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Abstract

Smart things, spaces, and structures are created by embedding computation into them.
Embedded computers sense, compute, and communicate at the edge, closer to the physical
rather than the cyber world. Not any computer can be embedded, because many deployment
settings demand small size, long lifetime, and robustness to a harsh environment. The energy
source of the computer — traditionally a battery — is the most likely component to fail to
meet these constrains. Batteries have a limited lifetime, degrade over time, are bulky, cannot
tolerate low temperatures, and are costly to replace. A promising alternative power source is
an energy-harvesting circuit that extracts solar, mechanical, radio, or thermal energy from its
environment. Computers powered by energy harvesters (EHCs) are a promising platform for
wearable or ingestible medical devices, industrial or environmental monitoring, and scientific
instruments.

From the programmer’s perspective, however, it is uniquely challenging to develop soft-
ware for an energy-harvesting computer than for a traditional battery-powered embedded
computer. Software that runs correctly on a battery-powered platform may produce incor-
rect results or fail to complete at all and is more difficult to debug on an EHC. Software
execution on an EHC is intermittent, because the device is on for brief intervals, only when
sufficient energy is available, and is abruptly interrupted on each power failure. The work
in this thesis identifies the challenges of computing reliably and efficiently on intermittently-
powered energy-harvesting platforms. We address the challenges of intermittent computing
through support across the system stack, from the programming model and runtime systems
to hardware mechanisms and tools for program analysis and diagnostics.

The first challenge of intermittent program execution is maintaining progress across power
failures and keeping the program state consistent in memory. Prior work has proposed check-
pointing mechanisms for maintaining the program state across power failures. We expose
the overhead of checkpoints and approach this problem differently, with a new programming
model for intermittent software, named Chain. A Chain program is a set of programmer-
defined tasks that compute and exchange data through persistent channels. Chain programs
span power failures by completing at least one task between each two power failures. A
task can be safely restarted after a power failure and will never see inconsistent state in
memory, because its inputs and outputs are in separate channels in memory. We implement
Chain abstractions as a library for use with the C language and demonstrate that it ensures
correct results despite power failures and reduces performance overhead by 2-7x compared
to a checkpointing system for a set of embedded applications.

Task-based programming models, like Chain, allow intermittent execution of long-running
applications, but require the programmer to decompose code into tasks. However, some task
decompositions prevent the program from terminating or executing efficiently. Programs
decomposed into tasks larger than the work executable on stored energy will repeatedly re-
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execute a task and never terminate. On the other hand, a decomposition that fragments
the program into small tasks has to spend more time and energy persisting program state
across tasks. We propose CleanCut, a tool that can check for and report non-termination
in a given task decomposition, as well as automatically decompose code into valid tasks. To
reason about energy consumption, CleanCut relies on a statistical model for the energy of
a program path, derived from measured energy consumption of basic blocks. We applied
CleanCut to a set of benchmark applications, to demonstrate a non-terminating path report
and a performance improvement of 2.45x using automatic decomposition relative to manual
decompositions from prior work.

Tasks in a program may have different preferred modes of execution, i.e. the frequency
and duration of each execution. Multiple modes are achievable using the same total energy
by using it differently over time. However, software cannot control when the device is off
and accumulates energy and for how long it stays on each time it uses stored energy, since
this is a function of energy storage capacity and input power. We develop Capybara, a
hardware power system with an energy capacity that is reconfigurable at runtime. Capybara
grants software some control over when and how much energy is provided to which task.
The Capybara software interface allows programmers to associate modes with application
tasks, and the runtime system reconfigures hardware energy capacity to match the declared
mode. Capybara allows a programmer to write reactive application tasks that pre-allocate
a burst of energy that it can spend in response to an asynchronous external event. Our
system decreases the number of missed events by 2-4x over fixed-capacity energy buffer and
maintains a response latency within 1.5x of a continuously-powered baseline.

Like all embedded software, development of intermittent programs inevitably involves
diagnosing bugs. However, the power failures on intermittent systems may create unique
bugs that are not possible in a continuously-powered execution and are difficult to repro-
duce in debuggers that require the target to be continuously powered. We propose the
Energy-interference-free Debugger (EDB), a tool for monitoring and debugging intermittent
systems without adversely effecting their energy state. EDB features energy-aware vari-
ants of familiar debugging primitives, such as breakpoints, watchpoints, and assertions, and
adds primitives specialized for intermittently-powered devices, such as guarded regions with
energy compensation. Our evaluation quantifies the energy-interference-free property and
shows its value in a set of debugging tasks on an energy-harvesting device.

The final part of this work unifies the developed system support into a design method-
ology for creating applications on energy-harvesting platforms. This methodology identifies
key design tasks common across applications and documents how each of the tools proposed
in this work can be used to accomplish each task. We apply this design flow to build the
hardware and software for an energy-harvesting board-scale nano-satellite for deployment
into low-earth orbit. The instrumental role the proposed system support plays in this ap-
plication exemplifies how this work can facilitate the development of novel applications of
energy-harvesting technology.
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Chapter 1

Introduction

Embedding computers into the spaces and things is necessary to make them smart. The

intelligence in smart rooms, smart appliances, and smart vehicles, will come from a built-in

computer connected to sensors and actuators. Whether the device uses established sensors

and actuators, e.g. accelerometers and displays, or emerging ones, e.g. brain waves and

molecular dispensers, the sensor data will require processing and the actuators will require

control. A processor capable enough to execute software will need to be co-located with the

sensors and actuators.

Co-locating a processor with sensors and actuators, as opposed to allocating it in a rack

in a data-center, inherits the constraints on size, energy, mobility, and operating conditions

of the device itself. Each of these constraints limits the capabilities of the device, such as

its compute power, especially indirectly by constraining its power source. Existing devices

that need to be mobile, e.g. human-machine interfaces or wearables, rely on a battery for

power. In the smallest devices, the battery may dominate the size, weight, and — if it

is rechargeable — the cost of the device. These characteristics of batteries limit them to

deployments where the device remains easily and cheaply accessible or does not need to last

beyond a few years. To be deployed into an environment that does not fit these constraints,

such as implanted in the body, molded into a material, or launched into space, an ideal
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device would be battery-free.

A battery may compromise the viability of the device in several ways. The battery may

deplete and require servicing the device for replacement or decommissioning of an otherwise

functional device. For example, battery-powered tire pressure sensors operate approximately

5-10 years [54], which is below the lifetime of a car. The battery may be too large to fit in

the form factor of the device, e.g. centimeter-scale for a sensing node or millimeter-scale for

an implantable device. For example, on a cyborg insect that carries a sensing “backpack”

of at most 1 g, a battery with only 27 mAh capacity occupies 32% of the weight alone [44].

The battery may also fail to withstand the operating conditions that the device might be

subjected to. For example, satellites may be cooled to below -40C and heat above 120C

while in low-earth orbit [118]. The cold temperature is outside of the rated specifications of

lithium-polymer batteries, leading to severe degradation of their capacity. These limitations

are inherited from the battery, but not from other parts of the devices, such as digital logic

ICs and sensors.

A battery imposes size, lifetime, and other limitations in return for a reliable, predictable,

and relatively high-current supply of energy. Reliability and output power of the energy

supply, however, can be traded of in favor of smaller size and potentially unlimited lifetime

using an energy-harvesting circuit. An energy harvester is an alternative power supply that

extracts ambient energy available in the environment around the device. Existing energy

harvesters can convert light [154], motion [112, 86], temperature gradients [171, 30] RF

radiation [91], or beta radiation [123] into a weak electrical current, on the scale of microamps

to milliamps. Research prototypes have successfully used this amount of power to create a

pedometer [83], a non-intrusive energy meter [47], sensors for microclimate control [189]

and occupancy detection [29], muscle sensors for prosthetics [92], an intraocular pressure

monitor [33], a remote control [127], an e-ink paper tag [49], and a diesel engine monitor [184].

Each energy source can be harvested by one or more converters that relies on one of several

fundamental physical effects. Light can be converted into electric current using a photovoltaic
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Source Environment Size Power Reference
Light indoor elastic 10 µW/cm2 [181]
Light outdoor elastic 3− 11 mW/cm2 [181, 154]
Thermal human body elastic 10− 60 µW/cm2 [181, 107, 91, 154, 171]
Thermal hot/cool objects elastic 0.1− 3 mW/cm2 [181, 100]
RF ambient, < 10 km from 1MW 6x6-20x45 cm 0.0002− 100µW/cm2 [91, 130]
RF dedicated, < 5 m from 1W 15 cm 0.1-2 mW [148, 134]
Vibration 20-120 Hz < 1cm3 1− 830 µW/cm3 [112]
Compression piezoelectric pushbutton 3.5x0.5 cm 50 µJ/N [125]
Flow 1.5-40 m/s 0.5− 12 cm3 0.007− 2 mW/cm3 [112, 132, 139, 73]

Table 1.1: Sources of ambient energy and power output range with existing harvesters.

material, such as a solar panel. An RF wave harvester relies on electromagnetic induction

and consists of an antenna and a small rectifier circuit. Ambient RF energy [121, 130] may

originate from TV, AM/FM radio, cell towers, or Wi-Fi access points. Dedicated RF energy

may be generated by an RFID reader or a similar signal generator installed for the purpose

of providing energy. Thermoelectric generators (TEGs) convert flow of heat into electric

current through the Seebeck effect between two adjacent conductors. Vibration or air flow

can be harvested by a piezoelectric material that produces a potential difference in response

to physical deformation. Motion, including flow, can rotate a generator built from permanent

magnets and coils of wire. Table 1.1 lists several harvesters and their output power achieved

in practice.

An energy-harvester implemented within the size constraints of a small sensor node device

is less predictable and weaker than a battery in terms of both the output voltage and the

output current. A weak power supply outputs less power than is required by the load to

operate. The load on an embedded device is the processor, sensors, and actuators. Since the

harvester cannot directly power the device, to turn the device on, the hardware must first

accumulate the incoming energy in a capacitor, building up the charge and the voltage until

both are sufficient to power the device for some brief interval of time. At the end of this

interval, when the accumulated energy has been depleted, the device will abruptly lose power.

As a result, the processor will be executing instructions intermittently in bursts perforated

by power failures, whose spacing will be a chaotic function of input power fluctuations.

Software written for battery-powered embedded devices will not run successfully when
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executed intermittently. An embedded software program assumes that the processor will

execute it sequentially until completion. The program also assumes that it can keep state in

memory, by writing values and reading those values back later. Both of these assumptions,

however, are violated on an intermittently-powered processor. After each power failure

that takes place during the intermittent execution, the state of the registers and volatile

memory is lost. As a result, the execution is interrupted and the current position in the

program is lost when the program counter register loses its value. Without the program

counter value, the hardware has no way of continuing the execution and run the program

to completion when power becomes available again. Furthermore, if the program keeps any

state in memory, which includes the stack, then continuing the execution becomes impossible

after the memory contents is lost after a power failure.

This fundamental forward progress challenge has been identified by recent research and

solutions based on checkpointing volatile memory and registers into non-volatile memory

have been proposed [141, 101]. However, merely preserving forward progress is not sufficient

to bring intermittently-powered platforms to the embedded mainstream, because major chal-

lenges remain in reliability, efficiency, and programmability on these platforms.

1.1 Challenges of intermittent execution

The first challenge that hinders intermittent computing is the lack of reliability in program

execution. Programs that produce correct results when executed on continuous power may

produce wrong results or fail to complete at all when executed on intermittent power. Both

outcomes are a consequence of an unreliable power supply that can only power the device

for a short and, in general, unpredictable amount of time.

The first part of the reliability challenge are errors in the program state induced by

the power failures. If the program manipulates data structures in non-volatile memory,

then a power failure that interrupts an update to that data structure may leave it in an
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inconsistent state. This is a manifestation of the crash consistency problem observed in file

systems. However, in contrast to crashes in general-purpose systems, power failures in an

intermittently-powered device are the common case and recovery is on the critical path.

The second part of the reliability challenge is the loss of forward progress despite a check-

pointing mechanism. A checkpointing mechanism maintains the progress of the execution by

latching the intermediate state along the execution. A checkpoint guarantees that progress

achieved up to that point will not be lost even if power fails at some later point. However,

that guarantee is strictly weaker than the guarantee that the program will eventually execute

to the end as long as it would do so on continuous power. The latter guarantee depends

on when the checkpoints are taken in the execution. If the amount of work between two

checkpoints takes longer to complete than the device can stay on before losing power, then

the execution will fail to advance to the next checkpoint. This possibility of non-termination

is unique to intermittent execution.

The second challenge on the path to intermittent computing is the efficiency degradation

incurred when executing programs intermittently. Compared to a battery-powered device,

on an energy-harvesting device, energy is more scarce, yet there is more work to do due

to the overhead of keeping progress of the execution across power failures. The overhead

is incurred by the mechanism for latching progress, e.g. checkpointing and recovery, the

repeated hardware initialization procedure that must run on every boot after power loss,

and the work wasted on re-executing code that failed to execute to completion in a previous

attempt. This overhead impacts the runtime of application tasks, e.g. the time to encrypt a

message, which may be on the critical path in applications that must react to events in the

physical world, e.g. an over-temperature monitor in a factory. Furthermore, any performance

degradation from the software execution compounds with the fundamental slowdown relative

to a battery-powered device that is due to the time the energy harvester spends charging

the capacitor. The cumulative slowdown may make an application that is practical on a

battery-powered device impractical on an energy-harvesting device.
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The energy-efficiency challenge on an energy-harvesting device is not limited to mini-

mizing energy spent on overhead, but also encompasses the distribution of the energy use

over time. Assuming some level of average input energy flow, an energy-harvester has more

than one possibility of when to collect, store, and disburse that energy to the load. For

example, if a design with a capacitor of size 2C units, would disburse 2E units of energy

every 2T seconds, then a design with capacitor C would disburse E every T seconds, for

the same average incoming power from the harvester. Each design option determines the

size of the uninterruptible tasks that can run on the device, the sensing coverage, and the

responsiveness of the device. The shorter the charging intervals during which the device

is off, the more frequently the device can sense and therefore the shorter its reaction time

to sensed values is. On the other hand, the shorter the charging intervals, the less energy

is accumulated and is available for the load in one continuous burst. Bursts are required

for uninterruptible tasks such as transmission of a radio packet. The distribution of energy

over time is the third challenge of intermittent computing that arises in applications that

react to events in the physical world. This challenge is exacerbated when the application

contains tasks with conflicting temporal requirements, such as a sensing task, for which off

intervals must be minimized, and a radio transmission task for which the on intervals must

be maximized.

The fourth challenge obstructing intermittent computing is the programmability complex-

ity of intermittently-powered devices. Writing a program for an energy-harvesting device

involves reasoning about interruptions due to power failures and the resulting inactivity in-

tervals, the energy consumption of code, and the energy amount in the capacitor. These

concerns add to the concerns of functional correctness and efficiency in embedded firmware.

Statements that follow each other in program code may not execute in close succession, if

the energy in the capacitor at the time of reaching the first statement is not sufficient to

complete all of them. An interruption may violate intuitive assumptions made about cor-

relation between inputs in time. Furthermore, diagnosis of issues is difficult, because such
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energy-dependent behavior that is unique to intermittent execution will not manifest in an

interactive debugger. Debuggers available today can only be used while the device is contin-

uously powered, and, consequently, while the bugs induced by the intermittent power supply

are masked.

Despite the potential advantages of energy-harvesting technology relative to batteries in

lifetime, size, and operating conditions, the challenges outlined above pose an obstacle in

adoption of this technology as a versatile platform for embedded applications. The current

practice of engineering a solution to each challenge in each application has a prohibitive

resource cost that would be better invested into the application itself. The objective of

this work is to address the challenges of intermittent execution at the level of the system,

below the application level. Our overall approach and the detailed contributions towards

accomplishing this objective is presented in the following section.

1.2 Thesis statement and contributions

The objective of this work is to design a system stack that can support applications on

intermittently-powered devices. The system brings value to the application by handling the

intermittence-induced problems with minimal effort from the developer. The scope of the

system stack spans from abstractions in the programming language to mechanisms in the

hardware circuit of the device, and includes tools for diagnosis and maintenance. The system

stack we propose in this work, once incorporated into an existing embedded development

environment for battery-powered devices, serves as evidence for the following thesis.

System support for intermittent execution at the level of the language, compiler,
runtime system, debugger, and the hardware itself improves reliability, efficiency,
and programmability of software on energy-harvesting devices.

We build-up the proposed system stack from the following contributions.

1. We propose language constructs for constructing programs that execute correctly de-

7



spite the interruptions inherent in the intermittent execution model. Correctness,

defined as a memory state equivalent to continuous execution, is ensured by the pro-

posed primitives for statically defining tasks and specifying communication patterns

between them. Our implementation of the primitives for the C language is released in

the Chain library [39].

2. We develop a program analysis that identifies non-terminating paths in intermittent

programs and decomposes a program into tasks to ensure it makes forward progress

when executed intermittently. Within our compiler module, we develop an energy

model based on a combination of measurement and statistical estimation not previously

explored in work on energy modeling. In our program analysis we propose a heuristic

for decomposing a program into tasks. The heuristic makes its decisions based on

estimated energy consumption of code and energy storage capacity of the device. We

implemented the analysis within the LLVM framework and released it as CleanCut [40].

3. We design a hardware mechanism for reconfiguring the energy storage capacity of the

device. This mechanism enables the system to match the energy demand of application

tasks while satisfying their temporal constraints, i.e. how long and how frequently the

device should be on. We prototype the proposed circuit in a multi-purpose energy-

harvesting hardware platform named Capybara [41] and demonstrate the improved re-

sponsiveness and event detection accuracy that energy capacity reconfiguration brings.

4. We build an energy-neutral debugger for energy-harvesting devices that does not inter-

fere with the (intermittent) power supply of the device. Energy-neutrality is a feature

not available in existing debuggers, e.g. JTAG, but vital for diagnosing bugs that man-

ifest only when the device is powered intermittently. Our debugger supports passive

monitoring of the execution along with the energy level, and interactive debugging

with energy-aware primitives uniquely useful in the intermittently-powered context.

We use our prototype named EDB [38] to debug several malfunction scenarios on an
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RF-powered energy-harvesting device.

5. We bring together the mechanisms and tools that comprise our proposed system stack

into a design methodology for building an intermittent computing system. We apply

the methodology to build the hardware and software of a solar-powered nano-satellite

for the KickSat project [194]. The process covers the application of the Chain language

constructs, the CleanCut compiler, energy-storage architecture, and an in situ EDB

debugger for monitoring and instrumentation. The case-study validates the proposed

system stack.

The methods and tools that comprise the system stack developed in this work will lower

the barrier to entry into programming energy-harvesting devices. Accessible intermittently-

powered platforms are a prerequisite for the creation of applications that are outside of the

constraints of battery-powered embedded devices.

1.3 Outline

This thesis is organized into seven chapters, including the current introduction. The next

chapter, Chapter 2, provides a deeper introduction to energy-harvesting platforms and in-

termittent execution. Chapter 3 summarizes the research that is most closely related to this

work.

Each of the following five chapters elaborates on each challenge of intermittent comput-

ing briefly outlined in the introduction and presents our contribution that addresses it in

detail. These chapters are ordered by the abstraction level, from language to hardware.

Thus, Chapter 4 presents the proposed language primitives of Chain for writing intermittent

programs. Chapter 5 presents the CleanCut compiler analysis for decomposing programs

into tasks and checking them for non-terminating tasks. Chapter 6 introduces the hardware

mechanism for reconfiguring energy storage capacity at runtime. Chapter 7 presents the

energy-neutral debugger for energy-harvesting devices. The last chapter in this sequence,
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Chapter 8 brings the preceding contributions together into a design methodology applied to

build a solar-powered nano-satellite.

Chapter 9 suggests directions for future work and concludes by placing this dissertation

into the broad space of intermittent computing on energy-harvesting systems.
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Chapter 2

Background

An intermittently-powered device differs from a battery-powered device in the capabilities

and limitations of the energy-harvesting hardware and the constraints the hardware places

on the execution of software. This chapter describes the operation of energy-harvesting

hardware and the intermittent execution model for the software.

2.1 Energy-harvesting hardware

The main components of an energy-harvesting computing device are a harvesting circuit, an

energy buffer, and a processor with peripherals, illustrated in Figure 2.1. The harvesting

circuit converts energy available from a source in the vicinity of the device into usable electric

current. The types of energy harvestable with existing circuits and their approximate power

Microcontroller

Processor core

Volatile

memory

Non-volatile

memory

Sensor

Actuator

Energy

harvester

Power system Peripherals

Energy Buffer

(Capacitor)

Input power

conditioning

Output power

conditioning

Figure 2.1: Main components of an energy-harvesting computing device.
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output were listed in Table 1.1. The principle of energy conversion varies among energy

sources: photoelectric effect for light, electromagnetic induction for RF radiation, MEMS

generators for vibration, piezoelectric effect for mechanical compression, Seebeck effect for

temperature gradients. The details and optimization of the energy conversion efficiency is

outside of the scope of this work. Instead, our focus is on using the energy that has been

harvested to sense and compute reliably and efficiently.

Current, I

Voltage, V

P        = max IV
max

V
min

I
min

Figure 2.2: Current-voltage (I-V) curve that
describes the power output of an energy har-
vester and the (I, V) point at which power
output is maximum. The load cannot operate
in the shaded region, delineated by Vmin and
Imin, because the load cannot operate at any
voltage and current but requires a minimum
voltage and consumes at least a minimum cur-
rent.

The availability of an appropriate energy

source and the power output of an energy-

harvester determines the feasibility of an ap-

plication. The energy source might be a part

of the environment naturally, e.g. light from

the sun in space or in a crop field, or it may

be added to the environment for the dedi-

cated purpose of wirelessly powering sensing

devices, e.g. an RF transmitter in a room for

powering human-machine interface devices.

The power output of the energy source must

be commensurate with the workload for the

application to be feasible. For example, a so-

lar panel of 2 cm2 that outputs 34 mW [176]

can support transmissions on a CC430 radio [174] at 50% duty-cycle with a bandwidth

sufficient for infrequent sensor data packets but not for a video broadcast.

The output of a harvester can be characterized independently of the load by its I-V

surface, i.e. a current-voltage curve per time instance [197]. An I-V curve describes how

much current the harvester can supply at a given voltage, as illustrated in Figure 2.2. If

the current, I, that can be supplied at the minimum voltage required by the load, Vmin is
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insufficient to power the load, then that load will never turn on despite the net positive power

output from the harvester, Pin = IV > 0 for V < Vmin. This particular relationship between

harvester power output and load power demand, 0 < Pin < Pload, is the common case with

small devices whose harvesters must be small, e.g. a centimeter-scale solar panel or antenna

for RF harvesting. In order to use the energy from such weak harvesters that cannot power

the load directly, the harvester must be supplemented with additional hardware: a capacitor,

a power conditioning circuit, or both.

Energy

Harvester

MCU

+

Peripherals

Figure 2.3: A power system with simple input
power conditioning using a keeper diode.

The simplest power conditioning circuit

capable of using weak harvesters is a recti-

fier, i.e. a keeper diode. This configuration

is obtained from the power system diagram

in Figure 2.1 by using a diode as input power

conditioning and omitting the output power

conditioning. The resulting circuit is illus-

trated in Figure 2.3. The capacitor charges whenever the harvester output voltage is above

the voltage on the capacitor, and the diode prevents the capacitor from discharging when the

harvester voltage is below the capacitor voltage. Eventually, even under constant ambient

energy, the capacitor will charge to the open-circuit voltage output of the harvester at those

ambient energy conditions. The harvester output voltage will start low, loaded by the high

charging current, at the left-most edge of the I-V curve. As the capacitor charges, the charge

current decreases and the harvester voltage rises, moving along the I-V curve to the right.

In this simple power system, the load, i.e. the microcontroller and peripherals, are always

connected to the energy reservoir and must not drain energy from it while it is charging. This

requires the load to support low-power modes in which it can monitor the capacitor voltage

and wake up only when that voltage is sufficient. Furthermore, this simple power system

cannot guarantee that the capacitor will charge to a particular voltage, even assuming a
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Figure 2.4: Energy losses during charging and discharging of a capacitor.

positive incoming energy, because the I-V curve shape varies with ambient energy. We will

present power conditioning based on a voltage converter that can offer this guarantee in

Section 2.3, after discussing energy storage hardware in the next section.

2.2 Energy storage buffer

The function of a capacitor in an energy-harvesting device is to accumulate energy over time

until sufficient voltage has been built up to power the load. At that point an external trigger,

discussed in more detail below, can start supplying power from the capacitor to the load. As

the capacitor discharges its voltage, Vcap, drops, and the load can continue to operate only

for as long as the capacitor voltage is above the minimum voltage required by the load, i.e.

Vcap ≥ Vmin.

A capacitor introduces three major inefficiencies. Figure 2.4 illustrates the charging and

discharging of the capacitor and the associated losses. First, energy is lost to the resistance on

the path to the capacitor when charging and on the path from the capacitor when discharging.

Second, only a fraction of the capacity of a capacitor can be used to store energy deliverable

to the load, the remaining fraction must be filled with charge that cannot be used. This

residual energy must be wasted before the load can be powered and the same energy is left

after the load can no longer operate: Eresidual = 1
2
CV 2

min, where Vmin is the minimum voltage
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required by either the load or the output power conditioning circuit (if present). Residual

energy lengthens the time the device needs to start from an empty capacitor, which we refer

to as cold start time. A second consequence is the need to provision a higher capacity than

that strictly necessary to store the energy required by the load.

Third, energy is lost to leakage and to internal resistance, i.e. equivalent series resistance

(ESR), because real capacitors are not ideal energy storage devices. Leakage current flows

within a capacitor and discharges the capacitor. ESR contributes to losses during current

flow into and out of the capacitor, and droops the voltage available to the load, causing the

load to turn off sooner than it would with an ideal capacitor of the same size. ESR grows

as the operating temperature decreases, e.g. ESR nearly doubles at -20C for an EDLC

supercapacitor [167]. The leakage current, ESR, and other characteristics across capacitor

technologies on the market today are listed in Table 2.1 and more are presented in a survey

of storage technologies [26].

The data in the table highlights the trade-offs between energy density and the character-

istics that create loss. Ceramic capacitors have negligible leakage and ESR, 1 but have a low

density compared to all other listed technologies. Tantalum or niobium oxide capacitors are

denser, but have higher leakage and ESR. Aluminum electrolytic capacitors are much larger

in size (lower density) and have a limited lifetime. Supercapacitors and thin-film batteries

are the only practical option for capacities above 1 mF due to comparatively lower density

of other technologies, which translates into high volume occupied in the device. The prop-

erties of supercapacitors vary widely across models, and generally fewer capacity values per

model are available, compared to other technologies. The age-induced degradation in super-

capacitors, electrolytic capacitors, and thin-film batteries is counterproductive to realizing

the perpetual operation potential of energy-harvesting technology. Two further disadvan-

tages of thin-film batteries are their high ESR and low discharge current, e.g. EnFilm [160]

supports currents no larger than 5 mA continuous or 10 mA burst, which is less than the

1Neither leakage nor ESR is specified in datasheets for most ceramic capacitors
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Tech./Model Capacity ESR Leakage Lifetime Size Temp.

Ceramic ≤ 470 µF negligible negligible ∞ 2x1x1-28x9x9 -55 - 150C
AMK [163] 0.022− 470 µF 10 mΩ 1x1x1-5x3x3 -55 - 85C

Tantalum 4.7− 6000 µF 0.0042− 15 Ω 3x2x2-7x4x3 -55 - 125C
F93 [10] 22− 680 µF 0.3− 2.5 Ω 0.5− 6.3 µA 3x2x2-7x4x3 -55 - 125C
T491 [88] 0.1− 1000 µF 0.2− 15 Ω 0.5− 40 µA 3x2x2-7x4x4 -55 - 125C
T52x Poly. [89] 4.7− 1500 µF 4.5− 90 mΩ 6− 400 µA 3x2x2-7x4x4 -55 - 125C

Niobium Oxide 2.2− 1000 µF 0.003− 8.3 Ω 1− 80 µA 2x1x1-7x6x4 -55 - 125C
OxiCap [11] 2.2− 1000 µF 0.003− 8.3 Ω 1− 80 µA 2x1x1-7x6x4 -55 - 125C
CoreCap [9] 330− 560 µF 400 mΩ 28− 38 µA 2x1x1-7x6x4 -55 - 125C

Alum. El. 4.7µF− 1F 0.010− 21 Ω 1000-37000 hrs 3x3-35x52 -55 - 105C
AFK [42] 22− 6800µF 0.035− 1.35 Ω 3 µA 2000-5000 hrs 4x6-18x16 -55 - 105C
MZJ [120] 22− 1800µF 6− 360 mΩ 3 µA 2000 hrs 5x6-10x10 -55 - 105C

Alum. Poly. 4.7− 4700µF 3− 242 mΩ 1000-20000 hrs 4x1-10x21 -55 - 125C
SP-Cap [126] 2.2− 220µF 15− 110 mΩ 3− 66 µA 1000 hrs 7x4x2 -40 - 105C

EDLC 6.8-1F 35− 300 Ω 500-2000 hrs 3x2x1-48x30x25 -40 - 85C
BestCap [8] 6.8-1000 mF 30− 300 mΩ 5− 120 µA “unlimited” 15x17x2-48x30x7 -20- 70C
TDK [167] 350 mF 70 mΩ 25x20x2 -20 - 70C
CPX/CPH [153] 2.5-11 mF 25− 160 Ω 10,000 cycles 3x2x1 -30 - 70C
XH [153] 80 mF 100 Ω 10,000 cycles 5x1 -20 - 60C
DCN [74] 0.3-1 F 850− 1000 mΩ 6− 100 µA 500,000 cycles 4x11 -40 - 60C
DMHA [114] 70 mF 200 mΩ 60 µA 50,000 cycles 20x20x4 -40 - 85C

Thin-film battery
EnFilm [160] ≈ 1.6 F 120 Ω 3% per year 4,000 cycles 26x26 mm -20 - 60C

Table 2.1: Specifications of capacitor (and thin-film battery) technologies on the market, with
energy storage capacity (4.7 ≥ C ≥ 1 F), voltage rating (V ≤ 16 V), and load frequency
(minimum specified) within the range typical of small embedded devices.

power consumption of most radios (e.g. CC430 [174]). This technology design space suggests

minimizing the required energy storage capacity to take advantage of the smallest and least

lossy ceramic capacitors.

The power losses due to the capacitor diminish the amount of useful work that an energy-

harvesting device can perform using the same input energy. Without a capacitor, however,

the device will not operate when the harvester current output is too low at the load’s mini-

mum voltage, as dictated by the harvester’s I-V curve (cf. Figure 2.2). Furthermore, without

a capacitor, it is not possible to guarantee that the load will stay on for a minimum interval

of time. The load will turn off as soon as the energy source stops outputting power. And,

since ambient energy sources are inherently unstable, it is not practical to predict when such

a power loss will happen. The system design challenge is to include a capacitor but compen-

sate for its non-ideal properties with power conditioning circuits, and to design a software

system that performs the most useful work out of the stored energy extractable from the
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capacitor. We discuss both in the following sections.

2.3 Power conditioning circuits

An energy-harvesting hardware design may choose to include power conditioning circuits to

compensate for the low output voltage of the harvester and for the voltage droop in the

capacitor. A power conditioning circuit converts a voltage upwards, using a DC-DC booster

(inductor-based or a charge pump), or downwards, using a DC-DC buck or a Low-Dropout

Regulator (LDO). LDOs are smaller but have a lower efficiency compared to inductor-based

buck converters, because the former reduce the voltage by dissipating energy. In addition

to voltage conversion, a booster may include a circuit for tracking the harvester’s maximum

power-point and supervisory circuits for signaling overvoltage or undervoltage conditions

on the capacitor (e.g. BQ25504 includes both features). Maximum power-point tracking

dynamically regulates the current load on the harvester so that the voltage, dictated by the

I-V curve of the harvester, stays at the value that maximizes power, i.e. the product IV , as

illustrated in Figure 2.2.

As shown in Figure 2.1, a power conditioning circuit may be placed on the input path,

i.e. between the harvester and the capacitor, on the output path, i.e. between the capacitor

and the load, or on both paths. Input power conditioning allows the capacitor to charge to a

voltage that is above or below the maximum voltage output of the harvester. Output power

conditioning bridges the capacitor voltage range with the often different voltage range of the

load.

All types of converters, either on the input path or the output path, consume board

area and add energy overhead, because their conversion efficiency is strictly below the ideal

100%. Nevertheless, power conditioning may be included at expense of area and efficiency

to improve along other dimensions, e.g. capacitor volume, harvester size, i.e. solar panel

area, antenna length or area, thermocouple area, vibration mass. Power conditioning also
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adds versatility to the device, allowing it to work with a wider selection of capacitor models,

harvester types and sizes, and loads, with minimal configuration changes to the power system

circuit. Output power conditioning may generate a net positive savings in energy when the

savings from powering the load with a lower voltage exceed the conversion overhead, as will

be described precisely later in this section.

An input boost converter enables a harvester to charge a capacitor to a higher voltage

than the harvester is able to output. Typical harvesters of small size, output a voltage that

is lower than then maximum voltage rating of most capacitors. As a result, the harvester is

unable to fill the capacitor with charge up to its full energy storage capacity. For example,

an RF harvester in the Powercast [134] outputs up to 1V when the source is more than 1

meter away and transmitting at maximum power of 30 dBm. A harvester with output Vh

can charge a capacitor rated for Vtop only to
(

Vh
Vtop

)2

fraction of its energy storage capacity.

For a capacitor rated to Vtop = 2.4V and a harvester with output Vh = 1V, this fraction is

only 17%.

A boost converter on the output path extends the capabilities and efficiency of the device.

Voltage boosting supports a load that requires a higher voltage than the capacitor is rated

for, e.g. when powering a gesture sensor that requires a minimum voltage of 3.0V [7] with

a CPX3225 supercapacitor rated to 2.6 V [153]. Additionally, the boost converter extracts

more energy from the capacitor, since it continues to output a fixed voltage to the load after

the capacitor discharges to a voltage below the minimum required by the load. A larger

fraction of extracted energy reduces the capacitor volume required to support uninterruptable

software operation of the same size (cf. Section 2.6). Boosting capacitor voltage may be a

necessity for capacitors with a high internal Equivalent Series Resistance (ESR), defined in

Section 2.2. As shown in Figure 2.4, an ESR of Ri causes the capacitor voltage to droop

under a load current of Iload by ∆V = IloadRi. The droop renders a fraction of otherwise

extractable energy in the capacitor unusable. For a capacitor charged to Vtop and a minimum

load voltage of Vbottom, the fraction of extractable energy to energy usable under ideal Ri = 0
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with no power conditioning is

V 2
top − (Vbottom + IloadRi)

2

V 2
top − V 2

bottom

For a supercapacitor rated to 2.6 V with ESR of Ri = 25Ω (e.g. CPX3225 [153]), thresholds

of Vtop = 2.6 V and Vbottom = 1.8 V (minimum operating voltage of an CC430 MCU [174]),

load of Iload = 33 mA (e.g. radio transmission at full power on the CC430 integrated radio),

this fraction is 10%. Adding a boost converter with a Vmin = 0.5V minimum input voltage

(e.g. TPS61202), raises this fraction to 149% (i.e. more than is possible with a baseline of

Vmin = 1.8 V even with an ideal capacitor with Ri = 0).

A buck converter on the output can step down the capacitor voltage to within the voltage

range supported by the load, Vmin to Vmax. This conversion is required if capacitor voltage

exceeds the maximum voltage that the load can tolerate, Vmax. However, even when this is

not required, the down-conversion may be used to reduce the load power and energy con-

sumption. A buck converter will save energy as long as its efficiency, ηbuck, keeps conversion

losses below the savings relative to operating at Vmax [57]:

ηbuck >
2Vmin

Vmin + Vmax

A buck converter may be combined with a boost converter in a single IC, to obtain the

benefits of both converters in a smaller area.

The output voltage of a converter is readily configurable at design time with resistor

values. Configurability at runtime is rarely supported by the converter natively, but may be

achievable with an external resistor network at a significant cost in area and leakage current.

Although it is desirable to persist runtime configuration across power loss in energy harvest-

ing devices, our survey of the market did not reveal any models that support this feature.

Implementing this feature using a non-volatile digital potentiometer (e.g. EEPROM-based)

is an open problem.
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2.4 Introspection and logic in the power system

The hardware power system of an energy harvesting device decides when to make energy

available to the load. Energy can flow from the harvester into the capacitor at any time,

however the flow of energy from the capacitor to the load can be opened or closed by the

system. The system design determines when the load path is closed and the capacitor

accumulates energy, and when the path is open and the load consumes the accumulated

energy. Between the time when the load path is closed and when it is opened, the device is

either completely off or is in a sleep state. In this section we will model each of these two

options and discuss the assumptions in each one. Note that in this discussion at an abstract

level, the opening and closing of the path need not be an explicit action taken by the power

system; it may be an implicit outcome. For example, the path is implicitly closed when

the load stops consuming energy after the voltage supply drops below its minimum required

voltage. On the MSP430 MCU, the energy consumption is stopped (up to leakage current),

because the built-in power supply supervisor stops the execution on the core.

This section presents several possible open triggers that a design may choose to open the

load path and close triggers to close the load path. A trigger may be implemented entirely in

hardware, or partially in software with at least some hardware support circuits. Some or all

of the hardware may be on-chip inside a microcontroller or in an external circuit. The energy

overhead of each trigger implementation determines the minimum input power required for

the device to charge at all. The device will charge only when more power is incoming than

wasted by the circuit.

The device state across charge-discharge cycles, i.e. across power failures, follows one

of two models: the sleep-model or the power-off model. In the sleep model, the device

enters a sleep state upon the close trigger, i.e. the instance when the energy path from the

capacitor to the load is closed. In the power-off model, the device turns fully off at that

instance. Unlike in the power-off model, in the sleep model, some (volatile) state persists

across device charge-discharge cycles. This state may be any subset of all contents of volatile
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memory, a designated region of volatile memory, registers, and peripheral configurations and

memory-mapped registers (e.g. timer counters). States that retain the smallest subset may

be referred to as hibernation or deep sleep, but are adequately described by the same sleep

model.

The sleep model implies that the device consumes energy at all times and that the incom-

ing power from the harvester is greater than that consumption. Whenever this assumption

is not satisfied, the sleep model is inappropriate, and the device behaves according to the

power-off model. In the power-off model incoming power is allowed to go to zero, and the

device will charge and boot whenever power becomes available again. The appeal of the

sleep model compared to the power-off model is the reduction of wake-up time and overhead

needed to resume execution. However, the sleep model is less general than the power-off

model. The power-off model is more general than the sleep model, because the former does

not make any assumptions about the power state after the path is closed. No state that

requires energy to be retained is preserved across charge-discharge cycles. In this work, we

adopt the more general power-off model and do not consider the sleep model any further.

2.4.1 Open triggers

The device exits the power-off (or sleep) state in response to an open trigger that opens the

energy path from the capacitor to the load, and the device enters the power-off (or sleep)

state in response to a close trigger that closes that energy path.

An open trigger may be implemented as a threshold on the capacitor voltage that when

crossed closes a hardware switch between the capacitor and the load or between the capacitor

and the output power conditioning circuit (if present). The schematic of such a trigger

circuit is shown in Figure 2.5. The threshold can be fixed in hardware at design time,

fixed in hardware but configurable with small changes to the component values in hardware,

or programmable at runtime. A fixed threshold can be implemented by a voltage divider,

comparator and a voltage reference. The comparator and voltage reference are also available
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Figure 2.5: Circuit that implements a threshold-based hardware open trigger. Two variants
are shown: threshold fixed by component values (either divider resistors or voltage reference)
and threshold that is programmable from software.

in a single IC as a voltage supervisor (or reset supervisor) component, e.g. BU49xx. A

divider may be necessary to bring the capacitor voltage within the range of the reference.

The output of the comparator drives a high-side switch on the load path, e.g. a P-channel

MOSFET or a dedicated switch IC like SIP32431. To reconfigure the threshold at design

time, either the reference, the supervisor, or the divider components need to be replaced.

Supervisors are generally available in small voltage steps, e.g. 0.1V, while references are more

common in a few standard values. The overheads of the fixed hardware implementations are

leakage current, area, and cost.

A hardware implementation of an open trigger that is reconfigurable at runtime is also

shown in Figure 2.5. This implementation includes a resistor network, i.e. a set of voltage

dividers, instead of the single voltage divider in the fixed design. One potential implemen-

tation of a resistor network is a digital potentiometer. The primary requirement is that the

network maintain its setting across power failures, i.e. while the circuit is unpowered, since

otherwise any threshold setting applied while the device is executing will be lost as soon
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Figure 2.6: Circuit that implements a threshold-based partially-software open trigger, using
on-chip components commonly available in general-purpose microcontrollers. Two variants
are shown: interrupt-based using a comparator and polling-based using an ADC.

as the execution cycle ends, which will happen before the threshold gets used in the next

cycle. A non-volatile digital potentiometer fulfills this requirement, however potentiometers

based on EEPROM non-volatile memory have limited endurance. A potential alternative

is a resistor network implemented by discrete transistor switches with gate capacitors that

maintain the switch state for a limited time after power is lost. The overhead in leakage

current, area, and cost of a hardware trigger with reconfigurable threshold is higher than

that of a fixed hardware implementation described previously and that of a reconfigurable

partially-software implementation described next.

A partially-software implementation of an open trigger relies on the processing core and

on-chip peripherals in a microcontroller, as shown in Figure 2.6. This design charges the

capacitor with the MCU connected to the capacitor, assuming that the MCU sinks negligible

current until the capacitor voltage reaches the MCU’s minimum voltage. When the capacitor

voltage reaches the microcontroller reset threshold, the microcontroller begins executing an

initialization routine that configures the wakeup interrupt and puts the core to sleep to

wait for the capacitor to continue charging. The wakeup interrupt comes from an on-chip

peripheral that monitors the voltage while the core is in a sleep state and wakes up the core

when the voltage crosses the threshold.
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An interrupt-based implementation of the partially-software open trigger uses the on-chip

comparator while the polling-based implementation uses the on-chip ADC and a timer to

periodically wake-up the core to sample the capacitor voltage. A potential advantage of the

polling implementation is the lower current in sleep mode, since only a (slow) clock for the

timer needs to be kept active as opposed to a reference and a comparator. In both cases,

an external voltage divider is required to scale the capacitor voltage within the reference

voltage. The value of the divider resistors must be maximized to limit the leakage current

through the divider, subject to the input impedance of the input to the comparator or ADC.

The interrupt-based implementation may support either a fixed threshold or a threshold

configurable at runtime. A fixed-threshold variant of this design uses the on-chip reference

connected to the on-chip comparator. The edge-triggered interrupt on the comparator output

wakes up the core. A programmable-threshold variant is implemented using the on-chip

resistor network on the input to the comparator. The resistor network tap point is set by

the initialization routine that runs on every boot. The polling-based implementation sets up

a periodic timer to run a routine that acquires a sample from the ADC channel connected

to the capacitor (through a divider) and compares the result to a threshold.

The partially-software design minimizes the area and cost of the hardware, however it

adds energy overhead and consumes an analog input pin on the microcontroller. The energy

overhead is the power consumption of the microcontroller and any sensors or actuators on

the same voltage domain, the power consumption of the on-chip reference, comparator or

ADC, resistor network, and the external voltage divider, and the output power conditioning

circuit. Since the power conditioning current is part of overhead, the partially-software

design is not attractive when output power conditioning is present. The output power

conditioning may have a power consumption (78 µA for TPS61202) much larger than that

of a sleeping microcontroller (< 1 µA for MSP430FR5969 [173]). The energy loss in this

design, even without a power conditioning circuit, may be significantly larger (e.g. 10 µA

for MSP430FR5969 [173]) than that of a fixed-threshold external hardware implementation
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(e.g. 0.5 µA for the BU49xx supervisor [144]).

The partially-software design does not rely on an external switch on the load path.

Instead, it assumes that when the microcontroller is in a sleep state the load consumes less

power than the power incoming from the harvester: Psleep < Pin. When the load is in this

low-power state, we consider the load energy path closed. For the assumption about relative

sleep power and input power to hold, the sleep state must be efficient and the external

peripherals (e.g. sensors, radios) must either be in a separate voltage domain with a power-

gating switch or or startup into low-power sleep mode by default. A simple implementation

of a separate voltage domain is using a microcontroller general-purpose I/O (GPIO) pin as a

power supply, in cases when it can source sufficient current for the peripheral, or an external

switch. Separate voltage domains may require a level shifter between the sensor and data

buses or GPIO pins.

2.4.2 Close triggers

Besides choosing an open trigger, the power system design must also choose a close trigger at

which the flow of energy from the capacitor to the load will stop. The simplest close trigger

is the implicit brown-out event in the microcontroller. The brown-out event occurs when

the microcontroller supply voltage drops below the minimum required for its operation. A

supervisory circuit inside the microcontroller might assert the reset line to stop instruction

execution and prevent corruption. A brown-out state is distinct from a proper sleep state and

may have a higher power consumption initially. However, this close trigger design assumes

that as the supply voltage continues to drop, the microcontroller will eventually reach a

state with a power consumption that is low enough to charge. This brown-out close trigger

is implicit: it requires no components or software logic and incurs no overhead. However, it

also provides no information to the software about the power failure event.

An explicit close trigger is a bottom threshold on the capacitor voltage. When the

capacitor voltage drops below the threshold, the energy path from the capacitor to the
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load is closed. Similarly to the open trigger designs introduced above, this close trigger

design requires introspection hardware to monitor the capacitor voltage. Implementations

may support fixed or programmable threshold and may be based on interrupts or polling.

An interrupt-based fixed-threshold implementation uses an external comparator, while a

programmable-threshold implementation uses the internal comparator with a resistor net-

work. In either case, if output power conditioning outputs a regulated voltage to the load,

that voltage may be used instead of a dedicated reference, to reduce power consumption

overhead. Incidentally, a regulated output reference is not an option for the open trigger

implementations since the output is not active during charging.

The internal comparator design can re-use the same comparator to implement both a

partially-software open trigger and a close trigger. An external comparator design must

dedicate a comparator to each trigger. A polling-based programmable-threshold relies on the

ADC to periodically sample the capacitor voltage and can re-use the same ADC channel and

timer as a partially-software implementation of the open trigger. The trigger points may be

generated by a timer interrupt, in the same way as for the partially-software implementation

of an open trigger, or by instructions inserted into the program statically. The requirements

for an external voltage divider are the same as for the close trigger implementations, and

the same considerations for minimizing leakage apply.

The energy overhead of the close trigger designs is the same as for the corresponding open

trigger designs. However, in contrast to the open trigger circuits, the circuits for the close

trigger consume energy while the device is on and the microcontroller is executing code. In

this state, the energy overhead of the trigger circuit is dominated by the energy consumption

of the active microcontroller (e.g. over 100 µA at lowest frequency for MSP430FR5949,

which is at least an order of magnitude higher than the trigger overhead cited previously).

Besides the hardware overhead concerns, the close trigger introduces the problem of tuning

the threshold. A system that employs a threshold-based close trigger to interrupt software

execution, such as the just-in-time checkpointing systems that will be reviewed in Section 3.3,
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must choose a threshold value appropriate for the software. The threshold choice transcends

hardware design, because it must take into account the energy cost of software operations,

such as saving a checkpoint. These costs are challenging to estimate, because they vary with

execution context, i.e. the state of the program and of the hardware configuration.

Having introduced the implicit close trigger and the explicit close trigger based on capac-

itor voltage, we must also consider an explicit close trigger that is linked not to the capacitor

voltage but to a software action. The software may choose to close the energy path from

the capacitor to the load in order to stop the device from consuming energy and start ac-

cumulating energy instead. The simplest, software-only implementation of this trigger is a

instruction that transitions into a sleep state. An alternative, hardware implementation re-

quires a switch between the capacitor and the output power conditioning circuit (if present)

or the load. The switch may be a dedicated high-side load switch IC, e.g. SIP32431, a

discrete p-channel FET, or an enable switch that is built into the power-conditioning IC

(e.g. the enable feature of a DC-DC converter). The hardware switch control is exposed to

the software through a digital GPIO pin on the MCU.

The software and hardware implementations differ in their efficiency of accumulating

energy. The energy that can be accumulated is the difference between the input energy

and the energy that continues to flow to the load. In the software-only implementation,

when the microcontroller is in a sleep state, parts of its internal circuits are power-gated,

however the microcontroller and the output power conditioning circuits (if present) continue

to draw current from the capacitor. In contrast, a dedicated switch can gate power to

the entire circuit connected to the capacitor, limiting the overhead current to the reverse

leakage current through the switch (e.g. under 1 µA for SIP32431 load switch). When the

hardware switch is closed, however, it also dissipates power due to its non-ideal on resistance,

Plost = I2
loadRon. For a load of Iload = 2.6 mA (MSP430FR5949 at maximum frequency and

Ron = 500 mΩ (worst-case specification for SIP32431), the lost power is below 5 µW, or

0.05% of the active power of the MCU at 2.4 V. Similarly to the close trigger based on
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capacitor voltage threshold, the implementation of the capability opens the challenge of

deciding when should the software close the energy path, which we discuss in Section 2.6.

Besides supporting an open or close trigger, introspection of the capacitor voltage may be

needed for high-level decision-making in the application, e.g. to reduce workload in response

to the depleting energy resource. This introspection can be implemented by connecting the

capacitor to an ADC channel, through a voltage divider to match the range of the internal

reference. An important consideration in this circuit are two leakage currents through the

divider: (1) the path to ground through the top and bottom resistors in series, and (2) the

path through the protection diode from the analog input pin to the microcontroller supply

rail (VDD). To minimize leakage through the first path, either resistor can be maximized.

The second path is a concern when there is an output power conditioning circuit (including

a simple switch) between the capacitor and the load, because in this case the voltage on

the analog input pin will exceed the voltage on the supply rail whenever the output is not

activated. In this state, the protection diode conducts, wasting energy. To minimize this

waste, the top resistor in the divider should be maximized, and the output impedance of

the divider should be reduced (such that it is well below the input impedance of the analog

pin) by reducing the value of the bottom resistor. An alternative approach is to include a

high-side analog switch between the capacitor and the pin and enable it only when the MCU

is powered (and introspection is desired). A second alternative is to use an external ADC

with unprotected inputs.

2.5 Non-volatile memory

To run programs that take more time to complete than the time the capacitor takes to

discharge, the program state must be preserved across power failure and restored each time

the processor reboots. Since in the general power-off model no power is available to power

any volatile memory, the program state must be preserved in non-volatile (NV) memory that
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does not require any power to keep its contents. The presence of non-volatile memory on the

device becomes a requirement in the power-off model. The properties of and the interface to

the non-volatile memory available on the device must inform the design of the mechanisms

for saving and restoring state to and from it. The key properties of non-volatile memory are

the energy cost for reads and writes, the granularity and type of the read/write interface,

and endurance. Non-volatile memory may be available on-chip in the microcontroller or

in a dedicated IC that is connected to the microcontroller over a serial or parallel bus.

However, a dedicated memory IC, regardless of the underlying technology, cannot provide a

LOAD/STORE interface since a microcontroller does not expose its internal memory bus.

The memory technologies potentially suitable for energy-harvesting devices that are avail-

able today include Flash (including EEPROM) and ferroelectric memory (FRAM). Both

Flash and EEPROM require a relatively high voltage and current for the write (and erase)

operation. Flash is dense but has a low endurance and must be erased before over-writing.

The erase operation must be performed explicitly and at block granularity as opposed to at

byte granularity. EEPROM, a subset of Flash devices, can be read and written at byte granu-

larity, but the endurance of such devices is low. FRAM is a byte-addressable, high-endurance

memory [168, 169] with low power reads and writes. When it is integrated on-chip, FRAM is

accessible over the same LOAD/STORE interface as volatile SRAM. The main downside of

FRAM is lower density compared to Flash, which is a relatively low priority requirement for

the primary non-volatile memory in energy-harvesting devices. High-density storage in the

form of Flash SD cards, for example, may be added alongside a primary FRAM-based store.

In summary, FRAM is the best non-volatile technology for these devices available today.

2.6 Software on intermittently-powered platforms

Under a tight size constraint on the harvester, the hardware power system cannot power the

processor continuously. The processor can stay on only for a relatively short interval, Ton,
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Figure 2.7: Charge-discharge cycle of an energy-harvesting device that forces the processor
to compute intermittently.

before the energy in the capacitor is exhausted and power to the processor is lost. The power

loss event corresponds to the close trigger that closes the energy path from the capacitor

to the processor. After the Ton interval, the processor must stay off for a Toff interval, until

the capacitor is charged again, and the open trigger re-opens the energy path. For example,

for the WISP [149] RF-powered device equipped with a 10 µF capacitor, at 1 meter away

from the antenna of a 30 dBm RF source, the intervals are approximately Ton < 5 ms and

Toff > 80 ms. On intermittently-powered hardware, software can only execute in bursts

that are Ton long and is interrupted at the end of each such interval. Since in our general

power-off hardware model (cf. Section 2.4), the processor loses power at each interruption,

the software loses some program state, which includes the program counter. We define this

execution in bursts with loss of state between bursts as the intermittent execution model.

Intermittent execution is illustrated on the timeline in Figure 2.7. The intervals when

the processor computes are highlighted in green. The length of each compute interval is

determined by the capacitor size, and by the incoming power and efficiency of input power

conditioning, ηin, and of output power conditioning, ηout, (if either is present). Under the

simplifying assumption of a constant input power, constant load current, and constant effi-

ciency (as a function of voltage and time), the length of the active interval is

Ton =
1/2C(V 2

top − V 2
bottom) + ηinPin

1
ηout

IloadVload

At the end of each compute interval, the processor loses power, and the program loses
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some of its state. The program loses all state that resides in volatile structures of the

processor, i.e. registers, SRAM memory, caches, memory-mapped I/O registers of on-chip

peripherals, and the off-chip peripheral registers and configuration. To resume the execution

after the device boots again at the beginning of the following compute interval, the program

or the runtime system must save some state to non-volatile memory during the execution

and restore it upon reboot. Which state is being saved and when it is saved determines the

overhead the program incurs in the intermittent execution model. The following chapter

will present several systems for preserving progress using non-volatile memory that were

proposed previously and Chapter 4 will present our approach.

Interruptions of the program due to power failure may change the semantics of the pro-

gram when that program contains I/O. A program that performs only computation has the

same semantics in the continuously-powered execution model and in the intermittent exe-

cution model, because the computation code will produce the same result whether or not

the task is interrupted and resumed. However, a program that performs I/O will not have

the same semantics in the intermittent execution model, because most I/O tasks will not

succeed if interrupted and cannot be resumed from a partial execution. For example, the

transmission of a radio packet must continuously modulate the radio wave for the duration

of the packet. If the device loses power in the middle of a packet transmission, the receiver

will not be able to decode the symbols and the packet will be lost.

Furthermore, intermittent execution may change semantics if the program makes as-

sumptions about time between different operations. For example, a program that reads two

samples in sequence, e.g. temperature and pressure, will get a pair of samples correlated

in time if executed on continuous power but not on intermittent power. In the intermit-

tent execution model, a power failure may occur between the two samples, introducing a

potentially large delay between them. Due to this problem, the software and hardware of

an energy-harvesting system must be co-designed such that the capacitor supports an active

interval, Ton, that is long enough for uninterruptible software tasks in the application.
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In addition to the change in semantics, the intermittent execution model also brings

a change in efficiency. Efficiency is a composition of tightly related, but not necessarily

interchangeable, metrics: time taken to execute a program and energy consumed to execute

that program. The immediately apparent increase in program execution time, relative to

the continuously powered baseline, is the time the device spends off to charge its capacitor.

Additional energy is lost when charging and discharging the capacitor (Section 2.2) and

converting energy in power conditioning circuits (Section 2.3). A secondary source of time

and energy inefficiency are the software overheads. First, the software incurs an overhead to

save and restore program state to and from non-volatile memory to resume execution after

power failures. Second, intermittent execution raises the possibility of wasting work, i.e.

time and energy, on re-execution. Some code that already executed in a previous compute

interval may need to be re-executed in the following compute cycle, unless the system is

able to resume computation precisely at the point where it was interrupted. In the next

chapter we discuss the trade-offs in the previously-proposed systems that fit this category.

Minimizing these software overheads motivates the work proposed in this thesis.

2.7 Debugging and maintenance

After the hardware and software of an energy-harvesting device has been designed, with the

considerations described in this chapter, but before the device can be deployed, it must be

debugged and tested. After deployment, the device may require maintenance in the form of

software updates and telemetry data collection. Tools available to an application developer

today are simulators, oscilloscopes, logic analyzers, and JTAG debuggers.

The part of the development that can be done in simulation with an instruction-level

or a cycle-accurate architectural simulator is limited by the simulator’s limited scope. An

architectural simulator focuses on the processing core and cannot easily simulate the other

components on the board, i.e. on-chip peripherals and off-chip sensors, actuators, and power
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conditioning circuits. An architectural simulator does not model the energy input from the

environment and the behavior of all devices on the board under a variable voltage, especially,

their energy consumption. An environmental model for energy production and consumption

that is sufficiently detailed to capture the phenomena experienced by energy-harvesting

devices would be difficult, if not impossible, to construct analytically [108] and expensive to

simulate in real-time.

Without a simulator, development proceeds by building custom circuit boards and us-

ing tools designed for continuously-powered devices to characterize and debug both the

energy-harvesting hardware and the software. The main tools include oscilloscopes, logic

analyzers [147], energy consumption gauges (e.g. TI Energy-Trace [170]), and JTAG debug-

gers. Debugging software using these tools is challenging, because oscilloscopes and logic

analyzers can inspect hardware interfaces but not program state, while JTAG debuggers

cannot operate with an intermittently-powered device. Recently, specialized tools, e.g. for

emulating an energy-harvesting environment, are emerging, which we review in detail in the

next chapter. Debugging and maintenance is a major obstacle that hinders the adoption of

energy-harvesting platforms by application developers. This problem motivated specialized

debugging and instrumentation tools to be part of the system support proposed in this thesis.
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Chapter 3

Related Work

Energy-harvesting is an emerging field with problems that span research domains. In this

section we review the prior research on problems most relevant to our work on intermittent

computing. In Section 3.1, we begin at the hardware level with a review of energy-harvesting

devices that have been built. We focus on hardware mechanisms for managing energy and

keeping time in Section 3.2. We trace the evolution of computation on intermittent power

in Section 3.3. Since some approaches rely on estimating energy at compile time, we re-

view research in that area in Section 3.4. Section 3.5 discusses the work in debugging and

maintaining software on energy-harvesting devices.

3.1 Energy-harvesting platforms

An energy-harvesting platform is a battery-free alternative to a battery-powered sensing

mote, such as Telos [133], Epic [53], Synergy [5], Amulet [65], Eco [129] and many others,

including commercial products, e.g. iBeacon [6]. Hybrid battery-powered platforms use

energy-harvesters to recharge batteries. ZebraNet collars [81] were one of the earliest devices

to use a solar panel to charge a battery. Heliomote [135] is a generic solar-harvester with a

permanent battery that informs an application of instantaneous battery and panel voltage.

Trinity [189] is an HVAC sensor that harvests energy from air flow to charge a thin-film
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battery. DoubleDip [109] water usage monitor re-charges a small lithium battery using a

thermoelectric harvester attached to hot and cold pipes and uses a capacitor to extend the

life of the battery. Similarly, Prometheus [78] increases rechargeable battery lifetime by

operating from a supercapacitor when solar energy is available. In the Everlast [156] mote,

the efficiency of charging a (large, battery-scale) supercapacitor is improved with a custom

charging circuit that tracks the maximum power point of the panel. EnHANTs [108] are

indoor solar-powered tags with a thin-film battery and active bi-directional radios capable

of forming a network. The stacked 1 mm3 sensing platform [95] charges a thin-film battery

in the bottom layer with a solar panel in the top layer, and provides image and temperature

sensors and an optical programming interface.

Battery-powered devices or hybrid devices with an energy-harvesting battery charger have

some advantages over battery-free devices. Ultimately, application constraints determine

which is plausible and which of the plausible ones is best. For example, only battery-

powered devices can be deployed in places without an ambient energy source. On the other

hand, batteries are not attractive for deployment in places where they cannot be easily

accessed for replacement when their lifetime inevitably expires, e.g. inside a structure or a

body. Compared to battery-only or hybrid power supplies with battery chargers, energy-

harvesting power supplies eliminate the battery to extend the lifetime of the device, reduce

weight and size, and improve robustness to harsh operating conditions.

Energy-harvesting devices available today harvest light, RF, motion, heat flow and other

sources surveyed in the literature [165, 154, 161]. WISP [149], WISPCam [116], Solar-

WISP [61], and Moo [196] are sensor nodes with a general-purpose microcontroller, an ac-

celerometer, and a CCD camera (on WISPCam only) that are powered by an RFID reader

(915MHz) and a solar panel (SolarWISP only). These devices receive from and transmit

to the reader using the backscatter method, driven by a software implementation of the

RFID protocol. Bistable e-paper tags [49] are updated using an NFC transmission from a

smartphone and display the content without further energy input. A sensor node powered by

36



ambient RF energy [130] continuously samples temperature and light level and transmits the

data wirelessly. Self-powered human-machine interfaces, e.g. a push-button [127], a rotary

knob [179], or touch-sensitive paper [86], send a control command over radio in response to a

user interaction. Leaf nodes in the Sensornet Tree [193] are powered by indoor light, include

output power conditioning (cf. Section 2.3), and communicate with battery-powered nodes

in the tree using an off-the-shelf radio IC. Eternal camera [119] takes pictures with a matrix

of photo-sensitive elements each of which is powered by the light that it images. Monjolo ar-

chitecture [47] interprets the energy harvester output as a signal to infer a physical quantity

of interest, e.g. electric load.

KickSat [194] is a battery-free solar-powered board-scale satellite capable of sensing the

magnetic field, temperature, and inertial quantities, and processing the data, and transmit-

ting packets to Earth using an off-the-shelf radio IC. The original KickSat design is effectively

unbuffered, i.e. it will successfully transmit radio packets only as long as the solar panels

source more current than the radio consumes, which may not be the case if the satellite is

oriented at an obtuse angle towards the sun. Chapter 8 presents an alternative implementa-

tion of a satellite in the KickSat form factor, using the same communication stack, but with

extended energy management capabilities, and a wider range of ambient energy conditions.

A notable subset of energy-harvesting devices, e.g. the energy-harvesting cell-phone [164]

and video camera [115], operate without an energy buffer, i.e. the device is either on at a

100% duty-cycle or not on at all. This is a special case possible when harvested power exceeds

the power consumed by the load (cf. Section 2.2). Devices in this category can be viewed

as wireless transducers (sensors), rather than as computing nodes. Because computation

on such devices usually does not span power failures, the intermittent execution model

(Section 2.6) is a valid but not a necessary description. In this work we focus on energy-

harvesting devices with on-board compute capability powered by harvesters weaker than the

load.

To have a chance on the market, the design of an energy-harvesting computer should be
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specialized to a particular application. However, applications can be prototyped on generic

versatile platforms that support the combination of harvesters and features needed by the

particular application. Flickr [67] is a modular development platform that supports multiple

types of harvesters as well as multiple sensors and processors, as pluggable daughter boards

with an intelligent power distribution mechanism (cf. UFoP in the next section). Energy-

harvesting modules already on the market, e.g. from Powercast [134] and EnOcean [55],

accelerate development of energy-harvesting platforms by providing a complete power system

on a mini-board for attaching to a device as a single component with a simple interface.

Chapters 6 and 8 expand this set of platforms with another versatile prototyping platform

that offers a choice of two harvesters – solar or RF (an implementation of the harvester design

on the WISP [149]) – and a power system with novel energy-management capabilities.

3.2 Hardware for energy and time management

Besides the type of supported harvesters, energy-harvesting platforms are distinguished by

the energy-management capabilities of their power system. The power system determines

how much of the input energy ultimately becomes available to the application and when

it is made available. Chapter 2 explained how power conditioning circuits and different

capacitor technologies affect the energy that becomes available to the application. In this

section, we review hardware mechanisms proposed for managing how energy is accumulated

and consumed as well as for providing services such as time keeping to the application.

An energy-harvesting device has one or more harvesters (energy producers) and one or

more loads (energy consumers). The energy management mechanism inside the power system

must combine the energy flow from each harvester, buffer the energy, and then distribute the

buffered energy among loads. Focusing on the energy producer side, Ambimax [128] proposes

to dedicate a separate capacitor to each harvester, in order to charge each capacitor at the

maximum power point of the respective harvester. Recent work, discussed in detail below,
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has addressed energy distribution on the load side, across peripherals with disparate energy

demands.

Starting with the observation that allowing all peripherals unrestricted access to a shared

energy buffer may degrade application performance, the federated energy storage design

(UFoP) [66] dedicates separate capacitors to the MCU and each peripheral. The power

distribution circuit charges the capacitors in a priority order, at expense of losing some

energy in the resistor-based implementation of the circuit. Federation partitions energy is

hardware and offers limited control to the software. By dedicating a separate energy buffer

to each peripheral, federation trades off the ability to re-direct energy stored in those buffers

at runtime. Alternatively, the dedicated assignment of capacitors can be relaxed using a

specialized DC-DC converter [24] that supports bidirectional energy flow, including flow

from a capacitor to the DC-DC converter into another capacitor. The trade-off of dedicating

energy buffers to different components is a manifestation of the classic conflict between a

shared and a partitioned resource.

The opposing side of the trade off has been explored in the Dynamic Energy Burst Scaling

(DEBS) [57] hardware design that allows the software to programmatically request an energy

burst at runtime. By provisioning an energy burst of a controllable magnitude, with DEBS

software can avoid task fragmentation across power failures, minimizing the save/restore

overhead, and thus reducing the total energy required to execute a sequence of tasks. DEBS

is implemented on a platform that uses the partially-software open trigger (cf. Section 2.4)

with a programmable capacitor voltage threshold (Vtop). Chapter 6 presents an alternative

mechanism for letting software control the amount of buffered energy, which does not rely

on the partially-software open trigger and has a lower start time from an empty buffer.

Energy management across multiple storage elements also arises in mobile devices (e.g.

laptops), which may feature multiple batteries. However, unlike in the energy-harvesting

context with multiple loads, in the mobile device context, multiple batteries are used to ul-

timately emulate a single battery but with better properties. Software defined batteries [12]
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used this approach to increase the effective capacity under varying load currents. The prob-

lem of distributing energy across storage elements located on different nodes in a network

has been explored in [199], which supported energy sharing via wires.

Energy management mechanisms within the above categories are complimentary to hard-

ware and software mechanisms for reducing power consumption with or without sacrificing

performance, e.g. Dynamic Voltage and Frequency Scaling (DVFS) [157] and Dynamic

Power Management (DPM) [20], automatic power-gating and scheduling in hardware or in

software [96, 50, 200]. Since energy-harvesting devices benefit from these techniques in the

same way as battery-powered or even general-purpose plugged-in computers do, this thesis

does not investigate such energy-saving techniques, but focuses on the challenges unique to

intermittently-powered devices.

The service provided by the hardware to the software application may extend beyond

energy management to time keeping. Time keeping is a useful service that is readily available

on battery-powered nodes, but is a challenge to provide on energy-harvesting devices [68].

When an energy-harvesting device has no incoming power, and has exhausted its own stored

energy, it cannot power a clock and therefore cannot keep time. Although this was not

investigated in the original publication, the federated energy storage approach [66] could be

applied to dedicate a capacitor to a Real-Time Clock (RTC) component. Alternatively to an

actively-powered RTC, time can be estimated by measuring the self-discharge of a (dedicated)

capacitor [69] or by counting the cells in SRAM memory whose value has decayed since losing

power [137]. While the time keeping problem is out of scope of this thesis, it is of utmost

importance for energy-harvesting platforms, since this capability is a prerequisite for a large

class of applications, e.g. collecting timeseries of samples and synchronizing clocks across

devices to enable communication.
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3.3 Computation on energy-harvesting devices

The intermittent execution model defined in Section 2.6 implies that to compute on an

energy-harvesting device, the computation task must either be small enough to finish within

one active period or the system must preserve execution state in non-volatile memory. Dew-

Drop [28] was the first system to support intermittently-powered devices for programs in the

former category, composed of single-shot self-contained tasks. DewDrop’s scheduler analyzed

available energy and the expected cost of executing a task, and scheduled the task only if

the analysis predicted it would complete before energy was exhausted.

Mementos [141] later extended support to programs of arbitrary length, written in the C

language. Mementos runtime preserved state across failure periods by periodically copying

volatile state into a checkpoint saved in non-volatile memory and restoring the state from

the last completed checkpoint upon each reboot. A compiler pass part of Mementos inserts

energy-state checks at loop backedges and function returns. An energy-state check triggers

a checkpoint copy operation if the energy in the capacitor is below a threshold. If introspec-

tion hardware for sensing the capacitor voltage (which costs area and energy overhead, cf.

Section 2.4) is unavailable (e.g. on the WISP [149] device), Mementos saves a checkpoint

at each energy check. Mementos includes an optional timer-based mechanism for skipping

energy checks, which effectively spaces checkpoints at a particular time interval. This time

interval does not have a direct relationship with energy consumption, but energy consump-

tion determines whether checkpoints are close enough for the program to make progress. If

checkpoints are throttled to a period that generates code segments too large to complete

on one capacitor charge (cf. Section 2.6), the program may never complete, i.e. it would

become a Sisyphean task, in Mementos terminology.

DINO [101] later observed that applications that write non-volatile state as part of the

program, risked executing incorrectly under Mementos, because Mementos could leave non-

volatile program state inconsistent with the (volatile) program state saved in the non-volatile

checkpoint. This memory consistency problem arises in any system that (1) ignores non-
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volatile state when saving checkpoints and (2) does not guarantee that execution will reach

the next checkpoint before power fails (and volatile state is lost). The memory consis-

tency problem induced by intermittent execution is an instance of the more general crash

consistency problem studied in data bases [58], file systems [25], and non-volatile memory

systems [145, 36, 180, 198, 131, 178, 117, 52] and file systems for non-volatile memory [191].

Crash consistency is ensured by one of many logging mechanisms, implemented in soft-

ware [145] or hardware [198, 122], that fall into the general category of a transactional

system [58]. Transactional memory (TM) in hardware [64] and software [155, 63, 32] also

aims to make code atomic, but targets systems with volatile memory, not a mix of volatile

and non-volatile memory, and with parallelism among access requests to the memory, which

does not exist in simple low-performance processors in the energy-harvesting scale. Some

systems for intermittent computing, including our approach in Chapter 4, places all code in

a transaction (i.e. task), which is a concept applied in TCC-like memory models [62, 93].

Unlike in server, desktop, or mobile battery-powered systems, in intermittent systems

failure is the common case, and the recovery procedure is on the critical path, since it executes

every charge-discharge cycle. Much of the work in non-volatile memory systems outside of

the intermittent computing domain, investigates designs that eliminate the performance

bottleneck of the persistence barrier, analogous to a synchronization barrier, by allowing

non-volatile accesses to be overlapped [131, 198]. Energy-harvesting systems are much lower

performance, e.g. there is only one thread of execution and access to non-volatile memory is

synchronous, through one port, with no re-ordering, and no cache or a write-through cache.

The barrier-induced performance bottleneck does not arise on such systems, rendering much

of the work on improving performance of non-volatile (transactional) systems not applicable

to this domain. The relative overheads to recover and to save state, lack of parallelism,

availability of a load/store interface to persistent storage, lack of hardware support, among

other differences, motivate the design of specialized transactional systems for intermittently-

powered devices undertaken in this thesis and in the cited related work. Chapter 4 explores
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the memory consistency problem in more detail and illustrates the two vulnerability criteria

introduced above with an example.

DINO [101] resolves the consistency problem by neutralizing the first clause of the vulner-

ability criteria: DINO saves a version of non-volatile state along with a copy of the volatile

state into the non-volatile checkpoint. Non-volatile state that needs to be versioned, i.e. that

is modified between two checkpoints, is identified and added to the checkpoint by a compiler

pass. However, DINO inherits the challenge of checkpoint placement from Mementos. Like

with Mementos, with DINO, programs may fail to complete if checkpoints are throttled ag-

gressively or may incur a high overhead (for checking the energy state and copying data) if

checkpoints are not throttled at all. Chapter 4 presents an alternative approach to support-

ing computations based on statically-defined tasks instead of checkpoints. The task-based

approach requires neither checkpoints, as Mementos, DINO, and Ratchet [177] (discussed

below) do, nor introspection hardware for measuring the energy-state, as Mementos and

DINO do.

Our task-based approach was adopted in later work, Alpaca [106], that introduced a com-

piler analysis for privatizing non-volatile state into local volatile variables and committing

the writes to non-volatile memory at task boundaries. Unlike our approach, Alpaca supports

shared access to non-volatile variables by multiple tasks, which simplifies the programming

model, at the cost of privatization and commit overhead. In an alternative approach taken

by Ratchet [177], tasks are defined implicitly by idempotent regions [46, 45] identified by

a program analysis, and an unconditional checkpoint is inserted at the end of each region.

Clank [70] is another approach based on idempotent-regions, which identifies the regions

dynamically, at runtime, using a special-purpose custom hardware module proposed to be

added to the microcontroller. Dynamic tracking of loads and stores eliminates the conser-

vatism of the compile-time idempotence analysis due to pointer aliasing, at the cost of the

tracking overhead, either hardware, as in the case of Clank, or software, as in the case of

accesses to arrays in Alpaca. Idempotent region construction has been revisited with condi-
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tional checkpoints [190], taken only when a compile-time estimate of the energy consumption

of a region exceeds the energy in the capacitor measured at runtime. This system predicates

its correctness on the assumption that energy consumption of a code region executing on

a complete embedded system can be estimated using a measurement-free model based on

assembly instructions alone. We discuss why this assumption does not hold for a practical

energy-harvesting device, and revisit the open problem of energy estimation in Section 3.4

and Chapter 5.

The Variable-Grained system [14] uses compile-time dominator tree analysis to automat-

ically decompose a program into atomic regions such that each region has a single entry.

Consistency of program state is ensured by maintaining two logs: (1) a non-volatile undo

log with old values of overwritten non-volatile memory locations, which is replayed in re-

verse upon each recovery, and (2) a redo log with updates to volatile state so that these

updates can be applied atomically at the end of each region to the checkpoint of volatile

state kept in non-volatile memory. Our task-based approach presented in Chapter 4 ensures

that programmer-defined tasks are idempotent without requiring any logging overhead, by

restricting access to persistent state. HarvOS [21] statically estimates memory consumption

(and consequently the size of checkpoints) at different points throughout the program and

optimizes the placement of checkpoints to minimize the checkpointing overhead.

Unlike our task-based approach and Alpaca, the systems Ratchet, Clank, and Variable-

Grained form regions automatically without accounting for their energy consumption and the

energy storage of the device. In the Variable-Grained system region size can be constrained

by the number of dynamic instructions, but not by energy cost. The size of such energy-

agnostic regions depends on load/store patterns in the code, which may either bound them

to a small size, producing a larger checkpointing overhead than necessary, or let them grow

without bound, creating a risk of non-termination due to exceeding energy storage capacity.

Furthermore, unlike statically-placed task boundaries in DINO and unlike our task-based

approach, such implicitly-constructed regions do not readily support programmer-defined
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atomic tasks that should not be resumed mid-way after interruption by a power loss mid-way,

even if the system guarantees that program state would remain consistent (cf. Section 2.6).

An alternative approach to avoiding the inconsistency problem is to neutralize the sec-

ond clause of the vulnerability criteria: guarantee that the execution will always reach a

checkpoint before power fails. There have been several approaches to fulfill this guarantee.

Just-in-time checkpoint systems [17, 16, 111, 76] trigger a checkpoint when an energy-sensing

hardware circuit detects the capacitor voltage drops below a threshold. Assuming the worst-

case energy cost of the checkpoint can be reliably bounded, and the voltage threshold is set

such that it triggers while there is at least that much energy remaining, then the check-

point will be guaranteed to complete. Hibernus [17] was the first system to propose the

just-in-time checkpointing approach with fixed thresholds. Hibernus was later extended in

Hibernus++ [16] with a mechanism for measuring worst case checkpointing cost to provide

a less conservative estimate of the checkpointing trigger threshold, and a mechanism for

measuring the power output of the energy source (by periodically pausing the execution)

to adapt the turn-on threshold to the energy source. In terminology from Section 2.4, the

turn-on threshold is the open trigger threshold that determines the amount of energy to

accumulate before beginning computation. QuickRecall [76] is a just-in-time checkpointing

approach for systems which allocate all program state into non-volatile memory. Check-

points in QuickRecall only need to save registers, and thus are very light-weight, however

all memory accesses consume more energy and may take more than one cycle because they

access non-volatile instead of volatile memory.

A further optimization to the Hibernus [102] just-in-time checkpointing system proposed

to enter an SRAM-retaining sleep state if capacitor voltage approached the critical last-

chance checkpoint voltage. Sleep states are not a general solution because they assume

positive input power at all times, as explained in Section 2.4. As an optimization, the sleep

state mode might actually increase execution time and total energy consumption, in cases

where harvester output is near or below the power consumption of the SRAM-retaining sleep

45



state, because the capacitor discharge or charge very slowly while the device is sleeping, at a

rate strictly worse than the charging rate in fully off state (with a hardware threshold-based

open trigger, defined in Section 2.4).

The just-in-time checkpointing systems save fewer checkpoints than systems that collect

multiple checkpoints or log memory accesses throughout the execution, however not without

disadvantages. To determine the voltage threshold, which marks the last chance to save a

checkpoint, the worst-case energy cost of a checkpoint must be estimated for each platform,

accounting for all possible states of hardware, including all components in the device. For

the estimate to remain valid over time, the capacitor degradation due to aging [35, 153]

must be taken into account. Inevitably, the estimate must be conservative, larger than the

average, but the more conservative it is, the bigger share of stored energy must be reserved

and the less work the device can do on each capacitor charge cycle. By reserving energy for

a checkpoint, a just-in-time system requires a capacitor that is at least as large as the size

of the checkpoint, i.e. the size of the volatile program state. Even for capacitor above but

near this bound, a just-in-time system may use most of the energy available in each charge

cycle on saving the checkpoint instead of on executing the program.

In contrast, a task-based system can work with capacitors that are smaller by choosing

a task size smaller than the size of a just-in-time checkpoint. The task size in task-based

systems is not constrained by the total size of the volatile state in the program. A software

solution to supporting smaller capacitors is valuable for space-constrained devices, even

when it comes with a performance trade-off. Furthermore, a just-in-time system may be

extended to support application-defined atomic sections that must not be resumed in mid-

way, however this feature is not a given. One approach is to force a checkpointing before

entering the section and disable checkpointing while in the section. However, none of the

existing just-in-time systems offer any such support. In contrast, tasks in task-based systems

naturally define atomic sections.

Checkpointing systems differ in the size of their checkpoints. Since the stack is a poten-
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tially large share of all volatile state (e.g. compared to the set of registers), eliminating it

from the checkpoint reduces the time and energy cost of each checkpoint significantly. Unlike

Mementos and DINO, Ratchet avoids copying the stack from volatile memory into the non-

volatile checkpoint. However, unlike our approach, Ratchet accomplishes this optimization

by allocating the stack in non-volatile memory, which is only possible on microcontrollers

which map on-chip non-volatile memory into the address space, and not on systems with non-

volatile memory in external ICs. Allocating the stack in non-volatile memory, also increases

the energy cost and time of each push/pop and load/store operations on local variables

that spill onto the stack, because non-volatile memory is slower and consumes more energy

than volatile (SRAM) memory. Our measurements on the MSP430FR5969 microcontroller

showed an energy difference of up to 1.5x between accesses to FRAM and accesses to SRAM;

and, at 16 MHz, SRAM is accessed in a single cycle while FRAM requires 2 cycles [173]. The

Variable-Grained [14] system uses a volatile stack, but amortizes the stack copying overhead

by maintaining a log of call contexts in non-volatile memory that can be used to repopulate

stack frames during recovery. Our approach presented in Chapter 4 avoids the cost of per-

sisting the stack by employing the task-based programming model, which restricts the stack

to be local to each task.

The software systems reviewed above and the one presented in this thesis make it possible

to run programs intermittently on the same processors used for battery-powered embedded

systems. Prior work, however, has explored specialized hardware processor architectures that

are fully non-volatile [105, 104, 146, 124], implemented with non-volatile logic [87, 183] in-

stead of CMOS. A fully non-volatile processor lets the execution be interrupted and resumed

at instruction granularity, without checkpointing volatile state. Non-volatile logic, however,

increases the energy and time for all operations relative to conventional CMOS logic. Fur-

thermore, preserving all execution state inside the processor may not be beneficial if that

same processor must first run peripheral initialization code upon each boot before resuming

the interrupted execution. As is the case for systems with automatically constructed regions,
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fully non-volatile hardware may also hinder the programming language from providing an

abstraction for atomic regions that must restart from the beginning instead of be resumed

mid-way after power failure. Techniques at the hardware design level [111, 110] have been

proposed for checkpointing algorithms implemented in custom hardware within Application-

Specific Integrated Circuits (ASICs). Research into alternative non-volatile memory technol-

ogy seeks to bring its access cost closer to volatile SRAM memory [136], which may reduce

checkpointing cost without introducing non-volatility within the processor core.

3.3.1 Language-level abstractions

As explained in Section 2.6, software written for a battery-powered device might not execute

correctly on an energy-harvesting device. In part, this incompatibility is a consequence of

the language used to write the software being agnostic to the implications of the intermittent

execution model. Prior to the work in this thesis, to the best of our knowledge, programming

models for intermittent computing were not investigated at the language level. Chapter 4

proposes language constructs for expressing programs that execute correctly across power

failures. Later work has proposed the Mayfly language [68] for intermittently-powered de-

vices with the power to express timing properties, such as freshness of sensor values. The

implementation of Mayfly runtime relies on time-keeping hardware (cf. Section 3.2). The

trigger abstraction [29] allows the program to specify actions in response to power conditions

and external events.

Language-level features for writing energy-aware programs that originate in battery-

powered systems may be applicable to energy-harvesting devices as well. Language ab-

stractions (partially) delegate the detailed timing and mode of I/O to the system, so that

it can optimize the energy consumed on that I/O. In Eon [159], tasks are associated with

abstract energy states and executed when the system is in the corresponding state. The

LAB abstraction [85] lets the programmer declare the required quality of sensing data and

leaves it to the system to activate sensors to provide the required data at the minimum
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energy cost. Real-time sensor streams [4] provide an abstraction for declaring streams of

sensor data that are then scheduled by the system to maximize the device sleep intervals.

Type systems can catch energy-related bugs by preventing code that uses high-energy types

from running while the device is in a low-energy state. Energy Types [37] attribute energy

to application phases via a type system. ENT [31] introduces dynamic types that resolve

to different instances based on device energy state. Energy-awareness provided by these ab-

stractions, however, is not sufficient for intermittent computing, because the language must

also be aware of intermittent execution.

An emerging class of application-level power-reduction techniques is based on decreasing

the workload through approximation in response to changes in the available energy [72, 13,

84, 150]. These systems rely on a mechanism for estimating available energy at runtime,

which requires some hardware support (cf. Section 2.4). Changing the workload in order to

save energy is an option on energy-harvesting devices whenever it is an option on battery-

powered devices, and solutions that exploit this possibility are complementary to the system

support developed in this thesis.

In Chapter 4, we define a computational model and a language for intermittent systems

as Actors did for concurrent distributed systems [3]. The Actor model has inspired languages

for computationally constrained devices, such as embedded systems [18], sensor nodes [94],

and spacecraft [23], but not for intermittently-powered energy-harvesting devices. In con-

trast to the goals of the Actor model, our aim is to extend the language with support for

intermittent execution. Actors differ from static tasks introduced in Chapter 4 in that Actors

are concurrent, are created dynamically, and are triggered by messages, whereas tasks com-

pose a sequential program, are defined statically, and execute in a fixed order specified by

the task graph. The differences in the models have a direct effect on their implementations:

an actor system requires a communication network and a dynamic actor instance manager,

while a task system performs most of its work at compile time.
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3.4 Energy estimation

A capability for estimating how much energy a program will consume on a given platform

without running it is useful and sometimes required for (1) decomposition into tasks and

non-termination checking addressed in Chapter 5, (2) some checkpointing mechanisms re-

viewed earlier in Section 3.3, and (3) provisioning energy storage capacity for the application

investigated in Chapter 6. However, accurate and reliable energy estimation is a challenging

open problem [113] that has been researched previously and as part of the work in Chapter 5.

Energy estimators compute the energy of a program analytically in terms of more basic

parts. The energy of each basic part is determined from measurement by the system de-

signer or the hardware manufacturer. Estimators differ in the granularity of the basic parts,

which may be counts of fine-grained micro-architectural events [143, 27, 22, 75], instruc-

tions [175], basic blocks [99], statements, or processor frequency and voltage alone [158].

Unlike the parts present in the binary, micro-architectural event counts require a simulation

and describe the energy of a particular dynamic execution of the binary [27, 22]. To produce

absolute estimates, useful beyond a relative comparison, an architectural simulator must

be calibrated to a specific platform, which may not be practical for each proprietary em-

bedded processor and other hardware components in each device. Instruction-level current

consumption at micro-second scale can be measured using a current-sense resistor and an

instrumentation amplifier or using a switching DC-DC converter that can count the number

of switches [170]. Unlike instruction energy, basic block energy must be measured for each

application. However, this application-specific measurement may be unavoidable for obtain-

ing the full system power, including all hardware components in the device, configured into

their application-specific configurations. Basic blocks have the advantage of accounting for

the context of each instruction in a sequence [99], which constrains the actualizable energy

cost of each instruction. In Chapter 5 we present an energy model based on measurements

at the basic-block granularity.

Prior work on this problem has produced either worst-case estimates [99, 188], i.e. a
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theoretical upper bound on the actual energy consumption, or average-case estimates [90,

158]. Worst-case bounds overestimate energy because they span all possible (and even some

impossible) behaviors of the code, including across different inputs, and across different

hardware configurations. To account for input-dependent variation in energy consumption,

prior work [99] has proposed to profile basic blocks under a subset of different inputs and

use an evolutionary algorithm to find the maximal energy. Proposals for computing total

program energy generally rely on a static analysis that expresses the total energy in terms of

the lower-level building blocks, e.g. instructions or blocks. Work inspired by implicit path

enumeration (IPET) program analysis technique [77, 182] expressed the program energy

as the sum of energies of basic blocks multiplied by the (unknown) number of times each

executes. This expression was used as the objective function in an Integer Linear Program,

which encoded control flow and loop bounds (provided by the programmer or profiler) as

constraints, and optimized over the unknown execution counts to find the maximum energy.

Other approaches [59, 99] represented the energy of a program as a recursive cost relation

parameterized on inputs, that can then be solved. If the hardware description at the register-

transfer level (RTL) is available for the processor, prior work [34] has proposed to estimate

worst-case energy for the processor (but not for the whole device) by simulating program

execution and counting the number of times transistors switch.

A worst-case estimate calculated by the analytical models reviewed above may conser-

vatively overestimate the energy that can be actualized in the real achievable worst case,

and may be much greater than the average case energy. Furthermore, models based on

instruction-level estimates measured outside the context of the application and the rest of

the device hardware cannot estimate energy of the full system, which is a prerequisite for

energy-harvesting use cases listed in the beginning of this section. To describe the energy

consumption in more detail than a scalar number and to support full-system estimates, our

approach in Chapter 5 is distributional, i.e. it estimates the probability distribution of the

energy consumption on a device.
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3.5 Debugging and maintenance

Research into debugging and maintenance of software on energy-harvesting platforms has

resulted in simulators for design exploration [61], tools for reproducing energy traces in the

lab [197], and for deploying binaries wirelessly [166, 2, 195]. Prior to these efforts, tools such

as Clairvoyant [192], T-Check [98], TinyTracer [162], and KleeNet [151], were focused on

battery-powered motes in a wireless sensor networks. We review this work in this section.

Complementary to debugging techniques are practices that avoid introducing bugs in the

development process, e.g. by using a safe subset of C [79] and an OS with isolation between

processes, e.g. enforced by the Rust language in TockOS [97].

Application behavior on an intermittent energy source can be partially inferred from a

simulation. The Computational RFID Crash Test Simulator (CCTS) [61] can produce a

voltage trace representative of a solar harvester with a specified capacitor size and load.

CCTS is useful for exploring the design space for a new energy-harvesting application, but

not for in situ debugging tasks that Chapter 7 is dedicated to.

Ekho [197] is a device that records the amount of energy harvested by a harvesting circuit

and reproduces the trace as power input into the target device. Ekho can reproduce prob-

lematic program behavior, but it cannot offer insight into this behavior. Complementary to

Ekho’s features, in Chapter 7 we develop debugging mechanisms for inspecting the program

state and correlating program events to the energy level.

Wisent [166] and Stork [2] offer a protocol and a bootloader that allow software to be

reliably downloaded onto RF-powered energy-harvesting devices via a wireless link from an

RFID reader. Live updates have also been proposed using in-place code replacement [195].

WINDWare [186] is a middleware for managing data streams from a large set of sensor tags.

This support is valuable when the device is in the field, without a debugger, like the one

proposed in Chapter 7, attached.
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3.5.1 Debugging embedded wireless sensor nodes

Prior to recent interest in energy-harvesting systems [149, 95], there was considerable in-

terest in battery-powered wireless sensor nodes [82, 71]. Sensor nodes necessitated pro-

gramming [56] and operating system [60, 96] support, which in turn created a need for

development and debugging support. Clairvoyant [192] is the closest work from this area,

because it provides interactive debugging capabilities. The system tries to minimize its effect

on the program being debugged, in terms of memory use, network traffic, and system life-

time. However, because Clairvoyant targets powered nodes, it is not concerned with energy

interference. Additionally, Clairvoyant does not focus on debugging primitives specialized to

energy-harvesting devices, such as energy compensation, energy-aware assertions and break-

points, introduced in Chapter 7. Sympathy [138] provides support for debugging networks

of sensor nodes. The scope of Sympathy is restricted to determining why data collection

nodes stop sending data to “sink” nodes in the network. This work uses a series of metrics

and an inference step to isolate failures and is largely orthogonal in purpose to debugging

within a single energy-harvesting device.

TinyTracer [162] supports lightweight event tracing for sensor node programs written in

nesC [56]. Its traces enable execution replay and manual failure analysis. Like TinyTracer,

our tool presented in Chapter 7 provides event tracing using watchpoints and I/O bus mon-

itoring. Unlike TinyTracer, our tool traces energy in addition to program events and allows

the developer to correlate the two together. T-Check [98] and KleeNet [151] use model

checking and symbolic execution (respectively) to expose failures in sensor node programs.

Both are orthogonal but potentially complementary to our work, as they do not support

monitoring or interactive debugging on an intermittently-powered device, but may be useful

for diagnosing bugs early, prior to running the application.
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Chapter 4

Chain: A Programming Model for

Reliable Intermittent Programs

Intermittent execution may cause a program that is correct in a continuous execution to

exhibit unpredictable behavior. When a device experiences a power failure, its volatile

state (program counter, registers, SRAM) clears, while its non-volatile state (FRAM, flash)

persists. As a result, intermittence can impede forward progress and cause data corruption or

crashes. Prior work attempted to address these issues, primarily by checkpointing [141, 101].

However, Checkpointing does not scale to large memory sizes because its time and energy

overhead is proportional to the amount of program state. Checkpointing overheads deprive

the application of the scarce storage and energy on the energy-harvesting computer (EHC).

Furthermore, the energy cost of the checkpoint increases the energy storage capacity that

the device must be provisioned for.

We propose to make software that runs intermittently reliable without resorting to check-

points. We introduce the Chain programming and execution model for writing intermittent

programs. In a Chain program, the programmer decomposes the computation into a sequence

of tasks, each of which can perform arbitrary computation and I/O. Tasks are sequenced ac-

cording to a task graph expressed by the programmer.
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Figure 4.1: A Chain program. The program has three
tasks that execute in sequence and pass data to one
another via channels.

Chain executes tasks sequen-

tially according to the static con-

trol flow specified as part of each

task. In case of a power failure, the

currently executed task is restarted

from the beginning. Chain can

restart tasks because it enforces

atomic all-or-nothing semantics for

each task. Program state in volatile and non-volatile memory visible to a task is always

consistent. To ensure consistency, Chain uses a novel memory access model for the volatile

and non-volatile memory on the EHC. A task has full access to volatile memory, but Chain

requires all volatile variables to be local to a task. To pass inputs to and outputs from tasks,

the programmer uses Chain’s channel-based non-volatile memory access model. A task can

send a named value to another task (or to a future instance of itself) via a channel dedicated

to a pair of tasks (or its own ‘self’ channel).

Chain’s channel mechanism guarantees that a task’s inputs and outputs are stored in

distinct memory locations. The separation of inputs and outputs ensures that a task with

any mixture of accesses to volatile and non-volatile memory is arbitrarily restartable after a

power failure with essentially no resume cost. From the perspective of the task, its inputs

are always immutable, consistent, and available in the channel. Figure 4.1 shows a schematic

representation of a Chain program with three tasks that are sequenced by explicit control-

flow transitions that form a task graph and that exchange data via channels.

In the following sections of this Chapter we define the task and channel abstractions and

present their implementation as a runtime library. We also show with experimental com-

parisons to prior work that Chain more effectively preserves progress, keeps data consistent,

and significantly improves on run time performance of checkpointing systems with similar

goals, namely DINO [101] by 2-7x and Mementos [141] by 10-150x.

56



Feature Function

T
a
sk

s task T, f Create a task T implemented by function f
origin T Specify task T to run on first power up
self Refer to the current task
NextTask T Transfer control to task T

C
h
a
n
n
e
ls

channel (T1, T2), Define channel from task T1 to task T2 with
{F : type, . . . } a set of fields and specify a type for each field F

ChIn F, T Read field F from channel (T , self)
ChOut {F ← v}, T Write value v into field F in channel (self, T )
ChSync F , {T1, . . . , Tn} Read the most recent value of field F

in channels (T1, self), . . . , (Tn, self)
MultiOut {F ← v}, Write v into field F in channels

{T1, . . . , Tn} (self, T1), . . . , (self, Tn)

M
o
d
u
le
s

module M,Tin, Tout, Create module M with entry task Tin, exit task Tout

{T1, . . . , Tn} and member tasks T1, . . . , Tn

ModEnter M , T Transfer control to the entry task in module M
and make task T the successor of module M

ModLeave Transfer control to successor of current module
ModPut {F ← v},M Write value v to field F in the input channel of M
ModGet F,M Read field F from the output channel of M
ModIn F Read field F from current module’s input channel
ModOut {F ← v} Write v to F in current module’s output channel

Table 4.1: The Chain language keywords.

4.1 Task and channels programming model

The Chain programming model uses task-based control-flow and a channel-based memory

model to ensure progress and consistency for intermittent executions without any of the

overheads of checkpointing. Task-based control-flow provides a strong notion of progress in

the presence of power failures. Channel-based memory allows tasks to exchange data values

with guaranteed consistency. Channels ensure that non-volatile data remain consistent by

separating a task’s inputs from its outputs by construction.

We next describe Chain as a set of extensions to a typical embedded systems base lan-

guage (e.g., C). Table 4.1 summarizes the Chain language, and Figure 4.2 shows an example

Chain program that we use to illustrate Chain’s features.

4.1.1 Task-based control-flow

A Chain program is written as a collection of tasks. The task keyword labels a C function

as a Chain task. A task can perform arbitrary computation and is free to define task-local

volatile variables (e.g. s in task Sense in Figure 4.2) and access peripherals (e.g. call to
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sensor()). The set of tasks in an application form a task graph that determines how control

flows into and out of each task. Each task has at least one predecessor task and at least

one successor task. One task in the graph is marked as the origin task and is the task that

executes when the device powers up for the first time.

Each task has a single entry point and one or more exit points. The entry point is at

the top of the task function. The programmer syntactically represents an exit point with

a NextTask statement. Each NextTask statement takes the name of another task as an

argument and when the statement executes, control is transferred to the entry point of that

task. The programmer can include a NextTask statement along any control-flow path in a

task, terminating that path. The program in Figure 4.2 has three tasks that are linked into

a task graph using NextTask statements.

Chain provides the language-level guarantee to programmers that tasks are progress-

preserving. Progress preservation means that control flows from one task to another at a

task’s endpoint only. Control never jumps discontinuously back to an earlier task and never

flows non-deterministically, even in the presence of arbitrarily-timed power failures. For

example, after a reboot anywhere in the code in Figure 4.2, the application resumes from

one of precisely three locations in the code: the first instruction in Sense, Alert, or CmpAvg.

In addition, once execution advances into CmpAvg, it cannot enter Sense before going through

Alert; execution follows the task graph. This intuitive control flow behavior cannot be relied

on in a system that is not progress-preserving but can experience power failures. In Chain

forward progress is guaranteed as long as the energy demand of each individual task never

exceeds the total energy storage capacity of the device. The programmer can control the

energy demands of tasks by choosing the total number of tasks in the application and the

amount of work in each task.
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origin task Sense(){

  int s=sensor()  
  ChOut {S <- s}, CmpAvg
  NextTask CmpAvg

}

task CmpAvg(){
  int s = ChIn S, Sense
  int head = ChIn HEAD, self
  
  int sum=0, avg=0;
  for(int i=0; i < 5; i++){
    sum += ChIn a[i], self
  }
  avg = sum / 5

  ChOut {a[head] <- s}, self
  head = (head+1)%5
  ChOut {HEAD <- head}, self

  if( s > avg*2 ){
    ChOut {S <- s}, Alert
    NextTask Alert
  }
  
  NextTask Sense
}

task Alert(){
  int s = ChIn S, CmpAvg
  int cnt = ChIn Cnt, self
 
  /*external func to report
    anomaly val & count*/
  report(s, cnt);

  ChOut {Cnt <- cnt+1}, self 
  NextTask Sense
}

Figure 4.2: An example Chain program. The program has three tasks, Sense, CmpAvg, and
Alert. Sense is the origin task. It reads a sensor and sends the result to CmpAvg. CmpAvg

compares the current sample from Sense to twice the average of 5 past samples. If the
current sample is greater, CmpAvg sends the anomaly to Alert. Alert counts and outputs
anomalies. The code assumes channel fields are statically initialized to zero. All non-channel
state (i.e., int s) in Chain is task-local.

4.1.2 Channel-based memory model

A Chain task has unrestricted access to volatile, task-local variables but is not allowed

to directly access the system’s non-volatile memory. Instead, Chain exposes non-volatile

memory to programmers through channels. A channel is a named region of non-volatile

memory controlled by Chain. Each channel holds a collection of individually-accessible

named, typed fields. A channel may be declared from any task to any other task using the

channel statement. A channel is identified by a tuple of its endpoints: the source task and

the destination task. The source task can write a named value into the channel and the

destination task can read that named value from the channel. We refer to the channel as a

self-channel when the source and destination are the same task.

Channels are the sole mechanism to move data into and out of tasks. The programmer

passes data through a channel using the ChIn and ChOut operations. ChOut takes a named
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value and the name of a channel and writes the value into the matching field in the channel.

ChIn takes the name of a channel and a field name and returns the value that was most

recently written to that field in the channel by another task’s ChOut. For example, with

channel (T1, T2) declared, task T1 can ChOut its output values for T2 to use as inputs via

ChIn. A self-channel (T, T ) allows an instance of task T to send values to future instances of

itself. Note that the programmer need only explicitly specify the destination task of a ChOut

statement and the source task of a ChIn: the other task in the channel’s name is the task

containing the ChIn or ChOut. To refer to a self channel, the programmer can use the self

keyword in place of a task name. Figure 4.2 shows how three tasks exchange data using

ChIn and ChOut statements. CmpAvg and Alert both use self channels to maintain data

across instances.

4.1.3 Multi-endpoint channel communication

While communication between tasks in a simple program may be expressed with basic chan-

nel operators presented in the preceding section, communication patterns in complex pro-

grams require generalized operators. Chain defines multicast channel write for channeling

data to more than one destination and synchronized channel read for channeling data from

more than one source. Figure 4.3(a) and (b) illustrate multicast write and synchronized read

schematically.

One-to-many writes with multicast channels

Chain allows one task to produce the same value for many other tasks at the same time,

using a multicast channel write, which is written MultiOut in Chain syntax. The semantics of

MultiOut is identical to the semantics of a consecutive sequence of normal ChOut operations.

Conversely, a ChOut is a special case of the generalized MultiOut. Including both MultiOut

and ChOut in the language benefits implementations for two reasons. By retaining ChOut in

the language, MultiOut becomes an optional feature that can be omitted by a compliant but
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multicast

T1 T2

(a) Multicast write

T1 T2

(b) Synchronized read

?

Module

T1
start

T2
start

T1
end

T2
end

(c) Modular Task Group

sync

Figure 4.3: Schematic view of advanced Chain features. Dashed lines are channels and
solid lines are task graph edges. (a) A one-to-many multicast channel write to T1 and T2.
Multicast enables use of a single, shared channel buffer. (b) A many-to-one synchronized
channel read from T1 and T2. Sync enables consuming values conditionally produced in one
of many tasks. (c) A modular task group enabling reuse of an encapsulated task sub-graph.
T1 and T2 can enter/exit and channel data into/out of the module, which need not refer
explicitly to T1 or T2.

minimal implementation of the core language. An implementation that supports MultiOut

can leverage it to reduce the channel memory footprint. As we discuss in detail in Section 4.2,

MultiOut allows the Chain implementation to use a single channel buffer for the multicasted

values, rather than using multiple channel buffers, one per sequential ChOut.

Many-to-one reads with channel sync

Chain allows one task to consume a value that may come from any one of a set of tasks using

a synchronized channel read, which is written ChSync in Chain syntax. A ChSync takes the

name of the value to read and a list of channel names, rather than a single channel name

like ChIn. ChSync returns the named value from the channel that most recently had a value

with that name written into it.

ChSync is an essential Chain language feature, because a value-consuming task may

sometimes need a named value produced by one task and other times need the same named
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task Init(){

ChOut {X <- 0}, T3

NextTask T1

}

task T1(){

if( condA() )

ChOut {X <- 1}, T3

NextTask T2

}

task T2(){

if( condB() )

ChOut {X <- 2}, T3

NextTask T3

}

task T3(){

int i; 

i = ChSync X, Init, T1, T2 

print i;

}
ChSync yields the value of X written
most recently by any of the listed tasks

(a) A synchronized channel read always produces the version of a
named value most recently written by a task.

task T3_no_Sync(){

int i;

if( condA() ){

i = ChIn X, T1 }

else if(condB()){

i = ChIn X, T2 }

else{ i = ChIn X, Init }

print i;

exit;

}

To consume X without ChSync,
T3 must re-evaluate these 
conditions from T1 and T2.

(b) To f nd a value without ChSync, T3 must re-evaluate conditions 
from T1 and T2 which may be impossible after T1 and T2 complete.

Figure 4.4: ChSync simplifies channel logic. Any of the tasks, Init, T1, and T2, may provide
a value to T3. T3 is trying to read the freshest value of X. We show two versions of T3, one
with and one without ChSync. The version without ChSync must re-evaluate the conditions
from T1 and T2 (in either order, assuming the conditions are exclusive), to decide which of
the three task to get the value from. Such logic may require additional values referenced
in the conditions to be channeled from T1 and T2 to T3. ChSync is a concise, robust, and
efficient solution to this problem.

value produced by another task. Similarly, a value-producing task may produce a named

value only if some condition is met. Figure 4.4 shows an instance of this situation. Tasks

Init, T1 and T2 each potentially produce a different value for field X. The task consuming

that named value, T3 in this example, has no way of knowing which of the tasks, T1 or

T2, actually produced a value for X in a particular execution of the program, unless the

programmer adds dedicated logic that would generate that information. The extra logic

would need to either replicate the code evaluating the condition in the value consuming

task (T3), as sketched in Figure 4.4b, or unconditionally channel the result of the condition

evaluation to that task (from T1 and T2). With ChSync such unsustainable logic duplication

is avoided.

ChSync eliminates the need for a value-consuming task to reason about which of a set of

possible value producers produced the value it needs. Instead, ChSync lets the consuming

task observe the value most recently produced by any of the potential value-producing tasks.

Yielding the most recently produced value at a ChSync is reasonable because there is a global,

total order on tasks: yielding any other value would be contradictory to the sequential task

order and would be equivalent to reordering executed tasks. Section 4.2 describes how the
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Modular: Pow() code in reusable modular task

task MultCypherIn(){
  ChIn cypher, …; ChIn base, …;
  ChIn n, …
  ModPut {A <- cypher}, MultMod
  ModPut {B <- base}, MultMod
  ModPut {N <- n}, MultMod
  ModEnter MultMod, MultCypherOut
}

task MultCypherOut(){
  cypher = ModGet Res, MultMod
  ChOut cypher, ...
  NextTask ...
}

task SquareBaseIn(){
  ChIn base, …
  ChIn n, …
  ModPut {B <- base}, MultMod
  ModPut {B <- base}, MultMod
  ModPut {N <- n}, MultMod
  ModEnter MultMod
}

task SquareBaseOut(){
  base = ModGet Res, MultMod
  ChOut base, ...
  NextTask ...
}

modular task Mult(){ /*entry*/
  a = ModIn A
  b = ModIn B
  res = a * b
  ChOut {Res <- res}, Modulo
  NextTask Modulo }

modular task Modulo(){
  r = ChIn Res, Mult
  n = ModIn N
  res = r % n
  ModOut {Res <- res}
  ModLeave

task NonModular_ModMult(){
 
  b = ChSync B, T1, T2,...
  e = ChSync E, T1, T2,...
  n = ChSync N, T1, T2,...

  p = b * e; res = p % n

  ChOut {Res <- res}, WHERE?

  
  NextTask WHERE?  
}

module MultMod
ModEnter

ModLeave

ModEnter

ModLeave

ModIn abstracts
predecessors’ channels

ModOut/Leave abstract
successor task/channel

Must know all possible predecessors
across which to ChSync

No way to know the successor
task(s) or channels(s)

(a) A modular task group enables modular re-use of the MultMod task subgraph. (b) Without modules, re-use is impossible

Figure 4.5: Modular task groups encapsulate code. The RSA implementation contains a
reusable task graph that computes a product modulo a number. With modules, reused tasks
need not explicitly name all predecessors (to get the inputs from) and all successors (to pass
the outputs and transfer control to). NonModular ModMult shows why it is impossible to
properly encapsulate without Chain’s modules.

Chain runtime ensures that a ChSync always sees the latest value.

4.1.4 Encapsulation of reusable functionality

Chain supports encapsulation of reusable functionality with modular task groups, or “mod-

ules.” Figure 4.3(c) schematically illustrates Chain’s module support. Like callable func-

tions, modules allow the same code to be executed at many points in a Chain program

without requiring the code inside the module to include any information about what those

arbitrary points of use are. Without modules, code cannot be parameterized for reuse, be-

cause the code would need to include information about each point in the program at which

its parameters would be instantiated with values. Specifically, without module support, the

channel operations in the code must explicitly refer by name to each task that could produce

parameter values for the code and to each task that could consume the result computed by

the code. The module interface abstracts tasks that produce parameters and consume re-

sults, making it possible to write reusable code that does not contain any information about

the sites where it is used.

A set of tasks may be grouped into a module using the module keyword. One task is

designated as the entry task and one as the exit task. The encapsulated functionality is the
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behavior of any execution from the entry task to the exit task. We refer to any task that

transfers control to a module as one of the predecessors of that module and any task that

receives control from a module as one of the successors of that module. To transition to a

module, a predecessor task uses a ModEnter statement. A ModEnter takes the name of a

module and the name of a successor task and transfers control to the module’s entry task.

A module’s member tasks then execute until the module’s exit task executes a ModLeave

statement. The ModLeave statement transfers control to the successor task specified to

ModEnter.

A module takes its input from its own input channel and produces output into its own

output channel. Both channels are allocated as a result of the module’s declaration and

dedicated to that module. A modules’s member tasks can read values from the input channel

using ModIn and the exit task can write values into the output channel using ModOut. Only

the exit task is allowed to write into the module’s output channel, because it is never safe for

more than one task to write into the same channel (cf. Section 4.1.5). For the same reason,

only a predecessor task can put values into the module’s input channel. A predecessor task

channels values into the module using the ModPut statement. ModPut takes the name of a

module and a named value, and associates the value with that name in the module’s input

channel. A module’s successor can read a value from the module’s output channel using a

ModGet statement. A ModGet statement takes a module’s name and a field name and returns

the value from the module’s output channel. To eliminate a potential source of bugs, only a

successor task is allowed to access a module’s output channel.

Figure 4.5 illustrates modules in a simplified snippet from our implementation of RSA.

The figure shows a partial RSA task graph (left) that in two places computes a product

modulo a number. The tasks inside the bold box, Mult and Modulo, compose a module

called MultMod. Mult is the module’s entry task. The MultCypherIn task ModPuts the two

factors and the modulus into the MultMod module and enters the Mult task. Mult uses ModIn

to receive the inputs. ModIn is key to modularity, because it eliminates the need for Mult to
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ChSync across all possible predecessor tasks to find its inputs. Such a ChSync would break

encapsulation by requiring all predecessors of the module to be explicitly enumerated. Mult

ChOuts the multiplication result to Modulo, another member of the module, which computes

the remainder. Modulo uses ModOut and ModLeave to yield output and transition to the

module’s current successor, which may be either MultCypherOut or SqBaseOut. ModOut

and ModLeave are also essential to reusability, because they abstract the successor. These

operations send output and transition to the successor registered in the module by ModEnter.

Without modularity support, Modulo would be forced to break encapsulation by enumerating

all successors and conditionally choosing among them based on a control value channeled into

the task by its predecessor. Figure 4.5(b) shows an unsuccessful attempt to reuse code for

the same calculation through complex control logic instead of Chain’s modularity support.

We also note that Chain allows reusing code by encapsulating it into a conventional

function and calling that function from within a task. However, this method severely limits

the maximum size of a reusable component (i.e., the function). Computation that requires

more energy than can be stored in the capacitor on the device cannot be encapsulated into

a function, because any task that would call that function would always run out of energy

before completing. This limit does not apply to a Chain module, because computation

encapsulated into a module is decomposable into as many member tasks as necessary.

4.1.5 Correctness

Chain is correct because its execution model ensures progress and its memory access model

ensures that every task is atomic and idempotent. Together these properties imply a task

can arbitrarily lose power and reboot without compromising progress or consistency. Chain’s

progress guarantee follows trivially from the task-based execution model definition, assuming

no task’s energy demand exceeds the maximum energy storage of the capacitor on the device.

Chain’s consistency guarantee follows from the way Chain constrains accesses to non-volatile

and volatile state.
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Task atomicity and isolation

Channel exclusion for non-volatile memory consistency. Chain channels are strictly,

statically subject to access control. A task may not write into any channel for which it is

not the source and a task may not read from any channel for which it is not the destination.

The key property that Chain guarantees about channels is input/output channel exclusion:

by construction, a single task cannot both read and write the same non-volatile memory

location. Channel exclusion occurs trivially for non-self channels. Chain statically requires

that when a task executes a ChIn on a channel, the executing task must be the channel’s

destination. Likewise Chain statically requires that a task executing a ChOut on a channel be

the channel’s source. For self channels, channel exclusion is enforced by the Chain runtime

(Section 4.2).

Channel exclusion guarantees that a task’s accesses to non-volatile memory are idempo-

tent. The task’s input values are always available in channels for which it is the destination

and the task cannot alter those inputs. The task’s output values are always written into

channels for which that task is the source and it cannot read those outputs. The inability

for a task to read a non-volatile value after a failure that it wrote before a failure precludes

visibility of partial or repeated non-volatile data structure updates.

Task-locality for volatile memory consistency. Chain’s volatile memory model re-

quires that all volatile variables are task-local. This ensures that a volatile variable is ini-

tialized in the task before it is used. Task-locality ensures that a task can arbitrarily reboot

from its entry point without losing any volatile state: any path through the task must in-

clude a re-initialization assignment. Task-locality of the Chain volatile memory access model

ensures that a task’s accesses to the volatile memory are idempotent.

I/O in Chain tasks. A Chain task can interact with the world by using I/O operations

to manipulate sensors and actuators. The Chain tasks with I/O behave differently from
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normal Chain tasks. An I/O operation in a Chain task may execute repeatedly as a task

re-executes due to intermittence. Repeated executions of an I/O operation may produce

different behavior if the repeated operation is non-idempotent. Without careful program-

ming, repeated, non-idempotent input operations can violate task atomicity and repeated,

non-idempotent output operations may repeat external behavior that should not repeat.

A non-idempotent input operation violates a task’s idempotence, because the input op-

eration may produce a different value each time the task re-executes. Exposing the input

operation’s non-idempotence to the program is desirable, because the re-execution of an

input operation (e.g., a sensor read) should always produce the latest available values. A

task containing a non-idempotent input operation is safe only if the task does not write to

a channel conditionally, based on the value produced by the input operation.

In the absence of an input-conditional write to a channel, every re-execution of the task

performs writes to the same fields of the same channels. Note that these operations may

write different values into these fields, depending on the result of the input operation. After

the task completes, channels contain the consistent result of its last successful execution.

In contrast, a task that conditionally writes to a channel, depending on the value pro-

duced by an input operation may leave channel data inconsistent. The programmer must

leverage Chain channels to eliminate this possibility. When control flow involves conditional

channel output operations and a task is interrupted, it may leave its output channels in an

inconsistent state that may be observed by a successor task. A program that may exhibit

this behavior is illustrated on the left in Figure 4.6. Consider the execution where task T1

reads a positive value from the sensor and is interrupted after writing S but before writing

SS. Then, T1 executes from the beginning, reads a negative value from the sensor, and tran-

sitions to T2. Task T2 will observe the value of S written by T1, but the value of SS written

by T0, which may be mutually inconsistent.

The problem arises because control-flow is affected by an input into the task that does

not come from a channel and, therefore, is not covered by Chain’s atomicity and idempotence
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task T1()
  int s = sensor();
  if (s > 0)
    ChOut { S <- s}, T2
    ChOut { SS <- 2*s}, T2
  NextTask T2

task T1()
  s = ChIn Sin, T_sense
  if (s > 0)
    ChOut { S <- s}, T2
    ChOut { SS <- 2*s}, T2
  NextTask T2

task T0()
  MultiOut { S <- 2}, {T1, T2}
  MultiOut { SS <- 4}, {T1, T2}

task T2()
  s = ChSync S, {T0, T1}
  ss = ChSync SS, {T0, T1}
  assert( ss == 2 * s )

task T1_sense()
  int s = sensor();
  ChOut { Sin <- s }, T1

NextTask T1 NextTask T1_sense

split

Figure 4.6: I/O in Chain tasks. On the left, in task T1, an input operation (sensor()) is
followed by a conditional output into a channel to T2. Because the input operation is non-
idempotent, the condition may evaluate differently when T1 is interrupted and re-executed
and T2 may observe S written by T1 and SS written by T0, which violates atomicity of T1.
On the right, the program is re-written according to a programming pattern to perform I/O
safely: T1 is split such that the input operation is confined to a dedicated task (T1 sense).

guarantees. This observation suggests a straightforward programming pattern, which pre-

vents I/O non-idempotence from affecting control-flow. The pattern for safe I/O is to confine

the input operation to a dedicated task that acquires and channels the value to its succes-

sor(s). All downstream tasks have to obtain the sensor value from a channel, which ensures

their idempotence. Applying the pattern to the above example, we obtain an equivalent

program, shown on the right in Figure 4.6, which uses sensor input safely.

Once an output operation has activated an actuator, its physical effect cannot be undone.

Chain does not attempt to provide at-most-once semantics for output operations. We assume

that in an application destined for an environment where power is intermittent, the interfaces

to actuators, the actuators themselves, or the physical world can tolerate incomplete and

repeated output operations from the software.

Chain tasks are idempotent and atomic. Channel exclusion ensures that a task’s

non-volatile memory accesses are idempotent. Making all volatile variables task-local en-
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sures that a task’s volatile accesses are idempotent. Together, these facts guarantee that a

task’s computation and memory operations are completely idempotent. Idempotent tasks

can fail repeatedly and be arbitrarily re-executed from their start without any risk of in-

consistency. Furthermore, Chain guarantees forward progress at the granularity of tasks,

as long as each task can complete on one capacitor charge. The progress guarantee, com-

bined with the idempotence guarantee implies that Chain tasks are also atomic, exhibiting

all-or-nothing behavior with respect to observable memory state. We emphasize that Chain

imparts idempotence and atomicity guarantees to the application by construction at language

level. Section 4.2 describes how our Chain implementation provides these strong guarantees

without the need for costly checkpoint/restart mechanisms.

Generality of the channel-based memory model

For any program written in a sequential language with a conventional memory model, e.g.

C, there is a program written using Chain task and channel abstraction that has equivalent

behavior.1 We define program behavior as a sequence of observed variable values, similar

in spirit to the model in [103]. To simplify the discussion, we only discuss operations that

manipulate non-volatile memory. This simplification is reasonable, because Chain-specific

operations (ChOut and ChSync) only manipulate non-volatile memory, and there is a trivial

correspondence between volatile variable manipulations in a conventional execution and in

a Chain execution. Without loss of generality, we consider ChSync, but not ChIn, because

ChSync is a generalization of ChIn, and ChOut, but not MultiOut, because MultiOut can be

expressed in terms of multiple ChOut statements.

In a conventional execution, a memory write assigns a value to a named variable, and a

memory read observes the value most recently written to a named variable. The sequence

of variable values observed by the reads in an execution defines the program behavior. In a

Chain execution, a ChOut operation assigns a value to a named field in a specified channel. A

1We argue about the generality of uninterrupted execution, because a conventional program does not
complete in the presence of intermittence.
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ChSync operation observes the most recent value of a named field in a collection of specified

channels. The sequence of variable values observed by the ChSync operations in an execution

defines the program behavior. We show that for all conventional executions, there exists a

Chain execution that has the same behavior. We start from an arbitrary execution trace

generated by an arbitrary conventional program and we construct a Chain execution trace

that has the same behavior.

We consider an arbitrary conventional execution trace, Econv, defined by a sequence

of operations, writei(M [v], x) and readj(M [v]), where indexes i and j denote positions in

the sequence and the operations are respectively a write of value x to memory location

v and a read from memory location v. We begin constructing a Chain execution trace,

EChain, by initializing it with a copy of Econv. At this point, EChain is not yet a valid Chain

execution trace, because it contains direct accesses to non-volatile memory. We assume an

arbitrary assignment of operations to tasks in the Chain execution and define a convenience

function, Task(c), that reports the task containing operation c. In EChain, we replace each

writei(M [v], x) with a ChOut of value x to field F [v] from task Task(writei) to each subsequent

task that reads that value before it is overwritten by another, later write. That is, the ChOut

associated with writei accesses channels

{(Task(writei),Task(readj)) | j > i and 6 ∃writek, i < k < j}.

Similarly, we replace each readj(M [v]) with a ChSync of field F [v] from each preceding task

that wrote to that field. That is, the ChSync associated with readj accesses channels

{(Task(writei),Task(readj)) | i < j and ∃writei}.

Note that in the case of ChSync, we consider all prior writes, because, as we note in

Section 4.1.3, a task that reads a field using ChSync cannot know which ChOut had produced

the observed value and must rely on ChSync to retrieve the most recent value. We next argue

that the constructed EChain has the same behavior as Econv.
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To show behavioral equivalence, we show that the sequence of variable values produced by

the memory read operations in Econv is the same as that produced by the ChSync operations

in EChain. A readj(M [v]) in Econv observes value x written by the unique writei(M [v], x)

that most recently precedes that read — i.e. i < j and 6 ∃writek(M [v], y) for i < k < j.

The write is unique, because a conventional execution is sequentially totally ordered. In the

constructed EChain, each ChSync accesses a collection of channels, each of which may contain

a value for field F [v]. As observed by the ChSync, the channels are not sequentially ordered,

unlike writes with reads in Econv. However, by the semantics defined in Section 4.1.3, a

ChSync on field F [v] observes the value of the ChOut to F [v] that was the most recent

according to an explicitly maintained timestamp. By our construction, this ChOut operation

corresponds to writei(M [v], x) in Econv, where i = max{k | k < j and ∃writek(M [v], ·)}. This

correspondence implies that the value of the ChOut operation to field F [v] is also x. Extending

this argument to all read operations in Econv and the corresponding ChSync operations in

EChain, we conclude that the sequence of variable values produced by the execution traces is

identical, implying that the behavior of programs producing these traces is equivalent.

4.2 Implementation

We implemented the Chain programming language primitives described in Section 4.1 using

a combination of compile-time macros and a runtime library. The compile-time features

declare and allocate memory for tasks and channels. The runtime features implement task

sequencing and channel operations. Figure 4.7 depicts the state that Chain uses internally

to implement execution context, tasks, and channels. Our implementation of Chain is dis-

tributed as a static library with headers. It amounts to 644 lines of C code, which compiles

to 412 bytes or 0.6% of program memory on the WISP platform.

Hardware Assumptions. Our implementation makes few assumptions about the under-

lying energy-harvesting hardware. We assume some (but not necessarily all) memory is
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T(){
...
}

Task Fn Task Context

Task Fn:  &T

DFList: f1,...

Global Context
(double buffered)

Current Task: T

Logical Time:17

Timestamp:  15

Data:  0xABCD

Field f1 

Timestamp:  9

Data:  0x0000

Field f2 

Task-to-task /
Multicast Channel

Timestamp[0]:15
Field f1 

Self Channel

Timestamp[1]:17

Data[1]: 0xF000

Data[0]: 0xABCD

Input Index: 1

Output Index: 0

Dirty Bit: 1

Timestamp:  16

Data:  0x1234

Field f3 

Figure 4.7: State used in our Chain implementation. The double-buffered execution context
tracks time and the current task. The task context keeps a pointer to the task code and
a “Dirty Field List” (DFList) containing updated fields in the task’s self channel. Task-to-
task channels and multicast channels have the same representation and each of their fields
contains a timestamp and data. A self channel field contains two timestamps and data
buffers, one for input and one for output. A self channel field tracks which timestamp and
data buffer is input and which is output using the input/output indices; the dirty bit is set
if the field was updated.

non-volatile. This assumption matches existing energy-harvesting devices (e.g., the Wireless

Identification and Sensing Platform (WISP) [149]). Chain runtime implementation assumes

single-word writes to non-volatile memory are atomic. This assumption is reasonable for the

single-cycle 16-bit microcontrollers and the FRAM memory technology common in energy-

harvesting hardware. While atomicity of memory writes given arbitrarily-timed power fail-

ures is not explicitly guaranteed by manufacturers, we have never observed partially written

words in non-volatile memory. For the runtime library, the compiler must not be allowed

to re-order writes to non-volatile memory. This requirement does not concern application

code, because all Chain operations are sequencing points.

4.2.1 Tasks

A task is composed of a task function that contains its code and a task context object that

contains its runtime state. A task function is a C function with no arguments and no return
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value. A task function can contain calls to arbitrary C code (i.e., legacy/third-party code),

but Chain’s consistency guarantee does not extend to any such code that writes to non-

volatile memory. A task’s context consists of a pointer to its function and state related to

maintaining its self channel, which we describe in Section 4.2.3. Each task object is statically

allocated and initialized in non-volatile memory.

4.2.2 Task sequencing

The Chain runtime maintains a non-volatile global execution context that stores the pointer

to the current task execution context and the current logical time; both objects are depicted

on the left in Figure 4.7. The NextTask control-flow directive updates the current task

context pointer in the global execution context to point to the context object of the next task.

Chain must atomically update the multi-word global execution context despite intermittence.

Atomicity is ensured by double buffering the global execution context and indirecting accesses

to it through a pointer. While the current global execution context is in one buffer, the

NextTask routine sets up the updated context in the other buffer. To commit the transition,

Chain sets the context pointer to point to the updated buffer atomically using a single

instruction. After a reboot, the runtime transfers control to the task pointed to by the

current global execution context, which is retrieved from non-volatile memory. On each

task transition, but not on reboot, the runtime increments the current logical time in the

global execution context, which clocks application progress and is used to implement channel

operations described in the next section.

A key property provided by the Chain language implementation is that all state visible

to a program after a task transition is exactly the same as after a reboot. This property

frees Chain from the need for costly restore operations after reboots that are characteristic

of checkpointing systems. After a transition, the Chain runtime invokes a task prologue that

idempotently sets up a task’s channel structures. Section 4.2.3 provides a detailed expla-

nation of channel setup in the prologue. Importantly, Chain guarantees that the prologue
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completes exactly once for each task transition. To guarantee a single successful prologue

execution the runtime saves the logical time at the end of the prologue into the task context.

Chain only executes the prologue if the current time exceeds the saved timestamp. After the

prologue, Chain jumps to the task’s function entry point.

4.2.3 Channels

In our implementation of Chain, channels are defined statically and accessed dynamically. A

channel is defined by specifying its two end-points and a set of named, typed data fields. We

refer to a channel between different tasks as a task-to-task channel to distinguish it from a

self channel (Section 4.1.2). A channel’s data field may hold a scalar value or an array value.

Chain implements array fields as a collection of scalar fields, each of which can be referred

to by an index. The fields of each channel are specified by the programmer at compile time

using syntax defined in the Chain library header.

Each channel definition translates to a C structure type. Internally, each member field

of a channel is a nested structure. The nested field structure in a task-to-task channel has a

buffer to hold the data value of the channel field and a member for channel metadata. The

channel metadata field consists of a last-modified timestamp, which is used by the ChSync

implementation described in Section 4.2.6.

The implementation of a self-channel is different from a task-to-task channel. A self-

channel field has two buffers for data values — one for incoming and one for outgoing data

— and a member for metadata. The duplicated data buffers in a self-channel field are used

to implement the channel exclusion principle introduced in Section 4.1.5. The metadata field

of a self-channel holds the timestamp of its last update and the state Chain needs to decide

which data buffer is its input and which is its output (Section 4.2.4).

A channel declaration statically allocates a channel as a non-volatile C struct (in

FRAM). A channel’s symbol name is the concatenation of the names of the channel end

point tasks. Consequently, ChIn and ChOut can resolve a channel’s name using tasks’ names
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at compile time.

4.2.4 ChIn and ChOut

A task writes a value into a field of a channel using ChIn and reads a value from a field of a

channel using ChOut. These directives resolve the channel’s memory location at compile time

by concatenating the names of the source and destination tasks into the channel structure’s

symbol name. A ChOut to a field in a task-to-task channel writes a value into the field’s

data buffer and sets the field’s last modified timestamp to the current logical time (from the

global execution context). A ChIn from a task-to-task channel’s field returns the value in

the field’s data buffer.

A self-channel field has an input and an output data buffer. Its field metadata consists

of two timestamps, an output buffer index, an input buffer index, and a dirty bit. A ChOut

to a field of a self-channel writes the given value to the data buffer identified by the output

index, sets the dirty bit, and adds the field offset to a list of dirty fields in the task object.

A ChIn from a self-channel returns the contents of the data value buffer identified by the

input index. On the next transition the roles of the input and output value locations are

reversed for all fields that were marked as dirty. This takes place in the prologue routine

that runs once after a task transition, as explained in Section 4.2.2. For each field in the

dirty field list with its dirty bit set, the prologue does an atomic swap-and-clear that swaps

the input index with the output index and clears the dirty bit. We pack the index and dirty

bits into a single 16-bit word, making the atomic swap-and-clear a single write instruction.

Even if the prologue executes repeatedly, each field undergoes exactly one swap, because a

swap only occurs if the dirty bit is set and the dirty bit is cleared by the swap.

4.2.5 MultiOut

With a MultiOut primitive a task can channel a value to multiple recipients using as much

memory as a single task-to-task channel. A multicast channel is like a task-to-task channel
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in its compile-time declaration and field structure. The channel’s name is the concatenation

of its source with a destination ID that uniquely identifies its destination list.

A MultiOut statement can refer to a multicast channel only if its source task is the

calling task, because MultiOut constructs the channel’s name using the name of the calling

task. The ChIn and ChSync statements use the name of the calling task and the multicast

channel’s destination ID string to refer to the channel. Our prototype does not prohibit

reads from a multicast channel by tasks that are not members of the destination set. This

limitation may be unintuitive, but does not jeopardize Chain’s correctness.

4.2.6 ChSync

A ChSync operation reads a value that may reside in one of a set of channels. The ChSync

primitive accepts a field name and a set of sources. A source can be a task name, self, or a

multicast destination ID. At compile time ChSync resolves each source into a channel name

and locates the field’s last-modified timestamp by the field’s name. At runtime, ChSync

compares the timestamps associated with the fields and returns the data value of the field

with the latest timestamp.

4.2.7 Modular task groups

A modular task group, or a “module”, encapsulates a group of tasks for re-use. A module

contains an entry task, an exit task, an input channel, and an output channel. A module’s

input and output channels are implemented as augmented task-to-task channels. The input

channel stores the name of the module’s successor task. ModEnter saves the name of the

successor task into the input channel and transfers control to the entry task. A module’s

entry task’s name is constructed at compile time from the module’s name. ModPut and ModIn

translate into ChOut and ChIn on the module’s input channel. ModGet and ModOut translate

into ChIn and ChOut on the module’s output channel.
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Any task in the module can ModIn from the input channel, because the input channel

symbol name does not include the calling task’s name. The output channel’s name includes

the name of the exit task, allowing only the exit task to ModOut to the output channel. Our

prototype implementation of modules has a limitation that is not fundamental to Chain’s

design. We do not check that only a module’s member tasks access its channels, and the

programmer is responsible for correctly using ModIn, ModOut, ModPut, ModEnter, and ModGet.

4.3 Evaluation

We compare Chain to state-of-the-art runtime systems in terms of correctness, performance,

memory profile, and developer effort. We deployed each application described in the next

section on the WISP [149] and ran it on harvested-energy.

4.3.1 Experimental setup and applications

We used Chain to implement four applications, each representative of a practical domain

with varied control flow, compound data types, and complex data structures. We built our

systems using the WISP5 energy-harvesting platform, which has a TI MSP430FR5969 16-bit

MCU with one core clocked at 8 MHz, 2KB of RAM, 64KB of non-volatile FRAM, an ac-

celerometer, and an RF energy-harvesting power system [149]. In addition to implementing

the applications using Chain, we also implemented each using DINO [101] and Mementos

[101], which are state-of-the-art runtime systems for intermittence. We used the publicly

released DINO implementation. We wrote two variants for Mementos. One variant, Mem-

NV, uses volatile and non-volatile memory, but may experience data corruption because

Mementos does not keep non-volatile memory consistent. The other variant, Mem-V, re-

stricts mutable state to volatile memory, which is kept consistent by Mementos, but limits

the total size of the program state to the small capacity of the volatile memory.

Activity Recognition (AR). AR is a machine-learning physical activity classification
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system used in prior work [101]. AR collects accelerometer samples into a sliding window

and filters out samples below a noise threshold. AR converts the 3-axis samples into feature

vectors and classifies the window as moving or stationary using a nearest neighbor classifier.

After classifying, AR updates the classification statistics for each class and stores them in

non-volatile memory for later inspection. AR trains its model by having the user generate

reference activity for each class. In a correct execution, the classification statistics must be

mutually consistent: the class counts must sum to the total count.

Cold-Chain Equipment Monitoring (CEM). A CEM system continuously monitors

a temperature-controlled environment (e.g., vaccine storage), logging temperature over time.

Our CEM system collects a stream of temperature sensor readings and compresses them

using LZW compression [185] to maximize the capacity of the log. The compressed stream

is recorded in non-volatile memory for later decompression and inspection. In a correct

execution, the resulting log is a valid, LZW-compressed data stream.

Data Encryption (RSA). This application encrypts a message using RSA [142]. The

public key of up to 2048 bits (configurable at compile time) is stored in non-volatile memory,

and can be changed after deployment. To the best of our knowledge, ours is the first

RSA implementation on an energy-harvesting device using such a strong (large) key. Our

implementation thus enables an energy-harvesting device to securely communicate with any

base station without the need to share a secret ahead of time.

Cuckoo Filtering (CF). A cuckoo filter is a general-purpose data structure that ap-

proximately encodes set membership and supports element deletion. This data structure is

well-suited for filtering out redundant samples from a sensor. Like a Bloom filter, a cuckoo

filter may return a false positive but not a false negative when queried for a value. Our CF

implementation inserts a fixed-length sequence of pseudo-random values into a large filter.

CF then looks up the sequence of values in the filter. In a correct execution, the count of

affirmative lookups matches the sequence length.

We used the following experimental setup for each application. The input to AR was
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generated by the accelerometer as we flipped the orientation of the WISP from vertical

to horizontal throughout the experiments. The AR model was trained in the vertical and

horizontal orientation for each class, respectively. The input to CEM originated from the

temperature sensor without any deliberate manipulation of the surrounding temperature.

The plaintext for RSA was a fixed 11-byte string stored in non-volatile memory. The input

values in CF were produced by a simple pseudo-random-number generator with a fixed seed.

We used the Energy-interference-free Debugger (EDB) [38] to record the output without

affecting the energy state of the device. In our lab setup the WISP harvested energy from a

ThingMagic Astra-EX RFID reader from a distance of 20 cm (10 cm for CEM).

4.3.2 Correctness

An application may produce an incorrect result on an intermittently-powered platform if the

runtime system does not guarantee memory consistency. Table 4.2 summarizes the outcome

of running each application on harvested energy. Applications written in Chain and DINO

always produced correct output. This result follows from the memory consistency guarantee

made by these systems.

The Mem-NV version of every application either returned an incorrect output or failed to

complete on at least one trial. AR generated percentages for moving and stationary classes

that did not add up to 100%. CEM entered an infinite loop or produced compressed text

with more compressed indexes than uncompressed samples, which violates an invariant in

LZW algorithm. RSA produced undecryptable cyphertext. CF reported false negatives to

membership queries. Mem-V guarantees correctness for an application only if its state (stack

and global variables) completely fits within volatile memory. We discuss the implications of

restricting state to volatile memory in Section 4.3.4.
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App. Chain DINO Mem-NV Mem-V
AR 3 3 7 ∗
CEM 3 3 7 ∗
RSA 3 3 7 ∗
CF 3 3 7 ∗

Table 4.2: Correctness of observed application output. Legend: 3= correct, 7= incorrect,
∗= correct if application fits in RAM.
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Figure 4.8: Application performance with Chain and state-of-the-art.

4.3.3 Performance

We ran each application in Section 4.3.1 on harvested energy and measured the time it took

to complete a fixed amount of work. The amount of work was defined by application-specific

parameters that control the number of classifications in AR, the size of the compressed log

in CEM, the size of the plaintext (equal to key size) in RSA, and the number of buckets

in the cuckoo filter in CF. We configured AR to 128 classifications, CEM to a dictionary

of 280 entries, RSA to 128-bit keys, and CF to a filter with 256 buckets. These are the

largest workloads that Mem-V can handle due to its memory size limitation. In our trials

each application completed its workload within several seconds. We present detailed results

from a representative trial run in Figure 4.8.
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App.
Memory Consumption (KB) Multicast Benefit

Chain MemV MemNV DINO Ops. Avg. Dests. Savings

AR 2.5 4.1 4.2 4.2 1 2 50%
CEM 9.4 4.1 5.8 5.8 5 2.2 37%
RSA 4.9 4.2 4.4 4.4 11 3.6 90%
CF 16.2 4.1 4.6 4.6 5 3.4 73%

Table 4.3: Non-volatile memory usage (KB) with Chain and state-of-the-art, measured when
deployed on TI MSP430FR5949 MCU that features 2 KB of SRAM (volatile) and 64 KB
of FRAM (non-volatile). Right-hand columns show the benefit of Chain’s channel multicast
feature: the number of multicast operations used, the average number of destinations, and
the memory saved on multicast channels relative to an equivalent set of per-task channels
with ChOut statements.

Figure 4.8 shows the slowdown relative to Chain, defined as a ratio of the respective

execution times. Chain outperforms DINO, the state-of-the-art, by 2x to 7.6x. We include

Mem-NV performance results for completeness, but emphasize that its output is incorrect

in trials that generate any output at all (cf. Section 4.3.2). Mem-V running time is one

or more orders of magnitude above the alternatives. Mem-V spends most of the time in

saving and restoring its disproportionately large checkpoints, each of which must include all

program state. Applications run faster with Chain, because Chain does not use checkpoints.

Chain eliminates the cost of saving and restoring checkpoints as well as the work wasted on

checkpoints that are started without sufficient energy to complete them.

4.3.4 Memory profile

We characterized how Chain utilizes memory and showed that Chain is always comparable

with DINO and Mementos, and in some cases Chain makes better use of memory. The

memory footprint of the runtime is not prohibitively high for any of DINO, Mementos, or

Chain. Chain’s footprint was 412 bytes (0.6% of memory on the WISP), compared to 582

bytes for DINO (30% larger than Chain) and 340 bytes for Mementos (21% smaller than

Chain). The most significant memory cost for all three systems is the non-volatile memory

consumed by checkpoints and channels. Table 4.3 summarizes the non-volatile memory

footprint that we collected from the application binaries. For Chain, the footprint consists
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of the channel memory buffers. For checkpointing-based systems (Mem-V, Mem-NV, and

DINO) the footprint includes the space reserved for a double-buffered checkpoint, as well as

non-volatile variables in Mem-NV and their versioned copies in DINO. Mementos and DINO

both conservatively use a checkpoint buffer that can accommodate a checkpoint of all of

RAM (i.e., 2KB), amounting to double-buffered checkpoint storage of 4KB.

The data show that Chain’s memory use is sometimes less than, and sometimes more

than that of the other systems for the same applications. Chain uses less memory than

checkpointing systems when the size of channel state is less than the size of checkpoints and

versions. Chain allocates exactly as much memory as it needs, since its channel declarations

are available at compile time. In cases where Chain uses more non-volatile memory (CF,

CEM), the overhead is due to replication of data in channels. In these cases, Chain trades

non-volatile memory consumption for the often disproportionately large improvement in

throughput and energy efficiency that comes with eliminating checkpoints.

We also analyzed volatile memory consumption. Volatile and non-volatile memory us-

age affect deployment cost disproportionately. Non-volatile memory is orders of magnitude

cheaper than volatile memory, e.g., the largest MCU in the MSP430FR family has 128 KB

of FRAM but only 2KB of SRAM. Chain does not change a system’s volatile memory con-

sumption. DINO requires enough volatile memory to hold versioning data for non-volatile

variables on the stack before adding them to a checkpoint. Mem-V requires enough volatile

memory to hold all program state, making it impossible to use for non-trivial applications

on some MCUs.

Mem-V’s exclusive dependence on volatile memory compromises application performance,

constrains the choice of MCU, and limits the maximum distance to the energy-source. For

example, in CEM the compression rate is a function of the size of LZW dictionary. The

2048-bit RSA would require an MCU with at least 2KB of SRAM. However, purchasing

more RAM is not a solution if the RAM contents is part of every checkpoint, as it is in

Mem-V. Once the checkpoint becomes large enough, the energy required to reach the next
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Chain DINO
Tsk. / LOC Tsk. LOC

App. Mod. Decl. Flow Chan. Tot. Bnd.

AR 11 / 0 61 19 49 519 8 435
CEM 12 / 0 82 19 63 412 13 264
RSA 20 / 2 103 28 119 831 34 644
CF 14 / 1 109 20 74 432 13 262

Table 4.4: Size of application implementations in Chain and DINO.

checkpoint will exceed the energy available during one capacitor charge-discharge cycle and

application progress will halt. We directly observed this failure mode for our CEM system

at >10 cm from its energy source, where Mem-V stopped working completely.

To illustrate the value of Chain’s multicast channel feature, we calculated the memory

saved in Chain applications by using multicast channels instead of standard channels. As

explained in Section 4.2.5, our implementation of the multicast channel shares one memory

buffer between all destination endpoints. Table 4.3 shows that using multicast channels is

valuable in all of our applications and using multicast channels on average consumes less

than half as much memory as a collection of standard channels would use to serve the same

purpose.

4.3.5 Developer Effort

To implement an application in Chain, the developer decomposes it into tasks and connects

the tasks with control flow statements and channel statements. A decomposition follows

naturally from a modular application design. A loop may need to be converted into a task

with the loop body and a transition to itself. To reuse code in a decomposed application, with

moderate effort tasks can be encapsulated into modules (cf. Section 4.1.4). Decomposing

into Chain tasks is similar to placing DINO boundaries. We list the number of tasks and

modules in Chain and task boundaries in DINO for each application in Table 4.4.

We compare the amount of additional code each application requires in both Chain

and DINO implementations in Table 4.4. For Chain, lines are categorized into channel
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declarations, task transition statements, and writes to and reads from channels. Across our

applications Chain code is larger than DINO code on average by 42%, of which 60% are

straightforward declarations of tasks and channel fields. A task declaration specifies the

name of the task and its implementation function, and a channel declaration specifies the

channel’s endpoints and the types of each of its fields.

Although they burden the programmer, explicit specifications of channels are self-documenting

and provide the necessary information to statically check the usage of ChIn/ChOut statements

for correctness. An implementation alternative could trade off the advantage of explicit spec-

ifications in favor of reducing the amount of code required. Such an implementation could

infer channel declarations from their usage in ChIn/ChOut statements. A graph of inter-task

data exchange could then be constructed from the ChIn/ChOut statements, and a channel

allocated per each edge. The type of channel fields can be inferred from the type of values

that are being written and read from the channel, with the exception of sizes of array fields,

which would be specified by explicit type declarations. Channel field, type, and structure

inference is an especially compelling direction for future work on Chain.

4.4 Summary

Chain is the first programming model to provide intermittence-safety without the need for

costly checkpoints. Chain provides a task-granular progress guarantee and its channel mem-

ory model keeps data consistent. Channels dispatch with the need to save and restore

checkpoints on reboots. Chain ensures consistency and progress with 2-7x higher through-

put than prior systems. Such a throughput increase enables compute-intensive applications

that demand correctness, like 1024-bit RSA and LZW compression, on energy-harvesting

devices.
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Chapter 5

CleanCut: Task Decomposition for

Intermittent Programs

A task-based intermittent programming models like Chain (cf. Chapter 4) and checkpoint-

based systems like DINO [101] asks the programmer to decompose the program into smaller

regions, which we will refer to as tasks for both classes of systems. After a power failure, a

task re-executes from the beginning. However, the task has a chance to finish executing only

if the energy storage capacitor can buffer sufficient energy to sustain the workload of that

task. Whether a task completes depends only on the storable energy and not on the energy

harvestable from the environment, because the energy incoming during the (brief) time that

the capacitor takes to discharge is negligibly small for weak harvesters.

When a system delegates the decomposition of the program into tasks, i.e. the placement

of task boundaries into the program code, to the programmer, it burdens the programmer

with the energy estimation challenge. Reliance on the human programmer introduces the

risk that tasks will either incur a high overhead or be impossible to complete. An overly

cautious programmer may place more task boundaries in code than necessary, wasting energy

and imposing a time overhead. If the programmer uses too few boundaries, the program

may have a non-terminating path that requires more energy than the device can buffer. A
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Figure 5.1: Different task decompositions cause different execution behavior.

non-terminating path consumes more energy than will ever be available, causing the task to

repeatedly restart and fail forever. Code including such a non-terminating path represents

a new type of software bug that is unique to intermittent applications. There is currently

no system support to help find these bugs by assessing whether a task boundary placement

includes non-terminating paths, nor for helping place task boundaries.

Figure 5.1 shows how different static task boundary assignments lead to different behavior

with three variants of an activity recognition application from prior work [101, 39]. The code

featurizes and classifies data from a sensor, maintains statistics, and produces output. The

energy cost of a task is illustrated in terms of abstract energy units, represented by the

lightning bolt circles between the task’s initial and terminal boundary. The figure assumes

a device that can buffer at most four energy units. The left variant of the program is

decomposed into tasks using three boundaries. The energy consumption of the resulting

tasks does not exceed the device’s energy capacity and the depicted execution makes progress

with little boundary overhead, despite periodic reboots. The middle variant has a non-

terminating path bug because it is decomposed with too few boundaries. This variant’s most

costly task consumes more energy than the device can buffer. Consequently, the application

can never make progress, rebooting and re-executing the task indefinitely. The right variant
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is inefficient because it uses too many task boundaries because the energy cost of each task

fits within the device capacity and boundaries execute more often than necessary, wasting

time and energy.

Despite the importance of placing task boundaries, doing so remains a difficult, manual

process for which there is no system support, regardless of the system for intermittent exe-

cution. There is no direct correspondence between a code span and its energy cost, because

energy consumption varies per execution and depends on the full system, including peripher-

als. Code paths have a distribution of energy costs that is opaque to the programmer. There

is no connection between code and the energy capacity of the device. Programmers get no

feedback from the compiler about their task boundary placement. Instead, the programmer

is left to guess whether tasks will terminate, or if excessive boundary overhead will throttle

throughput. To port to another platform, the programmer must decompose the code again.

Adoption of task-based intermittence models is impeded by the lack of support to check that

a decomposed program is free of non-terminating path bugs and to place task boundaries to

avoid these bugs by construction. Our objective is to fill both of these gaps.

In this chapter we propose CleanCut, a system for finding non-terminating paths in

intermittent programs and eliminating such paths by generating terminating task boundary

assignments automatically. CleanCut’s checker checks a task boundary assignment and

reports non-terminating paths that need refinement. CleanCut’s placer subdivides a program

into tasks free of non-terminating paths. CleanCut minimizes overhead by approximately

bisecting paths and preferring boundaries unlikely to be executed frequently.

Both the checker and placer use CleanCut’s statistical model of the energy consumption

of each program path. The energy cost of a path is calculated from the energy cost of basic

blocks that compose that path, including paths with loops bounded by annotations from the

programmer. CleanCut’s path energy model is compatible with block energy models based

on direct measurement and analytical models [99].

We implemented CleanCut’s analyses in LLVM and used it to analyze applications from
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prior work [101, 39, 106]. We show that CleanCut’s checker identifies task boundary assign-

ments with non-terminating path bugs, demonstrating its value as a debugging tool. We

show that CleanCut’s placer produces boundary placements that are free of non-terminating

paths and have lower overhead than manually- or randomly-placed boundaries. We measure

the additional compilation time taken by CleanCut to confirm its practicality.

In the next section we give a system-wide overview of CleanCut. Sections 5.2—5.4

describe CleanCut’s energy model, checker, and placer. Section 5.5 provides implementation

details. Section 5.6 evaluates CleanCut. We summarize in Section 5.7.

5.1 Overview

CleanCut is both a debugging tool and a program transformation analysis that helps a pro-

grammer place task boundaries in a program written for a task-based intermittent execution

model to avoid non-terminating path bugs. CleanCut has two modes of use, as a checker

or as a placer. Both the checker and the placer rely on CleanCut’s energy model, which is

described in detail in Section 5.2. Sections 5.3 and 5.4 describe the details of the checker

and placer themselves.

CleanCut’s checker is a debugging tool that examines a task boundary placement and

checks for non-terminating path bugs. A non-terminating path bug stems from a misuse

of task boundaries that allows a path through a task to consume more energy than the

maximum amount of energy that the target device can buffer. The program’s source and

the energy buffering capacity of the target device are inputs to the checker. If the checker

finds a path that consumes more energy than the device can buffer (i.e., a non-terminating

path bug), the checker reports the path to the programmer, along with the boundaries

of the task containing the non-terminating path. The programmer can then adjust the

task boundaries — by moving existing boundaries or adding new ones — to eliminate the

bug. The programmer can re-run the checker after each adjustment to the task boundaries
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eventually eliminating all reported non-terminating path bugs. The checker is most useful

to a programmer that prefers fine-grained manual control over boundaries to ensure that,

for example, related I/O operations execute in the same task.

CleanCut’s placer is a program transformation that adds task boundaries to a program

to avoid non-terminating path bugs. The goal of the placer is to produce a task bound-

ary assignment that is free of non-terminating paths and that minimizes the overhead of

executing task boundaries. The placer works iteratively and each iteration evaluates the

current task boundary assignment to identify non-terminating paths. The placer selects the

non-terminating path of highest energy cost to subdivide, and inserts a new task boundary

along the path to divide the path into two sub-paths of approximately equal energy cost.

To minimize task boundary overhead, the placer avoids placing boundaries in loops with a

high iteration count and in functions that are called from many call sites. The placer is most

useful to a programmer that has fewer platform-specific requirements in their application,

and benefits more from a fully-automated workflow.

5.2 Energy model

CleanCut’s non-termination bug checker and task boundary placer both rely on a statistical

model of the energy consumed by each control-flow path from one task boundary to an-

other. The model computes a path’s energy by combining the energy of its constituent basic

blocks. We chose to model path energy based on basic block energy, as opposed to single

instruction energy, to produce estimates closer to the observable average case rather than

the theoretical worst-case, following the insights in [99]. In addition, since profiling is part of

the programmer’s workflow in CleanCut, we avoid relying on high-resolution measurement

hardware to collect per-instruction estimates. With a block-based model, as with a detailed

instruction-level model, energy estimates must be recomputed as code changes.
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Figure 5.2: CleanCut models the energy of each path.

5.2.1 Block energy model

A basic block energy model compatible with CleanCut represents the consumed energy as a

probability distribution that indicates how likely the block is to consume different amounts of

energy. A distributional model captures the range of possible energy costs of a block, which

is necessary to estimate the probability of a non-termination bug manifesting. Figure 5.2

on the left illustrates that CleanCut measures an energy distribution for each block in a

program’s control-flow graph, using the procedure described in Section 5.5.2.

We chose to make CleanCut’s energy model distributional to avoid losing information

about possible path energy consumptions. A distributional model captures more information

than a scalar worst-case energy model about whether a non-termination bug will manifest. A

distributional model lets CleanCut’s non-termination bug checker report the likelihood that

a path will not terminate to the programmer. Reporting non-terminating path bugs with

their manifestation likelihood enables the programmer to prioritize potential non-termination

issues.

CleanCut is designed to accept any distributional block energy model that can represent

the distribution as a discrete histogram. Our prototype implementation of CleanCut uses

a measurement-based block energy model, because it accounts for the total energy of the

board, including sensors and radios, does not rely on any models of low-level circuit power
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behavior, and was effective in our evaluation (Section 5.6). The potential drawback of this

measurement-based prototype is that it may not capture all of a block’s energy behaviors,

potentially underestimating the block’s worst case energy as the maximum energy observed

during measurement.

The potential drawbacks of the measurement-based model in our prototype are not

inherent to CleanCut’s path modeling approach, however, and CleanCut could instead

use an analytical block model derived from device characteristics and application analysis

[34, 99, 90, 188]. Using an analytical model has the advantage of being able to estimate theo-

retical worst-case energy, and can provide estimates that cover all program inputs. However,

analytical models, too, have drawbacks: analytical models typically capture only processor

power since other board components like sensors and radios require fundamentally different

modeling methodologies. As better energy models arise, CleanCut can incorporate them.

5.2.2 Path energy model

CleanCut uses the block energy distributions to compute the energy distribution of each

path in the program, as illustrated in Figure 5.2 on the right. CleanCut’s path energy model

accumulates the cost of blocks along a path from its initial task boundary to its terminal task

boundary. A path is a non-branching sequence of basic blocks (Section 5.2.1), loop blocks

(Section 5.2.2), or opaque blocks (Section 5.2.2). CleanCut’s target programming model

does not support recursion, which is uncommon in embedded software where predictability

and static resource bounds are often required.

To compute path energy, CleanCut must aggregate the energy of the various types of

blocks that comprise the path. If CleanCut represented block energy with a scalar, then it

could calculate the energy of a path by simply adding the energy costs of the blocks that

make up that path. However, CleanCut represents the energy of each block as a distribution,

which precludes simple addition. To accumulate block costs, CleanCut convolves the energy

distributions for the blocks along the path. Convolving the distributions for two random
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variables (i.e., two block energy distributions) produces a distribution for the random variable

that is their sum. Any two arbitrary distributions can be convolved. CleanCut sequentially

convolves blocks on a path yielding a distribution representing the energy cost of the path.

Loops

CleanCut handles loops by encapsulating their energy cost in an abstract loop block, as shown

in Figure 5.3. CleanCut abstracts a loop’s body by using a single distribution to represent

the energy cost of all paths from the head of a loop to its back edge. A nested loop is

recursively abstracted and incorporated into a path through the parent loop. Along a path

with a loop, CleanCut convolves the loop body’s energy distribution once per loop iteration

along with the distributions of the other blocks on the path.

A loop body with many control-flow paths has a modal energy distribution, with a mode

at the expected energy cost of each path. As illustrated in Figure 5.3, CleanCut computes

this modal distribution by mixing the distributions for each of the paths through the loop

body. To produce an energy model for a path containing a loop, CleanCut convolves the

loop body’s distribution with the path energy distribution a number of times equal to the

estimated loop bound. By default, the loop body’s mixture model uniformly combines the
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intra-loop distributions, treating each path through the loop as equally likely. CleanCut

provides an implementation of Ball-Larus path profiling [15] that can determine the likelihood

of each path by monitoring representative executions to use as weights in the mixture.

Loops present two main challenges to any analysis. First, the iteration count of an

unbounded loop is statically unknowable. Second, an efficient analysis must not unroll the

loop. To account for the iteration count of a loop, CleanCut requires the programmer to

provide a bound estimate, as depicted on the arc (U,Q) in Figure 5.3. For unbounded

loops, CleanCut gives the programmer a choice of either providing an annotation statically

bounding its iteration count (similar to k-bounded [48] profiles and often simple for embedded

applications) or forcing a task boundary inside the loop, which effectively eliminates the loop

from the task. For the former choice, to help the programmer determine the loop iteration

count, CleanCut has a loop iteration count profiler that can measure the histogram of a

loop’s iteration counts. The accuracy of the profile for dynamically-bound loops is limited

by the sensor inputs during profiling.

I/O operations

CleanCut accounts for the energy cost of I/O operations. The energy of I/O that is contained

within a basic block is accounted within the energy for the containing block. Composite

multi-block I/O operations (e.g. polling a peripheral) are abstracted into opaque blocks.

CleanCut measures the energy distributions for opaque blocks in-place during a dedicated

instrumented run of the application.

5.2.3 Evaluating the energy model in the compiler

CleanCut’s compiler uses the recursive procedure shown in Algorithm 1 to calculate each

path’s energy probability density function (PDF). Before the algorithm runs, a preliminary

pass splits any basic blocks with a call instruction and inlines the callee’s blocks, recursively.

The traversal starts at the entry block and recursively descends along each path until a task
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Algorithm 1 CleanCut path energy estimation algorithm.

1: function CalcPathEnergies(CFG G, block b)
2: if IsLeaf[b] ∨ IsBoundary[b] ∨ IsLoopSucc[b] then
3: return {0}, ∅
4: E ← ∅, S ← ∅ . Path energies and successors
5: if ¬ IsLoopHead[b] then . Add energy of a block
6: for s ∈ Successors[b] do
7: Es, Ss ← CalcPathEnergies(G, s)
8: E ← E ∪ Es, S ← S ∪ Ss

9: else . Add energy of a loop
10: el ← 0, Sl ← ∅ . Loop energy and successors
11: for s ∈ Successors[b] do
12: Es, Ss ← CalcPathEnergies(G, s)
13: El ← {e ∈ Es : EndsAtBackedge[Path[e]]}
14: el ← el ⊗ e for e ∈ El
15: E ← E ∪ (Es \ El)
16: Sl ← Sl ∪ Ss
17: el ← el × LoopIters[b]
18: for s ∈ Sl do . Add loop to paths after the loop
19: Es, Ss ← CalcPathEnergies(G, s)
20: E ← E ∪ {el ⊕ e : e ∈ Es}
21: S ← S ∪ Ss

22: if E 6= ∅ then return {e⊕ Energy[b] : e ∈ E}, S
23: else return {0}, ∅

boundary or a program-terminating block (Line 2). A recursive call (Line 7) returns a list

of energy distributions, Es, for paths that start from the intermediate node and a list of

entry blocks into successor tasks, Ss. Each frame adds the current block’s energy to each

sub-path that starts at a block’s child by convolving (⊕) the distributions (Lines 8, 22) and

the current block’s successors list, S, is extended with its children’s successors, Ss (Line 8).

To add the energy of a k-iteration loop to a path, the pass recursively computes the energy

of each loop body path (Line 12), mixes them (⊗) (Line 14), and convolves the resulting

block with itself (×) k times (Line 17). The loop energy is then convolved with each path

starting after the loop (Line 20). The set of loop body paths El excludes paths that descend

into the loop body but reach a task boundary before a backedge (Line 15).
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Figure 5.4: Modeled and observed distributions for energy of four paths through a benchmark
application (left). The match between locations of the modes on the x-axis validates that
CleanCut modeling abstractions correctly represent energy behavior.

5.2.4 Energy model validation

We validated the path energy computation using a microbenchmark to show that the dis-

tribution computed by recursive convolutions and mixtures matches the measured energy of

the path. Figure 5.4 shows a CFG with four paths comprising simple sequences of blocks and

a loop. Each path is composed of three or more blocks of four types, labeled A, B, X and Y,

that differ in energy cost. Branches are decided uniformly randomly. The probability density

function (PDF) curves in Figure 5.4 show each path’s estimated energy distribution.1 The

bars in the plot show path energies measured on the WISP [149] during the 294 independent

executions of the program over 5 minutes. There is no correspondence between the scales of

the left and right y-axes beyond the relative heights of modes within data for a single path.

The key result is that the x-axis position of peaks in a path’s modeled distribution corre-

sponds to the path’s peak in the observed energy values. The match for path AXY B shows

that the energy cost of a sequence of blocks, XY , is correctly modeled by the convolution

1For a PDF f , f(x) may exceed 1, but
∫
f(x) dx ≤ 1.
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of energy distributions for X and Y . The match for each of the 5 modes in the distribu-

tion for path A(X|Y )4B shows that the cost of a loop is correctly modeled by a mixture

of energy distributions of the paths through its body. The data also show that CleanCut

underestimated path energy variance and overestimated values in the upper range.

5.3 Non-termination checker

CleanCut’s non-termination checker evaluates a task decomposition to report non-terminat-

ing paths to the programmer if any exist. CleanCut compares an estimate of the energy of

each path to an estimate of the energy storage capacity of the device. If there is a non-zero

probability that a path energy exceeds the capacity, then CleanCut reports the paths along

with the non-termination probability.

Energy available to execute a path is determined by the size of the capacitor installed on

the device. To estimate the effective energy capacity, which excludes energy spent on initial-

ization after each boot, CleanCut measures energy consumed from first application task until

power failure, as described in Section 5.5.1. The estimate is the minimum observed sample.

We assume that variations in capacity at runtime induced by temperature or degradation

are negligible.

To identify non-terminating paths, CleanCut uses the energy model from Section 5.2 to

represent the energy of each path as a probability density function (PDF). CleanCut then

integrates the PDF to obtain the cumulative density function (CDF).

Figure 5.5 illustrates how CleanCut evaluates the CDF to estimate the probability that

the path energy will exceed the device capacity. The vertical dashed line shows where

the device’s energy level (Edev) intersects the paths’ CDFs. The completing path’s CDF

is flat at and after Edev, which indicates that it is not a non-terminating path bug. The

horizontal dashed line at the intersection of Edev and the non-terminating path’s CDF point’s

y-value shows P p
complete: the likelihood that the non-terminating path p completes using Edev
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Figure 5.5: CleanCut detects non-terminating path bugs by evaluating the cumulative den-
sity function (CDF) of the path energy distribution.

energy or less. The figure shows only two CDFs (one terminating, one non-terminating),

but CleanCut’s path checker applies this reasoning to all paths’ CDFs and reports non-

terminating paths and their non-termination probabilities to the program in probability-

ranked order.

5.4 Task boundary placer

The CleanCut task boundary placer inserts boundaries into a program to eliminate non-

terminating paths while minimizing boundary overhead. The placer’s core is the greedy

algorithm listed in Algorithm 2. The main loop in Decompose repeatedly divides the path

with the highest energy cost by placing a boundary along the path. Each iteration begins

with estimating the energy for all paths through the program (Line 5) according to the

energy model (Section 5.2) and storing the estimate as a distribution in the Energy[] field

of each path object. For the division and comparison operations (but not addition), the

distribution is reduced to a scalar value. The reduction operator is configurable to either

the expectation or the maximum observed value; to model worst-case behavior we use the

latter with the energy model from Section 5.2.

The algorithm then selects the highest energy path (Line 6) and, if its energy cost exceeds
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Algorithm 2 CleanCut program decomposition algorithm.

1: function Decompose(CFG G, device model D) . program G on device D
2: B ← ∅ . Initialize set of boundary locations
3: do
4: . Evaluate the energy model and return max e s.t. Prob(energy = e) > 0
5: P ← CalcPathEnergies(G, B) . Stores energies into field Energy[]
6: p← arg maxp∈P Energy[p] . Pick path of maximum energy
7: if Energy[p] > Capacity[D] then . Is path predicted to exceed capacity?
8: if |p| > 1 then . Only splits at block granularity are supported
9: b← SplitPath(p, D) . Place a boundary

10: B ← B ∪ b . Add the boundary to the decomposition
11: else
12: return “NO PLACEMENT EXISTS”
13: while Energy[p] > Capacity[D]
14: return B
15: function SplitPath(path p, device model D)
16: m← 1 + arg maxk

∑k
i=0 Energy[pi] < Energy[p]/2 for 0 ≤ k < |p|

17: for i← 0 to m do
18: if IsLoop[pi] ∧ Energy[pi] > Capacity[D] then
19: L← BodyPaths[pi] . Block pi is loop head, get loop body paths
20: l← arg maxl∈L Energy[l]
21: return SplitPath(l, D)

22: return arg mins∈[1,m] 2
∣∣∣∑k∈[1,s] Energy[pk]∑

t∈[1,m] Energy[pt]
− 1

2

∣∣∣+ DynBoundaries(ps,p)
maxt∈[1,m] DynBoundaries(pt,p)

23: function DynBoundaries(block b, path p) . Estimates dynamic transitions
24: return

∑
b∈InlinedInstancesOfBlock[ps] ΠloopL|b∈LLoopBound[L]

the device energy capacity (Line 7), the algorithm calls SplitPath to choose a location on

the path for a boundary (Lines 8-10) using criteria explained in Section 5.4.1. The set of

paths P is recomputed on the next iteration, because the new boundary affects not only

the path being split but also all paths with a call to the function that contains the new

boundary. The placer completes when the costliest path is within the energy capacity of the

device (Line 13).

The algorithm must divide looping paths with a high energy cost, even if those loop-

ing paths are contained within an abstract loop block (Section 5.2.2). If the traversal over

blocks in a path encounters an abstract loop block (Line 18), the algorithm descends into
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the abstract loop block if the energy cost of the loop exceeds capacity (Line 18) and in-

serts a boundary along the most costly path in the loop body (Lines 19-20). A boundary

placed along a path through a loop, invalidates the energy estimate for that loop until it is

recomputed in the main loop (Line 5).

5.4.1 Minimizing task boundary overhead

The location of a boundary determines its run-time energy and time overhead. Given a

path p, SplitPath finds the location in p where a boundary will have the least impact.

The algorithm identifies the energy midpoint of the path, i.e., the block at which energy

accumulated from either end of the path is below half of the total path energy (Line 16).

SplitPath places the boundary at one of the candidate split points between the start and

the midpoint of the path. The algorithm could consider the split points between the midpoint

and the end of the path but does not in order to save time.

SplitPath assigns each candidate split block a score and chooses the candidate with

the lowest score (Line 22). The split score measures the impact of a boundary using two

components: the relative energy of the two segments after the split and the expected number

of dynamic task boundaries. A static task boundary at block b leads to as many dynamic

task boundaries as there are calls to b’s parent function and iterations of (nested) loops that

include b at runtime. Function DynBoundaries (Line 24) estimates the dynamic calls and

loop iterations from the inlined version of the program CFG — where each call is recursively

replaced with the callee’s blocks — and from loop bounds. The placer algorithm assumes

that the best candidate split point for a boundary is the one that leads to the fewest dynamic

boundaries.

5.4.2 Placer algorithm analysis

Correctness. If a placement exists that is free of non-terminating paths according to Clean-

Cut’s energy model, then the placer algorithm will find such a placement; otherwise it will
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report failure. A valid placement is a placement for which CleanCut’s model indicates that

all path energy costs are below the device energy capacity. If the loop in Decompose

terminates, then placement B is valid, because the negation of the loop condition (Line

13) implies that the maximum-energy path p is below capacity, which implies that all

paths are below capacity. The loop in Decompose terminates if the least upper bound

on the energy of a path in set of paths P i (set P in iteration i) strictly decreases, i.e.

maxp∈P i Energy[p] > maxp∈P i+1 Energy[p], because the right hand side of the inequality in

the loop condition (Capacity[D]) is constant. The least upper bound on energy of P de-

creases in iteration i, if SplitPath is called on the maximum-energy path in iteration i and

if SplitPath decreases the least upper bound.

SplitPath is called on all but the last iteration, because on the iteration in which

SplitPath is not called, either the condition in Line 7 is false, which implies the loop

condition is false, or the condition on Line 8 is false which violates the premise that a

valid placement exists (i.e., some block exceeds the energy capacity). SplitPath decreases

the least upper bound on energy of paths in P , because SplitPath inserts a boundary at

the block at index s ∈ [1,m] in maximum-energy path p (maximum selected in Line 22),

which excludes at least block p0 from the maximum-energy path in the next invocation of

CalcPathEnergies (Line 5). That the maximum-energy path is shortened follows from

the fact that (1) energy is strictly increasing in the number of blocks in the path, regardless

of the type of the block, (2) boundaries are strictly appended to the set of boundaries B, and

(3) adding a boundary to program CFG G with boundaries B cannot increase the length of

any path in G.

Complexity. Let W (n, e) be the number of blocks traversed by the greedy placer algo-

rithm for a program with n paths and the costliest path of energy e. At each iteration of the

outer loop, the algorithm splits one path, which may create boundaries on every path in the

worst case, doubling the number of paths for the next step, but cutting the maximum energy

in half (since the split is done near the energy-midpoint). That is, W (n, e) = n+W (2n, e/2)
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with W (n, e) = n for e < C, where C is the device capacity. The recurrence is bounded by

O(n · 2log e+1).

5.5 Implementation

The CleanCut toolchain is organized as a tree of dependent analysis phases in GNU Make,

with the checker and placer results near the root and requisite models and profiles at inter-

mediate and leaf nodes. Independent phases run in parallel.

5.5.1 Energy measurement

CleanCut programmatically controls the Energy-interference-free Debugger (EDB) [38] con-

nected to the capacitor on the target device to measure energy. For each measurement,

CleanCut places two voltage watchpoints in the application code and EDB records the ca-

pacitor voltage at the watchpoints. Energy consumed between the watchpoints depends

on the watchpoint voltage measurements, Vfrom and Vto, and device capacity, C, as E =

1
2
C(V 2

from − V 2
to). Using EDB, CleanCut directly measures full-system energy, not system

components.

Using our energy measurement setup, we measure the energy storage capacity on the

device and block energy costs. Assuming Von is the voltage when the initialization completes

and the first application task begins and Voff is the MCU’s brown-out threshold, CleanCut

computes the effective capacity using Vfrom = Von and Vto = Voff. Von is measured by running

the application binary with an EDB watchpoint after power-on code. Voff is set from the

MCU’s specification (we validated that Voff = 1.8± 0.002V for our MSP430FR5969 using an

EDB watchpoint).
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5.5.2 Block and path energy

To measure a block’s energy cost, CleanCut extracts assembly generated by LLVM’s backend

for the target architecture, translates the instruction arguments to make the block runnable

outside of its context, replicates it, and inserts it into a harness binary for measurement. To

make the block safe to execute repeatedly outside of its context, CleanCut replaces register

references with a designated “scratch” register and memory references with random addresses

in a designated range. CleanCut generates harness code with the application’s clocking and

peripheral configuration to reflect true energy consumption. After running the harness binary

on the device for 20 s and tracing watchpoints, CleanCut calculates the block energy from

watchpoints as described in Section 5.5.1. CleanCut replicates the block being measured in

the harness, to ensure that the measured energy is above EDB’s watchpoint measurement

resolution. The block’s energy cost is the energy cost of the sequence of replicas, divided

by the replication factor. After a code change, CleanCut compares hashes of canonicalized

blocks to the hashes of the existing profiled blocks and only measures block energy for non-

matching blocks.

To estimate the path energy distribution (PDF) described in Section 5.2.2, an LLVM pass

first traverses the CFG according to Algorithm 1. The pass assembles an expression that

symbolically represents the path energy distribution as a sequence of convolutions and mix-

tures of block distributions. To evaluate the resulting expression to a numerically-represented

probability density function (PDF), CleanCut computes convolutions using NumPy [51] and

mixtures as an element-wise linear combination of input PDFs.

5.5.3 Checker and placer

The checker computes a cumulative distribution function (CDF) by integrating the PDF

that represents path energy using Simpson’s method in SciPy [80]. CleanCut uses the CDF

to determine a path’s failure likelihood for a given device energy capacity C by finding the

probability value at the closest index below C in the CDF’s array representation. By accept-
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ing capacity as a parameter, the checker can validate a program on a range of capacities,

using the same CDF.

We implemented the placer (Algorithm 2) in an LLVM pass that incorporates the path

energy model. The pass selects the blocks at which to place task boundaries according to

the traversal of the CFG in Algorithm 2. The placer invokes the DINO [101] LLVM passes

to insert checkpointing and versioning code at each boundary marker.

5.6 Evaluation

In this section, we evaluate CleanCut to show that the checker’s validations are useful, the

placer is flexible and its task decompositions are efficient, and CleanCut’s analysis time

is practical for a real developer. Recall that Section 5.2.4 validated CleanCut’s energy

model. We applied CleanCut to real code on real energy-harvesting hardware. We used the

WISP [149] energy-harvesting device, which has an 8MHz MSP430FR5969 MCU with 64KB

of non-volatile memory and a 47 µF capacitor. We powered the WISP wirelessly using a

ThingMagic Astra-EX RFID reader at 16 dBm. We fixed the WISP 45 cm from the power

antenna, parallel to its surface.

5.6.1 Benchmarks

We evaluated CleanCut on four energy-harvesting applications from prior work [101, 39].

Activity Recognition (AR) classifies 8 windows with 8 accelerometer samples each into two

activity classes based on a pre-trained model. RSA encrypts an 11-character plaintext with

a 32-bit public in non-volatile memory. Cuckoo Filter (CF) exercises a Bloom-filter-like set

membership structure that supports deletion. CF inserts 64 pseudo-random keys and then

queries for each. The Cold-chain Equipment Monitor (CEM) records 64 temperature readings

from a sensor, LZW-compresses them, and stores the result into non-volatile memory.
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Figure 5.6: Application execution time when decomposed by CleanCut, manually, or ran-
domly. Random decompositions are grouped into completing within one minute (Rnd-
Good), completing after a long time (Rnd-Slow), and not completing (Rnd-NT). The
speedup of CleanCut relative to the manual strategy is shown in the annotations.

5.6.2 Placer evaluation

We evaluated how well CleanCut’s placer helps to insert task boundaries into a program

to avoid non-terminating paths. The evaluation shows that CleanCut’s decompositions are

superior to the programs’ original, manually placed boundaries and random placements. Our

results also show that CleanCut provides flexibility to changing hardware, while avoiding

non-terminating placements.
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Performance

The main result of our placer evaluation is that CleanCut produces higher-quality, more

efficient placements than a modular, manual decomposition strategy and a large number of

randomly-generated potential boundary placements. We assess the quality of a decomposi-

tion by measuring the run time of the decomposed application on the real device. Modular

decomposition is an intuitive manual approach of placing a task boundary at the entry of

each major function or outer loop. Random decompositions place boundaries at basic blocks

chosen uniformly at random from the CFG. We generated 10 random decompositions for each

possible boundary count between 1 and 10, for a total of 91 distinct decompositions (there

is only one one-boundary placement because CleanCut requires a boundary at the top of

main). We measured execution time by wrapping the main function with EDB watchpoints

that collect timestamps when hit.

Figure 5.6 compares run times for CleanCut, manual modular, and random decompo-

sitions. CleanCut consistently outperforms the modular decomposition, with a harmonic

mean speedup of 2.45x. CleanCut also outperforms all terminating random decompositions

for AR and CEM, and is slower only than 2 out of 78 random placements for RSA and 7

out of 68 for CF. Several of the random decompositions that are slower than CleanCut are

slower by an order of magnitude or more. The placer’s decompositions are more efficient, be-

cause they contain fewer boundaries than manual and random decompositions, incurring less

checkpointing overhead. The low boundary count is a benefit of CleanCut’s energy model:

the placer’s algorithm splits the path with the highest energy cost maximally amortizing

boundary cost across the largest available span of code. In contrast, manual decompositions

have many boundaries, because the authors of these applications were conservative and re-

lied on intuition alone to estimate task energy cost. The overly conservative assumptions

lead to the high overhead in Figure 5.6.
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Figure 5.7: Number of task boundaries in CleanCut decompositions. As opposed to a manual
decomposition, CleanCut adapts its decompositions to the energy capacity available on the
device. The larger the energy capacity, the fewer boundaries are placed.

Adaptation to Changing Hardware

CleanCut is parameterized by the energy storage capacity of the target device. This flexibly

lets the user apply CleanCut as hardware specifications change. The manual decomposition

strategy lacks flexibility: A decomposition that is valid on one device, may not terminate on

a device with a smaller energy buffer, and may be inefficient on a device with a larger buffer.

Figure 5.7 shows how CleanCut selects a different boundary count for different target energy

capacity. The counterintuitive increase in boundary count with capacity is a result of the

placer’s greedy algorithm.

5.6.3 Checker evaluation

We evaluated CleanCut’s checker by using it to identify non-terminating path bugs in the

same pool of random decompositions used in Section 5.6.2. The goal of this evaluation is

to show that the checker reliably reports non-terminating paths and rarely reports that a
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path is non-terminating when it is terminating. After obtaining the checker’s predictions

for each path in each decomposition, we executed the decomposition on the WISP energy-

harvesting device on RF power. During execution some (unknown) subset of the program’s

paths executed, depending on the real experimental input from the sensors. The outcome

of each execution is either that the decomposition terminated, implying that no path that

executed had a non-termination bug, or that the decomposition did not terminate, implying

that a non-terminating path executed. A non-termination prediction for a program may not

match the observed behavior because not all paths execute in all runs as a result of input

variation.

Figure 5.8 plots the predicted energy for every path in any decomposition that termi-

nated (left plots) and that did not terminate (right plots). Groups of paths from the same

decomposition are adjacent, of the same color, and sorted by energy. The horizontal line

indicates the measured energy capacity of the device. For a terminating decomposition, we

expect that for all paths that executed – and for most potential paths – the checker predicts

the energy to be below the capacity; i.e. the adjacent vertical bars of the same color should

be below the red line if the paths that they represent executed during the trial run. Paths in

a terminating decomposition that were predicted to be above capacity either did not execute,

or their energy was overestimated by the model. For a non-terminating decomposition, we

expect that there exists at least one path for which the checker predicts the energy to be in

excess of capacity; i.e. from each group of bars of the same color, some vertical bars (cor-

responding to the paths that executed) are above the red line. Paths in a non-terminating

decomposition that were predicted to be below capacity are expected, because it only takes

a single non-terminating path to prevent an execution from terminating. However, if a non-

terminating decomposition has no path whose energy was predicted to be above capacity,

then CleanCut underestimated the energy cost of at least one non-terminating path.

These expected trends are visible in Figure 5.8. Every non-terminating decomposition

had at least one predicted non-terminating path in CF and CEM; and all but one non-termi-
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nating instance had such a path in AR. The results for these benchmarks show that CleanCut

successfully identified non-terminating paths. In RSA, all but seven of the non-terminating

decompositions had at least one path predicted not to terminate. For the remaining seven,

we identified the source of the underestimate to be inaccurate loop iteration counts for some

dynamically-bound loops (e.g. division, container search) that we obtained by profiling on

fixed inputs. CleanCut is likely to perform better with more representative profiling and on

applications with statically-bound loops.

For terminating decompositions, CleanCut correctly identified that a majority of paths

do not exceed the energy capacity of the device. In CEM, CF, and RSA, only a few instances

include paths that exceed the capacity. Such paths either did not execute during the trial

run or were overestimated by the model. In AR, at least one terminating distribution has

all paths predicted as non-terminating (middle of the X-axis). Since the energy of the paths

in this group is similar and above capacity, they likely share a common prefix that was

overestimated. This overestimate is likely due to overly conservative loop bounds on the

loops that implement arithmetic operations for the pattern matching. The presence of some

paths predicted non-terminating in a terminating decomposition, is evidence of CleanCut’s

conservatism, because these paths are reported to the programmer.

5.6.4 Characterization

We evaluated the practicality of using CleanCut by measuring the time to validate a program

decomposition using the checker and find a decomposition using the placer. Table 5.1 sum-

marizes the complexity of each application, showing block count, call depth, and maximum

path count across all evaluated decompositions. The table also reports the execution time

of CleanCut’s costliest phases. The block profiling cost varies with block count and averages

36 minutes. CleanCut incurs this cost only the first time it runs; after incremental changes,

only changed blocks are re-profiled.

We measured the time CleanCut takes to check the manual placement and to place
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App. Characteristics Analysis Time

App. BBs Paths Call Depth BB Prof.(m) Checker (s) Placer (s)

AR 187 298 5 45 30 24
RSA 197 326 5 51 57 56
CF 91 217 2 23 36 8
CEM 70 80 2 24 54 11

Table 5.1: Benchmark and analysis time characteristics. Listed are total basic block counts,
maximum path count across all decompositions studied (including random), and the maxi-
mum call depth. Times are for one-time block profiling (BB Prof), checking a decomposition
(Checker), and finding a valid decomposition (Placer).

boundaries in the original uninstrumented code. Evaluating energy expressions occupies

the majority of the run time due to numerical operations on distributions. The time cost

increases with the application size and number of paths. For example, CleanCut takes longest

on RSA, which has 1.5-2.4x lines of code of the other applications. The checker takes longer

than the placer, because it computes more detailed information for the bug report, such as

the CDF of the energy distributions for each path. The running time of the placer increases

with the number of path splits it has to perform, which decreases as the device capacitor size

increases. For the benchmarks we evaluated, adding CleanCut analysis to a build system

increases the build time in fully-checked mode by under one minute.

5.7 Summary

In this chapter we identified and addressed the problem of validating and generating task

decompositions of programs written for an intermittent execution model. Our system, Clean-

Cut, builds a statistical model of the energy cost of paths through a program. CleanCut’s

checker uses this energy model along with a model of the energy buffer of the target device

to report non-terminating paths. CleanCut’s placer iteratively generates a terminating task

decomposition for a program by inserting task boundaries between basic blocks. Having

evaluated our CleanCut prototype on a real energy-harvesting device, we showed that its

checker is accurate and its placer quickly identifies efficient task decompositions.
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Chapter 6

Capybara: A Reconfigurable Energy

Storage Architecture

Computing, sensing, and communication tasks in an application place a spectrum of con-

straints on the energy-harvesting power system of the device. Tasks are sensitive to the

length of the intervals during which the device is off to accumulate energy and during which

it is on consuming the stored energy. Computational tasks place the fewest constraints,

because they can be interrupted and resumed mid-way through their execution. Assuming

a task decomposition without non-terminating tasks (cf. Chapter 5), a computation will

successfully make progress each time the power system provides some energy to it. In con-

trast, operations that must execute atomically, i.e. will not be successful if interrupted by a

power failure, such as sending a radio transmission, constrain the time the device must stay

on. Operations that must execute frequently, e.g. sampling a changing physical quantity,

constrain the time the device can stay off (to accumulate energy). Sensing tasks that must

perform an atomic operation at an unknown time in the future, e.g. send a radio packet in

response to a sensor value, place a hybrid constraint that stipulates that the device should

have a short off interval while having a burst of energy ready for immediate use. We refer

to tasks in the latter three categories as tasks with temporal constraints on energy.
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Temporal constraints on energy are challenging to meet, because in the intermittent

execution model, software cannot control when the device turns on and when it turns off.

The execution pattern is a function of input power and energy storage capacity of the device.

The larger the energy buffer, the longer the device can stay on but it must also stay off longer

to fill the buffer with energy. The smaller the energy buffer, the shorter the off interval and

the shorter the on time. A hardware designer may build a power system with a large energy

buffer to meet the on-time constraint. However, after depletion, a large energy buffer has a

long recharge time. During the recharge period, the device is off and the off-time constraint

of other tasks might be violated. Alternatively, a hardware designer may build a power

system with a small energy buffer designed to have a short off time. However, the small

buffer may store insufficient energy to satisfy all on-time constraints. The application is not

fully functional with either choice.

Figure 6.1 illustrates how fixed energy buffering fails to meet application demands. The

application attempts to collect a time series of 15 sensor samples to cover a time interval

and transmit the data by radio. The figure shows how stored energy (energy buffer voltage)

varies with time when the application executes with two different capacities. Blue regions

are operating periods and white regions are recharge periods. With a small energy buffer

(left), the application collects sensor samples reactively, with short recharge periods between

sampling bursts. However, this system buffers insufficient energy to completely transmit

by radio. With a large energy buffer (right), the application buffers sufficient energy to

transmit. However, the application spends a much longer period of time charging and fails

to sample the sensor reactively. There are no samples in the long recharge spans, and many

back-to-back samples.

A composite temporal constraint on energy arises in tasks with requirements on both

the off-time and the on-time intervals. The dual requirement arises in asynchronous tasks

that must react to an event at an unpredictable time in the future, such as an environmental

signal or an interaction with a user. To handle unpredictable events, a device’s power system
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Figure 6.1: Execution with a fixed-capacity energy buffer. Devices are forced to trade short
charge cycles for the ability to complete energy intensive tasks.

must provide support to reserve energy in advance of a high-energy task that will execute

at some unpredictable point in the future.

Without a way to reserve energy before an event, the system has to pause and accumulate

energy after the event, but before executing the task that reacts to the event. This recharge

period is on the critical path in reactive latency-sensitive applications such as human-com-

puter interfaces. A concrete example of such an application samples a sensor, detects a

specific event, and sends a radio alert. The radio alert task has a temporal constraint on

both the off time and the on time. Radio transmission demands a high capacity energy

buffer that needs to be available immediately after the event. These tandem constraints are

beyond the capability of fixed-capacity power systems.

The key capability missing from existing systems to satisfy temporal constraints is soft-

ware control over when and in what quantity the device accumulates and consumes energy.

A platform without this capability must be provisioned with a fixed energy buffer sized for

the worst-case, i.e. highest energy consumption. Power systems of state-of-the-art energy-

harvesting devices do not support programmatic reconfiguration of energy capacity at run-

time. The limited control over charge and discharge timing available to programmers today

could be attained indirectly with control code that puts the device to sleep or shuts it down

to charge (cf. Section 7.1) at key points in the application code. Such control code expresses

high-level energy constraints indirectly and imperatively through ad hoc device-specific code.

113



We propose Capybara,1 a high-level abstraction for specifying temporal constraints on

energy implemented in a hardware/software system that executes tasks according to those

constraints. Capybara supports declarative specification of temporal energy constraints and

eliminates the need for imperative power system control code that entangles application

logic with low level hardware configuration. The constraints are specified as annotations to

tasks of a task-based system like Chain (cf. Chapter 4). The runtime system uses a novel

hardware mechanism to reconfigure energy storage capacity as tasks execute. We use our

hardware/software prototype of the Capybara platform to show that it enables applications

to be more reactive than is possible with a fixed-sized capacitor.

The next section of this chapter provides an overview of Capybara’s hardware and soft-

ware components. Section 6.2 describes the software interface and runtime, and Section 6.3

describes the reconfigurable hardware. We evaluate Capybara on a real energy-harvesting

platforms in Section 6.4 and summarize in Section 6.5.

6.1 Design overview

Capybara is a system composed of co-designed hardware and software components that

match the energy buffering capacity of the hardware to the energy demand of the tasks in

the application. Figure 6.2 shows a high-level system overview of Capybara (top) and a

task-based intermittent program with energy mode annotations for Capybara (bottom).

A Capybara system may include general purpose computing components and memories

alongside arbitrary peripherals, such as sensors and radios. A motivating insight behind

Capybara is that using each of these components to perform a useful quantum of work

without a power failure requires a different amount of total energy. Capybara provides

an energy reservoir configurable to multiple different energy capacities. The energy buffer

configurations correspond to different operating modes that, in turn, correspond to different

energy requirements presented by software tasks.

1Capybara: Capacitor-based energy banks as a reconfigurable array
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Task-based programming model. The application depicted in Figure 6.2 shows software

tasks expressed in a task-based intermittent programming model, like Chain introduced in

Chapter 4 or Alpaca developed later [106]. In such a model, the programmer decomposes

an application into function-like tasks. Control flows from one task to another when one

completes, at a nexttask statement.

main.c

App Code - Sensor - Radio -

configure mode2 
task sense(){ 
 d = read_sensor()
 nexttask proc }

burst mode3 
task radio_tx(){
 radio_tx(“alert!”)
 nexttask sense }

preburst burst=mode3
         exec =mode1 
task proc(){ 
 if(motion_chk(d))
   nexttask radio_tx  
 else
   nexttask sense 
}

M
od

e 
1

M
od

e 
2

M
od

e 
3

631

Figure 6.2: Overview of Capybara. The plat-
form has resources for computation, sensing,
and communication, and includes three energy
storage configurations with different capaci-
ties. An example program has tasks annotated
with energy mode requirements.

In the figure, the tasks require different

amounts of energy. Computing requires lit-

tle energy, sensor processing requires more

energy, and encoding and communicating

by radio requires yet more energy. The

different tasks are annotated with different

modes that express their different energy re-

quirements, and correspond to the energy

buffers of different capacity on the Capy-

bara board. Section 6.2 describes how a pro-

grammer conveys task energy requirements

through Capybara’s programming interface.

Section 6.3 shows how Capybara’s hardware

implements a reconfigurable energy reservoir

using an array of capacitor banks.

Defining task energy requirements. A pre-requisite to using Capybara to build a system

is to measure the absolute amount of energy required by each of an application’s tasks and

to identify the absolute amount of capacitance required to furnish that amount of energy.

From the software perspective, Capybara abstracts the specific amount of energy required

by a task, instead allowing software to refer to a task’s energy mode: an identifier that

corresponds to the specific amount of capacitance required to execute the task (discussed
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in detail in Section 6.2). Capybara’s power system (described in Section 6.3) is designed

to allow a hardware designer to partition a set of capacitors into one or more banks such

that the capacitance needs of all energy modes can be met by activating some subset of the

banks.

A programmer should define energy modes and provision hardware only once an applica-

tion’s code is stable, to avoid re-provisioning as code changes. Energy provisioning requires

measuring a task’s energy consumption, including initialization and warm-up of peripherals

that the task exercises. A simple way to estimate energy consumption is to run the task using

an increasingly large energy buffer until the task successfully completes. Another approach

is to measure task energy consumption on continuous power using a current sense amplifier

and analytically derive the required capacitance and tune it by measuring energy storable in

trial capacitor arrays. The translation of the energy estimate into a capacitance value may

take into account degradation of the capacitor material over time by the standard practice

of derating, i.e. overprovisioning by a margin.

Capybara’s focus is not developing a methodology for measuring the energy of software

tasks and this simple measurement-based approach is reasonable (and similar to UFoP [66]).

The key insight of Capybara is, instead, the need for reconfigurability of hardware energy

buffering resources by software to meet varied software energy demand. Optimizing the

methodology for measuring software energy demand is an important, yet orthogonal problem.

6.2 Software support

Capybara provides a programming interface and runtime software support to reconfigure the

power system to meet an application’s varied task energy demands. To express the energy

demands of a task, a programmer annotates the task declaratively with the task’s energy

mode. As the program executes, the Capybara runtime library dynamically reconfigures the

power system hardware to execute tasks with their specified energy mode. In hardware,
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an energy mode corresponds to a specific configuration of Capybara’s reconfigurable energy

storage reservoir. Section 6.3 discusses how energy modes are implemented in hardware.

6.2.1 Energy modes

In a Capybara system, an energy mode is a property of an application task that expresses a

demand of the power system to meet a temporal constraint on energy. Recall from Section 7.1

that a task with a constraint on the on time requires a specific minimum amount of energy

to complete without being interrupted by a power failure; a task with a constraint on the

off time requires an operation to occur reactively, without a long recharge delay; and a task

with both types of constraints requires a specific minimum amount of energy to be reserved

to reactively be consumed at some future point.

The programmer annotates a task with parameterized keywords to associate the task

with an energy mode. The config (mode) annotation indicates that the task should execute

with the configuration of the hardware energy storage reservoir that corresponds to the

identifier mode. As Section 6.3 describes, a hardware configuration concretely corresponds

to the activation and de-activation of energy banks by means of a custom switching circuit.

When a task with a config (mode) annotation starts executing, the Capybara runtime issues

a command to the power system to configure the reservoir to capacity that corresponds to

mode. The system then charges the newly configured energy buffer. When the buffer is

full, the task executes. The system designer is responsible for ensuring that the hardware

configuration that corresponds to mode meets the requirements of a task annotated with

config (mode); we discuss the process of doing so in Section 6.1.

The programmer can use a config (mode) annotation to indicate a constraint on either on

or off time. For an on-time constraint, the programmer is expressing that mode corresponds

to a particular configuration of the hardware energy store that can buffer sufficient energy

to execute the task without a power failure. For an off-time constraint, the programmer is

expressing that mode corresponds to a hardware configuration that buffers sufficient energy
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to complete the task, but also that minimizes recharge time for reactivity.

Figure 6.2 shows a high-level schematic of the mapping between hardware energy buffers

and software energy modes. The exemplified Capybara-based platform is equipped with

three hardware energy buffers connectable through switches in several arrangements. A con-

figuration of the switches, which are controlled by the Capybara runtime system, corresponds

to an energy capacity configuration. In the figure, there are three different energy modes,

each of which corresponds to a different subset of hardware banks. The sense() task in the

figure requires the three units of energy provided by the capacitor arrangement inside the

mode2 box as a result of the config (mode2) annotation on the task. Before sense() can

execute, the Capybara runtime requests this arrangement from the power system. After the

reservoir charges, the device boots, and the runtime executes sense().

6.2.2 Responsive asynchronous bursts

Capybara allows tasks to have an on-time constraint and also to be reactive using its support

for bursts. The Capybara API includes two additional task annotations that support bursts:

burst and preburst. A task annotated with burst (mode) requires the specific (possibly

very large) amount of energy designated by mode mode at a time in the future that is

unpredictable, e.g., in response to a specific sensed event. Just before a burst task executes,

the runtime system re-activates the energy banks that implement the mode configuration and

that had been charged ahead of time (by the mechanism explained next), and immediately

begins executing the burst in its declared mode mode. The key difference between a burst

task and a config task is that Capybara does not need to pause to recharge before executing

the burst task, because the energy buffer had been filled ahead of time.

A programmer can use Capybara’s preburst task annotation to charge a burst task’s

mode ahead of time. The programmer will annotate a task that is off of the critical path of

the burst task’s operation with the preburst annotation. The pause to charge to the burst

task’s mode will then occur before the preburst task, well in advance of the time critical
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burst task. When execution reaches a task annotated with preburst (bmode, emode), the

Capybara runtime takes several steps. First, Capybara configures the hardware for the

energy mode bmode and pauses until the energy buffer for bmode is fully charged. Second,

Capybara configures the hardware for emode, de-activating the energy buffers of bmode. A

key property of Capybara is that a de-activated mode’s energy buffers retain their stored

energy, except the energy lost to leakage. Third, Capybara pauses to fully charge the energy

buffer for emode. Fourth, after fully charging, Capybara executes the preburst task with the

hardware configured for emode. The preburst task pays the burst task’s recharge latency

in advance when the latency is tolerable, to save the burst task from paying its recharge

latency on-demand, when the latency is intolerable.

In Figure 6.2, proc() is the preburst task that charges the energy buffers that the burst

task radio tx needs to execute. radio tx is a burst task because it must be responsive:

when proc() detects a motion event in the data collected by sense(), the application should

send an alarm immediately. If radio tx() were not a burst task, the system would incur the

latency of a full charge of the energy capacity required by radio tx(), which could be tens

to hundreds of seconds, depending on incoming power and radio hardware. With preburst,

Capybara eliminates the latency between the event detection and the alarm delivery by

charging ahead of time.

6.2.3 Capybara runtime implementation

We implemented Capybara’s task annotations in a runtime software library. The runtime

includes a GPIO-based interface to Capybara’s power system hardware to reconfigure energy

buffers for an energy mode; we discuss the switches and energy buffers more in Section 6.3.

The runtime also implements a non-volatile state machine to support preburst and burst.

Our Capybara runtime implementation ensures that all operations are robust to power fail-

ures by careful use of non-volatile memory.
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Figure 6.4: Replicable hardware switch module for reconfigurable capacitor banks.

6.3 Reconfigurable power system hardware

Capybara introduces a novel, reconfigurable power system architecture with support to pro-

grammatically reconfigure the device’s energy storage capacity and accumulate energy for

asynchronous bursts. The power system hardware architecture is illustrated in Figure 6.4(a).

Energy stored in a capacitor of capacity C that is charged to a voltage Vtop and discharged
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to a voltage Vbottom is E = 1
2
C(V 2

top − V 2
bottom). To reconfigure the energy storage capacity,

the hardware must provide a mechanism for runtime control of one or more of Vtop, Vbottom,

or C. We evaluate the merits of each mechanism by comparing the time the device needs to

cold-start from empty capacitor until boot and the hardware complexity, cost, and durability.

The mechanisms that manipulate either voltage threshold must monitor the voltage on

the capacitor with a comparator, either as the device charges (when controlling Vtop) or

as it discharges (when controlling Vbottom). To control Vbottom the comparator with a re-

sistor network built into the MCU can be used. The built-in comparator is not an option

for controlling Vtop, because the reference must be settable at runtime, must persist while

unpowered, and the comparator output must be valid at voltages down to zero. Further-

more, the monitoring overhead while the device is charging increases the minimum incoming

power necessary to charge at all. In addition, both voltage-based mechanisms must charge

the capacitor to above the minimum for the output booster before any usable energy can

be accumulated. As a result, cold start is longest for the voltage-based mechanisms. With

Vbottom control, cold-start time is longer than with Vtop, because the capacitor must charge

to the top threshold even for a short on-time requirement.

The shortest cold-start time is achieved by controlling C. The smaller C is, the quicker

the capacitor charges to the minimum boostable voltage. To control C the energy storage

must be composed of an array of capacitors connected through persistent switches settable at

runtime. For Capybara, we chose a mechanism for controlling C for its cold-start advantage

and its lower power and space overhead compared to our prototype of a Vtop mechanism.

We prototyped the latter using a non-volatile digital potentiometer based on EEPROM and

found that it occupies twice the area and consumes 1.5x the leakage current (according to

component specifications). Another advantage of controlling C is its natural wear leveling

for capacitors with limited charge-discharge cycles (e.g. EDLC supercapacitors). Taking

inspiration from the concept of caching, dense but fragile capacitors can be dedicated to

a bank and used only when another bank with less dense but more robust capacitors is
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insufficient.

Capybara implements the mechanism for controlling C, with an array of capacitor banks,

each of which is individually connectable to the device through programmatically-controllable

state-retaining switches, as illustrated in Figure 6.3. The number of banks and the energy

capacity of each bank is provisioned at design time, to match the energy modes that a

programmer identifies in a target application. Section 6.1 discussed how to determine an

application’s energy modes. Figure 6.4 shows the switch circuit that activates a bank. The

figure includes two design variants, “normally-open (NO)” (blue) in which the switch does

not conduct by default and “normally-closed (NC)” (red) in which the switch conducts by

default.

The NC and NO switch choice differ in the implicit capacity reconfiguration that takes

place when the input power is lost for longer than the switch can retain its state. Once

power becomes available and the device boots, the runtime system remains unaware of the

capacity reconfiguration, because retaining the state loss event is as problematic as retaining

the switch state, and an introspection circuit for reading switch state would severely decrease

the switch retention time due to leakage. With a NO switch, the energy storage capacity

reverts to the (small) default bank, which will charge quickly once power becomes available.

However, if the default bank is insufficient for the current task, its first execution attempt

will be wasted. Under an adversarial input power timing, the cycle of switch state loss,

incomplete task execution, and switch reconfiguration may repeat indefinitely. A NC switch

reverts to maximum storage capacity, which takes longest to charge but guarantees successful

execution on first attempt after boot.

The bidirectional switch interrupting a bank’s charge path is implemented using two P-

channel MOSFETs connected in series (Q1 and Q2) in a high-side switch configuration. Two

MOSFETs are necessary to block current in both directions, since even when a MOSFET

is off, it will conduct current in reverse direction, through its internal body diode. When

the MOSFETs are off, current is blocked in both directions because at least one MOSFET
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does not conduct. When the MOSFETs are both on, the current path flows through one of

the MOSFETs and one of the diodes: Q1 and D2 when discharging, and Q2 and D1 when

charging. An external diode is added across each switch MOSFET, in parallel with the

internal body diode, in order to decrease the forward voltage of the internal diode. A lower

forward voltage lets the bank charge to a higher voltage and discharge to a lower voltage.

The charge on the latch capacitor (Clatch) preserves the switch state while the device is not

powered.

To compensate for the leakage of the latch capacitor, the replenishment circuit (orange)

connects the latch capacitor to the highest voltage source in the circuit whenever the latch

capacitor is charged and the device is powered. Due to non-ideal properties of MOSFETs,

the replenishment circuit leaks current into the capacitor through Q4, even when the replen-

ishment is not enabled (i.e. when latch capacitor is not charged). If no alternative path for

this leakage current is provided, it will eventually charge the latch capacitor, and flip the

state of the switch from to closed to open for the NC variant, and from open to closed for the

NO variant. Resistor R4 provides a path to ground for this leakage current, at the trade-off

of lowering switch retention time.

Software running on the MCU can control the switch using a GPIO pin that charges or

discharges the latch capacitor through the interfacing circuit (green). The interface isolates

the latch capacitor from the MCU pins, to prevent the MCU pin draining the latch capacitor

when the MCU loses power and the pin loses its high-impedance state. A GPIO pin is not in

a high-impedance state when the MCU supply voltage is zero, because the pin will conduct

through the protection diode to the supply rail whenever any positive voltage is connected

to it.

Capybara’s reconfigurable switch circuit works according to the same principle as a

DRAM cell. Both retain state using a capacitor. The key differences are that in the Capy-

bara switch, the logical value is not only stored but always applied to control a gate, the

access transistor’s purpose is not to multiplex but to isolate, and the replenishment circuit
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must be always active and dedicated to each capacitor.

Figure 6.5 demonstrates the reconfiguration of the system capacity using the proposed

switch. The trace shows the voltage on the two energy banks in the system: Bank 0

(VBANK0) and Bank 1 (VBANK1). Bank 0 consists of 3 ceramic capacitors of size 100 µF

each, and is always connected. Bank 1 consists of 3 EDLC supercapacitors of size 7.5 mF

each and is connected through the proposed switch. The trace also shows the voltage sup-

plied to the load (VDD), i.e., the voltage after output power conditioning as described in

Section 2.3, and the digital signal (DBG0) that marks the execution of application code im-

mediately after the system boots. The top plot shows the trace for the normally-open variant

of the switch, for which the switch starts out open, and the bottom plot shows the trace for

the normally-closed variant, in which the switch starts out closed. During the experiment,

the switch is closed and opened again, at points indicated respectively by the first rising

edge and the last falling edge of the SWITCH signal. This signal is a manually-controlled

GPIO input that is checked by the software on boot to issue the reconfiguration command.

Whenever the switch is closed, both energy banks are part of the energy storage in the

system and charge or discharge together. Whenever the switch (to Bank 1) is open, the

system can access only Bank 0. In the latter case, the Bank 1 voltage remains unchanged,

while Bank 0 charges and discharges and the system operates intermittently. Each cycle,

when only Bank 0 is enabled (beginning and end parts of the trace), the system charges for

approximately 145 ms and executes for 20 ms, while with both banks enabled (the middle

of the trace), the system charges for 5100 ms and executes for 1600 ms.

The top plot in Figure 6.5 highlights the shorter cold start charge time for the normally-

open variant. This variant exits the cold start charging phase faster, because it needs to

charge a smaller capacitance of Bank 0 only. A shorter cold start allows the system to begin

executing useful work sooner. However, the long cold start is still incurred upon the first

reconfiguration into the larger capacitance, i.e. connecting of the Bank 1 (at time 18 s),

since Bank 1 is empty that first time.
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Figure 6.5: Reconfiguration with two capacitor banks and one switch. The system is recon-
figured from only Bank 0 (3 · 100 µF) to Bank 0 and Bank 1 (3 · 100 µF + 3 · 7.5 mF) at the
first rising edge of the SWITCH signal, and from Bank 0 and Bank 1 back to only Bank 0
at the last falling edge. The top trace is for the normally-open variant of the switch and the
bottom shows the normally-closed variant.
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Figure 6.6: Capybara hardware prototype. The solar panels, microcontroller, radio, and,
five sensors are on the front side (left), and the power system with five capacitor banks and
four switches is on the back side (right).

6.4 Evaluation

We evaluated Capybara to demonstrate that our system enables energy-harvesting applica-

tions that detect a higher share of external events and are more responsive. Our experiments

on three complete applications running on real hardware compared execution on continu-

ous power (Cont.) to execution on intermittent power under a statically-provisioned fixed

energy storage capacity (Fixed) and under two variants of Capybara. Capy-R is a subset

of the complete Capy-P. Capy-R excludes burst task support and requires recharging after

every energy mode reconfiguration.

6.4.1 Hardware platform, applications, and methodology

We built a custom energy-harvesting device with a prototype of the Capybara hardware. The

device can be powered by either solar panels or RF and can have up to four energy storage

banks implemented using a choice of ceramic, tantalum, or four different models of EDLC

supercapacitors. The processor is an MSP430FR5994 microcontroller with ferroelectric non-

volatile memory (cf. Section 2.5). The device features a gesture sensor, a phototransistor, an
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accelerometer, a gyroscope, a magnetometer, a barometer, a microphone, and a temperature

sensor built into the microcontroller. The device communicates over a Bluetooth Low Energy

(BLE) radio. The hardware schematics for this device are provided in Appendix A.

We implemented three complete applications typical of the embedded domain in the

Chain programming model, introduced in Chapter 4, and deployed them onto the Capybara

board. The applications depend on tasks with distinct temporal energy constraints. We

provisioned capacitors for each application through an iterative process. Starting with a

pessimistic energy estimate based on load current specified in the datasheets, we ran the

task while progressively increasing the capacity on the board until the task completed. In

the remainder of this section, we describe each application and the hardware setup used to

drive the application with real environmental input.

Wireless Gesture-Activated Remote Control

We implemented a batteryless, wireless, touch-free gesture-activated remote control (GRC)

using the APDS-9960 gesture sensor, a photo-transistor and the CC2650 wireless MCU. Each

time the MCU turns on, the application samples the photo-transistor to detect if there is an

object above the board. If an object is detected, the application activates the APDS sensor

for gesture recognition. If the sensor successfully decodes a gesture, the gesture direction is

broadcast over the BLE radio.

We implemented two variants of the GRC application. In GRC-Compact the on-time

requirements of the application are: (1) acquire one sample from the photo-transistor, (2)

keep the APDS sensor on for the minimum duration of a gesture motion (250 ms), and (3)

transmit an 8 byte BLE packet. In GRC-Fast, tasks (2) and (3) are joined into a single

task with higher on-time requirement equal to their sum. The GRC-Fast variant trades-off

peak energy capacity, i.e. device size, to eliminate the recharge latency between gesture

recognition and packet transmission. The constraint on off-time in the gesture recognition

task is to execute immediately after proximity was detected, before the motion finishes. The
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constraint on off-time in the proximity sensing is to minimize inter-sample times to avoid

missing proximity events.

For the Fixed-Capacity system, a capacity of 400 µF ceramic + 330 µF tantalum +

67.5 mF EDLC2 is provisioned to meet the maximum on-time requirement, i.e. (2). For

Capybara, two configurations are provisioned, one per energy mode. In both gesture variants

Capybara uses a 400 µF ceramic + 330 µF tantalum bank for low energy mode. GRC-Fast

provisions 45 mF to meet the high energy requirement for task (2), and GRC-Compact

provisions 67.5 mF to satisfy the combined on-time requirements of tasks (2) and (3). In

Capy-P, the second bank is pre-charged prior to the energy burst in the gesture task. To

produce consistent tap-and-swipe motions for experiments, we use a servo motor to swing a

rigid pendulum over the gesture sensor. The board is powered using a harvester built from

a voltage regulator and an attenuating resistor that supplies at most 10 mW of power.

Temperature Monitor with Alarm

The Temperature Alarm (TA) senses the temperature of an object (e.g. a pipe) using an

external analog sensor (TMP96) and collects a time series of the samples. If the temperature

leaves a specified range, the application sends a BLE packet that indicates an alarm and

contains the most recent time series. The on-time requirements of the application are: (1)

acquire one temperature sample and (2) transmit a 25 byte BLE packet. The off-time

constraint of the sampling task is to minimize charging intervals to not miss over- and

under-temperature events. The off-time constraint of the transmit task is to send the alarm

immediately upon anomaly detection.

The Fixed-Capacity system is provisioned with a single bank of 300 µF ceramic +

1100 µF tantalum + 7.5 mF EDLC capacity.The Capybara systems use one configuration

with 300 µF ceramic + 100 µFtantalum to support energy mode (1), and another with

2Energy capacity is not fungible due to different equivalent series resistance (ESR) of capacitor types
that affects the effective extractable energy, as explained in Section 2.2.
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1000 µFtantalum + 7.5 mF EDLC to support mode (2). In Capy-P, the second bank is

pre-charged prior to the energy burst in the temperature alarm task.

To generate temperature fluctuation, we attach the application’s temperature sensor, a

60 W heating element, and a 60 W Peltier cooler to a flat metal heatsink with thermal tape.

A control loop on a controller board, which has a temperature sensor attached to the same

heatsink, cycles power to the heater and the cooler to maintain the heatsink temperature

within a fixed range or push it out of the range to generate an alarm event.

The board is powered via two TrisolX solar panels [176], illuminated with a 20 W halogen

bulb with brightness controlled by PWM to 42%. The application on the intermittently-

powered board (DUT) is measured with respect to a continuously-powered reference board

that runs the same code concurrently and has its sensor attached to the same heatsink.

Correlated Sensing and Report

We implemented a correlated sensing and reporting (CSR) application using a magnetometer

and proximity sensor to report the movement of a magnet mounted on our pendulum setup.

CSR samples the magnetometer and triggers the proximity sensor to measure distance to

the source of magnetic flux. The MCU then lights an LED and sends sensor data by BLE.

CSR’s tasks are: (1) sample the magnetometer, (2) collect 32 distance samples, (3) power the

LED for 250 ms, and (4) send an 8 byte BLE packet. The magnetometer must maintain a

consistent sampling frequency to capture field changes over time. Tasks (2)-(4) must execute

immediately and atomically after a magnetic field event to get accurate distance data and

send an alert. The Fixed-Capacity system uses the same bank as GRC-Fast to support (2)-

(4). Capybara systems use a 400 µF ceramic+330 µF tantalum bank for the magnetometer,

and the large bank from GRC-Fast for the other mode. The experiment reuses the GRC

setup with a magnet attached to the pendulum.
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6.4.2 Event detection accuracy

To assess how well applications can detect and react to external events with different power

systems, we measure the detection accuracy without and with Capybara. The accuracy in

GRC is the number of BLE packets with correctly decoded gesture direction received out of

tap-and-swipe motions generated. For TA, accuracy is the number of BLE packets indicating

an alarm received from the DUT board out of BLE packets received from the reference

board. The CSR accuracy is the number of BLE packets produced to report magnetic

events. An event will fail to be reported if the device is charging when the event occurs,

or if the device exhausts the energy in its capacitors before the end of an atomic workload

(e.g. radio transmission or gesture sensing). Capybara minimizes this cause of undetected

events. A secondary cause for failure is the inevitable non-ideal behavior of the hardware

that manifests even on continuous power, e.g. BLE packets lost due to interference or gesture

sensor inaccuracy. For TA, we only consider events which were successfully reported by the

continuously-powered board and count events unreported by the DUT board for any reason

as missed. For GRC, we report the imperfect accuracy on continuous power to serve as a

point of comparison. Gesture motions are misclassified when the proximity detection occurs

too late in the pendulum’s swing to distinguish the motion direction. Proximity-only failures

occur when the APDS sensor is activated following a proximity detection but does not report

a gesture. Gestures are missed if the device is powered off when the pendulum swings by.

Figure 6.7 shows the accuracy each application achieves on an event sequence drawn

from a Poisson distribution. The event sequence for TA contains 50 events over 120 minutes,

and for GRC and CSR– 80 events over 42 minutes. Fixed-Capacity system correctly detects

only 56% of magnetic events, 46% of temperature events, and 18% of gestures, because the

charging intervals overlap with events. In contrast, both Capybara variants detect 98% of

TA events, at least 89% of CSR events and Capy-P detects 75% and 76% in the two variants

of GRC. With Capybara, the device runs the reactive task (i.e., sampling of temperature,

proximity, or magnetic field) more frequently, because it charges and discharges only the
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Figure 6.7: Event detection accuracy.

small capacitance between each sample. Capy-R is not suitable for GRC, because it incurs a

charging delay between proximity detection and the gesture recognition task, during which

the gesture motion completes but the device is off. Capy-P avoids this delay by pre-charging

for gesture processing ahead of time.

We assess the sensitivity of accuracy to event inter-arrival times by repeating the mea-

surement for event sequences drawn from Poisson distributions with decreasing means. Fig-

ure 6.8 shows that for both applications the farther apart the events are in time the more

events are successfully recognized and reported. A lower event frequency, however, does not

benefit a Fixed-Capacity system as much as it benefits a Capybara system, because the for-

mer exhausts and has to recharge its large fixed capacitor whether or not it had to process

an event. For TA, Capy-R achieves an accuracy up to 20% higher than Capy-P on some

event sequences, as a result of the lower energy overhead of Capy-R discussed further in

Section 6.4.4.
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Figure 6.8: Sensitivity of accuracy to event inter-arrival.
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6.4.3 Responsiveness

Since all of our applications are latency-sensitive and react to an event by sending a BLE

radio packet, we measured the latency between when the event occurs and when the packet

is received on a laptop. For TA, latency is the time difference between the packets from the

reference board and the DUT board that correspond to the same temperature alarm event.
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For GRC and CSR, latency is the time between the pendulum actuation command and the

BLE packet reception.

Figure 6.9 shows the latency of each event that was successfully reported in the experi-

ment of Section 6.4.2. For GRC, while Fixed-Capacity reports few events, the ones it does

report, are reported as quickly as on continuous power, because there is no charging between

event detection and radio transmission. For TA and CSR, under Fixed-Capacity some packet

transmissions fail on first attempt due to insufficient energy and are re-transmitted after a

charging interval, which raises the average latency across all events.

The advantage of Capy-P over Capy-R in terms of latency is exemplified by TA. All

systems need to charge a large capacity before they can transmit the packet, but only Capy-

R charges on the critical path, increasing the latency by the charge time (64 s). By charging

the capacitor ahead of time, Capy-P reduces the latency to 2.5 s. By the same principle,

in GRC, Capy-P successfully eliminates the charging latency between proximity event and

gesture recognition, but not necessarily between gesture recognition and packet transmission.

The end-to-end latency differs between the two variants of GRC that demonstrate the trade-

off between latency and the maximum required capacity. In all cases, the provisioning is

for the average case energy cost, not the worst-case, which causes some events to require

charging, despite pre-charge. The increased latency is incurred for 7% of reported events in

GRC-Fast and 54% in GRC-Compact, which is reflected in the average latency in Figure 6.9.

As explained in Section 6.4.2 Capy-R reports no events for GRC.

6.4.4 Reactivity

In sensing applications that record time series, the times at which the samples are sensed

matter as much as their total count. For example, batches of back-to-back samples are less

valuable than evenly spaced series. In this experiment we quantify improvements in sampling

quality achievable with Capybara, by measuring the intervals between temperature samples

in the TA application. Figure 6.10 shows the distributions of inter-sample times for three
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systems when the input is the same sequence of 20 temperature alarm events. The sub-second

intervals between back-to-back samples are colored gray to indicate their limited utility. The

remaining inter-sample intervals are broken down into ones during which one or more events

occurred and were (necessarily) missed (red), and those without any events (green).

A Fixed-Capacity system forces the application to sample in batches of as many samples

as can be taken on the capacity provisioned for the largest atomic workload (i.e. radio packet

transmission). An alternative implementation might put the processor to sleep in between

samples to introduce a delay. However, the batches will still be separated by the long charge

time of the large capacitor, because it will discharge during sampling despite the sleep mode,

due to the power overhead of the power system that remains on. With Fixed-Capacity, most

non-back-to-back inter-sample intervals are long (110-250 s) and cause the missed events

reported in Section 6.4.2.

With Capybara, the large capacity needs to be charged only as many times as there

are temperature events to report (32 out 1738 inter-sample periods). All other times, the

samples are either separated by the (shorter) charge time of the smaller capacitor (1.5-4 s)

or are back-to-back. The back-to-back samples still occur because the small bank is over-

provisioned for the temperature sample, since the Capybara power system requires the bank

to be no smaller than that needed by the output booster to start up.

Compared to Capy-P, the undesirable (but unavoidable) long inter-sample times with

Capy-R have a smaller impact on accuracy, as suggested by the share of long intervals that

caused an event miss (23 out of 28 for Capy-P vs 3 out of 31 for Capy-R). This decrease in

event misses is explained by a shorter mean charge time (84 vs 220 s), which is a consequence

of a subtle power system effect that boosts the charging efficiency of Capy-R relative to

Capy-P, for the same energy capacity and input power.

The increase in charge time in Capy-P is a consequence of the lower voltage at which

charging has to start for Capy-P compared to Capy-R. The charging starts at a lower voltage

for Capy-P, because the discharge starts at a lower voltage. The full-bank voltage is lower
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for Capy-P, because Capybara can pre-charge a bank only to a strictly lower voltage than

it can charge a bank to (by approximately 0.3v), which is a limitation of our particular

implementation of the switch circuit. This disadvantage of Capy-P relative to Capy-R is

also reflected by the drop in accuracy in Figure 6.8, but is compensated by the order of

magnitude improvement in latency in Figure 6.9.
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6.4.5 Characterization

Capybara power system hardware is intended to be integrated onto the board of an energy-

harvesting device alongside its MCU and sensors. On our 6x6 cm prototype board (with an

unoptimized layout), solar panels occupy 700 mm2, the power conditioning circuits occupy

640 mm2, and one reconfiguration switch occupies 80 mm2 with support for both NO and NC

configurations and other debugging capabilities that can be omitted from a release version.

In our prototype, the switch uses a 4.7 µF latch capacitor and retains state for approximately

3 minutes. The detailed schematics are listed in Appendix A.

6.5 Summary

To handle environmental triggers responsively, software tasks on energy-harvesting devices

place temporal constraints on energy availability. The software desires control over when the

power system of the device provides energy to the load and how much energy it provides at

a time. Both of these parameters are a function of the energy storage capacity of the energy

buffer on the device. We observed that a system with a fixed-capacity energy buffer cannot

satisfy both capacity and temporal constraints, due to the inverse relationship between

capacity and charge time.

Capybara is the first system with a software interface for expressing task energy re-

quirements as energy modes. Capybara provides a hardware mechanism for reconfiguring

energy storage capacity and pre-charging capacitors for on-demand energy bursts, and a

runtime system that reconfigures the hardware energy capacity dynamically. Our evalua-

tion of Capybara in a solar-powered energy-harvesting device showed that reconfigurability

improves application responsiveness and event detection accuracy.
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Chapter 7

EDB: An Energy-interference-free

Debugger

Intermittence can cause software that is correct on battery-powered platforms to misbehave

on energy-harvesting platforms. Intermittence-induced jumps back to a prior point in an

execution inhibit forward progress and may repeatedly execute code that should not be

repeated. Intermittence can also leave memory in an inconsistent state that is impossible in

a continuously-powered execution [101, 140]. These failure modes represent a new class of

intermittence bugs. To avoid intermittence-related malfunction, code must correctly leverage

non-volatile memory.

Implementing an intermittence-safe runtime system, such as Chain (cf. Chapter 4), or

a custom bare application without any system, requires the programmer to understand,

find, and fix intermittence bugs. In fact, an early implementation of Chain contained an

intermittence bug in the code for self-channel management (cf. Section 4.2) that manifested

rarely and only while running with a energy-harvesting power supply. A system abstracts

some complexity of intermittent execution from the applications and minimizes the code

vulnerable to intermittence bugs to the code in the implementation of the runtime of that

system. However, some programmers may choose not to delegate anything to a system, in
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order to aggressively optimize for performance with application-specific tricks. In this case,

the code of the entire application becomes vulnerable to intermittence bugs.

To diagnose intermittence bugs in their code, programmers need to monitor system be-

havior, observe failures, and examine internal program state. Unfortunately, this simple

debugging methodology is unusable for intermittence bugs because existing tools power the

target device, masking intermittent behavior. Programmers are left with an unsatisfying

dilemma: to use a debugger to monitor the system and never observe a failure; Or to run

without a debugger and observe the failure but gain no insight into the system necessary for

understanding the bug.

The work in this chapter addresses the lack of basic debugging support for intermittent

systems with the Energy-interference-free Debugger (EDB), a complement of hardware and

software for energy-interference-free monitoring and manipulation of intermittent devices.

EDB can passively monitor a target device for its energy level, I/O events (e.g., I2C, RFID),

and program events. Monitoring with EDB, unlike with conventional debuggers, is energy-

interference-free, because it is designed to be electrically isolated from the target device.

EDB also provides a capability to actively manipulate the amount of energy stored on the

device. Using this mechanism, EDB can compensate for the energy consumed by arbitrarily

expensive tasks, effectively eliminating their impact on the energy state experienced by the

program.

Many important intermittence debugging tasks are impossible without energy-interference-

free monitoring and manipulation mechanisms. Passive monitoring allows concurrent tracing

of energy, program events, and I/O under realistic scenarios. EDB’s energy manipulation and

compensation mechanism lets a programmer instrument application code with energy-hungry

invariant checks (e.g., asserts) and trace statements (e.g., printfs) without impacting ap-

plication behavior. The same mechanisms enable interactive debugging with breakpoints

that can be conditioned on energy level and with access to the state of the target device.

In the next section we study an example of a bug induced by intermittent execution
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and the difficulties of diagnosing this bug with existing debugging tools. In Section 7.2 we

propose EDB and present the debugging primitives it supports. We discuss our prototype in

Section 7.3 and evaluate it on a set of debugging tasks in Section 7.4. Section 7.5 summarizes

the proposed debugging support.

7.1 Intermittence and energy-interference

This section provides background on the challenges presented by intermittent energy-harvesting

devices and illustrates that existing approaches to debugging fail to address these challenges.

As a basis for our discussion, we assume an intermittent system that executes a C program

that takes longer than a single charge-discharge execution cycle to complete. We assume our

device has a mixture of volatile registers and memory, as well as some non-volatile mem-

ory. We further assume a checkpointing mechanism that periodically collects a checkpoint

of volatile execution context (i.e., register file and stack) like prior work [141, 111, 76]. Note

that this checkpointing assumption simplifies the exposition, but our ideas and prototype

apply to task-based systems, such as Chain introduced in Chapter 4.

7.1.1 Bugs induced by intermittent execution

Power intermittence complicates understanding and debugging a system, because the be-

havior of an intermittent system is closely linked to its power supply. Figure 7.1 illustrates

how intermittence induces bugs even with runtime support for checkpointing volatile state

into non-volatile memory [141, 111, 76]. The code manipulates a linked-list in non-volatile

memory using append and remove functions. A continuous execution completes the code

sequentially, as expected. An intermittent execution, however, is not sequential. In the

leftmost trace, a checkpoint happens to be collected at the top of the while loop and the

processing continues until power fails at the indicated point. After the reboot, execution re-

sumes from the checkpoint. This sequence of events later leads to undefined behavior. The
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while(true){[true]

select(e)

remove(list,e)
  e->prev->next=e->next
  if(e==list->tail)[false]
  e->next->prev=e->prev

update(e)

append(list,e)
  e->next=NULL
  e->prev=list->tail
  list->tail->next=e

select(e)

remove(list,e)
  e->prev->next=e->next
  if(e==list->tail)[false]
  e->next->prev=e->prev
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main(){
  init_list(list)
  while(true){
    __NV elem e
    select(e)
    remove(list,e)
    update(e)
    append(list,e)
  }
}

append(list,e){
  e->next = NULL
  e->prev = list->tail
  list->tail->next = e
  list->tail = e
}

remove(list,e){
  e->prev->next =
    e->next
  if(e==list->tail){
    tail = e->prev
  }else{
    e->next->prev =
      e->prev
  }
}

while(true){[true]

select(e)

remove(list,e)
  e->prev->next=e->next
  if(e==list->tail)[false]
  e->next->prev=e->prev

update(e)

append(list,e)
  e->next=NULL
  e->prev=list->tail
  list->tail->next=e
  list->tail=e

  

Reboot! Back to checkpoint

Bug! Writing a wild pointer

Intermittent
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because e->next = NULL
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Figure 7.1: An intermittence bug. The linked-list stays correct with continuous power but
is corrupted and leads to a wild pointer write with intermittent power.

execution violates the pre-condition assumed by remove that only the tail’s next should be

NULL. The reboot interrupts append before it can make node e the list’s new tail but after

its next pointer is set to NULL. When execution resumes at the checkpoint, it attempts to

remove node e again. The conditional in remove confirms that e is not the tail, then deref-

erences its next pointer (which is NULL). The NULL next pointer makes e->next->prev a

wild pointer that, when written, leads to undefined behavior. This NULL pointer dereference

cannot happen in a continuous execution and is an example of an intermittence bug.

7.1.2 Energy-interference during debugging

Debugging intermittence bugs, like the one in Figure 7.1, is difficult using existing tools.

Conventional debuggers supply power to the device-under-test (DUT), which precludes ob-
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servation of a realistically intermittent execution. Dedicated debugging equipment, like a

JTAG [1] debugger, offers visibility into the device’s state but is not useful because it pro-

vides continuous power and masks intermittence. JTAG power isolator devices [152] exist to

decouple debug host power rails from DUT power rails, but these do not help with intermit-

tence debugging, because the JTAG protocol fails if the DUT powers off. The inapplicability

of JTAG precludes interactive debugging (e.g., like GDB or LLDB) for intermittent execu-

tions. Using a JTAG debugger for the code in Figure 7.1 would only ever result in the

non-failing, continuous execution shown in the middle; the programmer would never see

unexpected behavior.

One mostly energy-interference-free tool that can be used for debugging intermittent

systems to a limited extent is a mixed-signal oscilloscope. An oscilloscope can collect an

energy trace by probing DUT’s power system and I/O lines. Unfortunately, an oscilloscope

provides no insight into the internal state of the software running on the DUT. Oscilloscope-

based debugging is not the interactive process familiar to most programmers. Moreover,

oscilloscopes cost thousands of dollars, making them inaccessible to most developers. Using

an oscilloscope to debug the code in Figure 7.1 would permit reproducing the problematic

intermittent execution. However, the oscilloscope would not help relate changes in the

device’s energy state (which it can observe) to the software events that change device state

and memory (which it cannot observe). That absent connective information is the key to

understanding the failure in this code.

An alternative approach to diagnosing an intermittence bug is to directly write debugging

instrumentation code into an application to trace certain program events. In embedded

systems, a popular ad hoc approach is to toggle an LED at a point of interest. LED-based

tracing does not work in energy-harvesting devices, because LEDs are power-hungry and their

energy use changes the execution’s behavior. As a case in point, it is prohibitively expensive

to use an LED to indicate when a WISP energy-harvesting device [149] is executing code,

rather than just charging. Powering an LED increases the WISP’s current draw by five
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times, from around 1 mA to over 5 mA.

Another tracing strategy is to manually instrument code to log program events to non-

volatile memory. The resulting trace lacks information about the energy level, unless the

developer also spends time, energy, and an ADC channel to log the DUT’s energy state. Non-

volatile tracing also consumes precious non-volatile storage space. To spare consuming non-

volatile storage space, a programmer may write code to stream the event log to a separate,

always-on system (e.g., via UART). Powering and clocking an I/O peripheral to transfer the

log is expensive in time and energy and adds considerable complexity to code.

All of these instrumentation-based approaches change the point in the program at which

energy is exhausted. As a result, the act of debugging alters the intermittent behavior of the

application. Furthermore, the value of tracing depends on the events which the programmer

decides to trace. To understand the intermittence bug in Figure 7.1, the programmer needs

to log particular events in the append and remove routines. The bug manifests as a wild

pointer write and may appear to crash inexplicably, in code far from the either of those

routines, giving little to suggest that append and remove contain the culpable code.

Energy-interference and lack of visibility into intermittent executions makes debugging

tools designed for battery-powered embedded devices inadequate for intermittence debug-

ging.

7.2 Energy-interference-free debugging

EDB is an energy-interference-free platform for intermittence debugging that addresses the

shortcomings of existing approaches described in Section 7.1. This section describes the

high-level capabilities and functionality of EDB, while Section 7.3 describes the co-designed

hardware and software implementation that make EDB energy-interference-free.

Figure 7.2 illustrates EDB’s functionally. At the top are EDB’s capabilities that together

support the debugging primitives at the bottom. The functionality is organized into two

142



Measure
Energy Level

}

 for(…){

  sense(&s)

  ok=check(s)

   if(ok){

    i++

    data[i]=s

Trace Program
Events

Trace I/O
Events

}}
Energy Logging Event Logging I/O Logging

Code BreakpointsEnergy Breakpoints

Manipulate
Energy Level

Assertions
Energy Guards/
Instrumentation

Interactive
DebuggingD

eb
ug

gi
ng

Pr
im

iti
ve

s

Code/Energy Breakpoints

C
ap

ab
ili

tie
s

Active Mode Passive Mode

Figure 7.2: EDB’s features and supported debugging tasks.

parts. The first part is support for passively monitoring a device’s energy level, program

events and I/O, which we call EDB’s “passive mode” of operation. The second part is a

complementary “active mode” with support for actively monitoring and manipulating the

target’s energy level and internal state (e.g., registers and memory). We combine passive

and active mode capabilities, to implement energy-interference-free debugging primitives,

including energy and event tracing, intermittence-aware breakpoints, energy guards for in-

strumentation, and interactive debugging.

7.2.1 Passive mode operation

EDB’s passive mode operation is built around the three right-most components at the top

of Figure 7.2. The developer gets the ability to acquire a set of streams and relay them to

the host workstation continuously in real-time without active involvement from the target

whether it is on or off. Streams instrumental for debugging are the energy level, I/O events

on wired buses, messages exchanged over RFID protocol, and program events marked by

watchpoints in application code. A key advantage of EDB is the ability to gather this

data concurrently, letting the developer correlate changes in system behavior with changes
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in energy state. That correlation is important during development, but, as Section 7.1

describes, difficult or impossible using existing techniques.

7.2.2 Active mode operation

The capability to manipulate the amount of energy stored on the target device underlies

EDB’s active mode of operation. Active mode frees debugging tasks from the constraint of

the small energy store of the target device. EDB can compensate for the energy consumed

by a debugging task that involves a costly operation on the target, such as interacting with

the programmer, executing arbitrary debug code, or conveying state to the debugger. Before

performing an active task the energy on the target device is measured and recorded. While

the active task executes, the target is continuously powered. After performing the active

task, energy on the target device is restored to the level measured before the active task.

Continuously powering active tasks enables them to consume arbitrary amounts of energy.

Energy compensation provides the illusion of an unaltered, intermittent execution to the

application. Without this support, debugging tasks that require considerable involvement

from the target are out of reach.

7.2.3 Energy-interference-free debugging primitives

Using the monitoring and manipulation capabilities described so far, EDB creates a toolbox

of energy-interference-free debugging primitives. EDB brings to intermittent platforms fa-

miliar debugging techniques that are currently confined to continuously-powered platforms.

New intermittence-aware primitives are introduced to handle debugging tasks that arise only

on intermittently-powered platforms.

Code and energy breakpoints

EDB implements three types of breakpoints. A code breakpoint is a conventional breakpoint

that triggers at a certain code point. An energy breakpoint triggers when the target’s energy
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level is at or below a specified threshold. A combined breakpoint triggers when a certain

code point executes and the target device’s energy level is at or below a specified threshold.

Breakpoints conditioned on energy level can help catch energy leaks due to unexpected code

paths. They initiate an interactive debugging session precisely in problematic iterations

when more energy was consumed than expected or when the device is about to brown-out.

Keep-alive assertions

EDB provides support for using familiar assertions on intermittent platforms. When an

assertion fails, EDB immediately tethers the target to a continuous power supply to prevent

it from losing state by browning out. This keep-alive feature turns what would have to be a

postmortem reconstruction of events into an investigation on a live device. A postmortem

analysis is limited to scarce clues in a tiny ad hoc “core dump” that a custom fault handler

can manage to save into non-volatile state before the target runs out of energy and resets.

The clues available in the interactive session that is automatically opened by EDB for a

failing assert include the entire live target address space and I/O buses to peripherals.

Energy guards

EDB can hide the energy cost of an arbitrary region of code if enclosed between a pair

of energy guards. Code within energy guards executes on tethered power. Code on either

side of an energy-guarded region experiences an illusion of continuity in the energy level

across the energy-guarded region as if no energy was consumed. EDB implements energy

guards using its energy compensation mechanism by recording the target energy level upon

entering an energy guard and restoring it upon exiting the guard. Without energy cost,

instrumentation code becomes non-disruptive and therefore useful on intermittent platforms.

Two especially valuable forms of instrumentation impossible without EDB are complex data

structure invariant checks and external event tracing. Extra code added to an application

to check invariants on data structures or report when certain events have executed via I/O
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(e.g. printf, LED) can be costly enough to repeatedly deplete the target energy supply and

prevent forward progress.

Besides instrumentation, EDB energy guards may also help incorporate non-intermit-

tence-safe third-party code into intermittent applications. As long as third-party library calls

are wrapped in energy guards, intermittence failures are guaranteed to not occur within the

library. Functionality can now be developed separately from handling intermittence. Sim-

ilarly, energy guards are useful for gradually porting code from a continuously powered

platform. A programmer can start with an energy guard around the entire program and

repeatedly exclude a module from the guarded region after verifying its correctness under

intermittence, until the entire application is out of the guarded region and intermittence-safe.

Interactive debugging

EDB supports interactive debugging of a target from a workstation. An interactive session

provides full access to view and modify the target’s memory, as in a conventional debugger

(e.g., GDB, LLDB). A developer can enable code-energy breakpoints and can manually

manipulate the target’s energy level. An interactive session is entered automatically when

a breakpoint is hit or an assertion fails or on demand by a console command. A unique

benefit of EDB is its ability to trigger a manipulation of the target’s energy state based on

the target’s program behavior and vice versa.

7.3 Hardware-software implementation

EDB’s capabilities and debugging primitives are implemented in custom co-designed hard-

ware and software. Figure 7.3 shows a block diagram of EDB (depicted in green) connected

to an RF energy harvesting target (in purple). The labeled wires are physical connections

between EDB and the target that carry both analog and digital signals and are exposed

through header pins. Our prototype hardware board can connect to any energy-harvesting
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Figure 7.3: Block diagram of EDB connected to an RF energy-harvesting target. All signal
lines are buffered to minimize energy interference. A charge/discharge circuit controls the
voltage on the target’s energy storage capacitor.

device with a microcontroller and a capacitor. To support a new device, the applicable

physical connections from Figure 7.3 must be wired and target-side EDB software library of

1200 lines of C code must be ported to the new architecture.

7.3.1 Energy level monitoring

Energy-interference-free measurement of the target’s energy level is essential to EDB’s pas-

sive mode operation (Section 7.2.1). To measure the energy level in the energy buffer on

the device, EDB uses two physical connections, Vcap and Vreg, to the target device’s energy
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storage capacitor and its regulated power line, respectively. These signals pass through a

dual high impedance, unity gain instrumentation amplifier to minimize leakage current from

the target to EDB. These analog voltages are digitized by an analog to digital converter

(ADC) and logged or used internally for debugging tasks. While it is possible for energy

harvesting devices to measure their stored energy levels, doing so uses energy, perturbing

the energy state being measured and altering the intermittent behavior of the software.

7.3.2 Energy manipulation and compensation

Energy manipulation and compensation are the basis for EDB’s active mode of operation

(Section 7.2.2). EDB has a custom circuit consisting of a low pass filter, keeper diode, and

GPIO pins that can charge and discharge the target’s energy storage capacitor. This circuit

is designed to prevent it from loading down or trickle charging the target while inactive.

To charge the target to a desired voltage level, EDB activates a GPIO pin to raise the

voltage on the energy storage capacitor. A basic iterative control loop in EDB’s software

ensures that the voltage converges to the desired level. Discharging works similarly: the

target’s energy storage capacitor discharges through a fixed resistive load and a software

control loop ensures convergence to the desired level. In our prototype, the charging circuit

assumes a capacitive storage element, but with software changes, the same design can support

other storage media, such as thin-film batteries.

7.3.3 I/O monitoring

EDB is designed to enable passive monitoring of arbitrary I/O and attached peripherals,

such as sensors, communication buses, and radios. These digital signals (labeled RF Data

Tx/Rx, UART, and I2C in Figure 7.3) connect to a digital buffer and level shifter. We use

an extremely low-leakage buffer to prevent leakage current from the target to EDB, and we

use the level shifter to match the buffer’s voltage level to the target device’s voltage level

and avoid current flow between them.
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Note that while the target device has an on-board regulator, the Vreg line may drop below

its specified, regulated value during a power failure on the target device. We address the Vreg

drop with a simple tracking circuit consisting of an analog buffer to keep the level shifter

at the target’s voltage. This circuit is important because too large a mismatch (i.e., over

+/-0.3V [172]) activates the voltage protection diodes in the target’s MCU, which perturbs

the target’s power state.

Our prototype can monitor GPIO, UART, I2C, and RFID RX/TX data lines. A key

benefit of EDB is that it monitors data communication lines externally. With external

monitoring, messages (e.g., RFID messages) can be decoded even if the target does not

correctly decode them due to power failures. EDB’s I/O monitoring support aids developers

in I/O calibration and debugging I/O related issues in software.

7.3.4 Program event monitoring

EDB can track program execution using the Code Marker connections in Figure 7.3. To

monitor a code point, the programmer inserts a watchpoint with a unique identifier at that

location. EDB’s target-side software encodes this identifier onto the Code Marker lines

when the program counter passes over the code point. On the debugger-side, transitions

on the Code Marker lines are captured and decoded into watchpoint identifiers. EDB can

simultaneously monitor 2n − 1 distinct watchpoints, where n is the number of GPIO lines

allocated to the Code Marker function.

Monitoring program events using EDB is practically energy-interference-free. The main

energy cost is the target device holding a GPIO pin high for one cycle to encode each traced

code point as it executes. We measured the cost of this GPIO-based signaling to be negligible

using the methodology described in Section 7.4. Without EDB, monitoring has a prohibitive

cost in code, memory space, and energy. With EDB, events are not only logged without these

costs, but also correlated with energy state into a multifaceted profile.
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libEDB API Debug Console Commands
assert(expr) charge|discharge energy level
break|watch point(id) break|watch en|dis id [energy level ]
energy guard(begin|end) trace {energy,iobus,rfid,watchpoints}
printf(fmt, . . . ) read|write address [value]

Table 7.1: Developer’s interfaces into EDB.

7.3.5 Developer’s interface into EDB

EDB’s debugging primitives are accessible to the end-user through two complimentary in-

terfaces: the libEDB API and the host console commands. Both are listed in Table 7.1. The

libEDB library statically links into the application and exports C macros for inserting as-

sertions, breakpoints, watchpoints, energy guards, and energy-interference-free printf calls

into the application code. Internally, the library implements the target-side half of the pro-

tocol for communicating with the debugger over a dedicated GPIO line and a UART link,

which includes routines for reading from and writing to target address space.

The debug console is a command-line interface for interacting directly with EDB and

indirectly with the target over a USB connection from a workstation. During interactive de-

bugging in active mode, the console reports assert failures and breakpoints hits and provides

commands to inspect target memory. During passive mode debugging, the console deliv-

ers traces of energy state, watchpoint hits, monitored I/O events, and the output of printf

calls. EDB can emulate intermittence at the granularity of individual charge-discharge cycles

using the charge/discharge commands.

7.3.6 Hardware and software components

We prototyped EDB as a printed circuit board (PCB) that connects to the target device via

a board-to-board header. Our core design is also compatible with an implementation as an

on-chip component within the target device architecture. EDB software includes 5600 lines

of C code for firmware, 1200 lines of C code for libEDB, and 1200 lines of Python code for

scripting API and host console.
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Figure 7.4: EDB, energy-interference-free system for monitoring and debugging energy-
harvesting devices, attached to a WISP [149] (purple PCB) in Panel A and shown in detail
in Panel B.

7.4 Evaluation

The purpose of our evaluation is two-fold. First, we characterize potential sources of energy

interference and show that EDB is energy-interference-free with detailed measurements. Sec-

ond, we use a series of case studies conducted on a real energy-harvesting system to demon-

strate that EDB supports monitoring and debugging tasks that are impossible with existing

tools.

7.4.1 Experimental setup

Our experimental setup consists of the EDB prototype board, a target energy-harvesting

device and wireless energy source, and measurement instruments. The EDB board is al-

ways connected to a development workstation via USB and to the target device through a

dedicated header. EDB is controlled from the workstation programmatically or manually

through the console described in Section 7.3.5.

Our target device is a Wireless Identification and Sensing Platform (WISP) version 5

[149]. The WISP has a 47 µF energy storage capacitor, a turn-on threshold of 2.4 V, a
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brown-out threshold of 1.8 V, and an active current of approximately 0.5 mA at 4 MHz.

The WISP is intermittently powered by RF radiation from an Impinj Speedway Revolution

RFID reader. The reader is configured to continuously inventory tags at a transmit power

of up to 30 dBm using the SLLURP toolset [19], and its antenna is placed at a distance

of 1 m from the WISP. The amount of harvestable energy is inversely proportional to this

distance. In our evaluation, we ran a collection of different software applications on the

target device. We used a custom test program that manipulates non-volatile linked-list,

and another that generates a persistent list of Fibonacci numbers. We also used two real

applications, including the official WISP 5 RFID firmware, and a machine-learning-based

activity recognition application from prior work [101].

To validate and characterize EDB — especially its energy-interference-freedom — we

used some additional measurement equipment that is not normally necessary when using

EDB. We collected data in the evaluation using a Tektronix MDO4104 oscilloscope and a

Keithley 2450 source meter. The oscilloscope channels were connected to the analog and

digital lines between EDB and WISP to record the capacitor voltage, moments when active

debug mode starts and ends, and events that trace application progress. The source meter

was connected to the interface lines on EDB to measure current flow in both directions.

7.4.2 Energy-interference

EDB’s advantage over existing debugging tools is its ability to remain isolated from inter-

mittent power in passive mode and to create an illusion of an untouched energy reservoir in

active mode. Next, we characterize these two modes of energy-interference and show with

measurements that neither compromises EDB’s energy-interference-freedom.

Current flow over electrical connections

Any current that flows between the target and the debugger through the connections in

Figure 7.3 may inadvertently charge or discharge the capacitor on the target. As discussed
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in Section 7.3, EDB’s circuits are designed to minimize the amount of current that can

flow across any of these connections to or from the target’s power supply. Imperfections in

components, such as reverse leakage current in the diodes, inevitably cause some current to

flow. We measured the maximum possible current flow over each connection and verified

that in the absolute worst-case, when all lines are active, the effect it can have on the target

power supply is negligible.

We used a source meter to apply a voltage to the driving endpoint of each connection and

measure the resulting current. We measured each connection with digital logic endpoints

in both LOW and HIGH states by applying either 0 V or 2.4 V, which is the maximum

voltage that can arise on any of the connections. We measured analog endpoints under the

worst-case condition of 2.4 V. The sum of the worst-case current flow in either direction

across all connections is 0.85 µA or 0.2% of the typical active mode current consumption of

the MCU in our target device. Table 7.2 characterizes the energy interference, showing a

breakdown of worst-case current by connection, driving endpoint, and logic state.

Accuracy of manipulating target energy level

To support debugging tasks presented in Section 7.2, EDB needs to save, change, and restore

the amount of charge in the target’s storage capacitor. A large discrepancy between the saved

and restored level can undermine the illusion of an unaltered intermittent power supply that

EDB presents to the target software. We quantified this energy level discrepancy, ∆E,

by measuring the voltage on the capacitor before and after a save-restore operation and

applying the expression for the energy stored in a capacitor: ∆E = 1
2
C(V 2

restored − V 2
saved).

This quantity was then expressed as a percentage of the maximum energy storable on the

target: ∆Ê = ∆E/(1
2
CV 2

max), where Vmax = 2.4 V.

We used the charge/discharge commands introduced in Section 7.3.5 to run 50 trials of

a save-restore operation. For each trial, we set an energy-breakpoint at 2.3 V, charged the

target capacitor to 2.4 V, waited for the target execution to be interrupted by the breakpoint,
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Debuger ↔ Target DC Current (nA)
Connection Min Avg Max

Capacitor sense, manipulate -2.5100 0.1445 0.8300
Regulator sense, level reference -0.0300 -0.0029 0.0100

Debugger→Target comm.
high -0.0200 -0.0004 0.0100
low -0.0300 -0.0200 -0.0100

Target→Debugger comm.
high -0.0200 62.9349 108.2300
low -1.9200 -1.7982 -1.7100

Code marker (x2)
high -0.0200 63.7853 111.5400
low -2.1600 -1.9770 -1.8300

UART RX
high -0.0100 64.8042 111.2600
low -2.5500 -1.8909 -1.7200

UART TX
high -0.0000 66.3433 139.8800
low -1.7900 -1.6705 -1.5600

RF RX
high -0.0400 66.0402 115.0100
low -2.3000 -2.1271 -1.9900

RF TX
high -0.0200 66.5382 117.9600
low -2.7300 -2.2726 -2.1600

I2C SCL
high -0.0400 0.0358 0.0800
low -0.3200 -0.1780 -0.1500

I2C SDA
high -0.0100 0.0367 0.0700
low -0.2800 -0.1754 -0.1400

Worst-Case Total Current 836.51 nA

Table 7.2: Measured worst-case current that can flow over electrical connections between
the target device and EDB.

and then resumed the target. Table 7.3 summarizes two independent sets of measurements

of ∆V = Vrestored−Vsaved, ∆E, and ∆Ê: one from our oscilloscope and one from EDB’s ADC.

The accuracy of EDB’s save-restore mechanism, ∆Ê, in our prototype implementation of

EDB is, on average, 4.34% of the target’s 47µF energy storage capacitor. Our prototype’s

energy level discrepancy is small enough that it is unlikely to be problematic. We expect that

further software optimization will leave a discrepancy closer to the accuracy limit imposed

by EDB’s ADC. A 12-bit ADC with effective resolution of approximately 1 mV imposes a

theoretical lower bound on ∆Ê of 0.08%.

7.4.3 Debugging capabilities

We now illustrate the new capabilities that EDB brings to the development of intermittent

software by applying it to debugging tasks that are particularly difficult to resolve using

state-of-the-art tools. Energy-harvesting applications in the following case studies execute
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∆V (mV) ∆E (µJ) ∆Ê (%∗)
O-scope ADC O-scope ADC O-scope ADC

Mean 54 55 1.25 1.25 4.34 4.34
S.D. 16 7.8 0.37 0.18 1.30 0.62

∗ Energy cost is reported as percentage of 47 µF storage capacity.

Table 7.3: Accuracy with which EDB saves and restores energy level quantified as the
difference in capacitor charge before saving and after restoring and measured using either an
external oscilloscope or the internal ADC in EDB.

intermittently and keep state in non-volatile memory to make progress without relying on

a runtime checkpointing system. A reboot causes execution to return to the program entry

point (i.e., main).

Detecting memory corruption early

Memory corruption due to incorrect pointer arithmetic or a buffer overflow is a frequent

yet difficult problem to debug. The root cause is obscured behind symptoms that are far

from the offending memory write in time and in space. Memory corruption induced by

intermittence is harder to diagnose still, because it is not reproducible in a conventional

debugger as discussed in Section 7.1.2. This section studies an application that fails due

to an intermittence-induced memory corruption and demonstrates how EDB’s support for

assertions exposes the root cause.

Application. The code listed in Figure 7.5 maintains a doubly-linked list data structure

in non-volatile memory. On each iteration of the main loop, a node is appended to the linked

list if the list is empty or removed from the list otherwise. The node is initialized with a

pointer to a buffer in volatile memory. This pointer is retrieved when the node is removed

from the list and data is written to the buffer it points to.1 For illustrative purposes, at the

beginning and end of the loop iteration, the code toggles a GPIO pin to indicate that the

main loop is running.

1The role of the memory buffer in this example is to expose undefined behavior during access to the
linked list, which takes place with or without the buffer, as an externally observable failure.
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Symptoms. After having run on harvested energy for some amount of time, the GPIO

pin indicating main loop progress stops toggling. The real oscilloscope trace in the top of

Figure 7.6 shows an early charge-discharge cycle when the main loop is still executing and a

later one when it no longer does. After the main loop stops executing, the application never

returns to normal, including after reboots on subsequent charge-discharge cycles. The only

way to recover is to re-flash the device. Note that the failure problem never occurs when the

device runs on continuous power.

Diagnosis. Since the broken final state persists across reboots, one approach is to

attach a conventional debugger after the failure and attempt to determine why the main

loop stopped running. This approach may help uncover the symptom, but not the root

cause, because the information that happens to persist in memory may not be sufficient to

follow the chain of events backwards in time. A better approach is to catch the problem

at its source by asserting an invariant on the linked-list data structure whenever it is

manipulated. However, conventional assertions fall short in this case, because they let the

target drain the energy supply, reset, and continue past a failed assertion.

EDB’s intermittence-aware assert mechanism is designed to tackle this class of bugs.

We assert the invariant that the tail pointer points to the last element in the list as shown

in Figure 7.5 and run the program on harvested energy with EDB attached. EDB’s console

reports the assertion failure, halts the program, starts continuously powering the target, and

opens an interactive debug session. This sequence is captured in the bottom oscilloscope

trace in Figure 7.5. The discharge cycle on the right is the one during which the assert fails

at instant 1 and the capacitor voltage is seen rising to the level of the tethered power supply.

In the interactive debug session summarized on the right in Figure 7.5, we check the

device’s internal state using EDB’s commands for inspecting target memory. The tail pointer

points to the penultimate element instead of the last one, which is a consequence of an

append interrupted by intermittence. Because of this inconsistency, the else-clause in the

remove function would dereference a NULL pointer, read the buffer pointer from an invalid
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Figure 7.5: An intermittence bug that corrupts memory, diagnosed using EDB’s
intermittence-aware assert (left) and interactive console (right).

location, and cause memset to write to a wild pointer and corrupt non-volatile state beyond

recovery. The assert and the interactive session uncovered the precise inconsistency in the

data structure before any of these confounding consequences could take place.

Instrumenting code with consistency checks

To aid in debugging, applications often have separate debug and release build configurations.

A debug build includes instrumentation code such as checks for consistency of data struc-

tures or array bounds. On continuously-powered platforms the convenience of the debug

build comes at the cost of slower execution speed, higher memory usage, and higher energy

consumption. However, on intermittently-powered platforms, the effect is more dire: the en-

ergy overhead of instrumentation can render an application non-functional by preventing it

from making any forward progress, for the reason explained in Chapter 5. Yet, instrumented

energy-harvesting applications must be run on harvested energy to diagnose intermittence-

induced bugs, since these bugs are invisible while the device is continuously powered. In

this case study we demonstrate how an application can be instrumented with debug code of

arbitrary energy cost using EDB’s energy guards.
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Figure 7.6: Oscilloscope trace of a memory-corrupting intermittence bug and EDB’s
intermittence-aware assert in action. Without the assert (top) the main loop runs at
first (left) but mysteriously stops running in later discharge-cycles (right). With the assert

(bottom), when it fails at instant 1, EDB halts the device and tethers it to a continuous
power supply.

Application. The code in Figure 7.7 generates the Fibonacci sequence and appends

each number to a non-volatile, doubly-linked list. For illustrative purposes, each iteration

of the main loop toggles a GPIO pin to track progress. In the debug build, main begins

with an energy-hungry consistency check that traverses the list and asserts that the previous

and next pointers and the Fibonacci value in each node are consistent. This invariant helps

detect problems early before they precipitate into mysterious failures akin to the one in

Section 7.4.3. With intermittent power, the invariant was violated in several experimental

trials.
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Figure 7.7: Application code instrumented with a consistency check of arbitrary energy cost
using EDB’s energy guards.

Symptoms. The application’s release build produces an inconsistent list without any

indication that there is a problem. The debug build stops executing the main loop after

having added approximately 555 items to the list. The top trace in Figure 7.8 shows an

early charge cycle when the main loop executes and a later one when it no longer does.

Diagnosis. The energy cost of the consistency check is proportional to the length of the

list. Once the list is long enough, the consistency check consumes all the energy available in

one charge-discharge cycle and leaves none for the main loop. Once reached, this hung state

persists indefinitely because the application cannot make progress in subsequent charge-

discharge cycles.

EDB lets the developer keep the consistency check without breaking application func-

tionality by wrapping the check with energy guards as shown in Figure 7.7. The effect this

has on the target energy state is captured in the bottom oscilloscope trace in Figure 7.8. At

instance 1, the target enters the energy guard, and EDB tethers it to a power supply. The

capacitor starts charging, while the target continues executing the code within the energy

guard. At instance 2, the target exits the energy guard, and EDB cuts the power supply

and starts to discharge the capacitor to the level it had at instance 1. After the discharge

completes, the target is allowed to continue. This sequence of events later takes place again

between instances 3 and 4. With the energy guard around the consistency check, the main
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Figure 7.8: Oscilloscope trace of an application instrumented with a consistency check of
high energy cost. Without an energy guard (top), the check and main loop both execute
at first (left) but only the check executes in later discharge-cycles (right). With an energy
guard (bottom), the check executes on tethered power from instant 1 to 2 and 3 to 4, and
the main loop always executes.

loop gets the same amount of energy in both early charge-discharge cycles when the list is

short (left) and later ones when it is longer (right).

Tracing events and profiling energy cost

Intermediate results of calculations, frequency of events, and energy cost of operations are

valuable clues for quick diagnosis of erroneous code. Directly extracting such information

from an energy-harvesting device using existing tools changes the application’s behavior. For

example, the sample rate of a sensing application may increase by a factor of 100-1000x when
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powered continuously in the lab relative to when harvesting energy in a realistic deployment.

This section demonstrates how EDB’s energy-interference-free printf and watchpoints can

peek under the hood of running code with minimal impact on application behavior.

Application. The activity recognition application outlined in Figure 7.9 reads an ac-

celerometer sample, classifies the sample as “stationary” or “moving”, and records statistics

in non-volatile memory.

Symptoms. There is no evidence that the recorded statistics are based on correct

accelerometer readings and classification results. Moreover, the application cannot be tuned

to the size of the storage capacitor without the energy profile of one classification operation.

Diagnosis. Information can be extracted from the target device either over traditional

debugger interface (e.g. JTAG) or I/O peripherals (e.g. UART or GPIO ports). To relay a

data stream via a JTAG debugger, the target device must be on during the entire debugging

session. Off-the-shelf USB-to-serial adapters are not electrically isolated from the target

UART and permit energy to flow into or out of the device. Encoding information onto

GPIO pins and decoding it using an oscilloscope costs pins and significant effort compared

to a printf call that outputs text to a console on the host.

The measurements in Table 7.4 demonstrate the impact on application behavior of us-

ing UART. The energy cost of the print statement changes the iteration success rate, i.e.

the fraction of iterations that successfully complete out of the total attempted. To trace

application progress without disrupting its behavior, we instrumented the loop body with

an EDB printf and three watchpoints as shown in Figure 7.9. The printf produces a

stream of intermediate classification results for each iteration. The watchpoints produce

a time and energy profile of a loop iteration as well as an independent calculation of the

statistics that is useful for manual verification. The energy profile shown in Figure 7.10 was

calculated from the difference between energy level snapshots taken by watchpoints 1 and

2, and watchpoints 1 and 3. Reference classification statistics can be calculated by counting

occurrences of watchpoints 2 and 3.
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Figure 7.9: Tracing and profiling an activity recognition application using EDB’s energy-
interference-free printf and watchpoints.

Iteration Iteration Cost Print Cost
Success Energy Time Energy Time

Rate (%∗) (ms) (%∗) (ms)
No print 87% 3.0 1.1 - -
UART printf 74% 5.3 2.1 2.5 1.1
EDB printf 82% 3.4 4.7 0.11 3.1

∗ Energy cost is reported as percentage of 47 µF storage capacity.

Table 7.4: Cost of debug output and its impact on the behavior of the activity recognition
application.

Debugging and tuning RFID applications

Energy-harvesting applications that communicate over the RFID protocol are difficult to

debug without simultaneous visibility into communication and energy state. This case study

demonstrates how EDB can monitor RFID I/O messages and correlate them with available

energy.

Application. The WISP RFID firmware [187] decodes RFID query commands from a

reader in software and replies with a unique identifier.

Symptoms. The application and reader cannot be characterized and tuned without

a measure of the target’s performance in different RF environments, e.g. the number of
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Figure 7.10: Energy profile of one loop iteration in the activity recognition application when
instrumented with different output mechanisms.

responses per queries received. Correctness cannot be verified without evidence that the

application software successfully decodes and acts on each valid incoming query message.

Diagnosis. Both tasks require a trace of incoming messages that reached the target, i.e.

bit patterns in the incoming demodulated waveform that could have been decoded into valid

messages by software. An oscilloscope trace of the raw output from the RF demodulator

does not reveal whether the waveform is decodable into a valid message. A decoder is

necessary to separate messages that were corrupted in flight from valid messages that the

target application failed to parse.

We use EDB to stream RFID message identifiers and target energy readings to the host.

From data plotted in Figure 7.11 we find that in our lab setup the application responded

86% of the time for an average of 13 replies per second. The view focused on one discharge

cycle confirms that the application successfully received consecutive incoming query messages

and replied. To produce such a mixed trace of I/O and energy using existing equipment,

the target would have to be burdened with logging duties that exceed the computational

resources left after message decoding and response transmission.
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Figure 7.11: Incoming and outgoing RFID messages correlated with energy level recorded
by EDB.

7.5 Summary

Intermittently executing, energy-harvesting devices present unique system reliability chal-

lenges, and our work presents the first debugging system that is designed to address those

challenges. We identified energy-interference-freedom as a property that is essential to the

utility of a debugging platform for power intermittent systems and built EDB to espouse

that property from its circuits to its software.

EDB supports passive monitoring of a target device’s energy, software events, and I/O.

Using its ability to manipulate a target device’s energy, EDB also supports active debugging

tasks with energy-interference-freedom, including assertions, instrumentation, tracing, and

interactive debugging. We evaluated our prototype of EDB, including custom hardware,
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showing that it is energy-interference-free in both its passive and active tasks, and that

it provides valuable debugging information that is out of reach using existing tools and

techniques. We see energy-interference-freedom as a necessary property for future debugging

and profiling tools for energy-harvesting devices.
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Chapter 8

A Design Methodology for

Intermittent Systems

In this chapter, we aggregate the system support developed in the preceding chapters into a

re-usable design procedure for intermittently-powered systems. We propose a template for

power system hardware to accelerate the design. We apply this design methodology to build

an intermittently-powered energy-harvesting device for a space mission in low-earth orbit.

8.1 Design methodology

The design of an energy-harvesting system for a chosen application involves software tasks

and hardware tasks that take place concurrently. We propose a top-down design approach,

where the application requirements and constraints drive the design decisions. The top-down

approach is appropriate, because energy-harvesting devices are generally special-purpose,

i.e. intended for one specific application as opposed to general-purpose computing systems

intended for multiple applications. As a consequence, the system is customized to the specific

application.

In particular, the type and magnitude of a harvestable energy source is intrinsic to each

application environment, and the energy source determines the achievable capabilities of the
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Figure 8.1: Design flow for building applications on energy-harvesting platforms, leveraging
system support for intermittent computing proposed in this thesis (shown in ellipses).

device. For example, a soil moisture sensor in a field may have a power budget of tens to hun-

dreds of milliwatts from a solar panel, which enable long-distance radio transmissions, while

a wearable step counter may have only microwatts of power from a piezoelectric harvester,

capable of only a weak radio link to a nearby smart phone. The constraints on the size,

shape, and material composition of the device are also determined by the application. For

example, a device destined to be carried by an insect must weigh no more than a gram [44],

which disqualifies large supercapacitors. The tight coupling between the application and

the platform does not permit an exact design methodology, however, we decompose the

procedure into tasks that we anticipate to be common across applications.

We outline the top-down design flow in Figure 8.1 and explain how the system support
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developed in this work helps with each of the software and hardware tasks. Since energy

plays a central role in the design, first, the application tasks must be defined sufficiently to

estimate their rough energy requirements. This estimate would then be converted into an

energy budget requirement on the energy source. Once a budget is established, the energy

sources available in the target deployment environment can be assessed against that budget

to determine the feasibility of the core functionality in the application. A battery is one

of the potential sources to be considered, alongside the harvestable energy sources, and for

some subset of applications a battery may be adequate, for the remaining subset the only

viable choice would be an energy harvester. For each promising energy source, the size of the

harvester relative to its power output must be assessed in the context of the size constraints

of the application.

At this point, the designer may choose to loop back to the application definition step to

revise the application mission, potentially simplifying it or enlarging it. This stage of the

design, may make use of documentation for part specifications and of energy measurement

functionality of the EDB tool introduced in Chapter 7. The documented specifications list

maximum current consumption of key hardware components – processor, radios, sensors.

EDB can measure the energy consumption of prototyped tasks core to the application,

such as sensor access, radio transmission, and bulk computations. In the next section we

propose a template for the hardware power system and continue with the software design

flow afterwards.

8.2 Calorie power system template

Once the harvester and its approximate power output is determined, a power system design

can be selected. A power system accepts energy from the harvester, charges energy buffering

capacitors, and generates a usable output voltage to power the load. There is a wide design

space within a fixed power budget from the harvester, and each point in that design space
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Figure 8.2: Calorie, a power system template for energy-harvesting devices.

differs significantly in effective usable energy, capacitor volume, and area occupied by the

power system. Optimization across this design space consists in choosing and parameterizing

the power system components listed in Chapter 2. For example, if minimizing capacitor

volume is essential, then input and output power conditioning circuits may be included to

provide the same energy storage capacity in a smaller volume. This section introduces a

template for a power system from which concrete designs can be instantiated. This template

can be customized depending on application constraints, and it must be instantiated by

choosing the input and output power conditioning, the energy buffer type and size.

Calorie, our proposed power system template shown in Figure 8.2 (with detailed schemat-

ics in Appendix A) is versatile. It is compatible with harvesters of a wide range of input

voltage, from 0.3 V to 5 V. Energy buffers may use high-ESR capacitors, such as small dense

super-capacitors listed in Table 2.1. The hardware supports loads with voltage requirements

that may exceed the harvester voltage output or the capacitor voltage rating, such as sen-

sors and radios. These benefits stem from the input voltage limiter, and input and output

boosters.

The voltage limiter circuit allows the harvester voltage input to rise above the ratings
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of the components in the system, allowing a wide dynamic range of input power conditions.

For example, the limiter allows solar panels to be connected in series to handle dim lighting

conditions, while avoiding damagingly high voltages in bright light. The limiter decreases

the voltage by burning energy that cannot be used. The I-V curve of the harvester (cf.

Figure 2.2) implies that draining current will decrease the voltage. Our limiter drains current

through a resistor. The value of this resistor R must be chosen such that for the maximum

current, I, that the harvester can provide above 3 V (the limit of our input booster), the

voltage drop across the resistor is within 3 V, i.e. IR < 3 V.

The input booster is located between the harvester and the energy buffering capacitors

and allows the device to use weak input power from the harvester by boosting its voltage.

Charging capacitors from a boosted voltage, instead of the voltage from the harvester, allows

using harvesters that produce a voltage too low to operate the system. The TI BQ25504

input booster has a “cold-start” phase that substantially slows charging of large capacitors

at low input power. To reduce charge time, when the harvester is producing sufficient energy

to charge quickly, we added an input booster bypass optimization. The bypass circuit keeps

the capacitors disconnected from the booster output and charges them directly from the

harvester (through a keeper diode), until the booster starts and the capacitor voltage is

above the cold start threshold.

We observed that the bypass optimization can reduce the charge time by up to 8x,

as an example in Figure 8.3 shows. Figure 8.3 shows the charging of the capacitor bank

without (top) and with the bypass optimization. Without the bypass, the input booster

(BQ25504) must simultaneously charge both its output capacitor (BQOUT) and the main

capacitor bank (VBANK) in the inefficient cold start mode. With the bypass, the main

bank remains disconnected from the output of the booster and charges directly from the

harvester (VHARVEST). Charge from the harvester begins to flow into the main capacitor

(VBANK) when the booster stops loading it, which happens when the booster’s output

capacitor (BQOUT) is charged to the configured output value for the input booster (2.8 V).
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Figure 8.3: Cold start with and without bypass optimization. The top trace shows the
time the baseline power system takes to startup, and the bottom trace shows the reduced
startup time with the bypass optimization. Both traces show the voltage from the harvester
(VHARVEST), on the output from the input booster (BQOUT), on the capacitor bank
(VBANK), and supplied to the load (VDD).

Direct charging of the main bank continues until the main capacitor charges to 1.6 V, at

which point the bank is connected to the booster output. Once connected, the main bank

continues to charge to booster’s output voltage (2.8 V) in the efficient mode, since its voltage

is now above the cold start voltage threshold. The bypass reduces the amount of capacitance

that must be charged in the inefficient cold start mode to only the output capacitor of the

booster, and not the main bank.

The output booster allows the system to extract more stored energy from the energy
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buffering capacitors than a direct connection to the load. The boost on the output also

helps support sensors that require voltage higher than the maximum voltage supported by

the capacitor. The booster produces stable output voltage, despite decreasing capacitor

voltage until the capacitor is discharged nearly completely. For example, the TPS61200

booster with a minimum input voltage rating of 0.3 V extracts 98% of energy storable in a

CPX3225A supercapacitor [153] rated for 2.6 V. Output boosting is required especially for

high-density high-ESR supercapacitors to compensate for the voltage droop induced by the

ESR under load, illustrated in Figure 2.4. For high-ESR capacitors, this immediate voltage

droop is large enough to bring the voltage close to or below the minimum voltage required

by the load. This behavior makes no or very little energy extractable from the capacitor,

canceling out the gain from the its high energy density. Furthermore, the regulated voltage

of the output booster is instrumental for powering sensors, actuators, and radios with a

minimum operating voltage that is close to or above the capacitor rating (e.g. 2.5v gesture

sensor or 2.0v for BLE radio). Without the booster, the load’s minimum voltage requirement

would be satisfied for no or very short time, while the capacitor is nearly fully charged.

The combination of an input and output booster, makes Calorie flexible to support

capacitors and supercapacitors with a wide range of voltage ratings. Flexibility in capacitor

choice is important for the system designer, because the same energy storage capacity is

achievable with combinations of different capacitor types and size, each with different density,

leakage, and endurance trade-offs (cf. Table 2.1).

Implementing the above design raised challenges with the choice of the output booster

model and efficiency of the input booster. In an energy-harvesting device, the output booster

is used out-of-spec, because it has to operate on a weak voltage source, e.g. a capacitor with a

high ESR (cf. Section 2.2). We evaluated several booster models, a subset of which worked

in our energy-harvesting context – an inductor-based (TPS61200) and a capacitor-based

model (LTC1682). We chose the inductor-based booster for its higher efficiency and lower

minimum input voltage, compromising on the footprint area.
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Figure 8.4: Trace of power system operation. The top figure shows the startup and operation,
and bottom figure zooms in on one charge cycle. The traces show voltage from the harvester
(VHARVEST), on the capacitor bank (VBANK), and at the load (VDD), as well as the
signals that mark the open trigger (BOOST EN), and the initialization code executing on
the processor (DBG0).
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A trace that demonstrates how the power system operates with a solar harvester is shown

in Figure 8.4. The energy source used for this experiment is an incandescent bulb placed at

0.5 m away from the IXYS solar panels on the Capybara board prototype (cf. Section 6).

The voltage trace shows that the charging of the capacitor happens in two phases: the cold-

start phase of the BQ25504 voltage converter from 0 V to 1.5 V, which takes 5 s, followed by

normal booster operation from 1.5 V to 2.6 V, which takes 150 ms. The cold-start phase only

happens one time, and is avoided as long as there is some incoming energy, by implementing

a close trigger (cf. Section 2.4), which disconnects the load as soon as the capacitor voltage

drops close to the cold-start exit threshold (1.8 V). During charging in cold-start mode, the

BQ25504 input booster loads the harvester, limiting its voltage output (VHARVEST) to

0.3 V, according to the harvester’s I-V curve (cf. Figure 2.2). In normal charge mode, the

harvester voltage fluctuates as the booster adjusts its load to track the maximum power

point (cf. Figure 2.2) and input power varies.

Once the capacitor is charged to open trigger threshold (2.6 V), the power system opens

the current path to the load, indicated by the BOOST EN signal raised high and the corre-

sponding ramp up of the voltage output (VDD) to 2.5 V. At this point, the processor begins

executing code, and consumes the accumulated energy, as the trace of VBANK shows. After

operating for 20 ms, the close trigger described earlier disconnects the load, and the discharg-

ing of the capacitor bank stops. The following charge intervals do not require cold-start, as

explained above, and take only 230 ms each.

8.3 Hardware-software co-design for application tasks

To choose a capacitor configuration, energy storage capacity required by the software must be

estimated. The energy storage capacity is a function of the energy consumption of individual

tasks in the software. The software tasks fall into three categories, that should be handled

in order: atomic tasks, reactive tasks, computation tasks.
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The energy storage sizing process should start with the tasks with an on time constraint

(cf. Chapter 6), since these tasks determine the maximum energy capacity the power system

must be able to provide. Full-system energy consumption of such tasks can be measured using

EDB. After atomic tasks, power system configurations for synchronous and asynchronous

sensing tasks must be setup, by identifying their temporal constraints on off time defined in

Chapter 6. Once their temporal constraints have been determined, tasks must be annotated

according to the Capybara API (cf. Chapter 6). By annotating the application tasks with

Capybara primitives, the number of separate capacitor banks will become determined and

ready to be passed to the hardware design.

The remaining computational part of the software differs from tasks that interface with

the physical world. Computational tasks lack temporal constraints and tolerate being inter-

rupted and resumed at any point. Consequently, the computation can be partitioned into

tasks using automatic decomposition algorithm in CleanCut introduced in Chapter 5. The

output of the partitioning algorithm is a set of locations in the program where task bound-

aries should be placed. These locations can be manually mapped into tasks in the Chain

abstraction introduced in Chapter 4, or into checkpoints for a system like DINO [101]. Com-

pared to writing the application without any support in the programming language, Chain

brings the advantage of guaranteed memory consistency without explicit management of

non-volatile state. Delegating the consistency problem to Chain frees up developer time for

diagnosing and fixing bugs in the application software. After the task decomposition and the

energy storage have been fixed, all tasks are checked for non-termination using the CleanCut

checker.

Subsequent steps in the development process involve characterization of the device in

order to assess application performance. Since this software is running on an intermittently-

powered device, the energy-aware primitives of the energy-interference-free debugger (cf.

Chapter 7) are necessary to debug the code interactively while the device is powered by

harvested energy. For representative testing and evaluation, it is essential to run the device
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using energy from the harvester and profile it in situ. The passive monitoring features of EDB

facilitate in situ profiling. If the device size constraint permits it, the designer may choose to

integrate EDB onto the device, or at least on its engineering variants. The evaluation stage is

likely to uncover problems and direct the designer along a backedge in the design flow to the

software modifications, which will change the energy consumption of the tasks. The change

in task energy will necessitate a re-computation of task decomposition and re-verification of

non-termination.

8.4 Design of a solar-powered nano-satellite

Figure 8.5: EDBsat: a solar-powered nano-
satellite (front).

We apply the proposed design methodol-

ogy to build an energy-harvesting (solar-

powered) board-scale nano-satellite, named

EDBsat and shown in Figure 8.5. We be-

gin by defining the application mission and

then present the design of the hardware and

software system. The overall mission objec-

tive is to assess the viability of an energy-

harvesting board-scale device as a low-cost

platform for scientific missions in low-earth

orbit. The specific mission of our device is

to collect samples from a temperature sensor, magnetometer, and accelerometer,1 average

them over several time scales, and transmit the time series over radio to a receiver on Earth.

A secondary objective is to record a profile of the energy harvested by solar panels as a

histogram of the capacitor voltage at different points in the program.

1Acceleration in orbit is expected to be zero, and accelerometer samples are included as a control data
point.
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Figure 8.6: EDBsat power system hardware design

Our design is a variant of a sprite in the KickSat project [194]. The KickSat sprites are

stand-alone satellites that fit on one PCB board. A set of 100-200 sprites are launched into

orbit by loading them into a carrier cube-sat that then releases them using a spring-loaded

mechanism. Our variant complies with the form factor imposed by the carrier: 35x35x4 mm.

This size constraint is the main limiting factor that affects key hardware and software design

choices.

8.4.1 EDBsat hardware

Following the first step of the design flow, we estimate the energy requirement of the key part

of the application: the transmission of the radio packet to Earth. We employ the original

KickSat radio stack. We use the current consumption specified in the radio datasheet (33 mA

at 2 V) and measure the time to transmit the smallest packet of one byte (250 ms) to estimate

the energy requirement of 33 mA · 2 V · 250 ms = 17 mJ. The harvester must output this

amount of energy in an interval of time that is short enough relative to the transmission

window during which the satellite travels above the receiver on the ground, which is about 6

minutes. A solar-panel of size 8x26 mm produces 34 mW at its maximum power, under ideal

incident angle. Assuming ideal light angle and ideal energy storage, this harvester outputs

sufficient energy for 4 packets each second, confirming the feasibility of the application. In

practice, to account for non-ideal conditions, we double the harvester area and, in contrast
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to the KickSat reference sprite, we install panels on both sides of the satellite to continue

harvesting energy in as many orientations towards the sun as possible. After allocating space

for solar panels, only 50% of board area remains for the power system, the processor, sensors,

and radio.

To satisfy the on-time constraint of the radio transmission, we specialized the Calorie

power system to the one shown in Figure 8.6 and described in detail schematics in Ap-

pendix B. Our main design objective was to minimize the board space occupied by the

energy storage buffer and the power system circuits. The system distributes power from one

harvester (an array of four solar panels) to two isolated load domains: the application MCU

with sensors and the radio MCU. Each domain has a dedicated capacitor bank, C1 and

C2, and the load in each domain can access energy stored only in its own capacitor bank.

This partitioned architecture is less flexible than the Capybara power system which allows

sharing of the energy buffer across all loads, but it occupies less area, since it eliminates the

switch between banks. In an alternative design with only one MCU for both workloads, a

Capybara switch for one of the banks would be beneficial. The application domain uses a

simple rectifier-based power supply circuit explained in Section 2.1. The Q1 p-channel FET

switch enables interference-free profiling of the application by granting it exclusive access

to the harvester. When the switch is opened by the EDB software, the EDB domain stops

loading the harvester and operates using energy from its storage bank (C2).

The thickness constraint of 4 mm severely restricts the choice of supercapacitors, and

requires that their volume be minimized. The radio and EDB domain uses a power system

with both input and output power conditioning voltage converters, in order to minimize

capacitor volume and guarantee an atomic burst of energy sufficient for a radio transmission

(under the assumption of any positive incoming energy), as explained in Section 2.3.
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8.4.2 EDBsat software

The satellite application was written in the Chain programming model, introduced in Chap-

ter 4, from the ground up. The application consists of a task graph with 8 tasks and 12

channels. The main data structure that holds the hierarchical window averages is passed

between tasks via channels, i.e. the data structure is allocated as a set of copies, where each

copy is associated to a pair of tasks. The implementation relies on Chain’s self-channels to

encapsulate data within a task and make it accessible only to instances of that same task.

In return for the effort spent on expressing the program as a graph of tasks instead of as

a monolithic program, we gained the guarantee of consistent program state in volatile and

non-volatile memory. During the development of the satellite we observed a non-terminating

task which prompted a change in the task decomposition.

To fulfill the secondary mission of profiling energy available in the low earth orbit to

a satellite of board-scale form factor, we built into the satellite a custom implementation

of the Energy-Interference Debugger (EDB) [38]. We provisioned the satellite with two

MCUs – one for the application, and one for the radio stack and EDB. In contrast to its

reference design as a stand-alone debugging tool powered from the USB port of a computer,

the EDB module on the satellite is powered from the main energy harvester. Despite a

shared harvester, the EDB design prevents energy-interference from the debugger on the

application, by activating switches that disconnect it from the harvester, as described in

the previous section. Once disconnected, EDB uses its dedicated energy capacitor during

profiling. EDB watchpoints were inserted at the start of key tasks in the application for

tracing the program and recording both its progress and the energy at the start of each task.

A compressed histogram of the energy at each watchpoint was packed in a dedicated type

of packet and sent over the radio alongside the packets with the sensing data payload.
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Figure 8.7: Hardware for a portable stand-alone receiver for transmissions from EDBsat
satellite.

8.4.3 Ground station

We developed a customized receiver based on the reference design from KickSat project [194].

The receiver collects the radio signal using an antenna connected to an amplifier and digitizes

it using a software-defined radio USB device. A software implementation processes the

signal to extract valid packet transmissions. Our improvements to the original design allow

it to run on an ARM-based quad core embedded single-board computer instead of a high-

performance laptop. This was accomplished by parallelizing the decoder implementation

using OpenMP [43] and enabling support for NEON extensions in the FFT library. We

also make the receiver portable by including a battery with power conditioning and charging

circuits, and a display for showing the decoded packets. An overview of the receiver hardware

is shown in Figure 8.7.

8.4.4 Experimental results

We have designed and manufactured the EDBsat circuit board and deployed onto it the

firmware with the application code and the EDB profiling code. To verify the operation of

the power system we inspected our device with a logic analyzer while powering it with light

from an incandescent light bulb. Figure 8.8 shows a trace of the voltage on the capacitor,
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Figure 8.8: Trace of voltage on the energy capacitor (VBANK) and in the radio MCU domain
(VDD) during transmission of a 2-byte radio packet (each byte indicated by high level of
RADIO TX).

and in the load domain of the radio, as the device transmits a 2-byte radio packet. The

trace begins at the instant of the open trigger (cf. Section 2.4), when the supply to the load

(VDD) is activated. As the device sends each byte, the radio is active for 250 ms followed by

a MAC-protocol delay of 1 s during which the radio is in sleep mode. These two phases of

each byte transmission are visible as the dips in the voltage on the capacitor. The rebound

in the capacitor voltage is not due to incoming energy but due to the reduction in the voltage

droop due to the ESR of the capacitor (cf. Section 2.2) when the load current diminishes.

A transmission of a third byte is attempted, but is not successful because energy in the

capacitor is exhausted before the transmission finishes.

The power draw of the radio for each of the two bytes brings the capacitor voltage below

the threshold of operation of the radio, but the output voltage remains stable thanks to the

output boost converter. The input booster guarantees that the capacitors will be charged

to their maximum voltage even if the incoming voltage from the harvester is lower, such as
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Time Temp Mag Accel
Short 30 (7, 0, -5) (1, -1, -3)
Long 30 (7, 0, -6) (1, -1, -3)

Task #HighE #LowE
Boot 1 0
Sample 1 29
Avg-1 1 29
Avg-2 0 31

Table 8.1: Radio packets with sensor data and energy profile histograms from the satellite.

when the panel is oriented at a sharp angle to the sunlight.

To verify the sensing and energy profiling functionality we received and decoded the radio

packets from the device over one hour while it was powered by light from an incandescent

bulb. Table 8.1 shows a received packet with averages of sensor values down-sampled to

4 bits each over two time scales, and the energy profile for 4 instrumented points in the

program. The profile shows that the program booted once and had sufficient incoming

energy to execute all its tasks without rebooting, but starting each task with a partially

depleted capacitor most of the time. We conducted a similar test outside by placing the

EDBsat in the sunlight, configuring its transmission power to maximum (+12 dBm), and

traveling with the receiver to 600 meters away from the satellite. The receiver decoded valid

packets as long as the obstructions on the line of sight to the satellite were sparse (trees).
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Chapter 9

Conclusion and Future Research

Directions

As processors are miniaturized, it becomes possible to embed higher computational capacity

into things, habitats, equipment, and the body. Embedded computation is a prerequisite for

making these objects and environments “smart” and driving a new generation of applications

in the industrial, civil, medical, and scientific domains. However, these emerging applications

place tighter constraints on the device size and external operating conditions, which in

turn constrains their energy source. Batteries cannot always meet the constraints due to

being large, heavy, costly to replace, and limited in their tolerance to external temperature.

Energy-harvesting circuits emerged as an alternative energy source capable of replacing the

battery in some applications. An energy-harvester converts ambient energy in light, radio

waves, temperature gradients, or motion into electric current.

In this work, we investigated energy-harvesting devices as a platform for embedded appli-

cations. Replacing a battery with an energy-harvester eliminates some of its limitations but

creates a challenge for the software application by making the power supply intermittent. In-

termittent power to the processor imposes an intermittent execution model on the software,

which we defined in Chapter 2. Our work presented in the preceding chapters is motivated
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by the thesis that software destined to be deployed within the intermittent execution model,

requires system support across the stack, from programming language to hardware mecha-

nisms, in order to execute reliably and efficiently. In our work we developed system support

that addresses the following key challenges imposed by the intermittent execution model.

Programs written in the C language without regard to power failures may not execute

correctly and efficiently in this intermittent model for three key reasons. First, the program

will not execute to completion, because it will be interrupted by power failures. Second,

the program may produce incorrect results due to power failures leaving its state in memory

inconsistent. Third, the program may be slow to execute due to the overhead spent on saving

and restoring intermediate state to and from non-volatile memory. To address these prob-

lems, we developed a specialized programming model and runtime for writing intermittent

programs without explicit management of non-volatile state. In our programming model

introduced in Chapter 4 programs are expressed as a graph of tasks that exchange values via

persistent channels. By restricting inputs to and outputs from a task to disjoint channels,

Chain ensures that tasks are idempotent and can be restarted if interrupted at any point.

Chain latches intermediate results implicitly through saving task inputs and outputs into

channels, eliminating the overhead of checkpoints.

To verify that the execution can progress along each possible path, we developed a com-

plementary program analysis that formed the basis of two tools, introduced in Chapter 5.

The CleanCut checker is a tool for checking a task-based intermittent program for non-

terminating paths. The checker estimates the energy of each path in each task and compares

it to the energy storage capacity of the device. Tasks that contain paths that would con-

sume more energy than the device can store are reported as non-terminating. We employ

the same program analysis to build a second tool, the CleanCut placer, that automates the

decomposition of a program into tasks. The tasks are generated by repeatedly splitting

the maximum-energy path in the program until the energy of all paths is below the energy

storage capacity of the device.
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We recognize that like traditional embedded systems, energy-harvesting systems must

perform not only computation tasks but also sensing and actuation tasks. As opposed to

interruptible computation tasks, tasks that interact with the physical world have temporal

constraints. An actuation task, such as a radio transmission, must be executed to completion

without interruption to be successful. A sensing task might benefit from being executed as

frequently as possible to adequately sample a changing quantity and to react to external

events on time. In Chapter 6 we developed the Capybara system that can satisfy the temporal

constraints on energy that such tasks place on the power system. Capybara reconfigures

the energy storage capacity of the device at runtime in order to control when the device

accumulates energy and when it supplies the stored energy to tasks.

Our experience with writing software for energy-harvesting platforms has exposed the

inadequacy of the debugging tools designed for continuously-powered devices. Because in-

teractive debuggers interfere with the power supply of the device, they mask the bugs induced

by intermittence and alter the behavior of applications that react to the energy state of the

device. In Chapter 7 we developed an energy-interference-free debugging and profiling tool,

EDB, that is specialized to work while the device under test is powered intermittently. EDB

brings energy-aware variants of familiar debugging primitives to energy-harvesting devices,

such as breakpoints, watchpoints, and assert statements, and introduces specialized primi-

tives, such as energy guarded regions with energy compensation.

We unify the proposed solutions into a methodology for co-designing hardware and soft-

ware for an energy-harvesting system, described in Chapter 8. The design flow begins with

a feasibility assessment of energy-harvesting based on available energy sources, provides a

template for power system designs, and provides a guide for analyzing and transforming the

program into a task-based form for intermittent execution. We follow the proposed design

methodology to build an end-to-end board-scale nano-satellite ready to be deployed into

low-earth-orbit. This case study demonstrates the impact potential of the work developed

in this thesis: facilitating development of novel applications enabled by energy-harvesting
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technology. The hardware design files and source code that comprise the system support

developed in this thesis are open and available at http://intermittent.systems.

9.1 Future work

To enable more and better applications with less effort from the developer, the system sup-

port must continue to expand through further research. Follow-up work in the near future

can build directly on top of the solutions developed in this thesis. In particular, the Chain

programming model presented in Chapter 4 can be improved in efficiency and usability with

a compiler front-end that promotes the task and channel primitives to the level of language

syntax. The CleanCut program analysis from Chapter 5 depends on an accurate energy

model. Consequently, CleanCut as well as future energy-aware program analyses, will ben-

efit from research into energy estimation techniques, particularly whole-system techniques

that can track the hardware state of peripherals. Energy modeling is also a prerequisite

for an extension to Capybara (cf. Chapter 6) for automated capacitor bank provisioning

based on task annotations. Another improvement to the Capybara reconfigurable storage

mechanism is a capability to maintain charge on the capacitors that hold energy for asyn-

chronous tasks, to compensate for energy lost to self-discharge. New energy measurement

tools, particularly power tracing functionality, may also be integrated into EDB (cf. Chap-

ter 7) to support program analysis and to enable new debugging primitives such as energy

consumption breakdown across software components.

Long-term research effort is needed to verify correctness of programs in the intermittent

execution model prior to deployment. Detecting bugs early in the design cycle is particularly

important for energy-harvesting devices, because these devices are likely to be inaccessible

after deployment (e.g. implanted or molded into construction materials). Despite availability

of systems like Chain (Chapter 4) that guard against memory inconsistency, some developers

may choose to manually engineer the code to tolerate power failures in an application-
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specific manner, in order to extract maximum performance. A verification tool is essential to

make this error-prone approach practical. Bug finding techniques applicable to intermittent

systems may originate in static analysis, model checking, or theorem-proving. Techniques

for modeling failures used for verification of file systems may be applicable to intermittent

systems. However, specialization will be necessary to remove the assumption of a file-system-

like interface between the non-volatile and volatile part of the system. Furthermore, radical

innovation will be necessary to make the verification tool capable of reasoning about energy.

A successful verification tool should be able to prove that a program has the same behavior

in the intermittent execution model as in a continuously-powered execution.

While this thesis has focused on support for intermittent computing on a single de-

vice, support for intermittent communication is an open challenge. Communication between

intermittently-powered nodes is difficult, because devices cannot be assumed to be on at the

same time, nor have energy to receive a packet at any moment. A solution to the commu-

nication challenge requires innovation in radio hardware, wireless protocols, time keeping

and synchronization. Research on these topics in the domain of battery-powered wireless

sensor networks can serve as a basis for solutions optimized for intermittent devices. Once a

communication link between nodes is possible, research can proceed to macro-programming

networks of intermittent nodes. Abstractions for programming a network of intermittent

computers become essential for applications such as structural monitoring, which require

correlated sensor data from multiple sensors. System support for reliable programming of a

single intermittent computer, initiated in this thesis, augmented with support for program-

ming networks of intermittent computers is a prerequisite for novel battery-free applications.
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Appendix A

Capybara Hardware Schematics
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