, and other techniques

	2.3 Examples of class M Markov chains
	2.3.1 Single server in different power states
	2.3.2 Server fatigue
	2.3.3 Server with virus infections

	2.4 Results
	2.4.1 A key idea
	2.4.2 Preliminaries
	2.4.3 The case where all nonzero bases are distinct
	2.4.4 The case where all bases agree
	2.4.5 The case where all bases except rM agree

	2.5 Analysis of the M/M/1/clearing model
	2.5.1 Preliminary results on clearing models
	2.5.2 Applying clearing model analysis toward proving Theorem 2

	2.6 Extending the scope of the CAP Method
	2.6.1 Chains with ``catastrophes''
	2.6.2 Skipping levels when transitioning between phases
	2.6.3 Chains with an infinite number of phases

	2.7 Conclusion

	3 The Malware Cleanup Problem
	3.1 Introduction
	3.2 Literature Review
	3.2.1 Machine interference problems
	3.2.2 Condition-based maintenance
	3.2.3 Methods for solving quasi-birth-death process Markov chains

	3.3 The Case of Visible Malware
	3.3.1 Visible Malware Model
	3.3.2 Visible Malware Analysis
	3.3.3 Visible Malware Results

	3.4 The Case of Hidden Malware
	3.4.1 Hidden Malware Model
	3.4.2 Hidden Malware Analysis
	3.4.3 Hidden Malware Results

	3.5 Approximate Analysis
	3.6 Conclusion

	4 Routing when Servers are Strategic
	4.1 Introduction
	4.1.1 Contributions of This Chapter
	4.1.2 Related Work

	4.2 A Model for Strategic Servers
	4.3 The M/M/N Queue with Strategic Servers
	4.4 Routing to Strategic Servers
	4.4.1 Idle-Time-Order-Based Policies
	4.4.2 Rate-Based Policies

	4.5 Conclusion

	5 Routing with Heterogeneous Job Values
	5.1 Introduction
	5.2 Prior work on value-driven dispatching
	5.3 Model for PS server system
	5.4 Description of simple dispatching policies
	5.4.1 Random dispatching (RND)
	5.4.2 Join-the-Shortest-Queue dispatching (JSQ)
	5.4.3 Value-Interval-Task-Assignment (VITA)
	5.4.4 C-MU
	5.4.5 Length-and-Value-Aware (LAVA)

	5.5 Simulation results and intuitions
	5.6 Analytic results
	5.6.1 RND and JSQ under high load
	5.6.2 Stability and instability
	5.6.3 Results under sharply bimodal distributions

	5.7 A (sometimes) far better policy: Gated VITA (G-VITA)
	5.7.1 G-VITA
	5.7.2 G-VITA simulations

	5.8 More complex policies via the First Policy Iteration (FPI)
	5.8.1 FPI policies
	5.8.2 Enhancing FPI policies using discounting
	5.8.3 FPI simulations

	5.9 Conclusion

	6 Concluding Remarks
	A Supplement to Chapter 2
	A.1 An alternative interpretation of the Laplace transform
	A.2 Complete proof of Theorem 2.3
	A.3 Negative binomial lemmas

	B Supplement to Chapter 5
	B.1 Proof of Proposition 5.4
	B.2 Proof of Lemma 5.10
	B.3 Proof of Lemma 5.14.
	B.4 Proof of Proposition 5.16
	B.5 Proof of Proposition 5.17

	Bibliography

