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Abstract
In this dissertation, we focus on solving Nonlinear Least Squares problems us-

ing a supervised approach. In particular, we developed a Supervised Descent Method
(SDM), performed thorough theoretical analysis, and demonstrated its effectiveness
on optimizing analytic functions, and four other real-world applications: Inverse
Kinematics, Rigid Tracking, Face Alignment (frontal and multi-view), and 3D Ob-
ject Pose Estimation.

In Rigid Tracking, SDM was able to take advantage of more robust features, such
as, HoG and SIFT. Those non-differentiable image features were out of consideration
of previous work because they relied on gradient-based methods for optimization.
In Inverse Kinematics where we minimize a non-convex function, SDM achieved
significantly better convergence than gradient-based approaches. In Face Alignment,
SDM achieved state-of-the-arts results. Moreover, it was extremely computationally
efficient, which makes it applicable for many mobile applications. In addition, we
provided a unified view of several popular methods including SDM on sequential
prediction, and reformulated them as a sequence of function compositions. Finally,
we suggested some future research directions on SDM and sequential prediction.
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Notation

R real numbers
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xi the ith column of matrix X.
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In ∈ Rn×n identity matrix.
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0m×n ∈ Rm×n matrix of all zeros
‖x‖2 =

√
xTx the Euclidean distance.

‖X‖F =
√

tr(XTX) the Frobenious norm of a matrix
det(X) or |X| determinant of matrix X
X ◦Y Hadamard products of matrices
X⊗Y Kronecker products of matrices
X�Y element-wise division of two matrices
X � 0 semi-positive definite matrix
X � 0 positive definite matrix
X � 0 semi-negative definite matrix
X ≺ 0 negative definite matrix
trace(X) trace of a matrix
X(i, j) submatrix of X, obtained by deleting row i and column j from X

xv



xvi



Chapter 1

Introduction

“The intuitive mind is a sacred gift and the
rational mind is a faithful servant. We
have created a society that honors the
servant and has forgotten the gift.”

Albert Einstein
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1.1 Motivation

Mathematical optimization plays a fundamental role in solving many problems in computer vi-
sion. This is evidenced by the significant number of papers using optimization techniques pub-
lished in any major computer vision conferences. Many important problems in computer vi-
sion, such as structure from motion, image alignment, optical flow, or camera calibration can
be posed as nonlinear optimization problems. There are a large number of different approaches
for solving these continuous nonlinear optimization problems based on first and second order
methods, such as gradient descent [1] for dimensionality reduction, Gauss-Newton for image
alignment [12, 32, 59] or Levenberg-Marquardt (LM) [61] for structure from motion [19].

Despite many centuries of history, Newton’s method and its variants (e.g., Quasi-Newton
methods [11, 18, 20]) are regarded as powerfull optimization tools for finding local minima/maxima
of smooth functions when second derivatives are available. Newton’s method makes the assump-
tion that a smooth function f(x) can be well approximated by a quadratic function in a neighbor-
hood of the minimum. If the Hessian is positive definite, the minimum can be found by solving
a system of linear equations. Given an initial estimate x0 ∈ Rp×1, Newton’s method creates a
sequence of updates as

xk+1 = xk −H−1(xk)J(xk), (1.1)

where H(xk) ∈ Rp×p and J(xk) ∈ Rp×1 are the Hessian matrix and Jacobian matrix evaluated
at xk. In the case of Quasi-Newton methods, H−1 can be approximated by analyzing successive
gradient vectors. Newton-type methods have two main advantages over competitors. First, they
are guaranteed to converge to a local minima provided that, in the neighborhood of the mini-
mum, the Hessian is invertible and the minimizing function is Lipschitz continuous. Second, the
convergence rate is quadratic.

However, when applying Newton’s method to computer vision problems, three main prob-
lems arise: (1) The Hessian is positive definite at the local minimum, but it may not be positive
definite elsewhere; therefore, the Newton steps may not be in the descent direction. LM ad-
dressed this issue by adding a damping factor to the Hessian matrix. This increases the robustness
of the algorithm but reduces the convergence rate. (2) Newton’s method requires the function to
be twice differentiable. This is a strong requirement in many computer vision applications. For
instance, the popular SIFT [55] or HoG [31] features are non-differentiable image operators. In
these cases, we can estimate the gradient or the Hessian numerically, but this is typically compu-
tationally expensive. (3) The dimension of the Hessian matrix can be large; inverting the Hessian
requires O(p3) operations and O(p2) in space, where p is the dimension of the parameter to es-
timate. Although explicit inversion of the Hessian is not needed using Quasi-Newton methods,
it can still be computationally expensive to use these methods in computer vision problems. In
order to address previous limitations, we proposed the idea of learning descent directions (and
rescaling factors) in a supervised manner with a new method called Supervised Descent Method
(SDM).

Consider Fig. 1.1 where the goal is to minimize a nonlinear function f(x), where x is the
vector of parameters to optimize. The z-axis has been reversed for visualization purposes. The
left image shows the optimization trajectory following the Newton’s method. The traditional
Newton update has to compute the Hessian and the Jacobian at each step. The right image il-

2
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Figure 1.1: a) Newton’s method to minimize f(x). The z-axis is reversed for visualization purposes. b)
SDM learns a sequence of generic descent maps {Rk} from the optimal optimization trajectories (dotted
lines). Each parameter update ∆xi is the product of Rk and a sample-specific component (y − h(xik)).

lustrates the main idea behind SDM. SDM proposes an offline learning step where it iteratively
learns a series of generic Descent Map (DM) from the optimal optimization trajectories (indi-
cated by the dotted lines). In testing, the same DM is used for driving an unseen sample to x∗.
As we will argue in this thesis, SDM provides faster and better optimization strategies than tra-
ditional gradient-based methods in several computer vision problems, and could have broader
applicability to many other problems beyond computer vision.

1.2 Contributions
1. Theoretical analysis of (G)SDM: First, we introduced a novel concept, generic DM for

minimizing NLS functions and verify this concept using a few analytic functions. Second,
we derived the conditions under which SDM will converge. Third, we developed a relaxed
and a generalized versions of SDM, which make it applicable for more applications. For
functions with multiple local minima, we extended the concept of DM and proved that
there existed a finite partition of the function domain such that a separate DM existed
within each subset. Fourth, (G)SDM can also be used to provide a better initialization
for gradient-based methods. We name this idea as a Hybrid Descent Method. Finally,
we established the connection between SDM and Imitation Learning (IL). More explicitly,
DM can be interpreted as an optimization policy in the context of IL.

2. Applications of (G)SDM: We presented detailed algorithms to address three problems in
computer vision and another one in Robotics: rigid tracking, face alignment (frontal and
multi-view), 3D pose estimation, and Inverse Kinematics. We compared SDM with several
gradient-based methods on minimizing non-convex analytic functions, and showed better
convergence results than all the competing methods. In tracking, SDM was able to take
advantage of more robust features, such as, HoG and SIFT. Those non-differentiable image
features were out of consideration of previous work [6, 58] because they relied on gradient-
based methods for optimization. SDM achieved state-of-the-arts results in facial feature
detection and tracking. Moreover, it was extremely computationally efficient, which makes
it applicable for many mobile applications.

3



3. A unified framework for sequential prediction algorithms: We reviewed seven repre-
sentative methods on sequential prediction. Also, we discussed the differences between
each of them and SDM, and provided a unified view of all methods including SDM as
a sequence of function compositions. Additionally, we argued why sequential prediction
was preferable to performing inference using a single complex model in solving real-world
problems. Finally, we suggested some future research directions on sequential predictions.

4. Dataset and software: We built a challenging public dataset and also proposed an eval-
uation protocol for benchmarking facial feature tracking methods. Both evaluation code
and dataset can be downloaded from the link below1. To the best of our knowledge, this is
the first public dataset for evaluating facial feature tracking on profile-to-profile faces. We
integrated the SDM-based tracker into IntraFace2, a free software package for facial image
analysis research. The software has accumulated 4800 downloads in eight months that was
active, and it has proven useful for many researchers working on facial image analysis.

1.3 Organization
In this chapter, we discuss the motivation behind my thesis and list our contributions to the
research community. In Chapter 2, we present theoretical analysis and algorithms of SDM and
a few of its extensions. We establish the connection between SDM and previous sequential
prediction methods, and also provide a unified view of them. In Chapter 3, we review previous
work of three classical problems in computer vision and present SDM’s solutions to all of them.
In Chapter 4, we present the experimental results on the above applications using (G)SDM and its
comparison with state-of-the-arts methods, followed by a discussion of failure cases. In addition,
we compare (G)SDM with several gradient-based methods on minimizing analytic functions and
solving the problem of Inverse Kinematics. In Chapter 5, we summarize this thesis and discuss
possible extensions and future research directions of SDM.

1www.humansensing.cs.cmu.edu/xxiong
2www.humansensing.cs.cmu.edu/intraface
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Chapter 2

Theory and Methods

“There is a way to do it better - find it.”

Thomas Edison

5



2.1 Theory of SDM
This section provides the theoretical basis behind SDM. Section 2.1.1 reviews mathematical
definitions. Section 2.1.2 illustrates the ideas behind SDM and DM using one-dimensional func-
tions, and Section 2.1.3 extends them to high-dimensional functions. Section 2.1.4 and Section
2.1.5 derive practical algorithms for different situations. Section 2.1.6 extends SDM to handle
functions with multiple local minima.

2.1.1 Background
Before deriving SDM, we review two concepts, Lipschitz continuous [4] and monotone opera-
tor [73] and their respective properties.
Definition 1. A function f : Rn → Rm is called Lipschitz continuous if there exists a real
constant K ≥ 0 such that

‖f(x1)− f(x2)‖2 ≤ K‖x1 − x1‖2,∀x1,x2,

where the smallest K is referred as the Lipschitz constant. If K = 1, the function f is said to be
nonexpansive. If K < 1, the function is called a contraction.

Here we limit the metric space to be L2 to simplify the upcoming theoretical analysis, but
other distance metrics can be used. The following are some well-known properties:

1. Composition of nonexpansive operators is nonexpansive;

2. Composition of nonexpansive operator and contraction is contraction.
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Figure 2.1: a) Function h(x) is Lipschitz continuous in the domain of [−2, 2]; b) Function h(x) is not
Lipschitz continuous over [−2, 2], but it is at the point x; c) Function h(x) is neither continuous in the
domain [−2, 2] nor at the point x.

Definition 2. A function f : Rn → Rm is called to have a Lipschitz constant K at a point x if
there exists a real constant K ≥ 0 such that

‖f(x)− f(y)‖2 ≤ K‖x− y‖2,∀y.

Notice that the previous definition is defined over any two points within a certain domain while
this one is defined for one fixed point. Fig. 2.1 provides a better illustration of understanding
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the differences between the two definitions. A function being Lipschitz continuous in domain
X implies that it is continuous at any point x ∈ X . In other words, definition 1 is the sufficient
condition of definition 2.
Definition 3. A function f : Rn → Rn is called a monotone operator if

〈x1 − x2, f(x1)− f(x2)〉 ≥ 0, ∀x1,x2,

where 〈·〉 represents the inner product operator.
Here are some basic properties [15] about monotone operators: if F and G are monotone,

1. F +G is monotone;

2. if α ≥ 0, then αF is monotone;

3. F−1 is monotone;

4. for T ∈ Rn×m, T>F (Tz) is monotone (on Rm).
Some well-known monotone operators [15] are:

1. If f is convex closed proper (CCP) then F (x) = ∂f(x) is maximal monotone.

2. KKT operator is monotone.
Definition 4. A function f : Rn → Rn is called a monotone operator at a point x if

〈x− y, f(x)− f(y)〉 ≥ 0,∀y.

Fig. 2.2 illustrates the differences between the above two definitions. A function being a
monotone operator in domain X implies that it is a monotone operator at any point x ∈ X . In
other words, definition 3 is the sufficient condition of definition 4.
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Figure 2.2: a) Function h(x) is monotonically increasing in the domain of [−2, 2]; b) Function h(x) is not
monotonic in the domain of [−1, 5], but it is a monotone operator at point x; c) Function h(x) is neither
monotonic within the domain [−1, 5] nor a monotone operator at point x.

2.1.2 One-dimensional Case
This section derives the theory for SDM in 1D functions. Given a 1D NLS problem,

min
x
f(x) = min

x
(h(x)− y)2, (2.1)
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where h(x) is a nonlinear function and y is a known scalar. Applying the chain rule to Eq. 2.1,
the gradient descent update yields

xk = xk−1 − αh′(xk−1)(h(xk−1)− y). (2.2)

Optimizing Eq. 2.1 using gradient-based methods follows Eq. 2.2, but have different ways to
compute the step size α. For example, Newton’s method sets α = 1

f ′′(xk−1)
. Computing the

step size and gradient direction in high-dimensional spaces is computationally expensive and
can be numerically unstable, especially in the case of non-differentiable functions, where finite
differences are required to compute estimates of the Hessian and Jacobian. The main idea be-
hind SDM is to avoid explicit computation of the Hessian and Jacobian and learn the “descent
directions” (αh′(xk−1)) from training data. During training, SDM samples many different initial
configurations in the parameter space {xi0}i and learns a constant r ∼ αh′(xk−1), which drives
all samples towards the optimal solution x∗. We define r more formally below.
Definition 5. A scalar r is called a generic DM if there exists a scalar 0 < c < 1 such that
∀x ∈ U(x∗), |x∗ − xk| ≤ c|x∗ − xk−1|. xk is updated using the following equation:

xk = xk−1 − r(h(xk−1)− h(x∗)). (2.3)

The existence of a generic DM is guaranteed when both of the following conditions hold:
1. h(x) is strictly monotonic at x∗.

2. h(x) has Lipschitz constant K at x∗.
A detailed proof is presented in Appendix (Theorem 1). Interestingly, the above two conditions
are closely related to the essence of a generic DM. The update rule (Eq. 2.3) can be split into two
terms: (1) r ∼ αh′(xk−1) (generic DM) that is sample independent, and (2) (h(xk−1) − y) that
is sample dependent. r contains only part of the descent direction and needs to be multiplied by
h(xk−1)−y to produce a descent direction. Condition 1 ensures that h′(x) does not change signs
around x∗, while condition 2 constrains the smoothness of the function, putting an upper bound
on step sizes.

h(x) K r x∗
h1 =

1
x −1

3 −6 3

h2 = −e−x2 − 1
2e

−(x−2)2 0.41 4.82 3

h3 =





x x > 2
0 2 ≥ x > 0
x− 1 x ≤ 0

3 0.67 3

Figure 2.3: Experimental setup

In Fig. 2.4, we illustrate how to minimize three different functions using a generic DM.
Fig. 2.3 describes our experimental setup: our choices for three different functions {h(x)}, the
optimal values {x∗}, Lipschitz constants {K}, and their corresponding generic DMs {r}. Ac-
cording to Theorem 1, the DM r is set to be sign(h′)( 2

K
− ε), where ε is a small positive number.

The Lipschitz constant K is computed numerically in a neighborhood of x∗. Figs. 2.4c plot the
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Figure 2.4: a) Functions {hi}; b) Objective functions {f} and x∗ is the solution; c) Traces of optimizing
parameter throughout iterations of SDM. y-axis shows the values of x in each iteration and x-axis indicates
number of iterations.

traces of the optimizing parameters for each function where xk is updated following Eq. 2.3.
Note that SDM always converges to the optimal value x∗, regardless of its initial value x0. The
second row in Fig. 2.4 shows that SDM finds the minimum in a function with local minima.
Given a x∗, for SDM to converge function h(x) is required to be monotonic at x∗, which is a
much weaker condition than being monotonic in the whole domain. The third row in Fig. 2.4
shows that SDM can be even used for optimizing non-smooth/non-continuous functions. This is
possible because the convergence condition only requires h(x) to be Lipschitz continuous at x∗,
not necessarily over the whole domain.

2.1.3 Multi-dimensional Case

This section extends the concept of generic DM to multi-dimensional functions, where h : Rn →
Rm. For multi-dimensional NLS functions, the gradient descent update in Eq. 2.2 becomes

xk = xk−1 − αAJ>h (xk−1)(h(xk−1)− y) (2.4)
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where Jh(x) ∈ Rm×n is the Jacobian matrix, An×n is the identity (In) in first order gradient
methods, and the inverse Hessian (or an approximation) for second-order methods, α is the step
size. A generic DM R exists if there exists a scalar 0 < c < 1 such that

‖x∗ − xk‖2 ≤ c‖x∗ − xk−1‖2.∀x ∈ U(x∗)

The update rule of Eq. 2.3 becomes

xk = xk−1 −R(h(xk−1)− h(x∗)). (2.5)

In Appendix(Theorem 3), we prove that the existence of a generic DM if both of the following
conditions hold:

1. Rh(x) is a monotone operator at x∗.

2. h(x) has Lipschitz constant K at x∗.
We have stated the conditions that ensure the existence of a generic DM. However, three issues
arise when applying the above idea to real-world applications:

1. The above two conditions may not hold;

2. Convergence rate may be slow since the most conservative step is taken at every iteration
to ensure that all samples are progressing towards x∗;

3. Samples may form very different distributions throughout each iteration, i.e., initially, sam-
ples are coming from a uniform distribution, but it is unlikely to stay uniform after one
update. See Fig. 2.4c for examples. Samples become more and more concentrated as
iteration increases. DM should be re-computed in each iteration.

2.1.4 Relaxed SDM
In this section, we introduce a relaxed version of the generic DM and derive a practical algorithm.
Previously, a single matrix R was used for all samples. In this section, we extend SDM to learn
a sequence of {Rk} that moves the expected value of xk towards the optimal solution x∗. The
relaxed SDM is a sequential algorithm that learns such DMs from training data.

Let us denote X to be a random variable representing the state of x. In the first iteration
(k = 0), we assume that X0 is coming from a known distribution X0 ∼ P0 and use lower case
p0 to represent its probability density function. The first DM R0 is computed by minimizing the
expected loss between the true state and the predicted states, given by

E‖x∗ −X1‖2
2 = E‖x∗ −X0 + R0(h(X0)− h(x∗))‖2

2

=

∫

x0

‖x∗ − x0 + R0(h(xi0)− h(x∗))‖2
2p0(x0)dx0

≈
∑

i

‖x∗ − xi0 + R0(h(xi0)− h(x∗))‖2
2. (2.6)

Here we have used Monte Carlo sampling to approximate the integral, and xi0 is drawn from the
distribution P0. x∗,h(x∗) are known in training and minimizing Eq. 2.6 is simply a linear least
squares problem, which can be solved in closed-form.
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It is unlikely that the first generic DM can achieve the desired minimum in one step for all
initial configurations. As in Newton’s method, after an update, we recompute a new generic map
(i.e., a new Jacobian and Hessian in Newton’s method). In iteration k, with Rk−1 estimated, each
sample xik−1 is updated to its new location xik as follows:

xik = xik−1 −Rk−1(h(xik−1)− h(x∗)). (2.7)

This is equivalent to drawing samples from the conditional distribution P (Xk|Xk−1 = xik−1).
We can use the samples to approximate the expected loss as follows:

E‖x∗ −Xk+1‖2
2 = E‖x∗ −Xk + Rk(h(Xk)− h(x∗))‖2

2

=

∫

xk

‖x∗ − xk + Rk(h(xk)− h(x∗))‖2
2p(xk|xk−1)dxk

≈
∑

i

‖x∗ − xik + Rk(h(xik)− h(x∗))‖2
2. (2.8)

Minimizing Eq. 2.8 yields the kth DM. During learning, SDM alternates between minimizing Eq.
2.8 and updating Eq. 2.7 until convergence. In testing, xk is updated recursively using Eq. 2.7
with learned DMs.

2.1.5 Generalized SDM

Thus far, we have assumed that y = h(x∗) is the same in training as in testing (e.g., template
tracking). This section presents generalized SDM, which addresses the case where y differs in
training and testing. In this case, the generic DM R is not defined for one particular x∗ but
defined over a domain X . We say that R is a generic DM if there exists a scalar 0 < c < 1 such
that

‖x∗ − xk‖2 ≤ c‖x∗ − xk−1‖2.∀x∗,x0 ∈ X
In Appendix (Theorem 4), we prove that the existence of a generic DM if both of the following
conditions hold:

1. Rh(x) is a monotone operator over domain X .

2. h(x) has Lipschitz constant K over domain X .
These are stronger conditions than the ones stated in Section 2.1.3. Here is an interesting ob-
servation: for DM defined over a particular point x∗, the two sufficient conditions are defined
over the same point (see Section 2.1.3). When DM is defined over domain X , two sufficient
conditions are defined over the same domain as well. Similar to SDM, a practical algorithm is
described below based on the relaxation of the above concept.

The generalized SDM during training starts at the same initial point x0 and samples different
{xi∗} around it. At the same time, for each sample we compute yi = h(xi∗). The training
procedure remains the same as stated in the previous section, except we replace h(x∗) in Eq. 2.7
with yi,

xik = xik−1 −Rk−1(h(xik−1)− yi)), (2.9)
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and we replace x∗,h(x∗) in Eq. 2.8 with xi∗,y
i,

∑

i

‖xi∗ − xik + Rk(h(xik)− yi))‖2
2. (2.10)

In testing, we start SDM with the same initial value x0 that we used in training and recursively
update parameters x using Eq. 2.9.

2.1.6 Global SDM
In this section, we extend SDM to deal with multiple local minima. For a function f with a unique
minimum, the gradients of h often share similar directions. Therefore, a weighted average can
be learned. When dealing with a function f with several local minima, the gradients of h are
likely to have conflicting directions so averaging them is not adequate and it may cause the SDM
training to stall.

We will bypass this problem by learning not one but a set of DMs. In the Appendix A
(Theorem 5), we prove that it is possible to find a partition of domain x, S = {St}T1 , such that
there exists a generic DM Rt within each subset St. The subsets of this partition are defined as
Domains of Homogeneous Descent (DHD). We will show an example of how we find DHD for
a function h : R2 → R2. In this example, a set of four subsets is created. Let g = (x∗ − x) ◦
(y∗ − h(x)) where x is current parameter. Each x falls in one of the four partitions based on the
following criteria:

x ∈ S1 if g1 ≤ 0 ∧ g2 ≤ 0,

x ∈ S2 if g1 ≤ 0 ∧ g2 > 0,

x ∈ S3 if g1 > 0 ∧ g2 ≤ 0,

x ∈ S4 if g1 > 0 ∧ g2 > 0.

In Fig. 2.5 we plot four NLS functions along with their DHD found by following the strategy
above. Different subsets within DHD are colored in different grayscales. Interestingly, local
minima are located at the intersections of different domains. Note that DHD need to be re-
computed in every iteration since they depend on the current estimates of x and h(x).

f(x) = h(x)− y 2 f(x) = h(x)− y 2

f(x) = h(x)− y 2
f(x) = h(x)− y 2

(d)(c)(a) (b)

Figure 2.5: Illustration of DHD on four NLS functions where h(x) : R2 → R2. Different domains are
colored in different grayscales.

DHD is a pure conceptual idea. It exists but cannot be computed during testing time since
we do not know x∗. Therefore, we developed two approximation strategies. The first one is to
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approximate (x∗ − x) by (xk − xk−1) where xk−1 and xk are the consecutive evaluations of x.
The details of how we apply this strategy to solve analytic functions can be found in Section 4.1.
In the second strategy, we focus on tracking application where we use the previous estimate as
a rough estimate for x∗. In Section 3.3.2. we derive a practical algorithm with an application to
track faces from profile to profile.
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2.2 Connection with Previous Work
In this section, we review a handful of representative methods on sequential prediction. Also, we
will discuss the differences between each of them and SDM, and provide a unified view of all
methods including SDM as a sequence of functions compositions.

2.2.1 SDM Revisited
Let us revisit the update formula 2.7 of SDM and redefine it using a function f , parametrized by
W = {R,y∗}:

fW(x) = f(x; R,y∗) = x + R(y∗ − h(x)). (2.11)

Assuming SDM converges to x∗ in k iterations, below we reformulate SDM’s inference as a
sequence of function compositions:

x1 = x0 + R0(y∗ − h(x0)) = fW0(x0)
x2 = x1 + R1(y∗ − h(x1)) = fW1(x1)

= fW1 ◦ fW0(x0)
x3 = x2 + R2(y∗ − h(x2)) = fW2(x2)

= fW2 ◦ fW1 ◦ fW0(x0)
...

...
...

xk = xk−1 + Rk−1(y∗ − h(xk−1)) = fWk−1
(xk−1)

= fWk−1
◦ · · · ◦ fW1 ◦ fW0(x0)

Above, we simply replace xi with the previous iteration’s result. In SDM, the function parameters
Ws are learned greedily to minimize between the predicted ∆x and the true one.

2.2.2 Gradient Boosting
Gradient Boosting (GB), first invented by J. H. Friedman [38], is a regression method to approx-
imate continuous functions. Like other boosting methods, GB combines weak learners into a
single strong learner, in an iterative fashion. Given a training set {X, Y } = {(xi, yi)}, GB itera-
tively fit a weak regressor to the residual by minimizing a loss function L. Then, the multiplier
γ is obtained by solving a one-dimensional optimization problem:

Y ← Y − γh(X) (2.12)
h← arg min

h
L(Y, h(X)) (2.13)

γ ← arg min
γ

L(Y, γh(X)). (2.14)

The above three steps repeats until the residual is small or the maximum iteration is reached. The
first weak learner h0 is often taken to be a constant (e.g., the average of all training samples). The
final learner is the sum of all weak regressors,

f(x) =
k∑

i=1

γihi(x) + const. (2.15)
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Note that all his could be the same parametric regressor but with different parameters. The
parameters is implicitly hidden in this notation.

Function additions can be represented as function compositions. Let us define a new set of
functions:

fi(y) =

{
y + γihi(x) if i > 1

const if i = 1

Note that x is not a variable but a known input. Below, we illustrate how Eq. 2.15 can be rewritten
as a sequence of compositions of fis:

h0(x) = const = f0(x)
h0(x) + γ1h1(x) = f0(x) + γ1h1(x) = f1(f0(x))

h0(x) + γ1h1(x) + γ2h2(x) = f1(f0(x)) + γ2h2(x) = f2(f1(f0(x)))
...

...
...

h0(x) +
∑k

i=1 γihi(x) = fk−1 · · · (f1(f0(x)) + γkhk(x) = fk · · · (f1(f0(x))

Next, we will reinterpret SDM as a Boosting method and discuss the differences between
SDM and GB. Given an input y∗ = h(x∗), let us run SDM:

x1 ← x0 + r0(y∗ − h(x0))
x2 ← x1 + r1(y∗ − h(x1))
x3 ← x2 + r2(y∗ − h(x2))
...

...
...

...
...

xk ← xk−1 + rk−1(y∗ − h(xk−1)).

We can recursively substitute xi with xi−1 until x0 is reached, which gives us

xk = x0 +
k−1∑

i=0

ri(y∗ − h(xi)). (2.16)

We know xk is the SDM’s approximation of x∗. Assuming that h is invertible SDM can be
interpreted as an algorithm to approximate inverse function h−1:

h−1(y∗) = x∗ ≈ x0 +
k−1∑

i=0

ri(y∗ − h(xi)). (2.17)

Recall that x0 is set to be a constant in SDM. This makes Eq. 2.17 very similar to Eq. 2.15. Both
algorithms approximate a function by a linear combination of base learners. However, there
exists some crucial differences between the two methods:

1. Both methods are trained in a sequential manner. In testing, GB does not have to operate
in an iterative manner. For example, one can compute all hi(x) in parallel and combine
them in any order. SDM has to wait for xk−1 before being able to compute xk.

2. In SDM, the inverse function is approximated by a linear combination of the same function
h(xi) evaluated at different points {xi}. In Gradient Boosting, the function is approximated
by a weighted sum of different functions {hi(x)} evaluated at the same point x.

3. The choice of the weak learner is arbitrary in GB while in SDM the inverse function is
used as the base learner and it does not have to be weak.
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2.2.3 Cascaded Pose Regression
Cascaded Pose Regression (CPR) [34] is designed for computing 2D object pose in images. The
pose of an object is often defined by a set of landmarks that describes the shape of the object.
CPR progressively refines an initial guess of object’s pose where each refinement is carried out
through a different regressor. CPR extends GB by incorporating the “pose-indexed features”. A
pose-indexed feature is simply a function that takes the input image as well as the pose of the
object and outputs a vector of real values, and we denote it as h. Given an image I and an initial
guess of the object pose x, CPR learns a sequence of regressors that move x towards the human
labels x∗ by repeating the following steps:

φ← h(I,x) (2.18)
g← arg min

g
L(x∗ − x,g(φ)) (2.19)

x← x + g(φ). (2.20)

The regressor g maps the pose-indexed features φ to the pose update, and it is learned by min-
imizing a loss function L between the true pose update and the predicted one. As in SDM/GB,
each regressor in CPR is learned greedily, e.g., without considering the potential effects of the
future steps. In testing, CPR updates object’s pose by applying a sequence of regressors in the
same order they are learned.

Next, let us define a new set of functions:

fi(x) = x + gi(h(I,x)). (2.21)

We will rewrite CPR as a sequence of compositions of functions fis:

φ0 = h(I,x0)

x1 = x0 + g0(φ0) = x0 + g0(h(I,x0)) = f0(x0)

φ1 = h(I,x1)

x2 = x1 + g1(φ1) = x1 + g1(h(I,x1)) = f1(x1) = f1 ◦ f0(x0)

...
φk−1 = h(I,xk−1)

xk = xk−1 + gk−1(φk−1) = xk−1 + gk−1(h(I,xk−1)) = fk−1(xk−1) = fk−1 · · · ◦ f1 ◦ f0(x0)

Despite their different origins (CPR is an extension of GB while SDM is inspired by Newton’s
method) and different choices of regressors (CPR adopts random fern regressor [66] while SDM
uses linear regression), the underlying algorithms of SDM and CPR are the same.

2.2.4 Data Driven Descent
Data Driven Descent (DDD) [88, 89], developed by Tian and Narasimhan, is a method for es-
timating nonrigid deformation of a novel scene according to a given template image. In their
problems, they assume that a deformation model h(I,x) is known, controlled by the deforma-
tion parameters x. Given a template image It, the method starts by generating a set of training
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images {Itr} from the template image deformed under a set of random perturbations of x. The
training image I itr and its parameter xitr are related by the deformation model, I itr = h(It,x

i
tr).

Then, DDD gradually deforms the test image I0 to match the template according to the nearest
neighbor in the training set. Explicitly, DDD repeats the following two steps until the difference
between the deformed test image and the template is small:

x← x + knn{Itr,xtr}(I0)

I0 ← h(I0,x).

Function knn{Itr,xtr}(I) implements the KNN regressor that takes an input image I and returns
the deformation parameter whose corresponding image is the closest neighbor to I . The initial
parameters x0 is set to be 0. In addition to DDD, they also proved the conditions under which
the method will converge and the sample complexity to guarantee an ε error.

We will define a new function to represent the parameter update in DDD:

f(x; I0, {Itr,xtr}) = x + knn{Itr,xtr}(h(I0,x)). (2.22)

Function f is parametrized by the test image I0 and training set {(Itr,xtr)}. In the following
derivation, we will omit this parametrization since they remain unchanged given a particular test
image and a template during the execution of DDD. Below, we derive how DDD can be rewritten
as a sequence of compositions of function f :

x1 = x0 + knn{Itr,xtr}(I0) = f(x0)

I1 = h(I0,x1)

x2 = x1 + knn{Itr,xtr}(I1)

= x1 + knn{Itr,xtr}(h(I0,x1)) = f(x1) = f ◦ f(x0)

I2 = h(I1,x2)

...
xk = xk−1 + knn{Itr,xtr}(Ik−1)

= xk−1 + knn{Itr,xtr}(h(I0,xk−1)) = f(xk−1) = f · · · ◦ f ◦ f(x0)

CPR and SDM can be seen as the parametric counterparts of DDD. Despite their different choices
of regressors, the essence of those algorithms is the same.

2.2.5 Stacking
As one of the ensemble learning schemes, Stacked Generalization (Stacking) [95] was proposed
to combine different learning models so the final prediction would outperform each individual
learner. First, several base learners are trained using the available data. Then, a secondary
learner is trained to make a final prediction using all the predictions of the base learners as
additional inputs. In this section, we will focus on some extended work on Stacking for tackling
structured prediction problems where the data is highly structured and it is no longer i.i.d. In the
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statistical learning community, it is often known as MAP inference whose goal is to find most
likely assignment of each individual in the given data.

Here is a brief description on how to use Stacking to solve MAP inference. Given a labeled
training set {X, Y } with X being the data and Y being its corresponding label set, we first train
a classifier h1 over the entire training set. Using h1, we can classify X to generate predictions
Ŷ = h1(X) from which to derive contextual cues, and then train a new classifier h2. Specifically,
we use Ŷ to create a new feature set with contextual cuesX ′ = φ(X, Ŷ ) and train a new classifier
h2 based on the new data set {X ′, Y }. The process can be repeated for multiple rounds until
no improvement is observed. As iterations goes on, one expects to see improvement over h1

if there exists consistent relation among data points. If such assumption fails, it would make
no difference than predicting each data point individually using h1. The relation among data
points is captured through a contextual feature function φ. For example, one contextual feature
function could be simply concatenating the original feature X with previous prediction Ŷ of the
“neighboring points”. Different applications may have their own definitions of neighbors. For
instance, in webpages the neighbors are defined by links, the neighbors in academic papers are
defined by citations, whether two image pixels are neighbors may depend on how close they
are in RGB space, and in documents whether two words are neighbors depend on how far they
appear in a sentence.

Below, we will show how the Stacking inference procedures can be rewritten as a sequence
of function compositions. We define a new set of functions:

{
f1(X) = h1(X)

fi(Y ) = hi(φ(X, Y )) if i > 1.

Supposing that the inference runs k iterations we have:

Ŷ1 = h1(X) = f1(X)

X ′ = φ(X, Ŷ1)

Ŷ2 = h2(X ′) = h2(φ(X ′, Ŷ1)) = f2(Ŷ1) = f2 ◦ f1(X)

X ′ = φ(X, Ŷ2)

Ŷ3 = h3(X ′) = h3(φ(X, Ŷ2)) = f3(Ŷ2) = f3 ◦ f2 ◦ f1(X)

...

Ŷk = hk(X
′) = hk(φ(X, Ŷk−1)) = fk(Ŷk−1) = fk ◦ · · · ◦ f2 ◦ f1(X).

Above, we showed that the final output can be obtained by a sequence of function compositions
by simply recursively replacing Ŷ with the results from previous iteration. Ŷ tends to be over
optimistic if h is trained and test on the same data. To avoid overfitting, Ŷ is obtained from
temporary classifiers that are trained on subsets of available data set and test on the rest.

In spite of its simplicity, Stacking often outperforms Probabilistic Graphical Model (PGM)
based approaches on structural prediction problems, such as, point cloud classification [99], im-
age segmentation [64], email signature recognition [24], web-page classification and name en-
tity extraction [50]. Due to its intractability, when applying PGM one may limit the interactions
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among the nodes, e.g., Ising model [13], pairwise MRF [48]. This limits one’s ability to leverage
complex contextual relation that exists in real applications.

2.2.6 Imitation Learning

Imitation Learning (IL) or Learning from Demonstration (LfD) (also known as Programming
by Demonstration (PbD) and Apprenticeship Learning) can be seen as a subset of Supervised
Learning. In Supervised Learning, the agent is presented with labeled training data and learns an
approximation to the function that produced the data. Within IL, this training dataset is composed
of example executions of the task by a demonstration teacher. The IL problem can be formally
constructed as follows. The world consists of states S and actions A. In real-world applications,
the state is often not fully observable and the learner instead has access to an observed state
Z. We are given a demonstration dj ∈ D represented as pairs of observations and actions:
dj = {(zj, aj)}, zj ∈ Z, aj ∈ A. The goal is to learn a policy π : Z → A that selects actions
based on observations made in the current state. World can be seen as the environment where the
prediction is made. An illustration of policy derivation and execution can be found in Fig. 2.6.
A comprehensive survey of LfD can be found in [3].

World

LfD Policy Derivation

π

Teacher
Demostration

Policy
Derivation

Policy Execution

D π

ak

zk

Figure 2.6: Policy derivation and execution. This picture is copied from [3]

Within this framework, we have the state variable x, a state transition function u : S × A→
S ′, and an observation function o : S → Z. We omit World since we assume that it does not
change throughout the execution. Let us define a new function f to be:

f(x) = u(π(o(x)),x). (2.23)

Assume that we reach the final state after k iterations of policy execution, which can be rewritten
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as a sequence of function compositions:

a0 = π(o(x0))

x1 = u(a0,x0) = u(π(o(x0)),x0) = f(x0)

a1 = π(o(x1))

x2 = u(a1,x1) = u(π(o(x1)),x1) = f(x1) = f ◦ f(x0)

...
ak−1 = π(o(xk−1))

xk = u(ak−1,xk−1) = u(π(o(xk−1)),xk−1) = f(xk−1) = f ◦ · · · ◦ f ◦ f(x0)

In the above example, we stick with one policy and one observation function. In practice, differ-
ent observation functions and different policies may be used at different stages of the execution.

Finally, we will show how SDM can be explained in the IL framework. In the context of
minimizing a NLS function, x∗ is regarded as the desired state and the objective is to find the
action ∆x that moves from the initial state x0 to the desired state x∗. The nonlinear function h is
the observation function that partially represents the state. The demonstration data contains a set
of observation and action pairs. The observed states are represented by a set Z = {h(xi) − yi}
of errors (misalignments) between the known vectors {yi} and the function evaluations at the
current parameter estimates {h(xi)}. The action set will correspond to the parameter updates
A = {∆xi}, and the policy maps misalignments to parameter updates. In SDM, the policy
is derived as a sequence of linear mapping functions between states and actions. Within this
context, the teacher is always available for giving feedback. More specifically, since the ground
truth solutions {xi∗} are available throughout training, the teacher can always give the perfect
action based on the state observation. SDM takes advantage of this fact by learning not one but
a sequence of policies so the latter ones correct mistakes made from previous iterations after the
teacher’s feedbacks.

2.2.7 Neural Network
Neural Network is one of the learning models inspired by the brain. Despite its recent tremen-
dous success in Computer Vision [51], the underlying model is very simple. Neural Network
approximates a nonlinear function through a sequence of compositions of an activation function,
e.g., the outputs of each layer are fed into next layer as the inputs (See Fig. 2.7 for an example).
Below, we list the inference steps according to the network depicted in Fig. 2.7:

a1 = f(W>
1 x) (2.24)

a2 = f(W>
2 a1) (2.25)

a3 = f(W>
3 a2) (2.26)

ŷ = f(W>
4 a3) (2.27)

This network contains four layers including one input layer, two hidden layers, and one output
layer. We use f to denote the activation function, Wk to represent the parameters in the kth layer,

20



Figure 2.7: A demonstration of a classical Neural Network architecture. This picture is copied from [65].

and ŷ to stand for the estimated outputs. The activation function has to be nonlinear because
the composition of linear functions is still linear. Some popular choices of f include: sigmoid
function, hyperbolic tangent, and more recently Rectified Linear Unit (ReLU) [51]. In the case
of sigmoid function, the ith element of f is,

fi(z) =
1

1 + exp(−zi)
where z = W>x. Combining Eqs. 2.24 to 2.27 and extending the network to k layers yield the
following equation for estimating ŷ:

ŷ = f(· · · (f(f(x,W0),W1),W2), · · · ,Wk−1) (2.28)
= fWk−1

◦ · · · ◦ fW1 ◦ fW0(x). (2.29)

We use fW to denote f parametrized by W. From Eq. 2.29, it is clear that Neural Network can
be represented as a sequence of compositions of functions.

Despite their identical inference formulation, there are two important differences between
SDM and Neural Network:

1. The parameters in SDM trained greedily layer by layer while Neural Network optimizes all
layers as a whole. Treating the parameters in each layer as a whole provides the network
more flexibility and raise more difficulty for training. Training a Neural Network greedily
would be difficult because optimal activation a∗ in each layer is unknown. In SDM, the
optimal parameters are available throughout the training process.

2. The task of the two are totally different. SDM learns a policy that drives the initial state
x0 toward x∗. Neural Network tries to approximate a nonlinear function that reproduces
input label y.

In Computer Vision, for large images Neural Network is often used with additional convolu-
tion layers and max pooling layers to reduce the dimensionality before feeding into the fully
connected layer. A slight modification to Eq. 2.29 can be made to incorporate this change:

ŷ = fk−1
Wk−1

◦ · · · ◦ f1
W1
◦ f0

W0
(x). (2.30)

Now, f i indicates a different function at each layer.
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2.2.8 Summary
In this section, we have reviewed seven representative work in sequential prediction, discussed
their similarities and differences, showed that all their inference procedures can be reformulated
as a sequence of function compositions. According to their tasks, they can be grouped into two
categories:

1. Given an initial configuration x0, the goal is to learn a policy that moves it to the optimal
state x∗.

2. Given a data set {X, Y }, the goal is to approximate a function that takes X as the input
and tries to reproduce Y .

The above two categories cover the majority of areas in Supervised Learning. SDM, CPR, DDD,
and IL belong to the first category and GB, Stacking, and Neural Network fall into the second
one. A comparison of all the seven methods can be found in Fig. 2.8.

Algorithm Task Training Strategy Base Function

SDM x0 → x∗ Greedy Parametric
GB X → Y Greedy Parametric
CPR x0 → x∗ Greedy Parametric
DDD x0 → x∗ N/A Non-parametric
Stacking X → Y Greedy Parametric
IL x0 → x∗ Various Both
Neural Network X → Y Optimal Parametric

Figure 2.8: A comparison of all seven sequential prediction methods.
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Chapter 3

Applications

“Well, it may be all right in practice, but it
will never work in theory.”

Warren Buffett

“Beware of bugs in the above code; I have
only proved it correct, not tried it.”

Donald Knuth
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3.1 Rigid Tracking
This section illustrates how to apply SDM to the problem of tracking rigid objects. In particular,
we show how we can extend the classical Lucas-Kanade (LK) method [58] to efficiently operate
in HoG [31] space. To the best of our knowledge, this is the first algorithm to perform alignment
in HoG space.

3.1.1 Previous Work (Lucas-Kanade)
The Lucas-Kanade (LK) tracker is one of the earliest and most popular computer vision trackers
due to its efficiency and simplicity. It formulates image alignment as a NLS problem. Alignment
is achieved by finding the motion parameter p that minimizes

min
p
||d(f(x,p))− t(x)||22, (3.1)

where t(x) is the template, x = [x1, y1, ...xl, yl]
> is a vector containing the coordinates of the

pixels to detect/track, and f(x,p) is a vector with entries [u1, v1, ..., ul, vl]
> representing a geo-

metric transformation. In this section, we limit the transformation to be affine. That is, (ui, vi)
relates to (xi, yi) by [

ui
vi

]
=

[
p1 p2

p4 p5

] [
xi
yi

]
+

[
p3

p6

]
.

The ith entry of d(f(x,p)) is the pixel intensity of the image d at (ui, vi). Minimizing Eq. 3.1 is
a NLS problem because the motion parameters are nonlinearly related to the pixel values.

Given a template (often the initial frame), the LK method uses Gauss-Newton to minimize
Eq. 3.1 by linearizing the motion parameters around an initial estimate p0:

min
∆p
||d(f(x,pk)) +

∂d

∂f

∂f

∂pk
∆p− t(x)||22, (3.2)

where ∂d
∂pk

is the Jacobian of the image over motion parameter. The Jacobian is decomposed into
∂d
∂f

∂f
∂pk

using the chain rule. ∂d
∂f

is the image gradient evaluated under the affine transformation
f(x,pk) and ∂f

∂pk
is the Jacobian of the geometric transformation evaluated at the current pk.

Differentiating Eq. 3.2 over ∆p and setting it to zero gives us the LK update,

∆p = H−1
k

(
∂d

∂f

∂f

∂pk

)> (
t(x)− d(f(x,pk))

)
,

where Hk = (∂d
∂f

∂f
∂pk

)>(∂d
∂f

∂f
∂pk

) is the Gauss-Newton approximation of the Hessian. The motion
parameter is then updated as pk+1 = pk + ∆p.

3.1.2 An SDM Solution
The LK method employs Gauss-Newton for minimization. For gradient-based methods to con-
verge, the objective function has to be convex. However, this is not the case in affine tracking
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Figure 3.1: a) an image of the world’s best mom; b) objective function.

(even when only translation is involved). As shown in Fig. 3.1, the objective function is not con-
vex. The template is the bounding box region and the objective mesh is created by computing the
average pixel difference between the template and the ones generated from shifting the bound-
ing box around it. Recall the SDM’s convergence properties, which do not require the objective
function to be convex. Another problem with LK is that it is not robust to illumination changes.
Robustness can be achieved by aligning images w.r.t. more robust image descriptors instead of
pixel intensities, i.e.,

min
p
||h(d(f(x,p)))− h(t(x))||22, (3.3)

where h is some image descriptor function (HoG, in our case). The LK (Gauss-Newton) update
for minimizing 3.3 can be derived as follows:

∆p = H−1
k

(
∂h

∂pk

)> (
h(t(x))− h(d(f(x,pk)))

)
.

However, the update can no longer be computed efficiently: HoG is a non-differentiable image
operator, and thus the Jacobian ( ∂h

∂pk
) has to be estimated numerically at each iteration.

In contrast, SDM minimizes Eq. 3.3 by replacing the computationally expensive term H−1
k ( ∂h

∂pk
)>

with a pre-trained DM R, and gives the following update:

∆p = Rk(h(t(x))− h(d(f(x,pk)))). (3.4)

Each update step in SDM is very efficient, mainly consisting of one affine image warping and one
HoG descriptor computation on the warped image. One may notice the inconsistency between
Eq. 3.4 and the SDM update we previously introduced in Eq. 2.7. In the following, we will show
the equivalence of the two.

The template can be seen as the HoG descriptors extracted from the image under an identity
transformation, t(x) = t(f(x,p∗)), where

p∗ =
[
1 0 0 1 0 0

]>
.
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Under the assumption that only affine deformation is involved, the image d on which we perform
tracking can be interpreted as the template image under an unknown affine transformation p̃:

d(x) = t(f(x, p̃)).

In Eq. 3.4, image d warped under the current parameter pk can be re-written as

d(f(x,pk)) = t(f(f(x, p̃),pk)). (3.5)

The composition of two affine transformations remains affine, so Eq. 3.5 becomes

d(f(x,pk)) = t(f(x, p̂)),

where p̂ an unknown affine parameter that differs from p̃. Therefore, we can re-write Eq. 3.4 as

∆p = R(h(t(f(x,p∗)))− h(t(f(x, p̂)))). (3.6)

Eq. 3.6 can be further simplified to follow the same form of Eq. 2.7:

∆p = R(g(p∗)− g(p̂)),

where g = h ◦ t ◦ f .
In our implementation, we use Eq. 3.4 as the update rule instead of Eq. 3.6 because pk is a

known parameter w.r.t image d and p̂ is unknown w.r.t the template image t. The descent maps
are learned in the neighborhood of p∗, but as tracking continues, the motion parameter may
deviate greatly from p∗. When tracking a new frame, before applying SDM the image is first
warped back using the motion parameter estimated in the previous frame so that the optimization
happens within a neighborhood of p∗. Therefore, after SDM finishes, we warp back the estimated
∆p using the same parameter.

The training of SDM involves sampling initial motion parameters and solving a sequence of
linear systems (detailed in section 2.1.4). We sample {pi0}i around p∗ and those samples are
used for approximating the expectation expressed in Eq. 2.8. The details of how we generate
initial samples are described in section 4.3.
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3.2 Face Alignment
In the previous section, we showed how SDM can be used for aligning regions of images that
undergo an affine motion. This section extends SDM to detect and track nonrigid objects. In par-
ticular, we will show how SDM achieves state-of-the-art performance in facial feature detection
and tracking.

1 1

(a) x∗ (b) x0

Figure 3.2: a) Manually labeled image with 66 landmarks. Blue outline indicates face detector. b) Mean
landmarks, x0, initialized using the face detector.

3.2.1 Previous Work
This section reviews existing work on face alignment.

Parameterized Appearance Models (PAMs), such as Active Appearance Models [6, 26,
32], Morphable Models [14, 47], Eigentracking [12], and template tracking [59, 92] build an
object appearance and shape representation by performing Principal Component Analysis (PCA)
on a set of manually labeled data. Fig. 3.2a illustrates an image labeled with p landmarks (p = 66
in this case). After the images are aligned with Procrustes [35], a shape model is learned by
performing PCA on the registered shapes. A linear combination of ks shape bases Us ∈ R2p×ks

can reconstruct (approximately) any aligned shape in the training set. Similarly, an appearance
model Ua ∈ Rm×ka is built by performing PCA on the texture. Alignment is achieved by
finding the motion parameter p and appearance coefficients ca that best align the image w.r.t. the
subspace Ua,

min
ca,p
||d(f(x,p))−Uaca||22. (3.7)

In the case of the LK tracker, ca is fixed to be 1ka and Ua is a subspace that contains a single vec-
tor, the reference template. The notation follows that of Section 3.1.1; x = [x1, y1, . . . , xl, yl]

>

contains the coordinates of the pixels to track, and f(x,p) is a vector denoted by [u1, v1, ..., ul, vl]
>

that now includes both affine and nonrigid transformation. That is, (ui, vi) relates to (xi, yi) by
[
ui
vi

]
=

[
a1 a2

a4 a5

] [
xsi
ysi

]
+

[
a3

a6

]
.

Here
[xs1, y

s
1, ...x

s
l , y

s
l ]
> = x + Uscs,

27



where x is the mean shape face, a, cs are the affine and nonrigid motion parameters respectively,
and p = [a; cs]. Similar to the LK method, PAMs algorithms [6, 12, 26, 32] optimize Eq. 3.7
using the Gauss-Newton method. A more robust formulation of (3.7) can be achieved by either
replacing the L2 norm with a robust error function [8, 12] or by performing matching on robust
features, such as gradient orientation [93].

Discriminative approaches learn a mapping from image features to motion parameters or
landmarks. Cootes et al. [26] proposed to fit AAMs by learning a linear regression between the
increment of motion parameters ∆p and the appearance differences ∆d. The linear regressor is a
numerical approximation of the Jacobian [26]. Following this idea, several discriminative meth-
ods that learn a mapping from d to ∆p have been proposed. Gradient Boosting, first introduced
by Friedman [38], has become one of the most popular regressors in face alignment because of its
efficiency and ability to model nonlinearities. Saragih and Göcke [80] and Tresadern et al. [91]
showed that using boosted regression for AAM discriminative fitting significantly improved over
the original linear formulation. Dollár et al. [34] incorporated “pose indexed features” to the
boosting framework, where features are re-computed at the latest estimate of the landmark loca-
tions in addition to learning a new weak regressor at each iteration. Beyond gradient boosting,
Rivera and Martinez [71] explored kernel regression to map from image features directly to
landmark locations, achieving surprising results for low-resolution images. Recently, Cootes et
al. [25] investigated Random Forest regressors in the context of face alignment. At the same
time, Sánchez et al. [77] proposed to learn a regression model in the continuous domain to ef-
ficiently and uniformly sample the motion space. In the context of tracking, Zimmermann et
al. [110] learned a set of independent linear predictors for different local motions and then chose
a subset of them during tracking. Unlike PAMs, a major problem of discriminative approaches
is that the cost function being minimizing is unclear, making these algorithms difficult to ana-
lyze theoretically. This paper is the first to formulate a precise cost function for discriminative
approaches.

Part-based deformable models perform alignment by maximizing the posterior likelihood
of part locations given an image. The objective function is composed of the local likelihood of
each part times a global shape prior. Different methods typically vary the optimization methods
or the shape prior. Constrained Local Models (CLM) [30] model this prior similarly as AAMs,
assuming all faces lie in a linear subspace spanned by PCA bases. Saragih et al. [79] proposed
a nonparametric representation to model the posterior likelihood and the resulting optimization
method is reminiscent of mean-shift. In [10], the shape prior was modeled nonparametrically
from training data. Recently, Saragih [78] derived a sample specific prior to constrain the output
space providing significant improvements over the original PCA prior. Instead of using a global
model, Huang et al. [46] proposed to build separate Gaussian models for each part (e.g., mouth,
eyes) to preserve more detailed local shape deformations. Zhu and Ramanan [108] assumed
that the face shape is a tree structure (for fast inference), and used a part-based model for face
detection, pose estimation, and facial feature detection.

3.2.2 An SDM Solution
Similar to rigid tracking in section 3.1.2, we perform face alignment in the HoG space. Given an
image d ∈ Rm×1 of m pixels, d(x) ∈ Rp×1 indexes p landmarks in the image. h is a nonlinear
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feature extraction function and h(d(x)) ∈ R128p×1 in the case of extracting HoG features. In this
setting, face alignment can be framed as minimizing the following NLS function over landmark
coordinates x:

f(x) = ‖h(d(x))− y∗‖2
2, (3.8)

where y∗ = h(d(x∗)) represents the HoG values computed on the local patches extracted from
the manually labeled landmarks. During training, we assume that the correct p landmarks (in our
case p = 66) are known, and we will refer to them as x∗ (see Fig. 3.2a). Also, to simulate the
testing scenario, we run the face detector on the training images to provide an initial configuration
of the landmarks (x0), which corresponds to an average shape (see Fig. 3.2b).

Eq. 3.8 has several fundamental differences with previous work on PAMs (Eq. 3.7). First,
in Eq. 3.8, we do not learn any model of shape or appearance beforehand from training data.
Instead, we align the image w.r.t. a template y∗. For the shape, we optimize the landmark loca-
tions x ∈ R2p×1 directly. Recall that in traditional PAMs, nonrigid motion is modeled as a linear
combination of shape bases learned by performing PCA on a training set. Our shape formulation
is able to generalize better to untrained situations (e.g., asymmetric facial gestures). Second, we
use HoG features extracted from patches around the landmarks to achieve a representation robust
to illumination changes.

In face alignment, the testing template y∗ is unknown and different from those used for train-
ing (i.e., the test subject is not one of the training subjects). Therefore, SDM learns an additional
bias term bk to represent an average template during training. Furthermore, the function h is
parametrized not only by x, but also by the images (i.e., different subjects or different condi-
tions of subjects). The training step modifies Eq. 2.7 to minimize the expected loss over all
initializations and images, where the expected loss is given by

∑

i,j

‖x∗ − xi,jk + Rkh(di(xi,jk ))− bk‖2
2. (3.9)

We use i to index images and j to index initializations. The update of Eq. 2.7 is thus modified to
be

xi,jk = xi,jk−1 −Rk−1h(di(xi,jk−1)) + bk−1. (3.10)

Despite the modification, minimizing Eq. 3.10 is still a linear least squares problem. Note that
we do not use yi∗ in training, although they are available. In testing, given an unseen image d̃ and
an initial guess of x̃0, x̃k is updated recursively using Eq. 3.10. If d̃, x̃0 are drawn from the same
distribution that produces the training data, each iteration is guaranteed to decrease the expected
loss between x̃k and x∗.

3.2.3 Online SDM
SDM may have poor performance on an unseen sample that is dramatically different from those
in the training set. It would be desirable to incorporate this new sample into the existing model
without re-training. This section describes such a procedure that updates an existing SDM model
in an online fashion.

Assume that one is given a trained SDM model, represented by {Rk,bk,Σ
−1
k }, where Σk =

ΦkΦ
>
k and Φk is the data matrix used in training the kth descent map. For a given new face image
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d and labeled landmarks x∗, one can compute the initial landmark perturbation ∆x0 = x∗ − x0

and the feature vector extracted at x0, φ0 = h(d(x0)). Using the well known recursive least
squares algorithm [42], SDM can be re-trained by iterating the following three steps:

1. Update inverse covariance matrix Σ−1
k :

Σ−1
k ← Σ−1

k −Σ−1
k φk(w

−1 + φ>k Σ−1
k φk)

−1φ>k Σ−1
k . (3.11)

2. Update the generic descent direction Rk:

Rk ← Rk + (∆xk −Rkφk)wφ
>
k Σ−1

k .

3. Generate a new sample pair (∆xk+1,φk+1) for re-training in the next iteration:

∆xk+1 ← ∆xk −Rkφk

φk+1 ← h(d(x∗ + ∆xk+1)).

Setting the weight to be w = 1 treats every sample equally. For different applications, one may
want the model to emphasize the more recent samples. For example, SDM with exponential
forgetting can be implemented with a small modification of Eq. 3.11:

Σ−1
k ← λ−1[Σ−1

k −Σ−1
k φk(λ+ φ>k Σ−1

k φk)
−1φ>k Σ−1

k ],

where 0 < λ < 1 is a discount parameter. Assuming n data points come in order, the weight on
the ith sample is λn−i. Above, we do not explain the update formula for the bias term bk, since
it is often incorporated into Rk by augmenting the feature vector with 1. Note that in Eq. 3.11,
the term in parentheses is a scalar. Since no matrices need to be inverted, our re-training scheme
is very efficient, consisting of only a few matrix multiplications and feature extractions.

3.2.4 Extensions of SDM on Face Alignment
Since its original publications [97, 98], many extensions of SDM have been proposed. They
mainly involve experimenting with different patch descriptors, better shape initialization strate-
gies, and various regression methods. Some of the notable works are listed as follows:
• Ren et al. [70] replaced SIFT descriptors with binary features boosting the computational

speed to 3000 FPS on a modern CPU without visible loss of alignment accuracy.
• Zhang et al. [103] replaced the SIFT descriptors and linear regressor by a Stacked Auto-

encoder Network(SAN) [43], which acts as a nonlinear regressor that directly maps pixel
values to landmark displacements. The initial face shape was predicted by a separate SAN
from a low-resolution face image. They showed improvement over SDM especially in the
case where the face detector’s results are unreliable.

• Qu et al. [68] introduced an additional step to remove similarity transformation of the face
image so alignment can be operated on a normalized image. Also, each iteration descrip-
tors are extracted at patches with decreasing sizes. They compared six different image
descriptors (HoG, SIFT, LBP and their variants measured in Helliger distance) and con-
cluded that RootSIFT [2] was the best among the six. Additionally, they adopted Iteratively
Reweighted Least Squares (IRLS) as the regressor to remove the effects of outliers.
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• Yang et al. [101] proposed a novel initialization strategy for SDM based on the head pose
estimated through a Convolutional Neural Network (CNN) [53]. Instead of using a mean
face shape, SDM is initialized by either projecting a 3D mean face shape using the esti-
mated head pose or searching the nearest neighbor from a training set according to esti-
mated head pose distance.

• Yang et al. [100] proposed random subspace SDM, which is reminiscent of an ensemble
learning method, tree bagging [17]. Instead of learning one linear regressor, they learned a
set of linear regressors that are trained on random subsets of the training data. This reduces
the variance of estimator. In testing, the average prediction of all the regressors is used.

• Zhang et al. [104] proposed a simple strategy to better handle images in different resolu-
tions. During training, they built nine SDM models, one for a different resolution of face
images. In testing, a super resolution technique is used if necessary and the best of the nine
model is selected based on the resolution of the detected face.

• Zhu et al. [107] showed that SDM can be extended to automatically transfer landmark
annotations across datasets. Their method allows integration of different face alignment
datasets with different annotation protocols so they can be combined to train a single
model. With their method, one can also enrich landmark annotations from a sparsely
labelled images.

• Zhu et al. [109] applied SDM to fit a 3D morphable model based on the appearance of
a face. Here, the 2D face shape is controlled by a 3D PCA face model and a weak per-
spective projection model. In each iteration, SDM learns a mapping from image features
to the model parameters (weak perspective camera parameters and 3D shape deformation
coefficients).

3.3 Multi-view Face Alignment
SDM provides an efficient and accurate solution to track facial features in near-frontal faces, but
it fails at tracking faces with large head rotations. This section presents a solution to address
those limitations based on GSDM. First, let us review some previous work on multi-view face
alignment.

3.3.1 Previous Work
Previous work on multi-view facial feature tracking can be grouped into two categories based on
whether a 2D or 3D face model is used.

Let us first review some of the 2D model based approaches. The shape of a deformable
object can be modeled by a probability density function. A multi-modal 2D face model can
be represented either in a non-parametric way e.g., kernel density estimation [83] or in a para-
metric way, e.g., a mixture of Gaussians [27]. Therefore, there are two common strategies to
extend traditional frontal face alignment methods to multi-view tracking. The first one is to build
separate models according to the head pose. Some of the examples are multi-view Active Ap-
pearance Model (AAM) [29], view-based Active Wavelet Networks [44], and multi-view Direct
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Appearance Models [54]. The other is to use kernel methods. For example, Romdhani et al. [74]
extended Active Shape Model [28] to track profile-to-profile faces. They used kernel PCA [81]
to model the shape and appearance to address the nonlinearity introduced by large pose changes.
However, kernel-based density estimation is slow and its complexity increases with number of
training samples. Another interesting work [106] treated the shape parameter and pose as hidden
variables and framed the alignment problem into a Bayesian framework. However, the inference
is intractable so the EM algorithm (local minima prone) is used to approximate the solution.
Beyond the two common strategies, another way to address the multi-view problem would be
online tracking. Ellis et al. [36] proposed an efficient online tracker using adaptive appearance
models, and one could extend this approach to track faces and other nonrigid objects.

Next, let us take a look at 3D model based approaches. Matthews et al. [60] provided a
detailed comparison between 2D and 3D face models in three different aspects, fitting speed,
representational power, and construction. They concluded that 2D face model may be too “pow-
erful” that can represent invalid faces. Xiao et al. [96] extended the AAM fitting algorithm to
impose additional shape constraints introduced by a 3D model that are lacked in the 2D model.
Baltrusaitis et al. [9] extended Constrained Local Models [30] for RGBD data streams and show
better alignment performance than its original. However, the training data is difficult to collect.
Gu and Kanade [41] formulated multi-view face alignment as a Bayesian inference problem
with missing data, whose task is to solve 3D shape and 3D pose from the noisy and incom-
plete 2D shape observation. Recently, Cao et al. [22] extended an earlier 2D regression-based
framework [23] with a 3D face model, but only near-frontal face results are shown in the exper-
iments. Other interesting work [82, 84, 108] have been proposed for detecting facial landmarks
in the profile-to-profile faces but they are not suitable for tracking applications. Note that most
3D based methods still reply on head pose to build separate models to address the multi-view
problem.

Our work differs from existing approaches in several ways. First, our approach do not pre-
build any shape or appearance model and we directly optimize over landmark coordinates. This
has been shown to provide superior performance for facial feature tracking [97]. Second, our
method provides a mathematically sound manner to partition the parameter space for facial fea-
ture tracking. Existing approaches typically find heuristic partition of the head pose angles.
Finally, our method is general and can be applied to other problems, such as extrinsic camera
calibration (see Section 4.6).

3.3.2 A Global SDM Solution

SDM provides an efficient and accurate solution to track facial features in near-frontal faces,
but it fails at tracking faces with large head rotations. When tracking profile-to-profile faces
the shape parameter space is enlarged so it is unlikely to find a single valid DM (See section
2.1.3 and recall the two conditions for DM to exist). In section 2.1.6, we introduced the idea of
DHD, which refers to a partition on the parameter space such that there exists a DM within each
subset. The problem of multi-view face alignment is reduced to finding DHD. Given a finite set
of samples, finding the optimal DHD S = {St}T1 and its corresponding DMs R = {Rt}T1 can be
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formulated as the following constrained optimization problem,

min
S,R

T∑

t=1

∑

i∈St

‖∆xi∗ −Rt∆φi,t‖2 (3.12)

s. t. ∆xi∗
>
Rt∆φi,t > 0,∀t, i ∈ St. (3.13)

One can use a predefined T or choose the best T using a validation set. We denote φ
t

∗ − φi

by ∆φi,t, where φ
t

∗ is the template averaged over all image in the tth subset. The constraints
stated in (3.13) guarantee that Rth(x) is a monotone operator around x∗, which is one condition
ensuring that Rt is a generic DM within the tth subset.

Minimizing (3.12) is NP-hard. We develop a deterministic approach to approximate the
solution of (3.12). First, let us ignore the constraints and solve the unconstrained optimization
problem in (3.12). If Rt is a local minimizer, one necessary condition is that the partial derivative
of (3.12) against Rt is zero. Setting the this derivative to zero gives:

Rt = ∆Xt
∗∆Φt>(∆Φt∆Φt>)−1. (3.14)

∆Xt
∗ and Φt are matrices whose columns are ∆xi∗ and φi from the tth subset. Plugging Eq. 3.14

into the constraints in (3.13) yields,

∆xi∗
>

∆Xt
∗∆Φt>(∆Φt∆Φt>)−1∆φi,t > 0,∀t, i ∈ St. (3.15)

The sufficient conditions for (3.15) are:

∆xi∗
>

∆Xt
∗ > 0,∀t, i ∈ St (3.16)

∆Φt>(∆Φt∆Φt>)−1∆φi,t > 0,∀t, i ∈ St (3.17)

From the fact that any two vectors within the same hyperoctant (the generalization of quadrant)
have a positive dot product, we design a partition such that each subset occupies a hyperoctant
in the parameter space. This partition satisfies the inequalities in (3.16). We can apply the same
strategy to further partition each subset according to the hyperoctants in feature space, which
yields the following inequalities

∆Φt>∆φi,t > 0,∀t, i ∈ St (3.18)

The covariance matrix ΦΦ> is positive-definite (if not, a diagonal matrix can be added). The
inverse of a positive definite matrix is also positive definite. This fact along with (3.18) suffice
to show the inequalities in (3.17). However, this partition is impractical leading to exponential
number of DMs so we propose the following approximation.

In the case of human faces, ∆x and ∆φ are embedded in a lower dimensional manifold. We
perform dimension reduction (PCA) on the whole training set ∆X and project the data onto the
subspace expanded by the first two most dominant directions. This gives us a partition in R2

where each subset occupies a quadrant. Each subset inside this partition is further partitioned
into two halves based on the first principle component learned from ∆Φ. This partition strategy
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gives us eight subsets so eight DMs are learned in each iteration of the algorithm. The PCA
bases are saved and used to determine which DM to use in testing time. The training of GSDM
converges in four iterations. In testing x∗ is unknown and assuming that the movement between
two consecutive frames is small the prediction of the previous frame is used to approximate
∆x∗. We only used two PCA bases, although one can increase the number of bases to create
more subsets in the partition. The approximation would be more accurate at the same time
more training data will be needed to learn a reliable DM. One can also use nonlinear dimension
reduction techniques [67]. This simple partition strategy has been validated in our experiments
and yields promising results.
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3.4 3D Pose Estimation

In the two applications we have shown thus far, the optimization parameters lie in Rn space. In
this section, we will show how SDM can also be used to optimize parameters such as a rotation
matrix, which belongs to the SO(3) group.

The problem of 3D pose estimation can be described as follows. Given the 3D model of
an object represented as 3D points M ∈ R3×n, its projection U ∈ R2×n on an image, and the
intrinsic camera parameters K ∈ R3×3, the goal is to estimate the object pose (3D rotation Q ∈
R3×3 and translation t ∈ R3×1).1 This is also known as extrinsic camera parameter calibration.

3.4.1 Previous Work

Object pose estimation is a well-studied problem. The general approaches can be grouped into
two categories: iterative and non-iterative.

Let us first review the non-iterative approaches. If the model and image projection points are
perfectly measured, this problem can be solved in closed-form by finding the perspective pro-
jection matrix using Direct Linear Transformation (DLT) [72, 85]. The projection matrix maps
the 3D model points to image points in homogeneous coordinates. Since it has 11 unknowns,
at least six nonplanar correspondences are required. However, these approaches are very frag-
ile to noise. Fischler and Bolles [37] used the fact that relative distance between two points is
preserved under rigid transformation to derive a fourth order polynomial in the unknown points
depth for every triplets of points. Four solutions are obtained in general so a fourth point is
needed to disambiguate. For arbitrary n, there are n(n−1)

2
fourth order polynomials one can stack

them in a matrix form and solve it using SVD [69]. This solution requires O(n5) operations.
Moreno-Nogu et al. [63] provided a linear solution by introducing four virtual control points and
any 3D point was written as a weighted sum of them. They reduced PnP problem to estimating
the coordinates of these control points in the camera referential.

Now let us switch to iterative methods. Lowe [56] and Yuan [102] improved the robustness
of the estimates by minimizing the reprojection error. Since the projection function is nonlinear,
they used Newton-Raphson method to optimize it. However, both algorithms require good initial
values to converge and for both algorithms, each iteration is an O(n3) operation (requiring the
pseudo-inverse of the Jacobian). Lu et al. [57] formulated the pose estimation as minimizing
object-space collinearity error, from which they derived a fast iterative algorithm that was robust
to outliers. DeMenthon and Davis proposed an accurate and efficient POSIT algorithm [33] that
iteratively finds object pose by assuming a scaled orthographic projection.

1Q is used for rotation matrix to avoid conflict with DM Rk
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3.4.2 A SDM Solution
The 3D pose estimation problem can also be formulated as a constrained NLS problem that
minimizes the reprojection error w.r.t. Q and t:

minimize
Q,t

‖h(Q, t,M)−U‖F
subject to Q>Q = I3 and det(Q) = 1.

h = g2 ◦ g1 can be seen as composition of two functions g1 and g2, which can be written in
closed-form as follows:

g1(Q, t,X) = K(QX + 1>n ⊗ t),

g2(X) =

[
x>1 � x>3
x>2 � x>3

]
,

where ⊗ represents the Kronecker product, � denotes element-wise division, and x>1 is the first
row vector of X. We parameterize the rotation matrix as a function of the Euler-angles θ. Then,
the objective function can be simplified into the following unconstrained optimization problem:

min
p
‖h(p,M)−U‖F ,

where p = [θ; t]. We minimize the above function using reversed SDM introduced in Section
2.1.5. For training SDM, we sample a set of poses {pi∗} and compute the image projections {Ui}
under each pose. Recall that the training of reversed SDM alternates between minimization of
Eq. 2.10 and updating of Eq. 2.9. We rewrite these equations in the context of pose estimation:

pik = pik−1 −Rk−1(h(pik−1,M)−Ui), (3.19)
∑

i

‖pi∗ − pik + Rk(h(pik,M)−Ui)‖2
2.

In testing, given an unseen Ũ, SDM recursively applies the update given by Eq. 3.19.
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Figure 3.3: Three examples of SDM minimizing the reprojection errors through each step. Blue outlines
represent the image projections h(pik) under the current parameter estimates pik. Green outlines arethe
given inputs the algorithm trying to match.

Fig. 3.3 shows three examples of how the reprojection errors are decreased through each
SDM update when performing head pose estimation. In these cases, the SDM always starts at p0

(see iteration 0 in Fig. 3.3) and quickly converges to the optimal solutions. More results can be
found in section 4.6 as well as a comparison with the POSIT algorithm.
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Chapter 4

Experimental Results and Discussions

“Success is the ability to go from one
failure to another with no loss of
enthusiasm.”

Winston Churchill
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4.1 Analytic Functions
In this section, we compare the performance of SDM and GSDM against gradient-based methods
on minimizing analytic functions. The three competing methods are: Steepest Descent, New-
ton’s method (with user provided Hessian), and LBFGS. For gradient-based methods, we used
the existing implementation from the minFunc software package provided by Mark Schmidt1.
Steepest Descent is implemented with backtracking line search [5, 62]. In the implementation
of Newton’s method, in the case of Hessian being a negative definite matrix, a damping factor
is added. For all functions chosen in this experiment, their first and second derivatives can be
derived analytically (See Fig. 1 in Appendix B). We supplied those to the minFunc optimizer
so no numerical approximation is used for gradient or Hessian computation. For differentiable
functions, SDM did not demonstrate much speed gain over gradient-based methods. In this ex-
periment, we are particularly interested in how different optimization methods perform when
minimizing non-convex functions and when they are initialized far away from the true values.
Below, we start with scalar functions followed by multivariate functions.

4.1.1 Scalar Functions
The functions that we are optimizing share the same formula:

min
x
f(x) = (h(x)− y∗)2,

where h(x) is a nonlinear function (see Fig. 4.1) and y∗ is a given constant. We have chosen only
invertible functions (all functions are either monotonically increasing or decreasing within the
selected domain). Otherwise, for a given y∗ multiple solutions may be obtained. For all selected
h(x), the corresponding functions f(x) are not convex but have a unique local/global minimum.
All methods start from a fixed initial point, x0 = c. The training data x = {xi} are sampled
uniformly. The test data y∗ = {yi∗} are generated by evaluating h(x) at different values of x than
those used in training. Gradient-based methods do not require a training step so they are directly
evaluated on test data. The sampling details are shown in Fig. 4.1 following the Matlab notation.

Function Training Set Test Set K
h(x) xi xi∗
sin(x) [−π

2 :0.0031:
π
2 ] [−π

2 :0.01:
π
2 ] 1

x3 [−2:0.031:4.1] [−2:0.1:4] 48
ex [−10:0.031:10] [−10:0.1:9] e9

x−1 [1:0.031:10.1] [1:0.1:10] 1

Figure 4.1: Experimental setup for 1D analytic functions.

The training and testing algorithms of SDM and GSDM for minimizing scalar functions are
presented in Appendix C (Fig. 2 and Fig. 3). Function find returns a set of indices that satisfy

1http://www.cs.ubc.ca/˜schmidtm/
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the boolean condition. Function dhd 1d partitions the training set into two according to the
signs of ∆xi∆yi∗. In practice, we specify a spill parameter that allows some overlap between
the two sets. The spill parameter is measured in cosine similarity. The training of (G)SDM is
finished if the training error is below some threshold or stops decreasing. The same number of
iterations is then used in testing. For gradient-based methods, the optimization stops if one of the
following conditions holds: function value is changed by less than a threshold, the magnitude of
gradient is close to zero, step size is small, or the max number of iterations is reached.

Fig. 4.3 presents the convergence results of all competing methods. We plot the absolute
deviation between the optimized results and the true values at different x∗s. All gradient-based
methods behave similarly: they fail to converge for some range of x∗ because the optimizing
functions are not convex. GSDM always converges given enough iterations and it provides much
faster convergence than SDM. Function h(x) = 1

x
is monotonic over (−∞, 0) or (0,∞) but is

not monotonic over (−∞,∞). In our implementation of SDM, we add a clipping step to prevent
optimizing parameter going out of bounds. Without this clipping step, SDM’s training stalls
after a few iterations. However, GSDM is not influenced in this special case and it converges
with/without the clipping step.

From Fig. 4.3bc, we observed that when h(x) = ex both SDM and GSDM take the most
steps to converge while minimizing f(x) = (sin(x) − y)2 takes the least number of iterations.
Theorem 2 states that the norm of descent map is inverse proportional to K. That is, the bigger
theK the more iterations it takes for SDM to converge. Fig. 4.1 also listed the Lipschitz constants
K computed for every function in the range of test data. K = e9 when h(x) = ex while K = 1
for h(x) = sin(x), which explains why one converges faster than another.

If f is quadratic (e.g., h is linear function of x), SDM will converge in one iteration because
the average gradient evaluated at different locations will be the same for linear functions.This
coincides with a well-known fact that Newton’s method converges in one iteration for quadratic
functions.

4.1.2 Multi-dimensional Functions

This section extends the above experiments to multivariate functions:

min
x
f(x) = min

x
‖h(x)− y∗‖2,

where h(x) : R2 → R2 is a nonlinear function (see Fig. 4.2) and y∗ is a given constant vector.
We follow the same training and testing protocols used in the previous section. Now, the data are
sampled uniformly on a 2D grid shown in Fig. 4.2. According to the inverse function theorem,
h(x) is invertible locally if the determinant of its Jacobian is non-zero at x. In this previous
section, to guarantee a unique solution we select only monotonic functions. Similarly, now we
select functions and domains such that the determinants of their Jacobians within the selected
domains are greater than zero.

Fig. 4.4 presents the convergence results of the gradient-based methods. Each dot represents
the optimal solution of a test data. If it is colored green, that indicates the algorithm has converged
to the correct x∗, otherwise, red. The plots of the same column are generated by the same method
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Function Training Set Test Set K
h(x) xi1 xi2 xi∗1 xi∗2[

cos(x1)x2
sin(x1)x2

]
[−π:0.07:π] [2:0.07:5.1] [−π:0.05:π] [2:0.05:5] 48

[
2x1x2

5x1 − x22

]
[0.5:0.031:3.1] [−3:0.031:3.1] [0.5:0.05:3] [−3:0.05:3] 1

[
ex1 + x22
x21x2

]
[−2:0.031:−0.4] [−3:0.031:3.1] [−3:0.05:-0.5] [−3:0.05:3] e9

Figure 4.2: Experimental setup for 2D analytic functions.

and each row ties to a particular function. From top to bottom, the functions are:

f1(x) =
1

2

∥∥∥∥
[
cos(x1)x2

sin(x1)x2

]
− y

∥∥∥∥
2

, f2(x) =
1

2

∥∥∥∥
[

2x1x2

5x1 − x2
2

]
− y

∥∥∥∥
2

, f3(x) =
1

2

∥∥∥∥
[
ex1 + x2

2

x2
1x2

]
− y

∥∥∥∥
2

.

Different methods exhibit different convergence patterns and it is difficult to say which one is the
best in general because it is function dependent. None of the three methods is perfect. Gradient-
based methods are likely to converge to the wrong local minima. Fig. 4.5 shows three examples
thereof. In those examples, the true solution is actually closer (measured in L2 distance) from
the initial starting position. Fig. 4.6 shows the convergence results of GSDM on the same three
functions. Given enough iterations, GSDM always converge to the correction solution.
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Figure 4.3: Convergence results on non-convex analytic functions. Each row represents a different func-
tion. a) Gradient-based methods; b) SDM; c) GSDM. In a) different colors represent different methods
while in b) and c) different colors indicate different number of iterations.
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Figure 4.4: Convergence results for gradient-based methods on optimizing 2D analytic functions. a)
Steepest Descent; b) LBFGS; c) Newton’s method. Each dot represents the optimal solution of a test data.
Green dots indicate that algorithm has converged to the correct solution. Red dots indicate failure.
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4.2 Inverse Kinematics
The Inverse Kinematics problem tries to determine the joint configurations θ of a robot that
provide a desired position y of the end-effector. It can be formualted as a NLS problem:

min
θ

f(θ) = min
θ

1

2
‖h(θ)− y‖2, (4.1)

where h is the forward kinematics function. This problem poses an interesting challenge to
(G)SDM due to the presence of multiple global optima.

4.2.1 Two-arm Robot
We start with a toy example: a two-arm robot living in a 2D world (See Fig. 4.7). One end-point
of the robot is fixed at the origin (0, 0) and the position of the other end-point is controlled by the
two joint angles (θ1, θ2). Depending on the desired position, zero, one, or two solutions may be
obtained. In the example shown in Fig 4.7, the second solution is simply the reflection of the first
one over the line connecting the two end-points. In this experiment, we assume that the provided
position can be reached so we eliminate the case of zero solution.

Figure 4.7: An example of a two-arm robot. One end-point of the robot is fixed at (0, 0) and is controlled
by the two joint angles (θ1, θ2). Multiple solutions can be obtained for an end point (x, y).

For the robot in Fig. 4.7, the corresponding forward kinematics function is given as follows:

h(θ) =

[
l1 cos(θ1) + l2 cos(θ1 + θ2)
l1 sin(θ1) + l2 sin(θ1 + θ2)

]
.

Its Jacobian matrix is:

∂h

∂θ
=

[
−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
.

The determinant of the Jacobian is:
∣∣∣∣
∂h

∂θ

∣∣∣∣ = sin(θ2).
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Without loss of generality, we assume sin(θ2) > 0, which imples 0 ≤ θ2 ≤ π. To guarantee a
unique solution, we reformulate (4.1) into a constrained optimization problem:

minimize 1
2
(h(θ)− y)>(h(θ)− y)

subject to −π ≤ θ1 ≤ π
0 ≤ θ2 ≤ π.

The legal region is a convex set, a rectangular box in R2 in particular.
We compare GSDM with Interior Point Method (IPM) [21, 94], implemented as fmincon

function in the Matlab optimization toolbox. The training and testing algorithms of GSDM
remains the same as the ones described in Appendix C (Fig. 4). The test data consists of a set
of {(yitest,θitest)}, where {θitest} are uniformly sampled from a grid inside the legal region with
increments of 0.1 on both dimensions. yitest is computed using the forward kinematics formula
given the input joint angles θitest. {θitest} is used as ground truth to evaluate the performance
of each method. The training data {θitrain} for GSDM is sampled in a similar fashion with
increments of 0.031. During the execution of GSDM, the optimizing parameters may go out of
the legal region. In this case, we project them back to the legal region by simply clipping the
exceeding values. Note that this is viable because the legal region is a rectangle. For non-convex
constraint sets, the best strategy to incorporate those into GSDM is still unclear. It remains as
one of the future research directions.
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Figure 4.8: Each dot represent the true solution of a test data. Green dots indicate the algorithm converges
to the correct values, otherwise red.

Fig. 4.8 presents the convergence results of all competing methods. With the “clipping” step,
GSDM provides better convergence. Although GSDM (with clipping) outperforms all other
methods, it took 8000 iterations while IPM takes around 20 to converge (sometimes to the wrong
solutions). Number of iterations may not be a good indication of the run time of each method
because in GSDM the amount of computation within each iteration is far less than those in the
IPM. For example, given 2016 test samples GSDM take around 12 seconds to finish while IPM
takes 58 seconds.

Within the first 10 iterations, GSDM reduces the residual by a half. From this observation,
we propose a Hybrid Descent Method where we use the results from GSDM (first 10 iterations)
as an initialization for the IPM. Hybrid Descent provides much better convergence results than
using IPM alone, yet significantly reduces the number of iterations to a total of 30 iterations (10
iterations of GSDM plus 20 iterations of IPM).

IPM is gradient-based and sometimes converges to a wrong solution. In Fig. 4.9, we select
two examples of such mistakes and plot the heat maps of their corresponding objective functions.
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The selected samples are circled by a blue outline. In the top example, IPM converges to the
futher local minima while in the bottom one it converges to the closer local minima. Both cases
are incorrect, which demonstrates the limitations of gradient-based approaches. Fig. 4.9c shows
why Hybrid Descent performs better than using IPM alone. The white lines show the traces of
the first ten iterations of GSDM where x is taken close enough to the true solution x∗. Thus, IPM
is able to converge to the correct minima given a good initialization.
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Figure 4.9: a) the test data is circled by a blue outline. b) two examples of IPM converging to the wrong
solution. Each heat map describes the values of an objective function for a particular test sample. The test
sample is circled by a blue outline. x0 is the initial position, x∗ is the optimal solution, and x̂ is where
the algorithm converges to. Black dashed lines are the borders of the legal region. c) white lines show the
traces from the first ten iterations of GSDM. x̂ is the solution to Hybrid Descent.

4.2.2 Three-arm Robot
In this section, we add one additional arm to the above robot, and this makes the problem signifi-
cantly more complicated. Here we assume that all arms share the same length l. In our three-arm
robot example, the forward kinematics function becomes:

h(θ) =

[
l cos(θ1) + l cos(θ1 + θ2) + l cos(θ1 + θ2 + θ3)
l sin(θ1) + l sin(θ1 + θ2) + l sin(θ1 + θ2 + θ3)

]
.

Its Jacobian Jh ∈ R2×3 is not a square matrix. To guarantee a unique solution, we compute the
determinants of all three 2 × 2 minors and focus on the case where all of them are greater than
zero:

det(Jh(∅, 1) = sin(θ3) (4.2)
det(Jh(∅, 2) = l2 sin(θ3) + l2 sin(θ2 + θ3) (4.3)
det(Jh(∅, 3) = l2 sin(θ2) + l2 sin(θ2 + θ3). (4.4)
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Jh(i, j) denote a submatrix matrix, obtained by deleting row i and column j. Rewriting those
constraints gives us the following constrained optimization problem:

minimize 1
2
(h(θ)− y)>(h(θ)− y)

subject to −π ≤ θ1 ≤ π
0 ≤ θ3 ≤ π
−θ3 − 2θ2 ≤ 0
θ3 + 1

2
θ2 ≤ π

θ3 + 2θ2 ≤ 2π.

The constraint set is convex because it is formed by the intersection of seven half spaces.
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Figure 4.10: A visualization for the constraints on parameters θ2 and θ3. The dashed lines half spaces and
the solid lines are borders of the legal region.

Fig. 4.10 illustrates the convex set formed by the constraints posed on θ2 and θ3. We omit the
constraints on θ1 because they are relatively simple. The overall shape of the convex set can be
imagined as a 3D cube where each half space carves out part of the cube.

We compare GSDM with IPM and Hybrid Descent. The training and testing procesures of
GSDM remain similar as in the previous experiment but with one slight modification. In function
dhd 2d, four additional subsets are created based on the signs of ∆θ3. The training and test data
are generated by uniformly sampling θ in R3, and then rejecting the samples that fall out of
the legal region. Fig. 4.11 presents the results from three competing method. GSDM is able
to achieve above 99% convergence rate with 20K iterations. Hybrid Descent improves upon
Interior Point method by 8% by only using 10 iterations of GSDM. Given 7474 test samples,
GSDM (with 20K iterations) finish around 87 seconds while IPM takes 481 seconds.

Interior Point GSDM Hybrid Descent
t = 104 t = 1.5 · 104 t = 2 · 104

83.3 54.6 95.9 99.3 91.1

Figure 4.11: Convergence rates of the three-arm robot experiment. The table presents the percentage of
the test data that has converged to the correct solutions.
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4.3 Rigid Tracking

This section presents the tracking results comparing LK and SDM using an affine transformation.
We used a publicly available implementation of the LK method [7] for tracking a single template.
The experiments are conducted on a public dataset2 published by [39]. The dataset features
six different planar textures: mansion, sunset, Paris, wood, building, and bricks. Each texture
includes 16 videos, each of which corresponds to a different camera motion path or changes
illumination condition. In our experiment, we chose five of the 16 motions, giving us a total
of 30 videos. The five motions correspond to translation, dynamic lighting, in-plane rotation,
out-plane rotation, and scaling.

Both trackers (SDM and LK) used the same template, which was extracted at a local region
on the texture in the first frame. In our implementation of SDM, the motion parameters were
sampled from an isotropic Gaussian distribution with zero mean. The standard deviations were
set to be [0.05, 0.05, 0.05, 0.05, 8, 8]>. We used 300 samples and four iterations to train SDM.
The tracker was considered lost if there was more than 30% difference between the template and
the back-warp image. Note that this difference was computed in HoG space.

mansion sunset Paris wood building bricks

translation (87)
SDM 87 87 86 87 87 87
LK 3 87 18 3 3 5

in-plane rtn (49)
SDM 32 22 49 35 20 39
LK 32 18 49 26 20 24

lighting (99)
SDM 99 99 99 99 99 99
LK 99 16 99 24 99 99

out-plane rtn (49)
SDM 42 35 41 34 37 37
LK 42 35 37 34 39 35

scaling (49)
SDM 49 49 49 49 43 49
LK 11 13 28 29 49 21

Figure 4.12: Comparison between SDM and LK on rigid tracking experiments. Each entry in the table
states the number of frames successfully tracked by each algorithm. The total number of frames is given
by number in the parentheses from the first column.

Fig. 4.12 shows the number of frames successfully tracked by the LK tracker and SDM.
SDM performs better than or as well as the LK tracker in 28 out of the 30 sequences. We
observe that SDM performs much better than LK in translation. One possible explanation is that
HoG features are more robust to motion blur. Not surprisingly, SDM performs perfectly in the
presence of dynamic lighting because HoG is robust to illumination changes. In-plane rotation
tends to be the most challenging motion for SDM, but even in this case, it is very similar to LK.

2http://ilab.cs.ucsb.edu/tracking_dataset_ijcv/
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4.4 Facial Feature Detection
This section reports experiments on facial feature detection in two “face-in-the-wild” datasets,
and compares SDM with state-of-the-art methods. The two face databases are the LFPW dataset3 [10]
and the LFW-A&C dataset [78].

The experimental setup is as follows. First, the face is detected using the OpenCV face
detector [16]. The evaluation is performed on those images in which a face can be detected.
The face detection rates are 96.7% on LFPW and 98.7% on LFW-A&C, respectively. The initial
shape estimate is given by centering the mean face at the normalized square. The translational
and scaling differences between the initial and true landmark locations are also computed, and
their means and variances are used for generating Monte Carlo samples in Eq. 2.6. We generated
10 perturbed samples for each training image. HoG descriptors are computed on 32 × 32 local
patches around each landmark. To reduce the dimensionality of the data, we performed PCA,
preserving 98% of the energy on the image features.

LFPW dataset contains images downloaded from the web that exhibit large variations in
pose, illumination, and facial expression. Unfortunately, only image URLs are given and some
are no longer valid. We downloaded 884 of the 1132 training images and 245 of the 300 test
images. We followed the evaluation metric used in [10], where the error is measured as the
average Euclidean distance between the 29 labeled and predicted landmarks. The error is then
normalized by the inter-ocular distance.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Normalized Error(17 points)

D
at

a 
P

ro
po

rt
io

n

Alignment Accuracy on LFPW Dataset

 

 

Linear Regression
Belhumeur et al.
SDM

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
Alignment Accuracy on LFW−A&C Dataset

RMS Error

D
at

a 
P

ro
po

rt
io

n

 

 

Linear Regression
PRA
SDM

(a) (b)

Figure 4.13: CED curves from LFPW and LFW-A&C datasets.

We compared our approach with two recently proposed methods [10, 23]. Fig. 4.13 shows
the Cumulative Error Distribution (CED) curves of SDM, Belhumeur et al. [10], and our method
trained with only one linear regression. Note that SDM is different from the AAM trained in a
discriminative manner with linear regression [26] because we do not learn a shape or appearance
model. Note that such curves are computed from 17 of the 29 points defined in [30], following
the convention used in [10]. Clearly, SDM outperforms [10] and linear regression. It is also
important to notice that a completely fair comparison is not possible since [10] was trained and
tested with some images that were no longer available. However, the average is in favor of our
method. The recently proposed method in [23] is based on boosted regression with pose-indexed
features. To the best of our knowledge this paper reported the state-of-the-art results on LFPW

3http://www.kbvt.com/LFPW/
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dataset. In [23], no CED curve was given and they reported a mean error (×10−2) of 3.43. SDM
shows comparable performance with a average of 3.47.

Figure 4.14: Example facial feature detection results from SDM on LFPW dataset. The first two rows
show faces with strong changes in pose and illumination, and faces partially occluded. The last row shows
the 10 worst images measured by normalized mean error.

The first two rows of Fig. 4.14 show our results on faces with large variations in poses and
illumination as well as ones that are partially occluded. The last row displays the worst 10
results measured by the normalized mean error. Most errors were caused by the gradient feature’s
inability to distinguish between similar facial parts and occluding objects (e.g., glasses frame and
eye brows).

LFW-A&C is a subset of the LFW dataset4, consisting of 1116 images of people whose
names begin with an ’A’ or ’C’. Each image is annotated with the same 66 landmarks shown in
Fig. 3.2. We compared our method with the Principle Regression Analysis (PRA) method [78],
which proposes a sample-specific prior to constrain the regression output. This method achieves
the state-of-the-art results on this dataset. Following [78], those whose name started with ‘A’
were used for training, giving us a total of 604 images. The remaining images were used for
testing. Root mean squared error (RMSE) was used to measure the alignment accuracy. Each
image has a fixed size of 250 × 250 and the error was not normalized. PRA reported a median
alignment error of 2.8 on the test set while ours averages 2.7. The comparison of CED curves can
be found in Fig. 4.13b and our method outperforms both PRA and Linear Regression. Qualitative
results from SDM on the more challenging samples are plotted in Fig. 4.15.

4.5 Facial Feature Tracking
Over the past few years, researchers in the face alignment field have made rapid progress on
improving the landmark accuracy and speed of the algorithms. Such progress is made possible by
the availability of larger and more challenging datasets e.g., LFPW [10], Helen [52], AFLW [49],
AFW [76], IBUG [75]. However, there is a lack of datasets for evaluation of face tracking from
profile to profile as well as a standard protocol for evaluating tracking performance. To fill the

4http://vis-www.cs.umass.edu/lfw/
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Figure 4.15: Example facial feature detection results from SDM on LFW-A&C dataset.

void, we build two challenging datasets, Distracted Driver Face(DDF) and Naturalistic Driving
Study(NDS), and propose a standard evaluation protocol for facial feature tracking. Both the
evaluation protocol code and NDS dataset are made available for the research community5.

The DDF dataset contains 15 video sequences, a total of 10,882 frames. Each sequence
captures a single subject performing distracted driving in a stationary vehicle or an indoor envi-
ronment. 12 out of 15 videos are recorded with subjects sitting inside of a vehicle. Five of them
are recorded in the night under infrared (IR) light and the others are recorded during the daytime
under natural lighting. The remaining three are recorded indoors. The top three rows in Fig. 4.17
shows one subject from each category.

The NDS dataset [90] contains 20 sequences of driver faces recorded during a drive con-
ducted between the Blacksburg, VA and Washington, DC areas. Each sequence consists of a
one-minute video recorded at 15 fps with a resolution of 360 × 240. For both datasets, we
labeled one in every ten frames and each labeled frame consists of either 49 landmarks (near-
frontal faces) or 31 landmarks (profile faces). Both datasets consist of many faces with extreme
pose (±90◦ yaw, ±50◦ pitch) and many under extreme lighting condition (e.g., IR). NDS is the
more challenging one due to the low spatial and temporal resolution.

Evaluation protocol: A popular evaluation metric for facial feature detection is the cumu-
lative error curve. However, this curve cannot take into account the frames that are lost during
tracking. We propose the Cumulative Error Histogram (CEH) as the evaluation metric. The idea
of CEH is to quantize the tracking error at different scales. The histogram will have k bins, where
the ith bin counts the fraction of frames (number of frames over total number of frames) with
errors less than the ith error scale. For the frames where the tracker is lost or the landmark error
is larger than the last error scale, we add them to the last bin. For the successfully tracked frames,
the error is measured using the normalized root mean square (RMS) metric. In previous work,
normalization is often done by using the inter-ocular distance. However, for a profile face such
distance tends to go to zero so we use the face length as a reference approximated by the distance

5http://humansensing.cs.cmu.edu/xxiong
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between the lower lip point and the inner eyebrow point. The mean of all bins in a CEH can be
used as single-value score to compare among different tracking methods. The CEH score has the
value between 1 and 1

k
with higher value indicating better performance. In the worst case, e.g.,

no face is tracked in a sequence, all bins except the last one equal to zero yielding a score of 1
k
.

On the other hand, the score equals one if all frames fall in the first bin.

0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1 5.7
0

0.2

0.4

0.6

0.8

1

RMS Error

D
at

a 
Pr

op
or

tio
n

DDF Dataset

SDM
GSDM

×10−2 0.3 0.9 1.5 2.1 2.7 3.3 3.9 4.5 5.1 5.7
0

0.2

0.4

0.6

0.8

1

RMS Error

D
at

a 
Pr

op
or

tio
n

NDS Dataset

SDM
GSDM

×10−2

Figure 4.16: Performance comparison between SDM and GSDM in terms of CEH on DDF dataset (left)
and NDS dataset (right).

In the experiments, both the SDM and GSDM algorithms are trained on MPIE [40] and a
subset of LFW [45]. We use CEH to measure the performance of each tracker, and k = 10 and
the max error is set to be 0.06. A face detector (OpenCV [16] in our case) is called once the
tracker is lost and the tracker is not re-initialized until a valid face is detected. No manual effort
is involved to re-initialize both trackers. Fig. 4.16 shows CEHs between SDM and GSDM in both
datasets. GSDM is able to track more frames and provides more accurate landmark prediction
than SDM. Both algorithms have significant performance drop-off in NDS dataset because of the
noisy, low resolution images and heavy occlusion introduced by the sunglasses. Additionally,
images in NDS dataset are significantly different than the ones in our training set. Example
results can be found in Fig. 4.17 or from the link below6. Our C++ implementation averages
around 8ms per frame, tested with an Intel i7 3752M processor.

4.6 3D Pose Estimation
This section reports the experimental results on extrinsic camera calibration using GSDM and a
comparison with SDM and the widely popular POSIT method [33].

The experiment is set up as follows. We selected three different meshes of 3D objects: a cube,
a face, and a human body7 (see Fig. 4.18). In the training of GSDM, we follow a similar partition
strategy introduced in Section 3.3.2. Each dimension in the parameter space is independent of
each other so no dimension reduction is needed. DHD are found by splitting the parameter space
according to three rotation angles. Each domain within DHD occupies an octant in R3. It gives
us eight DMs to learn in every iteration and the number of iterations for both SDM and GSDM
are set to be 10. In testing, unlike in the tracking application where we can use the previous

6http://goo.gl/EGiUFV
7www.robots.ox.ac.uk/˜wmayol/3D/nancy_matlab.html
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Figure 4.17: Tracking results from GSDM on the DDF dataset (top three rows) and NDS dataset (bottom
three rows).

frame information as an approximation of x∗, we iterate through all DMs and uses the one that
returns the minimum reprojection error.

We placed a virtual camera at the origin of the world coordinates. In this experiment, we set
the focal length (in terms of pixels) to be fx = fy = 1000 and principle point to be [u0, v0] =
[500, 500]. The skew coefficient was set to be zero. The training and testing data were generated
by placing a 3D object at [0, 0, 2000], perturbed with different 3D translations and rotations. The
POSIT algorithm does not require labeled data. Three rotation angles were uniformly sampled
from −60◦ to 60◦ with increments of 10◦ in training and 7◦ in testing. Three translation values
were uniformly sampled from -400mm to 400mm with increments of 200mm in training and
170mm in testing. Then, for each combination of the six values, we computed the object’s image
projection using the above virtual camera and used it as the input for both algorithms. White
noise (σ2 = 4) was added to the projected points. In our implementation of SDM, to ensure
numerical stability, the image coordinates [u, v] of the projection were normalized as follows:[
û
v̂

]
=

[
(u− u0)/fx
(v − v0)/fy

]
.

Fig. 4.19 shows the mean errors and standard deviations of the estimated rotations (in degree)
and translations (in mm) for three algorithms. SDM performs the worst among the three because
the parameter space is so large that there not exists a single DM. GSDM overcomes this problem
by partitioning the large space into eight subsets and learning eight DMs. Both GSDM and
POSIT achieve around 1◦ accuracy for rotation estimation, but GSDM is much more accurate
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Figure 4.18: 3D objects used in pose estimation experiments. Units are in millimeters (mm).

θx θy θz tx ty tz

Cube
SDM 5.2± 5.2 8.9± 8.4 10.5± 8.9 18.0± 14.4 18.4± 14.2 129.9± 120.9
GSDM 0.7± 0.7 0.9± 0.9 0.7± 0.7 2.4± 3.1 2.4± 3.1 17.1± 17.3
POSIT 0.8± 0.7 0.9± 0.8 0.7± 0.6 66.5± 48.1 66.3± 51.3 69.4± 50.3

Face
SDM 5.8± 6.2 10.3± 10.4 10.9± 12.4 14.6± 18.1 14.3± 18.7 123.4± 132.9
GSDM 0.8± 1.0 1.1± 1.2 0.9± 1.0 2.5± 8.3 2.4± 7.8 18.9± 19.8
POSIT 1.5± 1.3 1.9± 1.7 1.5± 1.3 28.6± 24.4 32.5± 22.8 47.3± 36.8

Body
SDM 3.0± 4.4 4.4± 6.1 4.7± 6.9 12.1± 20.5 12.3± 20.7 101.3± 134.2
GSDM 0.6± 0.1 0.7± 0.1 0.8± 0.1 0.3± 0.8 0.3± 0.9 1.5± 3.9
POSIT 0.6± 0.6 2.5± 2.6 1.1± 0.9 38.0± 22.1 28.5± 27.2 37.8± 30.9

Figure 4.19: Performance comparison among GSDM, SDM, and POSIT algorithms on estimating 3D
object pose. Rotation (in degree) and translation (in mm) errors and their standard deviations.

for translation. This is because POSIT assumes a scaled orthographic projection, while the true
image points are generated by a perspective projection.
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Chapter 5

Conclusions and Future Directions

“A paper is accepted or rejected before it
is ever submitted.”

X. X.
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5.1 Conclusions

In this dissertation, we focus on solving NLS problems using a supervised approach. In par-
ticular, we developed a Supervised Descent Method, performed thorough theoretical analysis of
this approach, and demonstrated its effectiveness on optimizing analytic functions and solving
four other real-world applications, Inverse Kinematics, Rigid Tracking, Face Alignment (frontal
and multi-view), 3D Object Pose Estimation. In the following, we conclude this thesis with a
summary of our contributions and the method’s limitations.

5.1.1 Contributions

Below, we list our contributions:
• Theoretical analysis of (G)SDM:

We introduced and validated a novel concept, generic DM, from which we developed a
practical algorithm SDM for minimizing NLS functions. Later, we derived the conditions
under which SDM will converge. For functions with multiple local minima, we extended
the concept of DM and proved that there existed a finite partition of the function domain
such that a separate DM existed within each subset. Finally, we established the connection
between SDM and Imitation Learning (IL). More explicitly, DM can be interpreted as an
optimization policy in the context of IL.

• Applications of (G)SDM:
We focused on the applications that can be formulated into a NLS problem. They can be
grouped into three categories depending on the information on y∗.
In Rigid Tracking, the template y∗ is given in testing and the same one is used for training
SDM. SDM was able to take advantage of more robust features, such as, HoG and SIFT.
Those non-differentiable image features were out of consideration of previous work [6, 58]
because they relied on gradient-based methods for optimization.
In Inverse Kinematics, the desired position y∗ is given in testing but different from those
we have used for training SDM. In Section 2.1.5, we developed a generalized version
of SDM to address this case and achieved significantly better convergence than gradient-
based approaches. The problem of Object Pose Estimation falls in the same category.
In Face Alignment, the template y∗ is unknown in testing. SDM introduced an additional
bias term to learn an average template that replaces y∗. SDM achieved state-of-the-arts
results in facial feature detection and tracking. Moreover, it was extremely computationally
efficient, which makes it applicable for many mobile applications. In addition, GSDM was
developed to handle the multi-view case where large pose variations are expected.

• A unified framework for sequential prediction algorithms:
We reviewed seven representative methods on sequential prediction and discussed the dif-
ferences between each of them and SDM. Then, we provided a unified view of all methods
including SDM as a sequence of function compositions.

• Dataset and software:
We built a challenging public dataset and also proposed an evaluation protocol for bench-
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marking facial feature tracking methods. To the best of our knowledge, this was the first
public dataset for evaluating facial feature tracking on profile-to-profile faces. We in-
tegrated the SDM-based tracker into IntraFace, a free software package for facial image
analysis research. The software had accumulated 4800 downloads in eight months that was
active, and it had proven useful for many researchers working on facial image analysis.

5.1.2 Limitations
Here is a list of SDM’s limitations:
• The convergence of (G)SDM may be slow for certain functions. In our experiments of

Inverse Kinematics, GSDM took thousands of iterations to converge. In this case, we
proposed a Hybrid Descent Method where the first few iterations of (G)SDM were used to
provide a better initialization for gradient-based methods.

• The optimal partition strategy for GSDM is unclear. In Section 2.1.6, we derived a simple
partition strategy that guaranteed the convergence of GSDM. However, it was not practi-
cal due to the following two problems: x∗ was unknown in testing time and the number
of DMs needed was exponential to the dimension of the optimizing parameters. We de-
veloped two approximations to address those issues. For example, for high-dimensional
functions we first projected the input variables onto their first few principal components. In
tracking applications, we approximated x∗ using the prediction from the previous frame.
The optimality of these two approximations remains unclear.

• For functions with multiple global optima, gradient-based methods may be a better choice
as they will converge to one of local minima because they are local methods. GSDM
addresses this issue by creating a partition where a unique solution is guaranteed within
each subset. However, as stated above the optimal partition strategy remains unclear.

• The learned DMs are object-specific. For example, if SDM is trained on face images it
cannot be used to align non-face objects, even in the case where two objects may share the
same number of landmarks.

5.2 Future Directions
In this section, we discuss possible potential extensions and future research directions on SDM
and other sequential prediction methods.

5.2.1 SDM
Here are some of the unanswered algorithmic questions on SDM:
• How to handle non-convex constraints?

In Section 4.2, we showed that a simple clipping step can be added to SDM to incorporate
convex constraints. It is unclear what extra steps are needed if the constraints are non-
convex. One can still project the violating samples back to the legal region but projecting
onto a non-convex set is not straightforward.
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• How to generate training samples from a constrained set?
In Sections 4.1 and 4.2, the training data was generated from a region where a unique so-
lution was guaranteed. For parametric functions, such guarantee is encoded in the signs of
the Jacobian determinant (if the Jacobian is not a square matrix, we use the determinants of
all its minors instead). For non-differentiable functions, it is unclear how we can generate
training samples to satisfy such guarantee.

• What is next for face alignment?
In our current system, most failure cases are caused by occlusion. This may be fixed by
learning a robust feature representation through a CNN. However, tremendous amount of
the training labels are required for training a complex network. Also, for face alignment the
labeling task is significantly more time consuming than others. The current public datasets
are in the order of thousands. One may investigate learning a mixture of other tasks com-
bined with face alignment [105], such as, facial attributes recognition, face recognition.

We think the following theoretical questions are worth of investigating:
• Can we prove that learning a sequence of DMs will converge?

In this thesis, we derived the conditions under which SDM will converge using a single
DM. In the proof, we assumed that the initial samples were uniformly distributed in the
neighborhood of x∗ and the DM was found at the beginning by minimizing the maximum
error of all samples. That is, we took the most conservative step in each iteration. In
practice, we observed that samples were likely to form a very different distribution than
the one in the previous iteration. Relaxed SDM learned a separate DM in each iteration to
take advantage of this observation. This strategy yielded faster convergence in practice.

• Can we provide a probability bound on the convergence of an unseen sample using SDM?
In Supervised Learning, the test error can be bounded by the training error using statistical
analysis. One can adapt a similar proof from the area of regression to bound the con-
vergence in SDM. The difference is that SDM involves a sequence of regressions where
the current learner depends on the previous outputs. This may increase the difficulty of
theoretical analysis.

5.2.2 Sequential Prediction
In Section 2.2, we reviewed seven different methods on sequential prediction and showed that all
of them could be reformulated as a sequence of function compositions.

Sequential prediction goes beyond any particular application. The classical computer vision
pipeline can be interpreted as a sequence of function compositions: from image preprocessing,
to feature extraction, to dimension reduction, and finally to classification/regression. Each sub-
module is an individual function that takes the outputs from the previous step. However, each
step within this pipeline is independent from each other and it is not optimized for the final goal.
Consider the following example of image recognition:

fSVM ◦ fPCA ◦ fSIFT ◦ fhist eq(I)→ y.

The image I is first preprocessed with histogram equalization, next SIFT descriptors are extracted
from the normalized image, then PCA is performed to reduce the dimensionality of the SIFT
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features before finally fed into a SVM classifier. Histogram equalization tries to increase the
global contrast of an input image by effectively spreading out the most frequent intensity values.
SIFT, a carefully engineered descriptor, is designed for finding and matching interest points, and
later often used for object detection and recognition. PCA is a popular algorithm for reducing
the dimensionality of the data by finding a linear transformation of the data that preserves its
variability as much as possible. It is arguable whether any of these objectives has any correlation
with the ultimate goal (e.g., classification error). A better approach would be treating each step
as a parametric function with parameters to be learned. The parameters should be learned by
directly minimizing the loss on your ultimate task. Convolutional Neural Network (CNN) [51,
53, 86, 87] is an successful example of the above idea. Not surprisingly, it outperformed the
traditional pipeline by a large margin.

Sequential prediction is preferable to inference on a single complex model. Instead of mod-
eling your problem with a single function with millions of parameters (infinite in the case of
nonparametric methods), function composition provides a powerful tool to represent the same
complexity but with potentially less parameters. The number of possible combinations grows
exponentially with the number of layers (iterations) and the choices of base functions. Future
directions of research may include:

1. Analyze compositional behaviors of functions. For example, what is the representational
power if only logistic function is used?

2. How we design complimentary base functions such that their compositions can be more
powerful?

3. Should one prefer more stages or more powerful base functions?

4. There are only 115 different types of atom in the universe. Think each atom type as a
different base function and all the matter surrounding us as functions can be modeled.
How do we find those “atom” functions?
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Appendix A: Proofs
Theorem 1. If the function h(x) satisfies the following two conditions:

1. h(x) is monotonic at the minimum x∗,
2. h(x) has Lipschitz constant K at x∗,

then there exists a generic DM.

Proof. Without loss of generality, we assume that h(x) is monotonically increasing, and that
h(xk) 6= h(x∗). Otherwise, the optimization has reached the minimum. x∗ is an arbitrary point
in the monotonic region and h(x∗) is a known scalar. In the following, we use ∆xk to denote
x∗ − xk and ∆hk to denote h(x∗)− h(xk). We want to find a r such that

|∆xk|
|∆xk−1|

< 1, if x∗ 6= xk−1. (1)

We replace xk with xk−1 using Eq. 2.3 and the left side of Eq. 1 becomes

|∆xk|
|∆xk−1|

=
|∆xk−1 − r∆hk−1|

|∆xk−1|
=
|∆xk−1(1− r∆hk−1

∆xk−1
)|

|∆xk−1|

=
|∆xk−1||1− r∆hk−1

∆xk−1
|

|∆xk−1|
=

∣∣∣∣1− r
∆hk−1

∆xk−1

∣∣∣∣ =

∣∣∣∣1− r
|∆hk−1|
|∆xk−1|

∣∣∣∣ . (2)

The last step is derived from condition 1. Denoting |∆hk−1|
|∆xk−1| as Kk−1 and setting Eq. 2 < 1 gives

us

−1 < 1−rKk−1 < 1

⇒ 0 < r <
2

Kk−1

. (3)

From condition 2, we know that Ki
k−1 ≤ K. Any 0 < r < 2

K
will satisfy the inequalities in

Eq. 3, and therefore, there exists a generic DM. Similarly, we can show 0 > r > − 2
K

is a generic
DM when h(x) is a monotonically decreasing.

Theorem 2. If the function h(x) satisfies the following two conditions:
1. h(x) is monotonic over the domain X ,
2. h(x) has Lipschitz constant K over X ,

then there exists a generic DM over X .

Proof. The theorem can be derived following the same proof above.

Theorem 3. If function h(x) satisfies the following two conditions:
1. g(x) = Rh(x) is a monotone operator at the minimum x∗,
2. h(x) has Lipschitz constant K at x∗,

then R is a generic DM.
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Proof. To simplify the notation, we denote x∗ − x as ∆x, h(x∗)− h(x) as ∆h, and use ‖x‖ to
represent the L2 norm. We want to show that there exists R such that

‖x∗ − xk‖
‖x∗ − xk−1‖

< 1, if x∗ 6= xk−1. (4)

We replace xk with xk−1 using Eq. 6 and squaring the left side of Eq. 4 gives us

‖∆xk‖2

‖∆xk−1‖2
=
‖∆xk−1 −R∆hk−1‖2

‖∆xk−1‖2
=
‖∆xk−1‖2

‖∆xk−1‖2
+
‖R∆hk−1‖2

‖∆xk−1‖2
− 2

∆x>k−1R∆hk−1

‖∆xk−1‖2

= 1 +
‖R∆hk−1‖
‖∆xk−1‖2

(
‖R∆hk−1‖ − 2∆xi

>

k−1

R∆hk−1

‖R∆hk−1‖

)
. (5)

Setting Eq. 5 < 1 gives us,

‖R∆hk−1‖ ≤ 2∆x>k−1

R∆hk−1

‖R∆hk−1‖
(6)

Condition 1 ensures that ∆x>k−1R∆hk−1 > 0. From the geometric definition of dot product, we
can rewrite the right side of the inequality 6 as,

2∆x>k−1

R∆hk−1

‖R∆hk−1‖
= 2‖∆xk−1‖ cos θ,

where θ is the angle between vectors ∆xk−1 and R∆hk−1. Using condition 2 we have

2‖∆xk−1‖ cos θ ≥ 2

K
‖∆hk−1‖ cos θ (7)

From the Cauchy-Schwartz inequality,

‖R∆hk−1‖ ≤ ‖R‖F‖∆hk−1‖. (8)

Given the inequalities in Eqs. 7 and 8, the condition that makes Eq. 6 hold is,

‖R‖F ≤
2

K
cos θ.

Any R whose ‖R‖F < 2
K

min cos θ gaurantees the inequality stated in Eq. 4. Therefore, there
exists a generic DM.

Theorem 4. If function h(x) satisfies the following two conditions:
1. g(x) = Rh(x) is a monotone operator over a domain X ,
2. h(x) has Lipschitz constant K over X ,

then R is a generic DM over X .

Proof. The theorem can be derived following the same proof above.

Theorem 5. If h(x) has Lipschitz constant K at the minimum x∗, there exists a finite partition
of domain x, S = {St}T1 , such that ∀x ∈ St, there exists a generic DM Rt.
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Proof. To simplify the notation, we denote x∗−x as ∆x and h(x∗)−h(x) as ∆h. We will prove
the above theorem by finding a specific partition with its corresponding DMs. Let us consider
a partition strategy based on the signs of ∆xj∆hj . Each sign can take on two values ±1 and
j ranges from 1 to min(n,m). Each subset of this partition contains x that satisfy one of the
2min(n,m) unique conditions. Without loss of generality, let us derive the DM for the subset S0

where ∀j, sign(∆xj∆hj) = 1. We want to show that there exists a R such that

‖x∗ − xk‖
‖x∗ − xk−1‖

< 1, if x∗ 6= xk−1. (9)

We replace xk with xk−1 using Eq. 2.5 and squaring the left side of Eq. 9 gives us,

‖∆xk‖2

‖∆xk−1‖2
=
‖∆xk−1 −R∆hk−1‖2

‖∆xk−1‖2
=
‖∆xk−1‖2

‖∆xk−1‖2
+
‖R∆hk−1‖2

‖∆xk−1‖2
− 2

∆xi
>

k−1R∆hk−1

‖∆xk−1‖2

=1 +
‖R∆hk−1‖
‖∆xk−1‖2

(
‖R∆hk−1‖ − 2∆xi

>

k−1

R∆hk−1

‖R∆hk−1‖

)
. (10)

Setting Eq. 10 < 1 gives us,

‖R∆hk−1‖ ≤ 2∆xi
>

k−1

R∆hk−1

‖R∆hk−1‖
. (11)

The choice of R needs to guarantee that the right side of Eq. 11 is greater than zero. Remember
that in subset S(0) sign(∆xj∆hj) = 1,∀j. A trivial R would be cD, where c > 0 and D is a
rectangular diagonal matrix with the diagonal elements equal to 1. From the geometric definition
of dot product, we can rewrite the right side of the inequality 11 as,

2∆xi
>

k−1

R∆hk−1

‖R∆hk−1‖
= 2‖∆xk−1‖ cos θi,

where θi is the angle between vectors ∆xk−1 and R∆hk−1. Using the condition that h(x) has a
Lipschitz constant K at x∗ ,we have

2‖∆xk−1‖ cos θi ≥ 2

K
‖∆hk−1‖ cos θi. (12)

From the Cauchy-Schwartz inequality,

‖R∆hk−1‖ ≤ ‖R‖F‖∆hk−1‖. (13)

Given the inequalities in Eqs. 12 and 13, the condition that makes Eq. 11 hold is,

‖R‖F =
√
c‖D‖F =

√
c ≤ 2

K
cos θi. (14)

Any R = cD where
√
c < 2

K
mini cos θi guarantees the inequality stated in Eq. 9. Therefore,

there exists a generic DM for subset S(0). For other subsets in the partition a general choice of
D has the entries

dij =

{
0 if i 6= j
sign(∆xij,k−1∆hij,k−1) Otherwise.

Following the same proof we can easily show DM exist for other subsets in the partition.
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Appendix B: Derivatives on Analytic Functions

f(x) f ′ f ′′
1
2(sin(x)− y)2 (sin(x)− y) cos(x) cos2(x)− sin2(x) + sin(x)y

1
2(x

3 − y)2 (x3 − y)3x2 15x4 − 6xy
1
2(e

x − y)2 (ex − y)ex 2e2x − exy
1
2(x

−1 − y)2 −(x−1 − y)x−2 3x−4 − 2x−3y

h(x) =

[
2x1x2

5x1 − x2
2

]

f(x) = 1
2

∥∥∥∥
[
h1

h2

]
−
[
y1
y2

]∥∥∥∥
2

Jf (x) =

[
2x2(h1 − y1) + 5(h2 − y2)
2x1(h1 − y1)− 2x2(h2 − y2)

]�

Hf (x) =

[
4x2

2 + 25 8x1x2 − 2y1 − 10x2

8x1x2 − 2y1 − 10x2 4x2
1 + 6x2

2 − 10x1 + 2y2

]

h(x) =

[
cos(x1)x2

sin(x1)x2

]

f(x) = 1
2

∥∥∥∥
[
h1

h2

]
−
[
y1
y2

]∥∥∥∥
2

Jf (x) =

[
−h1x2 sin(x1) + h2x2 cos(x1)

h1 cos(x1) + h2 sin(x1)

]�

Hf (x) =

[
x2y1 cos(x1) + x2y2 sin(x1) y1 sin(x1)− y2 cos(x1)
y1 sin(x1)− y2 cos(x1) 1

]

h(x) =

[
ex1 + x2

2

x2
1x2

]

f(x) = 1
2

∥∥∥∥
[
h1

h2

]
−
[
y1
y2

]∥∥∥∥
2

Jf (x) =

[
ex1(h1 − y1) + 2x1x2(h2 − y2)
2x2(h1 − y1) + x2

1(h2 − y2)

]�

Hf (x) =

[
ex1(2ex1 + x2

2 − y1) + 6x2
1x

2
2 − 2x2y2 2ex1x2 + 2x1(2x

2
1x2 − y2)

2ex1x2 + 2x1(2x
2
1x2 − y2) 2ex1 + 6x2

2 − 2y1 + x4
1

]

Figure 1: The first and second derivatives of analytic functions used in experiments 4.1.
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Appendix C: Algorithms

Algorithm 1: SDM training
input : maxIter,x∗,x0, λ
output: {rk}
k ← 1;
y∗ ← h(x∗);
while k < maxIter do

∆x∗ ← x∗ − xk;
∆y∗ ← y∗ − h(xk);
c← ∆y∗ ·∆y∗;
λ′ ← cλ;
rk ← ∆y∗·∆x∗

c+λ′
;

xk ← xk−1 + rk∆y∗;
k ← k + 1;

end

Algorithm 2: SDM testing
input : maxIter,y∗,x0

output: xk

k ← 1;
while k < maxIter do

∆x← xk − xk−1;
∆y∗ ← y∗ − h(xk);
xk ← xk−1 + rk∆y∗;
k ← k + 1;

end

Figure 2: Training and testing algorithms of SDM for minimizing 1D analytic functions.

Algorithm 3: GSDM training
input : maxIter,x∗,x0, λ
output: {rk}
k ← 1;
y∗ ← h(x∗);
while k < maxIter do

∆x← xk − xk−1;
∆x∗ ← x∗ − xk;
∆y∗ ← y∗ − h(xk);
[S1, S2]← dhd 1d(∆x,∆y∗);
for i← 1 to 2 do

c← ∆ySi∗ ·∆ySi∗ ;
λ′ ← cλ;

rik ← ∆y
Si
∗ ·∆x

Si
∗

c+λ′
;

xSi
k ← xSi

k−1 + rik∆ySi∗ ;
end
k ← k + 1;

end

Algorithm 4: GSDM testing
input : maxIter,y∗,x0

output: xk

k ← 1;
while k < maxIter do

∆x← xk − xk−1;
∆y∗ ← y∗ − h(xk);
[S1, S2]← dhd 1d(∆x,∆y∗);
for i← 1 to 2 do

xSi
k ← xSi

k−1 + rik∆ySi∗ ;
end
k ← k + 1;

end

Algorithm 5: function dhd 2d
input : ∆y∗,∆x
output: {S1, S2}
S1 ← find(∆x ◦∆y∗ > 0);
S2 ← find(∆x ◦∆y∗ ≤ 0);

Figure 3: Training and testing algorithms of GSDM for minimizing 1D analytic functions.
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Algorithm 6: GSDM training
input : maxIter,X∗,X0, λ
output: {Rk}
k ← 1;
Y∗ ← h(X∗);
while k < maxIter do

∆X← Xk −Xk−1;
∆X∗ ← X∗ −Xk;
∆Y∗ ← Y∗ − h(Xk);
{Si}4

i=1 ← dhd 2d(∆X,∆Y∗);
for i← 1 to 4 do

Σ← ∆YSi∗ ∆YSi∗
>

c← trace(Σ);
λ′ ← cλ;
rik ← ∆YSi∗ ∆XSi∗

>
(Σ + λ′I)−1;

XSi
k ← XSi

k−1 + Ri
k∆YSi∗ ;

end
k ← k + 1;

end

Algorithm 7: GSDM testing
input : maxIter,Y∗,X0

output: xk

k ← 1;
while k < maxIter do

∆X← Xk −Xk−1;
∆Y∗ ← Y∗ − h(Xk);
{Si}4

i=1 ← dhd 2d(∆X,∆Y∗);
for i← 1 to 4 do

XSi
k ← XSi

k−1 + Ri
k∆YSi∗ ;

end
k ← k + 1;

end

Algorithm 8: dhd 2d function.
input : ∆Y∗,∆X
output: {Si}4

i=1

for i← 1 to 2 do
wi ← ∆xi ◦∆y∗i;

end
S1 ← find(w1 < 0 ∧w2 < 0);
S2 ← find(w1 < 0 ∧w2 ≥ 0);
S3 ← find(w1 ≥ 0 ∧w2 < 0);
S4 ← find(w1 ≥ 0 ∧w2 ≥ 0);

Figure 4: Training and testing algorithms of GSDM for minimizing 2D analytic functions. The same
algorithms are also used in Section 4.2 for Inverse Kinematics.
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