Supervision Beyond Manual Annotations for
Learning Visual Representations

Carl Doersch

April 2016
CMU-ML-16-102

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:

Alexei A. Efros, Co-chair, UC Berkeley
Abhinav Gupta, Co-chair
Ruslan Salakhutdinov
Trevor Darrell, UC Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Machine Learning

(©Carl Doersch, 2016

This research was sponsored by a Google Fellowship, an NDSEG Fellowship, National
Science Foundation grant number 1150905402, and Department of the Air Force contract
number FA865012C7212

Keywords: pretext tasks, self-supervised learning, computer vision, unsupervised learn-
ing, weakly-supervised learning, context, unsupervised object discovery, visual data min-
ing, visual summarization, computational geography

Acknowledgements

First and foremost, I would like to thank my advisors Alyosha Efros and Abhinav Gupta.
Both have been an invaluable source of insight, ideas, and practical guidance from begin-
ning to end. They have consistently put in their time and energy through both successes
and failures. I'm thankful that I had the chance to work with them, and I'm proud of the
work we have done together over the last 6 years.

I would also like to thank Erik Learned-Miller, Tai-Sing Lee, and David Plaut, who
worked with me as a fresh undergraduate, taught me the basics of research, and shaped
my career as a vision scientist. I thank Florian Schroff, Taehee Lee, and Hartwig Adam
for mentoring me during my internship at Google. I have also had the privilege of work-
ing and discussing with many other researchers, including my thesis committee members
Trevor Darrell and Ruslan Salakhutdinov, as well as Josef Sivic, Martial Hebert, and Jitendra
Malik.

I'have also been fortunate to be surrounded by many supportive friends and colleagues
at CMU, UC Berkeley, and elsewhere. I would like to thank Abhinav Shrivastava, David
Fouhey, Jacob Walker, Philipp Krdhenbiil, Shiry Ginosar, Saurabh Singh, Tinghui Zhou,
Yong Jae Lee, Ishan Misra, Ed Hsiao, Scott Satkin, Jun-Yan Zhu, and Tomasz Malisiewicz
for many helpful discussions (Abhinav especially for lending me a bed after my apartment
caught fire). A special thanks goes to everyone who helped me revitalize Student Pugwash
at CMU, including Kunal Ghosh, Katy McKeough, Rob Macedo, Joe Vukovich, and Maddi
Brumbaugh. Thanks also to James Carver, Joel Lu, and Derek Brown for lasting support
and friendship.

Finally, I thank my parents Bob and Candace, and my sister Karen. I couldn’t have done
this without your many years of love and support.

Abstract

For both humans and machines, understanding the visual world requires relating new
percepts with past experience. We argue that a good visual representation for an image
should encode what makes it similar to other images, enabling the recall of associated ex-
periences. Current machine implementations of visual representations can capture some
aspects of similarity, but fall far short of human ability overall. Even if one explicitly labels
objects in millions of images to tell the computer what should be considered similar—a very
expensive procedure—the labels still do not capture everything that might be relevant.

This thesis shows that one can often train a representation which captures similarity
beyond what is labeled in a given dataset. That means we can begin with a dataset that has
uninteresting labels, or no labels at all, and still build a useful representation. To do this,
we propose to using pretext tasks: tasks that are not useful in and of themselves, but serve
as an excuse to learn a more general-purpose representation. The labels for a pretext task
can be inexpensive or even free. Furthermore, since this approach assumes training labels
differ from the desired outputs, it can handle output spaces where the correct answer is
ambiguous, and therefore impossible to annotate by hand.

The thesis explores two broad classes of supervision. The first is weak image-level super-
vision, which is exploited to train mid-level discriminative patch classifiers. For example,
given a dataset of street-level imagery labeled only with GPS coordinates, patch classifiers
are trained to differentiate one specific geographical region (e.g. the city of Paris) from oth-
ers. The resulting classifiers each automatically collect and associate a set of patches which
all depict the same distinctive architectural element. In this way, we can learn to detect
elements like balconies, signs, and lamps without annotations. The second type of super-
vision requires no information about images other than the pixels themselves. Instead, the
algorithm is trained to predict the context around image patches. The context serves as a
sort of weak label: to predict well, the algorithm must associate similar-looking patches
which also have similar contexts. After training, the feature representation learned using
this within-image context indeed captures visual similarity across images, which ultimately
makes it useful for real tasks like object detection and geometry estimation.

II

Contents

1 Introduction and Overview

1.1
1.2

What is a Representation?
OurApproach

2 Background

2.1
2.2
23

Early Theories from Psychology and Neuroscience
Computer Vision For Artificial Intelligence
Present Stateofthe Art o 0L

3 Discriminative Patch Discovery: What Makes Paris Look like Paris?

3.1
3.2
3.3
34
3.5
3.6

Introduction
Related Work on Geo-spatial Visual Data Mining
TheData e
Discovering geo-informative elements
Applications L
Conclusion e e

4 Improved Patch Discovery for Scene Recognition and Visualization

41
4.2
43
44
4.5
4.6
4.7

Introduction
Mode Seeking on Density Ratios
Optimizing the objective
Better Adaptive Bandwidth via Inter-Element Communication
Evaluation via Purity-Coverage Plot
Scene Classification, .
Conclusion

5 Object Discovery by Learning to Predict Context

51
52
53
54
5.5
5.6

Introduction L
Overview
Algorithm
Results
Baseline algorithm for unsupervised keypoint prediction
Conclusion

6 Deep Visual Representation Learning by Unsupervised Context Prediction
6.1 Introduction

6.2 Learning Visual Context Prediction
6.3 Experiments

7 Discussion

7.1 The Wider Landscape of Pretext Tasks
7.2 Future Applications

8 Conclusion

v

Chapter 1

Introduction and Overview

Computer vision has begun to make substantial progress: for instance, recent work showed
computers can classify internet images into one of 1,000 categories as well as people [80],
which was far from true even five years ago. But do computers really understand images?
Consider the image in Figure[L.1} Can you recognize the city where it was taken? Given im-
ages like this one, people familiar with this city can tell that it’s Paris, even though most have
never been explicitly trained to distinguish between cities. So how do people do this? One
important answer is that small details like street signs, balconies, or window railings look
different in Paris than they do in other cities, but within Paris they mostly have a common
style. What differentiates Paris style from other cities is hard to describe with the sort of
labels that human annotators could provide easily: even though the windows in Figure
are clearly similar, it is not clear that all “Paris windows” fit into a single category. We ar-
gue that much of a human’s understanding of images is not well captured by the segments,
categories, and bounding boxes the vision community tends to use as training data. Hence,
in this work, we seek an alternative way for computers to learn visual concepts. We expect
such an alternative should exist because humans seemingly learn to see without millions of
labels, and certainly with no bounding boxes or segmentations. How can people guide their
learning when they have no clearly-defined task? And can machines do the same thing?
Our ultimate goal is machine understanding of images, which means endowing com-
puters with visual representations that are informative, robust, and versatile. That is, the
representations should capture all relevant information in a scene, as much information
as a human would. They should not fail to recognize objects, attributes, places, and other
useful scene properties due to variations in appearance from lighting, pose, occlusion, and
so forth. And finally, they should organize the information in a way that enables as many
tasks as possible, including tasks where little or no training data is available. While we
might theoretically build representations like this with huge manually-labeled datasets de-
scribing exactly the representation we want, we expect that such detailed annotations would
be prohibitively expensive. We wish to avoid defining and labeling the representation by
hand, inspired by the simple fact that humans and animals do not seem to require it.
Hence, in this work, we examine how other sources of supervision besides manual an-
notation might be used to learn a representation. The idea is that, given the right task, the
computer can learn on its own to represent useful semantic properties of the visual world. A
good task, we argue, will require semantic understanding as a prerequisite, even if the out-
puts needed for the task are not themselves semantic. We call such tasks “pretext tasks”,

Figure 1.1: How do our minds represent a city scene? People who have been to Paris can
often pick out discriminative elements of the architecture like these, despite never being
explictly educated to do so. Hence, a first step in our work is to investigate how a computer
might learn this kind of “visual element” from a large database of street-level images, when
the only label given is the city name.

since we do not necessarily care about solving the tasks themselves, but rather, the tasks
are an excuse for learning something else. The key contributions of this thesis are an analy-
sis of several different pretext tasks, as well as algorithms that train useful representations
from those tasks, and methods for doing useful work with the resulting representationsﬂ
Specifically:

o Our first pretext task challenges the computer to predict image-level GPS tags. We
show that, in response, the computer learns specific and recognizable “Visual Ele-
ments” of the style of cities, which summarize the style in ways that are easy for hu-
mans to interpret.

o We use scene categorization as a pretext task for learning objects and other discrimi-
native elements of indoor scenes, and demonstrate how a discriminative extension of
the classic Mean Shift algorithm can be used to learn such elements.

o Our final pretext task requires the computer to predict the context around patches. We
show that this task encourages the algorithm to learn to detect objects, since objects
put strong constraints on what can occur in the surrounding context.

e We train deep neural networks using unlabled image context, and demonstrate that
this “unsupervised” learning can result in improvements on real image tasks like ob-
ject detection and geometry estimation.

1.1 What is a Representation?

Before we describe learning procedures, we should first describe the desired result: a work-
ing visual representation. We argue that it contains much more than the bounding boxes,

I These contributions were originally reported in .

keypoints, and segmentations which are the usual target outputs of computer vision sys-
tems! Describing what exactly humans do with visual information has fascinated philoso-
phers for centuries. For example, David Hume wrote in his Treatise of Human Nature in
1740 [91]]:

The first circumstance, that strikes my eye, is the great resemblance betwixt
our impressions and ideas in every other particular, except their degree of
force and vivacity. The one seem to be in a manner the reflexion of the other;
so that all the perceptions of the mind are double, and appear both as impres-
sions and ideas. When I shut my eyes and think of my chamber, the ideas I
form are exact representations of the impressions I felt; nor is there any cir-
cumstance of the one, which is not to be found in the other. In running over
my other perceptions, I find still the same resemblance and representation.
Ideas and impressions appear always to correspond to each other.

Here, impressions refers, roughly, to sensory data, whereas ideas or representations are
something that exists purely in the mind, which appear automatically even when the mind
is not performing any specific task, and persist after the eyes are closed. But what is con-
tained in this representation? Hume continues:

Upon a more accurate survey I find I have been carried away too far by the
first appearance, and that I must make use of the distinction of perceptions
into simple and complex, to limit this general decision, that all our ideas and
impressions are resembling. I observe, that many of our complex ideas never
had impressions, that corresponded to them, and that many of our complex
impressions never are exactly copied in ideas. I can imagine to myself such
a city as the New Jerusalem, whose pavement is gold and walls are rubies,
though I never saw any such. I have seen Paris; but shall I affirm I can form
such an idea of that city, as will perfectly represent all its streets and houses
in their real and just proportions?

Representations, it seems, are not mere copies of the visual world; rather, the visual
world has been transformed, and information has been lost. This seems reasonable: if we
want to recognize that a window is constructed in the style of Paris windows, we do not
need to remember every blemish in the stone of every Paris window we have seen. But does
this transformation accomplish something more than simple compression of information
stored in our memories? Hume argues that the purpose of the ideas (the basic unit of our
representation) is that it enables us to form associations:

The qualities, from which this association arises, and by which the mind is
after this manner conveyed from one idea to another, are three, viz. RESEM-
BLANCE, CONTIGUITY in time or place, and CAUSE and EFFECT. I believe
it will not be very necessary to prove, that these qualities produce an associ-
ation among ideas, and upon the appearance of one idea naturally introduce
another. It is plain, that in the course of our thinking, and in the constant rev-
olution of our ideas, our imagination runs easily from one idea to any other
that resembles it, and that this quality alone is to the fancy a sufficient bond
and association.

Hume’s statement here seems to pre-suppose that a good representation makes appar-
ent the resemblance (or similarity) between different objects and scenes we see. For exam-
ple, it is likely readily apparent that the Paris windows shown in Figure[l.T/have something

Figure 1.2: Given a large database of Google Street View images, we might hope that
awnings, traffic lights, and pedestrians would be grouped close together in feature space.
However, here we show nearest neighbors in the highly successful HOG feature space
for 3 such patches (the query patch is on the left).

in common, even if they are not identical. This kind of association is necessary for recogniz-
ing that past memories are relevant when, for example, we notice that a building we haven’t
seen before uses the Paris architectural style. Admittedly, Hume did not have the tools to
explore what about the mind’s representation allows us to infer “resemblance,” and thus
this term (as well as “contiguity” and “cause and effect”) remain poorly defined through-
out the treatise. Today, however, we know that defining visual resemblance is much more
difficult than we would expect given how effortlessly the human brain to computes it. Even
after decades of work, we can apply one of the the best hand-designed similarity metrics
(HOG [34]) to a large dataset of image patches and fail associate some patches with others
that are semantically similar, as shown in Figure[T.2} The incredible difficulty of program-
ming a notion of similarity suggests that perhaps we need to take a different approach than
defining it by hand.

One likely answer is that similarity metrics, the resulting associations between different
visual experiences, and the representation in general are all learned from data. That is, we
don’t need to define similarity or the representation explicitly in code, but rather, we need to
define some rule that allows us to optimize a representation until it gives the kind of associ-
ations we want. State-of-the-art work in this field—deep neural networks—currently learns
almost every aspect of its representation [111], even low-level image filters that can replace
hand-designed features like the HOG features described above. This has led to remarkable
improvements in performance in tasks like large-scale image classification [35]. However,
the key in this approach is that human annotators explicitly tell the computer which kinds
of images must be associated, by dividing the visual world into 1000 different categories
of objects, and providing more than a million pre-labeled images to the algorithm. Hence,
this result is not only expensive in terms of human labor; it also makes strong assumptions
about what we care to label in images. Furthermore, it can’t explain how learning happens
in humans, since humans do not need such large collections of labeled images.

Interestingly, work concurrent with this thesis has shown that a deep neural network
representations trained to perform the large-scale classification task posed by Im-
ageNet are useful for a variety of visual tasks, such as detecting and localizing ob-

jects [66], segmentation [130]], image retrieval [68], geometry estimation [219], and others.
This result suggests that the deep representation is capturing something beyond the cate-
gories that it is initially trained on. Why does this happen? One hypothesis is that in order
to classify between different object categories, the deep net learns to partially solve many
other problems and extract other types of information, because doing so is useful for the
final classification. For example, to learn to differentiate between different breeds of dogs,
it helps to be able to localize discriminative parts like the head, so that those parts can be
compared directly. As a side effect, this capability might be what helps R-CNN [66]] localize
objects when built on top of the representation learned from ImageNet. So, if the represen-
tation and the task are not tied so closely together, then are there other tasks which prompt
learning algorithms to discover useful concepts beyond what is labeled?

1.2 Our Approach

This thesis aims to begin to address the question of whether there exists other ways to train
strong visual representations besides giving the computer exactly the label we want. The
repercussions are twofold. First, we want to train good representations with less human
effort. After all, ImageNet contains 1.3 million images, each of which is labeled with one of
1,000 categories. Collecting it was non-trivial, and expanding it by an order of magnitude
or two would be expensive. Even if we don’t ultimately discard all manual annotation,
we might be able to learn more effective representations with cheap or free annotations
that augment or even replace the expensive ones. Second, and more philosophically, we
want to understand what makes a good representation. That is, we want to understand the
circumstances that allow machine learning algorithms to generate general-purpose repre-
sentations, which might ultimately even contribute to understanding how humans learn to
see.

What tasks can prompt an algorithm to learn a good representation? The space of poten-
tial tasks is enormous: for example, given any function that we might compute on images,
we can train an algorithm to approximate that function, or to approximate its inverse (De-
noising Autoencoders [9}208]], for example, take the second approach). To try to narrow
down the set of possible tasks, we take inspiration from Hume: the idea is that a good rep-
resentation produces associations between ideas, i.e., associations between similar objects
and similar scenes. Therefore a good task should be solved by that kind of association.
Specifically, a good task will require similar outputs (predictions) for semantically similar
images, whereas semantically different images should require different (or at least uncorre-
lated) predictions. In order to generalize well on such a task, the algorithm will thus learn
to associate the semantically similar images: this allows it to transfer the correct prediction
from one image to other similar images. It is not immediately obvious that there really exist
non-semantic (i.e. easy-to-label) tasks where semantically similar images have semantically
similar predictions. However, recent work in both psychology and computer science sug-
gests that they might. In psychology, it has been shown that young children learn words
more quickly if those words predict something about the context, i.e., they co-occur with
another distinctive environmental cue [174]. Thus, environment prediction might be seen
as a pretext task: a child learns that a given word—which may sound very different com-
ing from different speakers—always means the same thing because it predicts something
consistent about the environment. Recent results in the natural language processing have
shown similar results: notably, that the context around words can train useful word repre-

sentations [5,28|[137|/151]]. For instance, we can task the computer with predicting the words
in the context of (i.e., a few words before and/or after) a given word. The learned repre-
sentations are then useful for other tasks involving natural language interpretation [137].
In this case, context prediction serves pretext task to cause the model to associate related
words, since they have similar contexts.

We argue that such pretext tasks exist for vision as well, and that some of them can
be posed to the computer with minimal annotation effort. In this thesis, we divide such
tasks broadly into weakly supervised methods, which use image-level labels, and unsupervised
methods, which assume no information is available in an image dataset other than the pixels
themselves.

Weakly Supervised Learning

Our work begins with the goal of learning to associate visually similar patches that are
somehow informative, and therefore form useful building blocks for representations. One
way to associate semantically similar images is that they often have similar metadata on
the web. For example, assuming we have GPS tags for images, images with nearby GPS
coordinates will often have something visually in common. In this thesis, we first aim to
build a computer system that understands the look and feel of cities, and associates patches
depicting similar components of city architecture. This work is inspired by the fact that
humans can often point out small, distinctive elements of the architecture of cities they rec-
ognize, despite having no apparent source of labels for such elements. It is straightforward
to download large datasets of images taken in different cities: for example, we can easily
obtain millions of geotagged images from Google Street View. However, it is less clear how
a computer can learn to describe and localize what is distinctive about the scenes, as people
can. Even if we have a strong classifier that can differentiate between cities, it is not clear
how to produce the sort of associations that might be useful to an architect, urban historian,
or graphics designer, which explains what in the image gives it the distinctive look, and how
those elements are connected to other scenes elsewhere in the city. Retrieving patches like
those shown in Figure[L.Tjwould be useful, but annotating training examples would be not
only labor-intensive, but also ambiguous for the annotators. How large should the bound-
ing boxes extend on the facade? Does the fact that one window has a larger railing than
another indicate a sub-category of window that should be clustered separately? We argue
that that the computer should be able to answer this kind of question automatically. Thus,
we are faced with a “weakly supervised” pretext task: the labels are only weakly correlated
with the kind of representation we want. Our real goal is to learn something much richer
than the labels we have.

Our approach is to group image patches into visual elements that capture the important
properties of the data (in the case of Paris, they capture style). These elements are 1) fre-
quent, i.e., there are many instances throughout the city, and 2) discriminative, i.e., they
tell us at a glance which city is depicted in the patch. We can implement a visual element
by training a detector (i.e. a patch classifier) which fires only in one city, and yet fires on
a visually coherent set of patches containing as many instances as possible from that city.
In this thesis, we detail two separate formulations that enable this kind of visual element
discovery without labels.

Our first approach relies on cross-validation clustering [190]. We initialize clusters of
patches using simple nearest-neighbors retrieval. Then, for each cluster, we train a classi-
fier to discriminate the top retrievals from one city from everything else. Given this trained

classifier, we can retrieve new top matches and re-train the classifier. We continue this pro-
cedure iteratively. An improved classifier improves the retrievals, and improved retrievals
in turn improve the classifier. Over time, we find the classifier hones in on a visual con-
cept that occurs frequently in the target city, and can be easily discriminated from similar
concepts in other cities.

We find even better results by reformulating the above algorithm into a joint optimiza-
tion over detectors and cluster memberships. We pose the visual element discovery as dis-
criminative mode seeking, drawing connections to the the well-known and well-studied
mean-shift algorithm. Given a weakly-labeled image collection, this method seeks regions
of patch feature space where there are many patches from one city, and few patches from
other cities.

We develop the Purity-Coverage plot as a principled way of experimentally analyzing
and evaluating different visual discovery approaches, and demonstrate visual element dis-
covery within a dataset of Street View images. We also evaluate our method on the standard
task of scene classification, demonstrating strong performance on the MIT Indoor Scene-67
dataset, as well as several tasks related to visualizing the style of cities, such as understand-
ing the city layouts and connecting similar elements across different cities.

Unsupervised Learning

Next, we turn to representation learning when no annotations are available. Unsupervised
learning has been a longstanding goal in computer vision due to the promise of virtually
infinite free training data available on the web. However, unsupervised learning has proven
extremely difficult in the visual domain, because even images that look similar to humans
may actually have vast differences at the pixel level. In the weakly-supervised geographic
discovery algorithm above, we assumed that patches belong together only if they come from
the same city, giving us some criterion to optimize. Without these labels, how can we tell
whether a set of patches belongs together? The surprising answer is that the image context
surrounding the patch can be treated as a sort of weak label. A set of patches belongs
together if we can share information between them to predict the context surrounding each
one. This, it turns out, can serve as the basis for converting the unsupervised learning
problem into a supervised learning one, where the algorithm learns to predict the context
given a patch.

First, we aim to simply discover sets of image patches that all depict the same object,
much like we tried to find patches depicting the same architectural element above. The
ability of an object patch to predict the rest of the object (its context) is used as supervisory
signal to help verify which patches belong together. There are three main components of
the algorithm. First, we frame unsupervised clustering as a leave-one-out context predic-
tion (i.e. generative) task. Second, we evaluate the quality of context prediction by statistical
hypothesis testing between “thing” and “stuff” appearance models, only accepting that a
set of patches forms an object if the “thing” model predicts better than the “stuff” model.
Third, we use an iterative region prediction and context alignment approach that gradu-
ally discovers a visual object cluster together with a segmentation mask and fine-grained
correspondences. The proposed method outperforms previous unsupervised as well as
weakly-supervised object discovery approaches, and is shown to provide correspondences
detailed enough to transfer keypoint annotations. In all, this work demonstrates that con-
text can serve as a way to associate images that contain the same thing, much in the same
way that labels do in a standard supervised setup.

Given this success, we next show how to use spatial context as a source of free and
plentiful supervisory signal for training a deep visual representation, which efficiently and
robustly summarizes the data in a way that is useful for real tasks. Given only a large,
unlabeled image collection, we extract random pairs of patches from each image in the
collection and train a discriminative model to predict their relative position within the im-
age. Intuitively, doing well on this task will require the model to learn to detect objects
and object parts, since without the semantics, it would often be impossible to recover the
layout. We demonstrate that the feature representation learned using this within-image
context prediction task is indeed able to capture visual similarity across images, and can
be used for discovery much like our previous algorithm. Furthermore, we show that the
learned representation is useful for standard vision tasks including object detection and
geometry estimation. Notably, when used as pre-training for the R-CNN object detection
pipeline [66], our features provide a significant boost over random initialization on PAS-
CAL object detection, resulting in state-of-the-art performance among algorithms which
use only PASCAL-provided training set annotations.

Chapter 2

Background

Though Hume and others described the basic intuition behind a visual representation cen-
turies ago, it remained difficult to say anything rigorous about how they work until relatively
recently. Advances have come gradually, both from psychology and neuroscience of animal
vision, and more recently from computer science and machine learning. This chapter aims
to provide a brief history of some of the important developments which contributed to the
scientific community’s understanding of visual representations, starting from neuroscience
and psychology, and continuing through to the machine representations that are useful for
real tasks today. While this is far from a complete account of the history of visual repre-
sentations, our hope here is to provide historical context for the current work, highlighting
works that have contributed to it, and to trace the origins of some of the questions that this
thesis contributes to answering.

2.1 Early Theories from Psychology and Neuroscience

The view of the eye as a camera obscura, with a lens projecting an image onto the retina,
is generally credited to Johannes Kepler in the early 1600s [211] (although even Da Vinci
found parallels between the eye and the camera obscura 100 years earlier). This is, in some
sense, the most basic possible representation: an image copied exactly into the body. This
understanding of the eye gradually gained acceptance, but the question of what happened
to that image afterward remained murky. After all, a flat image is a poor approximation
to our perception of a 3D world populated by objects. Hermann von Helmholtz is gener-
ally credited with emphasizing the importance of inference, a mathematical process which
happens unconsciously from an image, to infer properties like depth that are not immedi-
atly present in the image. Helmholtz’s theory was largely based on geometry, particularly
binocular stereo. The origins of the idea that learning is an important part of the develop-
ment of human representations is difficult to trace, but it appears Helmholtz was at least
considering the idea. In his Treatise on Physiological Optics [209], Helmholtz discusses
the importance of experience and learning in shaping the outcomes of this “unconscious
inference,” which was apparently a divisive topic during his time:

Still to many physiologists and psychologists the connection between the sen-
sation and the conception of the object usually appears to be so rigid and
obligatory that they are not much disposed to admit that, to a considerable

extent at least, it depends on acquired experience, that is, on psychic activity.
On the contrary, they have endeavoured to find some mechanical mode of ori-
gin for this connection through the agency of imaginary organic structures.
With regard to this question, all those experiences are of much significance
which show how the judgment of the senses may be modified by experience
and by training derived under various circumstances, and may be adapted to
the new conditions. Thus, persons may learn in some measure to utilize de-
tails of the sensation which otherwise would escape notice and not contribute
to obtaining any idea of the object. [...] For example, the spectacle of a person
in the act of walking is a familiar sight. We think of this motion as a connected
whole, possibly taking note of some of its most conspicuous singularities. But
it requires minute attention and a special choice of the point of view to distin-
guish the upward and lateral movements of the body in a person’s gait. We
have to pick out points or lines of reference in the background with which we
can compare the position of his head. But look through an astronomical tele-
scope at a crowd of people in motion far away. Their images are upside down,
but what a curious jerking and swaying of the body is produced by those who
are walking about! Then there is no trouble whatever in noticing the peculiar
motions of the body and many other singularities of gait; and especially dif-
ferences between individuals and the reasons for them, simply because this is
not the everyday sight to which we are accustomed. On the other hand, when
the image is inverted in this way, it is not so easy to tell whether the gait is
light or awkward, dignified or graceful, as it was when the image was erect.

Methods to explore what happened to the image after it was absorbed into the retina
did not appear until the 1930s, when developments in electrodes made it possible to record
the responses of single neurons [77]]. In vision, microelectrode studies ultimately led to the
discovery of retinal neurons that were sensitive to simple patterns like dots [8]], and then to
visual cortex neurons which were sensitive to oriented edges with some invariance to spatial
position by Hubel and Wiesel [87,/89]. Hubel and Wiesel conjectured a hierarchical repre-
sentation of neurons, where neurons deeper in the hierarchy were sensitive to increasingly
complicated stimuli. This theory was confirmed by later studies which found, for example,
hand detectors in inferotemporal cortex [74].

Despite the tremendous progress in understanding the basic contents of the brain’s
visual representation, there were two fundamental questions that remained unanswered.
First, neuroscience could do relatively little to explain how the neurons detected the things
they detected. The hand detector neuron apparently worked by receiving and assembling
messages from neurons which detected the mid-level parts of hands; these in turn received
messages from the edge detecting neurons. However, the mid-level “parts” were quite dif-
ficult to describe, and the mathematics that a neuron used to combine messages could not
be observed directly. Furthermore, neuroscience could do almost nothing to explain how
individual neurons decided what they should detect. It was not known how the visual cor-
tex was constructed starting only from DNA, or how experiences like those described by
Helmholtz could be incorporated into a learning system.

10

2.2 Computer Vision For Artificial Intelligence

By the 1960s, computers were powerful enough to begin processing images. Early work
largely ignored learning, and instead focused on directly coding algorithms that could
infer scene properties that might be useful for robotics. For example, early work at the
MIT Artificial Intelligence laboratory aimed to infer 3D geometry starting from straight
lines [75,[171]. Subsequent works presented algorithms to infer other properties of objects,
such as surface reflectance [114] or more complex 3D shape using shading [86]. Fischler
and Eischlager laid the groundwork for more semantic object detection with their Pictorial
Structures model [56]. Progress was slow, mostly due to computational constraints. How-
ever, David Marr [135] points to another issue, the importance of which was not very widely
recognized: the goals were poorly defined. Specifically, he writes regarding the papers that
were published in the 1970s:

There must exist an additional level of understanding at which the character
of the information-processing tasks carried out during perception are ana-
lyzed and understood in a way that is independent of the particular mecha-
nisms and structures that implement them in our heads. This was what was
missing—the analysis of the problem as an information-processing task. Such
analysis does not usurp an understanding at the other levels—of neurons or
of computer programs—but it is a necessary complement to them [...] [I]f the
notion of different types of understanding is taken very seriously, it allows
the study of the information-processing basis of perception to be made rigor-
ous. It becomes possible, by separating explanations into different levels, to
make explicit statements about what is being computed and why and to con-
struct theories stating that what is being computed is optimal in some sense
or is guaranteed to function correctly. The ad hoc element is removed, and
heuristic computer programs are replaced by solid foundations on which a
real subject can be built.

Marr and others argued during the late 1970s that there were three levels of understand-
ing that the field needed to strive for separately. At the highest level, we need to understand
thebasic goals, i.e., what must the system compute in the end. The next level is the algorithm
and representation that is used to compute it, and the lowest level is the actual hardware
implementation in terms of neurons or lines of code. The problem, Marr argued, was that
all algorithms published up to that point had not done enough to separate the algorithm
from the desired output, leading to a great deal of confusion about whether a given algo-
rithm was accomplishing its task, and whether or not that task was worth accomplishing.
In retrospect, there is certainly a kernel of truth to Marr’s argument here, although it is dif-
ficult to say whether the field’s progress since then is quite what he had in mind. Certainly
the modern vision field has gotten better about posing tasks separately from the algorithms
that solve them (allowing for rigorous comparisons between algorithm performance, which
I believe most would argue has been critical to the success of the field). This separation—
and notably the idea that it is non-trivial to define what task the algorithm should solve—is
of central importance in this thesis, but again our view is probably not quite what Marr
had in mind. We aim to show that we can define proxies for the tasks of interest, rather
than defining the desired tasks themselves. In some sense, this understanding of the rela-
tionships between tasks is yet another level of understanding, above simply understanding
what the algorithm should compute.

11

The separation of the task from the algorithm also paved the way for a development
that Marr does not seem to have predicted: namely, that once the task was well defined,
machine learning can overtake human programming of the algorithm-level understanding
of computer vision. In the early days of computer vision, learning was scarcely mentioned,
much less implemented. However, the computational neuroscience community had never
forgotten the problem of learning. Even early on, it was clear that the visual processing al-
gorithms wer not hard-coded in DNA. Rather, some form of learning was happening even
at the lowest levels of the hierarchy. For instance, it was shown neurons in the visual cortex
of cats learned to take input from only one eye if the other eye was sewn shut [90]. The
earliest implementations of visual learning actually aimed to be neural models, aimed at
understanding how a functioning visual system could develop in a brain. Most notably,
Rosenblatt’s work on the Perceptron (which, remarkably, he stacked into layers and trained
with a rudimentary version of backpropagation [172] in the early 1960s) was motivated
largely as a neural model (although it was not applied to vision). Decades later, this work in-
spired the Neocognitron [61]], a model which attempted unsupervised visual representation
learning by having neurons memorize and cluster parts of digits. This theory, motivated
by Hubel and Wiesel’s notions of hierarchy [88]], explained complex visual computations in
terms of a series of simpler operations, and allowing detected parts to be re-used to detect
multiple characters (e.g. a - detector can be used to help detect both a “B” and an “F”).
Unfortunately, the Neocognitron’s learning method was somewhat ad-hoc and difficult to
tune. Hence, their view was not shown to be useful until error backpropagation was re-
formulated as gradient descent [176]], which, in vision, led to performance strong enough
to be useful in a real vision task: handwritten digit recognition [117].

Learned representations quickly established a place in computer vision, but these meth-
ods still struggled to deal with the complexity of full-resolution natural images. Unlike
digits, where tens of thousands of digits did a good job covering the space of variations,
it seemed that many orders of magnitude more data would be required to cover the space
of natural images. Subsequent works aimed to improve statistical efficiently by providing
more constraint on the mid-level representation. For instance, EigenFaces and numerous
follow-up works represented faces with principal components analysis [207]. For object
recognition, Murase et al. [146] attempted to extend the PCA approach to be more invari-
ant to pose and deformation. Many of these early representations were not particularly
hierarchical, often relying directly on pixel-level similarity. The field gradually shifted to-
wards methods which brought back more of the hierarchy, although they tended to rely
on hand-engineered low-level features. Most notably, algorithms that extended the picto-
rial structures approach to representation [56] gradually came to dominate object detection
and recognition [[15/52,/113}230], culminating in the Deformable Parts Model [53] which
was highly successful for object detection. For the most successful pictorial structures mod-
els, the training was done discriminatively, i.e., the entire pipeline, including the mid-level
parts, was optimized to minimize detection error on the training set. However, discrimi-
native training was not universal. In particular, unsupervised representation learning re-
mained dominant in image classification [71}|161}/193]. However, the successful unsuper-
vised learning methods all focused on some kind of clustering or factor analysis which tried
to summarize all of the variation in the data, rather than attempting to extract semantically
meaningful or descriminative features.

During this period, another dramatic shift was happening besides the change in algo-
rithms: the shift to big datasets and standard benchmarks. After digits, early datasets in
face detection quickly led to large performance improvements [173]. In object recognition,

12

COIL [[148] was the first to capture a wide variety of objects (though each category contained
only one instance), Caltech-101 [51] increased the complexity of objects, and MSRC [224]
and LabelMe [179] put those objects into more complicated scenes, requiring localization
in the evaluation as well as classification. PASCAL [49], ImageNet [35,{177], SUN [227],
and COCO [129] gradually increased both the complexity of the scenes where the objects
occurred and the space of categories that the objects might come from. The result was a
gradual progression of richer and richer representations, which were partially propelled
by algorithmic advancements, and partially by the demands that the particular datasets
placed on the algorithms.

2.3 Present State of the Art

In the past few years, importance of the dataset complexity has been extremely apparent, as
deep neural networks have consistently outperformed other methods only once the dataset
size is as large as ImageNet or COCO [79}/111}]189}199]]. These “Deep ConvINet” approaches,
which are in many ways similar to the ConvNets of the 1980s [117], are the current winners
in many important challenges, including ImageNet classification [111], and PASCAL and
COCO object detection and segmentation [[66}79,/130]. Besides their strong performance,
however, another important contribution of deep networks is to show that importance of a
learned representation extends beyond the single task that the representation was trained
to perform. When performing object detection on a dataset like PASCAL with limited train-
ing examples, it helps to begin with a deep representation trained on the larger ImageNet
dataset [66,(111]]. This same network transfers to other problems like segmentation [130],
geometry estimation [219], pose estimation [16], image retrieval [68], and numerous other
tasks [167]. These results suggest that the ImageNet-trained representation is “general-
purpose,” i.e., it provides a strong and useful prior for other visual learning. Therefore, we
argue that it is important to understand how a learning algorithm can result in a general-
purpose representation, since we ultimately hope to build representations that are even
better than the ones trained from ImageNet.

This leads to two questions. First, under what circumstances does a machine learning
algorithm learn to do more than the single task that it is trained on? Second, is it possible
to begin with a task that does not appear to be useful by itself, and use it to train a useful
representation? These are the core questions that this thesis aims to address, and they are
not completely new. Here, we review previous attempts to find visual supervision in un-
expected places, most of which have been relatively recent. Much of this work has focused
on labels that require little or no human effort to obtain, aspiring to provide cheap, huge
datasets to the community. However, little of this work has been influential in the broader
field of vision, since so far nothing has seemed likely to outperform more conventional
forms of strong supervision.

We consider two broad types of methods: first, those which assume some auxhiliary
information is provided alongside each image, which we call weakly-supervised learning, and
second, those which assume no information is provided besides the pixels, which we call
unsupervised. We acknowledge, however, that there is disagreement in the field regarding
the meaning of these terms. Admittedly the distinction is be somewhat artificial, since weak
labels are often available without any human annotation effort, and furthermore, pixels in
the context of an image region might also be seen as a sort of “weak label” for that region.

13

2.3.1 Weakly-Supervised Methods

One approach to weak-label learning is to try to get localization for free. That is, the algo-
rithms start with an image collection that has image-level category labels, and infer bound-
ing boxes or segmentations for objects [22}27}149,157, (184|191} 216]. These works gen-
erally assume relatively strong image-level labels which are collected by hand, and in-
dicate the presence or absence of certain object categories. Other works on cosegmenta-
tion [20,99,/107,/175] and colocalization [37,{100,200] make assumptions about the annota-
tions that are in some sense weaker; e.g., that the images were returned from a web search
and hence may not even contain the object of interest, or that negatives are not available.
These works do, however, assume that the images correspond to categories and that these
categories are well represented within the images (e.g. are often large and central in the
image), which aids in the learning process.

Another approach is to turn to the web and collect any information that can be scraped
along with images, and use them as labels. For example, text [10}(183]], user tags [69,93,95|
101}[140,228,234], or GPS coordinates [109,[126|163,182] are all easily available and provide
cues for some important aspects of images. When the labels are noisy or only provided
for a subset of images, semi-supervised learning may be employed to propagate or cor-
rect the labels [23)33}/46}/54}(112,122,/138,187]]. Recent efforts have attempted to summarize
visual information across the web into a database of concepts that can make sense of it
altogether [19/38].

Sometimes cameras come with additional hardware that provide auxhiliary informa-
tion. For instance, in cars scanning street scenes, it is easy to record the 3D offset between
images. Deep networks trained to predict this seem to learn semantic information [3,97].
Robotic sensors also have information about the robot’s interaction with the world, allow-
ing researchers to train visual representation that predict the result of physical interac-
tions [[162].

Work in this thesis is partially the foundation of yet another line of research on weak
supervision that focuses on discriminative patch mining [6}/12,32,39}/43}4859,96,/102,/119,
125}/168,(190,[197}212,[218,[222}232]], which has emphasized weak supervision as a means of
object discovery. These methods generally only assume that the objects of interest are only
somewhat correlated with the labels, and do not assume that they are necessarily large in
the images. They have also emphasized the utility of learning representations of patches
(i.e. object parts) before learning full objects and scenes. For more details, see Chapters

and

2.3.2 Unsupervised Methods

Approaches which rely solely on unlabeled images and videos have a long history in vision
science, and not simply because they may greatly reduce labeling effort. Many of the earli-
est unsupervised approaches were motivated by biological vision, where the classic notion
of a 'label’—i.e. semantic categories—seems unrealistic for organisms that must rely solely
on sense data. One of the most prominent lines of research is temporal coherence learn-
ing [42)58)84,92,[141}215)220,225,236]]. Here, the idea is simply that objects do not appear
and disappear randomly in video, nor does scene layout change rapidly. Even though the
appearance may change as objects deform, lighting changes, and so on, many important
scene properties will change slowly. Hence, the visual representation should also change
slowly between frames of video. This effect has been demonstrated in physiological exper-

14

iments [124]214], and recent work has shown that it can provide improvements on realistic
image datasets when training data is limited [220]. Interestingly, many of these approaches
avoid formulating a global objective function, and instead use learning rules that can be
evaluated on the level of individual neurons, adding to their biological plausibility.

Many other cues are present in video. For instance, motion can reveal the boundaries of
objects, which is difficult to predict from static images without semantics. Given patches, a
neural network can be trained to predict these motion boundaries, which results in object
understanding [128]. A neural network can also be trained to recover the temporal ordering
of frames [139] or trajectories in future motions [1].

Another way to think of a good image representation is as the latent variables of an ap-
propriate generative model. An ideal generative model of natural images would both gen-
erate images according to their natural distribution, and be concise in the sense that it would
seek common causes for different images and shares information between them. A key diffi-
culty, however, is that inferring the latent structure given an image is intractable for even rel-
atively simple models. To deal with these computational issues, a number of works, such as
the wake-sleep algorithm [85], contrastive divergence [83], deep Boltzmann machines [181]],
and Bayesian nonparametric models [195] use sampling to perform approximate inference.
Others strengthen the independence assumptions in the model [223]. More recently, varia-
tional Bayesian methods for approximate inference have been proposed [108)170], and ad-
versarial nets have been proposed as a way to evaluate distributions instead of evaluating
single samples [36}[70}/165]. These methods have shown promising performance on smaller
datasets such as handwritten digits [83}/85,(108}/170,[181]], but none have proven effective for
understanding the semantics of high-resolution natural images.

Another way to look at the goal of unsupervised representation learning is that it aims
to learn an embedding (i.e. a feature vector for each image) where images that are seman-
tically similar are close, while semantically different ones are far away. For instance, cars
should be similar to other cars, red sports cars should be even more similar to other red
sports cars, and so on. To build such a representation without supervision, one approach
is to try to compress the data using a hierarchical compressor and decompressor—called
an autoencoder—with the hope that the network will learn object and scene semantics as
a method of storing information more compactly and recovering lost signal. For example,
denoising autoencoders [9208] aim to reconstruct images from noisy versions; to tell the dif-
ference between noise and signal, the algorithm must connect images to other images with
similar objects, in order to remove the parts of the image that don't fit the shared appear-
ance patterns. Sparse autoencoders also use reconstruction, in conjunction with a sparsity
penalty on the representation [154]. To learn deeper (and more non-linear) visual repre-
sentations, one commonly used approach is to stack such sparse autoencoders [116,[118].
We are aware of only one such stacked sparse autoencoder model that has been applied to
full-scale images [116]; while the results were promising, it required around a million CPU
hours and reported only three discovered objects. Part of the problem with reconstruction-
based algorithms is that many low-level phenomena, like stochastic textures, are surpris-
ingly difficult to reconstruct accurately. This means that it’s often hard to even measure
whether a model is reconstructing images well.

One of the ideas explored in this work is “context prediction.” A strong tradition for
this kind of task already exists in the text domain, where “skip-gram” [137] models have
been shown to generate useful word representations. The idea is to train a model (e.g. a
deep network) to predict, from a single word, the n preceding and n succeeding words. In
principle, similar reasoning could be applied in the image domain, a kind of visual “fill

15

in the blank” task, but again one runs into the problem of determining whether the pre-
dictions are correct. To address this, [134] predicts the appearance of an image region by
consensus voting of the transitive nearest neighbors of its surrounding regions. A number
of approaches attempt to model contextual pixels directly [115}155,202]], but these models
tend to focus on low-level textures. Hence, one of the chapters in this thesis attempts to
simultaneously estimate how difficult the features are to predict, thereby focusing the algo-
rithm on complex shapes rather than simple textures [40]], and another focuses on choosing
between predictions rather than forming novel ones [41]. measure how difficult the features
are to predict through a “stuff” model, so that the overall algorithm can focus on patches
that are not very “stuff”-like and more “thing”-like [40]. Our view of context as supervi-
sory signal has already inspired a small line of research in deep representation learning
from other authors [150}/159], suggesting a bright future for related methods.

A final line of work in unsupervised visual learning aims to discover object categories
from unlabeled datasets. These approach tend to use hand-crafted features and various
forms of clustering (e.g. [178,/192] learned a generative model over bags of visual words).
Early bag-of-words approaches tended to lose shape information, and will readily discover
clusters of, say, foliage. A few subsequent works have attempted to use representations
more closely tied to shape [120,[160], but relied on contour extraction, which is difficult
in complex images. Many other approaches [50,72}[104,|106] focus on defining similarity
metrics which can be used in more standard clustering algorithms; Rematas et al. [169], for
instance, re-casts the problem as frequent itemset mining. Geometry may also be used to
for verifying links between images [24}[81}/163], although this fails for deformable objects.

16

Chapter 3

Discriminative Patch Discovery:
What Makes Paris Look like Paris?

3.1 Introduction

Consider the two photographs in Figure both downloaded from Google Street View.
One comes from Paris, the other one from London. Can you tell which is which? Surpris-
ingly, even for these nondescript street scenes, people who have been to Europe tend to do
quite well on this task. In an informal survey, we presented 11 subjects with 100 random
Street View images of which 50% were from Paris, and the rest from eleven other cities.
We instructed the subjects (who have all been to Paris) to try and ignore any text in the
photos, and collected their binary forced-choice responses (Paris / Not Paris). On average,
subjects were correct 79% of the time (std = 6.3), with chance at 50% (when allowed to scru-
tinize the text, performance for some subjects went up as high as 90%). What this suggests
is that people are remarkably sensitive to the geographically-informative features within
the visual environment. But what are those features? In informal debriefings, our subjects
suggested that for most images, a few localized, distinctive elements “immediately gave it
away”. E.g. for Paris, things like windows with railings, the particular style of balconies, the
distinctive doorways, the traditional blue/green/white street signs, etc. were particularly
helpful. The human ability to find and appreciate the resemblance between instances of a
particular architectural feature—even though they are not identical—is especially remark-
able given that most people never explicitly train themselves to discriminate architecture.
The fact that it comes so naturally for people to notice—i.e. represent—these elements with-
out a clear supervisory signal suggests that it is a good starting point for our representation
learning algorithms. Finding those features can be difficult though, since every image can
contain more than 25,000 candidate patches, and only a tiny fraction will be truly distinc-
tive. Before we can tackle the representation problem, we must first solve the association
problem, so we will know what should be similar in the space of representations.

In this chapter, we want to find such local geo-informative features automatically, directly
from a large database of photographs from a particular place, such as a city. Specifically,
given tens of thousands of geo-localized images of some geographic region R, we aim to find
a few hundred visual elements that are both: 1) repeating, i.e. they occur often in R, and 2)
geographically discriminative, i.e. they occur much more often in R than in R. Figure

17

Figure 3.1: These two photos might seem nondescript, but each contains hints about which
city it might belong to. Given a large image database of a given city, our algorithm is able to
automatically discover the geographically-informative elements (patch clusters to the right
of each photo) that help in capturing its “look and feel”. On the top, the emblematic street
sign, a balustrade window, and the balcony support are all very indicative of Paris, while
on the bottom, the neoclassical columned entryway sporting a balcony, a Victorian window,
and, of course, the cast iron railing are very much features of London.

shows sample output of our algorithm: for each photograph we show three of the most
geo-informative visual elements that were automatically discovered. For the Paris scene
(left), the street sign, the window with railings, and the balcony support are all flagged as
informative.

But why is this topic important? 1) Scientifically, the goal of understanding which vi-
sual elements are fundamental to our perception of a complex visual concept, such as a
place, is an interesting and useful one. Visual elements may be seen as the basic building
blocks of an informative representation, so capturing them using only scene-level labels
suggests that we can learn rich representations with little human annotation effort. 2) Our
work demonstrates how “visual data mining” be used to visualize datasets in ways that
humans can understand. Our work shares this motivation with a number of other recent
works that propose ways of finding and visualizing existing image data in better ways, be
it selecting candid portraits from a video stream [57], summarizing a scene from photo col-
lections [188], finding iconic images of an object [11], etc. 3) More practically, one possible

18

future application of the ideas presented here might be to help CG modelers by generating
so-called “reference art” for a city. For instance, when modeling Paris for Pixar’s Rata-
touille, the co-director Jan Pinkava faced exactly this problem: “The basic question for us
was: ‘what would Paris look like as a model of Paris?’, that is, what are the main things that
give the city its unique look?” [[156]. Their solution was to “run around Paris for a week like
mad tourists, just looking at things, talking about them, and taking lots of pictures” not just
of the Eiffel Tower but of the many stylistic Paris details, such as signs, doors etc. [156](see
photos on pp.120-121). But if going “on location” is not feasible, our approach could serve
as basis for a detail-centric reference art retriever, which would let artists focus their atten-
tion on the most statistically significant stylistic elements of the city. 3) And finally, more
philosophically, our ultimate goal is to provide a stylistic narrative for a visual experience of
a place. Such a narrative, once established, can be related to others in a kind of geo-cultural
visual reference graph, highlighting similarities and differences between regions. E.g. one
could imagine finding a visual appearance “trail” from Greece, through Italy and Spain and
into Latin America. In this work, we only take the first steps in this direction — connecting
visual appearance across cities, finding similarities within a continent, and differences be-
tween neighborhoods. But we hope that our work might act as a catalyst for research in this
new area, which might be called computational geo-cultural modeling.

3.2 Related Work on Geo-spatial Visual Data Mining

Considerable prior work has focused specifically on understanding and modeling visual
scenes in the context of geography, so here we briefly review the literature. In the field of
architectural history, descriptions of urban and regional architectural styles and their ele-
ments are well established, e.g. [131,198]. Such local elements and rules for combining them
have been used in computer systems for procedural modeling of architecture to generate
3D models of entire cities in an astonishing level of detail, e.g. [144], or to parse images of
facades, e.g. [201]. However, such systems require significant manual effort from an expert
to specify the appropriate elements and rules for each architectural style.

At the other end of the spectrum, data-driven approaches have been leveraging the
huge datasets of geotagged images that have recently become available online. For exam-
ple, Crandall et al. [31] use the GPS locations of 35 thousand consumer photos from Flickr
to plot photographer-defined frequency maps of cities and countries, while Kalogerakis et
al. [103]] use the locations and relative time-stamps of photos of the same photographer to
model world-wide human travel priors. Geo-tagged datasets have also been used for place
recognition [[18}109}/182] including famous landmarks [126}[127,233]. Our work is particu-
larly related to [109}182], where geotags are also used as a supervisory signal to find sets of
image features discriminative for a particular place. While these approaches can work very
well, their image features typically cannot generalize beyond matching specific buildings
imaged from different viewpoints. Alternatively, global image representations from scene
recognition, such as GIST descriptor [152] have been used for geo-localization of generic
scenes on the global Earth scale [78,103]. There, too, reasonable recognition performance
has been achieved, but the use of global descriptors makes it hard for a human to interpret
why a given image gets assigned to a certain location.

In contrast, here we propose a discovery method that is weakly constrained by location
labels derived from GPS tags, and which is able to mine representative visual elements au-
tomatically from a large online image dataset, and recognize instances of them even when

19

input matches

Figure 3.2: Steps of our algorithm for three sample candidate patches in Paris. The first row:
initial candidate and its NN matches. Rows 2-4: iterations of SVM learning (trained using
patches on left). Red boxes indicate matches outside Paris. Rows show every 7th match for
clarity. Notice how the number of not-Paris matches decreases with each iteration, except
for rightmost cluster, which is eventually discarded.

iter.1 kNN
iter. 1 kNN
iter. 1 kNN

iter. 2
iter. 2

iter. 3
iter. 3
iter. 3

they are not geometrically identical. Not only are the resulting visual elements geographi-
cally discriminative (i.e. they occur only in a given locale), but they also typically look mean-
ingful to humans, making them suitable for a variety of geo-data visualization applications.
The next section describes the data used in this work, followed by the full description of our
algorithm.

3.3 The Data

Flickr has emerged as the data-source of choice for most recently developed data-driven
applications in computer vision and graphics, including visual geo-location [31}78}[127].
However, the difficulty with Flickr and other consumer photo-sharing websites for geo-
graphical tasks is that there is a strong data bias towards famous landmarks. To correct
for this bias and provide a more uniform sampling of the geographical space, we turn to
GoocLE STreeT VIEW — a huge database of street-level imagery, captured as panoramas us-
ing specially-designed vehicles. This enables extraction of roughly fronto-parallel views of
building facades and, to some extent, avoids dealing with large variations of camera view-
point.

Given a geographical area on a map, we automatically scrape a dense sampling of panora-
mas of that area from Google Street View [73]. From each panorama, we extract two per-
spective images (936x537 pixels), one on each side of the capturing vehicle, so that the image
plane is roughly parallel to the vehicle’s direction of motion. This results in approximately
10,000 images per city. For this project, we downloaded 12 cities: Paris, London, Prague,
Barcelona, Milan, New York, Boston, Philadelphia, San Francisco, San Paulo, Mexico City,
and Tokyo. We have also scraped suburbs of Paris for one experiment.

3.4 Discovering geo-informative elements
Our goal is to discover visual elements which are characteristic of a given geographical
locale (e.g. the city of Paris). That is, we seek patterns that are both frequently occurring

within the given locale, and geographically discriminative, i.e. they appear in that locale and
do not appear elsewhere. Note that neither of these two requirements by itself is enough:

20

Ill (]

u|r||1|
q

F‘

LI

|

En e ol EREE -
—HE—= LWL
AEsEECECE®

(a) K-Means Clusters using SIFT (Visual Words) (b) K-Means Clusters using HOG

Figure 3.3: (a) k-means clustering using SIFT (visual words) is dominated by low level fea-
tures. (b) k-means clustering over higher dimensional HOG features produces visually in-
coherent clusters.

sidewalks and cars occur frequently in Paris but are hardly discriminative, whereas the
Eiffel Tower is very discriminative, but too rare to be useful (< 0.0001% in our data). In this
work, we will represent visual elements by square image patches at various resolutions,
and mine them from our large image database. Hence, our elements are reminiscent of
Poselets [13], but our training procedure avoids the labor-intensive part labeling process
that Poselets requires. Instead, we assume only that our dataset can be divided into two
parts: (i) the positive set containing images from the location whose visual elements we
wish to discover (e.g. Paris); and (ii) the negative set containing images from the rest of
the world (in our case, the other 11 cities in the dataset). We assume that many frequently
occurring but uninteresting visual patterns (trees, cars, sky, etc.) will occur in both the
positive and negative sets, and should be filtered out. Our biggest challenge is that the
overwhelming majority of our data is uninteresting, so matching the occurrences of the
rare interesting elements is like finding a few needles in a haystack.

One possible way to attack this problem would be to first discover repeated elements and
then simply pick the ones which are the most geographically discriminative. A standard
technique for finding repeated patterns in data is clustering. For example, in computer vi-
sion, “visual word” approaches use k-means clustering on image patches represented
by SIFT descriptors. Unfortunately, standard visual words tend to be dominated by low-
level features, like edges and corners (Figure [3.3p), not the larger visual structures we are
hoping to find. While we can try clustering using larger image patches (with a higher-
dimensional feature descriptor, such as HOG [34])), k-means behaves poorly in very high
dimensions because the distance metric becomes less meaningful, producing visually inho-
mogeneous clusters (Figure[B.3p). We also experimented with other clustering approaches,
such as Locality-Sensitive Hashing [67], with similar results.

An alternative approach is to use the geographic information as part of the clustering,
extracting elements that are both repeated and discriminative at the same time. We have ex-
perimented with such discriminative clustering methods [62,[142}[185], but found they did
not provide the right behavior for our data: they either produce inhomogeneous clusters
or focus too much on the most common visual features. We believe this is because such ap-
proaches include at least one step that partitions the entire feature space. This tends to lose
the needles in our haystack: the rare discriminative elements get mixed with, and over-
whelmed by, less interesting patches, making it unlikely that a distinctive element could
ever emerge as its own cluster.

In this chapter, we propose an approach that avoids partitioning the entire feature space

21

Figure 3.4: Left: randomly-sampled candidate patches and their nearest neighbors accord-
ing to a standard distance metric. Right: after sorting the candidates by the number of
retrieved neighbors that come from Paris, coherent Parisian elements have risen to the top.

into clusters. Instead, we start with a large number of randomly sampled candidate patches,
and then give each candidate a chance to see if it can converge to a cluster that is both fre-
quent and discriminative. We first compute the nearest neighbors of each candidate, and
reject candidates with too many neighbors in the negative set. Then we gradually build
clusters by applying iterative discriminative learning to each surviving candidate. The fol-
lowing section presents the details of this algorithm.

3.4.1 Owur Approach

From the tens of millions of patches in our full positive set, we randomly sample a subset
of 25,000 high-contrast patches to serve as candidates for seeding the clusters. Throughout
the algorithm, we represent such patches using a HOG+color descriptor. First, the initial
geo-informativeness of each patch is estimated by finding the top 20 nearest neighbor (NN)
patches in the full dataset (both positive and negative), measured by normalized correla-
tion, and counting how many of them come from Paris. Figure 3.4 shows nearest neigh-
bors for a few randomly-selected patches and for the patches whose neighbors all come
from Paris. Note that the latter patches are not only more Parisian, but also considerably
more coherent. This is because generating a coherent cluster is a prerequisite to retrieving
matches exclusively from Paris: any patch whose matches are incoherent will likely draw
those matches randomly from inside and outside Paris. We keep the candidate patches that
have the highest proportion of their nearest neighbors in the positive set, while also reject-
ing near-duplicate patches (measured by spatial overlap of more than 30% between any 5
of their top 50 nearest neighbors). This reduces the number of candidates to about 1000.

22

patch weight matches

ale o | EINED |

patch weight matches

Figure 3.5: Top: using the naive distance metric for this patch retrieves some good matches
and some poor matches, because the patch contains both a street sign and a vertical bar
on the right. Bottom: our algorithm reweights the dimensions of our patch descriptor to
separate Paris from non-Paris. The algorithm learns that focusing on the street sign achieves
maximum separation from the non-Paris walls.

23

Extracted Visual Elements from Paris

|
IEiiiE

Random Images for London Street-view -Vi Extracted Elements from Barcelona

:

-
Random Images for San Francisco (SF) Extracted Elements from SF Random Images for Boston Extracted Elements from Boston

Figure 3.6: Google Street View vs. geo-informative elements for six cities. Arguably, the
geo-informative elements (right) are able to provide better stylistic representation of a city
than randomly sampled Google Street View images (left).

24

Some good elements, however, get matched incorrectly during the nearest-neighbors
phase. Figure [3.5|shows a patch that contains both a street sign and a vertical bar on the
right (the end of the facade). The naive distance metric doesn’t know what’s important, and
so it tries to match both. Yet too few such patches exist in the dataset; for the remainder, the
algorithm matches the vertical bar simply because it’s more frequent. To fix this problem,
we aim to learn a distance metric that gives higher weight to the features that make the
patch geo-discriminative.

In many cases, one can improve visual retrieval by adapting the distance metric to the
given query using discriminative learning [186]. We adopt similar machinery, training a
linear SVM detector for each visual element in an iterative manner as in [190]. Unlike these
previous works, however, we emphasize that the weak labels are the workhorse of the dis-
tance learning. In the case of Figure for example, we know that the street sign is more
important because it occurs only in Paris, whereas the vertical bar occurs everywhere. We
train an SVM detector for each visual element, using the top k nearest neigbors from the
positive set as positive examples, and all negative-set patches as negative examples. While
this produces a small improvement (Figure row 2), it is not enough, since the top k
matches might not have been very good to begin with. So, we iterate the SVM learning, us-
ing the top k detections from previous round as positives (we set k = 5 for all experiments).
The idea is that with each round, the top detections will become better and better, result-
ing in a continuously improving detector. However, doing this directly would not produce
much improvement because the SVM tends to overfit to the initial positive examples [190],
and will prefer them in each next round over new (and better) ones. Therefore, we apply
cross-validation by dividing both the positive and the negative parts of the dataset into [
equally-sized subsets (we set [= 3 for all experiments). At each iteration of the training, we
apply the detectors trained on the previous round to a new, unseen subset of data to select
the top k detections for retraining. In our experiments, we used three iterations, as most
good clusters didn’t need more to converge (i.e. stop changing). After the final iteration,
we rank the resulting detectors based on their accuracy: percentage of top 50 firings that
are in the positive dataset (i.e. in Paris). We return the top few hundred detectors as our
geo-informative visual elements.

Figure [3.2| illustrates the progression of these iterations. For example, in the left col-
umn, the initial nearest neighbors contain only a few windows with railings. However,
windows with railings differ more from the negative set than the windows without rail-
ings; thus the detector quickly becomes more sensitive to them as the algorithm progresses.
The right-most example does not appear to improve, either in visual similarity or in geo-
discriminativeness. This is because the original candidate patch was intrinsically not very
geo-informative and would not make a good visual element. Such patches have a low final
accuracy and are discarded.

Implementation Details: Our current implementation considers only square patches
(although it would not be difficult to add other aspect ratios), and takes patches at scales
ranging from 80-by-80 pixels all the way to height-of-image size. Patches are represented
with standard HOG [34] (8x8x31 cells), plus a 8x8 color image in L*a*b colorspace (a and
b only). Thus the resulting feature has 8x8x33 = 2112 dimentions. During iterative learn-
ing, we use a soft-margin SVM with C fixed to 0.1. The full mining computation is quite
expensive; a single city requires approximately 1,800 CPU-hours. But since the algorithm
is highly parallelizable, it can be done overnight on a cluster.

25

Placedes
1 ; =% Vosges
.. St. Germain e
market

N EEE A

Figure 3.7: Examples of geographic patterns in Paris (shown as red dots on the maps) for
three discovered visual elements (shown below each map). Balconies with cast-iron railings
are concentrated on the main boulevards (left). Windows with railings mostly occur on
smaller streets (middle). Arch supporting columns are concentrated on Place des Vosges
and the St. Germain market (right).

3.4.2 Results and Validation

FigureB.6shows the results of running our algorithm on several well-known cities. For each
city, the left column shows randomly chosen images from Google Street View, while the
right column shows some of the top-ranked visual element clusters that were automatically
discovered (due to space limitations, a subset of elements was selected manually to show
variety; see the project webpage for the full list). Note that for each city, our visual elements
convey a better stylistic feel of the city than do the random images. For example, in Paris, the
top-scoring elements zero-in on some of the main features that make Paris look like Paris:
doors, balconies, windows with railings, street signs and special Parisian lampposts. It is
also interesting to note that, on the whole, the algorithm had more trouble with American
cities: it was able to discover only a few geo-informative elements, and some of them turned
out to be different brands of cars, road tunnels, etc. This might be explained by the relative
lack of stylistic coherence and uniqueness in American cities (with its melting pot of styles
and influences), as well as the supreme reign of the automobile on American streets.

In addition to the qualitative results, we would also like to provide a more quantitative
evaluation of our algorithm. While validating data-mining approaches is difficult in gen-
eral, there are a few questions about our method that we can measure: 1) do the discovered
visual elements correspond to an expert opinion of what visually characterizes a particular
city? 2) are they indeed objectively geo-informative? 3) do users find them subjectively geo-
informative in a visual discrimination task? and 4) can the elements be potentially useful
for some practical task? To answer the first question, we consulted a respected volume on
19th century Paris architecture [131]. We found that a number of stylistic visual elements
mentioned in the book correspond quite well to those discovered by our algorithm, as il-
lustrated on Figure

To evaluate how geo-informative our visual elements are, we ran the top 100 Paris ele-
ment detectors over an unseen dataset which was 50% from Paris and 50% from elsewhere.
For each element, we found its geo-informativeness by computing the percentage of the
time it fired in Paris out of the top 100 firings. The average accuracy of our top detectors
was 83% (where chance is 50%). We repeated this for our top 100 Prague detectors, and

26

Window Balustrades Streetlamps on Pedestal Parisian Doors

Figure 3.8: Books on Paris architecture are expressly written to give the reader a sample
of the architectural elements that are specifically Parisian. We consulted one such volume
[Loyer, 1988] and found that a number of their illustrative examples (left) were automati-
cally discovered by our method (right).

found the average accuracy on an unseen dataset of Prague to be 92%. Next, we repeated
the above experiment with people rather than computers. To avoid subject fatigue, we re-
duced the dataset to 100 visual elements, 50 from Paris and 50 from Prague. 50% of the ele-
ments were the top-ranked ones returned by our algorithm for Paris and Prague. The other
50% were randomly sampled patches of Paris and Prague (but biased to be high-contrast,
as before, to avoid empty sky patches, etc). In a web-based study, subjects (who have all
been to Paris but not necessarily Prague) were asked to label each of the 100 patches as
belonging to either Paris or Prague (forced choice). The results of our study (22 naive sub-
jects) are as follows: average classification performance for the algorithm-selected patches
was 78.5% (std = 11.8), while for random patches it was 58.1% (std = 6.1); the p-value for
a paired-samples ¢-test was < 107®. While on random patches subjects did not do much
better than chance, performance on our geo-informative elements was roughly comparable
to the much simpler full-image classification task reported in the beginning of the chapter
(although since here we only used Prague, the setups are not quite the same).

Finally, to get a sense of whether our elements might serve as “reference art,” we asked
an artist to sketch a photograph of Paris, allowing only 10 minutes so that some details had
to be omitted. Several days later, she made another 10-minute sketch of the same photo-
graph, this time aided by a display of the top 10 geo-informative elements our algorithm
detected in the image. In an informal, randomized survey, 10 out of our 11 naive subjects
(who had all been to Paris) found the second sketch to be more Paris-like. The two sketches
are shown in Figure[3.9

3.5 Applications

Now that we have a tool for discovering geographically-informative visual elements for a
given locale, we can use them to explore ways of building stylistic narratives for cities and
of making visual connections between them. Here we discuss just a few such directions.

27

Figure 3.9: Geo-informative visual elements can provide subtle cues to help artists better
capture the visual style of a place. We asked an artist to make a sketch from a photo of Paris
(left), and then sketch it again after showing her the top discovered visual elements for this
image (right). Note, for example, that the street sign and window railings are missing in the
left sketch. In our informal survey, most people found the right sketch to be more Paris-like.

3.5.1 Mapping Patterns of Visual Elements

So far, we have shown the discovered visual elements for a given city as an ordered list of
patch clusters (Figure. Given that we know the GPS coordinates of each patch, however,
we could easily display them on a map, and then search for interesting geo-spatial patterns
in the occurrences of a given visual element. Figure[3.7shows the geographical locations for
the top-scoring detections for each of 3 different visual elements (a sampling of detections
are shown below each map), revealing interestingly non-uniform distributions. For exam-
ple, it seems that balconies with cast-iron railings (left) occur predominantly on the large
thoroughfares (bd Saint-Michel, bd Saint-Germain, rue de Rivoli), whereas windows with
cast-iron railings (middle) appear mostly on smaller streets. The arch-supporting column
(right) is a distinguishing feature of the famous Place des Vosges, yet it also appears in other
parts of Paris, particularly as part of more recent Marché Saint-Germain (this is a possible
example of so-called “architectural citation”). Automatically discovering such architectural
patterns may be useful to both architects and urban historians.

3.5.2 Exploring Different Geo-spatial Scales

So far we have focused on extracting the visual elements which summarize appearance on
one particular scale, that of a city. But what about visual patterns across larger regions, such
as a continent, or a more specific region, such as a neighborhood? Here we demonstrate
visual discovery at different geo-spatial scales.

We applied our algorithm to recover interesting patterns shared by the cities on the Eu-
ropean subcontinent. Specifically, we used Street View images from five European cities
(Barcelona, London, Milan, Paris and Prague) as the positive set, and the remaining 7 non-
European cities as the negative set. Figure[3.10|shows some interesting discriminative fea-

28

>
Ay

B
London A London
P .P .P
rague rague rague
N .Parls .Paris
@ Milan @ Milan ® Milan
°
Barcelona Barcelona
D

e
Barcelona

Map data © OpenStreetMap contributors, CC BY-SA

Parls E_!_lg" p

@ Milan

°
. Barcelona . E Barcelona

Figure 3.10: Architectural patterns across Europe. While arches (A) are common across all
Europe, double arches (B) seem rare in London. Similarly, while Paris, Barcelona and Milan
all share cast-iron railings on their balconies (D), the grid-like balcony arrangement (E) of
Paris and Barcelona is missing in Milan.

tures and patterns in terms of their membership across the 5 European cities. For example,
while arches are common in cities across Europe, double-arches seem rare in London. Sim-
ilarly, while balcony railings in Paris, Barcelona and Milan are all made of cast iron, they
tend to be made of stone in London and Prague.

We also analyzed visual patterns at the scale of a city neighborhood. Specifically, we
considered three well-defined districts of Paris: Louvre/Opera (le, 2e), Le Marais (4e), and
Latin Quarter/Luxembourg (5e, 6e). Figure shows examples of geographically infor-
mative elements for each of the three districts (while taking the other districts and Paris sub-
urbs as the negative set). Predictably, Louvre/Opera is differentiated from the rest of Paris
by the presence of big palatial facades. Le Marais is distinguished by its more cozy palaces,
very close-up views due to narrow streets, and a specific shape of lampposts. Interestingly,
one of the defining features of the Latin Quarter/Luxembourg is the high frequency of win-
dows with closed shutters as compared to other districts in Paris. One possible explanation
is that this neighborhood has become very prestigious and a lot of its real-estate has been
bought up by people who don't actually live there most of the time.

Given the detectors for visual elements at different geo-spatial scales, it becomes pos-
sible to analyze a scene in terms of the regions from which it draws its architectural in-
fluences. Figure shows images from the 5th arrondissement of Paris, pointing out
which elements are specific to that arrondissement, which are Paris-specific, and which
are pan-European. For example, the stone balcony railings and arches are pan-European,
windows with collapsible shutters and balconies with iron railings are Parisian, and the
grooves around the windows are typical of the 5th arrondissement.

29

Halb gt © Opensiesiaiconubitr. G AYSH,
i

&l Latin Quarter /

i Luxembourg
X¥—7F E (2

Figure 3.11: Geographically-informative visual elements at the scale of city neighborhoods.
Here we show a few discovered elements particular to three of the central districts of Paris:
Louvre/Opera, the Marais, and the Latin Quarter/Luxembourg.

3.5.3 Visual Correspondences Across Cities

Given a set of architectural elements (windows, balconies, etc.) discovered for a particu-
lar city, it is natural to ask what these same elements might look like in other cities. As it
turns out, a minor modification to our algorithm can often accomplish this task. We have
observed that a detector for a location-specific architectural element will often fire on func-
tionally similar elements in other cities, just with a much lower score. That s, a Paris balcony
detector will return mostly London balconies if it is forced to run only on London images.
Naturally these results will be noisy, but we can clean them up using an iterative learning
approach similar to the one in Section[3.4.1} The only difference is that we require the posi-
tive patches from each iteration of training to be taken not just from the source city, but from
all the cities where we wish to find correspondences. For example, to find correspondences
between Paris, Prague, and London, we initialize with visual elements discovered in Paris
and then, at each round of “clean-up” training, we use 9 top positive matches to train each
element SVM, 3 from each of the three cities. Figure 3.13]illustrates the result of this proce-
dure. Note how capturing the correspondence between similar visual elements across cities
can often highlight certain stylistic differences, such as the material for the balconies, the
style of the street-lamps, or the presence and position of ledges on the facades.

Another interesting observation is that some discovered visual elements, despite having
a limited spatial extent, can often encode a much larger architectural context. This becomes
particularly apparent when looking at the same visual element detector applied in different
cities. Figure shows object-centric averages (in the style of [206]) for the detector in

30

Figure 3.12: Detecting architectural influences. Each image shows confident detections for
architectural styles at different geographic scales.

7= .l ‘

1 F8a1N

LR i.. »~—inllm

Paris, France Prague Czech Republlc London, England

=
'_

Figure 3.13: Visual Correspondence. Each row shows corresponding detections of a single
visual element detector across three different cities.

the top row of Figure for Paris and London. That is, for each city, the images with
the top 100 detections of the element are first centered on that element and then averaged
together in image space. Note that not only do the average detections (red squares) look
quite different between the two cities, but the average contexts reveal quite a lot about the
differences in the structure and style of facades. In Paris, one can clearly see four equal-
height floors, with a balcony row on the third floor. In London, though, floor heights are

31

Figure 3.14: Object-centric image averages for the element detector in the top row of Fig-
ure[3.13} Note how the context captures the differences in facade styles between Paris (left)
and London (right).

Query Image in Prague l Retrieved Iages in Paris

Figure 3.15: Geographically-informed retrieval. Given a query Prague image (left), we re-
trieve images in Paris (right).

uneven, with the first floor much taller and more stately.

3.5.4 Geographically-informed Image Retrieval

Once we have detectors that set up the correspondence between different cities such as
Paris and Prague (Sec.[3.5.3), we can use them for geographically-informed image retrieval.
Given a query image from one location, such as Prague, our task is to retrieve similar images
from another location, such as Paris. For this we use the correspondence detectors from
Sec.3.5.3|while also encoding their spatial positions in the image. In particular, we construct
a feature vector of the query image by building a spatial pyramid and max-pooling the SVM
scores of the correspondence detectors in each spatial bin in the manner of [121]. Retrieval
is then performed using the Euclidean distance between the feature vectors. Figure B.15]

32

~rEEE BK AL

Figure 3.16: What makes Modigliani look like Modigliani?

demonstrates this approach where a query image from Prague retrieves images from Paris
that contain similar balconies with cast iron railings (bottom) while honoring spatial layout
of facades.

3.6 Conclusion

So, what makes Paris look like Paris? We argued that the “look and feel” of a city rests not
so much on the few famous landmarks (e.g. the Eiffel Tower), but largely on a set of stylistic
elements, the visual minutiae of daily urban life. We proposed a method that can automat-
ically find a subset of such visual elements from a large dataset offered by Google Street
View, and demonstrated some promising applications. This work is but a first step towards
our ultimate goal of providing stylistic narratives to explore the diverse visual geographies
of our world. Currently, the method is limited to discovering only local elements (image
patches), so a logical next step would be trying to capture larger structures, both urban (e.g.
facades), as well as natural (e.g. fields, rivers). Finally, the proposed algorithm is not lim-
ited to geographic data. For instance, we performed a preliminary experiment mining the
visual style of Modigliani; the results in Figure demonstrate that the method can iso-
late some of the most iconic visual themes of that master. Since publication, other authors
have applied similar algorithms to understand the style of cars [119]. This suggests that our
algorithm may be useful for discovering stylistic elements in a wide variety of other weakly
supervised settings.

33

Chapter 4

Improved Patch Discovery for
Scene Recognition and
Visualization

4.1 Introduction

Our work in the previous chapter, as well as several approaches based on it [43,48,96,/102,
125|190,/197,222] have proposed mining visual data for discriminative mid-level visual ele-
ments, i.e., entities which are more informative than “visual words,” and more frequently
occurring and easier to detect than high-level objects. Most such approaches require some
form of weak per-image labels, e.g., scene categories [102] or GPS coordinates [43]] (but can
also run unsupervised [190]), and have been recently used for tasks including image clas-
sification [102,|190|222], object detection [48], visual data mining [43,[125]], action recog-
nition [96], and geometry estimation [59]]. But how are informative visual elements to be
identified in the weakly-labeled visual dataset? The idea is to search for clusters of im-
age patches that are both 1) representative, i.e. frequently occurring within the dataset,
and 2) visually discriminative. Unfortunately, algorithms for finding patches that fit these
criteria remain rather ad-hoc and poorly understood. and often do not even directly opti-
mize these criteria. Hence, our goal in this work is to quantify the terms “representative”
and “discriminative,” and show that a formulation which draws inspiration from the well-
known, well-understood mean-shift algorithm can produce visual elements that are more
representative and discriminative than those of previous approaches.

Mining visual elements from a large dataset is difficult for a number of reasons. First,
the search space is huge: a typical dataset for visual data mining has tens of thousands of
images, and finding something in an image (e.g., finding matches for a visual template) in-
volves searching across tens of thousands of patches at different positions and scales. To
make matters worse, patch descriptors tend to be on the order of thousands of dimensions;
not only is the curse of dimensionality a constant problem, but we must sift through ter-
abytes of data. And we are searching for a needle in a haystack: the vast majority of patches
are actually uninteresting, either because they are rare (e.g., they may contain multiple ran-
dom things in a configuration that never occurs again) or they are redundant due to the
overlapping nature of patches. This suggests the need for an online algorithm, because

34

.'. = .g.—' _
‘ e
| Evem—y _
Distance: 2.58 292 3.07 310 3.16 Distance: 1.01 1.13 1.13 1.15 1.17

Figure 4.1: The distribution of patches in HOG feature space is very non-uniform and absolute dis-
tances cannot be trusted. We show two patches with their 5 nearest-neighbors from the Paris Street
View dataset [43]; beneath each nearest neighbor is its distance from query. Although the nearest
neighbors on the left are visually much better, their distances are more than twice those on the right,
meaning that the actual densities of the two regions will differ by a factor of more than 27, where d
is the intrinsic dimensionality of patch feature space. Since this is a 2112-dimensional feature space,
we estimate d to be on the order of hundreds.

we wish to discard much of the data while making as few passes through the dataset as
possible.

The well-known mean-shift algorithm [21}29,60] has been proposed to address many
of these problems. The goal of mean-shift is to find the local maxima (modes) of a density
using a sample from that density. Intuitively, mean-shift initializes each cluster centroid to
a single data point, then iteratively 1) finds data points that are sufficiently similar to each
centroid, and, 2) averages these data points to update the cluster centroid. In the end, each
cluster generally depends on only a tiny fraction of the data, thus eliminating the need to
keep the entire dataset in memory.

However, there is one issue with using classical mean-shift to solve our problem di-
rectly: it only finds local maxima of a single, unlabeled density, which may not be discrim-
inative. But in our case, we can use the weak labels to divide our data into two different
subsets (“positive” (+) and “negative” (—)) and seek visual elements which appear only in
the “positive” set and not in the “negative” set. That is, we want to find points in feature
space where the density of the positive set is large, and the density of the negative set is
small. This can be achieved by maximizing the well-studied density ratio p (z)/p_(z) in-
stead of maximizing the density. While a number of algorithms exist for estimating ratios
of densities (see [196] for a review), we did not find any that were particularly suitable for
finding local maxima of density ratios. Hence, the first contribution of this chapter is to
propose a discriminative variant of mean-shift for finding visual elements. Similar to the
way mean-shift performs gradient ascent on a density estimate, our algorithm performs
gradient ascent on the density ratio (section[#.2). When we perform gradient ascent sepa-
rately for each element as in standard mean-shift, however, we find that the most frequently-
occuring elements tend to be over-represented. Hence, section[#.4describes a modification
to our gradient ascent algorithm which uses inter-element communication to approximate
common adaptive bandwidth procedures. Finally, in section 4.5|we demonstrate that our
algorithms produce visual elements which are more representative and discriminative than
previous methods, and in section 4.6| we show they significantly improve performance in
scene classification.

4.2 Mode Seeking on Density Ratios

Our goal is to extract discriminative visual elements by finding the local maxima of the
density ratio. However, one issue with performing gradient ascent directly on standard
density ratio estimates is that common estimators tend to use a fixed kernel bandwidth, for

35

example:

#(z) o< Y 0K (|lw — i /h)
i=1

where 7 is the ratio estimate, the parameters ; € R are weights associated with each
datapoint, K is a kernel function (e.g., a Gaussian), and h is a globally-shared bandwidth
parameter. The bandwidth defines how much the density is smoothed before gradient as-
cent is performed, meaning these estimators assume a roughly equal distribution of points
in all regions of the space. Unfortunately, absolute distances in HOG feature space cannot
be trusted, as shown in Figure any kernel bandwidth which is large enough to work
well in the left example will be far too large to work well in the right. One way to deal with
the non-uniformity of the feature space is to use an adaptive bandwidth [30]: that is, differ-
ent bandwidths are used in different regions of the space. However, previous algorithms
are difficult to implement for large data in high-dimensional spaces; [30], for instance, re-
quires a density estimate for every point used in computing the gradient of their objective,
because their formulation relies on a per-point bandwidth rather than a per-cluster band-
width. In our case, this is prohibitively expensive. While approximations exist [64], they
rely on approximate nearest neighbor algorithms, which work for low-dimensional spaces
(< 48 dimensions in [64]), but empirically we have found poor performance in HOG feature
space (> 2000 dimensions). Hence, we take a different approach which we have tailored
for density ratios.

We begin by using a result from [21] that classical mean-shift (using a flat kernel) is
equivalent to finding the local maxima of the following density estimate:

Yo max(b — d(z;, w),0)
z(b)

In standard mean-shift, d is the Euclidean distance function, b is a constant that controls
the kernel bandwidth, and z(b) is a normalization constant. Here, the flat kernel has been
replaced by its shadow kernel, the triangular kernel, using Theorem 1 from [21]. We want
to maximize the density ratio, so we simply divide the two density estimates. We allow
an adaptive bandwidth, but rather than associating a bandwidth with each datapoint, we
compute it as a function of w which depends on the data.

(4.1)

S max(B(w) - d(zf,w),0)

70
i max(B(w) — d(z; ,w),0)
Where the normalization term z(b) is cancelled. This expression, however, produces
poor estimates of the ratio if the denominator is allowed to shrink to zero; in fact, it can
produce arbitrarily large but spurious local maxima. Hence, we define B(w) as the value
of b which satisfies:

(4.2)

Nneg

Z max(b —d(z; ,w),0) =p 4.3)
i=1

Where /5 is a constant analogous to the bandwidth parameter, except that it directly con-
trols how many negative datapoints are in each cluster. Note the value of the sum is strictly
increasing in b when it is nonzero, so the b satisfying the constraint is unique. With this def-
inition of B(w), we are actually fixing the value of the denominator of (We include the

36

denominator here only to make the ratio explicit, and we will drop it in later formula). This
approach makes the implicit assumption that the distribution of the negatives captures the
overall density of the patch space. Note that if we assume the denominator distribution is
uniform, then B(w) becomes fixed and our objective is identical to fixed-bandwidth mean-
shift.

Returning to our formulation, we must still choose the distance function d. In high-
dimensional feature space, [166] suggests that normalized correlation provides a better met-
ric than the Euclidean distance commonly used in mean-shift. Formulations of mean-shift
exist for data constrained to the unit sphere [17], but again we must adapt them to the ratio
setting. Surprisingly, replacing the Euclidean distance with normalized correlation leads
to a simpler optimization problem. First, we mean-subtract and normalize all datapoints x;
and rewrite (4.2) as:

& "mes max(w ' 7 — b,0) =
Z max(w 'z} —b,0) s.t. 2. (w'e;)=# (4.4)
= oll? = 1

Where B(w) has been replaced by b as in equation (4.3), to emphasize that we can treat
B(w) as a constraint in an optimization problem. We can further rewrite the above equation
as finding the local maxima of:

Z max(w 'z —b,0) — A|w|? s.t. Z max(w ' z; —b,0) = (4.5)
i=1 i=1

Note that is equivalent to for some appropriate rescaling of A and 3. It can be
easily shown that multiplying X by a constant factor does not change the relative location
of local maxima, as long as we divide 3 by that same factor. Such a re-scaling will in fact
result in re-scaling w by the same value, so we can choose a A and 3 which makes the norm
of w equal to 1.E]

After this rewriting, we are left with an objective that looks curiously like a margin-
based method. Indeed, the negative set is treated very much like the negative set in an
SVM (we penalize the linear sum of the margin violations), which follows [190]. However,
unlike [190], which makes the ad-hoc choice of 5 positive examples, our algorithm allows
each cluster to select the optimal number of positives based on the decision boundary. This
is somewhat reminiscent of unsupervised margin-based clustering [133}229].

Mean-shift prescribes that we initialize the procedure outlined above at every datapoint.
In our setting, however, this is not practical, so we instead use a randomly-sampled subset.
We run this as an online algorithm by breaking the dataset into chunks and then mining,
one chunk at a time, for patches where w! z—b > —efor some small ¢, akin to “hard mining”
for SVMs. We perform gradient ascent after each mining phase. An example result for this
algorithm is shown in in Figure and we include further results below.

! Admittedly this means that the norm of w has an indirect effect on the underlying bandwidth: specifically if
the norm of w is increased, it has a similar effect as a proportional derease in 3 in . However, since w is roughly
proportional to the density of the positive data, the bandwidth is only reduced when the density of positive data
is high.

37

4.3 Optimizing the objective

Algorithm [1| gives a summary of our optimization procedure. We begin by sampling a set
of patches from the positive dataset, and initialize our w; vectors as the features for these
patches. We initialize b; to 0. For simplicity of notation in this section, we append b; to w;
and append a —1 to each feature vector z. We can then “mine” through a set of images for
patches where w z > 0 for some j. In practice, it greatly improves computational efficiency
to have a separate round of mining initially on a small set of negative images, where we only
update b; to satisfy the constraint of (4.10).

After a round of mining on a single chunk of the data (including positives and nega-
tives), we set the a’s according to the procedure described in section We must then

optimize the following:

Z Q. j max(w;rxﬁ()) -)\Z [[w;]1:a]? s-t. Z max(w;rx;, 0)<g (4.6)
i=1 j=1 i=1

Here, d is the data dimensionality, and [-];.4 selects the first d components of the vector
such that the bias term is excluded. Note that we can replace the = with a < in the constraint
because it does not affect the solution: a decrease in b will always increase the objective, and
hence the inequality constraint will always be tight at the solution. With this modification,
it is straightforward to show that the constraint defines a convex set. At first glance, Expres-
sion (4.6) seems quite difficult to optimize, as we are maximizing a non-concave function.
It is unlikely that a convex relaxation will be useful either, because different elements corre-
spond to different local maxima of the objective. In practice, however, we can approximately
optimize directly, and do so efficiently. First, note that locally the function is a simple
quadratic on an affine subspace, as long as w; remains in a neighborhood where the sign of
ijx does not change for any x. Hence, we perform a form of projected gradient descent;
pseudocode is given in the optimize function of Algorithm|[l] We first compute the gra-
dient of and then find its projection V onto the current affine subspace, i.e., the space
defined by:

Npeg

VY aiI(w)z; >0)=0 4.7)
i=1

where [is the indicator function. This means that small updates in the direction V will
not result in constraint violations. Next, we perform a line search on w + tV, where t is the
step size that we search over:

Mpos
= arg max Z i j(w; +tV) Txf * I(w;—xj > 0) — A|[w; +tV]1.4]1? 4.8)

i=1
This is a simple quadratic that can be solved analytically. If the maximum ¢* of the
line search does not cause w; x to change for any x, then we accept this maximum, set
w; = w; + t*V, and iterate. Otherwise, we set ¢ equal to a pre-determined fixed constant,
and update. If the step causes w; z; to change sign for some z; , however, then we will
no longer satisfy the constraint in (4.6). Ideally, we would orthogonally project w; onto the
constraint set, but finding the correct orthogonal projection is computationally expensive.
Hence, we approximate the projection operator with gradient descent (with respect to w;)

on the expression:

38

Nneg

Z max(w;-ra:;, 0)-8 4.9)
i=1

This procedure is shown in the satisfyConstrains function of Algorithm [T} This func-
tion is piecewise linear, so gradient descent can be performed very efficiently. If the path
of gradient descent is a straight line (i.e. for no = does w "z change sign) then this will be a
proper projection, but otherwise it is an approximation. In practice we run the optimization
on a fixed computational budget for each element, since in practice we find that learning
more elements is more useful than optimizing individual elements more exactly.

4.4 Better Adaptive Bandwidth via Inter-Element Commu-
nication

Implicit in our formulation thus far is the idea that we do not want a single mode, but
instead many distinct modes which each corresponds to a different element. In theory,
mode-seeking will find every mode that is supported by the data. In practice, clusters often
drift from weak modes to stronger modes, as demonstrated in Figure 4.2 (middle). One
way to deal with this is to assign smaller bandwidths to patches in dense regions of the
space [30], e.g., the window railing on row 1 of Figure 4.2| (middle) would hopefully have
a smaller bandwidth and hence not match to the sidewalk barrier. However, estimating
a bandwidth for every datapoint in our setting is not practical, so we seek an approach
which only requires one pass through the data. Since patches in regions of the feature
space with high density ratio will be members of many clusters, we want a mechanism that
will reduce their bandwidth. To accomplish this, we extend the standard local (per-element)
optimization of mean-shift into a joint optimization among the m different element clusters.
Specifically, we control how a single patch can contribute to multiple clusters by introducing
a sharing weight «; ; for each patch i that is contained in a cluster j, akin to soft-assignment
in EM GMM fitting. Returning to our fomulation, we maximize (again with respect to the
w’s and b’s):

Npos m

Z Zam max(ijxj' —b;,0) — /\Z w;l|* s.t. Vi Z max(w;x; —b;,0) =4 (4.10)
j=1 i=1

i=1 j=1

Nneg

Where each «; ; is chosen such that any patch which is a member of multiple clusters
gets a lower weight. (4.10) also has a natural interpretation in terms of maximizing the
“representativeness” of the set of clusters: clusters are rewarded for representing patches
that are not represented by other clusters. But how can we set the o’s? One way is to set
a; j = max(w] z7 —bj,0)/ >0 max(wy 27 — by, 0), and alternate between setting the s
and optimizing the w’s and b’s at each ite