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Abstract

Time Reversal is an adaptive waveform transmission technique particularly suited to dispersive or

non-homogenous media that focuses energy on a desired point in space. Early work concentrated on

optical and acoustic/ultrasonic applications, followed more recently by applications in the electro-

magnetic domain. Time Reversal has been used for single- and multi-antenna detection, imaging,

communications, non-destructive testing, and beam steering, among other applications.

This thesis develops Time Reversal detection algorithms for randomly varying targets embedded

in randomly varying clutter. We model the target and clutter as independent complex Gaussian

random variables and consider both single-antenna and multi-antenna detection scenarios. We de-

rive the optimal Time-Reversal Likelihood Ratio Test (TR-LRT) for the single-antenna case, as well

as a sub-optimal Time Reversal-Linear Quadratic (TR-LQ) detector that allows for a priori thresh-

old and performance computation. These detectors are compared against a benchmark Weighted

Energy Detector (WED). For the multi-antenna scenario, we present the Time Reversal MIMO

(TR-MIMO) detector and compare its performance to a conventional Spatial MIMO (S-MIMO)

radar. We show that, for both scenarios, the relative performance of Time Reversal detection meth-

ods depends on the coherence of the channel between the forward and TR transmission stages. We

discuss the potential for detection gains with Time Reversal in single-antenna and multi-antenna

systems. We discuss lower and upper bounds on gain and show that Time Reversal provides a

useful and computationally simple approximation to the optimal transmit signal.

To compute the optimal hypothesis test for a Blind TR detection system, we derive a new

statistical distribution, the Complex Double Gaussian distribution, which characterizes the complex

product Z = XY of independent complex Gaussian random variables X and Y . We also apply

this new probability distribution to analyze the performance of M-ary Phase Shift Keying (MPSK)

communication systems, showing its applicability well beyond the realm of Time Reversal problems.
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Chapter 1

Introduction

The problem of detecting a target embedded in clutter or in multipath has been studied extensively

and is of great importance in many applications, including Radar and Sonar scenarios [1]. The

matched filter has been shown to be optimal for a known signal in the absence of clutter and the

presence of both white and colored noise [2]. These results break down when the transmission

channel exhibits multipath effects. Multipath results in the interference of several delayed and

attenuated versions of the probing signal. These interference patterns obscure the known signal

and negatively affect the performance of matched filters. The traditional approach to compensation

for multipath is to model the channel and construct a variant of the matched filter, called matched

field processing [3]. This approach requires either explicit or implicit modeling of the channel,

e.g., by the wave equation, and detailed modeling of the boundary conditions. Matched field

processing is computationally very intensive. Thus, traditional consideration of multipath either

views it as detrimental to performance or exacts a heavy modeling and computational cost; Time

Reversal presents an alternative inexpensive solutions in certain applications so that multipath can

be constructively interfered to improve the received signal-to-noise ratio [4, 5].

1.1 Time Reversal

Time Reversal, which can at least be dated back to a 1965 acoustical experiment by Parvulescu and

Clay [6], has received renewed attention following the more recent work of M. Fink and others [7–9].

A concise and descriptive review of Time Reversal in the acoustic domain can be found in [10].

Time Reversal relies on the reciprocity of the channel and the invariance of the Green’s field to

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the Time Reversal process and reconvergence of incident waves.

a reversal of the time operator. Reciprocity implies that a transmission from point source (A)

to receiver (B) will result in the same received signal as transmitting that same probing signal

from (B) to (A). Invariance of the Green’s field to a reversal of the time operator implies that

signals propagate the same way whether time is moving forward or backward from the onset of the

impulse. These two factors allow for the construction of Time Reversal Mirrors (TRMs) [8, 11–13]

in acoustics and electromagnetics, also called Optical Phase Conjugators in optics [14,15]. A TRM

is an array of sensors (in either one, two, or three-dimensions) that collect a time history of some

incident signal and then re-transmit what they have received in a First-In Last-Out manner. This

process produces a time-reversed incident signal that has been proven to converge back on the

original source of the transmission [8, 16], we illustrate this phenomenon in Figure 1.1.

It has been shown through experiments in a water tank [17] and in the open ocean [18,19] that

this convergence exhibits super-resolution. This means that the focused incident signal generated

by a TRM exhibits resolution that outperforms the predicted Rayleigh resolution limit [4, 20,

21]. This convergence of energy intensifies Time Reversal signal processing. Super-resolution

focusing is intuitively understood through an effect known as virtual arrays. We illustrate this in

Figure 1.2, where we present a waveguide model. Waves emanate from the point source and travel

several different paths to the array. The multipath reflections present the potential for increased
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Figure 1.2: Illustration of the virtual array and increased angular diversity created by “unwrapping”
the multipath.

angular diversity through “unwrapping” each of the reflections. The increased angular diversity

is similar from a diversity point of view to placing an additional antenna along the unwrapped

path’s trajectory, increasing the effective array aperture, and improving the Rayleigh resolution

limit. The dotted line in this figure depicts the Rayleigh diffraction-limited resolution, while the

solid line shows the super-resolution focusing achieved through Time Reversal. The improved

focusing is approximately equivalent to the diffraction limit of a larger virtual array, created by the

reflections. Time Reversal is a convenient approach to achieve this net effect. This phenomenon was

investigated separately by Fink’s research group [9, 22] and has been confirmed by other research

groups [4, 5, 20,21,23–25].

Applications of Time Reversal include detection [26–29], imaging [13, 24, 30, 31], communica-

tions [4, 32], non-destructive testing [33], and beam steering [34], among others.

1.1.1 Channel Reciprocity

A fundamental assumption of Time Reversal is that the channel exhibits reciprocity. This is often

a safe assumption and has been shown to be true in many different media, as evidenced by the

successful operation of Time Reversal in optics [6], ocean acoustics [18], electromagnetics [4,23,26],
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and dispersive waveguides [35,36]. Time-dependent media, wherein the channel changes over time,

cause loss of reciprocity. A simple approach to counter this is to ensure that the reverse transmission

occurs within the coherence time of the channel, the time in which the channel can be assumed to

remain static. However, the coherence time of some channels may be impractically short, such as

in shallow water acoustic communications. An extreme example of this occurs in the ionosphere,

where channel perturbations occur while the transmission is in transit [37]. One method to account

for this effect is to model the reciprocal channel as the linear combination of the initial channel and

an independent perturbation term, an approach that we utilized in [28, 38], where the reciprocity

condition is modeled as a correlation coefficient ρ. We model the reciprocal channel’s default state

as ρ = 1, wherein reciprocity holds. We allow ρ to decrease towards the limit ρ = 0, which

represents the case where the reciprocal channel is fully independent from the forward channel.

From these two extremes, we obtain the domain of ρ: ρ ∈ [0, 1]. Longer coherence times (relative

to the time delay between transmissions) imply a larger correlation coefficient ρ.

The ionosphere presents a second unique challenge to reciprocity. A phenomenon known as

Faraday rotation causes non-reciprocal changes to occur in the transmission, due to an asymmetry

of the dielectric tensor. This effect, however, can be mitigated by use of vertical and horizontal

polarized antennas to allow Time Reversal methods to be applied to Over-the-Horizon Radar, as

suggested in [37].

1.1.2 Iterative Time Reversal

A variant of Time Reversal known as Iterative Time Reversal [8, 39] is used to adaptively focus

waves on the dominant scatterer in a field. The approach is similar to the Power Method for

isolation of the dominant eigenvector of a matrix [40–43]. Through repeated stages of time reversal

and retransmission, the array probing signal converges to the channel’s dominant steering vector.

At this point, the array has an isolated steering vector for the dominant scattering source, which

can be used for target estimation or localization.

One extension of Iterative Time Reversal is DORT (a French acronym for Decomposition of the

Time Reversal Operator) [44,45]. In DORT, the process of Iterative Time Reversal is conducted to

find the dominant eigenvector of the channel matrix. DORT then constructs the subspace orthog-

onal to the dominant eigenvector and repeats the process with a projection onto the orthogonal

subspace at each iteration. This results in recovery of the second dominant eigenvector. The process

is iterated to recover all of the eigenvectors, in order of strength.
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Figure 1.3: Graphic depiction of the aggregate channel response (left) separated into background
multipath waves (right-top) and interactions between the target and the background scatterers
(right-bottom). Rays that are colored red interact with the target, while rays that are colored blue
do not.

1.2 Multipath Channel Effects

In [26, 27], Jin and Moura propose the use of Time Reversal to detect targets embedded in dense

multipath channels. They model the channel’s frequency response as the summation of two terms,

one due solely to the background (clutter) and the other due to the presence of the target. The

background component is called the clutter response and is denoted Hc(f), while the remainder is

called the target response and is denoted Ht(f). The combined channel response is given by:

H(f) = Hc(f) +Ht(f). (1.1)

They use a priori information to characterize the clutter response and remove it through direct

subtraction. This leaves the target channel response Ht(f), which is characterized not just by a

response from the target, but also by interaction of the target with the background (multipath)

channel, as shown in Figure 1.3. They perform Time Reversal on this component of the channel

response and show that detectors based on this signal outperform conventional detection algorithms.
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These results are based on the assumption that the clutter response is deterministic and, thus, can

be removed through subtraction.

In the regime of ray propagation, the multipath channel response can be written as the discrete

sum of the L independent propagation paths present:

H(f) =

L∑
ℓ=1

rℓ(f)e
ȷϕℓ(f). (1.2)

The incoherent summation of a large number of independent paths motivates the consideration of

this response as a random variable, since relatively minor changes in the propagation environment

can affect the amplitude and delay of a large number of these paths in different ways. This

contrasts with the work of Jin and Moura in [26,27], where the aggregate response H(f) is assumed

to be deterministic. We consider Rayleigh Fading channels [46]. The channel response H(f) is

represented by:

H(f) = r(f)eȷϕ(f), (1.3)

where the random amplitude r(f) is Rayleigh distributed with parameter σ(f), and the random

phase ϕ(f) is uniformly distributed between 0 and 2π. We note that the product of a Rayleigh

amplitude and independent uniform phase can be represented as a circular symmetric complex

Gaussian random variable [47]:

H(f) ∼ CN
(
0, σ2(f)

)
. (1.4)

Thus, we assume that complex Gaussian random variables are suitable to model the random clutter

response and the random target response in the presence of multipath. The random variable H(f)

has distribution [47,48]:

ff (h) =
(
2πσ2(f)

)−1/2
e
− |h|2

2σ2(f) . (1.5)

In the general case, the distribution of a complex Gaussian random vector h, with mean m and

covariance matrix Σ, is given by:

f(h) = (2π)−N/2 det{Σ}−1/2e−
1
2
(h−m)HΣ−1(h−m). (1.6)

As with the real Gaussian distribution, the complex Gaussian distribution is closed under linear

transformations, and the summation of jointly complex Gaussian random variables yields a complex

Gaussian random variable [48].
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1.3 Time Reversal in Changing Media

Time Reversal has been studied in the presence of random media by several different research

groups, both in randomly layered media [49–51] and random inhomogeneous media [52–57]. They

have shown that the convergence of repeated Time Reversal measurements to a stable result is

dependent only upon the statistics of the channel and not on the specific realizations observed.

Liu and collaborators have studied Time Reversal focusing in shifted media, where the forward

and TR transmissions are conducted in close proximity [23, 58]. They constructed an extremely

dense multipath scenario (750 dielectric rods with 1.25cm diameter in a 1.2m × 2.4m field). They

performed a series of tests to first confirm Time Reversal focusing was in effect and then to test

its robustness to shifts in the propagation media. They conducted EM transmissions in the 0.5-

10.5GHz band with transmit and receive antennas placed along opposite sides of the long edge

of the field. Using a 10cm synthetic transmit array, they achieved a focal resolution of 7.5cm in

azimuth and 10cm in range. The azimuth resolution exceeds the predicted Rayleigh resolution

limit of 81.75 cm and corresponds to a virtual array length of 109cm. This represents a ten-fold

increase in effective aperture. They then repeated this experiment with varying linear shifts in the

media between forward and TR transmissions. They found that Time Reversal focusing is robust

to a shift of ±2cm (approximately 1/2 the center frequency wavelength), where it lost some of

its peak focused energy but maintained super-resolution. At ±4cm, the focused spot was almost

non-existent. In this study, Liu et. al. simultaneously confirmed the super-resolution properties

and reciprocity dependencies of Time Reversal.

1.4 Multi-Input Multi-Output (MIMO) Radar

Recently, there has been considerable interest in a novel class of radar systems known as “MIMO

radar.” The IEEE Journal of Selected Topics in Signal Processing recently held a special issue on

the topic (J-STSP, Vol. 4, N. 1, February 2010). The term multiple-input multiple-output (MIMO)

refers to the use of multiple-transmit as well as multiple-receive antennas [59–65]. The vast majority

of MIMO radar systems fall into one of two categories: widely separated antennas and colocated

antennas. The former leverages the fact that, if the antennas are separated far enough, the target

radar cross sections (RCS) for different transmitting paths become independent random variables.

The latter utilizes far-field wavefront assumptions that are well-known through phased array signal

processing, but transmits orthogonal waveforms from each antenna or a set of subarrays, instead
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of standard phased array waveforms. The key to both approaches is that MIMO radar leverages

increased diversity (either spatial or coded) to improve system performance, by sacrificing mainlobe

width. We now discuss both of these methodologies for MIMO radar and illustrate the relative

strengths and applications of each.

1.4.1 Widely Separated Antennas

The term “statistical MIMO radar,” [59], has been used to refer to the signal model where the signals

measured at different antennas are uncorrelated. If the antennas are separated far enough, the target

radar cross sections (RCS) for different transmitting paths become independent random variables.

Thus, each orthogonal waveform carries independent information about the target; spatial diversity

about the target is created. Spatial diversity is most evident for extended targets, which exhibit

angular dependent radar cross sections (RCSs). By their definition, point targets have a uniform

RCS with regard to the radar’s aspect angle. The presence of multipath clutter introduces an

angular dependence in point targets, this allows the assumption of spatial diversity.

Since most radars operate under statistical target assumptions, rather than the term “statistical

MIMO radar,” we use instead the term “spatial MIMO radar” to refer to MIMO radar systems in

which the array utilizes spatial diversity to gain additional target information.

Widely separated antenna arrays pose significant operations hurdles, including synchronization

and data transfer. The distribution nature of these arrays increases the difficulty of accurate syn-

chronization. In addition, processing of the telemetry from a distributed array of radar elements

requires either (a) transfer of a large amount of data to a centralized processing location, or (b)

distributed consensus algorithms. Both of these approaches present unique advantages and opera-

tional concerns. For these reasons, “spatial MIMO” arrays are most applicable to fixed monitoring

installations, where a permanent infrastructure can be established.

1.4.2 Co-located Antennas

The competing MIMO radar model is often referred to as “co-located MIMO radar” and utilizes

traditional (often linear) arrays. Co-located arrays avoid some of the operational concerns of

widely-separated, “spatial MIMO,” arrays with the advantage of building on existing architectures

for phased array radar. Instead of relying on uncorrelated channels, co-located MIMO utilizes

various coding schemes to overlap transmit signals and create virtual arrays. One recent example

of this is a set of experiments recently conducted by Kantor and Davis at Lincoln Laboratory [66]
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in Airborne Multi-Input Multi-Output (MIMO) Ground-Moving Target Indicator (GMTI). They

tested several MIMO array configurations (comparing dense and sparse receive arrays with the same

number of antennas) and utilized two different coding schemes to achieve transmit orthogonality:

Time-Division Multiple Access (TDMA) and Doppler-Division Multiple Access (DDMA) [67,68].

In the former, TDMA, the time line is split into different transmit slots allocated for each

transmitter. This has the advantage of being very simple to implement, but presents a tradeoff

between range and pulse repetition frequency (PRF). As the PRF increases, the time allocated to

each transmitter is shortened, limiting the range of the system. In the latter, DDMA, orthogonality

is achieved by applying a linear doppler shift to each of the transmit antennas. By shifting each

transmitter’s doppler frequency, they divide the range-doppler space into different regions for each

transmitter, and allow all of the transmit antennas to operate simultaneously. The limitation to

this is that the clutter and target must not exceed a maximum doppler (one-half of the doppler

shift between transmitters). If any return should exceed this doppler limit, then orthogonality of

the transmit waveforms will no longer hold and separation of the channels at the receiver will fail.

Since they considered an airborne platform, this maximum doppler shift must take into account

the aircraft velocity, thereby potentially limiting the applications.

Despite these limitations, they were able to demonstrate experimentally that MIMO GMTI

can exceed the performance of single-input multiple-output (SIMO) GMTI systems. This was

evidenced by a reduction in the size of the clutter-ridge. This translates to a reduction in the

Signal-to-Interference-and-Noise (SINR) loss for slow moving targets, which are usually obscured

by the clutter return. They showed that this improvement in performance was more noticeable for

the sparse MIMO array which has a larger virtual array length than the dense MIMO array.

1.4.3 MIMO with Multipath

In this thesis, we develop a MIMO setup to operate in a rich scattering environment and to exploit

the multipath propagation. There are many mechanisms that cause multipath in radar detection,

for example, the presence of a large number of scatterers in the vicinity of the target of interest,

or tracking and detection of low-angle targets over a flat surface [1, 69]. Multipath affects the

level of the energy return from the target due to coherent combining of the return signals. As a

result, we will observe fades and enhancements relative to the level that is expected in a free-space

environment. In general, the overall target response is characterized by the target’s radar cross

section, the multipath propagation due to the surrounding scatterers, and the antenna’s aspect
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angle. The unknown nature of the complex target reflection makes the overall target response

appear to be random even for a point target. Therefore, we adopt the “spatial MIMO” model for

the target. Although our MIMO model is somehow similar to what is used in [59], the difference

is clear. In [59], the randomness of the radar target return is caused by many look angles from

extended targets; in our case, the randomness of a (point) target response is the result of multipath.

Our work on detection with Time Reversal for MIMO radar was published in [28,38]. Foroohar

Foroozan recently considered the related problem of localization with Time Reversal for MIMO

radar [70–72].

The interested reader is referred to the recent textbook [73] for an in-depth analysis of MIMO

Radar design techniques and performance analysis.

1.5 Contributions

The contributions of this dissertation are four-fold.

• Single-Antenna Time Reversal Detection of Gaussian Targets in Clutter: We present a Time

Reversal detection strategy for Gaussian targets in the presence of Gaussian clutter and derive

the optimal Neyman-Pearson detector.

• Time Reversal Detection for Multi-Input Multi-Output Radar: We present a Time Rever-

sal detection strategy for “spatial MIMO” radar and derive the optimal Neyman-Pearson

detector.

• Derivation of the Complex Double Gaussian Distribution: To compute the optimal hypothesis

test for a Blind TR detection system, we derive a new statistical distribution, the Complex

Double Gaussian distribution, which characterizes the complex product Z = XY of indepen-

dent complex Gaussian random variables X and Y .

1.5.1 Single-Antenna Time Reversal Detection of Gaussian Targets in Clutter

We consider the problem of detecting a target embedded in stationary random multipath clutter.

We derive a Time-Reversal (TR) approach to detect the presence of a target in the ideal case,

where the second order statistics are all known (or can be learned). We propose a Time-Reversal

detection scheme that is based on prior work for deterministic channels [26, 27]. We ignore the

clutter subtraction performed in [26, 27], as it is not relevant to zero-mean Gaussian clutter. We
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derive the optimal Neyman-Pearson detector, which we refer to as the Time Reversal Likelihood

Ratio Test (TR-LRT). We perform Monte Carlo trials and show that the TR-LRT performs very

well, as compared to a Weighted Energy Detector.

We propose a sub-optimal detector that we refer to as the Time Reversal Linear Quadratic

Test (TR-LQ). We derive analytical expressions for the performance of the TR-LQ detector, a

result that is not possible for the TR-LRT. We show through numerical simulations that: (1) our

analytical performance predictions match the achieved performance of the TR-LQ, and (2) the

TR-LQ performs similarly to the TR-LRT with a minimal loss of performance.

1.5.2 Time Reversal Multi-Input Multi-Output Radar

We combine Time Reversal with MIMO (TR-MIMO) radar technology to improve the signal-to-

noise ratio by tayloring the transmitted waveforms to the propagation medium and the target

scattering characteristics. The TR-MIMO detector allows us to: (1) exploit the spatial diversity

arising from multipath propagation; (2) use time reversal to adaptively adjust the radar waveforms

to scattering characteristics of the channel; (3) employ simple orthogonal wideband waveforms with-

out seeking complicated waveform coding design methods; and (4) incorporate the de-correlation

between the forward channel and the backward channel when the reciprocity condition may not

strictly hold. We develop the binary hypothesis test for TR-MIMO and provide analytical ex-

pressions for the test statistic. We demonstrate that a MIMO radar combined with time reversal

(TR-MIMO) improves target detectability when compared with spatial MIMO (S-MIMO) [74]. We

show that the performance of the TR-MIMO detector is dependent upon the coherence parameter

ρ between the two transmission stages, with optimal coherence at ρ = 1. We demonstrate that, for

ρ ≥ 0.15, the TR-MIMO detector outperforms the S-MIMO detector.

1.5.3 Complex Double Gaussian Distribution

To compute the optimal hypothesis test for a Blind TR detection system, we derive a new statistical

distribution, the Complex Double Gaussian distribution which characterizes the product Z = XY

of two independent complex Gaussian random variables X and Y . We show that the PDF is a

doubly-infinite summation. We derive an upper bound on the truncation error of the first N terms

of this summation and propose an adaptive approach to its evaluation.

We present results for the special cases where one or both of the inputs X and Y are zero-mean

as well as the marginal distribution of the magnitude |Z| for the general case and both special
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cases. We show how the marginal distribution of the amplitude |Z| is related to prior results from

the reference handbook [75].

We consider two applications of this distribution. In Section 4.3, we present a blind Time Re-

versal detection scheme and use the complex Double Gaussian distribution to derive the Neyman-

Pearson optimal detector. In Section 4.4, we use the complex Double Gaussian distribution to

compute the Symbol Error Probability (SEP) for an M-ary Phase Shift Keying (MPSK) commu-

nication system. This analysis draws on a similar approach by Mallik [76, 77], but utilizes the

analytical PDF that we have derived instead of the characteristic function that Mallik presented.

1.6 Organization

The remainder of this thesis is organized as follows. We present single-antenna Gaussian detection

in Chapter 2, wherein we derive the TR-LRT and TR-LQ detectors and compare their performance

to the conventional Weighted Energy Detector. In Chapter 3, we consider MIMO detection and

present the TR-MIMO detector, against which we compare the conventional S-MIMO detector. In

Chapter 4, we derive the complex Double Gaussian distribution, analyze its convergence behavior,

and present two potential applications. We present a comprehensive discussion of the detection

gains associated with Time Reversal in Chapter 5 and conclude this thesis in Chapter 6.



Chapter 2

Single-Antenna Gaussian Detection

We consider the problem of detecting a target embedded in stationary random multipath clutter.

We derive a Time-Reversal (TR) based approach to detect the presence of a target in the ideal

case, where the second order statistics are all known (or can be learned). We propose a Time-

Reversal detection scheme that is based on prior work for deterministic channels [26,27]. We show

how this detection scheme must be modified for treatment of random Gaussian targets and derive

several detectors based on Time Reversal. The optimal detector, which we term the Time Reversal

Likelihood Ratio Test (TR-LRT), is shown to perform very well as compared to a conventional

Weighted Energy Detector (WED) through Monte Carlo trials, but lacks an analytical expression

for threshold computation and performance analysis. In addition to the TR-LRT, we propose a sub-

optimal approach, the Time-Reversal Linear-Quadratic (TR-LQ) detector. The TR-LQ detector is

derived through approximating the received time reversal signal as a complex Gaussian, instead of

the product of two complex Gaussian random variables. Through this approximation, we compute

the statistics of the TR-LQ detector, and present analytical detection results, in addition to the

Monte Carlo trials, and performance analysis.

For a comparison, we also present the optimal conventional detector, the Weighted Energy

Detector (WED) with two different signal design strategies:

• Flat PSD: a blind approach that allocates power equally among frequencies

• Water Filling: an adaptive approach that seeks to minimize the clutter response by assuming

that the target’s PSD is flat

We formulate the problem in Section 2.1, where we discuss the statistical behavior of the

13
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channel under both hypotheses. We discuss Time Reversal and derive both the TR-LRT and TR-

LQ detectors in Section 2.2. The benchmark detectors are presented in Section 2.3. We then

discuss nominal performance of the detectors in Section 2.4 and present the results of a series of

numerical simulations in Section 2.5. Finally, we present a discussion of this chapter’s results and

implications in Section 2.6.

2.1 Problem Formulation

We consider the problem of detecting a target in the presence of clutter (sometimes referred to

as reverberation). We presented a preliminary version of this work in [78]. To be clear, we are

referring to signal-dependent responses when we discuss clutter. Thus, if we transmit the signal

S(f), the received signal Y (f) is given by:

Y (f) = [Ht(f) +Hc(f)]S(f) + V (f), (2.1)

where Ht(f) is the target’s frequency response and Hc(f) is the clutter frequency response. V (f)

is a combination of additive noise and non-signal-dependent interference (such as jamming). As

discussed in [79], the assumption of a Poisson spatial process to model the physical distribution of

clutter leads to a complex Gaussian process model for the impulse response. Thus, we can model

the clutter’s frequency response as a complex Gaussian random variable:

Hc(f) ∼ CN (0, Pc(f)) , (2.2)

where Pc(f) is the clutter’s Power Spectral Density (PSD). This clutter channel model is also

assumed in [78, 80]. We consider a general (non-point) Gaussian target, which conforms to the

standard target model considered in [79]. Thus, similar to the clutter frequency response, we

model the target’s frequency response with:

Ht(f) ∼ CN (0, Pt(f)) , (2.3)

where Pt(f) is the target’s PSD. The target channel model (2.3) implies that the variance (i.e., the

power spectrum density) is frequency dependent, which is intensified by the multipath scattering.

The aggregate channel response H(f) is taken to be the superposition of the target and clutter



2.1. PROBLEM FORMULATION 15

channel responses:

H(f) = Ht(f) +Hc(f) (2.4)

∼ CN (0, Ph(f)) (2.5)

We make the simplifying assumption that the target and clutter are independent, thus we can

express the aggregate channel’s PSD with Ph(f) = Pt(f) + Pc(f). This model agrees with the

formulation in Figure 1.3. The rays that comprise the target channel response follow different

paths than those for the clutter channel response and, thus, are independent.

2.1.1 Channel Coherence

As we will explain in the next section, Time Reversal detection requires a second transmission

through the potentially time-varying channel. For simplicity, we define a second set of channel

variables Ht(f), Hc(f), and H(f). These three variables refer to the backchannel while Ht(f),

Hc(f), and H(f) describe the forward channel. We model the backchannel as a perturbed version

of the forward channel:

H(f) = [ρtHt(f) + ρcHc(f)] + Γ(f). (2.6)

The symbols ρc and ρt are the correlation coefficients of the clutter and target, respectively, between

the forward channel and backchannel, defined:

ρc
△
=
E
{
Hc(f)H

∗
c(f)

}
Pc(f)

(2.7)

ρt
△
=
E
{
Ht(f)H

∗
t (f)

}
Pt(f)

. (2.8)

We model the backchannel’s default state as ρc = ρt = 1, wherein reciprocity holds. We allow

ρc and ρt to decrease (independently) towards the limit ρc = ρt = 0, which represents the case

where the backchannel is fully independent from the forward channel. From these two extremes,

we obtain the domain of ρc and ρt: ρ ∈ [0, 1]. Longer coherence times (relative to the time delay

between transmissions) imply a larger correlation coefficient ρ. We define the constraint that H(f)

and H(f) follow the same distribution. Thus, the perturbation term Γ(f) is distributed as:

Γ(f) ∼ CN
(
0,
(
1− ρ2t

)
Pt(f) +

(
1− ρ2c

)
Pc(f)

)
. (2.9)
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From this, we can express the joint distribution[
H(f)

H(f)

]
∼ CN

([
0

0

]
,

[
Ph(f) Phh(f)

Phh(f) Ph(f)

])
, (2.10)

and the conditional distribution of H(f), given H(f):

H(f)|H(f) ∼ CN
((

Phh(f)

Ph(f)

)
H(f), Ph(f)−

Phh(f)
2

Ph(f)

)
, (2.11)

where Phh(f) = ρcPc(f) + ρtPt(f).

2.1.2 Binary Detection Problem

We consider a test of two hypotheses. In the null hypothesis, H0, the channel is fully characterized

by clutter and interference. In the alternative hypothesis, H1, a target is also present. This problem

is written as:

H0 : H(f) = Hc(f)

H1 : H(f) = Ht(f) +Hc(f),
(2.12)

2.1.3 Frequency Sampling

We consider a discrete set of frequency samples fq, q = 0, . . . , Q−1, so that the continuous equations

above can be discretized for processing. The frequency samples are given by:

fq = fc −
B

2
+ q∆f, (2.13)

where fc is the carrier frequency, B is the system bandwidth (in Hz), and ∆f is the frequency

sampling interval. We will select the frequency sampling interval such that individual samples of

the channel frequency response are independent, i.e., E
{
H(fq)H

∗(fq′)
}
= P (fq)δ(fq − fq′). To

achieve this independence, we introduce the coherence bandwidth Bc of the channel. This is defined

as the inverse of the channel delay spread, the delay between the channel impulse response’s first

and last taps [28]. While the coherence discussed in Section 2.1.1 is temporal, from measurement to

measurement, the coherence bandwidth discussed here is across frequency for any one measurement.

When two sinusoids are separated in frequency by Bc, then they are affected very differently by
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the channel. This difference allows us to approximate H(fq) as an independent variable across

frequencies, as long as ∆f > Bc. In order to guarantee this inequality, we simply restrict the

number of frequency samples:

Q ≤ B

Bc
. (2.14)

The size of the coherence bandwidth depends directly on the density of the multipath. If there

are no secondary reflections, then the channel delay spread will be a result of the range difference

between clutter elements of interest. If, however, there is significant multipath, then secondary

reflections will arrive later in time and cause a larger channel delay spread, thereby decreasing the

coherence bandwidth and allowing more frequency samples Q while maintaining independence.

We now turn to Time Reversal detection.

2.2 Time Reversal

In this section, we discuss the Time Reversal detection strategy. Our approach is based on the Time

Reversal detectors presented in [26, 27]. While the prior detectors were developed for determinis-

tic channels, we consider Gaussian targets and clutter. Instead of the direct clutter subtraction

in [26,27], we incorporate the statistics of the clutter into our detector. We present the transmission

protocol for Time Reversal detection in Section 2.2.1, where we briefly discuss the statistical distri-

butions of the received signals Y (fq) and X(fq). We then present the two Time Reversal detectors,

both the Time Reversal Likelihood Ratio Test(TR-LRT) and Time-Reversal Linear-Quadratic(TR-

LQ) detectors in Section 2.2.4.

2.2.1 Transmission Protocol

In this section, we outline the transmission protocol, which is described in [27] for deterministic

channels. This protocol will consist of two distinct transmission stages: a forward (A → B)

transmission and a reverse (B → A) transmission. This is necessary for active Time Reversal

methods and will also provide a diversity gain for conventional methods. We discuss how this

protocol must be altered for use in random channels. To begin with, we define the probing signal

sent from antenna A as SA(f). We will later define a probing signal SB(f) to be sent from antenna

B. The proposed transmission protocol can be broken into three communication stages:

• Learning Stage: This is the a priori stage during which the clutter channel is probed, prior

to the presence of a target.
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Figure 2.1: Transmission Protocol described in Section 2.2.1. (a) Learning stage, (b) Forward
Transmission stage, (c) TR Transmission stage.

• Forward Transmission Stage: The forward probing signal SA(f) is transmitted through the

channel from antenna A and is received at antenna B.

• Reverse Transmission Stage: The reverse probing signal SB(f) is transmitted through the

channel from antenna B and is received at antenna A.

See Figure 2.1 for a graphical depiction of this protocol. The selection of the probing signals SA(f)

and SB(f) are a significant part of what makes this a Time Reversal process, since SB(f) will

be constructed from the response at antenna B. We will benchmark our approach against several

conventional signal design strategies for SA(f) and SB(f).

Learning Stage

In this stage, we assume that the target is not yet present, thus H(fq) = Hc(fq). Through repeated

transmissions, we assume that accurate estimates of both the clutter (Pc(fq)) and the noise and

interference (Pv(fq)) Power Spectral Densities (PSD)s are obtained. Finally, it is also reasonable

to assume that, through an extended learning stage, we can construct estimates of the clutter

channel’s coherence parameter ρc for successive transmissions.



2.2. TIME REVERSAL 19

Forward Transmission Stage

We now assume that time has passed, and it is time to determine if a target is or is not present.

We define the probing signal SA(fq), constrained by the transmit energy
∑Q−1

q=0 ∥SA(fq)∥2 = Es.

We label the received signal Y (fq):

Y (fq) = H(fq)SA(fq) + V (fq), (2.15)

where the additive noise term V (fq) is distributed according to:

V (fq) ∼ CN (0, Pv(fq)) . (2.16)

We can choose the probing signal SA(fq) arbitrarily. We choose to use the Water Filling approach

from (2.71), since it seeks to minimize the received Clutter-plus-Noise power. This approach is

presented in Section 2.3 and is one of the conventional benchmark approaches against which we

will compare Time Reversal.

In the deterministic protocol of [26,27], it is assumed that the clutter response is known and we

can remove it through subtraction. However, since the clutter response is random, and zero-mean,

no subtraction is necessary or warranted. Since Y (fq) is the linear combination of two complex

Gaussian random vectors, it is similarly distributed:

Y (fq) ∼ CN (0, Py(fq)) , (2.17)

where the power spectral density is given by: Py(fq) = Ph(fq) |S(fq)|2 + Pv(fq).

Reverse Transmission Stage

In this stage, we time-reverse (phase-conjugate), energy normalize, and transmit the received signal

Y (fq) back through the channel from antenna B to antenna A, this time interacting with H(fq)

instead of H(fq). We first define the probing signal:

SB(fq) = kY ∗(fq), (2.18)
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where the energy normalization term k is written as:

k2 =
Es∑Q−1

q=0 |Y (fq)|2
. (2.19)

The received signal vector is:

X(fq) = H(fq)SB(fq) + V (fq), (2.20)

where V (fq) is another additive noise term, independent but identically-distributed to V (fq):

V (fq) ∼ CN (0, Pv(fq)) . (2.21)

For conventional probing signals SB(fq) (those uncorrelated with the channel H(fq)), the received

signal vector is a zero-mean complex Gaussian vector. However, since SB(fq) is a function of Y (fq),

there is a correlation between the backchannel H(fq) and the forward channel H(fq), contained in

SB(fq). Because of this, we consider the distribution of X(fq), when conditioned on the received

signal Y (fq):

X(fq)|Y (fq) ∼ CN (µx(fq), Px(fq)) , (2.22)

where the statistics µx(fq) and Px(fq) are defined by:

µx(fq) =
kPhh(fq)S

∗
A(fq) |Y (fq)|2

Py(fq)
(2.23)

Px(fq) = k2 |Y (fq)|2
[
Ph(fq)−

P 2
hh
(fq) |SA(fq)|2

Py(fq)

]
+ Pv(fq). (2.24)

The mean value µx(fq) is a direct result of the coherence parameters ρc and ρt, and this is where

the benefit from Time Reversal arises. As the forward channel and backchannel lose coherence,

ρc → 0 and ρt → 0, this leads to µx(fq) → 0.

Approximate Distribution of X(fq)

The distribution of the Time Reversal received signal X(fq), given in (2.22) is the conditional

distribution of X(fq), given the received signal Y (fq) (or, equivalently, the TR probing signal

SB(fq)). This conditional distribution will be useful in deriving the optimal detector for this

scenario, but the statistics of that detector will be quite complex. In order to present a simplified
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version, we will approximate themarginal distribution ofX(fq) as a Complex Gaussian distribution:

X(fq) ≃ CN
(
µ̃x(fq), P̃x(fq)

)
, (2.25)

where the symbol ≃ stands for “is approximately distributed as”. We compute the parameters

µ̃x(fq) and P̃x(fq) by matching the first two moments of X(fq). For the expectation, we have:

µ̃x(fq) = EX,Y [X(fq)] = EY

[
EX|Y [X(fq)|Y (fq)]

]
= EY [µx(fq)] see (2.23)

= EY

[
|Y (fq)|2

] kPhh(fq)S
∗
A(fq)

Py(fq)

= kPhh(fq)S
∗
A(fq), (2.26)

where k is the expectation of the energy normalization factor k, the square root of the transmit

energy divided by the received energy. While k is a random variable that is dependent upon the

received signal Y (fq), it was shown in [28] that k2 is approximately deterministic. For this reason,

we can replace k with k =
√
E {k2}, with a high degree of confidence. We derive this expectation

in Appendix 2.A. For the variance, we have:

P̃x(fq) = EX,Y

[
|X(fq)|2

]
− |EX,Y [X(fq)]|2 = EY

[
EX|Y

[
|X(fq)|2 |Y (fq)

]]
− |µ̃x(fq)|2

= EY

[
Px(fq) + |µx(fq)|2

]
− |µ̃x(fq)|2 see (2.23) and (2.24)

= k
2
(
Ph(fq)Py(fq) + P 2

hh
(fq) |SA(fq)|2

)
+ Pv(fq). (2.27)

2.2.2 Brief Comment On the Product of Complex Gaussians

In general, the distribution of the productH(fq)SB(fq) is not known, given that they are dependent

complex Gaussian variables. The probability distribution is not known in closed form, although

the characteristic function has been derived [76]. Under some rather modest constraints, however,

three different results can be useful:

• If ρc = 0 and ρt = 0, then the operands H(fq) and SB(fq) are independent. Under this basic

assumption, their product follows the complex Double Gaussian distribution, a result that we

present in Chapter 4. At present, this result has not been extended to the dependent case

(ρ > 0).
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• If both H(fq) and SB(fq) are real and zero-mean, then the distribution of their product is a

known result, and can be found in [75]§(6.15), with n = 1 dimension.

• If both H(fq) and SB(fq) are complex and zero-mean, then the real part of their product is

distributed according to [75]§(6.15), with n = 2 dimensions.

Since our detector has knowledge of the specific instance of the probing signal SB(fq) that was sent

to the transmitter, we can utilize the conditional distribution presented in (2.22) for the design and

analysis of our detector, which we conduct in Section 2.1.2.

2.2.3 Combined Data Vector

We define the stacked data vector z and use it to store both of the collected data signals:

zq =

[
Y (fq)

X(fq)

]
.1 (2.28)

Now, we wish to characterize the distribution of zq, but note that X(fq) and Y (fq) are re-

lated both by the channel coherence parameters ρc and ρt as well as by the TR probing signal

SB(fq) = kY ∗(fq). So, the distribution of zq is not immediately clear. To solve this, we turn to

Bayes’ Theorem to find the joint distribution of X(fq) and Y (fq):

fX,Y (X(fq), Y (fq)) = fX|Y (X(fq)|Y (fq))fY (Y (fq)). (2.29)

We recall the distributions of Y (fq) and X(fq)|Y (fq) in (2.17) and (2.22), respectively. Inserting

those distributions, we have:

fX,Y (X(fq), Y (fq)) =
1

π2Q |Px(fq)|1/2 |Py(fq)|1/2

exp

{
−1

2
(X(fq)− µx(fq))

H Px(fq)
−1 (X(fq)− µx(fq))−

1

2
Y (fq)

HPy(fq)
−1Y (fq)

}
. (2.30)

1In [26, 27], the combined data vector contained the complex-conjugate Y ∗(fq) instead of Y (fq), to prevent the
cross-correlation term of X(fq) and Y (fq) from attempting to correlate Y (fq) with the transmit signal kY ∗(fq).
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By arranging X(fq) and Y (fq) into the vector zq, we can rewrite the joint distribution:

fzq(zq) =
1

π
∣∣∣Σ̃zz,q

∣∣∣1/2 exp
{
−1

2
(zq −mz,q)

H Σ̃
−1

zz,q (z−mz,q)

}
, (2.31)

where

mz,q = [0 µx(fq)]
T (2.32)

Σ̃zz,q =

[
Py(fq) 0

0 Px(fq)

]
. (2.33)

Although this appears to suggest that X(fq) and Y (fq) are independent complex Gaussian random

vectors, it is important to note that the statistics µx(fq) and Px(fq) are dependent upon the received

signal Y (fq), so the distribution does not follow a complex Gaussian form, nor is it even a member

of the exponential family of distributions. To further simplify things, we stack the data vectors z

across frequency:

z =
[
zT0 , . . . , z

T
Q−1

]T
. (2.34)

Thanks to the independence of the channels across frequencies (due to our sampling at the coherence

bandwidth), the distribution fz(z) is given by:

fz(z) =

Q−1∏
q=0

fzq(zq). (2.35)

2.2.4 Time Reversal Detectors

Recall the binary detection problem that we outlined in (2.12). The optimal detector, in a Neyman-

Pearson sense, is the log-likelihood ratio test [2]:

ℓ(z) = ln

(
f(z|H1)

f(z|H0)

)
≷H1

H0
η, (2.36)
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for some threshold η. We consider M independent trials and use the subscript zm to refer to each

of the trials. Thus, when we consider the ensemble of data, the likelihood ratio test becomes:

ℓ(z) =
M−1∑
m=0

ln

(
f(zm|H1)

f(zm|H0)

)
≷H1

H0
η. (2.37)

Time Reversal Likelihood Ratio Test(TR-LRT)

We define the conditioned statistics mz|H0
and Σ̃zz|H0

to be taken from (2.32) and (2.33), respec-

tively, under the null hypothesis H0 (H(f) = Hc(f)) and the statistics mz|H1
and Σ̃zz|H1

under

the alternative hypothesis H1. We insert these conditioned statistics into (2.31) under H0 and H1.

From this, and (2.37), we have the Time Reversal Likelihood Ratio Test(TR-LRT):

ℓTR−LRT(z) =

M−1∑
m=0

Q−1∑
q=0

∣∣Xm(fq)− µx|H0
(fq)

∣∣2
Px|H0

(fq)
−
∣∣Xm(fq)− µx|H1

(fq)
∣∣2

Px|H1
(fq)

+ |Ym(fq)|2
(

1

Px|H0
(fq)

− 1

Px|H1
(fq)

)
+ ln

(
Px|H0

(fq)

Px|H1
(fq)

)
, (2.38)

and test it against the threshold:

ℓTR−LRT(z) ≷H1
H0
ηTR−LRT. (2.39)

Please see Appendix 2.B for a detailed derivation. The distribution of ℓTR−LRT(z) is not a tractable

derivation, so we must rely on Monte Carlo methods to determine the appropriate threshold

ηTR−LRT for a desired false alarm rate PFA.

Time Reversal Linear Quadratic Test (TR-LQ)

To simplify the detector design and allow for more detailed analysis, we replace the conditional

distribution of Xm(fq), given in (2.22), with the approximate marginal distribution in (2.25) and

repeat the likelihood ratio test carried out in (2.38). Our approach is the same as for the TR-LRT,

with the exception that the power spectral density Px(fq) is replaced with the approximate power

spectral density P̃x(fq). Through this approximation, the log term at the end of (2.38) becomes a
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constant and can be absorbed into the threshold. Thus, the TR-LQ detector is given by:

ℓTR−LQ(z) =

M−1∑
m=0

Q−1∑
q=0

∣∣Xm(fq)− µ̃x|H0
(fq)

∣∣2
P̃x|H0

(fq)
−
∣∣Xm(fq)− µ̃x|H1

(fq)
∣∣2

P̃x|H1
(fq)

+ |Ym(fq)|2
(

1

Py|H0
(fq)

− 1

Py|H1
(fq)

)
. (2.40)

While this detector is optimal under the approximate distribution of Xm(fq), we can express it in

an equivalent form that is more convenient for analysis. We define the whitened signal vector rm,q,

using the signal whitening approach described in [2]:

rm,q =

 1√
Py|H0

(fq)
0

0 1√
P̃x|H0

(fq)

(zm,q −

[
0

µ̃x|H0
(fq)

])
. (2.41)

The binary detection problem is now written as:

H0 : rm,q ∼ CN (0, I2)

H1 : rm,q ∼ CN (µr(fq),Σr(fq)) ,
(2.42)

where the adjusted statistics are given by:

µr(fq) =

0, µ̃x|H1
(fq)− µ̃x|H0

(fq)√
P̃x|H0

(fq)

T

, (2.43)

and

Σr(fq) = diag

{
Py|H1

(fq)

Py|H0
(fq)

,
P̃x|H1

(fq)

P̃x|H0
(fq)

}
. (2.44)

We collect all of the whitened signals rm,q into a data vector:

rm =
[
rTm,0, . . . , r

T
m,Q−1

]T
(2.45)

r =
[
rT0 , . . . , r

T
M−1

]T
(2.46)
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This leads to the optimal Neyman-Pearson detector, which we term the Time Reversal Linear-

Quadratic Test(TR-LQ):

ℓTR−LQ(r) =

M−1∑
m=0

Q−1∑
q=0

rHm,qrm,q − (rm,q − µr(fq))
H Σ−1

r (fq) (rm,q − µr(fq)) , (2.47)

and test against the threshold:

ℓTR−LQ(r) ≷H1
H0
ηTR−LQ. (2.48)

The general distribution of Linear-Quadratic detectors of this form is not known. There is a lengthy

discussion of linear-quadratic detectors in [2], which notes that the characteristic function of ℓ is

“χ2-like” and derives several sub-optimal detectors based on rank reduction and maximization of

the J-Divergence. We utilize the Lyapunov-Lindeberg Central Limit Theorem [81]2 to approximate

the distribution of ℓTR−LQ(x) as a Gaussian distribution:

ℓTR−LQ(r) ≃ N (µTR−LQ, PTR−LQ) . (2.49)

These quantities are derived in Appendix 2.C by first taking the conditional expectation of ℓTR−LQ

given Y (fq) at each frequency. This results in a rational function of |Y (fq)|2, a chi-squared random

variable, given in (2.104). We then condition on both H0 and H1 and compute the expectation over

Y (fq), taking note of several elementary expectations that we derive in Appendix 2.E. Similarly, we

compute the variance of ℓTR−LQ under H0 and H1 by first taking the conditional expectation given

Y (fq). This results in another rational function of |Y (fq)|2, given in (2.105). We then condition

on both H0 and H1 and compute the expectation over Y (fq), taking note of several elementary

expectations that we derive in Appendix 2.E. The parameter µTR−LQ under H0 and H1 is given

2The Lindeberg - Lyapunov central limit theorem [81] generalizes the classical central limit theorem [82] by
removing the identically distributed condition.
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by:

H0 : µTR−LQ =M

Q−1∑
q=0

(1− γ(fq))−
ϵ(fq)Py|H0

(fq)

Ph|H1
(fq)

(
1− β0(fq)

Ph|H1
(fq)

)

− β0(fq)

Ph|H1
(fq)

(
1− γ(fq) +

ϵ(fq)Pv(fq)

P 2
h|H1

(fq)

)
κ
(1)
0 (fq)

+ (1− γ(fq))

(
1− β0(fq)

Ph|H1
(fq)

κ
(1)
0 (fq)

)
(2.50)

H1 : µTR−LQ =M

Q−1∑
q=0

γ−1(fq)− 1 +
ϵ(fq)Py|H1

(fq)

Ph|H0
(fq)

(
1− β1(fq)

Ph|H0
(fq)

)

+
β1(fq)

Ph|H0
(fq)

(
1− γ−1(fq) +

ϵ(fq)Pv(fq)

P 2
h|H0

(fq)

)
κ
(0)
1 (fq)

−
(
1− γ−1

)(
1− β1

Ph|H0

κ
(0)
1

)
. (2.51)

The variance term PTR−LQ under H0 is given by:

H0 : PTR−LQ =M

Q−1∑
q=0

(1− γ(fq))
2

(
β0(fq)

Ph|H1
(fq)

+ 1

)
+

2ϵ(fq)Py|0(fq)

Ph|H1
(fq)

γ(fq)

+
2ϵ(fq)Py|0(fq)

Ph|H1
(fq)

(
β0(fq)

Ph|H1
(fq)

(1− 2γ(fq)) +
β20(fq)

P 2
h|H1

(fq)
(1− γ(fq))

)

− β0(fq)

Ph|H1
(fq)

(1− γ(fq))
2

(
β0(fq)

Ph|H1
(fq)

+ 2

)

− β0(fq)

Ph|H1
(fq)

(
2ϵ(fq)Pv(fq)

P 2
h|H1

(fq)

)((
β0(fq)

Ph|H1
(fq)

+ 2

)
(1− γ(fq))− γ(fq)

)
κ
(1)
0 (fq)

+ (1− γ(fq))
2

(
1 +

β0(fq)

Ph|H1
(fq)

−
(

β0(fq)

Ph|H1
(fq)

)2

κ
(1)
0 (fq)

)
, (2.52)
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and under H1 is given by:

H1 : PTR−LQ =M

Q−1∑
q=0

(
1− γ−1(fq)

)2( β1(fq)

Ph|H0
(fq)

+ 1

)
+

2ϵ(fq)Py|H1
(fq)

Ph|H0
(fq)

γ−1(fq)

+
2ϵ(fq)Py|H1

(fq)

Ph|H0
(fq)

(
β1(fq)

Ph|H0
(fq)

(
1− 2γ−1(fq)

)
+

β21(fq)

P 2
h|H0(fq)

(fq)

(
1− γ−1(fq)

))

− β1(fq)

Ph|H0
(fq)

(
1− γ−1(fq)

)2( β1(fq)

Ph|H0
(fq)

+ 2

)

− β1(fq)

Ph|H0
(fq)

(
2ϵ(fq)Pv(fq)

P 2
h|H0

(fq)

)((
β1(fq)

Ph|H0
(fq)

+ 2

)(
1− γ−1(fq)

)
− γ−1(fq)

)
κ
(0)
1 (fq)

+
(
1− γ−1(fq)

)2(
1 +

β1(fq)

Ph|H0
(fq)

−
(

β1(fq)

Ph|H0
(fq)

)2

κ
(0)
1 (fq)

)
. (2.53)

where the parameters γ(fq), γ(fq), β0(fq), β1(fq), κ
(1)
0 (fq), κ

(0)
1 (fq), Ph|H0

(fq), Ph|H1
(fq), and ϵ(fq)

are all defined in Appendix 2.C. We note that the mean and variance terms µTR−LQ and PTR−LQ,

respectively, are quite complex but entirely dependent on the statistics of the channel and target,

and upon the transmit signal S(fq). Thus, these values can be computed a priori in order to

determine threshold values and to compute expected performance curves.

For a desired rate of false alarm PFQ, the optimal threshold ηTR−LQ is given by:

ηTR−LQ = µTR−LQ|H0
+ P

1/2
TR−LQ|H0

Φ−1 (1− PFA) , (2.54)

where Φ(x) is the standard normal CDF, given by:

Φ(x) =
1

π

∫ x

−∞
e−x/2dx, (2.55)

and Φ−1(x) is its inverse function. Given this threshold, we can compute the expected probability

of detection PD with the equation:

PD = 1− Φ

ηTR−LQ − µTR−LQ|H1

P
1/2
TR−LQ|H1

 . (2.56)
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We will confirm these equations through numerical simulations, in Section 2.5.

2.3 Benchmarks

To benchmark the performance of our TR detection scheme, we consider a set of conventional

strategies. In order to fairly compare performance, we will work on the same transmission protocol,

but change the transmit signals SA(fq) and SB(fq). If we assume that SB(fq) is no longer a function

of Ym(fq), then the statistics of Xm(fq)m reduce to a zero-mean complex Gaussian:

Xm(fq) ∼ CN (0, Px(fq)) . (2.57)

If we constrain SB(fq) = SA(fq), then Xm(fq) becomes a second, correlated, sample of the signal

Ym(fq), i.e.:

Px(fq) = Py(fq), (2.58)

with the cross-covariance term:

Pxy(fq) = |S(fq)|2 Phh(fq). (2.59)

2.3.1 Conventional Detector

For detection, we again consider the combined data vector zm, for m = 1, . . . ,M independent

trials, which (under conventional data transmissions) is distributed as a complex Gaussian random

vector:

zm ∼ CN (02Q,Σzz) , (2.60)

where the covariance matrix Σzz is defined by:

Σzz,q =

[
Py(fq) Pxy(fq)

Pxy(fq) Py(fq)

]
(2.61)

Σzz = diag {Σzz,1, . . . ,Σzz,Q−1} . (2.62)

Thus, the binary detection problem can be rewritten:

H0 : zm ∼ CN
(
02Q,Σzz|H0

)
H1 : zm ∼ CN

(
02Q,Σzz|H1

)
.

(2.63)
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The Neyman-Pearson optimal detector of this test is the Weighted Energy Detector (WED):

ℓWED(z) =
M−1∑
m=0

zHm

(
Σ−1

zz|H0
−Σ−1

zz|H1

)
zm ≷H1

H0
ηWED. (2.64)

As discussed in [2], the behavior of a weighted energy detector is “χ2-like,” but its distribution is

not known. In our case, however, independence across frequencies allows us to use the Lindeberg-

Lyapunov Central Limit Theorem [81] to approximate ℓWED as a Gaussian random variable:

ℓWED (z) ≃ N (ηWED, PWED) , (2.65)

where the parameters µWED and PWED are given by:

µWED(fq) =

 MTr
[
I−Σ−1

zz,q|H1
Σzz,q|H0

]
H0

MTr
[
Σ−1

zz,q|H0
Σzz,q|H1

− I
]

H1

(2.66)

PWED(fq) =


MTr

[(
I−Σ−1

zz,q|H1
Σzz,q|H0

)2]
H0

MTr

[(
Σ−1

zz,q|H0
Σzz,q|H1

− I
)2]

H1

(2.67)

These values are computed in Appendix 2.D, and allow for a priori calculation of threshold values

and expected performance curves for the WED.

Using this approximation, we can compute the ideal threshold for a given rate of false alarm

PFA:

ηWED = µWED|H0
+ P

1/2
WED|H0

Φ−1 (1− PFA) . (2.68)

The corresponding probability of detection PD is given by:

PD = 1− Φ

ηWED − µWED|H1

P
1/2
WED|H1

 . (2.69)

2.3.2 Signal Design

We consider two distinct signal designs. The first is a blind approach, where power is spread equally

across frequencies, and phase is arbitrarily chosen. The second is an adaptive power allocation

strategy that attempts to reduce the amount of power transmitted in frequencies where the clutter



2.4. PERFORMANCE ANALYSIS 31

and interference are strong.

Flat PSD

In the first approach, we spread power equally among frequencies:

SF (fq) =

√
Es

Q
. (2.70)

This is the same signal design approach used in the forward transmission stage of the Time Reversal

protocol. We expect this approach to provide a lower bound on acceptable performance.

Water Filling

In the limiting case of a point target, Kay [80] showed that the optimal transmit signal takes the

form:

|SWF (fq)|2 = max

(√
Pv(fq)/λ− Pv(fq)

Pc(fq)
, 0

)
, (2.71)

where the parameter λ is chosen to satisfy:

Q−1∑
q=0

max

(√
Pv(fq)/λ− Pv(fq)

Pc(fq)
, 0

)
= Es. (2.72)

The phase of the transmit signal is arbitrary in this approach, so we choose a uniform phase of

zero for simplicity. In reality, implementation concerns, such as hardware limitations, may drive

constraints on the phase profile.

2.4 Performance Analysis

While probabilities of detection and false alarm are the most important measures of detector per-

formance, other metrics can provide mathematical insight and tractable solutions. In order to

generate this insight, we propose the use of two metrics: the Normalized J-Divergence and the

Kullback-Leibler Distance. The Normalized J-Divergence is defined as [81]:

DJ(ℓ) =
2 (E {ℓ|H1} − E {ℓ|H0})2

Var {ℓ|H0}+Var {ℓ|H1}
, (2.73)
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The deflection criteria [83] is a similar metric that has also been used to discuss performance of

Linear-Quadratic detectors. Deflection does not consider the variance under H1; this allows for

simpler derivations and is often a suitable simplification when one considers detectors for point-like

targets (whose covariance matrices are scaled identities). In our scenario, the variance under both

hypotheses is important, so we prefer to analyze the Normalized J-Divergence. Both the TR-LQ and

WED detectors are approximately distributed as Gaussian random variables (see Appendices 2.C

and 2.D), thus we write their Normalized J-Divergence:

DJ (ℓTR−LQ) =
2
(
µTR−LQ|H1

− µTR−LQ|H0

)2
PTR−LQ|H0

+ PTR−LQ|H1

(2.74)

DJ (ℓWED) =
2
(
µWED|H1

− µWED|H0

)2
PWED|H0

+ PWED|H1

, (2.75)

where µTR−LQ, PTR−LQ, µWED, and PWED are defined in (2.100), (2.101), (2.129), and (2.130),

respectively.

In addition to the Normalized J-Divergence, we also present an analysis of the Kullback-Leibler

Distance between H0 and H1 for each detector. The Kullback-Leibler Distance is defined as [84]:

DKL (H0∥H1) =

∫
fℓ (ℓ|H0) ln

(
fℓ (ℓ|H0)

fℓ (ℓ|H1)

)
dℓ. (2.76)

For a Gaussian test statistic, the KL Distance is written:

DKL (H0∥H1) =

(
µℓ|H0

− µℓ|H1

)2
2Pℓ|H1

+
1

2

(
Pℓ|H0

Pℓ|H1

− 1− ln
Pℓ|H0

Pℓ|H1

)
. (2.77)

It is important to note that the KL Distance is not a true “distance” operation, as it is not

symmetric. Thus, it is important for us to be consistent in our computation. We will consider

always the distance of H1 from H0. The TR-LQ and WED detectors are approximately distributed

as Gaussian random variables, so we write the KL Distance:

DKL (ℓTR−LQ) =

(
µTR−LQ|H0

− µTR−LQ|H1

)2
2PTR−LQ|H1

+
1

2

(
PTR−LQ|H0

PTR−LQ|H1

− 1− ln

(
PTR−LQ|H0

PTR−LQ|H1

))
(2.78)

DKL (ℓWED) =

(
µWED|H0

− µWED|H1

)2
2PWED|H1

+
1

2

(
PWED|H0

PWED|H1

− 1− ln

(
PWED|H0

PWED|H1

))
(2.79)
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Figure 2.2: Plots of the Normalized J-Divergence, DJ(ℓ), for the TR-LRT, TR-LQ, and WED (Flat
PSD and Water Filling) scenarios. We fix the SNR, as defined in (2.84), to 10dB and the TCR,
as defined in (2.82), to 0dB. (a) Plotted against ρc when ρt = 0.5. (b) Plotted against ρt when
ρc = 0.5.

As an illustration, Figure 2.2 shows the Normalized J-Divergence DJ(ℓ) as ρc and ρt vary from

0 to 1, with M = 1 repetition, and Q = 10 independent frequencies. Solid lines plot the analytical

results, while markers depict data points from Monte Carlo simulations with MC = 104 trials.

These results are plotted for all four detectors: TR-LRT, TR-LQ, and WED with both Water

Filling and Flat PSD signal design. In Figure 2.3, we plot the Kullback-Leibler Distance DKL(ℓ)

for the same scenario. From both figures, we see that as ρt is varied, all four detectors show a convex

improvement in J-Divergence. However, while the separation between the two WED signal design

methods is constant, the TR-LRT and TR-LQ detectors perform much better at higher values of

ρt. When ρt = 0.5, the TR-LRT and TR-LQ detectors are only marginaly better than the WED,

with a J-Divergence of .07, as compared with .06 for the WED. However, as ρt increases to 1, the

performance advantage increases. The KL Distance plots, in Figure 2.3, show similar results. The

TR-LRT and TR-LQ detectors both achieve a J-Divergence of .13, while the Water Filing WED

achieves only .1. This confirms our knowledge that enhanced reciprocity improves the effects of

Time Reversal. In the second plot, we have the same scenario plotted against ρc, the reciprocity of

the clutter. Here, we see that performance is relatively flat for all of the detectors. Furthermore,

the close match between the TR-LRT and TR-LQ detectors confirms our assertions earlier that the

TR-LQ is a close approximation to the TR-LRT detector.



34 CHAPTER 2. SINGLE-ANTENNA GAUSSIAN DETECTION

0 0.5 1
0

.05

.1

p
t

KL-Distance vs. p
t
, SNR=-10dB, TCR=0dB, p

c
=1

Flat PSD

WF

TR-LQ

TR-LRT

D
KL

(l)

(a)

0 0.5 1
0

.05

.1

p
c

KL-Distance vs. p
c
, SNR=-10dB, TCR=0dB, p

t
=1

Flat PSD

WF

TR-LQ

TR-LRT

D
KL

(l)

(b)

Figure 2.3: Plots of the Kullback-Leibler Distance, DKL(ℓ), for the TR-LRT, TR-LQ, and WED
(Flat PSD and Water Filling) scenarios. We fix the SNR, as defined in (2.84), to 10dB and the
TCR, as defined in (2.82), to 0dB. (a) Plotted against ρc when ρt = 0.5. (b) Plotted against ρt
when ρc = 0.5.

2.5 Numerical Simulations

In order to characterize the performance of our TR detector, we conduct a series of numerical

studies and compare the performance of both the Time Reversal Likelihood Ratio Test (TR-LRT)

and the Time Reversal Linear Quadratic Test (TR-LQ) against the benchmark probing signals. In

each case, we generate a random target and clutter PSD using the Rayleigh distribution:

Pt(fq) ∼ R (1) (2.80)

Pc(fq) ∼ R

(√
2

π
TCR−1

)
, (2.81)

where TCR is the desired Target-to-Clutter ratio, defined by:

TCR =

∑Q−1
q=0 Pt(fq)∑Q−1
q=0 Pc(fq)

. (2.82)

We then use these power spectral densities (PSDs) and the coherence parameters ρc and ρt to

generate random channels clutter and target channels. We model the interference as white additive
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noise, with variance σ2v :

Pv(fq) = σ2v , (2.83)

and define the Signal-to-Noise ratio (SNR):

SNR =
Es
∑Q−1

q=0 Pt(fq)

σ2v
. (2.84)

We then simulate the transmission of each of the probing signals SA(fq) and SB(fq) for each of

our signal design strategies (Time Reversal, Flat PSD, and Water Filling). We simulate M = 20

repetitions and Q = 10 independent frequencies over a bandwidth of 2GHz. This requires a

coherence bandwidth BC ≤ 200MHz. Recent experimental tests [29] showed that, with as few as

20 dielectric rods, there is enough multipath to create a coherence bandwidth smaller than 200MHz

when operating in the 2-4GHz band.

We run the received signals through the appropriate detection algorithms (TR-LRT and TR-

LQ for the first, WED for the latter two), and then repeat this test for MC = 103 Monte Carlo

trials. The results are aggregated to compute the achieved Probability of Detection PD when the

Probability of False Alarm is fixed at PFA = 10−2.

2.5.1 Fully Correlated Channels (ρc = ρt = 1)

We begin with the fully correlated scenario, displayed in Figure 2.4. We set ρc = 1 and ρt = 1, and

the false alarm rate to PFA = 0.01. We note that the variance terms Px(fq) and P̃x(fq) are both

minimized in this scenario. Thus, we expect Time Reversal to perform well here.

The first item of importance is that, in the weak target case (TCR=-5dB), the analytical

curve for the TR-LQ detector is inaccurate. This is likely caused by the approximations applied

in the derivation of the distribution of ℓTR−LQ. Aside from this approximation error, all four of

the detectors perform similarly. In this clutter-dominated regime, the detection problem is quite

difficult. In the second case (TCR=0dB), the target and clutter are equally powerful. In this case,

the two conventional detectors perform similarly, and the TR-LRT and TR-LQ perform similarly,

both increase the detection probability from PD = 0.8 for the conventional detectors to PD = 0.9

at SNR=2dB. In terms of effective SNR gain, the TR detectors have a gain of roughly 0.5dB over

the conventional detectors. Looking finally at the strong target scenario (SCR=5dB), we have an

effective SNR gain of almost 1dB for the TR detectors, with an increase in detection probability

from PD = 0.6 for the conventional detectors to PD = 0.8 for both the TR-LRT and TR-LQ
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Figure 2.4: Plots of the Probability of Detection against SNR for all 5 detectors, under varying
levels of clutter. In this scenario, the channel is fully correlated between forward and reverse
transmission stages (ρc = ρt = 1). (a) TCR=-5dB, (b) TCR=0dB, (c) TCR=5dB.
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detectors at SNR=0dB.

2.5.2 Uncorrelated Channels (ρc = ρt = 0)

At the other extreme, we have fully uncorrelated channels, displayed in Figure 2.5. In this scenario,

ρc = ρt = 0, and the false alarm rate is still PFA = 0.01. This represents the scenario where either

significant time has passed, or the target and clutter are quickly varying. This is a worst-case

scenario and should present the lowest TR performance.

When the clutter is strong, and the channel is uncorrelated, there is not much for Time Re-

versal to take advantage of. In this case, we see the TR-LRT and TR-LQ detectors both slightly

underperforming with respect to the conventional detectors, losing about 5% of the probability of

detection from PD = .84 to roughly PD = .79 at SNR=6dB. This is similar to what one would ex-

pect with a loss of reciprocity in the Time Reversal transmission stage. As we move to TCR=0dB,

however, we do see the Time Reversal detectors recover that performance loss. This is because

the target and clutter are equally powerful, so roughly half of the Time Reversal transmit signal

is matched to the target, while the other half is matched to the clutter. The aggregate effect is

a slight improvement, allowing the TR-LRT and TR-LQ detectors to recover their performance

loss, and impose a slight gain from PD = .35 to PD = .4 at SNR=0dB. When we reach the strong

target regime (TCR=5dB), we have additional improvements for the TR-LRT and TR-LQ detec-

tors, which achieve an additional 10% probability of detection, improving from PD = 0.7 for the

conventional detectors at SNR=2dB to PD = 0.8 for the TR-LRT and TR-LQ detectors. This

corresponds roughly to an effective SNR gain of .25dB.

2.6 Discussion

In this chapter, we have presented the Single-Antenna Gaussian detection problem. We formulated

the problem in Section 2.1, where we discussed the statistical behavior of the channel under both

hypotheses. We discussed the Time Reversal transmission protocol and derived both the TR-LRT

and TR-LQ detectors in Section 2.2. The benchmark detectors were presented in Section 2.3. We

then discussed nominal performance of the detectors in Section 2.4, in terms of both the Normalized

J-Divergence and the Kullback-Leibler Distance. We presented a series of Monte Carlo simulations

in Section 2.5. We have shown, when the channel is fully reciprocal (ρc = ρt = 1), the probability

of false alarm is set to PFA = 0.01, the target-to-clutter ratio is TCR=5dB, and the signal-to-
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Figure 2.5: Plots of the Probability of Detection against SNR for all 5 detectors, under varying levels
of clutter. In this scenario, the channel is uncorrelated between forward and reverse transmission
stages (ρc = ρt = 0). (a) TCR=-5dB, (b) TCR=0dB, (c) TCR=5dB.
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noise ratio is SNR=0dB, that the TR-LRT and TR-LQ detectors achieve a detection probability

of PD = 0.8 while the conventional WED achieves only PD = 0.6. Furthermore, we showed that,

in the same scenario, the TR-LRT and TR-LQ detectors achieve an effective SNR gain of 1dB over

the conventional methods.
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Appendices

2.A Energy Normalization Scalar k

The scalar k in (2.19) is a random variable because it depends on the received signal Y (fq). We

argue that k is approximately deterministic, a claim that was first argued in [28] and is presented in

Appendix 3.A. The stability of k is directly proportional to the number of independent frequencies

Q (and channels in multi-antenna situations). In the development of the statistics for the various

TR detectors, we wish to characterize the mean of this random variable as k = E(k):

k2 =
Es∑

q |Y (fq)|2
(2.85)

where Es =
∑Q−1

q=0 |S(fq)|2. The variable Y (fq) is distributed CN (0, Py(fq)), thus |Y (fq)|2 is

distributed as a scaled chi-squared random variable (Py(fq)/2)χ
2
2. Thus, we can write k2:

k2 =
Es∑

q uqPy(fq)/2
, (2.86)

where uq ∼ χ2
2. Using Theorem 3.1 in [85], we obtain that the following weighted sum of independent

Chi-squared random variables is
Q−1∑
q=0

Py(fq)

2
uq ∼ gχ2

h (2.87)

where

g =

∑
q P

2
y (fq)∑

q Py(fq)
(2.88)

h = 2
(
∑Q−1

q=0 Py(fq))
2∑Q−1

q=0 P
2
y (fq)

. (2.89)

Hence, we obtain

k2 =
Es

gw
, w ∼ χ2

h (2.90)
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Hence, k2 is distributed as a scaled inverse-chi-squared random variable. It is well known that, for

X ∼ χ2
h(0), Y = 1

X has the mean E(Y ) = 1
h−2 ,∀h > 2. Hence, we obtain the mean of k2 as follows:

E
[
k2
]
=

Es
∑

q Py(fq)[∑
q Py(fq)

]2
−
∑

q P
2
y (fq)

. (2.91)

We then approximate the expectation of k with:

k = E [k] ≈
√
E [k2] =

√√√√√ Es
∑

q Py(fq)[∑
q Py(fq)

]2
−
∑

q P
2
y (fq)

. (2.92)

2.B Derivation of the TR-LRT Detector

We begin with the distribution of z, from (2.31):

fz(zm,q) =
1

π
∣∣∣Σ̃zz,q

∣∣∣1/2 exp
{
−1

2
(zm, q −mz,q)

H Σ̃
−1

zz,q (zm,q −mz,q)

}
, (2.93)

and recall the binary hypothesis test:

H0 :

{
Ym(fq) ∼ CN

(
0, Py|H0

(fq)
)

Xm(fq)|Ym(fq) ∼ CN
(
mx|H0

, Px|H0
(fq)

)
H1 :

{
Ym(fq) ∼ CN

(
0, Py|H1

(fq)
)

Xm(fq)|Ym(fq) ∼ CN
(
mx|H1

, Px|H1
(fq)

)
.
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Recall the log-likelihood ratio test, given in (2.37), fz(zm,q). We can write the log-likelihood ratio

test as:

ℓ = ln

(
fz|H1

(z)

fz|H0
(z)

)
(2.94)

=
M−1∑
m=0

Q−1∑
q=0

1

2

(
zm,q −mz,q|H0

)H
Σ̃

−1

zz,q|H0

(
zm,q −mz,q|H0

)

− 1

2

(
zm,q −mz,q|H1

)H
Σ̃

−1

zz,q|H1

(
zm,q −mz,q|H1

)
+

1

2
ln


∣∣∣Σ̃zz,q|H0

∣∣∣∣∣∣Σ̃zz,q|H1

∣∣∣
 . (2.95)

This will be compared against a threshold η. We simplify the test statistic by removing additive

and multiplicative constants that do not affect detection, and then expand the vector zq to reveal

the signals Xm(fq) and Ym(fq):

ℓTR−LRT(z) =
M−1∑
m=0

Q−1∑
q=0

∣∣Xm(fq)− µx|H0
(fq)

∣∣2
Px|H0

(fq)
−
∣∣Xm(fq)− µx|H1

(fq)
∣∣2

Px|H1
(fq)

+ |Ym(fq)|2
(

1

Px|H0
(fq)

− 1

Px|H1
(fq)

)
+ ln

(
Px|H0

(fq)

Px|H1
(fq)

)
. (2.96)

2.C Distribution of the TR-LQ Detector

In this section, we derive the statistical distribution of the Time Reversal Linear Quadratic (TR-LQ)

detector presented in (2.47):

ℓTR−LQ(r) =

M−1∑
m=0

Q−1∑
q=0

rHm,qrm,q − (rm,q − µr(fq))
H Σ−1

r (fq) (rm,q − µr(fq)) , (2.97)

where the whitened variable rm,q is distributed as:

H0 : rm,q ∼ CN (0, I2)

H1 : rm,q ∼ CN (µr(fq),Σr(fq))
(2.98)

We note that this is a summation over Q independent random variables. While the distribution of

each term in the summation is not explicitly known, we can approximate this sum as a Gaussian
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random variable, through the Lindeberg-Lyapunov Central Limit Theorem [81]. The approximation

is given by:

ℓTR−LQ(z) ≃ N (µTR−LQ, PTR−LQ) (2.99)

µTR−LQ =

Q−1∑
q=0

µTR−LQ(fq) (2.100)

PTR−LQ =

Q−1∑
q=0

PTR−LQ(fq), (2.101)

where the parameters µTR−LQ(fq) and PTR−LQ(fq) are the mean and variance of the test statistic

computed for frequency fq. For the remainder of this derivation, we will drop the (fq) notation

from Xm(fq), Ym(fq), and their parameters. This is done for notational brevity.

2.C.1 Conditional Statistics

To compute the expectation and variance of ℓTR−LRT, we use a nested approach, first computing

the expectation over the conditional distribution of X, and then computing the expectation of that

result over the marginal distribution of Y :

ER,Y [ℓTR−LQ] = EY

[
ER|Y [ℓTR−LQ|Y ]

]
(2.102)

VarR,Y [ℓTR−LQ] = EY

[
VarR|Y [ℓTR−LQ|Y ]

]
(2.103)

The conditional expectation is given by:

ER|Y
[
ℓTR−LQ|Y

]
=

{
MTr

[
I−Σ−1

r

]
−MµH

r µr H0

MTr [Σr − I] +MµH
r Σ−1

r µr H1,
(2.104)

and the conditional variance is given by:

VarR|Y
[
ℓTR−LQ|Y

]
=

 MTr
[(
I−Σ−1

r

)2]
+ 2MµH

r Σ−1
r Σ−1

r µr H0

MTr
[
(Σr − I)2

]
+ 2MµH

r Σrµr H1.
(2.105)
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2.C.2 Marginal Statistics

Mean

Next, we compute the expectation of (2.104) and (2.105) across the marginal distribution of Ym.

We begin with the conditional mean under H0. First, we expand all of the terms that are functions

of |Ym|2:

EX|Y [ℓTR−LQ|Y,H0] =M

[
2−

|Y |2 Ph|H0
+ Pv

|Y |2 Ph|H1
+ Pv

−
|Y |2 Ph|H0

+ Pv

|Y |2 Ph|H1
+ Pv

− |Y |4 ϵ
|Y |2 Ph|H1

+ Pv

]
, (2.106)

where we define the conditional variance of the TR backchannel by:

Ph = k2

(
Ph −

P 2
hh

|S(fq)|2

Py

)
, (2.107)

and the “distance” parameter ϵ as:

ϵ = k2 |S(fq)|2
(
Phh|H0

Py|H0

−
Phh|H1

Py|H1

)2

(2.108)

Next, we perform the substitution |Y |2 = wPy/2, noting that w ∼ χ2
2 is distributed as a chi-squared

random variable with k = 2 degrees of freedom.

EX|Y [ℓTR−LQ|Y,H0] =M

[
2−

wPh|H0
+ 2β0

wPh|H1
+ 2β0

−
wPh|H0

+ 2β0

wPh|H1
+ 2β0

−
ϵPy|H0

2

(
w2

wPh|H1
+ 2β0

)]
,

(2.109)

where the paramater β is the normalized single-frequency noise power (the ratio of the noise power

to the total received signal power), defined:

β =
Pv

Py
(2.110)

β0 =
Pv

Py|H0

(2.111)

β1 =
Pv

Py|H1

, (2.112)
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From Appendix 2.E, we construct the following expectation solutions:

Ew

[
wPh|H0

+ 2β0

wPh|H1
+ 2β0

]
= γ +

β0
Ph|H1

(1− γ)κ
(1)
0 (2.113)

Ew

[
w2

wPh|H1
+ 2β0

]
=

2

Ph|H1

(
1− β0

Ph|H1

+
β20
P 2
h|H1

κ
(1)
0

)
(2.114)

where we define the parameters γ and γ as the ratios of the forward channel and conditioned

backchannel variance, respectively, under H1 and H0:

γ =
Ph|H0

Ph|H1

(2.115)

γ =
Ph|H0

Ph|H1

, (2.116)

and the parameters κ
(i)
j and κ

(i)
j are the product of an exponential and incomplete Gamma function,

defined by:

κ
(i)
j = e

βj
Ph|i Γ

(
0,

βj
Ph|i

)
(2.117)

κ
(i)
j = e

βj
P
h|i Γ

(
0,

βj
Ph|i

)
(2.118)

and the incomplete Gamma function Γ(a, z) is defined in [86]§(8.2.2).

We use (2.113) and (2.114) to take the expectation of (2.109) with respect to w:

µTR−LQ|H0
=M

[
(1− γ)−

ϵPy|H0

Ph|H1

(
1− β0

Ph|H1

)
− β0
Ph|H1

(
1− γ +

ϵPv

P 2
h|H1

)
κ
(1)
0

+(1− γ)

(
1− β0

Ph|H1

κ
(1)
0

)]
. (2.119)
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Similarly, we can compute the expectation under H1:

µTR−LQ|H1
=M

[
γ−1 − 1 +

ϵPy|H1

Ph|H0

(
1− β1

Ph|H0

)
+

β1
Ph|H0

(
1− γ−1 +

ϵPv

P 2
h|H0

)
κ
(0)
1

−
(
1− γ−1

)(
1− β1

Ph|H0

κ
(0)
1

)]
. (2.120)

Variance

We take the variance, given in (2.105), expand all of the terms dependent upon Y , concentrating

first on H0:

VarX|Y [ℓTR−LQ|H0] =M

1− 2
|Y |2 Ph|0 + Pv

|Y |2 Ph|1 + Pv

+

(
|Y |2 Ph|0 + Pv

|Y |2 Ph|1 + Pv

)2

+ 2ϵ
|Y |4

(
|Y |2 Ph|0 + Pv

)
(
|Y |2 Ph|1 + Pv

)2
1− 2

|Y |2 Ph|H0
+ Pv

|Y |2 Ph|H1
+ Pv

+

(
|Y |2 Ph|H0

+ Pv

|Y |2 Ph|H1
+ Pv

)2
 . (2.121)

We perform the substitution |Y |2 = wPy/2:

VarX|Y [ℓTR−LQ|H0] =M

1− 2
wPh|0 + 2β0

wPh|1 + 2β0
+

(
wPh|0 + 2β0

wPh|1 + 2β0

)2

+ ϵPy|H0

w3Ph|0 + 2w2β0(
|Y |2 Ph|1 + 2β0

)2
1− 2

wPh|H0
+ 2β0

wPh|H1
+ 2β0

+

(
wPh|H0

+ 2β0

wPh|H1
+ 2β0

)2
]
. (2.122)
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From Appendix 2.E, we recall the prior expectation solutions in (2.113) and (2.114), and present

the additional solutions:

Ew

[(
wPh|H0

+ 2β0
)2(

wPh|H1
+ 2β0

)2
]
= γ2 +

β0
Ph|H1

(1− γ)2 −

[
β20
P 2
h|H1

(1− γ)2 − 2β0
Ph|H1

γ (1− γ)

]
κ
(1)
0 (2.123)

Ew

[
w3Ph|H0

+ 2β0w
2(

wPh|H1
+ 2β0

)2
]
=

2γ

Ph|H1

+
2β0
P 2
h|H1

(1− 2γ) +
2β20
P 3
h|H1

(1− γ)

− 2β20
P 3
h|H1

[(
β0
Ph|H1

+ 2

)
(1− γ)− γ

]
κ
(1)
0 . (2.124)

By inserting these results into (2.122), we arrive at the variance of the TR-LQ detector under H0:

PTR−LQ|H0
(fq) =M

[
(1− γ)2

(
β0
Ph|H1

+ 1

)
+

2ϵPy|0

Ph|H1

(
γ +

β0
Ph|H1

(1− 2γ) +
β20
P 2
h|H1

(1− γ)

)

− β0
Ph|H1

(
(1− γ)2

(
β0
Ph|H1

+ 2

)
+

2ϵPv

P 2
h|H1

((
β0
Ph|H1

+ 2

)
(1− γ)− γ

))
κ
(1)
0

+(1− γ)2
(
1 +

β0
Ph|H1

−
(

β0
Ph|H1

)2

κ
(1)
0

)]
. (2.125)

Similarly, we compute the marginal variance under H1:

PTR−LQ|H1
(fq) =M

[(
1− γ−1

)2( β1
Ph|H0

+ 1

)
+

2ϵPy|1

Ph|H0

(
γ−1 +

β1
Ph|H0

(
1− 2γ−1

)
+

β21
P 2
h|H0

(
1− γ−1

))

− β1
Ph|H0

((
1− γ−1

)2( β1
Ph|H0

+ 2

)
+

2ϵPv

P 2
h|H0

((
β1
Ph|H0

+ 2

)(
1− γ−1

)
− γ−1

))
κ
(0)
1

+
(
1− γ−1

)2(
1 +

β1
Ph|H0

−
(

β1
Ph|H0

)2

κ
(0)
1

)]
. (2.126)
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2.D Distribution of the WED

The Weighted Energy Detector is given in (2.64). We make use of frequency independence to write:

ℓWED(z) =
M−1∑
m=0

Q−1∑
q=0

zHm,q

(
Σ−1

zz,q|H0
−Σ−1

zz,q|H1

)
zm,q, (2.127)

where Σzz,q is the single frequency covariance matrix, defined in (2.61). We make use of the

Lindeberg-Lyapunov Central Limit Theorem [81] to approximate ℓWED(z) as a Gaussian random

variable:

ℓWED(z) ≃ N (µWED, PWED) , (2.128)

where the parameters µWED and PWED are the sum, across frequencies, of the individual frequency

means and variances, respectively:

µWED =

Q−1∑
q=0

µWED(fq) (2.129)

PWED =

Q−1∑
q=0

PWED(fq). (2.130)

The single frequency mean, µWED(fq) is computed:

µWED(fq) = Ez [ℓWED (zq)] (2.131)

=

 MTr
[
I−Σ−1

zz,q|H1
Σzz,q|H0

]
H0

MTr
[
Σ−1

zz,q|H0
Σzz,q|H1

− I
]

H1

(2.132)

Similarly, the single frequency variance, PWED(fq) is computed:

PWED(fq) = Ez

[
ℓ2WED (zq)

]
− µ2WED(fq) (2.133)

=


MTr

[(
I−Σ−1

zz,q|H1
Σzz,q|H0

)2]
H0

MTr

[(
Σ−1

zz,q|H0
Σzz,q|H1

− I
)2]

H1

(2.134)
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2.E Collection of Useful Expectations for Chi-Squared RVs

In the following expectations, we consider a random variable u that is distributed as a Chi-Squared

random variable with k = 2 degrees of freedom:

u ∼ χ2
2 (2.135)

fu(u) =
u

k
2
−1e

−u
2

2
k
2Γ(k/2)

=
e

−u
2

2
. (2.136)

The m-th non-central moment of u is given by:

E [um] = 2m
Γ
(
m+ k

2

)
Γ
(
k
2

) (2.137)

= 2mm! (2.138)

2.E.1 n-th Order Divided by a Binomial

We consider the expectation E
[

un

u+2b

]
, where u ∼ χ2

2. We begin with the integral form:

E

[
un

u+ 2b

]
=

∫ ∞

0

une−
1
2
u

2(u+ 2b)
du (2.139)

We make use of the identity [87]§(3.353.5) and§(3.352.4):∫ ∞

0

une−uµ

u+ a
du = (−1)n−1 aneaµEi [−aµ] +

n∑
k=1

(k − 1)!(−a)n−kµ−k n ≥ 1 (2.140)∫ ∞

0

e−uµ

u+ a
du = eaµΓ (0, aµ) (2.141)

where Ei(−x) is the exponential integral defined by:

Ei(−x) = −
∫ ∞

x

e−t

t
dt. (2.142)
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For positive real valued inputs x, the exponential integral is equivalent to the incomplete gamma

function with parameters 0 and x:

Ei(−x) = −Γ(0, x), ∀x ∈ ℜ+. (2.143)

Thus, for a > 0 and µ > 0, (2.140) can be written as:∫ ∞

0

une−uµ

u+ a
du = (−1)n aneaµΓ (0, aµ) +

n∑
k=1

(k − 1)!(−a)n−kµ−k. (2.144)

Thus, the solution to (2.139) is given by:

E

[
un

u+ 2b

]
= (−1)n 2n−1bneb Γ (0, b) + 2n−1

n∑
k=1

(k − 1)!(−b)n−k. (2.145)

We provide explicit solutions for n = 0, 1, 2, 3 below:

E

[
1

u+ 2b

]
=

1

2
eb Γ (0, b) (2.146)

E

[
u

u+ 2b

]
= 1− beb Γ (0, b) (2.147)

E

[
u2

u+ 2b

]
= 2− 2b+ 2b2eb Γ (0, b) (2.148)

E

[
u3

u+ 2b

]
= 8− 4b+ 4b2 − 4b3eb Γ (0, b) (2.149)

2.E.2 n-th Order Divided by a Binomial Squared

We consider the expectation E
[
un/(u+ b)2

]
, where u ∼ χ2

2. We begin with the integral form:

E

[
un

(u+ 2b)2

]
=

1

2

∫ ∞

0

une−u/2

(u+ 2b)2
du. (2.150)

From Wolfram Alpha, we compute the solution:

1

2

∫ ∞

0

une−u/2

(u+ 2b)2
du = 2n−2Γ(n)

[
eb (b+ n) bn−1Γ (1− n, b)− 1

]
. (2.151)
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This equation is unstable at n = 0, however, and a limit must be applied to find the solution:

1

2

∫ ∞

0

e−u/2

(u+ 2b)2
du =

1

4b
− 1

4
eb Γ (0, b) . (2.152)

In the interest of simplicity, we make use of the following identity for incomplete Gamma func-

tions [87]§(8.352.3):

Γ(−a, z) = (−1)a

a!

[
Γ (0, z)− e−z

a−1∑
m=0

(−1)m
m!

zm+1

]
, a = 0, 1, . . . (2.153)

We apply these integral solutions to (2.150) to compute explicit results for n = 0, . . . , 3:

E

[
1

(u+ 2b)2

]
=− 1

4
eb Γ (0, b) +

1

4
b−1 (2.154)

E

[
u

(u+ 2b)2

]
=

1

2
eb Γ (0, b) (b+ 1)− 1

2
(2.155)

E

[
u2

(u+ 2b)2

]
= −eb Γ (0, b) (b+ 2) b+ (b+ 1) (2.156)

E

[
u3

(u+ 2b)2

]
= 2eb Γ (0, b) (b+ 3) b2 − 2

(
b2 + 2b− 1

)
(2.157)
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Chapter 3

Time Reversal for MIMO Radar

(TR-MIMO)

Radar systems are typically designed for Line of Sight (LOS) conditions, where the target is directly

visible to the radar platform. These systems perform reliably but are limited in the presence of

multipath, which gives rise to non-LOS propagation [88]. For example, urban environments create

large radar shadows, limiting LOS systems’ ability to interrogate hidden targets. We develop a

time-reversal approach to MIMO radar that results in a transmit waveform that is adapted to the

multipath channel. The concept of waveform design or reshaping has been studied extensively for

both conventional [89] and MIMO [90] radar applications. We adopt the spatial multi-input multi-

output (MIMO) radar framework from [59,60], which utilizes spatial diversity among the transmit

and receive antenna arrays to interrogate different aspect angles of the target, and incorporate

spatial models for radar clutter.

In spatial MIMO architectures, diverse antenna locations result in independence of the target

radar cross section (RCS) among the different transmission paths. Transmission of orthogonal

waveforms from each transmitter creates an independent target measurement for each transmitter-

receiver pair. Exploiting this independence allows MIMO radars to improve detection performance

and radar sensitivity. This is in contrast with the conventional phased array approach, which

presupposes a high degree of correlation between signals transmitted and received by an array.

In this chapter, we combine time reversal with MIMO (TR-MIMO) radar technology to improve

the signal-to-noise ratio by tayloring the transmitted waveforms to the propagation medium and

the target scattering characteristics. The benefits of the proposed TR-MIMO detection include:

53



54 CHAPTER 3. TIME REVERSAL FOR MIMO RADAR (TR-MIMO)

(1) exploitation of the spatial diversity arising from the multipath propagation; (2) use of Time

Reversal to adaptively adjust the radar waveforms to scattering characteristics of the channel; (3)

implementation of simple orthogonal wideband waveforms without the need to seek complicated

waveform coding design methods; and (4) incorporation of the de-correlation between the forward

channel and the backward channel when the reciprocity condition may not strictly hold. We

develop a binary hypothesis detector for the TR-MIMO and provide analytical expressions for the

test statistic. In previous work [24, 26, 27, 29, 91], we showed that time reversal offered higher

resolution and improved detectability over conventional methods. In this chapter, we demonstrate

that a MIMO radar combined with time reversal (TR-MIMO) improves target detectability when

compared with spatial MIMO (S-MIMO) [74].

We begin with a derivation of TR-MIMO in the absence of clutter, in Section 3.1, and provide

a detailed analysis of the reciprocity conditions as they pertain to detection performance. In

Section 3.2, we expand upon the initial derivation with a subspace-based target and clutter model.

We also describe the subspace-based clutter suppression technique, derive adjusted TR-MIMO and

S-MIMO detectors for this scenario, and present simulation results detailing the performance of

both detectors. We briefly summarize the results of this chapter in Section 3.3. This work was

initially published in [28,38,92]. TR-MIMO has also been considered in the context of imaging [70].

3.1 TR-MIMO in the absence of Clutter

We consider the problem of detecting a stationary or slowly moving target immersed in a multi-

path rich scattering environment. Such scenarios occur in many radar applications, for example,

detection through tree canopy or low-angle detection and tracking. In this section, we derive the

MIMO radar model.

3.1.1 Overview of Spatial MIMO radar modeling

In spatial MIMO radar [74], antennas at the transmitter and the receiver of the radar are well

separated such that they experience an angular spread caused by variation of the radar cross

section (RCS). Spatial MIMO radar utilizes the spatial diversity introduced by the radar target

fluctuation. For extended targets, due to the large inter-element spacing between the antennas,

each transmitter-receiver pair sees a different aspect of the target. This observation yields the
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following basic MIMO radar modeling for extended targets [74]:

r(t) =

√
E

M
Hs(t− τ) + n(t), (3.1)

where H is an N ×M matrix, referred to as the target channel matrix, and

[H]i,m = hi,m, i = 1, · · · , N,m = 1, · · · ,M. (3.2)

The hi,m are independent complex normal random variables. The vector r(t) = [r1(t), · · · , rN (t)]T

is the collection of received signals at the receive antennas. The vector s(t) = [s1(t), · · · , sM (t)]T

is the collection of the transmit signals at the transmit antennas. The vector n(t) is the additive

noise. Given the spatial MIMO model (3.1), the optimal detector is a non-coherent detector given

by, [74],

ℓ(r) =

N∑
i=1

M∑
m=1

∣∣∣∣∫ ri(t)sm(t− τ)dt

∣∣∣∣2 . (3.3)

Remarks:

1. The radar model (3.2) is justified in that the received echoes from an extended target between

each pair of transmit antenna and receive antenna become independent random variables

when the antennas are placed sparsely. We will show that multipath causes a similar effect

even when the target is pointwise. The superposition of the multipath adding constructively

and destructively makes the received radar returns appear to be random.

2. This observation can be further justified by examining the radar operating spectrum for a

point target. A point target in a LOS condition yields a flat spectrum for the returned signal,

but results in a fluctuating spectrum in a non-LOS condition.

3. The radar model (3.2) and the processing (3.3) are designed for narrow-band systems. By

exploring the orthogonality of the waveforms, each receiver may match to a specified transmit

waveform [74]. To extend this design scheme to a wide-band system is difficult and may

significantly increase the radar system complexity. This is because of the difficulty in designing

orthogonal radar waveforms that can meet various radar operational conditions (e.g., [93]).

On the other hand, equation (3.3) indicates that the signal cross-correlation can not be

disregarded; significant correlation reduces the mainlobe width, which can result in higher
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Virtual Target

Transmit Array

Receive Array

Sca!erer

Target

Figure 3.1: Multipath propagation model. Only the forward propagation is illustrated.

ambiguity sidelobe levels. This chapter proposes a simple quasi-orthogonal waveform design

for wideband MIMO radar using the time reversal method.

Next, we introduce a point target MIMO model in multipath environments.

3.1.2 Multipath MIMO radar model

In the absence of multipath, the reflected radar waveform from a point target is an amplitude scaled

and time delayed replica of the transmitted waveform. In theory, the target frequency response is

flat. However, multipath propagation induces a rapid fluctuation in the frequency response of the

point target. Fig. 3.1 illustrates a two-way radar propagation model in multipath. For simplicity,

this model considers a two-path propagation with only a single reflected ray emanating from a

virtual target image. The two-path propagation is caused by scatterers between the receiving array

B and the target. This model can be extended to the more general scenario with multiple path

propagation due to scatterers in the fields of view of both the transmitting array A and receiving

array B.

Suppose we have a transmitting signal

sTx,m(f) = Sm(f)ej2πfct (3.4)

where Sm(f) is the baseband radar pulse at frequency f from the m-th transmit antenna, fc is
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the carrier frequency. We assume that the signal propagates in the multipath medium and reflects

from a target with a possible phase change θ. The noise-free received signal at the i-th element of

array B due to the m-th transmit antenna at array A is given by

sRx,i(f) = ξim

(
ej(2πfct−θim−2πfcτ0,im) +A1,ime

j(2πfct−θ1,im−2πfcτ1,im)
)

(3.5)

where θ1,im is the phase change due to the multipath; the direct path delay τ0,im and the multipath

delay τ1,im are given as follows:

τ0,im =

√
X2 + (Ya − Yt)2 +

√
X2 + (Yb − Yt)2

c
(3.6)

τ1,im =

√
X2 + (Ya − Yt)2 +

√
X2 + (Yb + Yt)2

c
(3.7)

The symbols Ya, Yb, and Yt are the azimuth coordinates of the m-th antenna at A, the i-th antenna

at B, and the target, respectively; X is the target range; and ξim is the complex amplitude due

to the target characteristics. The complex amplitudes of the direct and reflected rays are simply

related by a complex multipath reflection coefficient A1,im.

By mixing the received signal with the transmitted signal, we obtain the baseband signal as

follows:

sB,i(f) = ξim

(
e−j(θim+2πfcτ0,im) +A1,ime

−j(θ1,im+2πfcτ1,im)
)
|Sm(f)|2 (3.8)

With a large number of scatterers L and Al,im, l = 0, · · · , L − 1, multipath reflection coefficients,

we obtain the overall target reflectivity:

sB,m(f) = ξim

L−1∑
l=0

Al,ime
−j[θl,im+2πfcτl,im]|Sm(f)|2 = him(f)|Sm(f)|2 (3.9)

where the target channel response between the i-th antenna in array B and the m-th antenna in

array A is

him(f) = ξim

L−1∑
l=0

Al,ime
−j[θl,im+2πfcτl,im]. (3.10)

We hence assume that, with a large number of scatterers L and Al,im, multipath reflection coeffi-

cients, the overall target reflectivity (3.10) is a random variable. This analysis implies that, even

for a point target, the multipath effect induces fades and enhancements in the returned signals
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relative to the free space returned signals. The transmit and receive antennas provide independent

information about the target due to their different viewing angles.

Hence, from (3.10), we introduce the forward propagation channel. We let H(f) denote

the forward channel response matrix between the transmit array A and the receive array B at

frequency f . The (i,m)-th entry of H(f), i.e., the forward channel response from antenna Am,

m = 1, · · · ,M , to antenna Bi, i = 1, · · · , N , is,

[H(f)]i,m = him(f) ∼ CN
(
0, σ2s(f)

)
, (3.11)

where the symbol ∼ stands for “is distributed as.” The target channel model (3.11) implies that,

at a fixed frequency f and for each transmitter antenna and receiver antenna pair, the target

channel response is a complex Gaussian random variable with zero mean and variance σ2s(f). This

variance (i.e., the power spectral density) is frequency dependent, which is caused by the multipath

scattering. Further, we assume that the channel response from different transmit and receive

pairs are statistically independent, identically distributed (IID) random variables. Note that the

frequency domain representation him(f) is related to the time domain channel impulse response

him(t),

him(f) =
1

T

∫ T

0
him(t)e−j2πftdt (3.12)

where the RCS of the target him(t) is modeled as a zero mean, finite covariance, wide sense station-

ary uncorrelated scattering (WSSUS) Gaussian process. This assumption is valid for many practical

situations in wave propagation in the radar literature [94,95]. The variance σ2s(f) of him(f) is fre-

quency dependent. By the WSSUS assumption and the Wiener-Khintchine theorem [96],

lim
T→∞

1

T
E{|him(f)|2} = Kh(f), (3.13)

where Kh(f) is the power spectral density (PSD) of him(t), i.e., the Fourier transform of the

covariance function

κh(τ) = E{him(t)him(t+ τ)} (3.14)

Kh(f) =

∫ ∞

−∞
κh(τ)e

−j2πfτdτ. (3.15)
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Hence, by (3.13),

σ2s(f) ≈ T ·Kh(f) (3.16)

In general, pulse wave propagation and scattering in a WSSUS random medium can be characterized

by the correlation function (see Chapter §5 in [94])

Γ(f, f +∆f, t′, t′ +∆t′) =
E{him(f, t′)h∗im(f +∆f, t′ +∆t′)}

σ2s(f, t
′)

(3.17)

The function Γ(·) is the correlation function between the output fields due to the time-harmonic

inputs at two different frequencies f and f +∆f . We should note that the time varying frequency

response of the random channel him(f, t′) in (3.17) shows explicitly the time index t′ that is omitted

in (3.12). If we let ∆t′ = 0 and send two waves at different frequencies f and f +∆f , and observe

the fluctuation fields at the same time, as we separate the frequencies, the correlation of these two

fluctuation fields decreases. For uncorrelated scattering channel, the function Γ(f, f +∆f, t′, t′) is

a function of the frequency separation ∆f .

In a multipath channel, it is often convenient to consider the coherence bandwidth Bc measured

by the reciprocal of the multipath spread. Two sinusoids with frequency separation greater than Bc

are affected quite differently by the channel. Hence, the frequency samples taken ∆f = Bc apart

are considered to be, approximately, independent. Therefore, we use discrete frequency samples fq,

q = 0, · · · , Q− 1, in developing the TR-MIMO detector. The number Q is chosen by

Q ≤ B

Bc
, (3.18)

where Bc is the coherence bandwidth of the multipath channel, and B is the system bandwidth.

Rich multipath results in a small coherence bandwidth [29] and allows more frequencies Q to be

sampled independently.

3.1.3 Wideband orthogonal waveform signaling

MIMO radar typically transmits a set of orthogonal waveforms from different antennas. In our

problem, the simultaneously transmitted waveforms occupy the same frequency range. We let the

transmitting signal from the m-th antenna be

sm(t) = s
(
t− m

B

)
. (3.19)
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To achieve the orthogonality among the transmitted waveforms, we assume that∫ T

0
sm(t)s∗l (t)dt =

∫ T

0
s
(
t− m

B

)
s∗
(
t− l

B

)
dt ≈ 0, l ̸= m (3.20)

This assumption is accurate for linear frequency modulated (LFM) signals and provides a good

approximation for other wideband signals such hyperbolic frequency modulation (HFM) signals, as

well as signals generated from pseudo random sequences [95]. Using the orthogonality condition in

(3.20), and converting it into the frequency domain by the Fourier transform, we get

1

T

∫ T

0
s
(
t− m

B

)
s∗
(
t− l

B

)
dt =

∫ ∞

−∞

∫ ∞

−∞
S(f)S∗(f ′)ej2πf

m
B
−j2πf ′ l

B

1

T

∫ T

0
ej2π(f−f ′)tdtdfdf ′ (3.21)

=

∫ ∞

−∞

∫ ∞

−∞
S(f)S∗(f ′)ej2πf

m
B
−j2πf ′ l

B

· sinc
(
(f − f ′)T

)
dfdf ′

≈
∫ ∞

−∞
|S(f)|2ej2πf

m−l
B df (3.22)

= δ(m− l) (3.23)

where sinc(x) = sin(x)
x , and we assume that |S(f)|2 = 1. Using discrete frequency samples, for

fq = q∆f , ∆f = B
Q , and q = 0, · · · , Q− 1, we obtain a phase coding scheme, [97], by setting

Sm(fq) = e
j2πmq

Q S(fq), q = 0, 1, · · · , Q− 1 (3.24)

for m = 1, · · · ,M ≤ Q. For transmit antennas m and l, it is straightforward to show that

Q−1∑
q=0

Sm(fq)S
∗
l (fq) = Qδ(m− l). (3.25)

3.1.4 Channel Coherence

In time reversal, the received signal is phase conjugated, energy normalized, and re-transmitted

to the same medium. If the medium is reciprocal, the forward propagation channel is the same
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as the backward propagation channel. However, in many radar applications, the reciprocity con-

dition may not hold, for example, due to small random perturbations between the forward and

the backward channel realizations, or due to slow target motion. Hence, we model the backward

propagation channel as follows with respect to the forward channel given in (3.11): let [H(fq)]
T

denote the backward channel frequency response matrix between the array A and B. The symbol

(·)T denotes the transpose. The propagation channel from antenna Bi, i = 1, · · · , N , to antenna

Am, m = 1, · · · ,M , is given by[(
H(fq)

)T ]
i,m

, h̄im(fq) = ρ · him(fq) + γim(fq), (3.26)

where equation (3.26) models the backward channel as a noisy version of the forward channel:

the symbol ρ is the correlation coefficient between the forward channel him(fq) and the backward

channel h̄im(fq). The term γim(fq) describes the channel disturbance that occurs between the

forward and backward channel for each pair of transmit and receive antennas in A and B. We

assume that the disturbance is independent of him(fq); it is distributed as a complex Gaussian with

zero mean and variance σ2γ(fq), i.e., γim(fq) ∼ CN
(
0, σ2γ(fq)

)
. We further impose the constraint

that h̄im(fq) has the same variance σ2s(fq) as him(fq), i.e.,

h̄im(fq) ∼ CN
(
0, σ2s(fq)

)
, (3.27)

which implies that

ρ =

√
1−

σ2γ(fq)

σ2s(fq)
. (3.28)

When ρ < 1, the quantity ρ captures the de-correlation between the forward channel and the

backward channel. As discussed above, the de-correlation can happen due to slow changes on the

media [23, 58]; its net effect is to degrade the reciprocity condition. The characterization of the

degradation is important to analyze the performance of time reversal MIMO radar. Let[
(Γ(fq))

T
]
i,m

, γim(fq). (3.29)

Equation (3.26) can then be re-written in matrix form as

[
H(fq)

]T
= ρ [H(fq)]

T + [Γ(fq)]
T (3.30)
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3.1.5 TR-MIMO Data Collection and Processing

The time reversal radar data collection and processing are described in three steps as follows.

Step-1 Target Probing. The signal vector received at array B for the l-th data snapshot is

yl(fq) = p(fq) +wl(fq). (3.31)

where

p(fq) = H(fq)sA(fq). (3.32)

is a N × 1 vector. The M × 1 signal vector sA(fq) transmitted from array A is

sA(fq) = [S1(fq), · · · , SM (fq)]
T , q = 0, · · · , Q− 1. (3.33)

The transmitted signal si(t) from the i-th antenna is a wideband signal with Fourier representation

Si(fq) at frequency fq. We assume that the average transmission power at each antenna is the

same

Es =
1

Q

Q−1∑
q=0

|Si(fq)|2. (3.34)

In this step, the total transmission energy is MEs. The noise vector wl(fq) is characterized statis-

tically as

wl(fq) ∼ CN (0, σ2nI), l = 1, · · · , L (3.35)

Next, suppose we can collect l = 0, · · · , L − 1 snapshots, for a slow varying target channel. The

minimum mean squared estimate of the returned target signal is

p̂(fq) = p(fq) +w(fq) (3.36)

where w(fq) =
1
L

∑L−1
l=0 wl(fq). We assume that we can obtain a reasonably accurate estimate of

the target channel response for sufficiently large L. In the subsequent derivation, we assume that

we know p(fq) precisely. This assumption yields the ideal scenario for the TR-MIMO detector. In

reality, we would use p̂(fq) as the signal to be re-transmitted. The problem of obtaining a sufficient

number of snapshots L for this purpose is governed by two important factors: (i) the scale over which

the response changes with respect to space and time; and (ii) systems considerations such as the

bandwidth which only permit sampling so fast. Thus, in a radar setting it is fairly common to have
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a snapshot starved scenario. In this case, the noise variance will increase. Our early attempts to

analyzing the effect of noise variance increase have been reported in [24]. The detection performance

under this scenario will be studied below by simulations. We note that a larger L means longer

estimation time which yields target channel partial de-correlation in time reversal.

Step-2: Time Reversal Probing. Conventional detection processes the data received at array

B. With time reversal, the received radar return at array B is transmitted back to array A. Prior to

re-transmission, the data vector p(fq) is time reversed and energy normalized. The M × 1 received

signal vector at array A is

xl(fq) , [Xl,1(fq), · · · , Xl,M (fq)]
T (3.37)

= H
T
(fq)[kp(fq)]

∗︸ ︷︷ ︸
targetreturn c(fq)

+vl(fq) (3.38)

= kH
T
(fq)H

∗(fq)s
∗
A(fq) + vl(fq) (3.39)

= kρHT (fq)H
∗(fq)s

∗
A(fq) + kΓT (fq)H

∗(fq)s
∗
A(fq) + vl(fq) (3.40)

where the scalar k is the energy normalization factor

k =

√
QMEs∑Q−1

q=0 ∥p(fq)∥2
. (3.41)

This factor normalizes the energy of the time reversed retransmitted signal to equal the original

transmitted signal sA(t). The target return is defined as

c(fq) = H
T
(fq)[kp(fq)]

∗ = [C1(fq), · · · , CM (fq)]
T . (3.42)

The noise vector, defined by

vl(fq) = [Vl,1(fq), · · · , Vl,M (fq)]
T , (3.43)

is distributed as vl(fq) ∼ CN (0, σ2nI). We use H
T
(fq) in (3.26) rather than H(fq) to account for

the backward channel de-correlation due to the changes on the propagation media.

Step-3: Signal Matched Filtering. The received signal xl(fq), q = 0, · · · , Q − 1 in (3.38) is a

M × 1 vector. The i-th entry of xl(fq), Xl,i defined in (3.37), is the received radar return at the

i-th antenna of array A, . This radar signal will be matched with the originally transmitted signal



64 CHAPTER 3. TIME REVERSAL FOR MIMO RADAR (TR-MIMO)

at the i-th antenna, i.e., Si(fq) defined in (3.33) 1 We repeat this process for i = 1, · · ·M antennas

at the array A, which yields the following M × 1 data vector

rl , [Rl,1, · · · , Rl,M ]T (3.44)

=

Q−1∑
q=0

diag [sA(fq)]xl(fq) (3.45)

=


∑Q−1

q=0 Xl,1(fq)S1(fq)∑Q−1
q=0 Xl,2(fq)S2(fq)

...∑Q−1
q=0 Xl,M (fq)SM (fq)

 (3.46)

=


∑Q−1

q=0 C1(fq)S1(fq) +
∑Q−1

q=0 Vl,1(fq)S1(fq)∑Q−1
q=0 C2(fq)S2(fq) +

∑Q−1
q=0 Vl,2(fq)S2(fq)

...∑Q−1
q=0 CM (fq)SM (fq) +

∑Q−1
q=0 Vl,M (fq)SM (fq)

 (3.47)

where in (3.47), Ci and Vl,i, i = 1, · · · ,M , are defined in (3.42) and (3.43), respectively. Hence, we

can re-write (3.45) in vector form as

rl = c̃+ ṽl (3.48)

where

c̃ = [C̃1, · · · , C̃M ]T , C̃i =

Q−1∑
q=0

Ci(fq)Si(fq), (3.49)

ṽl = [Ṽl,1, · · · , Ṽl,M ]T , Ṽi =

Q−1∑
q=0

Vl,i(fq)Si(fq) (3.50)

1One may argue that the received radar signal at the i-th antenna, Xl,i, can be matched with the individual
waveform S1(fq), · · · , SM (fq). We show in Section 3.1.6 that the output of the matched filter of Xl,i with Sj(fq),
j ̸= i is relatively small and then can be ignored.
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3.1.6 MIMO Detectors

In this section, we formulate the MIMO radar detection problem. The binary hypothesis test for

TR-MIMO is
H1 : rl = c̃+ ṽl

H0 : rl = ṽl.
(3.51)

The optimal detector, in the Neyman-Pearson sense, is the likelihood ratio test (LRT), i.e.,

ℓ = log
f(rl|H1)

f(rl|H0)
≷ H1

H0
η (3.52)

where η is the decision threshold. The function f(r|Hi), i = 0, 1, are the probability density

functions of the received signal under H0 and H1, respectively. The detection problem (3.51) is

a common problem: detecting a nonwhite Gaussian process immersed in additive nonwhite (or

white) Gaussian noise in sonar or radar (see, e.g. [98–101]). A closed form for the probability

density function for the binary hypothesis (3.51) is often difficult to obtain. Thus, we will rely on

approximations and on the central limit theorem to study the data statistics and to derive the test

statistics.

Data Statistics

By (3.49), the i-th entry of c̃ is

C̃i = k

Q−1∑
q=0

N∑
n=1

h̄ni(fq)h
∗
ni(fq)|Si(fq)|2 + k

Q−1∑
q=0

N∑
j=1,j ̸=i

(
N∑

n=1

h̄ni(fq)h
∗
nj(fq)

)
︸ ︷︷ ︸

N(N−1) terms

S∗
j (fq)Si(fq) (3.53)

Note that, the sum of the N(N − 1) terms in (3.53) can be approximated by

N∑
j=1,j ̸=i

(
N∑

n=1

h̄ni(fq)h
∗
nj(fq)

)
≈ N(N − 1)E

(
h̄ni(fq)h

∗
nj(fq)

)
= N(N − 1)E(h̄ni(fq))E(h

∗
nj(fq))

= 0 (3.54)
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where h̄ni(fq) and hnj(fq) are independent Gaussian random variables for j ̸= i. Equation (3.54)

greatly simplifies (3.53), which yields

C̃i ≈ k

Q−1∑
q=0

N∑
n=1

h̄ni(fq)h
∗
ni(fq) (3.55)

= kρ ·
Q−1∑
q=0

N∑
n=1

|hni(fq)|2︸ ︷︷ ︸
focused target response

+k

Q−1∑
q=0

N∑
n=1

γni(fq)h
∗
ni(fq)︸ ︷︷ ︸

perturbation term

(3.56)

where |Si(fq)|2 = 1 by (3.24). However, by eliminating the unmatched phase terms in the analysis,

equation (3.54) may introduce a small prediction error compared with the results from numerical

simulation. We will show by Monte Carlo simulation in section 3.1.8 that this prediction error is

within a fraction of a dB.

Next, we use χ2
M to represent the central Chi-squared distribution with M degrees of freedom.

Therefore, [102],

|hni(fq)|2 ∼
σ2s(fq)

2
χ2
2, (3.57)

which leads to E{|hni(fq)|2} = σ2s(fq), a frequency-dependent real constant. Hence, we can further

approximate (3.56) as

E{C̃i} = ρ ·N · E{k} ·
Q−1∑
q=0

σ2s(fq). (3.58)

Equations (3.56) and (3.58) show that the diagonal components C̃i are the focused target response;

they are zero-phase quantities in a statistical sense by averaging out the perturbation term in (3.56).

This observation leads to the following approximation

C̃i ≈ ρ ·
Q−1∑
q=0

k
N∑

n=1

|hni(fq)|2 (3.59)

by ignoring the perturbation term. We should note that, when the forward channel and backwared

channel are fully correlated, i.e., ρ = 1, the above approximation is exact. We will develop the

TR-MIMO detector under this assumption. We will test for cases when ρ < 1 using numerical
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simulations. Let’s further define

Zi(fq) , k

N∑
n=1

|hni(fq)|2 ≃ k
σ2s(fq)

2
χ2
2N , (3.60)

where, the symbol ∼ stands for “is distributed as” and ≃ stands for “is approximately dis-

tributed as.” The symbol k , E{k} ≈
√

E{k2}. For the sake of simplicity, here we treat k

and
∑N

n=1 |hni(fq)|2 as two independent random variables. We further approximate k by the the

constant E{k}. We show in (3.183) and (3.187) in Appendix 3.A that this is a valid approximation:

the random variable k2 is a low variance distribution with a constant mean. Next, we re-write

(3.59) as

C̃i = ρ

Q−1∑
q=0

Zi(fq). (3.61)

The sequence {Zi(fq),∀q} are independent random variables with finite variance. By the Lindeberg

- Lyapunov central limit theorem on sums of independent random variables [81], the sequence {C̃i}
is asymptotically Gaussian for large Q. Hence, (3.61) yields

C̃i ≃ N

ρQ−1∑
q=0

µ(fq), ρ
2
Q−1∑
q=0

Φ(fq)

 , (3.62)

where

µ(fq) = E{Zi(fq)} = kNσ2s(fq), (3.63)

Φ(fq) = Var{Zi(fq)} = k
2
Nσ4s(fq). (3.64)

TR-MIMO Detector

Hence, under H1 in the binary hypothesis (3.51), the i-th entry of signal rl becomes

Rl,i = C̃i + Ṽi (3.65)

= C̃i +R(Ṽi) + jI(Ṽi). (3.66)
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The symbols R(x) and I(x) denote the real and imaginary part of the complex number x. Both

quantities C̃i +R(Ṽi) and I(Ṽi) are real numbers. Further notice that

Ṽi ∼ CN (0, σ2nQ). (3.67)

We obtain

C̃i +R(Ṽi) ∼ N

ρQ−1∑
q=0

µ(fq), ρ
2
Q−1∑
q=0

Φ(fq) +
σ2n
2
Q

 (3.68)

I(Ṽi) ∼ N
(
0,
σ2n
2
Q

)
. (3.69)

We stack the real and the imaginary parts of the Rl,i in (3.66) for i = 1, · · ·M , to create the 2M×1

vector:

zl =
[
[R(rl)]

T , [I(rl)]
T
]T

(3.70)

From the results in Appendix 3.B, the test statistics for the TR-MIMO detector is:

ℓTR(rl) =

∑Q−1
q=0 Φ(fq)

σ2nQ
∥R(rl)∥2 +

Q−1∑
q=0

µ(fq)

R(rl)
T1N . (3.71)

The detector uses (3.71) to calculate the decision threshold under the null hypothesis H0.

About the Output of Matched Filters

In Step 3 of Section 3.1.5, the i-th entry of xl(fq), Xl,i defined in (3.37), is matched with the

originally transmitted signal at the i-th antenna, i.e., Si(fq) defined in (3.33). One can certainly

match Xl,i with other signals Sm(fq), m ̸= i to generate a total of M(M − 1) outputs. Excluding

the additive noise terms, these outputs are

C̃im ,
Q−1∑
q=0

Ci(fq)Sm(fq). (3.72)
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Since hij(fq) and h̄ij(fq), ∀i, j are random variables, we take the expectation of C̃im,

E{C̃im} =

Q−1∑
q=0

N∑
n=1

E{kh̄ni(fq)h∗nm(fq)}|Sm(fq)|2

+

Q−1∑
q=0

N∑
j ̸=n

E

{
k

N∑
n=1

h̄ni(fq)h
∗
nj(fq)

}
S∗
j (fq)Sm(fq) (3.73)

= ρ ·
Q−1∑
q=0

N∑
n=1

E{khni(fq)h∗nm(fq)}|Sm(fq)|2 +
Q−1∑
q=0

N∑
n=1

E{kγni(fq)h∗nm(fq)}|Sm(fq)|2

+

Q−1∑
q=0

N∑
j ̸=n

E

{
k

N∑
n=1

h̄ni(fq)h
∗
nj(fq)

}
S∗
j (fq)Sm(fq) (3.74)

= ρ ·
Q−1∑
q=0

N∑
n=1

E{k|hni(fq)|2}δ(i−m)|Sm(fq)|2

+ ρ ·
Q−1∑
q=0

N∑
j ̸=n

N∑
n=1

E
{
k|hni(fq)|2

}
δ(i− j)S∗

j (fq)Sm(fq) (3.75)

= ρ ·
Q−1∑
q=0

E{k|hni(fq)|2}S∗
i (fq)Sm(fq), i ̸= m (3.76)

Hence

E{C̃im} = ρ · E{k} ·
Q−1∑
q=0

σ2s(fq) · S∗
i (fq)Sm(fq), i ̸= m. (3.77)

We argue now that (3.77) is a complex number with small magnitude compared with (3.53). This

is the result of the orthogonality between Si(fq) and Sm(fq), i ̸= m, chosen in section 3.1.3. In

particular, if the term E{k|hni(fq)|2} = kσ2s , a constant value independent of frequency, (3.77)

becomes zero. Therefore, we do not consider these M(M − 1) outputs from the matched filters.

Spatial MIMO Detector

The spatial MIMO (S-MIMO) radar discussed in the literature is designed for narrow band radar [59,

74]. We extend this narrowband signal model, (3.1) and (3.2), to wideband. One of the key

processing steps in S-MIMO is to extract the complex gains of a total of M ×N channels. When

using wideband orthogonal waveform signaling, we implement the orthogonal phase coding given
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in (3.24), which corresponds to the same waveforms that we used for TR-MIMO. In this case,

compared with (3.38), the received signal for S-MIMO is

zl(fq) = H
T
(fq)sB(fq) + vl(fq) (3.78)

where

sB =

√
M

N
[S1(fq), · · · , SN (fq)]

T (3.79)

zl(fq) = [Zl,1(fq), · · · , Zl,M (fq)]
T (3.80)

Zl,m(fq) =

√
M

N

N∑
i=1

hmi(fq)Si(fq) + Vl,m(fq). (3.81)

It is straightforward to derive that

Zl,m(fq) ∼ CN
(
0,Mσ2s(fq) + σ2n

)
. (3.82)

By the spatial MIMO processing scheme in [74], matched-filtering the received signals with the

orthogonal waveforms {Sn(fq), n = 1, · · · , N} given in (3.24) yields

Ul,mn =

Q−1∑
q=0

Zl,m(fq)

√
M

N
S∗
n(fq) = h̃mn + Ṽl,mn, (3.83)

where

h̃mn =
M

N

Q−1∑
q=0

N∑
i=1

hmi(fq)Si(fq)S
∗
n(fq), (3.84)

Ṽl,mn =

Q−1∑
q=0

Vl,m(fq)

√
M

N
S∗
n(fq). (3.85)
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We group the quantities Ul,mn, h̃l,mn, and Ṽl,mn into MN × 1 vectors

ul = [Ul,11, Ul,12, · · · , Ul,MN ]T , (3.86)

h̃l = [h̃l,11, h̃l,12, · · · , h̃l,MN ]T , (3.87)

ṽl = [Ṽl,11, Ṽl,12, · · · , Ṽl,MN ]T . (3.88)

Thus, the binary hypothesis test for S-MIMO is given by

H1 : ul = h̃l + ṽl

H0 : ul = ṽl.
(3.89)

We use the following test statistic for MIMO radar, [74],

ℓS(ul) = ∥ul∥2 =
M∑

m=1

N∑
i=1

|Ul,mn|2 (3.90)

This detector computes the threshold under the null hypothesis H0.

3.1.7 Performance Analysis

In this section, we derive the test decision for time reversal MIMO (TR-MIMO) in (3.71) and spatial

MIMO (S-MIMO) in (3.90), respectively. To derive the detectors and to analyze their performance,

we derive the probability density functions of the test statistics under H1 and H0, respectively. The

TR-MIMO test statistic ℓTR is the weighted sum of a chi-squared random variable (central under

H0, non-central under H1) and a Gaussian random variables (zero-mean under H0 and non-zero

mean under H1). The PDF of ℓTR is derived in Appendix 3.C and expressed as a convolution

that must be evaluated numerically to compute thresholds and detection performance. The S-

MIMO test statistic ℓS is a weighted central chi-squared random variable, so its PDF is expressed

in closed-form.

This performance analysis provides insight on the tradeoffs between the number of antennas,

the number of frequency samples of the proposed wideband MIMO radar detectors. We rely on

numerical simulations to study channel decorrelation.



72 CHAPTER 3. TIME REVERSAL FOR MIMO RADAR (TR-MIMO)

TR-MIMO

Under H1 and based on (3.68), we know that C̃i+R(Ṽi) are independent and identically distributed

normal random variables for i = 1, · · · ,M . Therefore, from (3.71), we obtain

ℓTR; H1 =

∑Q−1
q=0 Φ(fq)

σ2nQ

M∑
i=1

(
C̃i +R(Ṽi)

)2
+

Q−1∑
q=0

µ(fq)

 M∑
i=1

(
C̃i +R(Ṽi)

)
(3.91)

∼
∑Q−1

q=0 Φ(fq)

σ2nQ

ρ2 Q−1∑
q=0

Φ(fq) +
σ2n
2
Q

χ2
M (γ2)

+

Q−1∑
q=0

µ(fq)

N

Mρ

Q−1∑
1=0

µ(fq),Mρ2
Q−1∑
q=0

Φ(fq) +M
σ2n
2
Q

 , (3.92)

where χ2
M (γ2) denotes the non-central Chi-squared distributed random variable with M degrees of

freedom and the non-centrality parameter

γ2 =M
ρ2
(∑Q−1

q=0 µ(fq)
)2

ρ2
∑Q−1

q=0 Φ(fq) +
σ2
n
2 Q

. (3.93)

Under H0,

ℓTR; H0 =

∑Q−1
q=0 Φ(fq)

σ2nQ

M∑
i=1

(
R(Ṽi)

)2
+

Q−1∑
q=0

µ(fq)

 M∑
i=1

(
R(Ṽi)

)
(3.94)

∼
∑Q−1

q=0 Φ(fq)

σ2nQ

(
σ2n
2
Q

)
χ2
M (0) +

Q−1∑
q=0

µ(fq)

N
(
0,M

σ2n
2
Q

)

∼

1

2

Q−1∑
q=0

Φ(fq)

χ2
M (0) +

Q−1∑
q=0

µ(fq)

N
(
0,M

σ2n
2
Q

)
, (3.95)

where χ2
M (0) is a central Chi-squared random variable with M degrees of freedom. Both (3.92)

and (3.95) provide a simple description of the test statistic for the TR-MIMO detector under each

hypothesis. To obtain the detection probability and the decision threshold from (3.92) and (3.95),

we derive in Appendix 3.C the probability density functions fℓ1,TR(ℓ1) under H1 and fℓ0,TR(ℓ0)
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under H0, respectively. Given the density function fℓ0,TR(ℓ0) and a chosen false alarm rate PFA,

we can numerically calculate the threshold ηTR by solving

PFA , Pr(ℓTR > η|H0) =

∫ ∞

ηTR

fℓ0,TR(ℓ0)dℓ0 (3.96)

Readers can refer to Appendix 3.C for a detailed discussion on how the threshold ηTR is computed.

Next, we can compute the detection probability

PD , Pr(ℓTR > η|H1) =

∫ ∞

ηTR

fℓ1,TR(ℓ1)dℓ1. (3.97)

Under simplifying conditions, for example, the radar signal model given in [103] and [104], one can

develop closed form expressions for PD and PFA. In our case, the time reversal radar signal model

in (3.66) becomes, approximately, a non-zero mean, real Gaussian signal immersed in zero-mean

complex Gaussian noise. The mathematical tractability of closed form expressions for PD and PFA

becomes difficult. One can resort to importance sampling to efficiently calculate these quantities

(see, e.g., [105,106]).

Spatial MIMO Detector

From (3.90), under the null hypothesis H0, Vl,m(fq) ∼ CN (0, σ2n). For a fixed m,

N∑
n=1

∣∣∣∣∣∣
Q−1∑
q=0

Vl,m(fq)

√
M

N
S∗
n(fq)

∣∣∣∣∣∣
2

=

N∑
n=1

vH
l,msns

H
n vl,m (3.98)

=
M

N
vH
l,m

N∑
n=1

(
sns

H
n

)
vl,m (3.99)

where

vl,m = [Vl,m(f0), · · · , Vl,m(fQ−1)]
T (3.100)

sn = [Sn(f0), · · · , Sn(fQ−1)]
T (3.101)
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Furthermore, we define

Π ,
N∑

n=1

(
sns

H
n

)
(3.102)

where the (q1, q2)-th entry of Π is given by

N∑
n=1

e
j2π n

Q
(q1−q2) = e

j2π
q1−q2

Q
1− e

j2π
q1−q2

Q
N

1− e
j2π

q1−q2
Q

(3.103)

= e
jπ

q1−q2
Q

(N+1) sin(π(q1 − q2)N/Q)

sin(π(q1 − q2)/Q)
(3.104)

= e
jπ

q1−q2
Q

(N+1) sinc((q1 − q2)N/Q)

sinc((q1 − q2)/Q)
N (3.105)

We further define the following two matrices Λ and Υ

[Λ]q1,q2 , sinc((q1 − q2)N/Q)

sinc((q1 − q2)/Q)
N (3.106)

Υ , diag{[1, ej
π
Q
(N+1)

, · · · , ej
π
Q
(N+1)(Q−1)

]} (3.107)

We immediately recognize that

Π = ΥHΛΥ (3.108)

Hence, (3.99) can be re-written as

N∑
n=1

∣∣∣∣∣∣
Q−1∑
q=0

Vl,m(fq)

√
M

N
S∗
n(fq)

∣∣∣∣∣∣
2

=
M

N
(Υvl,m)H Λ (Υvl,m) (3.109)

Note that the matrix Λ has N identical singular values

λn = Q, n = 1, · · · , N (3.110)
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Each entry of the vector Υvl,m is a complex Gaussian random variable with zero mean and variance

σ2n. Hence, (3.109) can be written as a quadratic form

N∑
n=1

∣∣∣∣∣∣
Q−1∑
q=0

Vl,m(fq)

√
M

N
S∗
n(fq)

∣∣∣∣∣∣
2

=
M

N

N∑
n=1

λn|Xn|2 ∼
M

N
Q
σ2n
2
χ2
2N (3.111)

where Xn ∼ CN (0, σ2n). Since {Vl,m(fq),m = 1, · · · ,M} are independent, complex random vari-

ables, we have

l0 =
M∑

m=1

N∑
n=1

∣∣∣∣∣∣
Q−1∑
q=0

Vl,m(fq)

√
M

N
S∗
n(fq)

∣∣∣∣∣∣
2

∼ M

N
Q
σ2n
2
χ2
2MN (3.112)

Under the alternative hypothesis H1, for a fixed m,

Q−1∑
q=0

N∑
j=1

hmj(fq)Sj(fq)S
∗
n(fq) ∼ CN

0, N

Q−1∑
q=0

σ2s(fq)

 (3.113)

Hence,

l1 =
M∑

m=1

N∑
n=1

∣∣∣∣∣∣
Q−1∑
q=0

M
N

N∑
j=1

hmj(fq)Sj(fq) + Vl,m(fq)

S∗
n(fq)

∣∣∣∣∣∣
2

∼
(MN )2N

∑Q−1
q=0 σ

2
s(fq) +

M
N Qσ

2
n

2
χ2
2MN (3.114)

The binary hypothesis test (3.89) for S-MIMO is given by

ℓS = ∥ul∥2 ∼


(
M2

N

∑Q−1
q=0

σ2
s(fq)
2 + M

N Q
σ2
n
2

)
χ2
2MN H1

M
N Q

σ2
n
2 χ

2
2MN H0

(3.115)
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The detection probability is given by

P S
D = Pr(ℓS > ηS|H1) = Pr

M2

N

Q−1∑
q=0

σ2s(fq)

2
+
M

N
Q
σ2n
2

χ2
2MN > ηS


= 1−Ψχ2

(2MN,0)

 ηS(
M2

N

∑Q−1
q=0

σ2
s(fq)
2 + M

N Q
σ2
n
2

)


= 1−Ψχ2
(2MN,0)

Qσ2nΨ−1
χ2
(2MN,0)

(1− PFA)

M
∑Q−1

q=0 σ
2
s(fq) +Qσ2n

 . (3.116)

Normalized J-Divergence

Although the probability of detection is the most useful metric for comparing performance between

different test statistics, other performance measures can also provide insight and mathematically

trackable approaches, for example, the nominal performance given in [46] (page 329). Here, we use

the following metric [74]:

DJ(ℓ) ,
|E{ℓ|H1} − E{ℓ|H0}|2

1
2 (Var{ℓ|H1}+Var{ℓ|H0})

, (3.117)

where ℓ denotes a test statistic. This is known as the normalized J-divergence between H1 and H0

hypothesis. Equation (3.117) is a simple measure to illustrate the performance of the detector. To

simplify the calculation, we assume that:

σ2s(fq) = σ2s . (3.118)

is frequency independent. We further define α , σ2
s

σ2
n
. Thus, from (3.214) in Appendix 3.D, we

obtain:

DTR
J (ℓ) =

2Mα(1 + αNQ+NQ)2

2α2(α+ 1
2)

2 + 4NQα2(α+ 1
2) +Q2N(α+ 1

2)
2 + 1

2α(QN + 1)
. (3.119)

Similarly, we obtain DJ(ℓ) for the S-MIMO detector:

DS
J(ℓ) =

2M3Nα2

1 + (1 +Mα)2
. (3.120)
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Figure 3.2: Normalized J-Divergence (DJ(ℓ)) vs. SNR (α) for TR-MIMO and S-MIMO using
Q = 10. M = 2 transmit antennas and N = 3 receive antennas.

To compare (3.119) and (3.120), we assume that α ≫ 1, which is in high SNR. In this case

DTR
J (ℓ) ≈ QM

2 , while DS
J(ℓ) ≈ 2MN . This implies that, with a few sparsely placed antennas, M

and N can be small. If the channel multipath scattering is rich, i.e., Q > 4N , the TR-MIMO shows

a higher performance than the S-MIMO. Fig. 3.2 depicts the nominal performance vs. SNR for

TR-MIMO and S-MIMO using Q = 10.

3.1.8 Numerical Simulations

In this section, we carry out numerical simulations to evaluate the performance of the proposed

detectors. The simulation is carried out as follows: (1) generate random realization of Q indepen-

dent frequency samples for the N ×M forward channel matrix H(fq) and the M × N backward

channel matrix H
T
(fq); (2) generate orthogonal waveforms based on (3.24); (3) generate target

signal independent additive noise and add the noise to the received radar returns; (4) calculate the

test statistics and determine the decision threshold given the false alarm rate PFA; and (5) calculate

the detection probability. The signal-to-noise ratio is defined as

SNR =

∑Q−1
q=0 σ

2
s(fq)

σ2n
(3.121)
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We chooseQ = 10 frequencies,M = 2 transmit antennas, andN = 3 receive antennas for simulation

purposes. We show in Fig. 3.3 the detection probability versus SNR for TR-MIMO vs. S-MIMO

under the false alarm rates of PFA = [10−5, 10−4, 10−3, 10−2], respectively. The correlation factor

ρ = 1 represents the ideal scenario. The analytical results are plotted using (3.97) for the TR-MIMO

detector and (3.116) for the S-MIMO detector, respectively. The lines represent the analytical

plots while the markers denote the Monte Carlo simulation results. Fig. 3.3(a)-(d) show that

the analytical results match to the Monte Carlo simulation results quite well. The proposed TR-

MIMO has about 14 dB gain over S-MIMO for the simulation setup Q = 10. There appears a small

prediction bias (within a fraction of a dB) for the analytical ROC result compared with the Monte

Carol simulation. This small prediction bias can be explained by the approximation we made in

our analysis, for example, see equation (3.54). This equation argues that the unmatched phase

terms are zero, which of course is not true in practice. This approximation yields to slightly better

performance and ROC curve than the Monte Carlo simulation shows, see Fig.3.3. This prediction

bias can be reduced by increasing the size N of the receiving antenna or the number of independent

frequency bands Q.

The number of independent frequencies Q depends on the scattering property of the channel

and can be determined by experiments. In our case, the choice of Q is based on our experimental

electromagnetic data collected in an increasingly rich scattering lab environment. The scattering

environment is created using dielectric solid rods of 3.2 cm diameter, [29]. The details of the

experiments are reported in [29]. The experiment synthesizes a wideband signal of 2 GHz (4-6

GHz) using stepped frequency signals generated by a vector network analyzer (VNA). The scattering

environment is created by gradually increasing the number of dielectric rods in a 4× 4 square feet

wood platform. The wood platform has a total of 46 holes that can hold the dielectric rods vertically.

First, the target response is measured for a copper target; then, we add 1 dielectric rod into the

scene to create multipath. We keep adding dielectric rods till all the rods are filled in the holes.

We then measure the coherence bandwidth Bc of the channel versus the number of dielectric rods.

Fig. 3.4(a) shows that the coherence bandwidth decreases from Bc = 912 MHz to Bc = 200 MHz.

To further enhance the channel scattering, we place a metal shield behind these 46 rods, which

brings down the coherence bandwidth to 120 MHz. The B = 2 GHz bandwidth corresponds to

Q = B
Bc

= 2, 3, 4, 10, 16, respectively. Using this sequence of Q values, we generate, by Monte Carlo

simulations, the detection of probability versus Q in Fig. 3.4(b) for TR-MIMO and S-MIMO. We

fix the average channel gain to noise ratio
∑Q−1

q=0 σ2
s(fq)

Qσ2
n

at −2 dB and change the Q value. Fig. 3.4(b)

shows that the performance gain of TR-MIMO vs. S-MIMO increases as the scattering becomes
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Figure 3.3: Detection probability vs. SNR for TR-MIMO and S-MIMO using Q = 10. The
analytical results are plotted with solid lines while Monte Carlo results are plotted with markers.
The simulation uses M = 2 transmit antennas and N = 3 receive antennas. The correlation
between the forward channel and the backward channel is ρ = 1. The false alarm rates are: (a)
PFA = 10−5, (b) PFA = 10−4, (c) PFA = 10−3, and (d) PFA = 10−2.
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Figure 3.4: (a) Average coherence bandwidth of scattering channels estimated from experimental
electromagnetic data collected in lab, [29]. The average coherence bandwidth decreases from 912
MHz to 120 MHz as the propagation medium becomes increasingly multipath rich. (b) Detection
probability of TR-MIMO and S-MIMO by simulations assuming Q = 2, 3, 4, 8, 10, 16, respectively.
PFA = 10−4, M = 2, N = 3.

dense. This is because the TR-MIMO detector coherently process signals by adaptive time reversal

transmission while the S-MIMO detector non-coherently add up signals from different frequencies.

To study the de-correlation between the forward channel and the backward channel in time

reversal, we vary the correlation factor ρ in the range of 0 and 1. Fig. 3.5 depicts the detection

probability of TR-MIMO and S-MIMO when the decorrelation factor ρ decreases from 1 to 0. The

performance of TR-MIMO is robust against channel decorrelation.

3.2 TR-MIMO with Clutter

We consider the problem of detecting a stationary or slowly moving target in the presence of rich

multipath clutter. In order to enable clutter suppression, we expand upon the target model in

Section 3.1.2, and follow a subspace-based approach. We describe the subspace target and clutter

models in Section 3.2.1. The adaptation of Time Reversal to MIMO with clutter suppression is
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Figure 3.5: Detection probability for TR-MIMO vs. decorrelation factor ρ. The number of fre-
quencies Q = 10. M = 2, N = 3. PFA = 10−4.

discussed in Section 3.2.2. We derive the altered TR-MIMO and S-MIMO detectors in Section 3.2.3,

and present the results of numerical simulations in Section 3.2.4. This work was initially published

in [38].

3.2.1 Subspace Target and Clutter Models

Target Subspace Model

The target is modeled as a point-source; we characterize RCS fluctuations by Swerling’s mod-

els [107]. Through dense multipath, we assume that each transmission path experiences an inde-

pendent realization of the target’s RCS. We use discrete frequency samples fq, q = 0, . . . , Q − 1.

The number of frequency samples Q is chosen by Q = BW
Bc

, where Bc is the multipath channel’s

coherence bandwidth and BW is the system bandwidth. Samples separated by Bc are assumed

to be independent. For simplicity, we assume that both arrays have N antennae. We let H(fq)

denote the forward channel response matrix between the transmit array A and the receive array B

at fq. The (i, j)-th entry of H(fq) is the forward channel response from antenna Ai to Bj . Unlike

the TR-MIMO target model derived in [28] that assumes that H(fq) is full-rank, we assume that

the target channel is known to lie in a p-dimensional subspace determined by the target scattering
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field, i.e.,

H(fq) =
(
A(fq)A

H(fq)
)
Θ(fq), (3.122)

where N×p dimensional matrix A(fq) is the target signal subspace. For simplicity, we assume that

the p-columns ofA(fq) are unitary vectors andA(fq) is normalized such that tr
[
AH(fq)A(fq)

]
= p.

Θ(fq) is a random matrix that accounts for random variations of the wave propagation paths be-

tween each pair of transmit and receive antennae. Each entry of [Θ(fq)]i,j = θij(fq) ∼ CN
(
0, σ2s(fq)

)
.

This model also implies that the dominant multipath signals are confined to a p-dimensional sub-

space. We model the backward propagation channel [28]:

H(fq) =
(
A(fq)A

H(fq)
)
Θ(fq) (3.123)

Θ(fq) = ρ ·Θ(fq) +Φ(fq) (3.124)

where ρ is the correlation coefficient between the forward channel Θ(fq) and the backward channel

Θ(fq). The matrix Φ(fq) is a channel disturbance and is independent of Θ(fq). Its elements are

independently distributed as complex Gaussian random variables with zero mean and variance σ2ϕ.

We impose the constraint that each entry of Θ(fq) has unit variance.The correlation coefficient

ρ directly describes relationship between the forward and the reverse channel response that is

important to time reversal. Variation of this parameter will directly affect the performance of

TR-MIMO, as we showed in Section 3.1 and [28].

Clutter Model

In general, the correlation properties of a MIMO clutter model should be characterized in the spatial

and spectral domains. Statistical models for MIMO radar clutter should incorporate a number of

effects including geometry, coherence, transmit waveform, multipath scattering, etc. However, it

has been shown that a complex Gaussian model is appropriate when multipath scattering is rich [79].

If we transmit some set of waveforms sA(fq) from array A, then the received clutter response at

array B is given by:

yc(fq) = Hc(fq)sA(fq), (3.125)

where Hc(fq) is the clutter response matrix between array A and B. Since the elements of Hc(fq)

are jointly complex Gaussian, the signal vector yc(fq) is also complex Gaussian:

yc(fq) ∼ CN (0,Ry,c(fq)) . (3.126)
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We define the transmit waveform:

sA(fq) = [S1(fq), . . . , SN (fq)]
T , (3.127)

such that the probing signals are all orthogonal:

Q−1∑
q=0

sA(fq)s
H
A (fq) = QEsIN , (3.128)

where Es is the probing signal energy Es =
1
Q

∑Q−1
q=0 |Si(fq)|2. In [28], we model each entry of the

clutter response as a complex Gaussian random variable:

Hc(fq) = Λ1/2V(fq), (3.129)

where the matrix [V(fq)]i,j = vij ∼ CN
(
0, σ2c (fq)

)
, and

Λ =


1 λ · · · λN−1

λ 1 · · · λN−2

...
...

...
...

λN−1 λN−2 · · · 1

 (3.130)

Note that the rank of Λ is ±1 when λ = 1, and N otherwise. The matrix Λ characterizes the

spatial correlation of the clutter signal received at the array. The covariance matrix Ry,c(fq) can

be written:

Ry,c(fq) = 2EsNσ
2
c (fq)Λ, (3.131)

where E {·} is the expectation operator. We employ a Gaussian Power Spectral Density (PSD)

model [108,109]:

σ2c (fq) ≈ e−
(fq−fc)

2

2Ω . (3.132)

where Ω is the width of the Gaussian PSD, and fc is the radar center frequency.For simplicity,

we assume that the clutter samples at each frequency fq are decorrelated due to rich multipath

scattering. This assumption implies that the processing of clutter can be done independently in each

individual frequency bin within the entire signal frequency band. Combining (3.131) with (3.132),
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the MIMO clutter is fully characterized in the spatial and spectral domains.

3.2.2 Time Reversal Processing

In [28], as well as [24,26,27], we considered the time reversal data collection in several stages. We

describe these steps in this section. We begin with conventional probing, apply clutter suppression,

and then perform time reversal probing.

1. Conventional Probing. We transmit sA(fq) from array A, through the channel to array

B. The l-th snapshot of the received signal is:

yl(fq) = H(fq)sA(fq) + yc,l(fq) + yn,l(fq). (3.133)

where H(fq)sA(fq) is the target response, yc,l(fq) is the clutter response defined in (3.125), and

yn,l(fq) is an additive white Gaussian noise term distributed with:

yn,l(fq) ∼ CN
(
0, σ2nIN

)
. (3.134)

For convenience, by (3.131), we define:

R(fq)
△
=
Esσc(fq)

σ2n
Λ+ IN . (3.135)

Hence,

yc,l(fq) + yn,l(fq) ∼ CN
(
0, σ2nR(fq)

)
. (3.136)

2. Clutter Suppression. The next stage is to whiten the clutter response, to allow for

optimal detection. We note that R(fq) is a positive definite matrix, so it can be decomposed into

a product of Hermitian matrices R
1
2 (fq)R

T
2 (fq). Thus we define the whitened signal vector

ỹl(fq) = R− 1
2 (fq)yl(fq) (3.137)

= R− 1
2 (fq)H(fq)sA(fq) + vl(fq), (3.138)

where the vector vl(fq) is our whitened clutter-plus-noise term:

vl(fq) = R− 1
2 (fq) [yc,l(fq) + yn,l(fq)] (3.139)

∼ CN
(
0, σ2nIN

)
. (3.140)
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In conventional processing, the signal ỹl(fq) is used to detect the presence of a target. For time

reversal, however, we have an additional step.

3. Time Reversal Subspace Signal Probing. For time reversal, the clutter whitened signal

is time-reversed, energy normalized, and retransmitted from array B to array A. We define the TR

probing signal:

str,l(fq) = kl
[
PA(fq)ỹl(fq)

]∗
. (3.141)

where PA(fq) = A(fq)(A
H(fq)A(fq))

−1AH(fq) is a projector onto the signal subspace A(fq). The

energy normalization term is defined by:

k2l =

∑Q−1
q=0 ∥sA(fq)∥2∑Q−1

q=0

∥∥PA(fq)ỹl(fq)
∥∥2 =

QNEs∑Q−1
q=0

∥∥PA(fq)ỹl(fq)
∥∥2 . (3.142)

We note that (3.141) is a generalized DORT (decomposition of the time-reversal operator) imple-

mentation. In DORT, the transfer function of the medium can be estimated by decomposition of

the time-reversal operator obtained by a set of initial transmissions [45, 110]. The received signal

vector at array A is:

xl(fq) = klH
T
(fq)str,l(fq) + xc,l(fq) + xn,l(fq), (3.143)

where xc,l(fq) is the clutter response to str,l(fq), and xn,l(fq) is an additive white Gaussian noise

term distributed with:

xn,l(fq) ∼ CN
(
0, σ2nIN

)
. (3.144)

We assume that the clutter has the spatial distribution HT
c,l′(fq) as the reverse clutter channel that

is independent of the forward clutter channel. Thus,

xc,l(fq) = HT
c,l′(fq)str,l(fq), (3.145)

∼ CN (0,Rx,c(fq)) , (3.146)

where the covariance matrix Rx,c(fq) is defined by:

Rx,c(fq) = E
{
HT

c,l′(fq)str,l(fq)s
H
tr,l(fq)H

∗
c(fq)

}
. (3.147)
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3.2.3 MIMO Detectors in Clutter

We now derive TR-MIMO and S-MIMO detectors for the Time Reversal signal xl(fq) and the

conventional signal yl(fq), respectively.

Time Reversal (TR-MIMO) Detector. From (3.147), we define

R1(fq) =
1

σ2n
Rx,c(fq) + IN , (3.148)

x̃l(fq) , [X̃l,1(fq), · · · , X̃l,N (fq)]
T (3.149)

= R
− 1

2
1 (fq)xl(fq) (3.150)

= c̃l(fq) +wl(fq) (3.151)

where

c̃l(fq) = R
− 1

2
x,c (fq)H

T
(fq)str,l(fq) (3.152)

wl(fq) = R
− 1

2
1 (fq)(xc,l(fq) + xn,l(fq)). (3.153)

Next, using (3.151), employing orthogonal waveforms to matched-filter the received signals, and

collecting all the frequency components, we obtain:

Rl,in ,
Q−1∑
q=0

X̃l,i(fq)S
∗
n(fq) = klC̃l,in + W̃l,in, (3.154)

Stacking the data (3.154) into vector form yields

rl = [Rl,11, Rl,12, · · · , Rl,NN ]T (3.155)

c̃l = kl[C̃l,11, C̃l,12, · · · , C̃l,NN ]T (3.156)

w̃l = [W̃l,11, W̃l,12, · · · , W̃l,NN ]T (3.157)

The MIMO detection problem using time reversal given the l-th data vectors defined above is now

formulated by

H1 : rl = c̃l + w̃l

H0 : rl = w̃l

, l = 1, . . . , L. (3.158)
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Under H0, the clutter return is

x′
c,l(fq) = HT

c,l′(fq)k
′
l

[
PA(fq)vl(fq)

]∗
(3.159)

k′2l = QNEs/

Q−1∑
q=0

∥∥PA(fq)vl(fq)
∥∥2 . (3.160)

Hence R1(fq) should take a slightly different from from (3.149). We consider the energy detector:

ℓTR(rl) = ∥rl∥2 =
N∑
i=1

N∑
n=1

|Rl,in|2 (3.161)

Conventional or Statistical (S-MIMO) detector. For conventional detection, the received

signal at A transmitted from B is given by:

yl(fq) , [Yl,1(fq), · · · , Yl,N (fq)]
T (3.162)

= H
T
(fq)sB(fq) + yc,l(fq) + yn,l(fq) (3.163)

where yc,l(fq) = HT
c,l′(fq)sB(fq). To mitigate the clutter, we let

Rc,y(fq) = E
{
H

T
(fq)sB(fq)s

H
B (fq)H

∗
(fq)

}
(3.164)

R2(fq) =
1

σ2n
Rc,y(fq) + IN . (3.165)

Next, we let

zl(fq) , [Zl,1(fq), · · · , Zl,N (fq)]
T (3.166)

= R
− 1

2
2 (fq)yl(fq) = hl(fq) + vl(fq). (3.167)

We construct the detector similar to the detector in [28]. Using (3.167) and matched filtering the

received signals with orthogonal waveforms yields

Ul,in =

Q−1∑
q=0

Zl,i(fq)S
∗
n(fq) = H̃l,in + Ṽl,in, (3.168)
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Again, the transmitting waveforms are quasi-orthogonal. Grouping Ul,in into N2 × 1 vectors yields

ul = [Ul,11, Ul,12, · · · , Ul,NN ]T , (3.169)

h̃l = [H̃l,11, H̃l,12, · · · , H̃l,NN ]T , (3.170)

ṽl = [Ṽl,11, Ṽl,12, · · · , Ṽl,NN ]T . (3.171)

Thus, the binary hypothesis test for S-MIMO is given by

H1 : ul = h̃l + ṽl

H0 : ul = ṽl

, l = 1, . . . , L. (3.172)

We consider the energy detector:

ℓS(ul) = ∥ul∥2 =
N∑
i=1

N∑
n=1

|Ul,in|2 (3.173)

3.2.4 Numerical Simulations

In this section, we carry out numerical simulations to evaluate the performance of the proposed TR-

MIMO detector. We use two transmit antennas and two receive antennas (N = 2), four independent

frequency samples (Q = 4), a rank 1 target subspace (p = 1), and fully channel coherence (ρ = 1).

The clutter spatial covariance term is λ = .1. The false alarm rate is PFA = 0.001. The signal to

noise ratio (SNR) and the signal to clutter ratio (SCR) are defined as follows, respectively,

SNR =

∑Q−1
q=0 2NEsσ

2
s(fq)p

Nσ2n
(3.174)

SCR =

∑Q−1
q=0 σ

2
s(fq)p∑Q−1

q=0 σ
2
c (fq)trΛ

. (3.175)

In Figure 3.6(a), we plot the Probability of Detection (PD) for both Time Reversal (TR-MIMO) and

Conventional (S-MIMO) detectors in the case where SCR = 10 dB. Time Reversal shows improved

performance, with an effective SNR gain of ≈ 7 dB at PD = 0.4, before the S-MIMO detector

saturates at PD = 0.6, signaling a failure to compensate for clutter contributions. We repeated the

experiment with SCR = 0 dB; the results are shown in Figure 3.6(b). Time Reversal and saturates

at PD = 0.89 as SNR → ∞, while the conventional detector saturates at PD = 0.02. This shows
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Figure 3.6: Probability of Detection vs. SNR for both the Conventional (S-MIMO) and Time Rever-
sal (TR-MIMO) based detectors. (a) SCR = 10 dB. TR-MIMO achieves PD = 1 at SNR = 30dB,
while S-MIMO saturates at PD = 0.6. (b) SCR = 0 dB. TR-MIMO saturates performance at
PD = 0.89, while the Conventional detector saturates at just below PD = 0.02

that the TR-MIMO detector is much more robust to increasing clutter than the S-MIMO detector.

3.3 Discussion

In this chapter, we developed the Time Reversal MIMO radar detector and provided an analytical

expression for the probability distribution of TR-MIMO. We showed that TR-MIMO exploits the

spatial diversity arising from the multipath and adjusts the waveforms to the scattering proper-

ties of the medium by using time reversal. This chapter presented a model for TR-MIMO that

accounts for possible decorrelation between the forward channel and the backward channel and

derives the test statistic, threshold, and probability of detection for the TR-MIMO detector. The

algorithm we developed is robust in rich multipath environments and shows a significant gain over

the spatial MIMO detector. We also derived a subspace-based method for detection of a target

using TR-MIMO radar in the presence of full rank multipath clutter. We have conducted numerical

simulations to verify this approach. Numerical simulations showed that TR-MIMO outperforms

the conventional detector derived for the same scenario.
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Appendices

3.A Energy Normalization Scalar k

The scalar k in (3.41) is a random variable because it depends on the channel matrix H(fq) whose

elements are random. In the development of the statistics for TR-MIMO, we wish to characterize

the mean of this random variable as k = E(k), where:

k2 =
MQEs∑

q ∥H(fq)sA(fq)∥2
, (3.176)

where Es =
1
Q

∑Q−1
q=0 |S(fq)|2. Let the vector p(fq) = [p1(fq), · · · , pN (fq)]

T , H(fq)sA(fq), where:

pn(fq) =
M∑
j=1

Sj(fq)hnj(fq) ∼ CN
(
0,Mσ2s(fq)

)
, (3.177)

where hij(fq) ∼ CN
(
0, σ2s(fq)

)
, |hij(fq)|2 ∼ σ2

s(fq)
2 χ2

2, and we assume for simplicity S(fq) = 1. It is

straightforward to see that:

∥p(fq)∥2 =
N∑

n=1

|pn(fq)|2 ∼
Mσ2s(fq)

2
χ2
2N . (3.178)

Hence, using Theorem 3.1 in [85], we obtain that the following weighted sum of independent Chi-

squared random variables is:
Q−1∑
q=0

∥p(fq)∥2 ∼ gχ2
h, (3.179)

where:

g =
M

2

∑Q−1
q=0 σ

4
s(fq)∑Q−1

q=0 σ
2
s(fq)

(3.180)

h = 2N
(
∑Q−1

q=0 σ
2
s(fq))

2∑Q−1
q=0 σ

4
s(fq)

. (3.181)
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Hence, we obtain:

k2 =
MQEs∑Q

q=1 ∥p(fq)∥2
∼ MQEs

gχ2
h

. (3.182)

In other words, k2 is distributed as a scaled inverse-chi-squared random variable. It is well known

that, for X ∼ χ2
h(0), Y = 1

X has the mean E(Y ) = 1
h−2 ,∀h > 2, and Var(Y ) = 2

(h−2)2(h−4)
,∀h > 4.

Hence, we obtain the mean of k2 as follows:

E(k2) =
QEs

N
∑Q−1

q=0 σ
2
s(fq)−

∑Q−1
q=0 σ4

s(fq)∑Q−1
q=0 σ2

s(fq)

. (3.183)

In probability theory and statistics, the coefficient of variation (CV) is a normalized measure of the

dispersion of a probability distribution. It is defined as the ratio of the standard deviation to the

mean as:

cv ,
√

Var(Y )

E(Y )
(3.184)

=

√
2

h− 4
(3.185)

=

√√√√ 1

N
(
∑

q σ
2
s(fq))

2∑
q σ

4
s(fq)

− 2
. (3.186)

By the Cauchy-Schwartz inequality: (∑Q−1
q=0 σ

2
s(fq)

)2
∑Q−1

q=0 σ
4
s(fq)

≥ 1.

Hence, for N > 2, we obtain:

cv ≤
√

1

N − 2
< 1, (3.187)

which implies that k2 has a low variance. This result implies that the variance of k2 will be a very

small number when the number of frequency Q and the number of antennas are large. Hence, it

surfies to say that k is approximately a constant.
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3.B Derivation of the TR-MIMO Detector

By equation (3.70), the probability density function of zl under H1 is:

f(zl|H1) =
1

(
√
2π)2M

(det|Σ1|)−
1
2 e−

1
2
(zl−µ)TΣ−1

1 (zl−µ), (3.188)

where:

µ =

Q−1∑
q=0

µ(fq)

[
1M

0M

]
(3.189)

Σ1 =

[
(
∑Q−1

q=0 Φ(fq) +
σ2
n
2 Q)IM 0M

0M
σ2
n
2 QIM

]
. (3.190)

The symbols 1M , 0M , IM stand for an M × 1 vector that contains all 1s, an M × 1 vector that

contains all 0s, and an M × M identity matrix, respectively. Similarly, the probability density

function of zl under H0 is:

f(zl|H0) =
1

(
√
2π)2M

(det|Σ0|)−
1
2 e−

1
2
zTl Σ−1

0 zl , (3.191)

where:

Σ0 =
σ2n
2
QI2M . (3.192)

The likelihood ratio test becomes:

ℓTR = ln
f(zl|H1)

f(zl|H0)

= lnf(zl|H1)− lnf(zl|H0)

= −1

2
(zl − µ)TΣ−1

1 (zl − µ) +
1

2
zTl Σ

−1
0 zl. (3.193)
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Using (3.70), and discarding the constant terms 1
2 in (3.193), we re-write (3.193) as:

ℓTR = −

(
R(rl)−

∑Q−1
q=0 µ(fq)1M

I(rl)

)T

Σ−1
1

(
R(rl)−

∑Q−1
q=0 µ(fq)1M

I(rl)

)

+

(
R(rl)

I(rl)

)T

Σ−1
0

(
R(rl)

I(rl)

)
(3.194)

= − 1∑Q−1
q=0 Φ(fq) +

σ2
n
2 Q

∥∥∥∥∥∥R(rl)−
Q−1∑
q=0

µ(fq)1M

∥∥∥∥∥∥
2

− 2

σ2nQ
∥I(rl)∥2+

2

σ2nQ
∥R(rl)∥2 +

2

σ2nQ
∥I(rl)∥2 (3.195)

=

∑Q−1
q=0 Φ(fq)

σ2
nQ
2 (
∑Q−1

q=0 Φ(fq) +
σ2
n
2 Q)

∥R(rl)∥2 + 2

∑Q−1
q=0 µ(fq)∑Q−1

q=0 Φ(fq) +
σ2
n
2 Q

RT (rl)1M . (3.196)

Discarding the common denominator in (3.196), we obtain (3.71).

3.C Derivation of Detection Probability and Threshold for TR-

MIMO Detector

We first re-write (3.92) and (3.95) in the form of:

ℓi = Aiχ
2
M (γi) +BiN (µi,Φi), i = 0, 1, (3.197)

where:

A0 = 1
2

∑Q−1
q=0 Φ(fq), A1 =

∑Q−1
q=0 Φ(fq)

σ2
nQ

(
ρ2
∑Q−1

q=0 Φ(fq) +
σ2
n
2 Q
)

B0 =
∑Q−1

q=0 µ(fq), B1 =
∑Q−1

q=0 µ(fq)

µ0 = 0, µ1 =Mρ
∑Q−1

1=0 µ(fq)

Φ0 =M σ2
n
2 Q, Φ1 =Mρ2

∑Q−1
q=0 Φ(fq) +M σ2

n
2 Q

γ0 = 0, γ1 = γ2.

(3.198)

For z = x+y, where x and y are independent random variables with probability density function

fx(x) and fy(y), respectively, the probability density function of z is the convolution of fx(x) and

fy(y), [82], i.e., fz(z) =
∫∞
−∞ fx(z − y)fy(y)dy. For y = a · x, where a is a constant, the probability
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density function of y is given by fy(y) =
1
|a|fx

(y
a

)
.

Hence, under H1:

fℓ1,TR(ℓ1) =

∫ ∞

0

1

A1
fx1

(
x1
A1

)
1

B1
fy1

(
ℓ1 − x1
B1

)
dx1, (3.199)

where the random variable x1 ∼ χ2
M (γ1), and y1 ∼ N (µ1,Φ1). The probability density function of

a non-central Chi-squared random variable x1 is:

fx1(x1,M, γ1) =
1

2
e−

x1+M
2

(
x1
γ1

)M
4
− 1

2

IM
2
−1(

√
γ1x1), x1 > 0, (3.200)

where Iv(z) is a modified Bessel function of the first kind:

Iv(z) ,
(z
2

)v ∞∑
n=0

(z2/4)n

n!Γ(v + n+ 1)
. (3.201)

The Gaussian random variable y1 has the probability density function:

fy1(y1) =
1√
2πΦ1

e
− (y1−µ1)

2

2Φ1 , (3.202)

which yields:

fℓ1,TR(ℓ1)=
1

A1B1

∫ ∞

0

1

2
e−

x1+M
2

(
x1
γ1

)M
4
− 1

2

IM
2
−1(

√
γ1x1)

1√
2πΦ1

e
−

(
ℓ1−x1
B1

−µ1

)2

2Φ1 dx1. (3.203)

Similarly, under H0, the probability density function:

fℓ0,TR(ℓ0) =

∫ ∞

0

1

A0
fx0

(
x0
A0

)
1

B0
fy0

(
ℓ0 − x0
B0

)
dx0, (3.204)

where the random variable x0 ∼ χ2
M (0), and y0 ∼ N (0,Φ0). Note that the probability density

function of a central Chi-squared random variable x0 is:

fx0(x0,M) =
1

2
N
2 Γ
(
M
2

)xM
2
−1

0 e−
x0
2 , x0 > 0. (3.205)
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The Gaussian random variable y0 has the probability density function:

fy0(y0) =
1√
2πΦ0

e
− y20

2Φ0 , (3.206)

which yields:

fℓ0,TR(ℓ0) =
1

A0B0

∫ ∞

0

1

2
M
2 Γ
(
M
2

) ( x0
A0

)M
2
−1

e
− x0

2A0
1√
2πΦ0

e
−

(
ℓ0−x0
B0

)2

2Φ0 dx0. (3.207)

Both (3.203) and (3.207) can be evaluated numerically.

To calculate the decision threshold ηTR and the detection probability PD,TR in (3.97), we

start from the probability density function (PDF) expressions in (3.199) and (3.204). We take the

cumulative density function (CDF) as the integral along l from −∞ to li, i = 0, 1:.

Fli,TR(li) =

∫ li

−∞

∫ ∞

0

1

Ai
fxi

(
xi
Ai

)
1

Bi
fyi

(
l − xi
Bi

)
dxidl. (3.208)

Shifting the order of integration allows us the expression:

Fli,TR(li) =

∫ ∞

0

1

Ai
fxi

(
xi
Ai

)∫ li

−∞

1

Bi
fyi

(
l − xi
Bi

)
dldxi. (3.209)

We note that the integral produces the CDF of the Gaussian random variable fyi . Thus:

Fli,TR(li) =

∫ ∞

0

1

Ai
fxi

(
xi
Ai

)
Fyi

(
li − xi
Bi

)
dxi. (3.210)

This was solved with numerical integration. The inverse was accomplished via a simple search

algorithm. The CDF is a non-decreasing function, therefore comparison of the received CDF for

some test point Fli,TR(lt) against the desired CDF determines in which direction to increment the

search term. For these tests, the stopping criteria was:

|Fli,TR(lt)− α| ≤ 10−15. (3.211)
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We use this inverse function to compute the threshold ηTR under the null hypothesis by setting:

ηTR = F−1
l0,TR(PFA), (3.212)

where F−1
l0,TR(PFA) computes the numerical inverse described above. ηTR is then used to compute

the detection probability:

PD,TR = Fl1,TR(ηTR). (3.213)

3.D Calculation of Nominal Performance for TR-MIMO and S-

MIMO

Using the statistical properties of the Chi-squared distribution and normal distribution, from (3.197)

and (3.198), we obtain:

E{ℓTR|Hi} = Ai(M + γi) +Biµi

Var{ℓTR|Hi} = A2
i (2M + 4γi) +B2

i Φi.

A straightforward algebraic calculation yields the following:

DTR
J =

(M(A1 −A0) +A1γ1 −A0γ0 +B1µ1 −B0µ0)
2

M(A2
1 +A2

0) + 2(A2
1γ1 +A2

0γ0) + (B2
1Φ1 +B2

0Φ0)/2
. (3.214)



Chapter 4

The Complex Double Gaussian

Distribution

This chapter presents the probability distribution function (PDF) for the product of two non-zero

mean complex Gaussian random variables. We refer to it as the complex Double Gaussian PDF. This

PDF is useful in many practical applications, for example, in communication systems, the keyhole

or pinhole channel model proposed in [111,112] describes a system where both the transmitter and

the receiver are surrounded by multipath scattering and all communication between them passes

through a single waveguide, such as the corner of a building. In this scenario, the channel is the

product of two complex Gaussian random variables.

Another class of applications where this distribution can apply is in time reversal detection [26,

27, 78]. In time reversal, a source first probes the channel. If the channel is random, then the

aggregate channel response after Time Reversal is the product of two complex Gaussian random

variables. The optimal design and analysis of detectors for this class of problems requires knowledge

of the probability distribution function in order to derive the likelihood ratio test and to compute

the corresponding rates of detection and false alarm.

A third example arises when studying the error performance of M-ary phase shift keying (MPSK)

communication systems. The linear combiner output for a single channel system can be expressed

by the product of two complex Gaussian random variables [76, 77]. Knowledge of this distribution

allows us to analyze the Symbol Error Probability (SEP) for this class of communication system.

This chapter addresses the problem of two independent non-zero mean complex Gaussian ran-

dom variables X and Y and their product Z. We derive the joint (amplitude and phase) probability

97
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distribution of Z: fRz ,Θz(rz, θz), where Rz is the amplitude and Θz is the principal value of the

phase of Z defined in the interval [0, 2π), i.e. Arg(Z). We show that fRz ,Θz(rz, θz) is computed

via a doubly-infinite summation, whose terms include modified Bessel functions of the first and

second kind [86]. We call this new distribution the complex Double Gaussian distribution. We

apply our results to deriving the optimal detector and characterizing the performance of a time

reversal detection scheme, as well as to perform the error analysis for an M-PSK communication

system.

We provide a detailed formulation of the problem in Section 4.1. The main result is presented

in Section 4.2, and we provide two example applications in Sections 4.3 and 4.4. Finally, we discuss

our results in Section 4.5. This work was initially published in [113].

4.1 Problem Formulation

We wish to compute the distribution of Z = XY for independent complex Gaussian random

variables X and Y . Since Z is complex, this will be a bivariate distribution in amplitude Rz = |Z|
and phase Θz = Arg(Z) ∈ [0, 2π): fRz ,Θz(rz, θz).

First, however, we review the complex Gaussian distribution [47, 48]. Given a complex Gaus-

sian random variable X, with non-zero expectation, the amplitude R follows a marginal Rician

distribution [75], while the phase Θ, when conditioned on the amplitude, follows the Tikhonov dis-

tribution [114]. For the complex Gaussian random variable X with mean value νejϕ and variance

σ2, the joint distribution of R and Θ is [47]:

fR,Θ (r, θ) =
r

πσ2
exp

{
−
∣∣rejθ − νejϕ

∣∣2
σ2

}
.

The marginal distribution of the amplitude follows the Rician distribution [75]:

fR (r) =
2r

σ2
e−

r2+ν2

σ2 I0 (λ) ,

where

λ
△
= 2rν/σ2, (4.1)

and Iv(z) is the modified Bessel function of the first kind, with order v and argument z [86]. The
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marginal distribution of the phase, given the amplitude, follows the Tikhonov distribution [114]:

fΘ|R (θ|r) = exp {λ cos (θ − ϕ)}
2πI0 (λ)

.

We make use of the Rician K-factor [115], which is used extensively in the analysis of Rician

fading channels [116–118]. The K-factor is defined as the ratio of the power between the mean

squared and the variance. In Rician fading channels, this corresponds to the ratio of the power

between the line-of-sight and the multipath components. Here, we use a similar definition:

k2
△
=
ν2

σ2
.

Recall that ν and σ are the mean and standard deviation, respectively. The K-factor k modulates

the randomness in the underlying distribution. At its lower limit, k = 0, the distribution of R

becomes Rayleigh. As k increases, the distribution becomes dominated by the mean value ν, and

the random variable R approaches a deterministic value at R = ν.

4.2 Double Gaussian PDF

In section 4.2.1, we outline the joint distribution (amplitude and phase) of Z for all three scenarios.

In section 4.2.2, we outline the marginal distribution of the amplitude Rz for all three scenarios.

When necessary, we discuss the convergence of infinite summations.

4.2.1 Joint Distributions

This section focuses on the joint distribution of the amplitude and phase of Z. We discuss the

three relevant scenarios: a) both inputs are non-zero mean; b) one input is zero mean; and c) both

inputs are zero mean.

Theorem 4.2.1. Product of two non-zero mean complex Gaussian variables If X ∼ CN
(
νxe

jϕx , σ2x
)

and Y ∼ CN
(
νye

jϕy , σ2y
)
are independent random variables, then the product Z = XY is charac-
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terized by the polar distribution:

fΘz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
n,p=0

1

n!p!

(
α

2 cos (θz − ϕx − ϕy)

)n+p(kx
ky

)n−p

(4.2)

Kn−p

(
2rz
σxσy

)
In+p (2α) ,

where α =
√

2rzkxky cos (θz − ϕx − ϕy) /σxσy.

Proof. See Appendix 4.A.

A number of comments regarding (4.2):

• We call this result the complex Double Gaussian distribution and use the shorthand CNN
to refer to it:

Z ∼ CNN
(
νxe

jϕx , σ2x; νye
jϕy , σ2y

)
.

• It is not immediate from (4.2) what the first two moments are. However, since the inputs X

and Y are independent, computation of those moments is trivial:

E[Z] =E[X]E[Y ] = νxνye
ȷ(ϕx+ϕy)

Var[Z] =Var[X]Var[Y ] = σ2xσ
2
y + σ2xν

2
y + σ2yν

2
x.

Likewise, higher order moments of Z are obtained from the first two moments of X and Y .

• Clearly, by symmetry of the roles of X and Y as factors of Z, the expression (4.2) is symmetric

with respect to the parameters of X and Y . The infinite summations over n and p arise from

the Rician k-factors kx and ky. These terms express the relative strength of the deterministic

components of X and Y , and it is their presence that leads to the double sum in (4.2).

We plot an example of (4.2) in Figure 4.1(a) for the case where kx = ky = 1, σ2x = σ2y = 1,

and ϕx = ϕy = π
4 . This plot was generated using the finite sum approximation described in (4.5)

with N = P = 10 (100 terms). Figure 4.1(b) shows a Monte Carlo simulation of the same scenario,

and confirms the validity of our derived result. The plot exhibits a cardioid shape, this is because

we are plotting the polar form of the two-dimensional PDF fRz ,Θz (rz, θz). A simple conversion to

Cartesian coordinates would remove the hole that appears at the origin. Furthermore, the notch
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Figure 4.1: Plot of the two-dimensional PDF fRz ,Θz (rz, θz), described in (4.2), for kx = ky = 1 and
σ2x = σ2y = 1. (a): analytical result, (b): Monte Carlo simulation. (c) Plot of the maximum error
ϵN given in (4.7) vs. kdB for various summation lengths N .
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at θz = 0 in Figure 4.1(b) is an artifact from the method used to compute the 2-D histogram, and

can be ignored. We can see from these plots that, in terms of phase, the energy is centered around

θz = π
2 , this is a reasonable result, since the two inputs were centered at ϕx = ϕy = π

4 and phase

is additive under multiplication. The long tail across amplitude matches the behavior of Rician

distributions.

Real-Imaginary Notation

Through a simple transformation of variables, we can express the joint PDF of the real (ℜZ) and

imaginary (ℑZ) parts of Z:

fℜZ ,ℑz(zr, zi) =
2

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
n,p=0

1

n!p!

(
α

2 cos (∠Z − ϕx − ϕy)

)n+p(kx
ky

)n−p

Kn−p

(
2|Z|
σxσy

)
In+p (2α) , (4.3)

where, |Z| =
√
z2r + z2i , ∠Z = arctan (zi/zr), and α =

√
2|Z|kxky cos (∠Z − ϕx − ϕy) /σxσy.

Convergence Analysis

We note that (4.2) is a doubly-infinite summation of modified Bessel functions of the first (Iv(z))

and second (Kv(z)) kinds [86]. To evaluate this summation, we truncate the series. For simplicity,

we define the general summation term βn,p such that (4.2) can be written:

fΘz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
n,p=0

βn,p. (4.4)

Define the partial sum:

f̃Θz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

N−1∑
n=0

P−1∑
p=0

βn,p, (4.5)

and the error term:

ϵN,P
△
= fΘz ,Rz(θz, rz)− f̃Θz ,Rz(θz, rz). (4.6)
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Table 4.1: Table of upper bounds for ϵN , according to (4.7) when k2y = k2x.

Number of terms σ2 > ν2 σ2 < ν2

N2 kdB = −6 kdB = −3 kdB = 0 kdB = 3 kdB = 6

25 1.51e−07 6.42e−06 1.74e−04 2.10e−03 2.61e−01
100 2.92e−15 4.57e−12 3.62e−09 1.16e−06 6.39e−05
225 5.67e−24 3.21e−19 7.90e−15 7.55e−11 1.13e−07
400 0 4.51e−27 3.61e−21 1.06e−15 4.72e−11
625 0 0 5.00e−28 4.58e−21 6.20e−15
900 0 0 0 7.59e−27 3.18e−19

Ricean k-factors in this chart are reported in dB.

See (4.2.1).

Values below 10−30 are assumed to equal 0.

The numbers of computed terms N and P in (4.5) are user selected parameters. We simplify by

stating that N = P and rewrite ϵN,P as ϵN .

Lemma 4.2.2. Upper Bound on (4.6): For sufficiently large number of terms N , the truncation

error ϵN for f̃Θz ,Rz(θz, rz) in (4.5) is bounded by:

ϵN ≤ 2rz
πσ2xσ

2
y

e−(k
2
x+k2y)

[
βN,N

1− ξ̃N

(
1

1− ρ̃N,N
+

1

1− ϖ̃N,N

)
+

N−1∑
n=0

βn,N
1− ρ̃n,N

+
βN,n

1− ϖ̃N,n

]
, (4.7)

where βn,p is the (n, p)-th summation term, explicitly defined in (4.28), ρ̃n,p is the upper bound on

the decay rate of βn,p as p increases, defined in (4.32), ϖ̃n,p is the upper bound on the decay rate

of βn,p as n increases, defined in (4.34), and ξ̃n is the upper bound on the decay rate of βn,p along

the line n = p, defined in (4.36).

Proof. See Appendix 4.B.

The error upper bound (4.7) allows us to iteratively compute (4.2) for increasing numbers of

terms N . At each stage, we compute the upper bound on the error, according to (4.6). When the

error ϵN is guaranteed to be below some desired threshold, the computation is terminated. A set of

sample values for (4.6) is given in Table 4.1 and plotted in Figure 4.1(c). Error values below 10−30

are assumed to be 0. In both Table 4.1 and Figure 4.1(c), kx and ky are expressed in decibel scale:

kdB = 10 log10
(
k2x
)
= 10 log10

(
k2y
)
,
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and are swept across the range kdB = [−6dB, 6dB]. The x-axis of Figure 4.1(c) is given in dB, while

the y-axis plots linear values on a log scale. The error ϵN clearly increases as kx and ky increase,

necessitating more summation terms in order to maintain a given upper bound on the error ϵN .

This confirms that it is kx and ky that cause the infinite summations to arise in (4.2). In other

words, the stronger the deterministic components of X and Y are, the more summations terms are

needed for accurate computation.

From Table 4.1, the number of terms needed for an accuracy of ϵN < 10−2 is N = 5 (25 terms).

Also, using this table, we can say that each pixel in Figure 4.1(a) is accurate to within an error of

ϵN < 3.62e−9.

As described in Appendix 4.B, this error bound is not always valid. Depending on the pa-

rameters kx, ky, σx, σy, and the amplitude rz that is considered, smaller numbers of terms N

may produce erroneous bounds that are negative, making them easy to identify. This stems from

the decay rate bounds applied and occurs when the parameters ρ̃n,N and ϖ̃N,n, which are defined

in (4.32) and (4.34), respectively, are greater than 1. If this error is encountered, then N should

be incremented, and their values retested.

One or more inputs are zero mean

If we let νy → 0, then the joint distribution fRz ,Θz (rz, θz) in (4.2) reduces to:

Z ∼CNN
(
νxe

jϕx , σ2x; 0, σ
2
y

)
fΘz ,Rz(θz, rz) =

2rz
πσ2xσ

2
y

e−k2x

∞∑
n=0

k2nx

(n!)2

(
rz
σxσy

)n

Kn

(
2rz
σxσy

)
. (4.8)

If, in addition to νy → 0, we allow νx → 0, then the joint distribution fRz ,Θz (rz, θz) in (4.2)

reduces to:

Z ∼CNN
(
0, σ2x; 0, σ

2
y

)
fRz ,Θz (rz, θz) =

2rz
πσ2xσ

2
y

K0

(
2rz
σxσy

)
. (4.9)
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Figure 4.2: Plot of the 2-Dimensional PDF fRz ,Θz (rz, θz), depicted in (4.8), when kx = σ2x = σ2y = 1.

These results can be verified by noting the approximation to a Modified Bessel Function of the first

kind for small arguments (z → 0) and non-negative integer orders (v ̸= −1,−2,−3 . . .) [86]§(10.30.1):

Iv(z) ≈
(
1
2z
)v

Γ(v + 1)
,

and then taking the limit of (4.2) first as ky → 0 for (4.8) and then again as kx → 0 for (4.9).

Coments regarding (4.8) and (4.9):

• While the general joint PDF in (4.2) is a doubly-infinite summation, this simplifies to an

infinite summation over one term when one of the inputs is zero mean, as in (4.8), and

reduces further to a closed form solution when both inputs are zero mean, as in (4.9).

• Both PDFs are independent of Θz. Thus, Θz is uniformly distributed and is independent of

Rz in both scenarios.

We plot an example of (4.8) in Figure 4.2 for the case where kx = 1, σ2x = σ2y = 1, and ϕx = π
4 .

The plot shows circular symmetry about the origin, caused by the independence of Θz. This is in

stark contrast to Figure 4.1(a), where a strong dependence on Θz is seen.
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Figure 4.3: (a) Plot of the probability distribution fRz(rz) computed using (4.10) for various values
of kx, when ky is set to 1. (b) Plot of the maximum error ϵN given in (4.12) vs. kdB, for various
number of terms N2.

4.2.2 Marginal Distribution

In addition to the joint distribution fRz ,Θz (rz, θz), we present the marginal distribution of the

amplitude Rz: fRz(rz). This result is useful in many applications, and is a direct extension of

the joint distribution. We present the results for all three target scenarios and note that prior

work corroborates all three of the probability distributions derived in this section. Our convergence

analysis is, to our knowledge, unique.

Theorem 4.2.3. Product of two non-zero mean complex Gaussian variables If X ∼ CN
(
νxe

jϕx , σ2x
)

and Y ∼ CN
(
νye

jϕy , σ2y
)
are independent random variables, then the amplitude Rz = |XY | is

characterized by the distribution:

fRz(rz) =
4rz
σ2xσ

2
y

e−(k
2
x+k2y)

∞∑
n,p=0

(
knxk

p
y

n!p!

)2(
rz
σxσy

)n+p

Kn−p

(
2rz
σxσy

)
. (4.10)

Proof. The proof for (4.10) follows the proof in Appendix 4.A closely. We begin with the joint
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distribution of Rx and Ry, given in (4.19), and perform the substitution [rz = rxry, t = ry]:

fRz ,T (rz, t) =
4rz
tσ2xσ

2
y

e
−
[
( rzt )2

σ2
x

+ t2

σ2
y
+k2x+k2y

]
I0

(
2rzνx
tσ2x

)
I0

(
2tνy
σ2y

)
.

Next, we integrate over t = [0,∞), recall the identity in (4.23) and convert both of the modified

Bessel functions to their infinite summation representations:

fRz(rz) =
4rz
σ2xσ

2
y

e−(k
2
x+k2y)

∞∑
n,p=0

(
1

n!p!

)2(kxrz
σx

)2n(ky
σy

)2p ∫ ∞

0

(
t2
)p−n

t
e
− 1

t2

(
r2z
σ2
x

)
−t2

(
1

σ2
y

)
dt.

We follow the same approach as in (4.24) and arrive at the solution:

fRz(rz) =
4rz
σ2xσ

2
y

e−(k
2
x+k2y)

∞∑
n,p=0

(
knxk

p
y

n!p!

)2(
rz
σxσy

)n+p

Kn−p

(
2rz
σxσy

)
.

This result appears in [75] under the product of independent Rician random variables. See

Figure 4.3(a) for a plot of (4.10) for various values of kx, when ky is fixed to 1. The solid lines

correspond to the analytical results computed from (4.10), while the dotted lines follow a weighted

histogram from Monte Carlo trials. For this test, νx = νy = 1. As the Rician K-factor kx increases,

the PDF approaches the Rician distribution fRy(ry).

Convergence Analysis

The result (4.10) is an infinite summation over the terms n, p = 0, . . . ,∞. In order to evaluate it,

we truncate the summations. We define the general term of the summation in βn,p, such that (4.10)

can be written:

fRz(rz) =
4rz
σ2xσ

2
y

e−(k
2
x+k2y)

∞∑
n,p=0

βn,p

We approximate (4.10) with the partial sum:

fRz
(rz) =

4rz
σ2xσ

2
y

e−(k
2
x+k2y)

N−1∑
n,p=0

βn,p, (4.11)
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and define the truncation error:

ϵN = fRz(rz)− fRz
(rz).

Lemma 4.2.4. Upper Bound on (4.2.2) For sufficiently large number of terms N , the truncation

error ϵN for fRz
(rz) in (4.11) is upper bounded by:

ϵN ≤ 4rz
σ2xσ

2
y

e−(k
2
x+k2y)

[
βN,N

1− ξN

(
1

1− ρN,N

+
1

1−ϖN,N

)
+

N−1∑
n=0

βn,N
1− ρn,N

+
βN,n

1−ϖN,n

]
(4.12)

where the summation term is defined:

βn,p =
k2nx k2py

(n!p!)2

(
rz
σxσy

)n+p

Kn−p

(
2rz
σxσy

)
,

and the various decay rate bounds are defined:

ρn,p
△
=
k2y
p2

(
rz
σxσy

)
χ(p− n)

ϖn,p
△
=
k2x
n2

(
rz
σxσy

)
χ(n− p)

ξN
△
=

(
kxkyrz
N2σxσy

)2

.

For brevity, we have used the term χ(n − p) and χ(p − n) in the definitions above to signify the

quantity:

χ(a) =
aσxσy +

√
a2σ2xσ

2
y + 4r2z

2rz
.

Proof. Repeat the steps taken in Appendix 4.B, replacing (4.2) with (4.10).

A set of sample values for (4.2.2) is given in Table 4.2 and Figure 4.3(b). We see from the table

that N = 15 (225 terms) are required for the error bound ϵN < 10−2. This is much larger than in

Lemma 4.2.2, which required only 25 terms. This increase is because the error here represents the

integral of the error in Lemma 4.2.2 across phase.
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Table 4.2: Table of representative values for ϵN , according to (4.12) when k2x = k2y.

Number of terms σ2 > ν2 σ2 < ν2

N2 kdB = −6 kdB = −3 kdB = 0 kdB = 3 kdB = 6

25 1.67e−06 1.42e−04 1.49e−02 3.18 2.63e+05
100 3.13e−14 1.01e−10 3.21e−07 1.80e−03 32.87
225 6.01e−23 6.64e−18 7.11e−13 1.21e−07 2.68e−05
400 0 8.93e−26 3.27e−19 1.73e−12 2.68e−05
625 0 0 4.44e−26 7.57e−18 3.63e−09
900 0 0 0 1.27e−23 1.89e−13
1225 0 0 0 9.45e−30 4.42e−18

Ricean k-factors in this chart are reported in dB.

See (4.2.1).

Values below 10−30 are assumed to equal 0.

One or more inputs are zero mean

If we let νy → 0, then the marginal distribution fRz (rz) in (4.10) reduces to:

fRz(rz) =
4rz
σ2xσ

2
y

e−k2x

∞∑
n=0

(
1

n!

)2( k2xrz
σxσy

)n

Kn

(
2rz
σxσy

)
. (4.13)

If, in addition, we let νx → 0, then the marginal distribution fRz(rz) in (4.10) reduces to:

fRz (rz) =
4rz
σ2xσ

2
y

K0

(
2rz
σxσy

)
.

These results appear in [75], the former under the product of independent Rician and Rayleigh

random variables and the latter under the product of independent Rayleigh random variables.

These equations can be verified by using the same approach as in Section 4.2.1.

See Figure 4.4 for a plot of (4.13) for various values of kx. For this test, νx = 1. As the Rician

K-factor kx increases, the pdf tends towards the Rayleigh distribution fRy(ry).
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Figure 4.4: Plot of the probability distribution fRz(rz) computed using (4.13) for various values of
kx when ky is set to 0.

4.3 Application to Blind Time Reversal Detection

For our first example, we consider the detection of a target in the presence of clutter using a single

transmitter and a single receiver. We will utilize a time reversal detection strategy similar to the

ones outlined in [26, 27, 78] with one notable difference. In the detection system we consider here,

the time reversal mirror will not communicate with the detector. Thus, the detection system must

operate without knowledge of the result of the forward transmission. The meaning of this statement

will be clarified below.

We define the frequency samples fq, q = [0, Q− 1]. We model the target as a point target with

a deterministic response T . The clutter is drawn from a zero-mean complex Gaussian distribution

with power spectral density Pc(fq). This channel model is discussed in detail in [80]. We transmit

the probing signal S(fq) and write the response:

Y (fq) = [T + C(fq)]S(fq) + V (fq),

where C(fq) ∼ CN (0, Pc(fq)) is the clutter response, and V (fq) ∼ CN
(
0, σ2v

)
represents additive
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noise. For simplicity, we use a white probing signal:

S(fq) =

√
Es

Q
,

for some transmit power Es. The time reversal probing signal is generated using a scaled, phase-

conjugated version of the received signal Y (fq):

STR(fq) = kY ∗(fq),

where k is the energy normalization factor defined by:

k =

√
Es∑Q−1

q=0 |Y (fq)|2
.

We assume that k is approximately deterministic, as was argued in [28]. The time reversal probing

signal STR(fq) is distributed as a complex Gaussian:

STR(fq) ∼ CN
(
kT ∗, k2

(
Pc(fq)

Es

Q
+ σ2v

))
.

The signal STR(fq) is then transmitted from the receiver back to the source, where the received

signal is:

X(fq) =
(
T + C (fq)

)
STR (fq) + V (fq),

where C (fq) is the clutter channel for the second transmission, and V (fq) is the noise signal for

the second transmission. We assume that the clutter and noise signals are independent of each

other and independent from one transmission to the next. If we ignore the noise term, then (4.3)

is distributed according to the product of independent complex Gaussians:

X(fq) ∼ CNN
(
µx,q, σ

2
x,q;µy,q, σ

2
y,q

)
,

where µx,q = T , µy,q = kT ∗, σ2x,q = Pc(fq), and σ
2
y,q = k2

(
Pc(fq)Es/Q+ σ2v

)
. At this stage, we

set up the binary hypothesis test. The detectors in [26, 27, 78] were designed to use both Y (fq)

and X(fq). In this application, however, we consider the case where Y (fq) is not available to the

detector. In the null hypothesis, the case where no target is present, T = 0. In the alternative
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hypothesis, T > 0. Thus:

H0 : µx,q = 0, µy,q = 0

H1 : µx,q = T, µy,q = kT ∗

4.3.1 Likelihood Ratio Test

The received signalX(fq) follows the complex Double Gaussian distribution presented in Section 4.2.

Under H0, X(fq) is distributed according to the special case (4.9). Under H1, X(fq) is distributed

according to the general result in Theorem 4.2.1. To compute the likelihood ratio, we divide (4.2)

by (4.9).

ℓLRT =

Q−1∏
q=0

e−(k
2
x,q+k2y,q)

∞∑
n,p=0

1

n!p!

(
α

2 cos (θq)

)n+p(kx,q
ky,q

)n−p Kn−p

(
2rq

σx,qσy,q

)
K0

(
2rq

σx,qσy,q

) In+p (2α) , (4.14)

where θq = ∠X(fq), rq = |X(fq)|, and αq =
√

2rqkx,qky,q cos (θq) /σx,qσy,q. It would be pos-

sible to construct the likelihood ratio ℓLRT numerically, through a Monte Carlo simulation, but

that approach would be much more computationally complex, and would not yield the analytical

representation in (4.14). From the likelihood ratio ℓ, we can construct the test [2]:

ϕ =

{
1 ℓLRT ≥ ηLRT

0 ℓLRT < ηLRT
, (4.15)

for some threshold ηLRT. Ideally, we would use the distribution of the test statistic ℓLRT to determine

the appropriate threshold ηLRT for some desired false alarm rate. However, its distribution is

unknown, so we must rely on Monte Carlo simulations to determine the appropriate threshold.

4.3.2 Lower Bound on ℓLRT

As a benchmark on the Blind TR-LRT test statistic, given in (4.14), we will also compute the

energy detector test statistic (ℓED), given by:

ℓED =

Q−1∑
q=0

|X(fq)|2 . (4.16)
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The decision will follow the same structure as (4.15), with the alternate threshold ηED. This

detector provides a loose lower bound, as it is the optimal detector when the distribution of X(fq)

is unknown. The additional information (the marginal distribution of X(fq)) made available to the

LRT will improve its detection performance.

4.3.3 Monte Carlo Simulations

To test the detector derived in Section 3.2.3, we construct a simulation scenario wherein the clutter

channel follows a Gaussian power spectral density in the band 2-4GHz, and the target (a point

target) has a constant value T = ejπ/2. We confine our transmit power to the Es = 1, and vary the

total clutter power Ec =
∑Q−1

q=0 Pc(fq). We vary the number of frequency samples Q and conduct

MC = 104 Monte Carlo trials for each scenario.

Using these Monte Carlo trials, we set the probability of false alarm to (PFA) = 0.01, determine

the appropriate threshold from a noise-only simulation, and then use that threshold to compute

the probability of detection (PD) for the likelihood ratio test given in (4.15) as we vary the number

of frequencies Q and the signal-to-noise ratio SNR. The signal-to-noise ratio is defined:

SNRdB = 10 log10

(
Es |T |2

Qσ2v

)
.

We also define the signal-to-clutter ratio SCRdB:

SCRdB = 10 log10

(
Q |T |2∑Q−1

q=0 Pc(fq)

)
.

For the first test, we compare the likelihood ratio test (LRT) that we derived in (4.14) to the Energy

Detector in (4.16) with varying SCR. We plot the results in Figure 4.5, which depicts Probability of

Detection for each scenario against SNRdB. We consider two scenarios: strong clutter (SCRdB = 0)

and weak clutter (SCRdB = 5). In the strong clutter case, the ED fails to distinguish the target,

while the LRT achieves PD > .9 at high SNR. In the weak clutter case, the ED improves and

performs similarly to the LRT detector in strong clutter. The LRT improves as well, outpacing the

ED. From this test, we can see that the LRT has a distinct SCR advantage over the ED, since it

utilizes the distribution of X (fq).

For the second test, we set the signal-to-clutter ratio to a fixed value of SCRdB = 0 and the

signal-to-noise ratio to a fixed value of SNRdB = 0. We allow the number of frequencies Q to take
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Figure 4.5: Plots of the detector performance for the Likelihood Ratio Test (LRT) detailed
in (4.14) and the Energy Detector (ED) in (4.16) depicting the Probability of Detection (PD).
(a) Q = 10 frequency samples, SCR = 0, 5dB, and PFA = 0.01. (b) SCR = 0dB, SNR = 0dB, and
Q = 10, 20, 50, 100.
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on the values Q = 10, 20, 50, and 100. The results are plotted in Figure 4.5(b), on a log-log

scale with probability of detection (PD) ranging from 0.1 to 1 and probability of false alarm (PFA)

ranging from 10−3 to 1. From this plot, we can see that the LRT performance increases notably with

increasing Q, while the ED improves marginally by comparison. For example, if we set the false

alarm rate to PFA = 10−2, the ED will achieve ≈ 15% detection with Q = 10 and 20% detection

with Q = 100, a 33% increase. The LRT, however, achieves ≈ 50% detection with Q = 10 and

almost 80% with Q = 100, a 60% increase. Since the LRT is leveraging more information about

the channel and target, it stands to benefit more from a larger sampling space.

Both the LRT and ED curves experience a saturation with Q. Both detectors show a significant

improvement in performance as Q increased from 10 frequencies to 20. However, when we look

at the jump from 50 frequencies to 100, the improvement in each case is smaller than the initial

increase, despite the fact that far more frequencies are being added. This progression suggests that

there is a saturation behavior as Q approaches ∞. As the number of frequencies increases, the new

information presented by each frequency has a smaller effect on performance. The LRT, by taking

advantage of the distribution of X(fq) extracts more of the information from each sample, so it

saturates more slowly. This is why the difference between Q=50 and Q=100 is much larger for the

LRT than for the ED. It is worth noting that this saturation is independent of the physical saturation

that occurs because of the system’s coherence bandwidth, as was discussed in Figure3.4(a).

4.3.4 Effect of Summation Length

The PDF for the complex Double Gaussian distribution is a doubly-infinite summation. As a result,

the likelihood ratio test statistic presented in (4.14) also contains a doubly-infinite summation. In

order to compute the PDF, this summation must be truncated at some point N . In this test, we

look at how the choice of N affects detector performance. In Figure 4.6, we show the detector

performance (PD vs. SNRdB) for various summation lengths N , when SCRdB = 0 and Q = 10.

We also plot the performance curve for the ED in this scenario, as a benchmark. We can see

from the results that the detector does well with just a single term, except for a spurious result

at SNRdB = 4, which can be attributed to numerical instability of the algorithm when only one

term is used. A modest increase to N = 5 (25 summation terms) removes the numerical instability

but performs only slightly better, and moving to N = 10 (100 summation terms) or N = 15 (225

summation terms) yields almost no improvement. Thus, for this test scenario, only 25 summation

terms are necessary for near-optimal performance.
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Figure 4.6: Plot of the detector performance for the Likelihood Ratio Test (LRT) detailed in (4.14)
and the Energy Detector (ED) in (4.16) for various summation lengths (N) when the false alarm
rate is fixed at PFA = 0.01, Q = 10 frequency samples, and SCRdB = 0.

4.4 Application to M-PSK Error Analysis

A second potential application is the error analysis for M-ary Phase Shift Keying (M-PSK) com-

munication systems (a system where the M constellation points are equally spread about the unit

circle). We consider a system similar to the one analyzed in [76, 77], with the exception that we

limit the number of diversity branches to L = 1. Given the transmission of a symbol s, we write

the received signal r as:

r = hs+ v,

where h is the channel’s complex random gain and v ∼ CN
(
0, σ2v

)
is an additive noise term. The

symbol s belongs to an M-PSK constellation S, given by S = {S1, . . . ,SM}, where:

Sm =
√
Ese

j
2π(m−1)

M ,

and Es is the transmit energy. In order to estimate the channel gain, we first transmit K pilot

symbols:

sp = [sp1, . . . , spK ]T ,
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and write the received signal vector:

rp = hsp + vp,

with the IID noise vector vp ∼ CN
(
0, σ2vIK

)
. The least-squares estimate ĥ of h is given by:

ĥ =
sHp rp

∥sp∥2
∼ CN

(
h,

σ2v
KEs

)
.

The least-squares estimate ĥ is often assumed to be a deterministic result ĥ ≈ h for error analysis.

We do not make this assumption. For this reason, our results are applicable when the noise power

σ2v is large, or when the number of pilot symbols K is small.

Following the K pilot symbols each data symbol sd is transmitted, and the received data signal

rd is run through a linear combiner:

ŝd = ĥ∗rd = ĥ∗ (hsd + vd) .

This correlation output is distributed according to the complex Double Gaussian distribution:

ŝd ∼ CNN
(
h∗,

σ2v
KEs

;hsd, σ
2
v

)
.

We can compute the Symbol Error Probability (SEP) with [76]:

Pe = Pr
{ π

M
< z < 2π − π

M

}
,

where the product z = ĥ∗ (h+ v) is distributed z ∼ CNN
(
h∗, σ2v/KEs;h, σ

2
v

)
. We compute this

probability with the integral:

Pe =

∫ 2π−π/M

π/M

∫ ∞

0
fRz ,Θz (rz, θz) drzdθz. (4.17)

4.4.1 Monte Carlo Trials

These analytical results are shown as the solid lines in Figure 4.7, which plots the probability of

error against signal-to-noise ratio (SNR). To verify these analytical results, we compute the error

probability term in (4.17) by simulating the transmission of K = 10 pilot symbols and 100 data

symbols through a channel H = ejπ/2. This experiment is repeated for MC = 105 independent



118 CHAPTER 4. THE COMPLEX DOUBLE GAUSSIAN DISTRIBUTION

Analy�cal
Monte Carlo

100

10-1

M=8

M=4 (QPSK)

M=2 (BPSK)

M-PSK Error Analysis

−10 −8 −6 −4 −2 0 2
SNR [dB]

Symbol Error Probability (SEP)

Figure 4.7: Symbol Error Probability against SNR for an M-PSK Communication System with
M = 2 (Binary PSK), M = 4 (Quadrature PSK), and M = 8.

Monte Carlo trials. These are shown as the open circles in Figure 4.7. We define the SNR:

SNR =
Es

σ2v
.

To compute the integral Pe in (4.17), we evaluate the PDF fRz ,Θz (rz, θz) over a grid of 50 range

bins and 100 phase intervals and numerically integrate over the region of interest. At each range

bin, we use the error bound in (4.7) to determine the minimum number of terms N2 in order to

guarantee a truncation error of ϵN ≤ 10−10. There is a strong correlation between the Monte Carlo

(circular marks) and analytical (solid lines) results.

In order to study the effects of the number of terms N2 on the analytical computation of symbol

error probability, we repeated the simulation with N2 = 25, 100, 225, 400, and 625 terms. The

results are shown in Figure 4.8 for the case where the number of constellation points isM = 8. It is

clear from Figure 4.8 that, for the range of SNR and parameters considered, N2 = 625 is sufficient

for high accuracy. However, if we are interested in higher noise scenarios, then fewer terms are

required. Figure 4.8 also shows that, for example, at SNR = −4dB, N2 = 100 terms is sufficient.

This dependence on the parameters illustrates the value of the error bound in (4.7), as it can be

used to determine the appropriate number of terms needed adaptively.
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Figure 4.8: Symbol Error Probability versus SNR for an M-PSK Communication System with
M = 8 constellation points. Analytical results are computed with a varying number of terms
(N2 = 25, 100, 225, 400, 625).

4.5 Discussion

In this chapter, we have derived a new distribution, which we refer to as the complex Double Gaus-

sian distribution, to describe the product of two independent complex Gaussian random variables.

We also derived the special cases where one or more of the inputs is zero-mean. We analyzed

the convergence of this result, which contains a doubly-infinite summation, and derived an upper

bound on the truncation error. We showed that the number of terms needed for accurate results

varies with the Rician k-factors (the ratio of mean-squared to variance) for both inputs. We adap-

tively compute the PDF by specifying a desired accuracy and use the error bound to adaptively

determine how many terms are needed. We applied this result to derive the optimal filter, in a

Neyman-Pearson sense, for a time reversal based detection system, wherein the received signal is

distributed according to the complex Double Gaussian distribution and verified that the detector

outperforms the standard energy detector for that scenario. We also presented a single-channel

M-ary Phase shift Keying communication system for which the linear combiner output follows the

complex Double Gaussian distribution. Using this fact, we derived the Symbol Error Proabability

(SEP), and verified our results using Monte Carlo trials. This distribution is a novel result and is

useful in a wide array of applications.
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Appendices

4.A Proof of Theorem 4.2.1

To begin, we recall the polar representations X = Rxe
jΘx and Y = Rye

jΘy . The product Z = XY

is written:

Rze
jΘz = RxRye

j(Θx+Θy),

where Rz = RxRy, Θz =≪ Θx + Θy ≫2π, and ≪ θ ≫2π is the principal value of θ, defined over

the interval [0, 2π). Recall that the desired distribution is fRz ,Θz (rz, θz). As an intermediate step,

we will compute the joint distribution fΘz ,Rx,Ry (θz, rx, ry), using Bayes’ theorem [82]:

fΘz ,Rx,Ry(θz, rx, ry) = fΘz |Rx,Ry
(θz|rx, ry)fRx,Ry(rx, ry), (4.18)

and then perform the transformation of random variables Rz = RxRy. Since X and Y are inde-

pendent, the joint distribution fRx,Ry (rx, ry) is simply the product of two Rician distributions:

fRx,Ry (rx, ry) =
4rxry
σ2xσ

2
y

e
−
[

r2x
σ2
x
+

r2y

σ2
y
+k2x+k2y

]
I0(λx)I0(λy) (4.19)

In order to compute the distribution of Θz conditioned on Rx and Ry, we convolve two Tikhonov

distributions circularly over the interval [0, 2π) [82]:

fΘz |Rx,Ry
(θz|rx, ry) =

1

4π2I0(λx)I0(λy)

∫ 2π

0
eλx cos(ϕx−υ)eλy cos(θz−υ−ϕy)dυ.

We make the substitution:

fΘz |rx,Ry
(θz|rx, ry) =

∫ 2π
0 eγ cos(υ−β)dυ

4π2I0(λx)I0(λy)

=
I0(γ)

2πI0(λx)I0(λy)
, (4.20)

where

γ =
√
λ2x + λ2y + 2λxλy cos (θz − ϕx − ϕy). (4.21)
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The integral solution for (4.20) can be found in [46, 87, 119]. We substitute (4.19) and (4.20)

into (4.18):

fΘz ,Rx,Ry(θz, rx, ry) =
2rxryI0(γ)

πσ2xσ
2
y

e
−
[

r2x
σ2
x
+

r2y

σ2
y
+k2x+k2y

]
.

Next, we define the non-linear transformation:[
rz

t

]
=

[
rxry

ry

]
,

which results in the distribution:

fRz ,Θz ,T (rz, θz, t) =
2rzI0(γ)

tπσ2xσ
2
y

e
−
[

r2z
t2σ2

x
+ t2

σ2
y
+k2x+k2y

]
,

noting that γ is now a function of t. We integrate out the dummy variable T :

fΘz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∫ ∞

0

I0(γ)

t
e
− 1

t2

(
r2z
σ2
x

)
−t2 1

σ2
y dt. (4.22)

We first note the identity [87]§(8.445):

Iv(z) =

(
1

2
z

)v ∞∑
m=0

(
1
2z
)2m

m!(v +m)!
, (4.23)

for integer values v. We recall the definition for γ in (4.21) and define λx and λy according to (4.1).

Thus, the modified Bessel function I0 (γ) can be written:

I0(γ) =

∞∑
m=0

1

(m!)2

((
rzkx
tσx

)2

+

(
tky
σy

)2

+ 2

(
rzkxky
σxσy

)
cos (θz − ϕx − ϕy)

)m

.

We make use of the trinomial expansion, which can be easily derived from the binomial expansion:

(a+ b+ c)m =
m∑

n=0

m−n∑
p=0

m!anbpcm−n−p

n!p!(m− n− p)!
.
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Thus:

I0(γ) =

∞∑
m=0

m∑
n=0

m−n∑
p=0

(2 cos (θz − ϕx − ϕy))
m−n−p

m!n!p!(m− n− p)!

(
rxkx
σx

)m+n−p(ryky
σy

)m−n+p

.

We insert the expanded form of I0(γ) into (4.22):

fΘz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
m=0

m∑
n=0

m−n∑
p=0

(2 cos (θz − ϕx − ϕy))
m−n−p

m!n!p!(m− n− p)!

(
rzkx
σx

)m+n−p

(
ky
σy

)m−n+p ∫ ∞

0

(
t2
)p−n

t
e
− 1

t2

(
r2z
σ2
x

)
−t2 1

σ2
y dt. (4.24)

If we make the substitution u = ln
(
t2σx/rzσy

)
, then the integral portion of (4.24) becomes:

1

2

∫ ∞

−∞

(
rzσy
σx

eu
)p−n

e
−e−u rz

σxσy
−eu rz

σxσy du.

From the hyperbolic cosine identity [87]§ (1.311.3) and the integral solution [87]§ (3.337.1), this

reduces to: (
rzσy
σx

)p−n

Kn−p

(
2rz
σxσy

)
, (4.25)

where Kv(z) is the modified Bessel function of the second kind with order v and argument z [86].

From (4.25), we see that (4.24) reduces to:

fΘz ,Rz (θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
m=0

m∑
n=0

m−n∑
p=0

(2 cos (θz − ϕx − ϕy))
m−n−p

m!n!p!(m− n− p)!

(
rzkxky
σxσy

)m

(
kx
ky

)n−p

Kn−p

(
2rz
σxσy

)
,
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Now, we reorder the summation indices to place m on the inside, and isolate all of the terms

dependent upon m:

fΘz ,Rz (θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)

∞∑
n,p=0

(
kx
ky

)n−p (2 cos (θz − ϕx − ϕy))
−n−p

n!p!
Kn−p

(
2rz
σxσy

)
∞∑

m=n+p

(2 cos (θz − ϕx − ϕy))
m

m!(m− n− p)!

(
rzkxky
σxσy

)m

We recall the Bessel function identity presented in (4.23); this leads to the solution:

fΘz ,Rz(θz, rz) =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y) (4.26)

∞∑
n,p=0

1

n!p!

(
α

2 cos (θz − ϕx − ϕy)

)n+p(kx
ky

)n−p

Kn−p

(
2rz
σxσy

)
In+p (2α) ,

where α is defined by:

α
△
=

√
2rzkxky cos (θz − ϕx − ϕy)

σxσy
. (4.27)

4.B Proof of Lemma 4.2.2

We recall the definition of the summation term in (4.4) and the PDF in (4.2). From those equations,

βn,p can be written:

βn,p =
1

n!p!

(
α

2 cos (θz − ϕx − ϕy)

)n+p(kx
ky

)n−p

Kn−p

(
2rz
σxσy

)
In+p (2α) . (4.28)

We also recall the truncation error in (4.6); we can thus write ϵN with:

ϵN =
2rz

πσ2xσ
2
y

e−(k
2
x+k2y)


N−1∑
n=0

∞∑
p=N

βn,p︸ ︷︷ ︸
Error Region 1

+

∞∑
n=N

N−1∑
p=0

βn,p︸ ︷︷ ︸
Error Region 2

+

∞∑
n=N

∞∑
p=n

βn,p︸ ︷︷ ︸
Error Region 3

+

∞∑
p=N

∞∑
n=p+1

βn,p︸ ︷︷ ︸
Error Region 4

 .
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Figure 4.9: The infinite summation over two variables (n and p) is depicted graphically. The finite
summation approximation of (4.5) is depicted in the lower-left region, while the four remaining
regions represent error terms.

We assume that the number of terms N is sufficiently large so that for all four error regions (see

Figure 4.9), we can apply the approximation [86]:

Iv(x) ≈
1√
2πv

(ex
2v

)v
, for large v.

Thus,

βn,p ≈
k2nx k2py

n!p!
√
2π (n+ p)(n+p+ 1

2)

(
erz
σxσy

)n+p

Kn−p

(
2rz
σxσy

)
. (4.29)

4.B.1 Error Region 1

We turn first to Error Region 1 (see Figure 4.9), and wish to show that the infinite summation over

p is upper bounded by the geometric series:

∞∑
p=N

βn,p ≤
∞∑
p=0

βn,N (ρ̃n,N )p =
βn,N

1− ρ̃n,N
. (4.30)
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In order to define ρ̃n,N , we look at the ratio between successive terms of βn,p, as p increases:

ρn,p
△
=

βn,p
βn,p−1

=
e (n+ p− 1)(n+p− 1

2)

p (n+ p)(n+p+ 1
2)

(
k2y

rz
σxσy

) Kp−n

(
2rz
σxσy

)
Kp−n−1

(
2rz
σxσy

) .
Note that we negated the order of the modified Bessel function of the second kind. This operation

is permitted because Kv(x) = K−v(x) [86]. For the ratio of modified Bessel functions, we cite the

inequality [120]§(1.13):
Kv(x)

Kv−1(x)
<
v +

√
v2 + x2

x
, ∀v ∈ ℜ. (4.31)

This can be used to create a relaxation ρ̃n such that ρn,p < ρ̃n,p, which is defined:

ρ̃n,p
△
=
e (n+ p− 1)(n+p− 1

2)

p (n+ p)(n+p+ 1
2)

(
k2y

rz
σxσy

) (p− n)σxσy +
√

(p− n)2 σ2xσ
2
y + 4r2z

2rz
. (4.32)

This equation is monotonically decreasing with p (simplification yields a polynomial with principal

order of 1/p). Thus, we can provide an upper bound with the smallest value of p in the series,

p = N ; thus: ρn,p < ρ̃n,N . This leads to the upper bound given in (4.30), as long as ρ̃n,N < 1 In

Table 4.1, we demonstrate that this is not always true for small N. However, the values for which

this is not valid are also the values of N for which the error bound is large. Therefore, whenever

ρ̃n,N ≥ 1, we can say that N should be incremented. Inserting (4.30) into the full summation yields

the bound:
N−1∑
n=0

∞∑
p=N

βn,p ≤
N−1∑
n=0

βn,N
1− ρ̃n,N

. (4.33)

4.B.2 Error Region 2

We turn to error region 2 (see Figure 4.9), and note that its structure is similar, so the approach

will be the same. We begin by defining the ratio between successive terms of βn,p, this time as n

increases:

ϖn,p
△
=

βn,p
βn−1,p

=
e (n+ p− 1)(n+p− 1

2)

n (n+ p)(n+p+ 1
2)

(
k2x

rz
σxσy

) Kn−p

(
2rz
σxσy

)
Kn−p−1

(
2rz
σxσy

) .
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We apply (4.31) to define an upper bound ϖ̃n,p > ϖn,p, where:

ϖ̃n,p
△
=
e (n+ p− 1)(n+p− 1

2)

n (n+ p)(n+p+ 1
2)

(
k2x

rz
σxσy

)
(n− p)σxσy +

√
(n− p)2 σ2xσ

2
y + 4r2z

2rz
. (4.34)

This equation is monotonically decreasing with n (the simplification yields a polynomial with

principal order of 1/n), thus ϖ̃n,p ≤ ϖ̃N,p. Thus, we have the upper bound for error region 2:

N−1∑
p=0

∞∑
n=N

βn,p ≤
N−1∑
p=0

βN,p

1− ϖ̃N,p
. (4.35)

As with ρ̃n,N , this bound is only valid when ϖ̃N,p < 1.

4.B.3 Error Region 3

For error region 3 (see Figure 4.9), we have the bounds n = [N,∞) and p = [n,∞). The inner

summation is similar to that in error region 1. Thus, we begin with (4.33), and adjust the summation

limits:
∞∑

n=N

∞∑
p=n

βn,p ≤
∞∑

n=N

βn,n
1− ρ̃n,n

.

Recalling their definitions in (4.29) and (4.32), we have:

βn,n ≈ 1

(n!)2
√
2n

(
ekxkyrz
2nσxσy

)2n

K0

(
2rz
σxσy

)
ρ̃n,n =

e

2n2

(
2n− 1

2n

)2n− 1
2
(
k2y

rz
σyσx

)
.

We define ξn as the ratio between successive terms of the summation, as n increases:

ξn =
βn,n

βn−1,n−1

1− ρ̃n−1,n−1

1− ρ̃n,n
.

We note that ρ̃n,n is a monotonically decreasing function for large n (as n increases, the ratio

(2n − 1)/(2n) approaches 1 and becomes a non-contributing factor). For this reason, we can say
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that:
ρ̃n,n

ρ̃n−1,n−1
≤ 1 → 1− ρ̃n−1,n−1

1− ρ̃n,n
≤ 1.

This allows us to define the upper bound ξ̃n ≥ ξn:

ξ̃n
△
=

βn,n
βn−1,n−1

=

(
ekxkyrz
2n4σxσy

)2(n− 1

n

)2n− 3
2

. (4.36)

For large n, the ratio (n− 1)/n is approximately 1, thus, we can write:

ξ̃n ≈
(
ekxkyrz
2n2σxσy

)2

.

This is a monotonically decreasing function of n and can thus be upper-bounded by its limiting

value (at n = N): ξ̃n ≤ ξ̃N . This leads to the upper bound on the summation for error region 3:

∞∑
n=N

∞∑
p=n

βn,p ≤
βN,N

(1− ρ̃N,N )
(
1− ξ̃N

) . (4.37)

Once again, this bound is only valid when ξ̃N < 1, which we can easily show to be true for all N

that satisfy the inequality:

N >

√
ekxkyrz
2σxσy

.

4.B.4 Error Region 4

Finally, we turn to error region 4 (see Figure 4.9) and note its similarity to error region 2. We start

with (4.35) and adjust the summation limits:

∞∑
p=N

∞∑
n=p

βn,p ≤
∞∑

p=N

βp,p
1− ϖ̃p,p

.
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Recalling their definitions in (4.29) and (4.34), we have:

βp,p ≈
1

(p!)2
√
2p

(
ekxkyrz
2pσxσy

)2p

K0

(
2rz
σxσy

)
ϖ̃p,p =

e

2p2

(
2p− 1

2p

)2p− 1
2
(
k2x

rz
σxσy

)
.

We define the ratio ζp:

ζp
△
=

βp,p
βp−1,p−1

1− ϖ̃p−1,p−1

1− ϖ̃p,p
.

We note that ϖ̃p,p is a monotonically decreasing function for large p (as p increases, the ratio

(2p − 1)/(2p) approaches 1 and becomes a non-contributing factor). For this reason, we can say

that:
ϖ̃p,p

ϖ̃p−1,p−1
≤ 1 → 1− ϖ̃p−1,p−1

1− ϖ̃p,p
≤ 1.

This allows us to place an upper bound on the ratio ζ̃p ≥ ζp:

ζ̃p
△
=

βp,p
βp−1,p−1

=

(
ekxkyrz
2p2σxσy

)2(p− 1

p

)2p− 3
2

.

For large p, the ratio (p− 1)/p is approximately 1; we can write:

ζ̃p ≈
(
ekxkyrz
2p2σxσy

)2

.

This is a monotonically decreasing function of p and can be upper-bounded by its limiting value

(at p = N):

ζ̃p ≤ ζ̃N =

(
ekxkyrz
2N2σxσy

)2

.

We can see that ζ̃N = ξ̃N . This leads to the upper bound on the summation for error region 3:

∞∑
p=N

∞∑
n=p

βn,p ≤
βN,N

(1− ϖ̃N,N )
(
1− ξ̃N

) . (4.38)
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4.B.5 Synthesis

We take the bounds calculated in (4.33), (4.35), (4.37), and (4.38), and insert them into the error

term defined in (4.6), to obtain the upper bound on the error ϵN :

ϵN ≤ 2rz
πσ2xσ

2
y

e−(k
2
x+k2y)

[
N−1∑
n=0

βn,N
1− ρ̃n,N

+

N−1∑
n=0

βN,n

1− ϖ̃N,n
+
βN,N

1− ξ̃N

(
1

1− ρ̃N,N
+

1

1− ϖ̃N,N

)]
.
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Chapter 5

TR Gain Effects

Time Reversal can be readily thought of as an adaptive waveform technique, whereby the initial

received signal is used to construct an adaptive transmit signal for the TR transmission stage. It is

necessary, then, to compare the processing gain of a TR transmit signal against more conventional

signals, including those proven to be optimal for a given scenario. By its very title, Time Reversal

lays the claim that delay (or phase, in the frequency domain) is an important component of transmit

signal design. In this chapter, we will discuss the implications and support of this claim.

Before we begin, it is important to note that Time Reversal does not ignore the arguments

of power allocation. In fact, TR methods often benefit when the first stage transmission makes

use of some power allocation or interference mitigation, as we do in Chapter 2 and was done

in [24, 26, 27, 29]. The claim of Time Reversal is that, not only is power allocation important,

but proper phase allocation can also improve performance through constructive interference of

multipath components.

First, we will discuss TR gain in deterministic channels, both single and multiple-antenna,

and utilize deterministic bounds on TR gain that were derived in [26, 27]. Then, we will turn our

attention to Gaussian channels, such as those considered in Chapters 2 and 3 and extend the insight

gained from deterministic channels.
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5.1 Deterministic Channels

5.1.1 Multi-Antenna Systems

It is obviously the case that, for multi-antenna systems, phase information is important. This

simple fact is the key behind 30 years of phased array research and beamforming [121]. Given this

observation, it is clear that there is a potential for Time Reversal to affect performance. We now

turn to discussions on that fact.

We introduce the idea of Signal-to-Noise Ratio gain (SNRG). The idea behind this metric is

that improvements caused by Time Reversal are equivalent to an effective increase in the Signal-to-

Noise Ratio, i.e., a Time Reversal detector with a signal-to-noise ratio of α performs equivalently

to a comparable conventional detector with a Signal-to-Noise Ratio of αψ. This is seen as a shift

to the left, by a value of 10 log10 ψ [dB], in the S-curve detection plots that we have shown in

Chapters 2, 3, and 4.

In [27], Jin and Moura presented a Time Reversal detection method based on subtraction of a

measured background response, and Time Reversal of the residual energy. They showed that Time

Reversal exploits the structure in this residual to achieve improved detection performance. They

presented an ideal Time-Reversal Channel Matched Filter (TR-CMF), along with a more realistic

Time-Reversal Generalized Likelihood Ratio Test (TR-GLRT). Restricting their analysis to SIMO

(a single transmitter paired with a Time Reversal Mirror), they derive the upper bound on the

effective Signal-to-Noise ratio gain (SNRG), given by:

SNRG ≤ SNRGmax = 2

1
Q

∑
q ∥h(fq)∥

4
2(

1
Q

∑
q ∥h(fq)∥

2
2

)(
1
Q

∑
q ∥h(fq)∥

2
1

) , (5.1)

where h(fq) is the target channel response between the transmitter and the Time Reversal Mirror,

∥·∥2 is the ℓ2 norm, and ∥·∥1 is the ℓ1 norm. It is easy to show, by the Schwarz inequality, that

this term is greater than 1. Furthermore, the equality condition of the Schwarz Inequality is

quite illuminating. If the target’s channel response vector h(fq) is uniform across all frequencies,

then SNRGmax = 1. This is the limiting case of a point target in free space. Any variations

across frequency increase the SNRG, as does an increase in the number of independent sampled

frequencies, Q. As we show in Figure 3.4(a), Q is a direct function of the multipath scattering

density. As the multipath density increases, the coherence bandwidth decreases, and we can sample

a larger number of independent frequencies Q. This not only increases the number of terms in the
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summations of (5.1), but also makes the vectors more volatile, as increased paths and reduced

coherence bandwidth introduce variability in h(fq) across frequencies. For these reasons, it is clear

to see that the SNRG will increase with channels that exhibit more multipath. This prediction has

been verified experimentally [27, 29].

5.1.2 Single-Antenna Systems

When we turn to Single-Antenna Systems, the argument for validity of phase information is not

as evident. In many conventional single-antenna systems, such as SISO communications or radar,

conventional wisdom follows a power allocation strategy as optimal for transmit signal design,

usually some variant of the classical “water filling” approach wherein transmit power is concentrated

in frequency bins with low noise and interference [80, 84]. We will discuss the implication of this

result for Time Reversal below.

Moura and Jin studied the problem of single-antenna detection with deterministic channels

in [26], which was a preliminary version of their multi-antenna paper [27]. For the single-antenna

case, they showed that SNRG follows the expression [26]§(85):

SNRG =
d22
d21

=

∑
q |S(fq)|

2∑
q |S(fq)|

2 |Ht(fq)|4(∑
q |S(fq)|

2 |Ht(fq)|2
)2 . (5.2)

Through the Schwartz inequality, they were able to prove that SNRG ≥ 1, guaranteeing that

Time Reversal would perform at least as well as the ideal conventional detector (with equality in

the limiting regime where Ht(fq) = α, such as a point target in free space), and possibly better.

We note that the Schwarz inequality applied to (5.2) does not depend on any assumptions of the

transmit signal design, so it will hold when comparing against any power allocation scheme.

Uniform Transmit Power

In order to investigate the potential for gains, Moura and Jin studied different channel types through

analysis of the normalized histograms (across frequency) of the target channel response magnitude:

|Ht(fq)|, under the assumption of a flat transmit signal S(fq) = 1. Under this analysis, the SNRG

is reinterpreted as the ratio of the fourth-order moment of the target channel response (µ4) to the

second-order moment (µ2) squared:

SNRG =
µ4
µ22
. (5.3)
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This observation led to the realization that empirical distributions of the channel response across

frequency with heavy tails (such as the Laplace or Student-t distribution) have the greatest potential

for SNR gain, achieving an expected gain of 7.7db and 9.4dB respectively. A Gaussian distribution,

while not as beneficial, still has the potential for as much as 4.7dB of potential gains. In order to

achieve these gains, however, TR must be compared to a flat spectral power allocation.

Optimal Transmit Power

In the scenario presented (known clutter that can be subtracted and white noise), the optimal

transmit signal is a single-frequency transmission:

Sopt(fq) =

{ √
Es, |H(fq)|2 = maxq |H(fq)|2

0, else
. (5.4)

In this single-frequency scenario, the signal-to-noise ratio gain in (5.2) simplifies to SNRG = 1.

The single-antenna Time Reversal Channel Matched Filter is guaranteed to match the optimal

transmit signal design. If, the optimal transmit signal is unknown for some reason, then Time

Reversal can provide a means to approximate that signal, as was noted in [26].

5.2 Gaussian Channels

Gaussian channels present a unique challenge to Time Reversal. The conditions for reciprocity are

no longer guaranteed, and removal of unwanted interference is no longer a matter of background

subtraction. In order to isolate the effect of clutter, we first look at Gaussian channels in the

absence of clutter.

5.2.1 Clutter Free TR-MIMO

This scenario was discussed in the context of TR-MIMO in Section 3.1. We showed, in (3.119)

and (3.120), that the Normalized J-Divergence for the TR-MIMO and S-MIMO detectors, respec-
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tively, are given by:

ψTR =
2Mα(1 + αNQ+NQ)2

2α2(α+ 1
2)

2 + 4NQα2(α+ 1
2) +Q2N(α+ 1

2)
2 + 1

2α(QN + 1)
(5.5)

ψS =
2M3Nα2

1 + (1 +Mα)2
. (5.6)

where α is defined as the signal to noise ratio σ2s/σ
2
n, M is the number of transmitters, and N is

the number of receivers. We consider the asymptotic Time Reversal gain:

SNRGasym = lim
α→∞

ψTR

ψS
(5.7)

=
NQ2

2 (1 + 2NQ)
. (5.8)

From this equation, it is clear to see that the asymptotic TR gain is ≥ 1 whenever Q > 4. In fact, if

we let the number of receivers N approach ∞, then SNRGasym → Q/4. TR gain is approximately

linear with Q. If we consider a single-receiver system, a multiple-input single-output (MISO) array,

as it were, the gain equation reduces to:

SNRGasym =
Q2

2 + 4Q
. (5.9)

Again we see that the gain is approximately linear with Q. It was shown in [29] that dense multipath

decreases the coherence bandwidth, and thereby increases the number of independent frequency

samples Q within a given frequency band. Thus, increased multipath leads to increased SNRG.

In this scenario, since we have assumed that the target and the noise are both spectrally flat,

the optimal transmit power allocation is also spectrally flat. It is unclear how the gain parameter

will be affected by spectrally variant target statistics, but we rely on the analogy from [26] that

Time Reversal approximates the optimal transmit waveform.

5.2.2 Single-Antenna Detection with Known Targets (TR-LRT and TR-LQ)

In Chapter 2, we considered single antenna detection and showed that the TR-LRT and TR-LQ

detectors provide a noticeable increase in detection performance when compared to the Weighted

Energy Detector (WED) with either a spectrally flat transmit signal or a Water Filling transmit

signal, as described in (2.70) and (2.71), respectively. These probing signals are not theoretically
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Figure 5.1: Probability of Detection against SNR [dB] for both Time Reversal detectors (TR-LRT
and TR-LQ) and the conventional WED with three different transmit signals (Flat PSD, WF,
TAWF). Fully reciprocal channel: ρc = ρt = 1, TCR=5dB.

optimal, since they do not consider the target’s Power Spectral Density (PSD). As an approximation

to the optimal transmit signal, we present a modification to the water filling solution in (2.71), we

refer to this modification as Target-Aware Water Filling (TA-WF), which we define:

|STAWF (fq)|2 = max

(√
Pt(fq)Pv(fq)/λ− Pv(fq)

Pc(fq)
, 0

)
, (5.10)

where the parameter λ is chosen to satisfy:

Q−1∑
q=0

max

(√
Pt(fq)Pv(fq)/λ− Pv(fq)

Pc(fq)
, 0

)
= Es. (5.11)

Figure 5.1 plots the detection probability PD against SNR [dB] for the TR-LRT and TR-LQ

as well as the WED with the spectrally Flat transmit signal (2.70), the Water Filling transmit

signal (2.71), and the Target-Aware Water Filling transmit signal (5.10). In this plot, we seed

Time Reversal with STAWF (fq) instead of SWF (fq), for a fair comparison. The WED with TAWF

clearly outperforms the WED with either the spectrally flat transmit signal or with WF, gaining

4dB of effective SNR, this lends credence to the approximate optimality of TAWF. The TR-LRT and

TR-LQ detectors fail to outperform the WED with TAWF. In fact, in this scenario, the TR-LRT
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and TR-LQ underperform the approximately optimal TAWF, they achieve only 3.5dB of effective

SNR gain over the WF (0.5dB shy of the TAWF). This means that, not only does Time Reversal

not improve upon the optimal transmit signal but, in this case, it fails to maintain the optimal

performance. This loss of optimality can certainly be attributed to the presence of the clutter.

This is not a fundamental limitation of Time Reversal. Rather, this illustrates room for further

improvement in our TR transmission protocol, since the method proposed in Chapter 2 illuminates

both the target and the clutter in the TR probing stage. An ideal approach would apply Time

Reversal only to the target response. We discuss this further in Section 6.5.1, where we discuss

future avenues of research.

5.2.3 Single-Antenna Detection with Unknown Targets

If we consider the case where Pt(fq) is unknown, then the TAWF transmit signal cannot be derived.

In this case, the WF transmit signal is the closest that we can obtain to the optimal transmit signal.

In addition, the TR-LRT, TR-LQ, andWED hypothesis tests cannot be explicitly constructed, since

they depend upon knowledge of the target PSD. As an illustration, we propose the following energy

detectors:

ℓTR−ED (r) =

M−1∑
m=0

∥rm∥2 (5.12)

ℓED (z) =
M−1∑
m=0

zHmΣ−1
zz|H0

zm, (5.13)

where r is the clutter-whitened TR data vector from (2.46), z is the conventional data vector

from (2.60), and Σzz|H0
is the covariance matrix of zm, which is dependent only upon the clutter

and interference statistics.

Figure 5.2 plots the probability of detection PD against signal-to-noise ratio SNR when the false

alarm rate is PFA = 0.01 for the fully reciprocal and fully independent channels. These curves were

plotted by running MC = 104 Monte Carlo trials of the same simulation setup as in Section 2.5.

It is clear from these results that, when reciprocity holds, TR provides a significant performance

increase over conventional detection methods (see Figure 5.2(a)). When the reciprocity condition

breaks down, the gain afforded by Time Reversal is no longer present and the retransmission of

noisy signals leads to a slight reduction in performance (see Figure 5.2(b)). This confirms what we

know about Time Reversal and agrees with our study of detection performance against coherence
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Figure 5.2: Plot of detector performance for the TR-ED (5.12) and conventional ED (5.13) when
TCR=-5dB against SNR. (a) Fully reciprocal channel: ρc = ρt = 1, (b) independent channels:
ρc = ρt = 0.

with TR-MIMO (see Figure 3.5). Reciprocity provides an environment wherein Time Reversal can

improve upon conventional detection methods.

5.3 Conclusion

In this chapter, we presented a comprehensive discussion of the detection gains associated with Time

Reversal. We cited analytical expressions for the effective Signal-to-Noise ratio gain (SNRG) [26,27],

and analyzed the structure of these expressions. We have shown that, for both single- and multi-

antenna detection systems, the SNRG is guaranteed to be ≥ 1 (by the Schwartz inequality), and

that increasing the level of multipath improves this gain parameter. In the single antenna case we

showed that Time Reversal provides a computationally convenient approximation to the optimal

transmit signal S(fq) (SNRG = 1).

Our analysis for Gaussian channels builds on these two observations. For the multi-antenna

case, we analyzed TR-MIMO and showed that the asymptotic (noise-free) SNRG is approximately

linear with Q, and is ≥ 1 whenever Q > 4. This confirms the common wisdom that increased

multipath leads to increased performance gain with Time Reversal, since dense multipath increases

the number of independent frequencies Q in a given band. For the single-antenna case, we show



5.3. CONCLUSION 139

that it is possible to construct an approximately optimal transmit signal, which we refer to as the

Target Aware Water Filling signal that results in a negligible SNRG. We then presented a pair

of Energy Detectors and showed that Time Reversal provides a significant detection gain over the

conventional energy detectors. These two tests suggest that our prior observation on deterministic

channels extends to Gaussian channels: that Time Reversal provides a computationally convenient

approximation to the optimal transmit signal.
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Chapter 6

Conclusion

We have presented a series of Time Reversal detection strategies for random channel scenarios. We

presented a single-antenna Gaussian detection strategy and derived a Time Reversal Likelihood

Ratio Test (TR-LRT) and Time Reversal Linear Quadratic Test (TR-LQ). We also presented

a Multi-Input Multi-Output (MIMO) radar detection strategy that utilizes multipath to create

spatial diversity and derived a Time Reversal MIMO (TR-MIMO) detector. We have shown that,

in both scenarios, Time Reversal has the potential for improvements upon conventional transmission

methods.

We derived a new statistical distribution, the complex Double Gaussian distribution, to describe

the product of two independent complex Gaussian random variables. We analyzed the behavior and

implementation of this distribution, and presented two potential applications. We used the complex

Double Gaussian distribution to derive the optimal likelihood ratio test for a blind Time Reversal

detection scheme operating with a stationary target in the presence of randomly varying clutter.

We also used the complex Double Gaussian distribution to derive the symbol error probability

(SEP) for an M-ary Phase Shift Keying (M-PSK) communication system.

We presented a review and discussion of Time Reversal gain effects. We showed that Time Re-

versal presents a significant performance increase for multi-antenna systems with complex channels

(non-flat Power Spectral Densities). For single-antenna systems, we showed that Time Reversal has

the potential for improvements upon conventional transmission methods and that Time Reversal’s

performance meets that of the theoretically optimal transmit signal. This observation confirmed

that Time Reversal approximates the optimal transmit signal and alleviates the performance loss

associated with sub-optimal transmit signals.
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6.1 Single-Antenna Gaussian Detection

In Chapter 2, we presented a Time Reversal approach for single-antenna detection of Gaussian

targets in Gaussian clutter. We used this approach to derive the Neyman-Pearson optimal Time

Reversal Likelihood Ratio Test (TR-LRT) in (2.38). We also derived the sub-optimal Time Rever-

sal Linear Quadratic (TR-LQ) detector in (2.47). We derived analytical performance curves and

thresholds for the TR-LQ detector in (2.49). We showed through numerical simulations that the

predicted performance curves match the experimental results for the TR-LQ and that the TR-LQ

performs close to the TR-LRT. Thus, the TR-LQ allows us to compute the approximate perfor-

mance of the optimal TR-LRT detector. We compared both of these detectors to the conventional

Weighted Energy Detector (WED), from (2.64). We showed in Figure 2.5 that, when the probability

of false alarm is PFA = 0.01, the signal-to-noise ratio is SNR=6dB, TCR=5dB, and the coherence

parameters are ρc = ρt = 0, the TR detectors achieve a detection probability of PD = 0.8 while

the conventional WED achieves only PD = 0.7. When the coherence parameters are increased to

ρc = ρt = 1, the TR detectors achieve a detection probability of PD = 0.8 at SNR=0dB while the

conventional WED achieves only PD = 0.6, this is shown in Figure 2.4.

6.2 Time Reversal MIMO

In Chapter 3, we presented a Time Reversal approach for MIMO radar detection. We utilized the

assumption of multipath to justify spatial diversity with a point target. We derived the Neyman-

Pearson optimal TR-MIMO detector in (3.71) and compared it to the conventional S-MIMO de-

tector in (3.90). We showed that, when the MIMO array consists of M = 2 transmit antenna and

N = 3 receive antennas, ρ = 1 and PFA = 10−5, the TR-MIMO detector has an effective SNR

gain of 10dB over the S-MIMO detector in Figure 3.3. We also showed in Figure 3.5 that, when

M = 2 transmit antennas, N = 3 transmit antennas, and PFA = 10−4, the TR-MIMO detector

outperforms the S-MIMO detector for all ρ > 0.15.

We considered TR-MIMO detection of a low-rank target in the presence of full-rank clutter in

Section 3.2. We suppressed the clutter response by projecting the Time Reversal transmit signal

onto the signal subspace of the target. We then re-derived the TR-MIMO and S-MIMO detectors

that take advantage of the target subspace for this scenario in (3.161) and (3.173), respectively.

We compared the two detectors in Section 3.2.4. We showed in Figure 3.6 that, when the signal-

to-clutter ratio is SCR=10dB and PFA = 0.01, the TR-MIMO detector achieves an effective SNR
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gain of 7dB over the S-MIMO and that, when the SCR=0dB, TR-MIMO achieves an asymptotic

(noise-free) detection probability of PD = 0.89 while S-MIMO achieves only PD = 0.02.

6.3 Complex Double Gaussian Distribution

In Chapter 4, we discussed the product Z = XY of two independent complex Gaussian random

variables X and Y . We derived the joint probability distribution function (PDF) of the real and

imaginary components of Z, in (4.2). We refer to this PDF as the complex Double Gaussian

distribution, and show that it is computed via a doubly-infinite summation. We derived an upper

bound on the truncation error ϵN of the first N terms of this summation in (4.6) and propose an

adaptive approach to its evaluation.

We presented results for the special cases where one or both of the inputs X and Y are zero-

mean as well as the marginal distribution of the magnitude |Z| for the general case and both special

cases. We showed how the marginal distribution of the amplitude |Z| is related to prior results

from the reference handbook [75]. This relation confirmed our results.

We considered two applications of this distribution. In Section 4.3, we presented a blind

Time Reversal detection scheme and used the complex Double Gaussian distribution to derive the

Neyman-Pearson optimal detector. We showed in Figure 4.5 that the optimal LRT significantly

outperforms an Energy Detector. We showed that, when PFA = 0.01, the LRT has an effective SCR

gain of 5dB. Furthermore, we showed in Figure 4.6 that, when SCR = 0dB and Q=10 frequencies,

the LRT can achieve optimal performance with only 5 terms. In Section 4.4, we used the complex

Double Gaussian distribution to compute the Symbol Error Probability (SEP) for an M-ary Phase

Shift Keying (MPSK) communication system. We computed the SEP for an MPSK system and

showed in Figure 4.7 that when SNR=0dB, SEP=0.04 for a binary (M=2) PSK scheme, SEP=.15

for a quadrature (M=4) PSK system, and SEP=.3 for M=8. We showed in Figure 4.8 that, when

SNR=0dB and M=8 constellation points, N2 = 225 terms of the infinite summation in (4.2) are

needed for accurate error estimation.

6.4 Discussion of Time Reversal Gain

In Chapter 5, we presented a comprehensive discussion of the detection gains associated with Time

Reversal. We cited analytical expressions for the effective Signal-to-Noise ratio gain (SNRG) [26,27],

and analyzed the structure of these expressions in Section 5.1. We showed that, for both single- and
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multi-antenna detection systems, the SNRG is guaranteed to be ≥ 1 (by the Schwartz inequality),

and that increasing the level of multipath improves this gain parameter. In the single antenna

case we showed that Time Reversal provides a computationally convenient approximation to the

optimal transmit signal Sopt(fq) (SNRG = 1).

Our analysis for Gaussian channels in Section 5.2 built on these two observations. For the

multi-antenna case, we showed in (5.8) that the asymptotic (noise-free) SNRG of TR-MIMO is

approximately linear with the number of independent frequencies Q, and that SNRGmax > 1

when Q > 4. This confirms the common wisdom that increased multipath leads to increased

performance gain with Time Reversal, since dense multipath increases the number of independent

frequencies Q in a given band. For the single-antenna case, we show that it is possible to construct

an approximately optimal transmit signal, which we refer to as the Target Aware Water Filling

signal, that results in SNRG < 1, see Figure 5.1. The loss of performance is due to an inefficiency

in our clutter suppression technique, which we discuss further in Section 6.5.1. We then presented

a pair of Energy Detectors and showed in Figure 5.2 that Time Reversal provides a significant

detection gain over the conventional energy detectors. Through these two tests we suggested that

our prior observation on deterministic channels extends to Gaussian channels: that Time Reversal

provides a computationally convenient approximation to the optimal transmit signal.

6.5 Future Work

This thesis provides a comprehensive description of Time Reversal detection in Gaussian channels,

and motivates a wide variety of future studies. These future studies include improvement of the

TR-LRT and TR-LQ algorithms for (1) enhanced clutter suppression, and (2) unknown target

statistics, extension of the TR-LRT and TR-LQ results to multiple antennas, and extension of the

complex Double Gaussian distribution to the vector inner product case. We discuss each of these

avenues of research below.

6.5.1 Enhanced Clutter Suppression

As we observed in Section 5.2.2, the TR-LRT and TR-LQ detectors derived in Chapter 2 do not sup-

press the clutter optimally. We make use of the water filling transmit signal in (2.71) to determine

the initial probing signal for the forward stage of transmission, but ignore the background subtrac-

tion in the intermediate step, between the forward and Time Reversal transmission stages [26,27],



6.5. FUTURE WORK 145

since background subtraction is not applicable to random channels. The clutter suppression step

undertaken in the Time Reversal Adaptive Interference Canceling (TRAIC) algorithm [24] pro-

vides motivation for an alternative approach. We can construct a clutter-suppressed Time Reversal

probing signal with:

STR(fq) = kY ∗(fq)Ŵ (fq),

where Ŵ (fq) is a clutter suppression filter that minimizes the expected clutter return:

Ŵ (fq) = min
W (fq)

E
{
Hc(fq)Y

∗(fq)W (fq)
}
,

subject to a unit-norm constraint:
Q−1∑
q=0

|W (fq)|2 = 1.

We suspect that the solution to this would be similar to a Water Filling signal, a filter that

modulates Y ∗(fq) to adaptively allocate power to the frequency bins that have minimal clutter.

This approach, while useful, will only be optimal for spectrally flat targets, i.e., point targets, and

could potentially reduce the received target power by allocating power into frequencies that contain

minimal target power. Thus, if we consider the target’s Power Spectral Density, we can also solve

the optimization:

Ŵ (fq) = max
W (fq)

E
{
Ht(fq)Y

∗(fq)W (fq)
}

E
{
Hc(fq)Y ∗(fq)W (fq)

} ,
with the same unit-norm constraint. This maximizes the returned Signal-to-Clutter ratio. It

is unclear what the solution to this maximization is, but we surmise that it is similar to the

Target-Aware Water Filling signal that we presented in (5.10). Once we derive the optimal clutter

suppression filter, then analysis of the TR-LRT and TR-LQ detectors would need to re-evaluated

given the redefined transmit and receive signals.

6.5.2 Unknown Target Statistics

The TR-LRT and TR-LQ detectors derived in Chapter 2 assume that knowledge of the target’s

Power Spectral Density (PSD) is given to the detector. In a realistic scenario, detectors must be

capable of detecting a wide array of targets, with possibly unknown statistics. For this reason, it is

desirable to derive detectors that do not depend upon a priori knowledge of the target’s statistics.

We briefly considered this problem in Section 5.2.3, where we presented an Energy Detector for



146 CHAPTER 6. CONCLUSION

Time Reversal, that is based on the clutter whitened signal vector r from (2.46). This approach

was useful to demonstrate the potential for Time Reversal gain in realistic detection scenarios, but

was not an exhaustive derivation.

We propose the extension of our work through derivation of the Generalized Likelihood Ratio

Test (GLRT) for Time Reversal in this scenario. We recall the definition of the GLRT:

ℓGLRT (z) =
max

P̂t(fq)
f
(
z|P̂t(fq),H1

)
f (z|H0)

≷ η.

The GLRT is intuitively understood as taking the same form as the standard Likelihood Ratio

Test, with the exception that the unknown parameter (Pt(fq), in this case) is replaced with its

Maximum Likelihood estimate
(
P̂t(fq)

)
.

This derivation would extend the applicability of Time Reversal detection into realistic scenarios

where the target’s statistics are unknown. For motivation, we look to the single antenna TR-

GLRT presented in [26], which showed considerable performance gain over the conventional Energy

Detector (ED). We expect the TR-GLRT to perform similarly in this situation.

6.5.3 Multi-Antenna Detection

In order to complement the single-antenna detection results in Chapter 2 and the MIMO detection

results in Chapter 3, we wish to extend derivation of the TR-LRT and TR-LQ detectors into the

multiple-antenna scenario. The derivation for this scenario would closely follow that of the single-

antenna case in Chapter 2. The Time Reversal protocol will closely follow the one we laid out for

single-antenna detection in Section 2.2.1. Design of the likelihood ratio test will be straightforward

but complicated. We anticipate that the use of multiple antennas will increase the SNR gain caused

by Time Reversal, as is the case with deterministic channels.

6.5.4 Vector Complex Double Gaussian Distribution

The complex Double Gaussian distribution derived here is an important first step in the character-

ization of the product of complex Gaussian random variables. We have solved the scalar case, but

there is a demonstrated need for characterization of the vector case (a sum of products of complex
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Gaussian random variables) [77]. Given the sum of products:

z = xTy

=

N∑
n=1

zn,

where zn = xnyn is the n-th product. The straightforward approach to extension of our scalar

result is to solve the N -th order two-dimensional convolution:

fz (zr, zi) = f (zr1, zi1) ∗ f (zr2, zi2) ∗ · · · ∗ f (zrN , ziN ) ,

where f (zrn, zin) follows the complex Double Gaussian distribution in (4.3), zrn and zin are the

real and imaginary parts, respectively, of the product zn = xnyn, and ∗ is the two-dimensional con-

volution over the Complex space. Evaluation of this N -th order convolution may prove intractable.

An alternative approach is to work in the characteristic function domain:

Φ (ωrn, ωin) = E
{
ej(ωrnzrn+ωinzin)

}
=

∫ ∞

−∞

∫ ∞

−∞
ej(ωrnzrn+ωinzin)f (zrn, zin) dzrndzin.

We can then compute the characteristic function of the sum z =
∑N

n=1 zn with:

Φ (ωr, ωi) =

N∏
n=1

Φ(ωrn, ωin) .

Mallik [77] has recently derived this quantity under the condition that x and y have scaled identity

covariance matrices : E
{
xxH

}
= σ2xI, and E

{
yyH

}
= σ2yI, and demonstrated several possible

applications for this results. The work we propose here would extend that to the general diagonal

covariance matrix case, and expand the domain of potential applications. As with [77], it is un-

clear whether inversion of this joint characteristic function to compute the probability distribution

function (PDF) via:

f (zr, zi) =

∫ ∞

−∞

∫ ∞

−∞
e−j(ωrzr+ωizi)Φ(ωr, ωi) dωrdωi,
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will be tractable. If it is not, we will rely on numerical methods to compute the PDF for specific

applications.

6.5.5 Product of Dependent Complex Gaussian Random Variables

Another potential extension of Chapter 4 is to consider the product of dependent random variables.

This would allow the direct application of the complex Double Gaussian distribution to the detection

problem in Chapter 2 (see Section 2.2.2). In order to solve this problem, we would begin in the

same manner as in Appendix 4.A, with Bayes’ Theorem:

f (rx, ry, θz) = f (θz|rx, ry) f (rx, ry) ,

and then perform the transformation of variables rz = rxry, t = ry and integrate over the dummy

variable t. The differences would arise from the fact that: (1) since X and Y are no longer

independent, f (rx, ry) is no longer the product of two Rician distributions, and (2) f (θz|rx, ry) is
no longer the convolution of two Tikhonov distribution. Evalution of this distribution will greatly

extend the already numerous applications of the complex Double Gaussian distribution.
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