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Abstract

Weak gravitational lensing measurements from the large-scale structure of the Uni-

verse probe the growth of structures at different epochs, thereby providing informa-

tion about the mysterious dark energy component. Wide-field redshift surveys such as

WFIRST, Euclid and LSST will image the sky and collect an unprecedented amount

of data. The decrease in the statistical errors must necessarily be accompanied by

an increase in our understanding of systematic errors. The sources of the systematic

errors could be i) astrophysical, such as intrinsic alignments, failure to account for the

complex morphology of the galaxies when estimating lensing distortions, or could be

ii) foreground effects such as the Point Spread Function (PSF) or imperfections from

the detectors etc. The systematic errors are estimated by testing the shear estima-

tion pipeline on mock galaxy images that are forward-simulated from first principles.

The simulated galaxy images must have realistic properties for the estimates of the

systematic biases to be accurate. In this thesis, I describe in detail the work done

towards incorporating in the image simulations some of the detector effects relevant

for WFIRST and understanding the limitations of using images from narrow surveys,

such as COSMOS, as input into image simulations for wide field surveys.
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Chapter 1

Introduction

“We’re made of star stuff. We

are a way for the cosmos to

know itself”

Carl Sagan

Cosmology is broadly defined in modern terms as the study of origin, evolution and

the destiny of the Universe. It attempts to explain one of the most fundamental

concepts - existence.

How did everything in the Universe came into being and what is our place in it?

Are we alone in this Universe?

Is the Universe really infinite?

These are some of the intriguing questions that the mankind has asked itself since

the early days.

The subject of Cosmology belonged to the philosophers and the religious. It was a

matter of speculation, with arbitrary ideas of ideals and perfections were imposed

upon the structure of the Universe. Observing the motion of the stars (and plan-
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ets) and predicting their positions in the future - astronomy - became one of the

first science disciplines. Physics, the study of natural phenomena, and astronomy

combined together to give rise to the branch called astrophysics. This enabled the

understanding of the nature of the heavenly bodies rather than just their angular

positions on the sky. We could understand stellar dynamics and their evolution, the

temperation at the core and at the surface of the stars, the composition of atmosphere

in distant planets and so on. Powerful telescopes enabled Edwin Hubble and others

to see galaxies other than Milky Way and realize that the Universe is much bigger

than what it was thought to be. With the realization that gravity is the result of

curved spacetime from Albert Einstein’s General Theory of Relativity, the pieces to

build testable cosmological models were in place.

Today, Cosmology is a predictive science with precise agreement between theory and

observations. Since the beginning of the last decade in the 20th century, the term con-

cordance cosmology is used to denote the agreement of the results from independent

methods of observations.

1.1 Cosmic history

According to our current understanding, the Universe started with a singularity (com-

monly referred to as the Big Bang) t0 = 13.8 years ago and began expanding. In the

first few fraction of the seconds after the big bang, the Universe experienced an expo-

nential expansion - a phase known as inflation - in which quantum fluctations were

stretched beyond the horizon, freezing the fluctuations, and stretching any possible

curvature. After the first few minutes of the birth of the Universe, there were pho-

tons and relativistic neutrinos and a hot dense plasma of baryonic matter containing

protons and electrons and dark matter particles. The mean free path of the photons

in the early stages of the Universe was small, thus keeping the baryon components in

thermal equilibrium with each other and with the radiation.

Until about 75,000 years after Big Bang, the dominant contributor to the total energy

of the Universe were photons. As the Universe expands, the energy density of the

photons gets ‘diluted’ faster than the energy density of the matter particles and non-

relativistic matter became the dominate the energy budget. The era where the energy

2



in the form of photons and matter were equal is denoted as the era of matter-radiation

equality. In the matter-dominated phase of the Universe, the tiny fluctuations im-

printed during the inflation act as seeds for structure growth. Dark matter particles

begin to accumulate at the overdense regions, making it more overdense with time.

However, the photon number density is 10 orders magnitude higher than the number

density of the baryonic particles. As a result, the baryons did not quite trace the

gravitational potential initially due to the overdensities; instead they were constantly

bombarded by the photons. As the Universe continued to expand, it cooled down

further and the protons and electrons combined to form Hydrogen atoms when the

cosmic age was around 200,000 years - a phenomenon knows as the recombination (a

misnomer). However, the high energy photons were dissociating the H atoms back

to p+ and e−. After about 380,000 since the initial singularity, the photons almost

completely decoupled from the baryons and began free-streaming through the space.

Today, we observe these photons as the Cosmic Microwave Background (CMB).

After the decoupling, the baryons are now free to fall into the dark matter structures or

halos that have formed. As the baryonic matter fell into the potential wells, they got

heated up and radiate (unlike the dark matter particles) to cool and continued to fall

into the deepest parts of the halo, where they formed stars. Stars are organized into

galaxies; galaxies are grouped together as groups, clusters(largest bound structures)

and even larger superclusters. These superclusters forms the largest structures known,

such as filaments, walls or sheets, which are separated by large underdense regions

called voids. Under the cold dark matter (CDM) model, structure grows from bottom

to top, i.e., small objects aggregate to form larger structures. This hierarchical model

of organization is known as the large-scale structure (LSS) of the Universe. On length

scales larger than 100 Mpc, this hierarchy ends and the Universe begins to appear

homogenous and isotropic, in accordance with the Copernican principle.

The expansion rate of the Universe had been slowing down after inflation, until about

9.5 billion years since Big Bang, where the dominant energy contribution appeared

to come from a mysterious component that we call the dark energy, which appears to

have constant energy density. This is consistent with the notion that the accelerated

expansion is due to a non-zero cosmological constant, denoted as Λ. Cosmological

constant can be interpreted as the energy or cost of having empty space. Experiments

show that the observed value of Λ is 120 order of magnitudes smaller than the value
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calculated from quantum field theories! This is often jokingly mentioned as the worst

prediction in physics ever. Moreover, it is not clear if the standard model of particle

physics is complete, and if not, the calculated value for Λ would change. An active

area of research in cosmology is to find the real reason for the accelerated expansion of

the Universe - is it the cosmological constant Λ, or is it dark energy, which is regarded

as an exotic form of matter (sometimes referred to as quintessence) that is fueling

the expansion? With the data currently available, it is impossible to determine what

dark energy really is.

Despite the conclusive evidence for the existence of dark energy, little is known about

its properties. The lack of persuasive theoretical explanation for the existence and

magnitude of the dark energy highlights the vast holes in our understanding of the

nature. In fact, dark energy featured in the list of top ten science problems of our time

in Science magazine. This is because dark energy is not just of interest for cosmology

but also has profound implications towards gaining a better understanding of high-

energy particle physics and quantum gravity. Fig. 1.1 is a depiction of this idea

by means of the cosmic uroboros - a snake’s tail in its head - with different points

along its body representing different length scales. Probably the strongest support

of this idea is the fact that the tighest constraints on the masses of the neutrinos

are obtained from cosmological observations and not high-energy particle accelerator

experiments.

In the absence of theoretical guidance, it is common to rely on exploration by obser-

vation. With that spirit, several surveys, both ground-based and space-based, have

been employed or are construction for operations in the near future, with the hope of

invalidating various alternative theories about the evolution of the Universe.

The growth of the large-scale structure has now come to a halt almost and the Uni-

verse once again has begun to accelerate since inflation. Eventually, in another few

billion years, structures that are not gravitationally bounded, will cross our event

horizon and the observable Universe would consist only one galaxy cluster. We now

live in the era where the structure has grown as much as it could, when the CMB

radiation is still measurable and when we could still observe some of the first formed

galaxies and thus an ideal era for large sky surveys.
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Figure 1.1: The cosmic uroboros represents the smallest size (the Planck length) at
the tip of its tail, depicting progressively increasing sizes along its body, with its
head representing the size of the entire observable Universe. The cosmic urboros is
a symbolic representation that the physics at the largest scales is intimately related
with the physics at the smallest scales. Image source:
http://new-universe.org/zenphoto/Chapter2/Illustrations/Abrams22.jpg.php
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1.2 Outline

This thesis contains 5 chapters. The main focus of Chapter 2 is the standard paradigm

of Cosmology and a brief review of the formalism of weak gravitational lensing and

how systematics affects the measurement. Chapters 3 to 5 focus on various systematic

effects involved in the measurement of weak lensing. The goal of the introduction

chapter is to layout the scientific background that provides the context for the rest

of the chapters. Chapter 3 discusses the effect of using galaxy images from a narrow

pencil-beam survey, such as COSMOS, as a training set for image simulations from

which the systematic biases would be measured. Chapters 4 study the impact of a

detector effects, called the interpixel capacitance (IPC), on the telescope PSF in the

context of detector requirements for the WFIRST survey. Chapter 5 analyzes the

impact of IPC on shear calibration bias in somewhat simplified settings. With the

expection of Chapters 1 and 2, all other chapters are already public or will be made

available publicly soon. Chapters 3 and 4 are published works, for which I am the

lead author. Chapter 5 is a draft that is expected to be submitted in the near future.

Chapter 3 and 5 consists of words written according to the British spelling rules, while

the other chapters are written according to the American English spelling rules. This

thesis covers only those projects that are relevant for weak gravitational lensing and

for which I was the main contributor in both research and in writing.

6



Chapter 2

Cosmological background

The study of the life of the Universe is necessarily accompanied by a study of the

contents in the Universe and their properties. The interaction between the compo-

nents of the Universe is dominant by gravity, which is the only unshielded long range

force. General Theory of Relativity by Albert Einstein is currently the best classical

theory of gravity we know. The standard model of Cosmology assumed the theory of

General Relativity to be true, which of course has stood the tests of time, with the

two detections of gravitational waves [6, 7] being the last piece of missing evidence in

favor of the theory. Howver, in many cases, Newtonian formulation of gravity suffices

to study the evolution of the Universe.

This chapter contains two sections. In Sec. 2.1, I discuss the basic concepts of standard

model of the Cosmology without rigorous derivations. In Sec. 2.2, I review the basic

concepts of weak gravitational lensing, how it provides cosmological information and

how systematics affect the measurement.

2.1 ΛCDM - the standard model of Cosmology

The standard paradigm of cosmology today is the six parameter flat ΛCDM cosmo-

logical model. In this section, we review the ΛCDM model, the equivalent of the

standard model in particle physics for Cosmology. Most modern textbooks on Cos-

mology, for example [8, 9, 10, 11, 12, 13] cover the topics in great detail. In Sec. 1.1,
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I described the cosmic history in a few paragraphs without any mathematical details.

In Sec. 2.1.1, I discuss the Universe on large scales and in Sec. 2.1.2, I discuss how

the tiny initial perturbations in a uniform background matter density grows to form

into massive structures that we observe in the Universe today.

2.1.1 Smooth Universe

The early Universe was highly homogenous and isotropic, thus described the Friedmann-

Robertson-Walker (FRW) metric:

ds2 = −c2dt2 + a(t)2
[

dX2 + dY 2 + dZ2
]

(2.1)

= −c2dt2 + a(t)2
[

1

1−Kr2
dr2 + r2(dθ2 + sin2 θdφ2)

]

(2.2)

= −c2dt2 + a(t)2
[

dχ2 + d2A(χ)(dθ
2 + sin2 θdφ2)

]

, (2.3)

where K is the global curvature (see later), t is the time coordinate and c refers to the

speed of light in vacuum. In Cartesian coordinates, the physical (spatial) coordinates

(x, y, z) are related to the comoving (spatial) coordinates (X, Y, Z) via the scale factor

a(t) as (x, y, z) = (aX, aY, aZ) (the time dependence in a is suppressed). θ, φ are

the polar and azimuthal coordinates and r and χ are called radial and line-of-sight

coordinates. If K = 0, r ≡ χ. Otherwise, r ≡ dA(χ) and is known as the angular

diameter distance given by

dA(χ) =



















χ if K = 0 (flat)

1√
K
sin

√
Kχ if K > 0 (closed)

1√
K
sinh

√
Kχ if K < 0 (open)

. (2.4)

K = 0 corresponds to the simplest case of the Universe being flat, where Euclidean

geometry holds true. K < 0 refers to the Universe being open and K > 0 corresponds

to a closed which is bounded and has a finite volume. In a closed Universe, two light

rays originating from a single point in different directions will eventually meet. In an

open Universe, two light rays originating from the same point travelling in different

directions will diverge, with the separation given by the angular diameter distance

increasing at a faster rate than in a flat Universe.
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Note that the scale factor a(t) cannot be determined uniquely since it has a scalar

degree of freedom, i.e., a(t) → λa(t) along with X → 1
λ
X , for arbitrary λ 6= 0, leaves

the physical coordinates unchanged. Thus, the physical quantities that govern the

evolution of the scale factor must necessarily be expressed as a(t1)
a(t2)

or ȧ
a
or ä

a
. As an

example, the redshift of the wavelength of a photon, as a result of the expansion of

the space, is given as

Redshift z ≡ λobs − λe
λe

=
λobs
λe

− 1 =
a(tobs)

a(te)
− 1, (2.5)

where λobs and λe are the observed and emitted (true) wavelengths, te is the cosmic

time of emission and tobs is the cosmic time of observation. It is conventional to define

the scale factor today a(t0) ≡ 1 for convenience. Thus, we obtain the redshift-scale

factor relation

a(t) =
1

1 + z
. (2.6)

If a(t) happens to be a monotonic function of time t (which it is, see later in this

section), then redshift, which is an observable, can be used to refer to distances and

cosmic times. Since light travels along null geodesics (ds2 = 0) and for radially inward

light dθ = dφ = 0, we get

c dt = a(t)dχ =⇒ dχ

c
=

dt

a(t)
=

da

a2(t)H(t)
=

dz

H(z)
, (2.7)

where H(t) ≡ ȧ(t)/a(t) is the Hubble parameter. The Hubble parameter evaluated

today at t = t0 is referred to as the Hubble constant, denoted by H0. We will denote

the value of various quantities at the present epoch by a subscript 0. The Hubble

constant is commonly expressed as H0 = 100h km/s/Mpc, where h is the unitless

Hubble constant and is of order unity.

Evolution in a smooth Universe

The expansion scale factor a(t), and the evolution of the Universe, is determined

by ratio of densities of the different components. Plugging in the FRW metric in

Einstein’s field equations with homogenous matter gives the Friedmann equations:
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(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(2.8a)

ä

a
= −4πG

3

(

ρ+
3p

c2

)

+
Λ

3
(2.8b)

Evaluating Eq. 2.8a at the present epoch, we get

3H2
0

8πG
= ρ0 +

3c2

8πG

K

a2
+

Λ

8πG
(2.9)

The left hand side of the above equation is defined to be the critical density of the

Universe, often denoted by ρcr. Defining the different density parameters

Ω0 =
ρ0
ρcr

ΩK,0 =
c2

H2
0

K

a20
ΩΛ,0 =

Λ

3H2
0

, (2.10)

Ω0 + ΩK,0 + ΩΛ,0 = 1. (2.11)

The contributions to the stress-energy tensor comes from radiation or relativistic

components (photons, neutrinos etc.) and from non-relativistic matter components

(baryons,dark matter). Thus, ρ0 = ρrad + ρm and hence Ω0 = Ωm,0 + Ωrad,0.

At a generic epoch, ρ(a) = ρm(a) + ρrad(a). The matter density in a region with

constant number of particle scales as the inverse of the volume containing those

particles, which itself grows as the 3rd power of the scale factor. For photons and

other relativistic particles, in addition to the above mentioned effect, the energy of

the individual particles scale as the inverse of the scale factor. Thus, the components

scale differently with a:

ρrad ∝ a−4 ρm ∝ a−3 (2.12)

This allows us to related the density parameters at an earlier (and later) epoch to

those at the present epoch.

Ωm = Ωm,0a
−3 Ωrad = Ωrad,0a

−4 ΩK = ΩK,0a
−2 ΩΛ = ΩΛ,0 (2.13)
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Therefore,
H2(t)

H2
0

= Ωrad,0a
−4 + Ωm,0a

−3 + ΩK,0a
−2 + ΩΛ,0 (2.14)

By specifying the density parameters today and the Hubble constant, we can obtain

the cosmic time t as a function of the scale a,

t(a) =

a
∫

0

da′

a′H0

1
√

Ωrad,0a′
−4 + Ωm,0a′

−3 + ΩK,0a′
−2 + ΩΛ,0

(2.15)

which can then be inverted to obtain a(t). The present epoch can be obtained by

evaluating t(a = 1), which by definition is t0.

There is no analytical solution for a(t) in general. However, for hypothetical single-

component universe, i.e., if all except one of the density parameters are zero, then we

have simple analytical solutions.

a(t) =































(t/t0) if ΩK,0 = 1(curvature dominated)

(t/t0)
1/2 if Ωrad,0 = 1(radiation dominated)

(t/t0)
2/3 if Ωm,0 = 1(matter dominated)

eH0t if ΩΛ = 1(Λ dominated)

(2.16)

Despite Eq. 2.15 not be amenable to analytical solutions, we can make a few useful

inferences by analyzing the behaviour of the terms in these equations. First, from

Eq. 2.14, one can see that for H(t) = 0, one needs to have at least one of ΩK or ΩΛ

to be negative. However, the measured values of the density parameters suggest that

the RHS of Eq. 2.14 can never vanish and hence a(t) is a monotonically increasing

function of t. It is this property that makes the redshift a useful observable as z can

be related to the scale factor a using Eq. 2.6 which, for a given cosmology, can be

related to the time t. Second, the measurements suggest |ΩΛ| ≫ |Ωm,0| ≫ |Ωrad,0|,
with |ΩK | ≈ 0. Hence, as a increases from 0 to 1, the Universe goes through a

radiation dominated phase, followed by the matter dominated phase and finally a Λ

dominated phase (present epoch). This idea is crucial in formulating the ideas of the

structure growth, which is the subject matter of discussion in Sec. 2.1.2
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Note on Dark Energy

Eq. 2.16 implies that the second derivative of the scale factor, ä is negative in a

matter dominated or in a curvature dominated or in a radiation dominated Universe

and naturally, a Universe that contains only these three energy parameters in some

proportions will experience a decelerating expansion. However, the accelerating ex-

pansion of the Universe was proven, thus requiring ΩΛ to be the dominant component.

While a positive cosmological constant Λ can explain the acceleration, it poses several

other problems. The energy density due to the cosmological constant, ρΛ = ΩΛρcr is

thought of to be the intrinsic energy density of the vacuum, ρvac. Calculations using

quantum field theories predict a value for ρvac that is greater than ρΛ by 120 orders of

magnitude! Moreover, some supersymmetric theories require Λ = 0. To circumvent

these issues, a mysterious component called the Dark Energy was proposed to explain

the accelerated expansion.

Dark Energy is speculated to be homogenous fluid, with negative pressure. It is

hypothesized to not interact with the matter in any way, but affect the cosmology

by contributing towards the expansion of the Universe. The equation of state for the

dark energy ( or any other component ) is expressed as

P = wρc2. (2.17)

For pressure-less matter (dark matter), wm = 0, for radiation, wrad = 1/3 and for Λ,

wΛ = −1. Several ground-based and space-based surveys are in progress and are being

planned to measure the equation of state parameter wDE of the dark energy. wDE =

−1 implies that dark energy is indistinguishable from cosmological constant.

ρDE(a) = ρDE,0 exp

[

−3

∫

da

a
(1 + wDE(a))

]

. (2.18)

Deviations of wDE from −1 will give us hints about the nature and the evolution of

the dark energy. A commonly used parametrization for wDE is wDE(a) = w0+wa(1−
a).
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2.1.2 Structure formation

While the Universe is indeed homogenous and isotropic at very large length scales

(e.g., [14]), it is obviously not so at smaller length scales. A perfectly homogenous

Universe would never be able to give rise to the structures that we see today. It is

hypothesized that the Universe in the first few fraction of the seconds experienced

a rapid phase of accelaration known as the inflation. The tiny quantum fluctations

in the primordial fields were stretched beyond the horizon and frozen even after the

end of the inflationary epoch, leading to tiny ‘seed’ density perturbations that is

responsible for the large scale structure (LSS) in the Universe.

The local density ρ(~x) at a comoving position ~x differs from the mean density ρ. One

defines the matter overdensity field as

δ(~x, a) =
ρ(~x, a)− ρ(a)

ρ(a)
=
ρ(~x, a)

ρ(a)
− 1 (2.19)

The scale factor a is included to denote the time dependence of the density field.

During the intermediate matter dominated phase, the amplitude of the density con-

trast grows due to self-gravity as δ ∝ α, with overdense regions becoming more over-

dense and underdense regions becoming further underdense. The initial perturbation

is small (δ(a≪ 1) ≪ 1) and its evolution is given by a linear differential equation. It

is helpful to consider the Fourier transform of the overdensity field -

δ̃(~k, a) =

∫

d3k e−i~k.~xδ(~x, a) (2.20)

as different ~k modes evolve independently.

By definition, the average of the overdensity field over a sufficiently large volume,

〈δ〉 = 0 in real space and in Fourier space. Hence one needs to consider two-point

statistics or higher to characterize the fluctuations. The power spectrum of the fluc-

tuations Pδ(k) is given as

〈

δ̃(~k)δ̃∗(~k′)
〉

= (2π)3δD(~k − ~k′)Pδ(k), (2.21)

where ∗ denotes complex conjugation. Pδ depends only on the magnitude k =
∣

∣

∣

~k
∣

∣

∣
and
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not its direction due to isotropy. The primordial density fluctuations are assumed

to come from a Gaussian field, i.e., they are completely characterized by their power

spectrum (this assumption is constantly tested and not found to be violated so far).

All the higher order statistics can be expressed in terms of its second order statistics.

The power spectrum at later times is obtained from the primordial power spectrum

by an application of the transfer function T (k) defined as.

T (k, a) =
δ̃(k, a = 1)/δ̃(k = 0, a = 1)

δ̃(k, ai)/δ̃(k = 0, ai)

At large scales, T (k → 0) → 1 by virtue of its normalization and at small scales,

T (k) ∝ k−2. The exact details of the transfer function depends on the matter content

and their equations of state 2.17 [15, 16, 17].

Inflationary models predict the form of the primordial power spectrum to be

Pδ(k) = Ask
ns , (2.22)

which is nearly scale-invariant with ns ≈ 1 [18, 19], where ns is called the spectral

index.

The power spectrum is also the Fourier transform of the correlation function

ξ(~r) =

∫

d3x δ(~x)δ(~x+ ~r) Pδ(k) =

∫

d3r e−i~k.~xξ(~r)

In practice, it is impossible to measure the density perturbation δ(~x) at every point ~x.

Moreover, it is regions of some finite volume with average density different from the

mean density that are physically interesting, as they lead to structures that can be

detected at cosmological length scales. Thus, we define a smoothed density fluctuation

field δR(~x, a) as

δR(~x, a) =

∫

d3r WR(~r)δ(~x+ ~r), (2.23)

where WR(~r) can be an arbitrary weight function normalized to unity. WR(~r) some-

times called as the window function and R is a characteristic length scale of the weight

function. The most commonly used windown function is the spherical top-hat func-

tion: W (r) = 3/(4πR3) for r < R and W (r) = 0 for r ≥ R. whose Fourier transform
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is W (k) = 3j1(kR)/kR, where j1 is a spherical Bessel function. The variance of the

smoothed density fluctuations within spheres of radius R is given by

σ2
R =

1

2π2

∫

dk k2P (k) |W (k)|2 =
∫

d ln k ∆2(k)

(

3j1(kR)

kR

)2

, (2.24)

where ∆2(k) = k3P (k)/2π2 is called the reduced power spectrum. It is common to

choose R = 8h−1Mpc. It turns out that σ8 ∼ 1, with recent measurements indicating

σ8 close to being 0.8 [20].

Galaxy bias

Galaxy surveys with spectroscopic redshifts such as the Baryonic Oscillation Spec-

troscopic Survey of SDSS-III [BOSS; 21] provide a 3-dimensional mapping of galaxies

from which the galaxy-galaxy correlation function ξgg(r) can be computed. On large

length scales, galaxies are considered to be a biased tracer of the matter density

field [22].

ξgg(r) = b2ξδδ(r) Pg(k) = b2Pδ(k), (2.25)

where b is called as the galaxy bias. Galaxy bias encodes the physics of galaxy forma-

tion. One of the ways to estimate the bias parameter from the clustering data is by

comparing the three-point correlation function ( whose Fourier transform is known

as bi-spectrum) 〈ggg〉 = b3 〈δδδ〉 to the two-point correlation function 〈gg〉 = b2 〈δδ〉.
The two-point and three-point correlation functions of δ are calculated from pertur-

bation theory by assuming that the initial perturbations were Gaussian. However,

estimating the three-point correlation function requires large areas in the sky and the

bias estimates have found to be noisy. Another way to estimate the bias parameter is

by combining lensing and clustering measurements, since they have different powers

of b.

The bias parameter can also be estimated from cosmological simulations with both

dark matter and baryonic particles, bu studying the relative clustering of baryonic

particles and dark matter particles. Uncertainty in the bias parameter arises from

our lack of understanding of baryonic physics at small scales such as star formation,

gas cooling, feedback processes etc. Thus, our understanding of the distribution of
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the dark matter on small scales from the distribution of the galaxies is limited by our

understanding of the galaxy formation processes.

Since dark matter does not interact electromagnetically, we cannot directly see or

observe its distribution. However, since dark matter interacts gravitationally, we

can infer its distribution by looking at how it affects the light from the background

galaxies. This phenomenon is known as gravitational lensing and it provides us the

ability to probe the matter power spectrum directly.

2.2 Weak lensing

This section is intended to give an extremely brief overview of weak gravitational

lensing or simply referred to as Weak Lensing (WL). For a detailed review, refer to

[3, 23, 24, 25, 26, 27, 28]

2.2.1 Basic formalism

The images of distant galaxies (sources) appear distorted in their shapes and sizes

as a result of the action of the tidal gravitational field (foreground) on light bundles

that travel from the sources to us (observers). The conservation of the number of

photons in their journey towards us (cf. Liouville’s theorem) implies that the surface

brightness is conserved. Thus, if I(int)(βββ) is the surface brightness distribution in the

source plane (or sphere), then the observed surface brightness distribution is given

as

I(obs)(θθθ) = I(int)(Aθθθ), (2.26)

where A is the mapping from the image coordinates to the source coordinates, i.e.

A : θθθ → βββ(θθθ). Here, θθθ (βββ) refers to the two-dimensional vector, denoting the image

(intrinsic) position of the of the source in the sky. If the angular size of the source

is small compared to the angular scale in which the properties of the foreground lens

change, then the mapping A can be locally linearized. This linearized mapping is
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commonly expressed as

Aij ≡
∂(δθi)

∂θj
=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

(2.27)

= (1− κ)

(

1− g1 −g2
−g2 1 + g1

)

, (2.28)

The (1− κ) term is a scalar multiplicative factor affecting only in the magnification.

The g1 and the g2 terms, in addition to affecting the magnification, are responsible

for the distortion in the shape. The subscripts 1 and 2 correspond to the axes of an

arbitrary Cartesian reference frame in the tangent plane at the position of the image.

A has only 3 free parameters and not 4, because there is a rotational degree of freedom

in choosing the alignment of the axes. The parameters ofA, κ is called the convergence

and γ1 and γ2 are the two components of a complex quantity called the shear, defined

as γ = γ1 + iγ2. gi := γi/(1− κ) for i = 1, 2 are the components of another complex

quantity called the reduced shear, defined similarly as g = g1 + ig2.

A maps circles to ellipses, with their axis ratios given by the magnitude of the reduced

shear g, with the major axis making an angle φ = 1
2
∠g = 1

2
tan−1(g2/g1). Thus,

g = g1 + ig2 = |g|ei2φ γ = γ1 + iγ2 = |γ|ei2φ (2.29)

The factor of 2 in the phase leaves g and hence the ellipse invariant under a 180◦

rotation, i.e., φ → φ ± π =⇒ g → g. κ, being related to the magnification, is

isotropic and hence a scalar.

The parameters of A can be related to each other through a scalar potential ψ(θθθ),

which is often referred to as lensing potential or deflection potential as

κ (θθθ) =
1

2
(ψ,11(θθθ) + ψ,22(θθθ)) (2.30)

≈ 1

2
∇2ψ(θθθ), (2.31)

where ψ,ij ≡ ∂2ψ/∂θi∂θj and ∇2 ≡ ∂2/∂θθθ2 in the flat-sky approximation.

γ1 =
1

2
(ψ,11 − ψ,22) γ2 = ψ,12. (2.32)
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Note that the rotational properties of the parameters are still preserved. For a linear

map with 3 degrees of freedom, such as A, it is always possible to write the parameters

in this fashion as it simply corresponds to using the degrees of freedom to choose the

3 second derivatives of a scalar function in 2 dimensions as required.

As an illustrative example, consider a typical gravitational lensing system, such as the

lensing of background galaxies by galaxy clusters, where the extent of the sources and

lenses is much smaller than their distances from the observers and between themselves.

The derivation of these expressions can be found elsewhere; only the key results are

given below. Using the thin lens approximation or Born approximation, we can obtain

the deflection angle ααα as

ααα =∇∇∇ψ(θθθ) (2.33)

The lensing potential in this case is given by

ψ(θθθ) =
1

π

∫

d2θ′ κ(θθθ′) ln |θθθ − θθθ′|, (2.34)

where

κ(θθθ) =
Σ(ddθθθ)

Σcr

, with Σ(ddθθθ) =

∫

dr3 ρ(ddθθθ, r3) and Σcr =
c2

4πG

ds
dddds

(2.35)

where dd, ds are the angular-diameter distance to the lens and the source respectively

from the observer and dds is the angular-diameter distance between the lens and the

source. Note that if K 6= 0, dds 6= ds − dd.

A significant detection of shear can be expected can be expected around massive

objects, such as galaxy clusters. The tangential shear around a central spherical lens

object is constant at constant radius. By estimating the average of the constant

shear within an annulus around such objects and by comparing the average shears in

multiple annuli to prediction from the parametric models of dark matter distribution,

a great deal about the relationship between the baryonic matter and the dark matter

can be learnt.

The statistical properties of the shear field, specified in terms of n-point correlation

functions, can be predicted for a given model of the Universe. Cosmic shear refers

to the gravitational lensing by the large scale structure (LSS) of the Universe. It

measures the clustering of the LSS from the highly non-linear (< Mpc) regime to
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very large scales, well within the linear regime. Cosmic shear measurements are weak

lensing measurements made without the knowledge of the foreground (lens) struc-

tures. The distortions in the galaxy images introduced by the LSS is very weak and

therefore very difficult to measure. However, measuring cosmic shear is of immense

interest as it probes the matter power spectrum directly. In addition to measuring

the geometry of the Universe, cosmic shear has the ability to study the growth of

structure and distinguish between dark energy and modified gravity theories.

It differs from the formalism explained in Sec. 2.2.1 in several aspects. The deflection

does not happen at a single lens plane but continuously by the 3-D matter distribu-

tion.

As mentioned in Sec. 2.2.1, if the angular size of the source galaxy is small, then

the mapping A between the observed angular position and the true position can be

locally linearized. The lensing potential from which the parameters κ and γ can be

derived using Eqs. 2.31 and 2.32 is given by

ψ(θθθ, χ) ≈ 2

c2

∫ χ

0

dχ′ dA(χ− χ′)

dA(χ)dA(χ′)
Φ(dA(χ

′)θθθ, χ′) (2.36)

to the first order in the Newtonian gravitational potential Φ. The potential Φ is

related to the density fluctuation via the Poisson equation

∇2
~X
Φ = 4πGρ ∇2

~xΦ = 4πGρa2δ, (2.37)

where ∇2
~X
and ∇2

~x are the Laplacian operators in physical and comoving coordinates

respectively. Note that ρ = Ωmρcr where ρcr = 3H2
0/8πG. Substituting,

∇2Φ(dA(χ)θθθ, χ) =
3H2

0Ωm

2

δ(dA(χ)θθθ, χ)

a(χ/c)
(2.38)

Lensing is sensitive to the geometry of the Universe by the fact that angular diameter

distances appear in the definition of the lensing potential. However, better constraints

are ΩK are obtained from CMB experiments, which suggest that the geometry of the

Universe is consistent with being flat. We will assume that the geometry of the

Universe is flat for the rest of this document. In a flat universe, dA(χ) = χ.

19



Since κ = 1
2
∇2ψ, we get

κ(θθθ) =

∫

dχW (χ)δ(χ, χθθθ) (2.39)

where the lensing efficiency W is defined as

W (χ) =
3

2
Ωm0H

2
0a

−1(χ)χq(χ) (2.40)

with q referred to as the lens efficiency given by

q(χ) =

χs=χlim
∫

χs=χ

dχsns(χs)
χs − χ

χs
(2.41)

The Fourier transform of the convergence and shear are given by

κ̃(ℓℓℓ) =

∫

d2 θ eiℓℓℓ.θθθκ(θθθ) γ̃(ℓℓℓ) =

∫

d2 θ eiℓℓℓ.θθθγ(θθθ) (2.42)

When averaged over large areas in the sky, 〈γ〉 = 0 due to isotropy. Thus, one needs

to look at a two-point statistics or higher order statistics. Similar to Eq. 2.21, we

define the convergence and shear power spectrum as

〈γ̃(ℓℓℓ)γ̃∗(ℓℓℓ′)〉 = (2π)2δD(ℓℓℓ− ℓℓℓ′)Pγ(ℓ) (2.43a)

〈κ̃(ℓℓℓ)κ̃∗(ℓℓℓ′)〉 = (2π)2δD(ℓℓℓ− ℓℓℓ′)Pκ(ℓ) (2.43b)

The shear and the convergence in Fourier space are related to each other as

γ̃(ℓℓℓ) =
(ℓ1 + iℓ2)

2

ℓ2
κ̃(ℓℓℓ) = e2iβ κ̃(ℓℓℓ) (2.44)

Since the two quantities differ only by a phase factor, the convergence and shear power

spectrum are same, i.e., Pγ = Pκ and can simply be referred to as the lensing power

spectrum. In practice, one computes the lensing power spectrum from a shear field.

However, the lensing power spectrum is easy to analyze when viewed as convergence

power spectrum, owing to the scalar nature of κ.
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E mode

B mode

Figure 2.1: Left Top: γ+ > 0, γ× = 0 Right Top: γ+ < 0, γ× = 0 Left Bottom:
γ× < 0, γ+ = 0 Right Bottom: γ× > 0, γ+ = 0 Source: [3]

The lensing power spectrum is related to the matter power spectrum Pδ as

Pκ(ℓ) =
9

4
Ω2

m0H
4
0

∫

dχ
q2(χ)

a2(χ)
Pδ

(

k =
ℓ

χ
, χ

)

(2.45)

=

∫

dχ
W 2(χ)

χ2
Pδ

(

k =
ℓ

χ
, χ

)

(2.46)

=

∫

dz
W 2(z)

χ2(z)H(z)
Pδ

(

k =
ℓ

χ
, χ

)

(2.47)

While it is possible to obtain the lensing power spectrum directly from a catalog of

shape estimates, most weak lensing analyses are done in real space using angular

correlation functions.

Given a direction ϕ (polar angle on the ‘plane’ of the sky), we define the tangential

and cross components of the shear relative to the given direction as

γ+ = −Re
(

γe−i2ϕ
)

γ× = −Im
(

γe−i2ϕ
)

(2.48)

Fig. 2.1 shows the orientation of the galaxies when one of the tangential or cross

components vanishes. The elongation for circular sources depends on the magnitude

of the shear. Using these two shear components, we can define two autocorrelation

functions 〈γ+γ+〉 and 〈γ×γ×〉 and a cross-correlation function 〈γ+γ×〉. However, it is

21



more convenient to define the autocorrelation functions as

ξ±(θ) = 〈γ+γ+〉 (θ)± 〈γ×γ×〉 (θ) (2.49a)

ξ×(θ) = 〈γ+γ×〉 (θ). (2.49b)

Under a parity transformation, γ+ → γ+ but γ× → −γ×. Assuming that the popula-

tion of the galaxies is invariant under parity, 〈γ+γ×〉 = 0. The ξ+ and ξ− have even

and odd parity. The correlation functions are related to the lensing power spectrum

via the relations

ξ+(θ) =
1

2π

∫

dℓ ℓJ0(ℓθ)Pκ(ℓ) (2.50a)

ξ−(θ) =
1

2π

∫

dℓ ℓJ4(ℓθ)Pκ(ℓ) (2.50b)

where Jn(x) is the n-th order Bessel function of the first kind.

The inverse relations are given as

Pκ(ℓ) = 2π

∞
∫

0

dθ θJ0(ℓθ)ξ+(θ) = 2π

∞
∫

0

dθ θJ4(ℓθ)ξ−(θ) (2.51)

Although this is not used to construct the lensing power spectrum from the correlation

functions, the second equality is useful to see how ξ+ and ξ− are not independent but

related to each other. This is not surprising since κ and the γ are obtained from a

scalar lensing potential ψ.

Thus, a shear produced by gravitational lensing must obey the above equality. How-

ever, in practice, the measured shear correlation functions need not obey the con-

straint. The violation of the equality is usually a sign of a persisting systematic

in the data analysis pipeline. To quantify this violation, we define an aperture mass

statistic which is obtained from linear combinations of the correlation functions. They

have the advantage that they can be separated into the so-called E-mode and B-mode

components.

ME(θ) =
1

4π

∫

d2θ′
[

ξ+(θ
′)T+

(

θ′

θ

)

+ ξ−(θ
′)T−

(

θ′

θ

)]

(2.52a)
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MB(θ) =
1

4π

∫

d2θ′
[

ξ+(θ
′)T+

(

θ′

θ

)

− ξ−(θ
′)T−

(

θ′

θ

)]

(2.52b)

where

T+(x) =
x4 − 16x2 + 32

128
exp

(

−x
2

4

)

(2.53a)

T−(x) =
x4

128
exp

(

−x
2

4

)

(2.53b)

In the absence of systematic effects, MB(θ) ≪ME(θ).

Tomography

The lensing formalism explained above is essentially two-dimensional as the lensing

power spectrum involves an integral over the line-of-sight coordinate. By separating

the source galaxies according to their redshifts and assigning them to one of the many,

say Nz redshift bins, we can obtain multiple lensing fields. Since the lensing efficiency

of a given overdensity is different for different redshifts, with the maximum occuring

at χ = χs/2 (in a flat Universe), we can probe different epochs in the growth history

of the Universe differently. This method, which goes by the name Shear Tomography,

allows us to reconstruct the three-dimensional view of the Universe.

One can compute Nz auto correlation functions and Nz(Nz − 1)/2 cross correlation

functions. For i, j ∈ {1, 2, . . . , Nz}, we define

C ij
γγ(ℓ) = C ij

κκ(ℓ) =

∫ ∞

0

d z
Wi(z)Wj(z)

χ2(z)H(z)
Pδ

(

k =
ℓ

χ(z)
, z

)

(2.54)

One can also define a cross correlation between two different fields, such as between

the shear and the convergence as

C ij
gκ(ℓ) =

∫ ∞

0

d z
Wg,i(z)Wj(z)

χ(z)H(z)
Pgδ

(

k =
ℓ

χ(z)
, z

)

(2.55)

and galaxy-galaxy power spectrum C ij
gg(ℓ). Tomography is an approximate method

of 3D lensing [29] and was applied to CFHTLens Lensing data [30] to find the cos-

mological parameters.
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Practical estimates of shear

Galaxies have a wide distribution of their observed brightness. In a given area of the

sky, the faint galaxies outnumber the bright galaxies. However, faint galaxies have

a lower signal-to-noise (SNR) ratio compared to the brighter ones. Thus, practical

estimates of the shear must account for the difference in their SNR by giving higher

weights to the brighter ones and low weights to the fainter ones.

ĝi =

∑

waε̂
a
i

∑

wa
(2.56)

A commonly adopted weighting scheme is the inverse-variance weighting scheme with

weights defined as

wa =
1

σ2
SN + σ2

ǫ

, (2.57)

where σSN is the shape noise and σǫ is the measurement noise. For a given set of

weights, the shear correlation function estimator is then given as

ξ̂AB
± (θ) =

∑

a∈A,b∈B
wawb

[

ε̂a+ε̂
b
+ ± εa×ε̂

b
×
]

∑

a∈A,b∈B
wawb

(2.58)

2.2.2 Systematic effects

During the process of acquiring the image, the image of the galaxies are smeared by the

atmosphere (known as ‘seeing’) and then by the optics of the telescope. The smearing

varies spatially and also temporally. The galaxy is observed against the zodiacal

background light in the sky, which is a significant contributor to the Poisson noise in

the image. The light profile is then pixelated at the detectors of the telescope and

then read out using electronics that have their own noise characteristics. In addition

to noise, detectors can introduce minor artifacts in the images due to their non-

ideal behavior. For a pedagogical review of systematic effects from instrumentation,

see [31].

During the shape measurement process, multiple exposures are co-added to boost the

signal-to-noise ratio. For space-based surveys, exposures which are offset from each

other by a fraction of the pixels are combined to give an image with higher resolution.
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From this science image, one identifies the source objects using an automated software

such as SExtractor [32]. Identifying two or more objects that are overlapping with

each other, a problem known as deblending continues to be one of the problem that

is not completely solved yet.

Given a catalog of shapes for the galaxies, we can construct a shear field on the sky

using the estimator in Eq. 2.56 However, we do not get to observed the shape of

the lensed image of the galaxies directly. Generation of a shape catalog is preceeded

by an image processing pipeline with multiple steps, each of which could introduce

uncertainty and error in the shapes of the galaxies.

The main effect of the PSF on galaxy images is that it makes an elliptical source

rounder: a small source (small compared to the PSF size) with a large ellipticity

will appear as a fairly round image. An anisotropic PSF makes round sources look

elliptical, mimicking a shear. Often times, the PSF is not completely known. Even

if the PSF is known completely, the PSF correction schemes are only approximate

in one way or another, leading to some residual effects and hence biasing the shear

estimates. Moreover, usage of biased weights leads to biased estimates as well. Thus,

the estimate ĝ 6= g(true) but some function of the true shear. If |g(true)| ≪ 1, then

we could ignore the higher order terms and express ĝ as a linear function of g(true).

Following the parametrization in [33], we relate the measured shear γ̂ and the true

shear γ(true) by a linear relation as

γ̂i(zs, θθθ) = (1 +mi(zs, θθθ))γ
(true)
i (zs, θθθ) + ci(zs, θθθ), (2.59a)

ĝi(zs, θθθ) = (1 +mi(zs, θθθ))g
(true)
i (zs, θθθ) + ci(zs, θθθ), (2.59b)

where ms are the multiplicative calibration biases and cs the additive shear biases.

If we knew the bias parameters exactly, we could subtract them off from our mea-

surements or include them in our models. However, it is not possible to know them

precisely since they have complex dependencies on various quantities. The shear cal-

ibration biases depend on the galaxy ellipticity, its size, brightness etc. and thus an

indirect dependency on the source redshift zs. Thus, one can estimate a distribution

of the systematic bias values and hope that the residual errors are small.
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For the linear model given in Eqs. 5.20,

〈γ̂γ̂〉 = (1 +m)2
〈

γ(true)γ(true)
〉

+ 2(1 +m)
〈

cγ(true)
〉

+ 〈cc〉 (2.60)

〈gγ̂〉 = (1 +m)
〈

gγ(true)
〉

+ 〈gc〉 (2.61)

, where g refers to the galaxy position (and not the reduced shear). For large ar-

eas, assuming that the additive bias is uncorrelated with the local shear,〈gc〉 = 0 =
〈

cγ(true)
〉

. Taking the Fourier transform the shear-shear correlation, we get (see [34]

for details)

Ĉ(ℓ, zi, zj) =
∑

ℓ′

(1 +M(ℓ, ℓ′, zi, zj))C(ℓ
′, zi, zj) +A(ℓ, zi, zj) (2.62)

Thus, M mixes different scales as well as the true E-mode signals with unphysical

B-modes. In terms of the mean multiplicative bias 〈m〉, M = 2 〈m〉+ 〈m2〉 ≈ 2 〈m〉.
While it may be possible to estimate the mean values of m and c analytically, they

hold true only for special cases, such as modelling galaxies Gaussian light profiles

and using unweighted second moments to calculate the galaxy sizes and shapes. In

practice, one way to estimate the bias parameters is from image simulations. By for-

ward simulating the images of galaxy fields with some input lensing shear or lensing

power spectrum that also incorporate realistic effects such as smearing due to a PSF,

pixelization and inclusion of noise, we can compare the estimated shear from a given

shape measurement algorithm to the true shear and estimate the calibration bias

parameters. For an accurate estimation of the biases, it is important that the simu-

lated images are as realistic as possible. Several community-wide blind image analysis

challenges such as the Shear TEsting Programme [STEP; 33, 35] and GRavitational

lEnsing Accuracy Testing challenges [GREAT; 36, 37, 38] have been held in the past,

testing different aspects of the shear estimation pipeline in different challenges.

Prior works such as [34, 39] discuss the effects of systematic bias in cosmic shear.

using Fisher analysis and its extensions.

Following is a summary of the conclusions from [34]. For the Euclid 1 mission, in order

to ensure that the bias on the dark energy equation of state parameter w is less than

1www.euclid-ec.org
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31% of the statistical error for 95% of the random realizations, one requires

A . 1.8× 10−12 M . 4.0× 10−3 (2.63)

This translates to m . 2.0 × 10−3 and c . 1.4 × 10−6. Less stringent requirements

are given in [40] which were used in the GREAT3 challenge [38].
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Chapter 3

The impact of cosmic variance on

simulating weak lensing surveys

Journal reference: Monthly Notices of the Royal Astronomical Society 449.4 (2015):

3597-3612

Original authors : Arun Kannawadi, Rachel Mandelbaum, Claire Lackner

Original abstract : Upcoming weak lensing surveys will survey large cosmological vol-

umes to measure the growth of cosmological structure with time and thereby constrain

dark energy. One major systematic uncertainty in this process is the calibration of

the weak lensing shape distortions, or shears. Most upcoming surveys plan to test

several aspects of their shear estimation algorithms using sophisticated image simula-

tions that include realistic galaxy populations based on high-resolution data from the

Hubble Space Telescope (HST). However, existing datasets from the HST cover very

small cosmological volumes, so cosmic variance could cause the galaxy populations in

them to be atypical. A narrow redshift slice from such surveys could be dominated

by a single large overdensity or underdensity. In that case, the morphology-density

relation could alter the local galaxy populations and yield an incorrect calibration

of shear estimates as a function of redshift. We directly test this scenario using the

COSMOS survey, the largest-area HST survey to date, and show how the statistical

distributions of galaxy shapes and morphological parameters (e.g., Sérsic n) are influ-
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enced by redshift-dependent cosmic variance. The typical variation in RMS ellipticity

due to environmental effects is 5 per cent (absolute, not relative) for redshift bins of

width ∆z = 0.05, which could result in uncertain shear calibration at the 1 per cent

level. We conclude that the cosmic variance effects are large enough to exceed the

systematic error budget of future surveys, but can be mitigated with careful choice

of training dataset and sufficiently large redshift binning.
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3.1 Introduction

Weak gravitational lensing, the deflection of light by mass, is one of the cleanest ways

to study the nature of dark energy by tracking the growth of structure in the Universe

as a function of time [e.g., 41, 42, 43]. As light from background sources passes by mat-

ter (including dark matter) on its way to us, the apparent shapes of the background

galaxies get distorted, and the galaxies get slightly magnified as well. Because of its

sensitivity to dark matter and dark energy, major surveys such as the Hyper Suprime-

Cam [HSC; 44], Dark Energy Survey [DES; 45], the KIlo-Degree Survey [KIDS; 46],

the Panoramic Survey Telescope and Rapid Response System [PanSTARRS; 47], the

Large Synoptic Survey Telescope [LSST; 48], Euclid1 [49], and Wide-Field Infrared

Survey Telescope [WFIRST; 50] the Large Synoptic Survey Telescope [LSST; 48],

Euclid2 [49], and Wide-Field Infrared Survey Telescope [WFIRST; 50] are planned

for the next two decades to gather enormous quantities of weak lensing data that

will lead to precise constraints on the growth of structure with time, and therefore

cosmological parameters.

For the upcoming surveys to achieve their promise, their systematic error budgets

must be below their statistical error budgets. Systematic error budgets for weak

lensing surveys typically include astrophysical effects, such as intrinsic alignments of

galaxy shapes with large scale density fields [e.g., 51] and the effect of baryons on the

matter power spectrum [e.g., 52, 53], as well as observational uncertainties such as the

ability to robustly infer shears from observed galaxy shapes or photometric redshifts

from their observed colours. Given the expected sub-per cent statistical errors on

upcoming surveys, systematic errors must be reduced from their typical level in the

current state-of-the-art measurements that typically achieve ∼ 5 per cent statistical

errors at best [e.g., 54, 55, 56, 57].

Some types of information about and tests of shear estimation for ongoing and future

weak lensing surveys will rely on data from the Hubble Space Telescope (HST). For

example, data from HST can be used to derive basic statistics of galaxy light profiles,

such as joint distributions of size and the morphology. It can be used to infer the

intrinsic distribution of galaxy shapes, which enters the shear estimation process

1http://sci.esa.int/euclid/, http://www.euclid-ec.org
2http://sci.esa.int/euclid/, http://www.euclid-ec.org
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either implicitly or explicitly depending on the method used for shear estimation

[see, e.g., 58]. Going beyond basic information about the light profile, HST can be

used to quantify the detailed morphology of galaxies, due to its higher resolution

compared to any current or planned weak lensing survey. Finally, it can be used to

address systematics due to colour gradients within galaxies, which are particularly

problematic when combined with a wavelength-dependent diffraction-limited PSF

[e.g., 59, 60].

One method that is commonly used to test for the presence of systematic errors in the

shear estimation process is image simulation, where we can cleanly test whether our

methods of shear estimation recover the ground truth. This is a valuable test, con-

sidering the numerous sources of additive and multiplicative bias such as a mismatch

between galaxy model assumptions and actual galaxy light profiles [e.g., 61, 62], bi-

ases due to the effects of pixel noise on the shear estimates [63, 64, 65], and ellipticity

gradients [66]. These biases often differ for galaxies with different morphologies (e.g.,

disks vs. ellipticals), sizes, S/N , and shape [67, 68]. A general requirement for simu-

lations used to test shear recovery is that they should be as realistic as possible.

Realistic simulations may use samples based on images from the (HST). Software

packages like GalSim
3 [69] can generate images of galaxies from the HST as they

would appear with an additional lensing shear and viewed by some lower resolution

telescope. Examples of training samples from the HST include the COSMOS survey

[used by the GREAT3 challenge, 38] or the Ultra Deep Field [UDF, used by 56].

These two examples serve as the extremes in the HST samples used as the basis

for image simulation, with COSMOS being the widest contiguous area surveyed by

the HST currently and hence representive, and the latter being extremely deep but

narrow.

For a variety of physical reasons, some of which are still not fully understood, the

shape and morphology of galaxies depends on their local environment [e.g., 70, 71].

Hence, local overdensities or underdensities along the line of sight observed in these

HST fields may (given the small size of the field) cause the properties of the galaxy

population in redshift slices to be atypical depending on the environment in that slice.

This has the undesired consequence of including a variation in galaxy properties due

to the COSMOS (or other) survey cosmic variance in the simulated galaxy sample

3https://github.com/GalSim-developers/GalSim
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in that redshift slice, rather than only including ensemble effects that would appear

in a large cosmological volume, such as true redshift evolution of galaxy properties.

Our goal is to quantify the degree to which the morphology-density correlations in

COSMOS cause noticeable changes in the galaxy populations in narrow redshift slices

at a level that could result in difficulty using the sample to derive redshift-dependent

shear calibrations. Upcoming surveys will study lensing as a function of redshift and

therefore need to simulate galaxy samples at different redshifts in order to assess the

shear calibration at each redshift.

The paper is structured as follows: in Sec. 3.2, we describe the data that we use

for this study. In Sec. 3.3, we describe our methods for deriving the relevant galaxy

properties like environment, morphology, and shape. Using these ingredients, we

present our results in Sec. 3.4 and discuss their implications in Sec. 3.5, concluding

in Sec. 3.6.

3.2 Data

The COSMOS survey [72, 73, 74] is a flux-limited, narrow deep field survey covering

a contiguous area of 1.64 deg2 of sky, with images taken using the Advanced Camera

for Surveys (ACS) Wide Field Channel (WFC) in the Hubble Space Telescope (HST).

We use the COSMOS survey to define a parent sample of galaxy images to be used

for making image simulations, following the approach taken in [38, 75].

We apply the following set of initial cuts to the COSMOS data, the first two of which

are motivated and explained in more detail by [74]:

1. MU CLASS=1: This criterion uses a comparison between the peak surface bright-

ness and the background level to achieve a robust star/galaxy separation, with

galaxies having MU CLASS=1.

2. CLEAN=1: Objects near bright stars or those containing saturated pixels were

removed; the rest pass this cut on CLEAN.

3. GOOD ZPHOT SOURCE =1: This cut requires that photometric redshifts be reliable

and good enough to draw conclusions about the population (see [75] for details).

High resolution images taken through the wide F814W filter (broad I ) for all galaxies
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passing the above cuts were used to create a collection of postage stamp images for the

GREAT3 challenge [38], using the procedure described in [75]. Each galaxy postage

stamp image has a corresponding PSF image that can be used by GalSim or other

software to remove the effects of the HST PSF before simulating the galaxy image as

it would appear at lower resolution.

To better characterize the galaxy population, parametric models were fit to the light

profiles of these galaxies. These were carried out using the method described in [76],

and include Sérsic profile fits and 2 component bulge + disk fits described in detail

in [38] and briefly in Sec. 3.3.3 of this work.

In addition to the ACS/WFC (F814W) imaging, the COSMOS field has also been

imaged by Subaru Suprime-Cam, the Canada-French Hawaii Telescope (CFHT) and

KPNO/CTIO, yielding many bands of imaging data used to determine high-fidelity

photometric redshifts. Photometric redshifts were determined by [77]. The accuracy

of photometric redshifts for mF814W ≤ 22.5 is σ∆z = 0.007(1 + z); for mF814W ≤
24, σ∆z = 0.012(1 + z). The photometric redshift values become noisier beyond

z ∼ 1.2, and the fits to the galaxy light profiles are also somewhat noisy once we go

beyond mF814W ∼ 23.5. For this reason, we will exclude all galaxies that have F814W

magnitude fainter than 23.5. However, we will use themF814W ≤ 25.2 sample that was

generated for the GREAT3 challenge to estimate the completeness, which is useful

when generating a volume-limited sample (Sec. 3.3.2). We first use the z ≤ 1.25 flux-

limited sample to fit parametric redshift distribution models (Sec. 3.3.1), and then

restrict ourselves to z ≤ 1 sample for all further analysis.

Stellar mass estimates were obtained [78] using the Bayesian code described in [79].

This process involves constructing a grid of models that vary in age, star formation

history, dust content and metallicity (always assuming a Chabrier IMF; [80]), to which

the observed galaxy spectral energy distributions (SEDs) and photometric redshift

are compared. At each grid point, the probability that the SED fits the model is

calculated, and by marginalizing over the nuisance parameters in the grid, the stellar

mass probability distribution is obtained. The median of this distribution is taken as

the stellar mass estimate.
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3.3 Methods

In order to study the variation in the intrinsic ellipticity distribution and various

morphological indicators with the galaxy environment, there are three main steps to

be carried out:

1. Identify overdense and underdense environments along the line of sight in our

survey from the redshift distribution of galaxies (Sec. 3.3.1);

2. volume-limit the sample such that Malmquist bias is minimized before compar-

ing galaxies in different redshift slices (Sec. 3.3.2); and

3. estimate the galaxy axis ratios and other morphological indicators such as Sérsic

index and bulge-to-total ratios (Sec. 3.3.3).

In this section we will describe how these steps were carried out.

3.3.1 Finding overdensities

It is important to keep in mind when considering the environment estimation that our

goal is not to create a full 3D mapping of the density field within the COSMOS region

(a task that was already addressed by [81] using the zCOSMOS spectroscopic sample).

Instead, we make a coarse, 1-dimensional, line of sight division of the COSMOS survey

into redshift slices, just as would be done when making galaxy redshift slices as input

to a weak lensing survey simulation. For each redshift slice, we can then check whether

the environment is overdense or underdense on average. Our approach will tend to

wash out some real trends from a 3D study, but is appropriate given our scientific

goal of testing effects of the environment on weak lensing simulations based on the

COSMOS survey.

For our (flux-limited) sample of galaxies, up to z = 1.25, we fit parametric models to

the histograms of photometric redshifts in order to assign values of overdensity. We

choose our bins to be 0.05 wide starting from z = 0.3, where the bin width is selected

to be somewhat larger than the photometric redshift error but narrow enough that we

can still identify rather than averaging over real cosmological structures. We neglect

the lowest redshifts which have negligible cosmological volume and where the galaxy

34



Figure 3.1: Upper panel: Redshift distribution of flux-limited (mF814W ≤ 23.5) sample
with photometric redshift bins that are 0.05 wide. The vertical line at z = 0.3
indicates the delineation between lower redshifts that we do not use for our analysis,
and higher redshifts that are used. Fits to two analytical functions, p1(z) and p2(z),
defined in Eqs. 3.2 and 3.3, are also shown, with best-fitting parameters a = 2.53 ±
0.98, z1 = 0.32 ± 0.16, b = 1.70 ± 0.50 and z2 = 0.63 ± 0.13. We also show the
distributions from [4] from Eqs. 3.4 and 3.5. Lower panel: Plot of δg,1D = N/Nmod−1
with each functional form as the model for each redshift bin.
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population tends to be intrinsically bright and large enough that a non-negligible

fraction is lost due to the cuts we impose (Sec. 3.2).

One of the most commonly used analytical expression for the redshift distribution in

a magnitude-limited sample is

p(z) ∝
(

z

z0

)α

exp

[

−1

2

(

z

z0

)β
]

, (3.1)

where α, β and z0 are free parameters that are chosen to fit the data. While this

functional form is convenient and is empirically seen to describe the data extremely

well, the form could also be motivated from that of the Schechter function for the

luminosity function. Intutively, the power term captures the increase in the number of

galaxies due to increase in the volume considered, while the exponential tail captures

the decrease in the count due to the lack of bright enough galaxies.

The parametric redshift distributions that we use are

p1(z) ∝ za−1 exp [−z/z1] (3.2)

and

p2(z) ∝ zb−1 exp

[

−1

2

(

z

z2

)2
]

(3.3)

Here a, b, z1 and z2 are free parameters that are to be determined. The normalization

constants depend not only on the parameters but also on the lower and the upper

limit of the redshifts considered, where we fix the normalization to ensure that the

predicted number of galaxies in the range used (0.3 < z < 1.25) is equal to the

actual number. Fig. 3.1 shows the photometric redshift histogram together with the

best-fitting parametric distributions.

We compare our fits to the fits made by [4] using the DEEP2 galaxy redshift survey.

Interpolating between their results for the 18 < IAB < 23 and 18 < IAB < 24 samples

to our own limiting magnitude (and assuming equivalence of our I bands), we obtain

the following redshift distributions:

p3(z) ∝ z2 exp [−z/0.262] (3.4)
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and

p4(z) ∝ z2 exp [−(z/0.361)1.2] (3.5)

which are also plotted in Fig. 3.1. Note that p3(z) is a special case of p1(z) with a = 3

and z1 = 0.262; these parameter values are within the 1σ allowed regions for our fits

to Eq. 3.2. Visually, these distributions appear quite similar to our own fits carried

out here, which is reassuring given the use of different survey data and functional

forms.

The estimated overdensity in a redshift bin is defined by comparing the observed

galaxy counts in the bin with the counts that are predicted in that bin by one of the

models in Eqs. (3.2) and (3.3):

δg,1D =
(N −Nmod)

Nmod
, (3.6)

where

Nmod =

∫ zmax

zmin

p(z) dz (3.7)

is determined by integrating the redshift distribution within the limits of that redshift

slice. Note that δg,1D is dependent on our choice of model redshift distribution, and

should have a mean value of 0 over the entire redshift range when weighted by the

number fraction in each bin.

Our preliminary decision criterion for identifying overdense and underdense redshift

slices involves leaving a 10 per cent margin around an overdensity of zero; i.e., if

|δg,1D| < 0.1, that is considered “neutral” (neither overdense nor underdense on aver-

age). We can then label each redshift slice as either overdense, underdense, or neutral

as follows: We label a redshift bin as overdense if at least one model gives a value of

δg,1D > 0.1 while the other gives δg,1D > −0.1 (neutral or overdense), and vice versa

for the underdense regions. We label a redshift bin as neutral if both models give

δg,1D within the neutral region, or if use of one model redshift distribution results in

the conclusion that the bin is overdense while the other leads to the conclusion that

it is underdense.

Once we volume-limit our sample (explained in Sec. 3.3.2), we again compare the

histogram to the models. If there is no qualitative change in the overdensities, we

stick with the preliminary decision. If the overdensity values flip in sign or become too
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small, then we classify the redshift bin as ‘neutral’. The naive Poisson uncertainty of

the counts in each bin is much less than the difference between the actual number of

galaxies present and the number predicted by the models. For this reason, errorbars

have been completely ignored.

We thus identify the regions z = 0.30−0.40, 0.65−0.75, and 0.80−0.85 as overdense;

z = 0.55 − 0.65 and 0.75 − 0.80 as underdense; and we defer classication of the

somewhat ambiguous range from z = 0.40− 0.55 until Sec. 3.3.2.

We have adopted this purely 1D environment classification for reasons explained at

the beginning of this section. However, as a sanity check we can compare it with

a more rigorous study that includes information about structure in the plane of the

sky. [81] used a sample of ∼10 000 zCOSMOS spectroscopic galaxies with IAB < 22.5

to reconstruct the three dimensional overdensity field up to z ∼ 1. We find that our

classification of overdensities and underdensities agrees with this work, except for our

two highest redshift bins. We believe that this disagreement is due to the errors in

our photometric redshifts, with the overdensity reported by [81] in the z = 0.875− 1

range leaking into our z = 0.80− 0.85 slice.

3.3.2 Volume-limiting

COSMOS is a flux-limited survey and is therefore affected by Malmquist bias, with

the galaxy samples at higher redshifts being intrinsically brighter on average. Our

analysis involves comparing galaxies in different redshift slices to identify significant

differences in morphology that arise due to morphology-density correlations. Such

an analysis would be very difficult with a flux-limited sample because there would

be some variation in morphology with redshift just due to the intrinsic change in

the sample properties. For a fair comparison, we must restrict ourselves to galaxies

that are bright enough that they would be observed at all redshifts that we consider,

which is achieved by volume-limiting the sample. We consider three different ways

of carrying out this process, which results in three different galaxy sample selections,

all of which we will use in the remainder of the analysis.

Call the flux-limited (mF814W ≤ 23.5) sample S0. Our first approach is to generate a

volume-limited sample that is complete up to z = 1, by applying a cut on luminosity
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Figure 3.2: Distribution of absolute magnitudeMI for various flux-limited samples in
the redshift range [0.80, 0.85] are plotted together. The vertical line corresponds to
our luminosity cut of −20.8, brighter than which the mF814W < 23.5 sample includes
> 95.3 per cent of the galaxies in the mF814W < 25.2 sample.
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such that only galaxies instrinsically brighter than a certain threshold (determined in

detail below) are considered. This threshold is set on the k-corrected I-band absolute

magnitudes (MI) from the COSMOS PSF-matched photometry catalog. Since the

parent sample contains fainter galaxies and is quite complete to mF814W = 25.2, we

compare the MI distribution of the mF814W = 23.5 sample with flux-limited samples

that have fainter flux limits, to see where the mF814W < 23.5 sample that we want to

use for our tests is no longer complete. At MI ∼ −22.0, the mF814W < 23.5 sample

is beginning to lose galaxies in the 0.9 < z < 1.0 redshift bin due to the flux limit.

However, the 0.85 < z < 1 redshift bin was found to be only moderately overdense,

so we choose to disregard this region for the rest of the analysis, and instead restrict

to z < 0.85, which is advantageous because it allows us to choose a somewhat fainter

intrinsic luminosity limit for the analysis. We relax our luminosity cut so that the

sample is volume-limited not until z = 1 but until z = 0.85. We impose the cut at

MI = −20.8, which gives 95.3 per cent completeness in the 0.8 < z ≤ 0.85 bin (see

Fig. 3.2). The resulting sample, which has 13 567 galaxies, will be called sample S1
in the remainder of this work.

However, previous studies [e.g., 82, 83, 84, 85] have shown that galaxy intrinsic lu-

minosities evolve with redshift. Thus, we should also let the luminosity cut that we

apply to volume-limit the sample evolve with redshift. Unfortunately, the majority of

the published work on evolution of the luminosity function uses B and V band data,

and it is not apparent that the results should be the same in a redder passband like I.

We use the results from [85] for the evolution of B-band magnitudes from the DEEP2

and COMBO-17 surveys, which is ∆M∗
B ∼ −1.23 mag per unit redshift (with the sign

indicating that galaxies were intrinsically brighter in the past), for a combined sample

of blue and red galaxies. Typically, estimates of evolution in the redder bands are less

than the estimates of evolution in bluer bands [86, 87]. Assuming that the evolution

is a smooth function of the wavelength, the evolution in I-band should be in between

B and K band. Therefore, by considering no evolution (a lower limit) as in our S1,
and a second sample S2 constructed using the B-band evolution (as an upper bound

on the I-band evolution), we can assume that these two samples bracket reality.

Thus, S2 is constructed by letting the luminosity cut evolve, starting from MI =

−20.8 (same as in S1) for the 0.8 < z ≤ 0.85 bin. The cut values for the other

bins are defined by allowing 1.23 magnitudes of evolution to fainter magnitudes as a
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function of redshift (evaluated using the bin centers). Because of the sign of redshift

evolution, S2 includes more galaxies (15 903 galaxies).

One might wonder why we cannot use the luminosity function in F814W based on the

COSMOS observations to directly determine the rate of evolution of the luminosity

function for our sample, thus simplifying this exercise. However, this turns out to

be highly non-trivial for two reasons. First, the F814W observations are relatively

shallow compared to the deep ground-based observations used in many other works

for determination of luminosity evolution. As a result, it is difficult to get a handle on

the faint end of the luminosity function, and the unknown faint-end slope turns out to

be degenerate with the evolution of the typical luminosity. Second, the photometric

redshift error is a complicating factor that requires sophisticated techniques to remove.

A derivation of the I-band luminosity evolution is therefore beyond the scope of this

work.

Finally, we can circumvent the problem of redshift evolution of the luminosity by

imposing cuts on stellar mass instead. In Fig. 3.3, we show the stellar mass function

(SMF) of our sample for various F814W flux limits. The shapes of the SMF curves

we obtain are consistent with those in [5] at the high stellar-mass end. [5] report the

SMFs for the ZFOURGE survey, which includes COSMOS. They calculated stellar

masses using the procedure and software described by [88], using a set of models with

exponentially declining star formation history [89] assuming a Chabrier IMF [80]. As

done for MI , we compare the stellar mass function of the mF814W ≤ 23.5 sample with

that of the mF814W ≤ 25.2 sample. The sample with log(M/M⊙) > 10.15 is ∼ 95 per

cent complete in the redshift bin 0.75 ≤ z < 0.85 and has 8953 galaxies in total across

all redshifts. Thus, we construct a third volume-limited sample S3 by imposing the

stellar mass cut mentioned above.

The numbers of galaxies in redshift slices are tabulated in Table 3.1 for all three

ways discussed in this section of obtaining a volume-limited sample. The stellar-mass

limited sample is the smallest, most likely because when converting from flux to stellar

mass, the stellar mass-to-light ratios vary strongly with galaxy type, so red galaxies

with highM∗/L simply have too low a flux compared to the blue galaxies at the same

M∗, and are not observed.

There is one subtlety in our method used for estimating completeness. We have used
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Redshift Environment S1 S2 S3
0.3-0.4 Overdense 1726 2505 1260

0.4-0.475 Neutral 988 1312 708
0.475-0.55 Neutral 1410 1793 904
0.55-0.65 Underdense 1797 2193 1183
0.65-0.7 Overdense 2096 2321 1354
0.7-0.75 Overdense 1963 2155 1239
0.75-0.8 Underdense 1159 1196 675
0.8-0.85 Overdense 2428 2428 1630

Table 3.1: List of different redshift bins, their environmental classification and the
number of galaxies per redshift bin for volume-limited samples constructed in three
different ways: using a hard luminosity cut (S1), using a redshift-dependent luminos-
ity cut (S2) and using stellar-mass cuts (S3).

Figure 3.3: Stellar mass distribution for various flux-limited samples are shown in
three redshift ranges as separate panels. The redshift bins have been chosen to facil-
itate the comparison with a study of the SMF in [5]. At high mass, the distributions
are the same for various flux limits, indicating that the samples are complete in
that mass range. The curves begin to deviate at low masses due to incompleteness
coming from the flux limit. The point at which the deviation exceeds our threshold
determines where the mass cutoff should be to volume-limit the sample.
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the full mF814W ≤ 23.5 sample for identifying overdensities and for the complete-

ness calculations that motivated our definitions of volume-limited samples. However,

everywhere else in the paper, we consider only those galaxies for which there are

postage stamp images used to create weak lensing simulations, in part because this is

the sample for which fits to Sérsic profiles were carried out, which is a requirement for

our morphology analysis. 12 per cent of the galaxies that pass our cuts do not have

an associated postage stamp image. Postage stamps may not exist because, given the

size of the galaxy, the size of the postage stamp we want to draw around it (including

some blank space) intersects the edge of the CCD. If all galaxies were the same size,

this would be a purely random effect, but in fact bigger galaxies are more likely to

get excluded by this cut. It is commonly the case that galaxies that are nearby and

intrinsically very bright do not have postage stamps associated with them, an effect

that is dominant at lower redshifts (and is part of our reason for excluding z < 0.3).

Our completeness calculation is done at high redshifts, and thus we believe that our

conclusions are not affected by this bias.

The functional forms for the (flux-limited) redshift distribution that we used in

Sec. 3.3.1 are not well-motivated for a volume-limited sample. If we fit them to

the redshift distribution of the volume-limited sample (MI < −22) that doesn’t take

into account the evolution of the luminosity function, then due to the absence of an

exponential tail in the histogram, the parameters that set the scale for the redshift

(z1 and z2) become very large. As a result, both p1(z) and p2(z) defined in Eqs. (3.2)

and (3.3) essentially become the same power law. The best-fitting exponent is re-

markably close to 2 (a = 2.78±0.28, giving an exponent 1.78±0.28), suggesting that

the comoving number density of galaxies is constant with redshift as we would ex-

pect for a volume-limited sample in a redshift range for which evolution is negligible.

Fig. 3.4 shows that the values of δg,1D for the z = 0.40 − 0.55 bin increase and are

within the [−0.1, 0.1] range that we have defined as neutral. This is the reason that

in Sec. 3.3.1 we classified them as neutral as opposed to underdense. We will see in

Sec. 3.4 that they are more similar to overdense regions as opposed to underdense

regions. The other redshift slices seem to exhibit a consistent behavior in Fig. 3.4

and Fig. 3.1.
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Figure 3.4: Upper panel: Redshift distribution of volume-limited (MI < −22) sample
with photometric redshift bins that are 0.05 wide. Two analytical functions with
best fit parameters are plotted over it, as discussed in the text. Lower panel: Plot of
(1 + δg,1D) = N/Nmod with each functional form as the model for each redshift bin.
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Figure 3.5: The distributions of the morphological parameters of interest, namely the
distortion (top left, from Sérsic fits, and top right, from re-Gaussianization), Sérsic
index (bottom left) and bulge-to-total ratio (bottom right) are presented. The shapes
of these distributions depend on the way the volume-limiting process is carried out.
S0 refers to the flux-limited (mF814 ≤ 23.5) sample and S1, S2 and S3 refer to the
volume-limited samples, as discussed in Sec. 3.3.2.

3.3.3 Describing galaxy morphology and shape

We choose simple and well-motivated ways to parametrize galaxy shapes and morphol-

ogy based on existing methods in the literature. These methods have the advantage

of being stable and well-defined in nearly all cases. However, for highly irregular

galaxies the meaning of the structural parameters that we derive is not entirely clear.

In all cases, our methods account for the effect of the HST PSF.

One method to estimate the galaxy ellipticities and other morphological parameters is

to fit parametric models convolved with the PSF to the observed galaxy light profile.
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We use the fits from [38], which used the methods and software from [76] to fit the

images to the following profiles:

1. A Sérsic profile given by the expression

IS(x, y) = I1/2 exp
[

−k(R(x, y)/Reff)
1/n − 1

]

, (3.8)

where

R2(x, y) =((x− x0) cosΦ + (y − y0) sinΦ)
2

+ ((y − y0) cosΦ− (x− x0) sinΦ)
2/q2,

Reff is the half-light radius of the profile defined along the major axis, I1/2 is

the surface brightness at R = Reff, (x0, y0) is the centroid of the image, Φ is the

position angle, n is the Sérsic index, k is a n-dependent normalization factor

required to ensure that half the light is enclosed within the half-light radius,

and q is the axis ratio of the elliptical isophotes. Thus, the Sérsic profile has 7

free parameters.

2. A sum of two Sérsic component fits: a de Vaucouleurs bulge (n = 4) plus an

exponential disc profile (n = 1). In this case, there are 10 free parameters,

because the Sérsic indices are fixed, and the two components are constrained

to have the same centroid.

More details about the fitting algorithm can be found in [76].

To quantify galaxy morphology and shape, we will use several quantities from the

above fits. First, from the single Sérsic profile fits, we use the Sérsic index and the

axis ratio. The axis ratio can also be used to derive a distortion,

e =
1− q2

1 + q2
(3.9)

or an ellipticity,

ε =
1− q

1 + q
. (3.10)

As an alternative morphological indicator (instead of Sérsic index) we use a bulge-to-

total ratio derived from the double Sérsic profile fits. This ratio is defined in terms
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of bulge and disk fluxes as
B

T
=

Fbulge

Fbulge + Fdisk
. (3.11)

The bulge-to-total flux ratio can be used as a proxy for colour gradients, since the

bulge and disk will tend to have different spectral energy distributions, and hence

any galaxy with B/T 6= 0 or 1 will have some level of colour gradients. If two galaxy

samples have different values for the typical B/T , this is likely to indicate not only

differences in morphology, but also in the level of colour gradients.

We also consider an alternative method for estimating the galaxy ellipticity or dis-

tortion. This method is based on using the observed weighted moments of the galaxy

and PSF, and correcting those of the galaxy for those of the PSF. This PSF cor-

rection scheme is the re-Gaussianization method described in section 2.4 of [90] as

implemented in theGalSim software package (with implementation details described

in [69]). This method models the true PSF g(x) as a Gaussian G(x) and the residual

ǫ(x) = g(x) − G(x) is assumed to be small. Thus, the Gaussian-convolved intrinsic

image, f , can be modeled as I ′ = G⊗ f = I − ǫ⊗ f , where I is the observed image.

The crucial idea here is that, when ǫ is small, we get a reasonably accurate estimate

of I ′ even if we use an approximate form for f . The form assumed for f is that of a

Gaussian with covariance M
(0)
f =M(I) −M(g), where M(I) and M(g) are the elliptical

Gaussian-weighted adaptive covariances of the measured object and PSF respectively,

described in section 2.1 of [90] and [91]. We refer to the re-Gaussianization estimates

of the PSF-corrected distortion as “moments-based shape estimates”. The value in

including them in this analysis is that they have quite different radial weighting from

the Sérsic profile fits, with the outer regions being quite downweighted when calcu-

lating adaptive moments. Thus, if ellipticity gradients are important, we could get

different results using these two shape estimators.

Fig. 3.5 shows the distribution of these morphological and shape parameters for the

flux-limited sample S0 and the three volume-limited samples - S1, S2 and S3. In

addition to the basic value in characterizing these distributions for our sample overall,

it is also useful to understand how the samples change when we vary our method

of volume-limiting the sample. For instance, galaxies with lower Sérsic indices are

preferentially selected in S2 compared to S1 and S3. Similarly, galaxies with low

ellipticity/distortion values are rejected in generating S2 (despite the lack of any
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explicit cut on shapes) while they are retained in S1 and S3. A simple explanation

is that the cuts in S2 are preferentially removing early-type populations, which have

higher Sérsic indices and lower ellipticities. For example, if the luminosity evolution

that was adopted is too strong particularly for early type populations, that could give

rise to the effect shown in Fig. 3.5.

3.4 Results

Having identified the overdense and underdense regions in a volume-limited sam-

ple (Secs. 3.3.1 and 3.3.2), we will now see whether the morphological parameters

of the galaxies described in Sec. 3.3.3 depend noticably on the environment of the

redshift slice in which they reside. Note that for true 3D overdensities there is al-

ready substantial evidence in the literature that we should see variation of properties

with the environment. Our test is necessary to see whether such morphology-density

correlations are evident in the kind of 1D redshift slices that would be used for con-

structing weak lensing simulations, or whether our use of an area as large as the size

of COSMOS will wash out these trends (which would be good news for weak lensing

simulations based on that dataset).

As described in Sec. 3.3.2, we have three different ways of volume-limiting our sam-

ple:

1. no redshift evolution of luminosity cut (S1),

2. using B-band luminosity evolution applied to the I-band luminosities (S2), and

3. impose stellar mass cuts instead of luminosity (S3).

We will present our results in all three cases to check for their robustness to how the

sample is selected.

3.4.1 Axis ratios

We can test the influence of environment on the galaxy shapes by comparing the

distributions of the axis ratios for the overdense and underdense redshift slices, or by
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Figure 3.6: The distributions of axis ratios of galaxies in all overdense (OD) and
all underdense (UD) regions in the case of the luminosity-selected sample S1 (left),
luminosity-selected sample with B-band evolution taken into account S2 (center), and
thestellar-mass-selected sample S3 (right). The upper panels show the histograms,
and the bottom panels show the cumulative distribution functions (CDF). The p-
values computed using these CDFs are shown in Table. 3.2.

Figure 3.7: Galaxy axis ratio distributions in two overdense redshift bins, z = 0.65−
0.75 (blue, dotted) and z = 0.80 − 0.85 (red, solid), to check for consistency in the
case that the environment is the same even if the redshift differs. The p-values from
the KS and AD tests are given in Table. 3.2.

encapsulating that distribution as a single number, the RMS (root mean squared) el-

lipticity or distortion. By volume-limiting the sample, we have avoided issues wherein

the flux limit leads to artificial changes in the sample as a function of redshift. We will

also carry out tests to differentiate between environmental effects versus evolution of

the population with redshift (at fixed mass).

Comparing distributions

We begin by comparing the entire axis ratio distributions p(q) between pairs of redshift

slices. Unless otherwise mentioned, the axis ratios refer to the values obtained using

the method of [76] to fit single Sérsic profiles to each galaxy image. To compare
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Figure 3.8: Galaxy axis ratio distributions in a single underdense redshift slice, z =
0.55− 0.65 (blue, dotted), and a single overdense redshift slice, z = 0.65− 0.75 (red,
solid). The p-values from the KS and AD tests are given in Table. 3.2.

Redshift bins S1 S2 S3
All overdense vs. 1.1× 10−4 2.6× 10−5 1.9× 10−6

All underdense 1× 10−5 < 1× 10−5 < 1× 10−5

[0.65, 0.75] (OD) vs. 0.61 0.43 0.23
[0.80, 0.85] (OD) 0.49 0.24 0.13
[0.65, 0.75] (OD) vs. 5.8× 10−4 1.5× 10−5 3.5× 10−6

[0.55, 0.65] (UD) 9.8× 10−4 < 1× 10−5 < 1× 10−5

Table 3.2: p-values from the Kolmogorov-Smirnov (top) and Anderson-Darling (bot-
tom) tests obtained by comparing the distributions of axis ratios for three cases: all
overdense (OD) vs. all underdense (UD), two overdense bins that are not very sepa-
rated in redshift, and a pair of adjacent overdense and underdense bins. S1, S2, S3
refer to the three different types of volume-limited samples. The Anderson-Darling
p-values are computed only up to 5 decimal places, so values that were given as zero
are denoted < 1× 10−5.

Redshift bins S1 S2 S3
All overdense vs. 5.6× 10−4 1.0× 10−4 3.3× 10−6

All underdense 3× 10−5 1× 10−5 < 1× 10−5

[0.65, 0.75] (OD) vs. 0.96 0.75 0.54
[0.80, 0.85] (OD) 0.52 0.34 0.23
[0.65, 0.75] (OD) vs. 6.0× 10−3 2.5× 10−4 2.4× 10−4

[0.55, 0.65] (UD) 1.2× 10−2 2.5× 10−4 5× 10−5

Table 3.3: p-values from the Kolmogorov-Smirnov (top) and Anderson-Darling (bot-
tom) obtained by comparing the second moments-based distortion for the same three
cases as in Table 3.2. The Anderson-Darling p-values are computed only up to 5
decimal places.
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the distributions and make statistical statements about their consistency, we use two

statistical tests, the Kolmogorov-Smirnov (KS) test and Anderson-Darling (AD) test,

the latter of which is carried out using the adk package in R.

We first compare the distribution of galaxy axis ratios in all overdense bins against

that for all underdense bins in Fig. 3.6, with different panels showing the comparison

for S1, S2, and S3. The cumulative distribution functions are also shown, since they

form the basis for our statistical statements about consistency using the KS and AD

tests. The results of these tests are shown in the first two rows in Table 3.2. For

all three ways of volume-limiting the sample, the p-values from both the KS and AD

tests are well below 0.05 (a maximum of 1.1×10−4, but often smaller than that). We

can therefore reject the null hypothesis that the overdense and underdense regions

have the same underlying axis ratio distributions at high significance.

One might imagine that the disagreement between the distributions is, at least partly,

due to the fact that the overdense and underdense sample have different redshift dis-

tributions and there could be some evolution of ellipticity/distortion distributions

with redshift. To show that this redshift evolution effect is subdominant to envi-

ronmental effects, we will compare distributions between pairs of two overdense (or

pairs of underdense) redshift slices, where we expect to find similarity even if the

redshifts are different if the environmental effects dominate. We will also compare

between overdense and underdense regions that are selected to be nearby in redshift,

so that any redshift evolution effects should be minimal. Figures 3.7 shows that the

axis ratio distributions are indeed consistent when the environments are similar but

the redshifts are different. Likewise Fig. 3.8 shows that for adjacent redshift slices

with different environments, the axis ratio distributions are inconsistent. The results

of statistical tests for the distributions in these figures are given in Table 3.2, and

support our statement that the morphology-density correlation is the dominant ef-

fect when comparing overdense and underdense redshift slices, with redshift evolution

of the population being negligible. Comparing other pairs of redshift bins leads to

similar conclusions.

Finally, we can check whether these findings are particular to the axis ratios from

the Sérsic fits, or whether we reproduce this finding when we use the shapes from

the centrally-weighted moments-based re-Gaussianization method, which estimates a

distortion (Eq. 3.9) for each galaxy. After neglecting a small fraction (< 0.01 per cent)
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of galaxies for which the method does not converge, we carry out the same statistical

tests from Table 3.2, but using the moments-based shape estimates. The results of the

KS and AD tests are tabulated in Table 3.3. We see that all of our findings with the

Sérsic fit-based shapes carry over to shapes from a centrally-weighted moments-based

shape estimate.

RMS distortions

We can also carry out tests on a single statistic of the galaxy shape distribution in

each redshift slice, like the RMS distortion. While tests of a single quantity may

seem less powerful than tests that use the entire shape distributions, the advantage is

that instead of picking out pairs of redshift slices for our tests, we can easily compute

our statistic of interest for every single redshift slice, and look for trends with both

redshift and environment.

For the luminosity-selected samples (S1, S2), the RMS distortions (Eq. 3.9) of galax-

ies in each redshift bin are shown in Fig. 3.9. In each case, the RMS distortions

from the mass-selected sample (S3) are also plotted. When the B-band luminosity

evolution is taken into account in selecting the sample, a systematic increase in the

distortion values at lower redshifts can be observed (bottom panel).The stellar-mass

selected sample exhibits a similar trend.

For figures up to Fig. 3.12, the colours of the points were selected to easily differentiate

between galaxies in overdense, neutral, and underdense redshift slices. Points with

unfilled centers and thicker errorbars correspond to the S3 sample and points with

filled centers and thinner errorbars correspond to the luminosity-selected samples (S1
or S2).

As shown in Fig. 3.9, the underdense regions have higher values for RMS distortions

when compared to the overdense regions. The difference between the underdense and

overdense regions for z > 0.5 is significantly larger than any redshift evolution across

the z > 0.5 range. Our conclusions are very similar if we use the RMS ellipticity from

Eq. (3.10) instead of the distortions.

The sign of the dependence on the local environment is reasonable when compared

with previous work on the morphology-density relation [see, e.g. 92]. Overdense
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Figure 3.9: RMS distortions as a function of redshift. The horizontal errorbars indi-
cate the width of the redshift bin, while the vertical ones are 1σ errorbars obtained
by bootstrapping. The colours and shapes of the points indicate their environmental
classification, as shown in the legend. Points with open centers and thick errorbars
correspond to the stellar-mass selected sample S3 and points with filled centers and
thin errorbars correspond to the luminosity-selected samples S1 and S2.
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Figure 3.10: RMS distortions as a function of redshift, with points defined in a similar
way as in Fig. 3.9. In this case, the distortions from moments-based shape estimates,
rather than from the Sérsic fits.
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regions typically contain many old, elliptical galaxies which are close to round (large

axis ratio and low RMS ellipticity/distortion). In contrast, the underdense regions

typically contain a larger population of younger, disk galaxies, which have lower axis

ratios and higher RMS ellipticity/distortion.

From Figs. 3.1 and 3.4, the 0.4 ≤ z < 0.55 redshift range shows signs of being

marginally underdense, but has low RMS ellipticity that agrees with the rest of the

overdense regions.

Next, we show an analogous plot of RMS distortions for all three volume-limited

sample using the moments-based shape estimates in Fig. 3.10. The conclusions are

quite similar to those using the shapes from the Sérsic profile fits, with the underdense

regions standing out in having larger RMS distortions than the other redshift slices,

an effect that is substantially larger than any average redshift evolution of the RMS

distortions.

However, the statistical significance of trends in this section using a single statistic

of the shape distribution (the RMS) is less than the significance of the trends seen

using the entire axis ratio distributions in Sec. 3.4.1.

Finally, we comment on whether the trends we have found could be caused by mea-

surement noise rather than variations in the intrinsic shape distributions. Measure-

ment error tends to cause an increase in the RMS ellipticity due to the broadening of

the measured ellipticity distributions. However, this is one of the reasons we restricted

the sample to a magnitude of 23.5. In this case, the S/N of the flux measured in the

galaxy images is typically ≥ 50. If we consider the worst case, i.e., assume all galaxies

have S/N = 50 and use the Gaussian approximation from [91], the expected mea-

surement error on the distortion is 0.08. If we add this in quadrature with an RMS

of ∼ 0.33, then the new RMS becomes 0.34. However, we see variations in the RMS

distortion in different environments that are as large as 0.05, or five times as large as

this worst-case scenario due to measurement noise. Moreover, if measurement error

were a significant issue, we would expect it to affect the comparison of (for example)

low- and high-redshift samples in overdense regions. In a volume-limited sample,

those will have different flux distributions and therefore different SNR distributions.

However, there is little trend in the RMS distortion with redshift for overdense re-

gions, which suggests empirically that measurement error is not a significant factor
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in our results.

3.4.2 Morphological parameters

For the morphological parameters that we described in Sec. 3.3.3, the Sérsic index

and bulge-to-total ratio, we do not compare the distributions directly. Doing so is

relatively difficult because both distributions have hard cutoffs that are enforced in

the fitting process (Sérsic n in the range [0.25, 6] and 0.05 < B/T < 0.95), as can

be seen in Fig. 3.5. The KS statistical test is sensitive to exactly what happens at

these hard boundaries in the distributions. So, instead of using the full distributions,

we will study the dependence of these quantities on environment by computing the

median values in different redshift slices. Median values are preferred over the full

distributions or even the sample means since the medians are more robust to what

happens at the edges of the distributions.

Fig. 3.11 shows the median value of the Sérsic index in each redshift slice, with and

without taking into account of luminosity evolution when volume-limiting the samples

(S1 and S2). Both panels also show the results with stellar mass-selected samples

(S3) for reference. When using the stellar mass-selected sample, we observe that the

overdense regions tend to have higher Sérsic index than the underdense ones, with the

redshift evolution being mild and the results for the underdense regions particularly

standing out. This trend is consistent with our previous explanation for trends in

RMS ellipticities; the underdense regions have more spiral galaxies and therefore a

lower median value of Sérsic n. However, this trend is less evident for the luminosity-

selected samples, where there seems to be some evolution with redshift that dominates

over the environmental effects.

We also note that in Fig. 3.11, the median Sérsic indices of the stellar mass-selected

samples (S3) are systematically greater than those of the luminosity selected samples

(S1, S2). This is because S3 is restricted to galaxies with masses above log(M/M⊙) >

10.15, whereas in S1 and S2, the mass distribution of galaxies extends to log(M/M⊙) ∼
9.0, with about 44 per cent of the galaxies in S2 having a stellar mass below the cut

for S3. It is therefore not surprising that S3 has a higher median Sérsic n. Finally,

even for the stellar mass-selected sample there is some sign of redshift evolution. The

sign of this evolution is as expected, with lower Sérsic n and B/T for higher redshift
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samples, which should have a higher fraction of disk and irregular galaxies and fewer

galaxies with bulge-like morphology.

Finally, Fig. 3.12 shows the variation of the median bulge-to-total ratio with redshift.

The results are quite consistent with those of Fig. 3.11. Thus, our results in this sec-

tion suggest that the environment can significantly affect the median morphological

parameters of galaxies selected in thin redshift slices, assuming that the galaxies rep-

resent a stellar mass-selected sample. The trend is less evident when using luminosity

to select the galaxies.

One might expect the points corresponding to neutral regions to lie in between the

points for overdense and underdense regions. In Figs. 3.9–3.12, this does not always

appear to be the case. It is possible that a redshift bin may have an overdensity

in one part of the field and an underdense region in another. In such a scenario,

the redshift slice might appear to be ‘neutral’ in our histogram-based method of

finding overdensities, while still having significant large-scale structure affecting the

morphological mix of galaxies that complicates the situation. This indeed turns out

to be the case in the ‘neutral’ regions of the COSMOS field. Using X-ray information

in the COSMOS field, [78] have detected several galaxy groups in the redshift range

z = 0.425 − 0.575. [81] report structures that are large and extended (in RA-DEC)

within this redshift range. It is a challenge to make definitive statements regarding

the relationship between environment and morphology in neutral regions that are

composed of mixtures of multiple overdense and underdense regions. In addition,

the redshift evolution, albeit weak, can make the neutral bins look like overdense or

underdense regions. For instance, the neutral bins look overdense-like in Figs. 3.9-

3.11 but underdense-like in Fig. 3.12, partly due to redshift evolution. However, when

the overdensity (or underdensity) is prominent, we observe that the environment in

which a galaxy resides affects its morphology, so the appearance of the neutral bins

does not undermine the main conclusions of this paper.

To test the possibility that our choice of bins starting at z = 0.3 with ∆z = 0.05 is

particularly unlucky in enhancing the effects we see, we carried out the same analysis

using bins of the same width but shifted by ∆z/2. We recomputed the overdensities

keeping the parameters of the redshift distributions same as before. Shifting the bins

enhances the overdensities and underdensities in some cases and in other cases, it

mixes the overdense and underdense regions to make them more neutral-like. The
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Figure 3.11: Median values of the Sérsic indices for volume-limited samples S1 and S2
are plotted (filled centers and thin errorbars) in top and bottom panels, respectively,
for each redshift bin. Median values for the S3 sample are plotted in both the panels
(open centers and thick errorbars) in both the panels.
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Figure 3.12: Median values of the bulge-to-total ratios for volume-limited samples
S1 and S2 are plotted (filled centers and thin errorbars) in left and right panels
respectively for each redshift bin. Median values for the S3 sample are plotted in
both the panels (open centers and thick errorbars). The horizontal errorbars simply
correspond to the binwidth while the vertical ones are 1σ errorbars obtained by
bootstrapping.
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environmental trends still are observed in the enhanced bins and hence our conclusions

are still applicable.

The number of galaxies in overdense bins is typically higher than the number in

underdense bins by about a factor of 2. (See Table 3.1). To eliminate the possibility

(with great confidence) that this varying sample size is responsible for the trend

observed, we repeated our analysis with only 50 per cent of overdense galaxies that

were selected randomly. The vertical errorbars for overdense regions get bigger due

to reduced sample size, but the statistical significance of our conclusions is still nearly

as high as in the original analysis.

3.4.3 Mitigating the effects of line of sight fluctuations

Since we have argued that cosmic variance is giving rise to environmentally-based

variations between galaxy populations in our redshift slices that are 0.05 wide, the

natural question is how to mitigate this effect so that it will not affect attempts to sim-

ulate a realistic galaxy sample as a function of redshift. The most obvious approach

is to repeat the analysis with wider redshift bins. Feigning ignorance of overdensi-

ties and underdensities along the line of sight, we choose the slices in redshift to be

[0.3− 0.5], [0.5− 0.7] and [0.7− 0.85] (a nearly even division of our entire redshift

range) and redo the analysis, beginning by checking the environmental classification

for these wide bins.

Using the redshift distributions estimated earlier in this work (cf. Figs. 3.1 and 3.4),

we obtain the overdensity estimates for the wider bins, δg,1D. Although the [0.7− 0.85]

bin seems to be overdense in the top panel of Fig. 3.13, it appears to be environmen-

tally neutral when we volume-limit the sample using the methods from Sec. 3.3.2.

Since the latter is what we use to study the galaxy morphology, we classify [0.7− 0.85]

bin as ‘neutral’. What is surprising is the fact that the lowest and middle redshift

slices still qualify as substantial overdensities and underdensities despite our use of

∆z = 0.2.

As an example of what happens to morphological parameters, we show the median

Sérsic index for three bins in Fig. 3.14. Comparing this with Fig. 3.11, we observe

that the range of Sérsic n values has become smaller, as have the vertical errorbars,
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Figure 3.13: Plot of δg,1D = N/Nmod − 1 with each functional form as the model for
each of our new wide redshift bins discussed in Sec. 3.4.3, for flux-limited (top) and
volume-limited (bottom) samples.
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Figure 3.14: Median values of Sérsic index, as a function of redshift for our wider
redshift ranges used in Sec. 3.4.3. The horizontal errorbars indicate the width of
the redshift bin, while the vertical ones are 1σ errorbars obtained by bootstrap-
ping. Points with open centers and thick errorbars correspond to the stellar-mass
selected sample S3 and points with filled centers and thin errorbars correspond to
the luminosity-selected samples S1 and S2.
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mainly due to the increase in the number of galaxies in each redshift bin. The results

do not suggest that the values are consistent across all redshift bins, and in particular,

the disparity between overdense and underdense regions is still quite evident (with the

same sign as before). However, in Fig. 3.11, the magnitude of that disparity between

overdensities and underdensities was around 20 per cent, whereas here it is reduced

to 7 per cent. This seems to suggest that when we choose wider redshift bins, some of

the large-scale structure gets washed out, so the galaxy morphological parameters are

less affected by cosmic variance. This is a promising result, which could be further

improved by either (a) non-blind selection of the wide redshift bins with respect to

known structure in the calibration fields, or (b) attempting some kind of reweighting

of the galaxy populations in redshift slices affected by known structure.

As a test of the second option, we consider whether we can use some division of the

galaxies by colour or B/T (as a proxy for colour) in order to determine the struc-

tural parameters of galaxies as a function of redshift for each of them separately. If

the effects we are seeing can be cleanly described in terms of overdense (underdense)

regions being dominated by bulge- (disk-)dominated galaxies, then division into sam-

ples based on B/T may help reduce the effects that we have described in previous

subsections. We test this idea by dividing the sample into bulge- and disk-dominated

galaxies based on requiring B/T ≥ or < 0.5. The resulting bulge fraction fbulge,

shown as a function of redshift in Fig. 3.15, shows a mild effect from the large-scale

structures in the COSMOS field.

Fig. 3.16 shows the RMS distortion as a function of redshift for the full S1 sample

(as shown previously) and for the separate bulge- and disk-dominated samples. As

shown, the deviations in the values due to large-scale structure are clearly evident in

all three cases, though slightly more prominent for the full sample and less so for the

bulge-dominated sample. For comparison with the results for the full sample shown

in Table 3.2, we compute the KS (AD) test p-values for consistency of axis ratios

between overdense and underdense regions for bulge- and disk-dominated samples.

For S1, these p-values are 0.16 (0.08) for bulge-dominated galaxies and 0.005 (0.001)

for disk-dominated galaxies. For S3, these p-values are 0.03 (0.03) and 10−4 (3×10−4),

respectively. With the possible exception of bulge-dominated galaxies, it seems that

separation into two morphological samples is not enough to remove the effect of the

local environment on the ensemble properties like the intrinsic ellipticity distribution.
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Figure 3.15: The fraction of galaxies in S1 (solid symbols) and S3 (open symbols) that
are classified as bulge-dominated as a function of redshift, including the correlation
with redshift slices classified as overdense or underdense as indicated by the symbol
shape and colour.
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Figure 3.16: The RMS distortion as a function of redshift for the full volume-limited
galaxy sample S3 (partially-full symbols), the disk-dominated galaxy sample (open
symbols), and the bulge-dominated galaxy sample (full symbols). The fact that the
bulge-dominated sample has a lower RMS distortion than the disk-dominated sample
is consistent with expectations.

Due to the limited sample size, we did not explore the possibility of an even finer

morphological division of the sample, but with deeper HST datasets, this may be a

promising path to pursue. However, if the nature of the bulges or disks themselves is

altered by the local environment, then division purely into bulge- or disk-dominated

sample will not be helpful in mitigating environmental effects.
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3.5 Implications for future surveys

As mentioned previously, HST data will be used by current and future weak lensing

surveys to characterize the galaxy population in several ways. In this section, we

estimate how the results shown in Sec. 3.4 can affect estimates of shear calibration

when using HST to characterize the galaxy population. We also discuss the situations

in which this is likely to be important for current and future surveys from the space

and ground.

3.5.1 Magnitude of shear calibration bias

Here we consider the impact of the findings in Sec. 3.4 on weak lensing shear calibra-

tion assuming that the COSMOS sample is used as a parent sample for simulations

that are used to derive redshift-dependent shear calibrations. This could be done

either directly using the galaxy images themselves, or by fitting for parametric distri-

butions of Sérsic n, size, and shape in redshift slices, and then using those parametric

distributions to make simulated images containing galaxies with Sérsic light profiles

that match those distributions. We consider a few simple cases of how the above

results affect shear calibration estimates. It is likely that the answer to this question

varies quite significantly with the type of shear estimation method used. Some will

be sensitive to the variations in morphology, others to the variation in the intrinsic

ellipticity distribution, and many will be sensitive to both at some level. We consider

both of these issues in turn.

The intrinsic ellipticity distribution plays a role in nearly all shear estimators. In

some, the role is explicit: for example, LensFit [93, 94, 95] and the methods presented

by [96] require accurate intrinsic ellipticity distributions as inputs, and uncertainty

in the distribution was one source of systematic uncertainty in the CFHTLenS weak

lensing results [55, 95]. The intrinsic ellipticity distribution enters the calculation for

other methods in other ways. For example, the re-Gaussianization method and sev-

eral other moment-based methods require calculation of a shear responsivity [90, 91]

that describes how the galaxy population overall responds to a shear, based on its

intrinsic ellipticity distribution. The responsivity can be calculated based on the ob-

served shape distribution, assuming that the uncertainties in the shears are known
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well enough that their contribution to that distribution can be removed. If a simu-

lated sample in some redshift slice has a different intrinsic ellipticity distribution and

therefore responsivity, it could lead to incorrect conclusions about shear calibration.

The responsivity scales roughly like 1 − e2RMS, which means that deviations in RMS

distortion at the level of 0.01 due to local environments (Figs. 3.9 and 3.10) would

become fractional shear errors of

∆γ

γ
≈ 2eRMS∆eRMS

1− e2RMS

≈ 0.01. (3.12)

In the context of upcoming lensing surveys that seek to constrain shears to better

than the per cent level, a systematic error of this magnitude in shear calibration is

quite serious.

Regarding possible biases in the morphological mixtures of galaxies due to overden-

sities or underdensities in the training sample, there are results in the literature for

several methods that show how shear biases vary with morphology. For example, for

the maximum likelihood fitting code im3shape, figure 2 in [63] shows multiplicative

biases for two-component Sérsic profile galaxies as a function of their bulge-to-total

ratios (denoted there as Fb/(Fb + Fd), which we will equate with our B/T ). The

shear calibration bias scales roughly like 0.04− 0.05(B/T ) as B/T goes from 0 to 1.

Our results suggest that typical (median) B/T values may be influenced by cosmic

variance in the COSMOS field, leading to fluctuations of order 0.05. The resulting

variation in the shear calibration would therefore be ∼ 2.5 × 10−3, or 0.25 per cent

shear calibration uncertainty. For existing datasets this is not very problematic, but

for surveys like LSST, Euclid, and WFIRST-AFTA, this would be a dominant part

of the systematic error budget. As another example, for re-Gaussianization, figure 9

of [75] shows that as Sérsic n goes from 1 to 6, the shear calibration bias varies by

2 per cent. In this case, since we have shown that the median value of Sérsic n can

vary by ∼ 0.4 due to morphology-density correlations, this suggests that the shear

calibration for re-Gaussianization could be misestimated by ∼ 2 × 10−3, or 0.2 per

cent. This too is acceptable in existing datasets, but not those that will be used for

shear estimation in the next decade.

The estimates in this subsection are rough illustrations of the magnitudes of these

effects. Other aspects of shear calibration that could be affected relate to the use of
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HST data to estimate the impact of detailed galaxy morphology, or to calibrate the

effect of colour gradients [59, 60]. In the latter case, what is most relevant in this work

is our finding that B/T exhibits environmental dependence, which likely translates

into environmental dependence of colour gradients. Unfortunately, we cannot directly

test the strength of any colour gradient variations with environment using COSMOS

data, due to the fact that there is only single-band coverage in much of its area. We

note that our findings may seem to be at odds with the conclusions in [60] based on

synthetic galaxy models that the existing area of HST coverage with ≥ 2 bands is

sufficient for calibration of colour gradients4. This is particularly striking given that,

as shown there, the dominant galaxy sample with 2-band coverage is the AEGIS

dataset, which has substantially smaller area than COSMOS, and therefore should

exhibit a stronger influence of cosmic variance. The presence of other fields besides

AEGIS (e.g., GOODS) should help mitigate this effect given that the large-scale

structure in the two fields will be completely uncorrelated, but the number of fields

is still not large and the area is dominated by a small number of them5.

However, it is important to bear in mind that the method proposed in [60] involves

determining not just a redshift-dependent correction but also a type-dependent colour

gradient correction, which could partially mitigate the effects of the environment

dependence seen here. Moreover, the colour gradient effect is higher order than the

intrinsic ellipticity distribution, and thus may be less susceptible to systematics due to

the environmental effects considered here. We showed in Sec. 3.4.3 that a simple type-

dependent split does not remove the effects of environment on the intrinsic ellipticity

distribution, but testing whether it (or a more complex type or colour split) is enough

to remove the effects of colour gradients in Euclid is a more complicated analysis that

is beyond the scope of this work. It seems that a future study using an HST field

with more than one band would be warranted, to test whether or not our results

suggest a discrepancy with those of [60]. It is possible that the connection between

colour gradients and B/T is weak enough that our results do not imply a problem

4[59] showed that the fluctuations in colour gradients within the source galaxy sample in the
Euclid weak lensing survey due to environmental effects will not be a significant source of uncertainty.
However, the question addressed in that work is different from the question considered here, which
is the impact of fluctuations in colour gradients in the training sample used to derive the corrections,
rather than in the galaxy sample to which those corrections will be applied.

5For context, [97] showed that for tests of photometric redshift quality, the number of spectro-
scopic fields of this size that would be required for future surveys to avoid the influence of cosmic
variance ranges from many tens to hundreds.
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with colour gradient calibration, or that division into several galaxy types or colours

is truly enough to remove the colour gradient effect due to its being a higher order

effect, consistent with the findings of [60] using synthetic galaxy models.

3.5.2 Effective impact on current and future surveys

In addition to the order of magnitude of these effects presented in the previous sub-

section, it is important to bear in mind how current and future surveys plan to use

HST data.

For example, before the Euclid survey begins, when carrying out tests of shear estima-

tion methods, their simulated data will be based on HST in many ways: estimation of

simple aspects of morphology (Sérsic n, bulge fraction), intrinsic ellipticity distribu-

tion, colour gradient calibration, and higher order moments (detailed morphology).

Our results suggest that care should be taken to ensure that those simulations are not

overly influenced by environment effects in the HST data, so that incorrect conclu-

sions will not be drawn about the redshift-dependence of shear calibration for shear

estimation methods to be used by the survey.

However, once the Euclid survey is underway, the derivation of simple galaxy mor-

phology and the intrinsic ellipticity distribution will be based on the 40 deg2 Euclid

deep field, which goes two magnitudes fainter than the rest of the survey. With that

data in hand, the Euclid weak lensing results will be less reliant on the much smaller

and more cosmic variance-limited HST fields, using them only for colour gradient cal-

ibration and estimates of the impact of detailed galaxy morphology (since the HST

resolution is higher than that of Euclid). The findings of [58] demonstrate that the

area of this deep field is sufficient to accomplish the goal of determining the intrinsic

ellipticity distribution at the accuracy required for shear calibration purposes for the

Euclid survey.

In contrast, for ground-based surveys such as LSST, high-resolution space data will

play a more important role in the understanding of the galaxy intrinsic ellipticity and

morphology distributions, since even a deep field in a ground-based survey faces fun-

damental resolution limits that prevent the derivation of detailed information about

the faint galaxy population. Galaxies that are near the resolution limit for a ground-
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based survey are still very well-resolved in HST, making it the best resource for

detailed information about them. Once the Euclid deep field is publicly available, the

information from it will be beneficial to ground-based surveys as well.

Finally, our results for the effect on the intrinsic ellipticity distributions suggest that

even current surveys should be careful to avoid this effect. While use of COSMOS

without accounting for the effect that we have identified will cause a bias that is

similar to the final requirements on the shear systematic errors for Stage III surveys,

there are other elements in the systematic error budget, so ideally this effect should be

mitigated somewhat using, for example, the wider redshift binning strategy that we

tested in Sec. 3.4.3. Use of significantly smaller fields than COSMOS, while possibly

helpful in building up a deeper galaxy sample, should naturally increase the impact

of cosmic variance on the training dataset, which should be quantified as part of the

systematic error budget.

3.6 Conclusions

In this study, we have shown that the shape distributions of galaxies (to a statisti-

cally significant degree) and morphological parameters like Sérsic n and bulge-to-total

ratios (more marginally) depend on the local environments when dividing up the COS-

MOS sample into redshift slices along the line of sight. The redshift slices used for

our primary analysis had a width of ∆z = 0.05. Our findings are robust to the choice

of shape estimator from Sérsic profile fits vs. using centrally weighted moments-based

shear estimates.

These findings are relevant to attempts to use HST-based galaxy samples to calibrate

shear estimates in weak lensing surveys. In general, the approach would be to define

galaxy samples using all galaxies in redshift slices, and determine a redshift-dependent

shear calibration. Our findings highlight the danger in such an approach: while we

would like our simulations to include true evolution in galaxy properties with redshift,

this approach also includes spurious variations in galaxy properties due to the large-

scale structure within the COSMOS field. Since the fidelity of weak lensing shear

estimates depends sensitively on the intrinsic shape distribution and galaxy morpho-

logical parameters, the conclusions for the redshift-dependent shear calibration would
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be incorrect. As shown in Sec. 3.4.3, these errors are reduced as the redshift slices

that are used become wider, so that the impact of local overdensities becomes washed

out. However, our results suggest that even ∆z = 0.2 may not be wide enough (and

this is becoming dangerously close to the size of tomographic redshift bins to be used

for weak lensing analysis in upcoming surveys). Thus, more complex schemes may be-

come necessary to fully overcome this issue, depending on exactly how the HST data

is to be used. As discussed in Sec. 3.5, particular care may be needed in ground-based

surveys that will use the HST data to model many aspects of the galaxy population.

In contrast, for Euclid, use of the relatively large area Euclid deep data to constrain

many aspects of the galaxy population means that these issues with HST data are

less important, though still not completely ignorable.

It is important to keep in mind the nature of COSMOS with respect to other possible

HST training samples. COSMOS represents the largest contiguous field surveyed

by the HST, with the sizes of other major HST fields such as GOODS and AEGIS

lagging by at least a factor of 9 (for AEGIS, and more for GOODS). Combinations

of CANDELS with existing datasets may ultimately be as large as 1/6 the COSMOS

area. Hence, if cosmic variance due to structures along the line of sight in COSMOS

are problematic for its use as a training sample for weak lensing simulations, studies

that use even smaller area training samples are even more prone to errors, with the

UDF serving as an extreme case. If the size of the HST survey is small enough,

there is no reason a priori to suppose that the galaxy population is typical even

when using all galaxies along the line of sight, without any division into redshift

bins. Of course, future surveys are unlikely to pick just a single survey to serve

as the basis for their image simulation training sample, but rather will combine as

many as possible. Combining multiple surveys will reduce the cosmic variance and

therefore the significance of the effects discussed in this work. However, as COSMOS

is significantly larger than other HST surveys, combining COSMOS with smaller

fields is unlikely to ameliorate this effect. Thus, it will be important to carefully

choose the size of redshift slices used to derive properties of the galaxy population so

as to be minimally affected by this issue.

A final consideration is the question of how applicable these results using volume-

limited samples are to simulations of upcoming weak lensing surveys, which will

exclusively use flux-limited samples. For our analysis, the volume-limiting sample
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was necessary to avoid complications due to varying galaxy populations in each red-

shift slice, allowing us to isolate purely environmental effects. In principle, if the

morphology-density correlations that we have identified turn out to not exist for

intrinsically fainter galaxy populations, then at low redshift (where a flux limited

sample will include galaxies that are intrinsically much fainter than at high redshift),

the effects will be less serious for upcoming lensing surveys. However, we do not

have any particular reason to believe that these effects will vanish for fainter galaxies.

Moreover, at higher redshift where only intrinsically bright galaxies can be seen, the

effect should be present at a level similar to what we have found here. Since higher

redshift galaxies tend to dominate cosmological shear estimates (due to their higher

shears), our findings will be important to take into account. It would also be advis-

able to carry out a future study of this effect at higher redshift (beyond 0.85), using

for example the data from the CANDELS survey.

In conclusion, our results have serious implications for the plans to create realistic

image simulations that will be used to derive redshift-dependent shear calibrations

for upcoming weak lensing surveys. If care is not taken to mitigate this effect, then

the cosmic variance in the training sample may bias the conclusions regarding shear

calibration for redshift slices that represent significant overdensities or underdensities

compared to the typical galaxy population. This is particularly a problem when using

the smaller HST surveys, where a single galaxy cluster or a void could completely

dominate the galaxy population in a given redshift slice. To mitigate this problem, it

will be imperative to (a) collect training data from widely separated patches on the

sky, and (b) take care to use redshift slices that are broad enough that these effects

are reduced, so as to wash out the effect of any signal overdensity or underdensity

on the simulated galaxy population. By employing these mitigation schemes, there

is every reason to believe that the effect we have identified can be reduced to a small

component of the systematic error budget of major upcoming lensing surveys.
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Chapter 4

The Impact of Interpixel

Capacitance in CMOS Detectors

on PSF shapes and Implications

for WFIRST

Journal reference: Publications of the Astronomical Society of the Pacific (PASP)

2016, Vol. 128, Issue 967

Original authors : Arun Kannawadi, Charles A. Shapiro, Rachel Mandelbaum, Christo-

pher M. Hirata, Jeffrey W. Kruk, Jason D. Rhodes

Original abstract : Unlike optical CCDs, near-infrared detectors, which are based on

CMOS hybrid readout technology, typically suffer from electrical crosstalk between

the pixels. The interpixel capacitance (IPC) responsible for the crosstalk affects the

point-spread function (PSF) of the telescope, increasing the size and modifying the

shape of all objects in the images while correlating the Poisson noise. Upcoming weak

lensing surveys that use these detectors, such as WFIRST, place stringent require-

ments on the PSF size and shape (and the level at which these are known), which

in turn must be translated into requirements on IPC. To facilitate this process, we
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present a first study of the effect of IPC on WFIRST PSF sizes and shapes. Realis-

tic PSFs are forward-simulated from physical principles for each WFIRST bandpass.

We explore how the PSF size and shape depends on the range of IPC coupling with

pixels that are connected along an edge or corner; for the expected level of IPC in

WFIRST, IPC increases the PSF sizes by ∼5%. We present a linear fitting formula

that describes the uncertainty in the PSF size or shape due to uncertainty in the

IPC, which could arise for example due to unknown time evolution of IPC as the

detectors age or due to spatial variation of IPC across the detector. We also study of

the effect of a small anisotropy in the IPC, which further modifies the PSF shapes.

Our results are a first, critical step in determining the hardware and characterization

requirements for the detectors used in the WFIRST survey.

4.1 Introduction

A number of ongoing and future space telescopes will focus on the near-infrared

(NIR) or infrared part of the electromagnetic spectrum, which provide a view through

the gas and dust in nearby star-forming regions, and allow higher signal-to-noise

imaging of high-redshift galaxies. Images in the NIR are currently being taken by the

Wide Field Camera 3 [WFC3; 98] in the Hubble Space Telescope and the Wide-field

Infrared Survey Explorer [WISE; 99]. Upcoming space telescope missions such as

NASA’s James Webb Space Telescope [JWST; 100] and Wide Field InfraRed Space

Telescope1 [WFIRST; 1, 2, 50] will also focus on infrared imaging. WFIRST mission

will provide high quality image data for weak gravitational lensing studies.

Weak gravitational lensing [for a review, see for example 24, 27, 41, 101] is the de-

flection of light rays from background sources such as galaxies by matter in the fore-

ground, resulting in a small magnification and shape distortion. Weak lensing can be

a powerful cosmological probe constraining cosmological parameters [e.g., 55, 56, 57,

102], test theory of gravity on large scales [e.g., 103, 104, 105] and on smaller scales

relate the galaxies to their dark matter halos [e.g., 106, 107, 108, 109, 110, 111, 112].

Measuring the small but coherent distortions of the shapes of the galaxies, without

the knowledge of their intrinsic shapes, is a challenging task that requires images with

1http://wfirst.gsfc.nasa.gov/
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high resolution and a statistical understanding of distances to the source galaxies [see

113, for recent tests on multiple methods]. Weak lensing measurements in surveys

like WFIRST will require detailed (sub-percent level) knowledge of the point-spread

function (PSF), from a combination of a priori modeling and empirical estimates

using images of stars, in order to remove its effect on galaxy shapes.

While there are differences between the detectors for these missions, most notably

the array size and cutoff wavelength, all of them use a hybrid CMOS readout archi-

tecture with mercury cadmium telluride (Hg1−xCdxTe, often abbreviated HgCdTe)

as the light-sensitive material. In particular, they use the HxRG2 family of detectors

manufactured by Teledyne Imaging Sensors. Extensive work on understanding and

characterizing the impact of detector-based effects on astronomical imaging has been

done for CCDs, which are used for optical imaging in many telescopes [see for e.g.,

114, 115, 116, and references therein]. The use of HxRG detectors for astronomy is

relatively recent, and understanding the systematic errors in astronomical measure-

ments that result from HxRG detector effects is an active area of research.

Among the systematic effects in these detectors that will be relevant for WFIRST are

non-linearity, reciprocity failure [117], interpixel capacitance (IPC), and persistence.

Non-linearity refers to the small non-linearity in converting the charges in the pixel

to the voltage read by the read-out assembly. Reciprocity failure usually implies that

the response of a detector depends not only on the total number of incident photons,

but also on how they are distributed in time (e.g., 2× illumination for 1/2 of the

time leads to a different measurement of the total flux). This is typically a non-linear

effect as well. Persistence is the phenomenon of retaining a small but non-negligible

fraction of the flux in images from the previous exposures after a reset. Interpixel

capacitance, the effect that we focus on in this study, is a form of electrical cross-talk

between the pixels in the detectors. This is a linear effect and Sec. 5.3 of this paper

presents a brief review of this effect.

Any realistic galaxy image simulations used for simulating PSFs and testing weak

lensing shear estimation algorithms must include these effects in the images. To fa-

cilitate this simulation process, the authors have built a WFIRST module within

2HxRG stands for HAWAII x × x pixels with Reference pixels and Guide mode, and HAWAII
stands for HgCdTe Astronomical Wide Area Infrared Imager.
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GalSim3 [69], an open-source simulation package, that has the routines to include the

above mentioned detector effects and reasonable values for the parameters involved.

Additionally, values for other parameters such as the pixel scale, jitter, dark current,

thermal backgrounds are also provided. The WFIRST module also takes into account

of the telescope’s pupil plane configuration and forward simulates the PSF from phys-

ical principles. Throughout this paper, the term “PSF” refers to the effective PSF

that is a convolution of the pixel response function (a 2-D top-hat function) and the

optical PSF (distribution of flux at the focal plane from a point source).

The pixel scale for the WFIRST-AFTA telescope must strike a balance between the

need for having a large field of view while achieving the sampling needed to resolve

galaxy shapes. It is chosen to be 0.11′′ [2] which causes the PSFs to be undersampled

(more on this in Sec. 4.4.3). Better sampled images are expected to be achieved in

post-processing by combining the images from a dither sequence.

The action of various detector effects cannot be expressed as a convolution for different

reasons. Voltage non-linearity and reciprocity failure are intrinsically non-linear while

convolution is a linear operation. Although IPC is specified by a convolution kernel, it

cannot be considered as a part of the PSF (see Sec. 4.2.3 for details). Both the galaxy

and PSF images must be corrected for the detector effects explicitly (in each exposure)

before the galaxy image is corrected for the PSF (see, e.g., [90]) in order to perform

shape measurement. Any imperfections in this correction, either due to the correction

algorithm or due to insufficient knowledge of the detector effects themselves, can

result in errors in PSF models that affect weak lensing shear estimation. To enable

future studies of how detector effects and their uncertainties affect shear estimation,

here we study the effect of IPC on the PSF images. Thus, the goal of this study is

two-fold:

1. to understand how the observed PSF changes as a function of the level of cou-

pling between pixels, and

2. to relate the errors in the coupling parameters to the errors in the reconstructed

PSF.

Ultimately, these results will be useful for setting requirements on hardware and

software for the upcoming WFIRST mission. For WFIRST, in addition to knowing

3https://github.com/GalSim-developers/GalSim

77

https://github.com/GalSim-developers/GalSim


the overall size of PSFs, the ability to predict them is also of utmost interest.

This paper is organized as follows. We present the detector model and explain the

origin of interpixel capacitance in Sec. 5.3. Sec. 4.3 summarizes the definitions of PSF

sizes and shapes used in this paper. We present in Sec. 4.4 the details about how we

simulate the WFIRST PSFs and how to overcome the problem of undersampling with

IPC taken into account. In Sec. 4.5, we present our results for how the PSF size and

shape is affected by IPC. Finally, our conclusions are summarized in Sec. 4.7.

4.2 Interpixel Capacitance

In this section, we present a brief review of interpixel capacitance, including its origins

and its effect on astronomical images.

4.2.1 Detector model

The photodetector array is commonly modeled (see, for example, [118, 119]) as a

rectangular array of capacitors indexed by i, j with node capacitance C[i, j], each

receiving a charge Q[i, j] corresponding to the accumulated photocurrent entering

the node over some integration time. In the ideal case of zero cross talk between the

nodes, the detected voltage is

V [i, j] =
Q[i, j]

C[i, j]
(4.1)

The node capacitances of all pixels are fabricated to be the same to a very high

accuracy, i.e., C[i, j] = Cnode, making the system invariant under shifts. If Cnode

is a constant independent of the signal, then the photodetector array is a linear

system, in addition to being shift-invariant. This linear shift-invariant (LSI) system

is characterized by a 2-dimensional impulse response function h. Thus, the voltage

read out from a pixel (assuming no read noise) is given by

V [i, j] = (Q ∗ h) [i, j] =
∑

m

∑

n

Q[m,n]h[i−m, j − n]. (4.2)
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In the ideal case,

hideal[i−m, j − n] =
δimδjn
Cnode

, (4.3)

where δim and δjn are Kronecker delta functions. That is, the voltage in a pixel

depends only on the charge accumulated in that pixel. 1/Cnode is then the conversion

gain. Factoring out the gain explicitly gives us

V [i, j] =
∑

m

∑

n

1

Cnode
Q[m,n]K[i −m, j − n], (4.4)

where K is called the IPC kernel.

However, in reality, fringing fields from the edges of the node capacitors cause the

voltage readings in a pixel to depend on the charges in neighboring pixels. This effect

is modeled by introducing a coupling capacitance Cc between pixels. This interpixel

capacitance in principle couples every pixel to every other pixel. It is different from the

phenomenon of charge diffusion, which involves actual physical movement of charge

carriers to adjacent pixels; IPC is a deterministic effect arising through fringing fields

without any actual movement of charge carriers. CCDs are not known to exhibit any

IPC, although a crosstalk due to capacitive coupling between neighboring channels

in the read-out electronics exists [120].

Pixels typically have some level of non-linear response, i.e., C[i, j] varies with the

charge. This variation of C[i, j] from the nominal value of Cnode is modeled separately

as a non-linearity in the gain of the system, leaving IPC to be modeled as a strictly

linear effect. Identical coupling capacitances between the nodes, by fabrication, ensure

that the system is still shift-variant. 4 Thus, the effect of interpixel capacitance can

still be captured by a kernel K that is convolved with the image.

4.2.2 Parametrizing IPC

For any IPC kernel K, the entries, which refer to relative capacitance values, must

satisfy 0 ≤ K[i, j] ≤ 1 ∀(i, j) [see 119]. Moreover, for unit nominal gain, the sum of

all voltages is unity (in suitable units) for a unit charge (in suitable units) in some

4This is not strictly true. However, as long as the length scale over which the coupling changes
significantly is more than a few pixels, all the arguments hold.
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arbitrary node. This arbitrary node, which must be far from the edges, can be defined

as the origin for convenience, i.e., if Q[m,n] = δm,0δn,0, then

Cnode

∑

i

∑

j

V [i, j] = 1, (4.5)

implying
∑

i

∑

j

K[i, j] = 1. (4.6)

This normalization for the IPC kernel ensures charge conservation in the case of a

generic signal.

As mentioned in Sec. 4.2.1, a capacitive coupling exists between every pair of nodes,

which decreases sharply with the distance between them. For small interpixel cou-

pling, i.e., Cc/Cnode ≪ 1, we can consider only the coupling between pixels sharing

an edge and ignore the rest, which are typically of second or higher order in α. In

this limit, the kernel is described by a 3 × 3 matrix with 8 degrees of freedom (see

Eq. 4.6). Symmetric coupling between the nodes is a reasonable assumption, i.e.,

K[i, j] = K[j, i]. The simplest, non-trivial IPC kernel is then given by

Kα =







0 α 0

α 1− 4α α

0 α 0






. (4.7)

Note that we have assumed α≪ 1, and thus 1− 4α is always positive.

Coupling between pixels that share a corner (diagonal coupling) can be stronger

than second nearest neighbor (along one of the axes) due to proximity. Thus, we

can introduce an additional level of complexity by introducing α′ to represent the

diagonal coupling, whose value can be independent of α.

Kα,α′ =







α′ α α′

α 1− 4(α + α′) α

α′ α α′






, (4.8)

where typically α′ < α. This is a reasonable assumption since in typical H2RG devices

α and α′ are typically of order 10−2 and 10−3 as we will show below. However, it is
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important to confirm that the effect of α′ on the PSF size and shape really is small

compared to that of α, to justify that the kernel can indeed be truncated to 3 × 3

matrix.

There can exist a measurable asymmetry along the two axes of the detectors [121], i.e.,

the capacitive coupling along the rows can be different from that of the columns. Small

anisotropies that arise because of this can have a significant effect on the ellipticity

of objects we want to study. This leads us to a 3-parameter kernel given by

Kα,α+,α′ =







α′ α− α+ α′

α+ α+ 1− 4(α + α′) α + α+

α′ α− α+ α′






. (4.9)

Care has to be taken at the edges since the above equation cannot possibly hold.

Along the edges of the physical detector, the assumed IPC model is not valid. But

along the edges of postage stamps, one can simply extend the sky image or simply

truncate the edges.

For the IPC kernel Kα given in Eq. (5.15), to first order in α, the elements of the

post-IPC image Iobs are related to those of the pre-IPC image Iim as

Iobs[i, j] = (1−4α)Iim[i, j]+α (Iim[i+ 1, j] + Iim[i− 1, j] + Iim[i, j + 1] + Iim[i, j − 1]) .

(4.10)

A similar equation with more terms can be written for the IPC kernels given in

Eqs. (4.8) and (5.16). For the IR channel of WFC3, direct measurements of the IPC

kernel made on-orbit [121] yield

KWFC3 =







0.0011± 0.0006 0.0127± 0.0009 0.0011± 0.0006

0.0163± 0.0014 0.936± 0.0045 0.0164± 0.0011

0.0011± 0.0006 0.0127± 0.0010 0.0011± 0.0006






, (4.11)

which can be described by the 3-parameter model in Eq. (5.16). For H4RGs, the

nominal values for the IPC parameters (given by a subscript 0) are α0 = 0.02, α′
0 =

0.002 and α+,0 = 0 (Content, D. personal communication, 2015-11-05).
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4.2.3 Implications of IPC

Failure to account for IPC results in underestimation of conversion gain [119, 122,

123] and overestimation of various kinds of quantum efficiencies [DQE; 124]. Thus,

IPC must be estimated and accounted for in order to understand the fundamental

parameters of the detectors. In addition, one must account for the effect of IPC on

image shapes, which is the focus of this paper.

If one were to obtain an image of the PSF by pointing the telescope at a star, the

image of the star will include the effects of IPC. The effect of the IPC is to blur the

image through a convolution. However, the IPC kernel may be considered as being

distinct from the PSF for several reasons. Some of them are:

1. The PSF is an intrinsically continuous profile that is convolved with the image

and is discretized only when the light hits the detector. The IPC kernel, on the

other hand, is inherently discrete, with a pre-defined pixel scale.

2. The effects of IPC are centered on each pixel, independent of where the photons

land.

3. The effect of IPC comes in later than that of the PSF, at the detector level, after

the addition of dark current, Poisson noise and nonlinearity of the conversion

gain. Thus the IPC introduces correlations in the signal and noise, whereas the

PSF does not correlate the noise.

IPC corrections are therefore different from the PSF corrections, and could be applied

as a deconvolution kernel (essentially the inverse of the IPC kernel) before the majority

of the image processing. Moreover, they would be applied to each exposure, while PSF

corrections to galaxy shape measurements would typically be made after obtaining

an oversampled image from multiple exposures.

With a precisely known IPC kernel, and in the absence of detector noise, the original

image at the focal plane can be recovered by direct deconvolution. However, read-

out noise and quantization noise is added after IPC convolution occurs. Despite this

fact, the straightforward deconvolution or division in Fourier space can be done [125],

as it is stable to noise due to the absence of zeros in the Fourier representation of

the IPC kernel. This deconvolution would now introduce additional correlations in

the read noise and quantization noise. Thus an exact recovery of the noisy image,
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removing just the effects of the IPC, is impossible. As an alternative to an exact

correction scheme, which would have recovered the original noisy image in the absence

of noise after IPC, an approximate, fast correction scheme suggested in [125] should

be evaluated to see if it is sufficient. The approximate correction scheme suggests

convolving the individual exposures with another kernel, with the sign of the IPC

parameters reversed. For the 3-parameter kernel (Eq. 5.16), it involves convolving

the image with another kernel

K ′
α,α+,α′ = K−α,−α+,−α′ =







−α′ −α + α+ −α′

−α− α+ 1 + 4(α + α′) −α− α+

−α′ −α + α+ −α′






(4.12)

to correct for IPC effects to first order in the coupling parameters. For the 1-parameter

kernel (Eq. 5.15), (Kα ⊗K ′
α)ij = δi0δj0+O(α2). Here, the (0, 0) element refers to the

center element of the kernel. For α ∼ 0.02, which is roughly what H4RG detectors

are anticipated to exhibit, α2 ∼ 0.0004 which may be neglible. For kernels with more

than one parameters, bi-linear correction terms may exist, which are also small in

magnitude. If it turns out thatO(α2) terms are not negligible for shape measurements

for WL analysis, then one can always go for the direct deconvolution.

As stated in Sec. 5.1, one of the main goals of this study is to highlight the uncertainty

in the PSF due to imperfect knowledge of the IPC parameters. In real detectors, the

coupling between the pixels varies spatially [126], violating the assumption that IPC

is a shift-invariant effect. However, as long as the scale on which the coupling varies

is greater than a few pixels, we can treat IPC as approximately shift-invariant with

kernel parameters that vary slowly with position. Thus, the IPC parameters cannot

be known perfectly and come with errorbars, which would also be the case if there is

some unknown time-dependence of the IPC. If δα denotes the difference between the

actual parameters and their assumed (nominal) values, then Kα ⊗ K ′
α+δα will have

terms that are of order δα.

Throughout this work, we carefully distinguish ∆X from δX ; the former refers to

the change in the quantity X due to the IPC and the latter refers to the change in

a quantity X due to error in determining the IPC parameters or equivalently the

change due to a small deviation of the IPC parameters from their nominal values.

Thus, ∆X represents a systematic change that is correctable (at least, in principle),
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while δX represents a systematic error.

4.3 Definitions of sizes and shapes

4.3.1 Based on quadrupole moments

A common way to define the sizes and shapes of objects in astronomical images (PSFs,

galaxies) uses weighted second moments [91]. The first moments of an image I (in

arbitrary units) are defined as

x0 =

∫

d2x xw(x)I(x)
∫

d2x w(x)I(x)
, (4.13a)

and the second moments as

Mij =

∫

d2x (x− x0)i(x− x0)jw(x)I(x)
∫

d2x w(x)I(x)
(4.13b)

for some weight function w(x). Here, x and x0 are 2-vectors, i.e., x = (x1, x2) =

(x, y).

For a given weight function, one possible definition of linear object size σ is given

by [det(M)]1/4. Another is the square root of the trace of the moment matrix,

tr(M)1/2 =
√

Mxx +Myy. Both options have dimensions of length and are invariant

under rotation; however, the determinant is less sensitive to the shear, so we use the

determinant to define σ.

The ellipticity of the object can be expressed in terms of the second moments as

(e1, e2) =

(

Mxx −Myy

Mxx +Myy
,

2Mxy

Mxx +Myy

)

. (4.14)

Often, the ellipticity is expressed as a complex number e = e1 + ie2. The complex

ellipticity can also be specified by the magnitude of the ellipticity |e| =
√

e21 + e22 and

an angle β, where β is the position angle, as

(e1, e2) = |e| (cos 2β, sin 2β) . (4.15)
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The two linear sizes are related through the total ellipticity by the equation

tr(M) =
2σ2

√

1− |e|2
. (4.16)

Choosing the weight function

When w(x) is a constant, Eq. (4.13b) reduces to unweighted second moments, which

are divergent in the presence of noise [127]. Moreover, diffraction-limited PSFs are

Airy-like, with intensity decreasing with distance from the image center as 1/r3 for

large r. Thus, the elements in the moment matrix for an Airy PSF diverge logarithmi-

cally and hence are formally infinite. In practice, due to the finite size of the detector,

one would obtain finite values, but they would depend strongly on the number of pix-

els used to calculate the moments, which is undesirable. This is true independent of

the exact form of the PSF when the pupil of the telescope has a sharp edge.

[127] introduced circular Gaussian weight functions in order to obtain finite values

of higher order moments. [91] generalized the weight function to be an elliptical

Gaussian that matches the shape of the object. This can be achieved in principle by

finding the best-fit elliptical Gaussian to the image by minimising

E =

∫

d2x

∣

∣

∣

∣

I(x)−A exp

[

−1

2
(x− x0)

TM−1(x− x0)

]∣

∣

∣

∣

2

(4.17)

over the six independent variables in (A,x0,M). The optimal values of x0 and M

satisfy Eqs. (4.13a) and (4.13b) for the weight function

w(x) = exp

[

−1

2
(x− x0)

TM−1(x− x0)

]

. (4.18)

In practice, it is more common to determine this weight function via an iterative pro-

cess than by minimising Eq. (4.17), resulting in the term “adaptive moments”.

For Gaussian objects, the adaptive and unweighted moments are equivalent, while

the adaptive size of a non-Gaussian PSF is typically smaller than its unweighted size

since the former downweights the extended wings of the PSF.
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Transformation properties

The image arising from the convolution of the IPC kernel with a given image can be

seen as the sum of shifted and scaled versions of the original image (see Eq. 4.10).

Eq. 4.10 is a particular case of a generic linear transformation of the image given

as

I(x) → Inew(x) = (KIPC ⊗ I)(x) =
∑

dx

λ(dx)I(x+ dx). (4.19)

for some set of coefficients λ. The transformation of the best-fit Gaussian parame-

ters (obtained in the form of adaptive moments) under the individual operations of

rescaling and shifting are simple:

I(x) → Inew(x) = λI(x) =⇒ (A,x0,M) → (λA,x0,M) (4.20)

I(x) → Inew(x) = I(x+∆x0) =⇒ (A,x0,M) → (A,x0 +∆x0,M) (4.21)

A combined spatial translation and intensity rescaling of an image is trivial. However,

the operation of finding the best-fit single Gaussian does not behave in any simple way

under a general linear transformation, i.e., the best-fit Gaussian to an image I1(x)

and the best-fit Gaussian to an image I2(x) do not determine the best-fit Gaussian

to an image I3(x) = I1(x) + I2(x) in a straightforward manner.

Unlike the adaptive moments, the unweighted moments are amenable to analytical

calculations. Since the unweighted moments of two images simply add to give the

unweighted moments of the third image obtained by convolving the two images, we

can write an expression for the unweighted size (if it exists) of any object as a function

of the two IPC coupling parameters α and α′, including the pixel response as

σun,obs(α, α
′) =

√

σ2
un + 2α+ 4α′ =

√

σ2
un,int +

1

12
+ 2α+ 4α′, (4.22)

where σun,obs and σun are the unweighted sizes with and without the effects of IPC,

and σun,int is the intrinsic size of the object (without the broadening due to the pixel

response) in pixels. We derive this relation in Appendix A.

The expression derived may not be useful for space-based PSFs, but for larger objects

(σun,int ≫
√

1/12) that are approximately Gaussian (for which the adaptive and
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unweighted moments agree), it can serve as a good approximation for the adaptive size

if α′ < α ≪ 1. The conditions on α, α′, and σun,int ensure that the non-Gaussianity

in the final image is small. As an expression for the unweighted size, Eq. (4.22) holds

true in all cases (if σ exists).

4.3.2 Other size definitions

There are other size definitions that are not based on second moments. The full width

at half maximum (FWHM) is one common measure of the size of a PSF. For an Airy

PSF corresponding to a wavelength λ,

FWHM (in pixels) ≈ 1.03λ

sD
, (4.23)

where D is the telescope diameter and s is the pixel scale in units of radians/pix.

Another measure of size is the half-light radius, Re, which is the radius of the circle

centered at the object centroid that encloses 50% of the energy. It is sometimes

denoted as EE50. For an Airy PSF,

Re = EE50 (in pixels) ≈ 0.535
λ

sD
. (4.24)

Note that the EE50 is a radius and the FWHM is more like a diameter.

Diffraction-limited PSFs have large wings. The adaptive moments represent the core

size of the PSF, while the unweighted moments and (to a lesser extent) the non-

moment-based sizes also capture information about these wings. The WFIRST Sci-

ence Definition Team report [SDT; 2] specifies the requirement of PSF sizes in terms

of EE50. However, for weak lensing systematics, we focus on the PSF core size from

the adaptive moments. For comparison, we present the half-light radius and adap-

tive size for the PSFs in Table 4.2, with and without diffraction spikes (which were

neglected in the WFIRST SDT report).

Realistic PSFs have features such as diffraction spikes from the supporting struts,

central obscuration, aberrations and pixelization and hence the resulting profile is

not an Airy pattern (see Fig. 4.2). Thus, one cannot use Eq. 4.23 or Eq. 4.24 to

estimate the PSF size. One way to define these quantities is to fit the image to a
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profile with well-defined FWHM or EE50. However, as we will see in Sec. 4.4, the

WFIRST PSFs have complex features that are not captured by simple PSF models.

Thus, we will use an empirical measurement of EE50 directly from the images.

Measuring FWHM directly from the PSF image is a difficult task and is highly sen-

sitive to noise in the image. Measuring the half-light radius is comparatively robust

since we integrate (partially) the light profile instead of using the individual samples

of the profile. The first task in measuring the half-light radius of a PSF is to identify

the centroid of the image. Starting from that location, we find the radius of the small-

est circle that contains at least 50% of the total flux. This is done by calculating the

distance of every pixel from the center and determining empirically the azimuthally

averaged radial profile. That is, given a center (x0, y0) and a separation from the

centroid R, the fraction of light enclosed f(R; x0, y0) is

f(R; x0, y0) =
∑

i,j

I[i, j]Θ(R2 − (i− x0)
2 − (j − y0)

2), (4.25)

where Θ() is the Heaviside step function. Here we have implicitly assumed that the

PSF has unit flux. The half-light radius is calculated by solving for R such that

f(R; x0, y0) = 0.5 for some x0, y0.

The half-light radius can be fairly sensitive to the choice of the centroid. For Airy-

like PSFs that exhibit circular symmetry, which would be the case if the supporting

struts were radial (see Sec. 4.4.1 for details) and in the absence of aberrations, the

center is unambiguously the peak of the profile. But the WFIRST PSFs do not

exhibit any such symmetry and hence it is not evident where the centroid should

be. In simulations, one can locate the ‘true’ center by identifying the center of the

underlying Airy profile and treat aberrations as re-distribution the light around the

‘true’ center, thus affecting the half-light radius (but not the centroid itself). However,

in real observations of stars to determine the PSF, it is impossible to know where the

‘true’ centroid would be and thus we need a prescription to calculate the centroid

given a PSF image. One natural choice is to use the coordinates obtained from

Eq. 4.13a as the centroid for calculating the half-light radius, which will not coincide

with the ‘true’ center of the PSF in general.
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4.4 Methods

4.4.1 WFIRST module description

Realistic WFIRST PSFs used in this work are simulated using GalSim [69]. GalSim

is a commonly-used open-source tool for the weak lensing community to simulate

realistic images of galaxies. The authors of this paper have built a WFIRST module

within GalSim, which is now publicly available in GalSim v1.3. We provide a brief

description of the WFIRST module below.

Filter responses for the six bandpasses - Z087, Y106, J129, W149, H158 and F184 -

are available in this module, along with the blue and red wavelength limits for each

of the filters and the corresponding effective wavelengths, which are the bandpass-

weighted mean wavelength. This information, listed in Table 4.1, can be retrieved by

calling the getBandpasses routine within the WFIRST module.

The focal plane assembly (FPA) of the WFIRST-AFTA telescope consists of 18 H4RG

detectors. PSFs corresponding to one or more of these detectors can be generated by

passing the detector numbers as parameters to the argument SCAs of getPSF. The

variations of the PSFs within each detector were verified to be small and GalSim v1.3

does not account for this variation, though future releases of GalSim may include

them.

Complex, aberrated wavefronts incident on a circular pupil can be approximated by

a sum of Zernike polynomials. Following the convention in [128], the polynomials

are labelled by an integer j. The low order Zernike polynomials map the low-order

aberrations commonly found in telescopes, such as defocus (j = 4), astigmatism

(j = 5, 6), coma (j = 7, 8), trefoil (j = 9, 10), and so on. Using these polynomials up

to j = 11, corresponding to spherical aberration, the WFIRST PSFs corresponding

to any of 18 detectors can be constructed from the getPSF routine.

By default, getPSF outputs instances of the ChromaticOpticalPSF class which can

be convolved with a galaxy or star that has an SED to make a chromatic image.

Alternatively, the user has an option to obtain instances of achromatic OpticalPSF

class, which evaluates the chromatic WFIRST PSFs at a particular wavelength pro-

vided by the user. For the results described in this paper, PSFs for each of the

89



six bandpasses are obtained by evaluating the chromatic PSFs at the corresponding

effective wavelengths.

The WFIRST-AFTA telescope has a central obscuration in the pupil plane and the

supporting struts are not radial (see Fig. 4.1). The getPSF routine in the WFIRST

module takes the pupil plane configuration into account and simulates the PSF im-

ages, with expected aberrations according to the latest design with chromatic effects

if requested by the user, for each of the bandpasses and for each of the 18 H4RG

detectors in the focal plane [129]. This process requires two inputs: the pupil plane

configuration and the aberrations described by the Zernike coefficients, which are

available publicly 5. The latter have been incorporated within the WFIRST module

but in GalSim v1.3, only the circular pupil plane configuration, which is appropriate

for the long-wavelength bands, is incorporated.

The PSFs can be drawn as a GalSim Image instance with the (approximate) native

WFIRST pixel scale of 0.11” per pixel (wfirst.pixel scale), which results in real-

istically undersampled images. The resolution of a PSF image can be increased by

convolving the PSF profile with a top-hat profile corresponding to the pixel response

and then drawing the image at a smaller scale. Fig. 4.2 shows higher-resolution im-

ages of the PSFs generated in such a manner in the absence of IPC or any other

detector effects and noise. However, resampling the PSF image in the presence of

IPC requires combining multiple dithered exposures containing IPC. We explain in

Sec. 4.4.3 how to handle PSF images in the presence of IPC.

The WFIRST module also has routines to incorporate many detector non-idealities

such as nonlinearity, reciprocity failure and IPC, and to model the detector configura-

tion for an observation at a given position with a given orientation angle. Values for

telescope parameters such as the pupil diameter and obscuration; detector parameters

such as the pixel scale, dark current, and IPC coupling; and basic survey parameters

like planned bandpasses and exposure times are also included. These values will be

adjusted as the WFIRST design evolves.

5http://wfirst.gsfc.nasa.gov/science/sdt_public/wps/references/instrument/
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Figure 4.1: Left: WFIRST pupil plane configuration for long wavelength bands W149,
H158, and F184. Right: WFIRST pupil plane configuration for short wavelength
bands Z087, Y106, and J129. The simulations in this work use the pupil plane image
on the left for all wavelengths.

Bandpass Minimum λ Maximum λ Effective λ
Z087 735.0 1010.0 873.39
Y106 900.0 1230.0 1061.43
J129 1095.0 1500.0 1292.11
W149 905.0 2050.0 1458.01
H158 1340.0 1830.0 1577.05
F184 1630.0 2060.0 1837.3

Table 4.1: Table of minimum, maximum and effective wavelengths in nanometers for
each of the six bandpasses.
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Figure 4.2: Simulated PSF images using the WFIRST module in GalSim for different
filters, in logarithmic intensity scale, relative to the brightest pixel at the center.
The PSFs are evaluated at the effective wavelength of the bandpass filters listed in
Table. 4.2. The images correspond to an area of 1.76′′×1.76′′ or 16×16 pixels, drawn
at a scale that is 32 times smaller than the native pixel scale, thus giving images of
512×512 pixels. The filters are arranged in increasing wavelengths from left to right,
top to bottom, i.e., the top row corresponds to Z087, Y106, and J129 (from left to
right) and the bottom row corresponds to W149, H158, and F184 bands (from left to
right).
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4.4.2 Simulation

To study the effects of IPC on PSFs in the simplest possible setting, we ignore all

other detector effects (non-linearity, reciprocity, read noise etc.). Effects that are non-

linear will lead to slightly different PSF images depending on the apparent magnitude

of the star and the exposure time; ignoring them helps to understand the effects on

PSFs independent of such quantities. We also add no noise in our simulations since

that would require specification of a particular signal level.

Resampling the PSF profile (see Sec. 4.4.3) to obtain high resolution PSF images

ensures that our results are less sensitive to where the centroid of the PSF falls

within a pixel (center or edge or corner). We let the signal level of the PSF images

be arbitrary since we do not include noise or any signal-dependent effects, and since

IPC is linear it does not depend on the signal level. For all the reasons mentioned

above, it suffices to simulate one PSF image per band for each of the detectors.

The results presented below are for the center of a randomly chosen detector, 7 [see

129, for numbering system]. We confirmed that our results are not significantly altered

when using other detectors. The WFIRST reference weak lensing program requires

shape measurements in only the J129, H158 and F184 bands. Thus, we present our

results only for the PSFs of these 3 bands.

It is important to understand what features are included in our PSF simulations

and what features are not. First, the PSFs include the diffraction spikes due to the

supporting struts, while the WFIRST SDT report set requirements while masking

out these spikes. The WFIRST requirements [2] also considered jitter and charge

diffusion, which are not included in our simulations. Thus, while the simulated PSFs

are fairly realistic, they differ in certain ways from the PSFs on which the requirements

were set. Also, the short-wavelength bands - Z087, Y106 and J129 - do not use the

appropriate pupil plane configuration shown in Fig. 4.1, but rather use that of the

long-wavelength bands throughout this work.

4.4.3 Overcoming undersampling

Measurements of object sizes or shapes from undersampled images can significantly

differ depending on where the object centroid falls within a pixel. The image sampling
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rate must be at least the Nyquist rate for the band limit set by the optical response of

the system in order to recover the full continuous image from discrete pixel values, and

thereby avoid aliasing. We want to analyse only oversampled images to distinguish

detector effects from aliasing artifacts.

WFIRST PSFs are not Nyquist sampled, by design. In order to measure the change

in the PSF sizes due to interpixel capacitance, we must increase the resolution of the

PSF image. In GalSim, the sampling rate of the PSF image can be increased when

calling the drawImage routine with a scale parameter scale=s/N for some N > 1,

with s being the native pixel scale. This will alter the pixel response as well and

hence does not produce the correct PSF image. One must first convolve the PSF with

the pixel response corresponding to the native pixel scale, then call drawImage with

method=‘no pixel’. For detector effects like voltage non-linearity and reciprocity

failure [see, e.g., 117] for which the detector effect depends on the pixel value, the

above method of obtaining Nyquist-sampled images is sufficient.

However, to include interpixel capacitance, for which the pixel correction depends on

neighboring pixel values, images must be drawn at the native pixel scale. Higher-

resolution images can be obtained from multiple lower-resolution images with sub-

pixel offsets, also known as a dither sequence. Softwares like Drizzle [130], iDriz-

zle [131], and IMCOM [132] use algorithms to combine dither sequences. However,

for uniform sub-pixel offsets, the resolution can be increased by simply interleaving

the images - a technique that dates back to [133]. This technique is ideal for PSF

images from simulations, where offsets can be precisely set, allowing higher sampling

to be achieved without external (to GalSim) image combination software.

The basic interleaving concept is mathematically described as follows: Let In×n[· , ·]
denote some n×n image of some continuous light profile I(x, y) hitting the detector.

Thus

In×n[i, j] =

∫
p

2

− p

2

dx′
∫

p

2

− p

2

dy′ I(ip + x′, jp+ y′) (i, j ∈ {1, 2, . . . , n}), (4.26)

where p is the pixel spacing or more appropriately, the length of the side of a pixel

in the above equation. Consider a set of 3 images I
(m)
n×n[· , ·] for m = 1, 2, 3, obtained

by moving the detector by a distance p/2 along either of the axes or both, with
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I
(0)
n×n = In×n. Therefore

I
(m)
n×n[i, j] =

∫ p

2

− p

2

dx′
∫ p

2

− p

2

dy′ I

(

(i+
b1
2
)p+ x′, (j +

b2
2
)p + y′

)

, (4.27)

with b1, b2 ∈ {0, 1} and m = 2b1 + b2. Given these four images, one can obtain

a 2n × 2n image of I(x, y) with twice the resolution than the original by simply

interleaving these 4 images:

I2n×2n[2i+ b1, 2j + b2] = I
(m)
n×n[i, j], (4.28)

This image has an effective sampling interval of p/2 while the pixel response function

is still p. Note that the interleaved image has a higher flux given by the sum of the

fluxes of the individual images. Since we are interested in measuring only the second

moments, the normalization does not matter.

I2n×2n[i, j] =

∫
p

2

− p

2

dx′
∫

p

2

− p

2

dy′ I(ip/2 + x′, jp/2 + y′) (i, j ∈ {1, 2, . . . , 2n}) (4.29)

One can interleave N × N (N ≥ 2) images in either direction to generate an image

with a sampling rate that is N times greater than the native one, without changing

the pixel response. The interleaveImages routine in galsim.utilities carries out

this process for GalSim users.

An oversampled image of the WFIRST PSF with detector effects included must be

obtained by interleaving multiple undersampled PSF images that have these effects in-

cluded. For band-limited PSFs, one can in principle reconstruct the Nyquist-sampled

PSF from a ‘superimage’ of the PSF by choosing N = ⌈(2p)/(λminNf)⌉, where λmin

is the smallest wavelength in a given bandpass filter and Nf is the focal ratio or

the f-number of the telescope. For the WFIRST-AFTA telescope, p = 10µm and

Nf = 7.8 [2]. This gives N ≥ 3 for J129 and N ≥ 2 for H158 and F184 bands. How-

ever, we choose to oversample the images by a large factor in order to additionally

reduce the quantization error, the error due to discretizing, and to reduce the variance

due to any sub-pixel offsets that PSFs may have. We find that setting N = 32 is

sufficient for all our analysis by checking for convergence in our results as a function

of N .
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Bandpass
Adaptive size σ (in mas) HLR Re (in mas) Ellipticity |e|
w/ spikes w/o spikes w/ spikes w/o spikes w/ spikes w/o spikes

J129 61.50 60.480 114.85 95.06 0.0646 0.0652
H158 66.16 65.884 123.72 103.85 0.0379 0.0417
F184 72.39 72.452 132.37 113.21 0.0246 0.0292

Table 4.2: Table of PSF sizes and ellipticity. Adaptive sizes and half-light radii in
milliarcseconds (mas) and magnitude of ellipticities are tabulated for the PSFs of the
J129, H158 and F184 bandpasses. Size and ellipticity measurements for the PSFs
without including the diffraction spikes are also tabulated, so as to be able to relate
to the values in WFIRST documents [1, 2].

The oversampled image is a special linear combination of the undersampled images,

such as IMCOM would produce from a dither sequence. Oversampling images in this

manner does not introduce any shape measurement error [134].

4.5 Results

4.5.1 Increase in PSF sizes

The High Latitude Imaging Survey Data Set requirements on the half-light radii of

the PSFs are: ≤ 0.12′′ for the J129 band, ≤ 0.13′′ for the H158 band and ≤ 0.14′′ for

the F184 band. These requirements were set using specific methodology, including the

masking of diffraction spikes and inclusion of jitter and charge diffusion. We cannot

compare our PSF sizes with those from [2] due to these methodology differences.

However, since our goal is to determine how IPC affects PSF sizes, we provide our

estimates of PSF sizes without IPC (computed various ways) in Table 4.2 as a baseline,

then consider increases with respect to that baseline.

As mentioned in Sec. 4.3.2, the half-light radius depends on the choice of the centroid

and the centroid computed from Eq. 4.13a will in general not agree with the ‘true’

center of the image. The centroid from the adaptive moments disagrees with the ‘true’

center of the image by at most half a pixel (0.055′′) in either direction. Prior to the

application of IPC, the half-light radius determined using Eq. 4.13a for the centroid

is smaller compared to the one calculated using the ‘true’ center of the image by

2− 4%.
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Figure 4.3: Contour plot of the relative increase in the adaptive size (expressed as
a percent) as a function of the α and α′ parameters in the IPC kernel in Eq. (4.8)
for the relevant WFIRST PSFs. The black × represents a nominal value of the IPC
parameters in H4RG detectors. For each filter, the adaptive size in milliarcseconds
(mas) and ellipticity (e1, e2) without IPC is noted above the subplots.

We present our results for two specific sub-classes of the 3-parameter IPC kernel

(Eq. 5.16). The first of them is the 2-parameter isotropic IPC model (Eq. 4.8). We

consider this case since the nominal value of α+ is 0. Figures 4.3 and 4.4 show the

increase in PSF size in all bands as a function of α and α′, using the adaptive size

(Fig. 4.3) and the EE50 size (Fig. 4.4). As shown in Figs. 4.3- 4.4, the increase in PSF

sizes is a few per cent in all bands for the nominal values (α0 = 0.02 and α′
0 = 0.002)

of the IPC parameters. More specifically, the relative change in the adaptive size

is about 4 − 6% and the relative change in the half-light radius (with Eq. 4.13a as

centroid) is about 5 − 6% depending on the bandpass. When the half-light radius

is computed with the ‘true’ center as the centroid, the relative increase is smaller

(∼ 4.5%) and the variation is smaller across the bandpasses. We emphasize that it is

impossible to know the location of the ‘true’ center in the real observations of PSF

and thus results with ‘true’ center being the centroid are not relevant in practice. We

nevertheless present these results to show that not knowing the ‘true’ center does not

significantly affect our overall conclusions.

As expected, the size is affected more by the coupling between nearest neighbors than

by diagonal coupling, owing to a higher coupling parameter. The same is true for the

change in PSF ellipticity shown in Figs. 4.5 and 4.6 for the ellipticity components e1

and e2, along and at 45◦ with respect to the pixel edges respectively. A typical value

for ∆e1 (∆e2) is ∼ 10−3 (10−4). Thus, even if uncorrected, the contribution of IPC to
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Figure 4.4: Contour plot of the relative increase in the half-light radius EE50 (ex-
pressed as a percent) as a function of the α and α′ parameters in the IPC kernel in
Eq. (4.8) for the relevant WFIRST PSFs. The black × represents a nominal value of
the IPC parameters in H4RG detectors. For each filter, the EE50 in milliarcseconds
(mas) and ellipticity (e1, e2) without IPC is noted above the subplots. The black cross
marker represents a nominal value of the IPC parameters in the H4RG detectors.

Figure 4.5: Contour plot of the change in the ellipticity component e1 as a function
of the α and α′ parameters in the IPC kernel in Eq. (4.8) for the relevant WFIRST
PSFs. The black × represents a nominal value of the IPC parameters in H4RG
detectors. For each filter, the adaptive size in milliarcseconds (mas) and ellipticity
(e1, e2) without IPC is noted above the subplots.
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Figure 4.6: Contour plot of the change in the ellipticity component e2 as a function
of the α and α′ parameters in the IPC kernel in Eq. (4.8) for the relevant WFIRST
PSFs. The black × represents a nominal value of the IPC parameters in H4RG
detectors. For each filter, the adaptive size in milliarcseconds (mas) and ellipticity
(e1, e2) without IPC is noted above the subplots.
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Figure 4.7: Contour plot of the change in the ellipticity component e1 as a function
of the α and α+ parameters in the IPC kernel in Eq. (5.16) with α′ = 0.002 for
the relevant WFIRST PSFs. The black × represents a nominal value of the IPC
parameters in H4RG detectors. For each filter, the adaptive size in milliarcseconds
(mas) and ellipticity (e1, e2) without IPC is noted above the subplots.

the PSF anisotropy and hence to the additive bias in the shear estimate is expected

to be small.

The second sub-class of IPC kernel allows for the anisotropy with a fixed value for the

diagonal coupling α′, set equal its nominal value of 0.002. We consider this case since

the PSF sizes and shapes are least sensitive to α′. Figs. 4.7- 4.8 show the change to

the components of PSF ellipticity. The change in e2 is about ±5%(∼ 10−4) over the

entire range of α+ values we have considered whereas the change in e1 is of the order

10−2, much bigger than the original e1 value itself. This is not surprising since both

the anisotropy and the e1 component are aligned along the axes. For a symmetric

PSF with e2 = 0, we expect the e2 to remain 0 after the IPC. The small change in e2

is attributed to e2 not being zero to begin with. We verified that the relative increases

in sizes have negligible dependence on the anisotropy (figure not shown).

4.5.2 Error in PSF shapes from uncertainty in IPC parame-

ters

If the IPC kernel is known precisely, then the effect can, in principle, be perfectly

corrected. However, errors in IPC parameters arise either because of measurement

uncertainties or because of the parameters varying (slowly) across the pixels. In
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Figure 4.8: Contour plot of the change in the ellipticity component e2 as a function
of the α and α+ parameters in the IPC kernel in Eq. (5.16) with α′ = 0.002 for
the relevant WFIRST PSFs. The black × represents a nominal value of the IPC
parameters in H4RG detectors. For each filter, the adaptive size in milliarcseconds
(mas) and ellipticity (e1, e2) without IPC is noted above the subplots.
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addition, there is a possibility of error due to adopting an incorrect IPC model, the

use of a 3 × 3 kernel. Even with a perfect IPC correction scheme, errors in the IPC

kernel that is assumed and corrected for will propagate into errors in PSF sizes and

ellipticities. In this section, we investigate the magnitude of this effect, in all cases

assuming a perfect correction scheme.

We start by considering the 2-parameter isotropic IPC kernel (Eq. 4.8) assuming that

the model is correct but its parameters have uncertainties. The issue at hand can be

addressed by looking the change in the PSF sizes and shapes as a function of α and

α′, as done in Sec. 4.5.1; but now on a finer grid over the range of values of the IPC

parameters where we expect them to lie. In the ideal case of being able to correct for

IPC exactly, the error in PSF size and shape will be due to δα and δα′, the difference

between the true values of α and α′ and their assumed values, denoted by α0 and α
′
0.

For nominal values of α0 = 0.02 and α′
0 = 0.002, Figs. 4.9–4.11 show the error in PSF

size and ellipticity as a function of errors in the parameters, δα and δα′. For a 10%

error in α and fixed α′ (δα′ = 0), the error in relative increase in size is ∼ (5± 0.5)%.

All the contour lines in these three figures are parallel and approximately equally

spaced, which suggests that a linear fitting function could describe these results very

well. Thus,

σ′(α, α′)− σ′(α0, α
′
0) ≈ δαRα(α0, α

′
0) + δα′Rα′(α0, α

′
0) (4.30a)

e′k(α, α
′)− e′k(α0, α

′
0) ≈ δα Sk,α(α0, α

′
0) + δα′ Sk,α′(α0, α

′
0), for k = 1, 2 (4.30b)

for some set of coefficients Rα, Rα′ , Sk,α and Sk,α′ (for k = 1, 2), which are equiva-

lent to appropriate partial derivatives evaluated at the chosen nominal values of the

parameters.

The coefficients in Eqs. (4.30) were calculated by performing linear regression on an

11 × 11 grid of δα and δα′, with δα varying uniformly from −0.005 to +0.005 and

δα′ varying uniformly from −5 × 10−4 to +5 × 10−4. The values of the coefficients

for the PSFs of the J129, H158 and F184 bandpasses are given in Table 4.3. We find

that the quantities on the left hand side of Eqs. (4.30) agree with the linear model

prediction with at most a 1% error, for δα ≈ 0.1α0. Thus, the errors in PSF sizes

and ellipticities can simply be specified by the six linear coefficients, Rα, Rα′ , S1,α,

S1,α′ , S2,α and S2,α′ , defined in Eq. 4.30.
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Figure 4.9: Contour plot of the relative change in the adaptive size (expressed as
a percent) as a function of δα and δα′, the deviation from their nominal values
(α0 = 0.02 and α′

0 = 0.002) of the parameters in the IPC kernel in Eq. (4.8) for the
relevant WFIRST PSFs. The black × corresponds to no deviation from the chosen
nominal values of the IPC parameters in H4RG detectors. For each filter, the adaptive
size in milliarcseconds (mas) and ellipticity (e1, e2) without IPC is noted above the
subplots.

Figure 4.10: Contour plot of the absolute change (after multiplication by 103) in the
ellipticity component e1 as a function of δα and δα′, the deviation from their nominal
values (α0 = 0.02 and α′

0 = 0.002) of the parameters in the IPC kernel in Eq. (4.8)
for the relevant WFIRST PSFs. The black × corresponds to no deviation from the
chosen nominal values of the IPC parameters in H4RG detectors. For each filter, the
adaptive size in milliarcseconds (mas) and ellipticity (e1, e2) without IPC is noted
above the subplots.
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Figure 4.11: Contour plot of the absolute change (after multiplication by 103) in the
ellipticity component e2 as a function of δα and δα′, the deviation from their nominal
values (α0 = 0.02 and α′

0 = 0.002) of the parameters in the IPC kernel in Eq. (4.8)
for the relevant WFIRST PSFs. The black × corresponds to no deviation from the
chosen nominal values of the IPC parameters in H4RG detectors. For each filter, the
adaptive size in milliarcseconds (mas) and ellipticity (e1, e2) without IPC is noted
above the subplots.

Bandpass Rα/σ(α0, α
′
0) Rα′/σ(α0, α

′
0) S1,α S1,α′ S2,α S2,α′

J129 2.9432 2.7691 0.1308 -0.063 0.0116 0.0134
H158 2.4457 2.5631 0.1171 0.0406 0.0076 0.0112
F184 2.0168 2.3741 0.0807 0.0604 0.0054 0.0084

Table 4.3: List of the six coefficients given in Eqns. 4.30 for the J129, H158 and F184
bandpasses. The coefficients represent the ‘instantaneous rate’ of change in PSF size
and ellipticity with respect to the change in one of the IPC parameters about the
nominal values for the case of isotropic kernel (Eq. 4.8).
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Bandpass Rα/σ(α0, α
′
0) R+/σ(α0, α

′
0) S1,α S1,+ S2,α S2,+

J129 2.9429 0.0383 0.1308 4.1516 0.0116 0.1165
H158 2.4454 0.0435 0.1171 3.7389 0.0075 0.0704
F184 2.0166 0.0336 0.0807 3.2975 0.0054 0.045

Table 4.4: List of the six coefficients given in Eqns. 4.31 for the J129, H158 and F184
bandpasses. The coefficients represent the ‘instantaneous rate’ of change in PSF size
and ellipticity with respect to the change in one of the nearest neighbor coupling
parameters about the nominal values for the case of anisotropic kernel (Eq. 5.16).

We computed the coefficients corresponding to the PSFs with no supporting struts

(not shown in the figures or tables). When we do not include the struts (but do

include obscuration and the expected level of aberrations), Rα/σ(α0, α
′
0) decreases by

10% from its original value when we include struts. This suggests that requirements

on IPC may not depend very strongly on the choice to include or exclude struts in

the simulations. The change in the S-type coefficients is comparable or even greater

than the coefficients themselves by a factor of 2 in many cases (and hence a change of

sign in some cases), indicating that the ellipticities are very sensitive to the diffraction

spikes.

Instead of the adaptive size, if we consider the EE50 radius, the coefficient that

is the analog of Rα/σ(α0, α
′
0) is either comparable or slightly smaller (by 33% or

less) than the corresponding coefficient for the adaptive size. On the other hand,

the coefficient that is the analog of Rα′/σ(α0, α
′
0) is consistently about 60% larger

than the corresponding one for the adaptive size. Thus, the EE50 radius, like the

unweighted moment (Sec. 4.3.1), is more sensitive to the diagonal coupling than the

adaptive size is.

4.5.3 Effects on PSF due to anisotropy of IPC

We now address the effect of a slight anisotropy that is commonly observed in the

IPC kernel on the PSF shapes. The difference between the nearest neighbor coupling

along the axes of H4RG detectors is expected to be small, as in for WFC3 (Eq. 5.17).

This lets us handle the anisotropy perturbatively as we handled the uncertainties in

the coupling in Sec. 4.5.2. If we denote the average nearest neighbor coupling along

both the directions as α, we consider the exact coupling along x and y axes as a small
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deviation from α, which we denote as α+. Generalizing the Eqns. 4.30, we now write

δσ′ = δαRα + δα+R+, (4.31a)

δe′k = δα Sk,α + δα+ Sk,+, for k = 1, 2. (4.31b)

Naively, we expect the anisotropy to have only a weak effect on the PSF sizes and a

relatively stronger effect on the ellipticity, compared to that from the isotropic term

α. We verify this and quantify the effect from simulations. In our simulations to

compute the coefficients in Eq. 4.31, we varied αx defined as α + α+ and αy defined

as α− α+ uniformly on a 11× 11 grid from 0.02− 0.005 to 0.02 + 0.005. We held α′

constant at its nominal value of 2 × 10−3 for simplicity. The best fit parameters for

Rα, R+, Sk,α and Sk,+ in Eqns. 4.31 are found from linear regression. If the model is

valid, then we should expect the Rα values to agree with their earlier values. Table 4.4

lists these coefficients for the J129, H158 and F184 bandpasses and indeed the Rα

values agree for all of them.

4.6 IPC in the context of WFIRST requirements

It is informative to place the results of our analysis in Sec. 4.5 into context, com-

paring IPC-related shape measurement errors to the requirements for the WFIRST

PSF as outlined in [2]. We highlight again that the PSFs used in our analysis do

not include jitter and charge diffusion. These effects will tend to increase the size

of the PSFs and somewhat reduce the relative effects of IPC. Thus, not including

these effects would tend to push our bounds on the IPC parameters to the slightly

pessimistic/conservative side.

While the maximum allowed PSF sizes are given in terms of the half-light radii, the

maximum tolerable error on PSF sizes are given in terms of the second moments.

Since the adaptive moments are sensitive mainly to the core of the PSF, our overall

conclusions based on adaptive moments are fairly independent of the choice of includ-

ing the diffraction spikes. This can be seen from Table 4.2, where the adaptive sizes

change by . 1.6% whether or not we consider the diffraction spikes as a part of the
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PSF.

Let us suppose that it is possible to measure the IPC parameters to within errors of

δα = δα′ = δα+ = 10−4. These could be simple calibration errors or perhaps due to

some spatial or temporal IPC variation that went uncharacterized. If we model the

WFIRST PSF with these parameters, we see that the worst PSF shape errors are in

the J band, with δσ/σ ≈ 5.75×10−4 (and from Eq. 4.16, δtr(M)/tr(M) . 1.15×10−3)

and δe1 ≈ 4.35×10−4. These values are obtained from Eqs. 4.30 and 4.31, with values

for the coefficients taken from Tables 4.3 and 4.4. For the High Latitude Imaging

Survey, the tolerance on the relative error of trace of the second moments of the

PSFs is set as 0.093%, and the required knowledge of PSF ellipticity is 4.7×10−4 per

component [2]. These tolerances might evolve as the details of the survey are finalized.

Thus, our model would have errors comparable to the tolerances for the entire survey.

In practice, a PSF model will be fit to on-sky measurements, and shape errors caused

by a misestimate of IPC parameters will be absorbed by other parameters in the PSF

model. This freedom relaxes requirements for the IPC parameters. To set definitive

IPC requirements for WFIRST, we need to consider the planned shape measurement

strategy and other sources of shape measurement error, which are still being studied.

However, we have shown that the effect of IPC on shape measurement is sufficiently

large that our ability to calibrate it out should not be taken for granted.

4.7 Conclusion and future work

We have explored the impact of interpixel capacitance, an effect that will be relevant

for surveys such as WFIRST that will use near-infrared detectors, on the point-

spread function, including its size and shape. To carry out this work, we have created

a new WFIRST module in the publicly-available GalSim software package. Using this

software, we have determined linear fitting formulae that describe how the PSF size

and shape change with the level of IPC, including the effects of changing different

parts of a two-parameter IPC model. Our simulations show that the level of IPC that

is present in state-of-the-art detector technology will increase the typical PSF sizes

by ∼ 5% for WFIRST. This is roughly the case irrespective of whether we include

the supporting struts in simulating the PSFs or not.
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The isotropic IPC kernel also changes the ellipticity of the PSFs. The changes in e1

and e2 are an order of magnitude smaller than the expected PSF e1 and e2 themselves.

These results may be useful inputs into WFIRST hardware requirements.

There are schemes [125] for removing the effect of IPC from astronomical images.

However, these schemes rely on knowledge of the IPC. Thus, we also consider the

scenario where the IPC is assumed to be at the nominally expected level, but there

are actually systematic deviations from that level, and derive linear fitting formulae

for errors on PSF sizes and shapes in the different WFIRST passbands. Assuming

a perfect IPC correction scheme, a 10% error in determining the nearest neighbor

coupling results in relative errors that are of the order 5× 10−3 in the PSF sizes. For

the errors in PSF sizes and shapes to be within the allowed limits for WFIRST, the

uncertainty in the parameters α, α′ and α+ must be much smaller than 10−4.

Our results represent an important step towards placing requirements on hardware

that affects the PSF for the WFIRST survey. Future work will use these to consider

their impact on the scientific measurements of interest, such as weak lensing. The

modifications of the PSFs due to imperfect knowledge of IPC can contribute towards

shear calibration biases when carrying out the process of PSF correction to estimate

weak lensing shears (Kannawadi et. al., in prep). Even if we had perfect knowledge

of IPC, the correlation in the noise caused due to IPC will affect the shear calibration

biases. We analyze these effects of IPC in the presence of noise in a future work

(Kannawadi et. al., in prep).

Another interesting direction for future work would be to consider the interplay be-

tween different detector effects, such as IPC and read noise. Since the introduction

of read noise happens at a later stage compared to IPC, any IPC correction scheme

would correlate the read noise. We defer exploration of the impact of correlated read

noise to future work.
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Chapter 5

The impact of interpixel

capacitance (IPC) on shear

calibration biases for WFIRST

from realistic galaxy image

simulations

5.1 Introduction

The standard model of cosmology today is the six-parameter ΛCDM model, which

has been repeatedly found consistent with a number of independent observations and

probes [see for e.g., 20, 135, 136]. This concordance model assumes that the theory

of General Relativity (GR) is the correct theory of gravity on cosmological scales,

according to which, light bends in response to a gravitational field - a phenomenon

known as gravitational lensing. The observations listed above also suggest that about

27% of the energy in the Universe (or about 85% of the matter by mass) of the

Universe is contributed by cold dark matter, which is thought to interact with the

more familiar baryonic matter only via gravitation [for attempts of direct detection

of dark matter, see for e.g., 137, 138]. While the properties and the distribution of

the dark matter can be inferred from the growth of cosmic structure, gravitational
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lensing provides us with a tool to probe them directly.

Weak gravitional lensing, or weak lensing (WL), is the most ubiqitous lensing phe-

nomenon that is used. For a detailed review, see [24, 27, 28, 41, 101]. It refers to the

small distortions in the shapes of distant galaxies due to massive structures between

the observer and the source galaxies. The distortions are so small that they are not

noticeable on per-galaxy basis and requires employing statistical techniques on a large

number of galaxies to detect the coherent distortion due to lensing.

Several missions that are in operation currently such as the Dark Energy Survey [DES;

45], the Hyper Suprime-Cam [HSC; 139], the Kilo-Degree Survey [KiDS; 46], the

Panoramic Survey Telescope and Rapid Response System [PanSTARRS; 47] and sev-

eral missions in the near future such as the Large Synoptic Survey Telescope [LSST;

48], Euclid [49] and the Wide-Field Infrared Survey Telescope [WFIRST; 1, 2, 50]

will image 108 − 109 galaxies with the aim of gathering data to perform weak lens-

ing analysis. Among these missions, Euclid and WFIRST1 are space-based surveys,

planned for launch during the early 2020s. Imaging surveys from space offer sev-

eral advantages, most notably a stable seeing condition (in comparison with ground

based surveys, where the seeing conditions depend on the atmosphere). However, an-

other advantage is to be able to image the sky in the near-infrared (NIR) or infrared

(IR) wavelengths as the water vapour in the earth’s atmosphere is opaque to these

wavelengths. Currently, the Wide Field Camera [WFC3; 98] in the Hubble Space

Telescope and the Wide Infrared Survey Explorer [WISE; 99] are taking images in

the NIR bands. The information obtained in the NIR regime is of interest scientifi-

cally, because a) it complements the images in the visible bands b) it helps improve

the accuracy of the photometric redshifts and c) it provides higher quality imaging

of the high-redshift galaxies.

The enormous quantity of data that would be provided by these surveys imply that

the statistical error will become lower than the systematic errors if we adopt the shear

estimation procedures that were used in the previous surveys, leading to erroneous

conclusions. Thus, with a significant decrease in the statistical errors, the source of

systematic errors need to be understood and corrected for.

Among the sources for systematic errors in the galaxy shapes are the non-ideal be-

1http://wfirst.gsfc.nasa.gov
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haviour of the telescope detectors. WFIRST will have detectors that use Hg(1−x)CdxTe

(or simply HgCdTe), an alloy of mercury(Hg), cadmium(Cd) and tellurium(Te) as the

photosensitive material with a hybrid CMOS readout architecture. Specifically, they

use HxRG family of sensors manufactured by the Teledyne Imaging Sensors. These

are very different from the CCD sensors that are sensitive to visible light and have

been used in astronomical commonly. Contrastingly, the use of HgCdTe detectors are

relatively new and the detector based effects are yet to be fully understood.

The WFIRST Science Investigation Team (SIT) and the detector working group have

listed several effects that are of concern for weak lensing with WFIRST. Some of them

are:

1. Interpixel Capacitance(IPC): IPC is the electrical cross-talk between the pixels

of the detectors due to the CMOS readout integrated circuit (ROIC).

2. Non-linearity(NL): NL refers to the non-linearity in the conversion of charges

in the pixels to voltage readings

3. Reciprocity Failure(RF): RF implies that the respond of the detector depends

not only on the number of photons but also on their arrival rates

4. Persistence: Persistence is the retention of the charges from the previous expo-

sures even after the pixels have been reset to zero.

CCD detectors in LSST also share some of these effects and are of concern for weak

lensing. For a brief review on some of the systematic effects arising from the detectors,

see [31]. This work focusses on the impact of IPC (devoid of other aforementioned

detector effects) on the shear estimates.

This paper is organized as follows. In Sec. 5.2, we provide a background on the

basics of weak gravitational lensing - about how shapes of the galaxies are defined

and how the lensing shear can be inferred given a population of galaxies. In Sec. 5.3,

we describe the detector model and obtain a simple model for interpixel capacitance.

In Sec. 5.4, we discuss the cuts applied to the COSMOS catalog along with the

parametric fits to the galaxy shapes.

112



5.2 Lensing basics

If the source galaxy is described a brightness distribution I(int)(x), then the effect of

WL is to map the unlensed coordinates to a lensed one while conserving the surface

brightness. If the angular size size of the lensed image is much smaller than the

characteristic angular scale on which the tidal gravitation field varies, the mapping

can be described as a linear transformation between the coordinates as

I(lnsd)(x) = I(int)(Ax) (5.1)

The equations relating A, the Jacobian of the transformation, to the gravitational

potential can be found in the reviews mentioned in Sec. 5.1. In this work, we are

interested in the measurement bias of the reduced shear and not how it affects the

lens parameters or cosmological parameters.

The distortion matrix A is expressed in terms of the convergence κ and the shear

components γ1 and γ2 as

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

(5.2)

= (1− κ)

(

1− g1 −g2
−g2 1− g1

)

, (5.3)

where gi = γi/(1 − κ) for i ∈ {1, 2} are the components of the reduced shear. In

the weak lensing limit, κ ≪ 1 and therefore gi = γi/(1− κ) ≈ γi for i ∈ {1, 2}. It

is convenient to express the two components of the (reduced) shear as the real and

imaginary parts of a complex quantity (g)γ.

g = g1 + ig2 = |g|ei2ϕ, γ = γ1 + iγ2 = |γ|ei2ϕ. (5.4)

In the case of a spatially constant lensing shear, an intrinsically round object (a source

with concentric circular isophotes or contours) appears as an ellipse (an image with

concentric elliptical isophotes). The magnitude of the complex shear determines the

ellipticity of the lensed image. The axis ratio of the ellipse, which is defined as the

ratio of semi-minor axis to semi-major axis, is given by q := b/a = (1− |g|)/(1 + |g|),
assuming |g| < 1 (which is indeed the case in WL). Inverting the relation, we get
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|g| = (1− q)/(1 + q).

q := b/a =
1− |g|
1 + |g| ⇔ |g| = 1− q

1 + q
(5.5)

The phase ϕ denotes the orientation angle of the ellipse - the direction of major axis.

Since an ellipse has a two-fold rotation symmetry, the phase of the complex shear is

2ϕ, which is unchanged upon a rotation by 180◦.

However, in reality, sources such as galaxies are not circular and at best, elliptical.

Thus, the observed ellipticity is a combination of its intrinsic ellipticity (the dominant

contribution) and a small shear. For sources with elliptical isophotes with axis ratio

q, we define the ellipticity ǫ and distortion e as follows:

|ǫ(q)| = 1− q

1 + q
|e(q)| = 1− q2

1 + q2
(5.6)

As in the case of the shear, we assign a phase factor of ei2φ, where φ is now the angle of

orientation for the major axis, to obtain a complex ellipticity and a complex distortion.

Note that the definition of ellipticity is very similar to the expression obtained for

the magnitude of the reduced shear for circular sources. However, the former is a

geometric property of the source whereas the latter refers to a transformation(!)

Unfortunately, the shapes of faint galaxies could be quite irregular and not described

well enough by ellipses. One approach to estimate the ellipticity is to model the

light from galaxies using a profile that does have a well-defined ellipticity. Another

common approach is to specify the shapes of the galaxies by their (weighted) second

moments. The first moments are used to define the centroid of the galaxy as follows:

x0 =

∫

d2x xw(x)I(x)
∫

d2x w(x)I(x)
, (5.7a)

which in turn are used to define the second moments as

Mij(I;w) =

∫

d2x (x− x0)i(x− x0)jw(x)I(x)
∫

d2x w(x)I(x)
(5.7b)

for some weight function w(x) and where i, j ∈ {1, 2}. The simplest case of w(x) ≡ 1

suffers from divergence in the presence of noise [127] and when trying to measure
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the shape of diffraction-limited PSFs. [127] proposed using circular Gaussian weight

functions in order to obtain finite values of the moments. [91] generalized the weight

function to be an elliptical Gaussian to match the shape of the object in order to max-

imize the signal-to-noise ratio. The weight function w(x) is obtained by an iterative

procedure, and hence referred to as adaptive moments.

The ellipticity and distortion for a galaxy can be defined from the galaxy image as

ǫ =
M11 −M22 + 2iM12

M11 +M22 + 2(M11M22 −M12)1/2
, (5.8a)

and

e =
M11 −M22 + 2iM12

M11 +M22
. (5.8b)

The values of the ellipticity and distortion depend on the choice of the weight function

in general. For sources with elliptical isophotes, the definitions in Eqs. 5.8 reduce to

the definitions in Eq. 5.6 irrespective of the weight function.

Since the second moments are rank-2 tensors, their transformation law is given

by

M (int) = AM (lnsd)AT = AM (lnsd)A. (5.9)

Substituting them in Eqs. 5.6, we get

e(lnsd) =
e(int) + 2g + g2e(int)

∗

1 + |g|2 + 2Re
(

ge(int)
∗) (5.10a)

ǫ(lnsd) =
ǫ(int) + g

1 + g∗ǫ(int)
, assuming |g| ≤ 1 (5.10b)

In the case of WL, |g| ≪ 1 and we can express the observed shape to linear order in

g as

ǫ(lnsd) ≈ ǫ(int) + g (5.11a)

e(lnsd) ≈ e(int) + 2g − g|e(int)|2

− g∗e(int)
2 − 2g2e(int)

∗ − 2|g|2e(int)
(5.11b)

Assuming that the intrinsic orientation of the galaxies are random, we expect 〈ǫ(int)〉 =
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0 = 〈e(int)〉 = 〈e(int)2〉. Thus, by averaging over a large number of galaxies in a small

enough field of view (with high number density of galaxies) such that the shear

remains fairly constant we can now turn Eqs. 5.11 to estimates of shear

ĝ = 〈ǫ(lnsd)〉 (5.12a)

and

ĝ =
〈e(lnsd)〉

(2− 〈|e(int)|2〉)
≈ 〈e(lnsd)〉

(2− 〈|e(lnsd)|2〉)
. (5.12b)

The approximation in the last equality is valid since 〈|e(lnsd)|2〉 = 〈|e(int)|2〉 holds to

first order in |g|.

However, the observed image is not the lensed image itself but I(lnsd)(x) blurred by

the atmosphere (for ground-based telescopes), convolved with a point-spread function

(PSF) of the telescope (another blurring stage) and finally pixelated at the detectors.

Thus, e(lnsd) cannot be measured directly but have to be estimated from the galaxy

image given the knowledge of the PSF.

In space telescopes, the primary contribution to the blurring comes from the PSF

due to the optics of the telescope. By definition, the PSF is the image of a point

source, assuming that the telescope is a linear system. To a first approximation, the

optical PSF is given by an Airy function. The functional form of the PSF is more

complicated due to the central obscuration, supporting struts of the telescope. In

practice, PSFs are estimated at the location of the bright stars by looking at their

images.

The pioneering method in PSF correction was developed by [127] with improve-

ments from [140] and [141]. Large number of methods have been developed since

then [see 113, for a summary of various methods and comparison of their perfor-

mances]. Several blind community challenges such as the Shear Testing Programme(s)

[STEP- I; 33], [STEP - II; 35] and Gravitational lensing Accuracy Testing challenges

[GREAT08; 36], [GREAT10; 37] and [GREAT3; 38] have been conducted with the

intention of improving shape measurement algorithms and minimizing their system-

atic biases. For a recent list of PSF correction methods and their performances,

see [113].

To summarize, the light from distant galaxies deflect in response to the intervening
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matter and shear the image of the galaxies. This shear is the signal we want to

measure. The shapes of the galaxies are further modified by the PSF of the telescope

(and the atmosphere for ground-based telescopes) before the photons get collected

in the detectors. Estimating the lensing shear is then, broadly speaking, a two-

step process: i) correcting for the effects of PSF to estimate the ellipticity of the

galaxies. ii) estimating the shear from a galaxy shape catalogue. Bayesian methods

that skip assigning an ellipticity of individual galaxies have been devised and tested

[93, 96, 142]. However, in this work, we adopt the tradition two-step process of

estimating the shear.

5.3 Interpixel capacitance

5.3.1 Detector model

A photodetector array is commonly modelled as a 2-dimensional array of capacitors

C[i, j] [see for e.g., 118, 119]. The capacitors accrue an electric charge Q[i, j] by

integrating I[i, j], the photocurrent entering the node (i, j), over the exposure time

texp. All the capacitors are assumed to be fabricated in an identical manner. The

photosensor can be modelled as a linear system with a nominal gain given by 1/Cnode,

where Cnode is the nodal capacitance. The voltage response function for a given

distribution of charge Q is given by

V [i, j] =
∑

m

∑

n

1

Cnode
Q[m,n]K[i −m, j − n], (5.13)

where K couples the voltage response in one pixel to the charges in the other pixels.

We refer to K as the IPC kernel. The kernel is normalized such that
∑

m,nK[m,n] =

1. The coupling between the nodes is symmetric, i.e., K[i−m, j−n] = K[m− i, n−
j].

In an ideal detector, the voltage at node depends linearly only on the charge in that

pixel and therefore, K[i−m, j − n] = δi,mδj,n and 1/Cnode is the gain of the system.

However, in real detectors, a small coupling exists between nearby pixels. Neglecting

any non-linearity in the readout circuit, the read-out voltage values are proportional
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to the pixel values of the image. Hence,

Iobs[i, j] =
∑

m,n

Iideal[m,n]K[i −m, j − n] (5.14)

IPC is different from charge diffusion since it does not involve the actual movement

of the physical charge carriers from one pixel to another. IPC arises due to the fringe

fields interfering with the neighbouring pixels. Although the effect of the IPC is a

convolution by a smoothing kernel, it is not considered as a part of the PSF itself. One

of the reasons for that is that the effects of IPC enter the image generation/simulation

pipeline after other detector effects such as the addition of dark current, noise from

the sky background and voltage nonlinearity. The IPC kernel contributes toward

some correlation in the noise whereas the PSF does not correlate the noise. The

effects of IPC and NL on the WFIRST PSFs are described in detail in [143] and in

[144]. While, PSF corrections to an image can correct for most of the effects of IPC,

it is not sufficient for WFIRST and the effects of IPC may needed to be corrected for

explicitly.

The simplest IPC kernel is where there is a small non-zero coupling between adjacent

pixels, parametrized by α as

Kα =







0 α 0

α 1− 4α α

0 α 0






. (5.15)

A simple extension to the IPC kernel of Eq. 5.15 can be made by including α′,

a coupling between second nearest neighbours and α+, an anisotropic part in the

coupling between the horizontal and vertical directions:

Kα,α+,α′ =







α′ α− α+ α′

α + α+ 1− 4(α + α′) α + α+

α′ α− α+ α′






., (5.16)

The three parameter IPC kernel (Eq. 5.16) is a good model to describe the IPC kernel
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of the IR channel in WFC3 determined from the on-orbit measurements [121]







0.0011± 0.0006 0.0127± 0.0009 0.0011± 0.0006

0.0163± 0.0014 0.936± 0.0045 0.0164± 0.0011

0.0011± 0.0006 0.0127± 0.0010 0.0011± 0.0006






, (5.17)

The IPC kernels given above have no zeros (in Fourier representation) and hence

are invertible in principle. However, since the kernels have a finite support in real

space, they will have an infinite support in the Fourier space, making the inversion

a challenging task. Following the suggestion in [125], we obtain another 3× 3 kernel

K ′
α such that when convolved with Kα, the first order terms in α cancel. It can be

verified that K ′
α = K−α. In this work, we focus only on the 1-parameter kernel given

in Eq. 5.15

5.4 Data

The galaxy population that we used in our simulation is obtained from the COS-

MOS survey. The COSMOS survey [72, 73, 74] is a flux-limited, narrow deep field

survey covering a contiguous area of 1.64 deg2 of sky. The galaxy images were taken

through the F814W (Broad I) filter using the Advanced Camera for Surveys (ACS)

Wide Field Channel (WFC) in the Hubble Space Telescope (HST). Multiple dithered

exposures were combined using the multidrizzle algorithm [145] after the standard

image processing steps such as geometric distortion, sky subtraction and cosmic ray

rejection. The final co-added images are 7000 × 7000 pixels with a pixel scale of

0.03”/pixel.

Source objects were detected using SExtractor [32] and were classified as stars or

galaxies or neither using the peak surface brightness and half-light radius [see 74,

for details]. Photometric redshifts for the galaxies in the COSMOS field were cal-

culated by [77]. Accurate redshifts were computed with 30 broad, intermediate and

narrowbands covering the ultra-violet, visible near-IR and mid-IR wavelengths from

a number of surveys.

The COSMOSCatalog that is available in GalSim v1.4 is obtained after applying the
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following cuts [75]:

• F814W < 25.2

• MU CLASS=1:

• CLEAN=1:

• GOOD ZPHOT SOURCE=1:

Postage stamps were cut out around the position of each galaxy that passes the above

cuts following the procedure described in [75]. The COSMOS PSFs were estimated

from a modification of a ray-tracing program Tiny Tim2 v6.3. Two parametric models

were fitted to the galaxies using a 2-dimensional Levenberg-Marquardt minimization

(mpfit2dfun in IDL; [146]) which minimizes the weighted sum of the squared differ-

ences between the galaxy image and PSF-convolved models. This χ2-minimization

assumes no correlation among the pixel values, which is indeed not the case. [76]

describe the fitting method in detail.

The first of the two parametric models was a single Sérsic profile with the radial

surface brightness profile given by

IS(x, y) = I1/2 exp

[

−bn
(

(

R(x, y)

Reff

)1/n

− 1

)]

, (5.18)

where

R2(x, y) =((x− x0) cosφ+ (y − y0) sinφ)
2

+
1

q2
((y − y0) cosφ− (x− x0) sinφ)

2,

Reff is the half-light radius of the profile defined along the major axis, I1/2 is the

surface brightness at R = Reff, (x0, y0) is the centroid of the image, φ is the position

angle, n is the Sérsic index, bn is an n-dependent normalization factor required to

ensure that half the light is enclosed within the half-light radius, and q is the axis

ratio of the elliptical isophotes. The Sérsic profile has 7 free parameters and we place

the following constraints on them: I1/2 > 0, 0.1 ≤ n ≤ 6, 0.05 ≤ q ≤ 1 and the size

of the galaxy must be smaller than the size of the postage stamp.

2http://www.stsci.edu/software/tinytim/
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The second parametric model, often referred to as the bulge+disk model, is a sum of

a de Vaucoulers (bulge component; Sérsic n =4) and an exponential (disk component;

Sérsic n =1) profile. The two components are constrained to have the same centroid

and thus the bulge+disk model has 10 free parameters. In addition, the half-light

radius of the bulge component is required to be less than that of the disk.

While both the models are fit to each of the galaxies, the catalogue considers only

one of the two model parameters to generate a galaxy. First, the bulge+disk model

which has the higher number of free parameters is considered. The single Sérsic fit

parameters are considered when the ratio of the flux in the bulge component to the

total flux (denoted by B/T ) is below 0.1 or exceeds 0.9 or when the bulge radius or the

axis ratio converged to the fit limits (which happens for about 70% of the galaxies).

Single Sérsic fits are also used when the median absolute deviation is higher for the

2-component fits.

5.5 Methods

We simulate the PSFs and the galaxy images using GalSim3. GalSim [69] is a publicly

available galaxy image simulation package. It has a convenient Python interface while

the core of the software is written in C++. Currently, GalSim (v1.4) can simulate

a PSF from first principles corresponding to any pupil plane as long as the aperture

is circular. GalSim also has the capability to apply lensing transformations ( 5.3)

to light profiles, convolve two or more light profiles/PSFs and ‘draw’ an image of

the profile. GalSim even has a module dedicated to the WFIRST mission that can

generate WFIRST PSFs in the passbands and include effects that are specific to

WFIRST.

5.5.1 WFIRST PSF simulation

The WFIRST telescope has a circular aperture that is 2.36m in diameter. It has a

central obscuration and supporting struts that are not aligned radially. The pupil

3https://github.com/GalSim-developers/GalSim
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plane configuration and the wavefront aberrations described in terms of the Zernike

coefficients are availably publicly 4.

Realistic (chromatic) WFIRST PSF profiles, that take into account of the central

obscuration, supporting struts and aberrations in terms of Zernike coefficients, are

simulated in the J129, H158 and F184 bands. For more details about the PSF simu-

lation, refer to [143]. The simulated profiles are then convolved with a top-hat pixel

response function and drawn onto an image by sampling at the native pixel scale

of 0.11” per pixel. The IPC kernel (Eq. 5.15) is then applied. The PSFs are not

Nyquist-sampled, by construction, and hence a single exposure image of a star can-

not be used to determine the moments of the PSF accurately. 8 other such exposures

are generated by shifting the PSF profile by a third of a pixel in either direction along

at least one of the detector axes. All the 9 exposures are then interleaved to obtain

a higher resolution image of the star.

In order to keep the analysis simple, we do not apply any of the nonlinear effects

to the PSFs and leave the flux of the star unspecified. The PSF images are also

rendered noiseless - a limiting approximation when the star is bright enough that the

signal-to-noise ratio tends to infinity.

5.5.2 Galaxy simulation

We simulate galaxy images using the COSMOSCatalog within GalSim, which is gener-

ated using the method described in Sec. 5.4. Since the galaxy images in the catalogue

were taken through a single bandpass filter in the optical wavelengths (F814W) and

since we require to simulate images in the near-IR wavelengths, there is a need to make

some assumptions about the spectral energy distribution (SED) of the galaxies.

SED templates for E, Sbc, Scd types of galaxies are tabulated from the observations

of local Universe (z ∼ 0) by [147] for wavelengths between 1400Å to 10000Å. The

SEDs were extended to about 120Å on the bluer end and to 22050Å on the redder end

using the Hyper-Z5 code [148, 149] that uses the stellar synthesis models described

in [150]. For galaxies described by the two component bulge+disk model, the bulge

4http://wfirst.gsfc.nasa.gov/science/sdt_public/wps/references/instrument/
5http://webast.ast.obs-mip.fr/hyperz/
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components are assigned an SED corresponding to the E type and the disk compo-

nents are assigned an SED corresponding to the Scd type. Galaxies described by a

single Sérsic profile are assigned an Scd type SED (disk SED) if Sérsic n < 1.5, E

type SED (bulge SED) if Sérsic n > 3 and Sbc type SED for intermediate Sérsic

n values. The SEDs are redshifted appropriately based on the photometric redshift

values of the galaxies and are set to have magnitude values same as the observed

F814W magnitudes in COSMOSCatalog.

For our simulations, the fluxes of the galaxies in the COSMOS catalogue are scaled to

account for the differences in the aperture size and exposure time between HST and

WFIRST. To reduce the shape noise in our measurements, we follow the standard

procedure [35, 38] of rotating each galaxy by 90◦ and including it in our sample. All

the galaxies in our sample are sheared by a constant lensing shear gtrue = gtrue1 +igtrue2 ,

with gtrue1 = gtrue2 . The values of the components of gtrue are varied between -0.05 and

0.05. The sheared galaxy profiles are then convolved with the effective PSF (PSF

convolved with the pixel response) and are rendered using DFT methods onto images

through the J129, H158 and F184 bandpass filters. The “exposures” have a sampling

rate of 0.11”/pixel, same as that of the native WFIRST pixel scale.

The dominant source of photon shot noise is the background sky level from zodiacal

light. The exact amount of the background light would depend on the day and the

time of the observation, the celestial coordinates of the pointing and the adopted

model for zodiacal light. The photon density as a function of the position in sky

is calculated using [151]6 Assuming that the sun is at the ecliptic coordinate (0,0)

and that the telescope is pointing at (30,90), we compute the expected background

sky level from zodiacal light through each of the filters. It is to be noted that these

are uncertain at ∼ 10% level. The stray light in the telescope is required to be

less than 10% of the background due to zodiacal light, and we consider the worst

case scenario of the stray light fraction being 0.1. The thermal backgrounds for each

of the filters are calculated [151] based on the telescope temperature of 282K. The

last contribution to the background is given by the dark current, which is caused to

spontaneous electron-hole pair generation within the depletion region of the sensor

due to its finite temperature. The high electric field at the junction of photodiode

sweeps these charge careers causing a leakage current of 0.015e−/s per pixel. Poisson

6http://www.tapir.caltech.edu/~chirata/web/software/space-etc/
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noise corresponding to the total sky background and dark current is added.

9 such exposures are generated7 with the sampling grid is offset by 1/3 of the pixel

size along x and y in both positive and negative directions, as was done to the PSF

images. To each of the exposures, images of the total sky background and dark

current (along with the noise) are added. The IPC kernel given in Eq. 5.15 is applied

to the exposures for a particular value of the IPC coupling parameter α. To these

IPC convolved exposures, the read noise due to the on-chip amplifier is added. Read

noise is modelled as a Gaussian noise with a standard deviation of 10e−s.

In this above image generation process, the ‘exposures’ are quantized, i.e., pixel values

are rounded to the nearest integer in two stages. First, prior to the converting the

photon counts to electron counts and then once at the analog-to-digital conversion

stage, assuming that the gain of the readout system is unity. The PSF images are

not quantized.

The effect of IPC is corrected for in each of the exposures by applying the corre-

sponding corrective kernel. The original (uncorrected) and the corrected exposures

are interleaved to give a higher resolution image of the galaxy. The mean value of

the total background (quantized) is then subtracted.

5.5.3 Shape measurements

Having generated the galaxy images and PSF images, the intrinsic galaxy shapes are

measured in 4 ways:

1. IPC in gal & PSF - uncorrected: The galaxy images and the PSF images contain

the same amount of IPC , but the presence of IPC is ignored.

2. IPC in gal & PSF - corrected: The galaxy images and the PSF images contained

the same amount of IPC and they were corrected for.

3. IPC in gal only: The galaxy images contain IPC but the PSF images do not.

4. IPC in PSF only: The PSF images contain IPC but the galaxy images do not.

7Higher resolution image is rendered first for computational efficiency and deinterleaved to gen-
erate the individual exposures.
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The last two measurements, where IPC is present either in the galaxy image or in

the PSF image, is to be considered as an extreme case of the scenario where due to

a possible spatial variation of IPC across the detectors, the IPC parameters at the

location of the galaxy and at the location of the PSF differ by α.

Shape measurements are done using the re-Gaussianization method [90]. An estimate

of the shear is obtained from a large number of such shape measurements using the

equation

ĝi =
〈êi〉

2− 〈ê21 + ê22〉
i = 1, 2, (5.19)

where 〈X〉 stands for an ensemble average of X . We plot ĝi(α) − gtruei vs gtruei for

different values of α to see the deviation of the shear estimate from its true value as

a function of the IPC parameter.

We adopt the linear bias model from [35] and express

ĝi = (1 +mi)gi + ci, (5.20)

where mi and ci are known as multiplicative and additive biases respectively and

i ∈ {1, 2}.. The intuition behind this parametrization is fairly straightforward. An

isotropic PSF would make the galaxy appear ‘rounder’ than it actually is, hence con-

tributing towards the multiplicative bias. However, if the PSF has a small ellipticity,

it would smear the galaxy images coherently along the direction of its ellipticity and

would thus mimic a shear signal. The additive bias term quantifies this spurious

shear.

We obtain the multiplicative and the additive bias values mi and ci through lin-

ear regression. By repeating this procedure for different values of the IPC coupling

parameter α, we can obtain mi(α) and ci(α).

Cuts

In performing the above calculations, we require that for all values of gtrue and for

all values of α, the shape measurements of a galaxy and its rotated pair be available.

Furthermore, we require them to have a resolution factor > 0.4, where the resolution
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Figure 5.1: Plot of difference between the estimated shear when IPC is present and
the estimate shear in the absence of IPC for the three passbands.

factor R = 1 − Tr(Mgal)/Tr(MPSF) after applying corrections for non-Gaussianity

(see [90] for details). The former condition is required to not bias the shear calibra-

tion parameters and the latter is required to avoid any psuedo evolution in the IPC

parameter due to differences in the galaxy sample.

5.6 Results

5.6.1 Noiseless case

If the shape measurement process were linear in the pixel values, then noise in the

image would translate into noise in the estimate of shear calibration bias. But since

the measurement process is non-linear, the noise in the image contributes towards

the shear calibration bias as well. By generating noiseless images, we first study how

the shear estimate varies with α and the shear calibration biases through it due to

the change in the galaxy and the PSF images alone. ‘Quantization noise’ due to
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rounding off of the pixel values is present, but no other source of random noise is

included.

We simulate noiseless images for 20,000 galaxy pairs and apply the cuts mentioned

earlier. In Fig. 5.1, we show how the estimated shear values differ from the true input

shear for various values of the IPC parameter α. From the figures, the relationship

between ĝ(α) and g(true) can be seen to be lie on straight line extremely well, thus

obeying the linear bias model (Eq. 5.20). In the absence of IPC, the bias values are

characteristic of the shape measurement algorithm (in this case, re-Gaussianisation)

for a given PSF and the galaxy images. Since we are interested in the change in the

shear estimate, we plot ĝ(α) − ĝ(0) vs. g(true) - whose best fit parameters will then

correspond to ∆mi(α) ≡ mi(α)−mi(0) and ∆ci(α) ≡ ci(α)− ci(0). However, ∆m(α)

and ∆c(α) are not independent of the shape measurement algorithm either - different

algorithms could have different sensitivities to α. Shape measurements that employ

wider weight functions are less sensitive to α than those that employ weight functions

to describe the central core of the galaxies.

For ∆mi(α), there is little difference between the two cases where the IPC is explicitly

corrected for and where the IPC correction is done by the PSF itself. In both of these

cases, there are significant change in the multiplicative bias values - about 0.01 for

α = 0.02, which is about a 5% change from its original value, i.e., when α=0. This

indicates that while using adaptive moments to measure shapes, neither the PSF

deconvolution nor the IPC correction is completely able to remove the effects of

IPC.

5.7 Discussion

In the case where only the PSF images have IPC, the observed galaxy image is

over-corrected and the magnitude of the estimated shear is lowered, making the mul-

tiplicative bias terms more negative. The opposite effect happens where the galaxy

images are under-compensated when the galaxy images have IPC, thus making the

multiplicative bias terms less negative.

The behaviour of ci(α) could be understood by the following argument. c1(α) deviates

the most from c1(0) (and approaches towards 0) when the PSF contains IPC. This
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Figure 5.2: Changes in the shear calibration bias as a function of the IPC parameter
α for J129 passband in the absence of random noise (non quantization noise). The
errorbars obtained by computing the bias values of 10 equal subsets of the galaxies
with 2000 galaxy pairs and taking the standar error of the mean value. The shaded
region corresponds to the allowed uncertainities in the bias values for Euclid (not very
different from WFIRST). The vertical line corresponds to the nominal value of α.
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Figure 5.3: Changes in the shear calibration bias as a function of the IPC parameter
α for H158 passband in the absence of random noise (non quantization noise). The
errorbars obtained by computing the bias values of 10 equal subsets of the galaxies
with 2000 galaxy pairs and taking the standar error of the mean value. The shaded
region corresponds to the allowed uncertainities in the bias values for Euclid (not very
different from WFIRST). The vertical line corresponds to the nominal value of α.
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Figure 5.4: Changes in the shear calibration bias as a function of the IPC parameter
α for F184 passband in the absence of random noise (non quantization noise). The
errorbars obtained by computing the bias values of 10 equal subsets of the galaxies
with 2000 galaxy pairs and taking the standar error of the mean value. The shaded
region corresponds to the allowed uncertainities in the bias values for Euclid (not very
different from WFIRST). The vertical line corresponds to the nominal value of α.
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is because WFIRST PSF is not isotropic and the PSF images become effectively

more ‘rounder’ in the presence of IPC. The difference in the behaviour of c1 and c2

components arise because the IPC kernel acts along the detector axes, affecting c1

more than c2.

In the presence of random noise, IPC correlates the Poisson noise in the images and

IPC correction introduces correlations in the read noise. Correlated noise impact the

shape estimations differently than the uncorrelated noise ( [see for e.g., 152]). In

order to be able to observe the tiny change in the shear signal due to IPC in the

presence of random noise, shape measurements from a larger set of galaxy images are

required. This work is currently under progress.

*
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Appendix A

Unweighted moments

If the unweighted moments of the PSFs did not diverge, then it is possible to obtain

an expression for the sizes of the PSFs with and without the effect of interpixel

capacitance. Eq. 4.22 shows how the effective size of any profile increases as a function

of the isotropic IPC parameters, which we now derive. The crucial idea behind the

derivation is the following: if we convolve two or more image profiles, their unweighted

moments add, i.e.,

Mh = Mf +Mg (A.1)

where f(~x) and g(~x) are two image profiles, h(~x) = (f ⊗ g)(~x) and Mf is the second

moments of f(~x) and so on.

If the object we are measuring is circularly symmetric and has a finite size σ that

can be defined from the unweighted moments, say like that of a Gaussian, then

it’s moment matrix would be σ212, where 12 is the 2 × 2 identity matrix. The

pixel response is given by a top-hat profile, whose second moments matrix given by
1
12
12. For the IPC kernel given in Eq. 4.8, the matrix of second moments is given by

(2α + 4α′)12.

Thus, the moment matrix of the image would be (σ2 + 1/12 + 2α + 4α′)12 and the

measured size of the PSF, as a function of α would be

σ′(α) =

√

σ2 +
1

12
+ 2α+ 4α′ (A.2)
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If the moments of the object were given by a more generic 2 × 2 symmetric matrix,

say,

MG =

(

σ2
x ǫ

ǫ σ2
y

)

(A.3)

then

σ′(α) =

√

√

σ2
xσ

2
y − ǫ2 +

1

12
+ 2α+ 4α′ (A.4)

Note that this equation does not depend on the profile of the PSF but only on the

fact that the second moments do not diverge. However, this expression is paricularly

useful only for Gaussian light profiles since this expression also matches the adaptive

size of such objects. Moreover, the conditions that σ ≫ 1 pixel and α, α′ ≪ 1 must

be satisfied so that the non-Gaussianity introduced by the pixel response and the IPC

kernel is not significant.

133



Bibliography

[1] D Spergel, N Gehrels, J Breckinridge, M Donahue, A Dressler, B.˜S. Gaudi,

T Greene, O Guyon, C Hirata, J Kalirai, N.˜J. Kasdin, W Moos, S Perlmut-

ter, M Postman, B Rauscher, J Rhodes, Y Wang, D Weinberg, J Centrella,

W Traub, C Baltay, J Colbert, D Bennett, A Kiessling, B Macintosh, J Merten,

M Mortonson, M Penny, E Rozo, D Savransky, K Stapelfeldt, Y Zu, C Baker,

E Cheng, D Content, J Dooley, M Foote, R Goullioud, K Grady, C Jackson,

J Kruk, M Levine, M Melton, C Peddie, J Ruffa, and S Shaklan. Wide-Field

InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-

AFTA Final Report. ArXiv e-prints, may 2013.

[2] D Spergel, N Gehrels, C Baltay, D Bennett, J Breckinridge, M Donahue,

A Dressler, B.˜S. Gaudi, T Greene, O Guyon, C Hirata, J Kalirai, N.˜J. Kas-

din, B Macintosh, W Moos, S Perlmutter, M Postman, B Rauscher, J Rhodes,

Y Wang, D Weinberg, D Benford, M Hudson, W.-S. Jeong, Y Mellier, W Traub,

T Yamada, P Capak, J Colbert, D Masters, M Penny, D Savransky, D Stern,

N Zimmerman, R Barry, L Bartusek, K Carpenter, E Cheng, D Content,

F Dekens, R Demers, K Grady, C Jackson, G Kuan, J Kruk, M Melton, B Ne-

mati, B Parvin, I Poberezhskiy, C Peddie, J Ruffa, J.˜K. Wallace, A Whipple,

E Wollack, and F Zhao. Wide-Field InfrarRed Survey Telescope-Astrophysics

Focused Telescope Assets WFIRST-AFTA 2015 Report. ArXiv e-prints, mar

2015.

[3] L. Van Waerbeke and Y. Mellier. Gravitational Lensing by Large Scale Struc-

tures: A Review. ePrint arXiv, page 48, 2003.

[4] A.˜L. Coil, J.˜A. Newman, N Kaiser, M Davis, C.-P. Ma, D.˜D. Kocevski, and

D.˜C. Koo. Evolution and Color Dependence of the Galaxy Angular Correlation

134



Function: 350,000 Galaxies in 5 Square Degrees. The Astrophysical Journal,

617:765–781, dec 2004.

[5] A.˜R. Tomczak, R.˜F. Quadri, K.-V.˜H. Tran, I Labbé, C.˜M.˜S. Straatman,
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[14] Jorge E. Garćıa-Farieta and Rigoberto A. Casas-Miranda. Effect of observa-

tional holes and borders on lacunarity and fractality measurements in a galaxy

catalogue. page 10, apr 2016.

[15] J. M. Bardeen, J. R. Bond, N. Kaiser, and a. S. Szalay. The statistics of peaks

of Gaussian random fields. The Astrophysical Journal, 304:15 – 61, 1986.

[16] Naoshi Sugiyama. Cosmic Background Anisotropies in Cold Dark Matter Cos-

mology. The Astrophysical Journal Supplement Series, 100:281, 1995.

[17] Daniel J. Eisenstein and Wayne Hu. Baryonic Features in the Matter Transfer

Function. The Astrophysical Journal, 496:605, 1998.

[18] E. R. Harrison. Fluctuations at the threshold of classical cosmology. Physical

Review D, 1(10):2726–2730, may 1970.

[19] Ya. B. Zeldovich. A Hypothesis, Unifying the Structure and the Entropy of

the Universe. Monthly Notices of the Royal Astronomical Society, 160(1):Short

Communication, oct 1972.

[20] Planck Collaboration, P.˜A.˜R. Ade, N Aghanim, M Arnaud, M Ashdown,

J Aumont, C Baccigalupi, A.˜J. Banday, R.˜B. Barreiro, J.˜G. Bartlett, and

Et al. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints, feb

2015.

[21] Kyle S. Dawson, David J. Schlegel, Christopher P. Ahn, Scott F. Anderson, Éric
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Ràfols, Patrick Petitjean, Robert Pfaffenberger, Janine Pforr, Matthew M.

Pieri, Francisco Prada, Adrian M. Price-Whelan, M. Jordan Raddick, Rafael

Rebolo, James Rich, Gordon T. Richards, Constance M. Rockosi, Natalie A.

Roe, Ashley J. Ross, Nicholas P. Ross, Graziano Rossi, J. A. Rubiño-Martin,

Lado Samushia, Ariel G. Sánchez, Conor Sayres, Sarah J. Schmidt, Donald P.
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C Heymans, O Le Fèvre, S Lilly, H.˜J. McCracken, Y Mellier, A Réfrégier,
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