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ABSTRACT

SUPER-PLANCKIAN THERMAL RADIATION FROM NANOPHOTONIC STRUCTURES:

THEORY, SIMULATION AND EXPERIMENT

by

Baoan Liu

Chair: Sheng Shen

Thermal radiation from macroscopic objects is limited by the well-known Planck's law. However,
when the sizes of the objects or the gaps between the objects are in the micro- or nano-scale,
Planck's law is no longer valid and the radiative power can exceed the blackbody limit by orders
of magnitude. This super-Planckian thermal radiation phenomenon has attracted significant
attention in the fields of the thermal management, energy conversion, infrared sensing and
imaging, etc. Nevertheless, in comparison with the traditional thermal radiation under the
framework of Planck's law, the understanding of super-Planckian thermal radiation is still
relatively immature in the aspects of theoretical description, numerical modeling, and

experimental characterization.

In this dissertation, we discover new methodologies to design and manipulate the super-
Planckian thermal radiation by using the nanophotonic techniques, such as metamaterial,
plasmonics, optical cavity effects, etc. First, we present a broadband near-field thermal emitter

based on hyperbolic metamaterials, which can significantly enhance near-field radiative heat



transfer with an infrared surface-polariton resonant materials and maintain the monochromatic
characteristic of heat transfer. Second, we discover that the thermal graphene plasmons can be
efficiently excited and have monochromatic and tunable spectra by graphene nanoribbons, which
are resonant near-field thermal emitters. We further demonstrate that "thermal information
communication" via graphene surface plasmons can be potentially realized by effectively
harnessing thermal energy from various heat sources. To further understand the super-Planckian
thermal radiation of the resonant emitters, we develop a general and self-consistent theory from
fluctuational electrodynamics and Quasi-Normal Mode theory to describe the thermal radiation
from microscale optical resonators made by lossy and dispersive materials. With our theory, we
finally propose a general formalism to make the perfect resonant thermal emitters from the
densely packed transmission line resonators, and experimentally demonstrate that the thermal
emission from the transmission line resonator arrays can be maximized by tuning the

waveguiding mode loss or bending the individual structure.

In addition, we implement two numerical simulation methods (the Wiener Chaos
Expansion method and the Fluctuating Surface Current method) to directly calculate the super-
Planckian thermal radiation of arbitrary geometries. We also propose two highly efficient
algorithms to expedite the simulations of periodic and symmetric structures and two-dimensional
materials like graphene. These two numerical methods serve as our general computational tools

and allow us to investigate the thermal radiation of complex nanophotonic structures in detail.
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1 Underlying Principles of Super-Planckian Thermal Radiation

1.1 Overview of Super-Planckian Thermal Radiation

Thermal radiation is the electromagnetic waves emitted by an object as a result of its
temperature [1]. For an object at the temperature T > 0K, random electric charge oscillations are
thermally induced inside the materials. According to the electromagnetic theory, these oscillating
charges emit electromagnetic waves, which are regarded as thermal radiation. In history, thermal
radiation from macroscopic objects has been well studied. In the year of 1900, German physicist
Max Planck proposed the upper limit of the thermal radiation from arbitrary macroscopic
objects [2], which is well-known Planck's law of blackbody radiation. His famous law dictates
that, for any emitting surface at the temperature of T in thermal equilibrium, the thermal

radiation power per unit surface area per unit frequency cannot exceed the blackbody limit [1]

202 hv (1.1)
BT(U) =T 2 hv

€o exp (kB_T) -1

)

where v is the emitting frequency, kg is the Boltzmann constant, h is the Planck constant, ¢ is
the speed of light in vacuum. m comes from the solid angle integration over the hemisphere,
which accounts for the emission in all the directions. Since the blackbody limit defines the
maximum power emission from a single object, it can therefore be used to describe the

maximum radiative energy transfer between two objects.

However, Planck himself recognized that the blackbody limit in Eq.(1.1) fails in the
micro- or nano-scale, when the characteristic lengths of the geometries are comparable or smaller
than the dominant wavelength of thermal radiation A;, = hcy/kgT [3]. The experimental

measurements have shown that the Planck's blackbody limit can be exceeded in the cases of (i)
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the thermal radiative energy transfer between two closely separated objects, and (ii) the thermal
emission from a nanoscale emitter. The super-Planckian radiative energy transfer has been
observed in the following experimental works. In the late 1960s, anomalous radiative energy
transfer between flat metallic surface was reported [4,5]. In 2005, the radiative energy transfer
between a gold-coated scanning tunneling microscope and a plate of gold or GaN was
measured [6], and the heat transfer was demonstrated to increase as the decrease of the nanoscale
gap. Around the year of 2008, the radiative energy transfer between a silica micro-sphere
attached on a cantilever and a silica plate has been measured by the MIT group [7,8] and CNRS
group [9], where the heat transfer coefficients at the nanoscale gaps are directly observed as three
orders of magnitude larger than that of the blackbody radiation limit [7]. Recently, the super-
Planckian radiative energy transfer has been measured for the exotic structures and materials
with more sophisticated experimental setups, including silica sphere to doped Si and VO, [10,11],
silica sphere to nanowire arrays [12], two parallel plates [13], and parallel thin films [14,15]. On
the other hand, the super-Planckian thermal emission from a single nanoscale emitter has also
been observed. In 2007, the thermal emission from a platinum nanowire with sub-micron
transverse size was measured to be larger than the blackbody limit calculated based on its
geometrical cross-section [16]. In 2013, the thermal emission rate of an optical fiber with
subwavelength diameter was observed to be larger than the prediction from Planck's law [17].
There also exists indirect characterization of the super-Planckian thermal emission from a SiC

whisker [18].

The super-Planckian phenomena are attributed to the "wave nature" of thermal radiation,
whereas the blackbody limit treats the thermal emission as particles traveling along straight lines.

In the derivation of Planck's law, a blackbody can be modeled as a small hole on the surface of a
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large vacuum chamber made by perfect metal at the temperature of T [19]. Inside the chamber,
"photon gas" is created and annihilated by obeying the Bose-Einstein statistics. Therefore, the
blackbody radiation is essentially the propagating photons leaked from the hole, which can be
viewed as particles traveling along the straight lines. As a result, the blackbody limit in Eq. (1.1)
is invalid when (i) the photons cannot be simply treated as propagating particles, where they are
not traveling along the straight /ines; (ii) the surface area of the blackbody is subwavelength,

where the photon cannot go through because of the diffraction limit.

(a) Ocsﬂy::tr;i/ Reflection / — (b) o:S:Irl::]Eg/y Reflection / \

Incident

x Total internal reflection|

éé 0> 6,

XTotal internal reflection) Incident

; 0 < 6
Eé 0> Ocr
e d< M

d>>hn
Propagatin ——Evanescent Photon tunneling
v waves waves through evanescent

. waves
Transmission

Transmission

(c) Thermal
emission

Back-scattered
thermal emission

oscillating
currents

Figure 1-1: (a) The schematic of far-field thermal radiative energy transfer. (b) The schematic of
near-field thermal radiative energy transfer. (c) The schematic of the thermal emission of a

microscale thermal emitter.
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For the cases of two closely separated objects, the super-Planckian phenomenon is caused
by the extra contribution from the evanescent waves (or photon tunneling) to the radiative energy
transfer, as depicted in Figure 1-1(a) and (b). Here, evanescent waves are the electromagnetic
waves decaying exponentially away from the emitter, which can be excited by the total internal
reflection. Inside the thermal emitter, the electromagnetic waves are emitted from the thermally
induced random oscillating currents. Some of the waves escape from the emitter and become the
propagating radiation, and some of them are trapped inside the emitter due to the total internal
reflection. When the two objects are separated by a large gap, as shown in Figure 1-1(a), only the
propagating waves contribute to energy transfer, and the radiative energy transfer is limited by
the blackbody limit. However, when the objects are separated by a microscale gap, as shown in
Figure 1-1(b), in which the evanescent waves impinge upon the absorber before the total
attenuation, both the propagating waves and the evanescent waves contribute to the energy
transfer, leading to a case exceeding the blackbody limit. The thermal radiation enabled by

evanescent waves is usually known as near-field thermal radiation [20-23].

For a single microscale emitter, its thermal emission can also exceed the blackbody limit
evaluated based on its geometrical area, especially in the case that the random oscillating
currents strongly interact with their own back-scattered radiation waves, as illustrated in Figure
I-1(c). In this scenario, the power emitted by a current source can be significantly increased
because the back-scattered waves strongly enhance the electric field intensity at the current

source. This retardation interaction has been well understood as the Purcell effect [24].

To describe the thermal radiative energy transfer between two closely separated objects
and the thermal emission of microscale emitters, Planck's formalism should be abandoned.

Instead, thermal radiation requires to be rigorously formulated by the fluctuational
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electrodynamics, which is a theory derived from the first principles [25-27]. The key of the
fluctuational electrodynamics is the fluctuation-dissipation theorem [28-30], which connects the
statistical properties of the thermally induced random currents with the temperature. The thermal
radiation is then expressed as the electromagnetic waves emitted from the random currents
according to the Maxwell equations. Note that the fluctuational electrodynamics is rigorously
formulated by the quantum field theory [27,31]. Nevertheless, the classical formulation of the
fluctuational electrodynamics proposed by S. M. Rytov are widely used [23,25], where the
results totally agrees with that of the quantum mechanical formulation if the quantum
discretization effect is negligible. Based on this theory, the super-Planckian phenomena have
been successfully predicted for wvarious structures including parallel plates [26,32],

metamaterials [33—35], graphene [36,37], and nanowires [38,39], etc..

In this Chapter, the fluctuational electrodynamics theory is introduced for describing the
thermal emission and radiative energy transfer. Here, we follow the classical formulations
proposed by S. M. Rytov [25]. To be self-consistent, we first briefly reviewed the classical
electromagnetics in Section 1.2. Then, the fluctuational electrodynamics is introduced and the
expression for thermal radiation is derived in Section 1.3. Finally, the motivation and the scope

of this dissertation are discussed in Section 1.4.

1.2 Introduction to Classical Electrodynamics

Thermal radiation, visible light, and radio waves are all electromagnetic waves, which are
essentially the oscillating electric field and the magnetic field propagating at the speed of the

light. The properties of the electromagnetic waves are described by electrodynamics. To
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understand the thermal radiation from the prospective of waves, the fundamental principles of

electrodynamics are briefly reviewed in this section based on Ref. [24,40].

In electrodynamics, there are four key quantities: (1) electric charges p; (2) electric
current j, which is the motion of the electric charge, i.e. j = g—’;; (3) electric field E, which

determines the electric force experienced by a charged particle q, i.e. F = gE; (4) magnetic field
H, which determines the magnetic force experienced by a moving charged particle g, i.e.
F = qv X uH, where v is the velocity of the charged particle and u is the permeability of the

material. uo = 4 X 1077 N - A~2 is the constant indicating the permeability of vacuum.

The Maxwell equations can be used to describe the correlation between these four key

quantities, as shown in Eq. (1.2)-(1.5)

V-D=p (1.2)
_ 0B
VXE=—2- (1.4)
_ oD
VXH—]-I-E, (1.5)

where D = €F is the electric displacement field, and B = uH is the magnetic B-field. € is the
permittivity determined by the material properties, and in vacuum € = €, = 8.85 X 107 12F /m.
u is the permeability and in vacuum p = py = 4w X 107N - A~2. Note that E, D, H, B, j, p in Eq.
(1.2)-(1.5) are the functions of position and time. The propagating speed of the electromagnetic

waves c inside the material equals
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1
c= | (1.6)

The E and H fields also satisfy the boundary conditions at the interface between two different

materials 1 and 2, as

nx(E, —E)=0 (1.7)
fix(H, —H,)=K (1.8)
fi-(D,—D,) =0 (1.9)
fi-(B;—B,) =0, (1.10)

where 0 indicates the normal direction of the interface, K and o are the external surface current

source and external surface charge density on the boundary, respectively.

The Maxwell equations demonstrate that the electromagnetic waves can be excited by the

time oscillating current source, because

Vx(VxE)—Vx( aB)
B ot
B 0V xX H
= ~Ho ot (1.11)
_ d [,+ aE]
- I’l'O at ] 606 at
which leads to
1 0%E B dj
VX(VXE)-I_C_ZF__MOa (1.12)
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Eq. (1.12) has the form of “wave equation”. Consider the one-dimensional case without losing

the generality. VX V X E = V(V - E) — V2E = —V?E inside a homogenous medium, which can

2
be further reduced to —:7. The general solution of Eq. (1.12) then equals E = f(r —ct) +

)
g(r + ct), where f and g are non-zero functions if a—i # 0. Here, f and g can be understood as

the forward and the backward propagating wave, respectively.

The exact field profile of the electromagnetic wave [E(r,t), H(r,t)] can therefore be
determined by solving Eq. (1.12) together with the boundary conditions in Eq. (1.7)-(1.10). The
temporal dependency of the field profile [E(r,t), H(r,t)] can be further eliminated by assuming

the current source j(r, t) and the fields have the Fourier transform representation,

jr,t) = fooda)j(r, w) exp(—iwt)
E(r,t) = joodwE(r, w) exp(—iwt) (1.13)
H(r,t) = fooda)H(r, w) exp(—iwt)

where j(r, w), E(r,w), and H(r, w) are known as the phasor of the electric current, E-field, and

H-field, respectively. Substituting Eq. (1.13) into Eq. (1.12), the wave equation becomes
(VX VX —kHE(r,w) = iwuyj(r, w) (1.14)

where k = % is defined as the wavevector. For the linear operator VX V X —k?, E(r, w) can be

represented in terms of the Dyadic Green's function as [24]

23



E(r,w) = iou, f dr® G(r,r', w) - j(r', w) (1.15)

where the Dyadic Green's function G (r, 7', ) is essentially a 3-by-3 tensor which is defined as
VXVXGrr,w) —k?*Grr,w)=16(r —1"). (1.16)

In Eq. (1.16), Iis the 3-by-3 unit matrix and § is the Dirac delta function. Note that finding the
analytical solution for Eq. (1.14) and (1.16) can be notoriously difficult in the inhomogeneous
media. However, they can always be solved by the numerical methods such as the finite-element

method (FEM), finite-difference time-domain method (FDTD), or the boundary element method

(BEM). The H field can also be obtained by H(r, w) = ﬁ VX E(r,w).
0

The energy conservation law of electromagnetic waves can be derived from the Maxwell
equations as [24]

dr? - [E(r,t) X H(r,t)] - A
av

d (1
_ _a{fj‘,dr3 [D(r,t) - E(r,t) + B(r,t) - H(r, t)]} (1.17)

—fdr3j(r, t) - E(r,t).
%

In Eq. (1.17), V is an arbitrary volume with the boundary of dV. The left-hand side indicates the
total energy flux out of dV, where E(r,t) X H(r,t) = S(r,t) is defined as the Poynting vector,
indicating the energy flux density of the electromagnetic waves. On the right-hand side, the first
integral indicates the electromagnetic energy stored in V, and the second term indicates the

energy gain inside V due to the external current source j(r, t). In addition, for the time-harmonic
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E and H fields, the time average of Poynting vector equals S(r, w) =%Re[E (r,w) x

H(r,w)*] [24].

1.3 Fluctuational Electrodynamics and Thermal Radiation

Classical electrodynamics alone is insufficient to formulate the thermal radiation, because the
value of thermally induced oscillating currents j(r,t) in Eq. (1.5) remains undetermined. To
describe the statistical properties of j(r,t) , the fluctuation-dissipation theorem is
required [25,41]. Although j(r,t) is a stochastic process, it can still be spectrally decomposed by
using the Fourier transform based on the Wiener-Khinchin theorem [23]. Therefore, it has

Jr,v)jr', t')) = f dwdw' (j(r,w)j(r', w")*) exp(—iwt + iw't"), 018)

where bracket (-) denotes the statistical ensemble average. Clearly, the mean value of the thermal
fluctuating currents equals zero, i.e. (j(r,w)) = 0. However, its intensity is not zero, i.e.

(lj(r, w)|?) # 0, which is the origin of the thermal radiation.

To describe the intensity of the thermally induced fluctuating currents j(r, w) inside a

thermal emitter at the temperature of T, the fluctuation-dissipation theorem is formulated

as [23,25,41]

4
(i(r, @) - j(r', w')") = —wim[e]®(w, T)§(w — @)@ =11, (1.19)

where * indicates the complex-conjugate; Im[€] is the imaginary part of the permittivity of the

emitter; O(w, T) = hw/ [exp (:—wT) - 1] is the Planck's distribution; §(w — w") and §(r — ')
B
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indicate the temporal and spatial incoherence of j(r, w). Since we express j(r, w) as a 3-by-1
column vector, the 3-by-3 unit matrix I on the right-hand side indicates the incoherency of the
fluctuation currents at different polarizations. Note that fluctuation-dissipation theorem itself is
general and can be applied to any system at thermal equilibrium. The detailed derivation can be

found in Ref. [24,25,27].

As a result, thermal radiation can be formulated by the fluctuational electrodynamics, i.e.
the Maxwell equations in Eq. (1.2)-(1.5) and the fluctuation-dissipation theorem in Eq.

(1.19) [23,25]. Specifically, the field intensity {|E (r, w)|?) of thermal emission can be derived as
(IE(r,w)?]) =(E(r,w)* - E(r, w))

dr'3j*(r', a))G(r,r’,a))*l . [—iwuo dr'"3G(r,r", w)j(r', )

Ve

= l_iwﬂo
VE

(1.20)
=g [ dr | PTG w) G0 0) - 6w G w)]
14

E Ve

4
:;w%%@)(m,T)eolm[e]f dr’3f dr'3 Tr[G(r,7", 0)* - G(r,7", w)],
Vg

where V indicates the volume of the thermal emitter; Tr[-] is the trace of the matrix, and we use

the property Tr[ABC]| = Tr[BCA].

The radiative energy flux (% Re[E(r,w) X H(r,w)*]) can also be derived in the similar

manner. For example, the z-component of the radiative energy flux equals

1 1
<§ Re[E x H*])| = ERe[(E;Hy) +(Ey Hy) — (E, H}) — (E3H,)]

z (1.21)

where
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4
(ExH,) = —i;a)zuO@(w,T)eOIm[e]j dr’® | dr'"3 Tr[[G(r, 7", )]«
VE Ve

1.22
[GH @, r", w)]y). (122

In Eq. (1.22), G (r, 7', ) indicates the magnetic Dyadic Green's function, which is defined as

H(r,w) = f dr'3 GH(r,v", w) - j(r', w),
(1.23)

and it can be further expressed as

GH(r, v, w) = oV, X G(r, 7", w).
(1.24)

Note that both thermal radiation field intensity in Eq. (1.20) and energy flux in Eq. (1.22) are

deterministic expressions.

The fluctuational electrodynamics formulations in Eq. (1.20) and Eq. (1.22) provide
the first-principle evaluation for thermal radiation. Note that there exists a proof of Eq. (1.20)
and Eq. (1.22) based on the quantum field theory [27,31]. The fluctuational electrodynamics
formulation poses no assumption on the size of the thermal radiative system. It is applicable on
both the cases of far-field and near-field thermal radiation, whereas the Planck's formulation can

only be used to evaluate the far-field thermal radiation of the macroscopic objects.

1.4 Motivation and Scope

The motivation of this dissertation is to develop new methodologies to design and manipulate the
super-Planckian thermal radiation by using nanophotonic techniques, such as metamaterials,

plasmonics, optical cavity effects, etc. To achieve this goal, we first develop and implement
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highly efficient numerical tools to directly calculate the thermal radiation from arbitrary
geometries based on the fluctuational electrodynamics. With these numerical tools, we
investigate the thermal radiation of complex nanophotonic structures, and invent the new thermal
radiation devices and discover the new theoretical principles. Finally, we also experimentally
verify our theoretical discoveries by using the nano-fabrication techniques. Chapters of this

dissertation are arranged in the following manner:

Chapter 2 reviews and introduces two powerful numerical tools, i.e. the Wiener Chaos
Expansion method and Fluctuating Surface Current method, for directly calculating the thermal
radiation from arbitrary geometries. We implement these two numerical tools with high
computational efficiency, and also significantly improve their performances for calculating
periodic and symmetric structures (with Wiener Chaos Expansion method) and two-dimensional

materials such as graphene (with Fluctuating Surface Current method).

Chapter 3 presents a broadband near-field thermal emitter and absorber based on
hyperbolic metamaterials, which can significantly enhance near-field radiative heat transfer with
infrared surface-polariton-resonant materials and maintain the monochromatic characteristic of
heat transfer. Instead of using effective medium approximation, we perform a direct numerical
simulation to accurately investigate the heat transfer mechanisms of metamaterials based on the

Wiener-chaos expansion method.

Chapter 4 shows that thermal graphene plasmons can be efficiently excited and have
monochromatic and tunable spectra, which paves a way to harness thermal energy for graphene
plasmonic devices. We further demonstrate that "thermal information communication" via

graphene surface plasmons can be potentially realized by effectively harnessing thermal energy
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from various heat sources, e.g., the waste heat dissipated from nanoelectronic devices. These
findings open up a new avenue of thermal plasmonics based on graphene for various applications,
ranging from infrared emission control, to information processing and communication, and to

energy harvesting.

Chapter 5 develops a general and self-consistent theory from fluctuational
electrodynamics and Quasi-Normal Mode (QNM) theory to describe the thermal radiation from
microscale optical resonators made by lossy and dispersive materials like metals. It shows that to
maximize the narrow band thermal radiation from an optical resonator, not only the losses of the
resonant mode to the emitter and the absorber (or far-field background) require to be matched,
but the resonant mode needs to be electrically quasi-static, i.e. the electric field of the resonant
mode oscillates in phase. By efficiently evaluating the lossy resonant modes of an optical
resonator using finite element methods, our theory thus paves the way for designing arbitrary

optical resonator thermal emitters with perfect or maximized emission.

Chapter 6 propose a general formalism to make the perfect resonant thermal emitters
from the densely packed transmission line resonators, i.e. a cropped transmission line with finite
length. Transmission lines are essentially the waveguides composed by one or multiple metallic
wires, which have been invented more than a century ago and widely used today in radio-
frequency communications. We demonstrate that the thermal emission from the transmission line
resonator can always be maximized by tuning the waveguiding mode loss or bending the
structure. It therefore serves as a general principle to make the perfect thermal emitter by densely
packing the resonators on a surface, which is confirmed by our experimental investigation. Our

formalism thus depict a new way to engineer the highly efficient narrow-band thermal emitters.
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Chapter 7 summarizes the major contributions of the dissertation. The suggestions for

further work are also discussed in this chapter.
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2 Direct Calculation of Thermal Radiation

2.1 Overview

To evaluate the thermal radiation and radiative heat transfer at the micro/nanoscale, the
fluctuational electrodynamics is required. Although Eq. (1.20) and Eq. (1.22) serve as general
formulations to calculate radiative field intensity and heat flux, directly computing these two
formulas turns out to be extremely difficult in the cases where the geometries are complex. First,
deriving the analytical results of Eq. (1.20) and Eq. (1.22) is difficult because the Dyadic Green's
function G (r, 7', ) usually does not have analytical solution for complex geometries. On the
other hand, numerically integrating Eq. (1.20) and Eq. (1.22) can be computationally expensive,
because G(r, 7', w) at a huge number of location pairs (r,7") is required to be evaluated, and
each computation demands at least O(N) calculation steps by using the finite-element based
methods, where N is the number of the infinitesimal meshes used for decomposing the

geometries.

The previous research works on the direct calculation of thermal radiation are briefly
reviewed as follows. For simple geometries where the analytical expression of the Dyadic
Green’s function exists, thermal radiation can therefore be directly calculated by evaluating Eq.
(1.20) and Eq. (1.22) analytically. This approach has successfully solved the radiative heat flux
and thermal radiation spectrum for two parallel plates [26], parallel thin-films [42], two
spheres [43], sphere to plate [44], infinite-long cylinders [38], etc. For complex geometries, this
analytical approach is not feasible. Therefore, highly efficient numerical methods are proposed to

simulate the thermal radiation of arbitrary geometries by decomposing the geometries into small
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elements. The representative examples of the numerical methods for directly calculating thermal

radiation are listed as follows:
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(@)

(ii)

(iii)

(iv)

v)

The scattering matrix method based on the rigorous coupled-wave analysis (RCWA)
has been proposed to simulate radiative heat flux for periodic structures [45-47],
where the geometries are decomposed into multi-layers by the RCWA method.

The Wiener Chaos Expansion (WCE) method has been proposed to simulate both
radiative heat flux and field profile for arbitrary geometries [33,37,48], which has
been implemented in finite-different frequency-domain (FDFD) method [48], finite-
different time-domain (FDTD) method [33], and boundary element method
(BEM) [37]. In addition, the WCE method has been optimized for periodic
structures [33]. In the FDFD and FDTD implementations, the geometries are
decomposed into volumetric elements. In the BEM implementation, the geometries
are decomposed into surface elements.

The Fluctuating Surface Current (FSC) method based on the boundary element
method (BEM) has been proposed to simulate the radiative heat flux for arbitrary
three  dimensional geometries [39,49] and two-dimensional symmetric
geometries [37], where the boundaries of the geometries are decomposed into surface
elements.

The Monte-Carlo method based on sampling the thermally induced random currents
has been proposed to simulate both radiative heat flux and field profile for arbitrary
geometries [50], where this algorithm is implemented in finite-difference time
domain (FDTD) method. The geometries are decomposed into volumetric elements.
The Thermal Discrete Dipole Approximation (T-DDA) method has been proposed to
simulate heat flux for arbitrary geometries [51], where the geometries are

decomposed into volumetric elements.
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(vi)  The Fluctuating Volume Current (FVC) method has been proposed to simulate
radiative heat flux for arbitrary geometries [52], where the geometries are
decomposed into volumetric elements.

In this Chapter, we investigate two direct simulation methods for thermal radiation: the
Wiener Chaos Expansion method and the Fluctuating Surface Current method, where we
implement these two methods as general tools with high computational efficiency, and propose
the new formalisms to improve their performances for handling special geometries and materials.
The Wiener Chaos Expansion method is introduced in Section 2.2. The underlying principle is
first reviewed, and a new formalism for calculating the thermal radiation from periodic and
symmetric structures is then presented. The Fluctuating Surface Current method is introduced in
Section 2.3. We first briefly review its underlying principles. After that, we investigate a new

formalism for calculating the thermal radiation of two-dimensional materials (e.g. graphene).
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2.2 The Wiener Chaos Expansion Method

2.2.1 Fundamental Principle

According to the fluctuational electrodynamics, thermal radiation originates from thermally
induced random currents. Consider a thermal emitter V at the temperature of T, as shown in
Figure 2-1. The radiative heat flux (P(r, w)) can be expressed in terms of the Dyadic Green's

function and the random currents j(r', w) as
(P(r,w)) = (ExH,)
= —ia)uof dr’3f dr'3 Tr[[G(r, 7, )*], - [GH (r, 7", @],
SR @.1)
(", W) (', w))].

Similarly, the thermal radiation field intensity (|E (1, w)|?) equals

([E(r, w)?]) = wz,u(z)f dr’3f dr'3 Tr[G(r, 7", w)* - G(r, 7", w)
VE VE
2.2)
", 0)j (', w))].

In Egs. (2.1) and (2.2), (-) indicates the ensemble average. (j(r",w)j*(r',w)) equals a

deterministic expression defined by the fluctuation-dissipation theorem

", w)-j @', w)) = %weolm[e(r’)]G(a),T)d(r" —r)L (2.3)

As we discussed previously, directly integrating Eqgs. (2.1) and (2.2) is extremely

computationally inefficient, which is incapable to calculate thermal radiation in general cases.
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Figure 2-1: The schematic of a radiative thermal emitter.

To avoid the inefficient numerical integration, the Wiener Chaos Expansion method is
proposed to calculate thermal radiation of arbitrary geometries by expanding the thermally
induced random current j(r’, w) onto deterministic orthonormal current modes [33,48]. As a
result, thermal radiative heat flux (and field profiles) equals the sum of the energy flux (and field
profiles) emitted by each current mode, as illustrated in Figure 2-2. By choosing the current
modes in the multipole expansion form, the summation can be fast converged in practice.
Consequently, only a few number of current modes require to be numerically simulated, and the

thermal radiation can therefore be calculated with high computational efficiency.
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Figure 2-2: Illustration of Wiener Chaos Expansion method for directly calculating thermal

radiation heat flux (P) and field profile {|E|?).

The formulation of the Wiener Chaos Expansion method is investigated as follows.
According to the fluctuational electrodynamics in Egs. (2.1) to (2.3), the heat flux (P) and field
profile (|E|?) are determined by the first and the second moment of the random currents, i.e.

(j(r,w)) and (j(r, w)j*(r', w)), with the value of

(J(r,w)) = 0; (2.4)

(j(r,)j" (', ) = Vr(r, 0)?6(r — )L,

where (j(r, w)) = 0 is attributed to the unbiased nature of the thermal fluctuation; V;(r, w) =

\/%weolm[e(r)](i)(w, T) is a deterministic quantity according to Eq. (2.3). Under the constraint

of Eq. (2.4), the random current j(7, w) can be mathematically constructed as

dW, (1) (2.5)
jr,w) =Ve(r,w) [dW, (M|, reVg
dW,(r)

where dW,, dW,,, and dW, are the white noise stochastic processes (i.. the derivative of

Brownian motion), which have the properties of
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(dW,(r)) =0
(aw,(r) - dwy (r')) = 6@ —r")

forr,r" € Vg; Lk € {x,y,2} 29

Note that dW;(r) is a random process, i.e. it is a random variable for each r. In addition, dW,,,
dW,, dW, are independent to each other, i.e. (dW,(r)dW, (r")) = (dW,(r)d W, (r)) = 0 for

l+k;lk € {x,y,z}, indicating the random polarization of the random current j (7, w).

The properties of dW (r) has been extensively studied in stochastic theories. It can be
expanded onto a deterministic orthonormal basis by the Wiener Chaos Expansion (also named as

Karhunen-Lo¢ve expansion) as [53]

i 2.7)
dW(r) = Z Cn fu(M), forr € Vg

n=1
where ¢, are the uncorrelated random variables satisfying

(c;)=0 (2.8)

1 i=j

{f.(r)} is a set of orthonormal basis functions defined in r € Vg, i.e. the volume of the thermal

emitter. The orthonormality of {f,,(r)} is defined as

~ B 1 i=j_ (2.9)
frevEdsr'ﬁ(r)'f"(r)_‘s”_{o P’

The completeness requires that an arbitrary function H(r) with r € Vz can always be expanded

onto {f,,(r)}, i.e.
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H(r) = a1fi(r) + axfo(r) + azf3(r) + - (2.10)

for some {a,}. Note that {f,,(r)} can be chosen in arbitrarily forms as long as Egs. (2.9) and
(2.10) are satisfied. For example, {f;,(r)} can have the form of Fourier series if the shape of the
thermal emitter is a rectangular prism. {f,,(r)} can also be the delta functions, i.e. f;(r) = §(r —
1;), V1; € Vi. By substituting Eq. (2.7) into Eq. (2.5), the thermally induced random current

j(r, w) can be expressed in terms of the orthonormal basis functions {f,,(r)} as

PR EAG)] @11

iw) =] e V@@, ey,
> Con - V2, 0)fu ()]

n
n
where Cyp, ¢y and ¢, are the random variables satisfying

(cri) =0 (2.12)

1 i=jandk=m

{Cui - emj) = {0 otherwise

Therefore, the second moment of random current (j(r, w)j*(r', w)) equals
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((r, @) (), @) 2.13)
'Z Z<cxicxj> VEfS, Z Z<cxicyj> VRS, Z Z<cxl-czj> VEfif]
_ ZZwylcx,) VRS ZZ«M) VLS ZZ@W VRS
ZZ<chcx,> Vs, ZZ«M,) VRfi; ZZ@M VE£S)

D VEAOEED 0 0
_ 0 D VRALED 0
0 0 Y VERA@SE)

Substituting Eq.(2.13) into Eq. (2.1), the radiative heat flux equals

<P(T, a))) = J- d.',.l3 dT”3 TI'[GGP(‘I”,T",T‘”, (1)) . (j(‘l””, (1))]'*(7",(1)))] (214)
Vg Vg
1 0 0
=| dr3®| dr'"3Tr|GG, - Vﬁ(r)ﬁ(r”)) [0 1 0] ,
f"E fVE ’ (z ' 00 1

where we simplify the Dyadic Green's function term —iwp, - [G(r, 7", w)*], - [GH (r, 7", w)],

as GGp(r,7', 7", ), or GGp. We also denote the operator L,[-] as

Lp [X(T'I,T”,(U)] — j- dT"3 d,rll3 TI'[GGP . X(rl’,rll’ (1))] (215)
v

E VE

As aresult, Eq. (2.14) can be represented as
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1 0 0 (2.16)
(P(r,w)) = Lp (ZVTZﬁ(r’)ﬂ(r”)>-[O 1 0]-
i 0 0 1

Note that L[] is a linear operator, i.e. L,[cA + dB] = cL,[A] + dL,[B], since the trace has the
property Tr[A-(xB +yC)] = Tr[A-xB + A-yC] =xTr[A-B] +yTr[A-C] . L,[h(', w) -
h*(r",w)] physically indicates the energy flux due to a given current density distribution

h(r, ). Consequently, the radiative heat flux (P(r, w)) equals

Vefi(r') (2.17)
P =Y L,[| 0 | ehir, 00]
i 0
o
+ Ly (Ve fi )| [0,V fi(r"), 0]
L 0

0
+ L, 0 10,0, Vo f; (r')]
Lv,f, ()

Eq. (2.17) is the main result of the Wiener Chaos Expansion method. It describes that the
thermal radiative heat flux (P (r, w)) can be expanded as the sum of the energy flux B, from each
current mode, where the current mode n is defined as a set of the same current density
distribution f,,(r) with three independent polarization directions

Jnx (T, w) =Vp (r, w) fr(r)X (2.18)

jn,y(r' w) = Vr(r, w)fn(r)s; .
jn,z(r; w) =Vr(r,w)f(r)z

The radiative heat flux (P(r, w)) in Eq. (2.17) can therefore be represented by current modes as
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(P(r,w)) = Z P, (2.19)
- Z{LP [jn'x 'jT*l.X] + Ly [jn,y 'jrt.y] + Ly [jn.z 'j:L,Z]}

Similarly, the thermal radiation field intensity (|E(r, w)?|) can also be expanded in terms of

current modes based on the aforementioned derivation as
(IEGr@)l) = ) |3 (220
n
= Z{LE [jn,x ]:L,x] + Lg [jn,y : jrt,y] + Lg [jn,z : jrt,z]}'
n

where the operator L[] can be defined accordingly based on Eq. (2.2) as

Lg[X] = wz,u(z)f dr'3 | dr'"3Tr[G(r, 7", w)* - G(r, 7", w) - X]. (2.21)

VE VE

The concept of current modes expansion depicted in Egs. (2.19) and (2.20) is further illustrated
in Figure 2-3. The energy flux and the field intensity from each current mode can easily be
calculated by the well-known finite-element numerical methods (e.g. finite element method,
finite-difference time-domain method, boundary element method), by setting up the electric

current source accordingly.
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Figure 2-3: Illustration of the concept of current mode expansion in Wiener Chaos Expansion
method.

The primary challenge of the Wiener Chaos Expansion method is to find the proper
current modes of the thermal emitters in order to achieve fast convergence. For instance, when
the current modes are chosen in sinusoidal forms, their expansion can physically be viewed as a
classical multipole expansion (Figure 2-3), which leads to a fast convergence for energy flux
calculation. Hence, we can truncate the expansion and only keep the lower order current modes
without losing accuracy. For an emitter with the rectangular prism shape defined in the Cartesian
coordinate as x € [0,a] Uy € [0,b] U z € [0, z], the current mode can be chosen in the form of

Fourier series as
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jl,m,n(r’ (l)) = VT : [Hl(x)Pm(Y)Qn(Z)]{ﬁl y' i}

( 1 1=0

Va

Hi(x) = 2 lmx
—Cos [—] 1=1,2,3..
a a

Pm(y) =3

1
( — m=0

Vb

k\E cos [m;;y] m=123..

Qn(z) = 3 .
2 nmwz
—CosS —] n=1273..
A € c

(2.22)

For complicated geometries, special algorithms can be used to generate the current modes in

spherical harmonic forms [54].

2.2.2 Simulation of Periodic Structures

The Wiener Chaos Expansion method in Egs. (2.19) and (2.20) not only applies to the structures

with finite size, but it can also handle the infinitely large structures. In this scenario, choosing

proper current modes are especially important to achieve a high computational efficiency.

Practically, the expansion on the current modes with larger spatial size generally lead to a slower

convergence in comparison with that on the smaller current modes [55,56]. As a result, for the

structures with a large or infinite size, naively choosing sinusoidal current modes expanded over

the whole structure can make the Wiener Chaos Expansion method extremely inefficient.
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For the periodic and symmetric structures with infinite size, we propose a formalism to
choose current modes which can lead to a high computational efficiency. Consider a periodic
structure composed of a thin film emitter V; and a grating absorber V,, as shown in Figure 2-4.
Rather than finding the current modes directly for the whole volume of the emitter V;, we
expand the current modes only for an unit cell of the emitter, where the unit cell is the smallest
repeatable unit dividing the emitter based on the periodicity and symmetricity of the whole
structure. In Figure 2-4, by translating and mirroring the unit cell V., the emitter V; can be
replicated. Note that the orthonormal basis functions {f,,(r)} in this scenario only require to be

defined inside one unit cell, i.e. r € V., because the basis functions in all the unit cells are
essentially the same, i.e. { fn (r + gm)} with the translation of the coordinates. As a result, the

set of the basis functions from all unit cells satisfies the orthonormality and completeness in Egs.

(2.9) and (2.10) for the whole volume of the emitter V.
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Figure 2-4: The schematic of a periodic and symmetric structure composed by a thin film emitter

Vg and a grating absorber V.

Therefore, the radiative heat flux between the emitter Iz and the absorber V, can be
obtained by calculating the energy fluxes due to a single unit cell V.. For the current modes in 1,
the energy fluxes are evaluated at all the points on the surface S, as illustrated in the dashed line
in Figure 2-4. As a result, the contributions from all other unit cells are obtained, because the
energy flux P, from V.’ equals to the energy flux P; from V. Therefore, by summing up the
energy fluxes at all the segments on surface S (as illustrated in Figure 2-4), the actual radiative
heat flux at the segment S, is obtained. Since the size of the unit cell V. is much smaller than the
size of the emitter Vi, the current modes expansion on V, leads to a faster convergence in
comparison with directly expanding the current modes on Vg, therefore makes the Wiener Chaos

Expansion method computationally efficient for the periodic and symmetric structures.

The Wiener-Chaos Expansion method can be implemented by any finite-element based

computational electromagnetic methods, e.g. FDTD, FEM, BEM, etc., for simulating the
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electromagnetic responses from each deterministic current mode. In comparison with the
frequency domain methods such as FEM and BEM, the FDTD method can be more efficient
because it calculates the whole spectrum in one run, whereas the frequency domain methods only
calculate one frequency point in each run. In addition, the FDTD method is available in
commercial software, and we use the Lumerical FDTD Solutions® [57] to perform all the
simulations in this Section. We also implement a BEM version of the Wiener Chaos Expansion,

and the underlying principle is essential the same as what we described here [37].

Figure 2-5: Discrete dipole approximation to the continuous current density.

The major technical challenge in the implementation is to set up the continuous current
modes by using the discrete point dipole sources. Figure 2-5 illustrates the strategy we used to
resolve this challenge. Consider a continuous current distribution j(x) = f(x)Z along a straight
line x € [0, L], which is illustrated as the red curve in Figure 2-5. We first approximate it as a
step function F(x)Z illustrated as the blue histogram. Assume the width of each step is AL, the

step function is expressed as
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F(x) = Z £ lu (x _ ( . AZ_L)> . (x _ (xn N Az_L)ﬂ (2.23)

o . AL : .
where {x,,} indicates the center of each step, i.e. x, =n-AL — > u(x) is the step function,

where u(x) = 1 for x > 0 and u(x) = 0 for x < 0. Eq. (2.23) can be further expressed as

F(x) ~ Z £(2,) (8 — x,)AL), (2.24)

given the fact that §(x — x,,) = W = [u (x - (xn - ﬁ)) —-u (x - (xn + %))] JAL. Eq.

(2.24) indicates that the current density F(x)Z can be mimicked by the point dipole sources

located at {x,, } with the dipole moment p,, = [om)al 5

lw
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Figure 2-6: Radiative heat transfer between two SiC thin film. The result is calculated by the

Wiener Chaos Expansion method.

To prove the concept, we investigate two examples of the thermal radiative energy
transfer between two closely separated periodic structures. The first example is two SiC thin
films, as shown in Figure 2-6. These two thin films have the thickness of L; = 1um and

L, = 5um, respective, and the gap in between has the distance of 100nm. Since the structure is
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uniform in xy direction, the unit cell can be chosen a straight line, i.e. x € [x,,x. + Ax]Uy =
[Ve, Ve + Ayl U z € [0,L,], for any x.,y.. Therefore, we choose the current modes on this
infinitesimal thin rectangular prism based on Eq. (2.22). To calculate the thermal radiative heat
flux, we expand the first five current modes [1..5] corresponding to j (0.4}, and ten dipole
sources are used to approximate the continuous mode functions. For each current mode, the
energy flux on a whole xy plane in the gap is recorded. The heat flux between the two thin films
can be obtained as the sum of the energy flux due to each mode, and then divides the lateral area
of the unit cell, i.e. AxAy. Figure 2-6 plots the simulated heat transfer coefficient h at the
temperature of 300K with the contributions from each current mode. The result from the Wiener
Chaos Expansion method agrees well the analytical result in Ref. [58], which convincingly
validates our formalism for handing the periodic structures. In addition, a fast convergence of the

current mode expansion is also observed, attributing to the multiple expansion form of jg ¢ ,,.
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Figure 2-7: (a) The schematic of periodic nanowire arrays and a thin film. (b) The thermal
radiative energy transfer between the arrays and the thin film calculated by the Wiener Chaos

Expansion method.

The second example is the radiative heat transfer from periodic nanowire arrays to a thin
film, as shown in Figure 2-7(a). The nanowires have the size of L = 3um, W = H = 0.2um and
the periods of P, = 800nm, P, = 4um. The thin film has the thickness of T = 400nm. The gap
distance between the arrays and the thin film is d = 500nm. The materials of both the nanowires
and the thin film are N-type doped Si with the doping concentration of 5 X 1021[cm ™3], and the
optical property is modeled based on the formulation in Ref. [10]. Based on the periodicity and
symmetricity of this structure, the unit cell can be chosen as the region indicated as the dashed
line in Figure 2-7(a). Therefore, the current modes only require to be expanded inside a quarter
portion of a nanowire, as highlighted in the red region in Figure 2-7(a). Similarly, the energy

fluxes are calculated on the whole xy-plane in the gap, and the total heat flux is obtained as the

51



sum of the energy fluxes from all the modes divides the area enclosed by the dashed line in
Figure 2-7(a). Figure 2-7(b) plots the directly simulated heat transfer coefficient h between the
nanowire arrays and the thin film at the temperature of 300K with the expansion of 12 current

modes j; , , defined in Eq. (2.22). A fast convergence is also observed.
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2.3 Fluctuating Surface Current Method

Under the framework of the boundary element method (BEM), the Fluctuating Surface Current
(FSC) method directly calculates the thermal radiation energy flux of arbitrary
geometries [39,49,59], which potentially has a higher efficiency in comparison with the Wiener
Chaos Expansion method. The time complexity of this method is O(N3), where N is the number
of boundary elements used to discretize the geometries. It circumvents the difficulty in finding
the proper current modes for bizarre geometries in the Wiener Chaos Expansion method, and
calculating the thermal radiation by the FSC method turns out to be as efficient as calculating
electromagnetic responses from deterministic sources in the BEM. In this section, we first briefly
review the underlying principles of the BEM based on Refs. [59,60]. Then, we introduce the
formulation of the FSC method based on Refs. [39,49]. After that, we present an efficient

formalism to calculate the thermal radiation of two-dimensional materials like graphene.

2.3.1 Introduction to the Boundary Element Method

The BEM is essentially a highly efficient computational tool for simulating electromagnetic
responses [59,60]. In comparison with the popular FEM and FDTD methods, the BEM only
requires the surface meshes on the boundaries of the geometries, which can lead to smaller
matrix equation. The foundation of the BEM is the Huygens' equivalent principle [61,62], which
states that the scattered electromagnetic field from an object can be expressed as the radiation
fields due to the equivalent electric and magnetic surface currents on the object. With the
Huygens' equivalent principle, the surface integration equation is then derived for solving the
equivalent surface currents. After that, the surface integration equation can be converted into a
matrix equation by using the Galerkin method, where the matrix equation can be solved by the

standard methods, for example, LU-decomposition. Once the equivalent surface currents are
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solved, the electromagnetic responses can then be obtained. Here, we briefly review these key

concepts of the BEM as follows.

2.3.1.1 Huygens' Equivalent Principle

(b) (c) bo
N & e &
’ = O e T
i Viig, m W i Vai €0, Ho =
: A‘N\\ : : \
:. b1, (9 ," :o -'I
T : :
% y y .
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Vor&y, b1 Teel s Voi€o, Mo el S

Figure 2-8: (a) Schematic of an object V; in the vacuum space V,, where V/; encompasses a

current source jg. (b) and (c) Electromagnetic fields represented by the Huygens' equivalent

principle. (b) for the fields inside V;, and (c) for the fields inside V.

Consider an object V; in the vacuum space V,, encompassing a current source j;(7) inside,
as illustrated in

Figure 2-8(a). The Huygens' equivalent principle states that the total electromagnetic fields

E:(r
i )> inside each region (i.e. V; and V;) can be decomposed into the incident fields

gb;' (r) (due to the source inside V;) and the scattered fields ¢; (1) (due to the scattering from the
boundaries and the sources in other regions, where both the incident and scattered fields (;bj’ (r)

and ¢; () can be represented in terms of the convolution of the Dyadic Green's function of the

homogenous space I}. Specifically, the total fields ¢, () inside V; equals [61,62]
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O(r)p1(r) = ¢ (1) + p1 (1) (2.25)

- fv dr3T, () - (js<0r')) N f

ny x H;(r") )
1 oy

2 n .
dr'<ly(r,r") (_ﬁ\l « E, (')

and the total fields ¢, (r) in the vacuum space equals

0(r)po(r) = ¢ (r) (2.26)

ny X Ho(T'))_

—_ 12 .
= dr'*Ty(r,r") (ﬁB x Eo(r')

vy

In Egs. (2.25) and (2.26), E; and H; are 3-by-1 column vectors, and therefore ¢ is 6-by-1 column
vectors. I (r,7') is the 6-by-6 tensor representing the electric and magnetic impulse response due

to the electric and magnetic current sources, which equals

TEE  [EH (2.27)
T (T T’) |/ J
J\ HE HH

DAY

[iop;Gi(r,v") =V, X G;i(r,7")
|V, X Gi(r,7")  iweGi(r,T")

where G;(r,7') is the 3-by-3 Dyadic Green's tensor for the homogenous space with the

permittivity of €; and the permeability of u;, satisfying
(V XV, —k?)G;(r, ") = 16(r — 1), (2.28)

and k; = w,/€;u; is the wavevector. Note that G;(r,7") can be explicitly expressed as

kj|r — 1 2.29
Gi(r,r') = l[ R leXp(ijlr r'l) (2.29)

kP T Amlr — 1|
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The factor 6(r) in Egs. (2.25) and (2.26) equals 8(r) = 1 forr € V; and 8(r) = 0.5 for r € dV;.
Note that [E; (1), H,(r)] are continuous from r € V to r € dV, even though the value of 6(r) has

a jump. As a result, the equivalent surface currents can be defined as

£.(r) = Jim)\ [ 0y x H;(r) (2.30)
1 =\k@) = \-8 x @) )
where R, indicates the normal direction of the boundary of the region j, and n; = —n,. Egs.
(2.25) and (2.26) therefore become
ORI (2.31)
_ —To*$p
¢0(r) - 9(7') )

where * indicates the convolution. Because I is composed by the Green's functions of

homogenous space, Eq. (2.31) has the clear physical meaning. As illustrated in

Figure 2-8(b) and (c), the total fields in each region j equal the incident fields plus the radiation

from the equivalent current density §; in the homogenous space.

2.3.1.2 Surface Integral Equation

According to the Huygens' equivalent principle in Eq. (2.31), the electromagnetic field ¢
can be evaluated once the equivalent surface currents ¢ are determined. To solve &, the surface
integral equation is required. For bulk materials, e.g. V;, the boundary conditions of the Maxwell

equations state that the parallel component of E and H field are continuous at r € 9V, i.e.
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ny X [Hy(r) —Ho(r)] =0 (2.32)
ny X [E;(r) — Eo(r)] = 0.

Eq. (2.32) indicates two identities: & = —&; and 1y X (¢, (r) — (1)) = 0. Substituting Eq.

(2.31) into these two identities, the surface integral equation can be derived as

ny X [(I; — o) *§;] = ng X [—¢{ ()], (2.33)
where &; can be solved accordingly. Eq. (2.33) is known as the PMCHW surface integral
equation [39,61].
2.3.1.3 Galerkin discretization and BEM equation

To solve the equivalent surface currents &;, the surface integral equation in (2.33)

requires to be discretized into matrix equation by using the Galerkin method [39,59]. Suppose
{/3,{ (r)} is a set of N basis functions for the 6-component tangential vector fields on the boundary

dV;, so that any surface currents or the tangential components of the EM fields f(r) on the

boundary can be expressed as f(r) = ), x,];ﬁ,{ (r) with the coefficients {xrjl} Note that {/3,]1 (r)}

is not necessarily orthogonal. As a result, the surface current ; can be discretized as
§0= ) (EIBDBIC), (2.34)
n

where (- | -) indicates the inner product i.e. (A|B) = fav dr2A(r)* - B(r), and = denotes the

conjugate transpose. Substituting Eq. (2.34) into Eq. (2.33), and taking the inner product of both

side of Eq. (2.34) with B}, the BEM equation can be obtained as

Mx =s (2.35)
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where M is the N-by-N BEM matrix

My = {BmIT1 * B} = (Bm|To * Br), (2.36)

x is the N-by-1 column vector indicating the equivalent surface currents and x,, = (&;|B3). s is
the N-by-1 column vector representing the stimulating sources where s, = (B1|—¢7 ). Note that
the n X is dropped because 8 is tangential to the boundary. In the BEM, the basis function {£,,}
is usually chosen as the piecewise-polynomial element functions. Specially, we adopt the RWG
basis functions for the general three-dimensional structures, and two-dimensional roof-top
(TDRT) basis functions for the structures invariant in one direction (i.e. 2D-invarient
structures) [59]. As a result, x can be determined by directly solving the BEM equation in Eq.
(2.35), where the general matrix solver such as the LU-decomposition or Gaussian elimination
methods can be adopted [63]. To perform the BEM simulation, we write our home-made code
based on the open-source boundary element method library scuff-EM developed by M.T.

Reid [59,64].

2.3.2 Fluctuating Surface Current Formulation

With the framework of the BEM, the formulation of the FSC method is briefly introduced
as follows, and the derivation details are available in Ref. [39,49]. Consider two objects V; and

V, in the vacuum space V,, as illustrated in

Figure 2-9. The surface integral equation of this two-body system can be expressed as

ny X [(Ty +T) * & + Ty x &) = 0y X [¢f — ¢g] (2.37)

X [(Ty + ) * & + Ty x &1 = 0y X [¢p7 — ¢g .

58



Then, the BEM equation can be obtained with the Galerkin discretization on a set of the P + Q
basis functions {B,, 87} for dV; and dV,, as

(BT + T Yy (BH(T) * B?) ”(Ellﬂl)]z[(ﬂll¢{’—¢6’> (2.38)
(B21(T) * B1)  (B2I(To + ) *» B UGB KB% |97 — ¢g)

which corresponds to Mx = s. M has the size of (P + Q) by (P + Q). The BEM matrix M can
be further expanded as M = M, + M; + M,, where

(BT * B*) (BT * B?) (2.39)
[(B2[To * B1)  (B>IT, * B?)

M, = _<,31|FB*,31) g]

M0=

[0

0
M2=lo (g2, « g2y

M, represents the multibody interactions via the waves in the vacuum space V,. M; and M,

represent the self interactions via the waves inside the object V; and V,, respectively.

Figure 2-9: The schematic of two objects V; and V, in vacuum space V.
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For the case that V; at the temperature of T; and V, at the temperature of T,, the FSC

method describes that the thermal radiative energy transfer from V; to V, equals

H = j-mdw[G(w,Tl) — 0(w, T,)] Py, (w) (2.40)
0

hw

where 0(w, T) = 22" —o—,

and the spectral energy flux ®;_,,(w) can be calculated from

the BEM matrix M and the self-interaction matrices M; and M, as

2 * X .
d,,,(w) = ;Tr[sym[Ml]M‘1 sym[M,]M~17]. (2.41)

In Eq. (2.41), Tr[-] denotes the trace of the matrix; sym[A] = %(A + A*); and M~ indicates the

inverse matrix of M. In addition, the thermal emission from V; to far-field can also be calculated

as

2 i . '
Py 0(w) = ;Tr[sym[Ml]M—1 sym[Mo]M~1"]. (2.42)
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Figure 2-10: (a) Far-field thermal radiation of an infinite long gold nanorod. (b) Near-field

thermal radiative energy transfer between two silica microspheres.

We implement the FSC method in Egs. (2.41) and (2.42) in our home-made BEM code
for both three-dimensional structure and the 2D-invarient structure. Figure 2-10 demonstrates
two test examples. Our simulation results are directly compared with the analytical solutions in
Refs. [38] and [43], respectively. Their excellent agreements convincingly validate our

simulation.

2.3.3 An Efficient Formalism for Simulating Two Dimensional Materials

Two dimensional materials are the crystalline materials consisting of a single layer of
atoms [65]. Graphene is a single layer of carbon atoms which recently attracts great attention in
the fields of photonics and thermal radiation because of its extraordinary optical

properties [36,66—68]. Since graphene has a sub-nanometer thickness, it requires to be modeled
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as a 2D resistive boundary with an in-plane conductivity g,(w) in the electromagnetics
theory [69]. The in-plane conductivity g, relates to the volumetric conductivity o, as §(z)a,; =

o, for a graphene sheet located at z = 0. It thus satisfies j,, = 0,6(2)Ey,,.

To numerically model the 2D resistive boundary in the simulations, there exists intrinsic
difficulties for the FEM and FDTD methods, where the 2D resistive boundary requires to be

approximated as an extremely thin dielectric film [66,70]. In this case, §(z) is approximated as

stz = Heler)

. Therefore, the volumetric conductivity becomes o, = JT“’, and the

permittivity of the thin film equals € = €, + io,/(wt) . However, this approximation can
severely deteriorate the simulation efficiency because extremely fine meshes are required in this
ultra thin film to maintain the accuracy. Very recently, new algorithms are proposed to model the
graphene with only a layer of meshes in the FEM and FDTD methods [57,71,72]. Nevertheless,
the BEM is the ideal candidate to model the 2D resistive boundary, since it only requires

boundary meshes.

However, it is not straightforward to model open 2D resistive boundaries in the BEM, for
examples, graphene disks or ribbons. Although the thin-film approximation can still be applied
in this scenario [66,73], the BEM simulation can become very inefficient in assembling the self-
interaction matrix of the thin-film, due to its very large effective permittivity €. Here, we propose
an efficient formalism to model the suspended 2D resistive boundaries in the BEM without using
the thin-film approximation, and then we derive the FSC formulation to directly calculate their

thermal radiation.

62



2.3.3.1 Surface Integral Equation for a 2D Resistive Boundary

To model the 2D resistive boundary, a new surface integral equation is required.
Consider an open 2D resistive boundary S suspended in vacuum space with the in-plane
conductivity of g, as shown in Figure 2-11. The boundary conditions of the Maxwell equation

state that

r/1\0 X (HO - Hl) = 05Eo + Jext

at the resistive boundary S, where [E,, Hy] is the field on the top surface, and [E;, H ] is the field
on the bottom surface. g;E| indicates the induced surface currents on the resistive boundary due

to the electric field. /,,; denotes the surface current sources in S.

Figure 2-11: The schematic of a 2D resistive boundary S and an auxiliary boundary S’.

To apply the Huygens' equivalent principle, we add an auxiliary boundary S’ to connect

the ends of S through the vacuum, and then the vacuum space is divided into two regions V,, and

onS,

I/l\oxHo)
s

V;. For the region Vy, the equivalent surface can be defined as & = (jo) = ( X E
—hg X Lo

Ko
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on S'. For the region V;, they are defined similarly as & =
Sl

on S, and §{=<]1)=<H1XH1)
s

Kj —ng X E;

—Ny X E,

(1)~
K; —ny X Ey

conditions on S’ satisfy Eq. (2.32), it has £; = —¢;. As a result, the fields in V; and V; can be

= () = ()

on S'. Because the boundary
SI

expressed in terms of the conventional notations as

_(Eo(MY\ _po () + Ty * & + T * &g (2.44)
50 = (o) = 80
_(E;(M\ _To*& +Tp*&
B0 = (5 m) ="
_Toxé —Th*&
B 6(r) ’
ES ()

where ¢ (r) = (

HE (r)) indicates the incident field due to the sources in V. According to the

electric field relation in Eq. (2.43), it has ng X 2E, =g X (E; + E;) on S, and K, = —K;.

Substituting these two equations into Eq. (2.44), it can be further derived as
Ny X 2Ep|s = ng X (Eg + E1)ls (2.45)

= fip X %{EJ + (07 1{%] " _111<0D}

S

= Mg X Eols = fig X {Eq + I5% * (Jo +J)}s
In addition, the magnetic field relation in Eq. (2.43) states that

ng X (Hy—Hy) = Jo +J1 = 05Epls + Jext (2.46)
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Denote the total equivalent electric current on S as J¢ = J, + J;. Apply iy X on both side of Eq.
(2.46), and then substitute Eq. (2.45) into it, the surface integral equation of the 2D resistive

boundary can be derived as

ﬁ\0 X Js = Usﬁ\o X EOlS + ﬁB X Jext (2.47)
= l'10 X {O-SEO + o, *]s +]ext}

= 5y x 167 s = -] = o x [t~ ]

In comparison with the PMCHW surface integral equation in Eq. (2.33), only the equivalent

electric current /¢ requires to be determined for the 2D resistive boundary, i.e. s = ( 5)

Eq. (2.47) can also be discretized by the Galerkin method with a basis {£,,}, i.e.

el ol 8) (el ol [(fslﬁ)]=[<ﬁ‘< ]> ¢,0>] (248

0

Therefore, the self-interaction matrix of the 2D resistive boundary becomes

_i T (2.49)
Os

1

-— 0
Os

Ms,mn: Pm _l Pn
Os
0
0 0
0

= {a] () 185:)
- Bm o5 Oﬁn
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where (;—1) I3 denotes the matrix coefficient for simplifying the notation. In comparison with the
N

self-interaction matrix of the thin-film, i.e. (8,,|I} * B,,), the self-interaction matrix of the
resistive boundary in Eq. (2.49) can be calculated very efficiently without suffering from

numerically integrating the Dyadic Green's function I'; with a very large permittivity €.

o our simulation
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Figure 2-12: Extinction cross-section of graphene nanoribbon.

We validate our BEM code with the implementation of the 2D resistive boundary
formulation in Eq. (2.48) by simulating the extinction cross-section of an infinite long graphene
nano-ribbon, as shown in Figure 2-12. The graphene nano-ribbon has the width of 100nm and

the Fermi level equals 0.2eV. Our simulation result agrees well the with the result in Ref. [66].
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2.3.3.2 Fluctuating Surface Current Formulation for 2D Resistive Boundary

Figure 2-13: The schematic of two resistive boundary S; and S, in vacuum space V.

The thermal radiative energy transfer between an emitter and an absorber made by 2D
resistive boundaries can be directly calculated by the same FSC formulation in Eq. (2.41) and
(2.42) with the substitution of the self-interaction matrix in Eq. (2.49). Consider the resistive

boundaries S; as the emitter and S, as the absorber suspended in vacuum space V), as shown in

J

Figure 2-13. Assume the equivalent surface currents &; = ( 5) onS; and &, = (]5) According

to Eq. (2.48), the BEM equation Mx = s of this system can be expressed as

Jext (2.50)
&)
J)
0

where [5; and [, are the basis for §; and S,, respectively. J,,; indicates the thermally induced

i + 0+ [ ] = [<ﬂ1

random currents inside S;. The multibody-interaction matrix M, and the self-interaction matrix

M; and M, equal
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I R
o5 2] {5 2]

= [ ) o
i 0 0.

=l ()]

The radiative energy transfer from S; to S, equals the energy absorbed by S, i.e.

1 1 2.52
®=—| dr?’=ng-Re[E, X H}] — | dr?-nj - Re[E; X Hf]. (2.52)
S 2 s 2
2 2
The first term on the right hand side of Eq. (2.52) equals
(2.53)

1 1
— | dr?=mng-Re[E, X Hi] == | dr?RelE,-J;].
s, 2 2Js,

Similarly, the second term equals %fsz dr?Re[E, - J*], where J, = fig X Hy, and J_ = iy X H;.

According to Eq. (2.43),J, =], +]_, and J, = 0, E,. Therefore, the energy transfer ® from S;

to S, equals
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1
® = | dr’Re[E 3] 259

Sz
_ 1 -1
) ¢ Rela_glfz

=— Ex*sym[MZ]x

= —%Tr[ss*M‘l*sym[Mz]M‘l].

The term ss* in Eq. (2.54) indicates the thermally induced random current sources, and ss* =
_Jext _Jext
0 0

0 0
(]ext(r)];xt(r’))=%Re[01]®(w,T)5(r—r’)l , where () denotes the ensemble average.

p 1> 0 . According to the fluctuation-dissipation theory,

Therefore,

(2.55)

(SS*>11,mn = (<ﬁ1m ﬁ1n>>

M)

1
j dr? | dr’® B )] Yexe M ore GBI
S1 51

loy |

4 -1

- 2o f A (BT Re [G—] HIEAG)
= 4@ M

=77 sym[M,].

Substitute Eq. (2.55) into Eq. (2.54), the FSC formulation for calculating the radiative energy

transfer between two resistive boundaries can thus be derived as
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2 i .
d(w) = ;Tr[sym[Ml]M‘1 sym[M,]M~1], (2.56)

which agrees with the form of Egs. (2.41) and (2.42). Note that the similar formulations can also
be derived if the emitter or absorber is bulk dielectric or far-field space, where only the self-

interaction matrices M; and M, require to be substitute accordingly.
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Figure 2-14: Thermal radiative energy transfer between two graphene nano-ribbons (the width of
the ribbons equals 50nm, the gap equals 50nm, Fermi level of graphene equals 0.2e¢V). The

thickness of graphene in thin film model equals 0.3nm.

In Figure 2-14, we validate our formulation in Eq. (2.56) by directly calculating the
thermal radiative energy transfer between two graphene nano-ribbons modeled as resistive
boundaries. The result is then compared with the simulation result based on the thin-film
approximation model. Good agreements between these two results are observed, and the resistive

boundary model demonstrates significant enhancement of the computational speed.
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3 Broadband near-field radiative thermal emitter and absorber based on hyperbolic

metamaterials

3.1 Introduction

In the near-field, when the gap distance between objects is smaller than the dominant thermal
wavelength predicted by Wien’s displacement law, radiative heat transfer can be greatly
enhanced by photon tunneling through evanescent electromagnetic waves [23,74,75]. In
particular, it has been demonstrated that near-field radiative heat transfer can exceed the
prediction from Planck’s law by several orders of magnitude [7,9,76], when the interacting
materials support infrared surface-polariton resonances (IR-SPRs), including surface phonon

polaritons in polar dielectric materials [76] (e.g., cBN, SiC or SiO, ) and surface plasmon

polaritons in doped semiconductors [77]. In contrast to far-field radiation in which the spectral
distribution of emissive power is usually broadband, near-field thermal emission from an IR-SPR
material is almost monochromatic [32]. The IR-SPR based near-field radiation is practically
important due to the significant heat transfer enhancement and quasi-monochromatic emission,
and has been suggested to be used to increase the efficiency of thermophotovoltaic

devices [20,78] and create vacuum thermal rectifiers [79,80].

However, the IR-SPR based near-field heat transfer is strongly material-dependent. The
enhancement of heat transfer between two identical IR-SPR materials arises from the coupling of
surface polariton waves [32]. If the emitter and absorber are made from different materials which
support SPRs at different frequencies, the mismatch between SPR frequencies will result in
much less heat transfer. For instance, SiC supports surface phonon polaritons in the infrared

range, but gold supports surface plasmon polaritons in the visible range. As shown in Figure 3-1,
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near-field radiative heat transfer between semi-infinite SiC and gold plates is found to be three

orders of magnitude less than that between two SiC plates.
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Figure 3-1: Plot of radiative heat transfer between two semi-infinite plates maintained at 0K and
300K against the vacuum gap size d. SiC-SiC case (red curve) is compared with SiC-gold case

(blue curve). Blackbody radiation limit is also plotted for reference (black dashed line).

To overcome the material limitation of the IR-SPR based near-field radiation,
"metamaterials" have been proposed to enhance near-field radiative heat transfer by designing
SPRs at desired frequencies [81]. Metamaterials, which are typically structured at a scale smaller
than 1/10™ of wavelength, are artificial composite materials whose electromagnetic properties
are engineered by sub-wavelength structures such as split-ring resonators and dilute metal
wires [82,83]. If the gold plate in Fig. 1 is replaced by the arrays of sub-wavelength gold wires or
split ring resonators, the effective resonant frequency of surface plasmon polaritons in the
metamaterial can be shifted to match the resonant frequency of surface phonon polaritons in SiC.
However, in order to maintain designed effective properties and manipulate thermal radiation in
the near-field, a metamaterial needs to meet two criteria: (i) the feature size of the metamaterial
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(e.g., period of sub-wavelength structures) must be much smaller than the gap size between the
emitter and the absorber, which can be in the range of tens of nanometers [84], and (ii) the
metamaterial must have an effective resonant frequency in the infrared range (e.g., wavelength

around 10um ) in order to match the resonant frequency of an IR-SPR emitter. For both criteria

to be fulfilled simultaneously, the diameters of dilute metal wires and the thicknesses of split ring
resonators are predicted to be in the sub-nanometer scale. Although these resonant metamaterials
show potential for manipulating near-field radiation, they are very difficult to be experimentally

realized with current fabrication technologies.

In this work, we present a broadband non-resonant heat emitter/absorber based on
hyperbolic metamaterials [85-87], which can significantly enhance near-field radiative heat
transfer between metals and IR-SPR thermal emitters, and maintain the monochromatic
characteristic of the IR-SPR based near-field radiation. In order to elucidate the heat transfer
mechanisms of complex three-dimensional metamaterials, we directly calculate near-field
radiation based on the Wiener-chaos expansion method, rather than using effective medium
theory (EMT). Previous studies on metamaterial based near-field radiation generally adopted
EMT to approximate electromagnetic properties [81,88]. However, EMT approximation has two
drawbacks: (i) It may not be applicable in the near-field because, instead of effective or averaged
properties, inhomogeneous behaviors of individual sub-wavelength structures dominate the
responses of metamaterials to the exponentially decaying evanescent waves.  (ii) EMT is
essentially an approximation which cannot provide detailed information on the electromagnetic
fields in metamaterials. A direct numerical simulation is thus crucial for accurately predicting the

near-field responses of complicated geometries like metamaterials.
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3.2 Enhanced near-field heat transfer between an IR-SPR emitter and a hyperbolic

metamaterial

Hyperbolic metamaterials are non-resonant and can potentially manipulate near-field
radiation [34,85]. The effective permittivity of this type of metamaterials has a negative vertical

component (&, <0) and positive horizontal components (&, , >0), with the materials assumed
to be uniaxial (ie.,& =&, =¢_ ) for simplicity. Since & and & _, are opposite in sign, the

dispersion relation for TM (transverse-magnetic, /1 =0) waves is a hyperbolic function

k2 K2 2 3.1)
= 0’

€Exy | €, |

where K is the lateral wave vector K = ,/k. +ky2 , and k, is the wave vector in vacuum. As

shown in Eq. (3.1), one intriguing property of hyperbolic metamaterials is that they allow
propagating TM waves with no upper bound for K . The IR-SPR based near-field heat transfer is

dominated by the contribution from the TM waves that have a purely imaginary k. and a large
surface wave vector K ( K >k, ) [23]. These waves are evanescent in vacuum but can be

converted into propagating waves by hyperbolic metamaterials for arbitrarily large K .

Hyperbolic metamaterials can be realized by a number of structures such as alternating
metal-dielectric layers [85] and metal wire arrays (MWAs) [86,87]. In the infrared regime,
metals behave like perfect electric conductors (PEC) with permittivity & =-—00+i0 . A
metamaterial made of MWASs can have the hyperbolic dispersion given by Eq. (3.2) in a broad

frequency band for @ < @, without relying on the intrinsic resonant properties of metals. Here,

w, 1s the equivalent plasma frequency of MWAs, which can be expressed by the wire period a
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and the radius r a5 @, z\/27zc§ /[a’ In(a/r)] [89]. The vertical components of the effective
permittivity &, , can be approximated as the vacuum permittivity &, due to the negligible

polarizability in x- or y- direction. However, the estimation of the parallel component ¢_ is not

straightforward. The local EMT model for “diluted metal wires” proposed by Pendry ef al. [89]
cannot interpret the dispersion of the propagating waves inside the MWAs [86,87]. Belov et
al. [86] proposed a non-local EMT model for MWAs which requires evaluating the microscopic

structure details

wg > (3.2)

e, (w,k,) = € (1 T Wl ck2

which is always negative for <, . If the period of MWAs is chosen to be hundreds of
nanometers, @, of MWAs is typically in the visible range, and MWAs can maintain the
hyperbolic dispersion in the infrared range.

The performance of MWAs can be evaluated by the photon local density of states (LDOS)
above the surface of semi-infinite MWAs. According to Ref. [90], the photon tunneling rate

through evanescent waves increases with the increase of the LDOS immediately above the

surface of the thermal emitter/absorber. Therefore, by enhancing the LDOS, near-field radiative

heat transfer can be increased. The LDOS, p,(d,K,®), at the distance d above the surface of a

medium for parallel wave vector K and frequency @ is related by

pi(d, K, ) o Im[rfy, ] exp(—yd), (3.3)
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where r;M is the Fresnel factor of the medium i e {emitter, absorber} for TM waves, and

y =+/k; —K* . Here, we ignore the contribution from the transverse-electric (TE) wave since the

near-field heat transfer with an IR-SPR emitter is dominated by TM waves. Furthermore, the

profile of the spectral heat flux ®(w) between a thermal emitter and absorber separated by a

vacuum gap d can be estimated by the product of the LDOS above the surface of each

individual medium

(3.4)

dK? - Pemitter (A, K, @) * Papsorper (d, K, @)
ko

Due to the hyperbolic dispersion, the LDOS above MWAs can be dramatically increased
compared to that of bulk metals. However, the exact value of the LDOS of MWAs is difficult to
be calculated based on the non-local EMT model (Eq. (3.2)), because the calculation of the
Fresnel factors of non-local media requires to scrutinize the structure details [91]. Hence, we
consider a limiting case with local dispersion relation to predict the general trend of the LDOS
above MWAs. If the period of MWAs is infinitely small, the equivalent plasma frequency

approaches infinity, @, — oo, then the effective permittivity of this limiting case of MWAs is
g =&, =¢&,,& =—w according to Eq. (3.2). The limiting case is a reasonable approximation to

the actual MWAs in the near-field because it can lead to the same dispersion relation of the

propagating waves inside MWAs as that of the actual cases when » <@, [86,87]. The LDOS

can thus be easily evaluated by calculating the Fresnel factor for an anisotropic medium with

local EMT model [84]. In Figure 3-2, we estimate the LDOS at 100nm above the surface of the

semi-infinite SiC, gold and the limiting case of MWAs by calculating Im[7;,, Jexp(—yd). The
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LDOS of MWAss is largely enhanced in a broad frequency band compared to that of gold. The
LDOS of SiC has a sharp peak at the SPR frequency. The LDOS of MWAs as shown in Figure
3-2 is almost evenly distributed in the infrared regime. Hence, MWAs can strongly interact with

an IR-SPR emitter (e.g., SiC) and simultaneously maintain the monochromatic near-field heat

10 2
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transfer with the IR-SPR emitter, according to Eq. (3.4).
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Figure 3-2: Plot of the expression Im[ry,,] exp(—yd) to estimate the photon local density of
state (LDOS) at d =100nm above the surface of semi-infinite (a) SiC, (b) Au, and (c) limiting

case of metal wire arrays (MWAS).

3.3 Simulation Results

Here, we investigate the near-field radiative heat transfer between an IR-SPR emitter and
MWAs placed in vacuum, as shown in Figure 3-4(a). The IR-SPR emitter is assumed to be a
1um thick plate. Metal wires are aligned in the z-direction with radius »=50nm and period a
=300nm. The IR-SPR emitter is kept at 300K, and the MWAs are at OK. The heat flux between
them is evaluated by calculating the amount of energy transmitted into the MWAs. As the

MWAs are at a finite temperature, the net heat flux can be solved by the reciprocity of radiative
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heat transfer [50]. In our simulation, the current modes in the IR-SPR emitter are chosen in
sinusoidal forms (see Appendix) because of the resulting high convergence speed of numerical
simulation. The MWAs at 0K do not emit thermal radiation, and we only consider their
electromagnetic response in the infrared range. The metal wires in our simulation are assumed to
be PEC wires, which is verified by comparing the energy fluxes into PEC and gold wire arrays
for current Mode 1. We find that the results from PEC and gold wires are almost the same, as

shown in Figure 3-3.
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Figure 3-3: Spectral heat flux into PEC MWA and gold MWA due to current Mode 1. The
MW As have the same geometry: wires radius r = 50nm, wires period a = 300nm. The vacuum

gap size d between the MW As and SiC plate is 100nm.
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Figure 3-4: (a) Schematic diagram (3D view and top view) of the SiC plate heat emitter (at
300K) and the metal wire arrays heat absorber (at 0K) separated by a vacuum gap. Metal wires
have infinite length, radius r = 50nm and period a = 300nm. (b) Spectral heat flux into metal
wire arrays from sinusoidal current modes in the SiC plate at a 100nm vacuum gap. (c), (d)
Electric and magnetic field profiles in metal wire arrays at the SPR frequency (1.78 x 10*rad/s)

of SiC, measured at the plane 2pm above the gap.

The spectral heat flux between a SiC emitter and the MWAs with a 100nm gap is plotted
in Figure 3-4(b). The first current mode (dipole-like mode) contributes = 40% of the total heat
flux, and the first two modes contribute ~80% . The monochromatic feature of heat transfer is
denoted by the peaks corresponding to the symmetric and antisymmetric SPR modes of the 1um
thick SiC plate, where near-field heat transfer clearly exceeds the Planck law. The broadband
response from the MWAs can be found by introducing an “ideal SPR emitter” that has a
frequency-independent permittivity equal to —1+bi. The real part, -1, indicates that the material
supports SPR at any frequency, and the imaginary part b is an arbitrary number associated with

the magnitude of thermal induced currents. In Figure 3-4(b), 4 is assumed to be 0.1. The spectral
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heat flux between the “ideal SPR emitter” and the MWAs is plotted in Figure 3-4(b). Heat

transfer enhancement is observed for all the frequencies of interest in the infrared regime.

The mechanism with which MWAs absorb 