




3

Acknowledgments

Were I to follow my own recommendations in this re-
search, there would exist some script to automatically 
generate and simulate these written acknowledgments. 
Instead, what follows is a decidedly non-computational 
expression of my gratitude.

First and foremost, thanks belongs to my advisor Daniel 
Cardoso Llach, who welcomed me into this program, pro-
vided research opportunities, and encouraged and guided 
me throughout the thesis process (not to mention shaping, 
through his own work, much of the theoretical background 
here). My thesis committee members also deserve thanks. 
Molly Wright Steenson drew my attention to cybernetic dis-
courses in architecture and design, as well as highlighting 
pedagogical models relevant to the computational design 
thinking framework. And Stuart Candy helped shape my 
view of simulation in the context of futuring, as an explor-
atory, speculative design method.

This thesis also could not have been completed without 
the cooperation of the various people I interviewed, whose 
work has been deeply inspiring and central to the ideas I 
put forward here. In addition, the participants in the vari-
ous design workshops I conducted helped shape the case 
studies in the Generating and Simulating chapters.

I thank my peers in the M.S. Computational Design pro-

gram: Javier Argota, Adie Al-Nobani, Camille Baumann-Jae-
ger, Hetian (Darcy) Cao, Cecilia Ferrando, Atefeh Mahdavi 
Goloujeh, Yuqian Li, Yingxiu Lu, Rachael Tang, and George 
Zhu, for their collegiality and support. In particular, I’m 
grateful for attending ACADIA 2016 with Javier, Camillie, 
and Cecilia, and to Atefeh for being my partner in con-
ducting the design workshop I describe in the Simulating 
chapter (I especially look forward to Atefeh’s upcoming 
thesis on participatory simulations). Outside of my cohort, 
I appreciate conversations in and around the CodeLab 
with Ardavan Bidgoli, Pedro Veloso, Harshvardhan Kedia, 
Ian Friedman, and others, as well as with Dan Taeyoung of 
Columbia GSAPP.

I’m grateful to my parents, Pam Parker and William Don-
aldson, for putting up with (and usually supporting) my 
many shifts, from mathematics to art in undergrad, from 
web development to architecture, and now to computation-
al design. I can’t promise that the future will be any more 
linear, but I look forward to sharing it with them.

Finally, this thesis is dedicated to my wife and enduring 
partner, Lisa Otto, who has been my greatest supporter 
personally and emotionally (and whose own design re-
search and ideas have and continue to contribute to my 
intellectual growth). Lisa, I look forward to designing our 
future together.



4

Abstract 5
Introduction 6

Personal History 6
Background 7
Methods 11

Computational Design Thinking Framework 15
Generating 16

Overview 16
Rulemaking 16
Exploring (or, Searching) 18
Automating 19
Case Study: Worldmaking 21

Background 21
Participants 23
The Silent Game 23
The Reference Game 25
Discussion 27

Conclusion 29
Simulating 30

Overview 30
Emerging 31
Futuring 33
Case Study: Reimagining Urban Intersections 35

Introduction 36
Participants 36

Contents

Activity 1: Negotiating an Intersection 36
Activity 2: Generating Factors and  
     Affinity Diagramming 37
Activity 3: Loopy 38
Activity 4: Design Interventions 39
Findings 39
Future Work 41

Conclusion 42
Interrogating 43

Overview 43
Hacking 44
Unlearning 46
Transforming 47
Case Study: Coons Patch Reconstruction 49

Background 49
Interface 49
Discussion 50

Conclusion 51
Conclusion 53

Contributions 53
Discussion & Future Work 53

Appendix 56
Interview Subjects 56
Bibliography 57



5

Abstract

Computational design is often depicted as an instrument 
for analysis or production, but it is also a space in which to 
explore and create new ways of working and thinking. This 
thesis explores how, through critically engaged practice, 
designers working computationally are uniquely able to 
envision and work toward desirable futures, challenging a 
techno-utopian status quo and projecting humane alterna-
tives. What computational design methods, approaches, 
and strategies can help to bring about these desirable 
futures? 

Through primary research involving interviews with com-
putational design practitioners, developing interactive 
software prototypes as investigative tools, and conducting 
design workshops, I investigate various modes of working 
computationally. Building on this research, I propose a 

three-part framework that synthesizes high-level approach-
es to computational design work. The first component, 
generating, reveals how computation enables the designer 
to work at various levels of abstraction, navigating large 
possibility spaces. The second, simulating, provides a 
frame for envisioning and modeling potential interven-
tions in complex systems. Finally, interrogating, drawing 
from both Schön’s ‘reflective practice’ and Wark’s ‘hacker 
ethos,’ encourages computational designers to critically 
question their tools and practices in order to discover new 
ways of working and thinking. I conclude by discussing 
potential embodiments of this framework in computational 
design education.
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Introduction

Personal History

I was in the second semester of a 3-year Master of Ar-
chitecture program and was struggling. I had been ac-
cepted into the program a few years out of a liberal arts 
undergrad, and, having spent most of the intervening time 
working as a web designer and developer, considered it 
a pivotal shift for me. Architecture culture was, however, 
completely unfamiliar. In drawing and representation 
courses, as well as the core studio, I was continually frus-
trated by the seemingly arbitrary nature of architectural 
form, and perceived a lack of scientific rigor in analyzing 
and solving design problems through it. Architecture de-
fied the systematic rationalization I was used to in digital 
design contexts. So I gravitated toward projects where I 
could apply my background in math and programming to 
architectural design — for example, representing the paths 
of a city park with an undirected graph structure, building 
a custom software tool to generate rectilinear forms from 
sketches, and likening the functioning of spaces in a build-
ing design to ‘cooperative parallelism’ (as in multithreaded 
computing). Of course, a park is not a graph, and a build-
ing is not a computer, but these metaphors helped me to 
comprehend the world of architecture — and made me a 
misfit among aspiring architects.

Not long after my decision to take a leave of absence from 

the M.Arch. program, I discovered the Computational De-
sign track at Carnegie Mellon University and enrolled. Here 
was a world of people whose work and research didn’t fit 
neatly into the traditional disciplines, who were using com-
putation and digital technology not only as instruments 
for doing design, but as lenses and metaphors for design, 
and as areas to be explored, to bring back new ways of 
thinking and designing. The Master of Science in Compu-
tational Design program has given me a wide latitude for 
my research, and the opportunity to take courses from 
architecture and computer science, design and human-
computer interaction, all under a multidisciplinary um-
brella. Through it I have come to see computational design 
(like architecture) as an openly promiscuous field, borrow-
ing from diverse disciplines, with the potential to apply its 
approaches to larger questions of technology, design, and 
society.

In this thesis, my aim is to bring together the methods, 
techniques, and strategies of computational design that 
are particularly oriented toward addressing problems of 
social complexity, and that provide productive frames for 
thinking about and doing design. My hope is that this work 
will combine the most fruitful practices of both computa-
tion and design, and in doing so, show that these worlds 
are not at all disparate, but significantly overlap. My goal is 
to provide illustrative approaches for those with a compu-
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tational mindset interested in learning to work in ambi-
guity and socio-technical systems as well as designers 
who want to incorporate computation into their practices 
without giving up their unique, human role.

Background

Although mathematical practices in design extend to antiq-
uity (Vitruvius wrote extensively on proportion and symme-
try in Ten Books on Architecture1), a potential genesis of 
computational design might be traced to Ivan Sutherland’s 
1963 PhD dissertation, Sketchpad2. Now widely recog-
nized as the first computer-aided design program, Sketch-
pad presented not just a new platform for designing, but 
a new paradigm for designing. A digital representation 
of points, lines, and shapes decoupled from drawings or 
physical models promised a new mode of plasticity for the 
architectural designer. By visualizing and manipulating 
objects in digital space through a computer interface, the 
designer gained a detached, abstracted view of their work. 
Sutherland and his fellow researchers were fully aware of 
(and striving toward) the transformative potential of their 
work, a history charted by computational design scholar 

1 Pollio, Vitruvius. Vitruvius: The ten books on architecture. Harvard University 
Press, 1914.
2 Sutherland, Ivan E. “Sketchpad: a man-machine graphical communication 
system.” Transactions of the Society for Computer Simulation 2, no. 5 (1964): 
R-3.

(and my master’s thesis advisor) Daniel Cardoso Llach in 
his 2015 book Builders of the Vision: Software and the 
Imagination of Design.3 Notably, Sutherland’s PhD advi-
sor, mathematician and designer Steven A. Coons, in a 
paper published the same year as Sutherland’s disserta-
tion, wrote: “The design process is unpredictable. Indeed 
part of the design process consists in designing new ways 
to perform the design function itself”4 [emphasis mine]. 
Sketchpad was never used in industry, but succeeded in 
projecting the future of computational design. While tech-
nology has advanced greatly in terms of efficiency, ease of 
use, and computational power, the innovative features of 
Sketchpad remain central to 3-dimensional modeling and 
computer-aided design software today.

However, with increasingly powerful computation came 
an ethos that declared that the driving force behind new 
design possibilities was technology alone. Philosophically, 
Coons, as well as his student Nicholas Negroponte (found-
er of the MIT Media Lab and the One Laptop per Child ini-
tiative), were highly optimistic about the role of technology 
in driving the future. For example, as detailed by designer 
and historian Molly Wright Steenson in Architectural Intel-

3 Cardoso Llach, Daniel. Builders of the vision: Software and the imagination 
of design. Routledge, 2015.
4 Coons, Steven Anson. “An outline of the requirements for a computer-aided 
design system.” In Proceedings of the May 21-23, 1963, spring joint computer 
conference, pp. 299-304. ACM, 1963.
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ligence: How Designers, Tinkerers, and Architects Created 
the Digital Landscape, Negroponte envisioned “an [artifi-
cially] intelligent environment that we would all eventually 
inhabit and that would eventually surround all of us.”5 
Outside of architecture discourse, futurists such as Ray 
Kurzweil see the history and future of humanity as deter-
mined by technological advances, proceeding predictably 
and mechanistically, without critically considering the 
social and political forces at play. Computer scientist Ste-
phen Wolfram, in his 2002 book A New Kind of Science 
promotes the notion that computational processes might 
replace the traditional, analytical scientific method. In turn, 
adapting Wolfram’s ideas to the world of architectural 
design, historian Mario Carpo writes of a ‘Second Digital 
Turn’ in architecture, following the widespread adoption of 
digital practices in the 1980s and ‘90s, wherein designed 
forms can be generated and optimized by algorithms.6 In 
his telling, the future of architectural design is written in 
increased computational efficiency. A view of technology 
as an autonomous force leaves one wondering: What is 
the role of the designer? Is there room for humanism?

As discussed by Cardoso Llach in Builders, a related (but 
distinct) school of thought to technological autonomy is 

5 Steenson, Molly Wright. Architectural intelligence: How designers, tinkerers, 
and architects created the digital landscape, MIT Press, 2017.
6 Carpo, Mario. The second digital turn: Design beyond intelligence. MIT Press, 
2016.

the practical, everyday view that computational technolo-
gies are neutral tools. This theory holds that in archi-
tecture, for example, it is possible to directly translate a 
designer’s vision onto paper or into a digital model, and 
that different design softwares attempt to make this pro-
cess more smooth and seamless. While this view undoubt-
edly places more emphasis on human agency when using 
technology (arguing that architects, not algorithms, design 
buildings), it is equally pernicious in claiming that technol-
ogies do not possess inherent values or biases. Historian 
Leo Marx points to the 19th-century development of a no-
tion of ‘technology’ (constituting not only machines them-
selves but systems of technical and social complexity) as a 
moment which allowed ‘neutral tools’ to “distract[] atten-
tion from the human — socio-economic and political — rela-
tions which largely determine who uses them and for what 
purposes.”7 In particular, as further detailed by Cardoso 
Llach in Builders, discourses of computers and software 
today are driven by frames of autonomy and neutrality, a 
dichotomy which “hides a great deal… By construing soft-
ware systems either as autonomous agents or as neutral 
tools for design, we shut down their politics… [and] their 
poetics… as territories of creative exploration.”

Another, more extreme version of technological determin-

7 Marx, Leo. “’Technology’: The Emergence of a Hazardous Concept.” Social 
Research (1997): 965-988.
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Logical, rationalist thinking about computation and design 
cannot easily tackle problems of significant social com-
plexity. Instead, systems thinking and cybernetic phi-
losophies provide a path toward working with and under-
standing complex systems. Texts such as physicist Fritjof 
Capra’s The Systems View of Life11 describe how the forms 
and affordances of material objects have unpredictable 
effects at scale, in turn being affected by their contexts. 
Environmental scientist Donella Meadows introduces the 
powerful notion of leverage points12 — the idea that, by 
analyzing the systems one is working in, one can predict 
what will be a more successful type of intervention (or at 
what level to intervene). Computationalism points to the 
lowest level in Meadows’ hierarchy of leverage points — 
constants, parameters, numbers — as an adequate site 
of intervention. It suggests that data is objective, and that 
conclusions can be derived from data that translate into 
actionable, instrumental designs to solve well-defined 
problems. For a designer with a notion of working within 
socio-technical systems, this clearly is a gross oversimpli-
fication.

machine communication. Cambridge University Press, 1987.
11 Capra, Fritjof, and Pier Luigi Luisi. The systems view of life: A unifying vision. 
Cambridge University Press, 2014.
12 Meadows, Donella. “Leverage points: Places to intervene in a system,” 
1999.

ism is the cognitive theory of computationalism. As digital 
humanities scholar David Golumbia writes in The Cultural 
Logic of Computation, computationalism is “the view that 
not just human minds are computers but that mind itself 
must be a computer — that our notion of intellect is, at 
bottom, identical with abstract computation.”8 Similarly, in 
their 1986 book Understanding Computers & Cognition, 
Terry Winograd and Fernando Flores carefully situate com-
puters within the rationalistic tradition of thought. Con-
cerned with the design of computer systems, their work 
is deeply relevant to broader design problems (including 
and especially computational design). They write, “An 
understanding of what a computer really does is an under-
standing of the social and political situation in which it is 
designed, built, purchased, installed, and used.”9 Clearly, 
approaches to computational design that avoid the pitfalls 
of both technological autonomy and neutrality must also 
eschew a primarily rationalist worldview. While computers 
are essentially machines that perform logical calculations, 
human interaction with them is socially and materially 
contingent. As anthropologist and human-computer inter-
action researcher Lucy Suchman writes, computers are 
situated in and inextricable from socio-technical systems.10 

8 Golumbia, David. The cultural logic of computation. Harvard University Press, 
2009.
9 Winograd, Terry, and Fernando Flores. Understanding computers and cogni-
tion: A new foundation for design. Intellect Books, 1986.
10 Suchman, Lucy A. Plans and situated actions: The problem of human-
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Fortunately, a body of design and computation research-
ers and scholars are underscoring socio-technical com-
plexity in their work. As mentioned above, Lucy Suchman’s 
notion of situated design technologies provides a strong 
counterargument to the false dichotomy of autonomy and 
neutrality. Design researcher Donald Schön describes the 
act of designing as a ‘reflective practice,’ with the designer 
engaged in a continuous conversation with their materi-
als.13 Together, these theories have been highly instructive 
in formulating the third component of the computational 
design thinking framework put forward in this thesis. In 
addition, historians, scholars, and theorists such as Daniel 
Cardoso Llach, Molly Wright Steenson, Yanni Loukissas, 
Sherry Turkle, Kazys Varnelis, and Tara McPherson pro-
ductively challenge and complicate received narratives of 
computation, architecture, digital technology, and design. 
And practitioners such as Laura Kurgan of Columbia Uni-
versity’s Center for Spatial Research, Taeyoon Choi of the 
School for Poetic Computation, and the Dark Inquiry col-
lective of technologists, artists, and writers, all put forward 
work that critiques existing modes while also projecting 
new ways of being: Desirable, humane futures to strive 
toward. For example, a recent app created by Dark Inquiry, 
called Bail Bloc,14 applies spare computing power on its 

13 Schön, Donald A. The reflective practitioner: How professionals think in 
action. Basic Books, 1984.
14 Bail Bloc, https://bailbloc.thenewinquiry.com/, accessed December 1, 
2017.

users’ laptops to mine cryptocurrency, which is exchanged 
for U.S. dollars on a monthly basis and put toward paying 
onerous bail funds for those awaiting trial. The project 
redirects existing technologies which might otherwise ex-
acerbate inequality toward more egalitarian, just ends.

In addition, two recent and timely events seem to offer 
good omens of things to come. The first is a symposium 
called Computational Design: Practices, Histories, Infra-
structures, held in October 2017 Carnegie Mellon Univer-
sity in Pittsburgh in conjunction with the exhibition Design-
ing the Computational Image: Imagining Computational 
Design.15 Tracing the roots of computational design history 
to mid-20th century work by Coons, Sutherland and oth-
ers, the exhibition also highlighted contemporary work by 
artists, architects, and designers. The symposium brought 
together many of these individuals in a rich series of talks 
and discussions covering their own architecture and de-
sign work and socio-historical examinations of technology 

15 In full disclosure, I was not only an attendee to the symposium and exhibi-
tion, but a research assistant who worked on two interactive software installa-
tions at the gallery, as well as a co-host of a design workshop held the weekend 
of the symposium. Both events were also curated and organized by my thesis 
advisor and M.S. Computational Design track chair, Daniel Cardoso Llach. I 
can’t claim to be an objective observer, but one who was deeply involved with 
the events of both the exhibition and symposium, and who benefited from the 
confluence of work, people, and ideas at them. As such, part of my goal in this 
thesis is to synthesize the conversations I observed and was a part of at these 
events, and to share the knowledge with a broader audience.
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and digital culture. In doing so, as well as by highlighting 
the material foundations of current and historical design 
research, the symposium charted the fluid space of com-
putational design as a field of practice.

The second event is the Cybernetics Conference, held in 
November 2017 in New York City. Hosted by Prime Pro-
duce, a non-profit ‘guild for social good,’ the conference 
aimed to bring “scholars, technicians, activists, and artists 
in dialogue to consider the ways informatic systems shape 
social organization.”16 As if responding to the call made by 
Tara McPherson in her 2012 essay “U.S. Operating Sys-
tems at Mid-Century” for “hybrid practices: artist-theorists; 
programming humanists; activist scholars; theoretical 
archivists; [and] critical race coders,”17 the speakers and 
participants at the Cybernetics Conference are extremely 
difficult to categorize by discipline. The conference’s three 
organizers18 alone do work as diverse as critical digital art, 
game design, social simulation, curatorial research, ge-
nomics, and (of course) event organizing. The conference 
serves as case in point that strong work and research is 
not merely aesthetically interesting or analytically sound, 

16 The Cybernetics Conference, http://cybernetics.social/. Accessed Decem-
ber 1, 2017.
17 McPherson, Tara. “US operating systems at mid-century.” In Race after the 
Internet, 2013.
18 Sam Hart, Melanie Hoff, and Francis Tseng, who are also associated with 
the School for Poetic Computation and Dark Inquiry, both mentioned above.

but challenges the boundaries of disciplines and received 
narratives of technology, information, and society.

We cannot afford to be neutral on the issue of the social 
context of our work. Even the most mundane works em-
body some vision of the future, and designers and technol-
ogists should do everything in their power to ensure that 
it represents a desirable future, or else it can (and will) be 
co-opted for other purposes. Contrary to tenets of tech-
nological determinism, autonomy, and computationalism, 
powerful computation has a productive role to play in the 
creation of designing in complexity, for multiple desirable 
futures. In fact, in this thesis, we will see that computa-
tional designers possess unique abilities in thinking and 
working this way.

Methods

In order to project future ways of working, it is necessary 
to understand how and why designers and technologists 
work the way they do today. However, I am not attempt-
ing a broad survey of styles and techniques. Rather, I am 
interested in close research with people who exhibit posi-
tive deviance. As described in a 2009 sociological article 
on the subject, positive deviance is “the observation that 
in most settings a few... individuals follow uncommon, 
beneficial practices and consequently experience better 
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outcomes than their neighbours.”19 Toward the ends of 
this thesis, I am interested in artists, architects, design-
ers, and technologists whose work may not lead to ‘better 
outcomes’ according to traditional, capitalist definitions 
(they won’t be showing up on the cover of magazines, for 
example), but who operate outside of the norm and project 
unique, provocative futures. I sought out such individuals 
in order to understand their work, and more importantly, 
how and why they work and think the way they do.

Over this summer and fall, I have conducted nine one-
hour interviews with subjects working in architecture, 
design, technology, and art (although most lack a job title 
identifying them explicitly with one of those fields). Again, 
were I to be studying these fields writ large, nine people 
would be an insufficient sample size to examine. Instead, 
my investigation into these interviews is presented as a 
close study of a small group that is not representative, 
but which might lead to general insights. The interview 
subjects include architectural designers, software devel-
opers, game designers, graphic designers, digital artists, 
technologists, and students (with significant overlap and 
blurring of professional lines). All of the subjects are young 
(in their 20s or early- to mid-30s), and at the time of this 

19 Marsh, David R., Dirk G. Schroeder, Kirk A. Dearden, Jerry Sternin, and Mo-
nique Sternin. “The power of positive deviance.” In BMJ: British Medical Journal 
329, no. 7475 (2004): 1177.

research based on the East Coast or Midwest of the U.S. 
Six identify as male, two as female, and one as nonbinary. 
Five are personal acquaintances of mine; I was connected 
to the remaining interviewees through other personal 
acquaintances, through a technology/design forum, and 
through the October 2017 computational design sympo-
sium. Wherever I quote from or reference interviews in the 
chapters that follow, I use pseudonyms for each interview 
subject, and have occasionally made slight adjustments to 
how they describe their work in order to preserve anonym-
ity.

In addition to the interviews, and alongside the formula-
tion of a framework for thinking about computational 
design, I worked on software prototypes and conducted 
design workshops, which are used as case studies sup-
porting the framework. I call the two software programs 
‘prototypes’ to emphasize the fact that they are not intend-
ed as commercial apps or products, but as embodiments 
of the particular component of the framework I associate 
them with, as well as research instruments. They are full-
fledged, interactive (web-based) interfaces for exploring 
computational design principles, and I was able to build 
them not only as a result of my professional background 
as a web developer, but with the opportunity, through 
this program, to take courses in strictly-typed imperative 
programming, computer graphics, and human-computer 
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interaction. The third case study, a design workshop, relies 
on an open-source software program as a research device, 
and also benefited from my collaboration with my class-
mate, Atefeh Mahdavi Goloujeh, as well as an additional 
cross-disciplinary course I took on social innovation and 
group facilitation in design.

Synthesizing this research, the framework for thinking 
about computational design rests on three components: 
Generating, simulating, and interrogating. Unifying theo-
ries are always just out of grasp, but I found it helpful to 
begin to think about my own work in this way, and to start 
to view other work through this lens. However, the results 
of the interviews and the case studies together illustrate 
that it’s impossible to conceptually or practically sepa-
rate one approach from another: Generative work can be 
greatly enhanced through simulation techniques; neither 
simulating nor generating will cohere without an interroga-

tive mindset; and designers working technically and materially 
are better positioned to critically interrogate using computational 
simulation and generating methods.

Through this framework, supported by examples from the inter-
views and case studies of my own work, I present a proof-of-con-
cept for a new way of understanding and practicing computational 
design. I hope that the framework, as a general and flexible lens 
for work and research, will lead to new pedagogies of computa-
tional design and, ultimately, bring about novel, desirable futures.



14

Computational Design Thinking Framework

The way we think about and conceptualize computational 
design tangibly and pervasively influences the work that 
designers working computationally produce. In turn, the 
results of such work shapes the way we think about the 
discipline it belongs to. This dialectic is succinctly high-
lighted by linguist and philosopher George Lakoff, who 
writes, in Metaphors We Live By, “New metaphors are 
capable of creating new understandings and, therefore, 
new realities.”1 What syntheses and metaphors exist for 
imagining computational design today? What could there 
be? Could new understandings of computational design 
spread outward to influence other disciplines?

A recurring theme in my interviewees’ accounts of design 
was the role of rules — that creativity is impossible without 
setting constraints — and the work of devising a con-
ceptual framework is no different. In order to realize this 
framework, I had to articulate certain boundaries. Such an 
understanding of computational design couldn’t be tied 
to specific technologies or software paradigms, or it would 
only address a small subset of the field (and, in all likeli-
hood, would soon become dated). It also couldn’t simply 
result from an analysis of historical precedents, whether a 
challenge to dominant narratives or a counterhistory — my 
work is also projective, and the framework is intimately 

1 Lakoff, George, and Mark Johnson. Metaphors we live by. Chicago: Chicago 
University Press, 1980.

tied to my own work as a designer. Finally, the framework 
could not propose a design methodology, that is, a proce-
dural, step-by-step plan for addressing design scenarios. 
As with a technical framework, an abstracted procedural 
methodology would still limit, rather than expand, the pos-
sibilities for computational design.

The framework I present is comprised of three compo-
nents of computational design: Generating, simulating, 
and interrogating. Although I list them in this order, it does 
not imply a linear causality or hierarchy among them. Each 
is indispensable; each relies on and supports the other 
two. Like a poorly engineered building, I imagine computa-
tional design as an unstable practice without them. They 
are lenses through which to do and think about compu-
tational design. While a computer algorithm to create, for 
example, arbitrary house plans is certainly a generative 
program, it is also useful to adopt a mindset of simulating 
and interrogating when working with or on such software, 
and to borrow liberally from techniques belonging to the 
other pillars.
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The following chapters each focus on one of the three pil-
lars, including an overview, a section on specific methods, 
techniques, and strategies from the interviews, and a case 
study of my own work. Again, the three sections may be 
read in any order — you might find it helpful to jump from 
one case study into the methods from another chapter 
and back, or read the overviews of all three before diving 
into the case studies.
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Generating

Overview

The act of designing involves the creation of something 
new, whether an object, an image, or an idea. I call the 
first pillar of the framework ‘generating’ as opposed to 
‘creating’ to highlight how computation allows designers 
to work at a level of abstraction from singular artifacts. An 
artist working alone might create a painting or a drawing. 
If, however, they were to generate it, that would imply an 
underlying structure and logic capable of producing more 
artworks, each qualitatively different from the others but 
arrived at through the same mechanism. Generating also 
implies a complexity in the production of a generative 
process that is gradually insurmountable by human effort 
alone. In his 1968 essay “Systems Generating Systems,”1 
American architect and theorist Christopher Alexander 
differentiates ‘systems as a whole’ from ‘generating sys-
tems.’ The former are complex assemblages, not singular 
objects, that are nevertheless characterized by some 
“holistic phenomenon.” The latter are also not individual 
things, but groups of objects and forces “with rules about 
the way these parts may be combined.” Set into motion, 
they produce complex outputs that are more than the sum 
of the parts: Generating systems generate systems as a 
whole. Alexander closes his essay with a call to action for 

1 Alexander, Christopher. “Systems generating systems.” 1968.

designers and architects: “To make objects with complex 
holistic properties, it is necessary to invent generating sys-
tems which will generate objects with the required holistic 
properties.”

If we grant that the work of designers has become more 
complex — think not only of large software programs or 
buildings with demanding energy requirements but also 
the ways in which designed artifacts are situated in socio-
technical contexts — then it is important for designers to 
work generatively. Through computation, this is intuitive for 
technologists; something that is hard-coded is inherently 
limited to a certain scope, whereas abstractions allow for 
more flexibility and multi-purpose reuse. Computational 
design brings certain key methods to aid the designer in 
generating systems. In particular, through rulemaking pro-
cesses, designers can more easily work at the level of the 
system. By exploring (or, searching) they can make sense 
of the potentially overwhelming space of possibilities that 
is generated. Finally, in automating aspects of their work, 
the goal for designers is not so much efficiency or opti-
mization as the ability to shift between various levels of 
abstraction.
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Rulemaking

Alexander’s generating systems rely on a notion of “rules 
about the way… parts may be combined.” A logical start-
ing point for designers working generatively is to delin-
eate those rules, but that is hardly ever done in a void. A 
process of rulemaking often begins analytically, almost 
scientifically, observing the functioning of an existing sys-
tem in order to derive elementary objects and rules. In 2- 
and 3-dimensional formal design, this has been explored 
in the work of computational design researchers George 
Stiny and James Gips and their notion of shape gram-
mars.2 Shape grammars are abstractions of geometries, 
described by a set of rules that define transformations. A 
simple ruleset might only encode a few recognized shapes 
and basic transformations, such as scaling or rotating. A 
more sophisticated ruleset, such as Stiny and William J. 
Mitchell’s 1978 “Palladian grammar,”3 might be capable 
of generating complex, recognizable forms, such as floor 
plans in the style of 16th century Italian architect Andrea 
Palladio. Derived from analysis of a larger body of work, 
Stiny and Mitchell’s Palladian grammar contains the po-
tential for new works that would be recognized as mem-

2 Stiny, George, and James Gips. “Shape Grammars and the Generative Speci-
fication of Painting and Sculpture.” In IFIP Congress (2), vol. 2, no. 3. 1971.
3 Stiny, George, and William J. Mitchell. “The Palladian Grammar.” In Environ-
ment and planning B: Planning and design 5, no. 1 (1978): 5-18.

bers of the same stylistic family as the original villas. More 
recently, in his 2006 book Shape: Talking about Seeing 
and Doing, Stiny has argued for designing shape gram-
mars as a new pedagogy: “Creative design can be taught 
like language and mathematics in school, with examples, 
rules, and practice and the opportunity to experiment 
freely.”4

Many of the practitioners I interviewed use rulemaking 
techniques in their work. Paul, an architect and technolo-
gist, puts the tools of his day job to work toward more 
visually aesthetic ends as experimental artworks. Like 
Stiny, he argues that a rule-based logic can be used as an 
expressive medium in design and art. Describing a spe-
cific piece, Paul says, “The logic [here is] starting with a 
cube and then randomly subtracting cubes from that cube. 
Starting at the lower-left corner and moving all the way 
up, each one uses a different set of random cubes… I was 
interested in testing it out, seeing what graphic outcomes 
it gave me.”5 Through the iteration of a subtractive rule, 
and by varying parameters (the size and position of the 
subtraction), Paul’s system is theoretically able to gener-
ate an infinite number of possible outcomes. Another 
interview subject, Anna, a digital artist and game designer, 
describes a project, a “generative experiment” that spun 

4 Stiny, George. Shape: Talking about Seeing and Doing, 2006.
5 Skype interview with Paul, August 3, 2017.
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off of a larger game they were working on, that took the 
form of a Twitterbot that periodically posts generative 
drawings of winged animals. Anna notes, “The interest-
ing thing about that project is the way it works, which is 
very lo-fi in some ways. It draws each [animal] much like a 
person would draw something, in that it places individual 
pixels by rulesets to generate these patterns and these 
shifts.”6 Anna’s analytical ruleset is derived from the visual 
language of animal life, coupled with a procedure modeled 
after human drawing. The space of possibilities formed by 
Anna’s ruleset, while also infinite, is intuitively larger than 
the space of Paul’s cube-based artwork — the generated 
animals vary in size, color, shape, texture, and pattern as 
opposed to simply geometric form. In both cases, however, 
the number of possible outcomes exceeds the ability of 
a single designer to ever observe. These examples each 
use pseudo-random selection to choose from generated 
possibilities. In aggregate, with enough sampling, this 
will eventually provide a qualitative sense of the possibil-
ity space: A rough feel for its size and the variations it 
permits. However, there are other, more directed ways of 
traversing a generative possibility space.

6 Skype interview with Anna, July 18, 2017.

Exploring (or, Searching)

Generating through rulemaking is a powerful tool for 
designers working computationally. But the sheer size of 
the output poses a new problem: How does one navigate 
an immense field of possibilities? For digital architecture 
historian Mario Carpo, the answer lies in increasingly 
powerful computational search algorithms, such as those 
used by Google to find information from among the billions 
of indexed web pages on the internet.7 In this technologi-
cally determinist view, if one knows that a certain opti-
mized solution exists, it is possible to arrive at it through 
algorithmic processes. While computational techniques 
like genetic algorithms and neural nets trained on rel-
evant datasets are adept tools for parsing the results of a 
generative procedure and determining optimal results, a 
technology-first approach downplays the role of the de-
signer in the process. Rejecting the dominant narratives of 
data and computation as panacea to all problems (design 
or otherwise), artists, architects, and designers are devis-
ing approaches to exploring generative possibility spaces 
that harness technology while transforming the role of the 
human.

Natalie, a software developer and designer who creates 

7 Carpo, Mario. The second digital turn: Design beyond intelligence. MIT Press, 
2016.
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interactive, web-based visualizations, subverts estab-
lished generative practices to restore agency to the artist. 
Describing a piece that resembles a modular, gridded, 
sprawling circuit board, she reveals that, “Although at 
first glance it does look pretty symmetrical, pretty genera-
tive, if you were to really dig in there… There are minor 
inconsistencies and stuff like that, which I think lends it 
that organic-ness and its realness. There’s a way to do it 
with code, but do I want to? No.”8 Natalie uses an aes-
thetic associated with generative art (which I mistakenly 
assumed the piece was in our interview) but maintains 
complete, manual control over the creative process. Her 
work critiques a view of the role of the designer as merely 
selecting from a deterministic set of choices, trading away 
creative agency in exchange for breadth of possibilities.

However, for others, giving up control over individual ob-
jects is desirable for increasing corresponding agency at 
a level of abstraction. In this view, exploring a possibility 
space is neither randomly selecting from it nor exhaus-
tively searching it via algorithm. Instead, it can be an aes-
thetic experience that provides a starting point for further 
iteration, whether manual or generative. Max, an artificial 
intelligence researcher, worked on a project to generate 
plunderphonics music tracks — a style which samples and 
combines various audio sources into a musical collage — 

8 Google Hangout interview with Natalie, August 1, 2017.

from a ‘seed’ song. Using, for example, an album by Prince 
as an input, the software might pick up on the use of fal-
setto, drum machine, and synthesizer (that is, the rules of 
a generating system), and assemble tracks with overlaid, 
found audio clips approximating that sweet Minneapolis 
sound. Importantly, while the algorithms perform a great 
deal of ‘labor’ in data analysis, searching for audio clips 
and assembling them according to rules, what to do with 
them from there is expressly left to the designer-listener. 
The produced track comes with an index of its source 
clips, making it not so much a listenable artifact as a new 
starting point. Max elaborates, “It’s like a little toolkit 
where you have the samples, you have the track listing, 
and you have one possible track that could be created 
with the samples, and you can create something totally 
different from that if you want.”9 In his view, exploring a 
generated space of possibilities isn’t about arriving at one 
optimal solution so much as discovering something with 
potential to be further investigated and expanded on by 
the human designer.

Another aspect of this example stands out: As opposed 
to the work of Anna, Paul, and Natalie, who all dictate 
the initial rules themselves to a generative algorithm, 
Max’s software takes over the analytical step. Automating 
information processes is central to the fields of artificial 

9 Phone interview with Max, August 2, 2017.
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intelligence and machine learning, and while there are cer-
tainly risks involved, it also serves as a strategy that allows 
designers to generate systems in new ways.

Automating

There is an anxiety often expressed around automation, 
that computers will replace humans in daily life. Robotic 
production in factories, for example, has led to a trans-
formation of the American industrial labor economy in 
the last decades of the 20th century. Figures from archi-
tecture and engineering worlds have at times flirted with 
design automation, a narrative traced in Daniel Cardoso 
Llach’s Builders of the Vision.10 He presents the figures of 
computer engineer Douglas Ross and mathematician/de-
signer Steven Coons as embodying opposing views of au-
tomation and augmentation. Ross, along with his research 
group at MIT, Electronic Systems Laboratory, understood 
design “as a noun: a geometric specification that could be 
calculated… if the design problem was adequately repre-
sented in a formal — as opposed to natural — language.” 
Coons, meanwhile, recognized design as “a verb: an 
open-ended and essentially human activity,” wherein the 
computer of the 1960s could play an increasingly support-
ive role but never fully replace the human. Half a century 
later, this debate has not been resolved — but I argue that 

10 Cardoso Llach, Daniel. Builders of the Vision, Routledge, 2015.

only one of the positions suggests a multiplicity of futures 
and a meaningful role for the human, and that it is the lat-
ter path we should follow.

This section began by defining design as a fundamentally 
creative act, with the hypothesis that computation can 
enable designers to better approach complexity in their 
work. But what does creativity mean when a computer 
can exhibit it? For a designer, automating away every step 
of their work would be a nightmare — a critique Natalie 
makes in her manually ‘generated’ artwork. Even in the 
era of Ross and Coons, computers could generate multiple 
forms from a set of encoded rules. Today, it seems that 
machine learning, in taking on the previously exclusively 
human role of analyzing data and synthesizing rules, 
removes the designer from that side of the equation. On 
the opposite end, with automated algorithms for searching 
and selecting from a generated possibility space, it might 
seem that there’s nothing left for the designer to do what-
soever. But interrogate this narrative further, and cracks in 
the façade appear — new entry points and levels at which 
the designer can work.

A recent technological development will serve as an 
example to explore the changing role of the designer. In 
a 2014 paper, Ian Goodfellow and researchers at Univer-
sité de Montréal introduced generative adversarial nets 
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(GANs),11 a novel framework for neural network-based 
machine learning. As the name implies, one major com-
ponent is a generative model: A technical structure that, 
after processing and analyzing a large collection of data 
(a process called ‘training’), can subsequently generate 
new objects that cohere stylistically with the given data. 
Much recent work has centered on image generation — for 
example, training a generative model on millions of Google 
Street View photos in order to create new, plausible, but 
completely imaginary Street View images. The other key 
component is a discriminative model, which appraises the 
output of the generative model and classifies the objects 
as ‘real’ or ‘generated.’ Both models are incentivized to 
optimize their performance: The generative model to gen-
erate objects that are classified as ‘real,’ and the discrimi-
native model to maintain accuracy in its classifications. It 
is a conceptually sound framework, and would appear to 
automate a design-adjacent process of rulemaking, gen-
erating, exploring, and curating. Where does the human 
fit in? The example of Max’s music generation software 
is instructive: The designer no longer works directly with 
objects (images, audio clips), but instead acts as a coordi-
nator of the computational technologies. To draw another 
musical parallel, the human is less a virtuosic player of an 

11 Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial 
nets.” In Advances in neural information processing systems, pp. 2672-2680. 
2014.

instrument than a symphony conductor, signaling and di-
recting flows. By specifying and providing the data that the 
generative model is trained on, and tweaking the nuances 
of the discriminative model, the designer becomes almost 
a facilitator of a conversation between the technological 
agencies, a role rich with possibilities for working within 
and toward generative systems.

Case Study: Worldmaking

In this case study, I describe Worldmaking, a software 
prototype for 3d modeling I designed and developed, and 
a series of design activities (framed as ‘games’) con-
ducted with pairs of designers using the software. The 3d 
modeling environment, while poorly suited to architectural 
design or building modeling, serves as a platform to ex-
plore a given possibility space generated by the interface, 
affordances, and constraints of the program. In conduct-
ing the activities specifically as games to be played by a 
pair of designers, extra rules were introduced that further 
refined and shifted the space of possibilities and how the 
designers explored that space — not only individually, but 
in a dialectic process of conversation with each other and 
the technology.
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Background

I began working on this software as a final project for a 
course in the second semester of my Master of Architec-
ture program on architectural drawing and representation, 
and continued developing it after leaving that program 
and joining my current program. I further developed (and 
renamed) it as a Teaching Assistant for a computational 
design seminar course, Inquiry into Computation, Archi-
tecture and Design, taught by my advisor, Daniel Cardoso 
Llach. The software, Worldmaking, is a 3d modeling en-
vironment with a limited vocabulary of geometric shapes 
— voxels (cubes), spheres, and beams (lines) to be placed 
on and around a 2-dimensional plane at the center of the 

environment. A designer-user can add these shapes, in a 
color of their choosing, and can also delete them. No other 
design actions (such as moving, rotating, scaling) are 
implemented. While at first blush this might appear overly 
limiting (and it certainly would be as an architectural 
design or building modeling program), one precept that 
became clear to me through a generative approach was 
the productive application of constraints and rules in the 
design process. The three shapes in the environment in-
scribe an infinite possibility space, a world for the designer 
to create and explore.

The name of the software, shared with the name of a two-
week module in the Inquiry course, comes from the open-
ing chapter of philosopher Nelson Goodman’s 1978 book 
Ways of Worldmaking.12 While Goodman’s focus is mainly 
linguistic — how different methods and styles of speech 
and text can form different abstract ‘worlds’ — his ideas 
are readily applicable to formal design. In particular, he de-
scribes how different worlds are shaped by unique logics 
and truths that constitute that world’s ‘reality,’ a parallel 
notion to how generative design rules shape a possibility 
space. Design researcher Donald Schön has also invoked 
a notion of ‘design worlds’ as formal environments con-
stituted by (and in dialogue with) types and rules.13 The 

12 Goodman, Nelson. Ways of worldmaking. Hackett Publishing, 1978.
13 Schön, Donald A. “Designing: Rules, types and words.” In Design studies 9, An example ‘world’ in the 3d modeling environment
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software Worldmaking permits a narrow range of types 
(objects) and formal rules, but includes other features to 
grant further agency to designer-users and shape the pos-
sibility space within the constraints of the technology.

A turning point in the development of this project came 
when I implemented a real-time interface allowing multiple 
designers to work in the same 3d environment simultane-
ously. While not as direct or embodied as sketching on the 
same paper,14 this new affordance does make it possible 
for two or more designers to engage in a conversation 
implicitly, through the negotiation of forms in space, and 
also explicitly, through a built-in chat window.15 It would 
have been possible to investigate a generative approach 
to design through this software without having real-time 
interaction between remote designers, but the possibility 
of communication and miscommunication, of cooperation 
and conflict, makes this a much richer study. A frame for 
communication between designers comes from linguist 
Michael Reddy’s critical notion of the ‘conduit metaphor’16 
— the implicit belief that it is possible to directly and 
seamlessly translate one’s thoughts into verbal or written 

no. 3 (1988): 181-190.
14 But certainly more egalitarian than a ‘collaborative’ model where one 
designer looks over the shoulder of another, working at the computer.
15 A setting allows the designer-user to specify their name, a nickname, or to 
remain anonymous, identified only by a randomly generated ID.
16 Reddy, Michael. “The conduit metaphor.” In Metaphor and thought 2 
(1979).

communication that will then be interpreted unambigu-
ously by others.17 In both the chat interface and through 
implicit communication through the interplay of forms in 
the modeling environment, it is impossible to definitively 
communicate one’s design intent to a partner, who recon-
structs the meaning behind communications based on 
their own worldview, experience, and intent. However, the 
potential misunderstandings between designers repre-
sent not a failure to communicate, but a space rife with 
generative possibilities. The two games conducted in this 
study each represent one of the possible communication 
paradigms, implicit and explicit. The games themselves 
are adaptations and further explorations of work by design 
researchers N. John Habraken and Mark Gross: the “Silent 
Game” and the “Reference Game.”18 In their original work, 
as in the Inquiry class, the games are played with physical 
pieces (such as LEGO bricks); in the Worldmaking soft-
ware the rules are identical but take place in digital space. 
The games are structures introduced not as design tools, 
to produce aesthetic or functional forms, but as aides for 
research into the design process, for “demonstrating and 
testing design concepts.”

17 There are strong parallels between the conduit metaphor and the notion of 
technological neutrality described in the introduction to this thesis — both un-
derstate how difficult the process of embodying one’s thoughts is (which anyone 
taking a drawing class for the first time will agree is a constant struggle).
18 Habraken, N. John, and Mark D. Gross. “Concept design games.” In Design 
Studies 9, no. 3 (1988): 150-158.
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Participants

I conducted the pair of games with two different pairs of 
designers. They are current architecture and design stu-
dents at Carnegie Mellon University, and one is a recently 
graduated design student. All the participants have prior 
experience with design and/or 3d modeling software, and 
prior to the games, were given a ‘sandbox’ environment 
to familiarize themselves with the Worldmaking interface. 
They were randomly paired with each other based on avail-
ability and assigned specific roles (A and B) for the games.

The Silent Game

In the Silent Game, written communication between 
participants through the chat interface is discouraged 
(except for saying, “I’m done,” or asking clarifying ques-
tions). Player A establishes a design intent by placing up to 
5 shapes in one corner. Player B places up to 5 shapes in 
the opposite corner, in order to demonstrate that they un-
derstand Player A’s intent. They then repeat this process 
with free range over the environment, further elaborating 
and exploring the design intent. There are no goals such 
as filling the available space or making a specific pattern; 
the game is open-ended and simply ends after 30 min-
utes, leaving time for discussion with the participants.

Screenshots taken at the end of both Silent Games

In the first pair, Player A interpreted ‘5 shapes’ to mean 
collections of voxels and spheres, as opposed to the 
individual objects. They embodied their design intent with 
adjacent groups of objects resembling 3-dimensional 
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Tetris pieces. Player B followed this intent without copy-
ing it exactly, modifying some pieces while respecting the 
‘language’ established by Player A. After the initial stage, 
both players kept to the edges of the building plane in the 
environment. While they switched shapes often, they each 
kept their own color throughout (gray for Player A, white for 
Player B).

In the second pair, Player A drew five turquoise spheres 
in one corner, and Player B replicated the arrangement, 
rotated 180 degrees, in the opposite corner. Player A built 

The 1st design intent in the lower-left and upper-right corners, the 2nd design 
intent in the upper-left followed by the lower-right corner

a second level onto this structure, and Player B copied 
it again. At this point I intervened, worried that Player B 
would continue to simply imitate Player A’s forms, and I 
asked Player B to establish a new design intent in one 
of the remaining corners for Player A to follow. B drew a 
green sphere, red voxel, and blue triad of beams, and 
Player A followed this with three distinct voxels in the op-
posite corner, forming the corners of a right triangle.
Finally, in the free drawing stage, both players focused 
their efforts around this latest development, Player A’s 
three voxels, connecting them with spheres, and building 
a two-height voxel form with beams as a ‘cornice,’ as well 
as on the original three voxels.

The Reference Game

In the Reference Game, with the same players as A and 
B, Player A becomes the ‘doer’ and Player B becomes 
the ‘talker.’ This means that Player B can no longer add 
or delete shapes in the environment, and instead gives 
written instructions to Player A via the chat interface, who 
attempts to follow Player B’s instructions and interpret 
their design intent. Player B may then clarify or provide 
further instructions to Player A, who continues drawing in 
the environment.

In the first pair, Player B asked Player A, Can you draw-
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ing something “democratic”? [sic].19 In response, Player 
A drew two differently sized rectangles using gray voxels, 
an arrow out of spheres, and a larger rectangle, symboli-
cally imply a causal relationship between the two smaller 
rectangles and the larger one.

19 All quotes taken from the chat interface are in italics, with typos/grammati-
cal choices left intact.

Player A’s response to Player B’s first instruction

On observing this, Player B was not satisfied, and said, 
The 3d model is quite different from what I have imagined. 
They clarified that it should be more scattered. Player A 
deleted the large rectangle and arrow and added individ-
ual voxels, dispersed across the surface. At this, Player B 
further requested, Can you mix different shapes? ...it looks 
too generalized individuals. Player A then deleted some 
of the voxels and replaced them with spheres and scat-
tered beams. At this, Player B was excited, and encour-
aged more conceptual exploration: it would be also great 
if the model shows how individuals reach a consensus! 

Final state of first reference game
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Player A responded by reincorporating some larger groups 
of shapes, but this time using combinations of voxels, 
spheres, and beams. For unknown reasons, Player A also 
built a voxel border around the edges, and Player B hinted, 
if i draw it, I would make the border a bit loose, to which 
Player A deleted some of the shapes to dematerialize the 
boundary.

In the second pair, Player B gave a starting instruction that 
appeared to offer little room for creative interpretation: 
Form a line of alternating voxel in rainbow color gradient 

Second reference game after a few instructions

starting from the one corner. After Player A built a diagonal 
line of alternating voxels and spheres from a corner to the 
center, B added: Please continue on with the alternating 
voxel until the opposing edge is reached… In a muted 
reverse rainbow color… muted = Darker. After this, B gave 
more ambiguous instructions: Please draw something 
“dark” on the darker spectrum of the rainbow… “dark” 
= “sad”... divide up the space into positive and nega-
tive spaces. In response, Player A drew a symbolic ‘sad’ 
face (in dark purple) and plus and minus signs, all out of 
spheres.

Ambitiously, Player B continued: put another set of alter-
nating block on the top of the current block with a differ-

Final state of second reference game
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ent type of voxel. if the bottom is sphere, a cube should 
be placed… repeat this until two or one block remains on 
the current row. Player A gamely agreed, building a large, 
multicolored, triangular wall that spanned the environ-
ment’s modeling surface diagonally, and writing afterward: 
whew done.

Discussion

Habraken and Gross, reflecting on their research with the 
Silent Game and Reference Game (using physical game 
pieces such as nails and washers), write that “Players 
must cooperate and try to understand each other’s inten-
tions.” This is the case whether both players are ‘silent’ 
and communicate only through form, or when one is al-
lowed to speak/write. While the ‘talkers’ in the Reference 
Game appear to have more agency than the ‘doers,’ who 
follow their instructions, in both games the instruction-giv-
ers engaged in a negotiation with their partner, clarifying 
and furthering certain points. However, it is necessary to 
clearly define the relationship between the players. In the 
first pair, after finishing both activities, Player B described 
mixed feelings on the roles of the Reference Game: I feel 
a bit bad about that I kind of order him/her. I wanted to 
accept their imagination. I think that is what collabora-
tion is. In future iterations of the Reference Game, it might 
be helpful to reframe the role of the instruction-giver to 

encourage exploration of emergent forms that Player A 
designs in the modeling environment.

There are trade-offs in following rules literally or interpre-
tively, and in specifying narrowly-defined or loosely-defined 
rules. In the second pair’s Silent Game, Player B copied 
Player A’s forms exactly; in some contexts understanding 
rules is synonymous with following those rules precisely. 
When the roles were reversed, Player A took significant 
creative liberties in interpreting Player B’s intent. At first 
it was unclear why Player A was adding these particular 
shapes, but their later explanation demonstrated an ab-
stracted interpretation of B’s intent. As a result, the game 
entered a new, more dynamic phase, with both players 
creating novel patterns in response to each other’s forms. 
In a context of cooperative designing, divergent interpre-
tations can be used generatively. In the first pair’s Refer-
ence Game, Player B’s prompt to draw something “demo-
cratic” — an abstract notion with no obvious embodiment 
— served as a simple rule that (through Player A’s work 
and the resulting interplay) generated unexpected pos-
sibilities. This case study uses a digital platform to explore 
this mode of communication, an openness to possibility 
and willingness to explore. However, a notion of ‘genera-
tive dialogue/conversation’ has a significant history in the 
(non-computational) worlds of group facilitation, decision-
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making and participatory design.20 How does this mode 
apply to computational design specifically?

In the context of automated computational technologies, 
one could imagine versions of the Silent Game and the 
Reference Game where one ‘player’ is a set of algorithms 
that can ‘learn’ through playing the games. Importantly, as 
the games have no winners or losers, a computer player’s 
goal would be two-fold: To ‘understand’ the human play-
er’s design intent (encoding it in some digital representa-
tion) and to act dialectically alongside the human partner, 
sparking new ideas from unexpected interpretations and 
actions. How these new ideas would be qualitatively dif-
ferent from those that arise through human-to-human 
communication is an open question. In the next chapter, 
Simulating, I will make the argument that computer simu-
lations, specifically, are useful in producing unexpected or 
emergent properties to be considered and acted on by a 
human designer.

20 See the work of David Bohm, William Isaacs, and Otto Scharmer’s Theory 
U.

Conclusion

Working   generatively   can   be   a   completely   manual   process   
of   determining   and   specifying   rules, and   then   exploring   the   
possibility   space   they   produce,   or   a   heavily   automated   pro-
cess   where machine   learning   technologies   take   over   these   
tasks,   in   turn   creating   a   new   role   for   the computational   
designer.   However,   more   likely   is   that   a   generative   process   
lies   somewhere between   these   two   extremes;   designers   
pick   up   or   discard   digital   tools   as   needed,   always keeping   
in   mind   the   agency   that   software   and   algorithms   bring   to   
the   process.   Generating   is not   a   simple,   cause-and-effect   
method   with   a   ruleset  deterministically  leading   to   a   col-
lection   of   outputs,   from which   one   optimized   solution   is  
selected.   Rather,   it   is   a   complex   feedback   loop   and   ne-
gotiation between   the   designer,   their   tools   and   systems,  
and  the   data   they   create   or   provide. As shown through 
the Worldmaking case study, the process becomes even 
richer when multiple human designers work together 
in a dialectic conversation, generating new possibilities 
through productive (mis)communication. Working together, 
and with critical engagement with their tools at  various   
level s  of   abstraction , designers  may subtly  and tangibly  
shape   the   holistic   properties   of   systems.
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Simulating

Overview

Working with computation, designers can more easily gen-
erate complex systems (as opposed to creating individual 
objects), explore spaces of possibility, and engage with 
their work at new levels. But while generating often implies 
the formulation of an entirely new system, the creative 
work of designers always exists within an exterior environ-
ment (technical, social, economic, material, etc.). Even 
the most speculative, implausible architecture or design 
projects presuppose a cultural context, perhaps also imag-
ined, in which they take shape. A work, perhaps presented 
as purely formal or aesthetic, that ignores its context, lies 
through omission. Generative techniques give form to 
complex systems; simulating allows designers to model 
existing systems, to experiment through interventions in 
those systems, and to imagine from them new structures, 
goals, and paradigms.

Reacting against the computational paradigm described 
in the literature review, the term ‘simulation’ should be 
clarified. A computer simulation is a representation of 
some aspects of reality — a computational, mathematical 
model — usually with a temporal dimension and rules for 
how the model changes over time. Processes of simulation 
are generating systems, giving rise to holistic properties 
that, to varying degrees, align with those in the referent of 

the simulation. However, in the context of computational 
design, simulations are perhaps less valuable as purely 
analytical, predictive tools, than as spaces in which to 
explore and understand systems. Especially when visual-
ized or embodied in order to tangibly observe the holistic 
properties of systems, simulations (like automated gen-
erative techniques) become powerful allies that allow the 
designer to operate at a level of abstraction. Coupled with 
an interface that allows for intervention into the system, 
a designer can experiment and speculate practically ad 
infinitum, testing their theories in a miniature world before 
implementing them in the real world.

All this does rest on the notion that a computer simulation 
can, to some degree, precisely and accurately represent 
aspects of reality. Few would argue that physical equa-
tions, say, for velocity over time (resulting from accelera-
tion due to gravity), don’t resemble and predict phenom-
ena observed in the real world. But when it comes to 
simulations of large, socio-technical systems, which are 
far more complex and unpredictable, the output of simula-
tions should be met with skepticism. As artist and game 
designer Paolo Pedercini points out in his keynote talk at 
the 2017 International City Gaming Conference, simula-
tions  can be wielded as instruments of propaganda. 
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Pedercini says:

“[Simulations] for city planning are often 
presented with a neutral technocratic lan-
guage: ‘Let’s try to explain to common people 
the complexities of urban development’... 
But I swear, I can design you a [simulation] 
that subtly leads people to whatever “solu-
tion” you want… You can easily create formal 
mathematical relationships that reinforce your 
agenda. The more complex a simulation is, 
the more obfuscated is the data it is based 
on, the harder is to analyze it, fact check it, 
and criticize it.”1

Through a lens of technological neutrality, simulations are 
promoted as descriptions of reality used to provide rec-
ommendations for future action. But as Pedercini notes, 
they are always constructed by individuals with a (perhaps 
unconscious) agenda, and contain the biases of their 
creators. As digital media researcher Yanni Loukissas 
further describes in Co-Designers: Cultures of Computer 
Simulation in Architecture, simulations are also prone to 
differing or conflicting interpretations. They act as “spaces 
of exchange… open[ing] up zones in which design partici-
pants can coordinate… without sharing the same concep-

1 Pedercini, Paolo. “SimCities and SimCrises,” 2017.

tions about those designs.”2 Additionally, the technical 
infrastructure and specifics of how a simulation is encod-
ed shapes a space of possible interactions. Any simulation 
of a socio-technical system put forward as purely objective 
is an outright lie. However, whether a simulation is ‘right’ 
or ‘wrong’ is not the salient point; it’s what we can learn 
from it about ourselves and the world that is. The simulat-
ing processes described by my interview subjects and in 
the case study at the end of this chapter appear less like a 
Nostradamus predicting the future than an Octavia Butler 
or Ursula K. Le Guin imagining one of many possibilities. 
For designers, this happens through a modeling process 
that allows for unexpected patterns of behavior emerging 
in the simulation, and through a mindset of futuring — 
seeking out certain unintentional, desirable outcomes as 
projective futures to work toward.

Emerging

As described by Christopher Alexander in “Systems Gen-
erating Systems,” we can only recognize ‘systems as a 
whole’ by virtue of some observable, holistic property that 
emerges from the unpredictable interactions between 
constituent elements of and behaviors within the system. 
By simulating systems, one can draw causal relationships 

2 Loukissas, Yanni Alexander. Co-designers: cultures of computer simulation 
in architecture. Routledge, 2012.
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between low-level behaviors and high-level patterns. In 
fact, simulations, as philosopher Manuel DeLanda argues, 
give conceptual legitimacy to the notion that observ-
able complex phenomena can emerge from interactions 
between the elements of a system at all. In Philosophy 
and Simulation: The Emergence of Synthetic Reason, he 
writes, “Simulations can play the role of laboratory experi-
ments in the study of emergence complementing the role 
of mathematics in deciphering the structure of possibility 
spaces.”3 In this view, simulating is a necessary partner 
to generative work, as it provides a method for designers 
to explore and draw conclusions about the relationship 
between the outputs of generating systems and their con-
stitutive rules and elements.

In a canonical example from 1971,4 economist Thomas 
Schelling created a simplified model of cities as a 2x2 grid, 
with individual pieces representing citizens. In Schelling’s 
model, a citizen of a certain ‘type’ will move around on 
the grid until their neighbors are composed of a minimum 
percentage of their own ‘type.’ With two ‘types’ in play, 
black and white, the model demonstrated that a certain 
phenomenon would inevitably arise — the board (or city) 
tending toward starkly divided areas (or neighborhoods) 

3 DeLanda, Manuel. Philosophy and simulation: The emergence of synthetic 
reason. Bloomsbury Publishing, 2011.
4 Schelling, Thomas C. “Dynamic models of segregation.” Journal of math-
ematical sociology 1, no. 2 (1971): 143-186.

defined by ‘type’ (or race). The parentheticals denote the 
findings of Schelling’s model: Systems-level effects such 
as racial segregation might arise from the actions and 
interactions of individual actors regardless of their intent. 
This model (which, astonishingly compared to capabilities 
today, actually was implemented hundreds of times using 
physical pieces on graph paper) helped to set the stage for 
a key computational technique in simulating emergence: 
Agent-based modeling (ABM). Computer scientist and ABM 
researcher Uri Wilensky defines it as “a form of compu-
tational modeling whereby a phenomenon is modeled in 
terms of agents and their interactions.”5 This dry definition 
belies the real potential of agent-based modeling. One of 
my interview subjects, Max, an artificial intelligence re-
searcher, describes the values of ABM in contrast to other 
approaches: 

“Most machine learning is oriented towards 
producing an answer of some kind... Agent-
based modeling is more about understanding 
how all of the different components of a sys-
tem interact. So it’s less about the final state 
that the simulation produces, but how it got 
there, and why it got there.”6

5 Wilensky, Uri, and William Rand. An introduction to agent-based modeling: 
Modeling natural, social, and engineered complex systems with NetLogo. MIT 
Press, 2015.
6 Phone interview with Max, August 2, 2017.
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Agents are individual actors in a simulation, with behav-
ioral rules that drive their actions within an environment. 
ABM has been used to model such diverse phenomena as 
urban form,7 the spread of infectious diseases,8 and labor 
markets.9 Agents do not necessarily represent individual 
humans, however. David, a PhD student in a technology-
oriented architecture program, described a project he 
worked on to use ABM in an urban design context. The 
agents, in this case, are building footprints: 

“I created a prototype to take maps of a city, 
recognize the buildings, and make the build-
ings behave as a physical entity in a physical 
simulation environment… The interesting part 
is that, even with such a simple behavior — 
they’re reflex agents — you start to find out 
really interesting clusters and patterns of 
how you can map the city. Even with no intel-
ligence on the side of the agent.”10 

7 Batty, Michael. Cities and complexity: Understanding cities with cellular 
automata, agent-based models, and fractals. The MIT press, 2007.
8 Perez, Liliana, and Suzana Dragicevic. “An agent-based approach for model-
ing dynamics of contagious disease spread.” International journal of health 
geographics 8, no. 1 (2009): 50.
9 Neugart, Michael, and Matteo Richiardi. “Agent-based models of the labor 
market.” LABORatorio R. Revelli working papers series 125, 2012.
10 Skype interview with David, July 24, 2017.

David underscores one of the most compelling aspects of 
agent-based modeling — individual agents typically have 
very limited awareness of the system beyond their immedi-
ate ‘neighborhood’ (defined by the designer). However, the 
rules for how they behave in relation to each other and to 
their environment almost always result in emergent pat-
terns at the scale of large groups of agents. Emergence is 
unpredictable, and opens a new, productive line of inquiry 
into the mechanics of and relationships between individu-
al agent behavior and systemic patterns.

Another interview subject, Ken, a technologist and orga-
nizer, describes an experimental project to simulate house 
parties. In this case, agents represent individual attendees 
to a party, with behaviors that include socializing, eating, 
drinking, and going to the bathroom. In calibrating the 
agents and the simulation, Ken and his collaborators ran 
into some unexpected emergent patterns: “The design 
process wasn’t form-based, it was system-based, so it’s 
kind of like trying to tweak this system that’s going off the 
rails. We had problems like, ‘People are going to the bath-
room constantly in this simulation! We can’t stop them!’”11 
Although this is a humorous example, it’s also indicative 
of the capability of the emergent properties that arise to 
surprise the simulation designers. An awareness of emer-
gence as a phenomenon can aid in using simulations as a 

11 Skype interview with Ken, July 17, 2017.
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research tool. Ken explains how, as a result of his experi-
ence with ABM, he works differently now: “Maybe one of 
the ways in which agent-based simulation has affected my 
thinking is that I see inside, mentally, in physical spaces, 
all the varied agents doing whatever they would want.” 
He encodes behaviors at the level of individual agents, 
but has gained the ability to imagine systemic behaviors 
that arise from the agents’ interactions in simulation 
space. Closely tied to systems thinking and socio-technical 
complexity, exploring emergence through ABM is a potent 
technique for designers, architects, and technologists.

Futuring

Simulating allows for a level of predictability and repeat-
ability, a rigor that is rarely possible in built architectural 
or design work. For example, an urban planner consider-
ing alternate traffic signals could hardly expect to imple-
ment and empirically test dozens of different intersection 
designs on actual city streets. Instead, through a careful 
modeling process, the planner could compare various de-
signs in a simulated environment to observe their effects. 
It is important to underline the fact that simulations are 
not substitutes for real, lived experience. Rather, through 
considered computational modeling, simulations based on 
mechanism-independent components of emergent proper-
ties might provide evidence to make arguments about pos-

sible interventions in systems. Simulations need not be 
(and can never be) comprehensive. Like the map in Jorge 
Luis Borges’ short story “On Exactitude in Science,” which 
becomes more and more detailed until it grows to be the 
size of the territory it charts, a simulation which corre-
sponds 1-to-1 with reality is a fiction. Certain parameters 
must be selected as the key elements of the simulation, 
and the rest is noise. As DeLanda writes, “The process [of 
simulation modeling] may... change in an infinite number 
of irrelevant ways, the art of mathematical modeling being 
based in part on the ability to judge what changes do, and 
what changes do not, make a difference.” A simulation 
being plausible or completely impossible when compared 
against reality might hinge on a single parameter held to 
an inflexible degree of precision. One dangerous pitfall is 
that both realistic and unrealistic simulations might oper-
ate based off of the same internal logic (they might even 
differ by a single number), a logic that is easily mistaken 
for completeness and accuracy.

Technology and psychology researcher Sherry Turkle, echo-
ing architect Louis Kahn’s question, “What does a brick 
want?” asks, “What does simulation want?” In her criti-
cal 2009 book Simulation and Its Discontents, she offers 
a simple answer: Immersion. A computer model based 
on and resembling reality offers its own simplified reality 
with an internally coherent logic. A facility with simulat-
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ing might lead one to forget about outside dimensions 
that are left unmodeled, and the ways in which they could 
come into play. Turkle writes, “In simulation, architects 
feel an initial exhilaration because of the ease of multiple 
iterations. But at a certain point… possibilities can feel 
like inevitabilities.”12 Simulations of scientific phenomena 
often model in order to predict the performance of, for 
example, a building’s energy efficiency, and immersion in 
such simulations to the neglect of outside factors would 
be a misstep. In a computational design context, however, 
the immersiveness of simulations can be helpful. Rather 
than predictive, decision-making tools, simulations can be 
interpreted as discursive fictions on how the world might 
be, as opposed to how it is. If a designer can maintain an 
interrogative, skeptical stance while, at the same time, 
suspending disbelief about the simplifications necessary 
in order to model certain phenomena, immersion in a 
simulation can lead to new ideas and understandings of 
reality.

For some of my interview subjects, immersion in simula-
tion is desirable in order to see possible futures from 
potentially unrealistic (non-normative) emergent patterns. 
A simple reframing of simulations on the part of the 

12 Turkle, Sherry, William J. Clancey, Stefan Helmreich, Yanni A. Loukissas, 
and Natasha Myers. Simulation and its discontents. Cambridge, MA: MIT Press, 
2009.

observer can lead to novel interpretations. In the case of 
Ken’s party simulation described above, with partygoers 
constantly going to the bathroom, one interpretation is as 
a glitch in the simulation code. Another is that Ken has 
inadvertently created a world where, perhaps, personal 
hydration has become a cultural imperative and recurrent 
bathroom-going is one logical side effect of this norm.

Max, the artificial intelligence researcher, told me about 
a project he worked on to model labor economics. The 
simulation uses census and American Community Sur-
vey data to model a large U.S. American city around the 
turn of the 21st century. The individual citizens, agents 
in the simulation, are motivated by abstracted economic 
behavior, like looking for a job and buying food for them-
selves and dependents, and in turn the economy of the 
simulation is affected by the millions of actions taken at 
the individual level. However, unlike a project undertaken 
by a government or a think tank, Max describes this work 
as speculative and exploratory: “We wanted to push it 
in this direction where it was a simulation where these 
other ways of addressing problems or even defining what 
problems are is a lot more open-ended.” For example, a 
viewer of the simulation can adjust city-wide parameters 
such as healthcare cost (or universal healthcare) to see 
the potential impact on the agents and the system. But 
despite the software’s numeric encoding and outputs, it is 
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not meant to provide solutions to problems, but to explore 
possible futures.

Unlike a centralized, predictive model that tells us what 
the future will look like, Max’s project is best viewed as a 
provocation, asking what the future might look like. Higher 
levels of technological automation coupled with universal 
healthcare might lead to an egalitarian, post-work utopia, 
while other simulation runs end in a late-capitalist societal 
collapse. On top of this, in Max’s project, a viewer can re-
turn to the level of the agent, experiencing futures through 
the eyes of an individual, and see how various scenarios 
affects the lives, jobs, and health of simulated citizens. 
In fact, he had originally planned to “partner with various 
science fiction authors… We would give them a simula-
tion run, and let them develop a richer narrative around 
that.” Simulation space acts as a means of envisioning 
and extending the possibilities of real, physical and social 
spaces. Similar to his generative music project (described 
in the Generating chapter), Max sees the outcome of his 
work not necessarily as a finished product, but a jump-
ing off point. After setting the environment, one can “see 
how the behavior of these simulated agents evolves and 
unfolds and from that. Maybe you can develop interesting 
narratives… out of the configurations that seem the most 
interesting.” A simulation itself can act as a generative de-
vice, sparking the imagination and leading to the creation 
of new realities.

Case Study: Reimagining Urban Intersec-
tions

Introduction

With a fellow computational design researcher, Atefeh 
Mahdavi Goloujeh, I co-hosted a design workshop titled 
Reimagining Urban Intersections through Systems Think-
ing. Our workshop used traffic intersections as a site for 
potential design interventions, and introduced an open-
source software, Loopy,13 to simulate factors influencing 
intersections as a system. We found that, in addition to 
being an effective tool to model emergent behavior in a 
system, Loopy serves to clarify and make explicit biases 
and assumptions of the designer. When used by a group 
of designers, this forms the basis of a conversation among 
the designers as well as between the designers and the 
simulation itself.

Participants

Participants are all attendees to the Computational De-
sign: Practices, Histories, Infrastructures symposium, held 
at Carnegie Mellon University in October, 2017. The three 
participants in our workshop are students (two under-
graduate, one graduate) enrolled in design or architecture 

13 Case, Nicky. Loopy, http://ncase.me/loopy/, accessed September 21, 2017.
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programs. All three identify as female, and are in their 
early- to mid-20s. Per the results of a survey distributed 
before the workshop, all three typically walk or take the 
bus to navigate their respective cities (this likely stems 
from their status as transient students, and may also be 
a factor self-selection toward this workshop in particular). 
When asked to name their most memorable experience at 
an intersection, all three gave negative responses, such as 
nearly being struck by a vehicle and “hat[ing]” a particu-
lar intersection in their hometown. With this question, we 
hoped to begin priming participants to think about nega-
tive events whose motivating factors they might model in a 
simulation.

Activity 1: Negotiating an Intersection

We began the workshop with a physical activity, both 
an icebreaker and a means to encourage different ways 
of thinking about intersections. We laid four cardboard 
‘teardrop’ shapes, about 2 feet in diameter, on the floor, to 
suggest a cloverleaf interchange with the negative space.

Then, in a physical simulation with human bodies rep-
resenting vehicular traffic, we asked the participants to 
begin walking through and around the intersection. The 
rules for agents in this simulation were that they should 
strive for continuous (not necessarily fast) motion and that 
they could not communicate with each other with speech. 

Physical simulation of vehicular traffic with workshop 
participants in a cloverleaf intersection

After about one minute of this, we brought the cardboard 
shapes closer together on the floor to ‘tighten’ the in-
tersection. After another minute, we declared that one 
path would become ‘one-way,’ allowing movement in one 
direction but not the other. Finally, co-investigator Mahdavi 
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Goloujeh and I stepped onto the cardboard, and acted as 
‘pedestrians’ to the participants’ ‘drivers,’ stepping in front 
of their paths between the cardboard shapes.

Activity 2: Generating Factors and Affinity Diagram-
ming

Then, we provided some examples of real-world factors 
influencing intersections — amount and types of traffic 
lights, the presence of sensors on cars providing drivers 
with feedback, and a regional phenomenon known as the 
‘Pittsburgh left’ — and we asked the participants to spend 
five minutes listing on Post-It notes as many other inter-
section factors they could think of.

After this, we asked the participants to bring their factors 
to a large whiteboard and look at all the factors. We asked 
them to move the Post-It notes around on the whiteboard 
to group similar factors into an affinity diagram, meant 
to draw out patterns of thinking. This led to a discussion 
about the different types of factors they had come up with, 
noting the common themes that had arisen, and their 
perspectives on these factors. After about 15 minutes of 
conversation, we asked the participants to identify five fac-
tors that they wished to focus on for the coming activities.

Activity 3: Loopy

We introduced Loopy as another type of simulation which 
models the high-level relationships between various 
system factors. Loopy is not a tool to model specific types 
of systems, such as ecological or economic, but systems 
in general, as relationships of and flows between entities. 
In Loopy, a designer-user draws circles which represent 
factors, and then draws arrows between them to represent 
the interaction between these factors: for example, in a 

Factors influencing urban intersections
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basic ecological simulation, one might include ‘predators’ 
and ‘prey’ as the two factors. Two arrows would be drawn: 
A positive relationship from prey to predators (more prey 
leads to more predators), and a negative relationship from 
predators to prey (more predators leads to less prey).

For the intersection simulation, we encouraged the par-
ticipants to think of their factors not necessarily in strictly 
quantitative terms, but also qualitative — a positive 
relationship might mean that factor A leads to ‘better’ or 
‘stronger’ factor B (as opposed to more of it). The factors 
that the participants chose to simulate were:

t� Pedestrian attention/distraction (articulated through 
‘smartphones’)

t� Accessibility (for both cars and pedestrians)
t� Negotiation between drivers and pedestrians
t� Regional habits
t� Signage

The participants began by drawing circles for each of 
these factors, and then drawing arrows to model the rela-
tionships between the factors. For example, in their telling, 
smartphones have a negative relationship to negotiation 
between drivers and pedestrians — more smartphones 
results in less negotiation/communication. After setting up 
the relationships between factors, the participants ‘ran’ a 

The participants’ factors influencing intersections, modeled as a simulation in Loopy

simulation by making a change to the system: Increasing 
the number of smartphones in use. They then observed 
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the resulting, proliferating changes to the system. They 
found some of the results unrealistic, and changed some 
of the relationships in order to run the simulation again 
and observe these changes in action.

Eventually, they added a sixth factor, ‘safety,’ to serve as 
a yardstick by which to measure their simulations. After 
iterating on the simulation a few more times, they moved 
on to the final activity, proposing potential design interven-
tions that could shift their modeled system in desirable 
directions.

Activity 4: Design Interventions

Finally, the participants used the whiteboards to propose 
some design interventions based on their system simula-
tion. They first rewrote their initial factors on the board, 
and one of the participants drew a storyboard for an 
embedded sign meant to address smartphone users. They 
also sketched an intersection with smartphone-linked sig-
nage. The last design intervention was a system of signs 
aimed at cars approaching intersections that would state 
the number of pedestrians at the coming intersection.

Findings

From observing the participants using Loopy to model 
factors of urban intersections in a system, we draw three 

overall conclusions. First, Loopy is an effective tool to 
simulate the unexpected consequences of changes in a 
system (that is, to simulate emergent behavior). Second, 
Loopy is most useful when viewed as a dialogue between 
the software and a designer or, preferably, a group of de-
signers. Finally, Loopy helps designers to clarify and make 
explicit certain assumptions they hold, but it also obfus-
cates other biases.

Throughout the activity, the phenomenon (and observa-
tion) of emergent behavior played a significant role in the 
participants’ usage of the tool. Loopy requires the design-
er to make some change to the system in order to begin 
a simulation run. On the first iteration, the participants 
increased ‘smartphones.’ This soon led to an undesirable 
scenario, best told in the words of Participant 1: “Oh, no! 
No signage and no accessibility!” Later, after noting the 
increased levels of ‘smartphones’ and ‘regional habits,’ 
she described the effects as “…a bunch of people on their 
smartphones doing the Pittsburgh left.”14 All the partici-
pants noted how a small change in one area of the system 
could have ripple effects that defied their expectations 

14 Typically, in U.S. American cities, a driver at a red light who is turning left, 
when the light turns green, will wait for others passing straight through before 
turning. In Pittsburgh, the first driver at a red light turning left takes precedence 
over others passing straight through (although a second or third driver turning 
left will wait). While there appears to be little literature on the Pittsburgh left, it is 
a well-recognized, if illegal, local behavior.
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qualitatively and quantitatively. The concept of emergent 
patterns resulting from interactions at other levels in a 
simulation seemed to be reinforced through Loopy.

The participants were engaging in a back-and-forth dia-
logue with Loopy, using it as a discursive tool rather than 
a means to analyze or quantify behavior. Throughout the 
duration of the simulation activity, they ran at least eight 
iterations on their initial system design. From the second 
to third iteration, they didn’t change any factor or relation-
ship of the system, but initially increased ‘signage’ instead 
of ‘smartphones,’ and noted that the resulting scenario 
was preferable, with high levels of ‘accessibility.’ Partici-
pant 3 observed: “Oh, this is so much better.” Looking 
back on this iteration a few minutes later, Participant 1 
wondered, “Is there a way to max out smartphones that 
also increases accessibility?” Observing unexpected 
emergent behavior led the participants to trace certain 
effects, analyze their model, and make adjustments. As 
Participant 1 put it after a later iteration: “I guess deleting 
that link between smartphones and signage had a huge 
impact. Our design intervention is not working as well.” 
Loopy is far from ‘black box’ software, which provides an 
output for an input without revealing its functionality. In-
stead, it allows designers to peer into causal relationships 
within their simulation, and encourages self-conscious 
iteration on their work.

Through discussion of how to model factors and relation-
ships, designers working collaboratively must articulate 
certain assumptions they hold. However, Loopy also ap-
pears to reinforce other biases, and hides the effects of 
any un-modeled factors or relationships. Early in the activ-
ity, as they were beginning to draw relationships between 
factors, Participant 2 justified one link by saying: “Perhaps 
more signage would lead to less smartphone [usage], 
because people are like, ‘Aw [expletive], I gotta look.’” 
Had the participants been provided with datasets related 
to the system factors, this would have provided fodder 
for the simulation. However, in this workshop, the partici-
pants’ beliefs about how and why intersections function 
provided justification for their system model, and they had 
to communicate these to each other. Later in the activity, 
however, the simulation appeared to take on more and 
more agency, and conversation around the faithfulness of 
their model to reality took a backseat to creating desirable 
scenarios. In later iterations, working at a faster pace, the 
participants forgot what exactly they had changed from 
one iteration to the next and for what reasons. Conversely, 
they also increasingly began to see the factors they had 
modeled as comprehensive — an example of behavioral 
economics researcher Daniel Kahneman’s phenomenon 
of ‘What You See Is All There Is,’15 and a negative version 
of Turkle’s “immersion” in simulations. A particular chal-

15 Kahneman, Daniel. Thinking, fast and slow. Macmillan, 2011.
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lenge for designers working with Loopy or other simulation 
software is to remain engaged but skeptical throughout 
the process.

Future Work

Mahdavi Goloujeh and I plan to hold further versions of 
this workshop to address some issues we noted. First, we 
would like to conduct a workshop with a group of non-
designers and non-students to discover how people who 
have not been exposed to systems thinking (as all of our 
participants had been) would use a tool such as Loopy. 
In the future, we will also encourage the participants to 
choose five specific factors to model in the simulation, as 
opposed to general factors such as ‘accessibility’ — this 
should be broken down into concrete examples, among 
which one could be chosen to stand in for the whole. How-
ever, we are intrigued by the participants’ introduction of 
a new generic factor, ‘safety,’ to serve as the ultimate goal 
of their system, and wonder how future participants might 
assess their simulations. To discourage the participants 
from making arbitrary changes to their system based on 
such a goal, we might ask them to track all their changes 
in a related document, and to justify them with stated as-
sumptions.

We believe that Loopy is an effective tool for perform-
ing high-level, qualitative modeling of systems and their 

behavior. For designers, it is especially useful as a discur-
sive tool when used collaboratively, encouraging design-
ers to make explicit their assumptions about systemic 
factors and their relationships. It also allows designers to 
model certain interventions into the system, such as (in 
this workshop) increased signage or smartphone usage. 
There are drawbacks to Loopy, which are likely common 
to any simulation software, such as designers ignoring 
possible factors that have not been modeled. This might 
be addressed through prompts in the software that ask 
the designers to consider what other effects or what other 
factors might exist in this system, or (to compensate for 
increasing system complexity) to include a separate area 
for listing unmodeled but relevant factors.
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Conclusion

Computer models and simulations can present an im-
mersive space that correlates with aspects of reality. 
Dominant narratives presenting computation as purely 
‘objective’ data operated on by algorithms ask us to see 
simulations as mirrors of reality, that with increased 
computational power we can predict the singular future. 
However, as shown in the case study with Loopy, software 
for simulation can also act as a mediator, provide a means 
to make explicit certain understandings and biases that 
might otherwise remain hidden, and a space to model and 
explore these ideas. As my interview subjects show, it can 
be productive to engage with and interrogate simulations 
as discursive platforms, as representations of multiple fu-
tures that might be. Through simulating processes, design-
ers can develop ways of envisioning and working toward 
those futures.
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Interrogating

Overview

Interrogating might seem like a misfit among the other 
pillars of the computational design thinking framework. 
While there exist clear software programs for doing noth-
ing but generating or simulating, computation for inter-
rogating seems more nebulous (or brings to mind a dimly 
lit room and polygraph machine — which is not what I’m 
suggesting here). That’s because, of the three, interrogat-
ing is the most like a general approach to design work 
across situations and practices. It’s easier to form a notion 
of simulating through a collection of simulation softwares 
and technologies than it is for interrogating, which lacks 
obvious, material tools. However, as I will show, interrogat-
ing, as a critical questioning, is not only a productive mind-
set for designers when computation enters the picture, but 
it is one that computational designers are uniquely able to 
adopt and operationalize.

Researchers have long theorized the practice of design 
as demanding criticality and introspection on one’s work. 
Design researcher Donald Schön advocates a ‘reflective 
practice,’ in which one is continually considering (and 
reconsidering) the steps one takes in the work one does. 
Through a process of critical questioning, of interrogating, 
one can improve on past work, and learn and develop new 
strategies for future work. For example, Schön describes 

designers sketching out ideas as “having a conversation 
with the drawing.”1 The act of drawing is not — can not 
— ever be a direct translation of immaterial ideas onto 
paper or a screen. While drawings are certainly informed 
by the designer’s thoughts, they are also mediated by 
the tools, the surface, the infrastructure, the language 
(whether programmed or spoken), the lighting, the mood, 
the environment, the political climate, etc. Some of these 
elements are unconscious or ambient background effects. 
Others, such as one’s tools and thoughts, are open to on-
going negotiating and interrogating throughout the design 
process. For artists, architects, and designers, the tools 
today are often digital and screen-based. Computation 
as commercial, user interface software often takes the 
form of programs that reveal no trace of their inner work-
ings, but designers, working with and through computa-
tion, are particularly empowered to interrogate their tools 
through subverting and hacking their defaults. In addition, 
by discarding (or unlearning) certain rigid, computational 
mindsets they gain freedom from thought processes 
that are not conducive to the work of design. However, 
computational technology and concepts can also help in 
transforming designers’ projects, helping them to see and 
understand their work in new ways.

1 Schön, Donald A. The reflective practitioner: How professionals think in ac-
tion. Basic Books, 1984.
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Hacking

As noted by technology and psychology researcher Sherry 
Turkle, contemporary software often appears as opaque 
‘black boxes.’ In the introduction to the 2004 reprinting of 
her 1984 book, The Second Self,2 Turkle notes the refram-
ing of the term ‘transparency’ in computing over the last 
two decades of the 20th century. Previously, using com-
mand line-based systems like DOS, “things felt transpar-
ent when computer use felt analogous to working on a 
traditional mechanical device, like a car.” By the mid-‘90s, 
however, with the advent of graphical user interfaces 
(GUIs) with ‘file’ and ‘desktop’ metaphors, “when people 
said that something was transparent, they meant that they 
could immediately make it work, not that they knew how it 
worked.” The ease of use of modern software means that, 
for example, Facebook boasts that it connects over two bil-
lion users globally as of June 2017.3 But it also introduces 
a more hierarchical model where the companies develop-
ing such ubiquitous software prevent their users (consum-
ers) from inspecting or probing the underlying programs 
and algorithms. Still, an oppositional ethos persists in 
the form of ‘hacking’ culture — not in the sensationalized 

2 Turkle, Sherry. The second self: Computers and the human spirit. MIT Press, 
2005.
3 Facebook, “Two Billion People Coming Together on Facebook.” https://news-
room.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/, 
Accessed November 6, 2017.

sense of mysterious coders bringing down governments 
and corporations, but in the curious and critical work of 
everyday people, questioning the nature of the reality 
presented to them. Media theorist and philosopher McK-
enzie Wark, in his 2004 work A Hacker Manifesto, writes: 
“Whatever code we hack, be it programming language, 
poetic language, math or music, curves or colorings, we 
create the possibility of new things entering the world.”4 
Hacking, then, is as much critical and subversive as it is 
projective, revealing the previously unseen; that is, it is an 

act of design.

Across my interview subjects, whether the term hacking 
is used or not, a mindset of hacking is clearly present. 
Anna, the digital artist and game designer, depicts the 
chasm between programmers working on products for 
commercial consumption and hackers as a fundamental 
difference in interests: “You have some folks who are very, 
very interested in making a beautiful, perfectly function-
ing, glitchless [software]. And then you also have people 
who are… interested in the thing itself because it has 
this weird logic and poeticism intrinsically.”5 This Wark-
ian ‘weird logic’ and ‘poeticism’ lurking behind seamless 
interfaces proves an attractive line of inquiry for designers 
working with technology. For Anna, such investigations 

4 Wark, McKenzie. A Hacker Manifesto. Harvard University Press, 2004.
5 Skype interview with Anna, July 18, 2017.
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lead to artwork self-consciously using code as an expres-
sive medium, including pixel art, Twitterbots, and browser 
extensions that modify the user experience on certain 
websites (for example, by replacing one common phrase 
with another). Common in all these projects is a usage of 
software tools in ways that their developers did not neces-
sarily intend. Used toward creative ends, Anna’s subver-
sive hacking practices can result in new forms of aesthetic 
expression.

Other interview subjects harness hacking toward more 
practical ends in their work. For some, it’s a necessary 
step to doing design work at all. David, the PhD student 
in a technology-oriented architecture program, succinctly 
describes how given digital tools inevitably fail to ad-
dress certain design scenarios: “There’s many parts of 
computer science that are basically trying to understand 
the problems, break [apart] the problems, and solve the 
problems… [But] especially if you work with architecture or 
art, you cannot make that into a rational problem.”6 When 
a design problem has not been (and perhaps cannot be) 
completely, computationally rationalized, an alternative for 
a technologist is to seek different ways of using their given 
tools, and in the process transforming them. Speaking 
about the boundaries of an architectural design software, 
Revit, Paul, the architect and technologist, said:

6 Skype interview with David, July 24, 2017.

“When you’re doing more radical design, 
you’re constantly forced to trick [it]… There 
are so many different ways that you can just 
push a little bit or misuse a feature or hack or 
tweak in order to extend or expand the capa-
bilities of these existing design platforms to 
get them to do what you want.”7

In the architecture and construction industries, Revit is 
known as a software with a wide vocabulary — it mod-
els not just abstract geometrical forms, but also stairs, 
doorways, heating and cooling equipment, etc. However, 
the breadth of its knowledge is always incomplete, and 
technically-informed designers supplement it, simultane-
ously constrained by and creatively empowered by the limi-
tations of the software. Paul describes an example from 
his work at a large architecture company: “I saw a tutorial 
today on our intranet that was on how to use curtain walls 
to model railings. A curtain wall is not a railing… But from 
Revit’s standpoint, in terms of this element as being a 
collection of behaviors… a curtain wall is actually a really 
good representation of a railing.” A wall becoming a rail-
ing: One element stands in for another, and in doing so, 
the designer questions both elements, interrogates the de-
faults of their tools, and sees the tool and the work in new 
ways. However, it is admittedly a challenge to question and 

7 Skype interview with Paul, August 2, 2017.
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overcome the defaults of software that is presented as 
comprehensive in its scope. By extension, designers work-
ing computationally must take a second glance at notions 
of computational logic itself, which appears as a complete, 
closed system, in order to become more adept interroga-
tors of technology.

Unlearning

As laid out in the introduction, a certain strain of computa-
tional thinking is presented as a necessary and sufficient 
basis for knowledge altogether. In recent years, ‘compu-
tational’ as an adjective has emerged to describe new 
approaches to various older fields — among them, compu-
tational biology, computational linguistics, and of course, 
computational design. Ironically, given post-Enlightenment 
progressivism and the hegemony of scientific knowledge, 
for some, computation even threatens the scientific 
method (see Stephen Wolfram, A New Kind of Science). 
However, both rational scientific analysis and computa-
tional processes tend to disregard or undervalue practices 
that cannot easily be quantified; for example, tacit/embod-
ied knowledge, divergent thinking, and framing problems. 
Computational designers bring valuable approaches and 
strategies to the greater fields of design and technol-
ogy, but there is also a distinct friction arising from the 

intermingling of computation and design, processes with 
particular (and perhaps opposing) ways of knowing.

A few of my interview subjects addressed the sometimes 
arduous process of reconciling computational thinking 
with design. Ken, an adjunct professor of architecture and 
a technologist who learned programming at an early age, 
described challenges he faced specific to his background 
in his architectural education. He points to handling 
ambiguity in the design process in particular, confess-
ing that he “couldn’t handle not having a process.”8 To 
wander in search of a solution, and sometimes in the 
process, reframing the question itself and starting over 
again from the beginning was onerous: “How could you 
just scrap your whole plan and start again?... That’s so 
inefficient and nonlinear from a code perspective.” Unex-
pected discoveries in every field, of course, come about 
only through nonlinear, emergent practices, as opposed 
to tried-and-true methods and techniques. For someone 
schooled in computation and programming practices, 
successful design work requires a simple (and not at all 
simple) mindset shift. Ken concludes, “I had to unlearn a 
lot of things about programming in architecture school… 
To acquire a logic of design was to abandon certain logics 
of programming.”

8 Skype interview with Ken, July 17, 2017.
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Another interview subject, Maria, a design instructor, notes 
how certain ways of thinking are also related to age. A 
notion that, in design, one not only solves a given problem 
but frames it, is one that somehow grows more difficult 
with age. Having taught design to both elementary-level 
and high school students, she says:

“The 8 to 14 year-old range [are] actu-
ally much more open-minded… For the high 
schoolers… Some of them are against that 
ideology. They’re used to being given the 
topic. It’s hard, sometimes, for them to step 
back and really have an open mind about 
ways of solving for problems that are not one 
single thing.”9

Like Ken’s experience in architecture school, Maria’s 
students face difficulties not so much in the technical 
knowledge of software, but in the more nuanced worldview 
of designing generally. For Maria, as a teacher, one of 
the greatest challenges is instilling this spirit: “To teach a 
student to look at a problem from multiple perspectives, 
really analyze a problem critically, and then solve for that 
problem, through something that’s designed.” In addition, 
for students with an all-or-nothing approach to their work, 
the nonlinearity of certain unsuccessful designs can be 

9 Skype interview with Maria, September 10, 2017.

discouraging. Maria points to the fear of failure as another 
hindrance to embracing designerly ways of working: “A lot 
of these students are afraid of failing, they’re afraid of get-
ting bad grades, so it’s been kind of indoctrinated into the 
way they’re thinking. It’s sort of like I’m unteaching them. 
They have to unlearn some of that to do this studio.”

While certain approaches to programming do run contrary 
to to the design process, for designers who can pragmati-
cally discard the constraints of programming logic, com-
putation can also meaningfully and even poetically situate 
their creative practice. Beyond specific technologies and 
software programs, the ability to imagine and see transfor-
mations in objects and systems greatly expands the space 
of possibilities for designers.

Transforming

A critical, reflective practice requires contemplation and 
reconsideration of one’s work — of seeing in new ways — 
and technology also provides a means of achieving this. 
English art critic and historian John Berger, in his 1972 
television series (and later book) Ways of Seeing,10 de-
scribes how the advent of photography altered perceptions 
of art: “The invention of the camera has changed not only 
what we see but how we see it… The painting on the wall… 

10 Berger, John. “Ways of seeing.” London: BBC. 1972.
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can only be in one place at one time. The camera repro-
duces it, making it available in any size, anywhere, for any 
purpose.” For Berger, the camera transforms art, allow-
ing us to see it and understand it in qualitatively different 
ways. Computational technology extends this phenom-
enon, transporting (and transforming) not only images, but 
data, information, and knowledge.

In conjunction with his hacking of Revit and architectural 
design software, Paul, the architect, proposes a way of 
working that involves multiple mediums. He describes a 
consistent experience in reviewing building designs: “We 
export our models from Revit into other platforms, like 
virtual reality… in order to walk around them or experi-
ence them in other ways… Every single time we’ve done 
that… [the designer] will notice something wrong with 
their model that they didn’t know was wrong.” Working 
in one medium alone limits the perspective of designers 
in such a way that their work is harmfully (not creatively) 
constrained. It’s preferable, instead, to reconsider one’s 
work, and different technologies serve as tangible environ-
ments in which to do that. Paul continues, “The best thing 
you can do to resist the specific limitations of a piece of 
software is to try it in another piece of software… use as 
many lenses as you have access to.” Interpreted as plat-
forms, environments, and lenses, designers can see their 
computational tools not only as instruments for producing 

work, but as mediating experiences that can lead to new 
understandings.

Just as palpable digital technologies shift our thinking, 
immaterial constructs and concepts taken from computa-
tion can also act as lenses, providing new mental mod-
els for one’s work. Ken, for example, has not completely 
‘unlearned’ a computational way of thinking, but also uses 
the language of variables and abstraction to describe a 
process of framing a design scenario: “‘A something is an 
X that’s a Y’… I will play with that statement. ‘What’s not 
an X and a Y? What is an X and not a Y?’ Like: A bus stop 
is an outdoor shelter where you wait for something. What’s 
an outdoor shelter where you don’t wait for something? 
What’s an indoor shelter where you wait for something?” 
The use of syllogisms as a logical, rhetorical device dates 
to antiquity, but Ken’s example is notably computational. 
A designer could write a computer program, encoding and 
storing concepts like ‘outdoor shelter’ and ‘waiting’ as 
variables in a procedure which generates a space of possi-
bilities and simulates various explorations of that space in 
order to manifest design solutions to that particular fram-
ing. But such a hypothetical program might not be strictly 
necessary; perhaps more important to designers is the 
ability to see and play with abstractions from particulars. 
Computational thinking is only a rational, problem-solving 
strategy, but can be discursive: ‘How might I think about 
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this object? What if I treated it as a variable? A constant? 
What parameters could be adjusted? What functions does 
it permit and what effects would they have on other ob-
jects?’ When asked about what he’s interested in learning 
next, Ken’s answer reveals a strong urge to see and know 
in new ways: “I would want to learn category theory and 
functional programming, because I think it would afford re-
ally interesting… conceptual metaphors to think about the 
world… I’m really curious [as] to what [else] I would learn 
that would help me see the world differently.” The tools 
designers use influence the way they think, but those tools 
also embody (implicitly or explicitly) a way of thinking — a 
lens that can then consciously be adopted or discarded in 
various design scenarios. The logics and truths of compu-
tation can serve as tools themselves in a designer’s reper-
toire. Alone, as David reminds us, computational thinking 
is insufficient for “architecture or art, [which] cannot [be 
made] into a rational problem,” but complementing other 
ways of seeing, it greatly expands the capabilities of the 
designer and the possibilities for design as a discipline.

In the following case study, I’ll describe my work as a 
software developer on an interactive project meant to 
elucidate the structure and underlying principles of a 
mathematical formula for computer-aided design. Both ex-
planatory and exploratory, the software presents encoded 
3-dimensional geometries in an embodied way, and offers 

a space in which users may themselves act as interroga-
tors of the constructs of mathematics and  
design technology.

Case Study: Coons Patch Reconstruction

Background

As a research assistant for an exhibition on post-War 
computational design practices, with the curator (and my 
master’s thesis advisor) Daniel Cardoso Llach, I worked 
on a software program to visualize a mathematical for-
mula for creating freeform, 3-dimensional surfaces. The 
formula, which takes in four boundary curves joined at 
the endpoints, produces from them a surface called a 
Coons patch, named for mathematician and designer 
Steven A. Coons. Coons patches (or surfaces) provide a 
succinct digital representation of complex forms. Rather 
than storing all the coordinates of a large number of 
points on a freeform surface, as in a mesh representation, 
Coons patches are defined by the parametrization of the 
surface’s boundary curves (which might be comprised of 
as few as 3 or 4 points in 3-dimensional space) and the 
patching formula. In this software program, our goal is to 
create an interface to reveal the underlying mathematical 
structure behind these elegant, complex surfaces, and to 
allow non-technical users to interrogate the relationship 
between the two.
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Interface

A single patched surface is presented as a grid of white 
curves on a black background, paying homage to videos 
from the early 1970s from the Ford Motor Company’s work 
using Coons patches. However, where the designers at 
Ford had to manually encode each coordinate of all the 
points on the boundary curves inscribing the surface, us-
ers of this software benefit from a more embodied, inter-
active experience. A single button, for example, ‘morphs’ 
the surface from its current state. The code for this feature 

Screenshot of the Coons patch software reconstruction

chooses random values within a bounded range for each 
of the endpoints and control points of the boundary curves 
and moves the points until they reach the new values. 
Morphing the surface enables a user to quickly see some 
of the many possible forms a Coons patch might take.

A central element of the interface is a point toggle and 
the ability to move individual endpoints or control points. 
Whereas morphing the surface discards the current state 
in order to present a new, random surface, with this 
feature a user gains a fine-tuned level of control over the 
form. From a random surface, a user might decide that 
they want to make changes to a specific region. By turning 
on point controls and toggling through the endpoints and 
control points, they can select the ones that are closest 
to the region they want to adjust. Then, they can choose 
an axis (x, y, or z) along which to move the point, using a 
tactile control knob. Minute adjustments of a point along 
an axis affect the area closest to that point, while more 
extreme adjustments affect almost the entire surface. 
The whole time, the coordinates of the point the user has 
selected are displayed, revealing the mathematical repre-
sentation behind the points, curves, and surface, as well 
as allowing the user to examine the relationship between 
numeric values and geometric form.
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Discussion

Interrogation, in this project, is not only on the part of the 
users prying open the hood of opaque geometries to see 
the mathematical machinery underneath, but also in my 
role as the software programmer, against dominant narra-
tives of interface design. In my past experience as a web 
designer and developer at and for various organizations, 
a common refrain is ‘ease of use.’ A popular book on web 
usability, Don’t Make Me Think, promotes the philosophy 
that user experience should be as seamless, obvious, 

and easy as possible. Surface morphing certainly falls 
under this approach. But with point toggling and adjust-
ing, I take the stance that, when the ‘user goal’ is not 
simply transactional, but toward acquiring and expanding 
knowledge, a degree of awkwardness and interruption can 
be more memorable and helpful than a perfectly smooth 
experience. In fact, the experience of fiddling with a single 
endpoint or control point, moving it along the x-axis, then 
the z-axis, then a bit back on the y-axis, etc. is very similar 
to the experience of a beginner programmer, manually ex-
perimenting with variables and loops, or that of a designer 
slowly acquiring facility with a 3d modeling software. The 
Coons patch formula, supported by its proof, and a few 
illustrations of unique surfaces might provide an abstract, 
factual knowledge of how it works, but having an embod-
ied interaction — transforming and hacking the surface by 
hand — brings about a deeper understanding and helps to 
engender a mindset of critical questioning.

Photograph of Coons patch software showing control knob and keypad
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Conclusion

Dissatisfied with contemporary notions of ‘transparency’ 
in software, rigid computational logics, and the resulting 
limitations for design, computational designers critically 
question their work through interrogative processes. 
Paul’s subverting and hacking Revit revealed cracks in 
the façade of the architectural software in which to work. 
Maria depicted the open mindset of younger children as 
preferable to one which merely solves problems. And Ken 
playfully and poetically illustrates how computation can 
serve as generative metaphors for design thinking. In 
interrogating, computational literacy and thinking skills 
become valuable not only for producing optimized, ef-
ficient solutions to problems, but for expanding spaces of 
possibility and arriving at new understandings. The Coons 
patch software reconstruction serves as an example of 
an interface through which seemingly opaque geometries 
might be interrogated by non-technical users. In teaching 
basic programming and computational thinking, this fact 
should be stressed: That computation is as much a mode 
of problem-solving as it is problem-framing. A solution to 
a complex problem arrived at through computation alone 
inevitably misses the bigger picture. However, approaching 
computation as an interrogator, empowered to critically 
question the story it tells, a designer working computation-
ally can discover and operationalize new ways of seeing 
the world.
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Conclusion

Contributions

In opposition to reductive, determinist notions of compu-
tation, this work shows how computational design offers 
valuable methods, approaches, and strategies to working 
in socio-technical complexity. In this thesis, I have present-
ed a three-part framework for understanding computa-
tional design as a situated, contingent, and evolving set of 
practices and approaches. The first component, generat-
ing, reveals how computation enables the designer to work 
at levels of abstraction, gaining facility in shaping and 
navigating large possibility spaces. The second, simulat-
ing, provides a frame for exploring complex systems, and 
envisioning and modeling potential interventions in those 
systems. Finally, interrogating, drawing from both Schön’s 
‘reflective practice’ and an ethos of hacking, encourages 
computational designers to critically question their tools 
and practices in order to discover new ways of working and 
thinking. I support each component of the framework with 
background texts from computation and design, interviews 
with individuals demonstrating positive deviance in their 
creative work and research, and case studies of my own 
investigative software prototypes and design workshops. 
The computational design thinking framework, supporting 
interviews, and case studies are the culmination of this 
thesis, but I see an almost overwhelming space of possi-
bilities for further research.

Discussion & Future Work

First, some limitations and shortcomings of this work 
should be addressed (which might also suggest paths 
for future work). Notably, there is a U.S. American (and 
specifically East Coast) bias among my interview subjects, 
with New York City, Cambridge/Boston, and Pittsburgh 
especially overrepresented relative to the rest of the world. 
In addition, fully two-thirds of my interview subjects iden-
tify as male, a disparity I would love to see reversed. In 
addition to striving for more egalitarian representation, it is 
likely that further examples of positive deviance are to be 
found among groups that have traditionally been marginal-
ized. The goal would not be to co-opt their practices, but 
to amplify those voices, and to bring about more diverse, 
thoughtful work toward the creation of desirable futures.

Technically, the software prototypes among my case stud-
ies are myopic with respect to the graphic user interface. 
Again, with my background as web developer, working 
within the computer screen is my comfort zone. However, 
there is also ample room for work taking a more embodied 
approach, through physical computing, virtual or aug-
mented reality, and embedded interfaces (for just a few 
examples). I believe that software as research tools within 
those paradigms would help to further nuance the compo-
nents of the framework, providing different computational 
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perspectives on and approaches to generating, simulating, 
and interrogating.

In terms of future work, I see this framework as having 
great potential in pedagogy. While I have depicted com-
putational design at various points as a set of overlap-
ping, neighboring practices and approaches to design, 
borrowing heavily from other fields, it is also the case that 
(for example) Computational Design is a singular track in 
the School of Architecture at Carnegie Mellon University. 
Two hours east of here, at Penn State University, is the 
Stuckeman Center for Design Computing. MIT, meanwhile, 
houses the Design and Computation Group within their 
architecture school. If, in these examples (among many 
others) from the academy, it is to be presented as a cohe-
sive area of study, I propose that this framework provides 
a high-level overview of productive approaches to compu-
tational design. Irrespective of technological shifts and 
advances in the coming decades, I see this framework 
as remaining relevant as an argument in favor of unique 
human agency in the tide of advancing computational 
efficiency (especially in the age of artificial intelligence 
and machine learning). The evidence I have offered in this 
thesis suggests that it has viability at both the graduate 
and advanced undergraduate levels in design studios to 
provide a framing of the ‘how’ and ‘why’ of computational 
design. Devising a seminar syllabus, a design project or 

series of projects, or using the framework to restructure 
an existing course would all be viable means of testing the 
efficacy of the framework in computational design educa-
tion. Concretely, a studio instructor could strive to self-con-
sciously instill a mindset of generating and simulating in 
their students toward the formulation of design questions 
and the iteration and refinement of design interventions, 
all the while maintaining an interrogative stance toward 
the student’s materials and tools. In doing so, this will also 
engender a mindset of critical questioning as well as open-
ness to shaping and exploring spaces of possibility.

Another direction for the framework lies outside of the 
academy and traditional design learning contexts. Ar-
chitecture is an intellectually open but practically closed 
field, with a grueling internship and licensing process and 
appalling representation of women and minorities among 
its professional ranks. Computational design, as an area 
of study typically housed within architecture schools, suf-
fers from many of the same problems (again, as does this 
thesis research). To address this, there must be oppor-
tunities outside of traditional universities and academic 
programs. The two events described in the introduction, 
the computational design symposium and the Cybernetics 
Conference, were each affiliated with various institutions, 
but opened doors to the wider public. In addition, each 
demonstrated impressively diverse representation (both 
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demographically and according to discipline). Other orga-
nizations, such as the School for Poetic Computation and 
Learning Gardens, a community of “self-organized learning 
groups,”1 provide promising alternatives to the university 
classroom or design studio as well as to for-profit pro-
grams aimed squarely at career placement. As the com-
putational design framework outlined here is itself critical 
and projective, it would be appropriate for its pedagogical 
embodiment to also chart a new educational path forward.

1 Learning Gardens, http://learning-gardens.co/. Accessed December 1, 
2017.
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Appendix

Interview Subjects1

Aaron master’s student in technology-oriented 
architecture program

Anna  digital artist, game designer

David  PhD student in technology-oriented  
architecture program

Ken  adjunct professor, community organizer, 
technologist

Maria recently graduated architecture student 
and educator

Max artificial intelligence researcher

Natalie software developer and designer at  
technology company

Paul architect and design technologist

Zach recently graduated graphic designer

1 Names as shown are pseudonyms and, in some places, I have made slight 
adjustments to how interview subjects describe their work in order to preserve 
anonymity.
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