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Abstract
The convergence of mobile computing and cloud computing enables new mo-

bile applications that are both resource-intensive and interactive. For these appli-
cations, end-to-end network bandwidth and latency matter greatly when cloud re-
sources are used to augment the computational power and battery life of a mobile
device. This dissertation designs and implements a new architectural element called
a cloudlet, that arises from the convergence of mobile computing and cloud com-
puting. Cloudlets represent the middle tier of a 3-tier hierarchy, mobile device —
cloudlet — cloud, to achieve the right balance between cloud consolidation and net-
work responsiveness. We first present quantitative evidence that shows cloud loca-
tion can affect the performance of mobile applications and cloud consolidation. We
then describe an architectural solution using cloudlets that are a seamless extension
of todays cloud computing infrastructure. Finally, we define minimal functionali-
ties that cloudlets must offer above/beyond standard cloud computing, and address
corresponding technical challenges.
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Chapter 1

Introduction

The convergence of cloud computing and mobile computing has begun. Apple’s Siri [8], which
performs compute-intensive speech recognition in the cloud, hints at the rich commercial op-
portunities in this emerging space. On the user end, mobile devices are becoming smaller and
smaller as a form of wearable device [43]. At the other end in the back-end server, cloud comput-
ing provides nearly infinite computing resources and scalability to mobile applications. Through
context-aware real-time scene interpretation (including recognition of objects, faces, activities,
signage text, and sounds), we can imagine new mobile applications that offer helpful guidance
for everyday life much beyond what today’s Siri can offer. These applications will be interactive
and resource-intensive leveraging the power of the cloud.

However, one of the critical challenges in cloud-backed mobile computing is the end-to-end
network responsiveness between the mobile device and associated cloud. When the use of cloud
resources is in the critical path of user interaction, operation latencies can be no more than a few
tens of milliseconds. Violating this bound results in distraction and annoyance to a mobile user
who is already attention-challenged [5, 30]. Such fine-grained cloud usage is different from the
coarse-grained usage models and SLA guarantees that dominate cloud computing today.

In fact, centralization in today’s cloud computing makes it much harder to support that fine-
grained cloud usage. This is reflected in the consolidation of compute capacity into a few large
data centers. For example, Amazon Web Services spans the entire planet with just a handful of
data centers located. The underlying value proposition is that centralization exploits economies
of scale to lower the marginal cost of system administration and operations. These economies
of scale evaporate if too many data centers have to be maintained and administered. But the
aggressive global consolidation of data centers leads to a large separation between a mobile de-
vice and its cloud. End-to-end communication then involves many network hops and results
in high latencies and low bandwidth. Limiting consolidation and locating small data centers
much closer to mobile devices would solve this problem, but it would sacrifice the key benefit of
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cloud computing. How do we achieve the right balance? Can we support latency-sensitive and
resource-intensive mobile applications without sacrificing the benefits of cloud computing?

1.1 Thesis Statement

In this thesis, we design and implement a new architectural element called a cloudlet, that arises
from the convergence of mobile computing and cloud computing. Cloudlets represent the middle
tier of a 3-tier hierarchy, mobile device — cloudlet — cloud, to achieve the right balance between
cloud consolidation and responsiveness. Specifically, we claim that:

Emerging mobile applications that are interactive and resource-intensive can be effec-
tively supported by mobility-enhanced small-scale cloud datacenters called cloudlets that
are located at the edge of the Internet.

The main contributions of this thesis are as follows:

1. We provide a measurement-driven quantitative analysis of emerging mobile applications,
and show how cloudlets can help them.

2. We propose a cloudlet-based two-level cloud computing architecture that seamlessly ex-
tends today’s cloud infrastructure.

3. We identify a set of minimal functionalities that cloudlets must offer above/beyond stan-
dard cloud computing, and address technical challenges in implementing them.

1.2 Thesis Overview

The remainder of this dissertation is organized as follows:

• In Chapter 2, we motivate the necessity of cloudlets by presenting quantitative evidence
from a suite of five representative mobile applications. We provide quantitative analysis of
the benefits of cloudlets by comparing performance of the application with Amazon AWS
cloud.

• In Chapter 3, we show how a two-level architecture can achieve the right balance between
cloud consolidation and network requirements. In this chapter, we propose three character-
istics unique to cloudlets due to its decentralized architecture and identify three technical
challenges; rapid provisioning, state handoff across cloudlets, and cloudlet discovery.

• In Chapter 4, we address the technical challenges of cloudlet provisioning. Since a mobile
application relies on precisely-configured back-end server, it is difficult to support at global
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scale across cloudlets in multiple domains. To address this problem, we describe just-in-
time (JIT) provisioning of cloudlets using VMs. We introduce a technique called dynamic
VM synthesis and apply a series of optimizations to aggressively reduce transfer cost and
startup latency.

• In Chapter 5, we present an adaptive virtual machine handoff system to support user mobil-
ity in cloudlet context. We propose VM handoff as a technique for seamlessly transferring
VM-encapsulated execution to a more optimal offload site as users move. In this work, we
highlight the need for VM handoff to dynamically adapt to changing network condition
and processing capacity.

• In Chapter 6, we explain how we discover and select a cloudlet for a mobile application.
Because cloudlets are small data centers distributed at the edge of the Internet, a mobile
device first has to discover, select and associate with the appropriate cloudlet among mul-
tiple candidates. We present our design choices in this resource discovery problem and
introduce three important attributes of discovery in a cloudlet context.

• In Chapter 7, we present our efforts toward deploying cloudlet infrastructure. Since a
cloudlet model requires additional deployment of hardware/software, it is important to
provide a systematic way to incentivise the deployment. In this chapter, we show how we
can we bootstrap the cloudlet deployment using an existing open eco-system.

• Finally, in Chapter 8, we conclude the dissertation and explain future work with a summary
of contributions.
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Chapter 2

Motivation

In mobile context, interactive and resource-intensive applications are emerging. Apple’s Siri
for the iPhone [8], which performs compute-intensive speech recognition in the cloud, hints
at the rich commercial opportunities in this emerging space. Rapid improvements in sensing,
display quality, connectivity, and computational capacity of mobile devices will lead to new
cloud-enabled mobile applications that embody voice-, image-, motion- and location-based in-
teractivity.

These new applications are pushing well beyond the processing, storage, and energy limits of
mobile devices. When their use of cloud resources is in the critical path of user interaction, end-
to-end operation latencies can be no more than a few tens of milliseconds. Violating this bound
results in distraction and annoyance to a mobile user who is already attention-challenged. Such
fine-grained cloud usage is different from the coarse-grained usage models and SLA guarantees
that dominate cloud computing today.

In this chapter, we will provide the experimental evidence that these new applications force
a fundamental change in cloud computing architecture. We describe five example applications
of this genre in Section 2.1, and experimentally demonstrate in Section 2.2 that even with the
rapid improvements predicted for mobile computing hardware, such applications will benefit
from cloud resources. The remainder of the chapter explores the architectural implications of
this class of applications. In the past, centralization was the dominant theme of cloud comput-
ing. This is reflected in the consolidation of dispersed compute capacity into a few large data
centers. Aggressive global consolidation of data centers implies large average separation be-
tween a mobile device and its cloud. End-to-end communication then involves many network
hops and results in high latencies. Section 2.3 quantifies this point using measurements from
Amazon EC2. Under these conditions, achieving crisp interactive response for latency-sensitive
mobile applications will be a challenge.
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2.1 Example Mobile Applications

Beyond today’s familiar desktop, laptop, and smartphone applications is a new genre of software
to seamlessly augment human perception and cognition. Consider Watson, IBM’s question-
answering technology that publicly demonstrated its prowess in 2011 [108]. Imagine such a
tool being available anywhere and anytime to rapidly respond to urgent questions posed by an
attention-challenged mobile user. Such a vision may be within reach in the next decade. Free-
form speech recognition, natural language translation, face recognition, object recognition, dy-
namic action interpretation from video, and body language interpretation are other examples of
this genre of futuristic applications. Although a full-fledged cognitive assistance system is out
of reach today, we investigate several smaller applications that are building blocks towards this
vision. Five such applications are described below.

Face Recognition (FACE)

A most basic and fundamental perception task is the recognition of human faces. The prob-
lem has been long studied in the computer vision community, and fast algorithms for detecting
human faces in images have been available for some time [111]. Identification of individuals
through computer vision is still an area of active research, spurred by applications in security
and surveillance tasks. However, such technology is also very useful in mobile devices for per-
sonal information management and cognitive assistance. For example, an application that can
recognize a face and remind you who it is (by name, contact information, or context in which
you last met) can be quite useful to everyone, and invaluable to those with cognitive or visual
impairments. Such an application is most useful if it can be used anywhere, and can quickly
provide a response to avoid potentially awkward social situations.

The face recognition application studied here detects faces in an image, and attempts to iden-
tify the face from a prepopulated database. The application uses a Haar Cascade of classifiers
to do the detection, and then uses the Eigenfaces method [109] based on principal component
analysis (PCA) to make an identification. The implementation is based on OpenCV [78] image
processing and computer vision routines, and runs on a Microsoft Windows environment. Train-
ing the classifiers and populating the database are done offline, so our experiments only consider
the execution time of the recognition task on a pre-trained system.

Speech Recognition (SPEECH)

Speech as a modality of interaction between human users and computers is a long studied area
of research. Most success has been in very specific domains or in applications requiring a very
limited vocabulary, such as interactive voice response in phone answering services, and hands-
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free, in-vehicle control of cell phones. Several recent commercial efforts aim for general purpose
information query, device control, and language translation using speech input on mobile devices
[8, 55, 112].

The speech recognition application considered here is based on an open-source speech-to-
text framework based on Hidden Markov Model (HMM) recognition systems [104]. It takes as
input digitized audio of a spoken English sentence, and attempts to extract all of the words in
plain text format. This application is single-threaded. Since it is written in Java, it can run on
both Linux and Microsoft Windows. For this thesis, we ran it on Linux.

Object and Pose Identification (OBJECT)

A third application is based on a computer vision algorithm originally developed for robotics
[105], but modified for use by handicapped users. The computer vision system identifies known
objects, and importantly, also recognizes the position and orientation of the objects relative to
the user. This information is then used to guide the user in manipulating a particular object.

Here, the application identifies and locates known objects in a scene. The implementation
runs on Linux, and makes use of multiple cores. The system extracts key visual elements (SIFT
features [67]) from an image, matches these against a database of features from a known set
of objects, and finally performs geometric computations to determine the pose of the identified
object. For the experiments in this chapter, the database is populated with thousands of features
extracted from more than 500 images of 13 different objects.

Mobile Augmented Reality (AR)

The defining property of a mobile augmented reality application is the display of timely and
relevant information as an overlay on top of a live view of some scene. For example, it may show
street names, restaurant ratings or directional arrows overlaid on the scene captured through a
smartphone’s camera. Special mobile devices that incorporate cameras and see-through displays
in a wearable eye-glasses form factor [38] can be used instead of a smartphone.

AR uses computer vision to identify actual buildings and landmarks in a scene, and label
them precisely in the view [107]. This is akin to an image-based query in Google Goggles [40],
but running continuously on a live video stream. AR extracts a set of features from the scene
image, and uses the feature descriptors to find similar-looking entries in a database constructed
using features from labeled images of known landmarks and buildings. The database search is
kept tractable by spatially indexing the data by geographic locations, and limiting search to a
slice of the database relevant to the current GPS coordinates. The prototype application uses
a dataset of 1005 labeled images of 200 buildings as the relevant database slice. AR runs on
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Application Average request size Response size
FACE 62 KB < 60 bytes

SPEECH 243 KB < 50 bytes
OBJECT 73 KB < 50 bytes

AR 26 KB < 20 bytes
FLUID 16 bytes 25 KB

Figure 2.1: Average request & response size of each application

Microsoft Windows, and makes significant use of OpenCV libraries [78], Intel Performance
Primitives (IPP) libraries, and multiple processing threads.

Physical Simulation and Rendering (FLUID)

Our final application is used in computer graphics. Using accelerometer readings from a mobile
device, it physically models the motion of imaginary fluids with which the user can interact. For
example, it can show liquid sloshing around in a container depicted on a smartphone screen, such
as a glass of water carried by the user as he walks or runs. The application backend runs a physics
simulation, based on the predictive-corrective incompressible smoothed particles hydrodynamics
(PCISPH) method [103]. We note that the computational structure of this application is repre-
sentative of many other interactive applications, particularly “real-time” (i.e., not turn-based)
games.

FLUID is implemented as a multithreaded Linux application. To ensure a good interactive
experience, the delay between user input and output state change has to be very low, on the order
of 100ms. In our experiments, FLUID simulates a 2218 particle system with 20 ms timesteps,
generating up to 50 frames per second.

Figure 2.1 shows average request and response sizes for each application. All applications
send requests with input data from the mobile device and receive back computed results based on
the inputs. The average request size is tens of kilobyte for a captured image and several hundreds
kilobytes for a recorded speech input. The response size is typically less than 100 bytes as the
returned results are simple text strings. In the FLUID application, however, the requests are
streams of sensed motion information using accelerometer data, so each request is just a few
bytes. The response data is the state of the simulated world, so unlike the other applications, the
responses here are much larger than the requests.
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Typical Server Typical Handheld
Year Processor Speed Device Speed
1997 Pentium R© II 266 MHz Palm Pilot 16 MHz
2002 Itanium R© 1 GHz Blackberry 5810 133 MHz
2007 Intel R© CoreTM 2 9.6 GHz (4 cores) Apple 412 MHz iPhone
2011 Intel R© Xeon R© X5 32 GHz (2x6 cores) Samsung Galaxy S2 2.4 GHz (2 cores)

Figure 2.2: Evolution of Hardware Performance (adapted from Flinn [31])

Dell Latitude 2102 Samsung Galaxy S2
CPU Intel R© AtomTM N550 ARM Cortex-A9

1.5 GHz per core, 2 cores (4 threads) 1.2 GHz per core, 2 cores
RAM 2 GB 1 GB
Storage 320 GB 16 GB
OS Linux, Windows Android

Figure 2.3: Dell Netbook Device Used in Experiments

2.2 Why Cloud Resources are Necessary

2.2.1 Mobile Hardware Performance

Handheld or body-worn mobile devices are always resource-poor relative to server hardware of
comparable vintage [94]. Figure 2.2, adapted from Flinn [31], illustrates the consistent large
gap in the processing power of typical server and mobile device hardware over a 15-year period.
This stubborn gap reflects a fundamental reality of user preferences: Moore’s Law has to be
leveraged differently on hardware that people carry or wear for extended periods of time. This is
not just a temporary limitation of current mobile hardware technology, but is intrinsic to mobility.
The most sought-after features of a mobile device always include light weight, small size, long
battery life, comfortable ergonomics, and tolerable heat dissipation. Processor speed, memory
size, and disk capacity are secondary.

All the experiments in this chapter use a Dell Latitude 2102 as the mobile device. This
small netbook machine is more powerful than a typical smartphone today (Figure 2.3), but it is
representative of mobile devices in the near future.

2.2.2 Extremes of Resource Demands

At first glance, it may appear that today’s smartphones are already powerful enough to support
mobile multimedia applications without leveraging cloud resources. Some digital cameras and
smartphones support built-in face detection. Android 4.0 APIs support tracking of multiple faces
and give detailed information about the location of eyes and mouth [80]. Google’s “Voice Ac-
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Application Condition 1 Condition 2 Condition 3
SPEECH 0.057 s 1.04 s 4.08 s

FACE 0.30 s 3.92 s N/A

Figure 2.4: Average response time of applications on mobile device under different conditions (see
Sect. 2.2.2)

tions for Android” performs voice recognition to allow hands-free control of a smartphone [42].
Lowe [66] describes many computer vision applications that run on mobile devices today.

However, upon closer examination, the situation is much more complex and subtle. Consider
computer vision, for example. Its computational requirements vary drastically depending on the
operational conditions. For example, it is possible to develop (near) frame-rate object recog-
nition (including face recognition [84]) operating on mobile computers if we assume restricted
operational conditions such as a small number of models (e.g., small number of identities for
person recognition), and limited variability in observation conditions (e.g., frontal faces only).
The computational demands greatly increase with the generality of the problem formulation. For
example, just two simple changes make a huge difference: increasing the number of possible
faces from just a few close acquaintances to the entire set of people known to have entered a
building, and reducing the constraints on the observation conditions by allowing faces to be at
arbitrary viewpoints from the observer.

To illustrate the great variability of execution times possible with perception applications,
we perform a set of experiments using two of the applications discussed earlier. We run the
SPEECH and FACE applications on the mobile platform, and measure the response times for a
wide variety of inputs. Figure 2.4 shows the results. For the speech application, execution times
generally increase with the number of words the algorithm recognizes (correctly or otherwise) in
an utterance. Conditions 1, 2, 3 for this application correspond to sentences in which no words,
1–5 words, and 6–22 words are recognized, respectively. The response time varies quite dra-
matically, by almost 2 orders of magnitude, and is acceptable only when the application fails to
recognize any words. When short phrases are correctly recognized, the response time is marginal,
at just over 1 second, on average. For longer sentences, when the application works at all, it just
takes too long. For comparison, Agus et al. [5] report that human subjects recognize short target
phrases within 300 to 450 ms, and are able to tell that a sound is a human voice within a mere
4 ms.

In the case of the face recognition application, the best response times occur when there is
a single, large, recognizable face in the image. These correspond to Condition 1 in Figure 2.4.
It fares the worst when it searches in vain at smaller and smaller scales for a face in an image
without any faces (Condition 2). Unfortunately, response time is close to the latter for images
that only contain small faces. At close to 4-second average response time in these conditions,
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No Cloud With Cloud
Application median 99% median 99%
SPEECH 1.22 s 6.69 s 0.23 s 1.25 s

FACE 0.42 s 4.12 s 0.16 s 1.47 s

Figure 2.5: Response times with and without cloud resources.

Ideal Measured on campus Measured off campus
EC2 Latency BW to/from Cloud (Mbps) Latency (ms) BW to/from Cloud (Mbps) Latency (ms)
site (ms) Day 1 Day 2 Day 3 median. 90% Day 1 Day 2 Day 3 median. 90%

East 1.8 28 / 34 42 / 34 20 / 15 9.2 12.4 5.1 / 13.7 5.1 / 14.2 5.1 / 13.4 17.9 21.3

West 24.2 12 / 14 20 / 18 11 / 2.5 92.1 95.5 5.0 / 13.9 5.1 / 13.6 4.9 / 13.4 90.3 93.8

EU 36.8 3.6 / 0.9 13 / 0.4 7.6 / 0.9 99.3 103.0 4.9 / 13.8 5.0 / 11.8 4.8 / 13.3 112 115

Asia 102.5 10 / 0.5 2.4 / 0.2 3.0 / 0.4 265 272 4.6 / 9.4 4.6 / 9.2 4.4 / 9.7 277 286

Figure 2.6: Measured Network Quality to Amazon EC2 Sites from Carnegie Mellon University (Pitts-
burgh, PA) (”Ideal” is at speed of light)

this application is unacceptably slow. For comparison, recent experimental results on human
subjects by Ramon et al. [87] show that recognition times under controlled conditions range
from 370 milliseconds for the fastest responses on familiar faces to 620 milliseconds for the
slowest response on an unfamiliar face. Lewis et al. [64] report that human subjects take less
than 700 milliseconds to determine the absence of faces in a scene, even under hostile conditions
such as low lighting and deliberately distorted optics.

Such data-dependent and context-dependent tradeoffs apply across the board to virtually all
applications of this genre. In continuous use under the widest possible range of operating condi-
tions, providing near real-time responses, and tuned for very low error rates, these applications
have ravenous appetites for processing, memory and energy resources. They can easily over-
whelm a mobile device.

2.2.3 Improvement from Cloud Computing

Performance improves considerably when cloud resources are leveraged. Figure 2.5 shows the
median and 99th percentile response times for the SPEECH and FACE experiments of Figure 2.4
with and without use of cloud resources. For the speech case, we leverage an Amazon EC2
instance. For the face recognition application, we use a private cloud. Although variability in
execution times still exists, the absolute response times are significantly improved. These ex-
periments confirm that leveraging cloud resources can improve user experience for our example
applications.
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Ideal Measured on campus Measured off campus
EC2 Latency BW to/from Cloud (Mbps) Latency (ms) BW to/from Cloud (Mbps) Latency (ms)
site (ms) Day 1 Day 2 Day 3 median. 90% Day 1 Day 2 Day 3 median. 90%

East 38.5 4.7 / 5.2 4.7 / 5.2 5.6 / 5.5 89.4 101 0.8 / 3.3 1.9 / 4.7 0.6 / 3.1 106 123

West 54.3 5.4 / 3.5 5.4 / 3.5 3.6 / 3.6 159 208 0.5 / 2.4 1.4 / 2.8 0.7 / 2.6 182 201

EU 1.7 6.7 / 10.4 6.7 / 10.4 8.0 / 10.5 32.7 63.4 1.7 / 9.4 2.5 / 14.5 1.4 / 7.6 43.6 64

Asia 73.2 4.7 / 2.6 4.7 / 2.6 6.2 / 2.7 279 325 0.3 / 1.6 1.4 / 1.9 0.5 / 1.6 272 291

Figure 2.7: Measured Network Quality to Amazon EC2 Sites from Lancaster University (Lancaster, UK)
(”Ideal” is at speed of light)

2.3 Effects of Cloud Location

In reality, “the cloud” is an abstraction that maps to services in sparsely scattered data centers
across the globe. As a user travels, his mobile device experiences high variability in the end-
to-end network latency and bandwidth to these data centers. We examine the significance of
this variability for mobile multimedia applications. Response time for remote operations is our
primary metric. Energy consumed on the mobile device is a secondary metric. Application-
specific metrics such as frame rate are also relevant.

2.3.1 Variable Network Quality to the Cloud

In this chapter, we focus on Amazon EC2 services provided by several data centers worldwide.
We use the labels “East,” “West,” “EU,” and “Asia” to refer to the data centers located in Virginia,
Oregon, Ireland and Singapore. We measured end-to-end latency and bandwidth to these data
centers from a WiFi-connected mobile device located on our campuses in Pittsburgh, PA and
Lancaster, UK. We also repeated these measurements from off-campus sites with excellent last-
mile connectivity in these two cities. Figure 2.6 and 2.7 present our measurements, and quantify
our intuition that a traveling user will experience highly variable cloud connectivity. There are
also some surprises in the data.

One surprise is the amazingly good connectivity to EC2 East from our Pittsburgh, PA campus.
From a wired connection, we measured 8 ms ping times and 200 Mbps transfer rates to this site.
Such numbers are more typical of LAN connections than WAN transfers! We believe that this is
due to particularly favorable network routing between our campus and the EC2 East site. This
hypothesis is confirmed by the poorer off-campus measurements shown in Figure 2.6. Thus, our
EC2 East on-campus results best serve to indicate what one can expect from a LAN-connected
private cloud. Li et al. [65] report that average round trip time (RTT) from 260 global vantage
points to their optimal Amazon EC2 instances is 73.68 ms. Therefore, the EC2 West numbers in
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Figure 2.6 are more typical of cloud connectivity.
Another surprise is the great range of bandwidths observed, particularly the upload/down-

load asymmetry and the significant variation between experiments. To mitigate this time-varying
factor, we scheduled our experiments on weekday nights when conditions were stable and band-
width consistently high. All experiments in the rest of the chapter were run under these condi-
tions on campus in Pittsburgh.

2.3.2 Impact on Response Time

We next evaluate how cloud connectivity affects the applications described in Section 2.1. We
consider six cases. The first, labeled “Mobile,” runs the application entirely on the mobile device.
Cloud connectivity is irrelevant, but the resource constraints of the mobile device dominate. In
four other cases, the mobile device performs the resource-intensive part of each operation on one
of the four Amazon data centers and blocks until it receives the result.

The sixth case, labeled “Cloudlet,” corresponds to the theoretical best-case for data center
location. With today’s deployed wireless technology, this is exactly one WiFi hop away from a
mobile device. This can only be approximated today in special situations: e.g., on a WiFi-covered
campus, with access points connected to a private data center through a lightly-loaded gigabit
LAN backbone. If naively implemented at global scale, Cloudlet would lead to a proliferation
of data centers. Chapter 3 discusses how the consolidation benefits of cloud computing can be
preserved while scaling out the cloudlet configuration.

Figure 2.8 compares the characteristics of the compute platforms used in our configurations.
For Cloudlet, we create a minimal data center using a six-year old WiFi-connected server. The
choice of this near-obsolete machine is deliberate. By comparing it against a fast mobile device
and fast EC2 cloud instances, we have deliberately stacked the deck against Cloudlet. Hence,
any wins by this strategy in our experiments should be considered quite meaningful.

FACE Figure 2.9 summarizes the response times measured for FACE under different conditions.
Here, we test with 300 images that may have known faces, unknown faces, or no faces at all.
Processing on the mobile device alone can provide tolerable response times for the easier images,

Mobile Cloudlet Cloud (East, West, EU, Asia)
CPU Intel R© AtomTM N550 Intel R© Xeon R© E5320 Amazon X-Large Instance

1.5 GHz, 2 cores, 4 threads 1.86 GHz, 4 cores 20 Compute Units, 8 virtual cores
RAM 2 GB 4 GB 7 GB
VMM none KVM Xen,VMware

Figure 2.8: Platform specifications
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Figure 2.9: FACE: Cumulative distribution function (CDF) of response times in ms (300 images).
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Figure 2.10: SPEECH: CDF of response times in ms (500 WAV files, each recording one sentence).
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Figure 2.11: OBJECT: CDF of response times in ms (300 images).
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Figure 2.12: AR: CDF of response times in ms (100 images).
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Figure 2.13: FLUID: CDF of response times in ms (10 minute runs, accelerometer data sampled every
20ms). (see also Figure 2.14)
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Normalized Displayed
Simulation Frame Rate

Speed (FPS)
mobile 0.2 9.2
cloudlet 1.0 49.8
east 1.0 42.8
west 1.0 10.3
eu 1.0 3.6
asia 1.0 1.6

Figure 2.14: Simulation speed, frame rate for FLUID.

but is crushed by the heavy-tailed distribution of processing costs. Only cloudlet can provide fast
response (<200ms) most of the time, and a tolerable worst case response time. Hence, cloudlet
is the best approach to running FACE.

SPEECH Results for SPEECH are somewhat different (Figure 2.10). Here, the application gen-
erally requires significant processing for each query, and data transfer costs are modest. This
changes the relative performance of the strategies significantly. As the response time is domi-
nated by processing time, this favors the more capable but distant servers in the cloud over the
weak cloudlet server. Processing without cloud assistance is out of the question. For SPEECH,
using the closest EC2 data center is the winning strategy. To understand the effect of a more
powerful cloudlet machine, we repeated that experiment with an Intel R© CoreTM i7-3770 desktop
processor. The results shown in Figure 2.15 confirm that cloudlet now dominates the alternatives.

OBJECT Compared to the previous two applications, OBJECT requires significantly greater
compute resources. Unfortunately, the processing load is so large that none of the approaches
yield acceptable interactive response times (Figure 2.11). This application really needs more
resources than our single VM instances or weak cloudlet server can provide. To bring response
times down to reasonable levels for interactive use, we will either need to parallelize the ap-
plication beyond a single machine/VM boundary and employ a processing cluster, or make use
of GPU hardware to accelerate critical routines. Both of these potential solutions are beyond
the scope of this chapter. Using the faster cloudlet machine (with an Intel R© CoreTM i7-3770
processor) does help significantly (Figure 2.16).

AR This application employs a low-cost feature extraction algorithm, and an efficient approx-
imate nearest-neighbor algorithm to match features in its database. While these processing costs
are modest, data transfer costs are high because of image transmission. Therefore, as shown
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Figure 2.16: Experiments of Figure 2.11 repeated with faster cloudlet machine

in Figure 2.12, none of the EC2 cases is adequate for this application. They generally provide
slower response times than execution on the mobile device. Cloudlet, on the other hand, works
extremely well for this application, providing very fast response times (around 100ms) needed
for crisp interactions. This is clearly the winning strategy for AR.

FLUID Response time for FLUID is defined as the time between the sensing of a user action
(i.e., accelerometer reading), to when that input is reflected in the output. This largely reflects
three factors: the execution time of a simulation step, network latency, and data transfer time
for a frame from the simulation thread. As seen in Figure 2.13, local execution on the mobile
device produces good response times, since all but the first factor are essentially zero. However,
simulation speed and frame rate also need to be considered (Figure 2.14). The simulation runs
asynchronously to the inputs and display, and tries to match simulated time with wall-clock time.
Since the mobile device cannot execute the simulation steps fast enough, fluid motions are less
than one fifth of realistic speeds. The cloud strategies do not have this issue, but due to bandwidth
and network latencies, cannot deliver the results of the simulation fast enough to sustain the full
frame rate. Only cloudlet and East can deliver both good responsiveness and high frame rates.

2.3.3 Impact on Energy Usage

Battery life is a key attribute of a mobile device. Executing resource-intensive operations in the
cloud can greatly reduce the energy consumed on the mobile device by the processor(s), memory
and storage. However, it increases network use and wireless energy consumption. Since peak
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Figure 2.17: Energy consumption on mobile device

processor power consumption exceeds wireless power consumption on today’s high-end mobile
devices, this tradeoff favors cloud processing as computational demands increase. Network la-
tency has recently been shown to increase energy consumption for remote execution by as much
as 50%, even if bandwidth and computation are held constant [27, 31]. This is because hardware
elements of the mobile device remain in higher-power states for longer periods of time.

Figure 2.17 summarizes energy consumption on our mobile device for the experiments de-
scribed in Section 2.3.2. For each application, the first row shows the power dissipation in watts,
averaged over the whole experiment. In all cases, this quantity shows little variation across data
centers. Local execution on the mobile device incurs the highest power dissipation. Note that
the netbook platform has a high baseline idle power dissipation (around 10W), so the relative
improvement in power is likely to be larger on more energy-efficient hardware.

Average power dissipation only tells part of the story. Cloud use also tends to shorten the
time to obtain a result. When this is factored in, the energy consumed per query or frame is
dramatically improved. These results are shown in the second row for each application in Fig-
ure 2.17. In the best case, the energy consumed per result is reduced by a factor of 3 to 6. The
strategies that exhibit the greatest energy efficiency are also the ones that give the best response
times.

2.3.4 Summary and Discussion

The results of Sections 2.3.2 and 2.3.3 confirm that logical proximity to data center is essential
for mobile applications that are highly interactive and resource intensive. By “logical proximity”
we mean the end-to-end properties of high bandwidth, low latency and low jitter. Physical prox-
imity is only weakly correlated with logical proximity because of the well-known “last mile”
problem [106].
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A cloudlet represents the best attainable logical proximity. Our results show that this extreme
case is indeed valuable for many of the applications studied, both in terms of response time
and energy efficiency. It is important to keep in mind that these are representative of a new
genre of cognitive assistance applications that are inspired by the sensing and user interaction
capabilities of mobile devices. Mobile participation in server-based multiplayer games such as
Doom 3 is another use case that can benefit from logical proximity [11]. The emergence of
such applications can be accelerated by deploying infrastructure that assures mobile users of
continuous logical proximity to the cloud. The situation is analogous to the dawn of personal
computing, when the dramatic lowering of user interaction latency relative to time-sharing led to
entirely new application metaphors such as the spreadsheet and the WYSIWYG editor.

2.4 Enabling New Applications

In addition to the previous mobile applications, the cloudlet can be an enabling architectural
element for futuristic applications. We have proposed new applications and frameworks that
leverages cloudlets.

2.4.1 GigaSight

GigaSight [102] is a scalable Internet system for continuous collection of crowd-sourced video
from head-up displays (HUDs) such as Google Glass. When equipped with a front-end camera,
HUDs enable near effortless capture of first-person viewpoint video. Recording a video will
merely require you to press a button on the shank of your glasses, rather than taking your smart-
phone out of your pocket and performing a number of touch screen interactions. Easy video
capture will greatly increase the number of videos shared with the world (e.g. by uploading to
YouTube). Integrating video capture with correlated sensor information such as gaze tracking,
audio, geolocation, acceleration, and biodata (e.g., heartrate) is only a matter of time. GigaSight
focuses on the gathering, cataloging, and access of first-person video from many contributors.
By automatic tagging of this rich data collection, and by enabling deep content-based search of
any subset of that data, it creates a valuable public resource much like the Web itself.

There are many technical challenges at different levels to enable this system. One critical
challenge is how to automatically remove privacy sensitive information from the personal video.
Unfortunately, always-on video capture is much less deliberate and controlled than authoring
text. You can’t help capturing scenes, but specific objects/people in them may not be what you
(or they) want published. It is therefore crucial to edit out frames and/or blur individual objects
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in scenes. What needs to be removed is highly user-specific, but no user can afford the time to
go through and edit video captured on a continuous basis. One therefore needs a process that
continuously performs this editing as video is submitted for sharing. If a user is confident that
the editing process accurately reflects his personal preferences, he is likely to share his captured
video without further review. We refer to this user-specific lowering of fidelity as denaturing.

Denaturing has to strike a balance between privacy and value. At one extreme of denaturing
is a blank video: perfect privacy, but zero value. At the other extreme is the original video at its
capture resolution and frame rate. This has the highest value for potential customers, but also
incurs the highest exposure of privacy. Where to strike the balance is a difficult question that is
best answered individually, by each user. This decision will most probably be context-sensitive.
From a technical viewpoint, state-of-the-art computer vision algorithms including face detection,
face recognition, and object recognition should be applied to each frame.

Another challenge is high cumulative data rate of incoming videos from many users. Without
careful design, this could easily overwhelm the capacity of metro area networks or the ingress
Internet paths into centralized cloud infrastructure such as Google’s compute engine or Ama-
zon’s EC2 sites. As of 2014, 1 hour of video is uploaded to YouTube each second [119], which
is the equivalent of only 3600 users simultaneously streaming. When the usage of HUDs be-
comes mainstream, this number will rapidly increase. Verizon recently announced an upgrade
to 100 Gbps links in their metro area networks [81], yet one such link is capable of support-
ing 1080p streams from only 12000 users at YouTube’s recommended upload rate of 8.5 Mbps.
Supporting a million users will require 8.5 Tbps.

GigaSight uses cloudlet, which is decentralized cloud computing infrastructure, to solve these
challenges. The use of cloudlets in this case is based solely on bandwidth considerations and Gi-
gaSight can be considered as a hybrid cloud architecture that is effectively a CDN in reverse.
Cloudlets receive users’ streaming video data 24/7 and perform denaturing process in near real-
time. Only meta-data about these videos (such as owner (anonymized), location of capture, start
and end time of capture, cloudlets geolocation, and index terms) is stored in a global catalog in
the cloud. In a small number of cases, based on popularity or other metrics of importance, some
videos may be copied to the cloud for archiving or replicated in the cloud and other cloudlets for
scalable access. But most videos reside only at a single cloudlet. How long they are kept around
depends on the storage reclamation and replication policy.

2.4.2 Gabriel

Gabriel [48] is an assistive system based on Google Glass devices. The possibility of using
wearable devices for deep cognitive assistance (e.g., offering hints for social interaction via real-
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time scene analysis) was first suggested nearly a decade ago [96, 98]. However, this goal has
remained unattainable until now for three reasons. First, the state of the art in many foundational
technologies (such as computer vision, sensor-based activity inference, speech recognition, and
language translation) is only now approaching the required speed and accuracy. Second, the
computing infrastructure for offloading compute-intensive operations from mobile devices was
absent. Only now, with the convergence of mobile computing and cloud computing, is this being
corrected. Third, suitable wearable hardware was not available. Although head-up displays
have been used in military and industrial applications, their unappealing style, bulkiness and
poor level of comfort have limited widespread adoption. Only now has aesthetically elegant,
product-quality hardware technology of this genre become available. Google Glass is the most
well-known example, but others are also being developed. It is the convergence of all three
factors at this point in time that brings our goal within reach.

The Gabriel framework focuses on interactive cognitive assistance using Google Glass, which
is the most widely available wearable device as of 2015. A Glass device is equipped with a
first-person video camera and sensors such as an accelerometer, GPS1, and compass. Although
our prototype implementation works specifically on the Explorer version of Glass, our system
architecture and design principles are applicable to any similar wearable device.

Our Gabriel system combines the first-person image capture and sensing capabilities of
Glass with remote processing to perform real-time scene interpretation. In the system design
of Gabriel, the unique demands of cognitive assistance applications create important constraints.
First, we need crisp interactive response. Humans are acutely sensitive to delays in the critical
path of interaction. Assistive technology that is introduced into the critical paths of percep-
tion and cognition should add negligible delay relative to the task-specific human performance
figures cited above. Second, offloading is inevitable. The most sought-after features of a wear-
able device are light weight, small size, long battery life, comfort and aesthetics, and tolerable
heat dissipation. System capabilities such as processor speed, memory size, and storage capac-
ity are only secondary concerns. Offloading improves the speed of recognition, and lowers the
energy cost to the mobile device. Third, coarse-grain parallelism is necessary. Human cogni-
tion involves the synthesis of outputs from real-time analytics on multiple sensor stream inputs.
A wide range of software building blocks that correspond to these distinct processing engines
exist today: face recognition [109], activity recognition [120] in video, natural language transla-
tion [12], OCR [41], and so on. These cognitive engines are written in a variety of programming
languages and use diverse runtime systems. Some of them are proprietary, some are written for
closed source operating systems, and some use proprietary optimizing compilers. Each is a nat-
ural unit of coarse-grain parallelism. In their entirety, these cognitive engines represent many

1Google Glass has hardware for GPS but it is not activated. Location is currently estimated with Wi-Fi localization.
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Figure 2.18: Gabriel Offload Approaches

hundreds to thousands of person years of effort by experts in each domain. To the extent possible
we would like to reuse this large body of existing code.

Cloudlet infrastructure plays a key role for these design constraints in Gabriel. It can serve
powerful computing resources for cognitive engines without losing responsiveness. Moreover,
it offers flexibility in computing environment supporting diverse set of programming language
with different OSs and libraries by leveraging the VM abstraction. Our prototype implementation
provide following features.

Low-latency Offloading

Gabriel achieves low-latency offload by using cloudlets. As a powerful, well-connected and
trustworthy cloud proxy that is just one Wi-Fi hop away, a cloudlet is the ideal offload site for
cognitive assistance. Wearable cognitive assistance can be viewed as a “killer app” that has
the potential to stimulate investment in cloudlets. Figure 2.18(a) illustrates how offload works
normally in Gabriel. The user’s Glass device discovers and associates with a nearby cloudlet, and
then uses it for offload. Optionally, the cloudlet may reach out to the cloud for various services
such as centralized error reporting and usage logging. All such cloudlet-cloud interactions are
outside the critical latency-sensitive path of device-cloudlet interactions. When the mobile user
is about to depart from the proximity of this cloudlet, a mechanism analogous to Wi-Fi handoff
is invoked. This seamlessly associates the user with another cloudlet for the next phase of his
travels.
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Offload Fallback Strategy

When no suitable cloudlet is available, the obvious fallback is to offload directly to the cloud as
shown in Figure 2.5(b). This incurs the WAN latency and bandwidth issues that were avoided
with cloudlets. Since RTT and bandwidth are the issues rather than processing capacity, application-
specific reduction of fidelity must aim for less frequent synchronous use of the cloud. This may
hurt accuracy, but the timeliness of guidance can be preserved. When a suitable cloudlet be-
comes available, normal offloading can be resumed. An even more aggressive fallback approach
is needed when the Internet is inaccessible. To handle these extreme situations, we assume that
the user is willing to carry a device such as a laptop or a netbook that can serve as an offload
device. As smartphones evolve and become more powerful, they too may become viable of-
fload devices. The preferred network connectivity is Wi-Fi with the fallback device operating
in AP mode, since it offers good bandwidth without requiring any infrastructure. Figure 2.5(c)
illustrates offloading while disconnected.

VM Ensemble and PubSub Backbone

For the reasons explained earlier, a cloudlet must exploit coarse-grain parallelism across many
off-the-shelf cognitive engines of diverse types and constructions. To meet this requirement,
Gabriel encapsulates each cognitive engine (complete with its operating system, dynamically
linked libraries, supporting tool chains and applications, configuration files and data sets) in its
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own virtual machine (VM). Since there is no shared state across VMs, coarse-grain parallelism
across cognitive engines is trivial to exploit. A cloudlet can be scaled out by simply adding more
independent processing units, leading eventually to an internally-networked cluster structure. If
supported by a cognitive engine, process-level and thread-level parallelism within a VM can be
exploited through multiple cores on a processor — enhancing parallelism at this level will require
scaling up the number of cores. A VM-based approach is less restrictive and more general than
language-based virtualization approaches that require applications to be written in a specific
language such as Java or C#.

Figure 2.19 illustrates Gabriel’s back-end processing structure on a cloudlet. An ensem-
ble of cognitive VMs, each encapsulating a different cognitive engine, independently processes
the incoming flow of sensor data from a Glass device. A single control VM is responsible for
all interactions with the Glass device. The sensor streams sent by the device are received and
preprocessed by this VM. For example, the decoding of compressed images to raw frames is
performed by a process in the control VM. This avoids duplicate decoding within each cognitive
VM. A PubSub mechanism distributes sensor streams to cognitive VMs. At startup, each VM
discovers the sensor streams of interest through a UPnP discovery mechanism in the control VM.

The outputs of the cognitive VMs are sent to a single User Guidance VM that integrates these
outputs and performs higher-level cognitive processing. In this initial implementation of Gabriel,
we use very simple rule-based software. As Gabriel evolves, we envision significant improve-
ment in user experience to come from more sophisticated, higher-level cognitive processing in
the User Guidance VM. From time to time, the processing in the User Guidance VM triggers
output for user assistance. For example, a synthesized voice may say the name of a person whose
face appears in the Glass device’s camera. It may also convey additional guidance for how the
user should respond, such as “John Smith is trying to say hello to you. Shake his hand.”

Limiting Queuing Latency

In Gabriel’s flexible and pluggable architecture, a set of components communicate using network
connections. Each communication hop involves a traversal of the networking stacks, and can in-
volve several queues in the applications and guest OSs, over which we have little control. The
application and network buffers can be large, and cause many items to be queued up, increasing
latency. To minimize queuing, we need to ensure that the data ingress rate never exceeds the
bottleneck throughput, whose location and value can vary dramatically over time. The varia-
tion arises from fluctuations in the available network bandwidth between the Glass device and
cloudlet, and from the dependence of processing times of cognitive engines on data content.

We have devised an application-level, end-to-end flow control system to limit the total num-
ber of data items in flight at a given time. We use a token-bucket filter to limit ingress of items
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Figure 2.20: Two Level Token-based Filtering Scheme

for each data stream at the Glass device, using returned counts of completed items exiting the
system to replenish tokens. This provides a strong guarantee on the number of data items in the
processing pipeline, limits any queuing, and automatically adjusts ingress data rate (frame rates)
as network bandwidth or processing times change.

To handle multiple cognitive engines with different processing throughputs, we add a second
level of filtering at each cognitive VM (Figure 2.20). This achieves per-engine rate adaptation
while minimizing queuing latency. Counts of the items completed or dropped at each engine
are reported to and stored in the control VM. The maximum of these values are fed back to the
source filter, so it can allow in items as fast as the fastest cognitive engine, while limiting queued
items at the slower ones. The number of tokens corresponds to the number of items in flight. A
small token count minimizes latency at the expense of throughput and resource utilization, while
larger counts sacrifice latency for throughput. A future implementation may adapt the number
of tokens as a function of measured throughput and latency, ensuring optimal performance as
conditions change.
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Chapter 3

Cloudlet Architecture

3.1 Two-level Hierarchical Architecture

In the previous chapter, we demonstrated the value of cloudlets for mobile computing. However,
cloudlets work against cloud consolidation because there have to be many data centers at the
edges of the Internet to ensure proximity everywhere. How can we reconcile these contradictory
requirements?

We assert that the only practical solution to this problem is a hierarchical organization of
data centers, as shown in Figure 3.1. Level 1 of this hierarchy is today’s unmodified cloud
infrastructure such as Amazon’s EC2 data centers. Level 2 consists of stateless data centers at
the edges of the Internet, servicing currently-associated mobile devices. This Level 2 data center
is called a cloudlet. We envision an appliance-like deployment model for cloudlets. They are
not actively managed after installation. Instead, soft state (e.g., virtual machine images and files
from a distributed file system) is cached on their local storage from one or more Level 1 data
centers. It is the absence of hard (durable) state at cloudlet that keeps management overhead low.
Consolidation or reconfiguration of Level 1 data centers does not affect the cloudlets at Level 2.
Adding a new cloudlet or replacing an existing one only requires modest setup and configuration.
Once configured, a cloudlet can dynamically self-provision from Level 1 data centers. Physical
motion of a mobile device may take it far from the cloudlet with which it is currently associated.
When the distance becomes too great, a mechanism similar to wireless access point handoff can
be executed to seamlessly switch association to a different cloudlet.

The hardware technology for cloudlet is already here today for reasons unrelated to mobile
computing. For example, Myoonet has pioneered the concept of micro data centers for use in
developing countries [74]. AOL has introduced indoor micro-data centers for enterprises [72]
(Figure 3.2(c)) [72]. Today, these micro data centers are being used as Level 1 data centers in
private clouds. By removing hard state and adding self-provisioning, they can be repurposed
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as cloudlets. In the future, one can envision optimized hardware for cloudlets. For example,
with modest engineering effort, a WiFi access point could be transformed into a “nano,” “pico,”
or “femto” cloudlet by adding processing, memory and storage. While much innovation and
evolution will undoubtedly occur in the form factors and configurations of cloudlets, we identify
four key attributes that any cloudlet implementation must possess:

• Only soft state: It does not have any hard state, but only cached state from cloud. It may
also buffer data from a mobile device en route to a cloud.

• Powerful and well-connected: It is powerful enough to handle resource-intensive applica-
tions from multiple associated mobile devices. Battery life is not a concern because it is a
stationary and wall-powered machine.

• Close at hand: It is easily deployable within one wireless hop (and LAN extension, if any)
of associated mobile devices.
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• Builds on standard cloud technology: It leverages and reuses cloud software infrastructure
and standards (e.g. OpenStack [79]) as much as possible.

3.2 Technical Challenges Unique to Cloudlets

There is significant overlap in the requirements for cloud and cloudlet. At both levels, there is
the need for: (a) strong isolation between untrusted user-level computations; (b) mechanisms
for authentication, access control, and metering; (c) dynamic resource allocation for user-level
computations; and, (d) the ability to support a very wide range of user-level computations, with
minimal restrictions on their process structure, programming languages or operating systems. At
cloud data center, these requirements are met today using the virtual machine (VM) abstraction.
We believe, for the same reasons they are used in cloud computing today, that VMs are the
right level of abstraction for cloudlets. Meanwhile, there are a few but important differentiators
between cloud and cloudlet.

1. Rapid provisioning: The speed of provisioning matters at cloudlets. Today, cloud data
centers are optimized for launching VM images that already exist in their storage tier.
They do not provide fast options for instantiating a new custom image. One must either
launch an existing image and laboriously modify it, or suffer the long, tedious upload of
the custom image over a WAN. In contrast, cloudlets need to be much more agile in their
provisioning. Their association with mobile devices is highly dynamic, with considerable
churn due to user mobility. A user from far away may unexpectedly show up at a cloudlet
(e.g., if he just got off an international flight) and try to use it for an application such as a
personalized language translator. For that user, the provisioning delay before he is able to
use the application impacts usability.

2. VM migration across cloudlets (Hand-off): Once a user successfully uses a provisioned
cloudlet, the next question is “What happens if a mobile device user moves away from
the cloudlet he is currently using?” As long as network connectivity is maintained, the
applications should continue to work transparently. However, interactive response will
degrade as the logical network distance increases. In practice, this degradation can be
far worse than physical distance may suggest. For example, when moving from a home
Wi-Fi network to that of a neighbor down the street, communication to the first home’s
cloudlet will require two traversals of “last-mile” links connecting the homes to their ISPs.
How can we address this effect of user mobility? If the offloaded services on the first
cloudlet can be seamlessly transferred to the second cloudlet, end-to-end network quality
can be maintained. We refer to this capability as VM handoff. VM handoff resembles live
migration in cloud computing, but differs considerably in the details in terms of its metric
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and constraints. For example, different from data center VM migration using a LAN, we
need to migrate VM from one cloudlet to the other over a WAN.

3. Cloudlet discovery: Dynamic discovery of a cloudlet by a mobile client is an unique prob-
lem in cloudlet. Because cloudlets are small datacenters distributed geographically, a mo-
bile device first has to discover, select and associate with the appropriate cloudlet among
multiple candidates before it starts provisioning. These steps are unnecessary with a cloud
because it is centralized. But in cloudlets, discovery and selection have to be carefully
managed because the choice of a cloudlet can directly affect the provisioning time as well
as future performance of the associated mobile application.

We believe these are the minimal functionalities that cloudlet must offer above/beyond stan-
dard cloud computing system to establish two-level architecture. In this thesis, we will address
these challenges.

3.3 OpenStack++: Deploying Cloudlets

In addition to the technical challenges, we will also consider the pragmatic aspects of the cloudlet;
deployment of cloudlet infrastructure. Since our cloudlet model requires reconfiguration or ad-
ditional deployment of hardware/software, it is important to provide a systematic way to in-
centivise the deployment. And here we are facing a classic bootstrapping problem. We need
practical applications to incentivize cloudlet deployment. However, developers cannot heavily
rely on cloudlet infrastructure until it is widely deployed. How can we break this deadlock and
bootstrap the cloudlet deployment?

The history of the Internet offers a hint. The Internet is an open ecosystem that uses a stan-
dard protocol suite (e.g. TCP/IP). Through this open standard, multiple vendors from low-level
hardware companies to high level services providers are participating independently. However,
no single vendor is bearing large risk for improving this ecosystem or dominating market. In-
stead, they are creating synergy by investing in their own business. In this ecosystem, innovation
in one layer can stimulate others, resulting in additional investment. For example, wide use of
Internet services such as email and web searching has encouraged ISPs to invest on their infras-
tructure. Those advances in infrastructure become a foundation for new Internet services like
VoIP and social networks.

We will take a similar strategy with cloudlets. Many of today’s server-based mobile applica-
tions are using cloud infrastructure to host their back-end server. We observe that an ecosystem
in cloud computing is similar to that of Internet; various vendors from hardware to software are
actively participating independently for their profit. For example in hardware, network vendors
such as Cisco and Jupiter are deploying Software Define Network (SDN) routers/switches, and

28



blade server vendors like IBM and HP are reshaping their products [53]. Similarly in software,
multiple hypervisors are rapidly developed to compete with each other, and various Linux ven-
dors like RedHat and Canonical propose their own solutions for cloud computing. OpenStack,
which is a free and open-source cloud computing software platform, provides openness in this
emerging ecosystem [79]. It offers a suite of standard APIs, so each vendor in different layers can
independently contribute without breaking compatibility. As of 2014, more than 150 companies
have contributed to OpenStack.

We will leverage this open platform to expedite cloudlet deployment. That is, we will make
our system work as OpenStack extensions, so that any individual or any vendior who uses Open-
Stack for their cloud computing can easily use cloudlets. We refer to this Cloudlet-enabled
OpenStack as OpenStack++. Our task will include designing and implementing OpenStack++
APIs. We will also provide a client library and a web interface for the general OpenStack user.
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Chapter 4

Rapid Just-In-Time Virtual Machine
Provisioning

In this chapter, we will address the first technical challenges we mentioned in Chapter 3.2. The
first challenge is cloudlet provisioning. We observed that many requirements can be met by
using VMs for both cloud (Level 1) and cloudlet (Level 2). VMs guarantee bit-exact matches
in the reconstructed state by simply resuming the entire machine. However, one of the major
differences in using VM between cloud and cloudlet is the speed of provisioning. Cloudlets need
to be much more agile in their provisioning because their association with mobile devices is
highly dynamic, with considerable churn due to user mobility. A server-based mobile application
relies on the precisely configured back-end server, so exact custom VM that encapsulates the
back-end server needs to be provisioned at the cloudlet. However, it is unlikely that nearby
cloudlets have the custom VM.

The large size of VM images complicates dynamic provisioning of cloudlets. At the same
time, the presumption of ubiquity in mobile computing deprecates a static provisioning strategy.
A mobile user expects good service for all his applications at any place and time. Wide-area
physical mobility (e.g., an international traveler stepping off his flight) makes it difficult to always
guarantee that a nearby cloudlet will have the precise VM image needed for offloading (e.g.,
natural language translation with customized vocabulary and speaker-trained voice recognition
via the traveler’s smartphone). The VM guest state space is simply too large and too volatile for
static provisioning of cloudlets at global scale. A different provisioning challenge involves the
deployment of new cloudlets for load balancing, hardware upgrades, or recovery from disasters.
Dynamic self-provisioning of cloudlets will greatly simplify such deployments.

Rapid just-in-time provisioning of cloudlets is the focus of this chapter. We show how a
cloudlet can be provisioned in as little as 10 seconds with a complete copy of a new VM image
that is the back-end of an offloaded application such as face recognition, object recognition, or
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augmented reality. The compressed sizes of these VM images can range from 400 MB for a
stripped-down Linux guest, to well over 2 GB for typical Windows based images. The key to
rapid provisioning is the recognition that a large part of a VM image is devoted to the guest
OS, software libraries, and supporting software packages. The customizations of a base system
needed for a particular application are usually relatively small. Therefore, if the base VM already
exists on the cloudlet, only its difference relative to the desired custom VM, called a VM overlay,
needs to be transferred. This concept of a VM overlay bears resemblance to copy-on-write virtual
disk files [70] or VM image hierarchies [19], but extends to both disk and memory snapshots. Our
approach of using VM overlays to provision cloudlets is called dynamic VM synthesis. Proof-of-
concept experiments [98] showed provisioning times of 1–2 minutes using this approach. In this
chapter, we present a series of optimizations that reduces this time by an order of magnitude.

Although motivated by mobile computing, dynamic VM synthesis has broader relevance.
Today, public clouds such as Amazon’s EC2 service are well-optimized for launching images
that already exist in their storage tier, but do not provide fast options for provisioning that tier
with a new, custom image. One must either launch an existing image and laboriously modify
it, or suffer the long, tedious upload of the custom image. For really large images, Amazon
recommends mailing a hard drive! Though developed for cloudlets, we show that dynamic VM
synthesis can rapidly provision public clouds such as EC2.

4.1 Dynamic VM Synthesis

4.1.1 Basic Approach

The intuition behind dynamic VM synthesis is that although each VM customization is unique, it
is typically derived from a small set of common base systems such as a freshly-installed Windows
7 guest or Linux guest. We refer to the VM image used for offloading as a launch VM. It is created
by installing relevant software into a base VM. The compressed binary difference between the
base VM image and the launch VM image is called a VM overlay. This idea of a binary difference
between VM images to reduce storage and network transfer costs has been successfully used
before [19, 70, 122]. We, therefore, extensively use this overlay concept for both VM disk and
memory snapshots in this work.

At run-time, dynamic VM synthesis (sometimes shortened to “VM synthesis” or just “syn-
thesis”) reverses the process of overlay creation. Figure 4.1 shows the relevant steps. A mobile
device delivers the VM overlay to a cloudlet that already possesses the base VM from which this
overlay was derived. The cloudlet decompresses the overlay, applies it to the base to derive the
launch VM, and then creates a VM instance from it. The mobile device can now begin perform-
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Figure 4.1: Dynamic VM Synthesis from Mobile Device

ing offload operations on this instance. The instance is destroyed at the end of the session, but
the launch VM image can be retained in a persistent cache for future sessions. As a slight variant
of this process, a mobile device can ask the cloudlet to obtain the overlay from the cloud. This
indirection reduces the energy used for wireless data transmission, but can improve transfer time
only when WAN bandwidth to the cloud exceeds local WiFi bandwidth. Also the cloud can lead
the whole process of this variant.

Note that the cloudlet and mobile device can have different hardware architectures: the mo-
bile device is merely serving as transport for the VM overlay. Normally, each offload session
starts with a pristine instance of the launch VM. However, there are some use cases where mod-
ified state in the launch VM needs to be preserved for future offloads. For example, the launch
VM may incorporate a machine learning model that adapts to a specific user over time. Each
offload session then generates training data for an improved model that needs to be incorporated
into the VM overlay for future offload sessions. This is achieved by generating a VM residue that
can be sent back to the mobile device and incorporated into its overlay.

There are no constraints on the guest OS of the base VM; our prototype works with both
Linux and Windows. We anticipate that a relatively small number of base VMs will be popular
on cloudlets at any given time. To increase the chances of successful synthesis, a mobile device
can carry overlays for multiple base VMs and discover the best one to use through negotiation
with the cloudlet. Keep in mind that the VMs here are virtual appliances that are specifically
configured for serving as the back-ends of mobile applications. Although these virtual appli-
ances are generated on top of conventional operating systems such as Linux or Windows, they
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App Install Overlay Size (MB) Synthesis
name size (MB) disk memory time (s)

OBJECT 39.5 92.8 113.3 62.8
FACE 8.3 21.8 99.2 37.0

SPEECH 64.8 106.2 111.5 63.0
AR 97.5 192.3 287.9 140.2

FLUID 0.5 1.8 14.1 7.3

Figure 4.2: Baseline performance (8 GB disk, 1 GB memory)

are focused and dedicated to serve a particular mobile application, rather than general-purpose
desktop environments that need a wider range of functionality.

It is useful to contrast dynamic VM synthesis with demand paging the launch VM from the
mobile device or cloud using a mechanism such as the Internet Suspend/Resume system R© [97].
Synthesis requires the base VM to be available on the cloudlet. In contrast, demand paging works
even for a freshly-created VM image that has no ancestral state on the cloudlet. Synthesis can
use efficient streaming to transmit the overlay, while demand paging incurs the overhead of many
small data transfers. However, some of the state that is proactively transferred in an overlay may
be wasted if the launch VM includes substantial state that is not accessed. Synthesis incurs a
longer startup delay before VM launch. However, once launched, the VM incurs no stalls. This
may be valuable for soft real-time mobile applications such as augmented reality.

It is also useful to contrast VM synthesis with launching the base VM and then performing
package installations and configuration modifications to transform it into the launch VM. This
is, of course, exactly what happens offline when creating the overlay; the difference is that the
steps are now being performed at runtime on each association with a cloudlet. On the one hand,
this approach can be attractive because the total size of install packages is often smaller than
the corresponding VM overlay (e.g., Figure 4.2) and, therefore, involves less transmission over-
head. On the other hand, the time delay of installing the packages and performing configuration
is incurred at run time. Unlike optimization of VM synthesis, which is fully under our control
even if the guest is closed-source, speeding up the package installation and configuration process
requires individual optimizations to many external software components. Some of those may
be closed-source, proprietary components. Of even greater significance is the concern that in-
stalling a sequence of packages and then performing post-installation configuration is a fragile
and error-prone task even when scripted. Defensive engineering suggests that these fragile steps
be performed only once, during offline overlay creation. Once a launch VM image is correctly
created offline, the synthesis process ensures that precisely the same image is re-created on each
cloudlet use. This bit-exact precision of cloudlet provisioning is valuable to a mobile user, giv-
ing him high confidence that his applications will work as expected no matter where he is in the
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world. Finally, the installation approach requires the application to be started fresh every time.
Execution state is lost between subsequent uses, destroying any sense of seamless continuity of
the user experience.

4.1.2 Baseline Performance

We have built an instantiation of the basic VM synthesis approach, using the KVM virtual ma-
chine monitor. In our prototype, the overlay is created using the xdelta3 binary differenc-
ing tool. Our experience has been that xdelta3 generates smaller overlays than the native
VM differencing mechanism provided by KVM. The VM overlay is then compressed using the
Lempel-Ziv-Markov algorithm (LZMA), which is optimized for high compression ratios and fast
decompression at the price of relatively slow compression [116]. This is an appropriate trade-off
because decompression takes place in the critical path of execution at run-time and contributes to
user-perceived delay. Further, compression is only done once offline but decompression occurs
on each VM synthesis.

We test the efficacy of VM synthesis in reducing data transfer costs and application launch
times on the VM back-ends of five mobile applications, explained in Chapter 2.1. In each case,
user interaction occurs on a mobile device while the compute-intensive back-end processing of
each interaction occurs in a VM instance on a cloudlet. These applications, written by various
researchers and described in recent literature, are the building blocks of futuristic applications
that seamlessly augment human perception and cognition. Three of the five back-ends run on
Linux, while the other two run on Windows 7. These compute-intensive yet latency-sensitive
applications are used in all the experiments reported in this chapter.

We first construct base VM images using standard builds of Linux (Ubuntu 12.04 server)
and Windows 7. These VMs are configured with 8 GB of disk and 1 GB of memory. An
instance of each image is booted and then paused; the resulting VM disk image and memory
snapshot serve as base disk and base memory respectively. To construct a launch VM, we resume
an instance of the appropriate base image, install and configure the application binaries, and
launch the application. At that point, we pause the VM. The resulting disk image and memory
snapshot constitute the launch VM image. As soon as an instance is resumed from this image,
the application will be in a state ready to respond to offload requests from the mobile device —
there will be no reboot delay.

The overlay for each application is the compressed binary difference between the launch VM
image and its base VM image, produced using xdelta3 and LZMA compression. The sizes
of the overlays, divided into disk and memory components, are reported in Figure 4.2. For com-
parison, the sizes of the compressed application installation packages are also reported. Relative
to VM image sizes, the VM synthesis approach greatly reduces the amount of data that must be
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Mobile Cloudlet

Model
DellTM Latitude 2120 DellTM Optiplex 9010

Netbook Desktop

CPU
Intel R© AtomTM N550 Intel R© Core R© i7-3770

1.5 GHz, 2 cores 3.4 GHz, 4 cores, 8 threads (4 VCPUs for VM)
RAM 2 GB 32 GB (1 GB VM RAM)
Disk 250 GB HDD 1 TB HDD (8 GB VM disk)

Network 802.11a/g/n WiFi∗ 1 Gbps Ethernet
OS Ubuntu 12.04 64bit (Kernel 3.2.0) Ubuntu 12.04 64bit (Kernel 3.2.0)

VMM — QEMU/KVM-1.1.1†

Misc Belkin N750 Router (802.11n, GigE)

∗2.4 GHz 802.11n used here; 38 Mbps measured average BW
†modified for some experiments, as described in Sect. 4.5

Figure 4.3: System configuration for experiments

transferred to create VM instances. Compared to the launch VM images (nominal 8 GB disk
image plus memory snapshot), Figure 4.2 shows that overlays are an order of magnitude smaller.
While they are larger than the install packages from which they were derived, VM synthesis
eliminates the fragile and error-prone process of runtime package installation and configuration
as discussed in Section 4.1.1. In fact, as we show later in Section 4.6.1, provisioning using the
most optimized version of VM synthesis is faster than runtime installation and configuration.

The total time to perform VM synthesis is also reported in Figure 4.2. These times were
measured using a netbook (client) and a virtual machine (server) hosted in a cloudlet described
in Table 4.3. The client serves the application overlays to the cloudlet, which performs synthesis
and executes the application VMs. For each application, the total time reported includes the
time needed to transfer the overlay across WiFi, decompress it, apply the overlay to the base
image, and resume the constructed application image. We note that the netbook used here is not
significantly more capable than smartphones today, and achieves the same network bandwidth
(38 Mbps) on 802.11n as the Samsung Galaxy 2 in our tests. Since most computation is done
offline or on the cloudlet, and the data transfer is network limited, we do not expect significantly
different results using a smartphone. However, for our prototype implementation, the netbook
was convenient as it allowed us to use a full complement of x86 tools and libraries for the front-
ends of our five applications. We use this configuration for all of the experiments in this chapter.

Although this baseline implementation of VM synthesis achieves bit-exact provisioning with-
out transferring full VM images, its performance falls short for ad-hoc, on-demand use in mobile
offload scenarios. Figure 4.2 shows that only one of the applications, FLUID, completes syn-
thesis within 10 seconds. A synthesis time of 60 to 150 seconds is more typical for the other
applications. That is too large for good user experience.
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In the rest of this chapter, we present a multi-pronged approach to accelerating VM synthe-
sis. We first reduce the size of the overlay using aggressive deduplication (Section 4.2) and by
bridging the semantic gap between the VMM and guest OS (Section 4.3). We then accelerate the
launch of the VM image by pipelining its synthesis (Section 4.4), and by optimistically launching
before synthesis is complete (Section 4.5). The results presented in each of these sections shows
the speedup attributable to that optimization.

4.2 Deduplication

Concept

Our first optimization leverages the fact that there are many sources of data redundancy in a VM
overlay. Through deduplication we can eliminate this redundancy and thus shrink the overlay.
A smaller overlay incurs less transmission delay and also consumes less energy on the mobile
device for transmission. Deduplication is very effective at reducing redundant data, and has
been used widely in a variety of fields. In the virtualization space, it has been applied to re-
duce memory footprints of concurrent VMs [113], and in accelerating VM migration [122]. It is
particularly well suited to VM overlays, since the significant expense of deduplication is only in-
curred offline during overlay construction. The overhead of re-inflating deduplicated data during
synthesis is trivial, especially because the cloudlet is a powerful machine that is not energy-
constrained. From a number of sources, we can anticipate some duplication of data between the
memory snapshot and the disk image of the launch VM. For example, at the moment the launch
VM is suspended during overlay construction, the I/O buffer cache of the guest OS contains some
data that is also present in its virtual disk. Additionally, data from some files on the virtual disk
may have been read by the application back-end into its virtual memory during initialization.
Further, depending on the runtime specifics of the programming language in which the applica-
tion is written, there may be copies of variable initialization data both in memory and on disk.
These are only a few of the many sources of data duplication between the memory snapshot and
the disk image of the launch VM.

Separately, we can also expect some duplication of data between the overlay and the base
VM (which is already on the cloudlet). Recall that the baseline implementation in Section 4.1.1
creates a VM overlay by constructing a binary delta between a launch VM and the base VM
from which it is derived. This binary delta may contain duplicate data that has been copied or
relocated within the memory or disk image. Indeed, the baseline system cannot take advantage
of the fact that many parts of memory should be identical to disk because they are loaded from
disk originally, e.g., executables, shared libraries, etc. An efficient approach to capturing this
begins with a list of modifications within the launch VM and then performs deduplication to
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Figure 4.4: FUSE Interpositioning for Deduplication

further reduce this list to the minimal set of information needed to transform a base VM into the
launch VM. If we could find this minimal set, then we could construct smaller VM overlays.

Implementation

The choice of the granularity at which comparisons are performed is a key design decision for
deduplication. Too large a granularity will tend to miss many small regions that are identical.
Very small granularity will detect these small regions, but incur large overhead in the data rep-
resentation. Our choice is a chunk size of 4 KB because it is a widely-used page size for many
popular operating systems today. For example, current versions of Linux, Mac OS X, and Win-
dows all use a 4 KB page size. An additional benefit of deduplicating at this granularity is that
most operating systems use Direct Memory Access (DMA) for I/O, which means the disk is ac-
cessed with memory page size granularity. Thus, the 4 KB chunk size is likely to work well for
both memory and disk deduplication.

To discover the portions of disk and memory modified during the process of creating a launch
VM, we introduce a shim layer between the VMM and the backing files for virtual disk and
memory using FUSE, as shown in Figure 4.4. During the installation and configuration steps of
launch VM construction, the shim layer exposes I/O requests from the VMM to the virtual disk
file and memory snapshot file. On every write to either the virtual disk or memory snapshot, we
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redirect the write to the corresponding overlay file and mark a bitmap indicating this chunk has
changed. When reads occur at a later point in time, we consult this bitmap to determine if the
read should be serviced from the original base files, or from the new overlay files. As in [76],
we have found that FUSE has minimal impacts on virtual disk accesses, despite the fact that it is
on the critical read and write paths from the VM to its disk. However, memory operations would
become prohibitively expensive with this additional component. We therefore do not use FUSE
to capture memory changes. Rather, we capture the entire memory snapshot only after we finish
customizing the launch VM. We then interpret this memory snapshot, and compare it with base
memory to obtain the modified memory chunks and corresponding bitmap.

We reuse this FUSE shim layer at VM synthesis time to avoid the data copying that would
be required to explicitly merge the overlay virtual disk/memory with the base to reconstruct the
launch VM. Instead, we redirect VM disk/memory access to either the overlay or the base image
based on the bitmap. This approach to just-in-time reconstruction of a launch image has been
used previously in systems such as ISR [58] and the Collective [19], though only for VM disk.

Once we have a list of modified disk and memory chunks, we perform deduplication by
computing SHA-256 hashes [36] of their contents. We use these hashes to construct a unique set
of pages which are not contained within the base VM and must be included in the transmitted
overlay. We construct the set of unique modified disk and memory chunks using five comparison
rules: (1) compare to base VM disk chunks, (2) compare to base VM memory chunks, (3)
compare to other chunks within itself (within modified disk or modified memory respectively),
(4) compare to a zero-filled chunk, and (5) compare between modified memory and modified
disk. These five comparison rules capture various scenarios that are frequent sources of data
redundancy, as discussed in Section 4.2.

For each unique chunk, we compare it to the corresponding chunk (same position on disk
or in memory) in the base VM. We use the xdelta3 algorithm to compute a binary delta of
the chunk and transmit only the delta if it is smaller in size than the chunk. The idea behind
this is that even if the hashes do not match, there may still be significant overlap at a finer byte
granularity which a binary delta algorithm can leverage.

Evaluation

Figure 4.5 shows the benefit of deduplication for the overlay of each application. For any dedu-
plication between memory and disk, we choose to only retain the duplicated chunks within mem-
ory. For deduplication purposes, it does not matter if the canonical chunk resides within disk or
memory; we chose the memory snapshot as the canonical source of chunks.

Averaged across the five applications, only 22% of the modified disk and 77% of the mod-
ified memory is unique. The biggest source of redundancy is between modified memory and
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Figure 4.5: Benefit of Deduplication

modified disk: each application exhibits greater than 58% duplication, with SPEECH exhibiting
83% duplication. The base disk is the second biggest source of duplication. On average, 13%
of the modified disk and 21% of the modified memory are identical with chunks in the base
disk. We analyzed files associated with the duplicated chunks for the OBJECT application. Our
findings are consistent with our intuition: most of the associated files in the modified disk are
shared resources located within the /usr/shared/, /usr/lib/, and /var/lib/ directo-
ries, and a large portion of the files are shared libraries such as libgdk-x11, libX11-xcb,
and libjpeg. The overlay memory shows similar results, but it also includes copies of ex-
ecuted binaries such as wget, sudo, xz, dpkg-trigger, and dpkg-deb in addition to
shared libraries.
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4.3 Bridging the Semantic Gap

Concept

The strong boundary enforced by VM technology between the guest and host environments is a
double-edged sword. On the one hand, this strong boundary ensures isolation between the host,
the guest, and other guests. On the other hand, it forces the host to view each guest as a black
box, whose disk and memory contents cannot be interpreted in terms of higher-level abstractions
such as files or application-level data structures. This challenge was first recognized by Chen and
Noble [20]. Various attempts to bridge the semantic gap between VMM and the guest include
VM introspection for intrusion and malware detection [37, 54] and memory classification [17]
for improving prefetcher performance.

The semantic gap between low-level representations of memory and disk, and higher-level
abstractions is also problematic when constructing VM overlays. For example, suppose a guest
application downloads a 100 MB file, and later deletes it. Ideally, this should result in no increase
in the size of the VM overlay. However, the VMM will see up to 200 MB of modifications:
100 MB of changed disk state, and 100 MB of changed memory state. This is because the file
data moves through the in-memory I/O buffer cache of the guest OS before reaching the disk,
effectively modifying both memory state and disk state. When the file is deleted, the guest OS
marks the disk blocks and corresponding page cache entries as free, but their (now garbage)
contents remain. To the VMM, this is indistinguishable from important state modifications that
need to be preserved. Deduplication (described in Section 4.2) can cut this state in half, but we
would still unnecessarily add 100 MB to the overlay.

Ideally, only the state that actually matters to the guest should be included in the overlay.
When files are deleted or memory pages freed, none of their contents should be incorporated
into the overlay. In essence, we need semantic knowledge from the guest regarding what state
needs to be preserved and what can be discarded. When constructing the launch VM, a user (or
application developer) installs a back-end application server on the base VM. This installation
process typically involves several steps including downloading installation packages, creating
temporary files, and moving executable binaries to target directories. Also, it is likely that all
unneeded files will be deleted after finishing the installation process. We note that there is nothing
unusual about this procedure for constructing custom VMs; it is identical to how custom VMs
are typically generated in Amazon EC2, for example. We wish to fully leverage the user’s intent
when producing the overlay. We discard chunks containing semantically unnecessary footprint
of the installation process by bridging the semantic gap between the VMM and guest in a manner
that is transparent to guests.

In separate sections below, we show how this semantic gap can bridged for disk and memory
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state.

Implementation: Disk

To accurately account for disk blocks that are garbage, we need either (1) a method of commu-
nicating this information from the guest OS to the host, or (2) a method of scanning the contents
of the file system on the virtual disk to glean this OS-level information. The first approach re-
quires guest support, and may not be possible for every guest OS. The second approach requires
no guest support, but does require an understanding of the on-disk file system format. Both ap-
proaches may be used in tandem to cross-check their results.

1. Exploiting TRIM support: The TRIM command in the ATA standard enables an OS to
inform a disk which sectors are no longer in use. This command is important for modern
devices such as Solid State Drives (SSDs) which implement logic to aggressively remap
writes to unused sectors. Wear-leveling algorithms and garbage collection inside of SSDs
use this knowledge to increase write performance and device life.

The TRIM command provides precisely the mechanism we desire — an industry-standard
mechanism for communicating semantic information about unused sectors from an OS to
the underlying hardware. We can exploit this mechanism to communicate free disk block
information from the guest OS to the host to reduce VM overlay size. We modify the
VMM (KVM/QEMU) to capture TRIM events and to log these over a named pipe to our
overlay generation code. When generating the overlay, we merge this TRIM log with a
trace of sector writes by timestamp to determine which blocks are free when the VM is
suspended; these blocks can be safely omitted from the overlay. To make use of this tech-
nique, we simply need to ensure that TRIM support is enabled in the guest OS. As TRIM
is an industry standard, it is supported by almost all modern operating systems, including
recent Linux distributions and Windows 7.

2. Introspecting the file system: An alternative approach is to use knowledge of the on-disk
file system format to directly inspect the contents of a virtual disk [56, 91] and determine
which blocks are currently unused. Many file systems maintain lists of free blocks forming
a canonical set of blocks which should not be included in an overlay. In the worst case, the
entire file system can be crawled to determine which blocks are in use by files within the file
system. Although this approach is file-system-specific, it avoids the need to communicate
information from a running guest, or to carefully trace TRIM and write events.

We identify free disk blocks using the tool described by Richter et al. [91]. This tool
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Figure 4.6: Savings by Closing the Semantic Gap

reads and interprets a virtual disk image and produces a list of free blocks. It supports the
ext2/3/4 family of Linux file systems and the NTFS file system for Windows.

Implementation: Memory

It is difficult to determine which memory pages are considered free by a guest OS. Although the
VMM can inspect the page tables, this is not sufficient to determine if a page is in use because
unmapped pages are not necessarily free [17]. Inspecting page contents is also not good enough,
because free pages normally contain random data and are not zeroed.

To bridge this gap, there are two natural approaches: (1) communicate free page information
from the guest OS to the host, or (2) interpret memory layout data structures maintained by the
guest OS. Unfortunately, there is no standard way of accomplishing the first approach (i.e., no
memory counterpart to TRIM support), so we focus our efforts on the second approach. In order
to obtain the list of free memory pages we first introduce a tiny kernel module into Linux guests.
This module exposes the memory addresses of two data structures for memory management
through the /proc file system in the guest. We suspend the VM, and feed these addresses and
the memory snapshot to an offline scanning program. This scanning program reads the memory
snapshot and parses the memory management data structures at the specified addresses to identify
the free pages.
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Figure 4.7: Overlay Size Compared to Baseline (Percentage represents relative overlay size compared to
baseline)

Since our approach requires modifying the guest OS, it is not usable on closed-source OSs
such as Windows. Further, in-memory data formats tend to be highly volatile across OS releases,
and to evolve much more rapidly than file system formats. Even an open-source kernel such as
Linux will require significant maintenance effort to track these changes.

Other techniques could be employed to infer free pages without the need for guest support.
For example, a VMM could monitor memory accesses since the guest’s boot and keep track of
pages that have been touched. This would avoid guest modification at the cost of lower fidelity—
some of the pages reported as used could have been touched, but later freed. Perhaps with the
advent of Non-Volatile Memories (NVMs), which provide persistent storage with memory-like,
byte-addressable interfaces, there may be a need to introduce a standardized TRIM-like feature
for memory. Such support would make it possible to bridge the memory semantic gap in an
OS-agnostic way in the future.

Evaluation

For the disk semantic gap, our experiments show that the TRIM and introspection approaches
produce nearly identical results. Just a few additional free blocks are found by the introspection
approach that were not captured by TRIM. We therefore present only the results for the TRIM
approach.

Figure 4.6 shows how much we gain by closing the disk semantic gap. For each application
we construct the VM image by downloading its installation package, installing it, and then delet-
ing the installation package. We therefore expect our approach to find and discard the blocks that
held the installation package, reducing overlay size by approximately the installation package
size. Our results confirm this for all of the applications except one: for FACE, the semantically
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discarded disk blocks together were smaller than the installation package. On investigation, we
found that this was due to the freed blocks being reused post-install. On average, across the five
applications, bridging the disk semantic gap allows 25% of modified disk chunks to be omitted
from the overlay.

Figure 4.6 also shows the savings we can achieve by discarding free memory pages from
the VM overlay. We can discard on average 18% of modified memory chunks for the Linux
applications OBJECT, SPEECH, and FLUID. Since our implementation is limited to Linux,
we cannot reduce the memory overlays for the two Windows-based applications (FACE and
AR).

Combining deduplication and bridging of the semantic gap can be highly effective in reduc-
ing the VM overlay size. Figure 4.7 shows VM overlay size with each optimization individually
represented, and also combined together. The “baseline” represents VM overlay size using the
approach described in Section 5.3.3. The bar labeled “deduped” is the VM overlay with dedu-
plication applied; “semantics” is the VM overlay with semantic knowledge applied (only disk
for Windows applications); and, “combined” is the VM overlay size with both optimizations
applied. On average compared to the baseline implementation, the deduplication optimization
reduces the VM overlay size to 44%. Using semantic knowledge reduces the VM overlay size
to 55% of its baseline size. Both optimizations applied together reduce overlay size to 28% of
baseline.

The final overlay disk almost disappears when we combine both optimizations. This is be-
cause a large portion of disk chunks are associated with installation packages. Recall that to
install each application, we first download an installation package in the VM and remove it later
when it finishes installation. This installation file is already compressed, so further compression
does little. In addition, this newly introduced data is less likely to be duplicated inside the base
VM. Therefore, applying semantic knowledge removes most of the unique chunks not found by
deduplication. For example in AR, 25, 887 unique chunks remained after deduplication, but 96%
of them are discarded by applying semantic knowledge.

4.4 Pipelining

Concept

There are three time-consuming steps in VM synthesis. First, the VM overlay is transferred.
Next, the VM overlay is decompressed. Finally, the decompressed VM overlay is applied to
the base VM (i.e., xdelta3 in reverse). These steps are serialized because we need the output
of the preceding step as input to the next one, as shown in Figure 4.8. This serialization adds
significantly to the VM start latency on a cloudlet. If we could begin the later steps before the
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Figure 4.8: Baseline VM Synthesis

Figure 4.9: Pipelined VM Synthesis
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Figure 4.10: VM Synthesis Acceleration by Pipelining

preceding ones complete, we could shrink the total time for synthesis as shown in Figure 4.9.

Implementation

The implementation follows directly from the pipelining concept. We split the VM overlay into
a set of segments and operate on each segment independently. The VM synthesis steps can now
be pipelined. The decompression of a segment starts as soon as it is transferred, and happens in
parallel with the transfer of the next segment. Likewise, the application of an overlay segment to
the base VM proceeds in parallel with the decompression of the next segment. Given sufficiently
small segment size, the total time will approach that of the bottleneck step (typically the transfer
time), plus any serial steps such as VM instance creation and launch.
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Evaluation

Figure 4.10 compares the performance of the baseline synthesis approach to an optimized one
that combines deduplication, semantic gap closing, and pipelining. The results confirm that once
pipelining is introduced, transfer time becomes the dominant contributor to the total synthesis
time. The synthesis time shown in Figure 4.10 includes all of the time needed to get the VM to
the point where it is fully resumed and ready to accept offload requests from the mobile device.
Two applications now launch within 10 seconds (FACE and FLUID), while two others launch
within 15 seconds (OBJECT and SPEECH). Only AR takes much longer (44 seconds), but this
is because its overlay size and, therefore, transfer time remains high. On average, we observe a
3x–5x speedup compared to the baseline VM synthesis approach from Section 5.3.3.

4.5 Early Start

Concept

We have shown that the optimizations described in the previous sections greatly reduce the size
of overlays and streamline their transfer and processing. For several of the applications, the
optimized overlay size is close to the size of the install image. Hence, there is little scope for
further reducing size to improve launch times. Instead, we consider whether one really needs to
transfer the entire overlay before launching the VM instance. This may not be necessary for a
number of reasons. For example, during the overlay creation process, the guest OS was already
booted up and the application was already launched at the point when the VM was suspended.
Any state that is used only during guest boot-up or application initialization will not be needed
again. As another example, some VM state may only be accessed during exception handling or
other rare events and are unlikely to be accessed immediately after VM instance creation.

The potential benefits of optimism can be significant. Table 4.11 shows the percentage of
chunks in the overlay that are actually accessed by the five benchmark applications between VM
launch and completion of the first request. A substantial number of chunks are not used immedi-
ately. We can speed up VM launch by transferring just the needed chunks first, synthesizing only
those parts of the launch VM, and then creating the VM instance. The transfer of the missing
parts of the overlay and synthesis of the rest of the launch VM can continue in the background
until it is completed.

Implementation

We explored a number of alternatives in translating the concept of early start into a viable im-
plementation. One option is to profile the resume of the launch VM, and order the chunks in
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OBJECT FACE SPEECH AR FLUID
% chunks 17.4 56.9 26.8 65.2 27.1

% size 30.6 63.0 33.0 87.9 50.3

Percentage of the overlay accessed between VM launch and completion of first re-
quest, in terms of chunks and compressed overlay size.

Figure 4.11: Percentage of Overlay Accessed

the overlay accordingly. When offloading, the VM is resumed concurrently with the synthesis
operations. If the VM attempts to access chunks that have not yet been synthesized, it will be
blocked until the chunk becomes available. If the order of chunks is correct, the VM can begin
running significantly before the VM synthesis completes.

Unfortunately, it is difficult to get this order perfectly right. In our early experiments, multiple
profiling runs produced slightly different chunk access patterns. In particular a small number of
chunks may be accessed early in one run, but not at all in another. With a large number of chunks,
it is unlikely that every chunk that is needed early in an actual VM resume will have been picked
up in the profiling. More likely, one or more of these chunks will be missed in profiling, and will
be placed near the end of the overlay. Getting even one chunk wrong can force the VM to wait
for all chunks to be transferred and VM synthesis to complete.

Alternatively, we can avoid trying to predict the chunk access order by using a demand fetch-
ing approach, as done in [58], [93], and many subsequent efforts. Here, the VM is started first,
and the portions of the overlay needed to synthesize accessed chunks are fetched on demand from
the mobile device. Unfortunately, this approach, too, has some issues. Demand fetching indi-
vidual chunks (which can be very small due to deduplication and delta encoding) requires many
small network transfers, with a round trip penalty imposed on each, resulting in poor effective
bandwidth and slow transfers. To alleviate this, we can cut the overlay into larger segments com-
prised of many chunks, and perform demand fetching at segment granularities. This will help
amortize the demand fetching costs, but leaves open the question of sizing the segments. Smaller
segments let one fetch more closely just the needed chunks. Larger segments, in addition to be-
ing more bandwidth friendly, can achieve better compression ratios, but will be less selective in
transferring just what is needed. Finally, how chunks are grouped into segments can also signif-
icantly influence performance. For example, if needed chunks are randomly distributed among
segments, one will likely need to transfer the entire overlay to run the VM.

Our implementation uses a hybrid approach that combines profiling and demand paging,
similar to VMTorrent [90] though applied to VM overlays rather than VM images. We make a
reasonable attempt to order the chunks according to a profiled access pattern computed offline.
We then break the overlay into segments. During offload, we start the VM and begin streaming
the segments in order, but also allow out-of-order demand fetches of segments to preempt the
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Figure 4.12: System Implementation for Early Start

original ordering. Thus, we use demand fetching to retrieve chunks that were not predicted by the
profiling, but unlike [90], we simultaneously bulk-stream segments in a work-conserving manner
to quickly transfer and synthesize all chunks. While this approach bears some resemblance to
classic prefetching with out-of-band handling of demand misses, these concepts are being applied
to an overlay rather than a VM image.

Figure 4.12 illustrates our implementation of this hybrid approach. A critical issue is that all
of the widely used VMMs, including KVM, Xen, VirtualBox, and VMware, require the entire
memory snapshot before resuming a VM, hindering early start. So, we first modify the VMM
(KVM in our case) to resume a VM without first reading in the entire memory snapshot. Rather,
it now memory maps the snapshot file, so portions are implicitly loaded when accessed. We then
implement a FUSE file system that hosts the VM disk image and memory snapshot. This routes
disk accesses of the VMM to our user-level code that can perform just-in-time VM synthesis on
the accessed chunks (disk or memory). Our code consults a small bitmap that indicates whether
the particular chunk needs to be served from the base image or the overlay. If the overlay is
needed, then a local cache of processed chunks is checked. If the chunk is not available, a
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Figure 4.13: Normalized First Response Time for Early start

demand-fetch of the needed overlay segment is issued to the mobile device. Concurrently, in the
background, the code processes the stream of overlay segments as it is received from the mobile
device. With this implementation, only the small bitmap assigning chunks to overlay or base
image needs to be transferred before the VM is launched.

Evaluation

We evaluate our early start approach with a few different combinations of segment size and
chunk order. We test with small (approx. 64KB) and medium (approx. 1MB) sized segments, as
well as with just a single segment comprising the entire overlay. (The latter effectively disables
demand-fetching). We also test with chunks sorted by access-order (based on a single profiling
run of each application) and offset-order (with memory before disk chunks). We slightly modify
the ordering so that duplicate chunks are contained within the same segment, avoiding any need
for pointer-chasing between segments when handling deduplication.

With early-start, the VM synthesis time itself is less relevant. Rather, the metric we use
is the first response time of the application. This is measured by having the mobile device
initiate the synthesis of the application VM, and then repeatedly attempt to send it queries. The
response time is measured from the initial VM start request to when the first reply returns to
the client, thus including the overlapped transfer time, synthesis time, and application execution
time. Figure 4.13 compares performance of early start for different chunk ordering policies
and segment sizes. The values are normalized to the first response time when the VM begins
execution once VM synthesis (including all of the other optimizations discussed previously)
completes. Access ordering alone does not help significantly due to the inaccuracies of the
single profiling runs. However, access-ordered chunks with demand fetching with 64 KB or
1 MB segments can significantly reduce first response times. We see up to 60% reduction for
SPEECH and OBJECT. For FLUID, the response time without early start is already so short that
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Figure 4.14: Fully Optimized VM Synthesis

small fluctuations due to compression and network affect the normalized response time adversely.
AR, which requires 90% of the data in its overlay, does not benefit much from early start.

4.6 Final Results and Discussions

4.6.1 Fully Optimized VM Synthesis

We have shown that all of the various techniques for improving VM synthesis described in this
chapter work quite well on their own. One may wonder: how effective are these techniques
when combined? In this section we evaluate a complete, fully-optimized implementation of VM
synthesis incorporating all of the improvements described in this work. The figure of merit here
is the total latency as perceived by the user, from the beginning of the application offload process
to when the first reply is returned. This first response metric is dependent on the time consumed
by the offloading operation and launch of the application VM.

Figure 4.14 illustrates the fully-optimized process of VM synthesis as we intend it to be used
with mobile devices and cloudlet infrastructure. We first construct minimal application overlays
via deduplication and by preserving only the semantically meaningful chunks. We store and
serve these overlays to the cloudlet from the mobile device (a netbook in our experiments). To
minimize the time required to perform VM synthesis, we pipelined the synthesis steps, and then
applied early start on the cloudlet.
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Figure 4.15 shows the improvement in first-response times with our fully-optimized VM
synthesis over the baseline version described in Section 5.3.3. In this experiment, we used an
overlay segment size of 1 MB, which provides a good tradeoff between demand fetch granularity
and good compression. Overall, we improved performance of VM synthesis by a factor of 3 to 8
across these applications. Except for AR, the first responses for all of the other applications come
within 10 s. A combination of multiple factors causes significantly longer synthesis times for the
AR application. First, it has the largest installation size among all five applications and a signifi-
cant portion of the installation is a database file that is less likely to be deduplicated. In addition,
we could not close the memory semantic gap for AR since our implementation cannot determine
free memory pages for Windows guests. Further, as depicted in Table 4.11, AR requires almost
all of the overlay to serve the initial request, and, thus, it does not benefit from the early start
optimization.

We also compare our results to the first-response time for a remote installation approach to
running a custom VM image. This involves resuming a standard VM, uploading and installing
the application packages, and then executing the custom applications. In Section 4.1.2, we have
already dismissed this approach on qualitative grounds; in particular, even scripted install can
be fragile, the resulting configuration is not identical every time, and the application is restarted
every time so execution state is not preserved. The only redeeming quality of this approach is
that the install packages tend to be smaller than the baseline VM overlays, potentially making the
remote install faster. Here, we use highly optimized application packages that are self-contained
(including needed libraries, or statically-compiled binaries), and fully-scripted installation to
show the remote install approach at its fastest.

As we can see from Figure 4.15, however, our optimized VM synthesis approach produces
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Figure 4.16: VM Synthesis for EC2

significantly better first-response times than remote install in all but one case. In that case, the
two approaches are basically a tie. Thus, our optimized VM synthesis approach can achieve
very fast offload and execution of custom application VMs on cloudlets, yet maintain strong
guarantees on their reconstructed state.

4.6.2 Improved WiFi Bandwidth

All of the experiments in this chapter were conducted using 802.11n WiFi at 2.4 GHz (38 Mbps
measured average bandwidth). We expect these times to improve in the future as new wireless
technologies and network optimizations are introduced, increasing the bandwidth of WiFi net-
works. In other words, VM synthesis time is now directly correlated to network bandwidth.
While WAN bandwidth improvements require large infrastructure changes, mobile bandwidth to
the wireless AP at a cloudlet only requires localized hardware and software changes. New WiFi
standards such as 802.11ac promise up to 500 Mbps and are actively being deployed [117]. Re-
cent research [45] also demonstrates methods of increasing bandwidth up to 700% with software-
level changes for WiFi networks facing contention. Thus, both industry and research are focused
on increasing WiFi bandwidth. This directly translates into faster VM synthesis. Based on our
measurements, until actual transfer times improve by 3x, the transfer stage will remain the bottle-
neck (assuming the cloudlet processor remains constant). Beyond this, we will need to parallelize
the decompression and overlay application stages across multiple cores to benefit from further
improvements in network bandwidth.
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4.7 VM Synthesis on Amazon EC2

In this work, we have presented VM synthesis as a technique to rapidly offload customized
application VMs to cloudlet infrastructure near a mobile device. However, the technique is
much more general than this, and can help whenever one wishes to transfer VM state across
a bottleneck network. In particular, VM synthesis can significantly speed up the upload and
launch of a custom VM on commercial cloud services across a WAN. Here, we describe our VM
synthesis solution for Amazon’s public EC2 cloud.

The normal cloud workflow to launch a customized VM involves three steps: (1) construct
the VM image, including installing custom software and libraries, and making requisite configu-
ration changes; (2) upload the VM image to the cloud, a step largely limited by the client-to-cloud
bandwidth; and (3) launch and execute a VM instance based on the uploaded VM image, a step
that depends on the cloud provider’s backend scheduling and resources. VM synthesis promises
to speed up the second step by reducing the amount of state uploaded to a cloud.

Today, no cloud supports VM synthesis as a primitive operation. In our EC2 implementation,
we perform VM synthesis entirely within a running VM instance. EC2 does not allow external
access to the disk or memory image of an instance, so we cannot manipulate the saved state
of a paused instance to effect synthesis. We also cannot generate a data file, treat it as a VM
image, and launch an instance based on it. We work around these limitations by performing VM
synthesis within a live instance, which modifies its own state and then reboots into the custom
VM environment. Assuming that the base VM image and synthesis tools have already been
installed in an EC2 block device, synthesis proceeds in the eight steps are as follows.

1. Create a new EC2 VM instance from an existing Amazon VM image,

2. Attach a cloud block device with VM synthesis tools and base VM image,

3. Change the root file system of the instance to the attached block device,

4. Perform VM synthesis over the WAN to construct the modified VM disk,

5. Mount the modified VM disk,

6. Synchronize / copy the modified file system with the instance’s original,

7. Detach block device,

8. Reboot with the customized file system.

Steps 1-3 occur on the left hand side of Figure 4.16, while steps 4-8 occur on the right hand
side. We do not handle the memory portion of a VM in EC2 because we do not have access to
the raw memory image. This requires an unnecessary reboot and wasted time in synchronizing
file systems. If EC2 had a VM synthesis primitive, the memory image and VM disk could be
directly exposed by their infrastructure and only step 4 would remain; the VM overlay would be
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10 Mbps 100 Mbps
Synthesis Amazon Synthesis Amazon

Synthesis Setup 44 s — 46 s —
Uploading† 36 s 607 s 8 s 204 s

Post-processing 96 s 139 s 97 s 105 s
Total 180 s 746 s 154 s 310 s

†Upload time for VM synthesis includes all synthesis steps (overlay transfer, decom-
pression, and applying delta).

Figure 4.17: Time for Instantiating Custom VM at Amazon EC2

transmitted, applied, and then the VM could be directly resumed without reboot.
We compare the time it takes to perform VM synthesis to the time required in the normal

cloud workflow to deploy and execute a custom VM with the OBJECT application. The results
are shown in Table 4.17. For VM synthesis, synthesis setup corresponds to steps 1-3, uploading
to step 4, and post-processing corresponds to steps 5-8. With the normal Amazon workflow,
there is no analog to synthesis setup. However, after upload, Amazon takes time to provision
resources and to boot a VM within EC2; this is included in the total post-processing time. We
present results for two WAN bandwidths, 10 Mbps and 100 Mbps, in Table 4.17. In both cases,
VM synthesis wins over the normal cloud workflow with a 4x improvement in the 10 Mbps case
and a 2x improvement in the 100 Mbps case. The normal cloud workflow is bottlenecked on
bandwidth because it must upload the full 514 MB compressed VM image, but VM synthesis
reduces this to a much more compact 42 MB VM overlay. It is important to note here that
pre- and post-processing for VM synthesis are artificially inflated because of the lack of native
VM synthesis support and the convoluted mechanisms we needed to employ to work around
limitations imposed by EC2.

4.8 Related Work

Offloading computation has a long history in mobile computing, especially to improve applica-
tion performance and battery life [32, 77, 92]. The broader concept of cyber foraging, or “living
off the land” by leveraging nearby computational and data storage resources, was first articulated
in 2001 [95]. In that work, the proximity of the helper resources, known as “surrogates,” to
the mobile device was intuitively assumed, but how to provision them was left as future work.
Since then, different aspects of cyber foraging have been explored by a number of researchers.
Some of these efforts have looked at the tradeoffs between different goals such as execution
speed and energy usage based on adaptive resource-based decisions on local versus remote ex-
ecution [33, 34]. Other efforts have looked at the problem of estimating resource usage of a
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future operation based on past observations, and used this estimate to pick the optimal execution
site and fidelity setting [46, 75]. Many researchers have explored the partitioning of applications
between local and remote execution, along with language-level and runtime tools to support this
partitioning [10, 22, 27].

Since 2008, offloading computation from a mobile device over the Internet to a cloud com-
puting service such as Amazon EC2 [100] has become possible. But, cloud computing places
surrogates far away across a multi-hop WAN rather than nearby on a single-hop WLAN. A 2009
position paper [98] introduced VM-based surrogate infrastructure called “cloudlets.” Proximity
of offload infrastructure was deemed essential for deeply immersive applications where crisp
interactive response requires end-to-end latency to be as low as possible. Recent application
studies [24, 49] have confirmed the need for proximity of offload infrastructure when a mobile
device runs interactive and resource intensive applications.

Aspects of the VM overlay concept can be seen in copy-on-write (COW) mechanisms. Sa-
puntzakis et al. [93] showed how COW could be applied hierarchically to VMs to create an effi-
cient representation of a family of virtual appliances. Their following work, the Collective [19],
advanced this approach and proposed a cache-based system to cope with various network condi-
tions. Similarly, QCOW2, a widely used virtual disk file format, uses a read-only base image and
stores modified data in a separate file [70]. Strata [85] combined union file system and package
management semantics to easily create and deploy virtual appliances and to dynamically com-
pose them. VM overlays, as articulated in [98], extend the base and modifications concept to
both VM disk and memory state, and focuses on a mobile, cyber-foraging use case.

Some aspects of the optimization techniques proposed in this work have been individually
investigated in other domains. Deduplication has been widely adopted in file systems, network
storage, and virtualization. In file systems, it is used to reclaim storage space by detecting du-
plicated files or blocks. LBFS (Low Bandwidth File System) [73] is an example of a network
file system that uses deduplication to reduce bandwidth demand. It introduced the use of Ra-
bin fingerprints for defining content-based chunk boundaries that are edit-resistant. REBL (Re-
dundancy Elimination at the Block Level) [60] applied deduplication along with compression
and delta-encoding to achieve effective storage reduction. It introduced the concept of super-
fingerprints to reduce the computational effort of deduplication. Deduplication has also been
used in the virtual machine space. Waldspurger removed duplicated memory pages and shared
identical memory pages across multiple virtual machines to conserve memory on the host ma-
chine [113]. Several recent works have also used deduplication to reduce the cost of VM migra-
tion both within datacenters [122] and across WANs [118]. As our work uses deduplication in
an offline stage, we can apply it aggressively across both disk and memory images.

Demand fetching of VM disk state was introduced by Kozuch et al. [58] and Sapuntzakis et
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al. [93]. Both leveraged the fact that only a small portion of a VM disk is typically accessed in a
session. Post-copy migration [51] applied demand fetching of VM memory to live VM migration
to reduce network transmission costs and the total migration time. Post-copy migration immedi-
ately started the VM at the target destination instead of pre-copying a VM’s memory state over
mulitiple iterations. SnowFlock [61] combined demand fetching and packet multicasting to pro-
vide highly efficient and scalable cloning of VMs. It started VM execution on a remote site with
only critical metadata and performed memory-on-demand, where clones lazily fetch portions of
VM state as it is accessed. VM image Distribution Network (VDN) [83] used demand fetch-
ing of content-addressed chunks in the datacenter. VMTorrent [90] enabled scalable VM disk
streaming by combining block prioritization, profile-based execution prefetch, and on-demand
fetch. Our work also uses profiled prefetching and demand-fetching.

The significance of the semantic gap between VMMs and guest OSes was first articulated
by Chen and Noble [20]. Later, Garfinkel and Rosenblum [37] coined the term virtual machine
introspection and developed an architecture focusing on analyzing memory. Another effort to
bridge this gap is VMWatcher [54], which enabled malware detection by introducing a tech-
nique called guest view casting to systematically reconstruct internal semantic views of a VM,
such as files, processes, and kernel modules, in a non-intrusive manner. Kaleidoscope [17] ex-
ploited x86 architectural information (e.g. page table entries) to classify VM memory into sets of
semantically-related regions and used this for better prefetching and faster cloning of a VM into
many transient fractional workers. Our work bridges the semantic gap to minimize VM overlay
size by identifying freed pages and blocks, and, to the best of our knowledge, is the first to use
TRIM support for this purpose.

4.9 Chapter summary

Beyond today’s familiar desktop, laptop and smartphone applications is a new genre of software
seamlessly augmenting human perception and cognition. Supporting the compute-intensive and
latency-sensitive applications typical of this genre requires the ability to offload computation
from mobile devices to widely dispersed cloud infrastructure, a.k.a., cloudlets. Physical dis-
persion of cloudlets makes their provisioning a challenge. In this chapter, we have shown how
cloudlets can be rapidly and precisely provisioned by a mobile device to meet its exact needs
just before use. We have also shown that although our solution, dynamic VM synthesis, was
inspired by the specific demands of mobile computing, it also has broader relevance to public
cloud computing infrastructure.
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Chapter 5

Adaptive Virtual Machine Hand-off

Once a user successfully provisions application’s back-end server at cloudlet, the next question
is “What happens if a mobile device user moves away from the cloudlet he is currently using?”
As long as network connectivity is maintained, the applications should continue to work trans-
parently. However, interactive response will degrade as the logical network distance increases.
In practice, this degradation can be far worse than physical distance may suggest. For example,
when moving from a home Wi-Fi network to that of a neighbor down the street, communication
to the first home’s cloudlet will require two traversals of “last-mile” links connecting the homes
to their ISPs. How can we address this effect of user mobility? If the offloaded services on the
first cloudlet can be seamlessly transferred to the second cloudlet, end-to-end network quality can
be maintained. We refer to this capability as VM handoff. VM handoff resembles live migration
in cloud computing, but differs considerably in the details such as metric and constraints.

5.1 Introduction

Seamless handoff is a core concept in cellular networks. Without any disruption to ongoing
voice or data transmission, a user is able to freely move over a significant geographic area that
is spanned by many base stations of limited individual coverage. In this chapter, we describe
an analogous mechanism for cloud offload. Since virtual machine (VM) encapsulation is used
for safety, isolation, resource allocation, and provisioning of multi-tenant cloudlets, we refer
to our mechanism as VM handoff. As a user moves, his VM is seamlessly transferred from
cloudlet to cloudlet or between cloud and cloudlet in order to preserve low end-to-end latency.
This mechanism resembles live migration of VMs in data centers, but differs in at least three
important ways.

First, the two mechanisms are optimized for very different performance metrics. The figure
of merit in VM handoff is total time to completion, since degraded end-to-end latency persists
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5% 10% 50% 90% 95%
Home A & B 18.5 19.2 26.4 77.8 133.6
Home B & C 36.4 37.2 44.9 87.2 98.0
Home C & A 38.8 39.3 44.9 75.1 92.6

(a) Latency Distribution (milliseconds)

5% 10% 50% 90% 95%
Home A & B 0.5 0.6 1.9 2.3 2.3
Home B & C 0.5 0.7 0.8 0.9 0.9
Home C & A 0.5 0.5 0.8 0.9 0.9

(b) Upload Bandwidth Distribution (Mbps)

These are the observed distributions of latency and upload bandwidth over a one-week
period in November 2014 between three homes that are located within a one square
mile area. All the homes have broadband Internet connectivity provided by ISP1 for A
and B, and ISP2 for C.

Figure 5.1: Network Quality Between Homes

until the end of the operation. Live migration, on the other hand, aims at short duration of the
very last step (called “down time”), during which the VM instance is suspended. The total time
to completion is a secondary consideration. As we show in Section 5.5.1, this difference in opti-
mization metric can result in an order of magnitude difference in total completion time. Second,
the economics of cloudlet deployments force it to accept whatever network and computing re-
sources exist across dispersed cloudlets. Unlike the data center assumptions of live migration,
VM handoff cannot rely on the presence of a dedicated high-bandwidth network. Hence, our
system needs to tolerate high variability in bandwidth and compute capacity due to workloads
from other users even during the course of a single handoff. By dynamically adapting to these
changing conditions, VM handoff can offer significant performance improvement as shown in
Section 5.5.4. Third, VM handoff leverages the presence at the destination of a base VM from
which its image was derived and uses this in combination with delta provisioning of VM states
as originally proposed by Chapter 4.

The interactive response of such latency-sensitive applications will degrade as the logical
network distance increases. As discussed in the next section, this degradation can be far worse
than physical distance may suggest. VM handoff can mitigate this effect of user mobility while
remaining transparent to applications.
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5.2 Why VM Handoff?

In practice, how important is VM handoff to user experience? Consider the scenario of a user
visiting his neighbor who lives just down the street. The user is running a mobile application
that is latency-sensitive and is using the services of a cloudlet in his home. When he reaches
the second home, he associates with a Wi-Fi access point there but continues to use the original
cloudlet. Because of two traversals of last-mile links connecting the homes to their ISPs, the user
is likely to see significant degradation of latency and bandwidth to his cloudlet.

To validate this intuition, we measured network quality over a one-week period between
the homes of three collaborators that are located within the same neighborhood in a city. As
the results in Figure 5.1 show, end-to-end latency and bandwidth are poor in spite of physical
proximity. For example, even though homes A and B connect to the same ISP, the median latency
between them is 26.4 milliseconds. This is consistent with measurements reported by Sundaresan
et al [106]. Homes that are connected to different ISPs can expect even worse network quality
between them. For example, homes B and C are just one block apart, but the median latency
between them is more than 40 milliseconds. Without VM handoff, even modest user mobility
may result in unacceptable degradation of network quality to the associated cloudlet.

Degraded network quality translates into slower response times for latency-sensitive applica-
tions. To illustrate this, we evaluate the performance of three representative mobile applications.
In our experiments, user interaction occurs on a mobile device while the compute-intensive pro-
cessing of each interaction occurs in a back-end server encapsulated in a VM instance on a
cloudlet. In Figure 5.2, the label “nearby cloudlet” corresponds to the case where the mobile
device and cloudlet are both located at home C. In this configuration, the mobile device has one-
hop Wi-Fi connectivity to its cloudlet. The label “distant cloudlet” corresponds to the case where
the mobile device is at C, but its associated cloudlet is at A. In all cases, a nearby cloudlet yields
significantly lower response times. For example, the median response time of FACE is 104 ms
when it is associated to the nearby cloudlet, but it is 882 ms when using the distant cloudlet.
Since this performance difference is solely due to differing network conditions, it confirms the
importance of VM handoff.

5.3 Background and Related Work

5.3.1 Live Migration for Data Centers

Live migration [23] is the de facto standard for VM migration in data centers. Its goal is to
minimize “down time” during which a migrating VM instance is suspended. To achieve this goal,
live migration allows the VM instance to continue execution at the source host while transferring
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(a) Fluid Graphics (10 minutes run)
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(b) Face Recognition (300 requests)
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Figure 5.2: CDF of Response Times (milliseconds)
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VM Total Down State
time time transfer size

OBJECT 127 Min (0.03) 1.45 s (0.1) 8.42 GB (0.004)

MAR 159 Min (394) 7.44 s (0.3) 10.56 GB (0.43)
(a) No Base Image at Destination (no-share)

VM Total Down State
time time transfer size

OBJECT 12 Min (0.07) 1.54 s (0.3) 0.80 GB (0.004)

MAR 52 Min (20.4) 7.63 s (0.8) 3.45 GB (1.35)
(b) Using Base Image at Destination (incremental)

VM for both OBJECT and MAR are configured with 8GB disk and 1GB memory. The
OBJECT guest operating system is Ubuntu Linux 12.04, while that of MAR is Windows
7. Average of 3 runs is reported with standard deviation in parentheses.

Figure 5.3: QEMU-KVM Live Migration on WAN

modified memory state in the background to the destination host. During the transfer, which may
take many seconds to tens of seconds in typical usage, additional memory state may be modified
by the executing VM instance. The entire process is repeated for multiple iterations (typically
of shorter and shorter durations) until the very last step. In that final step, the VM instance is
suspended at the source, all its remaining modified state is sent to the destination, and execution
is resumed there. Through this convergent series of iterations, live migration minimizes down
time to as little as hundreds of milliseconds on LAN. The entire migration process typically takes
between tens of seconds to a few minutes.

As originally described, live migration does not transfer disk state; it only transfers memory
state. This is acceptable in a data center environment because the source and destination hosts
can be assumed to share disk storage through a mechanism such as a SAN (storage area network)
or NAS (network-attached storage) device. A number of efforts [7, 15, 69, 121] have extended
the basic live migration mechanism to work across data centers that are connected by a WAN.
These efforts address the transfer of both memory state and disk state during migration, since
shared-storage mechanisms do not work well over WANs.

5.3.2 Using Live Migration for VM Handoff

One may wonder whether VM live migration can be used with cloudlets because it is designed
for seamless migration of computing states across machines. To verify feasibility, we conducted
experiments using QEMU-KVM 1.1.1 in Ubuntu Linux 12.04. This production-quality VMM
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implementation is widely used in OpenStack data centers for cloud computing [79]. As repre-
sentative cloudlet workloads, we use MAR, the augmented reality application that was described
in Section 5.2, and OBJECT, an object recognition application. The back-end server of OBJECT
uses the MOPED algorithm [25] on an image sent by the mobile device, and returns the bounding
box and identity of recognized objects. We performed live migration between two cloudlets that
were connected by a stable 10 Mbps, 50 ms RTT network provided by a Linktropy emulator on
a gigabit Ethernet.

QEMU-KVM hypervisor provides a mechanism to migrate both memory states and disk
states, called live block migration. In live block migration, one can either transfer entire disk state
to the destination or only transmit incremental disk state assuming the source and destination
share base disk states. Figure 5.3(a) presents the results for the expected worst case, which
transfers the entire disk state to the destination. The results show a total migration time of over
two hours for both images, but a down time of just a few seconds. Two hours is a very long
time for a mobile user to suffer degraded network access to his cloudlet. The fact that down time
is just a few seconds is little consolation. Most mobile users would gladly accept much longer
down times if it resulted in a faster switch to a nearby cloudlet.

Figure 5.3(b) presents the results when the base VM images into which OBJECT and MAR
were installed are available at the destination cloudlet. One would expect the total state transfer,
and hence migration time, to decrease significantly. This is indeed true for OBJECT, which
completes the entire migration in just 12 minutes. Unfortunately, MAR behaves quite differently.
The total migration time still takes more than 50 minutes with high variation. It turns out that this
unexpected behavior is due to the timing of background activity in the Windows 7 guest. This
background activity generates modified memory state at rate high enough to inordinately prolong
live migration. And it is reflected in the large total volume of state transferred. Yet, down time
remains less than 10 seconds for MAR in Figure 5.3(b).

In principle, one could re-tune live migration parameters to eliminate this pathological be-
havior. However, this could hurt down time in situations where that metric matters. Optimizing
for the right context-sensitive metric is a non-trivial problem. Classic live migration is a fine
choice for data centers, but inappropriate in a cloudlet context. Other possibilities include apply-
ing the concept of partial VM migration [13], and leveraging content similarity from VM images
distributed across multiple nodes [62, 82, 88, 89]. These approaches are complementary to VM
handoff, which focuses on achieving near-ideal post-handoff performance without reliance on
external infrastructure.
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Figure 5.4: Overall System Diagram for VM Handoff

5.3.3 Dynamic VM Synthesis

Our implementation of VM handoff is inspired by VM synthesis described in 4. However, rather
than overlay creation being a one-time offline operation, a series of overlays are generated afresh
at runtime on the source cloudlet during the course of a single VM handoff. The time for overlay
creation, which was ignored in earlier work because it was an offline operation, now becomes
a significant limiting factor. In addition, the tuning parameters (such as compression algorithm)
used in overlay creation are dynamically re-optimized at run-time in order to reflect the current
relative costs of network transmission and cloudlet computation. Thus, although VM handoff
borrows concepts from VM synthesis, it represents a substantial new mechanism in its own
right.

5.4 Design and Implementation

Our design of VM handoff reflects the three considerations mentioned in Section 5.1: (a) optimiz-
ing for total handoff time rather than down time; (b) dynamically adapting to WAN bandwidth
and cloudlet load; and (c) leveraging existing VM state at cloudlets. Figure 5.4 illustrates the
overall design. A pipeline of processing stages is used to efficiently find and encode the differ-
ences between current VM state at the source, and already-present VM state at the destination.
This delta encoding is then deduplicated and compressed (using parallelization wherever pos-
sible), and then transferred. The algorithms and parameters used in these stages are chosen to
match current processing resources and network bandwidth. We describe these details below.
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5.4.1 Tracking Changes

Our system is mostly implemented as modules separate from the hypervisor. This allows the
system to be more flexible in controlling the resource usage for handoff, minimizes modifications
to the hypervisor, and potentially allows support for different hypervisors, though our current
implementation uses QEMU/KVM. On the other hand, it is more difficult to track VM disk and
memory state changes from outside the hypervisor.

To efficiently track changes to VM disk state, our system uses the Linux FUSE interface to
implement a user-level filesystem on which the VM disk image is stored. All of the running
VM’s disk accesses are passed through the FUSE layer, which can accurately track modified
blocks with little performance impact to the running VM. At the start of handoff, our system
can then immediately capture all VM disk blocks that differ from those in the corresponding
standard base VM image. As in live migration, the VM can continue to run, and any further disk
modifications will be tracked for subsequent iterations of transmission.

For tracking VM memory modifications, a FUSE-like approach would incur too much over-
head on every memory write. Instead, we capture the memory snapshot at handoff, and determine
the changed blocks in our code. To get the memory state, we rely on QEMU/KVM’s live migra-
tion mechanism. We use a Unix socket to send a command to QEMU/KVM to start migrating
state. This will cause it to mark all VM pages as read-only to trap and track any further mod-
ifications, and to start a complete transfer of the memory state. Rather than sending this state
over the network, our system redirects this through a pipe to our processing stages that filter out
unmodified pages, and heavily compress the remaining data before transmission using various
techniques. As this capture of memory snapshot is based on a mechanism intended for live mi-
gration, QEMU/KVM will then iterate this process, sending pages that were modified over the
duration of the previous iteration of modified pages. To limit repeated transmission of a set of
rapidly changing pages, our system can regulate the start of these iterations, limit how many
iterations are performed, or can eliminate them completely by pausing the VM before starting
the memory snapshot.

5.4.2 Reducing Data Size

As the network bandwidth is often the bottleneck in VM handoff, our system tries to aggressively
reduce the data volume transmitted across the network. We implement a pipeline of processing
stages to delta-encode, deduplicate, and compress data before it hits the network.

We study the effectiveness of these processing stages in reducing data size on four applica-
tions that are representative of cloudlet workloads. The behavior of these applications, OBJECT,
FACE, MAR, and FLUID are explained in Figure 5.2 and 5.3. Figure 5.5 shows that the system
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Figure 5.5: Cumulative reductions in size of VM state transferred

can significantly reduce the volume of data transferred to between 1/5 and 1/10 of the total mod-
ified data blocks. However, the processing costs of these operations may result in CPU, rather
than network transfer, becoming the bottleneck. To avoid this, our system can use different algo-
rithms and settings to balance the processing requirements and data size reductions. Details of
these options are discussed below.

Delta encoding of modified pages and blocks: The streams of modified disk blocks and all
VM memory pages are fed to two delta encoding stages (Disk diff and Memory diff stages in
Figure 5.4). The data streams are split into 4KB (page/block size) chunks, and are compared to
the corresponding chunks in the base VM. We use a SHA-256 hash [36] to make these compar-
isons. The hash values are preserved for later use. Chunks that are identical to those in the base
VM are omitted. For each modified chunk, we use a binary delta algorithm to encode the differ-
ence between the chunk and the corresponding one in the base VM image, and only transmit the
delta if it is smaller in size than the chunk. The idea here is that small or partial modifications
are common and there may be significant overlap between the modified and original block when
viewed at finer granularities. Our system can be dynamically configured to use either xdelta3,
bsdiff4, or xor to perform the binary delta encoding, or to simply pass through modified
chunks without delta encoding. As both the hash computations and the delta encoding steps are
compute intensive, we parallelize these on multiple processing threads.
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Deduplication: The streams of modified disk and memory chunks, along with the computed
hash values, are merged and passed to the deduplication stage. Deduplication has been widely
used and is very effective in reducing redundant data in a variety of contexts. Here, deduplication
is particularly effective, as multiple copies of the same data commonly occur in a running VM.
For example, multiple copies of the same data may reside in kernel and user-level buffers, or on
disk and OS page caches. For each modified chunk, we compare the hash value to those of (1)
all base VM disk chunks, (2) all base VM memory chunks, (3) a zero-filled chunk, (4) all prior
chunks seen by this stage. The last is important to capture multiple copies of new data in the
system, in either disk or memory. This stage filters out the duplicates that are found, replacing
them with pointers to identical chunks in the base VM image, or that were previously emitted.
As the SHA-256 hash used for matching was already computed in the previous stage, deduplica-
tion primarily reduces to fast hash lookups operations, so this stage can be easily run as a single
thread.

Compression: Compression is a final stage of processing before the VM modification data is
sent to the network. In this stage, we attempt to squeeze the data further by applying one of sev-
eral off-the-shelf compression algorithms, including GZIP (deflate algorithm) [28], BZIP2 [18],
and LZMA [116]. These algorithms vary in the data compression achieved and processing speed.
GZIP provides relatively modest compression ratios, but uses very little processing time. LZMA
is optimized for high compression ratios and fast decompression, but at the price of slow com-
pression. BZIP2 falls in the middle in terms of compression rate and processing requirements. As
these compression algorithms (particularly LZMA) work best on large blocks of data, this stage
aggregates the modified chunk stream into approximately 1 MB segments before applying com-
pression. Finally, as this is a CPU intensive stage, we run multiple instances of the compression
algorithms in separate execution threads, sending segments to the threads in round-robin fash-
ion. This lets us take advantage of all available cores, and parallelizes well, without requiring
multi-threaded implementations of the compression algorithms.

5.4.3 Pipelined Execution

Our system pipelines the execution of these processing stages, so all of them are active simulta-
neously, and data is streamed through the various processing steps. This has two main advantages
over a serialized implementation, where all data is processed through a particular stage before
starting the next stage. First, it allows downstream stages to start before the preceding ones
complete. In particular, we can start transferring data on the network quickly, in parallel to the
processing stages. Increasing network bandwidth utilization is critical for VM handoff between
cloudlets, where network bandwidth is a scarce resource that should not be wasted or left un-
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Figure 5.6: Serial versus Pipelined Processing

sused. Pipelining helps ensure migration data begins to reach the network as quickly as possible.
Secondly, it requires less memory to buffer the intermediate data generated by the individual
stages, as they are consumed quickly by downstream ones. Note that the total processing time is
not significantly affected by the pipelining. This is because the total amount of computation is
roughly the same, and even in the serialized case, our multi-threaded stages can make good use
of multiple processing cores.

The example measurements in Figure 5.6 illustrate the benefit of a pipelined implementation.
In the serial case, each stage has to be completed before the next stage can begin. In the pipelined
case, all stages are available to begin processing data very soon after initialization. Figure 5.6
shows that pipelining produces a roughly 5% reduction in total processing time. (Serial process-
ing takes 109.6 s and pipelined processing takes 102.7 s from its start to finishing compression).
However, total handoff time is reduced by 36% (171.9 s→ 110.2 s) because network transfers
are overlapped with execution of the processing stages.

We also measure how well our pipelined system scales as the available CPU resources in-
crease at the cloudlet. Figure 5.7 shows VM handoff time for different workloads with differing
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Figure 5.7: Processing Scalability of the System

number of CPU cores. Except for FLUID, the processing throughput increases as we use more
cores. Much of the gain comes from parallel processing of the input data, since we use multiple
execution threads for the stages that are CPU-intensive such as binary delta and compression.
For FLUID, the total volume of data processed is too small to significantly benefit from multiple
cores.

5.4.4 Dynamic Adaptation

In the example handoff performance data from Figure 5.6, due to the particular choices of al-
gorithms and parameters used, the system is clearly processing bound. The processing takes
109.6 s, and dominates the total handoff time, while network transfer only requires 62.3 s. Here,
it would have been better to select compression algorithms to reduce the processing requirements,
even at the expense of data transfer size in order to reduce the overall handoff time.

If we knew exactly how much compression could be achieved and exactly how long this
would take to transfer the modified VM state for all algorithms, and had guarantees on the avail-
able bandwidth, we could find a static configuration of processing stages to optimize the handoff
time. However, we cannot know all of these in advance, as this is highly dependent on the actual
data that needs to be transferred. Furthermore, network bandwidth can fluctuate significantly
over time, as can available processing resources. Thus, selecting the best processing parameters
a priori is not practical, and in any case, a static configuration may not remain the best choice as
conditions change over the duration of handoff. Furthermore, the best static configuration for one
workload might not work well for the other workloads because processing time and compression
ratio vary depending on the workloads. Instead, our system employs continuous monitoring of
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Figure 5.8: Pipeline modeling

handoff performance, and uses this information to dynamically adapt the processing stage set-
tings to reduce handoff time, as detailed below. In the rest of this chapter, we refer to a set of
selected algorithms and parameters for the processing stages as an operating mode.

Pipeline Performance Model

In order to develop an algorithm to select the right operating mode, we first develop a sim-
plified model of our processing pipeline. The goal of this modeling is to calculate the system
throughput by identifying the bottlenecks. Our pipelined system has two potential bottlenecks:
processing and network transmission. On one hand, the handoff operation will be bottlenecked
by the processing speed if the system is configured to aggressively reduce migration data size
using processing-intensive algorithms and settings. On the other hand, the speed of handoff may
be limited by the available network bandwidth if the pipeline does less processing in order to
more fully utilize network bandwidth. In this modeling, we characterize system throughput with
respect to these potential bottlenecks.

Figure 5.8 shows a simplified model of our pipeline. The processing is a sequence of stages
1 – n, each of which takes input data and outputs a transformed, smaller version of the data. For
each stage i, we define:

Pi = processing time, Ri =
output size
input size

at stage i

These values are defined for a particular operating mode (set of selected algorithms and
parameters for the processing stages). From these, we can compute the processing time as:

Timeprocessing =
∑

1≤i≤n

Pi (5.1)

The time to transfer on the network is computed as:

Timenetwork =
Sizemigration

Network bandwidth
(5.2)
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(where Sizemigration = Sizemodified VM × (R1 × · · · ×Rn))

Since our pipeline overlaps processing and network transmission, from (5.1) and (5.2), the
total total handoff time is:

Timehandoff = max(Timeprocessing, T imenetwork) (5.3)

In the implementation, we use processing throughput and network transmission throughput
instead of processing time and network transfer time, because calculating total transmission time
requires undetermined information such as total input size. Therefore, the total system through-
put is

Thrusystem = min(Thruprocessing, Thrunetwork) (5.4)

where,

Thruprocessing =
1∑

1≤i≤n Pi

Thrunetwork =
Network Bandwidth
(R1 × · · · ×Rn)

(5.5)

Intuitively, (5.5) shows our pipelined system is bottlenecked by either processing speed or
network transmission speed. It also indicates that we can calculate the system throughput if we
measure processing time (P ) and out-in ratio (R).

Adaptation Heuristic

Applying this model to our system, we develop a heuristic to dynamically adapt the operat-
ing mode. The goal of the heuristic is to select the operating mode that maximizes the system
throughput Thrusystem. We profile the values of P and R for various workloads and operating
settings. However, as discussed earlier, the actual computational demands and compression ra-
tios achieved vary greatly depending on the actual content of the modified VM data. Hence,
using the profiled P and R values directly may be highly misleading. Figure 5.9 illustrates this
with measured P and R values for varying operating modes of two different workloads, FACE
and OBJECT. Each data point in the figure is P or R per block (i.e. modified memory page or
disk blocks) of a particular mode. As expected, the P and R values differ significantly for the
two workloads even with the same compression settings. However, the ratio of P (or R) values
between different operating modes are relatively stable between the different workloads. In other
words, the trends of P and R in varying operating modes are similar across different workloads.
The intuition behind this is that although one workload may be much harder than another, it
impacts the various compression algorithms to a similar degree, and the relative performance re-
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Figure 5.9: Trends of P and R across workloads (G: Gzip, B: Bzip2, L: LZMA)

mains roughly similar. We confirm this on the 4 very different workloads used here: the absolute
values of P and R of each workload are different, but their trends are similar. The robustness
of this similarity across workloads from different developers and which span different operating
systems, libraries, and databases suggests that it is a stable metric upon which base adaptation.
Our heuristic uses ratios of P (or R) from the profiled data, rather than the absolute values, to de-
termine which operating modes will likely minimize handoff time. Each iteration of the heuristic
proceeds as follows:

1. First, measure the current P (Pcurrent) and R (Rcurrent) values of the running workload
with the current operating mode (Mcurrent). The system also measures the current net-
work bandwidth by observing the rate of data segment acknowledgments received from
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Figure 5.10: Modified Memory Regions (Black)

the handoff destination.

2. From the profile, find the profiled value P (Pprofile) and R (Rprofile) of the matching oper-
ating Mode, M . Then, compute the scaling factor for P and R.

ScaleP =
Pcurrent

Pprofile

, ScaleR =
Rcurrent

Rprofile

3. Apply these scaling factors to “adjust” the profiled values for the current workload. Then,
our heuristic calculates processing throughput (Thruprocessing) and network transmission
throughput (Thrunetwork) using (5.5), for each operating mode.

4. Finally, select an operating mode that maximizes the system throughput according to (5.4).

This heuristic can react to changes in the networking bandwidth, available processing re-
sources (due to other loads on the cloudlet), or to changes in the compressibility of the VM
modifications. In practice, the P values are actually measured in terms of processing time per
input data block. The total possible combinations of settings (number of operating modes) is
fairly small, so we can exhaustively enumerate them with little processing effort. The adaptation
loop is repeated every 100 ms to let the system react quickly to any changes, or quickly discover
any mispredictions. An updated operating mode will last for at least 5 s to provide hysteresis and
give the system enough time to let effects of the change propagate throughout the pipeline, and
reflect in stable measurements of P and R values.

5.4.5 Workload Distribution

The actual load placed on the processing pipeline and network are directly related to the number
of modified pages and blocks that are transferred. For disk blocks, our change tracking mech-
anisms ensure only the modified disk blocks are delivered to the processing pipeline. For the
memory image, however, the entire snapshot, including both modified and unmodified pages are
processed. The relative loads on the network and processor, as well as our P and R values, vary
depending on the ratio of modified and unmodified pages arriving at the pipeline.

Unfortunately, operating systems often manage memory space such that allocations, and
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Figure 5.11: Randomized versus Sequential memory order (1-second moving average)

therefore modifications, tend to be clustered. Figure 5.10 illustrates the set of modified pages
for a VM by physical address. Clearly, the modifications are non-uniform, and highly clustered.
Sending this memory snapshot to our processing pipeline would result in a highly bursty work-
load. This is problematic for two reasons. First, long sequences of unmodified pages could
drain later pipeline stages of useful work and may idle the network, wasting this precious re-
source. Long strings of modified pages could result in high processing loads, requiring lower
compression rates to keep the network fully utilized. Both of these are detrimental to our goal of
minimizing transfer time.

To address this problem and have a balanced workload during the process of VM handoff,
we use a technique called workload distribution. Workload distribution randomizes the order of
page frames passed by the hypervisor to our processing pipeline. This way, even if the memory
snapshot has a long series of unmodified pages at the beginning of physical memory, all of our
pipeline stages will quickly receive work to do, and neither processing nor network resources are
left idling for long. More importantly, the ratio of modified and unmodified pages arriving at the
processing pipeline remains stable compared to when we simply pass pages in the sequential,
address order. Figure 5.11 shows how workload distribution moderates the processing time per
block, eliminating both spikes and troughs. The spikes correspond to CPU-bound conditions,
causing underutilization of network, while the troughs result in underutilization of CPU resources
due to network bottlenecks. Workload distribution avoids the extremes and helps our system
efficiently use both resources. Note that in this figure, no adaptation is performed (i.e., static
mode is used), so the overall average processing times are the same for both plots. Furthermore,
no network transfer is actually performed, so effects of network bottlenecks are not shown here.
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5.4.6 Iterative Transfer for Liveness

VM handoff has to strike a delicate balance between brief service disruption and extended service
degradation. If total handoff time were the sole metric of interest, the approach of suspending,
transferring, and then resuming the VM would be optimal. Unfortunately, even with all our
optimizations, this is likely to disrupt offload service too long (many minutes on a slow WAN)
for good user experience. At the other extreme, if reducing the duration of service disruption
were the sole metric of interest, classic live migration would be optimal. However, as shown
earlier, this may extend degraded service unacceptably. The reality of mobile user experience is
that neither extreme is acceptable.

Our solution to this problem is to borrow the concept of iterative transfer from live migration,
but to embed it in the very different context of adaptive VM state transfer. As in live migration,
the VM instance continues to run and accrue further changes which are transferred in subsequent
iterations. However, unlike live migration, which focuses solely on volume of data transfer to
drive the process, VM handoff is sensitive to multiple factors: data volume, processing speed,
compression ratio achieved, and current bandwidth. Our system uses an input queue threshold to
trigger the next iteration and uses the duration of an iteration to capture all factors affecting the
speed of migration. If the duration of the iteration is sufficiently short, then our system suspends
the VM and completes the handoff operation. We have empirically set the input queue threshold
to 10 MB, and the interval to 2 seconds.

5.5 Evaluation

In this section, we evaluate the performance of our system for different workloads under vari-
ous network and computing conditions. Specifically, we investigate our VM handoff system by
answering the following questions:

• Is our system able to provide short VM handoff time on a slow WAN? How does it perform
compared to classic live migration? (Section 5.5.1)

• How does it compare to classic live migration or other approaches like Docker? (Sec-
tion 5.5.2)

• How effectively does our system select operating modes at a given condition? How well
does this adaptation compare to the static modes? (Section 5.5.3)

• Is the implementation complexity of dynamic adaptation necessary? How dynamically
does our system adapt its pipeline to varying conditions? (Section 5.5.4)

In our experiments, we emulate WAN-like conditions using the Linux Traffic Control (tc [68]
tool), on physical machines that are connected by gigabit Ethernet. We configure bandwidth in

76



1 CPU core 2 CPU cores
BW (Mbps) Handoff Down Handoff Down

Time(s) Time(s) Time(s) Time(s)

OBJECT

5 113.9 15.8 (6 %) 111.6 17.2 (7 %)
10 66.9 7.3 (42 %) 58.6 5.5 (5 %)
15 52.8 5.3 (12 %) 43.6 5.5 (31 %)
20 49.1 6.9 (12 %) 34.1 2.1 (22 %)
25 45.0 7.1 (30 %) 30.2 2.1 (26 %)

FLUID

5 25.1 4.0 (5 %) 17.3 4.1 (6 %)
10 24.6 3.2 (29 %) 15.7 2.5 (4 %)
15 23.9 2.9 (38 %) 15.6 2.2 (14 %)
20 23.9 3.0 (38 %) 15.4 2.0 (19 %)
25 24.0 2.9 (43 %) 15.2 1.9 (20 %)

MAR

5 494.4 24.0 (4 %) 493.4 24.5 (10 %)
10 257.9 13.7 (25 %) 250.8 12.6 (13 %)
15 178.2 8.8 (19 %) 170.4 9.0 (17 %)
20 142.1 7.1 (24 %) 132.3 7.3 (20 %)
25 121.4 7.8 (22 %) 109.8 6.5 (22 %)

FACE

5 247.0 24.3 (3 %) 245.5 26.5 (7 %)
10 87.4 15.1 (10 %) 77.4 14.7 (24 %)
15 60.3 11.4 (8 %) 48.5 6.7 (15 %)
20 46.9 7.0 (14 %) 36.1 3.6 (12 %)
25 39.3 5.7 (25 %) 31.3 4.1 (17 %)

Average of 5 runs and relative standard deviations (RSDs, in parentheses) are re-
ported. For handoff times, the RSDs are always smaller than 9 %, generally under 5
%, and omitted for space. For down time, the deviations are relatively high, as this can
be affected by workload at the suspending machine.

Figure 5.12: Overall System Performance

a range from 5 Mbps to 25 Mbps, according to the average bandwidths observed over the Inter-
net [6, 115], and use a fixed latency of 50 ms. To control computing resource availability, we use
CPU affinity masks to assign a fixed number of CPU cores to our system. Our cloudlet machines
(both handoff source and destination) each have an Intel R© CoreTM i7-3770 processor (3.4 GHz,
4 cores, 8 threads) and 32 GB main memory. To measure VM down time, we synchronize time
between the source and destination machines using NTP. For difference encoding, our system
selects from xdelta3, bsdiff, xor, or null. For compression, it uses the gzip, bzip2,
or LZMA algorithms at compression levels (1–9). We use OBJECT, FACE, FLUID, and MAR,
described earlier, as VM handoff workloads. For each workload, a back-end server is running
and ready to serve mobile clients.
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5.5.1 Overall Performance

Figure 5.12 presents the overall performance of VM handoff over a range of network bandwidths.
Handoff time is the total duration from the start of VM handoff until the VM resumes on the
destination cloudlet. A user may see degraded application performance during this period. Down
time, which is included in handoff time, is the duration for which the VM is suspended. Even
at 5 Mbps, handoff time is just a few minutes and down time is just a few tens of seconds for
all workloads. These are consistent with user expectations under such challenging conditions.
As WAN bandwidth improves, handoff time and down time both shrink. At 15 Mbps using two
cores, VM handoff completes within one minute for all of the workloads except MAR, which is
an outlier in terms of size of modified memory state (over 1 GB, see Figure 5.5). The other
outlier is FLUID, where the modified state is so small that there is not enough time for our
adaptation mechanism to adjust behavior. Consequently, the numbers at different bandwidths are
very similar.

How does VM handoff perform compared to off-the-shelf techniques? Figure 5.13(a) con-
trasts the performance of VM handoff and QEMU-KVM live migration over WAN (10 Mbps).
It shows both variants of live migration supported by QEMU-KVM: no share, where all disk
and memory state are transferred; and incremental, where the destination has a copy of the
original disk, so only memory and modified blocks are transferred. VM handoff clearly out-
performs KVM’s no-share migration. Even with the incremental migration mode (which has a
conceptually similar assumption to our approach), VM handoff improves total migration time by
an order of magnitude. This is due to the aggressive use of deduplication and compression while
maintaining balance between processing rate and network transfer rate.

5.5.2 Performance Comparison

We also compare VM handoff with Docker [29]. Docker provides process-level containers
on top of a Linux kernel. It is becoming popular as a light-weight alternative to a full VM.
Docker does not natively support migration of a running container, but with Checkpoint/Restore
in Userspace (CRIU) [26], a form of migration can be achieved. This involves suspending the
container and copying memory and disk state to the destination. So unlike live migration or VM
handoff, down time is equal to total migration time. Figure 5.13(b) compares VM handoff to
Docker migration for two Linux applications (Docker-CRIU only works for Linux apps). For
OBJECT, VM handoff is two times faster even though it deals with whole VM state, rather than
just a process and its dependencies, due to the aggressive optimizations used. For FLUID, the
total state is so small that the VM handoff optimizations do not really kick in, and Docker has
the edge in overall time, but a longer down time.
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VM Approach
Total Down Transfer
time time size (GB)

OBJECT
Handoff 1 Min 5.5 s 0.06
KVM(no-share) 127 Min 1.5 s 8.42
KVM(incremental) 12 Min 1.5 s 0.80

FLUID
Handoff 16 Sec 2.5 s 0.007
KVM(no-share) 124 Min 3.4 s 8.2
KVM(incremental) ≈ 4 Min 2.4 s 0.234

MAR
Handoff ¡ 5 Min 12.6 s 0.27
KVM(no-share) 159 Min 7.4 s 10.56
KVM(incremental) 52 Min 7.6 s 3.45

FACE
Handoff ¡ 2 Min 14.7 s 0.08
KVM(no-share) 147 min 6.0 s 9.9
KVM(incremental) 104 Min 5.50 s 6.9

(a) Comparison with QEMU-KVM live migration

VM Approach Total time Down time Transfer size

OBJECT
Handoff 58.6 s 5.5 s 61 MB
Docker 118 s 118 s 98 MB

FLUID
Handoff 15.7 s 2.5 s 7.0 MB
Docker 6.9 s 6.9 s 6.5 MB

(b) Comparison with Docker

Figure 5.13: Comparison with Off-the-shelf Techniques at 10 Mbps BW, 2 CPU cores

5.5.3 Operating Mode Selection

VM handoff uses dynamic adaptation to select an operating mode for the given network con-
ditions, processing resources, and workload. Figure 5.14 illustrates this, showing processing
time and compression ratios achieved under varied bandwidth for the OBJECT workload. “CPU
time” is the absolute CPU usage, in seconds, by VM handoff. “Compression ratio” is the ratio of
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Figure 5.14: Performance Detail of OBJECT using 1 CPU core and Varying Network
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(b) Varying CPU cores with fixed 10 Mbps BW

Figure 5.15: Adaptation VS Static Modes (OBJECT)

the input data size (i.e., modified VM state) to the output data size (i.e., final data shipped over
the network). Our adaptation mechanism uses more CPU cycles to aggressively compress VM
state when bandwidth is low, thus reducing the volume of data transmitted. At higher bandwidth,
our system selects an operating mode consuming fewer CPU cycles, to avoid making process-
ing a bottleneck. The average CPU usage remains high (between 80% and 90%) even though
absolute CPU usage, in seconds, drops as the network bandwidth increase, indicating that the
mechanism successfully balances computing speed and network transfer speed while using all
available resources.

This trend in CPU time and compression rate is consistent across all applications except
FLUID, which has so little modified state that there is not enough time for adaptation to be ef-
fective. Generally, our mechanisms are more effective when larger amounts of data are involved,
so OBJECT and FACE (with 500 - 800 MB modified size) show median improvements, while
MAR (> 1.3 GB) and FLUID (< 70 MB) are two extreme ends. Therefore for the following
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experiments, we only present the results for the OBJECT workload. To avoid any experimen-
tal bias caused by optimization for a specific workload, we generate an adaptation profile (See
section 5.4.4) using FACE and test using OBJECT.

Comparison with Static Modes

How effective is the adaptive approach over picking a static configuration? To evaluate this, we
first compare against two distinctive modes in the spectrum of the operating modes: highest
compression and fastest speed. For fastest speed, each stage is tuned to use the
least processing resources to achieve fast processing of migration data. In highest compression,
we exhaustively run all the possible combinations and choose the option that minimizes the data
transfer size. Note that the most CPU-intensive mode might not be the highest compression
mode; some configurations can incur high processing costs, yet fail to achieve high compression
rates.

Figure 5.15(a) compares VM handoff time of the two static modes and adaptation. As ex-
pected, fastest speed performs best with high bandwidth, but works poorly with limited
bandwidth. Except for the highest bandwidth tests, it is network-bound, so performance scales
linearly with bandwidth. In contrast, highest compression minimizes the handoff time
when bandwidth is low, but is worse than the other approaches at higher bandwidth. This is be-
cause its speed becomes limited by computation, and bandwidth is not fully utilized. It is largely
unaffected by bandwidth change except in the very lowest bandwidth setting where network be-
comes a bottleneck. Unlike the two static cases that perform well only in certain bandwidth
ranges, adaptation always yields good performance. In the extreme cases such as 5 Mbps and
25 Mbps, where the static modes have their best performance, the adaptation is as good as these
modes. In the other conditions, it outperforms the static modes.

Figure 5.15(b) shows the handoff time for adaptation and the two static modes for differ-
ing numbers of CPU cores, with fixed 10 Mbps network bandwidth. Fastest speed shows
constant handoff time regardless of available computing power, because it is not limited by pro-
cessing, but by network transfer. Highest compression improves as we assign more CPU
cores. Again, adaptation is better than or similar to the best performance of the static operating
modes in all of the conditions.

Exhaustive Evaluation of Static Modes

We have shown that adaptation performs better than two distinctive static modes. Note that it
is not trivial to determine a priori whether either of these static modes, or one from the many
different possible modes, would work well for a particular combination of workload, bandwidth,
and processing resources. For example, our adaptation heuristic selects 15 different operating
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BW Approach Handoff time Down time
5 Adaptation 113.9 s (3 %) 15.8 s ( 6 %)

Best static 111.5 s (1 %) 15.9 s (12 %)
Top 10% 128.3 s (2 %) 20.7 s ( 9 %)

10 Adaptation 66.9 s (6 %) 7.3 s (42 %)
Best static 62.0 s (1 %) 5.0 s (11 %)

Top 10% 72.1 s (1 %) 4.8 s ( 3 %)
20 Adaptation 49.1 s (8 %) 6.9 s (12 %)

Best static 45.5 s (3 %) 8.1 s (15 %)
Top 10% 48.5 s (1 %) 4.9 s (11 %)

30 Adaptation 37.0 s (4 %) 2.6 s (47 %)
Best static 34.3 s (2 %) 2.1 s ( 8 %)

Top 10% 48.5 s (1 %) 4.8 s ( 3 %)

Relative standard deviations are reported in parentheses.

Figure 5.16: Performance Comparison Between Adaptation and Static Modes (OBJECT, 1 core)

modes for the OBJECT workload as bandwidth is varied between 5 Mbps and 30 Mbps. Further-
more, the selections of the best static operating mode at particular resource levels is unlikely to
be applicable to other workloads, as the processing speed and compression ratios are likely to be
very different.

In spite of this, suppose we could somehow find the best operating mode for the workload
and resource conditions. How well does our adaptation mechanism compare to this optimal static
operating mode? To answer this question, we exhaustively measure the VM handoff times for all
possible operating modes. Figure 5.16 compares the best static operating mode with adaptation
for the OBJECT workload at varying network bandwidth. To compare adaptation results with
the top tier of static operating modes, we also present the 10th percentile performance among the
static modes for each condition. The adaptation results are nearly as good as the best static mode
for each case. Specifically, the adaptation results always rank within the top 10 among the 108
possible operating modes in most of the cases (ranked top 19th at 20 Mbps network bandwidth).
Therefore, our adaptation mechanism manages to select good operating modes across a wide
range of conditions, with little loss compared to the best static operating mode for each condition.

5.5.4 Dynamics of Adaptation

Our VM handoff system uses dynamic adaptation to both select an ideal operating mode for a
static set of of resources, and also to adjust the modes as conditions change. To evaluate how
well this process works, we study traces of execution under both static conditions and varying
conditions.
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(b) P and R trace

Figure 5.17: Adaptation Trace Using 5 Mbps and 1 CPU core (OBJECT)

Adapting to Available Resources

We first demonstrate how well our system adapts to the available resources and network band-
width. Figure 5.17(a) is an execution trace of our system, showing various throughputs achieved
at different points in the system: output throughput, potential output throughput, and input
throughput. Output throughput is the actual rate of data output generated by the processing
pipeline to the network (solid blue line). Ideally, this line should stay right at the available band-
width level, which indicates that the system is fully utilizing the network resource. If the rate
stays above the available bandwidth level for a long time, the output queues will fill up and the
processing stages will stall. If it drops below that level, the system is processing bound and can-
not fully utilize the network. In the figure, we see that the output rate closely tracks the available
network bandwidth (5 Mbps).

The second curve in the figure represents the potential output rate (blue dashed line). This
shows what the output rate would be given the current configurations of the pipeline stages,
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(b) MAR: BW change from 5→ 30→ 5 Mbps

Figure 5.18: Adaptation for Varying Network BW

if it were not limited by the network bandwidth. When using more expensive compression, the
potential output rate drops. Ideally, this curve stays above the bandwidth line (so we do not under
utilize the network), but as low as possible, indicating the system is using the most aggressive
data reduction techniques without being CPU-bound. Here, too, we see that the system keeps
this metric close to the network bandwidth limit.

The final curve is input throughput, which is the actual rate at which the modified memory
and disk state emitted by QEMU/KVM is consumed by the pipeline (thick red line). This is the
metric that ultimately determines how fast the handoff completes, and it depends on the actual
output rate and the data compression. The system maximizes this metric, given the network and
processing constraints.

The vertical dashed lines in the trace indicate the points at which the current operating mode
is adjusted. As described in Section 5.4.4, the system bases the decision on measurements of P
and R values (depicted in Figure 5.17(b)) made every 100 ms. A decision is made every 5 seconds
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to let the effects of changing modes propagate through the system before the next decision point.
In Figure 5.17(a), our heuristic updates the operating mode 3 times during the VM handoff.

During the first 10 seconds of the trace, we observe high peaks of input and output throughput.
During this period, the empty network buffers in the kernel and the inter-stage buffers in our
pipeline absorb large volumes of data without hitting the network. Thus, the transient behavior
is not limited by the network bottleneck. However, once the buffers fill, the system immediately
adapts to this constraint.

The first decision, which occurs at approximately 10 seconds, changes the compression algo-
rithm from its starting mode (GZIP level 1) to a much more compressive mode (LZMA level 5),
adapting to low bandwidth. The effects of the mode change are evident in the traces of P and R
(Figure 5.17(b)), where processing time per block suddenly increases, and the out-in ratio drops
after switching to the more expensive, but more compressive algorithm. In general, when the
potential output is very high (with excess processing resources), the operating mode is shifted to
a more aggressive technique that reduces the potential output rate closer to the bandwidth level,
while increasing the actual input rate. Our system manages to find a good operating mode for
this trace at this first decision point; the following two changes are only minor updates to the
compression level.

Adapting to Changing Conditions

Finally, we evaluate our adaptation mechanism in a case where conditions change during hand-
off. Figure 5.18(a) shows a system throughput trace for OBJECT, where network bandwidth is
initially 5 Mbps, but increases to 35 Mbps at 20 seconds. We use Linux tc to emulate BW
change.

The monitoring module in our implementation observes these changes, and our adaptation
system reacts quickly, ensuring a good operating mode is used throughout the trace. At the first
decision point, the mechanism selects high processing, high compression settings (LZMA, level
9) to deal with the very low network bandwidth. The output rate is limited by network, but the
input rate is kept higher due to the greater level of compression. When the bandwidth increases
at 20 s, our system switches to the most light-weight operating mode (GZIP, level 1, No diff) to
avoid being processing bound. Mode changes other than these two are minor changes such as
compression level change.

We evaluated our system with more complicated condition changes using MAR, which pro-
vides longer handoff times and allows us to test multiple bandwidth changes. In this case, band-
width starts at 5 Mbps, but increases to 35 Mbps at 50 seconds, and reverts back to 5 Mbps
at 100 seconds. Figure 5.18(b) shows how the various system throughputs change over time.
Similar to the OBJECT trace, at the first decision point, our system selects high processing, high
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Figure 5.19: Network Setup for LTE-cloudlet WiFi-cloudlet

compression settings (LZMA, level 9) to deal with the very low network bandwidth. At 58 s,
a major decision is made to switch back to GZIP compression to avoid being processing bound
(as potential output is below the new network throughput). After a few minor mode changes, the
system settles on a mode that fully utilizes the higher bandwidth (GZIP, level 7). Finally, a few
seconds after bandwidth drops at time 100, our system once again switches to high compression
(LZMA, level 9). The other mode changes are minor changes in compression level, which do not
significantly affect P or R. Throughout the trace, the system manages to keep output throughput
close to the network bandwidth, and potential output rate not much higher, thus maximally using
processing resources.

When the network BW changes, no single static mode can do well – the ones that work well
at high network bandwidth are ill-suited for low bandwidth, and vice versa. We verify that by
comparing our result with all possible static operating in this varying network condition. For the
MAR experiment, the best static operating mode completes VM handoff in 282 s, which is 31 s
slower than our dynamic adaptation result, 251 s.

5.6 Experimental Deployment

We have created a deployment in our lab that includes cloudlets attached to the WiFi network
and to an in-lab LTE base station. This testbed allows us to investigate the scenario of a user
leaving his home, where he was using a local WiFi cloudlet, and needs to switch to one in the
cell tower to maintain low-latency offload.

Our in-lab LTE network operates under a license for experimental use from the FCC, and
is based on a Nokia eNodeB whose transmission strength is attenuated to 10 mW. The eNodeB
is configured to filter traffic, redirecting matching packets to a machine that serves as the LTE
cloudlet. Therefore, mobile devices connected to this base station communicate with the LTE
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Application Total time Downtime

LTE to WiFi
OBJECT 62.6 s (2.2) 6.8 s (0.6)
FLUID 16.5 s (1.9) 2.3 s (0.6)
MAR 255.0 s (0.3) 16.6 s (0.3)
FACE 79.4 s (3.0) 18.2 s (4.5)

WiFi to LTE
OBJECT 64.1 s (0.6) 7.0 s (0.2)
FLUID 17.9 s (2.7) 3.4 s (1.0)
MAR 255.7 s (3.7) 15.9 s (2.7)
FACE 84.2 s (2.0) 18.5 s (5.6)

10 Mbps WAN with 1 CPU core. Average of 3 runs is reported with standard deviation
in parentheses.

Figure 5.20: VM handoff between Cellular-cloudlet and WiFi-cloudlet

cloudlet with minimal latency. Our WiFi-cloudlet is directly connected to the WiFi AP, so that it
is just one hop away from a WiFi-connected mobile device. Figure 5.19 illustrates this config-
uration. To emulate the WAN between the cellular and WiFi networks and for easy comparison
with Figure 5.12, we use Linux tc to regulate traffic to 10 Mbps, with 50 ms latency between the
two cloudlets. Figure 5.20 shows performance measurement of VM handoff between the LTE
and WiFi cloudlets. As expected, the total VM handoff time and down time are consistent with
the previous results shown in Figure 5.12. When a user switches network between cellular and
WiFi, the backend server can be migrated to a new cloudlet in a few minutes.

5.7 Chapter summary

The notion of cloudlet is getting broader acceptance [14, 16, 44]. However, even modest user
mobility can result in significant network degradation for computation offloading. In this work,
we propose VM handoff as a technique to preserve low latency across cloudlets. To minimize
VM handoff time, various compression techniques are pipelined into a parallel processing. We
present the first fine-grain adaptive mechanism for migrating VMs over WAN and show how
dynamic adaptation can play an important role in order to cope with varying WAN bandwidth
and cloudlet load. We also show this mechanism can be implemented in today’s Internet speed
improving VM handoff time at least one order of magnitude compared to the conventional live
migration. Our experimental deployment using LTE-cloudlet confirms that VM handoff is appli-
cable and practical on both LTE and WiFi network.
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Chapter 6

Cloudlet Discovery

The dynamic discovery of a cloudlet by a mobile client is a unique problem in cloudlets. Because
cloudlets are small data centers distributed geographically, a mobile device first has to discover,
select and associate the appropriate cloudlet among multiple candidates before it starts using the
cloudlet. These steps are unnecessary with a cloud because it is centralized. But in cloudlets,
discovery and selection have to be carefully managed because the choice of a cloudlet can directly
affect the provisioning time as well as the performance of the offloaded mobile application.

In principle, cloudlet discovery and selection are not very different from a regular resource
discovery and selection, which is widely studied topic. Therefore, our cloudlet discovery system
employs many existing ideas to perform efficient resource discovery in cloudlet context and
focuses on practical aspects rather than presenting novel research challenges. The rest of the
chapter is organized as follows. We first explain design requirements in Section 6.1. Then, we
show our system design to meet the requirements and present a prototype implementation in
Section 6.2 and Section 6.3. We provide a Cloudlet Discovery API in Section 6.4 and validate it
using WiFi-cloudlet and LTE-cloudlet in Section 6.4.2.

6.1 Design Requirements

6.1.1 Supporting Disconnected Operation

The hierarchical organization of cloudlets explained in Chapter 3.1 was derived solely from the
considerations of performance and consolidation. As a bonus, it also improves high availability
of the cloudlet. Once a cloudlet has been provisioned for an associated mobile device, WAN
network failures or cloud data center failures are no longer disruptive. This achieves disconnected
operation, a concept originally developed for distributed file systems [57]. To provide the full
benefit of the disconnected operation, our cloudlet discovery should be able to discover and select
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Figure 6.1: Cumulative distribution function (CDF) of response times in ms for OBJECT

a cloudlet without a public Internet connection.
The improved availability of the two-level architecture applies even to mobile applications

that are not latency-sensitive. Any mobile application that uses the cloud for remote execution
can benefit. Although not widely discussed today, the economic advantages of data center con-
solidation come at the cost of reduced autonomy and vulnerability to cloud failure. These are not
hypothetical worries, as shown by the day-long outage of Siri in 2011 [86, 99], the multi-hour
weather-related outage of Amazon’s data center in Virginia in June 2012 [71], and the extended
Christmas Eve 2012 outage of Netflix’s video streaming service due to an Amazon failure [59].
As users become reliant on mobile applications, they will face inconvenience and frustration
when a cloud service for a critical application is unavailable. These concerns are especially
significant in domains such as military operations and disaster recovery.

Another aspect of the cloudlet discovery is how immediately it can find a newly created
cloudlet. A cloudlet is a distributed element that is not controlled by a central authority. This
means anyone can create a new cloudlet for one’s own use or to share with others. The instant
visibility of a newly created cloudlet is important to support cloudlet’s distributed nature. In a
hostile environment such as military or disaster recovery, this ability is critical to rapidly associ-
ated with the new cloudlet.

6.1.2 Application Aware Cloudlet Discovery

When a mobile device requests a cloudlet for offloading, different applications will have different
preferences according to the application’s characteristics. Most of the applications explained in
Chapter 2 involve an interactive response. For these applications, network proximity between a
mobile device and an associated cloudlet is the most crucial factor for selecting a cloudlet. How-
ever, some applications can be less sensitive to the network proximity, but being more affected
by the power of the cloudlet’s hardware such as CPU clock speed and memory size. Figure 6.1
shows a cumulative distribute function of response times for OBJECT when different offload-
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Cloudlet-Weak Cloudlet-Powerful Cloud (East, West, EU, Asia)
CPU Intel R© Xeon R© E5320 Intel R© Core R© i7-3770 Amazon X-Large Instance

1.86 GHz, 4 cores 3.40 GHz, 4 cores 20 Compute Units, 8 virtual cores
RAM 4 GB 4 GB 7 GB
VMM KVM KVM Amazon Xen

Figure 6.2: Hardware Configuration for Offloading Comparisons
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Figure 6.3: Cloudlet Discovery based on Application Characteristics

ing sites such as a cloudlet, Amazon East, Amazon West, Amazon EU, and Amazon Asia are
used for offload computing. For all cases, the client and server are exactly identical and only the
network proximity varies. Both cloudlet-weak and cloudlet-powerful are located
just one hop away from a mobile device, but the hardware specification is different between two
as shown in Figure 6.2. Although cloudlet-weak (black bold line) provides much better
network connectivity to a mobile device (blue dashed line), it is slower than any Amazon data
centers because the dominant component of the response time is the processing speed of the
offloaded computation. In contrast, cloudlet-powerful (green dashed line) improves the
response time dramatically and is superior to all Amazon data centers. This is because the hard-
ware configuration (e.g. CPU clock speed) of the cloudlet-powerful is powerful so that
it processes the input data much faster in addition to the improvement coming from the network
proximity. The cloudlet’s computing power is a dominant factor for the performance for this
application.

Similarly, various factors can influence the performance of an application. Figure 6.3 shows a
broad application classification in terms of performance factors related to a cloudlet context. The
interaction dominant applications require tight network proximity. Fluid and Cloud gaming
applications are good examples in this category. Low latency between a mobile device and
associated offloading site is critical in this case and cloudlets by definition are helpful in this case.
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An application is compute dominant if its performance is primarily determined by the computing
speed. Many computer vision applications belong to this category (e.g. OBJECT). The location
of a cloudlet is less important for applications in this category. Lastly, data dominant applications
need large data or a subset of large data for processing a request. Map-based applications are
a good example of this kind. If an application uses a very large data set in an unpredictable
manner, there is a little chance for a cloudlet to optimize data placement. A cloudlet just has to
fetch data as needed from a cloud, or if this is too expensive, restrict the application to running in
the central cloud. However, many data-intensive applications typically use a subset of large data,
and exhibit locality in access. In many cases, we can predict the likely data required from context,
and hoard [57] this data at the cloudlet. For example, in a map application, physical location is
highly correlated with accessed map data, so the geographical region around the cloudlet can be
locally cached.

An extreme case of the application-specific cloudlet discovery is that a popular application
provides its own discovery service. It is plausible that an expert of a highly successfully applica-
tion knows the dominant performance factors of the application, and provides the best cloudlet
discovery service directly to its customers. For example, a provider of cloud gaming can make a
contract with providers of cloudlet infrastructure, and provides its own discovery service for its
customer.

6.1.3 Discovery without Modifying Mobile Applications

So far, we assume that a mobile device needs to explicitly trigger a discovery request to associate
with a cloudlet. And the return message contains a connection information to a back-end server
hosted at the selected cloudlet. This implies that the mobile application needs to be changed to
connect to the back-end server using the IP address returned from the discovery procedure. This
is not a significant change because the application just needs to support configurable IP addresses
for the back-end server. However, any modification on a mobile application can set a high bar
for the developer. Sometimes it is not possible to modify legacy applications. Therefore, the
cloudlet discovery system should also provide a way to support unmodified mobile applications.

6.2 System Design

Our design of cloudlet discovery is strongly influenced by the requirements described in the early
section. We present an overview of the system and explain how we met these requirements. It is
important to note that exact choice of each approach is configurable depending on the usage of
discovery systems.
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6.2.1 Global and Local Search

Since cloudlets are nearby offloading sites located at the edge of the Internet, it is natural to
use Zero-configuration networking such as UPnP, Apple Bonjour, and Avahi to auto-
matically find local cloudlets. Zero-configuration is a convenient way to find nearby
cloudlets without asking for a user’s manual intervention. However, the limitation of the lo-
cal resource discovery is its coverage. These protocols rely on IP multicast (SSDP protocol for
UPnP and mDNS for Apple Bonjour and Avahi) [21], so that the packets are often filtered by a
network router. In practice, not every router can route IP multicasting packets and some of them
intentionally filter out the multicasting packets for policy reason. In such cases, a mobile device
can miss valid cloudlets. To compensate, we combine a local resource discovery with global
search using a directory server. For global search, a mobile device connects to a pre-configured
directory server to get promising cloudlets. In our system, both approaches, global and local
discovery, are triggered in parallel.

6.2.2 Two-level Search

The dominant performance factor of offloading can vary depending on an application’s charac-
teristics. Many target applications are affected by the network proximity to a cloudlet. However,
an application’s performance can be bounded by other factors such as processing speed and data
access. To support application-specific performance factor at the system level, we consider the
following attributes for cloudlet discovery.

• Network proximity: Latency and throughput between a mobile device and a cloudlet.
Low latency and high throughput are desirable for the interactive applications.

• Resource availability: Hardware specification of cloudlets to serve user’s workload such
as CPU clock speed, free memory size, network connectivity to a central cloud, and etc.
Also, unique Hardware features such as GPU.

• Cache states: How much data for application execution is cached at the cloudlet. The
cache states are particularly useful when a user follows a repeated routine in his daily life.
Cache states can decide which cloudlet is more useful when multiple idle cloudlets with
similar configurations are available.

• Authentication: Privilege (e.g. credential) to access cloudlet.

• Miscellaneous: Pricing for using cloudlet, and etc.

It is important to note that the performance aspects of an application are not determined by a
single factor; rather the application is likely to have multiple performance attributes at the same
time to different degrees. For example, the performance of SPEECH is largely determined by the
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computing speed but it also requires good network condition to provide a crisp response upon a
user’s voice input. Likewise, MAR uses a large amount of data (e.g. database storing landmarks)
to process a request and it also needs short latency to instantly overlay the result on a mobile
device’s screen. Therefore, our discovery and selection of cloudlet should be able to consider
various attributes together.

As mentioned, the choice of attributes will be highly depending on an application. It is
also interesting to note that two applications that provide similar functionality can have different
performance attributes depending on how they interact with a user. For example, if a face recog-
nition application is used for tagging faces in a photo, a user may not care about a few hundred
milliseconds delay. However, if the face recognition is used for an augmented reality application,
network proximity to an associated cloudlet is critical for performance.

How do we take different aspects of an application into account in the discovery process?
One naive approach is to describe the application’s details in the cloudlet discovery query. A
directory server interprets the request and finds matching cloudlets from the database. However,
a major problem of this approach is the overhead for saving and matching detailed attributes for
every cloudlet. Although some cloudlet information such as a total number of cores and memory
size are static, other information is transient. For example, resource information such as CPU
usage and free memory size fluctuate over time. And cache information of the cloudlet changes
frequently as VMs are accessing data for execution. Frequent uploads of cloudlets’ dynamic
states will cause not only a scalability problem but also a privacy issue. Since cloudlets are
distributed elements, it is undesirable to upload details of each cloudlet to a single centralized
authority.

To support application-specific cloudlet discovery, we design our system to take a two-level
search for cloudlet discovery. We first find a list of promising cloudlets using a local/global
search based on network proximity. Then, we contact a small set of cloudlet that is authorized to
use in parallel to collect details of each cloudlet. The cloudlet’s dynamic information is retrieved
at this second stage. Scalability is not an issue and no sensitive information is leaked exposed
globally because the information is shared only between a cloudlet and an authorized mobile
device. In addition, the second step of connecting to all candidate cloudlet will be in parallel, so
that it will add relatively small delay in cloudlet discovery.

6.2.3 Extensible Discovery Attributes

We envision cloudlets will be deployed everywhere as an infrastructure. For example, a user uses
a cloudlet at home and migrates the state of a back-end server from home-cloudlet to a cell tower
cloudlet when he leaves. At many different places such as airport, school, and work, cloudlet
will provide value to nearby users. Accordingly, a cloudlet discovery system should be flexible
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Figure 6.4: Overall Implementation of the Cloudlet Discovery System

enough to cover a wide range of usage scenarios. In other words, discovery attributes should be
extensible to adapt to a new environment.

The difference between WiFi networks and cellular networks shows how preferred attributes
of the discovery changes. Different from WiFi-cloudlet, Cellular-cloudlet is likely to work under
a control of a network operator, because cloudlets in cellular networks need to be installed in
the operator’s infrastructure logically close to a cell-tower. In most of the cases, the association
between a mobile device and a cloudlet is one-to-one mapping because there is only one cell-
tower providing networking for a mobile device at a given moment. In this scenario, the selection
of cloudlet for network proximity is straightforward. However, other aspects of discovery such
as privilege, pricing model, and roaming condition start playing important roles.

To support a wide range of cloudlet deployment scenarios, cloudlet discovery attributes
should be extensible such that a new attribute can be easily added and weights for each at-
tribute are simple to adjust. In addition, the mechanism for adding/deleting attributes follows the
industry standard, so that it can conveniently support 3rd-party algorithms for cloudlet discovery.

6.3 Implementation

We have built a prototype implementation of cloudlet discovery system that closely follows the
design description in the previous section. A prototype uses Android mobile devices and x86-
based workstations for cloudlet and cloud. Our cloudlet is running a Ubuntu 12.04 LTS server
using Intel Core i7-3770 with 32 GB memory. As shown in Figure 6.4, the overall system is
composed of three parts; a mobile device, a cloudlet, and a cloud. We explain each component
of the system at the following sections.
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Description Method API

Register a cloudlet POST

URL : /api/v1/Cloudlet/
URL params
- (option) ip_address: IP address of a cloudlet

HTTP body (JSON)
- status: "RUN"
- rest_api_url: URL of cloudlet s rest API
- rest_api_port: port # of of cloudlet s rest API
- features: cloudlet s SW/HW specific features
- meta: misc in key/value including static resource information

Unregister a cloudlet PUT
URL : /api/v1/Cloudlet/
HTTP body (JSON)
- status: "TER"

Update cloudlet status PUT URL : /api/v1/Cloudlet/
HTTP body (JSON): same as register method

Discover cloudlets GET

URL: /api/v1/Cloudlet/search/
URL params:
- (option) n: number of maximum cloudlet to search
- (option) ip_address: IP address of a client device
- (option) latitude: latitude of a client device
- (option) longitude: latitude of a client device

Figure 6.5: Example of a Discovery Query to a Directory Server

6.3.1 Cloud Component (Central Directory Server)

A cloud component is a directory server that acts as a centralized authority storing basic informa-
tion of cloudlets. This part is responsible for a global cloudlet search discussed in Section 6.2.1.
Each cloudlet sends a registration request to the directory server when it starts and the cloudlet
keeps updating its status using a heartbeat message. For communication between a cloudlet and
the directory server, we use an RESTful API [114], which is a widely used approach for Web
services. Each cloudlet will make an HTTP POST message to the directory server for an initial
registration and use HTTP PUT for heartbeat messages. The RESTful API is also used for a
mobile client to get cloudlet information. A mobile client will send HTTP GET message with
credential information and parameters to search promising cloudlets. Full APIs are listed in
Figure 6.5.

6.3.2 Cloudlet Component

The cloudlet part of the discovery system has two interfaces; one is an HTTP client module to
communicate with the directory server in the cloud and the other is an HTTP server module to
receive a query from a mobile device. A client module sends a registration message and heartbeat
messages to the directory server. A server module receives a request from a mobile device using
RESTful APIs. The server part is designed to support the application-aware two-level search
discussed in Section 6.2.2. It returns detailed information of the cloudlet such as cache states
and dynamic resource information upon a mobile device request.
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Figure 6.6: Overview of Cache Monitoring Daemon

In addition to the communication modules, cloudlets maintain two monitoring daemons; a
resource monitor and a cache monitor. The resource monitor is responsible for checking static
and dynamic hardware status. Static resource information such as a total number of CPU cores,
CPU clock speed, and total memory size is updated to the directory server once when the cloudlet
registers. And dynamic resource information such as CPU usage and free memory pages is
directly passed to a mobile device whenever the mobile device sends a query.

Cache monitor keeps track of the cache states of a cloudlet. Figure 6.6 shows an overview
of the cache-monitoring module. To cache data accessed at back-end servers running inside of
VMs, we connect VMs and a host machine via Samba. As shown in the figure, each VM has
a Samba-mounted directory that is mapped to a directory in a host machine. And this directory
is managed by the distributed file systems such as Coda, NFS, and Ceph. In this way, a cloudlet
can cache the back-end program’s data using a distributed file system. There are a few practical
issues in the current design of connecting VMs with a host machine, such as the namespace in the
distributed file system and access control. In our prototype implementation, we show feasibility
with a simplified implementation. The cache monitor interacts with the distributed file system to
control cache policy and maintain cached files/data for each application. Based on the caching
information, the monitor can answer a query from a mobile device.

The Avahi server is hosted in the cloudlet for local discovery discussed in Section 6.2.1.
Avahi is a zero-configuration networking that implements the multicast DNS/DNS-SD proto-
col. It is widely used in Linux-like operating systems and provides a set of language bindings [9].
Using Avahi, a mobile device can discover cloudlets within a broadcasting domain without con-
necting to the cloud.
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Query to a Directory Server Result

{
"application":{
"required-RTT": 30,
"app-id": "moped",
"required-files":
["moped/**/*xml"]

}
}

{
’app_cache_files’: [

’moped/kitchen/set1/coke.moped.xml’,
’moped/kitchen/set1/fuze_boPle.moped.xml’,
’moped/kitchen/set1/juicebox_front.moped.xml’

],
’cpu_clock_speed_mhz’: 3392.0,
’ip_address’: ’128.2.210.197’,
’latitude’: ’40.4439’,
’longitude’: ’-79.9561’,
’mod_time’: ’2014-04-18T16: 27: 17’,
’rest_api_port’: 8022,
’rest_api_url’: ’/api/v1/resource/’,
’status’: ’RUN’,
’total_cpu_num’: 8,
’total_cpu_usage_percent’: 5.1,
’total_free_memory_mb’: 28377,
’total_mem_mb’: 32129

}

Figure 6.7: Example of a Discovery Query to a Directory Server

6.3.3 Mobile Device Component

A mobile device has a HTTP client to connect to both a directory server and a cloudlet. The
workflow for discovering and selecting a cloudlet are as follows.

1. An application or a background service at a mobile device connects to a directory server
using the cloudlet discovery library to find a list of promising cloudlets. At the same time,
the Avahi client at a mobile device finds local cloudlets.

2. For every candidate cloudlet, a mobile device sends a query to each cloudlet in parallel to
get detailed information such as resource availability and file cache state.

3. The cloudlet library chooses the best cloudlet for the mobile application based on the
collected cloudlet information.

4. (Optional) A provisioning library performs provisioning of a back-end server of the mobile
application to the selected cloudlet if needed. After provisioning, the cloudlet returns an
IP address of the back-end server to the mobile application.

5. The mobile application starts and sends offloading requests to the back-end server using
the returned IP address.

It is important to note the workflow can vary to handle special-cases. For example, if there is
only one candidate cloudlet (e.g., pre-selected by the directory server), then the selection process
will be skipped.

We have implemented a cloudlet discovery library for mobile clients and it
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poses two queries during the discovery process; one to a directory server and the other to all
candidate cloudlets. A query to the directory server is a simple HTTP GET message asking for
nearby cloudlets. The second query is sent to every candidate cloudlet with application specific
questions. Figure 6.7 shows an example query to a cloudlet. The query contains 1) application
ID, 2) maximum allowed round trip latency, and 3) required files to run the application to check a
cloudlet’s cache status. These requirements are written in a JSON and the discovery APIs allows
a user to extend it by adding key-value pairs. The return message from the cloudlet has an answer
for the inquiry. For example, it lists all cached files that match with the request. It also forwards
an IP address of a back-end server if it is already provisioned. Otherwise, it will return a URL to
call the REST API for provisioning. The cloudlet selection algorithm makes a final choice using
all information from cloudlets.

6.3.4 Achieving Application Transparency

Our implementation so far has required a slight modification on a mobile application to accept a
new IP address of a back-end server. However, the cloudlet discovery should also support legacy
applications or closed-source applications transparently. We show that we can perform cloudlet
discovery without modifying a mobile application using a level of indirection technique such as
1) Domain Name System (DNS) and 2) HTTP redirection.

DNS-based approach

DNS is a hierarchical distributed naming system for resources and services connected to the
Internet. It translates a domain name such as elijah.cs.cmu.edu or google.com, which
is easy to be memorized by humans, to the IP addresses consumed by the underlying network
systems. An example address resolution process is as follows. In DNS, a domain name server is
responsible for translating a specific domain name in question by a sequence of queries starting
with the right-most domain label. The address resolution process starts with a query to a root
server and a root server will respond with a referral to more authoritative servers. For example,
a query for myapp.findcloudlet.org will be first referred to the “org” servers. And the
next query will be sent to one of the returned “org” servers and it will respond the address of
the next level authoritative server, findcloudlet.org. This process is iteratively repeated
until the client receives the IP address(es) of the domain. This hierarchical architecture can
provide scalability, but it can increase response time because of the round-trip latency of multiple
requests. A local DNS servers caches DNS query results for a period of time configured in the
domain name record.

The translation from a domain name to IP address(es) is a level of indirection in address-
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Figure 6.8: Steps for domain address myapp.findcloudlet.org resolution
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Figure 6.9: Overview of Transparent Cloudlet Discovery Using DNS

ing network endpoint, which we are going to leverage. Figure 6.8 shows steps for the trans-
lation with example domain, myapp.findcloudlet.org. If we own the domain name
findcloudlet.org, we can register our own domain name server that is responsible for
translating any sub-domain under findcloudlet.org. We can make the cloudlet discovery pro-
cess transparent to a mobile device by returning the IP address of a selected cloudlet when a
mobile device tries to connect to a server with domain name, myapp.findcloudlet.org.
A closed-source mobile application will just connect to a back-end server using a predefined
domain name, myapp.findcloudlet.org, but it will be redirected to the selected cloudlet.

In this case, the cloudlet discovery module works closely with a DNS server. To find and
return an IP address of the best cloudlet upon the DNS query, every working cloudlet should first
register itself to a centralized directory server so that the domain name server can get all cloudlet
information. This structure is aligned well with the two-level-search explained in Section 6.2.2.
Figure 6.9 shows an overview of transparent cloudlet discovery procedure using domain name
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HTTP/1.1	  302	  Found	  
Loca,on:	  h0p://www.cloudlet1.org/	  
Content-‐Type:	  text/html	  
Content-‐Length:	  193	  
	  	  
<html>	  
	  	  	  <head>	  
	  	  	  	  	  <2tle>Moved</2tle>	  
	  	  </head>	  
	  	  <body>	  
	  	  	  	  <h1>Moved</h1>	  
	  	  	  	  	  	  <p>This	  page	  has	  moved	  to	  <a	  href="h0p://
www.cloudlet1.org/">h0p://www.cloudlet1.org/</a>.</p>	  
	  	  </body>	  
</html>	  
	  	  

HTTP	  header	  

HTTP	  body	  

Figure 6.10: Example of HTTP 302 Redirection Response

server. Once a DNS server receives a DNS query, it first estimate the geographical location of a
client device using geo-IP database. Then, it returns a list of promising cloudlets that are located
near the mobile device. To make a newly created cloudlet visible to the mobile device, we set a
very short expiration time at time to live (TTL) value to avoid caching at local DNS server.

The DNS-based approach does not require any modifications on a server-side program or a
client-side program. However, there are some limitations. First, approximated location of the
client from geo-IP database is not based on the mobile device’s IP address but using a local DNS
server’s IP address that typically resolves domain name on behalf of a mobile device’s request.
Though the local DNS server is likely to be located close to the mobile device, it can be far
away if a mobile user specifies the DNS server manually. Google and Yahoo have submitted
a draft to IETF to propose a new option of DNS requests that recursive servers could include
their own client’s IP address to the upstream authoritative server [39]. It essentially allows a
DNS server to get an IP address of a mobile device. The second limitation is lack of details in a
cloudlet discovery request. Since we leverage the DNS protocol for the cloudlet discovery, the
discovery protocol is limited by what DNS standard allows. As a result, cloudlet discovery will
be purely based on the estimated geographical location of a mobile device. Other attributes such
as a cloudlet’s hardware specification or cache state cannot be considered in this approach.

HTTP redirection

HTTP redirection is a standard Web technique for making a web page available under more than
one URL address. It is originally designed to support various scenarios such as preventing a
broken link when Web pages are moved and URL shortening. HTTP redirection can be done
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Figure 6.11: Overview of Cloudlet Discovery using HTTP redirection

using HTTP status code 3xx in HTTP protocol. HTTP/1.1 protocol defines several status codes
for redirection and the following are some examples [52].

• 300 Multiple Choices: Indicates multiple options for the resource that the client may
follow.

• 301 Moved Permanently: This and all future requests should be directed to the given
URL.

• 302 Found: Originally ”temporary redirect” in HTTP/1.0. Superseded by 303 and 307 in
HTTP/1.1 but preserved for backward compatibility.

• 303 See Other: Forces a GET request to the new URL even if original request was POST.

Figure 6.10 shows an example of HTTP response for a 302 redirection message. When a mo-
bile application makes a connection to a HTTP server, the server will return HTTP redirection
message including the redirection destination at the header. As a result, a HTTP client library
will automatically make another HTTP connection to a new server using the received URL. The
cloudlet discovery process leverages this redirection to re-route HTTP connection from an orig-
inal server to a new HTTP server running at cloudlet. Figure 6.11 shows steps for cloudlet dis-
covery using HTTP redirection mechanism. Similar to the DNS-based approach, every cloudlet
first registers itself to a directory server before a mobile application makes a connection. When
a HTTP request arrives at the HTTP server, it will consult to the registration server to find the
best cloudlet based on the mobile device’s IP address. Different from the DNS-based approach,
however, HTTP-based cloudlet discovery knows the exact IP address of the mobile device.

This discovery process is transparent to the application because the redirection happens at
HTTP client library. So it does not require any modification on the client program. However,
the HTTP server needs to be aware of cloudlets and should perform HTTP redirection. It is
possible to avoid modification to the HTTP server if we perform the discovery operation at the
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Figure 6.12: Example Web Application to validate HTTP-redirection-based cloudlet discovery

load balancer layer, last before the HTTP server. Then the load balancer will redistribute HTTP
traffic to geographically dispersed edge nodes.

We have implemented an example Web application to show the feasibility of this approach.
This Web application detects faces from a camera captured image and returns a frame in which
all faces are removed. This is an example of denaturing for privacy protection explained in Chap-
ter 2.4.1. A web client continuously transfers camera-captured frames to the Web Server. And the
Web server returns new frames with face removed. The front-end is written in HTML5 to access
a camera at the Web browser and WebSocket is used for data transmission. We use the Bootstrap
library to properly lay out the web page at both mobile screen and desktop screen [110]. The
server-side hosts static web content using an Apache web server and dynamic content using Jetty
(Java Serverlet Container). The WebSocket server is implemented using the Jetty framework [35]
and it performs face detection on each image.

The process of cloudlet discovery for the example Web application exactly follows steps
shown in Figure 6.11. The original server is located at the Amazon Asia data center. A web
request from Pittsburgh is redirected to a cloudlet located at Pittsburgh via HTTP redirection.
Since the application is interactively sending and receiving frames, the application response time
improves greatly similar to what was shown in Chapter 2.1.

6.4 Cloudlet Discovery APIs and Validation

We provide cloudlet discovery APIs for the users to conveniently and programmatically perform
the cloudlet discovery. As we shown in the steps of cloudlet discovery in Section 6.3.3, a mobile
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user/device starts a discovery process right before using a cloudlet. Alternatively, 3rd-party entity
can also generate a discovery message on behalf of a mobile user. For example in DNS-based
approach in Section 6.3.4, an authoritative DNS server for a back-end server’s domain name
takes responsibility to discover the best cloudlet. The cloudlet discovery APIs provide a simple
way to access a cloudlet. In this section, we illustrate details of the cloudlet discovery APIs and
show how the cloudlet discovery works from the programmer’s perspective. Also, we validate
our cloudlet discovery system by showing the actual use of the APIs.

6.4.1 The Core of Discovery APIs

The main method of the cloudlet discovery APIs is discover. The following information is
passed to the method as parameters to reflect various aspects discussed in system design.

• IP address of a directory server: For a global search, the IP address of a directory server
is required.

• Application information: As mentioned in Section 6.1.2, the selection of the cloudlet
depends on the application characteristics. As a result, application specific conditions such
as maximum allowed RTT and minimum CPU clock speed are needed.

• (Optional) Mobile device information: Client device information can be valuable. For
example, networking communication type, either WiFi or LTE, can be critical information
for deciding between a cellular-cloudlet and a WiFi-cloudlet.

• (Optional) Cloudlet selection algorithm: To support 3rd-party cloudlet selection mecha-
nism, a function pointer can be accepted as a parameter. The function should receive a list
of cloudlets and return one cloudlet.

Figure 6.13 shows Python specification for the discover method. Cloudlet discovery APIs
are available in Python, Java, and C programming languages and the following URLs shows API
documentation, respectively.

• Python: https://libcloudlet.readthedocs.org/en/latest/

• Java: https://libcloudlet.readthedocs.org/en/latest/

• C: https://libcloudlet.readthedocs.org/en/latest/

It is important to note that taking a directory server’s address as a parameter gives flexibility
in cloudlet discovery by allowing vendor-specific directory server. One can pass either a generic
directory server or a 3rd-party directory server provided by the 3rd-party vendor. For example
in cellular-cloudlet, if a network operator controls all cloudlets and knows the best one
for a user (See at Section 6.2.3), it can assign a particular cloudlet to a mobile user without going
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Figure 6.13: Example of Cloudlet Discovery APIs in Python

though the second level search. This can be done by returning a single cloudlet at the first level
search when a mobile user uses a vendor-provided directory server address at the discover
method.

6.4.2 Validating Cloudlet Discovery System using APIs

In this section, we validate our cloudlet discovery system by showing how the API works. We
illustrate how each component of cloudlet discovery system interacts with each other upon the
request of cloudlet discovery. The cloudlet discovery starts by calling the discover method. Fig-
ure 6.14 shows highlighted parts of the code. It first connects to a directory server to get a list
of promising cloudlets, and then connects each cloudlet to retrieve detail information. Finally,
using the cloudlet selection algorithm, it returns one cloudlet for a given application.

The first level search using a directory server: A mobile client poses a query to a directory
server using simple HTTP GET message. It can optionally pass a geographical information of
the device by appending parameters in the HTTP URL such as
http://findcloudlet.org/api/v1/Cloudlet/search/?latitude=40.4439?longitude=-79.9561. If no in-
formation is given by the mobile device, the directory server estimates the location using a Geo-
IP mapping. Then the server returns cloudlets based on the geographical proximity. The returned
JSON message is converted into class objects.
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class ElijahCloudletDiscovery(DiscoveryService):
...
def discover(self, client_info=None, app_info=None,

selection_algorithm=None, **kwargs):
# first level search to get cloudlet list from a directory server
cloudlet_list = self._list_cloudlets(self.directory_server, app_info)
...
# second level search to each cloudlet
self._get_cloudlet_details(cloudlet_list, app_info)
...
# select the best one
cloudlet = selection_algorithm(cloudlet_list, app_info)
...

return cloudlet

Figure 6.14: API Code for discovery method

The second level search connecting for each cloudlet: Using the returned cloudlet list
(cloudlet objects), the library makes HTTP connections to all cloudlets in parallel. Figure 6.15
shows get cloudlet details method launching multiple threads and each of them calls Cloudlet
object’s get info method to retrieve cloudlet details.

Selecting a cloudlet: Finally, the library selects and return one cloudlet using the select cloudlet
method. This method received a list of cloudlet objects and (optionally) application information

@staticmethod
def _get_cloudlet_details(cloudlet_list, app_info):

thread_list = list()
for cloudlet in cloudlet_list:

new_thread = CloudletQueryingThread(cloudlet, app_info)
thread_list.append(new_thread)

for th in thread_list:
th.start()

for th in thread_list:
th.join()

class Cloudlet(object):
...
def get_info(self, app_info):

ep = urlparse(self.REST_endpoint)
params = json.dumps({’application’: app_info.__dict__})
headers = {"Content-type": "application/json"}
with closing(HTTPConnection(ep.hostname, ep.port, timeout=1)) as conn:

conn.request("GET", "%s" % end_point[2], params, headers)
data = conn.getresponse().read()
json_data = json.loads(data)
setattr(self, app_info.get_appid(), json_data)

...

Figure 6.15: API Code for the Second Level Search
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as parameters. The selection is usually a process of finding one cloudlet that meets a set of condi-
tions such as maximum allowed network latency, minimum CPU clock speed, and size of cached
data as shown in Figure 6.16. It can be also solved by linear optimization. It is also important to
note that this code can be a custom method.

6.4.3 System Flexibility (Supporting 3rd-Party Provider)

We design our communication protocol as simple as possible following the industry standard to
allow a 3rd-party entity to easily modify and extend it. We use JSON and RESTful interface
between a mobile device and a cloud as well as between a cloudlet to a cloud. The simplicity in
design not only gives system extensibility but also lowers the bar in integrating with other sys-
tem. As an example, we bind our cloudlet discovery system with LDAP (light-weight directory
access protocol) server, which is a widely used directory server. We start from the assumption
that a cloudlet provider uses LDAP to maintain its cloudlets. And we show that we can easily

class ElijahCloudletSelection(object):
...
@staticmethod
def select_cloudlet(cloudlet_list, app_info):

if len(cloudlet_list) == 1: return cloudlet_list[0]

# filter out unmet cloudlets
filtered_cloudlet = []
for cloudlet in cloudlet_list:

# check CPU min
cloudlet_info = cloudlet[app_info.get_appid()]
cloudlet_cpu = cloudlet_info[ResourceInfoConst.CLOCK_SPEED]
required_clock = app_info[AppInfoConst.REQUIRED_CPU_CLOCK]
if required_clock and cloudlet_cpu >= required_clock:

filtered_cloudlet.append(cloudlet)
# check rtt
...

# check cache
max_cache_score, max_cache_cloudlet = 0.0, None
for cloudlet in filtered_cloudlet:

cloudlet_info = cloudlet[app_info.get_appid()]
cache_score = cloudlet_info[ResourceInfoConst.APP_CACHE_SCORE]
if cache_score and cache_score > max_cache_score:

max_cache_score, max_cache_cloudlet = cache_score, cloudlet

# check application preference
weight_rtt = getattr(app_info, AppInfoConst.KEY_WEIGHT_CACHE)
weight_cache = getattr(app_info, AppInfoConst.KEY_WEIGHT_CACHE)
weight_resource = getattr(app_info, AppInfoConst.KEY_WEIGHT_CACHE)
...

return selected_cloudlet

Figure 6.16: API Code for Cloudlet Selection
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Figure 6.17: Overview of Cloudlet Discovery System binded with LDAP

bind our cloudlet discovery system with the LDAP server using a small glue logic. Figure 6.17
shows overview of the discovery system combined with LDAP. Instead of retrieving cloudlet in-
formation directly from the RESTful server (and its database), a glue logic acts as a LDAP client
and extracts relevant cloudlet information from the LDAP server. Then it converts the results into
a JSON after filtering out unnecessary information. This glue logic is short and straightforward
so that it is less than 100 lines of code in our implementation.

6.5 Conclusion

Cloudlet discovery is a process of discovering and selecting the best cloudlet for a mobile appli-
cation among all dispersed cloudlets at the edge of the network. Different from centralized cloud,
cloudlet discovery has to be carefully managed because the choice of a cloudlet greatly affects
the performance of the application. We have implemented a prototype cloudlet discovery system
that supports application specific selection and disconnected operation using industry standard
communication and messaging. In addition, we expand our system to support close-source mo-
bile applications using DNS and HTTP redirection. We have focused on achieving flexibility and
extensibility of the system to cover wide range of cloudlet deployment models.
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Chapter 7

Deploying Cloudlet Infrastructure

In this chapter, we focus on the pragmatic aspects of cloudlet research; deployment of a cloudlet
infrastructure. Since a cloudlet model requires reconfiguration or additional deployment of hard-
ware/software, it is important to provide a systematic way to incentivise the deployment. And
here we are facing a classic bootstrapping problem. We need practical applications to incentivize
cloudlet deployment. However, developers cannot heavily rely on a cloudlet infrastructure until
it is widely deployed. How can we break this deadlock and bootstrap the cloudlet deployment?

The history of the Internet offers a hint. The Internet is an open ecosystem that uses a stan-
dard protocol suite (e.g. TCP/IP). Through this open standard, multiple vendors from low-level
hardware companies to high-level services providers independently participate. However, no sin-
gle vendor is bearing large risk for improving this ecosystem. Instead, they are creating synergy
by investing in their own business. In this ecosystem, innovation in one layer can stimulate oth-
ers, resulting in additional investment. For example, the wide use of the Internet services such
as email and web searching has encouraged Internet service providers (ISPs) to invest in this
infrastructure. Infrastructure advances have become a foundation for new Internet services like

Figure 7.1: OpenStack Software Overview Diagram
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Code name Category Description
Nova Compute Provision and manage large pools of on-demand computing

resources
Swift Object Storage A scalable redundant storage system to save objects and files
Cinder Block Storage Persistent block-level storage devices for use with OpenStack

compute instances
Neutron Networking A system for managing networks and IP addresses
Horizon Dashboard Self-service, role-based web interface for users and adminis-

trators
Keystone Identity Multi-tenant authentication system that ties to existing stores

(e.g. LDAP) and Image Service
Glance Image Service Discovery, registration, and delivery services for disk and

server images

Figure 7.2: OpenStack core modules

voice over IP (VoIP) and social networks.

We will take a similar strategy with cloudlets. Many of today’s server-based mobile applica-
tions use the cloud as a back-end server. We observe that the ecosystem in cloud computing is
similar to that of the Internet; hardware to software vendors are actively and independently par-
ticipating for profit. For example, in hardware, network vendors such as Cisco and Juniper are
deploying Software Defined Network (SDN) routers/switches, and blade server vendors like IBM
and HP are reshaping their products [53]. Similarly in software, multiple hypervisors are rapidly
developed to compete with each other, and various Linux vendors like RedHat and Canonical
propose their own solutions for cloud computing.

OpenStack, a free and open-source cloud computing software platform, provides openness in
the emerging cloud software ecosystem [79]. It offers a suite of standard APIs so vendors can
independently contribute to different layers without breaking compatibility. It began in 2010 as
a joint project of Rackspace Hosting and NASA. Currently it is managed by OpenStack Foun-
dation, a non-profit corporate entity established in 2012. OpenStack is a cloud operating system
that controls large pools of compute, storage, and networking resources throughout a datacenter,
all managed through a dashboard that gives administrators control. It has a modular architecture
with code names for its components. The major modules and their description are listed in Fig-
ure 7.2. As of 2015, more than 500 companies have joined the project, including AT&T, AMD,
Canonical (Ubuntu), Cisco, Citrix, Dell, EMC, HP, Huawei, IBM, Intel, Red hat, and Yahoo [4].
In every single business category, the top three vendors support or participate in OpenStack. As
this large number of participants indicates, OpenStack is becoming the de facto standard open-
source cloud computing platform.

We will leverage this open platform to expedite cloudlet deployment. That is, we will make
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Figure 7.3: OpenStack Dashboard Example

our work as OpenStack extensions, so that any individual or any vendor who uses OpenStack
for their cloud computing can easily use cloudlets. We refer to this Cloudlet-enabled OpenStack
as OpenStack++. This project focuses on the design and implementation of cloudlet features of
the OpenStack++ API. We will also provide a client library and web interface for the OpenStack
users. It is worth noting that OpenStack-based approach is our initial effort toward the cloudlet
deployment, and we ultimately want to have open APIs for cloudlet functionalities.

7.1 Design

OpenStack has a 6-month time-based release cycle, which is a fairly short period, and a new
release usually introduces significant changes not only in external API but also in internal APIs.
Therefore, in order to keep track of their release cycle with minimal effort on the cloudlet binding
code, We are taking a modular approach for the OpenStack integration by extending the original
code rather than modifying the code directly. In addition, we maintain a standalone cloudlet
executable, which runs without an OpenStack cluster along with OpenStack++, as explained in
Section 7.1.2. A standalone executable and an OpenStack++ cluster share a cloudlet library for
the core functionality.
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Figure 7.4: OpenStack API call hierarchy

7.1.1 Modular Approach using OpenStack Extension

OpenStack provides an extension mechanism to add new features to support innovative ap-
proaches. This allows developers to experiment and develop new features without worrying
about the implications to the standard APIs. Since the extension is queryable, a user can first
send a query to a particular OpenStack cluster to check the availability of the cloudlet features.
Figure 6 shows the OpenStack API call hierarchy. APIs for extensions are provided to the users
by implementing an Extension class. An API request from the user will arrive at the extension
class and a set of internal APIs will be called to accomplish desired functionality. Some of the
internal API calls will be passed to a corresponding compute node via the messaging layer if
necessary. Then, the API manager at the compute node will receive the message and handle it by
sending commands to the hypervisor via a driver. Finally, the driver class will return the result
and pass it to the user following the reverse call sequence.

The cloudlet extensions follow the same call hierarchy. Once a user sends a request via a
RESTful interface, the message will be propagated to the matching compute node. Then the
hypervisor driver performs the given task. Here’s an example command flow for creating a VM
overlay. The command is applied to a running virtual machine and generates a VM overlay which
extracts the difference between the running VM and the base VM. To define a new action for
creating a VM overlay, a cloudlet extension class is declared following the OpenStack extension
rule. The user-issued API request first arrives at the extension class, and then is passed to a
corresponding compute node via API and message layer. At the compute node, the message

112



Figure 7.5: Classes/Files for Cloudlet API call hierarchy

is then handled by a cloudlet hypervisor driver, which interacts with a target virtual machine.
Finally, the cloudlet hypervisor driver will create a VM overlay using the VM snapshot.

To support a specific API, the API manager (manager.py) and hypervisor driver (driver.py)
should be able to handle the message in addition to the cloudlet extension. This requires modi-
fications to the original files/classes of OpenStack (Figure 7.5). Modifying original OpenStack
code, however, will cause significant maintenance overhead, especially because OpenStack is
frequently updated. Instead, we create a new class for both the API manager and hypervisor
driver inheriting a matching class in OpenStack and save each of them as a new file. Fortunately,
OpenStack provides a way to use a custom class for the API manager and hypervisor driver via
a configuration file. As shown in Figure 7.5, cloudlet specific code is placed in separate files
such as cloudlet api.py, cloudlet manager.py, and cloudlet driver.py. This makes management
overhead much lower because the cloudlet feature can be added by simply placing those files
into OpenStack directory and changing a configuration file.

7.1.2 Support for both OpenStack and a Standalone Executable

It is important to support a standalone version of cloudlet execution in addition to the OpenStack
extended version. There are two rationales for maintaining a standalone executable along with
OpenStack++. First, OpenStack is designed for providing end-to-end cloud computing services,
so it is not trivial to install and maintain OpenStack itself. For those users who want to use
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Figure 7.6: Supporting both OpenStack and Standalone

only cloudlet features in a simple way, a standalone executable will be a clean solution. Second,
a standalone executable is much easier to debug and simple to assess the performance. Since
OpenStack is a complex system, the standalone version provides a straightforward way to de-
bug the system. To support both approaches effectively, we created a cloudlet library that both
OpenStack and standalone code can use. This library is packaged as a python library because
OpenStack uses python. Figure 7.6 shows a high-level diagram of how the cloudlet library is
used.

7.2 Implementation

OpenStack++ implements the following features.

1. Import Base VM: Import a Base VM from a file to the Glance image storage. we assumed
that each Cloudlet has a set of prepopulated Base VMs, and this is a function for importing
a Base VM.

2. Resume Base VM: Resume one of the base VMs to make a customized VM and to create
a new VM overlay for the customized VM.

3. Create VM overlay: Create a VM overlay from a running VM instance.

4. VM synthesis: Provisioning a VM instance at a OpenStack++ cluster using a VM overlay.

5. VM handoff: Migrating a VM instance to a different OpenStack++ cluster.

Among those features, Resuming Base VM and Creating VM overlay are off-line operations
that the developers use to create a VM overlay of the back-end server. That means those two op-
erations will not be used by mobile users, but used by the application developers. Importing Base
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Cloudlet features OpenStack interpretation Output in OpenStack
Import Base VM Save VM snapshot to the Glance

image storage
New VM image

Resume Base VM Resume a VM from memory and
disk snapshot

New VM instance

Create a VM overlay Incremental snapshot of the VM 1) Disk incremental snapshot
2) Memory incremental snapshot

VM synthesis Recover the VM from the incre-
mental snapshot (a.k.a VM over-
lay)

New VM instance

VM handoff Migrate a running VM instance
from one OpenStack cluster to
another

1) Terminate VM at source Open-
Stack
2) create new VM instance at des-
tination OpenStack

Figure 7.7: Cloudlet features as an analogy for OpenStack

VM is for pre-provisioning the base VM and it is also an off-line operation which the adminis-
trator of the OpenStack++ cluster uses after the installation of a new OpenStack. The remaining
two features, VM synthesis and VM handoff, are the run-time operations that are executed during
the mobile application’s offloading. Figure 7.7 shows how these operations are interpreted from
the perspective of OpenStack. For example, resuming a base VM and performing VM synthesis
can be considered a process of instantiating a new virtual machine on OpenStack.

(a) Dashboard (b) Import Base VM

Figure 7.8: Screenshot of Cloudlet Dashboard and Importing Base VM
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(a) Metadata for a Base VM’s memory snapshot file

(b) Metadata for a Base VM’s disk image file

Figure 7.9: Glance metadata of Base VM

7.2.1 Import Base VM

We presume that every cloudlet caches a set of base VMs. The OpenStack++ administrator
imports base VMs after installing OpenStack++ at a cloudlet by using the import Base VM oper-
ation. Figure 7.8-(a) shows a screenshot of the Cloudlet panel in the OpenStack dashboard. The
first table shows a list of base VMs on this OpenStack cluster. The second table displays a list of
VM overlays saved in the Glance storage, where OpenStack saves virtual machine images. The
last table presents running VMs, each of which is either a resumed base VM or a synthesized
VM. The Import Base VM button is at the right corner of the first table, which an administrator
can use to import a new base VM. Figure 7.8-(b) shows the UI for import base VM. Input file
path for a base VM and base VM’s name are required.

From OpenStack’s viewpoint, importing a base VM is equivalent to saving new blobs at
a Glance storage. Hence, instead of creating a new API, we reuse existing Glance APIs to
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(a) UI for resuming a Base VM (b) Finishing Base VM Resume

Figure 7.10: Screenshot of ‘Resume Base VM’

accomplish this operation. The only difference is that multiple files should be saved to import a
base VM because a single base VM is a zipped file composed of four files internally; a base disk
image, a base memory snapshot, a hash value list for the disk image, a hash value list for the
memory snapshot. A received base VM file is first decompressed into four files, and then saved
to the Glance storage one by one. To indicate that these are all related to the Cloudlet’s base
VM, we marked each file with a metadata using file type keyword as shown in Figure 7.9-(a).
Further, since OpenStack treats each glance image as an independent entity, the disk image saves
the UUIDs of all other associated files to connect all the participating files. In addition, we save
VM’s libvirt configuration as a part of the metadata of the Base VM’s disk image for the later
use. Figure 7.9-(b) shows an example of metadata of a disk image.

7.2.2 Resume Base VM

For a front-end mobile application, a developer prepares a back-end server that will run at a
cloudlet. The installation process of the back-end server typically includes preparing dependent
libraries, downloading/setting executable binaries, and changing OS/system configurations. A
developer can perform these operations using a resumed base VM. Figure 7.10 shows a screen-
shot for resuming a base VM. At the first table of base VM list, Resume Base VM button will
resume the selected base VM. The resumed instance will be displayed in the third table.

For OpenStack, resuming a base VM is analogous to instantiating a new VM instance us-
ing a VM snapshot. Therefore, instead of devising a new API, I modified the original API for
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(a) Start VM overlay creation (b) Finish VM overlay creation

Figure 7.11: Screenshots of ‘Creating VM overlay’

launching a new VM instance. The original API will handle all error checking conditions such as
permission, quota, and resource availability. After passing all condition checking, the message
will finally arrive at the compute node to launch a new VM. At the code level, this message will
arrive at the hypervisor driver class and be passed to the underlying virtualization. To handle
resuming a Base VM task at the hypervisor driver, we built a cloudlet hypervisor driver class,
CloudletDriver, that inherits the original LibvirtDriver. Upon a new message, CloudletDriver ex-
amines the metadata of the associated virtual disk image. If the virtual disk image has a cloudlet
flag, then CloudletDriver resumes the selected base VM instead of starting a new VM instance
from boot. Resuming a Base VM is different from the existing VM resume mechanism of Open-
Stack in that a user can resume multiple VM instances of the base VM simultaneously and the
resumed VM is considered as a new VM instance.

7.2.3 Create VM overlay

After resuming the selected base VM, a developer can install a desired back-end server on it. A
developer is supposed to start creating a VM overlay after finishing all the installation and after
launching the back-end server process. Overlay creation will start by simply clicking a Create
VM overlay button next to the VM instance row as shown in Figure 7.11-(a). This operation will
apply optimizations to generate a minimal VM overlay and finally save the VM overlay in Glance
storage as listed in the second table in Figure 7.11-(b). One can download the VM overlay using
Download button.
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(a) UI for VM provisioning (b) VM provisioning

Figure 7.12: Screenshot of ‘VM provisioning’

For creating VM overlay operation, we introduce a new API. Creating VM overlay can be
classified as the same category of API call as reboot VM and resize VM, which applies a specific
action to a running VM instance. Therefore, we used the existing Action URL but declared a new
action type using the OpenStack Extensions mechanism. The extension defines a new Action for
creating a VM overlay and passes this command to the virtualization driver (a.k.a. Cloudlet-
Driver) via the internal API class. For the internal API, a cloudlet API class, CloudletAPI, that
inherits nova rpc.ComputeAPI was added. we avoid modifying the original OpenStack code or
files, by class inheritance and by using a new file.

At this point, OpenStack++ cluster is ready to serve mobile applications. OpenStack++ is
installed and Base VMs are imported by the service provider (Administrator) using Import Base
VM. Developers prepare a VM overlay that contains the back-end server of the mobile applica-
tion. This VM overlay file or an URL of the VM overlay will be distributed to the mobile users.
Then, the mobile applications can dynamically provision the back-end server at an OpenStack++
cluster by either directly transmitting a VM overlay file saved at the mobile device or by passing
an URL of the VM overlay to the OpenStack++ cluster.

7.2.4 VM Provisioning

VM provisioning is a run-time operation for a rapid provisioning of an application’s back-end
server to a nearby Cloudlet. Using the VM provisioning, a mobile user can launch a back-
end server at an arbitrary cloudlet using a VM overlay. Figure 7.12-(a) shows the UI for the
VM provisioning. A mobile user is asked to input a URL for the VM overlay. Instance flavor
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Figure 7.13: Example of VM provisioning request message

will be automatically selected by reading the metadata of the associated base VM. Once VM
provisioning is finished, a new VM will launch and the relevant information is displayed in the
third table of Figure 7.12-(b).

Similar to the resuming base VM in Section 7.2.2, VM provisioning launches a new VM
instance at the OpenStack cluster. Therefore, I leverage OpenStack’s original VM creation API.
In OpenStack, to create a new VM instance, an OpenStack user sends a HTTP POST message
to a specific URL, https://openstack-addr/v2.1/servers typically using a client program. The
detailed configurations for the new VM such as name, disk image, and flavor are described in
JSON payload of a HTTP message. To differentiate a VM synthesis request from a regular
VM creation request, we add a special keyword, ‘overlay url’, to the metadata of the message.
Figure 7.13 shows an example of a VM provisioning message. To specify a location of VM
overlay, an ‘overlay url’ is appended in the metadata.

This message is finally handled at cloudlet hypervisor driver, CloudletDriver, like the resum-
ing base VM operation. At the code level, CloudletDriver inherits the Libvirt hypervisor driver,
LibvirtDriver, overriding the VM spawning method. At the VM spawning method, it checks
the metadata to find a keyword ‘overlay url’. If the request has the overlay url metadata, it will
perform VM synthesis using the given URL of VM overlay.

7.2.5 VM Handoff

VM handoff will migrate a running VM instance from one OpenStack cluster to another. Since
it involves two independent OpenStack clusters, the operation starts from the assumption that a
user has a permission to access both clusters. In other words, the source OpenStack cluster needs
permission to call the API of the destination OpenStack cluster. To get the permission of the
destination OpenStack cluster, the handoff UI at the source OpenStack cluster asks for credential
information of the destination as shown in Figure 7.14. Although the Web UI does not save
any credential information, one can use a client program that accepts an auth-token instead of
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Figure 7.14: Screenshots of ‘VM Handoff’ configuration

Figure 7.15: Example of VM handoff request message

account/password. In cases where a mobile user uses an OpenStack++ cluster to run a back-end
server program, a client program will replace the role of UI to programmatically trigger VM
handoff.

Similar to creating the VM overlay in Section 7.2.3, VM handoff applies an action on a
running VM instance. Accordingly, we create a new API extending the Action URL using Open-
Stack Extension. In the JSON payload of the HTTP POST message, https://openstack addr/v2.1/servers/server id/action,
the handoff command and detail descriptions are added as shown in Figure 7.15.
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(a) Success to Resume (b) Fail to Resume (Kernel Panic)

Figure 7.16: Challenges on CPU Flag Compatibility

7.3 Challenges

While porting the cloudlet open source code to OpenStack, there have been many design and
implementation challenges. Some are related to complying with OpenStack practices and some
are about implementation issues such as library compatibility. Though not every challenge is
tightly coupled to the research, it is worth to report some of those challenges because they are
relevant to cloudlet deployment.

7.3.1 Portability of the VM

The first challenge is about resuming a suspended virtual machine. Technically, VM provision-
ing resumes a VM instance at the target OpenStack++ cluster, which is suspended at a different
site. This causes several portability issues in the VM. Since a VM has a relatively narrow inter-
face to run on a hypervisor compared to the high-level approach such as a process, it is known
to be relatively easy to migrate from one place to another. That is why VM migration is used
and is stable in today’s data center. However, in our case, different from the data center VM
migration, host machines can be highly heterogeneous and the source and destination machine
can have a different networking environment. Those changes will introduce subtle issues in the
VM portability. There are two major portability problems in the OpenStack++ porting; 1) CPU
compatibility and 2) Stale networking state.

CPU compatibility: To get full performance from a host machine, a virtual machine usually
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inherits CPU flags from the host machine. That means if a source host machine, where VM is
suspended, supports a wider range of CPU features than a destination host machine, where VM
is resumed, then a resumed OS will crash when it tries to use a CPU feature that is not available
at the destination. This happens because 1) suspend/resume is agnostic to the guest OS and 2)
the guest OS checks CPU flags only once at the boot-time. Unfortunately, QEMU/KVM does
not strictly check CPU flags when resuming a VM, either. Figure 7.16 shows an example of
guest OS failure (kernel panic) when a VM is resumed at a host machine with insufficient CPU
features.

To handle this CPU incompatibility issue, we use a pre-defined CPU model for the base
VM. Libvirt library defines a set of CPU models for the virtual machine [2]. Among the wide
range of CPU models including pentiumpro, coreduo, n270, core2duo, qemu64, Conroe, Pen-
ryn, Nehalem, Westmere, SandyBridge, and Haswell, we choose Core2duo because it covers a
reasonable range of CPU flags (even more than qemu64), but is common enough to support old
machines. If one has a more managed environment where minimal CPU features can be forced
on all cloudlet machines, then a more decent CPU model like SandyBridge will be helpful to
maximize performance. In my implementation, we enforce the Core2duo CPU model and VM
provisioning and VM handoff will not start if the host machine does not support it rather than
fail in run-time.

Staleness in networking configuration: A virtualized network interface card (NIC) is at-
tached to the virtual machine using emulated hardware interfaces like PCI. This virtual NIC has
unique hardware configurations such as the MAC address, and a guest OS loads those config-
urations at boot-time assuming that it won’t be changed until the next booting. Then the guest
OS will setup networking via this NIC. For example, the guest OS can have a private IP ad-
dress with NAT or it can access the Internet directly using a public IP address. Various network
configurations are possible in OpenStack using Neutron [3]. However, the NIC and networking
information configured at a source OpenStack cluster are not valid at a destination OpenStack
cluster where the VM is resumed. This is applied to 1) resuming a base VM, 2) VM provision-
ing, and 3) VM handoff, because they are all technically resuming a memory state of the VM.
Figure 7.17 shows a diagram of broken networking when a VM is provisioned with the memory
state. The resumed VM originally has a NIC with MAC address 11-22-33-44-55, but OpenStack
networking assigned a new NIC card for this newly instantiated VM. This new NIC card has
MAC address, aa-bb-cc-dd-ee, and the underlying OpenStack network module uses this MAC
address to configure networking. For example, a router will forward a network packet designated
to the VM using MAC aa-bb-cc-dd-ee, but it won’t be delivered to the application because the
guest OS thinks that its MAC is 11-22-33-44-55.
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Figure 7.17: Example of networking staleness in synthesized VM

Figure 7.18: Layers in Cloud Computing software

To overcome this inconsistency and to enable networking for the VM, we detach the old vir-
tual NIC and attach a new virtual NIC given by the new OpenStack via Hot PCI Plugin [101].
Since it is an industry standard, most modern OSes support it. It is also supported by the
KVM/QEMU hypervisor using VT-d techniques [1]. After resuming the VM successfully (either
resumed from VM provisioning or VM handoff mechanism), I detach the old virtual NIC of the
VM and attach a new NIC configured by the OpenStack networking. This way, the operating
system understands the reattachment of the PCI device, and accordingly updates stale network-
ing configurations. In theory, this won’t affect the applications’ networking because applications
are running on the TCP/IP layer and are agnostic to the underlying network level.

7.3.2 Modification on hypervisor (QEMU/KVM)

Figure 7.18 shows the layers of cloud computing software. At the bottom, a hypervisor is respon-
sible for creating and running virtual machines. Commercial products and open source projects
including VMWare ESX, Microsoft Hyper-V, and QEMU/KVM are the examples at this layer.
One level above, Libvirt is an open source management tool for managing virtual machines. It
supports KVM, Xen, VMware ESX and other virtualization hypervisors. Libvirt provides a set
of APIs for the orchestration of hypervisors. This is useful because each hypervisor has slightly
different syntax for a similar function. Libvirt provides a high-level abstraction hiding complex-
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ity and diversity of various hypervisors. At the top layer, OpenStack tries to provide a complete
end-to-end software system providing 1) resource management for computing (e.g. virtual ma-
chines), networking, storage, 2) authentication and permission, and 3) high-level API for easy
use and so on.

In this hierarchy of cloud computing software, OpenStack++ patches the original OpenStack
to enable cloudlet features. However, to get the best performance for both provisioning and
handoff, the cloudlet code modifies the QEMU/KVM hypervisor, which can cause a problem
for merging OpenStack upstream. This is because OpenStack and QEMU/KVM are maintained
by independent organizations. Therefore, the modifications to the QEMU/KVM hypervisor can
be an obstacle for OpenStack upstream merging because this modification is not an official re-
lease from the QEMU/KVM community. The right approach is 1) first merge cloudlet’s mod-
ified QEMU/KVM to QEMU/KVM upstream, 2) wait for the new release of cloudlet-enabled
QEMU/KVM, 3) merge OpenStack++ to OpenStack upstream with the requirement of cloudlet-
enabled QEMU/KVM. This is not a research challenge or an implementation issue but matters
in practice when pursuing OpenStack upstream merging.

In order to have a better understanding, we list the necessity of modified QEMU/KVM in the
cloudlet implementation. For VM provisioning relevant issues, the QEMU/KVM modification
helps by improving the memory snapshot format. Memory snapshot in QEMU/KVM is an in-
ternal data structure and its format is poorly maintained in terms of compatibility. As a result,
a QEMU memory snapshot saved using a certain version of QEMU/KVM hypervisor might not
be resumable at a different version of QEMU/KVM hypervisor. In addition, the original QE-
MU/KVM compresses each memory page if possible, and that prevents the cloudlet code from
performing deduplication and randomly accessing a specific memory page. Further, cloudlets
modify QEMU/KVM to support early start optimization which allows a VM instance to start
without a full memory snapshot. Early start optimization uses on-demand fetching of the mem-
ory snapshot to speed up VM provisioning.

For VM handoff, a behavior of the original VM live migration has been changed. While the
VM handoff is proceeding, new dirty memory pages of the running VM are not sent to the net-
work immediately but accumulated under the control of VM handoff code. This is different from
the original behavior of live migration where dirty memory pages are immediately sent. This
change is designed to save network bandwidth by avoiding transmission of frequently modified
memory pages (hot region) repeatedly. Also, the VM handoff module will achieve adaptive VM
handoff that balances computation speed and network transmission speed.

Modifications to QEMU/KVM are inevitable to speed up provisioning and handoff, but it
can be an obstacle for OpenStack upstream merging from a practical standpoint. To minimize
the influence of modified QEMU/KVM at OpenStack, we used it only for the cloudlet related
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tasks. That is, modified and unmodified QEMU/KVM coexist at OpenStack++ and OpenStack’s
original tasks use unmodified QEMU/KVM as before. Details of optimizations for provisioning
and handoff are described at [49] and [50], respectively.

7.4 Chapter summary

Cloudlets are becoming widely accepted from academia and industry. However, the development
of cloudlets faces a classic bootstrapping problem. It needs practical applications to incentivize
cloudlet deployment while developers cannot heavily rely on cloudlet infrastructure until it is
widely deployed. To provide a systematic way to incentivise cloudlet deployment, we imple-
mented OpenStack++ that extends OpenStack, an open source ecosystem for cloud computing.
With OpenStack++, any individual or any vendor who uses OpenStack for their cloud computing
can easily use the cloudlet structures. For this work, we designed and implemented OpenStack++
APIs and ported the cloudlet open source project to OpenStack. In addition, we provided a web
interface and a client program for OpenStack users.
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Chapter 8

Conclusion and Future Work

This dissertation proposes a new architecture for cloud-mobile convergence. It proposes, and
shows the feasibility of, cloudlets; mobility-enhanced small-scale cloud datacenters that are lo-
cated at the edge of the Internet. We show that cloudlets can enable resource-intensive and
interactive mobile applications by greatly improving end-to-end network bandwidth and latency
without sacrificing the benefits of cloud computing. In this chapter, we conclude the dissertation
with a summary and contribution, and discuss research directions and challenges opened in this
area.

8.1 Contributions

This dissertation presents the following thesis.

Emerging mobile applications that are simultaneously interactive and resource-intensive can
be effectively supported by mobility-enhanced small-scale cloud data centers called cloudlets
that are located at the edge of the Internet.

To demonstrate the thesis, we first provide a measurement-driven quantitative analysis of
emerging mobile applications, and show how cloudlets can help them. Then we propose a
cloudlet-based two-level computing architecture that seamlessly extends today’s cloud infras-
tructure. We identify three functionalities that cloudlets must offer above/beyond standard cloud
computing; cloudlet discovery, rapid just-in-time provisioning, and VM handoff across cloudlets.
Finally, we present a systematic way to accelerate cloudlet deployment using OpenStack. We
summarize our contributions in the following sections.
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8.1.1 Quantitative Analysis of Emerging Mobile Applications

It is expected that network latency between a mobile device and an associated data center can
affect the performance of cloud-backed mobile applications. However, the magnitude of this
impact is not clear. End-to-end response time is influenced by multiple factors contributing
to the application’s performance; not only network conditions, but also other factors such as
relative computing power between a mobile device and a cloud, and application characteristics.
Further, it is fair to ask whether offloading is necessary at all given that mobile hardware is
rapidly improving. Here we provide measurement-driven quantitative analysis of the benefit of
the cloudlet using five representative mobile applications and confirm the necessity of cloudlets.

From the experiments in Section 2.3.2 and 2.3.3, we confirm that network proximity resulting
in high bandwidth, low latency, and low jitter to the associated data center is essential for the
target mobile applications. A cloudlet represents the best attainable network proximity by its
location at the edge of the Internet. Our results show that a cloudlet is indeed valuable for many
of the studied applications, in terms of both response time and energy usage.

8.1.2 Cloudlet Discovery

Since cloudlets are small data centers dispersed geographically, a mobile device first has to dis-
cover, select and associate with the appropriate cloudlet among many choices. These steps are
unnecessary with a cloud because it is centralized. But in cloudlets, discovery and selection have
to be carefully managed because the choice of a cloudlet can directly affect the provisioning time
as well as the performance of the offloaded mobile applications.

We have designed and implemented a cloudlet discovery system that supports application-
specific cloudlet selection and disconnected operation using local/global search and two-level
search (Section 6.2.1 and 6.2.2). In addition, we expand our system to support close-sourced
mobile applications by using DNS and HTTP redirection. We have focused on achieving flexi-
bility and extensibility of the system to cover wide range of cloudlet deployment scenarios.

8.1.3 Rapid Just-in-Time Provisioning

A cloudlet needs rapid provisioning because its association with mobile devices is highly dy-
namic, with considerable churn due to user mobility. A user may unexpectedly show up at a
cloudlet (e.g., if he just got off an international flight) and try to use it for an application such as
a personalized language translator. For that user, the provisioning delay before he is able to use
the application impacts usability.

Since cloud offload relies on precisely-configured back-end software, it is difficult to support
at global scale across cloudlets in multiple domains. To address this problem, we describe just-
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in-time (JIT) provisioning of cloudlets. Using a suite of five representative mobile applications,
we demonstrate a prototype system that is capable of provisioning a cloudlet with a non-trivial
VM image in approximately 10 seconds. This speed is achieved through dynamic VM synthesis
and a series of optimizations to aggressively reduce transfer costs and startup latency.

8.1.4 VM handoff across Cloudlets

Once a user successfully uses a provisioned cloudlet, the next question is “What happens if a
mobile user moves away from the cloudlet he is currently using?” As long as network connec-
tivity is maintained, the applications should continue to work transparently. However, interactive
response will degrade as the logical network distance increases. In practice, this degradation can
be far worse than physical distance may suggest. For example, when moving from a home Wi-Fi
network to that of a neighbor down the street, communication to the first home’s cloudlet will
require two traversals of “last-mile” links connecting the homes to their ISPs.

We have proposed VM handoff as a technique for seamlessly transferring VM-encapsulated
execution to a more optimal cloudlet. To minimize VM handoff time, various compression tech-
niques are pipelined into a parallel processing. We present the first fine-grain adaptive mecha-
nism for migrating VMs over WAN and show how dynamic adaptation can play an important
role in order to cope with varying WAN bandwidth and cloudlet load. We also show this mech-
anism can be implemented in today’s Internet speed improving VM handoff time at least one
order of magnitude compared to the conventional live migration. Our experimental deployment
using LTE-cloudlet confirms that VM handoff is applicable and practical on both LTE and WiFi
network.

8.1.5 Cloudlet Deployment

Finally, we present a systematic way to accelerate deployment of cloudlet infrastructure. Since
the cloudlet model requires reconfiguration or additional deployment of hardware/software, it is
important to provide a systematic way to incentivise the deployment. However, cloudlet devel-
opment faces a classic bootstrapping problem. It needs practical applications to incentivize the
deployment, but application developers cannot heavily rely on cloudlet infrastructure until it is
widely deployed.

To break this deadlock and bootstrap the cloudlet deployment, we leverage OpenStack, which
is an open eco-system for cloud computing. We design and implement all cloudlet features to
work as OpenStack extensions, so that any individual or any vendor who uses OpenStack for
their cloud computing can easily adopt cloudlets. We refer to this Cloudlet-enabled OpenStack
as OpenStack++. We also provide a client library and web interface for OpenStack++.
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8.2 Future Work

The cloudlet is a new architectural element that opens many new research topics across multiple
layers of the system. In this dissertation, we design and implement the system functionalities of
the cloudlet in order to achieve two-level architecture for cloud computing. Based on this low-
level systems work, we would like to introduce two distinctive research directions: 1) advance
system support for cloudlet infrastructure and 2) edge computing.

8.2.1 Advanced System Support for Cloudlets

Multi-Tenant Support

Cloudlets are designed to be served as a shared infrastructure like cloud data centers. Therefore,
it is presumed that they will provide safety and strong isolation between untrusted computations
from different users. We use virtual machine abstraction to achieve this goal for the same reason
as it is used in public clouds like Amazon AWS. However, even with VM encapsulation, we
cannot prevent performance interference between VMs running on the same physical machine.
This is because the VMs can suffer from resource contention at various places such as the last
level cache, memory access, and I/O devices. This is well known problem in cloud data centers
and exacerbated in the cloudlets for two reasons. First, a cloudlet is designed to support interac-
tive mobile applications and these applications are sensitive to the delay and jitters in response
time. Unlike large-scale web services that are hosted by a cloud data center, performance degra-
dation or jitter caused by the resource contention can be critical in the cloudlet context. Second,
a cloudlet by definition is a small-scale data center that typically has many fewer reserved re-
sources than a cloud data center. Accordingly, there is more likely to be resource interference.
Also, because of the cloudlet’s limited computing resources, it is important to maximize resource
utilization, which might make the system prone to resource contention.

Efficient multi-tenant support for a cloudlet is not only related to the optimization of VM
placements but is also associated with other cloudlet functionalities such as cloudlet discovery
and VM handoff. For example, if we can predict that a new upcoming workload could cause
resource contention when it runs with current VMs, then the cloudlet discovery system can take
a preventive approach and suggest a different cloudlet in the discovery step. Another approach
involves migrating a VM that causes resource contention to another cloudlet using VM handoff.
In this case, we migrate VM not because of the user’s mobility but in order to balance workloads
across cloudlets. When addressing this research topic, we should focus on how to optimize the
placement of cloudlet workloads while globally maximizing resource utilization without sacri-
ficing response time.
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Manageable Cloudlets

Because of their distributed nature, the management cost of cloudlets is likely to be much higher
than that of centralized cloud data centers. To reduce this cost, we use an alliance-like deploy-
ment model for cloudlets. Within this model, cloudlets are not actively managed after installa-
tion. Instead, soft state elements from a cloud (e.g., virtual machine images as well as files from a
distributed file system) are cached on their local storage. The resulting absence of hard (durable)
state in the cloudlet that keeps management overhead low.

Although this approach enables us to minimize management cost with the cloudlet’s soft-
ware stack, the management cost for the underlying software (e.g. OpenStack++) and hardware
remains considerable. Because updates within this low layer are required less frequently than
updates of high-level applications, theoretically, management can be simple. However, in prac-
tice, if one wants to deploy and maintain a large number of cloudlets, management of this low
layer cannot be ignored. Hence, we should think carefully about how we can efficiently manage
cloudlet infrastructure to minimize management requirements.

Lowering Response Time at the Last Hop of the Network

Last-hop network connectivity has been dramatically improved over the past decade. Initial
smartphones, in the early 2000s, shipped with 802.11b WiFi, which had up to 11 Mbps through-
put. By contrast, today’s smartphone is equipped with 802.11ac WiFi that can transmit up to
1.69 Gbps (with a 4-Antenna AP and a 2-Antenna client). Similarly, cellular networking has
been upgraded from 2G to 4G LTE, and now operators are showing demos of 5G network sup-
porting up to 25 Gbps [63].

However, all these efforts are focused on increasing throughput but not on reducing network
latency. For cloudlet applications, we should put more effort into reducing latency at the last hop
of the network. For instance, we need to analyze network interference caused by multiple devices
and study on how to minimize it. Network interference is a challenging problem, especially in
unlicensed frequency (e.g., WiFi). A cellular network also sacrifices network latency to max-
imize utilization. For example, the cellular operator typically quantizes network transmission
slots into discrete buckets based on the next transmission slot designated for the device.

The offloading response time cannot be degraded only by the last-hop network but can also
be slowed down by other components of the system. Mobile devices are frequently on and off
the network device in order to save energy, and this causes delays in network transmission. And
scheduling policy on an operating system for both the mobile-side and server-side can produce
additional latency. In this research, we need end-to-end analysis of processing delay that includes
the application framework, operating systems, and network stacks. Based on the time breakdown
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of each of these components, we can locate inefficiency within the components.

8.2.2 Computing at the Edge of the Internet

Today, many of “things” in the Internet (i.e., IoT) are located at the edge of the network and
generate a large volume of data. These are usually sensor devices that are distributed at local
sites for monitoring and measurement purposes. The data generated is not usually transmitted to
a central cloud but is stored at the local site for following reasons. First, the volume of data is too
large to transfer over a wide area network (WAN) or the speed of data generation is faster than
the network transmission speed. Second, data can be summarized using representative values
so that transmission of raw data is unnecessary. For example, one does not want to upload
temperature data to a cloud data center for every 10 ms. Instead hourly or daily averages are
sufficient for most of the applications. Legal issues with regard to data movement/placement or
privacy concerns can also prevent a cloud data center from collecting dispersed data.

With the proliferation of data generated at the edge of the Internet, an efficient system for
edge data analysis is needed. The edge analysis system should be able to perform not just a set of
preconfigured operations but also fully customized operations based on users’ specific requests.
Consider video recording, which comprises one of the most common type of data in IoT devices.
Given the richness of the video contents, the recorded data can often end up being valuable for
some totally unintended reasons. For example, a CNN news item [47] reported the arrest of a
thief who could be seen stealing in the background of the video clip. Normally, a tiny patch in
the background would be ignored, but in this case, the context of a robbery made it relevant.
To capture such unexpected aspects of the data, the edge analytics system should fully support
custom query. Further, because the result of the analysis can be used by operations and real-time
decision algorithms, minimizing the response time of this analysis becomes crucial.

How to minimize the response time required for analyzing highly distributed data is a chal-
lenging task. Followings are the research questions to be answered in this study.

• how to avoid laggard cloudlets in order to reduce response time,

• how to efficiently exchange (intermediate) data between cloudlets,

• how to handle repeated or similar queries efficiently.
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