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Abstract

Supply chain models describe the activities carried out in the process industry. They are used

to design and operate complex sequences of tasks that transform raw materials and deliver final

products to markets. Many optimization models have been developed for supply chain planning

because they offer the possibility of finding strategies that lead to greater economic benefits. The

traditional models have focused on finding the optimal decisions of the supply chain planner in

a deterministic context. However, it is widely recognized that uncertainty and external decision-

makers play a fundamental role in the economic success of industrial supply chains.

This thesis proposes mathematical programming models for supply chain optimization that con-

sider uncertainty and external decision-makers in a variety of industrial settings. Chapter 1 pro-

vides the motivation and the necessary background for our models. In Chapter 2, we study the

design of resilient supply chains with risk of disruptions. Disruptions is a type of uncertainty that

has not received much attention for supply chain planning, but it is known to have a significant ef-

fect in the performance of supply chains. We develop a stochastic programming model for supply

chain design that includes disruptions at distribution centers, and a tailor-made solution method to

address industrial instances of the problem. In Chapter 3, we present a novel cross-decomposition

algorithm for investment planning under uncertainty. The algorithm integrates Benders and La-

grangean decomposition for two-stage stochastic programming formulations. Our computational

experiments on instances of the resilient supply chain design problem show the superior perfor-

mance of the cross-decomposition algorithm over Benders decomposition and direct solution with

commercial MILP solvers. In Chapter 4, we propose a new approach for production planning and

inventory management in process networks. Inventory management in these networks is a very

challenging task because of the close interaction between production activities and the presence of

diverse sources of uncertainty. Our planning strategy is based on implementing basestock policies
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to control production rates and inventory levels. Our results show the benefits of using a policy-

based approach for inventory planning in comparison to other stochastic programming approaches.

In Chapter 5, we address the capacity planning problem with rational markets. Our model considers

potential customers as rational decision-makers in a bilevel optimization formulation. We propose

two reformulation techniques that transform the bilevel model into a single-level problem by re-

placing the lower level with constraints that guarantee its optimality. The reformulations are based

on the Karush-Kuhn-Tucker conditions and the strong duality property of the lower-level linear

program; the examples show better computational performance for the duality-based reformula-

tion. The results also demonstrate the benefits of considering markets as rational decision-makers

for capacity expansion planning, since it allows developing expansion plans according to the needs

of the consumers. In Chapter 6, we extend the capacity planning model to include competitors

that optimize their own capacity expansion plans. The resulting trilevel formulation considers as

rational all decision-makers present in a competitive environment. We analyze the properties of

the trilevel formulation and develop two algorithms to solve this challenging problem. The results

reveal the complex interactions that take place in decision-making problems with multiple players

and show the importance of considering them in the model.

Finally, in Chapter 7 we present the conclusions of this thesis. We demonstrate that uncertainty and

external decision-makers have significant impact in supply chain operations, and that our models

can be used to anticipate their influence in supply chain performance. The application of these

models for industrial supply chain planning has a remarkable potential to increase efficiency.
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Chapter 1

Introduction

1.1 Motivation

A major goal of all companies in the process industry is to manufacture products to satisfy market

demands. In order to accomplish this purpose, they must execute complex sequences of tasks in

which raw materials are transformed to final products that are delivered to markets. The coordina-

tion of the activities involved in this process is the focus of supply chain management.

The optimization of production and logistic networks has been one of the main drivers for the

advance of mathematical programming since the development of the simplex algorithm [47]. Sys-

tematic decision-making methods are essential for the design and planning of large-scale supply

chains because the complexity of their operations often conceals the best decisions from the in-

tuition. In the highly globalized market place in which most modern companies compete, supply

chain efficiency has become a requirement for economic success.

The goal of this thesis is to propose mathematical programming formulations and solution methods

for the optimization of supply chains in realistic industrial environments. We focus on developing

models that mitigate the risks faced by supply chain planners with respect to the future perfor-

mance of the system. We address two of the most pressing risks for supply chain optimization: the

presence of uncertainty and external decision-makers.
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Decision-making strategies in uncertain and competitive environments are an important tool for

supply chain management because they allow generating plans that are robust against business

conditions that cannot be controlled. We approach the challenge of decision-making under uncer-

tainty by formulating stochastic programming models; they offer the advantage of optimizing an

expected metric of performance, which is a desirable objective for design and planning problems

[96]. We consider competition in the supply chain environment by assuming that all decision-

makers behave rationally; under this assumption, their actions can be modeled in the framework of

hierarchical optimization [4].

The motivation for our research arises from the significant impact that supply chain management

has in the economic performance of the process industry. Even though there has been extensive

research on supply chain optimization in the last decades, some of the challenges that are most rel-

evant to the chemical industry have not been addressed before; we consider the presence of diverse

sources of uncertainty, the complexity of chemical production networks, and the role of compe-

tition in supply chain planning. In order to include these elements in the supply chain models,

we develop novel mathematical programming formulations and specialized solution methods for

large-scale problems.

1.2 Modeling framework for supply chain optimization

The interrelations among material flows in supply chains are represented mathematically as net-

works. A network is a directed graph with three types of nodes: sources, intermediates, and sinks

[20]. The simplest network links a source node and a sink node through an arc. Additionally,

supply chain networks often include storage nodes that act as intermediate nodes with the purpose

of transferring the availability of material through time. For networks modeling production and

transportation of commodities, the successful completion of the process implies the flow of mate-

rial from source to sink nodes, according to economic criteria. In the following subsections, we

provide some background on operations management and discuss the most important concepts for

supply chain models.
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1.2.1 Time representation

A realistic representation of supply chains considers their performance as a function of time. The

dynamic conditions that govern production and logistic networks imply modeling time according

to the attributes of material flows. A flow can be described either as a continuous-time event

characterized by its flowrate and time span, or as a discrete event characterized by its magnitude

and time of incidence [140].

The effect of continuous flows in storage nodes is the gradual change in the inventory level; in

mathematical terms, the trajectory of the inventory level in time is said to be twice continuously

differentiable [102]. On the other hand, discrete flows produce instantaneous changes in inventory

levels. The trajectory of the inventory level subject to discrete flows exhibits non-smooth profiles.

The operation of real production and logistic networks generally involves a combination of con-

tinuous and discrete flows. Therefore, the representation of time is an important modeling aspect

that determines when supply chain decisions can be implemented (e.g. one time, continuously, or

periodically). Network attributes such as resource availability at source nodes, flow constraints,

and material requirements at sink nodes are good indicators of the appropriate model for time.

Additionally, the time frame in which the network performance is evaluated also plays an important

role in the development of the right model for supply chain planning. The supply chain operations

might require decisions to be implemented in different time horizons. Based on the length of the

planning horizon, supply chain models can be classified according to the following categories.

• Single period: problems for which decisions are implemented only once. Even though

supply chain problems often involve long time horizons, many problems can be reduced to

single period problems. This is the case when successive time periods are identical, for which

repetitive implementation of the optimal single-period decision yields the optimal sequence

of decisions.

• Finite horizon: problems for which supply chain decisions are implemented over a limited

time span. These problems often require the coordination of a decision sequence or involve

parameters that change over time. The most intuitive performance measure for these systems

is the total cost during the finite horizon.

• Infinite horizon: problems for which supply chain decisions can be implemented an infinite

number of times in a cyclic manner. These problems consider the impact of the decisions in

3



Chapter 1. Introduction

an infinitely long time span. The most appropriate performance measure for these systems is

the average cost per unit time.

1.2.2 Flow constraints

There are two basic restrictions to flows in production and logistic networks: capacity constraints

and lead times. Capacity constraints are maximum flowrate restrictions in the processing activi-

ties. They are represented in the network model with capacitated arcs. Figure 1.1 shows a simple

network made up by three nodes: a source node (1), a storage node (2), and a sink node (3). The

availability of resources (supply) is modeled with the capacity (S) of the arc leaving the source

node. Similarly, the availability of inventory is modeled with the capacity (inv) of the arc leaving

the storage node. Requirements at the sink node (demand) are modeled with the capacity (D) of

the arcs arriving to it.

Lead time (L) is the time required to transfer a flow between two nodes. It is represented in the

network model by connecting the origin and destination nodes in different time periods. In Figure

1.2, storage node 2 plays the same role as in Figure 1.1. However, the flow constraint between

nodes 1 and 2 is not determined by a capacitated arc but by the absence of a link connecting them

in the same time period.

The distinction between capacity constraints and lead time is very important for the network repre-

sentation of supply chains. Even though real supply chains include both types of flow constraints,

most models assume that one of them governs the dynamic of the network. In general, produc-

tion networks are considered to be constrained by capacities and logistic networks by lead times.

A good example of networks in which both types of constraints are important is given by batch

production systems.

Figure 1.1: Capacity constraints in a network with a source node (1), a storage node (2), and a sink node (3).
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Figure 1.2: Lead time in a network with a source node (1), a storage node (2), and a sink node (3).

1.2.3 Sources of uncertainty

Uncertainty is present in all industrial supply chains. It can be characterized mathematically by

modeling the parameters of the networks with random coefficients. The sources of uncertainty

in production and logistic networks can be related to variability in supply, lead time, processing

capacity, or demand. A detailed description of these sources of uncertainty is presented below.

• Supply availability: the availability of resources at source nodes has an important impact on

network performance. Some authors have studied strategies to mitigate uncertainty in supply

availability in logistic networks [230, 175, 14, 181, 182]. The standard approach to hedge

against the risk of supply stockout is to increase the level of raw material inventory beyond

the expected needs.

• Lead time: responsiveness of logistic networks is closely related to lead times. Lead time

uncertainty affects network performance according to their duration and frequency. Longer

expected lead times force operational decisions to be taken earlier, which decreases the re-

active capacity of the system. Higher lead time variability implies less confidence in predic-

tions, which requires more conservative decisions. Lead time uncertainty has been addressed

in several research studies, mostly for logistic networks [145, 173, 11, 104, 241, 36].

• Processing capacity: responsiveness of production networks is also related to their capacity

constraints. Complex networks with capacitated arcs often exhibit the formation of bottle-

necks. Continuous-time models in which arc capacities are given by random quantities and

flows can be temporarily stored are classified as fluid queuing networks. A good example of

a supply chain with this type of uncertainty is presented by Mitra [159].
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• Demand: demand variability is the most widely studied type of uncertainty in production

and logistic networks. Demand is frequently characterized by a normal distribution but

many authors have also study the impact of other distributions for supply chain management.

Williams & Tokar [245] present a comprehensive review of papers related to inventory man-

agement, and classify them according with their assumptions regarding demand. Demand

uncertainty can be efficiently hedged by increasing process responsiveness and by building

up inventories. Demand is the main driver of production and logistic networks; therefore, the

adequate handling of demand uncertainty has a deep impact in supply chain performance.

1.2.4 Response to demand

Supply chains use different strategies to deal with demand. The distinction between these strategies

is based on the timing relationship between the moment of demand realization and the response

of the network. Networks with negligible flow constraints (i.e. high processing capacity and short

lead times) might prefer to wait until orders are placed to react. Other networks might need to

anticipate future demands to be able to satisfy them when they occur. Most supply chains try to

find a balance between these two strategies for their response to demand [1]. The basic modes of

operation are presented below.

• Make-to-order: this reactive mode does not anticipate future demands for the supply chain

planning. Networks operating in a make-to-order strategy function as pull systems. The

make-to-order operation mode is most suitable for networks providing highly specialized

products, networks with large demand variability, or networks high processing capacity. The

main advantage of this mode is that it does not use inventory for demand satisfaction.

• Make-to-stock: this mode executes operations in anticipation of future demands. Networks

operating in a make-to-stock strategy function as push systems. The make-to-stock operation

mode promotes high utilization of the available processing capacity and leverages inventories

to hedge against uncertainty. It is suitable for networks with limited reactive capacity that

can improve their responsiveness with the accumulation of inventory.
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1.2.5 Service level

One of the most important measures of performance for supply chains is the service level. Service

level is an indicator that evaluates the capability of networks to satisfy demands. There are two

main types of service levels as presented below.

• In-stock probability (α): network performance can be measured from the probability of

satisfying demand realizations on time. The in-stock probability indicates the frequency

with which demand is expected to be satisfied. This performance measure is also known as

Type-1 service level [217].

• Fill rate: (β): the expected fraction of demand that can be satisfied by a network can also be

used as a performance measure. The fill rate measures the average volume of demand that is

satisfied on time with respect to the total volume of demand. This performance measure is

also known as Type-2 service level [217].

1.2.6 Stockout models

The goal of production and logistic networks is to achieve high levels of service. However, it is

not always possible to fully satisfy demands. The assumptions about the behavior of unsatisfied

demands are often described by two models [27].

• Backorders: this model assumes that whenever stockouts occur, demand satisfaction can be

postponed to the next time period. This behavior is usually assumed for products with no

substitutes, companies with contracts, or highly consistent customers.

• Lost sales: this model assumes that late demand satisfaction is unacceptable and stockouts

lead to lower sales. This model is appropriate for commodities or retail businesses in which

products are suitable for substitution.

1.2.7 Cost structure

The efficiency of supply chains can be measured according to the costs associated to their design

and operation. In order to balance investment and operating costs, it is common to consider them
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in a single cost function. Investment costs refer to the capital required to set up the supply chain.

Operating costs include, among others, flow costs, inventory costs, and stockout costs. A detailed

description of these elements is presented below.

• Investment costs: supply chain operations require infrastructure that is built with capital

investments; these investments do not depend on the intensity of the supply chain operations.

Investment planning is often the main goal of supply chain design. The cost structure of

investments can consider fixed and variable costs, according to the discrete and continuous

nature of the design decisions.

• Flow costs: production and transportation costs are the result of the transit of material

through nodes and arcs. These operations are intended to add value to the materials. A

linear function of flows is generally used to model the cost structure of production and trans-

portation. Fixed charges can be included to model economies of scale, equipment setups, or

transportation of discrete flows.

• Inventory costs: inventory costs are calculated from the economic value of the material

and from operating expenses such as taxes, obsolescence, depreciation, insurance, and ware-

housing. The cost function of inventory is usually assumed to be proportional to the sum of

inventory value and related expenses. There are two main approaches to calculate the value

of inventory: First-In-First-Out (FIFO) and Last-In-First-Out (LIFO). The FIFO approach

assumes that stored inventory corresponds to the last fraction of material that entered the

system; therefore, its value is assessed according to the cost of recent purchases. The LIFO

approach assumes that inventory corresponds to material left in the system from the earliest

purchases. Both approaches can yield significant differences when monetizing inventory on

long time horizons or during periods of high inflation.

• Stockout costs: depending on the stockout model, stockout costs might be described by

different functions. Most frequently, backorders are modeled with a cost function that is

linear in volume and lateness. Lost sales are usually considered proportional to the volume

of stockouts. The coefficients of these linear cost functions represent the impact of stockouts

in the long term performance of the company. They include tangible factors such as delay

charges or additional labor, and intangible factors such as lost of reputation or goodwill.
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1.3 Classical models for inventory management

The classical objective of inventory management is to minimize the cost associated to replenish-

ment, holding, and stockouts. In this context, the best inventory management decisions are those

that solve the corresponding minimization problem. Inventory management problems can be for-

mulated as optimization problems, and the optimal solution for many of them can be characterized

by inventory policies. The policies are rules that establish the replenishment decisions as functions

of the inventory availability. Based on the method used to monitor the inventory and the time in

which decisions can be implemented, inventory management strategies can be classified in two

groups [217].

• Continuous review policies: monitor the trajectory of inventory at all times and implement

replenishment decisions whenever a condition on inventory availability is met.

• Periodic review policies: monitor the inventory level and implement replenishment deci-

sions only in periodic time intervals.

The replenishment decisions for both types of strategies are made according to the inventory level

and the pipeline inventory. The inventory level (IL) represents the amount of material available

in the storage node; it can be negative in the case of backorders. The inventory position (IP )

additionally considers the replenishment orders that have been placed but are still to arrive; it is

the sum of the inventory level and the pipeline inventory. Inventory level is important to calculate

holding and stockout cost, whereas the replenishment decisions are usually based on the inventory

position.

The optimal inventory policies for the most recurrent inventory management problems have been

studied for decades [256]. They all deal with the question of determining the replenishment strate-

gies for a single inventory system subject to demand. These models consider linear cost functions

for ordering, holding, and stockouts with or without fixed charges. Some models include lead

times, but none of them has capacity constraints. The only source of uncertainty considered in the

classical models is given by stochastic demand.
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1.3.1 Deterministic inventory models

Inventory models for which all parameters are known with certainty are designated as deterministic.

For these models, the purpose of inventory is related to coordination of flows and cost efficiency.

The absence of uncertainty in these systems implies that future inventory and stockout levels are

established precisely from the planning model.

The Economic Order Quantity (EOQ) model

The EOQ is the basic inventory model. It was originally developed by Harris [101] in 1914 to

determine the economic size of manufacturing lots. Its purpose is to balance average ordering and

holding costs in an infinite horizon. The problem assumes a deterministic demand rate (D) and

allows no stockouts. The inventory policy in the EOQ model is characterized by the order quantity

(Q), which is the size of the replenishment that should be received the moment that the inventory

becomes empty.

The original problem does not consider lead time nor capacity constraints. However, a deterministic

lead time (L) can be easily included just by placing the optimal order quantity (Q∗) in advance.

In order to obtain Q∗, it is necessary to define the cost function. The elements contributing to the

average cost are the ordering and the holding costs. If the ordering cost is assumed to be a fixed

charge (K), its contribution to the average cost is related to the frequency of orders (D/Q). The

holding cost for the EOQ model is proportional to the average inventory with constant (h). The

average cost as a function of the order quantity (Q) is presented in Equation (1.1),

g(Q) =
KD

Q
+
hQ

2
(1.1)

where the first term represents the average fixed ordering cost and the second term the average

holding cost.

The optimal ordering quantity (Q∗) can be found by differentiating with respect to Q and equating
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to zero. The expression for Q∗ is presented in Equation (1.2).

Q∗ =

√
2KD

h
(1.2)

Other deterministic models

Many deterministic models have been developed as modifications of the basic EOQ model [216].

The main problem with this policy in complex logistic networks is that coordination among multi-

ple inventories can become very difficult. In order to simplify coordination, ordering decisions can

be restricted only to some time intervals. This additional restriction is used in the power-of-two

policy, for which orders are only allowed on a power of two multiple of the base time period. Other

interesting modifications of EOQ models arise from including quantity discounts in the cost struc-

ture or allowing planned backorders. Snyder & Shen [216] describe cost functions and optimal

policies for these systems.

The inventory management problem with finite horizon and deterministic time-varying demand

is known as the Wagner-Whitin model [240]. The problem considers fixed ordering cost, linear

holding cost, and does not allow stockouts. The Wagner-Whitin model is formulated as a Mixed-

Integer Linear Programing (MILP) problem and can be solved using dynamic programming. In a

general framework, deterministic inventory management problems with finite time horizons can be

seen as scheduling problems in which decisions are related to inventory replenishment.

1.3.2 Stochastic inventory models

Classical inventory models considering uncertainty are focused on stochastic demands. The tradi-

tional objective function of these models is to minimize the expected cost of replenishment and

stockouts; however, stochastic inventory models are also subject to risk assessments [34, 22].

Whether stockouts are assessed from a risk neutral or a risk averse perspective, inventory is used

to coordinate flows, increase cost efficiency, and reduce stockouts. The risk reduction function

of inventory is carried out by safety stock. Inventory policies for continuous and periodic review

strategies have been developed according to demand patterns and the timing of replenishment de-

cisions. The stochastic version of the EOQ model is the fundamental approach for continuous
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review policies. Periodic review strategies are based on basestock policies; the newsvendor model

describes the standard basestock policy for the single-period case.

(r, Q) policy

The continuous review inventory policy with lead time (L) and stochastic demand rate (D) is char-

acterize by the reorder point (r) and the reorder quantity (Q). The policy places a replenishment

order of size Q when the inventory position reaches level r. This replenishment strategy is known

to be optimal to minimize expected cost functions that consider fixed ordering charges (K), linear

holding costs with constant h, and linear stockout costs with constant p. The model requires the

assumptions that holding costs are calculated from the inventory level, whether it is positive or neg-

ative, and that stockout costs are only charged once per unit demand when they are backordered.

The cost function for the (r,Q) policy represents the expected cost per unit of time as given by

Equation (1.3),

g(r,Q) =
KD

Q
+ h

(
r −DL+

Q

2

)
+ p

D n(r)

Q
(1.3)

where the first term is the expected ordering cost, the second term the expected holding cost, and the

third term the expected stockout cost. In the case of normally distributed demands, the expected

number of stockouts per inventory cycle is given by the loss function (n(r)) of demand during

lead time. There are no closed form solutions for Equation (1.3), but the minimum expected cost

solution satisfies Equations (1.5)-(1.4),

Q∗ =

√
2D [K + p n(r)]

h
(1.4)

r = F−1

(
1− Qh

pD

)
(1.5)

where F−1 is the inverse cumulative distribution function (cdf) of demand during the lead time.
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Basestock policies

Basestock policies are characterized by the inventory position that is restored every time a replen-

ishment is order is placed [217]. Such level is called the basestock level (S). This class of policies

is known to minimize the expected cost of several periodic review models with finite and infinite

horizons, whether they include fixed charges or not. The most prominent example of basestock

policies is the newsvendor model.

Newsvendor model The single period problem with zero lead time, no fixed ordering charges,

and lost-sales can be illustrated with the case of a newspaper vendor. The perishable attribute of

newspapers does not allow leftover inventory to be used in the future, eliminating any connection

between consecutive time periods. The cost function for this formulation includes a linear holding

cost for the end-of-period inventory and a linear stockout cost; the cost coefficients are h and p,

respectively. Equation (1.6) presents the cost function for a system subject to random demand D,

g(S) = h (S −D)
+

+ p (D − S)
+ (1.6)

where (S − D)+ represents the expected end-of-period inventory and (D − S)+ the expected

stockouts. The optimal basestock level (S∗) for the newsvendor model is given by Equation (1.7),

S∗ = F−1

(
p

h+ p

)
(1.7)

where F−1 is the inverse cdf of the single-period demand, and the fraction p
h+p

is known as the

critical ratio. The critical ratio corresponds to the optimal in-stock probability (service level α).

The optimal basestock and the optimal cost for the case in which demand is normally distributed

with mean µ and standard deviation σ can be calculated from Equations (1.8)-(1.9),

S∗ = µ+ σφ−1

(
p

h+ p

)
(1.8)

g∗(S) = h [z + L(z)]σ + p L(z) σ (1.9)
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where φ−1 is the cdf of the normal demand, z =S−µ
σ

, andL(z) is the standard normal loss function.

Multi-period basestock policies The implementation of basestock policies in multi-period prob-

lems modifies the newsvendor model to allow inventory to be carried over time periods. In the finite

time horizon case, the cost function includes the linear holding and stockout costs, and a terminal

cost related to the final inventory. If the terminal cost is convex, then a basestock policy is optimal

for every time period [217]; for time-varying stochastic demands, the optimal basestock level varies

with time. In the infinite horizon case with independent and identically distributed (iid) demands,

basestock policies have also been shown to be optimal. The optimality proof for basestock policies

in the infinite horizon are presented by Zipkin [256].

1.4 Overview of stochastic programming

Stochastic programming is the framework that models mathematical programs with uncertainty by

optimizing the expected value over the possible realizations [19]. Other approaches to model math-

ematical programs with uncertainty, such as robust optimization [12, 147] and chance constraint

programming [142], focus on the feasibility of the solutions over the uncertainty sets. Modeling

approaches focusing on feasibility tend to be appropriate for short-term problems with little room

for recourse decisions, whereas stochastic programming is considered better suited for long-term

planning [96]. A comprehensive review on optimization under uncertainty is presented by Sahini-

dis [193].

In stochastic programming models, the expected value is generally computed by integrating over

the set of uncertain parameters, which might be a challenging task. In the case of discrete uncer-

tainty sets with finite support, the realizations can be characterized with a finite number of scenar-

ios, which simplifies the calculation of the expected value. Therefore, stochastic programming is

often regarded as the scenario-based approach for optimization under uncertainty.

Stochastic programming formulations can accommodate decision making at different stages ac-

cording to the sequence in which uncertainty is revealed. The stages imply a discrete time rep-

resentation of the problem and establish the information about the uncertain parameters available

at that time. The potential paths in which discrete uncertain parameters might evolve are repre-

sented in a scenario tree as shown in Figure 1.3. In these trees, each node is a decision-making
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Figure 1.3: Tree representation of scenarios in a stochastic program with three stages.

instance with known realization of the uncertain parameters up to the current state; potential future

realizations are represented with branches from the given node.

The simplest stochastic programming formulation only considers decisions that are made before

uncertainty reveals. These models are called single-stage stochastic programs or stochastic pro-

grams without recourse. Among the stochastic programs that consider recourse, the most widely

used formulation is the Mixed-Integer Linear Program (MILP) with continuous recourse in a sec-

ond stage [96]. This two-stage stochastic programming formulation divides the decisions into two

sets: here-and-now decisions that are made before uncertainty reveals, and wait-and-see decisions

that are independent for each scenario. The typical formulation of a linear two-stage stochastic

programming problem is presented in Equations (1.10)-(1.13),

min
x∈X

cTx+ E
s

[Qs (x)] (1.10)

s.t. Ax ≤ b (1.11)

Qs (x) = min
ys∈Ys

dTs ys (1.12)

s.t. Wsys ≤ hs − Tsx (1.13)

where x is the vector of first-stage decisions in polyhedral set X , ys are vectors of second-stage

(recourse) decisions in polyhedral sets Ys, and s is the index for scenarios. The objective function

of the first-stage is given by Equation (1.10), and the constraints of the first-stage problem are

represented by Equation (1.11). Similarly, the objective function of the second-stage is given by

Equation (1.12), and the corresponding constraints are presented in Equation (1.13).

An important property of the linear two-stage stochastic programming formulation is that the first-

stage cost is given by a convex function [19]. Based on this property and assuming that the second-

stage problems (Qs(x)) are bounded, a model that explicitly calculates the expected value can be

derived by including all second-stage problems in the formulation. This reformulation, known
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as the deterministic equivalent of the stochastic programming problem, is presented in Equations

(1.14)-(1.17),

min cTx+
∑
s∈S

Ps dTs ys (1.14)

s.t. Ax ≤ b (1.15)

Wsys ≤ hs − Tsx ∀ s ∈ S (1.16)

x ∈ X, ys ∈ Ys ∀ s ∈ S (1.17)

where Ps denotes the probability of scenario s.

The benefits of using a stochastic programming model can be quantified by the Value of the Stochas-

tic Solution (VSS). The VSS is the difference between the expected values obtained from imple-

menting the solution predicted by the stochastic formulation and the solution obtained by a de-

terministic formulation that substitutes the uncertain parameters with their nominal values. The

expected value of the deterministic formulation is calculated by solving the deterministic prob-

lem, implementing the here-and-now decisions, and evaluating the scenarios with their optimal

recourse.

The model presented in Equations (1.10)-(1.13) can also be extended to a multistage stochastic

programming model. The tree corresponding to a three-stage problem has the structure shown in

Figure 1.3. Solving multistage stochastic programming problems can be considerably harder, and

special care must be taken to model the sequence in which uncertainty is revealed. The general

formulation of a linear three-stage stochastic program is presented in Equations (1.18)-(1.23),

min
x∈X

cTx+ E
s

[Qs (x)] (1.18)

s.t. Ax ≤ b (1.19)

Qs (x) = min
ys∈Ys

dTs ys + E
s|s2

[Ps (x, ys)] (1.20)

s.t. Wsys ≤ hs − Tsx (1.21)

Ps (x, ys) = min
zs∈Zs

fTs zs (1.22)

s.t. Vszs ≤ gs − Usx−Rsys (1.23)
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where zs are vectors of third-stage variables defined in polyhedral sets Zs. The objective function

of the third-stage is given by Equation (1.22), and its constraints are presented in Equation (1.23).

It is important to remark that the expectation in the second-stage objective function is conditional

on the realization of the second level uncertainty; this conditional expectation over the scenarios is

denoted by Es|s2 .

One way of transforming the multistage formulation into its deterministic equivalent is to generate

a set of copied variables for each path that goes from the root node to the branches, and to intro-

duce non-anticipativity constraints that force copied variables to have the same values according to

uncertainty revealed at each stage [189]. This alternative representation has the advantage of being

relatively easy to implement. Solution methods for large stochastic programming problems is still

an active area of research due to the large number of scenarios needed for industrial applications

and the rapid growth of scenarios in multistage stochastic programs.

1.4.1 Decomposition methods for stochastic programming problems

Methods used to solve large stochastic programming problems leverage the scenario structure that

produces a block-diagonal shape in the constraints. Similarly to the application of decomposition

methods to other types of mathematical programs, the strategies used for stochastic programming

find the optimal solution by iteratively solving problems of lower complexity. The scenario struc-

ture of the stochastic programming problem implies that most of the variables and constraints in

the formulation have no direct interaction with each others. In particular, it is easy to identify a

relatively small set of complicating variables and complicating constraints connecting the scenar-

ios. This observation gives rise to the main decomposition methods for stochastic programming:

Lagrangean decomposition and the L-shaped method. Other decomposition strategies include Pro-

gressive Hedging and Nested Decomposition procedures [44].

Lagrangean decomposition

Given that a small set of constraints is responsible for linking decisions across scenarios in stochas-

tic programs, relaxing these complicating constraints allows finding the optimal solution for each

scenario independently. The Lagrangean decomposition method [97] uses Lagrangean relaxation
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over the alternative representation of a stochastic program to dualize the non-anticipativity con-

straints. An implementation of this dual decomposition method to stochastic programs was pre-

sented by Carøe & Schültz [29]. The solution of the relaxed subproblems yields a lower bound

for the minimization of the original problem. This relaxation is improved iteratively by updating

the Lagrange multipliers associated with the non-anticipativity constraints; the multipliers can be

updated using different strategies, including subgradient and cutting planes methods. The main

difficulty with the application of Lagrangean decomposition is that the solution of the Lagrangean

relaxation is likely to violate the relaxed constraints and it might be difficult to find feasible so-

lutions to the original problem. Additionally, the optimal solution of the Lagrangean dual only

provides a lower bound to the original problem and the duality gap might not be satisfactory to

assess the quality of the solution. Therefore, Lagrangean decomposition is often implemented in a

Branch-&-Bound algorithm that closes the duality gap and with a heuristic that provides feasible

solutions. The main advantage of Lagrangean decomposition is that it can be used to solve two-

stage and multistage stochastic programming problems with mixed-integer variables in all stages.

L-shaped method

The L-shaped method is the implementation of Benders decomposition to linear two-stage stochas-

tic programming problems with continuous recourse [238]. The method considers first-stage vari-

ables as complicating because the subproblem corresponding to each scenario can be solved inde-

pendently once they are fixed. Every iteration of the L-shaped method solves the scenario subprob-

lems to evaluate first-stage solutions and a relaxed master problem that generates new candidate

solutions for the first-stage variables. The optimal primal and dual solutions of the subproblems

provide an upper bound on the original problem, a candidate solution (if feasible), and dual in-

formation that can be used to generate Benders cuts that approximate the feasible region of the

original problem in the space of the first-stage variables. These cutting planes are included itera-

tively in the master problem to improve the description of the feasible region, predict better lower

bounds, and obtain new first-stage solutions. The algorithm is guaranteed to converge to the op-

timal solution of the original problem in a finite number of iterations. The rate of convergence

of the L-shaped method strongly depends on the linear programming relaxation of the problem

[152, 194]; in subproblems with multiple optima, judicious selection of the alternative Benders

cuts can greatly improve the convergence of the algorithm [152]. Additionally, the scenario struc-

ture of the stochastic program can be exploited in the L-shaped method to generate independent
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cuts for each subproblem in every iteration. The addition of multi-cuts to the master problem is

likely to produce a major reduction in the number of iterations required for convergence [18].

1.5 Overview of bilevel optimization

Bilevel optimization models are mathematical programs that include an optimization problem in the

constraints [23]. They are suitable to model problems in which two independent decision-makers

optimize their own objective functions sequentially [28, 9]. In the bilevel optimization literature,

the upper-level decision-maker is designated as the leader and the lower-level decision-maker as

the follower. Bilevel formulations are often used in game theory to model Stackelberg competitions

[239].

The generic mixed-integer formulation of a bilevel programming problem is given by Equations

(1.24)-(1.28).

max
w,x

F (w, x, y, z) (1.24)

s.t. G (w, x) ≤ 0 (1.25)

max
y,z

f (y, z) (1.26)

s.t. g (w, x, y, z) ≤ 0 (1.27)

(w, y) ∈ Z (x, z) ∈ R (1.28)

The variables in the bilevel optimization problem are divided into two groups: upper-level vari-

ables (w, x) that are controlled by the leader with the goal of maximizing the upper-level objective

(1.24), and lower-level variables (y, z) that are controlled by the follower to maximize the lower-

level objective (1.26). The most common formulation of the bilevel optimization problem assumes

that the upper-level constraints presented in Equation (1.25) only depend on the upper-level vari-

ables. Lower-level constraints presented in Equation (1.27) depend on both, upper- and lower-level

variables.

The bilevel formulation implies a hierarchy between the decisions of the leader and the follower.

The leader makes its decisions first, and then the follower reacts rationally to optimize its objective
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function; once the leader has established its solution, the variables controlled by the leader are

treated as parameters in the lower-level optimization problem. The bilevel optimization formulation

assumes that the leader has perfect information about the decision criterion of the follower and that

the decisions made by the leader are visible for the follower. In order to facilitate the understanding

of the problem, we provide the following definitions for the bilevel problem.

The bilevel constraint region is given by:

Ω = {(w, x, y, z) : G (w, x) ≤ 0, g (w, x, y, z) ≤ 0, (w, y) ∈ Z; (x, z) ∈ R} (1.29)

The projection of Ω onto the first-level decision space is given by:

Ωw,x = {(w, x) : ∃ (y, z) s.t. (w, x, y, z) ∈ Ω} (1.30)

The lower-level feasible set for upper-level variables (w̄, x̄) is given by:

Ω(w̄, x̄) = {(y, z) : g (w̄, x̄, y, z) ≤ 0, y ∈ Z; z ∈ R} (1.31)

The second-level rational reaction set for an upper-level solution (w̄, x̄) is given by:

Ψ(w̄, x̄) = {(y, z) : arg max [f (w̄, x̄, y, z) s.t. (y, z) ∈ Ω(w̄, x̄)]} (1.32)

The inducible region (IR) is given by:

IR = {(w, x, y, z) : (w, x) ∈ Ωw,x, (y, z) ∈ Ψ(w, x)} (1.33)

It is important to remark that the inducible region (1.33) corresponds to the set of feasible solutions

of the bilevel optimization problem. In contrast to the single level optimization problems, a relax-

ation of the bilevel problem is not obtained by relaxing the integrality conditions in Equation (1.28)

[55]. This counterintuitive observation can be explained by the fact that relaxing the lower-level

integrality increases the size of the follower’s rational reaction set (1.32).
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It should also be noted that checking for bilevel feasibility is not a trivial task. Bilevel feasibil-

ity implies that the solution belongs to the inducible region; however, as pointed out by Candler

& Townsley [28], this region might be nonconvex even for purely linear bilevel problems. The

simplest way to find a bilevel feasible solution is to follow a two-step procedure: first, obtain feasi-

ble values for upper-level variables ((w, x) ∈ Ωw,x), and then find the corresponding values for the

lower-level variables in the rational reaction set (1.32). Feasible values for the upper-level variables

can be found by solving the high-point problem presented in Equations (1.34)-(1.37).

max F (w, x, y, z) (1.34)

s.t. G (w, x) ≤ 0 (1.35)

g (w, x, y, z) ≤ 0 (1.36)

(w, y) ∈ Z (x, z) ∈ R (1.37)

The high-point problem is obtained by removing the follower’s objective function from the bilevel

formulation. The high-point solution (ŵ, x̂, ŷ, ẑ) yields an upper bound on the upper-level maxi-

mization because the high-point problem is a relaxation of the original bilevel optimization prob-

lem [9]. The rational response of the follower can be found by fixing the upper-level variables and

solving the lower-level problem presented in Equations (1.38)-(1.40).

max f (ŵ, x̂, y, z) (1.38)

s.t. g (ŵ, x̂, y, z) ≤ 0 (1.39)

y ∈ Z z ∈ R (1.40)

Most solution methods for bilevel optimizatin problems have focused on mixed-integer linear prob-

lems with only continuous variables in the lower-level. The approaches for bilevel programs with

lower-level Linear Programs (LPs) leverage the fact that optimal solutions occur at vertices of the

region described by upper- and lower-level constraints. They rely on vertex enumeration, direc-

tional derivatives, penalty terms, or optimality conditions [192]. The most direct approach is to

reformulate the bilevel optimization as a single-level problem using the optimality conditions of

the lower-level LP. The classic reformulation using Karush-Kuhn-Tucker (KKT) conditions main-
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Figure 1.4: Graphical outline of the thesis.

tains linearity of the problem except for the introduction of complementarity constraints [72, 8, 16].

An equivalent reformulation replaces the lower-level problem by its primal and dual constraints,

and guarantees optimality by enforcing strong duality [164, 75].

1.6 Outline of the thesis

This thesis addresses supply chain optimization with uncertainty and hierarchical decision-makers

in five chapters that focus on different elements of the problem. A graphical overview of the thesis

is presented in Figure 1.4. Chapters 2 to 6 address supply chain problems that are relevant to

the process industry, propose mathematical programming formulations to formalize the decision-

making problems, and develop methods yielding the corresponding optimal solutions. The general

aim of our models is to serve as tools that facilitate the decision-making process in the design and

operation of industrial supply chains.

Chapter 2 addresses the design of resilient supply chains under the risk of disruptions at candidate
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distribution centers (DCs). The problem is formulated as a two-stage stochastic programing model;

the solution establishes optimal DC locations, storage capacities, and demand assignments in sce-

narios describing disruptions at potential DCs. The objective is to minimize the sum of investment

cost and expected distribution cost during a finite time horizon. The rapid growth in the number

of scenarios requires a specialized method to solve large-scale problems. We develop a method

based on multi-cut Benders decomposition that offers deterministic bounds on the cost function

for problems with a very large number of scenarios. The results demonstrate the importance of

including DC capacity in the design problem and anticipating the distribution strategy in adverse

scenarios.

In Chapter 3, we present a cross-decomposition algorithm that combines Benders and scenario-

based Lagrangean decomposition for two-stage stochastic programming problems with complete

recourse. We implement the cross-decomposition algorithm for planning problems where the first-

stage variables are mixed-integer and the second-stage variables are continuous. The algorithm

fully integrates primal and dual information in terms of multi-cuts added to the Benders and the

Lagrangean master problems for each scenario. The benefits of the cross-decomposition scheme

are demonstrated with instances of the resilient supply chain design with risk of disruptions. The

computational experiments show performance improvements in comparison to commercial MILP

solvers and multi-cut Benders decomposition.

Chapter 4 presents an approach to optimize inventory policies in process networks under uncer-

tainty. In this chapter, the multiperiod inventory planning problem is formulated through a stochas-

tic programming model that includes the logic of inventory policies. The proposed logic-based

formulation is an approximation of the multistage stochastic programming model that replaces non-

anticipativity constraints with decision rules that are shared across all scenarios. The logic-based

formulation yields the parameters specifying the optimal inventory planning strategy in chemical

process networks. We propose policies for inventory planning in process networks with arrange-

ments of inventories in parallel and in series. The implementation of the logic-based planning

strategy in Monte Carlo simulations shows significant advantages in comparison to the equivalent

two-stage stochastic programming model.

In Chapter 5, we formulate the capacity planning problem as a bilevel optimization with the goal

of modeling the hierarchical decision structure involving industrial producers and consumers. The

formulation is a mixed-integer bilevel linear program in which the upper level maximizes the profit

of a producer and the lower level minimizes the cost paid by markets. The upper-level problem
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includes mixed-integer variables that establish the expansion plan; the lower level problem is an

LP that decides demands assignments. We reformulate the bilevel optimization as a single-level

problem using two different approaches: KKT reformulation and duality-based reformulation. We

analyze the performance of the reformulations and compare their results with the expansion plans

obtained from the traditional single-level model. We also propose improvements on the duality-

based reformulation for the solution of large-scale problems.

Chapter 6 extends the capacity planning model presented in Chapter 5 to consider competitors that

are allowed to expand their capacity. We propose a mathematical programming formulation with

three levels of decision-makers to fully capture the dynamic of competitive markets. The trilevel

model is transformed into a bilevel optimization problem with mixed-integer variables in both

levels by replacing the third-level LP with its optimality conditions. We introduce new definitions

required for the analysis of degeneracy in multilevel models, and develop two novel algorithms to

solve these challenging problems. The computational experiments show the value of considering

competitors and markets as rational decision-makers.

Finally, Chapter 7 provides a critical review of this thesis. We present the major contributions of

our research and we outline directions for future research.
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Chapter 2

Design of Resilient Supply Chains with

Risk of Disruptions

2.1 Motivation

Supply chain resilience has recently become one of the main concerns for major companies. The

increasing complexity and interdependency of logistic networks have contributed to enhance the

interest on this topic. A recent report presented by the World Economic Forum indicates that sup-

ply chain disruptions reduce the share price of impacted companies by 7% on average [15]. One

interesting case of supply chain resilience happened in 2000 when a fire at the Philips microchip

plant in Albuquerque (NM) cut off the supply of a key component for cellphone manufacturers

Nokia and Ericsson. Nokia’s production lines were able to adapt quickly by using alternative sup-

pliers and accepting similar components. In contrast, the supply disruption had a significant impact

in Ericsson’s production, causing an estimated revenue loss of $400 million [137]. Similarly, the

disruptions caused by hurricane Katrina in 2005 [169] and the earthquake that hit Japan in 2011

[134] exposed the vulnerabilities of centralized supply chain strategies in the process industry.

The importance of building resilient supply chain networks and quantifying the effect of unex-
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pected events in their operation has been recognized by several studies [108, 185, 36, 45]. They

advocate for the inclusion of risk reduction strategies into the supply chain design. However, dis-

ruptions are often neglected from the supply chain analysis because of their unpredictable and

infrequent nature.

Disruptions comprise a wide variety of events that prevent supply chains from their normal oper-

ation. Regardless of their nature, disruptions produce undesirable effects: they shut down parts of

the network and force rearrangements of the logistic strategy that can be very expensive. Further-

more, the current paradigm of lean inventory management leads to reduced supply chain flexibility

and increased vulnerability to disruptions. In order to implement reliable networks that consis-

tently deliver high performance, the value of supply chain resilience must be considered during

their design [230, 200].

Traditionally, the mathematical formulation of the supply chain design has been based on the facil-

ity location problem (FLP) [242, 84]. The FLP implies selecting among a set of candidate locations

the facilities that offer the best balance between investment and transportation cost to a given set of

demand points. The supply chain design problem has a broader scope. It also includes the role of

suppliers, inventory management, and timing of deliveries.

This chapter addresses the design of multi-commodity supply chains subject to disruptions risk

at the distribution centers (DCs). The problem involves selecting DC locations, establishing their

storage capacity, and determining a distribution strategy that anticipates potential disruptions. The

goal is to obtain the supply chain with minimum cost from a risk neutral perspective. The cost of

the supply chain is calculated as the sum of investment cost and expected distribution cost over a

finite time horizon.

The benefits of flexibility in capacitated manufacturing networks with uncertain demand have been

recognized in previous research studies [121]. Similar benefits can be expected in distribution

networks with disruptions, but their assessment requires the consideration of capacity constraints.

Unlike previous work, this research considers DC storage capacities as design variables that impact

investment cost and inventory availability. This approach follows from the intuitive notion that sup-

ply chain resilience requires backup capacity. The goal is to demonstrate that significant increases

in network reliability can be obtained with reasonable increases in investment cost through appro-

priate capacity selection and allocation of inventories.

In order to establish the optimal amount of inventories at DCs, demand assignments under the

possible realizations of disruptions must be anticipated. Therefore, the problem is formulated in
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the context of two-stage stochastic programming with full recourse [19]. The first-stage decisions

comprise the supply chain design: DC selection and their capacities. The second-stage decisions

model the distribution strategy in the scenarios given by the potential combinations of active and

disrupted locations. The solution of large-scale problems requires the development of specialized

algorithms given the exponential growth in the number of scenarios with the increase in candidate

DCs. We present different versions of Benders decomposition [13] that exploit the structure of the

problem.

The remaining of this chapter is organized as follows. Section 2.2 reviews the relevant contributions

to the design of resilient supply chains. Section 2.3 formalizes the problem statement. In Section

2.4, we describe the mathematical model of the problem. Section 2.5 illustrates the model with

a small example. In section 2.6, we present the solution method for the design of large-scale

resilient supply chains. Section 2.7 discusses some issues related to the implementation. Section

2.8 demonstrates the implementation of the solution strategy in a large-scale example. In Section

2.9, we formulate the design problem for a resilient supply chain from the process industry and

present its results. Finally, we present a summary of this chapter in Section 2.10.

2.2 Literature review

Facility location problems have received significant attention since the theory of the location of in-

dustries was introduced by Weber & Friedrich [242]. In the context of supply chains, Geoffrion &

Graves [84] proposed a Mixed-Integer Linear Programming (MILP) formulation that contains the

essence of subsequent developments. Several authors have continued proposing different versions

of this formulation. Owen & Daskin [172], Meixell & Gargeya [155], and Shen [207] offer com-

prehensive reviews on facility location and supply chain design. The main developments in supply

chains design and planning for the process industry are reviewed by Shah [203] and by Laı́nez &

Puigjaner [136]. A review of the FLP under uncertainty is presented by Snyder [213]. Additionally,

the design of robust supply chains under uncertainty is reviewed by Klibi et al. [133].

Most recent efforts have included inventory management under demand uncertainty into the design

of supply chains [232, 49, 208, 249]. These formulations exploit the variance reduction that is

achieved when uncertain demands are centralized at few DCs, according to the risk pooling effect

demonstrated by Eppen [58]. The benefits of centralization contrast with the risk diversification ef-
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fect that becomes apparent when supply availability is considered uncertain. Snyder & Shen [215]

demonstrate that centralized supply chains are more vulnerable to the effect of supply uncertainty.

The effect of unreliable supply in inventory management has been studied by several authors [230,

175, 14, 181]. Qi et al. [182] integrate inventory decisions into the supply chain design with

unreliable supply. The main approach to address uncertainty in supply availability is to allocate

safety stock at DCs to mitigate the risk of stockouts.

The FLP under the risk of disruptions was originally studied by Snyder & Daskin [214]. They

formulate a problem in which all candidate DCs have unlimited capacities and the same disruption

probability. The model avoids the generation of scenarios by establishing customer assignments

according to DC availability and levels of preference. The objective is to minimize the investment

cost in DCs and the expected cost of transportation. Similar formulations that allow site-dependent

disruption probabilities have also been developed [46, 146, 209], together with approximation al-

gorithms to solve them [144]. An extension that allows facility fortification decisions to improve

their reliability was introduced by Li et al. [143]. An alternative design criterion (p-robustness) that

minimizes nominal cost and reduces the risk of disruptions was presented by Peng et al. [176].

Recently, inventory management has been considered in the design of supply chains with risk

of facility disruptions. Chen et al. [33] include the expected cost of holding inventory into the

FLP. This formulation, like all previous work, considers the capacity of the candidate DCs to be

unlimited. A capacitated version of the FLP with disruptions that includes inventory management

is formulated by Jeon [119] as a two-stage stochastic programming problem. This formulation

considers a fixed capacity for the candidate DCs.

Stochastic programming has been used to address different types of uncertainty in supply chain

design. Tsiakis et al. [232] address the design of multi-echelon supply chains under demand un-

certainty using stochastic programming. Salema et al. [197] propose a stochastic programming

formulation for the design of reverse logistic networks with capacitated facilities. Some authors

have resorted to Sample Average Approximation (SAA) [206, 130] to estimate the optimal design

of supply chains with large numbers of scenarios. Santoso et al. [199] propose the use of SAA

to estimate the optimal design of supply chains with uncertainty in costs, supply, capacity, and

demand. Schültz et al. [201] distinguish between short and long-term uncertainty in their stochas-

tic programming formulation; the problem is solved by using SAA. Klibi & Martel [131] propose

various models for the design of resilient supply chains considering disruptions and other types

of uncertainties. Their formulation approximates the optimal response strategy to disruptions; the
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solution of the supply chain design problem is estimated using SAA.

The main contribution of this research for the design of resilient supply chains in comparison to the

published literature is to include DC capacities as design decisions. This extension allows detailed

modeling of the inventory management, its availability and cost. Additionally, the solution strategy

that we develop can be used to obtain deterministic bounds on the optimal solution of large-scale

supply chains.

2.3 Problem statement

The proposed supply chain design problem involves selecting DCs among a set of candidate loca-

tions, determining their storage capacity for multiple commodities, and establishing the distribution

strategy. The objective is to minimize the sum of investment costs and expected distribution cost;

distribution costs include transportation from plant to DCs, storage of inventory at DCs, transporta-

tion from DCs to customers, and penalties for unsatisfied demands. These costs are incurred during

a finite time horizon that is modeled as a sequence of time periods.

The DC candidate locations are assumed to have an associated risk of disruption. The risk is char-

acterized by a probability that represents the fraction of time that the potential DC is expected to

be disrupted. Disruption probabilities of individual candidate locations are assumed to be known.

For the potential DC locations, the possible combinations of active and disrupted locations give

rise to a discrete set of scenarios regardless of the investment decisions. The scenario probabilities

are established during the problem formulation according to the probability of individual facility

disruptions, which are assumed to be independent. However, the formulation easily accommodates

correlation among disruption probabilities and more sophisticated approaches for the scenario gen-

eration [132].

The scenarios determine the potential availability of DCs. Actual availability depends on the real-

ization of scenarios and the investment decisions. This property can be interpreted as an expression

of endogenous uncertainty [120, 88, 99] in which the selection of DC locations renders some of

the scenarios indistinguishable. Fortunately, for the case of two-stage stochastic programs, the

optimal cost of indistinguishable scenarios always turns out to be the same. In contrast to multi-

stage stochastic programming formulations [88], two-stage problems do not require conditional

non-anticipativity constraints because there are no decisions to anticipate after the second stage.
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The distribution strategy implies establishing demand assignments in all possible scenarios. As-

signments are modeled with continuous variables to allow customers to be served from differ-

ent DCs simultaneously. Customer demands must be satisfied from active DCs according to the

availability of inventory. Unsatisfied demands are subject to penalty costs. The expected cost of

distribution is calculated from the distribution cost of each scenario according to its associated

probability.

DCs are assumed to follow a periodic review basestock inventory policy with zero lead time [212].

With this policy, DCs place a replenishment order at the beginning of every time-period; the size of

the order is adjusted to bring the inventory to the base-stock level. Therefore, the inventory at DCs

is always found at the base-stock level at the beginning of time periods. This policy implies that

consecutive time-periods are identical and the distribution decisions are time independent. The

optimal base-stock level for each DC is equal to its storage capacity, which is an optimization

variable. All cost coefficients are assumed to be known and deterministic. The investment costs in

DCs are given by a linear function of capacity with fixed-charges. Transportation costs are given

by linear functions of volume without fixed-charges. Storage costs are given by a linear function

of the mean inventory. Penalties for unsatisfied demand are given by a linear function of volume.

2.4 Mathematical model

The design of a supply chain with risk of disruptions has the structure of a two-stage stochastic

program. First-stage decisions are related to the DCs location and their capacity. Second stage

decisions involve assignments of customer demands according to the availability of DCs that is de-

termined by the discrete set of scenarios. The penalties for unsatisfied demand render the recourse

of the problem to be complete. Penalties are considered in the model by including an additional DC

with infinite capacity, zero investment cost, and zero probability of being disrupted. This fictitious

DC is labeled with subindex |I|.

The following indices are used in the formulation: the set of scenarios is denoted by S, the set

of candidate locations for DCs is denoted by I , the set of customers is denoted by J , and the

set of commodities is denoted by K. The parameters of the problem are: the number of time-

periods in the design horizon (N ), the customer demands per time period (Dj,k), the unit holding

cost of inventory per time period (Hk), the fixed investment cost for DCs (Fi), the unit capacity
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cost for commodities at DCs (Vi,k), the unit transportation cost from plant to DCs (Ai), the unit

transportation cost from DCs to customers (Bi,j), the probability of scenarios (πs), the maximum

capacity of DCs (Cmax), and the matrix indicating the availability of DCs in the scenarios (Ts,i).

The binary variable deciding if a DC is selected at candidate location i is denoted by xi, the storage

capacity for commodity k at location i is denoted by ci,k, and ys,i,j,k represents the fraction of

demand Dj,k satisfied from location i in scenario s.

The objective function (2.1) minimizes the sum of investment at DCs, the expected cost of trans-

portation from plant to DCs, the expected cost of transportation from DCs to customers, and the

expected cost of storage at DCs. It should be noted that the cost of penalties is considered in the

transportation terms indexed by |I| and that all time-periods (N ) are assumed to be identical.

min
∑
i∈I\|I|

(
Fixi +

∑
k∈K

Vi,kci,k

)
+N

∑
s∈S

πs
∑
i∈I

∑
k∈K

[∑
j∈J

(Ai,k +Bi,j,k)Dj,kys,i,j,k

]

+N
∑
s∈S

πs
∑
i∈I

∑
k∈K

Hk

(
ci,k −

1

2

∑
j∈J

Dj,kys,i,j,k

)
(2.1)

The optimization problem is subject to the following constraints:

s.t.
∑
i∈I

ys,i,j,k = 1 ∀ s ∈ S, j ∈ J, k ∈ K (2.2)

∑
j∈J

Dj,kys,i,j,k − Ts,ici,k ≤ 0 ∀ s ∈ S, i ∈ I, k ∈ K (2.3)

ci,k − Cmaxxi ≤ 0 ∀ i ∈ I, k ∈ K (2.4)

xi ∈ {0, 1} , 0 ≤ ci,k ≤ Cmax, 0 ≤ ys,i,j,k ≤ Ts,i ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.5)

Constraints (2.2) determine demand assignments for each scenario. Constraints (2.3) ensure that

customer assignments in every scenario are restricted by the inventory available at DCs; inventory

availability at DCs depends on their capacity and the binary matrix (Ts,i) that indicates the realiza-

tion of disruptions (Ts,i = 0) in the scenarios. Constraints (2.4) bound the storage capacity of DCs

according to the selection of locations.
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2.5 Illustrative example

We implement the proposed formulation to design a small supply chain with risk of disruptions at

the candidate locations for DCs. We also find the optimal deterministic design based on the main-

scenario (no disruptions), and we calculate its expected cost under the risk of disruptions. The

implementations are based on the illustrative example presented by You & Grossmann [249]. The

example includes 1 production plant, 3 candidate DCs, 6 customers, and a single commodity; there

are 8 scenarios representing all possible combinations of disruptions at the DC candidate locations.

The parameters for the example are shown in Tables 2.1 and 2.2. The availability matrix (Ts,i) and

the scenario probabilities are shown in Table 2.3.

Parameter Value Units
N 365 days
D1 95 ton/day
D2 157 ton/day
D3 46 ton/day
D4 234 ton/day
D5 75 ton/day
D6 192 ton/day
H 0.01 $/(ton day)
F 100,000 $/DC
V 100 $/ton
A1 0.24 $/ton
A2 0.20 $/ton
A3 0.28 $/ton
A|I| 15 $/ton

Table 2.1: Parameters of the illustrative example.

DC
Customers

1 2 3 4 5 6
1 0.04 0.08 0.36 0.88 1.52 3.36
2 2.00 1.36 0.08 0.10 1.80 2.28
3 2.88 1.32 1.04 0.52 0.12 0.08
|I| 10.0 10.0 10.0 10.0 10.0 10.0

Table 2.2: Transportation costs Bi,j ($/ton) in the illustrative example.
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Scenario
DC availability

Probability πs1 2 3 |I|
1 1 1 1 1 0.795
2 0 1 1 1 0.069
3 1 0 1 1 0.033
4 1 1 0 1 0.088
5 0 0 1 1 0.003
6 1 0 0 1 0.004
7 0 1 0 1 0.008
8 0 0 0 1 3.200 ∗ 10−4

Table 2.3: Availability matrix (Ts,i) and scenario probabilities (πs) in the illustrative example.

Figure 2.1: Optimal deterministic design for the
illustrative example.

Figure 2.2: Optimal stochastic design for the
illustrative example.

The optimal designs obtained are presented in Figures 2.1 and 2.2. It can be observed that the

deterministic and stochastic models yield different designs. The deterministic design only selects

two DC candidate locations, whereas the stochastic design selects all three candidate locations.

A detailed comparison of the deterministic and stochastic formulations and their corresponding

results can be found in Table 2.4. The expected costs under the risk of disruptions are calculated by

fixing the design variables to the optimal values obtained from each formulation and minimizing

the distribution cost over the set of scenarios. Table 2.4 shows that the stochastic design requires a

significantly higher investment cost. The investment is compensated by lower transportation cost

and most importantly by lower penalties. The deterministic design has a very poor performance in

the scenarios with disruptions. This is caused by its lack of flexibility: it has no slack capacity to

serve demands when disruptions occur. On the other hand, the stochastic design has enough slack

capacity to reallocate demands in the scenarios with disruptions; this strategy greatly decreases the

expected cost of penalties. The comparison of the optimal costs obtained from both designs shows
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Deterministic Stochastic
formulation formulation

Expected
costs under
risk of
disruptions

Investment ($) 279,900 419,850
Transportation to DCs ($) 70,098 68,971
Transportation to customers ($) 59,029 54,683
Storage ($) 1,593 2,927
Penalties ($) 674,703 54,244
Total ($): 1,085,323 600,675

Storage capacity Working inventory (ton) 298 / - / 501 400 / 400 / 400

Computational
statistics

Problem type MILP MILP
No. of constraints 13 76
No. of continuous variables 31 199
No. of binary variables 3 3
Solution time 0.058 s 0.127 s

Table 2.4: Results of the illustrative example.

a difference of $484,648 when their performance is evaluated under the risk of disruptions; this

comparative performance measure is the Value of the Stochastic Solution (VSS) [19]. The size and

complexity of the formulations are also quite different. The number of variables and constraints

grow linearly with the number of scenarios. The size of the formulations has an impact on the

solution times. However, both formulations are linear and they only have a few binary variables.

Therefore, the problems can be solved in short CPU times.

2.6 Solution method

The main challenge for the design of large-scale supply chains is posed by the number of scenarios;

the possible combinations of disruptions grow exponentially with the number of candidate DCs.

The total number of scenarios for our formulation is 2|I|−1, considering the fictitious DC that is al-

ways available. In this context, problems with a modest number candidate DCs become intractable.

In order to design large-scale supply chains, we develop a number of different solution strategies.

Initially, we include in the model a set of redundant constraints that facilitates the solution of the

Mixed-Integer Linear Programming (MILP) problem; this set of tightening constraints is intended
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to improve the Linear Programing (LP) relaxation of the formulation. Additionally, we present a

Benders decomposition algorithm that leverages problem structure. Finally, we develop a strategy

to bound the cost of arbitrary subsets of scenarios. This strategy is useful to evaluate the relevance

of scenario sets and quantify their worst-case impact in the objective function.

2.6.1 Tightening the formulation

The proposed formulation for resilient supply chain design has a poor LP relaxation. For instance,

the LP relaxation of the illustrative example presented in the previous section yields a lower bound

of $420,525, whereas the optimal MILP solution is $600,675. The computational effort required to

solve MILP problems strongly depends on the tightness of the LP relaxation. In particular, large-

scale MILPs with poor LP relaxation can take quite a long time since a large number of nodes

has to be analyzed with the state-of-the-art branch-and-cut algorithms. In order to improve the LP

relaxation of our formulation, we add a new set of constraints. In fact, Proposition 2.1 states that

by adding the tightening constraints, we can obtain the convex-hull of a subset of the constraints.

Proposition 2.1. The convex hull of constraints (2.3), (2.4), and (2.5) is obtained by adding the
constraint presented in Equation (2.6).

ys,i,j,k − Ts,ixi ≤ 0 ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.6)

Proof. According to the argument from Geoffrion & McBride [85] and decomposing the problem

by DCs, constraints (2.3), (2.4), and (2.5) can be expressed in disjunctive form as follows:


xi = 0

ci,k = 0

ys,i,j,k = 0

 ∨


xi = 1

0 ≤ ci,k ≤ Cmax

0 ≤ ys,i,j,k ≤ Ts,i∑
j∈J

Dj,kys,i,j,k ≤ Ts,ici,k

 (2.7)

The hull reformulation is obtained by disaggregating variables xi, ci,k, and ys,i,j,k to obtain the
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following constraints:

x1
i = 0 x2

i = 1

c1
i,k = 0 0 ≤ c2

i,k ≤ Cmax

y1
s,i,j,k = 0 0 ≤ y2

s,i,j,k ≤ Ts,i∑
j∈J

Dj,ky
2
s,i,j,k ≤ Ts,ic2

i,k

(2.8)

The convex-hull is obtained from the convex combination of the disaggregated variables:

xi = (1− α)x1
i + αx2

i

ci,k = (1− α) c1
i,k + αc2

i,k

ys,i,j,k = (1− α) y1
s,i,j,k + αy2

s,i,j,k

0 ≤ α ≤ 1

(2.9)

Fixing values of x1
i = 0, c1

i,k = 0, and y1
s,i,j,k = 0 yields:

xi = α

ci,k = xjc
2
i,k

ys,i,j,k = xiy
2
s,i,j,k

(2.10)

Substitution in the disaggregated constraints (2.8) yields:

0 ≤ ci,k ≤ Cmaxxi (2.11)

0 ≤ ys,i,j,k ≤ Ts,ixi (2.12)∑
j∈J

Dj,kys,i,j,k ≤ Ti,kci,k (2.13)

0 ≤ xi ≤ 1 (2.14)

Constraints (2.11)-(2.14) correspond exactly to constraints (2.3), (2.4), (2.6), and the continuous

relaxation of Equation (2.5).
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This MILP reformulation is known to yield the convex hull of the disjunctions [6, 183]. We illus-

trate the improvement in the tightness of the LP relaxation with the illustrative example presented

in Section 2.5. The addition of the set of tightening constraints (2.6) to the formulation increases

the lower bound of the LP relaxation from $420,525 to $589,403; this represents a significant

improvement in a problem in which the optimal solution is $600,675.

The addition of tightening constraints is important not only for a better LP relaxation of the full

problem. The main benefit of this new set of constraints for our solution method is that it allow us

generating stronger cuts in the implementation of Benders decomposition [152].

2.6.2 Multi-cut Benders decomposition

Benders decomposition, also known as the L-Shaped method for stochastic programming [238],

is used to avoid the need of solving extremely large problems. This decomposition method finds

the optimal value of the objective function by iteratively improving upper and lower bounds on the

optimal cost. Upper bounds are found by fixing the first-stage variables and optimizing the second-

stage decisions for the scenarios. Lower bounds are found in a master problem that approximates

the cost of scenarios in the space of the first-stage variables. The convergence of the algorithm

is achieved by improving the lower bounding approximation used in the master problem with the

information obtained from the upper bounding subproblems.

The flow of information from subproblems to the master problem is determined by the dual mul-

tipliers of the subproblems. The classical implementation generates one cut in every iteration, but

some authors have proposed multi-cut implementations [18, 191, 249]. Given the structure of the

resilient supply chain design problem, there are several possibilities to derive cuts. After different

computational experiments, we found that the most efficient strategy is to transfer as much infor-

mation as possible from the subproblems to the master problem. Therefore, our implementation

adds individual cuts per scenario and per commodity in every iteration.

In the multi-cut framework, the subproblems that can be decomposed by scenario (s ∈ S) and

commodity (k ∈ K), are formulated according to Equations (2.15)-(2.19),
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min N
∑
s∈S

πs

{∑
i∈I

∑
k∈K

[∑
j∈J

(Ai,k +Bi,j,k)Dj,kys,i,j,k −
Hk

2

∑
j∈J

Dj,kys,i,j,k

]}
(2.15)

s.t.
∑
i∈I

ys,i,j,k = 1 ∀ s ∈ S, j ∈ J, k ∈ K (2.16)

∑
j∈J

Dj,kys,i,j,k − Ts,ic̄i,k ≤ 0 ∀ s ∈ S, i ∈ I, k ∈ K (2.17)

ys,i,j,k − Ts,ix̄i ≤ 0 ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.18)

ys,i,j,k ≥ 0 ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.19)

where x̄i and c̄i,k are candidate first-stage solutions found in the master problem.

The formulation of the multi-cut master problem is given by Equations (2.20)-(2.23),

min
∑
i∈I\|I|

(
Fixi +

∑
k∈K

Vi,kci,k

)
+N

∑
i∈I\|I|

∑
k∈K

Hkci,k +
∑
s∈S

∑
k∈K

θs,k (2.20)

s.t. θs,k ≥
∑
j∈J

λiters,j,k −
∑
i∈I

Ts,iµ
iter
s,i,kci,k −

∑
i∈I

∑
j∈J

Ts,iγ
iter
s,i,j,kxi ∀ s ∈ S, k ∈ K (2.21)

ci,k − Cmaxxi ≤ 0 ∀ i ∈ I, k ∈ K (2.22)

xi ∈ {0, 1} , 0 ≤ ci,k ≤ Cmax ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.23)

where λiters,j,k, µiters,i,k, and γiters,i,j,k are the optimal multipliers associated with constraints (2.16), (2.17),

and (2.18), in iteration iter. Constraint (2.21) provides the lower bounding approximation (θs,k) for

the cost of satisfying demands of commodity k in scenario s. It should be noted that no feasibility

cuts are considered since the problem has complete recourse.

2.6.3 Strengthening the Benders master problem

The multi-cut approach for Benders decomposition can be very effective to obtain a good ap-

proximation of the feasible region in the master problem. However, depending on the number of

scenarios and commodities in the instance, the master problem can become a hard MILP because

of the large number of cuts. In order to improve the lower bounds and guide the selection of first-
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stage variables, the decisions of the main scenario (scenario with no disruptions) can be included

in the master problem. This formulation of the master problem leverages the significant impact

of the main scenario in the final design given its comparatively high probability. The increase in

the size of the master problem when main-scenario decisions are included is modest for problems

with a large number of scenarios. The strengthened master problem minimizes the objective func-

tion (2.20) subject to constraints (2.21), (2.22), and (2.23) from the original master problem, and

constraints (2.16), (2.17), (2.18), and (2.19) corresponding to the main-scenario.

The constraints of the main-scenario subproblem are connected to the objective function (2.20)

through constraint (2.24).

θ1,k ≥ Nπ1

{∑
i∈I

∑
k∈K

[∑
j∈J

(Ai,k +Bi,j,k)Dj,ky1,i,j,k −
Hk

2

∑
j∈J

Dj,ky1,i,j,k

]}
(2.24)

2.6.4 Pareto-optimal cuts

The Benders subproblems that result from fixing the first-stage decisions are classical transporta-

tion problems. These problems are relatively easy to solve but their dual solution is known to be

highly degenerate [244]. Therefore, it is very important to select in every iteration a set of optimal

multipliers (λiters,j,k, µiters,i,k, γiters,i,j,k) that produce strong Benders cuts. According to Magnanti & Wong

[152], the best multipliers for the implementation of Benders decomposition are those that produce

non-dominated cuts among the set of optimal multiplies. These cuts are said to be pareto optimal.

Pareto-optimal cuts produce the smallest deviation in the dual objective function value when eval-

uated at a point (x0
i ,c

0
i,k) in the relative interior of the convex hull of the first-stage variables. Such

cuts can be obtained by solving the LP problem presented in Equations (2.25)-(2.29),

max
∑
s∈S

∑
k∈K

(∑
j∈J

λs,j,k −
∑
i∈I

Ts,ic
0
i,kµs,i,k −

∑
i∈I

∑
j∈J

Ts,ix
0
iγs,i,j,k

)
(2.25)

s.t. v∗(x̄iteri , c̄iteri,k ) =
∑
s∈S

∑
k∈K

(∑
j∈J

λs,j,k −
∑
i∈I

Ts,ic̄
iter
i,k µs,i,k −

∑
i∈I

∑
j∈J

Ts,ix̄
iter
i γs,i,j,k

)
(2.26)
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λs,j,k −Dj,kµs,i,k − γs,i,j,k
≤ Nπs

(
Ai,k +Bi,j,k − Hk

2

)
Dj,k

∀ s ∈ S, i < |I|, j ∈ J, k ∈ K (2.27)

λs,j,k ≤ Nπs
(
A|I|,k +B|I|,j,k

)
Dj,k ∀ s ∈ S, i = {|I|} , j ∈ J, k ∈ K (2.28)

λs,j,k ≥ 0, µs,i,k ≥ 0, γs,i,j,k ≥ 0 ∀ s ∈ S, i ∈ I, j ∈ J, k ∈ K (2.29)

where v∗(x̄iteri , c̄iteri,k ) is the optimal objective cost of the subproblems at iteration iter, and the

point (x0
i ,c

0
i,k) satisfies Equation (2.30).

(
x0
i , c

0
i,k

)
∈ {(xi, ci,k) : 0 < xi < 1; 0 < ci,k < Cmaxxi} (2.30)

It is worth noticing that Equation (2.26) constrains the multipliers to the set of optimizers of the

subproblems; inequalities (2.27), (2.28), and (2.29) are the constraints of the dual formulation of

the Benders subproblems.

2.6.5 Bounding the impact of scenario subsets

An important observation regarding the problem structure refers to the order of magnitude among

different scenario probabilities. Scenarios with increasing number of disrupted locations have

smaller probabilities, but scenarios with the same number of disruptions occurring simultaneously

have probabilities on the same order of magnitude. Therefore, the most intuitive way to divide the

scenarios is to group them according to the number of simultaneous disruptions.

For problems with a large number of scenarios, it is reasonable to select a subset of relevant sce-

narios (Ŝ) for which the optimization problem can be solved, neglecting the effect of the scenarios

with very small probabilities. However, solving this reduced problem does not provide much infor-

mation about the optimal value of the objective function for the cases in which the cost of penalties

is very high. Therefore, it is of interest to derive deterministic bounds on the cost of the neglected

scenarios.

The calculation of the upper bound for the subset of neglected scenarios (S̃) is based on the imple-

mentation of an assignment policy that is always feasible. The proposed policy works as follows.

In any given scenario, the main-scenario assignment is attempted for each demand (Dj,k): if the

assignment is feasible (because the corresponding DC is active) the cost of satisfying the demand
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Figure 2.3: Subsets of scenarios according to disruptions.

equals its cost in the main-scenario, otherwise the demand is assumed to be penalized. The pro-

portion in which these two costs are incurred depends on the conditional disruption probabilities of

DCs (P S̃
i ) in the neglected scenarios. According to this policy, an upper bound for the cost of the

neglected scenarios subset (S̃) can be calculated from equation (2.31).

UBS̃ = NΠS̃
∑
i∈I

(
1− P S̃

i

)∑
k∈K

{∑
j∈J

(Ai,k +Bi,j,k)Dj,ky1,i,j,k +Hkci,k −
Hk

2

∑
j∈J

Dj,ky1,i,j,k

}

+NΠS̃
∑
i∈I

P S̃
i

∑
k∈K

{∑
j∈J

(
A|I|,k +B|I|,j,k

)
Dj,ky1,i,j,k +Hkci,k

}
(2.31)

where ΠS̃ = P(S̃) is the probability of the subset of neglected scenarios S̃, P S̃
i is the conditional

probability of disruption at DC i in subset of scenarios S̃, y1,i,j,k are the main-scenario assignments,

and (A|I|,k + B|I|,j,k) determine the unit cost for unsatisfied demand. Therefore, the first term in

(2.31) corresponds to the cost of the feasible main-scenario assignments in subset S̃ and the second

term corresponds to penalties for infeasible assignments in subset S̃.

The calculation of the conditional probability of disruption in scenario subset S̃ is based on the

assumption that disruptions at DCs are independent from each other. Figure 2.3 shows the scenario

subsets and the relationship between their probabilities. Proposition 2.2 formalizes the procedure

to calculate the conditional probability of disruption (P S̃
i ) in the subset of neglected scenarios.

Proposition 2.2. The conditional probability, P(Si|S̃), of finding DC i disrupted in subset of

scenarios S̃ ⊂ S can be calculated according to Equation (2.32),
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P(Si|S̃) =
P(Si)− P(S̃C) P(Si|S̃C)

P(S̃)
(2.32)

where Si ⊂ S denotes all scenarios in which DC i is disrupted, and S̃C is the complement of S̃.

Proof. By definition:

P
(
Si|S̃i

)
=

P
(
Si ∩ S̃

)
P
(
S̃
) (2.33)

P
(
Si|S̃Ci

)
=

P
(
Si ∩ S̃C

)
P
(
S̃C
) (2.34)

Since S̃ and S̃C are the complements of each other, then:

P (Si) = P
((
Si ∩ S̃

)
∪
(
Si ∩ S̃C

))
(2.35)

P (Si) = P
(
S̃
)
P
(
Si|S̃

)
+ P

(
S̃C
)
P
(
Si|S̃C

)
(2.36)

The proof is completed by noticing that Equation (2.36) is equivalent to Equation (2.32).

Analogously, a lower bound on the cost of scenarios subset S̃ can be calculated by assuming that

all demands can be satisfied from the DC assigned in the main-scenario as presented in Equation

(2.37).

LBS̃ = NΠS̃
∑
i∈I

∑
k∈K

{∑
j∈J

(Ai,k +Bi,j,k)Dj,ky1,i,j,k +Hkci,k −
Hk

2

∑
j∈J

Dj,ky1,i,j,k

}
(2.37)
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2.7 Implementation

The proposed solution method is implemented in GAMS 24.1.1 for a large-scale case study. All

problems are solved using GUROBI 5.5.0 in an Intel Core i7 CPU (8 cores) 2.93 GHz with 4 GB of

RAM. In order to speed-up the solution time, we leverage a number of problem specific properties.

• Indistinguishability: the upper bound for a particular design is evaluated in the Benders

subproblems. Scenarios that are only different from each other because of disruptions at lo-

cations that are not selected (x̄iteri = 0) become indistinguishable. All the scenarios in these

sets have the same optimal solution. Therefore, it is enough to solve one of the indistinguish-

able scenarios and use the solution for all the scenarios in the set.

• Parallelization: the upper bounding subproblems are completely independent of each other

with respect to scenarios and commodities. They can be solved in parallel using GAMS

grid computing. The degree of parallelization must balance the time required to start the

executions, solve the subproblems, and read the solutions. For our large-scale instance, the

highest efficiency was found by solving for all commodities at the same time in individual

scenarios.

• Relevance of scenarios: the total number of scenarios grows exponentially with the num-

ber of candidate DCs. If all scenarios are considered, it is impossible to find the optimal

design of industrial supply chains with the current computational tools. However, most of

the scenarios that can be generated have very small probabilities. The magnitude of the sce-

nario probabilities are directly related to the number of disruptions occurring at the same

time. Therefore, it is easy to identify a reduced subset of relevant scenarios whose optimal

solution is a good approximation of the full-space solution.

• Full-space bounds: bounds on the cost of scenarios excluded from the optimization prob-

lem can be calculated from Equations (2.31) and (2.37). Upper and lower bounds on the

full-space problem can be calculated by adding the bounds obtained for the relevant set of

scenarios through Benders decomposition to the bounds obtained from Equations (2.31) and

(2.37) for scenarios excluded from the optimization problem.

The sequence in which the proposed solution method is implemented is presented in Figure 2.4.
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Figure 2.4: Implementation sequence of the solution method.
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2.8 Large-scale example

We use the solution strategy developed in the previous sections to solve a large-scale supply chain

design problem with risk of disruptions at candidate DC locations. The parameters of the problem

were generated randomly; they are presented in Appendix A. The problem includes: 1 production

plant, 9 candidate locations for DCs, and 30 customers with demands for 2 commodities. The

candidate DCs have disruption probabilities between 2% and 10%. The number of scenarios in

the full-space problem is (29) 512. The design is based on a time-horizon (N ) of 365 days; in this

time-scale, investment cost can be interpreted as an annualized cost.

The instance is used to illustrate the implementation of Benders decomposition, the benefits of

strengthening the master problem, and the impact of solving a reduced subset of relevant scenarios.

The selected relevant subset of scenarios includes scenarios with up to 4 simultaneous disruptions,

for a total of 256 scenarios with probability (ΠŜ) equal to 99.99%. A comparison of the results for

the full-space problem and the reduced problem is shown in Table 2.5.

The results show that solutions obtained for the full-space and the reduced problem are very simi-

lar. In particular, their optimal solutions imply the same design decisions, and therefore the same

investment cost. It is interesting to note that the largest difference in the results appears in the

expected cost of penalties. This result is reasonable because the scenarios that are ignored in the

reduced problem are expected to be expensive in terms of penalties. Both problems were solved

to 0% optimality tolerance using the proposed Benders decomposition algorithm. The solution

obtained for the full-space problem establishes with certainty the optimal design because all the

Expected cost Full-space instance Reduced instance
Investment ($): 2,194,100 2,194,100
Transportation to DCs ($): 936,260 936,238
Transportation to customers ($): 3,615,300 3,615,209
Storage ($): 319,440 319,429
Penalties ($): 160,347 159,615
Total ($): 7,225,447 7,224,591
Full-space upper bound: 7,225,447 7,225,898
Full-space lower bound: 7,225,447 7,224,728

Table 2.5: Expected costs of the large-scale example obtained from full-space and reduced instances.
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Model statistic
Full-space Reduced

instance instance
Number of constraints: 318,479 159,247
Number of continuous variables: 309,263 154,639
Number of binary variables: 9 9
Number of multi-cut Benders iterations: 15 15
Multi-cut Benders solution time [s]: 281 151
Strengthened multi-cut Benders solution time [s]: 176 89
Number of strengthened multi-cut Benders iterations: 8 8

Table 2.6: Instance sizes and solution times for the large-scale example.

scenarios are included in the optimization problem. The solution obtained for the reduced prob-

lem establishes a lower bound on the full-space optimum because it neglects the effect of some

scenarios. When the bounds on the full-space problem are calculated from equations (2.31) and

(2.37), it can be observed that they yield a very tight approximation of the full-space solution with

an optimality gap less than 0.1%.

The size of the optimization instances and their solution times are shown in Table 2.6. It can

be observed that the reduced problem is almost half the size of the full-space problem in terms of

constraints and continuous variables. This is explained by the reduction in the number of scenarios.

The solution time for both instances decreases in a smaller proportion because the algorithm spends

most of the time solving the MILP master problems. The use of the strengthened multi-cut master

problem further reduces the solution time because it implies fewer iterations as shown in Figure

2.5. The solution times for the full-space and the reduced instances without any decomposition

strategy using GUROBI 5.5.0 are 3,349 s and 1,684 s, respectively. The much smaller solution

times presented in Table 2.6 demonstrate that the proposed methodology is effective to solve large-

scale instances of high computational complexity.

2.9 Industrial supply chain design

We use the proposed model and solution method for the optimal design of an industrial supply chain

with risk of disruption at candidate DCs. The problem includes: 1 production plant, 29 candidate

locations for DCs, 110 customers, and 61 different commodities. Not all customers have demand
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Figure 2.5: Convergence of Benders algorithms for the full-space instance of the large-scale example.

for all commodities; there are a total of 277 demands for commodities in every time-period. The DC

candidate locations have independent probabilities of being disrupted between 0.5% and 3%. The

number of scenarios in the full-space problem is 229, approximately 537 million. The magnitude of

penalties for unsatisfied demand is around 10 times the highest distribution cost among all possible

assignments. The design is based on a time-horizon (N ) of 60 months. The specific data for this

instance is not disclosed for confidentiality reasons.

Three subsets of scenarios are used for the design of the industrial supply chain. The first reduced

problem only includes the main scenario, and is equivalent to the deterministic formulation of the

supply chain design problem. The second reduced problem considers the main scenario and the

scenarios with one disruption, giving rise to a subset of 30 scenarios. The third reduced problem

includes the scenarios with up to 2 simultaneous disruptions, giving rise to a larger subset of 436

scenarios. Table 2.7 shows the problem sizes for the different instances. It can be observed that

the third instance, in which the scenarios comprise 98.5% of the possible realizations, is a very

challenging problem in terms of size.

The first instance was solved directly without decomposition. The second and third instances were
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solved using the strengthened multi-cut Benders decomposition. The results obtained are shown in

Table 2.8.

From Table 2.8, we observe that the investment cost has a modest increase when the model includes

a larger number of adverse scenarios (1, 30, 436). In this case, the formulation leverages the

complexity of the supply chain network by decentralizing inventories at a relative low cost. This

strategy avoids costly demand penalties and improves supply chain resilience. In contrast with the

instance bounds, which are obtained only with subsets of scenarios, the full-space bounds obtained

using Equations (2.31) and (2.37) show the importance of considering a relevant subset of scenarios

that provides a good representation of the full-space problem. The design obtained from Reduced

problem 0 can only guarantee a full-space expected cost of $57.41 million, that is 16.13% higher

than the corresponding lower bound. On the other hand, the design obtained from Reduced problem

2 yields a full-space upper bound of $55.59 million that in the worst case is 3.5% higher than the

optimal cost.

Maximum
simultaneous
disruptions

Number of
scenarios
in subset

Probability
of subset

Number of
constraints

Number of
continuous
variables

Number
of binary
variables

0 1 0.590 11,854 10,085 29
1 30 0.905 304,261 251,191 29
2 436 0.985 4,397,989 3,626,675 29

Table 2.7: Instances of the industrial supply chain with increasing number of maximum simultaneous disruptions.

Expected cost
Reduced
instance 0

Reduced
instance 1

Reduced
instance 2

Optimal investment [M$]: 18.47 18.77 21.01
Number of selected DCs: 1 4 12
Instance upper bound [M$]: 34.09 48.68 53.66
Instance lower bound [M$]: 34.09 48.30 53.25
Instance optimality gap: 0% 0.78% 0.77%
Number of Benders iterations: - 4 6
Solution time [min]: 0.1 84 1,762

Full-space upper bound [M$]: 57.41 56.31 55.59
Full-space lower bound [M$]: 48.15 52.87 53.67

Table 2.8: Upper and lower bounds for instances of the industrial supply chain example.
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The computational effort to solve the larger instances of the industrial supply chain example is

very significant. Even after applying the methodology developed in the previous sections, it takes a

long time to find satisfactory solutions. In this example, the number of scenarios and commodities

implies a large number of cuts in the Benders master problem. Therefore, the complexity of the

MILP master problem increases very rapidly with iterations. Fortunately, the algorithm converges

after few iterations.

2.10 Summary

We formulated the design of resilient supply chains as a two-stage stochastic programming problem

to include the risk of disruptions at DCs. The model allows finding the design decisions that

minimize investment and expected distribution cost over a finite time-horizon by anticipating the

distribution strategy in the scenarios with disruptions. The allocation of inventory at DCs plays a

critical role in supply chain resilience since it allows flexibility for the satisfaction of customers’

demands in different scenarios. This strategy contradicts the trend to centralize distribution centers

and reduce inventories. The examples show that resilient supply chain designs can be obtained with

reasonable increases in investment costs. These increased investments are compensated by lower

transportation costs and better performance in adverse scenarios.

The main challenge for the design of resilient large-scale supply chains originates from the expo-

nential growth in the number of scenarios as a function of the number of DC candidate locations.

We developed different strategies to exploit the structure of the problem. The importance of a

tight MILP formulation was demonstrated in our examples. We adapted the multi-cut version of

Benders decomposition to leverage the particular problem structure. In order to reduce the number

of iterations, we generated pareto-optimal cuts that were added to the master problem for every

commodity in each scenario. Additionally, we found that including the assignment decisions of

the main scenario in the Benders master problem reduces the number of iterations and the compu-

tational time. For large-scale problems, the optimization over reduced number scenarios yielded

good approximations of the optimal design. Furthermore, the implementation of a distribution

policy in the scenarios with very small probabilities allowed finding deterministic bounds on the

performance of the supply chain.

We used the proposed solution method to design a multi-commodity industrial supply chain. The
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results demonstrated the economic benefits of considering resilience in supply chain design. The

implementation of resilient designs has a significant potential to improve supply chain performance

and reduce their vulnerability to unexpected events.
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Chapter 3

Implementation of a Novel

Cross-decomposition Algorithm for

Two-stage Stochastic Programming

Investment Planning

3.1 Motivation

Two-stage stochastic programming investment planning problems can be difficult to solve because

the formulation of their deterministic equivalent programs often leads to large-scale problems.

There are three main approaches that to address the resulting computational challenge: sampling

methods, scenario reduction techniques, and decomposition methods. Sampling methods [148] and

scenario reduction techniques [105] are used to limit the number of scenarios in the formulation, in

the attempt of obtaining a good approximation of the original problem. Decomposition schemes,
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such as the Benders decomposition [13, 83, 238] or Lagrangean decomposition [97, 29], aim at

solving the exact problem by exploiting its decomposable structure.

Only a few research efforts have tried to combine the complementary strengths of Benders and

Lagrangean decomposition is a single scheme. Originally proposed by Van Roy [237], the cross-

decomposition algorithm is a framework that unifies the concepts behind Benders and Lagrangean

decomposition. The original cross decomposition iterates between the Benders and Lagrangean

subproblems, where each of them yields input for the other. One of the main motivations for the

development of cross-decomposition algorithms was to avoid solving master problems since their

solution, potentially Mixed-Integer Linear Programs (MILPs), is regarded as a difficult task. Some

variations of the method, like mean value cross decomposition [110, 111], even eliminate the use

of master problems completely at the cost of potentially slow convergence.

However, two paradigm shifts that influence our perception of cross decomposition have occurred

over the last 20 years. First, the advance of solvers and computational resources now allows solving

large MILP problems in reasonable CPU times; therefore, we no longer need to avoid solving mas-

ter problems in a cross-decomposition scheme. Second, the growing grid computing infrastructure

is leading to more parallelization; hence, it is desirable to develop novel algorithms that leverage

the decomposable structure of stochastic programming problems.

This chapter presents an updated version of the cross-decomposition algorithm proposed by Mitra

et al. [161] for linear two-stage stochastic investment planning problems with complete recourse;

we focus on the implementation of the algorithm and the computational experiments testing its

performance. In the framework of the two-stage stochastic program, we model investment deci-

sions in the first stage with mixed-integer variables and operational decisions in the second stage

with continuous variables. The cross-decomposition algorithm integrates Benders and Lagrangean

decomposition by strengthening both master problems with cuts generated using dual information

from the subproblems. The primal search is guided by a multi-cut Benders master problem, while

the dual search is guided by the Lagrangean master problem. The motivation for this information

exchange is to improve the bounds predicted by the original decomposition methods.

The cross-decomposition algorithm is implemented for the design of resilient supply chains, based

on the model presented in Chapter 2. Several instances of the resilient supply chain design prob-

lem are used to test the cross-decomposition algorithm, and to compare its performance with com-

mercial solvers and with multi-cut Benders decomposition. The results show the benefits of the

cross-decomposition scheme for stochastic investment planning problems.
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The remaining of this chapter is organized as follows. Section 3.2 reviews the published litera-

ture related to cross decomposition. In Section 3.3, we describe the mathematical model of the

investment planning problem that we address. Section 3.4 presents the formulations used in the

cross-decomposition scheme and the structure of the algorithm. In Section 3.4, we evaluate the

performance of the cross-decomposition algorithm on several instances of the reliable supply chain

design problem. Finally, in Section 3.6 we present the analysis of results.

3.2 Literature review

There is extensive literature on decomposition methods for stochastic programming problems, but

few publications have focused on the implementation cross-decomposition algorithms since it was

proposed by Van Roy [237]. Significant contributions to the original algorithm were developed

by Holmberg [109], who generalized the ideas of cross decomposition and introduced a set of en-

hanced convergence tests. However, we have found only two publications combining Benders and

Lagrangean decomposition in an approach similar to the algorithm that we present. The scheme

developed by Cerisola et al. [30] uses dual information from a component-based Lagrangean re-

laxation in a nested Benders approach that is implemented for the unit commitment problem. Sohn

et al. [218] implement a mean value cross-decomposition approach for two-stage stochastic pro-

gramming problems based on the work by Holmberg [110]; their algorithm avoids solving master

problems. Sohn et al. [218] apply their algorithm to a set of random instances, from which they

claim to outperform Benders and ordinary cross decomposition in CPU time.

Benders decomposition, also known as the L-shaped method for stochastic programming, has

found a wide range of applications in stochastic planning problems [64, 17, 63, 158, 199]. The

L-shaped method was originally implemented by Van Slyke & Wets [238] to solve stochastic pro-

gramming and optimal control problems. The algorithm iterates between a master problem that

approximates the original problem in the space of the first-stage variables and subproblems that

find feasible solutions after fixing the first-stage variables; its convergence rate usually has a strong

dependence on the linear programming (LP) relaxation of the problem [152, 194]. Therefore, the

bound initially provided by the master problem might be weak and a large number of iterations are

potentially required. Several strategies have been developed to speed-up convergence of Benders

algorithms; the most relevant include the multi-cut version of Benders decomposition developed

by Birge & Louveaux [18], the pareto-optimal cuts presented by Magnanti & Wong [152], and cut
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bundle generation methods [191].

The Lagrangean decomposition approach developed by Guignard & Kim [97] has also been used

to solve stochastic programming problems [56, 100, 156]. Most implementations are based on the

alternative representation of the stochastic program that introduces copied variables to disaggregate

the decisions by scenarios and non-anticipativity constraints to maintain the information structure

[189]. The algorithm presented by Carøe & Schültz [29] decomposes the stochastic programming

model by relaxing the non-anticipativity constraints enforcing unique decisions across indistin-

guishable scenarios; this Lagrangean relaxation is known to provide sharp bounds on the original

problem [70]. However, the classical Lagrangean decomposition approach has two weaknesses.

First, it might be difficult to generate good first-stage candidate solutions from the Lagrangean dual

subproblems. Second, the update of the multipliers by subgradient optimization [106, 107, 70] or

cutting planes [35, 126] can be a bottleneck that slows down the overall convergence of the algo-

rithm. Techniques to speed up convergence of the multipliers update include the bundle method

[141, 257, 128], the volume algorithm [7], and the analytic center cutting plane method [89]. Other

strategies that combine the bounds obtained from subgradients and cutting planes methods have

also been developed [165, 170], as well as multiplier update methods based on dual sensitivity

analysis [225].

3.3 Mathematical model

We consider the two-stage Stochastic Program (SP) presented in Equations (3.1)-(3.6),

(SP ) min TC = cTx+
∑
s∈S

τsd
T
s ys (3.1)

s.t. A0x ≤ b0 (3.2)

A1x+B1ys ≤ b1 ∀ s ∈ S (3.3)

Bsys ≤ bs ∀ s ∈ S (3.4)

x ∈ X (3.5)

ys ≥ 0 ∀ s ∈ S (3.6)
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where first-stage variables are denoted by x, second-stage variables are denoted by ys, and s is the

subindex for the set of scenarios (s ∈ S).

The objective function (3.1) minimizes the total expected cost (TC), which includes investment

cost (cTx) and expected operational cost (
∑
s∈S

τsd
T
s ys); the probability of scenario s is denoted by τs.

The first-stage decisions (x) are mixed-integer and correspond to discrete choices for investments

and continuous capacities, as presented in Equation (3.7).

X =
{
x = (x1, x2)

T
: x1 ∈ {0, 1}n , x2 ∈ Rm+

}
(3.7)

All second-stage decisions (ys) are continuous and correspond to operational decisions in scenario

s. The constraints on the investment decisions are modeled with Equation (3.2). The constraints

linking investment and operational decisions are given by Equation (3.3). Purely operational con-

straints are enforced with Equation (3.4).

The problem naturally decomposes into scenarios once the investment decisions x are fixed. Fur-

thermore, we can develop an equivalent formulation by creating copied variables for the investment

decisions in each scenario (xs) and including non-anticipativity constrains that force the copied

variables to have the same value for all scenarios. We use the approach proposed by Carøe &

Schültz [29] to formulate the alternative representation of problem (SP ) according to Equations

(3.8)-(3.14),

(SPNAC) min TC = cTxs +
∑
s∈S

τsd
T
s ys (3.8)

s.t. A0xs ≤ b0 ∀ s ∈ S (3.9)

A1xs +B1ys ≤ b1 ∀ s ∈ S (3.10)

Bsys ≤ bs ∀ s ∈ S (3.11)∑
s∈S

Hsxs = 0 (3.12)

xs ∈ Xs ∀ s ∈ S (3.13)

ys ≥ 0 ∀ s ∈ S (3.14)
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where Equation (3.12) models the non-anticipativity conditions (x1 = x2 = ... = xn) with a

suitable matrix H = (H1, ...,H|S|), and Equation (3.15) defines Xs analogously to X for the

first-stage copied variables.

Xs =
{
xs = (x1,s, x2,s)

T
: x1,s ∈ {0, 1}n , x2,s ∈ Rm+

}
∀ s ∈ S (3.15)

Proposition 3.1. Problems (SP ) and (SPNAC) are equivalent.

Proof. This trivially follows by substituting the non-anticipativity constraints (3.12).

3.4 Ingredients of the cross-decomposition algorithm

Our cross-decomposition scheme is based on Benders and Lagrangean decomposition, which both

exploit the decomposable problem structure of the two-stage stochastic programming problem. We

assume complete recourse, which means that all scenarios are feasible regardless of the first-stage

decisions. This assumption can be relaxed, but it would require including primal feasibility cuts

and addressing dual unboundedness.

The proposed algorithm implies solving four problems per iteration: the primal Benders subprob-

lems that yield upper bounds, the dual Lagrangean subproblems, the dual Lagrangean master prob-

lem, and the primal Benders master problem that yields lower bounds. The sequence in which these

problems are solved and the information flow is presented in Figure 3.1. The basic idea is to use

Benders decomposition in an outer loop and Lagrangean decomposition inside it. The objective is

twofold: on one hand we strengthen the master problems with cuts derived from both subproblems

(hence cross decomposition), and on the other hand we avoid the need to rely on a heuristic to gen-

erate feasible solutions from the Lagrangean subproblems. The properties of the two-stage MILP

model that allow implementing the cross-decomposition scheme are presented in detail by Mitra

et al. [161].

The Benders subproblems based on (SPNAC) can be obtained by fixing the first-stage variables

at iteration k to a candidate solution x̂k. The formulation for the resulting Benders subproblems

(BSP k
s ) corresponding to each scenario s is presented in Equations (3.16)-(3.19).
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Figure 3.1: Flowchart of the cross-decomposition algorithm.

(BSP k
s ) min zkB,s = τs(c

T x̂k + dTs ys) (3.16)

s.t. B1ys ≤ b1 −A1x̂
k (3.17)

Bsys ≤ bs (3.18)

ys ≥ 0 (3.19)

A valid relaxation of (SPNAC) can be obtained by formulating its Lagrangean dual, in which

the non-anticipativity constraints (3.12) are dualized [97, 29]. The Lagrangean dual subproblems

(LDk
s ) are formulated for a fixed set of Lagrange multipliers µk. The MILP formulation of the

Lagrangean subproblems can be decomposed by scenario s as shown in Equations (3.20)-(3.25).

(LDk
s ) min zkLD,s = τs(c

Txs + dTs ys) + µkHsxs (3.20)

s.t. A0xs ≤ b0 (3.21)

A1xs +B1ys ≤ b1 (3.22)

Bsys ≤ bs (3.23)

xs ∈ Xs (3.24)

ys ≥ 0 (3.25)
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The Lagrangean subproblems (LDk
s ) yield a solution in which some of the original non-anticipativity

constraints (3.12) are most likely violated. Therefore, it is necessary to obtain a primal solution

that provides a valid upper bound. In the framework of Lagrangean decomposition, a heuristic is

applied to generate first-stage feasible solutions (xk) that can be used in (SPNAC) in order to ob-

tain the primal solution. However, in our cross-decomposition scheme the heuristic can be avoided

because the solutions obtained from the Benders subproblems (BSP k
s ) are feasible in (SPNAC).

The Lagrangean master problem (LMP k+1) is based on the cutting planes problem that is often

used to update the multipliers of the Lagrangean dual [126]. We adopt the multi-cut version of the

cutting planes problem and strengthen it with constraints (3.29). The cuts given by Equation (3.29)

are generated with the dual information from the Benders subproblems (BSP k
s ); they strengthen

the Lagrangean master problem by providing upper bounds on its objective value. The detailed

derivation of these cuts is presented by Mitra et al. [161]. The Lagrangean master problem yields

the next set of Lagrangean multipliers (µk+1). The mixed-integer quadratic formulation of the

Lagrangean master problem (LMP k+1) is presented in Equations (3.26)-(3.30),

(LMP k+1) max zk+1
LMP = ηLMP +

δ

2
‖µ− µ̄‖22 (3.26)

s.t. ηLMP ≤
∑
s∈S

κs (3.27)

κs ≤ τs(cT x̃ks + dTs ỹ
k
s ) + µHsx̃

k
s ∀ s ∈ S, k ∈ K (3.28)

κs ≤ z∗kB,s + µHsx̂
k ∀ s ∈ S, k ∈ K (3.29)

ηLMP ∈ R1, µ ∈ R(|S|−1)×n, κs ∈ R|S| ∀ s ∈ S (3.30)

where (x̃ks ,ỹks ) is the solutions obtained from the Lagrangean subproblem in iteration k, x̂k is the

solution obtained from the Benders master problem in iteration k, and z∗kB,s is the optimal cost of

scenario s in the Benders subproblem corresponding to iteration k.

The objective function (3.26) contains the additional quadratic stabilization term δ
2
‖µ − µ̄‖22 that

defines a trust-region for the update of the Lagrangean multipliers [141, 257, 128, 73]. The stabi-

lization requires initial values and update strategies for the penalty δ defining the size of the trust

region and the stabilization center µ̄. It is worth noticing that Equation (3.29) not only makes the

Lagrangean master problem bounded, but it also guarantees a bound at least as tight as the best

known primal upper bound obtained from the Benders subproblems.
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We formulate the Benders master problem (BMP k+1) with disaggregated cuts for each scenario

and strengthen it with constraints (3.34). The cuts represented in Equation (3.34) are generated

from the solution of the Lagrangean dual subproblems; their derivation is presented by Mitra et al.

[161]. The Benders master problem (BMP k+1) yielding the primal vector for the next iteration

(x̂k+1) is given by Equations (3.31)-(3.36),

(BMP k+1) min zk+1
BMP = ηBMP (3.31)

s.t. ηBMP ≥
∑
s∈S

θs (3.32)

θs ≥ τks cTx+ (A1x− b1)Tuks − bTs vks ∀ s ∈ S, k ∈ K (3.33)

θs ≥ z∗kLD,s − µkHsx ∀ s ∈ S, k ∈ K (3.34)

A0x ≤ b0 (3.35)

x ∈ X, ηBMP ∈ R1, θs ∈ R1 ∀ s ∈ S (3.36)

where uks and vks are the optimal Lagrange multipliers associated with constraints (3.17) and (3.18)

of (BSP k
s ) in iteration k, and z∗kLD,s is the optimal cost of scenario s in the Lagrangean subproblem

(LDk
s ) corresponding to iteration k.

Since the Lagrangean cuts presented in Equation (3.34) are valid inequalities for problem (SPNAC),

the optimal objective value (z∗k+1
BMP ) obtain from problem (BMP k+1) is a lower bound for the cost

of original two-stage stochastic program. This condition is formalized in Equation (3.37).

z∗k+1
BMP ≤ TC ∀ k ∈ K (3.37)

It is worth noticing that the Lagrangean cuts given in Equation (3.34) strengthen the Benders master

problem. Furthermore, they guarantee that the lower bound obtained in the Benders master problem

is at least as tight as the best known solution from the Lagrangean dual subproblems.

59



Chapter 3. Implementation of Cross-decomposition for Two-stage Stochastic Programming

3.5 Computational experiments on the resilient supply chain design
problem

We test the proposed cross-decomposition algorithm on a number of instances of the resilient sup-

ply chain design problem presented in Chapter 2. In our experiments, we use two models: the

original formulation given by Equations (2.1)-(2.5) and the improved formulation that includes the

tightening constraint presented in Equation (2.6). The idea is to analyze the impact of the LP re-

laxation in the performance of the solution methods. We refer to the original formulation as the

Resilient Supply Chain Design (RSCD) model and to the formulation improved with the tightening

constraint as the tightened Resilient Supply Chain Design (t-RSCD).

We compare on 30 random instances the performance of the full-space models, multi-cut Benders

decomposition, and our cross decomposition; the decomposition strategies are implemented for

both models RSCD and t-RSCD. The instances are divided into three groups with different number

of candidate DCs and scenarios. The instances are generated based on the dataset presented by

Snyder & Daskin [214] by sampling transportation costs and demands from uniform distributions

bounded between 80% and 120% of the original values. We use random transportation costs to

include different cost structures in the objective function and random demands to analyze different

shapes of the feasible region; the evaluation of the solution methods on a large number of instances

with different values for key parameters allows establishing the variability of their performance.

Details of the methodology used to generate the random instances can be found in Appendix B.

3.5.1 Description of the implementation

We implement the full-space model, multi-cut Benders decomposition [18], and our cross decom-

position in GAMS 24.3.1 [24]. The decomposition schemes employ parallel computing in two

different ways: Benders and Lagrangean subproblems are solved in parallel as groups of 50 scenar-

ios using the GAMS grid computing capabilities [26]; Lagrangean and Benders master problems

are solved by allowing GUROBI 5.6.3 to use the processors as parallel threads. The full-space

implementations also use GUROBI with parallel threads. The problems are solved using the 12

processors of an Intel Xeon (2.67 GHz) machine with 16 GB RAM.

The numerical challenges that arise from small scenario probabilities are addressed by setting tol-

erances for reduced costs to 10−7. Instances are considered solved when their relative optimality

gap is below 10−4; the MILPs inside the cross-decomposition loop are solved using an integrality
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tolerance of 10−6. The wall-clock time limit for all instances is set 10,000 s.

The update strategies for the penalty term δ (initial value δ = 1) and for the stability center µ̄ are

rather simple. In each iteration, the trust-region parameter δ is updated according to the following

rule: δk+1 = max{ 1
2
δk, 10−10}. The stability center is kept constant for all iterations at µ̄ = 0.

3.5.2 Comparison of solution methods

The computational statistics of the full-space models for the three groups of instances are presented

in Table 3.1. It can be observed that an increasing number of candidate DCs implies more scenarios,

constraints, and variables. The mean optimal solutions for the 10 instances together with their mean

LP relaxation gap are also presented in Table 3.1. The statistics show a significant increase in the

number of constraints for the t-RSCD model as a result of the addition of tightening constraints;

these constraints are also responsible for the improvement in the LP relaxation. Despite the size of

the formulations, the number of discrete variables remains small because there is only one binary

variable per candidate DC.

The performance of the solution methods on the instances are presented in Figures 3.2, 3.3, and

3.4. These performance curves show the percentage of instances that can be solved to optimality

within the time limit shown in the horizontal axis. The solution methods with higher percentages

of problems solved in shorter times offer better computational performance.

Figure 3.2 compares the wall-clock time required by the methods to solve the instances with 639

scenarios. It can be observed that cross decomposition on the t-RSCD formulation outperforms

all other methods by solving all instances in less than 800 s. The full-space RSCD formulation

Model
DCs
(N )

Scenarios Constraints Variables
Binary
variables

Mean
objective [$]

Mean LP
relaxation gap

RSCD 10 639 38,992 345,084 10 970,182 49.68%
t-RSCD 10 639 383,413 345,084 10 970,182 0.55%
RSCD 11 1,025 63,564 603,751 11 978,036 51.89%
t-RSCD 11 1,025 666,264 603,751 11 978,036 0.67%
RSCD 12 1,587 99,996 1,012,534 12 981,636 54.09%
t-RSCD 12 1,587 1,110,915 1,012,534 12 981,636 0.79%

Table 3.1: Computational statistics of full-space instances.
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Figure 3.2: Performance curves for the solution methods in instances with 639 scenarios.

also solves all instances in less than 800 s, but it takes more than 600 s for most of them. Benders

decomposition on the t-RSCD formulation is very efficient for some instances (5 instances require

less than 500 s), but it takes a long time to solve others. Benders decomposition on the RSCD

formulation does not solve any instance within the time limit in the case with 639 scenarios.

Similar trends can be observed in Figure 3.3 for the performance of the solution methods on the

case with 1,025 scenarios. In this case, cross decomposition on the t-RSCD formulation clearly

outperforms all methods by solving all instances in less than 3,250 s. Cross decomposition on the

RSCD formulation also presents a relatively good performance by solving 7 instances in less than

3,000 and all instances in less than 5,200 s. The full-space RSCD model solves all instances in less

than 5,100 s, but it requires over 4,000 s for most of them. Poor performance is observed for the

full-space t-RSCD model and Benders decomposition on both RSCD and t-RSCD models.

For the case with 1,587 scenarios, Figure 3.4 shows that cross decomposition is the only solution

method capable of solving some instances. In this case, cross decomposition on the RSCD formu-

lation solves 3 instances and cross decomposition on the t-RSCD formulation solves 8 instances

within the time limit. This results are in line with the trends observed in the previous cases: the

cross-decomposition method outperforms all other methods in large-scale problems.

The mean solution time for each method over the 10 instances is presented in Table 3.2. We observe
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Figure 3.3: Performance curves for the solution methods in instances with 1,025 scenarios.

Figure 3.4: Performance curves for the solution methods in instances with 1,587 scenarios.
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Scenarios
Fullspace
RSCD [s]

Benders
RSCD [s]

Cross
RSCD [s]

Fullspace
t-RSCD [s]

Benders
t-RSCD [s]

Cross
t-RSCD [s]

639 626 10,000∗ 809 3,070 1,048 472
1,025 4,413 10,000∗ 3,200 9,783 10,000∗ 1,707
1,587 10,000∗ 10,000∗ 9,947 10,000∗ 10,000∗ 7,752
∗Time limit reached

Table 3.2: Comparison of mean solution times.

that cross decomposition on the t-RSCD formulation is on average the fasted method for all cases.

It is interesting to note that Benders decomposition on the t-RSCD formulation shows good results

for the instances with 639 scenarios but not for the instances with 1,025 and 1,587 scenarios. There

is also a progressive deterioration of the performance of the fullspace RSCD formulation from the

case with 639 scenarios to the case with 1,587 scenarios. This performance confirms that cross

decomposition is the best alternative for large-scale problems. The computational experiments

also show that both Benders and cross decomposition are affected by the underlying LP relaxation

of the models. However, if we compare both decomposition strategies on the RSCD and t-RSCD

formulations, it is clear that the performance of the cross-decomposition method is less affected by

the weakness of the formulation. Hence, we conclude that cross decomposition is less sensitive to

weak formulations due to the presence of strong cuts that originate from the Lagrangean dual.

The time spent by the decomposition methods is used to solve subproblems and master problems.

For both implementations (RSCD and t-RSCD) of Benders decomposition, the wall-clock time

spent in the Benders master problems is over 90% of the total time. We also conducted a separate

analysis to estimate the impact of parallelization for the Benders and Lagrangean subproblems. As

a result of parallelization, the time spent in Benders decomposition is significantly reduced: the

speed-up for solving the Benders subproblems of the RSCD model in 12 parallel threads is around

8.5 in the case with 639 scenarios and around 7.0 for the Benders subproblems of the t-RSCD model

with 1,587 scenarios. A similar situation occurs in the implementation of the cross-decomposition

method. Most of the wall-clock time is spent in solving the Benders master problems: on average,

around 58% of the time in the case with 639 scenarios and over 75% in the case with 1,587 scenar-

ios. The Lagrangean master problems also require a considerable amount of time: approximately

24% of the total time in the case with 639 scenarios and 12% in the case with 1,587 scenarios.

There is also a significant decrease in the solution time required to solve the MILP Lagrangean

subproblems as a result of parallelization: the speed-up is approximately 5.9 for the Lagrangean

subproblems of the RSCD model with 639 scenarios and 6.3 for the Lagrangean subproblems of
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the t-RSCD model with 1,587 scenarios. The results suggest that parallelization of the subproblems

yields better speed-ups with LP subproblems that can be solved efficiently by individual threads.

3.6 Summary

We have described a cross-decomposition algorithm that combines Benders and Lagrangean de-

composition for two-stage stochastic MILP problems with complete recourse, where the first-stage

variables are mixed-integer and the second-stage variables are continuous. The algorithm fully

integrates primal and dual information with multi-cuts that are added to the Benders and the La-

grangean master problems for each scenario. Computational results for several instances of the

resilient supply chain design problem show evidence of the benefits of the cross-decomposition

scheme with respect to the reduction in the number of iterations and stronger lower bounds com-

pared to multi-cut Benders decomposition. While the computational times per iteration increase

because of the solution of additional problems, cross decomposition seems to be especially ad-

vantageous compared to Benders decomposition if the underlying LP relaxation is weak. Aside

from the unique integration of primal-dual multi-cuts in the master problems, the proposed cross-

decomposition scheme is also unique with respect to previous work because it has been specially

developed to solve two-stage stochastic programming problems.
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Chapter 4

Optimizing Inventory Policies in Process
Networks under Uncertainty

4.1 Motivation

Inventory planning is a critical aspect of enterprise-wide optimization [92]. Inventories are used in

production and logistic networks to coordinate supply cycles and to mitigate the risks associated

with uncertainty. The importance of inventory management in industrial applications derives from

the effect of stockouts in the levels of customer satisfaction and the impact of stock in the economic

balance of companies. Remarkably, the value of U.S. inventories was estimated to be over $1,707

billion in December 2013 [229], and the opportunity cost ascribed to capital invested in inventories

added up to $434 billion in 2012 [246]. Therefore, the potential savings from stockout prevention

and inventory related cost offer a huge opportunity for optimization.

Many strategies have been proposed to manage inventories since Harris [101] introduced the Eco-

nomic Order Quantity (EOQ) model in 1913. The EOQ model was developed to balance ordering

and holding cost for problems with a deterministic demand rate. Classical models for inventory

management with uncertain demand include continuous-review (r,Q) policies and periodic-review

basestock policies; the main purpose of these models is to minimize the expected cost of replen-

ishment and stockouts, since complete satisfaction of uncertain demand might be too expensive or

impossible.
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One of the main advantages of the classical models is that they prescribe a policy for inventory

management that is easy to implement. In fact, these policies are often optimal under assumptions

satisfied by simple inventory management problems. Therefore, policies are in practice the method

of choice to plan inventories in most industrial applications. However, the complexity of production

networks limits the applicability of the classical models for inventory management. The main

complications for inventory planning in process networks arise from the network topology, the

limitations in production capacity, and multiple sources of uncertainty.

It is common practice in industry to allocate storage units at different stages of the network in order

to decouple the production of successive sections. The role of inventory is to buffer temporal mis-

matches among supply availability, processing rates, and demand. In addition to the raw material

and final product inventories that are used to hedge against external uncertainties, production net-

works also include intermediate inventories that protect against the variability in processing rates.

The importance of intermediate inventories resides in their ability to reduce the interdependence of

processing units, to delay the formation of bottlenecks, and to increase capacity utilization.

The interest in the control of intermediate inventories in production processes can be traced back

to the work by Simpson [210] in the 1950’s. However, few methodologies have been proposed for

inventory planning under uncertainty in continuous process networks. In this chapter, we focus on

developing stochastic programming formulations that leverage the nature of the inventory planning

problem. We propose a new approach that includes the logic of inventory policies in a mathemati-

cal programming framework with the purpose of finding optimal policy parameters. The idea is to

combine the advantages of logic-based mathematical programming with the pragmatism derived

from inventory management theory. This approach for inventory optimization is novel and offers

significant benefits for production planning in complex networks. We show that using policies for

inventory management in process networks has advantages over multistage or two-stage stochas-

tic programing techniques. From the modeling perspective, policies offer an alternative way to

avoid anticipativity that can be used on arbitrary sets of scenarios. From the industrial perspective,

policies are attractive because they are intuitive and easy to implement.

The remaining of this chapter is organized as follows. In Section 4.2, we review the publications

that are most relevant to our work. Section 4.3 introduces the inventory planning problem that

we address. The method that we propose to solve the problem and to evaluate the solutions is

outlined in Section 4.4. In Section 4.5, we present a small example that illustrates the particulari-

ties of the stochastic inventory planning problem. Section 4.6 presents the optimization model for
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single-echelon basestock policies. In Section 4.7, we revisit the illustrative example to compare

the inventory plans obtained from different stochastic programming models. Section 4.8 presents

a general model for stochastic inventory planning in process networks. Sections 4.9 and 4.10 pro-

pose policies for inventory planning in process networks with inventories in parallel and in series,

respectively. In Section 4.11, we present a simulation approach to evaluate the performance of

inventory planning strategies. Sections 4.12 and 4.13 implement the proposed inventory planning

models in two different examples. Finally, Section 4.14 presents a summary of this work.

4.2 Literature review

Management of intermediate inventories has been addressed in the literature of multi-echelon sup-

ply chains, which was initiated with the seminal work of Clark & Scarf [41]. They proved that

basestock policies are optimal for the average cost of multi-echelon serial systems with station-

ary stochastic demand, convex cost function, and finite horizon. Later, Federgruen & Zipkin [66]

demonstrated the optimality of basestock policies for the infinite horizon case. A recursive algo-

rithm to calculate optimal basestock levels in serial and assembly multi-echelon systems with linear

costs was developed by van Houtum & Zijm [234]. A simpler procedure yielding lower and upper

bounds on the echelon cost functions was developed by Shang & Song [205]; they also present a

heuristic for approximating optimal basestock levels that performs well in practice.

The study of multi-echelon systems has been expanded to find solutions for systems with less re-

strictive assumptions. The relationship between cost minimization models and service level models

was studied by van Houtum & Zijm [235]; they conclude that the optimal solution for many of the

models with probabilistic service constraints can be obtained from a corresponding cost minimiza-

tion model. Chen [32] studied multi-echelon serial systems with fixed-batch sizes for the orders

between installations. They show that the optimal policies are described with reorder points and

discrete batch-quantities (r, nQ). A generalization of the multi-echelon inventory model that con-

siders fixed replenishment intervals was presented by Graves [90]; van Houtum et al. [236] proved

the optimality of basestock policies in these systems and presented the corresponding newsvendor

formulas.

The derivation of optimal policies for inventory management in networks with general topologies

is a challenging task. The analysis of multi-echelon assembly systems presented by Rosling [187]

showed that their optimal basestock policies can be obtained from an equivalent serial system. For
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multi-echelon distribution systems, basestock policies have only been proved to be optimal under

the assumption that stockouts occur with equal probability at the downstream installations [59].

Under this balancing assumption, optimality of basestock policies has been proved for two-echelon

systems [65, 66] and for multi-echelon systems [57].

The application of multi-echelon basestock policies to supply chain design is based on two models:

guaranteed service-time and stochastic service-level. The guaranteed service-time model strategi-

cally locates safety inventories to satisfy the maximum product requirements that installations are

committed to satisfy during their net lead time. The model was initially developed by Kimball

[127] for a single-stage system, and implemented in serial systems by Simpson [210]. Extensions

of the guaranteed service-time model for safety stock placement in assembly and distribution net-

works have been developed for bounded demands [90, 91] and for normally distributed demands

[116, 117]. The alternative stochastic service-level model developed by Lee & Billington [138]

locates inventories to offer prescribed service levels at the installations of a decentralized supply

chain; basestock levels are obtained from the characterization of random delays experienced by

installations as a result of shortages in the upstream stages.

Ettl et al. [61] developed expressions for the actual lead time in a multi-echelon supply chain by

approximating the dynamics of inventory levels with queuing models; they also included their in-

ventory model in an optimization framework to minimize the total inventory cost. The use of queu-

ing models to characterize production and distribution networks started with the work of Jackson

[118]. The advantage of queuing networks is that they allow modeling the dynamics of inventories

in networks with finite processing capacity. The most influential queuing models of manufactur-

ing systems characterize them with product-form solutions that can be found for a restrictive class

of networks, from which Jackson networks are representative. An exceptional model capturing

the dynamics of basestock policies in serial servers was developed by Lee & Zipkin [139]; they

showed that the serial system can be described exactly for some special cases and they developed

approximations for the general case.

The characterization of optimal policies for capacitated production-inventory systems with station-

ary demand was presented by Federgruen & Zipkin [67, 68]. They showed that under the usual

assumptions, a modified basestock policy is optimal in the infinite horizon for the average and

discounted cost criteria, and also for the discounted cost criterion in a finite horizon. The mod-

ification of the classical basestock policy accounts for the capacity limitation by truncating the

replenishment when the order-up-to quantity cannot be fulfilled. An algorithm to calculate optimal
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basestock levels and the corresponding costs for capacitated multi-echelon systems in the infinite

horizon was developed by Tayur [226] using a sequence of uncapacitated models that converge to

the capacitated system. A more general simulation-based method to find optimal basestock levels

in capacitated multi-echelon systems was presented by Glasserman & Tayur [86]; their Infinites-

imal Perturbation Analysis (IPA) estimates the sensitivity of the cost function with respect to the

policy parameters and use them to recursively improve the basestock levels.

Most of the literature about inventory management in chemical process networks is related to deter-

ministic systems. Karimi & Reklaitis [125] recognized the importance of intermediate storage for

batch and semicontinuous processes, and derived expressions to find optimal storage capacities ac-

cording to the periodicity of the production processes. Other models for multiproduct batch plants

have included uncertainty in the design problem [243, 204, 115], but they have not considered

inventory management in their formulations. The integration of batch plant design and schedul-

ing was addressed by Subrahmanyam et al. [221] using a decomposition approach that iterates

between a design superproblem and scheduling subproblems. Petkov & Maranas [179] addressed

the optimal design and operation of batch plants with normally distributed demand for multiple

products assuming a single-product campaign production mode; they exploited the properties of

normal distributions to find the optimal operating policy corresponding to the potential designs.

Multi-echelon policies have also been applied for inventory management in the process industry.

Jung et al. [123] developed a simulation-optimization approach in which safety stock levels are

determined in a linear program and evaluated using discrete-event simulation. The proposed ap-

proach can accommodate diverse network structures and uncertainty characterizations. Recently,

Chu et al. [39, 40] presented a similar approach that uses agent-based simulations to generate linear

inequalities that are added to the LP planning problem to enforce the service level constraint; this

approach has been used for reactive scheduling and multi-echelon inventory planning.

The guaranteed service-time model was implemented by You & Grossmann [250] for the design of

chemical supply chains with uncertain demand; they extended the guaranteed service-time method-

ology for production planning and inventory management in dedicated chemical networks that in-

clude capacity constraints [251]. In a subsequent publication, dedicated and flexible processes are

considered simultaneously by including a cyclic scheduling model that determines the sequence

and duration of the flexible processes [253]. An MILP formulation for the optimal design of chem-

ical networks with uncertainty in supply, demand, and random failures was developed by Terrazas-

Moreno et al. [227, 228]. Their analysis considers the impact of slack production capacity and
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the effect of intermediate inventories in the reliability of the production network. The formulation

proposed by Terrazas-Moreno et al. [227] allows including diverse characterizations of uncertainty

as exemplified by their description of random failures using a Markov process.

An alternative approach for inventory management in production and distribution networks has

leveraged control theory for sequential decision-making. Bose & Pekny [21] proposed using Model

Predictive Control (MPC) for planning and scheduling of supply chain activities; their framework

included forecasting, optimization, and simulation modules. Perea-López et al. [177, 178] modeled

the dynamics of supply chains by considering flows of material and information. In a first article

[177], they implemented site-dependent control laws to simulate the behavior of decentralized sup-

ply chains in closed loop. In a second article [178], they developed a discrete-time model of the

supply chain dynamics and used MPC to plan production and distribution in a rolling horizon.

The integration of scheduling and control for coordination of production and distribution has been

recently addressed by Subramanian et al. [223]; their model characterizes the state of the system

according to inventory levels and compare three MPC approaches that manipulate orders and ship-

ments. In a related article, Subramanian et al. [222] proposed a state-space model for scheduling

that describes the system with the levels of inventory, the tasks in progress, and their starting time;

shipments, yield variations, delays, and unit breakdown are considered disturbances in the model.

Another body of literature related to our research advocates for the use of stochastic programming

in supply chain design and operation. Tsiakis et al. [232] proposed an MILP formulation for the

design of multi-echelon supply chains considering scenarios with uncertain demand. You et al.

[252] developed a two-stage stochastic programming model for supply chain planning under un-

certainty with risk management. Jung et al. [122] proposed a multistage stochastic programming

formulation for multiperiod supply chain planning; their solution method iterates between a rolling

horizon simulation and an outer loop that improves the safety stock targets using a gradient-based

search.

Stochastic programming problems with a very large number of scenarios have been successfully

solved through Sample Average Approximation (SAA) [206, 130]. SAA is a framework to approx-

imate the optimal expected value of a stochastic program based on the solution of smaller problems

with randomly sampled scenarios; the method provides statistical bounds on the expectation of the

optimal objective value. Santoso et al. [199] implemented SAA for the optimal design of a supply

chain with uncertain supply, capacity, cost structure, and demand. The minimum-cost design of a

supply chain with a complex topology was formulated as a two-stage stochastic program by Schütz
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et al. [202]; in their formulation, the design is decided in the first stage and the operation is mod-

eled in the second stage. An implementation of SAA for the design of resilient supply chains was

presented by Klibi & Martel [131]; their stochastic programming formulation considers disruptions

and other types of uncertainty in the scenarios.

4.3 Problem description

Inventory management involves decisions related to the replenishment and depletion of invento-

ries. In continuous process networks, inventory decisions are closely related to production plan-

ning because most units are simultaneously internal suppliers and consumers. The complexity of

chemical production networks requires storage of raw materials to guard against supply variability,

intermediates to avoid the formation of bottlenecks, and final products to hedge against demand

uncertainty. The role of intermediate inventories is widely understood in industrial applications

but no methodologies have been proposed to optimize their management strategies in continuous

process networks with complex topologies and capacity constraints.

This work addresses the inventory planning problem in continuous process networks with uncer-

tainty in supply, available production capacity, and demand. We impose no restrictions on the

characterization of the uncertain parameters other than the availability of discrete-time forecasts.

Then, given a process network with known structure, our goal is to propose planning strategies that

minimize the expected costs of inventory holding and stockouts in a finite horizon.

4.4 Outline of solution and result evaluation methods

The inventory planning problem under uncertainty can be formulated as a Stochastic Programming

(SP) problem where production and inventory decisions are optimized to obtain the plan with min-

imum expected cost. In multiperiod problems with a discrete number of scenarios, the optimal

solution of such a problem can be obtained by solving a multistage SP formulation. However,

because of the computational difficulty to solve large-scale multistage SP models, it is often neces-

sary to approximate them with two-stage SP formulations. Two-stage SP models are significantly

easier to solve, but they do not capture the sequence in which information about uncertain param-

eters is revealed, which might deteriorate the quality of their solutions. We propose an alternative
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approximation of the multistage SP model that avoids anticipating the outcomes of uncertainty by

enforcing inventory policies for all scenarios.

We develop a logic-based SP formulation that integrates inventory policies in a mathematical pro-

gramming framework. In order to optimize these policies, we first postulate a parametric model

mapping the levels of inventory in the network to replenishment and depletion actions. This para-

metric model is based on the logic of basestock policies and includes additional rules according to

the topology of the process network. The logic-based SP formulation optimizes the parameters of

the inventory policy with the objective of minimizing the expected cost over the scenarios.

Each scenario describes the trajectory of all uncertain parameters throughout the planning horizon.

The scenarios can be generated by reproducing all possible trajectories in problems with discrete

uncertain parameters, by simulating sample-paths from stochastic processes, from historical data,

or from any other forecasting method. The probability associated to scenarios depends on the

method used to generate them.

The most rigorous evaluation of the quality of a stochastic solution requires comparing the expected

cost obtained by implementing it with the optimal expected cost of the multistage SP model. This

is the approach that we follow for the illustrative example in Sections 4.5 and 4.7. The alternative

for problems with too many scenarios is to compare different decision strategies using closed-loop

Monte Carlo simulations. These simulations involve a sequential decision-making process that

implements the first-period decisions recursively. The simulation horizon specifies the number of

times that decisions are made and implemented. Closed-loop Monte Carlo simulations yield a

cost associated with the decision-making strategy, but this cost is a random outcome. Therefore,

several replications are required to estimate the expected simulation cost and to compare the quality

of different decision-making strategies. We use this approach to evaluate the inventory planning

strategies presented in Sections 4.9 and 4.10.

4.5 Illustrative example

We present a small example to illustrate the proposed inventory planning approach. The problem

considers production planning and inventory management in a production-inventory system with

uncertain demand. The system includes a single processing unit with deterministic production

capacity, a storage unit with unlimited capacity, and stochastic demand. The planning problem has
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Figure 4.1: Schematic representation of the illustrative example.

a discrete time horizon with 11 periods, from period t0 to period t10. Demands are independent and

identically distributed (iid) uncertain parameters characterized by a discrete uniform probability

distribution in periods t1 to t10. A schematic representation of the illustrative example is presented

in Figure 4.1.

We consider the case study in which supply (S) is unlimited, available production capacity (C) is

100 units of product per period, and demand can be either 110 or 90 units of product per period

(DH = 110, DL = 90). It is worth noticing that demand can be fully satisfied by accumulating

inventory in the initial time period (t0), even if the outcome of uncertain demand is high in periods

t1 to t10.

The objective of the planning problem is to minimize the expected costs associated to inventory

holding and stockouts. Stockouts are calculated according to the backorders model that carries out

unsatisfied demands to the next time period. We use a unit holding cost (H) of $5/unit-period and

a unit backorder cost (P ) of $15/unit-period.
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The planning problem entails a sequential decision-making process in which new information be-

comes available as uncertainty is revealed with time. The problem has a discrete representation of

time and a finite support for the uncertainty space; therefore, we can formulate it as a multistage

SP problem. The multistage SP model is presented in Equations (4.1)-(4.6).

min Hxt0 + E
ξ∈Ξ

 ∑
t∈T\{t0}

Hxξ,t + Pbξ,t

 (4.1)

s.t. qξ,t + uξ,t = C ∀ t ∈ T, ξ ∈ Ξ (4.2)

[xξ,t − bξ,t] = [xξ,t−1 − bξ,t−1] + qξ,t −Dξ,t ∀ t ∈ T, ξ ∈ Ξ (4.3)

xξ,t = xξ′,t, bξ,t = bξ′,t, qξ,t = qξ′,t, uξ,t = uξ′,t ∀ t = {t0}, (ξ, ξ′) ∈ Ξ× Ξ (4.4)

xξ,t = xξ′,t, bξ,t = bξ′,t, qξ,t = qξ′,t, uξ,t = uξ′,t ∀ t ∈ T \ {t0}, (ξ, ξ′) ∈ Γt (4.5)

xξ,t, bξ,t, qξ,t, uξ,t ∈ R+ ∀ t ∈ T, ξ ∈ Ξ (4.6)

where T is the set of time periods (t), Ξ is the set of scenarios (ξ), and Γt is the set of scenario

pairs with the same outcomes of the uncertain parameters up to time t. This set is used to enforce

that decisions can only be based on the outcomes of past stages, which is the non-anticipativity

condition. The formal definition of Γt for the example is given by Equation (4.7).

Γt := {(ξ, ξ′) : (ξ, ξ′) ∈ Ξ× Ξ, (Dξ,t1 , Dξ,t2 , ..., Dξ,t) = (Dξ′,t1 , Dξ′,t2 , ..., Dξ′,t)} (4.7)

The multistage SP formulation given by Equations (4.1)-(4.6) is known as the explicit represen-

tation because it includes copied variables for each scenario and Non-Anticipativity Constraints

(NAC) relating them. The model denotes end-of-period inventory level with variables xξ,t and

end-of-period stockouts with variables bξ,t; processing rate is denoted with variables qξ,t and un-

derutilization with variables uξ,t. The objective function is given by Equation (4.1). In the first

period, t0, only holding cost is considered because there is no demand; in subsequent periods,

holding and backorder costs are incurred. Equation (4.2) represents the capacity constraint of the

processing unit, with underutilization (uξ,t) as a slack variable. The mass balance in the storage

unit is modeled with Equation (4.3); production in a period is considered instantaneous. Non-

anticipativity of the decisions is enforced with Equations (4.5)-(4.4). The domains of the variables

are presented in Equation (4.6).
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The multistage SP formulation for this illustrative example describes in scenarios the possible

trajectories of demand; there are 1,024 scenarios corresponding to the sequences of demand from

period t1 to t10. Despite the large number of scenarios, this multistage SP model is a Linear

Program (LP) that can be solved with any commercial solver. The optimal solution specifies the

value of 45,056 variables in the explicit representation or 8,188 variables in an implicit formulation

without copied variables. However, the same optimal solution can be described in much simpler

form using a basestock policy.

The capacitated single-echelon basestock policy establishes rules to operate the system according

to the inventory level. The basestock level indicates the ideal level of inventory in a given period.

Following the basestock policy, production capacity and inventory are first used to satisfy demand;

surplus capacity is used to intend replenishing inventory up to the basestock, but no inventory in

excess of the basestock level is hold. The optimal basestocks for the illustrative example and the

corresponding expected costs are presented in Table 4.1. Section 4.6 describes the methodology to

find these optimal basestock levels.

Period Basestock
Expected costs [$]

Holding Backorder Total
t0 30 150.00 0.00 150.00
t1 20 100.00 0.00 100.00
t2 20 75.00 0.00 75.00
t3 20 62.50 0.00 62.50
t4 20 56.25 18.75 75.00
t5 20 50.00 28.13 78.13
t6 20 46.88 46.88 93.76
t7 10 27.34 58.59 85.93
t8 10 19.53 76.17 95.70
t9 10 17.77 100.19 117.98
t10 0 0.00 121.00 121.00

Total: 605.27 449.71 1,054.98

Table 4.1: Optimal basestock levels and costs for the illustrative example.
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4.6 Capacitated single-echelon basestock policy

It is not always easy to infer the optimal basestock levels from the solution of the multistage SP

formulation. Nevertheless, the simplicity and intuitive appeal of inventory policies advocates for a

general framework to obtain optimal basestock levels. Let us denote by yt the basestock level of

the single-echelon system at time t. Then, the sequence of events involved in the implementation

of the basestock policy can be described as follows:

1. Random demand (Dξ,t) is realized.

2. Production capacity (C) and carried over inventory (xξ,t−1) are used to satisfy demand (Dξ,t)

and backorders (bξ,t−1).

3. Surplus capacity is used to replenish inventory up to the basestock level (yt).

4. Inventory level (xξ,t) and backorders (bξ,t) are updated.

5. Holding or stockout cost is calculated.

The logic describing the operation of the basestock policy in a capacitated single-echelon systems

is simple. It can be characterized with the conditions given by Equations (4.8)-(4.9).

• Backorders (bξ,t) are allowed if there is no inventory:

bξ,t =

0, if xξ,t > 0

Dξ,t + bξ,t−1 − xξ,t−1 − Ct, if xξ,t = 0
(4.8)

• Underutilization (uξ,t) is allowed if inventory is at basestock level:

uξ,t =

0, if xξ,t < yt

xξ,t−1 + C − xξ,t −Dξ,t − bξ,t−1, if xξ,t = yt
(4.9)

In order to include the basestock policy in a mathematical programming formulation, we divide

the state-space of the system in three discrete states: empty inventory, intermediate level, and

full inventory. In each state, the logic dictates the processing rate and inventory management plan

according to a different rule. This logic can be modeled with the disjunctions presented in Equation
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(4.10),
xξ,t = 0

bξ,t ≥ 0

uξ,t = 0

 ∨


0 < xξ,t < yt

bξ,t = 0

uξ,t = 0

 ∨

xξ,t = yt

bξ,t = 0

uξ,t ≥ 0

 ∀ t ∈ T, ξ ∈ Ξ (4.10)

where the term on the left models the basestock policy with an empty inventory, the term on the

center with an intermediate level, and the term on the right with a full inventory. Strict inequalities

modeling intermediate levels (0 < xξ,t < yt) can be implemented in the mathematical program-

ming environment with epsilon precision (ε ≤ xξ,t ≤ yt − ε).

The formulation enforcing a basestock policy for inventory management in the illustrative example

is obtained by replacing NAC constraints (4.5) with the logic presented in Equation (4.10). The

most obvious advantage of this logic-based SP formulation is that its solution can be easily char-

acterized with the basestock levels (yt). The formulation is a Generalized Disjunctive Program

(GDP) that can be seen as a multiperiod SP formulation with piece-wise linear decision rules for

inventory management [135].

The GDP model can be reformulated as a Mixed-Integer Linear Program (MILP) by introducing

binary variables; for notational convenience, we denote binary variables with a hat (ˆ) throughout

the chapter. Binary variables x̂0
ξ,t and x̂yξ,t indicate if the inventory is empty or at the basestock level,

respectively. The conditions defining these variables are presented in Equations (4.11)-(4.14),

xξ,t ≤M
(
1− x̂0

ξ,t

)
∀ ξ ∈ Ξ, t ∈ T (4.11)

xξ,t ≤ yt ∀ ξ ∈ Ξ, t ∈ T (4.12)

xξ,t ≥ yt −M
(
1− x̂yξ,t

)
∀ ξ ∈ Ξ, t ∈ T (4.13)

x̂0
ξ,t + x̂yξ,t ≤ 1 ∀ ξ ∈ Ξ, t ∈ T (4.14)

where the parameter M is an upper bound on the basestock level, Equation (4.11) forces the inven-

tory to be empty if variable x̂0
ξ,t equals one, Equations (4.12)-(4.13) forces the inventory to be at

basestock level if x̂yξ,t equals one, and Equation (4.14) allows selecting only one of these states per

scenario and time period.
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The logic presented in Equation (4.10) is completed with Equations (4.15)-(4.16),

bξ,t ≤M x̂0
ξ,t ∀ ξ ∈ Ξ, t ∈ T (4.15)

uξ,t ≤M x̂yξ,t ∀ ξ ∈ Ξ, t ∈ T (4.16)

where Equation (4.15) allows stockouts only when the inventory is empty, and Equation (4.16)

allows underutilization only when the inventory is at basestock level.

The MILP reformulation of the logic-based SP model is obtained by replacing the NAC constraints

(4.5) in the multistage SP model with Equations (4.11)-(4.16). The resulting model can be solved

using any available MILP solver.

4.7 Illustrative example revisited

Despite the convenience of establishing production and inventory management plans according to

a policy, solving the logic-based SP formulation can be significantly harder than solving an LP

model. Additionally, there is no guarantee that the optimal policy obtained from the logic-based

SP formulation yields an expected value as good as the optimal multistage SP solution. However,

large-scale multistage SP problems are also difficult to solve and often the multistage model is only

an approximation of the real problem. The most common approximation is to restrict the number

of scenarios in problems with a large number of discrete uncertain parameters or in problems with

continuous support.

In order to asses the quality of the solutions obtained from different approximations of multistage

stochastic programs, we propose a new performance metric called the Residual Expected Value

(REV). The REV of a solution is the optimal expected value of the multistage SP problem after

implementing the here-and-now decisions. We calculate the REV of a decision-making strategy by

fixing the first-stage variables to the values that it dictates, and solving the remaining multistage

SP problem. The REV generalizes the multistage Value of the Stochastic Solution (VSS) to allow

comparing the quality of different decision-making strategies, since VSS only compares the SP

solution with the solution of the expected value problem [60].

We evaluate the performance of a decision-making strategy by measuring how much the REV de-

viates from the expected value obtained from the exact multistage SP formulation. Our analysis
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(a) Sampled multistage tree. (b) Sampled policy-constraint tree. (c) Sampled two-stage tree.

Figure 4.2: Scenario trees for the illustrative example.

considers three decision-making strategies for the production and inventory planning problem pre-

sented in Section 4.5. All formulations approximate the multistage SP solution based on a model

with a reduced number of sampled scenarios. In addition to the multistage SP and the logic-based

SP problem, we include in our analysis the results from the two-stage SP problem. The two-stage

SP problem is obtained by relaxing NAC constraints (4.5) of the multistage SP problem in all stages

after the first. Instances of the scenario trees generated using the sampling technique are presented

in Figure 4.2.

The trees presented in Figure 4.2 are generated by randomly sampling 10 scenarios out of the

1,024 possible scenarios. The multistage structure in Figure 4.2a can only be recognized in the

first few periods. After period 5, the sampled multistage tree does not have indistinguishable

scenarios, which makes it identical to the two-stage tree in Figure 4.2c. On the other hand, the

policy-constraint tree maintains non-anticipativity by implementing a single decision logic for all

scenarios, which is represented by the doted lines connecting the scenarios in Figure 4.2b.

We compare the REV for the three SP models using different sample sizes. Each point presented in

Figure 4.3 was estimated from 200 replications of sample trees generated using Latin-Hypercubes

Sampling; the same 200 sample trees were used to evaluate all SP models. Figure 4.3 shows that

a relatively low number of scenarios is needed to obtain a good first-stage solution with the mul-

tistage and logic-based SP formulations; with 100 sampled scenarios, both formulations produce

a REV that is within 1% of the expected value of the full multistage SP model. The two-stage SP
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Figure 4.3: Residual expected value as a function of the sample size.

formulation on the other hand, does not seem to provide better solutions even with a larger number

of scenarios; furthermore, the error bars indicate a high variability in its results. One of the most

interesting observations from Figure 4.3 is that the logic-based SP formulation outperforms the

multistage SP formulation when small sample sizes are used. This might be specially relevant for

stochastic programming problems with a large number of scenarios or for stochastic problems with

continuous random parameters.

4.8 Mathematical model for stochastic inventory planning in process
networks

Our model to formulate the inventory planning problem considers process networks of general

topology. The transformation of raw materials into final products is achieved with a sequence

of steps that are carried out in specific processing units. We denote the set of materials by M

and the set of processing units by I . Three sets of parameters are considered uncertain in the

formulation: available supply, available production capacity, and demand. For ease of notation,
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we use capitalized letters for parameters and sets, and lower-case letters for variables and indices;

all variables in this section are defined in the positive real domain. The equations describing the

mathematical model are presented in the remainder of this section.

4.8.1 Supply balances

The availability of supply is modeled with Equation (4.17). The subset of materials that are exter-

nally supplied is denoted by MS . The amount of material m that is available as external supply at

time t and scenario ξ is given by parameter Sξ,t,m. ISm is the subset of processing units that receive

external supply of material m. The flow of supply consumed in unit i is denoted by fSξ,t,i,m, the

flow that is stored as inventory by rSξ,t,m, and the underutilization of supply by vξ,t,m.

Sξ,t,m =
∑
i∈ISm

fSξ,t,i,m + rSξ,t,m + vξ,t,m ∀ ξ ∈ Ξ, t ∈ T, m ∈MS (4.17)

4.8.2 Production capacity

The capacity of processing units is modeled with Equation (4.18). We define the available produc-

tion capacity (Cξ,t,i) as an uncertain parameter to model random variations impacting the potential

throughput of processing units; the maximum capacity of a unit is always greater than its available

production capacity. The difference between maximum capacity and available production capacity

arises due to various sources of uncertainty, such as equipment breakdown, instrumentation failure,

personnel issues, or utility shortages. In Equation (4.18), the processing rate is denoted by qξ,t,i
and the underutilization by uξ,t,i.

Cξ,t,i = qξ,t,i + uξ,t,i ∀ ξ ∈ Ξ, t ∈ T, i ∈ I (4.18)

4.8.3 Consumption balance

The consumption of material m in processing unit i is modeled with Equation (4.19). The subset

of materials that are consumed in unit i is denoted by M in
i ; the mass balance coefficient indicating

the amount of material m that is consumed per unit production rate is given by parameter Ai,m.

82



Chapter 4. Optimizing Inventory Policies in Process Networks under Uncertainty

The subset of processing units feeding material m to unit i is denoted by Iupi,m. The flow of material

m from unit i′ to unit i is fξ,t,i′,i,m, and the amount of inventory depleted to feed unit i is modeled

with variable dξ,t,i,m.

Ai,mqξ,t,i = fSξ,t,i,m +
∑

i′∈Iupi,m

fξ,t,i′,i,m + dξ,t,i,m ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M in
i (4.19)

4.8.4 Production balance

The production of material m in processing unit i is modeled with Equation (4.20). The subset of

materials that are produced in unit i is denoted by M out
i ; the mass balance coefficient indicating

the amount of material i that is produced per unit production rate is given by parameter Bi,m. The

subset of processing units receiving material m from unit i is denoted by Idowni,m . The amount of

inventory replenished by unit i is rξ,t,i,m, and the production flow that is used to satisfy demand is

fDξ,t,i,m.

Bi,mqξ,t,i =
∑

i′∈Idowni,m

fξ,t,i,i′,m + rξ,t,i,m + fDξ,t,i,m ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M out
i (4.20)

4.8.5 Inventory balance

The inventory of material m is modeled with Equation (4.21). The subset of materials that can

be stored is denoted by Mx. The balance includes the inventory carried-over from the last pe-

riod (xξ,t−1,m), the replenishment from supply (rSξ,t,m), the replenishment from processing units

(rξ,t,i,m), the inventory used to feed processing units (dξ,t,i,m), and the inventory used to satisfy ex-

ternal demand (dDξ,t,m). The set of units allowed to replenish the inventory of material m is denoted

by Irm, and the set of units that can deplete inventory of material m is denoted by Idm.

xξ,t,m = xξ,t−1,m + rSξ,t,m +
∑
i∈Irm

rξ,t,i,m −
∑
i∈Idm

dξ,t,i,m − dDξ,t,i,m

∀ ξ ∈ Ξ, t ∈ T, m ∈Mx (4.21)
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4.8.6 Demand balance

Demand satisfaction is modeled with Equation (4.22). The subset of materials with external de-

mand is denoted by MD. Demand (Dξ,t,m) and carried-over backorders (bξ,t−1,m) are equal to

the production flow that is used satisfy demand (fDξ,t,i,m), the inventory that is depleted to satisfy

demand (dDξ,t,m), and the end-of-period backorders (bξ,t,m).

Dξ,t,m + bξ,t−1,m =
∑
i∈IDm

fDξ,t,i,m + dDξ,t,m + bξ,t,m ∀ ξ ∈ Ξ, t ∈ T, m ∈MD (4.22)

4.8.7 Objective function

Different objective functions can be used in the inventory planning problem. In our formulation,

we minimize the sum of expected holding and stockout costs as presented in Equation (4.23). The

probability of scenario ξ is denoted by Pξ. The holding cost of material m at period t is denoted by

Ht,m, and the penalty per unit backorder of material m at period t is denoted by Pt,m.

min
∑
ξ∈Ξ

Pξ
∑
t∈T

 ∑
m∈Mx

Ht,mxξ,t,m +
∑

m∈MD

Pt,mbξ,t,m

 (4.23)

4.9 Policy for inventories in parallel

We propose a priority-based policy for storable materials that compete for the same replenishment

resources. The basic condition is that the parameters specifying the policy must be the same across

scenarios. The goal of the model is to establish the optimal priorities and basestock levels for

inventories in a parallel arrangement. An illustration of a parallel arrangement with three storable

materials is presented in Figure 4.4.
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Figure 4.4: Parallel arrangement with m0 as a shared resource for the replenishment of inventories m1, m2, and m3.

4.9.1 Logic-based formulation

We denote by N the set of parallel arrangements in the process network, by M̃n the subset of

storable materials that belong to parallel arrangement n, and by Rn ⊂ M the materials that are

considered shared resources for the production of m ∈ M̃n. The set of priority levels (l) in parallel

arrangement n is Ln. The number of priorities and the number of storable materials in a parallel

arrangement are set equal (|M̃n| = |Ln|) with the purpose of assigning unique priority levels.

The binary variables indicating the ordering of priorities for the storable materials in a parallel

arrangement are defined according to Equation (4.24).

ẑn,l,m =

1, if material m has priority level l in parallel arrangment n

0, otherwise
(4.24)

In order to ensure that each storable material in a parallel arrangement is assigned a unique priority

level, we use the exclusive -or- conditions presented in Equation (4.25)-(4.26),

∨
m∈M̃n

[ẑn,l,m = 1] ∀ n ∈ N, l ∈ Ln (4.25)

∨
l∈Ln

[ẑn,l,m = 1] ∀ n ∈ N, m ∈ M̃n (4.26)

where we express the disjunctions in terms of binary variables for notational convenience. The

boolean logic can be obtained by establishing the following correspondence between binary (ẑn,l,m)

and boolean (Zn,l,m) variables:

ẑn,l,m = 1 ⇔ Zn,l,m = true
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ẑn,l,m = 0 ⇔ Zn,l,m = false

The priorities established by variables ẑn,l,m specify the order in which inventories in the arrange-

ment are replenished. In particular, the material that is assigned priority l + 1 can only be replen-

ished if the replenishment of material with priority l is complete. Binary variable ŵξ,t,n,l indicates

that the replenishment of material with priority level l is complete in a given scenario (ξ) and time

period (t). The definition of variable ŵξ,t,n,l is given by Equation (4.27).

ŵξ,t,n,l =

1, if replenishment of material with priority l is complete

0, otherwise
(4.27)

The completion of replenishment for material with priority level l implies that no additional up-

stream materials shared in the parallel arrangement are needed to replenish this inventory. If we

denote by Irm the set of units that can replenish the inventory of material m, variable ŵξ,t,n,l must

satisfy the condition given by Equation (4.28).
ẑn,l,m = 1

xξ,t,m < yt,m∨
i∈Irm

[
uξ,t,i > 0

ĝξ,t,i,m = 0 ∀m ∈M in
i \ {Rn}

]


=⇒ ŵξ,t,n,l = 0 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln, m ∈ M̃n (4.28)

The implication presented in Equation (4.28) states that the replenishment of inventory with pri-

ority level l cannot be considered complete if the inventory level (xξ,t,m) is below the basestock

(yt,m), and there is available capacity (uξ,t,i > 0) and upstream materials (ĝξ,t,i,m = 0) for the

units (i ∈ Irm) that can replenish it; we exclude the shared resource (Rn) from the set of upstream

materials (M in
i ) required for the replenishment because their shortage does not relax the implica-

tion. Binary variables ĝξ,t,i,m indicate if there is an upstream shortage of material m that does not

allow increasing the processing rate in unit i. The logic establishing material shortage is given by

Equation (4.29).
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[xξ,t,m > 0] ∨ [vξ,t,m > 0]
∨

i′∈Iupi,m

[
uξ,t,i′ > 0

ĝξ,t,i′,m = 0 ∀m ∈M in
i′

]

=⇒ ĝξ,t,i,m = 0 ∀ ξ ∈ Ξ, t ∈ T, i ∈ Iconsm , m ∈M (4.29)

Expression (4.29) does not allow indicating shortage of material m for the units that consume it

(i ∈ Iconsm ), if there is available inventory, supply underutilization, or the upstream units capable of

producing it (i′ ∈ Iupi,m) are not fully utilized nor in shortage of the materials they consume (M in
i ).

Priorities for the replenishments (rξ,t,i,m) are enforced with Equations (4.30)-(4.31).

ŵξ,t,n,l = 0 =⇒ ŵξ,t,n,l+1 = 0 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln (4.30)

∨
l∈Ln

[
ẑn,l,m = 1

ŵξ,t,n,l−1 = 0

]
=⇒ rξ,t,i,m = 0

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, i ∈ Irm, m ∈ M̃n (4.31)

where Equation (4.30) guarantees that variables indicating the completion of replenishment (ŵξ,t,n,l)

are activated following the order of priorities, and Equation (4.31) constraints replenishments ac-

cording to the completion of levels that are hierarchically higher.

4.9.2 An MILP reformulation

We reformulate the logic for inventory management in parallel arrangements using mixed-integer

constraints. The reformulation of constraints (4.25)-(4.26) is given by Equations (4.32)-(4.33).

∑
m∈M̃n

ẑn,l,m = 1 ∀ n ∈ N, l ∈ Ln (4.32)

∑
l∈Ln

ẑn,l,m = 1 ∀ n ∈ N, m ∈ M̃n (4.33)

The implication on replenishment completion (Equation (4.28)) can be reformulated according to
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Equation (4.34).

(1− ẑn,l,m) + x̂yt,m + û0
ξ,t,i +

∑
m′∈Min

i \Rn

ĝξ,t,i,m′ + (1− ŵξ,t,l) ≥ 1

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln, i ∈ Irm, m ∈ M̃n (4.34)

where binary variable û0
ξ,t,i indicates if there is underutilization of unit i in scenario ξ at time period

t. We enforce the definition of û0
ξ,t,i with the big-M constraint presented in Equation (4.35).

uξ,t,i ≤M
(
1− û0

ξ,t,i

)
∀ ξ ∈ Ξ, t ∈ T, i ∈ I (4.35)

The condition (4.29) that indicates shortage of upstream material m in unit i can be reformulated

with Equations (4.36)-(4.38),

x̂0
ξ,t,m + (1− ĝξ,t,i,m) ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M (4.36)

v̂0
ξ,t,m + (1− ĝξ,t,i,m) ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, i ∈ I, m ∈M (4.37)

û0
ξ,t,i′ +

∑
m′∈Min

i′

ĝξ,t,i,m′ + (1− ĝξ,t,i,m) ≥ 1

∀ ξ ∈ Ξ, t ∈ T, i ∈ Iconsm , i′ ∈ Iupi,m, m ∈M (4.38)

where binary variable v̂0
ξ,t,m indicates if there is supply underutilization of material m in scenario

ξ at time period t. We enforce the definition of v̂0
ξ,t,m with Equation (4.39),

vξ,t,m ≤M
(
1− v̂0

ξ,t,m

)
∀ ξ ∈ Ξ, t ∈ T, m ∈MS (4.39)

Finally, the logic expressed in Equations (4.30)-(4.31) can be reformulated with Equations (4.40)-

(4.41), respectively.

ŵξ,t,n,l ≥ ŵξ,t,n,l+1 ∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln (4.40)

∑
i∈Irm

rξ,t,i,m ≤M (1− ẑn,m,l) +M ŵξ,t,n,l−1

∀ ξ ∈ Ξ, t ∈ T, n ∈ N, l ∈ Ln,m ∈ M̃n (4.41)
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where the parameter M is an upper bound for the total replenishment from all units i ∈ Irm.

Equations (4.32)-(4.41) yield an MILP reformulation of the logic developed for inventory manage-

ment in parallel arrangements. It is important to remark that this is only one possible reformulation;

other reformulations with different number of variables and constraints are possible. They might

lead to stronger or weaker formulations with respect to the LP relaxation.

4.10 Policy for inventories in series

The inventory planning for materials that undergo sequential transformation is based on multi-

echelon inventory theory. We identify from the network structure processing paths (k) starting

at raw material nodes and finishing at end product nodes; the purpose is to coordinate inventory

management for the materials in these paths. A multi-echelon arrangement is a subset of storable

materials (M̄k ⊆ Mx) associated with a particular processing path. We define an echelon as the

subset (M̄k,e ⊆ M̄k) containing a number e of the most downstream materials in multi-echelon

arrangement M̄k; echelons are numbered from the most downstream (echelon M̄k,1) to the most

upstream (echelon M̄k,|EK |), according to the conventions from multi-echelon literature. An illus-

tration of the echelons comprising a multi-echelon arrangement is presented in Figure 4.5.

Figure 4.5: A multi-echelon arrangement with 3 echelons.
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4.10.1 Logic-based formulation

Formally, the subsets of materials in echelon M̄k,e is given by Equation (4.42),

M̄k,e =
{
m : m ∈

{
M̄k,e−1 ∪mk,e

}}
(4.42)

where mk,e is the storable material preceding other e − 1 materials in processing path k. Conse-

quently, echelon M̄k,1 only contains one final product (mk,1 ∈MD ∀ k ∈ K).

The logic of basestock policies in multi-echelon systems is based on the concept of echelon inven-

tory level. The echelon inventory level considers the available inventory of all the materials that

belong to the echelon. The challenge to define the echelon inventory level in process networks is

that materials change their identity through the production process; therefore, we have to consider

the mass balance coefficients (Ai,m and Bi,m) to calculate the equivalence between one material

and its downstream successor. The inventory level (χξ,t,k,e) for echelons M̄k,1 and M̄k,e can be

calculated from Equations (4.43)-(4.44), respectively.

χξ,t,k,1 = xξ,t,m − bξ,t,m ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, m = mk,1 (4.43)

χξ,t,k,e =
1

Qk,e,e−1

χξ,t,k,e−1 + xξ,t,m

∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek\{e = 1}, m = mk,e (4.44)

where Qk,e,e−1 is the conversion ratio in the process that transforms material mk,e into material

mk,e−1 following processing path k. It is worth noticing that the inventory level of echelon M̄k,1

includes backorders, and that our process does not consider in-transit inventory since the trans-

portation between units is assumed to be instantaneous.

Based on the echelon inventory level, we can extend the capacitated single-echelon basestock pol-

icy for inventory planning in sequential production processes. The idea is to define basestock levels

(yt,k,e) for each echelon, such that the available downstream inventory is considered in the replen-

ishment decisions corresponding to material mk,e. The logic for capacity utilization of the units

(i ∈ Irm) that can replenish inventory xξ,t,m remains the same as in the single-echelon system,

except that we now have to consider the case in which underutilization is forced because of up-

stream material shortage. In a multi-echelon arrangement, the conditions allowing backorders and
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underutilization are given by expressions (4.45)-(4.46), respectively.

χξ,t,k,1 > 0 =⇒ bξ,t,m = 0 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, m = mk,1 (4.45)

[χξ,t,k,e < yt,k,e] ∧ [ĝξ,t,m = 0 ∀m ∈M in
i ] =⇒ uξ,t,i = 0

∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek, i ∈ Irmk,e (4.46)

The equations defining echelon inventory levels (Equations (4.43)-(4.44)) and the logic control-

ling production decisions (Equations (4.45)-(4.46)) can be used in a logic-based formulation to

find the optimal parameters of the basestock policy. For processing networks with multi-echelon

arrangements, the parameters to optimize are the basestock levels of each echelon (yt,k,e).

4.10.2 An MILP reformulation

We reformulate the logic for inventory management in multi-echelon arrangements using mixed-

integer constraints. Similarly to the capacitated single-echelon basestock policy, this reformulation

requires variables that indicate the state of the inventory level. We introduce binary variable χ̂0
ξ,t,k,1

indicating if inventory in echelon 1 is empty, and variable and χ̂yξ,t,k,e indicating if inventory of

echelon e is at basestock level. The definition for these variables is enforced with Equations (4.47)-

(4.50).

χξ,t,k,1 ≤M
(
1− χ̂0

ξ,t,k,1

)
∀ ξ ∈ Ξ, t ∈ T, k ∈ K (4.47)

χξ,t,k,e ≤ yt,k,e ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek (4.48)

χξ,t,k,e ≥ yt,k,e −M
(
1− χ̂yξ,t,k,e

)
∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek (4.49)

χ̂0
ξ,t,k,1 + χ̂yξ,t,k,1 ≤ 1 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K (4.50)

The implication presented in Equation (4.45), preventing stockouts if inventory is available, can be

reformulated with big-M constraint (4.51).

bξ,t,m ≤Mχ̂0
ξ,t,k,1 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K,m = mk,1 (4.51)
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Finally, condition (4.46) can be reformulated with constraint (4.52).

χ̂yξ,t,k,e +
∑

m∈Min
i

ĝξ,t,i,m + û0
ξ,t,i ≥ 1 ∀ ξ ∈ Ξ, t ∈ T, k ∈ K, e ∈ Ek, i ∈ Irmk,e (4.52)

The MILP reformulation that we propose for multi-echelon arrangements is obtained by including

Equations (4.43)-(4.44) and Equations (4.47)-(4.52) in the optimization model described by Equa-

tions (4.17)-(4.23). The resulting reformulation is only one reformulation of the logic proposed for

multi-echelon arrangements. Other reformulations are also possible.

4.11 Evaluating inventory planning strategies with closed-loop Monte
Carlo simulations

In order to asses the potential benefits of implementing a policy-based production planning, we

compare the planning decisions obtained by solving the logic-based SP formulation with the deci-

sion obtained from the equivalent two-stage SP formulation. The challenge for large-scale prob-

lems is that the number of scenarios in multiperiod models grows exponentially; therefore, we

cannot calculate the REV exactly as we have done with the illustrative example in Section 4.7. The

alternative is to use the planning strategies in a receding horizon with the purpose of simulating

the sequential implementation of the decision-making process. The proposed closed-loop Monte

Carlo simulations resemble Economic MPC [184], but our focus is on finite planning horizons and

we solve a stochastic programming problem at each time period.

The scenarios for the SP formulations represent possible values of the exogenous uncertain pa-

rameters, from the current period until the end of the planning horizon. We assume to have a

probabilistic description of these parameters, which allow us generating possible trajectories using

sampling techniques. The multiperiod SP formulations with sampled scenarios can be considered

sample-path optimization problems [186]; the purpose of solving these sample-path problems is to

estimate the optimal planning strategy based on a reduced set of scenarios.

Four different parameters must be specified for the implementation of the closed-loop simulations:

number of replications, length of the simulation horizon, length of the planning horizon, and sam-

ple size for the planning problem. The number of replications specifies how many closed-loop

simulations we run; a large number of replications is desirable because it allows better estimation
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of the simulation expected cost and its variance. The simulation horizon is the length of the simu-

lation and specifies how many optimization problems we solve in each replication. The planning

horizon is the length of the sample-paths used as scenarios in the multiperiod formulations; it de-

fines how far into the future we look when solving the planning problem. Finally, the sample size

specifies how many scenarios we include in the optimization problems; a larger number of scenar-

ios tends to produce better approximations of the full problem, but the sample size is constrained

by the computational complexity of the instances.

The closed-loop simulations are used to evaluate the performance of the proposed formulations for

inventory and production planning. The procedure to estimate the expected performance of these

planning strategies has the following steps:

1. Establish the parameters for the closed-loop simulations.

2. Start a replication of the closed-loop simulation (t∗ = 0).

2.1. Observe the state of the simulation model at time t∗.

2.2. Generate the scenarios for the optimization problem by randomly sampling paths of the

exogenous uncertain parameters.

2.3. Formulate and solve the stochastic optimization problem.

2.4. Implement in the simulation the optimal decisions corresponding to the current simu-

lation time period (t∗).

2.5. Randomly generate the realization of all exogenous uncertain parameters for the next

simulation time period (t∗ + 1).

2.6. Roll the simulation time forward (t∗ = t∗ + 1).

2.7. If simulation time is less than the simulation horizon, go back to Step 2.1. Otherwise,

continue to Step 3.

3. If the current number of closed-loop simulations is less than the desired number of replica-

tions, go back to Step 2. Otherwise, continue to Step 4.

4. Calculate the statistics over all replications and terminate.

Figure 4.6 shows the trajectory of uncertain parameters in a closed-loop Monte Carlo simulation,

where the past is represented by a unique path and the future is represented by alternative paths
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indicating possible scenarios. The simulation presented in Figure 4.6 is performed over five periods

(t∗ = 0 to t∗ = 4). In each period, a stochastic SP problem with a 4-period planning horizon is

solved. Then, time moves forward and uncertainty is revealed.

In the following examples, we compare the performance of the planning decisions obtained from

the logic-based SP formulation and the equivalent two-stage SP formulation. For both planning

models, we use exactly the same sampled scenarios in every instance. In addition, we use the same

realizations of the uncertain parameters in the implementation of the closed-loop simulations. The

mathematical models and the sampling procedure were implemented in AIMMS 4.8.3; all opti-

mization problems were solved using GUROBI 6.0.0 on an Intel Core i7 CPU 2.93 Ghz processor

with 4 GB of RAM.

Figure 4.6: Trajectory of uncertain parameters in a closed-loop Monte Carlo simulation.
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4.12 Example with a parallel arrangement of inventories

This example illustrates the implementation of the two-stage and the priority-policy approaches for

inventory planning in processes networks with parallel arrangements and uncertain production ca-

pacities. The network structure of the example is shown in Figure 4.7. The purpose of the network

is to transform raw material (m0) into four products (m1,m2,m3, and m4) with final demands.

The units producing final products share the same raw material, which creates competition for the

replenishment of inventories. The process network only allows storage of final products.

Raw material supply and final product demands are deterministic. Supply (St,m0
) is constant at

90 ton/period throughout the time horizon. Demand (Dt,m) for final products is deterministic but

time-varying. The demand profiles are presented in Figure 4.8.

Mass balance coefficients (Ai,m) indicating the amount of materials consumed per unit production

rate are presented in Table 4.2; all mass balance coefficients for the amount of material produced

per unit production rate are set equal to one (Bi,m = 1 ton of m ∀ i ∈ Iprodm , m ∈ M out
i ). Unit

holding costs (Ht,m) and unit backorder costs (Pt,m) are constant in time; their values are given in

Table 4.3.

Available production capacities (Cξ,t,i) in the processing units are considered uncertain. Each

uncertain parameter is modeled as an independent time-homogeneous Discrete Time Markov Chain

(DTMC) with the purpose of describing the state-dependent evolution of uncertainty in industrial

processes. The states of the DTMCs characterize the value of the uncertain parameters; each

parameter has three states that imply different available production capacities. Table 4.4 shows the

value of each uncertain parameter according to their state.

Figure 4.7: Structure of the example with a parallel arrangement of inventories.
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Figure 4.8: Deterministic demands in the example with a parallel arrangement of inventories.

Unit
Ai,m0

[ton of m0]
i1 1.180
i2 1.355
i3 0.724
i4 0.570

Table 4.2: Consumption coefficients (Ai,m0 )
in the example with a parallel arrangement of
inventories.

Material
Ht,m Pt,m

[$ ton/period] [$ ton/period]
m1 0.55 4.40
m2 0.45 3.60
m3 0.65 5.20
m4 0.85 6.80

Table 4.3: Cost parameters in the example with a parallel
arrangement of inventories.
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Parameter
State

Low Nominal High

Cξ,t,i1 13.23 14.70 16.17
Cξ,t,i2 32.13 35.70 39.27
Cξ,t,i3 22.68 25.20 27.72
Cξ,t,i4 28.35 31.50 34.65

Table 4.4: Production capacities according to their DTMC state in the example with a parallel arrangement of inventories.

We assume that all uncertain parameters are initially at their nominal values. The evolution of each

DTMCs is characterized with the one-step transition matrix (Π). The same transition matrix is

used to model the evolution of all production capacities. The transition matrix is given by Equation

(4.53).

Low Nominal High

Π =


0.70 0.25 0.05

0.15 0.70 0.15

0.05 0.25 0.70


Low

Nominal

High

(4.53)

It is worth noticing that in a single time period, there are 4 uncertain parameters with 3 possible

outcomes, giving rise to 81 possible combinations. In a multiperiod optimization problem with 6

time periods there are millions (816) of possible scenarios, which would result in an intractable

model for any practical purpose.

We compare performance of the two-stage SP and the logic-based SP inventory planning strategies

based on 25 closed-loop simulations. In each period, each strategy solves a stochastic optimization

problem with 10 sampled scenarios and a planning horizon of 6 time periods. In the logic-based SP

formulation, we enforce the priority policy for the parallel arrangement made up by the four final

products (M̃1 = {m1,m2,m3,m4}) in planning periods 2, 3, 4, and 5. It is unnecessary to enforce

the policy in the first planning period because the uncertainty has already been revealed; enforcing

the policy in the last planning period does not bring any benefit because no future periods can be

anticipated. The length of the simulation horizon is set to 12 periods.

Table 4.5 presents the computational statistics for the two-stage SP formulation and the MILP

reformulation of the logic-based SP model. The number of variables and constraints remain the
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Statistic
Formulation

Two-stage SP Logic-based SP
Constraints: 1,812 4,204
Continuous variables: 2,460 2,484
Binary variables: 0 976
Instances solved to optimality: 300 300
Mean CPU time of instances [s]: < 1 176 (± 501)

Table 4.5: Computational statistics of the two-stage SP and the logic-based SP formulations in the example with a
parallel arrangement of inventories.

same throughout the simulations because we use a receding horizon approach. All MILPs are

solved to an optimality gap of 0.25%.

Table 4.5 shows a significant difference in the computational complexity of both models. It is

important to remark that the two-stage SP formulation is strictly a relaxation of the logic-based

SP formulation, and it has only a subset of the variables and constraints. As a consequence, the

mean CPU time required to solve the instances of the two-stage SP model is less than one second;

the mean CPU time for the instances of the logic-based SP model is 176 seconds, with a standard

deviation of 501 seconds.

The results of the closed-loop simulations can be observed in Figures 4.9 and 4.10, where the

shaded lines represent the cost trajectories for the individual replications and the solid lines are the

averages over all replications. The figures show similar costs for both approaches, with a slightly

higher stockout cost for the two-stage SP model that can be observed in periods 10 and 11. The

trajectories presented in Figures 4.9-4.10 evidence significant variability in the results obtained

from the implementation of both planning strategies. This variability is inherent to the nature of

the problem, because uncertainty in production capacities constitutes a high risk for stockouts. The

main performance metric for the planning strategies is the expected cost of simulations. Table 4.6

presents the mean cost for each planning model over all simulations, together with its standard

deviation and the corresponding service level (type β).

The results from Table 4.6 show a 2.7% reduction in the total expected cost for the logic-based

SP model in comparison to the two-stage SP model; the reduction is obtained from lower stockout

costs without increasing the inventory cost significantly. Although the difference is rather small,

the results suggest that the logic-based SP model is more effective at selecting the materials that are

stored as inventories according to the representation of the future given by the scenarios. Despite
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Figure 4.9: Trajectories of holding and stockout costs obtained from the two-stage SP formulation for the example with
a parallel arrangement of inventories.

Figure 4.10: Trajectories of holding and stockout costs obtained from the logic-based SP formulation for the example
with a parallel arrangement of inventories.
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Metric
Model

Two-stage SP Logic-based SP
Mean inventory cost [$]: 34.26 34.50
Mean stockout cost [$]: 95.54 90.80
Mean total cost [$]: 129.80 126.30
Standard deviation [$]: 110.34 110.69
Service level (β): 0.985 0.986

Table 4.6: Performance of the planning models in the example with a parallel arrangement of inventories.

the large variability in the simulation total costs, we can be confident in the advantages of the

logic-based SP model because it consistently outperforms the two-stage SP model throughout the

replications. A comparison of the total cost for each replication is presented in Figure 4.11; we

observe that the two-stage SP model only outperforms the logic-based SP model by a negligible

amount in 8 out 25 replications.

Figure 4.11: Comparison of replication costs for the example with a parallel arrangement of inventories.
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4.13 Example with a multi-echelon arrangement of inventories

This example compares the inventory plan obtained from the two-stage SP formulation with the

plan dictated by the logic-based SP formulation modeling the multi-echelon inventory policy. The

example has been adapted from Example 1 presented by Terrazas-Moreno et al. [227], and orig-

inally proposed by Straub & Grossmann [220]. The purpose of the process network is to trans-

form a single raw material (m0) into one final product (m2). The network offers three alternative

processing paths, from which we identify one multi-echelon arrangement including both storable

materials: M̄1 = {m1,m2}. The structure of the network and the echelons of M̄1 are shown in

Figure 4.12.

Figure 4.12: Structure of the example with a multi-echelon arrangement of inventories.

Supply availability (Sξ,t,m0
), available production capacities (Cξ,t,i), and demand (Dξ,t,m2

) are con-

sidered uncertain. Supply and demand are modeled as normally distributed random variables; their

mean values (S̄ξ,t,m0
, D̄ξ,t,m2

) are periodic functions presented in Figure 4.13; their coefficients of

variation are set to 15%.

The capacity (Cξ,t,i) of each processing unit is modeled as an independent time-homogeneous

Discrete Time Markov Chain (DTMC) with the purpose of describing probabilistic failures. The

DTMCs characterize the states of the units that can be either working normally (up) or failed

(down). Table 4.7 shows the value of production capacities according to their state.

We assume that all units are initially at their up state. The evolution of each DTMCs is character-

ized with the one-step transition matrices (Πi) given by Equation (4.54).
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Up Down Up Down

Πi1 =

[
0.97 0.03

0.50 0.50

]
Up

Down
Πi2 =

[
0.95 0.05

0.50 0.50

]
Up

Down

Up Down Up Down

Πi3 =

[
0.96 0.04

0.50 0.50

]
Up

Down
Πi2 =

[
0.93 0.07

0.50 0.50

]
Up

Down
(4.54)

From the individual states of the processing units, we know that there are 16 different discrete

states for the entire system. The entire system could be characterize as a single DTMC, but it

is unnecessary because we assume that the state transitions for each unit only depend on its own

state. In addition to the discrete states characterizing production capacities, supply and demand are

modeled with continuous distributions; therefore, the total number of scenarios is uncountable.

Figure 4.13: Normally distributed supply and demand in the example with a multi-echelon arrangement of inventories.

Parameter
State

Up Down

Cξ,t,i1 5 0
Cξ,t,i2 5 0
Cξ,t,i3 7 0
Cξ,t,i4 9 0

Table 4.7: Production capacities according to the state of units in the example with a multi-echelon arrangement of
inventories.

102



Chapter 4. Optimizing Inventory Policies in Process Networks under Uncertainty

The remaining parameters of the example are deterministic; they are given in Tables 4.8 and 4.9.

All mass balance coefficients indicating the amount of materials produced per unit production rate

are set to one (Bi,m = 1 ton of m ∀ i ∈ Iprodm , m ∈ M out
i ). Unit holding costs (Ht,m) and unit

backorder costs (Pt,m) are constant in time.

We compare the performance of the two-stage SP and the logic-based SP inventory planning strate-

gies based on 25 closed-loop simulations. In each period, both strategies solve a stochastic opti-

mization problem with 10 sampled scenarios and a planning horizon of 5 time periods. In the

logic-based SP formulation, we enforce the multi-echelon basestock policy for arrangement M̄1.

The length of the simulation horizon is set to 15 periods.

The computational statistics for the instances of each formulation are presented in Table 4.10. All

MILPs are solved to an optimality gap of 0.25%.

Unit
Ai,m0

Ai,m1

[ton of m0] [ton of m1]
i1 1.087 -
i2 1.111 -
i3 1.176 -
i4 - 1.333

Table 4.8: Consumption coefficients (Ai,m) in
the example with a multi-echelon arrangement
of inventories.

Material
Ht,m Pt,m

[$ ton/period] [$ ton/period]
m1 1 -
m3 3 10

Table 4.9: Cost parameters in the example with a
multi-echelon arrangement of inventories.

Statistic
Formulation

Two-stage SP Logic-based SP
Constraints: 1,304 2,204
Continuous variables: 1,750 1,760
Binary variables: 0 450
Instances solved to optimality: 300 300
Mean CPU time of instances [s]: < 1 189 (± 487)

Table 4.10: Computational statistics of the two-stage SP and the logic-based SP formulations in the example with a
multi-echelon arrangement of inventories.
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The cost trajectories for the two-stage SP and the logic-based SP models are presented in Figures

4.14 and 4.15, respectively. Shaded lines represent the trajectories for individual replications and

solid lines are the averages. The figures show a trend for the two-stage SP model to produce higher

inventory costs; this can be observed at periods 3, 4, and 5.

Figure 4.14: Trajectories of holding and stockout costs obtained from the two-stage SP formulation for the example with
a multi-echelon arrangement of inventories.

Figure 4.15: Trajectories of holding and stockout costs obtained from the logic-based SP formulation for the example
with a multi-echelon arrangement of inventories.

104



Chapter 4. Optimizing Inventory Policies in Process Networks under Uncertainty

The trajectories in Figures 4.14-4.15 show significant variability for holding and stockout cost

across replications. Variability in this process network is the result of random failures that produce

high stockout risk. The performance metrics for the planning models are presented in Table 4.11.

Metric
Model

Two-stage SP Logic-based SP
Mean inventory cost [$]: 32.30 21.07
Mean stockout cost [$]: 42.33 48.31
Mean total cost [$]: 74.63 69.38
Standard deviation [$]: 59.10 56.34
Service level (β): 0.958 0.952

Table 4.11: Performance of the planning models in the example with a multi-echelon arrangement of inventories.

We observe from Table 4.11 a reduction in the mean total cost obtained from the logic-based SP

model that corresponds to 7.0% of the cost obtained from the two-stage SP model. The reduction

is the result of an inventory planning strategy that is more effective at balancing holding and backo-

rders cost; the logic-based SP model benefits from an increased coordination between intermediate

and final product inventory levels.

Finally, in Figure 4.16 we present the cost obtained for each replication using the two-stage SP and

the logic-based SP planning strategies. The figure shows that the logic-based SP approach yields

a lower cost than the two-stage SP approach in 19 out of 25 replications. These results clearly

illustrate the advantages of the multi-echelon basestock policy for inventory planning in process

networks.

4.14 Summary

In this chapter, we have proposed a policy-based approach for stochastic inventory planning in

process networks. Our motivation originates from the effectiveness of policies for inventory man-

agement and their appeal for industrial implementation. Given the difficulty to obtain optimal

policies analytically in process networks, we have developed the logic describing these policies

with the purpose of including them into the production and inventory planning problem.

We have proposed two sets of logic rules for inventory planning in networks with parallel and se-

quential structures. The logic is formulated as a GDP model that avoids anticipativity in stochastic
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Figure 4.16: Comparison of replication costs for the example with a multi-echelon arrangement of inventories.

programing problems and yields the optimal parameters of inventory policies. We implemented the

MILP reformulations of our logic-based SP models in two examples, and compared the results with

the corresponding two-stage SP models. The comparisons were based on closed-loop simulations

that mimic the actual implementation of these planning strategies in an industrial environment. De-

spite the increase in the computational complexity of the instances, the examples show a significant

improvement in the inventory plans obtained from the logic-based SP model.

The proposed logic-based SP formulation has the advantage of being completely flexible with re-

spect to the probabilistic description of the uncertain parameters. The only requirement for the

model is to be able to generate scenarios describing the evolution of uncertain parameters by any

forecasting method. This feature is specially important for industrial applications in which corre-

lation and autocorrelation of the uncertain parameters is very common, and allows using historical

data in the inventory planning model.

The logic developed for inventory planning in process networks with parallel and sequential struc-

tures can be extended to address networks of arbitrary topology with complex uncertainty models.
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There is an extraordinary potential for inventory optimization in these networks because their com-

plexity conceals the most effective planning strategies. This contribution offers a novel approach

for a very challenging problem in the process industry.
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Chapter 5

Bilevel Optimization for Capacity
Planning with Rational Markets

5.1 Motivation

Capacity expansion is one of the most important strategic decisions for industrial gas companies.

In this industry, most of the markets are served by local producers because of the competitive

advantage given by the location of production plants. The dynamics of the industrial gas markets

imply that companies must anticipate demand increases in order to plan their capacity expansion,

maintain supply availability, and avoid regional incursion of new producers. The selection of the

right investment and distribution plan plays a critical role for companies in this environment. A

rigorous approach based on mathematical modeling and optimization offers the possibility to find

the investment and distribution plan that yields the greatest economic benefit.

Since the late 1950s, capacity expansion planning has been studied to develop models and solu-

tion approaches for diverse applications in the process industries [195], communication networks

[31], electric power services [167], and water resource systems [168]. Capacity planning is consid-

ered a central problem for enterprise-wide optimization, a topic for which comprehensive reviews

are available [92, 93]. Despite the importance of capacity expansion in industry, the study of the

problem in a competitive environment has not received much attention. Soyster & Murphy [219]

formulated a capacity planning problem for a perfectly competitive market. However, perfect com-
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petition is a strong assumption. A more realistic hypothesis is to assume an oligopolistic market as

presented by Murphy & Smeers [166]. Similar models based on game theory have also been used

for the supply chain planning in cooperative and competitive environments [254].

The competition between two players whose decisions are made sequentially can be modeled as a

Stackelberg game [239]. A Stackelberg competition is an extensive game with perfect information

in which the leader chooses his actions before the follower has the opportunity to play. It is well

known that the most interesting equilibria of such games correspond to the solution of a bilevel

optimization problem [171].

Bilevel optimization problems are mathematical programs with optimization problems in the con-

straints [23]. They are suitable to model problems in which two independent decision makers try

to optimize their own objective functions sequentially [28, 9]. We present a mixed-integer linear

bilevel formulation for the capacity planning of an industrial gas company operating in a com-

petitive environment. The purpose of the upper-level problem is to determine the investment and

distribution plan that maximizes the Net Present Value (NPV). The response of markets that can

choose among different producers is modeled in the lower-level as a Linear Programming (LP)

problem. The lower-level objective function is selected to represent the rational behavior of the

markets.

Solution approaches for bilevel optimization problems with lower-level LPs leverage the fact that

optimal solutions occur at vertices of the region described by upper and lower level constraints.

They rely on vertex enumeration, directional derivatives, penalty terms, or optimality conditions

[192]. The most direct approach is to reformulate the bilevel optimization as a single-level problem

using the optimality conditions of the lower-level LP. The classical reformulation using Karush-

Kuhn-Tucker (KKT) conditions maintains linearity of the problem except for the introduction of

complementarity constraints [72, 8, 16]. An equivalent reformulation replaces the lower level

problem by its primal and dual constraints, and guarantees optimality by enforcing strong duality

[164, 75].

The novelty of our research resides on the application of bilevel optimization for capacity expan-

sion planning in a competitive environment. Bilevel programming for these kind of problems can

be seen as a risk mitigation strategy given the significant influence of external decision-makers in

the economic success of investment plans. In particular, we propose a mathematical model that

includes a rational market behavior beyond the traditional game theoretical models. The invest-

ment plans obtained from this approach are found to be less sensitive to changes in the business
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environment in comparison to the single-level models.

In order to solve the challenging bilevel formulation, we implement the KKT and the duality-based

reformulations. The results obtained from examples of different sizes show the advantages of the

duality-based reformulation in terms of computational effort. Despite the efficiency obtained with

this reformulation, we found necessary to implement two additional improvement strategies to

solve large-scale instances.

The remaining of this chapter is organized as follows. Section 5.2 reviews the publications that are

relevant for our capacity planning model. In Section 5.3, we describe the problem. In Section 5.4,

we present the single-level capacity planning formulation. Section 5.5 presents the bilevel capacity

planning problem with rational markets. In Section 5.6, we develop two reformulations that allow

solving the bilevel optimization problem. Section 5.7, presents a small example that illustrates the

proposed formulations. Subsequently, in Section 5.8 we evaluate the performance of the proposed

reformulations with a middle-size example. In section 5.9, we elaborate on solution approaches

for large-scale bilevel capacity planning problems. Section 5.10 presents an industrial example.

Finally, in Section 5.11 we present our analysis and concluding remarks.

5.2 Literature review

A rather large body of literature has been published on capacity planning problems for several

industries [151]. Sahinidis et al. [196] proposed a comprehensive MILP model for long range

planning of process networks. Van den Heever & Grossmann [233] used disjunctive programming

to extend this methodology to multiperiod design and planning of nonlinear chemical processes.

An MILP formulation that integrates scheduling with capacity planning for product development

was presented by Maravelias & Grossmann [153]. Sundaramoorthy et al. [224] proposed a two-

stage stochastic programming formulation for the integration of capacity and operations planning.

Strategic investment planning for electric power networks has been the most prolific application of

bilevel optimization models. Motto et al. [164] implemented the duality-based reformulation for

the analysis of electric grid security under disruptive threats. This bilevel problem was originally

formulated by Salmeron et al. [198] with the purpose of identifying the interdictions that maxi-

mize network disruptions. A bilevel formulation for the expansion of transmission networks was

developed by Garces et al. [75] to maximize the average social welfare over a set of lower-level
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problems representing different market clearing scenarios; they implemented the duality-based

reformulation. Ruiz et al. [188] modeled electricity markets as an Equilibrium Problem with Equi-

librium Constraints (EPEC) in which competing producers maximize their profit in the upper level

and a market operator maximizes social welfare in the lower level; they use the duality-based re-

formulation to guarantee optimality of the lower level problem and obtain an equilibrium solution

by jointly formulating the KKT conditions of all producers. A similar strategy that includes the

combination of duality-based and KKT reformulations was used by Huppmann & Egerer [114] to

solve a three-level optimization problem that models the roles of independent system operators,

regional planners, and supra-national coordination in the European energy system.

Another interesting application of bilevel optimization is the facility location problem in a duopolis-

tic environment. The model presented by Fischer [69] selects facilities among a set of candidate

locations and considers selling prices as optimization variables, which leads to a nonlinear bilevel

formulation. The problem is simplified to a linear discrete bilevel formulation under the assumption

that Nash equilibrium is reached for the prices. The solution of the discrete bilevel optimization

problem is obtained using a heuristic algorithm.

Bilevel optimization models have also found application in chemical engineering. Clark & West-

erberg [42] presented a nonlinear bilevel programming approach for the design of chemical pro-

cesses and proposed algorithms to solve them. In their formulation, the upper level optimizes the

process design and the lower level models thermodynamic equilibrium by minimizing Gibbs free

energy. Burgard & Maranas [25] used bilevel optimization to test the consistency of experimental

data obtained from metabolic networks with hypothesized objective functions. In the upper level,

the problem minimizes the square deviation of the fluxes predicted by the metabolic model with

respect to experimental data, whereas the lower level quantifies the individual importance of the

fluxes. A bilevel programming model for supply chain optimization under uncertainty was devel-

oped by Ryu et al. [190]; the conflicting interests of production and distribution operations in a

supply chain are modeled using separate objective functions. They reformulate the bilevel problem

in a single level after finding the solution of the lower-level problem as parametric functions of

the upper-level variables and the uncertain parameters. Chu & You [38] presented an integrated

scheduling and dynamic optimization problem for batch processes. The scheduling problem, for-

mulated in the upper level, is subject to the processing times and costs determined by the nonlinear

dynamic lower-level problem. The bilevel formulation is transformed to a single level problem by

replacing the lower-level with piece-wise linear response functions. They assert that the bilevel

formulation can be used as a distributed optimization approach whose solutions can easily adapt to
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variation in the problem’s parameters.

It should also be noted that bilevel programming for nonlinear models has been the subject of

research in chemical engineering. Faisca et al. [62] presented a multi-parametric programming

approach that replaces the lower-level problem by its rational reaction set parametrized on the

upper-level variables. For global optimization of continuous and mixed-integer bilevel problems,

Kleniati & Adjiman [129] developed the Branch-&-Sandwich algorithm, which solves bilevel pro-

grams with noncovex lower-level problems.

5.3 Problem statement

A company that produces and commercializes industrial products in a given geographic region is

interested in developing an investment plan to expand its capacity in anticipation of future demand

increase. The company operates some plants with limited production capacity. Existing plants

are eligible for capacity expansion and other locations are candidates to open new plants. The

construction and expansion of plants requires the investment of capital to develop the project and

install new production lines. The potential increases in production capacity are assumed to be

discrete and the corresponding investments are given by fixed costs. Based on the available capacity

in the plants, the company allocates production to satisfy market demands. Figure 5.1 shows a

schematic representation of a region with several production plants and gas markets.

Figure 5.1: Superstructure of regional gas markets.

The company obtains revenue from selling its products at fixed prices in each market. The goal of

the company is to find the investment plan that maximizes the Net Present Value (NPV) of its profit
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during a finite time horizon. The NPV is calculated by applying the appropriate discount factor to

the income received from sales and the expenses related to investment, production, maintenance,

and transportation costs.

5.4 Single-level capacity planning with captive markets

The basic model to plan the capacity expansion of a company serving industrial markets assumes

that all market demands are willing to buy the products at the price offered. In this context, markets

are regarded as captive. The capacity expansion planning with captive markets can be formulated

as the single-level Mixed-Integer Linear Program (MILP) presented in Equations (5.1)-(5.8),

max
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈IL

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈IL

∑
k∈K

1

(1 +R)t

(
Et,i,kxt,i,k + Ft,i,k

∑
j∈J

yt,i,j,k

)

−
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (5.1)

s.t. wt,i = V0,i +
∑
t′∈T ′t

vt′,i ∀ t ∈ T, i ∈ IL (5.2)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ IL, k ∈ K (5.3)

ct,i,k = C0,i,k +
∑
t′∈T ′t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.4)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.5)

∑
i∈IL

yt,i,j,k ≤ Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (5.6)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ IL, k ∈ K (5.7)

ct,i,k, yt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ IL, j ∈ J, k ∈ K (5.8)
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where T , IL, J , andK are respectively, the index sets for time (t), production plants of the decision

maker (iL), markets (j), and products (k). We also define T ′ as the subset of time periods T in

which expansions are allowed, and T ′t as the subset of time periods before t in which expansions

are allowed. Formally, T ′t = {t′ : t′ ∈ T ′, t′ ≤ t}.

The first term in expression (5.1) represents the income obtained from sales. Income is proportional

to demand assignments (yt,i,j,k) according to the price paid by the markets (Pt,i,j,k). The second

term includes the cost of opening new facilities and the maintenance cost of open plants. The

binary variable deciding if a new plants is open at location i at time period t is vt,i; parameter

At,i determines the fixed cost to build a new plant. The binary variable wt,i indicates if plant i is

open at time period t; if the plant is open, a fixed cost Bt,i must be paid for maintenance in period

t. The third term includes expansion and production costs. The expansion of production capacity

for product k in plant i at period t is decided with binary variable xt,i,k; the cost of expansions

is given by parameter Et,i,k. Production costs are proportional to demand assignments (yt,i,j,k)

according to their unit production cost (Ft,i,k). Finally, the last term represents the transportation

cost from production plants to markets. Transportation is proportional to demand assignments

(yt,i,j,k) according to the unit transportation cost (Gt,i,j,k). All terms are discounted in every time

period with an interest rate (R).

Constraint set (5.2) is used to model the maintenance cost of plants during the time periods when

they are open; the binary parameter V 0
i indicates the plants that are initially open. Constraint set

(5.3) requires capacity expansions to take place only at open plants. Constraint set (5.4) determines

the production capacity of plants according to the expansion decisions; parameters C0,i,k indicate

the initial capacities and Hk is the magnitude of the potential capacity expansion. Constraints (5.5)

bound the demand assignments according to the production capacities. Finally, constraints set (5.6)

bounds demand assignments according to market demands. The domains of the variables are given

by expressions (5.7) and (5.8).

5.5 Bilevel capacity planning with rational markets

The most intuitive way to model a competitive environment is to assume that the markets have the

possibility to select their providers according to their own interest. The rational behavior of the

markets can be modeled with a mathematical program that optimizes their objective function. The

behavior of the markets is included in the constraints of the capacity planning problem, yielding a
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bilevel optimization formulation. In this formulation, the upper-level problem is intended to find the

optimal capacity expansion plan by selecting the investments that maximize the NPV of the leader.

The lower-level represents the response of markets that select production plants as providers with

the unique interest of satisfying their demands at lowest cost.

The formulation presented in Section 5.4 is modified to ensure that market demands are completely

satisfied. This is achieved by transforming constraint set (5.6) into equality constraints. This change

is necessary to avoid the market cost from dropping to zero by leaving all demands unsatisfied. Ad-

ditionally, the set of potential providers is expanded to include plants from independent producers.

We assume that the initial capacity of all production plants is large enough to satisfy all market

demands regardless of the expansion plan of the leader. This assumption is also useful to avoid

unprofitable investments in capacity expansions driven by the need to maintain feasibility of the

problem.

The products offered by the competing producers are considered homogeneous and the markets

have no other preference for producers than price. Cases in which the markets have no preference

between two or more plants are resolved by the upper level according to the interest of the leader;

this modeling framework is known as the optimistic approach [149]. In our model, the optimistic

approach is a key assumption because all plants controlled by the leader offer the same price to

each market. Therefore, the optimization problem of the markets is degenerate. However, the

markets are only concerned about selecting the producer that offers the lowest price and they are

indifferent to the plant from which they are served; consequently, the leader is free to choose the

plants it uses to satisfy its demands.

The bilevel optimization formulation for the capacity expansion planning in a competitive environ-

ment is presented in Equations (5.9)-(5.19),
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max
v,w,x

∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈IL

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈IL

∑
k∈K

1

(1 +R)t

(
Et,i,kxt,i,k + Ft,i,k

∑
j∈J

yt,i,j,k

)

−
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (5.9)

s.t. wt,i = V 0
i +

∑
t′∈T ′t

vt′,i ∀ t ∈ T, i ∈ IL (5.10)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ IL, k ∈ K (5.11)

ct,i,k = C0
i,k +

∑
t′∈T ′t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.12)

min
y

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k (5.13)

s.t.
∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.14)

∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ IC, k ∈ K (5.15)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (5.16)

yt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.17)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ IL, j ∈ J, k ∈ K (5.18)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ IL, k ∈ K (5.19)

where I is the set of all production plants, IL ⊂ I is the subset of plants controlled by the leader,

and IC ⊂ I is the subset of plants controlled by the competitors. It should be noted that Equations

(5.9)-(5.12) are identical to Equations (5.1)-(5.4) of the single-level formulation. However, in the

bilevel formulation the upper-level decision-maker only controls variables vt,i, wt,i, xt,i,k, and
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ct,i,k. Demand assignment decisions (yt,i,j,k) are controlled by the lower level with the objective of

minimizing the cost paid by the markets according to Equation (5.13). Equations (5.14) and (5.15)

constrain the production capacity of the plants; Equation (5.16) enforces demand satisfaction in

every time period. The domains of the variables are presented in Equations (5.17)-(5.19). It is

important to note that upper-level variables only take discrete values and all lower-level variables

are continuous. This attribute of the model is crucial for the reformulations that we propose.

5.6 Reformulation as a single-level optimization problem

An optimistic bilevel program with a convex and regular lower-level can be transformed into a

single-level optimization problem using its optimality conditions [43]. The key property of convex

programs is that their KKT conditions are necessary and sufficient to characterize the corresponding

global optimal solutions. In the case of linear programs, KKT optimality conditions are equivalent

to the satisfaction of primal feasibility, dual feasibility, and strong duality [74]. Based on this

equivalence, we derive two single-level reformulations for the bilevel capacity planning model;

both reformulations yield optimistic solutions of the problem.

5.6.1 KKT reformulation

The classic reformulation for bilevel programs with a lower-level LP is to replace the lower lower-

level problem by its KKT conditions. In the case of the capacity planning with rational markets, the

KKT reformulation is obtained by introducing constraints that guarantee the stationarity conditions,

primal feasibility, dual feasibility, and complementary slackness for the cost minimization problem

modeling markets behavior. The resulting reformulation is presented in Equations (5.20)-(5.33),
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max
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈IL

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈IL

∑
k∈K

1

(1 +R)t

(
Et,i,kxt,i,k + Ft,i,k

∑
j∈J

yt,i,j,k

)

−
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (5.20)

s.t. wt,i = V 0
i +

∑
t′∈T ′t

vt′,i ∀ t ∈ T, i ∈ IL (5.21)

xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ IL, k ∈ K (5.22)

ct,i,k = C0
i,k +

∑
t′∈T ′t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.23)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.24)

∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ IC, k ∈ K (5.25)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (5.26)

1

(1 +R)t
Pt,i,k + λt,j,k + µt,i,k − γt,i,j,k = 0 ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.27)

µt,i,k

(∑
j

yt,i,j,k − ct,i,k

)
= 0 ∀ t ∈ T, i ∈ IL, k ∈ K (5.28)

µt,i,k

(∑
j

yt,i,j,k − C0
i,k

)
= 0 ∀ t ∈ T, i ∈ IC, k ∈ K (5.29)

γt,i,j,k yt,i,j,k = 0 ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.30)

yt,i,j,k, µt,i,k, γt,i,j,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.31)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (5.32)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ IL, k ∈ K (5.33)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ IL, k ∈ K (5.34)
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where µt,i,k, λt,j,k, and γt,i,j,k are the Lagrange multipliers of the lower-level constraints presented

in Equations (5.14)-(5.15), (5.16), and (5.17), respectively. The upper-level problem is kept un-

changed as shown in Equations (5.20)-(5.23). Constraints (5.24)-(5.26) ensure primal feasibility

of the lower level; the constraints presented in Equation (5.27) are the stationary conditions for the

lower level; Equations (5.28) and (5.29) represent the complementary conditions corresponding

to inequalities (5.14) and (5.15); the constraints (5.30) are the complementary conditions corre-

sponding to the domain of the lower-level variables presented in Equation (5.17). The domains are

presented in Equations (5.31)-(5.34).

The main disadvantage associated to this reformulation is the introduction of non-linear comple-

mentary constraints. In order to avoid the solution of a nonconvex Mixed-Integer Non-Linear

Program (MINLP), the complementary constraints can be formulated as disjunctions that are trans-

formed into mixed-integer constraints [94]. In particular, we rewrite Equations (5.24) and (5.25) as

equality constraints by introducing the slack variables st,i,k,

∑
j∈J

yt,i,j,k + st,i,k = ct,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.35)

∑
j∈J

yt,i,j,k + st,i,k = C0
i,k ∀ t ∈ T, i ∈ IC, k ∈ K (5.36)

and use the Big-M reformulation to express that either constraints (5.35) and (5.36) are active or

the corresponding multipliers (µt,i,k) are zero. The Big-M constraints modeling this disjunction

are presented in Equation (5.37) using binary variable z1
t,i,k.

st,i,k ≤Mz1
t,i,k

µt,i,k ≤M
(
1− z1

t,i,k

)
∀ t ∈ T, i ∈ I, k ∈ K (5.37)

z1
t,i,k ∈ {0, 1}

Similarely, the Big-M reformulation of constraint set (5.30) is presented in Equation (5.38).

yt,i,j,k ≤Mz2
t,i,k

γt,i,j,k ≤M
(
1− z2

t,i,k

)
∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.38)

z2
t,i,j,k ∈ {0, 1}
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We obtain the linearized KKT reformulation of the bilevel model presented in Section 5.5 by re-

placing constraints (5.24), (5.25), (5.28), (5.29) and (5.30) with constraints (5.35), (5.36), (5.37),

and (5.38). The resulting single-level reformulation yields optimal solutions for the bilevel capacity

planning model.

5.6.2 Duality-based reformulation

The alternative reformulation for the bilevel capacity planning problem is obtained by introducing

constraints that guarantee the satisfaction of strong duality [164, 75]. This is achieved by replacing

the lower-level problem described by Equations (5.13)-(5.17) with its primal and dual constraints,

and equating their objective functions. The dual formulation corresponding to the lower-level LP

is presented by Equations (5.39)-(5.42).

max
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈IL

ct,i,kµt,i,k −
∑
i∈IC

C0
i,kµt,i,k

 (5.39)

s.t. λt,j,k − µt,i,k ≤
1

(1 +R)t
Pt,i,j,k ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.40)

µt,i,k ∈ R+ ∀ t ∈ T, i ∈ I, k ∈ K (5.41)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (5.42)

The resulting duality-based reformulation is presented in Equations (5.43)-(5.55).

max
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

−
∑
t∈T

∑
i∈IL

1

(1 +R)t
(At,ivt,i +Bt,iwt,i)

−
∑
t∈T

∑
i∈IL

∑
k∈K

1

(1 +R)t

(
Et,i,kxt,i,k + Ft,i,k

∑
j∈J

yt,i,j,k

)

−
∑
t∈T

∑
i∈IL

∑
j∈J

∑
k∈K

1

(1 +R)t
Gt,i,j,kyt,i,j,k (5.43)

s.t. wt,i = V 0
i +

∑
t′∈T ′t

vt′,i ∀ t ∈ T, i ∈ IL (5.44)
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xt,i,k ≤ wt,i ∀ t ∈ T, i ∈ IL, k ∈ K (5.45)

ct,i,k = C0
i,k +

∑
t′∈T ′t

Hi,kxt′,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.46)

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈IL

ct,i,kµt,i,k −
∑
i∈IC

C0
i,kµt,i,k

 (5.47)

∑
j∈J

yt,i,j,k ≤ ct,i,k ∀ t ∈ T, i ∈ IL, k ∈ K (5.48)

∑
j∈J

yt,i,j,k ≤ C0
i,k ∀ t ∈ T, i ∈ IC, k ∈ K (5.49)

∑
i∈I

yt,i,j,k = Dt,j,k ∀ t ∈ T, j ∈ J, k ∈ K (5.50)

λt,j,k − µt,i,k ≤
1

(1 +R)t
Pt,i,j,k ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.51)

yt,i,j,k, µt,i,k ∈ R+ ∀ t ∈ T, i ∈ I, j ∈ J, k ∈ K (5.52)

λt,j,k ∈ R, ∀ t ∈ T, j ∈ J, k ∈ K (5.53)

ct,i,k ∈ R+ ∀ t ∈ T, i ∈ IL, k ∈ K (5.54)

vt,i, wt,i, xt,i,k ∈ {0, 1} ∀ t ∈ T, i ∈ IL, k ∈ K (5.55)

The upper-level problem represented by Equations (5.43)-(5.46) remains unchanged in the duality-

based reformulation. Strong duality is enforced by equating the primal and dual objective functions

as presented by Equation (5.47). Lower-level primal constraints (5.48) and (5.50) are kept in the

formulation to guarantee primal feasibility. Dual feasibility of the lower level is ensured with

constraints (5.51).

It must be noted that this reformulation yields a Mixed-Integer Non-Linear Program (MINLP).

The nonlinearity arises from the dual objective function in the right hand side of Equation (5.47),

because of the product of upper-level variable ct,i,k and lower-level dual variable µt,i,k. Fortunately,

the problem can be posed as an MILP because the variable ct,i,k only takes values in discrete

increments as indicated by Equation (5.46). The linearization procedure is based on eliminating

variable ct,i,k from the formulation by replacing it according to Equation (5.46). The resulting
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bilinear terms are products of continuous variables (µt,i,k) and binary variables (xt′,i,k). Therefore,

they can be modeled with a set of mixed-integer constraints by including a continuous variable

(ut′,t,i,k) for each bilinear term.

The resulting linearized MILP formulation is obtained after replacing Equation (5.47) with Equa-

tion (5.56),

∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
t∈T

∑
k∈K

∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I

C0
i,kµt,i,k −

∑
i∈IL

∑
t′∈T ′t

Hi,kut,t′,i,k

 (5.56)

and introducing the mixed-integer constraints presented in Equations (5.57)-(5.58).

ut,t′,i,k ≥ µt,i,k −M (1− xt′,i,k) t ∈ T, t′ ∈ T ′t , i ∈ IL, k ∈ K (5.57)

ut,t′,i,k ∈ R+ t ∈ T, t′ ∈ T ′t , i ∈ IL, k ∈ K (5.58)

It is important to note that only the two terms presented in Equations (5.57) and (5.58) are necessary

to linearize the bilinear terms because they are sufficient to bound the values of ut,t′,i,k in the

improving direction of the objective function.

5.7 Illustrative example

Both MILP reformulations of the bilevel capacity planning problem are implemented to solve a

small case study from the air separation industry. The illustrative example considers two existing

plants of the leader, one candidate location for a new plant of the leader, and a single plant of the

competition. Facilities controlled by the leader and the competitor must satisfy the demand of 8

markets for a single commodity. The problem has a time horizon of 3 years divided in 12 time peri-

ods (quarters of year). In this time horizon, the leader is allowed to execute investment decisions in

time periods 1, 5, and 12. Capacity expansion is achieved by installing additional production lines

with capacity of 9,000 ton/period. The complete dataset for this illustrative example is presented

in Appendix C. The example uses a discount rate (R) of 3% per time period.

The computational statistics of the single-level capacity planning with captive markets and the
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reformulations of the capacity planning with rational markets are presented in Table 5.1. All MILP

problems were implemented in GAMS 24.4.1 and were solved using GUROBI 6.0.0 on an Intel

Core i7 CPU 2.93 Ghz processor with 4 GB of RAM.

Model statistic
Single-level with KKT Duality-base
captive markets reformulation reformulation

Number of constraints: 225 1,473 682
Number of continuous variables: 420 996 636
Number of binary variables: 48 480 48
LP relaxation at rootnode: 110 110 101
Final incumbent value: 110 97 97
Final optimality gap: 0.00% 0.00% 0.00%
Number of B&B nodes: 1 262 1
Solution time: 0.01 s 0.63 s 0.19 s

Table 5.1: Model statistics of the illustrative example.

Table 5.1 shows the number of constraints and variables for the proposed formulations. It can be

observed that the KKT reformulation is significantly larger than the duality-based reformulation; in

particular, it requires 10 times more binary variables because of the complementarity constraints.

The growth in the number of binary variables does not have much impact for the solution time of

this small example, but it is likely to complicate the solution of larger instances.

The solutions obtained from the optimization problems establish the investment plans of the leader.

The plan obtained from the formulation with captive markets does not expand any plants in the time

horizon. The optimal investment plan obtained from the bilevel formulation (both reformulations)

expands plant 1 in the first time period. The bilevel optimal demand assignments in the first time

period of this illustrative example are presented in Figure 5.2; it can be observed that some markets

have dual sourcing because of the capacity limitations of production plants. Table 5.2 compares the

income, investment costs, and operating costs for the single-level and bilevel expansion plans. In

order to quantify the potential regret of implementing an expansion plan that ignores the decision

criterion of markets, the expansion plan obtained from the single-level formulation is also evaluated

in an environment of rational markets.

Table 5.2 shows the benefits of the expansion plan obtained from the bilevel formulation when

markets are considered rational. The single-level formulation with captive markets predicts a level

of income that is not attainable with rational markets. The bilevel formulation offers the lowest
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Figure 5.2: Optimal demand assignments obtained in the first time period of the illustrative example using the bilevel
formulation.

Term in objective function
Single-level with Single-level with Bilevel with
captive markets rational markets rational markets

Income from sales (M$): 354 345 398
Investment in new plants (M$): 0 0 0
Expansion cost (M$): 0 0 29
Maintenance cost (M$): 31 31 31
Production cost (M$): 139 139 162
Transportation cost (M$): 74 118 79
NPV (M$): 110 57 97
Market cost (M$): 523 510 508

Table 5.2: Results of the single-level and bilevel expansion plans in the illustrative example.

cost for the markets with a small deterioration of the leader’s NPV in comparison to what could be

obtained with captive markets. When markets are considered rational, the NPV obtained with the

bilevel expansion plan is M$40 higher than the one obtained by the single-level expansion plan;

this measure of regret accounts for 41% of the potential NPV.

5.8 Middle-size instances

From the illustrative example presented in Section 5.7, we observe that the KKT and the duality-

based reformulations yield exactly the same results. Despite the difference in formulation sizes

shown in Table 5.1, both reformulation solve the illustrative example in approximately the same

time. In order to predict the performance of the reformulations on large-scale instances, we use a
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middle-size example of the capacity planning problem.

The example comprises the production and distribution of one product to 15 markets. Initially, the

leader has three production plants with capacities equal to 27,000 ton/period, 13,500 ton/period,

and 31,500 ton/period. The leader also considers the possibility of opening a new plant at a candi-

date location. We evaluate the investment decisions in a time horizon of 5 years divided in 20 time

periods.

We analyze two instances that share the same data but allow different timing for the investment

decisions. In the first instance (Middle-size 1), the leader is allowed to open the new plant and

expand capacities in every fourth time period. In the second instance (Middle-size 2), the leader

is allowed to execute the investments only every eight time periods. In both cases, capacity must

be expanded in discrete increments of 9,000 ton/period. The investment costs associated with

opening the new plant and expanding production capacity grow in time according to inflation; the

maintenance cost of open plants also increase with time.

Market demands in each time period vary during the time horizon. Figure 5.3 shows the trajectory

of the demands for the middle-size example. The selling prices offered by the leader to the markets

are presented in Figure 5.4; each market is offered a different price based on their proximity to

the production plants of the leader. Unit production costs at the plants controlled by the leader

are presented in Figure 5.5; they show the characteristic seasonal variation caused by the electricity

cost. Other cost coefficients of the example are available electronically as part of the Supplementary

material; they maintain the same magnitudes presented in Appendix C.

The computational statistics for the two middle-size instances of the capacity planning problem

with rational markets are presented in Table 5.3. The KKT and the duality-based reformulations

were implemented in GAMS 24.4.1 and were solved using GUROBI 6.0.0.

Table 5.3 demonstrates the benefits of the duality-based reformulation in comparison to the KKT

reformulation. The time required to solve both instances using the duality-based reformulation

is less than 1 second, whereas the KKT reformulation requires a few minutes for each instance.

Interestingly, the KKT reformulation takes longer to solve the second middle-size instance that has

fewer investment options. The reason behind this counter-intuitive behavior is that the solver takes

longer to find a feasible solution to the problem.

The significant difference in solution time for both reformulations is explained by the number of

constraints and variables in the problem. The KKT reformulation requires in both instances 2,240
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Figure 5.3: Evolution of market demands in the middle-size instances.

Figure 5.4: Evolution of selling prices in the middle-size instances.

additional binary variables to model complementarity conditions. The growth in the number of

binary variables has a severe impact in the solution time of the problem.

Table 5.4 compares the income, investment costs, and operating costs of the proposed expansion

plans. It shows that the expansion plan obtained for the first instance produces a slightly higher

NPV when compared with the plan obtained for the second instance. This result can be anticipated

because the feasible region of the first instance contains the feasible region of the second instance
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Figure 5.5: Evolution of production costs in the middle-size instances.

Model statistic
Middle-size 1 Middle-size 2

KKT Duality-base KKT Duality-base
reformulation reformulation reformulation reformulation

Number of constraints: 7,200 2,961 7,192 2,857
Number of continuous variables: 4,860 2,965 4,860 2,763
Number of binary variables: 2,345 105 2,335 95
LP relaxation at rootnode: 372 346 346 324
Final incumbent value: 316 316 308 308
Final optimality gap: 0.01% 0.00% 0.01% 0.00%
Number of B&B nodes: 11,367 1 16,786 1
Solution time: 157 s 0.83 s 282 s 0.73 s

Table 5.3: Model statistics of middle-size instances.

completely. However, the additional restrictions for the execution of investment decisions in the

second instance only produces a decrease of 1.1% in its NPV.

The investment plans obtained from the bilevel formulation do not invest to open the new plant in

any of the instances. In the first instance, the plan expands plants 2 and 3 in the first time period,

and plant 3 in the fifth time period. The optimal capacities and production levels of the plants

controlled by the leader in the first instance are presented in Figure 5.6; arrows indicate the time

periods in which capacity is expanded. We can observe in Figure 5.6 that all production plants have

high utilization. The expanded capacities in plants 2 and 3 are used as soon as they are available;
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Term in objective function Middle-size 1 Middle-size 2
Income from sales (M$): 895 885
Investment in new plants (M$): 0 0
Expansion cost (M$): 85 82
Maintenance cost (M$): 94 94
Production cost (M$): 315 313
Transportation cost (M$): 85 88
NPV (M$): 316 308
Market cost (M$): 1,319 1,319

Table 5.4: Results of the bilevel expansion plans for the middle-size instances.

plant 1 experiences a temporary decrease in its production because of the capacity increase at plant

3, but it returns to full utilization with demand growth. The bilevel expansion plan obtained for the

second instance is very similar to the plan obtained for the first instance; it expands plants 2 and 3

in the first time period, and delays the second expansion of plant 3 until the ninth time period. In

both instances, investment and maintenance cost are equal for all plants controlled by the leader;

therefore, the expansion trends observed are good indicators of the competitiveness of plants with

respect production and transportation cost.

Figure 5.6: Capacity and production of the leader in the first instance of the middle-size example.
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5.9 Solution strategies for large-scale problems

The implementation of the bilevel formulation for capacity planning problems in industrial in-

stances requires developing a solution strategy for large-scale problems. The results obtained from

the middle-size example suggest that the KKT reformulation is not appropriate to solve large in-

stances. Additionally, we can expect the duality-based reformulation to struggle solving large-scale

instances given the relative weakness of its LP relaxation. Therefore, we propose an improved

duality-based reformulation and a domain reduction scheme; these solution strategies are evalu-

ated in Section 5.10 with an industrial example.

5.9.1 Strengthened duality-based reformulation

The LP relaxation of the duality-based reformulation can be strengthened by enforcing strong dual-

ity independently for each commodity in every time period. The justification for this modification

comes from the observation that once the leader has fixed its capacity, the optimization problem

of the follower can be decomposed by time period and commodity. Consequently, we can replace

Equation (5.56) by its disaggregated version presented in Equation (5.59).

∑
i∈I

∑
j∈J

1

(1 +R)t
Pt,i,j,kyt,i,j,k

=
∑
j∈J

Dt,j,kλt,j,k −
∑
i∈I

C0
i,kµt,i,k −

∑
i∈IL

t∑
t′=1

Hi,kut,t′,i,k ∀ t ∈ T, k ∈ K (5.59)

Replacing Equation (5.56) by Equation (5.59) yields a modest improvement in the LP relaxation

of the duality-based reformulation. In the first instance of the middle-size example presented in

Section 5.8, the value of the LP relaxation is reduced from M$346 to M$343 (9.49% to 8.54%

initial optimality gap).

5.9.2 Domain reduction for the duality-based reformulation

A clever strategy to reduce the size of the capacity planning problem with rational markets derives

from the analysis of the feasible region of the bilevel optimization problem. In the bilevel optimiza-

tion literature, the bilevel feasible region is called the inducible region [9]. In essence, the inducible
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region is the set of upper-level feasible solutions and their corresponding rational reactions in the

lower-level problem. In order to describe the inducible region mathematically, we define the set of

upper-level feasible solutions as the capacity expansion plans that satisfy upper-level constraints.

This set of upper-level feasible solutions is represented in Equation (5.60),

(v, w, x, c) ∈ X (5.60)

whereX denotes the polyhedron described by upper-level constraints (5.10)-(5.12) and upper-level

domains (5.18)-(5.19).

The rational reaction set for the follower is defined by expression (5.61) as a function of the upper-

level variables,

Ψ(v, w, x, c) =

{
y : arg min

y∈Y

[∑
t∈T

∑
i∈I

∑
j∈J

∑
k∈K

1

(1 +R)t
Pt,i,j,kyt,i,j,k

]}
(5.61)

where Y denotes the polyhedron described by lower-level constraints (5.14)-(5.17).

According to expressions (5.60) and (5.61), the inducible region of the bilevel capacity expansion

problem is defined by expression (5.62).

IR = {(v, w, x, c, y) : (v, w, x, c) ∈ X, y ∈ Ψ(v, w, x, c)} (5.62)

We know from our original assumptions that any expansion plan satisfying Equation (5.60) has a

nonempty rational reaction set (Ψ(v, w, x, c)). However, not all demand assignments satisfying the

lower-level constraints (y ∈ Y ) are bilevel feasible because some of them might be suboptimal for

all expansion plans of the leader. Hence, it is possible to reduce the dimension of the bilevel for-

mulation by excluding from its domain those demand assignments (y ∈ Y ) that are never optimal

in the lower level.

The first step to identify demand assignments that are bilevel infeasible is to solve the lower-level

problem with the production capacities of the leader fixed to their upper bounds. Once we know

the optimal demand assignments in the lower-level problem with maximum capacity, we can infer

which demands are never assigned to the leader. The intuition for this inference is that only the

demands (Dt,j,k) that are assigned to the leader when the capacity is at its upper bound, can be
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assigned to the leader when its capacity is more constrained.

The idea behind the domain reduction is that demand assignments that are nonbasic in the opti-

mal solution of the LP with maximum capacity, must remain nonbasic when capacity is reduced.

Proposition 5.1 formalizes this idea. Its proof can be found in Appendix D.

Proposition 5.1. A demand assignment (yt,i,j,k) with positive reduced cost in the optimal solution

of the lower-level problem with maximum capacity also has a positive reduced cost when capacities

are reduced.

For the implementation of the domain reduction strategy, it is important to remember that nonbasic

variables are associated with positive reduced costs in the minimization problem. In order to iden-

tify nonbasic variables, we denote by µUt,i,k and λUt,j,k the optimal dual solution of the lower-level

problem with capacities of the leader are at their upper bound (CU
t,i,k ∀ i ∈ IL). Then, according

to Proposition 5.1, Equation (5.63) establishes valid upper bounds for the demand assignments in

the bilevel capacity planning problem.

yt,i,j,k ≤

0 if 1
(1+R)t

Pt,i,j,k + µUt,i,k − λUt,j,k > 0

Dt,j,k otherwise
∀ t ∈ T, i ∈ IL, j ∈ J, k ∈ K (5.63)

The range reduction proposed in expression (5.63) can have a significant impact in the size of the

bilevel formulation because many assignment variables can be fixed if we determine that zero is

their only bilevel feasible value. However, it is not the only advantage of the domain reduction

strategy when we use the duality-based reformulation. If we analyze the lower-level LP in light

of complementary slackness, we can conclude that expression (5.63) also implies that some dual

constraints (5.51) are never active. In particular, those dual constraints (5.51) corresponding to the

variables yt,i,j,k that can be fixed to zero are irrelevant in the duality-based formulation. Therefore,

the domain reduction strategy proposed for the bilevel capacity expansion planning offers the dou-

ble benefit of reducing the number of continuous variables and the number of constraints in the

duality-based reformulation.
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5.10 Industrial example

The solution strategies proposed for large-scale instances are tested with a capacity planning prob-

lem for an air separation company. This large-scale example includes 3 existing plants of the

leader, 2 candidate plants of the leader, and 5 plants of competitors. Demands of 20 markets for 2

different commodities are considered in a time horizon of 20 years divided in 80 time periods. Two

instances allowing different timing for the investment decisions are analyzed: the first instance al-

lows investments every fourth time period and the second instance allows investments every eighth

time period.

According to the formulation, the leader maximizes the NPV obtained during the 20-year time

horizon. Markets select their providers by controlling the demand assignments with the objective

of minimizing the discounted cost they pay. A discount rate (R) of 3% per time period is used

in both objective functions. Cost coefficients and all other parameters are omitted because of

confidentiality reasons.

The computational statistics for the original duality-based reformulation and the large-scale duality-

based reformulation are presented in Table 5.5; the large-scale reformulation enforces strong dual-

ity for each commodity in every time period and implements the domain reduction strategy to fix

variables and eliminate constraints. Table 5.5 shows that both instances of the industrial example

have a significant number of constraints, continuous and discrete variables. However, if we com-

pare the original and the large-scale duality-based reformulations, we observe a reduction between

13% and 17% in the number of continuous variables and constraints.

Model statistic
Industrial 1 Industrial 2

Original Large-scale Original Large-scale
duality-based duality-based duality-based duality-based

Number of constraints: 46,601 40,025 42,501 35,925
Number of continuous variables: 46,000 39,905 42,520 35,265
Number of binary variables: 640 640 520 520
LP relaxation at rootnode: 4,289 2,906 4,002 2,851
Final incumbent value: 2,662 2,791 2,689 2,746
Final optimality gap: 33.2% 1.27% 26.4% 0.98%
Solution time: 60 min∗ 60 min∗ 60 min∗ 5 min
∗ Time limit reached

Table 5.5: Model statistics of industrial instances.
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Term in objective function Industrial 1 Industrial 2
Income from sales (M$): 5,984 5,888
Investment in new plants (M$): 0 0
Expansion cost (M$): 439 411
Maintenance cost (M$): 215 215
Production cost (M$): 2,100 2,072
Transportation cost (M$): 439 444
NPV (M$): 2,791 2,746
Market cost (M$): 10,545 10,546

Table 5.6: Results of the bilevel expansion plans for the industrial instances.

The performance of both reformulations is also presented in Table 5.5; we observe a significant

difference in the performance of the original and the large-scale duality-based reformulations. A

major advantage of the large-scale reformulation is related to its LP relaxation at the rootnode.

This improvement derives partially from disaggregating strong duality, and more importantly from

excluding demand assignments that are bilevel infeasible. In the first industrial instance the LP re-

laxation gap is reduced from 34.9% to 3.9%, whereas in the second industrial instance the reduction

is from 34.4% to 3.7%.

Even after implementing the proposed strategies for large-scale problems, the industrial instances

are still difficult to solve using GUROBI 6.0.0. For our industrial example, only the second instance

was solved to the desired optimality gap of 1% with the large-scale duality-based reformulation.

However, if we compare the best solutions obtained for both industrial instances, we observe that

allowing more frequent expansions in the first instance produces a NPV that is M$45 higher, which

accounts for 1.6% of the potential profit. Table 5.6 presents in detail the terms in the objective

function for the best solutions obtained; the table shows that allowing more frequent expansions

in the first instance generates a more dynamic expansion plan that can capture a higher market

share. However, the optimal number of expansions is the same for both instances and none of them

includes investments in new plants.

The optimal capacity and production levels of plants controlled by the leader in the first industrial

instance are presented in Figures 5.7 and 5.8 for commodities 1 and 2, respectively; the figures

show that utilization of the production capacities is high for all the plants being expanded. The only

capacity that is not expanded in the entire time horizon is the production capacity of commodity 1

at plant 1; the utilization of this production capacity fluctuates according to the available capacity
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at plants 2 and 3. The expansion trends observed preserve a close relation with the competitiveness

of plants that is mainly determined by their production and distribution costs.

Figure 5.7: Capacity and production of commodity 1 at
the plants controlled by the leader in the first instance of
the industrial example.

Figure 5.8: Capacity and production of commodity 2 at
the plants controlled by the leader in the first instance of
the industrial example.

5.11 Summary

We have developed a novel formulation for capacity planning problems that considers markets as

rational decision makers. The formulation is based on bilevel optimization, a framework that allows

modeling the conflicting interests of producers and consumers. The expansion plans obtained

from the bilevel formulation produce greater economic benefits when the producers operate in

a competitive environment. In particular, the single-level formulation tends to overestimate the

market share that can be obtained and might generate expensive investment plans that are less

profitable.

The bilevel formulation for capacity planning is a challenging optimization problem. We have
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proposed two different approaches to reformulate it as a single-level MILP. The first approach

ensures optimality of the lower-level problem through its KKT conditions. The second approach

uses strong duality of LPs for the reformulation. In the middle-size instances, we have shown that

the duality-based reformulation offers superior performance compared to the KKT reformulation;

this result is explained by the large number of binary variables required in the KKT approach to

linearize the complementarity constraints. The duality-based reformulation does not require the

addition of binary variables, but the strong duality condition gives rise to nonlinearities; for the

case in which all upper-level variables are discrete, the nonlinearities can be avoided with the

introduction of continuous variables and linear constraints.

Despite the relative advantage of the duality-based reformulation, the solution of large-scale in-

stances of the bilevel capacity planning problem is still computationally demanding. We proposed

two strategies to improve the duality-based reformulation. The first strategy leverages separability

of the lower-level problem by disaggregating the strong duality constraint. The second strategy uses

the topology of the bilevel feasible region to reduce the number of variables and constraints in the

duality-based reformulation. The implementation of these strategies yields a significant reduction

in the solution time of large-scale problems.

The bilevel formulation for capacity planning has shown to be useful for developing capacity ex-

pansion plans that considers markets as rational decision makers. This novel approach is more

realistic than the traditional formulation because it models the dynamic nature of industrial mar-

kets. Furthermore, we have proposed an effective strategy to solve large-scale instances that allows

using the bilevel capacity planning formulation in industrial applications.
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Capacity Planning with Competitive
Decision-makers

6.1 Motivation

Industrial gas companies rely on capacity expansion models to plan the investments that allow

them to satisfy future demands. In this industry, the proximity of producers to customers is a

key competitive advantage that increases supply reliability and reduces transportation costs. This

feature makes capacity planning a major strategic decision that impacts the market share that can

be obtained in an environment of rational customers. The conflicting interests of several producers

and consumers can be modeled using multilevel optimization to capture the rational behavior of all

the players involved; such a model allows developing a robust expansion plan that anticipates the

decisions of competitors and potential costumers.

Capacity planning has been widely studied in areas requiring the development of long-term infras-

tructure. In the process systems engineering community, the capacity planning problem has been

extended to consider aspects of process design [233] and product development [154]. The model

can be applied to problems requiring large capital investments whose feasibility, effectiveness, and

profitability can only be assessed in a long time horizon. Therefore, capacity planning is critical

for many industries [151] and it is recognized as a key topic in Enterprise-Wide Optimization [93].

Nevertheless, the capacity planning problem in a fully competitive environment has not been for-
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mulated before in a mathematical programming framework. The model presented in Chapter 5

addresses the capacity planning problem with rational markets in a bilevel formulation, but ignores

potential expansion strategies of the competitors. The proposed bilevel formulation models the

Stackelberg competition [239] between a company planning its investments and markets minimiz-

ing the cost of satisfying their demands. The addition of rational competitors that are allowed to

expand implies a different dynamic for the capacity planning model.

A major extension of the bilevel formulations is needed to model the rational behavior of all players

involved in the capacity planning problem with competitive decision-makers. Three hierarchical

optimization problems are required because decisions are made sequentially by three players with

conflicting interests. Similarly to the model presented in Chapter 5, the company planning its

capacity is the first to decide its expansion strategy. Then, the competition optimizes its own

capacity expansion plan. After all expansions are fixed, the markets select providers to minimize

the cost of satisfying their demands. The investment decisions of the first two levels require discrete

variables, whereas the third level can be formulated as a Linear Program (LP).

The growth in the area combining mathematical programming and game theory has been tightly

linked to its fruitful range of applications. The potential of optimization models to coordinate

decision-making in decentralized systems has been recognized by Anandalingam & Apprey [3].

Interesting multilevel programming models have been developed for traffic planning [157], optimal

taxation of biofuels [10], parameter estimation [162], and product introduction [211].

However, there has been little work on multilevel optimization involving more that two players

with discrete variables, as is required to model a fully competitive environment. The electrical net-

work defense is the only problem for which a trilevel Mixed-Integer Linear Programming (MILP)

model has been proposed [248]; the solution procedures for this formulation are problem specific

and there is scarce theoretical study of the general properties of trilevel optimization problems.

Our research presents a novel framework for capacity planning, introduces new concepts of de-

generacy for multilevel problems, and proposes two solution algorithms for the models. The first

step in both algorithms is to reformulate the trilevel problem as a bilevel problem, replacing the

third-level by its optimality conditions. The reformulation is based on strong duality of the lower-

level LP. The duality-based reformulation offers documented advantages over the standard KKT

reformulation because it avoids the addition of discrete variables [80]. In the bilevel reformulation,

the second level models the capacity expansion of the competitors and enforces optimality of the

third-level problem. The resulting formulation is a Bilevel Mixed-Integer Linear Program (BMILP)
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with discrete variables in both levels; efficient solution methods for these type of problems is still

considered an open question in Operations Research [51].

The numerical solution of BMILPs has been receiving increasing attention during the past years,

but the existing literature has only considered academic examples with few discrete variables. The

first Branch-&-Bound algorithm was developed by Moore & Bard [163]; it was based exclusively

on the solution of LPs. Later, the same authors proposed a binary search tree algorithm that obtains

the rational reaction of the lower level by solving an MILP after fixing the decision of the leader

[9]; in the worst case, both algorithms conduct an exhaustive exploration of the leader’s decision

space. DeNegre & Ralphs [55] derived a locally valid cut that can be added to the Branch-&-Bound

procedure proposed by Bard & Moore [9]; however, these cuts tend to be weak in problems with

parameters of different magnitudes or with non-integer coefficients.

The framework proposed by Gümüş & Floudas [98] is based on convexification of the lower-level

MILP to guarantee that its optimal solution lays in a vertex of the lower-level constraint region. This

strategy allows using the reformulation techniques developed for lower-level LPs, but it comes at

the expense of introducing an exponential number of variables and constraints. Faisca et al. [62]

have used multi-parametric programming to characterize the optimal lower-level response for any

potential first-level decision. This procedure can be extremely involved, but is interesting from a

theoretical point of view because the multi-parametric solution completely describes the inducible

region of the bilevel problem.

Recently, there have been two relevant contributions for our research. Xu & Wang [247] proposed

a general spatial Branch-&-Bound search that splits the inducible region in polyhedral sets called

stability regions; stability regions characterize the decisions of the leader that share the same opti-

mal reaction of the follower. Zeng & An [255] developed a reformulation-decomposition approach

that iteratively approximates the rational reaction of the follower based on linear inequalities in the

space of the leader decision variables. Both contributions have been important for the development

of our algorithms.

We present two algorithms that exploit different properties of the trilevel capacity expansion prob-

lem. Both algorithms leverage the relaxation obtained by eliminating the objective function of the

lower level, known as the high-point problem. The first algorithm is a constraint-directed explo-

ration; it eliminates decisions of the leader that have been explored, as well as all other decisions

that induce the same reaction of the other players. The second algorithm is a decomposition method

involving a master problem and a subproblem. The main idea is to incorporate in the master prob-
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lem the reactions of the competition that are iteratively observed.

The rest of this chapter is structured as follows. In Section 6.2, we describe the capacity planning

problem in a competitive environment. In Section 6.3, we propose the trilevel optimization formu-

lation. Section 6.5 explores the implications of degeneracy in trilevel optimization problems. In

Section 6.6, we elaborate on the properties of the capacity planning model that are useful for the

development of our algorithms. The algorithms are described in Sections 6.7 and 6.8. In Section

6.9, we illustrate the implementation of the algorithms on two instances of the capacity planning

problem. Finally, Section 6.10 reviews the novelty of this work and the results obtained.

6.2 Problem statement

The capacity planning problem in a competitive environment considers three players with indepen-

dent decision criteria: the first-level industrial producer (leader) planning its expansion strategy,

competitors that are allowed to expand, and costumers that select their providers. The objective of

the capacity planning problem is to establish the expansion plan that maximizes the Net Present

Value (NPV) obtained by the leader during a finite time horizon. The optimal expansion plan must

balance investment and operational costs with the income obtained from sales. Sales are bounded

by deterministic demands during the entire time horizon and depend on the actions taken by the

other decision-makers. Initially, the leader is given a set of plants with finite production capac-

ity and a set of candidate locations where new plants can be built. Capacity of the plants can be

expanded in discrete increments by paying a fixed cost; only discrete capacity expansions are con-

sidered to model the installation of new production lines. The attractiveness of expanding plants

depends on the possibility of obtaining a higher market share or reducing operational costs.

The competition represents other industrial producers that observe the decisions of the leader and

develop expansion plans with the objective of maximizing their own NPV. All production plants

that are not controlled by the leader are assumed to behave as a rational decision-maker with a

centralized planner. The competition controls a set of open plants with given initial capacity; they

are also allowed to open new plants in a set of candidate locations. Expansions at open plants

are modeled with discrete capacity increments and fixed costs. We assume that the total initial

capacity in the plants controlled by the leader and the competition is enough to satisfy all demands

throughout the horizon.

139



Chapter 6. Capacity Planning with Competitive Decision-makers

Demand assignments in each time period are decided by customers after observing the available

capacities in the plants controlled by the leader and by the competition. The market behaves as

a centralized decision-maker that minimizes the total cost paid by all customers; demand assign-

ments are based exclusively on availability and price of the products. The industrial producers can

only influence market decisions by changing their production capacity since prices are fixed pa-

rameters. The leader offers a single selling price to each potential customer in a given time period,

regardless of the plant that is used to satisfy the demand. Under this assumption, the customers

are only concerned with selecting their providers, and the leader can choose the plants that satisfy

the demands that are assigned to it. We consider two approaches to construct the prices in this

industrial environment.

• The leader offers homogeneous prices: the price Pt,i,j offered to a certain customer (j) is the

same regardless of the plant i ∈ IL.

Pt,i,j = Pt,j ∀ t ∈ T, i ∈ IL, j ∈ J (6.1)

• Competitors offer site-dependent prices: the price Pt,i,j offered to customers depend on a

raw price (P raw
t,i ) and the transportation cost (Gt,i,j) from that plant to the customers (j) .

Pt,i,j = P raw
t,i +Gt,i,j ∀ t ∈ T, i ∈ IC, j ∈ J (6.2)

The decision process takes place sequentially and perfect information is assumed for all players.

The perfect information assumption implies that higher level decision-makers are aware of the

decision criteria of the lower levels, and lower-level decision-makers observe the actions of the

higher levels before selecting their response. The optimal solution of the problem characterizes the

expansion plan that optimizes the objective function of the leader, considering a rational reaction of

the competitors and the market. It implies that the leader cannot improve its objective unilaterally,

the competitors select their optimal expansion plan given the decisions of the leader, and the market

minimizes its total cost according to the available capacity.

140



Chapter 6. Capacity Planning with Competitive Decision-makers

6.3 Capacity planning with competitive decision-makers: trilevel
formulation

According to the problem statement, we define the objective function of the industrial producers

as the maximization of their NPV over a finite time horizon. The objective function presented in

Equation (6.3) is the decision criterion of the leader,

NPV L =
∑
t∈T

∑
i∈IL

∑
j∈J

Pt,i,jyt,i,j

−
∑
t∈T

∑
i∈IL

(At,ivt,i +Bt,iwt,i + Et,ixt,i)

−
∑
t∈T

∑
i∈IL

∑
j∈J

(Ft,i +Gt,i,j) yt,i,j (6.3)

where T , IL, and J are respectively the index sets for time periods (t), plants controlled by the

leader (i ∈ IL), and customers (j). The first term represents the income obtained from sales.

Variables yt,i,j indicate the quantities sold from plant i to customer j at time t; coefficients Pt,i,j
are the selling prices. In the second term, vt,i is a binary variable indicating if a new plant is

built at location i at time period t; the fixed cost to open a new plant is given by coefficients At,i.

Maintenance costs are modeled with binary variables wt,i that indicate which plants are open; the

maintenance cost of per time period is given by Bt,i. Capacity expansion decisions are modeled

with binary variables xt,i; the fixed cost of the expansions is given by Et,i. The third term models

the operational costs by associating demand assignments (yt,i,j) with the unit costs of production

(Ft,i) and transportation (Gt,i,j).

It is worth noticing that the objective presented in Equation (6.3) is not only a function of the

variables that model planning decisions; it also depends on demand assignment variables (yt,i,j)

that are controlled by the customers. The competing industrial producers are assumed to maximize

their own NPV with the same income and cost structure of the leader. In this framework, the trilevel

formulation can be modeled with Equations (6.4)-(6.16),
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max
vL,wL,xL,cL

NPV L
(
vL, wL, xL, cL, y

)
(6.4)

s.t. wt,i = V0,i +
∑
t′∈T−t

vt′,i ∀ t ∈ T, i ∈ IL (6.5)

xt,i ≤ wt,i ∀ t ∈ T, i ∈ IL (6.6)

ct,i = C0,i +
∑
t′∈T−t

Hixt′,i ∀ t ∈ T, i ∈ IL (6.7)

max
vC ,wC ,xC ,cC

NPV C
(
vC, wC, xC, cC, y

)
(6.8)

s.t. wt,i = V0,i +
∑
t′∈T−t

vt′,i ∀ t ∈ T, i ∈ IC (6.9)

xt,i ≤ wt,i ∀ t ∈ T, i ∈ IC (6.10)

ct,i = C0,i +
∑
t′∈T−t

Hixt′,i ∀ t ∈ T, i ∈ IC (6.11)

y = arg min
y∈Y (cL,cC)

{∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j

}
(6.12)

ct,i ∈ R+ ∀ t ∈ T, i ∈ IC (6.13)

vt,i, wt,i, xt,i ∈ {0, 1} ∀ t ∈ T, i ∈ IC (6.14)

ct,i ∈ R+ ∀ t ∈ T, i ∈ IL (6.15)

vt,i, wt,i, xt,i ∈ {0, 1} ∀ t ∈ T, i ∈ IL (6.16)

where the set of production plants I is divided in two subsets denoting the plants controlled by

the leader (IL) and the plants controlled by the competitors (IC). The superscript L identifies

the variables controlled by the leader and the superscript C the plants controlled by the com-

petitors. The constraints modeling the feasible investment strategies for the leader are presented

in Equations (6.5)-(6.7). We define T−t as the subset of time periods before time t; formally,

T−t = {t′ : t′ ∈ T, t′ ≤ t}. Equation (6.5) enforces maintenance for open plants; the parameter

V0,i indicates if plant i is initially open. Equation (6.6) restricts expansions to the open plants;

only one expansion per time period is allowed in each plant. Equation (6.7) models capacity (ct,i)
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of plants according to their initial capacity (C0,i) and discrete expansions (xt,i) of size Hi. The

corresponding feasible expansion plans for the competitors are presented in Equations (6.9)-(6.11).

Domains for the decisions of the competitors and the leader are expressed by Equations (6.13)-

(6.14) and Equations (6.15)-(6.16), respectively.

The rational response of the customers is modeled with Equation (6.12). The market minimizes

its total discounted cost by controlling the demand assignment variables yt,i,j on the polyhedral

set Y (cL, cC); the decision space of the assignments depends on the capacity planning strategies

chosen by the leader and the competitors. The complete third-level optimization problem that

decides demand assignments is presented in Equations (6.17)-(6.20),

min
y

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j (6.17)

s.t.
∑
j∈J

yt,i,j ≤ ct,i ∀ t ∈ T, i ∈ I (6.18)

∑
i∈I

yt,i,j = Dt,j ∀ t ∈ T, j ∈ J (6.19)

yt,i,j ≥ 0 ∀ t ∈ T, i ∈ I, j ∈ J (6.20)

where Dt,j is the demand of customer j in time period t.

6.4 Capacity planning with competitive decision-makers: bilevel
reformulation

The trilevel formulation for the capacity planning in a competitive environment is a difficult math-

ematical problem. There are no standard techniques to solve this kind of problems and most of

the available literature in multilevel programming focuses on bilevel problems. Therefore, the first

step to address this challenge is to reformulate the two lower levels as a single-level optimization

problem. Equations (6.8)-(6.14) is a bilevel formulation modeling the problem of the competitors

and the market; the upper level only has discrete variables and the lower level is an LP. Hence, the

problem can be transformed into a single-level formulation by replacing the lower level with its

optimality conditions.
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The most common approach to reformulate a bilevel optimization leverages convexity of the lower

level to characterize the set of optimal lower-level solutions using the Karush-Kuhn-Tucker (KKT)

optimality conditions. However, in lower-level problems with inequality constraints the KKT ap-

proach might be ineffective because it requires the addition of many complementarity constraints.

The duality-based approach described in Chapter 5 is better suited to reformulate the two lower-

level problems because it does not require the addition of binary variables. We replace the lower-

level LP by constraints guaranteeing primal feasibility, dual feasibility, and strong duality. The

constraints presented in Equations (6.21)-(6.25) characterize the set of optimal solutions for the

cost minimization problem controlling demand assignments in the model with rational markets

[80],

∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j =
∑
t∈T

[∑
j∈J

Dt,jλt,j −
∑
i∈I

ct,iµt,i

]
(6.21)

∑
j∈J

yt,i,j ≤ ct,i ∀ t ∈ T, i ∈ I (6.22)

∑
i∈I

yt,i,j = Dt,j ∀ t ∈ T, j ∈ J (6.23)

λt,j − µt,i ≤ Pt,i,j ∀ t ∈ T, i ∈ I, j ∈ J (6.24)

yt,i,j; µt,i ∈ R+; λt,j ∈ R ∀ t ∈ T, i ∈ I, j ∈ J (6.25)

where Equation (6.21) enforces strong duality and Equation (6.24) are the dual constraints corre-

sponding to primal variables yt,i,j . Dual variables associated to Equation (6.18) are denoted by µt,i
and dual variables associated to Equation (6.19) are denoted by λt,j,k.

It is important to note that Equation (6.21) contains bilinear terms in the product of upper-level

variables ct,i and dual variables µt,i. Bilinear terms are nonconvex; however, in this case we can

apply an exact linearization procedure [87] because variables ct,i only take discrete values. The

non-linearity is avoided by describing capacities (ct,i) in terms of the expansion decisions, ac-

cording to Equation (6.7) and Equation (6.11). Additionally, new variables (ut,t′,i) defined for the

product of dual variables µt,i and expansion variables xt′,i are introduced in the formulation. Then,

Equation (6.21) can be replaced by the Equations (6.26)-(6.28).
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∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j =
∑
t∈T

∑
j∈J

Dt,jλt,j −
∑
i∈I

C0,iµt,i −
∑
i∈I

∑
t′∈T−t

Hiut,t′,i

 (6.26)

ut,t′,i ≥ µt,i −M(1− xt′,i) ∀ t ∈ T, t′ ∈ T−t , i ∈ I (6.27)

ut,t′,i ∈ R+ ∀ t ∈ T, t′ ∈ T−t , i ∈ I (6.28)

We achieve the exact linearization of the bilinear terms in Equation (6.21) with only two linear

inequalities, Equations (6.27) and (6.28), because they are sufficient to bound variables ut,t′,i in the

improving direction of the objective function.

The bilevel reformulation of the capacity planning problem in a competitive environment is ob-

tained by replacing Equation (6.12) in the trilevel formulation with the constraints modeling the

rational behavior of the market. The optimal response of the market is characterized by the primal

feasibility constraints presented in Equations (6.22)-(6.23), the dual feasiblity constraints presented

in Equation (6.24), the linearized version of the strong duality constraint presented in Equations

(6.26)-(6.28), and the domains presented in Equation (6.25).

6.5 Multilevel programming and degeneracy

The optimal solution of a multilevel program might not be strictly defined if a lower-level prob-

lem has several optimal responses to the decisions of the higher levels. Degeneracy gives rise to

ambiguity in the lower-level decision criterion because the same optimal objective values can be

obtained from a set of responses producing different effects in the higher levels. The interpretations

of degeneracy have been studied for bilevel programs [52], but it has not been addressed before in

multilevel programming. We first offer some background on degeneracy in bilevel optimization in

order to present the definitions needed for our algorithms.

6.5.1 Degeneracy in bilevel programming

One complication of bilevel optimization problems is the characterization of optimal solutions

when the lower-level problem has multiple optima. Definition 1 describes the most common mod-

eling approach for degenerate bilevel problems.
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Definition 1. The solution of a bilevel program is considered optimistic if any degeneracy in the

lower level is resolved in favor of the leader. The rational reaction of the lower-level problem in

the optimistic approach is formally defined by Equation (6.29).

ΨU(x) = arg max
y∈Ψ(x)

{F (x, y)} (6.29)

where x is the set of variables controlled by the upper level, y is the set of variables controlled by

the lower level, F (x, y) is the objective function being maximized in the upper level, and Ψ(x) is

the set of lower-level optimal reactions described in Equation (1.32).

The optimistic approach is a common assumption to resolve degeneracy in bilevel programming,

mainly because optimistic solutions are easy to find using reformulation techniques. However, there

is an increasing interest on extending the treatment of degeneracies to study alternative resolution

models. The pessimistic approach can be defined as the model in which the lower level selects the

response that is most detrimental to the leader in case of degeneracy [53]. These alternative models

are considered harder to solve.

6.5.2 Degeneracy in trilevel programming

Hierarchical optimization problem with three levels might exhibit new types of solutions. In order

to comply with the perfect information assumption, the decision criteria must be completely speci-

fied in the case of degeneracy, such that decision-makers that are hierarchically higher can calculate

the response of the lower levels. In the following, we propose definitions to clear out ambiguity in

our trilevel formulation when the second and third levels have multiple optima.

Definitions of the Constraint Region (Ω) presented in Equation (1.29) and the High-Point (HP )

problem presented in Equations (1.34)-(1.37) can be extended directly to trilevel optimization prob-

lems. Similarly, the Inducible Region (IR) follows the same intuition presented for bilevel models

in Equation (1.33), but its interpretation depends on a new definition of the Rational Reaction

sets. For notational convenience, we denote by xL and xC the first- and second-level decisions,

respectively; all other first- and second-level variables can be easily related to them in the capacity

planning problem.
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Definition 2. The following Rational Reaction sets can be identified in a trilevel program.

• The rational reaction set of the third level:

Ψy(x
L, xC) = arg min

y∈Y (xL,xC)

{∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jyt,i,j

}
(6.30)

• The first-level optimistic reaction set of the third level:

ΨLy (xL, xC) = arg max
y∈Ψy(xL,xC)

{
NPV L(xL, xC, y)

}
(6.31)

• The second-level optimistic reaction set of the third level:

ΨCy(xL, xC) = arg max
y∈Ψy(xL,xC)

{
NPV C(xL, xC, y)

}
(6.32)

• The rational reaction set of the second level:

ΨxC(x
L) = arg max

xC∈XC(xL)

{
NPV C(xL, xC, y) : y ∈ Ψy(x

L, xC)
}

(6.33)

• The first-level optimistic reaction set of the second level:

ΨLxC(x
L) = arg max

xC∈Ψ
xC (xL)

{
NPV L(xL, xC, y) : y ∈ Ψy(x

L, xC)
}

(6.34)

The Rational Reaction sets presented in Definition 2 suggest a variety of interpretations for degen-

erate solutions in trilevel programs. We classify the approaches to resolve degeneracy in trilevel

programming according to the order in which the upper-level objective functions are favored.

Definition 3. The optimal solution to a trilevel program is considered Sequentially Optimistic

if degeneracy in the third level is resolved in favor of the second level, and degeneracy in the

second level is resolved in favor of the first level. A Sequentially Optimistic optimal solution is

characterized according to Equation (6.35).
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(
x̂L, x̂C, ŷ

)
= arg max

{
NPV L(xL, xC, y) : xL ∈ X, xC ∈ ΨLxC(x

L), y ∈ ΨCy(xL, xC)
}

(6.35)

Definition 4. The optimal solution to a trilevel program is considered Hierarchically Optimistic

if degeneracy in the third level is resolved in favor of the first level, and degeneracy in the second

level is also resolved in favor of the first level. A Hierarchically Optimistic optimal solution is

characterized according to Equation (6.36).

(
x̂L, x̂C, ŷ

)
= arg max

{
NPV L(xL, xC, y) : xL ∈ X, xC ∈ ΨLxC(x

L), y ∈ ΨLy (xL, xC)
}

(6.36)

Surprisingly, the Hierarchically Optimistic model for resolving degeneracy does not guarantee the

best possible objective for the first-level decision-maker. Therefore, we present a third optimistic

approach to degeneracy.

Definition 5. The optimal solution to a trilevel program is considered Strategically Optimistic

if degeneracy in the second level is resolved in favor of the first level, and degeneracy in the third

level is resolved such that the best first-level solution is obtained. In order to define the Strategically

Optimistic optimal solution, we characterize the second-level pessimistic reaction set of the third

level (ΥCy ) according to Equation (6.37).

ΥCy(xL, xC) = arg min
y∈Ψy(xL,xC)

{
NPV C(xL, xC, y)

}
(6.37)

The idea behind the Strategically Optimistic model is that the second-level decision-maker accepts

any resolution of degeneracy yielding a better objective value than the second-level pessimistic

model. First, let us define in Equation (6.38) the rational reaction set for the second level in the

pessimistic framework.

ΨΥ
xC(x

L) = arg max
xC∈XC(xL)

{
NPV C(xL, xC, y) : y ∈ ΥCy(xL, xC)

}
(6.38)

Now, the strategic reaction set is defined as the tuple of second- and third-level decisions that
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belong to the rational reaction set of the third level and yield a better solution to the second level

than the second-level pessimistic model. The strategic rational reaction set is defined in Equation

(6.39).

ΨS

(xC ,y)(xL) =
{(
xC, y

)
: NPV C(xL, xC, y) ≥ NPV C(xL, x̃C, ỹ),

x̃C ∈ ΨΥ
xC(x

L), ỹ ∈ ΥCy(xL, x̃C), y ∈ Ψy

}
(6.39)

Finally, a Strategically Optimistic optimal solution is characterized according to Equation (6.40).

(
x̂L, x̂C, ŷ

)
= arg max

{
NPV L(xL, xC, y) : xL ∈ X, (xC, y) ∈ ΨS

(xC ,y)(xL)

}
(6.40)

The difference between the three degeneracy resolution models is illustrated in Example 1.

Example 1. Figure 6.1 describes a case in which different approaches to degeneracy produce

different solutions for a fixed first-level decision (xL). Here, the second level has two rational

reactions xC1 and xC2 , corresponding to different interpretations of third-level degeneracy. For each

second-level solution, the third level has two alternative optimal reactions.

Figure 6.1: Example of different degeneracy resolution models.
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Outcome D is the optimal solution under the Sequentially Optimistic model because degeneracy

in the third level favors the objective of the competition (NPV L = 200, NPV C = 400). Under

the Hierarchically Optimistic model, the optimal solution of the problem is given by outcome C

(NPV L = 250, NPV C = 200). In this case, the third level tries to benefit the leader locally,

pushing the competitor to select xC2 , which is detrimental for the first-level objective function. The

Strategically Optimistic solution is given by outcome A (NPV L = 300, NPV C = 300), which is

the best solution for the first level from all degeneracy resolution models. It is interesting to note

that outcome B is not trilevel feasible because it does not belong to the inducible region under any

degeneracy resolution model.

We have only presented degeneracy resolution models that characterize optimistic approaches.

However, models for pessimistic resolution or mixed resolution (e.g. optimistic-pessimistic) can

be easily extended from our definitions.

6.6 Properties of the trilevel capacity planning formulation

Solution algorithms for the capacity planning with competitive decision-makers rely on particular

properties of the trilevel formulation. In this section we describe the most relevant properties for

the algorithms we propose, and indicate the how to exploit them.

6.6.1 Stability regions

We study regions RxL(x̂C, ŷ) of the first-level decision space that aggregate points xL producing

the same rational reaction of the lower levels (x̂C, ŷ). We can expect the trilevel capacity planning

formulation to have large stability regions because the second and third levels are indifferent to

the distribution of capacities in the plants controlled by the first level. From the point of view of

the market, only the total capacity of the leader in a given time period (Ct) is relevant since all its

plants offer the same price.

Definition 6. A Stability Region RxL(x̂C, ŷ) in the trilevel capacity planning formulation is the

set of first-level decisions that produce exactly the same rational reactions in the second and third

levels. Formally, the stability region for second- and third-level reactions (x̂C, ŷ) is characterized

according to Equation (6.41).
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RxL(x̂C, ŷ) =
{
xL : xL ∈ XL, x̂C ∈ Ψ0

xC(x
L), ŷ ∈ Ψ0

y(x
L, x̂C)

}
(6.41)

where Ψ0
xC(x

L) and Ψ0
y(x
L, x̂C) refer to one of the degeneracy resolution models described in

Section 6.5.2.

Another property of the trilevel planning formulation that implies large stability regions can be

derived from the intuition that expanding plants with slack capacity does not change the rational

response of the second and third levels. Proposition 6.1 gives the mathematical description of this

property.

Proposition 6.1. Let (Q̂) be the bilevel problem obtained after fixing the first-level decisions to

x̂L in the second- and third-level problems presented in Equations (6.8)-(6.14). We denote by

(x̂C, ŷ) the corresponding optimal bilevel solution and by µ̂ the optimal multipliers associated with

capacity constraints (6.18). Then,

x̄L ∈
{

(c1,1, .., c|T |,|IL|) :

∑
i∈IL

ct,i =
∑
i∈IL

ĉt,i

 ∨


∑
i∈IL

ct,i ≥
∑
i∈IL

ĉt,i

µ̂t′,i = 0 ∀ t′ ∈ T+
t , i ∈ IL

 ∀ t ∈ T} (6.42)

=⇒ x̄L ∈ RxL(x̂C, ŷ) (6.43)

where T+
t is the subset of periods after time t: T+

t = {t′ : t′ ∈ T, t′ ≥ t}.

Proof. We want to prove that a first-level decision x̄L satisfying conditions (6.42) produces the

same rational reaction (x̂C, ŷ) as x̂L. We divide the proof of Proposition 6.1 in three steps.

Step 1. In the third-level problem, increasing the capacity of one plant cannot increase the demand

assigned to any other plant.

Let us denote by (P̂ ) the third-level problem with capacities equal to ct,i, and by (P̃ ) the problem

in which plant i′ increases its capacity by ∆Ci′ . We want to show that the optimal demand assign-

ments (yt,i,j) corresponding to problems (P̂ ) and (P̃ ) satisfy the conditions presented in Equation

(6.44).
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∑
j∈J

ỹt,i,j ≤
∑
j∈J

ŷt,i,j ∀ t ∈ T, i ∈ I\ {i′} (6.44)

First, we notice that fully utilized plants (
∑

j∈J ŷt,i,j = ct,i) in problem (P̂ ) cannot increase the

demand assigned to them. For all other plants with slack capacity (
∑

j∈J ŷt,i,j + ε̂t,i = ct,i), the

Lagrange multiplier (µ̂t,i) associated with the capacity constraint (6.18) must be zero according to

complementary slackness of the third-level LP.

We prove in Appendix D that increasing the capacity of one plant cannot produce an increase

in the optimal Lagrange multipliers associated with capacity constraints (6.18). In this case, the

Lagrange multipliers (µ̂t,i) of plants with slack capacity in problem (P̂ ) remain at zero. Therefore,

the condition presented in Equation (6.45) must be satisfied for the optimal Lagrange multipliers

corresponding to problems (P̃ ) and (P̂ ).

µ̃t,i ≤ µ̂t,i = 0 ∀ (t, i) ∈ {(t, i) : t ∈ T, i ∈ I\ {i′} , ε̂t,i > 0} (6.45)

Since the slack (ε̂t,i) in plants that are not fully utilized in problem (P̂ ) can be arbitrarily small,

we conclude that the condition in Equation (6.44) must be satisfied. Otherwise, an increase in

the demand assignments would produce a positive value in the Lagrange multipliers (µ̃t,i > 0)

associated to capacity constraints.

Step 2. The optimal objective value of the second level cannot improve if the total capacity of the

leader increases
( ∑
i∈IL

x̃t,i ≥
∑
i∈IL

x̂t,i ∀ t ∈ T
)

and capacities of the competitors remain constant.

Recall that the prices offered by competitors are given by Equation (6.2). Rewriting the objective

function of the competition as in Equation (6.46), it is easy to note that the margin obtained from

every unit sold only depends on the production cost (Ft,i) and the raw price (P raw
t,i ) of each plant.

NPV C =
∑
t∈T

∑
i∈IC

∑
j∈J

(
P raw
t,i − Ft,i

)
yt,i,j −

∑
t∈T

∑
i∈IC

(At,ivt,i +Bt,iwt,i + Et,ixt,i) (6.46)

Therefore, the condition presented in Equation (6.44) also implies that the objective function of the

second level cannot improve from problem (P̂ ) to (P̃ ); this is formalized in Equation (6.47).

NPV C(x̃L, xC, ỹ) ≤ NPV C(x̂L, xC, ŷ) ∀ xC ∈ XC, (ỹ, ŷ) ∈ Ψ0
y(x̂
L, xC) (6.47)
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Step 3. If the expansion strategy of the leader (x̄t,i) satisfies the conditions presented in Equation

(6.42), the bilevel problems (Q̂) and (Q̄) resulting from fixing the variables of the leader have the

same rational reactions.

First, we use the duality-based reformulation presented in Equations (6.21)-(6.25) to verify that op-

timal solutions (ŷ) to problem (P̂ ) are feasible in (P̃ ). This is the case because capacity constraints

(6.18) are relaxed with the additional expansions of the leader, and the dual objective function

(right-hand side of Equation (6.21)) only changes in coefficients (ct,i) for which the optimal La-

grange multipliers (µ̂t,i) are equal to zero. Then, the optimal solution (x̂C, ŷ) of the bilevel problem

(Q̂) resulting from fixing the first-level decisions to x̂L, is feasible in the bilevel problem (Q̄) since

second-level constraints (6.9)-(6.11) are not affected by first-level decisions. Therefore, the opti-

mal solution to problem (Q̄) must be at least as good as the optimal solution to problem (Q̂); this

condition is formalized in Equation (6.48).

NPV C(x̂L, x̂C, ŷ) ≤ NPV C(x̄L, x̄C, ȳ) (6.48)

Furthermore, we can establish the inequalities given in Equation (6.49),

NPV C(x̄L, x̄C, ȳ) ≤ NPV C(x̂L, x̄C, ȳ) ≤ NPV C(x̂L, x̂C, ŷ) (6.49)

where the inequality on the left is derived from Equation (6.47), and the inequality on the right fol-

lows from optimality of (x̂L, x̂C, ŷ) in problem (Q̂). Equations (6.48) and (6.49) together demon-

strate that problems (Q̂) and (Q̄) have the same optimal objective value. Since the optimal solutions

of (Q̂) are always feasible in (Q̄), we conclude that they belong to the same stability region:

x̂L ∈ RxL(x̂C, ŷ)

x̄L ∈ RxL(x̂C, ŷ)

6.6.2 A cut to eliminate solutions in RxL(x̂
C, ŷ)

The capacity planning problem with competitive decision-makers is likely to have large stability

regions as a consequence of Proposition 6.1. These stability regions can be partially characterized

from the optimal solution of the bilevel problem (Q̂). In order to describe the stability regions, we

introduce the following parameters and sets.
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Definition 7. Given the optimal bilevel solution (xC,k, yk, µk, λk) corresponding to problem (Qk)

with first-level decisions fixed to (xL,k), we define:

• The total capacity of the leader in time period t:

C k
t =

∑
i∈IL

C0,i +
∑
t′∈T−t

∑
i∈IL

Hix
k
t,i (6.50)

• The subset of time periods in which all plants controlled by the leader do not expand but

expansions could change demand assignments:

Γkx0 =

t ∈ T :
∑
i∈IL

xkt,i = 0,
∑
t′∈T+

t

µkt′,i > 0

 (6.51)

• The subset of time periods in which the leader expands and further expansions could change

demand assignments:

Γkµ+ =

t ∈ T :
∑
i∈IL

xkt,i > 0,
∑
t′∈T+

t

µkt′,i > 0

 (6.52)

• The subset of time periods in which the leader expands but further expansions would not

change demand assignments:

Γkµ0 =

t ∈ T :
∑
i∈IL

xkt,i > 0,
∑
t′∈T+

t

µkt′,i = 0

 (6.53)

We describe the Stable Region (Rk) corresponding to first-level decisions (vL,k, wL,k, xL,k, cL,k) by

identifying if an alternative first-level solution satisfies the conditions presented in Proposition 6.1.

In Equation (6.54), we introduce binary variables zk0,t and zk1,t to indicate if alternative solutions

offer more, less, or the same capacity of the leader with respect to C k
t . zk0,t = 1∑

i∈IL
ct,i = C k

t

∨
 zk1,t = 1∑

i∈IL
ct,i < C k

t

∨
 zk0,t + zk1,t = 0∑

i∈IL
ct,i > C k

t

 ∀ t ∈ T (6.54)
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Based on the variables that compare capacities in alternative solutions to capacities in the solution

of problem (Qk), we can characterized the Stable Region (Rk) of solution (vL,k, wL,k, xL,k, cL,k)

with Equation (6.55).

∑
i∈IL

∑
t∈Γkx0

xt,i +
∑
t∈Γkµ0

zk1,t +
∑
t∈Γkµ+

(1− zk0,t) = 0 (6.55)

A no-good cut to exclude all solutions that belong to this region (xL ∈ Rk) is obtained by forcing

the left-hand side of Equation (6.55) to be greater or equal than one (≥ 1).

6.6.3 Equations to tighten the HP relaxation

The High-Point (HP ) relaxation of the bilevel reformulation presented in Section 6.4 can be ob-

tained by removing from the model the second-level objective function. The HP problem usually

yields a weak upper bound to the bilevel optimization problem because it gives control of all vari-

ables to the first level. The column-and-constraint generation method developed by Zeng & An

[255] proposes a strategy to tighten the HP relaxation based on second-level reactions for which

the second-level objective value is known. The idea is to generate cuts that constrain the second-

level objective function to be at least as good as it would be with any of the second-level solutions

that have been observed. These constraints, presented in Equation (6.56), are included in the HP

problem to model the reactions of the second level.

NPV C(xL, xC, y) ≥ NPV C(xL, x̂C,k, yk) (6.56)

where x̂C,k are parameters modeling a fixed second-level response, and yk are duplicate variables

that model optimal demand assignments for any first-level decision (xL) when the second-level

response (x̂C,k) is fixed. In order to enforce the third-level optimality of demand assignments, a

full set of duplicate variables (ykt,i,j, µ
k
t,i, u

k
t,t′,i,λ

k
t,k) and constraints must be appended to the HP

problem for each solution that has been observed. The constraints correspond to the duality-based

reformulation of the third-level problem; they are presented in Equations (6.57)-(6.63).
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∑
t∈T

∑
i∈I

∑
j∈J

Pt,i,jy
k
t,i,j =

∑
t∈T

∑
j∈J

Dt,jλ
k
t,j −

∑
i∈I

C0,iµ
k
t,i +

∑
i∈I

∑
t′∈T−t

Hiu
k
t,t′,i

 (6.57)

∑
j∈J

ykt,i,j ≤ ct,i ∀ t ∈ T, i ∈ IL (6.58)

∑
j∈J

ykt,i,j ≤ ĉkt,i ∀ t ∈ T, i ∈ IC (6.59)

∑
i∈I

ykt,i,j = Dt,j ∀ t ∈ T, j ∈ J (6.60)

λkt,j − µkt,i ≤ Pt,i,j ∀ t ∈ T, i ∈ I, j ∈ J (6.61)

ukt,t′,i ≥ µkt,i −M(1− xt′,i) ∀ t ∈ T, t′ ∈ T−t , i ∈ IL (6.62)

ykt,i,j; µkt,i, ukt,t′,i ∈ R+; λkt,j ∈ R ∀ t ∈ T, i ∈ I, j ∈ J (6.63)

We observe that the cuts modeled by Equations (6.56)-(6.63) do not exclude any solution that is

trilevel feasible. All first-level solutions remain feasible after the cuts are appended to the HP

problem because we assume that there is always enough capacity in the third level to satisfy all

demands. Therefore, the duality-based reformulation of the third level always have a feasible so-

lution. Additionally, we can guarantee that no point in the Inducible Region of the trilevel problem

can be excluded from the tightened HP problem because Equation (6.56) provides lower bounds

on NPV C based on solutions that are feasible in the second- and third-level problems; solutions

in the Inducible Region must be optimal in the second and third levels, which implies that their

corresponding NPV C must be greater or equal than any bound imposed by inequality (6.56). Fur-

thermore, if inequality (6.56) is active, then (yt,i,j, µt,i, ut,t′,i,λt,k) = (ykt,i,j, µ
k
t,i, u

k
t,t′,i,λ

k
t,k) satisfies

all other constraints in the HP problem.

6.7 Algorithm 1: Constraint-directed exploration

We use the stability regions of the capacity planning problem and the equations describing them

to design a constraint-directed exploration of the leader’s decision space. Algorithm 1 performs an

accelerated search on the inducible region containing the optimal trilevel solution. The details of

the algorithm are presented below.
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6.7.1 Reaching the sequentially optimistic solution

Algorithm 1 uses no-good cuts derived from Equation (6.55) to iteratively characterize the first-

level decision space in terms of stability regions. The algorithm finds the best trilevel feasible

solution inside each region (Rk) by solving the single-level reformulation (Qk) of the second- and

third-level problems. The search is directed towards unexplored first-level decisions by adding to

the high-point (HP k) of the bilevel reformulation, cuts that exclude the regions previously ana-

lyzed (Rk ∀ k ∈ K\{|K|}). Convergence of the algorithm is guaranteed because the problem has

a discrete number of first-level decisions, which implies a finite number of regions. The operations

performed by the algorithm are divided in six steps.

Step 1: Solve HP k over the unexplored first-level decision space. Identify the first-level solution

(xL
HPk

). If HP k is infeasible, terminate and return the incumbent.

Step 2: Update the upper bound (UBk). If UBk is less than the best lower bound (LB∗), terminate

and return the incumbent.

Step 3: Solve Qk with first-level variables fixed to xL
HPk

. Identify the second-level solution (xC
Qk

).

Step 4: Identify the sets Γkx0, Γkµ+, and Γkµ0 describing the region Rk that contains xL
HPk

and all

other first-level solutions satisfying the condition given by Equation (6.42).

Step 5: Update LB∗ if solution (xL
HPk

, xC
Qk
, yQk ) is better than the incumbent. Terminate if UBk

is equal to LB∗.

Step 6: Generate no-good cuts to exclude Rk from HP k+1. Go back to Step 1.

Algorithm 1 has two possible stopping criteria:

C1: If UBk < LB∗ in Step 2 or Step 5, return incumbent. In this case, no solution contained in

the unexplored region of the first-level decision space can be better than the incumbent.

C2: If HP k is infeasible in Step 1, return incumbent. In this case, the first-level decision space

has been exhaustively analyzed.

It is worth noticing that Step 1 produces an improving UB because the feasible region of prob-

lem HP k is successively reduced. On the other hand, Step 3 finds a trilevel feasible solution that

corresponds to the sequentially optimistic model of degeneracy because problem Qk resolves de-

generacy in favor of the second level. A sequentially optimistic solution might be very detrimental
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for the first level since demands assigned to the leader are degenerate according to the pricing

model presented in Equation (6.1). Furthermore, instances with a degenerate third level might not

close the gap between UBk and LB∗ because problems HP k and Qk use different degeneracy

resolution models. In this case, an exhaustive search could be necessary to meet stopping criterion

C2.

6.7.2 Reaching the hierarchically optimistic solution

Several additional operations are needed to instruct the algorithm to obtain the hierarchically opti-

mistic solution. The idea is modify Step 4 to find among the degenerate solutions the one that favors

the leader according to the hierarchically optimistic model. Two additional optimization problems

must be defined: the high-point problem (HPK
R (xC

Qk
)) constraint to region Rk with second-level

variables fixed to xC
Qk

, and the high-point problem (HPK
R (NPV C)) constraint to region Rk with

second-level objective value fixed to NPV C(xL
HPk

,xC
Qk

,y
Qk

). If the solutions obtained from these

problems are found not to resolve degeneracy in favor of the first level, we add penalties to the

objective functions of the second and third levels and go back to Step 3. A detailed description of

the steps required to reach the hierarchically optimistic solution are presented below.

Step 4a: Identify the sets Γkx0, Γkµ+, and Γkµ0 describing the region Rk that contains xL
HPk

and all

other first-level solutions satisfying the condition given by Equation (6.1).

Step 4b: Solve HPK
R (xC

Qk
) and identify the third-level response (yHPk

R
). If the third-level solution

is different from the one obtained in Step 3 (
∑

i∈IC yQk 6=
∑

i∈IC yHPkR
∀ t ∈ T ), add a

penalty to the third-level objective to resolve degeneracy in favor of the first level. Go back

to Step 3.

Step 4c: Solve HPK
R (NPV C). If the first-level objective is different from the one obtained in Step

3 (NPV L(xL
HPk

,xC
Qk

,y
Qk

) 6= NPV L(xL
HPk

R

,xC
Qk

,y
HPk

R
)), add a penalty to the second-level

objective to resolve degeneracy in favor of the first level. Go back to Step 3.

Problem HPK
R (xC

Qk
) has two purposes: to find the best first-level solution in Rk after the second-

level response (xC
Qk

) has been observed, and to resolve third-level degeneracy in favor of the first

level (yHPk
R
∈ ΨLy (xL

HPk
R

,xC
Qk

)). Problem HPK
R (NPV C) is intended to check if second-level degen-

eracy is being resolved in favor of the first level (xC
HPk

R
∈ ΨxC(xLHPk

R

)). The steps of the algorithm

are presented schematically in Figure 6.2; diamonds control the flow of the algorithm, light gray

boxes are simple operations and dark gray boxes involve optimization problems.
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Figure 6.2: Algorithm 1 towards the hierarchically optimistic solution.
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6.8 Algorithm 2: Column-and-constraint generation algorithm

As opposed to Algorithm 1, Algorithm 2 finds optimal trilevel solutions by exploring the decision

space of the second-level problem. Algorithm 2 is inspired by the column-and-constraint gen-

eration algorithm developed by Zeng & An [255] for linear bilevel problems with mixed-integer

variables in both levels. However, our algorithm operates over the bilevel reformulation of the

capacity planning problem presented in Section 6.4, which already enforces optimality of the vari-

ables control by the markets; therefore, no additional reformulation is needed for the continuous

variables. The details of the algorithm are presented below.

6.8.1 Reaching the strategically optimistic solution

Algorithm 2 uses the cuts presented in Section 6.6.3 to sequentially tighten the high-point relax-

ation of the trilevel capacity planning problem. The algorithm iterates between a master problem

(MP k) that provides upper bounds (UP k) and the single-level reformulation of the second- and

third-level problems (Qk
R) that explores the decision space of the second level. Problem MP k is

the high-point relaxation of the bilevel reformulation with the cuts modeled by Equations (6.56)-

(6.63). The search is directed towards unexplored second-level decisions by adding no-good cuts

to problem Qk
R, such that second-level decisions that were already observed are not considered in

future iterations. The no-good cuts used to diversify the search in the second-level decision space

are presented in Equation (6.64).

∑
(t,i)∈

{
(t,i): [xCi,j ]Qk

R
=1

}(1− xCt,i) +
∑

(t,i)∈
{

(t,i): [xCi,j ]Qk
R

=0

}xCt,i ≥ 1 (6.64)

where [xCi,j]Qk
R

denotes the second-level optimal solution for problem Qk
R.

The algorithm is identified as a column-and-constraint generation approach because at every itera-

tion, a new second-level candidate solution (ĉt,i ∀ t ∈ T, i ∈ IC) is appended toMP k, together with

the constraints and variables modeling third-level optimal responses. Convergence of Algorithm 2

is guaranteed because the problem has a discrete number of second-level decisions; therefore, a fi-

nite number of different columns and constraints can be added to MP k. The operations performed

by Algorithm 2 are divided in five steps; they are presented schematically in Figure 6.3.
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Step 1: Solve MP k. Identify the first-level solution (xL
MPk

) and the second-level objective value

NPV C(xL
MPk

,xC
MPk

,y
MPk

).

Step 2: Update the upper bound (UBk). If UBk is less or equal to the best lower bound (LB∗),

terminate and return the incumbent.

Step 3: Fix first-level variables to xL
MPk

and solve Qk
R including the no-good cuts presented in

Equation (6.64). If Qk
R is infeasible, terminate and return the solution obtained from MP k

(xL
MPk

, xC
MPk

, yMPk ). Otherwise, identify the second-level solution (xC
Qk

) and the second-

level objective value. If NPV C(xL
MPk

,xC
Qk
R

,y
Qk
R

) < NPV C(xL
MPk

,xC
MPk

,y
MPk

), terminate and

return the solution obtained from MP k (xL
MPk

, xC
MPk

, yMPk ).

Step 4: Update the best LB∗. If UBk is less or equal to the best lower bound (LB∗), terminate

and return the incumbent.

Step 5: Generate the columns and constraints to tightenMP k+1, and the cuts to exclude xC
Qk
R

from

Qk
R. Go back to Step 1.

Algorithm 2 has three possible stopping criteria:

C1: If UB ≤ LB∗ in Step 2 or in Step 4, both problems MP k and Q∗R yield the same optimal

value (NPV L(xL
MPk

,xC
MPk

,y
MPk

)) because there is no third-level degeneracy favoring the

second-level objective in problem Q∗R.

C2: If Qk
R is infeasible in Step 3, return the solution obtained from MP k (xL

MPk
, xC

MPk
, yMPk ).

In this case, the second-level decision space has been exhaustively analyzed.

C3: If NPV C(xL
MPk

,xC
MPk

,y
MPk

) ≥ NPV C(xL
MPk

,xC
Qk
R

,y
Qk
R

), return the solution obtained from

MP k (xL
MPk

, xC
MPk

, yMPk ). In this case, no other solution contained in the unexplored

region can be better for the second level than (xL
MPk

, xC
MPk

, yMPk ).

It is worth noticing that Step 1 produces an improving UBk because the feasible region of problem

HP k is successively reduced. The solutions obtained from HP k correspond to the strategically

optimistic model of degeneracy since the control of all variables are granted to the first level and

only a constraint on the second-level objective value is imposed. Step 3 directs the second-level

decisions towards the strategically optimistic solution but resolves third-level degeneracy in favor

of the second level. Consequently, the gap between UBk and LB∗ might not close; in that case,

either criterion C2 or C3 must be met.
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Figure 6.3: Algorithm 2 towards the strategically optimistic solution.

Remark. Algorithms 1 and 2 are guaranteed to find the same trilevel optimal solution only in

instances with no degeneracy in any level. If degeneracy is present, no result can be established

about the relative performance of the algorithms because they look for different solutions, and these

two problems can be arbitrarily difficult to solve. For non-degenerate instances we can establish

that Algorithm 1 requires at least the same number iterations as Algorithm 2. This is the case

because Algorithm 2 explores at most one point in each stability region, which is not true for

Algorithm 1. However, it does not imply that Algorithm 2 outperforms Algorithm 1 in execution

time because Algorithm 2 adds many variables and constraints to MP k at every iteration, which

increases the complexity of the iterations.
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6.9 Capacity planning instances

We test Algorithms 1 and 2 using two instances of the capacity planning problem with competitive

decision-makers. The algorithms are implemented to find the hierarchically and strategically op-

timistic solutions, respectively. The first instance is an illustrative example that we use to provide

insight about the performance of the algorithms; the second instance is an industrial example of

practical interest for the air separation industry.

Instance 1. Illustrative instance of trilevel capacity planning

This example considers one existing plant (L1) and one potential plant (L2) controlled by the

leader, as well as one existing plant (C1) and one potential plant (C2) controlled by the competition.

The market comprises four customers (Mj) with demands for a single commodity. The planning

problem has a horizon of 20 time periods, in which the plants are allowed to expand in periods 1,

5, 9, 13, and 17. The trilevel model has 100 discrete variables and 120 constraints in the first level,

100 discrete variables and 120 constraints in the second level, and 320 continuous variables and

160 constraints in the third level. A scheme representing the location of plants and customers is

presented in Figure 6.4; the parameters of the instance are given in Tables 6.1, 6.2, and 6.3.

The optimal expansion strategy for the leader comprises expanding plant L2 at time 9 to capture

the demand from M2. The rational reaction of the competition is to expand plant C2 at time 9 to

maintain M4 by offering a lower price than the leader. The optimal assignments in the first and

last time periods are presented Figure 6.5. The elements of the objective functions for the trilevel

optimal solution are presented in Table 6.4.

Figure 6.4: Network of plants and markets in Instance 1.
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Time (t)
Customer (j)

Dt,1 Dt,2 Dt,3 Dt,4

1-4 3.75 0 3 10
5-8 3.75 0 3 10
9-12 3.75 8 3 10
13-16 3.75 10 3 10
17-20 3.75 10 3 10

Table 6.1: Market demands in Instance 1.

Costumer
(j)

Plant (i)
Pt,L1,j Pt,L2,j Pt,C1,j Pt,C2,j

M1 8 8 17 17
M2 8 8 9 17
M3 17 17 8 17
M4 9 9 10 8

Table 6.2: Selling prices in Instance 1.

Parameter
Plant (i)

L1 L2 C1 C2
At,i - 0 - 0
Bt,i 15 15 15 15
Et,i 110 110 110 110
Ft,i 3 3 2 4
Gt,i,1 1 10 10 10
Gt,i,2 10 1 2 10
Gt,i,3 10 10 1 10
Gt,i,4 10 2 3 1
C0,i 3.75 0 30 0
Ht,i 30 30 30 30

Table 6.3: Cost parameters and initial capacities in Instance 1.

Instance 1 has been designed such that Algorithms 1 and 2 find exactly the same solution at every

iteration. This is possible because the hierarchically and strategically optimistic solutions coincide.

The convergence of the upper and lower bounds for both algorithms can be observed in Figure 6.6.

Figure 6.5: Optimal demand assignments for Instance 1.
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Element of objective function Leader Competition

Income from sales [M$]: 1,496 2,240
Expansion cost [M$]: 110 110
Maintenance cost [M$]: 480 480
Production cost [M$]: 561 760
Transportation cost [M$]: 187 420

Total NPV [M$]: 158 470

Table 6.4: Optimal objective values for Instance 1.

Figure 6.6: Convergence of Algorithms 1 and 2 in Instance 1.

Both algorithms were implemented in GAMS 24.4.1 and the optimization problems were solved

using GUROBI 6.0.0 on an Intel Core i7 CPU 2.93 Ghz processor with 4 GB of RAM. Table 6.5

presents the computational statistics for problems HP k of Algorithm 1 and MP k of Algorithm 2

in the first and last iterations. We observe that both problems have the same number of continuous

variables and constraints in the first iteration, but they grow much faster in Algorithm 2 than in Al-

gortihm 1; on the other hand, Algorithm 1 has a modest increase in the number of binary variables.

Our analysis indicates that instances for which both algorithms explore the solution space in the

same order can be solved faster with Algorithm 1 because the complexity of iterations increases at

a lower rate.
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Problem
First iteration Final iteration
HP k & MP k HP k MP k

Constraints: 1,015 1,035 3,596
Continuous variables: 835 835 3,331
Binary variables: 120 128 120
CPU time [s]: 2 5 9

Table 6.5: Computational statistics of Algorithms 1 and 2 in Instance 1.

Instance 2. Industrial example

This example is based on the instance Middle-size 1 presented in Chapter 5; we extend the problem

by considering expansions in the plants controlled by the competition. The problem comprises

the production and distribution of one product to 15 customers. Initially, the leader has three

plants with initial capacities equal to 27,000 ton/period, 13,500 ton/period, and 31,500 ton/period.

Additionally, the leader considers the possibility of opening a new plant at a candidate location.

As for the competition, it controls three plants with initial capacities of 22,500 ton/period, 45,000

ton/period and 49,500 ton/period; the competition also has a candidate location for a new plant.

The investment decisions are evaluated over a time horizon of 5 years divided in 20 time periods;

all producers are allowed to expand only every fourth time period.

Selling prices and market demands follow an increasing trend during the time horizon. Investment

and maintenance costs grow in time to adjust for inflation. The costs of production also have an

increasing trend but exhibit a seasonal variation related to electricity prices. The exact data for this

industrial example is provided as part of the Supplementary material.

The trilevel model has 200 discrete variables and 240 constraints in the first level, 200 discrete

variables and 240 constraints in the second level, and 1,200 continuous variables and 460 con-

straints in the third level. The algorithms were implemented in GAMS 24.4.1 and were solved

using GUROBI 6.0.0 on an Intel Core i7 CPU 2.93 Ghz processor with 4 GB of RAM. In this

industrial instance, Algorithm 2 is very efficient; it only needs two iterations to find the trilevel

optimal solution, while Algorithm 1 requires 7 iterations. Both algorithms find the same solution

because the hierarchically and strategically optimistic solutions coincide. The convergence of the

upper and lower bounds to the optimal solution (M$302) can be observed in Figure 6.7.
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Figure 6.7: Convergence of Algorithm 1 (A1) and Algorithm 2 (A2) in Instance 2.

Table 6.6 presents the computational statistics for problems HP k of Algorithm 1 and MP k of

Algorithm 2 in the first and last iterations. We observe that the number of continuous variables and

constraints grows very quickly for problem MP k in just one iteration, even though the number of

binary variables stay constant. The total time required by Algorithm 1 to solve the instance is 46 s,

in contrast to Algorithm 2 that only takes 8 s. This instance shows the advantage of Algorithm 2

for problems that are solved in few iterations.

Problem
First iteration Final iteration
HP k & MP k HP k MP k

Constraints: 4,174 4,229 7,620
Continuous variables: 3,835 3,835 7,259
Binary variables: 240 264 240
Solution time [s]: 2 12 6

Table 6.6: Computational statistics of Algorithms 1 and 2 in Instance 2.

The optimal investment plan for the leader in this industrial example is to expand plant L3 at time

1 and 5. The rational reaction of the competition is not to expand at all. The optimal capacities

and production levels of the plants controlled by the leader are presented in Figure 6.8; we can

observe in Figure 6.8 that all production plants have high utilization. The elements of the objective

functions for the trilevel optimal solution are presented in Table 6.7.
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Figure 6.8: Capacity and production of the leader in Instance 2.

Element of objective function Leader Competition

Income from sales [M$]: 816 504
Investment in new plants [M$]: 0 0
Expansion cost [M$]: 56 0
Maintenance cost [M$]: 94 97
Production cost [M$]: 288 171
Transportation cost [M$]: 76 41

Total NPV [M$]: 302 195

Table 6.7: Optimal objective values for Instance 2.
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The optimal capacity expansion plan for the trilevel formulation differs from the results reported

in Chapter 5 for the bilevel formulation in which the competitions are not allowed to expand. Even

though the optimal expansion strategy for the competition is not to expand, considering the compe-

tition as a rational decision-maker changes the optimal plan of the leader. This result exposes some

of the counter-intuitive mechanisms present in multilevel optimization problems. In this particular

instance, if the leader implements the bilevel optimal plan prescribing three expansions instead of

two, the rational reaction of the competition is to expand plant C1 at time 1. This expansion plans

would produce a NPV for the leader equal to M$294, which is 2.5% lower than the trilevel opti-

mal solution (M$302). This measure of regret illustrates the value of obtaining the trilevel optimal

solution in comparison to a bilevel formulation that assumes static competitors.

6.10 Summary

For the first time, a fully competitive model for the capacity planning problem has been formulated

as a trilevel optimization. It allows simultaneously considering the conflicting interests of three

rational decision-makers within a mathematical programming framework. We have also addressed

for the first time the topic of degeneracy in multilevel decision problems. Our research found a void

in definitions and models that induce ambiguity in the characterization of trilevel optimal solutions.

We have introduced several extensions of the optimistic models from bilevel programming and we

have provided algorithms that allow finding different optimal solutions.

The proposed model belongs to a challenging class of mathematical problems: multilevel program-

ming with integer variables in more than one level. The few general methods available to solve this

type of problems are in an early stage. We have developed two problem specific solution methods

that rely on different properties of the formulation. The examples show that none of the two al-

gorithms strictly dominates the other in terms of performance, indicating that both are interesting

approaches to solve this problem. The solutions obtained from the new formulation unveil complex

interactions that are very difficult to predict. A significant improvement over previously proposed

models is quantified in monetary terms for the industrial instance.

The type of problems that we have addressed are of interest in applications where discrete decisions

are taken by different players. As the range of applications is expected to increase, we consider

the generalization of the algorithms as an important direction for future research; additionally,
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efficiency and numerical stability of the algorithms can still improve. For the industrial application

of the capacity expansion model, we believe that it is important to extend the model to include

stochastic parameters.
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Conclusions

7.1 Review of the thesis

This thesis has proposed optimization models and solution methods for supply chain planning with

uncertainty and hierarchical decision-makers. Uncertainty and external decision-makers are the

main factors affecting supply chain performance because they define conditions that are not under

control of supply chain planners. The examples presented throughout the chapters have provided

evidence of the value added by considering both uncontrollable factors in logistic and production

planning models. In the following sections, we offer a critical review of the proposed optimization

models, the solution methods, and the results obtained.

7.1.1 Design of resilient supply chains with risk of disruptions

In Chapter 2, we developed an MILP two-stage stochastic programming model for the design of

resilient supply chains. We focused on the uncertain availability of distribution centers (DCs) as a

consequence of potential disruptions. The proposed model includes, in the first stage, the design

decisions that determine the location and capacity of DCs; the model considers in the second stage

demand assignments in scenarios describing disruptions at the candidate locations for DCs. The

main challenge for the implementation of our supply chain design approach arises from the rapid

growth in the number of scenarios as a function of the number of DC candidate locations.
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We proposed several strategies that allow solving large-scale MILP models for the design of re-

silient supply chains. The initial step to develop an efficient solution method was to strengthen

the original MILP model with a set of redundant constraints. The addition of tightening constraints

implied an increase in the size of the model, but also a significant improvement of its LP relaxation.

In the illustrative example presented in Section 2.5, the optimality gap of the relaxed model was

reduced from 30.0% to 1.9%.

The main benefit of the tightened model for the design of large-scale supply chains is that it allows

an effective implementation of Benders decomposition. The additional constraints expand the set

of cuts that can be generated from the Benders subproblems in comparison to the original model.

Given this cut-richer formulation, it becomes important to select solutions producing good Benders

cuts from the dual degenerate solutions of the subproblems. We achieved a judicious selection of

the cuts by solving additional LPs that provided non-dominated pareto-optimal cuts. The effort re-

quired to solve additional LPs is compensated by a significant reduction in the number of iterations

in Benders decomposition.

We implemented the multi-cut version of Benders decomposition and strengthened the Benders

master problem by including the main-scenario assignments. The Benders cuts disaggregated per

scenarios and commodities were effective to achieve convergence in few iterations, but they im-

plied a rapid increase in the complexity of the master problem with the number of iterations. The

addition of the main-scenario assignments to the master problem further reduced the total number

of iterations in the Benders algorithm; the strengthened Benders algorithm solved the large-scale

example in 8 iterations, whereas the implementation without main-scenario assignments required

15 iterations. For larger instances that might require more iterations, a partial disaggregation of

cuts per scenario can be implemented to reduce the complexity of the master problem; the idea

would be to select the scenarios with disaggregated cuts according to the impact that we expect

them to have in the objective function.

The potential impact of scenarios on the optimal supply chain design was also considered to reduce

the number of scenarios in large-scale problems. For scenarios describing disruptions at candidate

DC locations, we selected relevant subsets of scenarios according to their probability and the num-

ber of simultaneous disruptions. In addition, we proposed a procedure to obtain deterministic

bounds on the expected cost of scenarios that were excluded from the optimization model. The

bounds were obtained based on a policy characterized by the main-scenario assignments. The up-

per bound is calculated based on the probability of having feasible main-scenario assignments in
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the excluded scenarios. The lower bound is calculated assuming that the main-scenario assignments

are feasible in all excluded scenarios. The implementation of the bounding procedure allowed as-

sessing the quality of the designs obtained for supply chains with a large number of DC candidate

locations and scenarios. However, the proposed bounding procedure was implemented in the final

step of the algorithm and does not have any influence in the supply chain design. Including the

upper bounding policy in the optimization model might lead to tighter deterministic bounds and

supply chain designs with better performance in adverse scenarios.

The results obtained in the examples demonstrated the importance of building supply chain re-

silience from the design stage. Neglecting disruptions at DCs lead to centralized supply chains that

are vulnerable to adverse scenarios. The model proposed for the design of resilient supply chains

has shown to be effective at balancing the investment costs associated to the selection and capacity

of DCs with the expected transportation and penalty costs in the scenarios with disruptions. An

interesting addition to the model would be to include risk measures in the objective function with

the purpose of representing different risk preferences of the supply chain planner.

7.1.2 Implementation of a novel cross-decomposition algorithm for two-stage
stochastic programming

In Chapter 3, we presented a cross-decomposition scheme for two-stage stochastic programs with

mixed-integer variables in the first stage and continuous variables in the second stage. The pro-

posed method integrates ideas from Benders and Lagrangean decomposition to leverage their com-

plementary strengths. The algorithm is significantly different from previously proposed cross-

decomposition schemes [237, 111] that try to avoid Benders and Lagrangean master problems.

Our implementation of cross-decomposition not only solves the Benders and Lagrangean master

problems at every iteration, but it also strengthens them with cuts generated from both Benders and

Lagrangean subproblems. Strengthening the master problems addresses the limitations responsible

for slow convergence in the original decomposition methods: weak bounds from the Benders mas-

ter problem, erratic multipliers update in Lagrangean decomposition, and the need for a heuristic

to find feasible solutions in Lagrangean decomposition.

The Benders master problem in our cross-decomposition scheme provides lower bounds for the

minimization problems and candidate first-stage solutions. We include two sets of cuts that are

disaggregated by scenarios in the Benders master problem. The first set of cuts corresponds to
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the standard Benders cuts. The second set of cuts is derived from the Lagrangean subproblems;

they guarantee that the bounds obtain in the Benders master problem are at least as good as the

best known Lagrangean bound. The Lagrangean master problem is responsible for the update

of the Lagrange multipliers. It also includes disaggregated cuts generated from the Benders and

Lagrangean subproblems. The Lagrangean cuts correspond to the standard cuts used in the cutting

planes method for multipliers update [35, 126]; the Benders cuts ensure that the Lagrangean master

problem is bounded and its objective value is at least as tight as the incumbent solution.

The convergence of our cross-decomposition algorithm relies on the properties of Benders decom-

position. However, the computational experiments presented in Section 3.4 have shown a signif-

icant improvement in the solution time over multi-cut Benders decomposition; the improvement

is noticeable in models with both strong and weak LP relaxations, as demonstrated by the two

formulations of the resilient supply chain design (RSCD) model. The multi-cut implementation of

Benders decomposition was only capable of solving the smallest instances with 639 scenarios of

the tightened RSCD formulation within the specified time limit, whereas the cross-decomposition

algorithm solved all instances with 639 and 1,025 scenarios. The comparative performance of

cross-decomposition is especially good in large-scale problems. Those instances that cannot be

solved directly with commercial solvers because of their size seem to be the most appropriate

for cross-decomposition; in our experiments, RSCD instances with 1,587 scenarios could only be

solved through cross-decomposition.

The cross-decomposition algorithm has the additional advantage of being well suited for paral-

lelization. We have reduced the CPU time required for the Benders and Lagrangean subproblems

by solving them simultaneously in multiple threads. This framework offers interesting opportuni-

ties given the expansion of grid computer infrastructure. Therefore, we expect growing attention to

solution methods like cross-decomposition that exploit the decomposable structure of optimization

problems and leverage parallelization.

7.1.3 Optimizing inventory policies in process networks under uncertainty

In Chapter 4, we developed a framework for inventory planning in process networks based on logic-

based optimization models. The proposed stochastic inventory planning model includes decision

rules that are established by inventory policies; the model is used to find the optimal parameters

of these policies. Our planning model is inspired by the simplicity and effectiveness of popular

inventory management strategies, but we have implemented significant adjustments to address the

174



Chapter 7. Conclusions

challenges posed by the complexity of chemical process networks. The proposed inventory plan-

ning framework explicitly addresses the inventory management of intermediate products, which

has the potential to increase capacity utilization and avoid the formation of bottlenecks.

The formulations proposed for inventory planning in process networks are based on stochastic

programming models. The scenario-based approach allows representing any type of uncertainty for

which discrete-time forecasts can be generated. This flexibility has remarkable value for industrial

applications given the large availability of historical data and the complex probabilistic descriptions

of uncertain events.

In problems with a large number of potential scenarios, the standard approach to integrate forecasts

of uncertainty in a stochastic programming model usually leads to a two-stage approximation of the

multiperiod problem, since forecasts are unlikely to share indistinguishable trajectories. The two-

stage approximation of a multiperiod problem often yields suboptimal decisions because it does

not consider the sequence in which uncertainty is revealed after the first time period. In contrast,

our logic-based model preserves the non-anticipativity condition even on sets of indistinguishable

scenarios because the decisions are based on rules that apply across all scenarios.

We proposed basestock policies for inventory planning in process networks with arrangements of

inventories in parallel and in series. The policy for inventories in parallel is based on establish-

ing replenishment priorities among the inventories competing for shared upstream resources. The

optimization model yields the optimal order of priorities and the optimal basestock levels for the

inventories in the parallel arrangement. The policy for inventories in series is based on the theory

of multi-echelon basestock policies. According to multi-echelon basestock policies, the replenish-

ment decision for an inventory depends not only on its own level, but also on the inventory available

in the downstream storage units. The optimization model yields the optimal basestock levels for

each echelon in the arrangements of inventories in series.

We developed an LP model for stochastic inventory planning in general process networks, and

included the logic establishing the inventory management strategies through Generalized Disjunc-

tive Programming (GDP). The resulting formulation can represent process networks of arbitrary

topologies. We also proposed MILP reformulations for the logic that models basestock policies in

arrangements of inventories in parallel and in series.

The inventory planning decisions obtained from the logic-based model were compared with the

decisions obtained from the equivalent two-stage stochastic programming model. We proposed

two methodologies to assess the quality of the solutions: the Residual Expected Value (REV) and
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closed-loop Monte Carlo simulations. In the illustrative example with randomly sampled scenarios

presented in Section 4.7, the logic-based model yielded solutions with lower expected cost than the

two-stage model for the whole range of sample sizes; the reductions obtained in REV by imple-

menting the logic-based decisions were around 2.5%. Interestingly, the logic-based model yielded

solutions with a slightly lower expected cost than the multistage model for small sample sizes.

In the examples with arrangements of inventories in parallel and in series, the logic-based model

also yielded solutions with lower expected costs. These examples were evaluated through closed-

loop Monte Carlo simulations to mimic the implementation of the decision-making strategies in an

industrial environment. In comparison to the two-stage model, the logic-based model yielded re-

ductions in the expected cost of 2.7% for the example with inventories in parallel and 7.0% for the

example with inventories in series. More importantly, the decisions obtained from the logic-based

model outperform those obtained from the two-stage model in the majority of simulations.

One of the topics that we have not addressed for the implementation of inventory policies in process

networks is their stability in an infinite horizon. The stability of the policies in our examples can

be demonstrated from the stability of a zero basestock policy; process networks that require no

inventories to be stable are also stable under any basestock policy. However, instability appears

in systems that accumulate increasing backorders because the expected throughput of the process

network is less than the expected demands. It would be interesting to conduct further analysis on

the specific conditions required for stability of inventory policies in process networks.

The policies developed for inventory planning in process networks with arrangements of invento-

ries in parallel and in series can be extended to networks with arbitrary topologies. The proposed

methodology has been designed to coordinate inventory management in complex process networks

and to deal with diverse sources of uncertainty. The GDP model offers alternative reformulations

and allows efficient solution methods that should be explored for inventory planning in large-scale

process networks.

7.1.4 Bilevel optimization for capacity planning with rational markets

In Chapter 5, we developed a mixed-integer linear bilevel optimization model for capacity planning

that considers markets as rational decision-makers. The bilevel formulation models the behavior

of two independent decision-makers: a company planning the expansion of its production capacity

and consumers that are allowed to select their providers from a pool of different producers. Discrete

investment decisions are controlled by the upper level with the purpose of maximizing its Net
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Present Value (NPV) during a finite time horizon. The lower level is an LP that minimizes the cost

paid by the markets. The bilevel formulation models a Stackelberg competition in which the upper

level decides its capacity expansion plan, and then the lower level decides the demand assignments.

The bilevel model is a challenging mathematical program with a nonconvex feasible region. The

standard approach to address these models is to reformulate them as a single-level optimization

problem. We implemented two alternative reformulations that characterize the same bilevel feasi-

ble region. The first reformulation replaces the lower-level LP with the KKT conditions guarantee-

ing lower-level optimality; the reformulation is linear except for the complementarity conditions

that require the addition of new binary variables and constraints to obtain an MILP model. The

second reformulation leverages the strong-duality property of the lower-level LP to replace it with

constraints enforcing optimality of the lower-level solutions. The duality-based reformulation does

not require the addition of binary variables, but it includes bilinear terms in the constraint enforc-

ing strong duality. However, the bilinear terms are the product of upper-level discrete variables and

lower-level dual (continuous) variables; therefore, they can be linearized exactly with the addition

of linear constraints.

The middle-size example of the bilevel capacity planning problem showed a decisive advantage

of the duality-based reformulation over the KKT reformulation; the duality-based reformulation

required less than one second to solve each of the middle-size instances, whereas the KKT refor-

mulation took over 150 s to solve each of them. The number of binary variables needed to refor-

mulate the complementary constraints is responsible for the increase in computational complexity.

However, we cannot determine from our results which reformulation would offer better perfor-

mance in problems with continuous upper-level variables, since the KKT reformulation would

remain unchanged and the duality-based reformulation would include bilinear terms that cannot be

linearized.

Despite the good performance of the duality-based reformulation in the middle-size example, the

solution of large-scale instances was still challenging. Therefore, we proposed two strategies that

improved the solution times of the duality-based reformulation: disaggregated strong-duality con-

straints and domain reduction for the demand assignment variables. The major impact from these

strategies derives from the number of continuous variables and constraints that can be excluded

from the reformulation after identifying assignments that always have positive reduced cost in the

lower-level problem. Not only does it allow reducing the size of the model, but it also produces a

significant improvement in the LP relaxation of the reformulation by excluding many assignments
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that would be beneficial for the upper level but are not bilevel feasible; in the industrial instances

studied in Section 5.10, the optimality gap of the LP relaxations improved from around 35% to less

than 4%.

The comparison of the expansion plans obtained from the bilevel formulation with the plans ob-

tained from the traditional single-level formulation shows the importance of considering poten-

tial customers as rational decision-makers. The formulations modeling captive markets tend to

yield aggressive investment plans because they overestimate the market share that can be obtained.

These investments can be very expensive and ultimately unnecessary; in the illustrative example

presented in Section 5.7, the captive market model only yielded 41% of the NPV obtained with the

bilevel expansion plan. The proposed bilevel formulation represents an important contribution for

the development of investment plans that can be applied beyond the capacity planning problem.

The model could be enhanced by relaxing the perfect information assumption, allowing capacity

expansions in the competing producers, and including uncertainty.

7.1.5 Capacity planning with competitive decision-makers

In Chapter 6, we proposed an important enhancement to the model presented in Chapter 5. We

extended the bilevel formulation for capacity planning to model expansions of the competing pro-

ducers in a trilevel formulation. The trilevel optimization problem models the behavior of three

rational decision-makers: the main company planning the expansion of its production capacity,

the competition also planning the expansion of its capacity, and the consumers. The hierarchi-

cal optimization model establishes the sequence in which decisions are made. The upper-level

decision-maker decides the expansion plan of the main company, the second-level controls the ex-

pansion plan of the competitors, and the third level decides demand assignments. The first and

second level only control discrete variables, whereas the third level is an LP.

The formal definition of a trilevel optimal solution requires characterizing the behavior of the

decision-makers in the case of degenerate solutions. This topic had been addressed in bilevel

optimization but not for problems with more than two levels; we extended the definition of op-

timistic solutions for trilevel optimization problems. The behavior of the second- and third-level

decision-makers with respect to degeneracy might give rise to several types of solutions in the

trilevel problem. We identified and characterized mathematically three of them: hierarchically

optimistic solutions, sequentially optimistic solutions, and strategically optimistic solutions. Other
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models to resolve degenerancy in trilevel optimization models can be easily extended from our

definitions.

The first step for the solution of the trilevel capacity planning problem was to reformulate it as

a bilevel optimization model. We obtained the bilevel reformulation using the duality-based ap-

proach. The resulting model is a linear bilevel program with discrete variables in the upper level

and mixed-integer variables in the lower level. Few methods have been developed to solve this type

of problems; we proposed two different algorithms to solve the bilevel reformulation. The first al-

gorithm is a constraint-directed exploration of the stability regions of the bilevel reformulation; it

is based on the observation that many different first-level solutions produce the same optimal re-

sponse of the lower levels. We showed that different variants of the constraint-directed exploration

algorithm can be used to obtain sequentially optimistic and hierarchically optimistic solutions. The

second algorithm is a decomposition algorithm based on column-and-constraint generation; it iter-

atively improves the high-point relaxation of the bilevel reformulation by including the lower-level

solutions that have been already observed. We showed that the column-and-constraint generation

algorithm yields strategically optimistic solutions of the trilevel model.

We compared the performance of the algorithms in two instances of the trilevel capacity planning

problem. For direct comparison of the algorithms, the instances presented in Section 6.9 were

designed such that the hierarchically and strategically optimistic solutions coincide. In the first

instance, both algorithms require the same number of iterations but the constraint-directed explo-

ration takes 15 s, whereas the column-and-constraint generation algorithm takes 26 s. In the second

instance, the constraint-directed exploration requires 7 iterations and the column-and-constraint

generation algorithm only 2 iterations; the total solution times were 8 s and 46 s, respectively.

Our analysis showed that instances requiring a similar number of iterations are likely to be solved

faster with the constraint-directed exploration algorithm. The column-and-constraint generation

algorithm requires fewer iterations to solve the instances, but it might take a longer time because

the complexity of its iterations increases at a higher rate.

The second instance of the capacity planning problem with competitive decision-makers illus-

trates the value of considering the competitors as rational decision-makers. The same instance was

solved in Chapter 5 with competitors that were not allowed to expand. The results obtained from

the bilevel and the trilevel models are different and their interpretation is rather involved. The

expansion strategy of the competitors obtained from both models implies no expansion; however,

the bilevel model prescribes three expansions for the main company instead of the two expansions
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prescribed by the trilevel model. Our analysis showed that the trilevel optimal strategy only in-

cludes two expansions because a third expansion would trigger an expansion in the competitors

that would be detrimental; the bilevel optimal expansion plan yields an NPV that is 2.5% lower

than the trilevel expansion plan when the competitors are allowed to expand. We have found this

type of counter-intuitive results to be common in trilevel optimization problems. Therefore, hierar-

chical optimization models are a very valuable tool to develop investment plans that involve several

decision-makers.

7.2 Contributions of this thesis

The main contributions of the thesis to the research community are summarized below.

1. We proposed a novel two-stage stochastic programming model for the design of resilient

supply chains with risk of disruptions at DCs. The model included capacity of the distribu-

tion centers as design decisions, which allowed considering inventory management as a key

element to build supply chain resilience from the design stage.

2. We developed a tailor-made solution method for the design of large-scale resilient supply

chains. The method includes tightening the formulation, a multi-cut implementation of Ben-

ders decomposition, pareto-optimal cuts, a strategy to select subsets of relevant scenarios,

and a procedure to obtain deterministic bounds on the expected cost in problems with a large

number of scenarios.

3. We presented a novel cross-decomposition algorithm for two-stage stochastic programming

investment planning problems and implemented it for the design of resilient supply chains.

We provided evidence of the superior performance of cross-decomposition for the solution

large-scale problems, in comparison to the direct solution with commercial solvers and Ben-

ders decomposition.

4. We presented a new model for inventory planning in process networks under uncertainty

based on the implementation of inventory policies. We proposed policies for arrangements

of inventories in parallel and in series; we developed the logic that models inventory man-

agement rules; and we presented MILP reformulations. The proposed logic-based stochastic

programing models offer better planning decisions when compared to two-stage stochastic

programming models because they use policies as an alternative to avoid anticipativity in
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multiperiod problems.

5. We proposed a new metric to assess the quality of decision-making strategies in multiperiod

problems with uncertainty that we designated as the Residual Expected Value (REV). We

also developed a method based on closed-loop Monte Carlo simulations to assess the quality

of decision-making strategies in instances with a large number of scenarios.

6. We presented a novel model for capacity planning that considers potential customers as ra-

tional decision-makers. We demonstrated the value of considering customers to be rational

for capacity planning in comparison to the traditional models that assume captive markets.

7. We presented two reformulation techniques for bilevel problems with lower-level LPs. Our

implementations demonstrated the advantages of the duality-based reformulation over the

KKT reformulation in problems with purely discrete upper-level variables.

8. We proposed a domain reduction strategy for the bilevel capacity planning formulation that

allowed the solution of large-scale problems. This domain reduction strategy has the poten-

tial to lead the development of techniques that allow an improved description of the inducible

region in bilevel programs.

9. We developed a trilevel capacity planning model that considers all producers and consumers

as rational decision-makers. The analysis of the implementation revealed the complex inter-

actions that take place in optimization problems with multiple decision-makers.

10. We addressed the issue of degeneracy in trilevel optimization problems for the first time. We

presented definitions characterizing different types of optimal solutions that can be obtained

in the presence of degeneracy in trilevel models.

11. We developed and implemented two algorithms for the trilevel capacity planning problem.

The algorithms allowed solving a medium-size instance of the capacity planning problem

with competitive decision-makers.
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7.3 Publications related to this thesis

7.3.1 Full-length articles

• P. Garcia-Herreros, J.M. Wassick, & I.E. Grossmann. Design of resilient supply chains with

risk of facility disruptions. Industrial & Engineering Chemistry Research, 53:17240–17251,

2014.

• S. Mitra, P. Garcia-Herreros, & I.E. Grossmann. An Enhanced Cross-Decomposition Scheme

with Primal-Dual Multi-cuts for Two-Stage Stochastic Programming Investment Planning

Problems. Submitted to Mathematical Programming, 2015.

• P. Garcia-Herreros, A. Agarwal, J.M. Wassick, & I.E. Grossmann. Optimizing inventory

policies in process networks under uncertainty. To be submitted to Computers & Chemical

Engineering, 2016.

• P. Garcia-Herreros, L. Zhang, P. Misra, E. Arslan, & I.E. Grossmann. Mixed-integer bilevel

optimization for capacity planning with rational markets. Submitted for publication in Com-

puters & Chemical Engineering, 2015.

• C. Florensa Campo, P. Garcia-Herreros, P. Misra, E. Arslan, S. Mehta, & I.E. Grossmann.

Capacity planning with competitive decision-makers: Trilevel MILP formulation and solu-

tion approaches. To be submitted to European Journal of Operations Research, 2016.

7.3.2 Review articles

• I.E. Grossmann, B.A. Calfa, & P. Garcia-Herreros. Evolution of concepts and models for

quantifying resiliency and flexibility of chemical processes. Computers & Chemical Engi-

neering, 70:22–34, 2014.

• I.E. Grossmann, R.M. Apap, B.A. Calfa, P. Garcia-Herreros, & Q. Zhang. Recent advances

in mathematical programming techniques for the optimization of process systems under un-

certainty. Computer Aided Chemical Engineering, 37:1–14, 2015.
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7.3.3 Conference articles

• P. Garcia-Herreros, I.E. Grossmann, & J.M. Wassick. Design of supply chains under the risk

of facility disruptions. Computer Aided Chemical Engineering, 32:577–582, 2013.

• S. Mitra, P. Garcia-Herreros, & I.E. Grossmann. A novel cross-decomposition multi-cut

scheme for two-stage stochastic programming. Computer Aided Chemical Engineering, 33:

241–246, 2014.

• P. Garcia-Herreros & I.E. Grossmann. Stochastic Programming for Supply Chains Resilience

[in Spanish]. XXVII Congreso Interamericano y Colombiano de Ingenieria Quimica, pages

1309–1314, 2014.

• P. Garcia-Herreros, I.E. Grossmann, B. Sharda, A. Agarwal, & J.M. Wassick. Empirical

study of the behavior of capacitated production-inventory systems. In Proceedings of the

2014 Winter Simulation Conference, WSC ’14, pages 2251–2260. IEEE Press, 2014.

• P. Garcia-Herreros, P. Misra, E. Arslan, S. Mehta, & I.E. Grossmann. A duality-based ap-

proach for bilevel optimization of capacity expansion. Computer Aided Chemical Engineer-

ing, 37:2021–2026, 2015.

• A. Kandiraju, P. Garcia-Herreros, P. Misra, E. Arslan, S. Mehta, & I.E. Grossmann. Capac-

ity planning for the air separation industry with rational markets and demand uncertainty.

Submitted to Computer Aided Chemical Engineering, 2016.

7.4 Directions for future research

In the following subsections we describe the directions in which our research can be further devel-

oped.

7.4.1 Include other sources of uncertainty in the resilient supply chain design

The model proposed for the design of resilient supply chains in Chapter 2 considers disruptions

at candidate locations for DCs as the only source of uncertainty. The model can be extended to

include other sources of uncertainty. It would be interesting to analyze the impact of disruptions
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in arcs connecting plants to DCs and DCs to customers; disruptions in the arcs play an important

role in supply chains with limited transportation modes, such as petrochemical networks connected

by pipelines. A more comprehensive model for the design of resilient supply chains should also

include uncertainty in the amount of supply available at the plants and uncertainty in customer

demands. Given the large number of scenarios that these design problems are likely to have, we

believe that Sample Average Approximation (SAA) [206, 130] would be an appropriate framework

to address the resulting supply chain design problem.

7.4.2 Automate the implementation of cross-decomposition for two-stage stochastic
programming investment planning problems

The cross-decomposition scheme presented in Chapter 3 can be implemented for a wide range of

investment planning problems that can be formulated as two-stage stochastic programming mod-

els. The only restriction for cross-decomposition is that the model must be an MILP with only

continuous variables in the second stage. Given the performance observed in our computational

experiments, it would be interesting to develop an algorithm that automatically implements the

cross-decomposition scheme from the full-space model of a two-stage stochastic programming

investment planning problem. Such an implementation could leverage the recent advances in mod-

eling languages such as PYOMO [103] or Julia [150] that offer high performance computing and a

diverse set of programming tools.

7.4.3 Develop efficient solution methods for the optimization of inventory policies

The logic-based models developed in Chapter 4 for inventory planning in process networks are very

promising because of the quality of their solutions and the intuitive appeal of inventory policies.

However, the reformulation of the logic-based models as MILPs produce optimization problems

with significant computational complexity. Fortunately, the original GDP formulations offer alter-

native MILP reformulations and the possibility of using logic-based solution methods [112, 231].

Additionally, the multiperiod inventory planning model might be a good candidate for the imple-

mentation of a solution method based on dynamic programming [54, 180]. More efficient solution

methods will allow addressing instances representing larger process networks, increase the number

of scenarios in the models, and increase the planning horizon. We believe that addressing more

complex instances will reveal to a larger extent the benefits of using inventory polices in process
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networks.

7.4.4 Include uncertainty in the bilevel capacity planning model

The bilevel capacity planning model presented in Chapter 5 considers the markets as rational

decision-makers, but assumes that all the information is deterministic. The model can be extended

to include uncertainty in several ways. The deterministic parameters that have the largest influence

in the optimal capacity plan are the capacity of competitors and market demands. A bilevel model

that includes scenarios characterizing uncertain capacities at the comptetitor’s plants and uncertain

demands would be more realistic. The problem can be formulated as a bilevel-stochastic capacity

planning model [50, 37, 2]; we expect the solution methods developed in Chapter 5 to be applicable

for such problems. Another interesting direction would be to relax the perfect information assump-

tion. This would imply that the company planning its capacity does not know exactly the decision

criterion of the markets. Instead, the decision criterion of the markets could be modeled with a

probabilistic description; such a model could also be formulated as a bilevel-stochastic program.

7.4.5 Include contracts, mergers, and acquisitions in the capacity planning models

The capacity planning models presented in Chapters 5 and 6 assume that the markets select their

providers according to their cost minimization criterion, and they are free to switch providers any

time. However, industrial producers and consumers often establish long term partnerships that

allow them to share their interests and increase coordination; these interactions are regulated by

contracts [5]. Contracts might play an important role for capacity expansion plans because they

reduce the variability of future business conditions. Different types of contracts between producers

and consumers can be included in the capacity planning models through Generalized Disjunctive

Programming [174]. It would be interesting to analyze the benefits of considering contracts in

capacity planning models and study their impact in the resulting expansion strategies. Further-

more, mergers and acquisitions among industrial producers can significantly change the market

landscape. This type of decisions could also be modeled through Generalized Disjunctive Pro-

gramming. Mathematical programming models representing potential mergers can be very useful

for producers and for industry regulators to analyze the response of markets to different competitive

environments.
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7.4.6 Develop general domain reduction strategies for hierarchical optimization

The domain reduction strategy implemented in Chapter 5 was very successful to reduce the solu-

tion time of the reformulated bilevel capacity planning model. The integration of Constraint Pro-

gramming and Mathematical Programming techniques has also shown to be effective to reduce the

solution time of a wide range of problems [113]. Domain reduction strategies and other Constraint

Programming techniques have great potential to improve the formulation of any hierarchical opti-

mization model because the feasible (inducible) region in these problems is usually much smaller

than the constraint region. Hierarchal optimization models with a reduced domain should require

less time to be solved regardless of the solution method.
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Data for the large-scale example of the
resilient supply chain design problem

The independent disruption probabilities for candidate DCs are presented in Table A.1.

Candidate Probability
DC of disruption
1 0.026
2 0.100
3 0.030
4 0.018
5 0.063
6 0.090
7 0.072
8 0.031
9 0.046

Table A.1: Probability of disruption at DC candidate locations (P 0
i ).

Table A.2 presents the cost coefficients for the objective function of the optimization model.

The unit transportation costs for commodity 1 from plant to DCs are given in Table A.3; the unit

transportation costs for commodity 2 from plant to DCs (i) are given by Equation (A.1) as a func-
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Parameter Value Units
N 365 periods
Fi 200,000 $/DC
Vi 100 $/ton
Hk 0.01 $/(ton period)

penalty 25 $/ton

Table A.2: Cost coefficients.

Parameter Value [$/ton]
A1,1 0.298
A1,2 0.340
A1,3 0.264
A1,4 0.109
A1,5 0.312
A1,6 0.333
A1,7 0.270
A1,8 0.289
A1,9 0.286

Table A.3: Transportation cost for commodity 1 from plant to DCs.

tion of the transportation costs for commodity 1.

Ai,2 = 1.15Ai,1 (A.1)

Customer demands for both commodities are presented in Table A.4. The unit transportation costs

for commodity 1 from DCs to customers are given in Table A.5; the unit transportation costs for

commodity 2 from the DCs to customers can be calculated from Equation (A.2).

Bi,j,2 = 1.15Bi,j,1 (A.2)
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Customer (j)
Demand for
commodity 1

Demand for
commodity 2

1 243 133
2 200 181
3 194 176
4 112 108
5 236 136
6 108 53
7 114 247
8 204 83
9 119 71

10 264 124
11 264 90
12 244 148
13 130 118
14 232 240
15 204 234
16 295 61
17 230 198
18 260 104
19 191 135
20 186 160
21 265 239
22 117 134
23 127 247
24 135 110
25 178 190
26 266 183
27 261 158
28 112 190
29 180 183
30 205 86

Table A.4: Customer demands (Dj,1 and Dj,2) for commodities.
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Customer (j)
DC (i)

1 2 3 4 5 6 7 8 9
1 1.481 2.139 0.928 2.265 0.580 1.192 0.615 0.743 2.559
2 2.237 1.293 2.876 0.586 1.597 1.454 2.414 2.488 0.967
3 1.724 1.614 2.116 2.273 2.387 1.190 2.199 2.138 0.907
4 0.797 1.746 2.899 1.351 1.963 1.060 2.378 1.138 1.765
5 2.248 2.727 2.898 1.868 0.847 0.873 1.144 2.602 1.136
6 2.536 1.109 2.823 1.375 0.991 1.128 2.040 1.683 1.379
7 2.577 1.963 1.874 2.793 1.215 2.393 2.384 1.451 1.920
8 0.690 0.635 1.827 2.448 2.835 0.825 1.922 1.673 0.530
9 1.343 0.905 2.486 1.278 1.821 0.914 2.005 1.157 2.135
10 2.223 2.370 1.626 0.710 1.072 2.783 0.881 2.565 1.846
11 2.990 0.695 1.607 0.767 2.905 0.512 2.437 2.543 2.672
12 0.711 1.499 1.150 2.500 1.579 2.777 0.955 1.160 0.864
13 0.840 2.673 1.949 1.875 0.862 2.633 2.055 1.377 1.783
14 1.505 0.690 1.100 0.808 0.960 1.100 1.543 0.624 2.757
15 2.862 1.727 1.723 1.344 2.750 1.423 0.778 2.451 1.474
16 1.104 1.510 0.741 0.830 2.855 2.890 1.938 0.649 1.087
17 1.383 2.553 0.539 0.608 0.922 2.123 2.329 2.119 1.627
18 1.868 1.241 2.362 0.972 2.217 0.959 1.421 2.064 2.451
19 0.703 2.823 2.439 1.717 1.590 1.617 1.266 1.771 1.777
20 2.544 2.487 2.111 1.447 2.529 1.832 1.377 2.848 2.690
21 1.875 2.056 1.968 1.019 1.253 1.677 1.076 2.611 0.987
22 1.065 0.927 1.069 1.589 1.278 2.808 1.576 0.962 2.762
23 2.949 1.597 0.778 1.145 1.522 1.987 1.156 2.007 2.278
24 1.054 0.794 1.242 1.297 1.560 1.770 0.714 1.156 2.503
25 0.573 2.822 2.326 1.722 1.946 1.093 1.647 2.908 1.867
26 1.803 1.079 1.722 2.060 2.198 1.489 1.419 2.970 0.594
27 2.713 2.783 2.490 0.747 1.155 1.338 2.199 0.841 2.303
28 0.767 2.134 1.735 2.448 2.288 2.759 2.727 1.335 2.247
29 0.995 0.576 2.360 1.750 1.700 2.762 2.025 2.044 2.649
30 2.514 1.942 0.957 1.100 2.716 0.572 1.725 0.920 2.947

Table A.5: Transportation cost for commodity 1 from DCs to customers (Bi,j,1).
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Data for the random instances of the
resilient supply chain design problem

The data for the instances is taken from Daskin [48]. The original problem considers 49 US cities

that simultaneously serve as demand sites and potential distribution centers (DCs). The formulation

includes uncapacitated DCs with investment costs estimated from the real-state market. Variable

costs associated with DC capacities have been added at a rate of $0.0001 per unit of product. Orig-

inally, demands for a single commodity are assumed to be proportional to the state populations in

1990, and transportation costs are proportional to the great-circle distance between locations. The

original demands and transportation cost are used to generate the first instance; all other instances

are generated randomly by sampling demands and transportation costs from uniform distributions

bounded between 80% and 120% of the original values.

Given the very large number of possible scenarios (249), we have selected subsets of 10, 11, and 12

candidate locations for DCs in the different instances of the problem. The locations included in the

smallest instance are: Sacramento (CA), Albany (NY), Austin (TX), Tallahassee (FL), Harrisburg

(PA), Springfield (IL), Columbus (OH), Montgomery (AL), Salem (OR), and Des Moines (IA).

The additional location included in the instance with 11 candidate DCs is Lansing (MI). The largest

instance with 12 candidate DCs also includes Trenton (NJ).

Given the very small probability of scenarios with more than 5 simultaneous disruptions, they

have been grouped into a single scenario in which all demands are penalized. The effect of this
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approximation is limited by the magnitude of the corresponding probabilities (< 1.2 ∗ 10−5 in all

cases). Furthermore, the approximation improves the numerical stability of the algorithm. Despite

the reduction in size, the problem still implies minimizing the cost over large sets of scenarios. The

failure probability of each DC has been left to the value originally used by Daskin [48]: q = 0.05.
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Data for the illustrative example of the
bilevel capacity planning problem

Table C.1 shows the cardinality of the datasets used in the three examples presented in Chapter 5.

Illustrative Middle-size Industrial
example instance instance

Existing plants of the leader: 2 3 3
Candidate plants of the leader: 1 1 2
Facilities of the competitors: 1 3 5
Markets: 8 15 20
Commodities: 1 1 2
Time periods: 12 20 80

Table C.1: Summary of datasets used in capacity planning examples.

The complete dataset for the illustrative example is presented in Tables C.2 - C.10.
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The initial production capacity of the plants is presented in Table C.2.

Facility Commodity 1
[ton/period]

Leader 1 22,500
Leader 2 36,000
Leader 3 0
Competitor 1 36,000

Table C.2: Initial capacity of plants.

Market demands for all time periods are presented in Table C.3.

Time Market demand [ton/period]
period D1 D2 D3 D4 D5 D6 D7 D8

1 15,300 8,100 4,500 4,500 5,400 11,700 3,600 27,000
2 15,500 8,200 4,600 4,600 5,500 11,900 3,700 27,600
3 15,700 8,300 4,600 4,700 5,500 12,200 3,800 27,900
4 15,800 8,400 4,700 4,700 5,600 12,400 3,800 28,000
5 15,900 8,400 4,800 4,800 5,600 12,600 3,900 28,200
6 15,900 8,400 4,800 4,900 5,600 12,700 3,900 28,100
7 16,000 8,500 4,900 5,000 5,700 13,000 4,000 28,600
8 16,100 8,500 5,000 5,000 5,700 13,300 4,100 29,100
9 16,200 8,600 5,100 5,100 5,800 13,500 4,200 29,800
10 16,200 8,600 5,200 5,100 5,800 13,700 4,200 29,900
11 16,100 8,500 5,300 5,200 5,800 13,600 4,200 29,700
12 16,200 8,600 5,300 5,200 5,800 13,600 4,200 29,800

Table C.3: Market demands (Dt,j,k).

Tables C.4-C.10 present the cost coefficients for the objective function of the illustrative example.

Table C.4 shows the cost (At,3) of opening the candidate production plant in different time periods.

In the illustrative example, it is allowed to open the new plant only in time periods 1, 5, and 9.

Table C.5 presents the maintenance cost per time period (Bt,i) incurred by open plants.

Table C.6 presents the investment cost (Et,i,1) associated to the expansion of production capacity

by 9,000 ton/period. In the illustrative example, all plants are assumed to have the same expansion

cost and expansions are allowed only in time periods 1, 5, and 9.
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Time period Investment cost [MM$]
1 20.00
5 20.40
9 20.86

Table C.4: Investment cost (At,3) of the leader to open plant 3.

Time Maintenance cost [MM$/period]
period Leader 1 Leader 2 Leader 3

1 1.000 2.000 3.000
2 1.005 2.010 3.015
3 1.010 2.020 3.030
4 1.013 2.026 3.039
5 1.020 2.040 3.060
6 1.029 2.058 3.087
7 1.032 2.064 3.096
8 1.035 2.070 3.105
9 1.043 2.086 3.129
10 1.049 2.098 3.147
11 1.054 2.108 3.162
12 1.058 2.116 3.174

Table C.5: Maintenance cost (Bt,i).

Time Expansion cost [MM$/9,000 ton]
period Leader 1 Leader 2 Leader 3

1 30.00 30.00 30.00
5 30.60 30.60 30.60
9 31.29 31.29 31.29

Table C.6: Expansion costs (Et,i,1).

The production cost of plants (Ft,i,1) in the illustrative example are presented in Table C.7.

The transportation cost from plants to markets in each time period are calculated from the trans-

portation costs at the initial time period and their growth rate, according to Equation (C.1). Initial

transportation costs (G0
i,j,k) are presented in Table C.8; their growth rate (GRt

t ) are presented in

Table C.10.

Gt,i,j,k = G0
i,j,kG

Rt
t (C.1)
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Time Production cost [$/ton]
period Leader 1 Leader 2 Leader 3

1 250 220 180
2 257 226 185
3 246 217 177
4 246 216 177
5 254 223 183
6 263 231 189
7 253 222 182
8 255 225 184
9 262 230 188
10 284 250 204
11 271 239 195
12 269 237 194

Table C.7: Production costs (Ft,i,1).

Market
Transportation cost [$/ton]

Leader 1 Leader 2 Leader 3
1 26 325 234
2 13 299 260
3 65 195 325
4 104 130 156
5 78 260 221
6 208 195 46
7 195 169 59
8 234 169 0.4

Table C.8: Initial transportation cost (Gt,i,j,1).

Selling prices offered by plants to markets are calculated from the selling prices at the initial time

period and their growth rate according to Equation (C.2). Initial selling prices (P 0
i,j,k) are presented

in Table C.9; their growth rates (PRt
t ) are presented in Table C.10.

Pt,i,j,k = P 0
i,j,kP

Rt
t (C.2)
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Market
Leader 1, 2 & 3 Competitor 1

[$/ton] [$/ton]
1 586 615
2 573 726
3 625 785
4 664 633
5 638 794
6 606 619
7 619 606
8 560 580

Table C.9: Initial selling prices (P 0
i,j,k) from plants to markets.

Time period
Growth rate Grow rate

for transportation for selling prices
1 1.00 1
2 1.00 1
3 1.03 1.001
4 1.05 1.002
5 1.09 1.013
6 1.09 1.013
7 1.12 1.015
8 1.12 1.015
9 1.12 1.047
10 1.14 1.048
11 1.14 1.048
12 1.16 1.049

Table C.10: Growth rates for transportation costs (GRtt ) and selling prices (PRtt ).
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Capacity planning with rational
markets: proof of Proposition 5.1

Proposition 5.1 A demand assignment (yt,i,j,k) with positive reduced cost in the optimal solution

of the lower-level problem with maximum capacity also has a positive reduced cost when capacities

are reduced.

Proof.

We want to prove that the optimal reduced cost of the leader’s assignment variables cannot decrease

when capacities are reduced from their maximum feasible value (CU
t,i,k). For this analysis, we

decompose the lower-level problems by time periods (t ∈ T ) and by commodities (k ∈ K);

the problem minimizing the cost paid by markets is decomposable since all terms in the objective

function and constraints are indexed by (t, k). Intuitively, this means that we can solve independent

problems to minimize the cost paid at time period t for commodity k. The lower-level problem

resulting from this decomposition is presented in Equations (D.1)-(D.5).

min
1

(1 +R)t

∑
i∈I

∑
j∈J

Pi,jyi,j (D.1)

s.t.
∑
j∈J

yi,j ≤ Ci [µi] ∀ i ∈ IL (D.2)

∑
j∈J

yi,j ≤ C0
i [µi] ∀ i ∈ IC (D.3)
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∑
i∈I

yi,j = Dj [λj] ∀ j ∈ J (D.4)

yi,j ∈ R+ ∀ i ∈ I, j ∈ J (D.5)

Similarly, the dual lower-level problem disaggregated by time periods and commodities is pre-

sented in Equations (D.6)-(D.10).

max
∑
j∈J

Djλj −
∑
i∈IL

Ciµi −
∑
i∈IC

C0
i µi (D.6)

s.t. λj − µi ≤
1

(1 +R)t
Pi,j ∀ i ∈ IL, j ∈ J (D.7)

λj − µi ≤
1

(1 +R)t
Pi,j ∀ i ∈ IC, j ∈ J (D.8)

µi ∈ R+ ∀ i ∈ I (D.9)

λj ∈ R ∀ j ∈ J (D.10)

We assume that the dual lower-level problem is bounded (and the primal lower-level problem is

feasible). The condition that guarantees a finite solution for the dual of the lower-level problem is

presented in Equation (D.11).

∑
j∈J

Dj ≤
∑
i∈IL

Ci +
∑
i∈IL

C0
i (D.11)

An important observation regarding dual variables µi (i ∈ IL) is that they all have the same optimal

value. It is the case because constraints (D.7) are identical for all plants of the leader (plants of the

leader offer the same price to each market) and the coefficients of all µi have the same sign in the

objective function. We also note that the condition presented in Equation (D.12) must be satisfied

by the optimal solution of the dual lower-level problem in order to obtain the largest values of λj
allowed by dual constraints (D.7)-(D.8).

λj = min
i∈I

(
1

(1 +R)t
Pi,j + µi

)
∀ j ∈ J (D.12)

Using Equation (D.12), we can rewrite the dual lower-level problem (D.6)-(D.10) as in Equation
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(D.13).

max
µi≥0

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µi

)]
−
∑
i∈IL

Ciµi −
∑
i∈IC

C0
i µi

 (D.13)

In order to prove that the optimal reduced costs of the leader’s assignment variables cannot de-

crease when capacities are reduced, we divide the proof in four steps.

Step 1: optimal values of µi (i ∈ IL) cannot be less than their optimal values obtained with

maximum capacity.

We assume that CU
i is the upper bound of the coefficient of dual variable µi in Equation (D.6), and

we denote by (µUi , λ
U
j ) the corresponding optimal solution of the dual lower-level problem. Now,

let us assume that the coefficients of µi are reduced by ∆Ci, and let us denote by (µ∆
i , λ

∆
j ) the

optimal dual solution corresponding to capacities C∆
i = CU

i −∆Ci. If we consider that Equation

(D.13) is a maximization problem, we can establish the sequence of inequalities (D.14)-(D.17).

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µ∆

i

)]
−
∑
i∈IL

CU
i µ

∆
i −

∑
i∈IC

C0
i µ

∆
i (D.14)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈IL

CU
i µ

U
i −

∑
i∈IC

C0
i µ

U
i (D.15)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈IL

(
CU
i −∆Ci

)
µUi −

∑
i∈IC

C0
i µ

U
i (D.16)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µ∆

i

)]
−
∑
i∈IL

(
CU
i −∆Ci

)
µ∆
i −

∑
i∈IC

C0
i µ

∆
i (D.17)

where (D.14) is less than (D.15) because µUi is the optimal solution in the maximization problem

with capacity CU
i ; (D.15) is less than (D.16) because of its additional term

∑
i∈IL

∆Ciµ
U
i ; and (D.16)

is less than (D.17) because µ∆
i is the optimal solution in the maximization problem with capacity

CU
i −∆Ci.

We note that
∑
i∈IL

∆Ciµ
∆
i is the difference between expressions (D.17) and (D.14). Similarly, the
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difference between expressions (D.16) and (D.15) is
∑
i∈IL

∆Ciµ
U
i . Hence, we can infer inequality

(D.18).

∑
i∈IL

∆Ciµ
∆
i ≥

∑
i∈IL

∆Ciµ
U
i (D.18)

Since dual variables µi have the same optimal value for all i ∈ IL, then µ∆
i ≥ µUi for all i ∈ IL.

Step 2: optimal values of µi (i ∈ IC) cannot be less than their optimal values obtained with

maximum capacity.

In order to continue with the argument, let us define εi according to Equation (D.19).

εi = µ∆
i − µUi (D.19)

Beforehand, we know that εi ≥ −µUi because any feasible µi must be nonnegative. By optimality

of Equation (D.15), we also know that any deviation of µUi from their optimal values yields a lower

bound as presented in Equations (D.20)-(D.21).

∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + min

i′
[εi′ ]

)]
−
∑
i∈IL

CU
i (µUi + min

i′
[εi′ ])−

∑
i∈IC

C0
i (µUi + min

i′
[εi′ ]) (D.20)

≤
∑
j∈J

Dj

[
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)]
−
∑
i∈IL

CU
i µ

U
i −

∑
i∈IC

C0
i µ

U
i (D.21)

subtracting (D.21) from (D.20), we obtain inequality (D.22),

−
∑
j∈J

Dj min
i′

[εi′ ] +
∑
i∈IL

CU
i min

i′
[εi′ ] +

∑
i∈IC

C0
i min

i′
[εi′ ] ≥ 0 (D.22)

which implies min
i∈I

[εi] ≥ 0 according to inequality (D.11).
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Step 3: if capacities of the leader are reduced, optimal values of µi (i ∈ IC) cannot increase

faster than the values of µi (i ∈ IL).

We want to show that maxi∈I [εi] = maxi∈IL [εi]. Since all dual variables µi have the same optimal

value for all i ∈ IL, we denote by µU1 their optimal value in the problem with maximum capacity

and by ε1 their optimal deviation when capacities of the leader are reduced by ∆Ci.

By optimality of Equation (D.15), we can deduce inequality (D.23).

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi − ε1

)}
−
∑
i∈IL

CU
i

(
µUi + εi − ε1

)
−
∑
i∈IC

C0
i

(
µUi + εi − ε1

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)}
−
∑
i∈IL

CU
i µ

U
i −

∑
i∈IC

C0
i µ

U
i (D.23)

which implies inequality (D.24),

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)}
−
∑
i∈IL

CU
i

(
µUi + εi

)
−
∑
i∈IC

C0
i

(
µUi + εi

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + ε1

)}
−
∑
i∈IL

CU
i

(
µUi + ε1

)
−
∑
i∈IC

C0
i

(
µUi + ε1

)
(D.24)

By optimality, we also know that inequality (D.25) must be satisfied.
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∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + ε1

)}
−
∑
i∈IL

(
CU
i −∆Ci

) (
µUi + ε1

)
−
∑
i∈IC

C0
i

(
µUi + ε1

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi
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−
∑
i∈IL

(
CU
i −∆Ci

) (
µUi + εi

)
−
∑
i∈IL

C0
i

(
µUi + εi

)
(D.25)

Furthermore, an upper bound on the right-hand side of inequality (D.25) is given by Equation

(D.26).

∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi + εi

)}
−
∑
i∈IL

(
CU
i −∆Ci

) (
µUi + εi

)
−
∑
i∈IC

C0
i

(
µUi + εi

)
≤
∑
j∈J

Dj

{
min
i∈I

(
1

(1 +R)t
Pi,j + µUi

)
+ max

i
[εi]

}
−
∑
i∈IL

(
CU
i −∆Ci

) (
µUi + εi

)
−
∑
i∈IL

C0
i

(
µUi + εi

)
(D.26)

If we subtract the left-hand side of (D.25) from the right-hand side of (D.26), we can infer inequality

(D.27),

∑
j∈J

Dj

{
max
i

[εi]− ε1
}
−
∑
i∈IC

C0
i (εi − ε1) ≥ 0 (D.27)

Now, let us assume that max
i

[εi] > ε1. Then, for i′ = arg max[εi], inequality (D.28) must be

satisfied.

C0
i′ ≤

∑
j∈J

Dj

{
max
i

[εi]− ε1
}
−

∑
i∈IC\{i′}

C0
i (εi − ε1)

(εi′ − ε1)
(D.28)

But we have not imposed any restrictions on the capacity of the competitors. Therefore,
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ε1 = max
i∈I

[εi]

Step 4: reduced costs of assignment variables for the leader cannot decrease when its capacities

are reduced.

A necessary condition for the optimality of a minimization linear program is that the reduced cost

of the nonbasic variables must be nonnegative. Therefore, optimal demand assignments to the

leader that are nonbasic (yUi,j = 0 i ∈ IL) in the problem with maximum capacity must have

nonnegative reduced costs as indicated in inequality (D.29).

rUi,j =
1

(1 +R)t
Pi,j + µUi −λUj ≥ 0 ∀ (i, j) ∈

{
(i, j) : i ∈ IL, j ∈ J, yUi,j = 0

}
(D.29)

Using Equation (D.12), we can rewrite the reduced cost (ri,j) for nonbasic variables yi,j only in

terms of dual variables µi,

rUi,j =
1

(1 +R)t
Pi,j + µUi −min

i′∈I

(
1

(1 +R)t
Pi′,j + µUi′

)
≥ 0

∀ (i, j) ∈
{

(i, j) : i ∈ IL, j ∈ J, yUi,j = 0
}

(D.30)

Recall that the lower-level problem is degenerate because the leader offers a single price to each

market from all plants. This degeneracy implies that some assignment variables are nonbasic but

their reduced costs are strictly equal to zero. In order to keep in the bilevel problem the degenerate

assignments, we restrict the domain reduction to variables with strictly positive reduced costs in

the lower-level problem with maximum capacity.

In Step 3, we established that dual variables µi (i ∈ IC) cannot increase more than dual variables

µi (i ∈ IL) when production capacities of the leader are reduced from CU
i to CU

i − ∆Ci. Then,

according to inequality (D.31), the reduced cost of the variables of the leader cannot decrease when

capacities are reduced.

1

(1 +R)t
Pi,j + µUi −min

i′∈I

(
1

(1 +R)t
Pi′,j + µUi′

)
≤ 1

(1 +R)t
Pi,j + µUi + εi −min

i′∈I

(
1

(1 +R)t
Pi′,j + µUi′ + εi′

)
∀ (i, j) ∈

{
(i, j) : i ∈ IL, j ∈ J

}
(D.31)
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Inequality (D.31) implies that variables yi,j (i ∈ IL) with positive reduced cost in the lower-level

problem with maximum capacity have positive reduced costs regardless of the leader’s expansion

strategy. Therefore, variables yi,j (i ∈ IL) with positive reduced cost in the lower-level problem

with maximum capacity remain nonbasic when capacities of the leader are reduced.
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