

Designing for Interaction and Insight:

Experimental Techniques

For Visualizing Building Energy Consumption Data

By Hetian Cao

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Computational Design

December 2017

Abstract

While more efficient use of energy is increasingly vital to the

development of the modern industrialized world, emerging

visualization tools and approaches of telling data stories provide an

opportunity for the exploration of a wide range of topics related to

energy consumption and conservation (Olsen, 2017). Telling energy

stories using data visualization has generated great interest among

journalists, designers and scientific researchers; over time it has been

proven to be effective to provide knowledge and insights (Holmes,

2007).

This thesis proposes a new angle of tackling the challenge of

designing visualization experience for building energy data, which

aims to invite the users to think besides the established data

narratives, augment the knowledge and insight of energy-related

issues, and potentially trigger ecological responsible behaviors, by

investigating and evaluating the efficacy of the existing interactive

energy data visualization projects, and experimenting with

user-centric interactive interface and unusual visual expressions

though the development of a data visualization prototype.

Keywords: building energy consumption, energy efficiency, water

consumption, energy data visualization, data visualization,

human-data interaction

Acknowledgements

First and foremost, I want to express my sincere gratitude to my

excellent thesis advisor, Dr. Daniel Cardoso Llach, for his remarkable

patience, motivation, guidance and support, and for not giving up on

me in my hardest moments. I could not have done it without his help.

I would like to thank my thesis committee member, Dr. Eddy Man

Kim, for his encouragement, insightful comments and advice.

My sincere thanks also go to Dr. Vivian Loftness, for pointing me to

the dataset and insightful perspectives for my thesis, as well as Dr.

Dave Touretzky, Dr. Chris Harrison, Prof. Joshua Bard and Dr. Daragh

Byrne for offering me great opportunities in their exciting projects

during my time at CMU. I would also like to thank Ardavan Bidgoli and

Pedro Veloso for their help with my research and study.

My thanks also go to my dear friend Noreen Saeed for believing in

me;Robert Zacharias for your kindness, your great company and

encouragement. And thank you Lu Han for being so caring and

supportive. My thanks also go to Amit Nambiar, Qiaozhi Wang,

Hexing Ren, Chaoya Li, and the rest of my CodeLab-mates, for all your

support and inspirations, the deadline-approaching sleepless nights

and happy memories.

Last but not least, to my dearest parents, for always being there for

me all this time. I am so lucky to have you in my life.

Table of Contents

Introduction...1

1 Background..3

1.1 Motivation/Significance...3

1.1.1 Research Area...3

1.1.2 Obstacles and Current Approach..4

1.1.3 The Gap...5

1.1.4 Motivation and Relevance..6

2 Case Studies...8

2.1 Case #1: Unusual Visual Expressions and Data

Personalization..8

2.1.1 Dear Data: the Project...8

2.1.2 Emotional Connection and Storytelling...............................9

2.1.3 Time-based Data Representations with Unusual Visual

Languages Leading to More Active Engagement..............10

2.1.4 The unexpected efficacy of designing rules and legends..12

2.1.5 Left-to-right comparison...15

https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.qjehzbpaxgcu
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.i7heapjq3jqn
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.pc987172k0bp
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.o5bjfpnqabrh
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.e44ov4wrvg3
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.w2pozkib0hu
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.bbf5xyc6xlh
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.qqnk3yvaruen
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.b2d5y8eluia7
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.b2d5y8eluia7

2.2 Case #2: Evaluating the Efficacy of Existing Energy Data

Visualizations...16

2.2.1 A Comparison Study of Interactive Maps for Energy

Data...1

6

2.2.2 Evaluating the Existing Energy Data Visualizations...........26

3 Hypothesis...28

3.1 Research Questions..28

3.2 Hypothesis..29

3.3 Methods...29

4 WaterViz: A Prototype...30

4.1 Data Processing..31

4.1.1 Acquiring Dataset..31

4.1.2 Analysing the Main Features of the Acquired Dataset......33

4.1.3 Parsing and Filtering Data...34

4.2 Data Visualization...38

4.2.1 Constructing Data Structures for Visualization.................38

4.2.2 Topographic Viewport of the US.......................................39

4.2.3 Detailed and Integrated Viewport of State Data…...........44

4.2.4 Comparison Viewport of Building Data.............................45

4.3 Designing Data Interaction and Experience...............................46

4.3.1 “Free-edit” Mode……………………………..................46

4.3.1 Keyboard Interactions and Toggle Dashboard..................49

4.3.1 Transaction between Viewports……………...................51

5 Conclusions and Next Steps...51

5.1 Conclusions..51

5.2 Next Steps..52

5.3 Contributions...53

https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.gl7vaxn5kkrt
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.gl7vaxn5kkrt
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.r444qpp4s0j1
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.r444qpp4s0j1
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.g1k2que0t6dk
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.y8sxxslhnlap
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.76i53ktqo0g4
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.8z4vlhu1a7qa
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.9u6az0tx40o
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.pwuxbwjxgv07
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.orofqh3vu265
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.8fx4lwx0scyc
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.een1851otulg
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.shqnpdiucjq0
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.yk13jqfyolct
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.ecfzf3iqk55f
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.2cdb7ak3jc2t
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.kcztww13q73e
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.dtpa1kyl7a98
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.d3zne0gmu4w7
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.ecfzf3iqk55f
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.ecfzf3iqk55f
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.ecfzf3iqk55f
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.ke65wjvygxbl
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.4c33xy8ob5q1
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.l4lxpocwk0x5
https://docs.google.com/document/d/1k4ki9ziv-rSxaiCkbCyjg9mwS294PctkgFO6BUBA4DU/edit#heading=h.l9rxd2ee2ju

Appendix A: Evaluating the Efficacy of Existing Energy

Data Visualizations...54

Appendix B: Source Code ...56

Bibliography...126

Table of Tables

Table 1: Comparing features of data points in each visualization…….21

Table 2: Comparing features of Interaction in each visualization…….24

Table 3: Variables of Each Data Entry from the Original Dataset……..31

Table of Figures

Figure 1 : A variation of visualizations from the project Dear Data......10

Figure 2: A page from the book Dear Data (Posavec and Lupi, 2016a),

showing the data visualization in the theme of “clocks” by

Giorgia Lupi...11

Figure 3: A page from the book Dear Data (Posavec and Lupi, 2016a),

showing the data visualization in the theme of “clocks” by

Stefanie Posavec…...13

Figure 4: A page from the book Dear Data (Posavec and Lupi, 2016a),

showing the formatting of comparing the same data subject

on the same viewport…..….15

Figure 5: Screenshot of the US Map of the“Mapping How the United

States Generates Its Electricity” project........................…...17

Figure 6: Screenshot of the “Estimated Total Annual Building Energy

Consumption at the Block and Lot Level for NYC”

Project…...17

Figure 7: Screenshot of the Philadelphia 2017 Building Energy

Benchmarking Project (Azavea Inc., 2017)............................18

Figure 8: Screenshot of the US Map in the project “The United States of

Energy 1.0”..19

Figure 9: Screenshot of the US Map Divided by Region in the project

“The United States of Energy 2.0”...19

Figure 10: Screenshot of the state profile after clicking on the region in

the US Map……..20

Figure 11: Screenshot of the Legend Page of the project “The United

States of Energy 2.0”...20

Figure 12: Icons that represent different energy sources from the

project “Electric Generation in Spain - Latest 24 hours”.......27

Figure 13 : File Structure of the Original Dataset…........................…..31

Figure 14: refined file structure with data sorted by year………….....35

Figure 15: Extracting Individual Building Profiles…..............................36

Figure 16: The process of importing and aligning the topographical map

of US from 50 separate models [1].......................................40

Figure 17: The process of importing and aligning the topographical map

of US from 50 separate models [2].......................................41

Figure 18: The process of importing and aligning the topographical map

of US from 50 separate models…….....................................42

Figure 19: Showing water state data on the topographical map

viewport…..42

Figure 20: Showing water and gas state data on the topographical map

viewport...….42

Figure 21: Showing water, gas, and electricity state data on the

topographical map viewport…...43

Figure 22: First Impression of the detailed viewport…........................44

http://www.azavea.com/

Figure 23: User can select buildings and arrange them freely in the

comparison viewport…..…..45

Figure 24: “Free-edit mode” allows the users to manipulate the objects

and visualizations freely in the first viewport.......................46

Figure 25: “Free-edit mode” allows the users to manipulate the objects

and visualizations freely in the first viewport…...................46

Figure 26: “Free-edit mode” allows the users to manipulate the objects

and visualizations freely in the second viewport….........….48

Figure 27: Using the metaphors of “Popsicle sticks” or file handles

encourage the users to engage in free

editing......................48

Figure 28 and 29: the instructions for keyboard interactions on the

up-left corner of both viewports......................................….50

Figure 30: the keyboard interaction of the left hand(WASD), AND RIGHT

HAND (< and >)..50

Figure 31: the toggle dashboard in the topographic viewport………..51

Introduction

Each and every day in countless buildings around the world, data of

many aspects of energy use and consumption is monitored, collected

and processed, adding to the increasingly massive and pervasive

network of energy data. To fully understand the complex concept

that is energy use and consumption seems like a difficult task as well

as a persistent goal for researchers, engineers and policy makers, not

to mention people who have limited knowledge and background in

related areas.

However, in order to achieve the goal of saving energy in a greater

scale, at the same time helping people with taking their ecological

responsibilities, this task of breaking down and understanding energy

consumption data has become the precondition and priority. In other

words, in order to more effectively reduce the consumption of energy

and keep the effort on course, people need to be presented with the

means and resources to get the knowledge and insights of their own

relationships with energy, the nature of the energy conservation

Page | 1

problem, and the actions to be taken to achieve the goals, on the

personal level and as a community.

Although more and more people have realized the importance of

saving energy and are making an effort in different aspects of their

daily life, they don’t always have a good enough perception of the

impact they can make through their decisions and behaviors on a

daily basis, therefore it eventually limits the possibilities and

potentials to be fully engaged, create a long term impact, and make

decisions that can reflect their environmental consciousness

(Loftness, et, al., 2017). Moreover, environmental scientists and

building researchers are facing the obstacle of getting the message

across to actors that can directly influence the construction of

infrastructures, environmental policies, and distribution of the

resources across the country .

And if that is the case, how can the goal of higher level sensemaking

be achieved? Could data visualization be part of the answer? Can we

visualize and represent the energy data in a manner that is effective

enough to move closer to the goal of understanding the patterns and

valuable information hidden in the numbers? And how does one

design the interaction and experience with the human in mind, so

that it can be sufficiently convincing to influence decision making,

behavior and policy, on the personal and institutional level on a

day-to-day basis? And these are some of the questions this thesis

attempts to discuss and experiment with looking for a solution from

an information design perspective.

Page | 2

1 Background

1.1 Motivation/Significance

1.1.1 Research Area

Using data visualization in storytelling and interaction has generated

great interest among designers, journalists and scientific researchers

in the area of energy consumption and conservation, and over time it

has been proven to be effective to carry huge amount of data and

logic, and has great potentials of human-data interactions when

explaining complex concepts and demonstrating detailed,

unconventional mechanisms and processes, comparing to verbal or

writing, etc.

Page | 3

1.1.2 Obstacles and Current Approach

Despite the increasing attention brought to environmental and

energy problems, obstacles against the effective propagation of the

knowledge and insights of energy consumption and conservation are

plentiful.

The environmental coverage in the mainstream media is far from

ideal to effectively inform the public. As pointed out by an Inaugural

Ranking Report completed by the Project for Improved Environmental

Coverage (PIEC) (Miller and Pollak, 2013): “On average,

entertainment headlines get over three times more coverage than

environmental stories for nationally prominent news organizations.”

There is much room and potential for innovation and development of

energy and environmental stories in the media, and strategies like

increasing the visibility of environmental stories and focus on

solutions can be helpful to some extent.

So how come it is challenging to tell environmental stories? In order

to understand the bigger picture, which is often necessary when it

comes to environmental changes across decades even centuries, it

can be more difficult to get to the eventual point and make an

argument. And the lack of established knowledge and the complexity

of certain terms also contributes to the an obstacle of maintaining the

current awareness and attention of the audience. If the way the

information is presented fails to be intuitive or easy to grasp, the

chances of reaching a bigger audience while trying to get across an

idea is rather slim.

Page | 4

Meanwhile, the public suffers tremendously from the lack of accurate

information and mixed messages in the existing news reports.that

scientific consensus that lead to the conclusion of the existence of

climate change and the effects of human activities are dismissed by

misleading comments in the media coverage (Miller and Pollak, 2013;

Huertas and Adler, 2012). While we urge the news corporations to

produce fairer, science-based news coverage, it is helpful to

acknowledge the challenges of telling an environmental story, as well

as the necessity of looking for solutions and alternatives from the

human-data interaction and information design perspective.

1.1.3 The Gap

For people who are not under the immediate threat of their

environmental conditions, they may not have the sentiment and

intention to take actions even if they understand it is a good thing to

do. The gap between things people consider with higher priorities as

well as better rewards in their daily life, and the hardly recognisable

environmental consequences and so little reward of environmental

conscious behaviors, when accumulated, could lead to a much slower

progress in energy conservation.

Also, the inefficient communication among scientific researchers, the

public and policymakers creates the problem of unbalanced

information, that there is a gap between the perception of certain

environmental problems that even if they agree there is a problem

Page | 5

presented, they have different opinions on solutions and

consequences.

There is also the gap between the goal of data representation along

with the designated narrative, and the level of understanding by the

viewer, in other words, how much of the information presented can

actually engage, make an impression, furthermore be internalized

after the data experience. And the thesis attempts to add to the

discussion of using data visualization techniques to close these gaps.

1.1.4 Motivation and Relevance

Researchers are constantly looking for better solutions to utilize

natural resources, reduce the consumptions, including the

consumptions of water, gas, electricity, without compromising the

normal activities of the building occupants.

At the same time, building investors and corporations are gradually

becoming more conscious and sensitive about information

concerning energy consumption and building efficiency, that investing

in a more energy-efficient building and infrastructure can be

profitable, sustainable and beneficial in the long term, from

both the standpoints of business development and cultural influence.

According to a 2012 study, by retrofitting buildings for energy

efficiency, the energy saved over 10 years could total more than $1

trillion; more than 600 million metric tons of CO2 per year could be

mitigated, more than 3.3 million new direct and indirect cumulative

job years can be created (excluding induced) in the United States

Page | 6

economy (Fulton et al., 2012). One can argue that the investment of

improving the energy efficient features can lead to not only more

sustainable, robust infrastructure, but also a more trusting and stable

relationship with clients and occupants.

In the meantime, the increasingly alarming consequences of climate

change and global warming around the world has brought the

conversation of energy consumption and conservation into the

limelight of political debates, journalism and social studies. In order to

have more fair, well-informed and deeper discussions in these

context, it is essential for more and more people to learn and

understand the cause and effect of climate change and global

warming as well as human behaviors as a society, in order to stay

engaged, factual and vigilant. When people are better informed with

scientific facts and research, they are given a more solid ground and

potentially open community when advocating for their own values

and beliefs, therefore their values regarding energy consumption and

conservation can be better represented by the state and the

government.

Having a better way to turn energy data from the scientific world into

visual languages that can allow people of different backgrounds to

understand has never been more important. Effective energy data

visualization could be an efficient tool for encouraging ecological

behaviors in the short and long term.

Page | 7

2 Case Studies

2.1 Case #1: Unusual Visual Expressions and Data Personalization

2.1.1 Dear Data: the Project

This case study intends to look into the collaborative project: Dear

Data (Posavec and Lupi, 2016a), by designer Stefanie Posavec and

information designer Giorgia Lupi. Dear Data is an one year-long,

analog data drawing project. Each week during the year in progress, a

particular type of data that reflects a certain aspect of the designers’

lives, would be chosen, collected and measured from the real life

events of the week. Then the collected data are turned into a piece of

data visualization that is hand drawn on a postcard, which is then

sent to the other collabrater through mail.

The journey of the postcards that carries the data visualization

drawing of the week is a long and relatively old-fashioned one, with

the traces of time and transportation, which is described as “a type of

‘slow data’ transmission”(Posavec and Lupi, 2016b). And the creative

Page | 8

approaches in which the data are represented and introduced in the

project are inspirational on many levels, for augmenting the degree of

engagement and interaction in designing energy data visualizations.

2.1.2 Emotional Connection and Storytelling

As introduced in the project homepage of Dear data:

“We’ve always conceived Dear Data as a “personal

documentary” rather than a quantified-self project which is

a subtle – but important – distinction. Instead of using

data just to become more efficient, we argue we can use

data to become more humane and to connect with

ourselves and others at a deeper level.”

The project documents the process of two designers getting to know

each other through the unique way of sharing their lives through

data, and each postcard is independently a piece of art but together

they present a comprehensive picture of different aspects of the

designers’ lives. Just like reading a diary, readers can get to know

them when going through the visualizations. It's a transformation

from getting the information and visual appreciation of one aspect

but to put them in place and form a deeper understanding of a

concept of a higher level and complexity.

Page | 9

2.1.3 Time-based Data Representations with Unusual Visual

Languages Leading to More Active Engagement

The nature of personal data in a specific time frame of a week makes

small multiples an obvious choice when visualizing data. The project is

inspirational for how data and unusual visual expressions can be

correlated and experimented to create data stories and narratives.

Figure 1 : A variation of visualizations from the project Dear Data

Page | 10

Figure 2: A page from the book Dear Data (Posavec and Lupi, 2016a), showing the data visualization in

the theme of “clocks” by Giorgia Lupi.

Page | 11

2.1.4 The Unexpected Efficacy of Designing Rules and Legends

As introduced in the project homepage of Dear data:

“On the front of the postcard there would be a unique

representation of our weekly data, and, on the other side

(in addition to the necessary postage and address), we

would squeeze in detailed keys to our drawings: the code

to enable the recipient to decipher the picture, and to

fantasize about what had happened to her new friend the

week before.”

One of the most intriguing experience of exploring the postcards are

deciphering the rules. By visualizing data with unusual shapes that

and rules in the legends, readers are prone to learn and adapt in

order to make sense of the visualization, giving them more

opportunity and incentives to get to know how the data is presented,

comparing to conventional charts and graphs, which people often

assume they know how to read therefore can misunderstand when

not reading carefully, the data has personalities, therefore, it's own

signature.

Page | 12

Figure 3: A page from the book Dear Data (Posavec and Lupi, 2016a), showing the data visualization in

the theme of “clocks” by Stefanie Posavec.

However, even if the rules are often simple, they sometimes still

requires careful reading and investigation. But once the first several

Page | 13

minutes pass, the reader would having a much better time and

immersive experience understanding the data.

Creating the right rules can not only enhance the visual identity of the

visualization, but better engage with viewer by encouraging them to

make effort. But the precondition would be that the rules are clear

and well-explained, or else it would be counterproductive.

When the viewer first comes across the visualization that doesn’t

resemble their expectations, they are likely to be curious about the

data and how it’s represented. Then the next thing they would look

for is the legends, in other words, the rules to decipher the true

meaning behind the new visual expression.

The process of “deciphering” would take several minutes at most,

while it seems to take longer to understand comparing to

conventional visualization methods, therefore the system provides

the viewer with a more steep learning curve, which can result in a

better, more deep understanding and memory in the information

visualized.

After making an effort to learn, even memorize the rules while

reading back and forth between the visualization and the legend, in

order to understand the details and the whole picture, the viewer

would more likely pay more attention and spend more time on the

visualization, allowing the information to digest and have a better

chance turning into knowledge and insight.

Page | 14

2.1.5 Left-to-right Comparison

Figure 4: A page from the book Dear Data (Posavec and Lupi, 2016a), showing the formatting of

comparing the same data subject on the same viewport.

For readers, it's a more interesting experience to see how two

different artists visualize and process data entirely differently. And

the left and right page composition makes it easier to get a better

picture of the whole exchange of the conversation. At the same time

it invites the reader to participate and record their own data in their

own ways using simply a postcard and pencils while providing a

comprehensive example of how data visualization can help one

understand oneself and others in unexpected and surprising ways.

Page | 15

2.2 Case #2: Evaluating the Efficacy of Existing Energy Data

Visualizations

This case study is intended to look into the patterns of the choices

designers made in the existing energy data visualizations. To

understand how data visualization techniques and methods are

applied in the narration of energy and environmental stories, the

visualizations selected from a larger pool of projects and have been

evaluated from the perspectives of visualization techniques,

human-data interaction, and narration of energy stories. The full

report can be found in appendix A.

2.2.1 A Comparison Study of Interactive Maps for Energy Data

The following projects are selected from a larger pool of projects of

energy data visualization. These selected projects all consist of a

territorial map in the scale of city to country, in the narratives of the

visualization, visualizing energy data with cursor based interaction

features on a webpage. Chapter 2.2.1 is a paralleled comparison

study for the existing methods of visualizing geolocation energy data.

2.2.1.1 Selected Projects

Project #1 Mapping how the United States generates its electricity

(Muyskens, Keating and Granados, 2017)

Page | 16

Figure 5: Screenshot of the US Map of the“Mapping How the United States Generates Its Electricity”

project

Project #2 Estimated Total Annual Building Energy Consumption at

the Block and Lot Level for NYC (Sherpa et al., n.d.)

Figure 6: Screenshot of the “Estimated Total Annual Building Energy Consumption at the Block and Lot

Level for NYC” Project

Page | 17

Project #3 Philadelphia 2017 Building Energy Benchmarking (Azavea

Inc., 2017)

Figure 7: Screenshot of the Philadelphia 2017 Building Energy Benchmarking project(Azavea Inc., 2017)

Page | 18

http://www.azavea.com/
http://www.azavea.com/
http://www.azavea.com/

Project #4 The United States of Energy (Saxum, 2017)

Project #4a The United States of Energy 1.0 (Saxum, n.d)

Figure 8: Screenshot of the US Map in the project “The United States of Energy 1.0”

Project #4b The United States of Energy 2.0 (Saxum, 2017)

Figure 9: Screenshot of the US Map Divided by Region in the project “The United States of Energy 2.0”

Page | 19

Figure 10: Screenshot of the state profile after clicking on the region in the US Map

Figure 11: Screenshot of the Legend Page of the project “The United States of Energy 2.0”

Page | 20

2.2.1.2 Comparing features of data points in each visualization

Data Visualization
Project

Representation of Data
Points

Categorization
Method

Mapping how the
United States
generates its
electricity

Position: center of circle
Subject: Power plant data
Data value: Area of circle
represents the plant
capacity to generate
electricity

Distinguished colors
for each energy type

Philadelphia 2017
Building Energy
Benchmarking

Position: center of circle
Subject: Building data
Data value: Area of circle
represents plant capacity
by power source

Distinguished colors
for each building type

Estimated Total
Annual Building
Energy
Consumption at
the Block and Lot
Level for NYC

Subject: separated by
outline of block or lot

Intensity of colors
(heatmap) for
electricity usage rate
for each block and lot

The United States
of Energy 1.0

Subject: position or area of
energy produced

Distinguished textures
and colors for each
energy type

The United States
of Energy 2.0

regions in the US marked with the
name of the region
next to the data point

 Table 1: Comparing features of data points in each visualization

Project 1 and 3 are using circles to represent data points. The

advantage is that it's really intuitive for users to connect the size of

the circle to the amount of energy generated or consumed, as well as

the radiation or significance of what the data point represents from

its center, which pinpoints the location of the data point.

Page | 21

At the same time, the data used in project 1 and 3 is ordered and all

data points have the same subject. In project 1, the data point

represents the amount of electricity generated for each plant,

differentiated by the capacity, location and the type of resource used;

project 3 has the subject of energy consumed in each building,

differentiated by the type of building from which the data is collected.

And it can be another reason that the entity of a circle (which consist

of a center that represents its position, a redian that indicates the

size, and a color that can be used to categorize) can be effective

enough to represent an energy data point with a single subject in the

scale of the country, directing users to observe the visualization to

the relevant variables represented by these entities, while

construction a general image of the distributions and tendencies of

these data points across the map.

On the other hand, similar to project 3, project 2 is on the city scale,

visualizing electricity consumption in blocks and lots in New York City

area. However, it represents the data points with the area of the

outline of the buildings instead of a circle like project 3. A reason

could be that the data acquired in project 2 is much more complete

and precise, covering almost every block of the entire area, and by

outlining them equally precise, each building is defined with a unique

shape and profile, providing users with not only the location, but

other information that indicates the properties of the block and its

surroundings.

Page | 22

2.2.1.3 Comparing features of Interaction in each visualization

Since the target projects are in the form of web application designed

for web browsers, the main focus of the interaction is using mouse

gestures. Therefore in projects whose maps were created using the

google map or similar plugins, the interactions share the following

rules, fully or partially, as follows (Google, 2017a; Google, 2017b):

● Zoom control: to change the zoom level of the map.

○ click "+" and "-" buttons in the corner of the map;

○ double click using the mouse or trackpad;

○ scroll using the mouse or pinch using the trackpad;

● Pan/drag control: the action of dragging a map while keeping it at

the same scale.

○ click and hold the mouse or trackpad, then drag the maps

by moving the mouse or finger. Release to stop panning.

○ Click arrow keys: up for north, right for east, down for

south and left for west.

● Fullscreen control: click the fullscreen button in the corner of the

map to open the map in fullscreen mode.

And in order to simplify, in the following table comparing the

interaction features, the map interactions mentioned above are

collectively referred as “general map controls”.

Page | 23

Data Visualization
Project

Hovering Clicking Dragging

Mapping how the
United States
generates its
electricity

None None None

Philadelphia 2017
Building Energy
Benchmarking

None Click on: Data
point
Action: Popup
Window
showing detail
of datapoint

General map
controls

Estimated Total
Annual Building
Energy Consumption
at the Block and Lot
Level for NYC

None Click on: Data
point
Action: Popup
Window
showing detail
of datapoint

General map
controls

The United States of
Energy

(On legend)
display one
type of
energy

None None

The United States of
Energy 2.0

Change color Enter
detailpage of
clicked Region

None

Table 2: Comparing features of Interaction in each visualization

Aside from the scale of the map as mentioned in the last chapter,

another similarity between project 2 and 3 is that they both use the

interaction of opening a pop up window upon clicking on the

individual data points. The reason could be that both datasets

consists of multiple dimensions, and both visualizations made the

decision of visualizing the most important dimension on the default

map, and by arranging the secondary dimensions in a pop up window,

Page | 24

which only displays when users want to get into more details about a

single data point by clicking on it. By doing so it extends the flow of

the narrative into a more detailed level, such as showing numbers

that are too long to remember, reinforcing the understanding of the

data point from the map view.

Although these interaction features are helpful to understand energy

data, there can be limitations. For example, it might be helpful for

users to compare specific data points to experiment with their own

narratives, reinforcing the perception from their personal experience,

from which they would learn about certain aspect of the dataset,

specific knowledge and insights. However, with the interaction

features such as clicking back and forth between data points, moving

around on the map, etc., it creates a barrier for users to focus on the

questions they want to explore and find patterns and clues from the

data points. Therefore the exploration aspect of the data experience

could be undermined.

Page | 25

2.2.2 Evaluating the Existing Energy Data Visualizations

There are two major similarities among the visualizations for location

based data with geolocation maps. The project all used color code to

differentiate categories for better comparison (e.g. kind of energy

source, kind of building, etc.), and the major Interactions are clicking

on data points and popup windows when hovering/clicking displaying

details of certain data points.

In terms of visualization techniques and energy data characteristics:

● There is a strong relation between geolocation-based energy data

and certain visualization techniques like representing data using

geographical map to show relative locations, heatmap to show

energy consumption rate, etc.

● For projects that visualize a bigger scale of energy data, the

categories of energy are more likely to be comprehensive, which

is related to the fact that the goal of these visualizations are likely

to present a broader picture, or the history (timewise),

distribution (location-wise) of energy data in certain areas.

● For projects that visualize a smaller scale of energy data, the

categories of energy included mainly depend on the goal of the

project. In these projects, geolocation-based data tend to have

the goal of community engagement and tend to visualize the area

that has personal relations with the intended users. For energy

data closer to the household or personal scale, visualized data are

more likely to be real-time and with a more concentrated goal of

improving the environmental consciousness of a small group of

people.

Page | 26

In terms of human-data interactions:

● For most of the projects that are web applications, cursor-based

interaction are the primary method to interact. The cursor-based

interactions include dragging to zoom / move, click to highlight,

hover to highlight, and other conventional cursor gestures on

geographical maps.

● For projects that have physical entities like the Power Award

Cord, the interaction can be entirely different. Physical

interactions can not only be functional and serve as real-time

notifications and dashboard, but they can also in some cases

contribute to the understanding and reinforce the perception of

data through sensory experience.

In terms of visual expressions:

● It is common among the project to use color or color gradients as

indications of quantities of data from the same category; and it’s

also common to use different color to differentiate energy

sources;

● Some projects use icons that serve as the metaphor of certain

type of energy, combined with color coding to distinguish an

energy source from another.

Figure 12: Icons that represent different energy sources from the project “Electric Generation in Spain -

Latest 24 hours”

Page | 27

3 Hypothesis

3.1 Research Questions

From the case studies there are several questions that I find

important to ask:

How to cultivate a personal relationship between human and energy

data using data visualization techniques?

What can be done to raise the ecological awareness from a design

perspective?

And how to create a better human-data interaction for a more

immersive and exploratory experience?

By asking the questions above I formed my research question as the

following:

Page | 28

How to use data visualization and information design techniques and

technology to design experience for human-energy data interaction,

and tell environmental stories to trigger ecological responsible

behaviors?

3.2 Hypothesis

Using data visualization techniques, especially using user centric

interactive interface and unusual visual expressions can be effective

in designing better experience for human-energy data interaction to

trigger ecological responsible behaviors and insights.

3.3 Methods

This thesis attempt to test the validity of the hypothesis through the

following methods:

● Case studies for current energy data visualization projects across

different scales, investigating and evaluating the efficacy of the

existing interactive energy data visualization projects;

● experimenting with user-centric interactive interface and unusual

visual expressions though the development of a data visualization

prototype.

● Designing an interactive experience for building energy data with

the focus of time-based and geolocation-based water

consumption data;

● Evaluating and analysing the design process and thinking methods

used in the prototype.

Page | 29

4 WaterViz: A Prototype

Loosely based on the major data visualization process from the book:

Visualizing Data (Fry, 2008), the process of developing the prototype

contains the following steps: acquiring, parsing, filtering, mining,

representing, refining and interacting.

4.1 Data Processing

4.1.1 Acquiring Dataset

The dataset is acquired from the EUAS application, a web based

system which is used for tracking energy details for various energy

sources (e.g. electricity, natural gas, oil, chilled water, steam and

renewable energy, etc.) (General Services Administration, 2015). It

serves Energy Center of Expertise, under the Office of Facilitates

Management and Service Programs. The dataset containing 30

variables for the research of energy consumption has been collected

from more than 1400 service centers across the US during the time of

January 2003 to July 2016. The buildings are initially divided into 11

Page | 30

https://www.safaribooksonline.com/library/view/visualizing-data/9780596514556/

regions, later expanded into 13 regions, according to the geolocation

information, and each region includes buildings are from the same or

adjacent states.

Figure 13 : File Structure of the Original Dataset

The dataset includes 14 folders, each contains all data from all

months of each year from January 2003 to July 2016. In each folder,

all data from the same year are sorted into several (between 11 and

13) xlsx files, according to the regions the buildings are located, as

shown in figure 13. In each xlsx file, each entry of the building data

are listed and sorted according to fiscal month. Each entry includes

the following variables:

Region No. the region of the service building is
put

State which State the service center is
located

Service Center Descriptions of the service center

Fiscal Month the month in which the data entry
was recorded

Fiscal Year the year in which the data entry was
recorded

Building Number a unique ID for the service center

Page | 31

Area Field Office the field office that the service center
is responding to according to its
location

Cat categories of the service center

Building Designation building designations of the service
center

Gross Sq.Ft the area of the service center

Electricity (KWH) electricity consumed to maintain the
activities of the service center during
the month recorded

Electricity (Cost) electricity cost

Demand (KW) electricity demanded to maintain the
activities of the service center during
the month recorded

Demand (Cost) Demanded electricity cost

Steam (Thou. lbs): Steam consumed to maintain the
activities of the service center during
the month recorded

Steam (Cost) Steam cost

Gas (Cubic Ft) Gas consumed to maintain the
activities of the service center during
the month recorded

Gas (Cost)* Gas cost

Oil (Gallon) Oil consumed to maintain the
activities of the service center during
the month recorded

Oil (Cost) Oil cost

Chilled Water (Ton
Hr)

Chilled water consumed to maintain
the activities of the service center
during the month recorded

Chilled Water (Cost) Chilled water cost

Renewable Electricity
(KWH)

Renewable electricity consumed to
maintain the activities of the service
center during the month recorded

Renewable Electricity
(Cost)

Renewable electricity cost

Renewable Gas
(Cubic Ft)

Renewable gas consumed to
maintain the activities of the service
center during the month recorded

Renewable Gas
(Cost)

Renewable gas cost

Page | 32

Other (mmBTU) Other energy consumed to maintain
the activities of the service center
during the month recorded

Other (Cost) Other energy cost

Water (Gallon) water consumed to maintain the
activities of the service center during
the month recorded

Water (Cost) Water cost

Table 3: Variables of Each Data Entry from the Original Dataset

The original dataset described above provided a comprehensive

picture of the multiple forms of energy consumption data for each

building. Although the data acquired are very comprehensive and

orderly, several variables are absent from the start to the end of the

time frame, therefore further filtering is necessary to extract

consistent variables for visualization.

4.1.2 Analysing the Main Features of the Acquired Dataset

To effectively visualize the acquired building data, we must start by

identifying the characteristics in order to find the compatible data

visualization methods. The following aspects of energy data are

distinguishable and can be seen as the starting point of getting into

the data visualization process:

● The data is time-based, location-based and multi-dimensional

Data collected in this project is based on concentrated and

multi-dimensional data structure across a relatively long

period of time.

Page | 33

● The data structures are orderly yet with inevitable inconsistency

Since the data collection process requires great amount of

time and resource, the categories, frequency and other

aspects of the data collected are planned before the data was

collected, as well as the features of the subject building. At the

same time, since the data collection process has a relatively

longer timeframe, sometimes it can be challenging to

coordinate and integrate data collected from different

sources, departments and methods. Therefore some part of

the data can get missing and mixed up, resulting in inevitable

inconsistency and incompletion in the dataset.

● The data have clear patterns related to several factors:

One of the important goal of the data collected is for

quantitative analysis and simulation, data collected in these

projects could have a better possibility of having distinctive

relations to the intended research questions. The dataset has

a clear narrative that is essential for the proving of certain

arguments, which provides great opportunities for creating

the narratives of the visualization.

4.1.3 Parsing and Filtering Data

4.1.3.1 Merging into Simpler File Structure

Before filtering the unusable and incomplete data entries and

variables, the xlsx files need to be broken down into manageable

Page | 34

sizes. At the same time, since the files are sorted by region, which is

an artificial concept designed for easier organization of data, while

considering the task of visualizing building data in the scale of the

country, it would be more intuitive and straightforward to sort the

data according to states, since it’s more likely to be the established

conventional knowledge of more viewers. Therefore, by merging all

xlsx files sorted by region in the same year folder, the file structure

can be simplified as shown in Figure 14.

Figure 14: refined file structure with data sorted by year

4.1.3.2 Extracting Individual Building Profiles

In order to prepare the visualization with multiple viewports, creating

a combination of overview and detail, it would be helpful to

rearrange the dataset from yearly data to individual building data. At

the same time, variables that are absent and unusable would be

eliminated when creating new files for each building. After this step

there will be a folder of 1700 tsv files containing usable data from

each building. Each file is named according to the unique building id

Page | 35

and the gross floor area, which are constant values for each building

and make it easier to extract these information from file names and

use in the visualizations. The file structure of the result of this step is

shown in Figure 15.

Figure 15: Extracting Individual Building Profiles

4.1.3.3 Filtering Usable Building Data

When observing some samples in the dataset of individual buildings,

it was found that each building data has its different level of

completeness. Therefore a further filtering process is necessary to

make sure the data material that is used for visualization is not

incomplete and has fewer imperfections. By looping through the

entire building profile folder, 4 buckets are created to contain 4 Tiers

of completeness of building data:

Tier 1: Data entry with water, gas and electricity data all zero

exists in the building profile

Page | 36

Tier 2: Data entry with two zeros in the data of water, gas and

electricity exists in the building profile

Tier 3: Data entry with one zero in the data of water, gas and

electricity exists in the building profile

Tier 4: Data entry with no zero in water, gas and electricity

data exists in the building profile

And after sorting and grouping the four tiers of buildings, here is the

results:

Tier 1 (3 zeros): 99 buildings;

Tier 2 (2 zeros): 410 buildings;

Tier 3 (1 zero): 632 buildings;

Tier 4 (0 zero): 4 buildings.

Building data from each tier can be used for different purposes in the

future visualization from detailed comparison to general visualization

across the country.

Page | 37

4.2 Data Visualization

4.2.1 Constructing Data Structures for Visualization

After data is rearranged, prepared and cleaned, creating the bridge

between data points and graphic tools for visualization is the next

step, in other words, data need to be prepared in certain format that

is suitable and efficient to the visualization tool, so that the data

processing process can be simplified when visualizing. Due to the

multi-dimensional characteristics of the dataset, the format of JSON

would be a fair choice. After this step, in each of the json file that

contains data from each building in all years:

{

 “bldgData”:[

 {“water”:2.7448,

 “index”:0,

 “elec”:0.0,

 “gas”:0.0,

 “time”:200301},

…… *

{“water”:0.0,

 “index”:167,

 “elec”:0.0,

 “gas”:0.0,

 “Time”:201612}

],

 “sqft”:351391.0,

 “bldgId”:”AK0013ZZ”,

Page | 38

 “bldgIndex”:5,

 “state”: “AK”,

 “stateIndex”: 0;

}

In the JSON file, “bldgData” contains all data entries of water

consumption, gas consumption, electricity consumption, index of the

entry sorted by time, as well as entry time. There are 158 entries in

each segment of “bldgData”, corresponding to each fiscal month from

January 2003 to July 2016; “Sqft” is the gross floor area of the

building; “bldgId” is the unique building ID of the building;

“bldgIndex”: is the index of the building among all profiles; “state” is

the two-character abbreviation of the corresponding state; and

“stateIndex”: is the index of the state out of 50 state abbreviations

(for future reference).

4.2.2 Topographic Viewport of the US

4.2.2.1 Importing and Aligning Geographical Map

In the visualization I used a set of open-sourced stl models of the

geographical map of each of the states in the US (Nlorang, 2016). It is

easy to import and fast to load. Also the topographical details can add

to the depth of the dimensions of the visualization.

Since the source files of the map has 50 parts, corresponding to 50

States. So the coordinates of each state need to be rearranged into

Page | 39

http://www.thingiverse.com/nlorang

the correct relative location. In order to get to the most accurate

position possible, by using the dragging function of mouse in three.js

to freely manipulate all imported models. At the same time recording

the eventual coordinates of each model after each mouse-dragging

event update. Then extract the arrays of the x, y coordinate of the

final position and import the coordinates as constants into the scene

to create the correct position. A button in the dashboard is created to

create two csv files containing temporarily saved coordinates. User

can also click the button to extract the information of their own

arrangement of the map and import the coordinates later. The

process of aligning the 50 states is shown in the following figures.

Figure 16: The process of importing and aligning the topographical map of US from 50 separate models

[1]

Page | 40

Figure 17: The process of importing and aligning the topographical map of US from 50 separate models

[2]

Figure 18: The process of importing and aligning the topographical map of US from 50 seperate models

Also by importing the temperature data and mapping as color

gradient for each state, users can explore the relationship with

energy consumption and temperature on the state scale. And by

designing this feature as a tuggle, it’s easy to hide this feature and

stop it from distractive when focusing on other aspects.

Page | 41

4.2.3.2 Displaying Building Data onto the Map

Figure 19: Showing water state data on the topographical map viewport

Figure 20: Showing water and gas state data on the topographical map viewport

Page | 42

Figure 21: Showing water, gas, and electricity state data on the topographical map viewport

When the user is in the topographic viewport, it is important to

present the relationship between the visualized building data and the

relative location on the map. However the limitation of space on the

map makes it difficult to differentiate each building. By displaying the

general information of the buildings in each state, as well as variables

that is useful to display in the topographical viewport, the whole

picture of the distribution and tendencies of building energy

consumption across the country are going to be clearer.

As analysed in the case study about Unusual Visual Expressions and

Data Personalization in chapter 3.4, using the unusual visual language

of describing each building can not only create the comparison

feature when presented with other buildings while mapped according

to state and location, it can also invite the user to explore the most

important piece of information about the buildings, forming a

memory and a focal point to move forward onto other viewports to

Page | 43

discover new aspects of the visualized data. (Because there's no

specific location, the relative location are estimated.)

4.2.3 Detailed and Integrated Viewport of State Data

Figure 22: First Impression of the detailed viewport

Combining the “Free Edit” Mode that can be invoked in all viewports

with the zooming feature, as well as the feature of temperature

heatmap, users can choose multiple states by selecting the area of

the topographical map in the first viewport. After locking down the

selected states, more detailed and organized information that is

integrated from all the building data in the selected states, are

displayed in a paralleled manner, allowing users to compare data in

Page | 44

the scale of state from different aspects. And users can arrange the

information in the manner they prefer, and save the satisfied view

when ready.

4.2.4 Comparison Viewport of Building Data

Figure 23: User can select buildings and arrange them freely in the comparison viewport

From the viewport of the state data, users can select individual

building data from the selected state. At the same time, there is a

paralleled coordinates of all building data in the entire visualization.

In order to have a more direct link among all the small multiples,

when the mouse is hovered above a point on any line chart, the point

of same time stamp will be highlighted.

Page | 45

4.3 Designing Data Interaction and Experience

4.3.1 “Free Edit” Mode

Figure 24: “Free-edit mode” allows users to manipulate the objects and visualizations freely in the first

viewport

Figure 25: “Free-edit mode” allows users to manipulate the objects and visualizations freely in the first

viewport

Page | 46

Figure 26: “Free-edit mode” allows users to manipulate the objects and visualizations freely in the

second viewport

Figure 27: Using the metaphors of “Popsicle sticks” or file handles encourage users to engage in free

editing

Page | 47

One of the main features of the prototype is the free edit mode

implemented in both the topographic viewport and the detailed and

integrated viewport. Not only can users move around the entire

scene in the viewport to adjust angles, positions and distance of the

graphs, they can also select certain graphs, which are highlighted

when being selected, drag and drop them to any position.

In the detailed viewport, in order to encourage users to engage in

free editing, the graphs of the building data are sorted and aligned

into a staircase-like formation, while adding the metaphors of

“Popsicle sticks” or file handles on the left of each graph.

Similar to the detail viewport, in the topographic viewport, users can

hover to highlight, click and drag to move the model of each state to

anywhere in the blank canvas. When the user moves the state model,

an average value of the water, electricity and gas data of the selected

states move with the model, when user update the display of the

data by pressing the button on the second row of the dashboard.

The goal of this feature is to encourage users to take initiation when

having an interactive experience with data. Instead of accepting the

well organized data narrative, users can follow their own instincts and

find information provided in the existing narrative, and apply them in

the context that is more intuitive and relevant to themselves.

With the export functionality shown in the dashboard, after users

finish creating their own narrative on the blank scene, which can be

seen as the “canvas”, they can save the entire viewport into a jpeg

file, and share their own story that is built with the data material from

Page | 48

the existing narrative, to others, who might also have their own

version of the story. The effect can still exist and be shared after the

initial interaction of the user with the visualization itself, therefore

potentially accumulating the interest and improving the experience of

the data story, augmenting the knowledge and insight of

energy-related issues, and potentially trigger ecological responsible

behaviors in the long term.

4.3.2 Keyboard Interactions and Toggle Dashboard

Figure 28 and 29: the instructions for keyboard interactions on the up-left corner of both viewports

Figure 30: the keyboard interaction of the left hand(WASD), AND RIGHT HAND (< and >)

Page | 49

Figure 31: the toggle dashboard in the topographic viewport

The first row of the dashboard allows users to reset the entire scene,

reset the camera to set the model in the center of the scene, reset

map to return all state models into the original positions, enter

“free-edit” mode, and color the map by temperature.

The second row of the dashboard allows users to show different data,

including the average value of water, gas and electricity of each state,

reflecting a general but relatively comparable representation of the

data in each state.

The third row of the dashboard allows users to save and export

coordinates of the state models as well as screenshots of the entire

scene, and enter the detailed viewport after they are ready to explore

the dataset in a more comprehensive level.

4.3.3 Transitions Between ViewPorts

This interactive function is meant to connect users perceptions of

different depth and angles from multiple viewports. By transitioning

of both viewports through arranged layers and according to the level

of detail of the data presentation, users can gradually form a vivid,

comprehensive structure of the entire dataset.

Page | 50

5 Conclusions and Next Steps

5.1 Conclusions

One major goal of the prototype is to explore possibilities for a more

proactive interaction environment, through which users can gain a

comprehensive understanding of a relatively complex concept.

Therefore using different kinds of visual focus to express the layer’s

most sensible information can be useful. The interfaces are designed

to be more flexible comparing to the conventional forms of data

visualization by allowing users to freely manipulate the objects that

are part of the visualization, and gives users endless possibilities of

observation, comparison and storytelling according to their

preference and attention flow.

Page | 51

Free Edit mode turns a passive receiving experience into a liberated

one, allowing users to create their own version of the visualization

using the basic modules and components created with target data,

turning the viewing experience into a playing one. With “Free Edit”

Mode, users can create their own narrative, arranging data elements

that are relevant and interesting to them on a personal level, so that

they can engage with the narrative even more than simply interacting

with animation and pre-arranged way of data presentation.

Meanwhile, without using digital tools specialized for data

visualization and plotting, the visual language and expressions can be

freed that it gives designers more opportunities to think out of the

box, developing personal connections between users and data,

creating an environment that allow users to fully experience the

possibilities of their explorations based on the simple rules set by the

designer.

5.2 Next Steps

Although the prototype allows users to freely manipulate modules

and components in different viewports, it’s still limited in a web

browser at the moment. A future step of taking the interaction

further is to explore the possibilities of breaking through the

limitations of interaction in a computer screen, but using more

intuitive and immersive ways, such as gesture and sound, to interact

with data visualization. Furthermore, the effectiveness of these

design methods used in the prototype and the efficacy of visualizing

Page | 52

energy data needs to be compared and investigated in the future

research as well.

At the same time, the question that whether an interactive data

visualization such as what the prototype demonstrates can help

people better perceive energy data and be more ecological

responsible. Therefore a user testing process is very much needed in

order to get feedbacks from real users, provide guidelines to further

discussions of the efficacy and effectiveness of the method, and

further improve the experience and getting closer to the goal of

triggering users’ ecological responsible behaviors. There are some

technical issues with the current prototype that needed to be solved

and some difficulties and limitations when it comes to the interaction

activities such as the struggle of aligning data more accurately in the

3d perspective.

5.3 Contributions

Investigated the fundamentals of data visualization in the context of

energy data through case studies for current energy data visualization

projects across different scales;

Designed an interactive experience for building energy data with the

focus of time-based water use and consumption;

Developed an approach towards the application of data visualization

based on visualization and interaction techniques and methods to

elevate the experience of human-data interaction.

Page | 53

Bibliography

Anonymous (n.d.). Datavisualization.ch.

http://selection.datavisualization.ch/.

Apple (2017). Magic Keyboard with Numeric Keypad.

https://www.apple.com/shop/product/MQ052LL/A/magic-keyb

oard-with-numeric-keypad-us-english.

Azavea Inc. (2017). Philadelphia 2017 Building Energy Benchmarking.

http://visualization.phillybuildingbenchmarking.com/#!/.

Bornstein, D. (2015). Investing in Energy Efficiency Pays Off.

https://opinionator.blogs.nytimes.com/2015/02/06/investing-in

-energy-efficiency-pays-off/.

Canadian Energy Systems Analysis Research (2013). Sankey diagrams

associated with fuel and electricity production and use in

Canada.

http://www.cesarnet.ca/visualization/sankey-diagrams-canadas

-energy-systems.

http://www.azavea.com/

Detroit Edison Company (1935). 3D Visualizations of Power

Consumption. Willard Cope Brinton (1939) Graphic Presentation

pp 364-365. Available at:

http://dataphys.org/list/electricity-power-demand/.

Dropcountr (n.d.). Dropcountr. https://dropcountr.wpengine.com/.

Fry, B. (2008). Visualizing Data: Exploring and Explaining Data with

the Processing Environment. 1st Edition. O'Reilly Media, Inc. 384

p.

Fulton, M., Baker, J., Brandenburg, M., Herbst, R., Cleveland, J.,

Rogers, J. and Onyeagoro, C. (2012). United States Building

Energy Efficiency Retrofits Market Sizing and Financing Models.

Available at:

http://web.mit.edu/cron/project/EESP-Cambridge/Articles/Fina

nce/Rockefeller%20and%20DB%20-%20March%202012%20-%2

0Energy%20Efficiency%20Market%20Size%20and%20Finance%

20Models.pdf.

Gasbuddy (2017). USA National Gas Price Heat Map.

http://www.gasbuddy.com/GasPriceMap?z=4.

Google, (2017a). Google Map APIs Documentation: Controls.

https://developers.google.com/maps/documentation/javascript

/controls.

Google, (2017b). Google Map APIs Documentation: interaction.

https://developers.google.com/maps/documentation/javascript

/interaction.

General Services Administration (2015).Energy Usage Analysis

System (EUAS). Available at:

https://catalog.data.gov/dataset/energy-usage-analysis-system.

http://www.archive.org/details/graphicpresentat00brinrich
http://web.mit.edu/cron/project/EESP-Cambridge/Articles/Finance/Rockefeller%20and%20DB%20-%20March%202012%20-%20Energy%20Efficiency%20Market%20Size%20and%20Finance%20Models.pdf
http://web.mit.edu/cron/project/EESP-Cambridge/Articles/Finance/Rockefeller%20and%20DB%20-%20March%202012%20-%20Energy%20Efficiency%20Market%20Size%20and%20Finance%20Models.pdf
http://web.mit.edu/cron/project/EESP-Cambridge/Articles/Finance/Rockefeller%20and%20DB%20-%20March%202012%20-%20Energy%20Efficiency%20Market%20Size%20and%20Finance%20Models.pdf
http://web.mit.edu/cron/project/EESP-Cambridge/Articles/Finance/Rockefeller%20and%20DB%20-%20March%202012%20-%20Energy%20Efficiency%20Market%20Size%20and%20Finance%20Models.pdf
http://www.gasbuddy.com/GasPriceMap?z=4

Holmes, T. (2006-2009). 7000 oaks and counting.

https://tholme.myportfolio.com/current-ecoart/7000-oaks-and-

counting/.

Holmes, T. (2007). Eco-visualization: Combining Art and Technology

to Reduce Energy Consumption. In Proceedings of the 6th ACM

SIGCHI conference on Creativity & cognition (C&C '07). ACM,

New York, NY, USA, 153-162. DOI:

https://doi.org/10.1145/1254960.1254982.

Huertas, A. and Adler, D. (2012), Is News Corp. Failing Science?

Available at:

https://www.ucsusa.org/sites/default/files/legacy/assets/docu

ments/global_warming/Is-News-Corp-Failing-Science.pdf.

International Energy Agency (2017). International energy technology

perspectives: ETP 2017 Data Visualization. Emissions Reductions

and Energy Flows. http://www.iea.org/etp/explore/.

Jansen, Y. (2011). Can We Keep Up: Sponges Show Domestic Water

Usage.

http://dataphys.org/list/domestic-water-usage-visualized-with-s

ponges/.

Jansen, Y., Dragicevic, P. and Fekete, J. (2013). Evaluating the

efficiency of physical visualizations. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI '13).

ACM, New York, NY, USA, 2593-2602. DOI:

https://doi.org/10.1145/2470654.2481359.

Kekeritz, T. (2007). The virtual water project.

http://virtualwater.eu/.

Khan, M., & Khan, S. S. (2011). Data and information visualization

methods, and interactive mechanisms: A survey. International

Journal of Computer Applications, 34(1), 1-14.

http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/
http://tiffanyholmes.com/

Klemm, M. (2017). CO2 Emissions Shown with Balloons.

http://dataphys.org/list/co2-emissions-shown-with-balloons/.

Kontokosta, C. E., Kontokosta, C., Marulli, D., Tull, C., & Pingerra, R.

(2015). Web-Based Visualization and Prediction of Urban Energy

Use from Building Benchmarking Data Web-Based Visualization

and Prediction of Urban Energy Use from Building Benchmarking

Data, (October).

Lindeman, T., Mellnik, T. and Englund, W. (2015). As appetite for

electricity soars, the world keeps turning to coal.

https://www.washingtonpost.com/apps/g/page/world/as-appet

ite-for-electricity-soars-the-world-keeps-turning-to-coal/1842/.

Miller, T. and Pollak, T. (2013). Environmental Coverage in the

Mainstream News: We Need More. Available at:

https://climateaccess.org/system/files/PIEC_Environmental%20

Coverage.pdf.

Mortier, R., Haddadi, H., Henderson, T., Mcauley, D., Crowcroft, J.,

and Crabtree, A. (n.d.). “41. Human-Data Interaction”. The

Encyclopedia of Human-Computer Interaction, 2nd Ed. Available

at:

https://www.interaction-design.org/literature/book/the-encycl

opedia-of-human-computer-interaction-2nd-ed/human-data-int

eraction.

Muyskens, J., Keating, D. and Granados, S. (2017). Mapping how the

United States generates its electricity.

https://www.washingtonpost.com/graphics/national/power-pla

nts/?utm_term=.bb48f65020d4.

Nlorang (2016). 3D Topographic Maps of US States.

https://www.thingiverse.com/thing:1524543.

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-data-interaction
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-data-interaction
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/human-data-interaction
https://www.washingtonpost.com/people/john-muyskens
https://www.washingtonpost.com/people/dan-keating
https://www.washingtonpost.com/people/samuel-granados
https://www.washingtonpost.com/graphics/national/power-plants/?utm_term=.bb48f65020d4
https://www.washingtonpost.com/graphics/national/power-plants/?utm_term=.bb48f65020d4
http://www.thingiverse.com/nlorang
https://www.thingiverse.com/thing:1524543

Olsen, E. (2017). A Sense for Energy - Representing Energy in

Buildings. (Ed. Willis, D., Braham, W. W., Muramoto, K. and

Barber, D. A.). Energy Accounts: Architectural Representations

of Energy, Climate, and the Future. Routledge, 2017.

Posavec, S. and Lupi, G. (2016a). Dear Data. 1st ed. Princeton

Architectural Press. 288p.

Posavec, S. and Lupi, G. (2016b). Dear Data: The Project.

http://www.dear-data.com/theproject.

Saxum (n.d.). The United States of Energy.

http://archive.usofenergy.com/.

Saxum (2017). The United States of Energy 2.0 (Saxum, 2017)

http://usofenergy.com/overview/.

Sherpa, S., Howard, B., Parshall,L., Thompson,J., Hammer, S.,

Dickinson, J. and Modi, V. (n.d.) Estimated Total Annual Building

Energy Consumption at the Block and Lot Level for NYC.

http://qsel.columbia.edu/nycenergy/

Vicente, V. S. (n.d.). Electric Generation in Spain - Latest 24 hours.

http://energia.ningunaparte.net/en/.

Loftness, V., Aziz, A., Lasternas, B., and Peters, S. (2017). Ducks,

Dollars, or kWh? (Ed. Willis, D., Braham, W. W., Muramoto, K.

and Barber, D. A.). Energy Accounts: Architectural

Representations of Energy, Climate, and the Future. Routledge,

2017.

The Pac (2005). The Power-aware Cord.

http://www.poweraware.com/en/.

ThingsBoard authors (n.d.).thingsboard.io.

https://thingsboard.io/smart-energy/.

Tobin, M. (2013). The United States of Energy.

http://ecowest.org/2013/07/16/the-united-states-of-energy/

http://www.dear-data.com/theproject
http://archive.usofenergy.com/
http://qsel.columbia.edu/nycenergy/
http://www.ningunaparte.net/
http://energia.ningunaparte.net/en/

Wilson, M (2002). Six Views of Embodied Cognition. Psychonomic

Bulletin & Review 9, 625–636.

World Bank Group (n.d.). CO2 emissions (metric tons per capita).

https://data.worldbank.org/indicator/EN.ATM.CO2E.PC.

Yanko Design (2008). SAVERCLIP.

http://www.yankodesign.com/2008/01/14/saver-clip-shames-y

our-electricity-usage/.

Zoss, A. (2017). Data Visualization: Visualization Types.

https://guides.library.duke.edu/datavis/vis_types.

Appendix A: Evaluating the Efficacy of Existing Energy Data Visualizations
YEAR Name format Scale of

Energy Data
Categories of
Energy Sources

Charcateristics of
Energy Data

Visualization
Techniques

Human-Data Interaction Visual Expressions Narrative

1935 3D Visualizations of
Power Consumption
(Detroit Edison
Company, 1935)

physical data
visualisation

community electricity Time-based

Single type of energy

Area Chart

Time Line

data physicalization

n/a Material User Driven

Comparison

2005 The Power-aware
Cord (The Pac, 2005)

product
design,
sensor

household

individual

electricity Real-time

Single type of energy

Dashboard Real-time Update color coding User Driven

Comparison

2006 -
2009

7000 oaks and
counting (Holmes,
2006-2009)

web
application

community Carbon footprint Geolocation-based

multiple types of energy

Time-based

Dashboard Real-time Update metaphore

multi-media

interaction

real-time data
visualization

User Driven

Comparison

2007 The virtual water
project (Kekeritz,
2007)

Info graphics
in print

water Single type of energy Small Muptiples n/a Icons User Driven

Comparison

2008 SAVERCLIP (Yanko
Design, 2008)

product
design,
sensor

household

individual

electricity Real-time

Single type of energy

Dashboard Real-time Update Animation

Color Coding

User Driven

Comparison

2010 Greenhouse Gas
Emission Per Capita
(World Bank Group,
n.d.)

web
application

Continent greenhouse gas
emission

Geolocation-based

multiple types of energy

Time-based

Time line

Bubble Chart

Line Chart

Semantic Network

Cursor-based
Interaction (hover, click)

Dashboard for filtering

Overview+Detail

Icons

Color Coding

Color Gradient

User Driven

Comparison

2011 Can We Keep Up:
Sponges Show
Domestic Water
Usage (Jansen, 2011)

physical data
visualisation

worldwide water Single type of energy

Geolocation-based

Geographic Map

Bar Chart

data physicalization

n/a Metaphor

Color Coding

Material

User Driven

Comparison

2013 Sankey diagrams
associated with fuel
and electricity
production and use in
Canada (Canadian
Energy Systems
Analysis Research,
2013)

web
application

country fuel

electricity
production and
use

Geolocation-based

multiple types of energy

Time-based

Data Flow Diagrams Cursor-based
Interaction (hover, click)

Scroll down

Dashboard for filtering

Overview+Detail

Color Coding User Driven

Comparison

2015 As appetite for
electricity soars, the
world keeps turning to
coal (Lindeman,
Mellnik and Englund,
2015)

web
application

worldwide coal

electricity

other(multiple)

Geolocation-based

multiple types of energy

Time-based

Bubble Chart

Pie Chart

Geographic Map

Multi Series Area
Chart

Scroll down Icons

Color Coding

Author Driven

Information
Slideshow

literary narration

comparison

2017 Mapping how the
United States
generates its
electricity (Muyskens,
Keating and
Granados, 2017)

web
application

country multiple Geolocation-based

multiple types of energy

Time-based

Bubble Chart

Geographic Map

Bar Chart

Line Chart

Cursor-based
Interaction (hover, click)

Scroll down

Small Multiples

Icons

Color Coding

Author Driven

Classification

Comparison

Literary narrition

YEAR

Page | 54

2017 International energy
technology
perspectives: ETP
2017 Data
Visualization.
Emissions Reductions
and Energy Flows
(International Energy
Agency, 2017)

web
application

country Emission
reduction

energy flow

Geolocation-based

multiple types of energy

Time-based

Data Flow Diagrams

Time Line

Line Chart

Area Chart

Cursor-based
Interaction (hover, click)

Scroll down

Dashboard for filtering

Overview+Detail

Animation

Color Coding

User Driven

Comparison

2017 CO2 Emissions Shown
with Balloons (Klemm,
2017)

physical data
visualisation

worldwide CO2 emission Single type of energy

Geolocation-based

Area Chart

Geographic Map

data physicalization

n/a Metaphor

Material

User Driven

Comparison

n/a Electric Generation in
Spain - Latest 24
hours (Vicente, V. S.,
n.d.)

web
application

country multiple Geolocation-based

multiple types of energy

Time-based

Time Line

Area Chart

Cursor-based
Interaction (hover, click)

Scroll down

Real-time Update

Icons

Color Coding

User Driven

classification

comparison

n/a The United States of
Energy (Saxum, n.d.)

web
application

country multiple Geolocation-based

multiple types of energy

Time-based

Bubble Chart

Geographic Map

Bar Chart

Line Chart

Small Multiples

Pie Chart

Area Chart

Cursor-based
Interaction (hover, click)

Scroll down

Zoom in, zoom out

Animation

Color Coding

User Driven

Comparison

Literary narrition

n/a Estimated Total Annual
Building Energy
Consumption at the
Block and Lot Level
for NYC (Sherpa, S.
Et, al., n.d.)

web
application

city multiple Geolocation-based

multiple types of energy

Time-based

Pie Chart

Geographic Map

Heatmap

Bar Chart

Cursor-based
Interaction (click, drag)

Scroll down

Zoom in, zoom out

Dashboard for Detail
Display

Color Coding User Driven

Comparison

Estimation

n/a Dropcountr
(Dropcountr, n.d.)

mobile
application

desktop
application

web
application

community multiple Geolocation-based

multiple types of energy

Real-time

Bubble Chart

Geographic Map

Bar Chart

Dashboard

Touch-based
Interaction (click, drag)

Scroll down

Zoom in, zoom out

Overview+Detail

Color Coding User Driven

Comparison

n/a thingsboard.io
(ThingsBoard authors,
n.d.)

web
application

LoT

household

individual

multiple Geolocation-based

multiple types of energy

Real-time

Dashboard

Geographic Map

Bar Chart

Pie Chart

Table

Line Chart

Pie Chart

Touch-based
Interaction (hover, click)

Overview+Detail

Real-time Update

real-time data
visualization

dashboard

User Driven

Comparison

Name format Scale of
Energy Data

Categories of
Energy Sources

Charcateristics of
Energy Data

Visualization
Techniques

Human-Data Interaction Visual Expressions NarrativeYEAR

Page | 55

Appendix B: Source Code

Part I: Data Processing

"""

STEP 1:

Combines all data entries from the same year

into a single csv file for future data

processing.

"""

import os, xlrd, csv

from time import gmtime, strftime

converts xlsx file into csv file and rename

def excel_to_tsv(sheet_path, sheet_name,

path_tsv):

 workbook = xlrd.open_workbook(sheet_path +

sheet_name)

 # sh = wb.sheet_by_name(sheet_name)

 sheet = workbook.sheet_by_index(0)

 tsv_file = open(path_tsv + sheet_name +

'.tsv', 'wb')

 writer = csv.writer(tsv_file,

quoting=csv.QUOTE_ALL)

 for rownum in xrange(sheet.nrows):

 writer.writerow(sheet.row_values(rownum))

 tsv_file.close()

"""

adapted from

https://stackoverflow.com/questions/20105118/

convert-xlsx-to-csv-correctly-using-python

"""

combines csv files containing data from teh same

year into one file and rename

def combineTsvs(path, end_path, from_year,

to_year):

print "Combining..."

os.chdir(path) #change directory to the

csv files' folder

tsv_name = str(from_year)+"-"+str(to_year)+"

"+strftime("%m-%d %H:%M:%S", gmtime())

output_file = open(end_path + tsv_name +

'.tsv', 'a')

for fn in os.listdir('.'):

if (os.path.isfile(fn) & (fn !=

".DS_Store")

& ((("EUAS " + str(from_year)) in fn)

or (("EUAS " + str(to_year))) in fn)):

print (fn)

for line in open(fn):

output_file.write(line)

output_file.close()

#puts all csv files of certain years into the same

folder

def integrate(from_year, to_year, in_path,

out_path):

print "integrating..."

for year in xrange(from_year, to_year+1):

tail_path = "EUAS " + str(year) + "/"

"EUAS 2003/"

path = in_path + tail_path

os.chdir(path) # change directory to

certain year

for fn in os.listdir('.'):

if os.path.isfile(fn) & (fn !=

".DS_Store"):

print (fn)

excel_to_tsv(path, fn,

out_path)

in_path =

"/Users/darcy/Desktop/THESIS/dataProcessing/EUAS/"

out_path =

"/Users/darcy/Desktop/THESIS/dataProcessing/EUASTs

v/"

final_path = in_path + "YearlyData/"

testing

path_sheet_data_folder =

"/Users/darcy/Desktop/WaterViz/EUAS/EUAS 2003/"

path_project = "/Users/darcy/Desktop/WaterViz/"

test_sheet_name = "Region 1 EUAS 2003"

excel_to_csv(path_sheet_data_folder,

test_sheet_name, path_csv_data_folder)

shortcut of processing multiple years

def integrateDatabase(from_year, to_year, in_path,

out_path, final_path):

integrate(from_year, to_year, in_path,

out_path)

combineTsvs(out_path, final_path, from_year,

to_year)

integrateDatabase(2003, 2003, in_path, out_path,

final_path)

def main():

#integrate(2003, 2016, in_path, out_path)

for year in xrange(2003, 2016+1):

print "Combining data from year " +

str(year)

combineTsvs(out_path, final_path, year,

year)

main()

def path_leaf(path):

head, tail = ntpath.split(path)

return tail or ntpath.basename(head)

https://stackoverflow.com/questions/8384737/

extract-file-name-from-path-no-matter-what-the-os-

path-format

'''

STEP 2

Creates data for a single building (or a certain

building)

from the yearly data csv files got from step 1.

Rename file based on building id, State located

and other bldg properties.

Discards redundant columns leaving only the

consumption and cost of

gas, electricity and water for future

referance.

Data input columns:

"Region No.",

"State",[1]

"Service Center",

"Fiscal Month",[3]

"Fiscal Year",[4]

"Building Number",[5]

"Area Field Office",[6]

"Cat",[7]

"Building Designation",[8]

"Gross Sq.Ft",[9]

"Electricity (KWH)",[10]

"Electricity (Cost)",[11]

"Demand (KW)",

"Demand (Cost)",

"Steam (Thou. lbs)",

"Steam (Cost)",

"Gas (Cubic Ft)",[16]

"Gas (Cost)",[17]

"Oil (Gallon)",

"Oil (Cost)",

"Chilled Water (Ton Hr)",

"Chilled Water (Cost)",

"Renewable Electricity (KWH)",

"Renewable Electricity (Cost)",

"Renewable Gas (Cubic Ft)",

"Renewable Gas (Cost)",

"Other (mmBTU)",

"Other (Cost)",

"Water (Gallon)",[28]

"Water (Cost)"[29]

Data output columns:

in titie:

("State",)

"Building Number",

"Gross Sq.Ft",

in file:

"Fiscal Month",

"Fiscal Year",

"Electricity (KWH)",

"Electricity (Cost)",

"Gas (Cubic Ft)",

"Gas (Cost)",

"Water (Gallon)",

"Water (Cost)"

'''

import os, csv

creates empty files of unique bldg id in new

folder

def createNewBldgTsvs(set_of_ids):

os.chdir('./BldgTsvs2/')

os.chdir('./BldgTsvs/')

temp_file_names = set_of_ids.copy()

while len(temp_file_names) != 0:

temp_file_name = temp_file_names.pop()

found new building. Create new file

if temp_file_name not in os.listdir('.'):

tsv_file_temp =

open(temp_file_name.strip('\"') + ".tsv",

'a').close()

return

"State",[1]

"Fiscal Month",[3]

"Fiscal Year",[4]

"Building Number",[5]

"Gross Sq.Ft",[9]

"Electricity (KWH)",[10]

"Electricity (Cost)",[11]

"Gas (Cubic Ft)",[16]

"Gas (Cost)",[17]

"Water (Gallon)",[28]

"Water (Cost)"[29]

def assembleBldgTsv(entry_dict):

print "Getting Bldg data..."

#for i in xrange(10):

for i in xrange(1, len(entry_dict)):

if

(checkDataIsComplete(entry_dict[i][28])):

temp_month = entry_dict[i][3]

temp_year = entry_dict[i][4]

temp_id =

entry_dict[i][5].strip('\"')

temp_location =

entry_dict[i][5].strip('\"')

temp_category =

entry_dict[i][5].strip('\"')

temp_Sqft = entry_dict[i][9]

temp_ElecKWH = entry_dict[i][10]

temp_ElecCost = entry_dict[i][11]

temp_GasCubic = entry_dict[i][16]

temp_GasCost = entry_dict[i][17]

temp_WaterGallon = entry_dict[i][28]

temp_WaterCost = entry_dict[i][29]

#print type(temp_id), temp_id

#print temp_id + ".tsv"

if (temp_id+".tsv") in

os.listdir('.'):

tsv_file = open(temp_id +

".tsv", 'a')

writer = csv.writer(tsv_file,

delimiter='\t', lineterminator='\n')

temp_row =

[temp_month.strip('\"'), temp_year.strip('\"'),

temp_Sqft.strip('\"'),

temp_ElecKWH.strip('\"'),

temp_ElecCost.strip('\"'),

temp_GasCubic.strip('\"'),

temp_GasCost.strip('\"'),

temp_WaterGallon.strip('\"'),

temp_WaterCost.strip('\"')]

writer.writerow(temp_row)

#print temp_row

#entry_dict.pop(i) ??????why

after delete this line it appends??

tsv_file.close()

else:

temp_month = entry_dict[i][3]

temp_year = entry_dict[i][4]

temp_id =

entry_dict[i][5].strip('\"')

temp_location =

entry_dict[i][5].strip('\"')

temp_category =

entry_dict[i][5].strip('\"')

temp_Sqft = entry_dict[i][9]

temp_ElecKWH = entry_dict[i][10]

temp_ElecCost = entry_dict[i][11]

temp_GasCubic = entry_dict[i][16]

temp_GasCost = entry_dict[i][17]

temp_WaterGallon = entry_dict[i][28]

temp_WaterCost = entry_dict[i][29]

#print type(temp_id), temp_id

#print temp_id + ".tsv"

if (temp_id+".tsv") in

os.listdir('.'):

tsv_file = open(temp_id +

".tsv", 'a')

writer = csv.writer(tsv_file,

delimiter='\t', lineterminator='\n')

temp_row =

[temp_month.strip('\"'), temp_year.strip('\"'),

temp_Sqft.strip('\"'),

temp_ElecKWH.strip('\"'),

temp_ElecCost.strip('\"'),

temp_GasCubic.strip('\"'),

temp_GasCost.strip('\"'),

temp_WaterGallon.strip('\"'),

temp_WaterCost.strip('\"')]

writer.writerow(temp_row)

#print temp_row

#entry_dict.pop(i) ??????why

after delete this line it appends??

tsv_file.close()

search for bldg in all yearly files

rename and save

return

def yearlyDataToBldgData(year, path):

os.chdir(path)

#look for yearly data files

for fn in os.listdir('.'):

if (os.path.isfile(fn) & (fn !=

".DS_Store")

& (str(year) in fn)):

file_name = fn

break

print file_name + " found!"

#open yearly data file and get each column

with open(path + file_name, 'rb') as csvfile:

 reader = csv.reader(csvfile, delimiter=';',

quotechar='|')

 entry_dict = dict()

 index = 0

 #need to clean out

 for line in reader:

 #print line

 #split with "," instead of , to get rid of

entries like "G, A, X"

 entry_dict[index] = line[0].split('\",\"')

 #print entry_dict[index][8]

 index += 1

print len(entry_dict)

set_of_ids = set()

for i in xrange(len(entry_dict)):

bldg_id = entry_dict[i][5]

#print bldg_id

if (len(bldg_id) == 8 and bldg_id not in

set_of_ids):

set_of_ids.add(bldg_id)

#print "new building " + bldg_id + "

added to the set."

print

"------------------------------"+str(len(set_of_id

s)) + " bldg IDs found."

createNewBldgTsvs(set_of_ids)

print "All new files created."

assembleBldgTsv(entry_dict)

return

path =

"/Users/darcy/Desktop/THESIS/dataProcessing/EUAS/Y

earlyData/"

calls getBldgCsv() function while keeping track

of all building ids

def main():

for year in xrange(2003, 2016+1):

yearlyDataToBldgData(year, path)

print

"---year

", year, " is entered into bldg data."

Return

main()

#yearlyDataToBldg(2013, path)

‘’’

STEP 3

Preparing building data for visualization

’’’

import csv, os, json

import collections

def changeNameOfFiles(path):

os.chdir(path)

for fn in os.listdir('.'):

if (os.path.isfile(fn) & (fn !=

".DS_Store")):

#next(reader)print fn

file_name1 = fn

with open(path +file_name1, 'rb') as

csvfile:

reader = csv.reader(csvfile,

delimiter='\t', quotechar='|')

file_name2 = next(reader)[2]

file_name3 = next(reader)[2]

#print file_name3, file_name2

if (file_name2 == file_name3):

#check if it's sqft

newName =

fn.split(".tsv")[0] + "_" +

file_name2.split(".0")[0] + ".tsv"

print newName

os.rename(fn, newName)

print "changed name format into id + sqft."

return

"""

This function extracts the relevant data and sort

according to key value.

Output a tsv file with index, Year + month,

gallon/sqft, sorted according to timeline.

"""

def dataPrep(path, name, path2, count):

hostDict = dict()

sqft = float(name.split("_")[1].split(".")[0])

bldgId = name.split("_")[0].split(".")[0]

hostDict["sqft"] = sqft

hostDict['bldgId'] = bldgId

hostDict['bldgIndex'] = count

print sqft, bldgId

if (sqft != 0):

with open(path + name, 'rb') as csvfile:

 reader = csv.reader(csvfile,

delimiter=';', quotechar='|')

 entry_dict = dict()

 index = 0

 for line in reader:

 #print line

 temp = line[0].split('\t')

 key = int(float(temp[0]) +

float(temp[1])*100)

 #print key

 entry_dict[key] =

[round(float((temp[-2]))/sqft, 4),

 round(float((temp[-4]))/sqft, 4),

round(float((temp[-6]))/sqft, 4)]

 #print temp

 #print entry_dict[key]

 #print entry_dict

 od =

collections.OrderedDict(sorted(entry_dict.items())

)

 #print od

 json_out = open(path2 +

name.split(".tsv")[0] + "_viz" + ".txt", "wb")

 hostDict["bldgData"] = []

 i = 0

 for key in od:

 tempDict = dict()

 tempDict["index"] = i

 tempDict["time"] = key

 tempDict["elec"] = od.get(key)[0]

 tempDict["gas"] = od.get(key)[1]

 tempDict["water"] = od.get(key)[2]

 hostDict["bldgData"].append(tempDict)

 i+=1

 print hostDict["bldgData"]

 with json_out as outfile:

 json.dump(hostDict, outfile)

 # tsv_out = open(path2 +

name.split(".tsv")[0] + "_viz" + ".tsv", "wb")

 # writer = csv.writer(tsv_out,

delimiter='\t', lineterminator='\n')

 # writer.writerow(["index", "day",

"hour", "value"])

 # #temp_row = [key, entry_dict[key]]

 # i = 0

 # for key in od:

 # #print key%100, key/100

 # writer.writerow([i, key/100,

key%100, od.get(key)])

 # i+=1

path =

"/Users/darcy/Desktop/THESIS/dataProcessing/EUAS/Y

earlyData/BldgTsvs/"

#[1]

#changeNameOfFiles(path)

path2 =

"/Users/darcy/Desktop/THESIS/WaterViz/VIZZ/bldg_da

ta_viz2/"

def preps(path, path2):

os.chdir(path)

#look for yearly data files

count = 0

name_arr = []

for fn in os.listdir('.'):

if (os.path.isfile(fn) & (fn !=

".DS_Store")):

file_name = fn

temp = "bldg_data_viz2/"

+file_name.split(".tsv")[0] + "_viz" + ".csv"

sqft =

file_name.split(".tsv")[0].split('_')[1]

if (sqft != 0):

name_arr.append(temp)

print temp

#dataPrep(path, file_name, path2,

count)

count += 1

return name_arr

#dataPrep(path, 'AK0000AA_727340.tsv', path2, 1)

print preps(path, path2)

path0 = "/Users/darcy/Desktop/WaterViz/"

name = "ID0025ZZ_274412.csv"

#dataPrep(path, name)

-*- coding: utf-8 -*-

import csv, os, json

from pprint import pprint

from shutil import copyfile

'''

Cleaning data and put all building viz data into 4

buckets

according to the rate of completeness of water,

gas and electricity data

3_zeros: there are entries from this building with

all three data absent in certain year

2_zeros: there are entries from this building with

at most two data absent in certain year

1_zero: there are entries from this building with

at most one data absent in certain year

0_zeros: here are no entries from this building

with any data absent

'''

path0 =

"/Users/darcy/Desktop/THESIS/3dWaterViz/bldg_data_

viz2/"

path3 =

"/Users/darcy/Desktop/THESIS/3dWaterViz/3_zeros/"

path2 =

"/Users/darcy/Desktop/THESIS/3dWaterViz/2_zeros/"

path1 =

"/Users/darcy/Desktop/THESIS/3dWaterViz/1_zero/"

path4 =

"/Users/darcy/Desktop/THESIS/3dWaterViz/0_zero/"

#'bldgData', 'sqft', 'bldgId', 'bldgIndex'

#'water','index','elec','gas','time'

def readJson(filename):

file = open(path0 + filename, 'r')

#print file.readlines()

j = json.load(file)

#print j

if (len(j['bldgData']) < 12 * 8):

os.remove(path0+filename)

return ("short", filename)

#while (len())

for i in range(len(j['bldgData'])):

entry = j['bldgData'][i]

if (entry['time'] < 201607):

#if (entry['water'] == 0)

if (entry['water'] == entry['gas'] ==

entry['elec'] == 0):

copyfile(path0+filename,

path3+filename)

os.remove(path0+filename)

return ("3", filename)

elif (entry['water'] == entry['gas']

== 0

or entry['elec'] ==

entry['gas'] == 0

or entry['water'] ==

entry['elec'] == 0):

copyfile(path0+filename,

path2+filename)

os.remove(path0+filename)

return ("2", filename)

elif (entry['water']== 0

or entry['elec'] == 0

or entry['gas'] == 0):

copyfile(path0+filename,

path1+filename)

os.remove(path0+filename)

return ("1", filename)

else:

copyfile(path0+filename,

path4+filename)

os.remove(path0+filename)

return ("0", filename)

return

def readAll():

nameList = os.listdir(path0);

while (nameList != []):

if (nameList[0] == ".DS_Store"):

nameList.remove(nameList[0])

if (nameList[0] != ".DS_Store"):

message, filename =

readJson(nameList[0])

nameList.remove(filename)

print filename, 'removed'

return

#print l

for i in range(len(nameList)):

name = nameList[i]

if (name != ".DS_Store"):

readJson(name)

print i, 'is done!'

return

readAll()

#readJson('/AK0000AA_727340_viz.txt', path0,

path3, path2, path1, path4)

#!/usr/bin/python

-*- encoding: utf-8 -*-

import csv, os, json

from pprint import pprint

from shutil import copyfile

Make it work for Python 2+3 and with Unicode

import io

try:

 to_unicode = unicode

except NameError:

 to_unicode = str

'''

STEP 5

Using the data from the best two buckets and

format them so that

they can be loaded into the visualization

o_zero:4

1_zero:632

Make the connection between data and states /

geolocation

'''

pathin =

"/Users/darcy/Desktop/THESIS/3dWaterViz/GeoPairing

/"

pathout =

"/Users/darcy/Desktop/THESIS/3dWaterViz/GeoPairedc

opy/"

path = "/Users/darcy/Desktop/THESIS/3dWaterViz/"

states =

["AK","AL","AZ","AR","CA","CO","CT","DE","FL","GA"

,"HI","IL",

"ID","IN","IA","KS","KY","LA","ME","MD","MA","MI",

"MN","MS","MO","MT","NE",

"NV","NH","NJ","NM","NY","NC","ND","OH","OK","OR",

"PA","RI","SC","SD","TN",

"TX","UT","VT","VA","WA","WV","WI","WY"];

allBldgData = [];

dataByState = dict()

waterDataByState = dict()

gasDataByState = dict()

elecDataByState = dict()

#'bldgData', 'sqft', 'bldgId', 'bldgIndex'

#'water','index','elec','gas','time'

def geoPairing():

nameList = os.listdir(pathin);

for i in range(len(nameList)):

if (nameList[i] == ".DS_Store" or

nameList[i] == 'GeoPaired'):

continue

else:

json_filein = pathin + nameList[i]

#print file.readlines()

j = json.load(file)

print j

#print json_filein

with open(json_filein) as json_file:

json_decoded =

json.load(json_file)

#print json_decoded

state =

json_decoded['bldgId'][:2]

data = json_decoded['bldgData']

#print data[0]

if (state == 'DC'):

state = 'MD'

json_decoded['DC'] = True

stateIndex =

states.index(state)

if stateIndex not in

dataByState.keys():

print 'a'

dataByState[stateIndex] =

[]

dataByState[stateIndex].append(data)

else:

dataByState[stateIndex].append(data)

json_decoded['state'] = state

json_decoded['stateIndex'] =

stateIndex

#print state, stateIndex

allBldgData.append((data,

stateIndex));

#save updated json file into

the new folder Geopaired

json_fileout = pathout +

nameList[i]

with io.open(json_fileout, 'w',

encoding='utf8') as outfile:

 str_ =

json.dumps(json_decoded,

 indent=4,

sort_keys=True,

separators=(',', ': '), ensure_ascii=False)

outfile.write(to_unicode(str_))

Read JSON file

with open(json_fileout) as

data_file:

 data_loaded =

json.load(data_file)

#print(json_decoded ==

data_loaded)

return

def getFileNames():

tempList = []

for fn in os.listdir(pathout):

if (fn != ".DS_Store"):

file_name = fn

print file_name+","

tempList.append(file_name+",")

with open('path + "viz_file_names.csv', 'wb')

as csvfile:

writer = csv.writer(csvfile,

delimiter=',',

 quotechar='|',

quoting=csv.QUOTE_MINIMAL)

writer.writerow(tempList)

csvfile.close()

return

def saveAllWaterData():

for key in dataByState:

waterSum = 0

#print key, dataByState[key][0][0]

for i in range(len(dataByState[key])):

for j in

range(len(dataByState[key][i])):

waterSum +=

dataByState[key][i][j]["elec"]

print

dataByState[key][i][j]["water"]

waterDataByState[key] = waterSum

/len(dataByState[key])

print waterSum

return

geoPairing()

#dataByState: dict of stateindex as keys and 2d

list as values

print dataByState[0], len(dataByState)

#getFileNames()

#saveAllBldgData()

saveAllWaterData()

print waterDataByState, len(waterDataByState)

Part 2: Data Visualization

<!DOCTYPE html>

<html lang="en">

<head>

<title>Map view</title>

<meta charset="utf-8">

<meta name="viewport"

content="width=device-width, user-scalable=no,

minimum-scale=1.0, maximum-scale=1.0">

<style>

body {

font-family: Monospace;

background-color: #cccccc;

margin: 0px;

overflow: hidden;

}

/*

 a {

 font-size: 50px

 }

*/

 a, button {

 display: inline-block;

 position: relative;

 z-index: 1;

 padding: .2em;

 margin: .1em;

 }

</style>

</head>

<body>

 <a>Dashboard

 <button

onclick="location.href='3dWaterVizfly.html'"

type="button">Reset All</button>

 <button id="camerareset">Reset

Camera</button>

 <button id="resetmap">Reset Map</button>

 <button id="editmap" >Play with

Map</button>

 <button id="colorbytemp">Color Map by

Tempreture</button>

 <button id="showWater">Show Water Data by

Building</button>

 <button id="showwdbs">Show Water Data in

States</button>

 <button id="showgdbs">Show Gas Data in

States</button>

 <button id="showedbs">Show Electricity

Data in States</button>

 <button id="showAlldbs">Show All Data in

States</button>

 <button

onclick="location.href='3dWaterVizfly.html'"

type="button">Hide All Data and Reset</button>

 <button id="shot">Screenshot</button>

 <button id="mapcoordinates">Save Map

Settings</button>

 <button id="comparestate">Compare

Mode</button>

 <button

onclick="location.href='3dWaterVizfly2.html'"

type="button">View Indivisual Buildings</button>

<!--

control

https://github.com/mrdoob/three.js/blob/master/exa

mples/webgl_geometry_spline_editor.html-->

<!-- new set of x, y value to show the

breaking down effect-->

<!-- <a href="3dWaterViz2.html"

id="editmap">Edit map off-->

 <script

src="three.js-master/build/three.js"></script>

 <script

src="https://d3js.org/d3.v4.min.js"></script>

 <script

src="js/controls/FlyControls.js"></script>

<!--

 <script type="text/javascript"

src="three.js-master/build/three.min.js"></script>

 <script type="text/javascript"

src="three.js-master/build/three-vr-viewer.js"></s

cript>

-->

<script

src="js/controls/DragControls.js"></script>

<script

src="js/controls/TrackballControls.js"></script>

 <script src="js/Detector.js"></script>

 <script

src="three.js-master/examples/js/loaders/STLLoader

.js"></script>

<script

src="js/libs/stats.min.js"></script>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/

3.2.1/jquery.min.js"></script>

<script>

 //TO DO

 //change tex when click, build

dashboard

//document.getElementById("peep").innerHTML =

"Welcome " + name;

 //move camera according to cursor

 //find tempreture data and map to map

 //change background and flow between

modes

 //comparing mode and small multiple

mode

 //design building signature

 //only drag in 2d

 const states =

["AK","AL","AZ","AR","CA","CO","CT","DE","FL","GA"

,"HI","IL","ID","IN","IA","KS","KY","LA","ME","MD"

,"MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ"

,"NM","NY","NC","ND","OH","OK","OR","PA","RI","SC"

,"SD","TN","TX","UT","VT","VA","WA","WV","WI","WY"

];

 const stateIndex =

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,3

6,37,38,39,40,41,42,43,44,45,46,47,48,49,50];

 const xpstn =

[-771.5195426637397,192.9120623696258,-380.5345212

538828,62.55575967266884,-578.3734923627312,-234.9

815409434305,455.2701253106838,425.2814168558325,2

18.36344644986104,253.7395028474221,-285.674405220

41346,120.43517222396176,-368.1286023540158,187.45

4144117512,22.62435981878511,-90.34250818635275,16

3.75919090056604,77.3213723218617,468.618133109434

27,352.5637913514511,455.2592937680254,133.0673679

9868054,12.411404639514473,124.83274671877716,37.6

8743829619295,-334.7916130692514,-123.645291875500

59,-468.97549792092764,457.3270990773462,426.34027

44226916,-255.9633981260098,327.05607636604043,274

.4917707300043,-108.04654217758784,246.18830760862

39,-118.58072822073825,-501.49653486182626,325.986

6073420785,491.3626630036835,298.20059332728704,-1

18.08152677724465,151.53222017545247,-220.66269959

637145,-337.2844614009403,440.4581975225201,276.47

65650848281,-481.25521056718935,291.19910626454407

,90.9059015422269,-258.190187286931];

 const ypstn =

[-244.73866881936206,-170.95915978327184,-122.8856

3450598433,-102.99262542548735,-73.47697016716467,

2.7706313421242825,145.7822451956747,77.5778746760

653,-320.163066823004,-162.14050818154948,-329.702

3565104875,1.3612283689822107,147.3054252059451,24

.92761366302522,85.66417768067507,-1.5394908753911

665,-9.189052794202816,-208.65012259352386,199.301

13656936916,48.430856172151834,154.488127852715,11

8.44670734139257,165.42389528007405,-176.329537268

3515,-27.281742794884494,195.22022354102592,75.852

3620509458,-13.290833751604424,194.28437725247764,

89.12685540976432,-141.97420200078307,111.08089832

317293,-67.75510784306641,229.2486167364129,46.130

26605921847,-89.50964071151921,173.4100614319632,9

0.03061465340473,160.9310187192081,-111.2944394801

1468,139.21921078942634,-50.04576678050063,-293.02

84193100634,19.84758308148158,193.96006796192128,2

.9471042530664704,266.18333415989605,18.9396464383

3037,137.71526067747104,109.38877671240826];

 var mapEditMode = false;

var container, stats;

var camera, controls, scene,

raycaster, renderer;

var objects = [];

 var statesStl = [];

 var wdbs = [];

 var gdbs = [];

 var edbs = [];

 var map = [];

 var buildingCount = 20;

init();

animate();

 const material = new

THREE.MeshPhongMaterial({ color: 0x585858,

specular: 0x111111, shininess: 200 });

 const materialx = new

THREE.MeshPhongMaterial({ color: 0xe7e7e7,

specular: 0x111111, shininess: 200 });

 var lineMaterial = new

THREE.LineBasicMaterial({ color: 0xffffff });

 var waterDataNames = [];

 var waterDataNamesBS;

 var gasDataNamesBS;

 var elecDataNamesBS;

 var bldgIndex, sqft, bldgId, bldgData,

bldgState, bldgStateIndex;

 const material0 = new

THREE.MeshBasicMaterial({ color: 0xA2D9F0});

 const material1 = new

THREE.MeshBasicMaterial({ color: 0xF8EFB6});

 const material2 = new

THREE.MeshBasicMaterial({ color: 0xBFCCF9});

 const dist0 = 0;

 const dist1 = 10;

 const dist2 = 20;

 var mouse;

 var INTERSECTED;

var radius = 100, theta = 0;

 function drawWaterData(dataPoints) {

 //loop through all buildings in

the name list

 for (var i = 0; i <

waterDataNames.length; i++) {

 d3.json(waterDataNames[i],

function(error, dataPoints) {

 //console.log(dataPoints)

 bldgIndex =

+dataPoints.bldgIndex;

 sqft = +dataPoints.sqft;

 bldgId =

dataPoints.bldgId;

 bldgData =

dataPoints.bldgData;

 bldgState =

dataPoints.state;

 bldgStateIndex =

dataPoints.stateIndex;

 var xb, yb, zb;

 zb = 3;

 xb =

stateXs[bldgStateIndex];

 yb =

stateYs[bldgStateIndex];

 var geometry = new

THREE.BoxGeometry(10, 10, 0);

 for (var i = 0; i <

buildingCount; i ++) {

 const material0 = new

THREE.MeshBasicMaterial({ color: 0xffffff});

 var object = new

THREE.Mesh(geometry, material0);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

 object.position.x =

xb+100;// + 50*Math.random();//Math.random() *

1000 - 500;

 object.position.y =

yb+100;// + 50*Math.random();//Math.random() * 600

- 300;

 object.position.z =

zb;//boxz;//0;//Math.random() * 800 - 400;

 object.rotation.x =

0;//Math.random() * 2 * Math.PI;

 object.rotation.y =

0;//Math.random() * 2 * Math.PI;

 object.rotation.z =

0;//Math.random() * 2 * Math.PI;

 object.scale.x =

1;//Math.random() * 2 + 1;

 object.scale.y =

1;//Math.random() * 2 + 1;

 object.scale.z =

1;//Math.random() * 2 + 1;

 object.castShadow =

true;

 object.receiveShadow =

false;

 scene.add(object);

 objects.push(object

);

 }

 var x, y, z;

 z = 3;

 x =

stateXs[bldgStateIndex];

 y =

stateYs[bldgStateIndex];

 var lineGeometry = new

THREE.Geometry();

//lineGeometry.vertices.push(new THREE.Vector3(x,

y, z));

 //loop through all points

for each building

 for (var j = 0; j <

bldgData.length; j++) {

 x =

stateXs[bldgStateIndex] + bldgData[j].index;

 y =

stateYs[bldgStateIndex] + bldgData[j].water*20;

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 }

 y =

stateYs[bldgStateIndex];

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 x =

stateXs[bldgStateIndex];

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 var lines = new

THREE.Line(lineGeometry, lineMaterial);

 scene.add(lines);

 console.log(lines);

 var lineMesh = new

THREE.Mesh(lineGeometry, material);

 scene.add(lineMesh);

 console.log(lineMesh);

 });

 }

 }

 function showWaterDataByState() {

console.log("drawWaterDataEachState");

 d3.json("./wdbs.txt",

function(error, root) {

 //console.log("error:", error)

 console.log("load water by

state...");

 console.log(root.length);

 waterDataNamesBS = root;

 //getStateDataPosition(root,

dist0, material0);

 for (var j = 0; j <

wdbs.length; j++) {

 scene.remove(wdbs[j]);

 }

 wdbs = [];

 for (var i = 0; i < 50; i++) {

 //console.log(root[i]);

 var geometry = new

THREE.BoxGeometry(root[i]/20, 20, 10);

 var object = new

THREE.Mesh(geometry, material0);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

 object.position.x =

statesStl[i].position.x+80 ;

 object.position.y =

statesStl[i].position.y+80+ dist0;

 object.position.z = 10;

 object.rotation.x =

0;//Math.random() * 2 * Math.PI;

 object.rotation.y =

0;//Math.random() * 2 * Math.PI;

 object.rotation.z =

0;//Math.random() * 2 * Math.PI;

 object.scale.x =

1;//Math.random() * 2 + 1;

 object.scale.y =

1;//Math.random() * 2 + 1;

 object.scale.z =

1;//Math.random() * 2 + 1;

 object.castShadow = true;

 object.receiveShadow =

false;

 scene.add(object);

 wdbs.push(object);

 objects.push(object);

 }

 });

 }

 function showGasDataByState() {

 d3.json("./gdbs.txt",

function(error, root) {

 //console.log("error:", error)

 console.log("load gas...");

 console.log(root);

 gasDataNamesBS = root;

 //getStateDataPosition(root,

dist1, material1);

 for (var j = 0; j <

gdbs.length; j++) {

 scene.remove(gdbs[j]);

 }

 gdbs = [];

 for (var i = 0; i < 50; i++) {

 //console.log(root[i]);

 var geometry = new

THREE.BoxGeometry(root[i]/20, 20, 10);

 var object = new

THREE.Mesh(geometry, material1);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

 object.position.x =

statesStl[i].position.x+80 ;

 object.position.y =

statesStl[i].position.y+80+ dist1*1.5;

 object.position.z = 10;

 object.rotation.x =

0;//Math.random() * 2 * Math.PI;

 object.rotation.y =

0;//Math.random() * 2 * Math.PI;

 object.rotation.z =

0;//Math.random() * 2 * Math.PI;

 object.scale.x =

1;//Math.random() * 2 + 1;

 object.scale.y =

1;//Math.random() * 2 + 1;

 object.scale.z =

1;//Math.random() * 2 + 1;

 object.castShadow = true;

 object.receiveShadow =

false;

 scene.add(object);

 gdbs.push(object);

 objects.push(object);

 }

 });

 }

 function showElecDataByState() {

 d3.json("./edbs.txt",

function(error, root) {

 //console.log("error:", error)

 console.log("load elec...");

 console.log(root);

 elecDataNamesBS = root;

 //getStateDataPosition(root,

dist2, material2);

 for (var j = 0; j <

edbs.length; j++) {

 scene.remove(edbs[j]);

 }

 edbs = [];

 for (var i = 0; i < 50; i++) {

 //console.log(root[i]);

 var geometry = new

THREE.BoxGeometry(root[i]/10, 20, 10);

 var object = new

THREE.Mesh(geometry, material2);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

 object.position.x =

statesStl[i].position.x+80 ;

 object.position.y =

statesStl[i].position.y+80+ dist2*1.5;

 object.position.z = 10;

 object.rotation.x =

0;//Math.random() * 2 * Math.PI;

 object.rotation.y =

0;//Math.random() * 2 * Math.PI;

 object.rotation.z =

0;//Math.random() * 2 * Math.PI;

 object.scale.x =

1;//Math.random() * 2 + 1;

 object.scale.y =

1;//Math.random() * 2 + 1;

 object.scale.z =

1;//Math.random() * 2 + 1;

 object.castShadow = true;

 object.receiveShadow =

false;

 scene.add(object);

 edbs.push(object);

 objects.push(object);

 }

 });

 }

 function showAllDataByState() {

 showWaterDataByState();

 showGasDataByState();

 showElecDataByState();

 }

 function showWaterData() {

 d3.csv("./viz_file_names.csv",

function(error, dataPoints) {

 //

console.log(dataPoints.columns[0]);

 waterDataNames =

dataPoints.columns;

 //console.log(waterDataNames);

 drawWaterData(dataPoints);

 })

 }

 function makeBoxes() {

 const boxz = 0;

 var geometry = new

THREE.BoxGeometry(10, 10, 0);

for (var i = 0; i <

buildingCount; i ++) {

 const material0 = new

THREE.MeshBasicMaterial({ color: 0xffffff});

var object = new

THREE.Mesh(geometry, material0);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

object.position.x =

Math.random() * 1000 - 500;

object.position.y =

Math.random() * 600 - 300;

object.position.z =

boxz;//0;//Math.random() * 800 - 400;

object.rotation.x =

0;//Math.random() * 2 * Math.PI;

object.rotation.y =

0;//Math.random() * 2 * Math.PI;

object.rotation.z =

0;//Math.random() * 2 * Math.PI;

object.scale.x =

1;//Math.random() * 2 + 1;

object.scale.y =

1;//Math.random() * 2 + 1;

object.scale.z =

1;//Math.random() * 2 + 1;

object.castShadow = true;

object.receiveShadow =

false;

scene.add(object);

objects.push(object);

// var lineMaterial = new

THREE.LineBasicMaterial({ color: 0xffffff });

// var lineGeometry = new

THREE.Geometry();

// var x = object.position.x;

// var y = z = 5000;

//

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

// var line = new

THREE.Line(lineGeometry, lineMaterial);

// scene.add(line);

// lines.push(line);

}

 }

 function makeMap() {

 var loader = new

THREE.STLLoader();

 //stl 3d model from

https://www.thingiverse.com/thing:1524543

 var counter = 0;

 for (var i = 0; i <

states.length; i ++) {

 loader.load(

'usmap/'+states[i]+'.stl', function (geometry) {

 var mesh = new THREE.Mesh(

geometry, material);

 mesh.position.set(

stateXs[counter], stateYs[counter], -50);

//x:-1200+250*(counter%10)

y:200+180*Math.floor(counter/10)

 //console.log(i,

mesh.position.y);

 mesh.rotation.set(

Math.PI/2, 0, Math.PI*2);

 mesh.scale.set(.6, .6,.6);

 mesh.castShadow = true;

 mesh.receiveShadow = true;

 scene.add(mesh);

 statesStl.push(mesh);

 counter ++;

 });

 }

 }

 function setClickListeners() {

//

document.getElementById("resetall").addEventListen

er('click', init);

document.getElementById("shot").addEventListener('

click', takeScreenshot);

document.getElementById("camerareset").addEventLis

tener('click', cameraReset);

document.getElementById("mapcoordinates").addEvent

Listener('click', mapCoordinates);

document.getElementById("resetmap").addEventListen

er('click', resetMap);

document.getElementById("editmap").addEventListene

r('click', editMap);

document.getElementById("colorbytemp").addEventLis

tener('click', colorByTemp);

document.getElementById("showWater").addEventListe

ner('click', showWaterData);

document.getElementById("showwdbs").addEventListen

er('click', showWaterDataByState);

document.getElementById("showgdbs").addEventListen

er('click', showGasDataByState);

document.getElementById("showedbs").addEventListen

er('click', showElecDataByState);

document.getElementById("showAlldbs").addEventList

ener('click', showAllDataByState);

document.addEventListener('keydown', onkeydown,

false);

//

document.addEventListener('mousedown',

updatemappo, false);

 document.addEventListener(

'mousemove', onDocumentMouseMove, false);

 }

function init() {

 stateXs = xpstn;

 stateYs = ypstn;

container =

document.createElement('div');

document.body.appendChild(

container);

camera = new

THREE.PerspectiveCamera(50, window.innerWidth /

window.innerHeight, 1, 10000);

camera.position.z = 1000;

 //console.log(camera);

 //var oriCamera =

JSON.parse(JSON.stringify(camera));

controls = new

THREE.TrackballControls(camera);

controls.rotateSpeed = 1.0;

controls.zoomSpeed = 1.2;

controls.panSpeed = 0.8;

controls.noZoom = false;

controls.noPan = false;

controls.staticMoving = false;

controls.dynamicDampingFactor =

0.3;

scene = new THREE.Scene();

scene.background = new

THREE.Color(0x898989);

scene.add(new

THREE.AmbientLight(0x505050));

var light = new

THREE.SpotLight(0xB8B8B8, 0.5);

light.position.set(0, 500,

2000);

light.castShadow = true;

light.shadow = new

THREE.LightShadow(new THREE.PerspectiveCamera(

50, 1, 200, 10000));

light.shadow.bias = - 0.00022;

light.shadow.mapSize.width =

2048;

light.shadow.mapSize.height =

2048;

scene.add(light);

 //////////////////make

boxes/////////////////

// makeBoxes();

 mouse = new THREE.Vector2();

 raycaster = new THREE.Raycaster();

renderer = new

THREE.WebGLRenderer({ antialias: true });

renderer.setPixelRatio(

window.devicePixelRatio);

renderer.setSize(

window.innerWidth, window.innerHeight);

renderer.shadowMap.enabled =

true;

renderer.shadowMap.type =

THREE.PCFShadowMap;

container.appendChild(

renderer.domElement);

 setClickListeners();

var dragControls = new

THREE.DragControls(objects, camera,

renderer.domElement);

dragControls.addEventListener(

'dragstart', function (event) { controls.enabled

= false; });

dragControls.addEventListener(

'dragend', function (event) { controls.enabled =

true; });

var info =

document.createElement('div');

info.style.position =

'absolute';

info.style.top = '10px';

info.style.width = '100%';

info.style.textAlign = 'left';

 info.innerHTML =

'

View Data in

Topographical Map
<a>W: zoom

in
<a>S: zoom out
<a>A: turn

left
<a>D: turn right
<a><: move

screen to the left
<a>>: move screen to the

right
<a>Hover on model to

lock;
<a>Click and drag to move

model.';

 container.appendChild(info);

//stats = new Stats();

//container.appendChild(

stats.dom);

//

window.addEventListener(

'resize', onWindowResize, false);

 /////////////map

settings///////////////

 makeMap();

}

function onWindowResize() {

camera.aspect =

window.innerWidth / window.innerHeight;

camera.updateProjectionMatrix();

renderer.setSize(

window.innerWidth, window.innerHeight);

}

 function onDocumentMouseMove(event)

{

//event.preventDefault();

mouse.x = (event.clientX /

window.innerWidth) * 2 - 1;

mouse.y = - (event.clientY /

window.innerHeight) * 2 + 1;

}

function animate() {

requestAnimationFrame(animate

);

render();

}

function render() {

controls.update();

renderer.render(scene, camera

);

 raycaster.setFromCamera(mouse,

camera);

var intersects =

raycaster.intersectObjects(scene.children);

if (intersects.length > 0) {

if (INTERSECTED !=

intersects[0].object) {

if (INTERSECTED)

INTERSECTED.material = material;

INTERSECTED =

intersects[0].object;

INTERSECTED.material

= materialx;

//INTERSECTED.material.emissive.setHex(0xff0000

);

///console.log("intersected 1");

//console.log(INTERSECTED);

}

}

 else {

 if (INTERSECTED)

INTERSECTED.material = material;

 INTERSECTED = null;

 //console.log("intersected

2");

}

renderer.render(scene, camera

);

}

 function takeScreenshot() {

 console.log("taking

screeshot...");

 // open in new window like this

 var w = window.open('', '');

 w.document.title = "Screenshot";

//w.document.body.style.backgroundColor = "red";

 var img = new Image();

 // Without 'preserveDrawingBuffer'

set to true, we must render now

 renderer.render(scene, camera);

 img.src =

renderer.domElement.toDataURL();

 w.document.body.appendChild(img);

 // download file

 var a =

document.createElement('a');

 // Without 'preserveDrawingBuffer'

set to true, we must render now

 renderer.render(scene, camera);

 a.href =

renderer.domElement.toDataURL().replace("image/png

", "image/octet-stream");

 a.download = 'canvas.png';

 a.click();

 }

 function cameraReset() {

 console.log("Reseting camera...");

 //console.log(camera);

 camera.position.x = 0;

 camera.position.y = 0;

 camera.position.z = 1000;

 camera.rotation.x = 0;

 camera.rotation.y = 0;

 camera.rotation.z = 0;

 camera.fov = 50;

 camera.filmOffset = 0;

 camera.updateProjectionMatrix();

 controls.reset();

 //window.innerWidth /

window.innerHeight, 1, 10000

 }

 function mapCoordinates() {

 //statesStl = [];

 var xs = [];

 var ys = [];

 //console.log(statesStl.length,

buildingCount);

 //locate all state stl files

 for (var i = 0; i <

statesStl.length; i++) {

 //statesStl.push(objects[i]);

xs.push(statesStl[i].position.x);

ys.push(statesStl[i].position.y);

 console.log(statesStl.length);

 }

 console.log(statesStl.length);

 const linkx =

document.createElement('a');

 linkx.style.display = 'none';

 document.body.appendChild(linkx

);

 const blobx = new Blob([xs], {

type: 'text/plain' });

 const objectURLx =

URL.createObjectURL(blobx);

 linkx.href = objectURLx;

 linkx.href = URL.createObjectURL(

blobx);

 linkx.download =

'x_map_setting.json';

 linkx.click();

 const linky =

document.createElement('a');

 linky.style.display = 'none';

 document.body.appendChild(linky

);

 const bloby = new Blob([ys], {

type: 'text/plain' });

 const objectURLy =

URL.createObjectURL(bloby);

 linky.href = objectURLy;

 linky.href = URL.createObjectURL(

bloby);

 linky.download =

'y_map_setting.json';

 linky.click();

//https://discourse.threejs.org/t/how-to-create-a-

new-file-and-save-it-with-arraybuffer-content/628/

3

 }

 const zzz = -100;

 function resetMap() {

 var counter = 0;

 for (var i = 0; i <

statesStl.length; i++) {

 statesStl[i].position.x =

xpstn[counter];

 statesStl[i].position.y =

ypstn[counter];

 statesStl[i].position.z =

zzz;//-100;

 statesStl[i].material =

material;

 counter++;

 }

 }

 function colorByTemp() {

 var material2 = new

THREE.MeshPhongMaterial({ color: 0xffffff,

specular: 0x111111, shininess: 20 });

 var counter = 0;

 for (var i = 0; i <

statesStl.length; i++) {

 statesStl[i].material =

material2;

 counter++;

 }

 }

 function editMap() {

 if (mapEditMode == false) {

 mapEditMode = true;

 var dragControlsMap = new

THREE.DragControls(statesStl, camera,

renderer.domElement);

dragControlsMap.addEventListener('dragstart',

function (event) { controls.enabled = false; }

);

dragControlsMap.addEventListener('dragend',

function (event) { controls.enabled = true; });

 }

 else if (mapEditMode == true){

 mapEditMode = false;

 //controls.enabled = true;

 // dragControlsMap.abort;

 //TODO

 }

 console.log("edit mode:",

mapEditMode);

 }

 var mode;

 var MODE = { TRACKBALL: 0, FLY: 1 };

 function onkeydown() {

 var keyCode = event.which;

 console.log("aaa");

 if (keyCode == 87) {

 console.log("up");

 //camera.position.y += 10;

 //camera.zoom += 2;

 camera.fov -= 3;

 } else if (keyCode == 83) {

 console.log("down");

 camera.fov += 3;

 } else if (keyCode == 65) {

 camera.position.x -= 10;

 } else if (keyCode == 68) {

 camera.position.x += 10;

 } else if (keyCode == 32) {

 cameraReset();

 } else if (keyCode == 188) {

 camera.filmOffset -= 1;

 } else if (keyCode == 190) {

 camera.filmOffset += 1;

 }

 camera.updateProjectionMatrix();

 }

 //https://jsfiddle.net/2pha/art388yv/

 //chrome://flags/#enable-webvr

 //VRViewer({THREE});

//python -m SimpleHTTPServer

 //localhost:8000

</script>

</body>

</html>

<!DOCTYPE html>

<html lang="en">

<head>

<title>Map view</title>

<meta charset="utf-8">

<meta name="viewport"

content="width=device-width, user-scalable=no,

minimum-scale=1.0, maximum-scale=1.0">

<style>

body {

font-family: Monospace;

margin: 0px;

overflow: hidden;

}

/*

 a {

 font-size: 50px

 }

*/

 a, button {

 display: inline-block;

 position: relative;

 z-index: 1;

 padding: .2em;

 margin: .1em;

 }

 #info {

position: absolute;

top: 10px;

width: 100%;

text-align: center;

z-index: 100;

display:block;

}

 body {

 width: 100%;

 height: 100%;

 background: #11e8bb; /* Old browsers

*/

 background:

-moz-linear-gradient(top, #11e8bb 0%, #8200c9

100%); /* FF3.6-15 */

 background:

-webkit-linear-gradient(top, #11e8bb 0%,#8200c9

100%); /* Chrome10-25,Safari5.1-6 */

 background: linear-gradient(to

bottom, #11e8bb 0%,#8200c9 100%); /* W3C, IE10+,

FF16+, Chrome26+, Opera12+, Safari7+ */

 filter:

progid:DXImageTransform.Microsoft.gradient(

startColorstr='#11e8bb',

endColorstr='#8200c9',GradientType=0); /* IE6-9

*/

 }

</style>

</head>

<body>

<!-- <a>Dashboard-->

<!--
-->

<!--

 <button

onclick="location.href='3dWaterVizfly.html'"

type="button">Reset All</button>

 <button id="camerareset">Reset

Camera</button>

 <button id="resetmap">Reset Map</button>

 <button id="editmap" >Play with

Map</button>

 <button id="colorbytemp">Color Map by

Tempreture</button>

 <button id="showWater">Show Water Data on

Map</button>

 <button id="showWaterbldg">Show Water Data

by Building</button>

 <button

onclick="location.href='3dWaterVizfly.html'"

type="button">Hide All Data and Reset</button>

 <button id="shot">Screenshot</button>

 <button id="mapcoordinates">Save Map

Settings</button>

 <button id="comparestate">Compare

Mode</button>

-->

<!-- <div id="info">Visualize Water Data By

Building</div>-->

<!--

control

https://github.com/mrdoob/three.js/blob/master/exa

mples/webgl_geometry_spline_editor.html-->

<!-- new set of x, y value to show the

breaking down effect-->

<!-- <a href="3dWaterViz2.html"

id="editmap">Edit map off-->

 <script

src="three.js-master/build/three.js"></script>

 <script

src="https://d3js.org/d3.v4.min.js"></script>

 <script

src="js/controls/FlyControls.js"></script>

 <script

src="js/renderers/Projector.js"></script>

<script

src="js/renderers/CanvasRenderer.js"></script>

<!--

 <script type="text/javascript"

src="three.js-master/build/three.min.js"></script>

 <script type="text/javascript"

src="three.js-master/build/three-vr-viewer.js"></s

cript>

-->

<script

src="js/controls/DragControls.js"></script>

<script

src="js/controls/TrackballControls.js"></script>

 <script src="js/Detector.js"></script>

 <script

src="three.js-master/examples/js/loaders/STLLoader

.js"></script>

<script

src="js/libs/stats.min.js"></script>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/

3.2.1/jquery.min.js"></script>

<script>

 //TO DO

 //change tex when click, build

dashboard

//document.getElementById("peep").innerHTML =

"Welcome " + name;

 //move camera according to cursor

 //find tempreture data and map to map

 //change background and flow between

modes

 //comparing mode and small multiple

mode

 //design building signature

 //only drag in 2d

 const states =

["AK","AL","AZ","AR","CA","CO","CT","DE","FL","GA"

,"HI","IL","ID","IN","IA","KS","KY","LA","ME","MD"

,"MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ"

,"NM","NY","NC","ND","OH","OK","OR","PA","RI","SC"

,"SD","TN","TX","UT","VT","VA","WA","WV","WI","WY"

];

 const stateIndex =

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,3

6,37,38,39,40,41,42,43,44,45,46,47,48,49,50];

 const xpstn =

[-771.5195426637397,192.9120623696258,-380.5345212

538828,62.55575967266884,-578.3734923627312,-234.9

815409434305,455.2701253106838,425.2814168558325,2

18.36344644986104,253.7395028474221,-285.674405220

41346,120.43517222396176,-368.1286023540158,187.45

4144117512,22.62435981878511,-90.34250818635275,16

3.75919090056604,77.3213723218617,468.618133109434

27,352.5637913514511,455.2592937680254,133.0673679

9868054,12.411404639514473,124.83274671877716,37.6

8743829619295,-334.7916130692514,-123.645291875500

59,-468.97549792092764,457.3270990773462,426.34027

44226916,-255.9633981260098,327.05607636604043,274

.4917707300043,-108.04654217758784,246.18830760862

39,-118.58072822073825,-501.49653486182626,325.986

6073420785,491.3626630036835,298.20059332728704,-1

18.08152677724465,151.53222017545247,-220.66269959

637145,-337.2844614009403,440.4581975225201,276.47

65650848281,-481.25521056718935,291.19910626454407

,90.9059015422269,-258.190187286931];

 const ypstn =

[-244.73866881936206,-170.95915978327184,-122.8856

3450598433,-102.99262542548735,-73.47697016716467,

2.7706313421242825,145.7822451956747,77.5778746760

653,-320.163066823004,-162.14050818154948,-329.702

3565104875,1.3612283689822107,147.3054252059451,24

.92761366302522,85.66417768067507,-1.5394908753911

665,-9.189052794202816,-208.65012259352386,199.301

13656936916,48.430856172151834,154.488127852715,11

8.44670734139257,165.42389528007405,-176.329537268

3515,-27.281742794884494,195.22022354102592,75.852

3620509458,-13.290833751604424,194.28437725247764,

89.12685540976432,-141.97420200078307,111.08089832

317293,-67.75510784306641,229.2486167364129,46.130

26605921847,-89.50964071151921,173.4100614319632,9

0.03061465340473,160.9310187192081,-111.2944394801

1468,139.21921078942634,-50.04576678050063,-293.02

84193100634,19.84758308148158,193.96006796192128,2

.9471042530664704,266.18333415989605,18.9396464383

3037,137.71526067747104,109.38877671240826];

 var mapEditMode = false;

var container, stats;

var camera, controls, scene,

raycaster, renderer;

var objects = [];

 var statesStl = [];

 var wdbs = [];

 var gdbs = [];

 var edbs = [];

 var map = [];

 var buildingCount = 20;

init();

animate();

 var w = window.innerWidth;

 var h = window.innerHeight;

 var fullWidth = w * 1;

 var fullHeight = h * 1;

 const material = new

THREE.MeshPhongMaterial({ color: 0xA2D9F0,

specular: 0x111111, shininess: 200 });

 const materialx = new

THREE.MeshPhongMaterial({ color: 0xe7e7e7,

specular: 0x111111, shininess: 200 });

 var lineMaterial = new

THREE.LineBasicMaterial({ color: 0xffffff });

 var waterDataNames = [];

 var waterDataNamesBS;

 var gasDataNamesBS;

 var elecDataNamesBS;

 var bldgIndex, sqft, bldgId, bldgData,

bldgState, bldgStateIndex;

 const material0 = new

THREE.MeshBasicMaterial({ color: 0xA2D9F0});

 const material01 = new

THREE.MeshBasicMaterial({ color: 0xfbab47});

 const material1 = new

THREE.MeshBasicMaterial({ color: 0xF8EFB6});

 const material2 = new

THREE.MeshBasicMaterial({ color: 0xBFCCF9});

 const dist0 = 0;

 const dist1 = 10;

 const dist2 = 20;

 //select vars

// var raycaster;

// var mouse;

//

// var pickingData = [],

pickingTexture, pickingScene;

//

// var highlightBox;

// var mouse = new THREE.Vector2();

// var offset = new THREE.Vector3(10,

10, 10);

 var mouse;

 var INTERSECTED;

var radius = 100, theta = 0;

 //select vars end

 var effectController = {

showDots: true,

showLines: true,

minDistance: 150,

limitConnections: false,

maxConnections: 20,

particleCount: 500

};

 function drawWaterData(dataPoints) {

 //loop through all buildings in

the name list

 for (var i = 0; i <

waterDataNames.length; i++) {

 d3.json(waterDataNames[i],

function(error, dataPoints) {

 //console.log(dataPoints)

 bldgIndex =

+dataPoints.bldgIndex;

 sqft = +dataPoints.sqft;

 bldgId =

dataPoints.bldgId;

 bldgData =

dataPoints.bldgData;

 bldgState =

dataPoints.state;

 bldgStateIndex =

dataPoints.stateIndex;

 var xb, yb, zb;

 zb = 3;

 xb =

stateXs[bldgStateIndex];

 yb =

stateYs[bldgStateIndex];

//

// var geometry = new

THREE.BoxGeometry(10, 10, 0);

// for (var i = 0; i <

buildingCount; i ++) {

// const material0 =

new THREE.MeshBasicMaterial({ color: 0xffffff});

// var object = new

THREE.Mesh(geometry, material0);//new

THREE.MeshStandardMaterial({ color: 0xa31a28 })

);//Math.random() *

// object.position.x =

xb;// + 50*Math.random();//Math.random() * 1000 -

500;

// object.position.y =

yb;// + 50*Math.random();//Math.random() * 600 -

300;

// object.position.z =

zb;//boxz;//0;//Math.random() * 800 - 400;

// object.rotation.x =

0;//Math.random() * 2 * Math.PI;

// object.rotation.y =

0;//Math.random() * 2 * Math.PI;

// object.rotation.z =

0;//Math.random() * 2 * Math.PI;

// object.scale.x =

1;//Math.random() * 2 + 1;

// object.scale.y =

1;//Math.random() * 2 + 1;

// object.scale.z =

1;//Math.random() * 2 + 1;

// object.castShadow =

true;

// object.receiveShadow

= false;

// scene.add(object);

// objects.push(object

);

// }

 var x, y, z;

 z = 3;

 x =

stateXs[bldgStateIndex];

 y =

stateYs[bldgStateIndex];

 var lineGeometry = new

THREE.Geometry();

//lineGeometry.vertices.push(new THREE.Vector3(x,

y, z));

 //loop through all points

for each building

 for (var j = 0; j <

bldgData.length; j++) {

 x =

stateXs[bldgStateIndex] + bldgData[j].index;

 y =

stateYs[bldgStateIndex] + bldgData[j].water*20;

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 }

 y =

stateYs[bldgStateIndex];

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 x =

stateXs[bldgStateIndex];

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 var lines = new

THREE.Line(lineGeometry, lineMaterial);

 scene.add(lines);

 console.log(lines);

 var lineMesh = new

THREE.Mesh(lineGeometry, material);

 scene.add(lineMesh);

 console.log(lineMesh);

 });

 }

 }

 function showWaterData() {

 while(scene.children.length > 0){

scene.remove(scene.children[0]);

 }

 d3.csv("./viz_file_names.csv",

function(error, dataPoints) {

 //

console.log(dataPoints.columns[0]);

 waterDataNames =

dataPoints.columns;

 //console.log(waterDataNames);

 drawWaterData(dataPoints);

 })

 }

 var idx = 0;

 function drawWaterData2(dataPoints) {

 // group = new THREE.Group();

 //group.position.y = 50;

//scene.add(group);

var loader = new

THREE.TextureLoader();

var texture = loader.load(

"wave.jpg");

// it's necessary to apply

these settings in order to correctly display the

texture on a shape geometry

texture.wrapS = texture.wrapT =

THREE.RepeatWrapping;

texture.repeat.set(0.008,

0.008);

 function addShape(shape,

extrudeSettings, color, x, y, z, rx, ry, rz, s) {

// flat shape with texture

// note: default UVs

generated by ShapeBufferGeometry are simply the x-

and y-coordinates of the vertices

// var geometry = new

THREE.ShapeBufferGeometry(shape);

// var mesh = new THREE.Mesh(

geometry, new THREE.MeshPhongMaterial({ side:

THREE.DoubleSide}));//map: texture

// mesh.position.set(x, y, z

- 175);

// mesh.rotation.set(rx, ry,

rz);

// mesh.scale.set(s, s, s);

// group.add(mesh);

// flat shape

// var geometry = new

THREE.ShapeBufferGeometry(shape);

// var mesh = new THREE.Mesh(

geometry, material0);//new

THREE.MeshPhongMaterial({ color: color, side:

THREE.DoubleSide })

// mesh.position.set(x, y, z

- 125);

// mesh.rotation.set(rx, ry,

rz);

// mesh.scale.set(s, s, s);

// group.add(mesh);

// extruded shape

var geometry = new

THREE.ExtrudeGeometry(shape, extrudeSettings);

var mesh = new THREE.Mesh(

geometry, material0);

mesh.position.set(x, y,

z);

mesh.rotation.set(rx, ry,

rz);

mesh.scale.set(s, s, s);

//group.add(mesh);

 scene.add(mesh);

 objects.push(mesh);

//addLineShape(shape,

color, x, y, z, rx, ry, rz, s);

}

// function addLineShape(shape,

color, x, y, z, rx, ry, rz, s) {

// // lines

// shape.autoClose = true;

// var points =

shape.getPoints();

// var spacedPoints =

shape.getSpacedPoints(50);

// var geometryPoints = new

THREE.BufferGeometry().setFromPoints(points);

// var geometrySpacedPoints =

new THREE.BufferGeometry().setFromPoints(

spacedPoints);

// // solid line

// var line = new THREE.Line(

geometryPoints, new THREE.LineBasicMaterial({

color: color, linewidth: 3 }));

// line.position.set(x, y, z

- 25);

// line.rotation.set(rx, ry,

rz);

// line.scale.set(s, s, s);

// group.add(line);

// // line from equidistance

sampled points

// var line = new THREE.Line(

geometrySpacedPoints, new THREE.LineBasicMaterial(

{ color: color, linewidth: 3 }));

// line.position.set(x, y, z

+ 25);

// line.rotation.set(rx, ry,

rz);

// line.scale.set(s, s, s);

// group.add(line);

// // vertices from real

points

// var particles = new

THREE.Points(geometryPoints, new

THREE.PointsMaterial({ color: color, size: 4 })

);

// particles.position.set(x,

y, z + 75);

// particles.rotation.set(

rx, ry, rz);

// particles.scale.set(s, s,

s);

// group.add(particles);

// // equidistance sampled

points

// var particles = new

THREE.Points(geometrySpacedPoints, new

THREE.PointsMaterial({ color: color, size: 4 })

);

// particles.position.set(x,

y, z + 125);

// particles.rotation.set(

rx, ry, rz);

// particles.scale.set(s, s,

s);

// group.add(particles);

// }

 idx = 0;

 //loop through all buildings in

the name list

 for (var i = 0; i <

waterDataNames.length; i++) {

//waterDataNames.length

 idx += 1;

 //console.log(idx);

 d3.json(waterDataNames[i],

function(error, dataPoints) {

 var index;

 //console.log(idx);

 bldgIndex =

+dataPoints.bldgIndex;

 sqft = +dataPoints.sqft;

 bldgId =

dataPoints.bldgId;

 bldgData =

dataPoints.bldgData;

 bldgState =

dataPoints.state;

 bldgStateIndex =

dataPoints.stateIndex;

//console.log(waterDataNames);

 var x, y, z;

 x =

stateXs[bldgStateIndex];

 y =

stateYs[bldgStateIndex];

 for (var k = 0; k <

waterDataNames.length; k++) {

 if

(waterDataNames[k].indexOf(bldgId) !== -1) {

 //

console.log(bldgId);

 z = k*20;

 }

 }

 var lineGeometry = new

THREE.Geometry();

//lineGeometry.vertices.push(new THREE.Vector3(x,

y, z));

 // var textGeo = new

THREE.TextGeometry();

 var shape = new

THREE.Shape();

//

// textGeo.position.x = x;

// textGeo.position.y = y;

// textGeo.position.z = z;

//

// // vertices.push(new

THREE.Vector3(x, y, z));

// textGeo.text = bldgId;

//

//

//

shape.moveTo(bldgData[0].index*3,

bldgData[0].water*20, z);

 //loop through all points

for each building

 for (var j = 0; j <

bldgData.length; j++) {

 x =

bldgData[j].index*3;

//stateXs[bldgStateIndex] + bldgData[j].index;

 y =

bldgData[j].water*20;

//stateYs[bldgStateIndex] + bldgData[j].water*20;

 //z = idx;

 //console.log(z);

lineGeometry.vertices.push(new THREE.Vector3(x, y,

z));

 shape.lineTo(x, y, z);

 }

shape.lineTo(bldgData[bldgData.length-1].index*3,

0, z);

shape.lineTo(bldgData[0].index*3, 0, z);

shape.lineTo(bldgData[0].index*3-80, 0, z);

shape.lineTo(bldgData[0].index*3-80, 5, z);

shape.lineTo(bldgData[0].index*3-75, 5, z);

shape.lineTo(bldgData[0].index*3-75, 5, z);

shape.lineTo(bldgData[0].index*3-75, .5, z);

shape.lineTo(bldgData[0].index*3, .5, z);

shape.lineTo(bldgData[0].index*3, 0, z);

 var lines = new

THREE.Line(lineGeometry, lineMaterial);

 scene.add(lines);

 //scene.add(textGeo);

 //console.log(lines);

 var extrudeSettings = {

amount: 2, bevelEnabled: true, bevelSegments: 1,

steps: 1, bevelSize: 1, bevelThickness: .1 };

 addShape(shape,

extrudeSettings, 0xffffff, 0, 0, z, 0, 0, 0, 1

);//bldgData[0].index*3, bldgData[0].water*20

//

//

// var geometry = new

THREE.SphereGeometry(5, 16,16);

// var material = new

THREE.MeshBasicMaterial({color: 0xff0000});

// var sphere = new

THREE.Mesh(geometry, material);

// sphere.position.x =

bldgData[0].index*3;

// sphere.position.y = 0;

// sphere.position.z = z;

// scene.add(sphere);

// objects.push(sphere);

//

 });

 }

 }

 function showWaterDatabldg() {

 while(scene.children.length > 0){

scene.remove(scene.children[0]);

 }

 d3.csv("./viz_file_names.csv",

function(error, dataPoints) {

 //

console.log(dataPoints.columns[0]);

 waterDataNames =

dataPoints.columns;

 //console.log(waterDataNames);

 drawWaterData2(dataPoints);

 })

 }

 function makeMap() {

 var loader = new

THREE.STLLoader();

 //stl 3d model from

https://www.thingiverse.com/thing:1524543

 var counter = 0;

 for (var i = 0; i <

states.length; i ++) {

 loader.load(

'usmap/'+states[i]+'.stl', function (geometry) {

 var mesh = new THREE.Mesh(

geometry, material);

 mesh.position.set(

stateXs[counter], stateYs[counter], -50);

//x:-1200+250*(counter%10)

y:200+180*Math.floor(counter/10)

 //console.log(i,

mesh.position.y);

 mesh.rotation.set(

Math.PI/2, 0, Math.PI*2);

 mesh.scale.set(.6, .6,.6);

 mesh.castShadow = true;

 mesh.receiveShadow = true;

 scene.add(mesh);

 statesStl.push(mesh);

 counter ++;

 });

 }

 }

 function setClickListeners() {

//

document.getElementById("resetall").addEventListen

er('click', init);

//

document.getElementById("shot").addEventListener('

click', takeScreenshot);

document.getElementById("camerareset").addEventLis

tener('click', cameraReset);

//

document.getElementById("mapcoordinates").addEvent

Listener('click', mapCoordinates);

//

document.getElementById("resetmap").addEventListen

er('click', resetMap);

//

document.getElementById("editmap").addEventListene

r('click', editMap);

//

document.getElementById("colorbytemp").addEventLis

tener('click', colorByTemp);

//

document.getElementById("showWater").addEventListe

ner('click', showWaterData);

//

//

document.getElementById("showWaterbldg").addEventL

istener('click', showWaterDatabldg);

//

 document.addEventListener(

'mousemove', onDocumentMouseMove, false);

//

document.getElementById("showwdbs").addEventListen

er('click', showWaterDataByState);

//

document.getElementById("showgdbs").addEventListen

er('click', showGasDataByState);

//

document.getElementById("showedbs").addEventListen

er('click', showElecDataByState);

 //

document.getElementById("showAlldbs").addEventList

ener('click', showAllDataByState);

document.addEventListener('keydown', onkeydown,

false);

//

document.addEventListener('mousedown',

updatemappo, false);

 }

 function initGUI() {

var gui = new dat.GUI();

gui.add(effectController,

"showDots").onChange(function(value) {

pointCloud.visible = value; });

gui.add(effectController,

"showLines").onChange(function(value) {

linesMesh.visible = value; });

gui.add(effectController,

"minDistance", 10, 300);

gui.add(effectController,

"limitConnections");

gui.add(effectController,

"maxConnections", 0, 30, 1);

gui.add(effectController,

"particleCount", 0, maxParticleCount, 1

).onChange(function(value) {

particleCount = parseInt(

value);

particles.setDrawRange(0,

particleCount);

});

}

function init() {

 // initGUI();

 stateXs = xpstn;

 stateYs = ypstn;

container =

document.createElement('div');

document.body.appendChild(

container);

camera = new

THREE.PerspectiveCamera(50, window.innerWidth /

window.innerHeight, 1, 100000);

camera.position.z = 9000;

 camera.position.y = 1800;

 camera.position.x = -500;

controls = new

THREE.TrackballControls(camera);

controls.rotateSpeed = 1.0;

controls.zoomSpeed = 1.2;

controls.panSpeed = 0.8;

controls.noZoom = false;

controls.noPan = false;

controls.staticMoving = false;

controls.dynamicDampingFactor =

0.3;

scene = new THREE.Scene();

//scene.background = new

THREE.Color(0x898989);

scene.add(new

THREE.AmbientLight(0x505050));

var light = new

THREE.SpotLight(0xB8B8B8, 0.5);

light.position.set(0, 500,

2000);

light.castShadow = true;

light.shadow = new

THREE.LightShadow(new THREE.PerspectiveCamera(

50, 1, 200, 10000));

light.shadow.bias = - 0.00022;

light.shadow.mapSize.width =

2048;

light.shadow.mapSize.height =

2048;

scene.add(light);

 //////////////////make

boxes/////////////////

// makeBoxes();

 mouse = new THREE.Vector2();

 raycaster = new THREE.Raycaster();

renderer = new

THREE.WebGLRenderer({ antialias: true, alpha:

true });

renderer.setPixelRatio(

window.devicePixelRatio);

renderer.setSize(

window.innerWidth, window.innerHeight);

renderer.shadowMap.enabled =

true;

renderer.shadowMap.type =

THREE.PCFShadowMap;

container.appendChild(

renderer.domElement);

 setClickListeners();

var dragControls = new

THREE.DragControls(objects, camera,

renderer.domElement);

dragControls.addEventListener(

'dragstart', function (event) { controls.enabled

= false; });

dragControls.addEventListener(

'dragend', function (event) { controls.enabled =

true; });

var info =

document.createElement('div');

info.style.position =

'absolute';

info.style.top = '10px';

info.style.width = '100%';

info.style.textAlign = 'left';

info.innerHTML = 'View Water Data in Each

Building
<a>W: zoom in
<a>S: zoom

out
<a>A: turn left
<a>D: turn

right
<a><: move screen to the

left
<a>>: move screen to the

right
<a>Hover on model to

lock;
<a>Click and drag to move

model.';

container.appendChild(info);

//stats = new Stats();

//container.appendChild(

stats.dom);

window.addEventListener(

'resize', onWindowResize, false);

 /////////////map

settings///////////////

 // makeMap();

 showWaterDatabldg();

}

function onWindowResize() {

camera.aspect =

window.innerWidth / window.innerHeight;

camera.updateProjectionMatrix();

renderer.setSize(

window.innerWidth, window.innerHeight);

}

 function onDocumentMouseMove(event)

{

//event.preventDefault();

mouse.x = (event.clientX /

window.innerWidth) * 2 - 1;

mouse.y = - (event.clientY /

window.innerHeight) * 2 + 1;

 //console.log(mouse.x, mouse.y);

}

function animate() {

requestAnimationFrame(animate

);

render();

//stats.update();

}

function render() {

controls.update();

 //flyControls.update();

renderer.render(scene, camera

);

 //console.log(scene.children);

 raycaster.setFromCamera(mouse,

camera);

var intersects =

raycaster.intersectObjects(scene.children);

 // console.log(intersects.length);

if (intersects.length > 0) {

 console.log("have

intersects");

if (INTERSECTED !=

intersects[0].object) {

if (INTERSECTED)

INTERSECTED.material = material0;

INTERSECTED =

intersects[0].object;

INTERSECTED.material

= material01;

//INTERSECTED.material.emissive.setHex(0xff0000

);

 console.log("intersected

1");

 console.log(INTERSECTED);

}

}

 else {

 if (INTERSECTED)

INTERSECTED.material = material0;

 INTERSECTED = null;

 //console.log("intersected

2");

}

renderer.render(scene, camera

);

}

 function takeScreenshot() {

 console.log("taking

screeshot...");

 // open in new window like this

 var w = window.open('', '');

 w.document.title = "Screenshot";

//w.document.body.style.backgroundColor = "red";

 var img = new Image();

 // Without 'preserveDrawingBuffer'

set to true, we must render now

 renderer.render(scene, camera);

 img.src =

renderer.domElement.toDataURL();

 w.document.body.appendChild(img);

 // download file

 var a =

document.createElement('a');

 // Without 'preserveDrawingBuffer'

set to true, we must render now

 renderer.render(scene, camera);

 a.href =

renderer.domElement.toDataURL().replace("image/png

", "image/octet-stream");

 a.download = 'canvas.png';

 a.click();

 }

 function cameraReset() {

 console.log("Reseting camera...");

 //console.log(camera);

 camera.position.x = 0;

 camera.position.y = 0;

 camera.position.z = 1000;

 camera.rotation.x = 0;

 camera.rotation.y = 0;

 camera.rotation.z = 0;

 camera.fov = 50;

 camera.filmOffset = 0;

 camera.updateProjectionMatrix();

 controls.reset();

 //window.innerWidth /

window.innerHeight, 1, 10000

 }

 function mapCoordinates() {

 //statesStl = [];

 var xs = [];

 var ys = [];

 //console.log(statesStl.length,

buildingCount);

 //locate all state stl files

 for (var i = 0; i <

statesStl.length; i++) {

 //statesStl.push(objects[i]);

xs.push(statesStl[i].position.x);

ys.push(statesStl[i].position.y);

 console.log(statesStl.length);

 }

 console.log(statesStl.length);

 const linkx =

document.createElement('a');

 linkx.style.display = 'none';

 document.body.appendChild(linkx

);

 const blobx = new Blob([xs], {

type: 'text/plain' });

 const objectURLx =

URL.createObjectURL(blobx);

 linkx.href = objectURLx;

 linkx.href = URL.createObjectURL(

blobx);

 linkx.download =

'x_map_setting.json';

 linkx.click();

 const linky =

document.createElement('a');

 linky.style.display = 'none';

 document.body.appendChild(linky

);

 const bloby = new Blob([ys], {

type: 'text/plain' });

 const objectURLy =

URL.createObjectURL(bloby);

 linky.href = objectURLy;

 linky.href = URL.createObjectURL(

bloby);

 linky.download =

'y_map_setting.json';

 linky.click();

//https://discourse.threejs.org/t/how-to-create-a-

new-file-and-save-it-with-arraybuffer-content/628/

3

 }

 const zzz = -100;

 function resetMap() {

 var counter = 0;

 for (var i = 0; i <

statesStl.length; i++) {

 statesStl[i].position.x =

xpstn[counter];

 statesStl[i].position.y =

ypstn[counter];

 statesStl[i].position.z =

zzz;//-100;

 statesStl[i].material =

material;

 counter++;

 }

 }

 function colorByTemp() {

 var material2 = new

THREE.MeshPhongMaterial({ color: 0xffffff,

specular: 0x111111, shininess: 20 });

 var counter = 0;

 for (var i = 0; i <

statesStl.length; i++) {

 statesStl[i].material =

material2;

 counter++;

 }

 }

 function editMap() {

 if (mapEditMode == false) {

 mapEditMode = true;

 var dragControlsMap = new

THREE.DragControls(statesStl, camera,

renderer.domElement);

dragControlsMap.addEventListener('dragstart',

function (event) { controls.enabled = false; }

);

dragControlsMap.addEventListener('dragend',

function (event) { controls.enabled = true; });

 }

 else if (mapEditMode == true){

 mapEditMode = false;

 //controls.enabled = true;

 // dragControlsMap.abort;

 //TODO

 }

 console.log("edit mode:",

mapEditMode);

 }

 var mode;

 var MODE = { TRACKBALL: 0, FLY: 1 };

 function onkeydown() {

 var keyCode = event.which;

 if (keyCode == 87) {

 console.log("up");

 //camera.position.y += 10;

 //camera.zoom += 2;

 camera.fov -= 3;

 } else if (keyCode == 83) {

 console.log("down");

 camera.fov += 3;

 } else if (keyCode == 65) {

 camera.position.x -= 10;

 } else if (keyCode == 68) {

 camera.position.x += 10;

 } else if (keyCode == 32) {

 cameraReset();

 } else if (keyCode == 188) {

 camera.filmOffset -= 1;

 } else if (keyCode == 190) {

 camera.filmOffset += 1;

 }

 camera.updateProjectionMatrix();

 }

 //https://jsfiddle.net/2pha/art388yv/

 //chrome://flags/#enable-webvr

 //VRViewer({THREE});

//python -m SimpleHTTPServer

 //localhost:8000

</script>

</body>

</html>

