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Abstract

Many infrastructure systems in the US such as road networks, bridges, water and wastewater
pipelines, and wind farms are aging and their condition are deteriorating. Accurate risk analysis
is crucial to extend the life span of these systems, and to guide decision making towards a
sustainable use of resources. These systems are subjected to fatigue-induced degradation and
need periodic inspections and repairs, which are usually performed through semi-annual, annual,
or bi-annual scheduled maintenance. However, better maintenance can be achieved by flexible
policies based on prior knowledge of the degradation process and on data collected in the field

by sensors and visual inspections.

Traditional methods to model the operation and maintenance (O&M) process, such as
Markov decision processes (MDP) and partially observable MDP (POMDP) have limitations that
do not allow the model to properly include the knowledge available and that may result in non-
optimal strategies for management of infrastructure systems. Specifically, the conditional
probabilities for modeling the degradation process and the precision of the observations are

usually affected by epistemic uncertainty: this cannot be captured by traditional methods.

The goal of this dissertation is to propose a computational framework for adaptive
monitoring and control of infrastructures at the system-level and to connect different aspects of
the management process together. The first research question we address is how to take optimal
sequential decisions under model uncertainty. Second, we propose how to combine decision
optimization with learning of the degradation of components and the precision of monitoring

system. Specifically, we address the issue of systems made by similar components, where



transfer of knowledge across components is relevant. Finally, we propose how to assess the value
of information in sequential decision making and whether it can be used as a heuristic for

system-level inspection scheduling.

In this dissertation, first a novel learning and planning method is proposed, called “Planning
and Learning for Uncertain dynamic Systems” (PLUS), that can learn from the environment,
update the distributions of parameters, and select the optimal strategy considering the uncertainty
related to the model. Validating with synthetic data, the total management cost of operating a
wind farm using PLUS is shown to be significantly less than costs achieved by a fixed policy or

though the POMDP framework.

Moreover, when the system is made up by similar components, data collected on one is also
relevant in the management of others. This is typically the case of wind farms, which are made
up by similar turbines. PLUS models the components as independent or identical and eithers
learn the model for each component independently or learn a global model for all components.
We extend that formulation, allowing for a weaker similarity among components. The proposed
approach, called “Multiple Uncertain POMDP” (MU-POMDP), models the components as
POMDPs, and assumes the corresponding model parameters as dependent random variables. By
using this framework, we can calibrate specific degradation and emission models for each
component while, at the same time, processing observations at the level of the entire system. We
evaluate the performance of MU-POMDP compared to PLUS and discuss its potentials and

computational complexity.

Lastly, operation and maintenance of an infrastructure system rely on information collected
on its components, which can provide the decision maker with an accurate assessment of their

condition states. However, resources to be invested in data gathering are usually limited and

iv



observations should be collected based on their value of information (Vol). Vol is a key concept
for directing explorative actions, and in the context of infrastructure operation and maintenance,
it has application to decisions about inspecting and monitoring the condition states of the
components. Assessing the Vol is computationally intractable for most applications involving
sequential decisions, such as long-term infrastructure maintenance. The component-level Vol
can be used as a heuristic for assigning priorities to system-level inspection scheduling. In this
research, we propose two alternative models for integrating adaptive maintenance planning based
on POMDP and inspection scheduling based on a tractable approximation of VVol: the stochastic
allocation model (and its two limiting scenarios called pessimistic and optimistic) that assumes
observations are collected with a given probability, and the fee-based allocation model that
assumes observations are available at a given cost. We illustrate how these models can be used at
component-level and for system-level inspection scheduling. Furthermore, we evaluate the
quality of solution provided by pessimistic and optimistic approaches. Finally, we introduce
analytical formulas based on the stochastic and fee-based allocation models to predict the impact
of a monitoring system (or a piece of information) on the operation and maintenance cost of

infrastructure systems.
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Chapter 1

Introduction and Literature Review

Abstract

In this chapter, we illustrate the motivation of the research presented in this dissertation.
Next, we review the literature on sequential decision making including MDPs and POMDPs,
inspection scheduling, and application of them to the management of infrastructure systems. The
limitations of the previous studies are also discussed. Next, we discuss the overall framework
proposed in this research, and the connection among its different parts. Lastly, we list the journal
and conference papers that we have submitted and published, presenting the outcome of this

dissertation.



1.1 Motivation

Many infrastructure systems in the U.S. such as road networks, bridges, water and
wastewater pipelines are aging and their conditions are deteriorating (ASCE 2013). Accurate risk
analysis is crucial to extend the life span of these systems, and to guide decision making towards
a sustainable use of resources. The degradation process of these systems can be modeled in a

probabilistic framework, incorporating the effect of maintenance policy.

One of the infrastructure systems crucial for sustainability is wind farms that are playing an
ever-increasing role worldwide as a renewable energy source; as a result, there will be an
increasing demand for careful management of costs associated with operation and maintenance
(O&M) of wind turbines. This cost on average account for approximately 25-30% of the overall
energy generation costs (Marquez et al. 2012). Farms are made up by turbines of the same
“typology”. Their conditions degrade because of aging, fatigue load, and exposure to
environmental risks. On land, there have been incidents that have showcased the risk of
structural failure of wind turbines. For example, in 2009, a wind turbine in Fenner wind farm
(located in NY) unexpectedly collapsed as shown in Figure 1. The cause of this structural failure
was fatigue on the mast foundation. Although this did not prove to be a catastrophic event,
understanding how such failures occur and how it can be avoided is both an academic and

practical endeavor.

Figure 1. Collapsed wind turbine at the Fenner wind farm [Photo credit: Kevin Wigell, Everpower Wind Holdings.]



Managing a wind farm (or generally an infrastructure system) includes selecting appropriate
O&M levels for the turbines (i.e. components of the system), scheduling inspections, and
performing maintenance actions. A rational manager has to find a reasonable tradeoff between
exploitation and exploration. Exploitation refers to the conservative maintenance policy to
minimize the cost of O&M while exploration refers to learning the degradation behavior of
components, the effectiveness of the maintenance actions, and the precision of the monitoring
system. Thus, a robust decision making framework is needed to automatically evaluate the
uncertainties related to the environment. In this context, the overall goal is to find an optimal
policy that minimizes the total expected costs of the system over the management time horizon,
making use of probabilistic models for predicting the degradation of the system and the

effectiveness of maintenance actions.

In order to develop such framework, we have collaborated with our industry partner,
Everpower Wind Holdings, to conduct the research proposed in this dissertation. They provide
us with the prior knowledge on the failure of the turbine components (e.g. gearbox and yaw
system) that is basis for developing the numerical examples used for validation in this research.
One example of the farms they operate is Highland wind farm located in Cambria County, PA.
The farm is made up by 25 Nordex N-90 turbine generators, each with a power capacity of 2.5
MW, and it is operative since August 2009. It is a very interesting application for our project, as
all machines belong to the same model and have the same age. In total, Highland wind farm has
the capacity to generate approximately 62.5 MW (producing enough electricity to power over
15,000 households). The turbines are instrumented with wind sensors, power Sensors,
accelerometers, and are periodically inspected for measuring bolt torque and symptoms of

corrosion and fatigue damage.



Figure 2. Our visit to Highland Wind farm, located in Cambria County, PA.

1.2 Literature Review

1.2.1 Literature on Management of Infrastructure Systems

A fundamental framework for sequential decision making is the Markov Decision Processes
(MDP). Textbooks of Sutton and Barto (1998) and Bertsekas (1996) provide comprehensive
introduction of sequential decision making, optimal control and MDP. In an MDP, the
environment is modeled as a finite set of states and actions that a decision maker (that from now
on we refer to as “agent”) can take. The goal is to choose actions that maximize the total
expected reward (or minimize the total expected case in application to O&M of infrastructure
systems). One of the main limitations of MDP is that it assumes that the state of the system is
fully observable, which is not true in most real-world applications. Details of MDP’s formulation

are provided in Chapter 2.

MDP has been extensively applied to operation and maintenance of infrastructure
components (Golabi et al. 1982, Guignier and Madanat 1999, Robelin and Madanat 2007), due to
the computational efficiency of dynamic programming. However, an MDP assumes perfect

information on the system state at any step of the decision process and, because of this, is not
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suitable for investigation the impact of information gathering. Madanat (1993) proposed a
methodology for optimal inspection and maintenance policies for infrastructure networks called
latent MDP (LMDP) that allows the partial observability of condition state of infrastructure
components. Moving beyond analysis of single component, Smilowitz and Madanat (2000)
incorporated the network-level budget and condition state constrains in LMDP. Guillaumot et al.
(2003) proposed an adaptive optimization method for infrastructure maintenance and inspection
decisions based on LMDPs under model uncertainty. Medury and Madanat (2013a, b) have
extended the state-of-the-art MDP-based methodologies in infrastructure management to
integrate the two aspects of the decision making process: the financial allocation of resources for
maintenance, rehabilitation and replacement policies and the operational-level implementation.
In particular, they use approximate dynamic programming (Powell 2007) to model complex

problems in infrastructure management.

To address the limitation of MDP, Partially Observable MDP (POMDP) generalizes MDP,
where the exact state of the system cannot be observed directly but can be inferred by indirect
and imperfect observations (Smallwood and Sondik 1973, Sondik 1978). Details regard POMDP

formulation and implementations are provided in Chapter 2.

Extensive literature on planning inspection and maintenance for civil structures using
dynamic programming and Markov processes has been reviewed by Papakonstantinou and
Shinozuka (2014a). Papakonstaintou and Shinozuka (2014b, c) implemented the POMDP
framework for inspection and maintenance planning of corroding reinforced concrete structure.
Their method suggests inspection/monitoring and maintenance actions. Availability of different
monitoring and maintenance actions, uncertain observation and action outcomes and the cost-

benefit of the information are also incorporated in their formulation. Schobi and Chatzi (2015)



have used continuous POMDP for life cycle assessment and maintenance planning of

infrastructure components.

1.2.2 Literature on Management of Wind Farms

In the literature, methods based on POMDP have been recently proposed for optimal
management of wind farms. These methods use historical data to fix the model parameters (i.e.
transition probability, describing the degradation of the system, and emission probability,
describing precision of the monitoring system) and find the optimal policy based on them. Byon
et al. (2010) have proposed an optimal maintenance strategy for wind turbine systems under
stochastic weather conditions. They have formulated the degradation process of turbines as a
POMDP, with the objective of deriving an optimal preventive maintenance policy that minimizes
the expected average cost over an infinite horizon. Also, these authors have extended their
proposed method to season-dependent condition-based maintenance of wind turbines to include
the dynamic weather conditions, which makes the subsequent modeling of the resulting strategy
season-dependent (Byon and Ding 2010). Nielsen and Sorensen (2012) have presented the use of
limited information influence diagram and POMDP to assist in rational decision making for
O&M of offshore turbines. McMillan and Ault (2008) have used Monte Carlo simulations to
evaluate the cost effectiveness of condition based monitoring of wind turbines. Specifically they
have found the effect of MDP in modeling the wind turbine deterioration and failure

characteristics.

A key limit in these studies is that transition and emission probabilities (i.e. model
parameters) are assumed as fixed parameters, and epistemic (and model) uncertainty is not taken

into account. In those studies that have included the model uncertainty, the correct model is
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being chosen among few pre-specified candidates, instead of assigning a general prior model that
describes the behavior of components’ parameters. Furthermore, the difference and similarities

among the model parameters of different components on the system are not modeled.

1.2.3 Literature on Sequential Decision Making under Model Uncertainty

Researchers have incorporated uncertainty in the transition probabilities of the MDP
framework directly in the formulations to find policies that are both optimal in terms of
maximizing the total expected reward and robust to errors in the model parameters. Bagnell et al.
(2001) have proposed a stochastic dynamic game to solve the problem of MDPs with uncertain
transition probabilities. The proposed solution is equilibrium of the game that corresponds to that
value function under the worst model. Li and Si (2007) have proposed a new optimality criterion
that is a basis for development of robust policy iteration to solve this problem. Nilim and ghaoui
(2005) have solved the uncertain MDP problem in the context of finite and infinite horizon using

robust value iteration.

The Bayes-Adaptive POMDP (BA-POMDP) framework is a generalization of POMDP,
where the transition and emission probabilities are unknown and are treated as random variables,
with a prior distribution, whose distribution can be learned and updated during the process of
monitoring and management (Ross et al. 2011). Details of BA-POMDP’s formulation are
provided in Chapter 2. Jaulmes et al. (2005a, b) have proposed an algorithm called Markovian
exploration with decision based on the use of sampled model algorithm (MEDUSA) to find the
optimal policy for a POMDP when the model is no known or poorly specified. Their algorithm
tries to improve the POMDP incrementally using selected queries, while still optimizing the total

expected reward.



1.2.4. Literature on Value of Information in Management of Infrastructure Systems

In the maintenance process, information collected by inspectors and monitoring system can
provide the agent with accurate assessments and prognoses of components’ condition states,
which can be integrated in a probabilistic framework to model the effects of degradation and of
the adopted maintenance policy. Information can reduce the uncertainty in the decision making
process however, it is usually expensive to collect due to limited resources. Therefore, data
collection needs to be prioritized, trading off the cost of gathering information against the
potential benefits tis information might have in terms of selecting more appropriate maintenance
actions. Pre-posterior analysis allows for predicting the impact of each available observation to
the maintenance process, so that it can be the base for rational sequential information gathering.
This is a relevant topic in a wide variety of applications from sensor scheduling (Ji et al. 2007,
Shi et al. 2011, Mo et al. 2012a, Mo et al. 2012b) to scheduling for human or robot inspectors.
Reference applications of the latter topic to civil infrastructure systems are provided by Straub
and Faber (2004, 2005, and 2006), which proposed the so-called equidistant and threshold
approaches for reliability-based inspection scheduling: a former finds an optimal inter-inspection
period, whereas the latter schedules inspections when the probability of failure exceeds a
threshold. Although inspection scheduling for a single component can be incorporated in the
POMDP framework (Memarzadeh et al. 2015a, Papakonstantinou and Shinozuka 2014b), the
system-level scheduling poses computational challenges. The concept of Value of Information
(Vol) (Raiifa and Schlaifer 1961) is key to pre-posterior analysis, and can be taken as a
consistent approach for ranking al available observations: Vol of an inspection is defined as the
difference between the value of the management process with and without that specific

observation. Introduction and application of Vol analysis to civil infrastructure systems is



provided by Pozzi and der Kiureghian (2011), Straub (2014), and Zonta et al. (2014).
Application to long-term maintenance planning is shown by Straub and Faber (2006) and

Konakli et al. (2015).

As mentioned, the system-level scheduling poses computational challenges, when dealing
with constraints in the available resources for information gathering. It is challenging to integrate
optimization of information gathering of large systems in a dynamic controlled setting where the

agent is optimizing the maintenance policy as well.

In this research, we propose a framework and computational approaches that integrates
learning, planning, and inspection scheduling at system-level for optimal management of

infrastructure systems and addresses gaps in knowledge in the literature.

1.3 Proposed Framework and Layout of the Dissertation

Figure 3 shows three main contributions of this research and connections among them.

______________________________________

PLUS Learning: Chapter 4, Section 4.1

MU-POMDP: Chapter 4, Section 4.2

Inspection
________________________________ ~-~" Scheduling

Value of Information: Chapter 5 -
PLUS — Planning:

Chapter 3

System-level Scheduling: Chapter 6

_________________________________

Figure 3. The proposed framework connects three important aspect of sequential decision making: learning,
planning, and data collection scheduling.
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First, we introduce the MDP and POMDP frameworks in full detail in Chapter 2, as we use

POMDP as a baseline in the following chapters for developing the contributions of this research.

The link between knowledge to decision corresponds to the decision making under model
uncertainty (i.e. planning) addressed in Chapter 3. The research question corresponds to: given
the learn model parameters, how the agent can take an action for maintenance of the system
considering the future consequences of her action and the uncertainty caused by dynamic

environment?

The link from the information to knowledge corresponds to learning the condition state of the
components as well as their degradation process (which we generally call “learning”) addressed
in Chapter 4. The research question is the following: given the information collected from
components on the system, how an agent can learn the their degradation behavior, effectiveness

of maintenance actions, and precision of the monitoring system?

Finally, the link between decision and information corresponds to the specific research
question regard value of information and inspection scheduling addressed in Chapters 5 and 6.
The research question is: how to predict the impact of a monitoring system as a pre-posterior
analysis? Moreover, if there is restriction in availability of resources for information gathering,
how an agent can prioritize this task and identify the critical components on the system at each

time during the management process?

1.4 Publications Derived from this Dissertation

The first part of this dissertation was initially published in proceedings of 9" International

Workshop on Structural Health Monitoring (IWSHM) (Memarzadeh et al. 2013). That paper
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presents an approximate algorithm for planning and learning within the BA-POMDP framework.
Later, we generalized the algorithm and proposed Planning and Learning for Uncertain dynamic
Systems (PLUS) which is published in the ASCE Journal of Computing in Civil Engineering
(Memarzadeh et al. 2015a). These publications are the bases for Chapter 3 and Chapter 4, section

4.1.

The second part of the research focuses on modeling systems with similar components. The
preliminary results are published in the proceedings of 6™ World Conference on Structural
Control and Monitoring (Memarzadeh et al. 2014) and International Conference on Applications
of Statistics and Probability in Civil Engineering (Memarzadeh et al. 2015f). The proposed
Multiple Uncertain POMDP (MU-POMDP) framework with comprehensive validation and
application on wind farm management is currently under review in Elsevier Journal of
Reliability Engineering and System Safety (Memarzadeh et al. 2015b). The content of these

publications is presented in Chapter 4, section 4.2.

The third part of the research is related to the computation of value of information in
sequential decision making and its application for system-level inspection scheduling. We first
introduced two heuristics in the Journal of Computer-Aided Civil and Infrastructure Engineering
(Memarzadeh and Pozzi 2015c). Later on, we extended these heuristics to the proposed
stochastic future allocation and fee-based future allocation models; one conference paper is
published in proceedings of 10" IWSHM (Memarzadeh and Pozzi 2015e) and a journal paper is
finalized to be submitted to Elsevier Journal of Reliability Engineering and System Safety

(Memarzadeh et al. 2015d). Content of these publications are reported in Chapters 5 and 6.
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Chapter 2

Markov Decision Processes:
Full and Partial Observability

Abstract

In this chapter, we introduce the traditional methods for sequential decision making. The
Markov decision process (MDP) is presented in detail and then the partially observable MDP
(POMDP) is introduced as a generalization of MDP. We discuss details of the formulations, how
to solve the optimization problem, and present an illustrative example of POMDP. In the last
part, we discuss the recent advancement of POMDP to include the model uncertainty and the

corresponding framework of Bayes-Adaptive POMDP (BA-POMDP).
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2.1 Markov Decision Process

A fundamental model for sequential decision making is the Markov decision process (MDP).
In an MDP, the environment is modeled as a finite set of states and actions that an agent can
take. The goal is to choose actions that maximize the total expected reward. A typical graphical
model of MDP is shown in Figure 4. Graphical models in this document follow the notation of
dynamic Bayesian network and influence diagrams adopted in the textbook of Barber (2012).
Circles define random variables, squares decision variables, diamonds utility variables, and

arrows dependence among variables.

Qo ' ag At+1

o~

Figure 4. Graphical model of a Markov decision process

N

An MDP is defined by a 5-tuple (S, A, T,R,y), where S = {1,2, ..., |S|}, A = {1,2, ..., |A|} are
finite sets of condition states and available actions. Transition is described by a 3-dimensioona
matrixes of size |S| x |S| X |A|, whose entry are defined as T'(i,, k) = P[s;y1 =j | st = i,a; =
k]. In the MDP, Markov property holds: given the current state of the system and the action that
an agent has taken, future states are independent of the past, so that P[s;,.; =j | @, 5] =
P[sis1 =J | sp,agl, where 5, = {sq, sq, ..., s} and a, = {ay, a,, ..., a;} indicate the history of
states and actions, respectively. Reward (cost) matrix, of size |S| x |A|, is defined as R(i, k) =
E[r: | s; = i,a; = k]. Traditionally, letter r indicates a “reward”, but in the context of

infrastructure management, it refers to cost. Finally, future rewards are made equivalent to
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current ones by using discount factor, y. In the following, we summarize the parameters of a
POMDP as follows: ® = {T,R,y}, since the dimension of the matrices carry information of

those of relevant sets.

In the MDP, the agent starts in an initial state, s,. At any time step t, the agent observes the
current state of the system, s;, takes an action a;, receives a reward R(s;, a;) (or pay the cost),
and moves to the next state s;,; with probability T'(s;, a;, s;+1). A policy, m: S — A is a mapping
from state space to actions. The value of a policy is the corresponding expected sum of
discounted costs (or rewards) when starting in some state and executing actions according to the
policy. The optimal policy ©* is that achieving the minimum value (maximum value, when
dealing with rewards). The optimal value for infinite time horizon is stationary and can be

described by Bellman’s equation (Bellman 1957):
V*(s,0) = min {R(s, a) + yz T(s, a,s’)V*(s’,G))} (@)
aea s'es
And the optimal policy is:

m*(s,®) = argmin {R(s, a) + yz T(s, a,s’)V*(s’,@)} 2
s'es

a€A

Note that if the goal of the agent is to maximize the rewards, the optimization problem needs

to change to maximization over actions.

Optimal policy for MDP can be identified by two classical methods: value iteration and
policy iteration. The details of these algorithms can be found in textbooks of Sutton and Barto

(1998) and Russell and Norvig (2010).
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One of the main limitation of MDP is that it assumes that the state of the system is fully

observable, which is not a true assumption in many real-world applications.

2.2 Partially Observable Markov Decision Process

The POMDP framework shares many assumptions of MDP. At any time, the system’s state s
assumes one value in finite discrete set S = {1,2, ..., |S|}, while the agent can select one action a
among set A = {1,2,...,|A|}. Based on the current state and action, she pays cost r. Time is
discretized in steps, and variable s;, a;, r; indicate state, action and cost at time t respectively.
Expected cost is assigned by function R(i, k) = E[r¢|s; = i,a; = k]. After taking an action, the
state evolves stochastically following a Markov process governed by transition probability

function T(s,a,s") = P[s;11 = sl|s; = s,a; = al.

In MDPs, action a, follows the observation of the full state s, that, given the Markovian
assumption, is a sufficient statistic for the process. On the contrary, POMDPs assume that at time
t the agent has access only to a noisy and incomplete measure of the current state, summarized
by observation z, which can assume one value in set Z = {1,2, ...,|Z|}. The relation between
state and observation is capture by the emission probability function O0(s,a,z) = P[z, =
z|s; = s,a,_, = a]. The entire cost, transition and emission functions are listed in corresponding
matrixes T, O, R, of size |S| X |S| X |A], |S| X |Z| x |A| and |S]| X |A]| respectively. In summary,
transition matrix T defines the degradation model and the effectiveness of maintenance actions,
emission matrix O defines the accuracy of observations collected by instrumented and visual

inspections, while cost matrix R defines the economic model.
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Figure 5 shows a graphical model of a POMDP, using the classical notation of dynamic
Bayesian networks and influence diagrams (Barber 2012). Only shaded variables are observed.
Figure 5 allows us to follow in details the temporal process. At time t,, the agent takes action a,
and pay cost r; then time At passes and state evolves to s,, that the agent observes imperfectly
through z,. Cost, new state and observation depend on the taken action. Action a, is selected

after having analysed z,, and the process is iterated indefinitely.

Qg ¥ ag At+1

Wi
Y
5
S

V.

Figure 5. Graphical model of a partially observable Markov decision process.

The agent’s goal is to minimize value V, defined as the expected sum of the discounted costs
over an infinite time horizon: V = E[}Y2,y‘r:], using discount factor y. At time t, the agent’s
knowledge about the current state is represented by a probability distribution, or belief vector by,
so that the ith enty is b, (i) = P[s; = i|Zz;, a;], with sets a, = {ay, ..., a;_1} and z; = {z,, ..., z;}
being the history of observations and actions up to time t, respectively. Being the belief a
sufficient statistics for the process, the agent can base her decisions on that. Formally, a POMDP
is defined by a 8-tuple (S,Z, A, T, O,R, by, y), where b, is the initial belief. In the following, we
summarize its parameters in set ® = {T,O,R,y}, since the dimension of matrixes carry
information of those of the sets S, Z and A. During the process, the agent updates her belief by
iteratively processing any available observation. Transition and emission probabilities can be

combined in operators that allows for predicting the state evolution and processing observations,
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making use of Bayes’ rule. The move-forward (f), emission (e), and updating (u) operators, or

dimension |S|, |Z] and |S| respectively, are defined entry-by-entry as follows:

N
fi(b,k,®) = P[s;,; = i|la; = k,b; = b,0] = l_lT(l, k,i)b(l)
S|
< ej(bi k, 0) = IP[Zt+1 = jlat = k'bt = b,@] = . 10(':' k'])fl(b' k, 0) (3)
i=
0(i,k,j)fi(b, k,0©)
u(b,k,],@) = ]P[St 1= llat = k;bt = brelzt 1 :]] =
! * + ej(b, k, @)

\

In summary, if the agent has belief b at time t, takes action k and observes j at the next step,

then the updated belief is u(b, k, j, ®). We re-use r for indicating expected immediate cost as a

function of belief b and action a, as r(b, a, ®) = 2'5'1 b(s)R(s,a).

S=

The agent’s behavior is defined by a policy, i.e. a map between belief and actions. When
policy m is adopted, action at time (t + 1) is set as a;,, = m(b,). The value depends on policy ©

via the recursive equation:
1Z]
V™ (b, @) = (b, 1(b), ®) + yz e, (b, 7(b), ®) V™ [u(b, 7(b), z, @), O] o)
z=1

while the optimal value is defined by the Bellman Equation (Bellman 1957) as in Eq. (1):

1Z|

V*(b,0®) = 121612 {r(b, a,9) + yz e,(b,a,®) V*[u(b,a,z (E)),@]} (5)

z=1

Note that if the goal of the agent is to maximize the rewards, the optimization problem needs

to change to maximization over actions.

Bellman’s equation for optimal policy =* can be formulated as in Eq. (2):
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1Z|
n*(b,®) = argmin {r(b, a,0)+y

acA

e,(b,a,®) V*[u(b,a,z0), (E)]} (6)

zZ=

In principle, a POMDP is solved by applying the methods to solve MDPs to the belief state
(Aoki 1965, Astrom 1965). However, as the belief state is a probability distribution, it is defined
on an infinite space, and so exact solution for the POMDP is not generally available. In reacting
to observations collected, an agent can select one conditional plan among the many available
(Russell and Norvig 2010). The conditional plan can be interpreted as a policy function defined

on the domain of the sequence of observations.

The number of possible conditional plans, n., grows exponentially with the time horizon
assumed for the project. Let a;g(s) defined the value of executing the i-th conditional plan
starting from perfect knowledge that the system is in state s for the POMDP model defined by 0.
The value of following that plan is linearly related to belief state b as V;(b,®) = Y., b(s) -
a; o(s). Figure 6, a graph inspired by Kaelbling et al. (1998) that refers to a simple example of a
two-state POMDP. Belief is completely described by a scalar value b(s;), as b(s,) = 1 — b(s;).
Figure 6 reports the value for four conditional plans, and the bold lie indicates the optimal value,

depending on the belief state.
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Vi(b)

0 b(s,)

Figure 6. A simple example of value function for two state POMDP model (adapted from Kaelbling et al. 1998).

The optimal value function can be written as:

[S]
V*(b,®) = min E
l

S=

1b(S) " aie(s) ()

Where i is defined on the domain {1,2, ..., n.}. The proof of Eq. (7) can be found in the work
by Smallwood and Sondik (1973), which shows that the optimal value function for any finite
horizon POMDRP is a piecewise-linear and convex function over the domain of the belief B. Eq.
(7) cannot be solved explicitly, except for very short time horizon, due to the high value of n,.
However, as it is clear in Figure 6, some conditional plans are completely dominated (e.g. plan 4)
and can be neglected (Russell and Norvig 2010). It should be noted that each conditional plan
begins with a specific first action, so Eq. (7) allows defining implicitly the optimal policy 7* as,
for any belief state b, the optimal action is that to be executed as first one in the optimal

conditional plan.
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The computational complexity of solving POMDP problems and planning based on POMDP
is discussed in detail by Hsu et al. (2007) and Shani et al. (2013). Exact solution of the POMDP
problem can be found by the process known as exact value iteration (Kaelbling et al. 1998). In
each iteration, the value function is updated cross the entire belief space and the size of a-vectors
created in each iteration is denoted by |V|. The overall complexity of a single iteration is
O(IVI x |Al x 1Z] x |S|? + |Al X |S| x [V|'#!) (Shani et al. 2013). In practice, exact value
iteration is only feasible for small problems as the size of the set of a-vectors grows
exponentially with every iteration. As the computational cost of each iteration depends on the

number of vectors in V, an exponential growth makes the algorithm prohibitively expensive.

Kaelbling et al. (1998) have proposed the so-called witness algorithm for finding the exact
solution to POMDPs via value iteration. However, this algorithm is not practical when the set of
states, actions, and observations are large. An alternative approach is to discretize the belief
space, using either a fixed grid (Lovejoy 1991) or a variable grid (Zhou and Hansen 2001). The
value of any belief is then defined by interpolation of the points on the grid. However, in general,
regular grids do not scale well in problems with high dimensionality and non-regular grids suffer
from expensive interpolation routines. Other point-based value iteration methods restrict search
to the beliefs that can be reached starting from the initial belief state (Pineau et al. 2003). The full
complexity of the point-based value iteration methods requires O(|V| x |A4| X |Z| x |S|? + |A] X
IS| % |Z]), as compared with the O(|V]x |A| x |Z] x |S|? + |A| X S| x [V|\?!) of a single
iteration of the exact method (Shani et al. 2013). In particular, one of the most effective point-
based value iteration methods is successive approximations of the reachable space under optimal
policies (SARSOP) (Kurniawati et al. 2008), which identifies the optimally reachable belief

states, and approximates the optimal value function using this set. SARSOP represents the state-
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of-the-art in solving POMDPs, in terms of efficiency and accuracy. As all algorithms for
POMDP, SARSOP formally solves the finite horizon problem, but it can be used as an

approximation to solve the infinite horizon case.

2.2.1 Hlustrative Example for POMDP

In his section we illustrate how the POMDP framework operates by applying it to an
illustrative example of managing a single component. Suppose an agent is managing a
component whose condition state is described by only two possible states, Intact (s = 1) and
Damaged (s = 2). She has access to two possible actions: Do-Nothing (a = 1, DN) and Replace
(a = 2, RE). The cost of replacing a component is assumed to be $100 and cost of damage is
assumed to be $200 and discount factor is 0.95. The transition probability of the component is

given as follow:

T1=[0.39 o.;n] T2=[1 8]

If the agent does nothing there is a chance of 1% for the component to become damaged in
the next time step, while replacing the component improves its condition to intact with certainty.
The agent also has access to noisy observations that is defined by the emission probability as

follow:

01:02:[ € 1—¢€

Where, € is the probability of wrong measure. If the error is zero, then agent has perfect

knowledge about the condition state of the component (which is MDP described in section 2.1),

and she does nothing if the component is intact and replace otherwise. On the other hand, when
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there is a probability of wrong measurement, the agent adapts a policy according to how reliable
the information is. Figure 7 shows (a) the optimal value and (b) optimal policy as a function
probability of damage Pp 45, for different measurement errors, €. It is clear from the figure that as
the measurement error increases, the expected cost of operating this component increases as
well, and the agent adapts a more conservative policy by replacing the component more often.
For example in the case of € = 0.50, the measurements are useless and the agent cannot rely her
maintenance policy on the observations, hence it adapts a very conservative policy of replacing
the component as soon as the probability of damage is above 10%, while in the case of € = 0.01,
agent has access to very reliable information about the component’s condition state, hence she

adapts a less conservative policy and replaces only if the probability of damage is above 35%.
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Figure 7. Optimal value (a) and optimal policy (b) as a function of Py 4,, for different €.

2.3 Bayes-Adaptive Partially Observable Markov Decision Process

Bayes-Adaptive POMDP (BA-POMDP) framework is a generalization of POMDP, where
the transition and emission probabilities, T and O, are unknown parameters of the model and are
treated as random variables, with a prior distribution P(®) where ® = {T, 0}. Technically, the
BA-POMDP model can be interpreted as a POMDP with a continuous state space, and with an
augmented belief state that also includes ®. The augmented belief state at time t is now defined
as b, = P[s.,® | a,_y, Z;]. In principle, we can express the belief at time t as a function of that
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at the previous step, as in POMDP formulation reported in Eq. (3). However, as in most cases
we cannot find any closed-form representation of the posterior, in BA-POMDRP it is easier to

express the belief at any step by integrating the joint probability:

P(St’@ | at—llz_t) & P(Z_tfst | ©,a;—1 )P(0)

= P(@)Z P(Z,5, 1 0,d_,)
§t_1ESt

= P(©) Z_ e P(sy) 1_[ (T (s, a, s’))Ngs'(s_t'dt_l) X ®)

s,a,s'E[SXAXS]

[ 1_[ (0(5‘, a, Z))N‘gZ(§t’at—1:Z_t)]

S,a,ZE[SXAXZ]

Where S? is the set of possible sequences of states up to time t, Ng./ (5, @;—) is the number
of times the transition (s,a,s") appears in the process and N& (5, a;—4,z;) is the number of

times the emission (s, a, z) appears in the process.

BA-POMDP framework can incorporate the uncertainties in the probabilities defining the
transition and emission models; however its computational complexity grows exponentially with
increase in the dimensionality of the problem, or longer management time horizons. In the next
chapters we introduce a tractable approximate method to perform planning and learning within

the BA-POMDP framework.
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Chapter 3

Sequential Decision Making:
Planning Under Model Uncertainty

Abstract

In this chapter, we propose an approximate method for planning under model uncertainty
within the BA-POMDP framework. The proposed method includes the uncertainty in the model
parameters describing the degradation behavior of components (i.e. transition probabilities) and
precision of the monitoring system (i.e. emission probabilities) and it identifies the optimal
action for operation and maintenance. The method is approximated, because it neglects the
exploratory value of learning the model parameters. We compare the performance of the

proposed method with POMDP planning on a numerical example of wind farm management.
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3.1 Problem Formulation

One of the main limitations of the planning within the POMDP framework is that it assumes
that the transition and emission probabilities are known with certainty. This is not a realistic
assumption in many real-world management problems, because these probabilities are affected

by epistemic uncertainty.

Now consider a decision making process, modeled as a POMDP, but with uncertain
transition and emission probabilities, while cost function, initial belief and discount factor are
fixed. The agent models her knowledge on these model parameters through a joint distribution,
and she can solve the POMDP optimization problem for any model. In this setting, the problem

is how to select an action: we refer to this as “planning under model uncertainty”.
3.1 Proposed Method

In this section, we propose an approximate method called Planning and Learning for
Uncertain dynamic Systems (PLUS) (Memarzadeh et al. 2013, 2015a). The planning method is
based on two approximations. First, to neglect the exploratory value of learning variables T, O,
i.e. the system model parameters, ® = {T, 0}. PLUS aims at identifying the optimal policy as
that for transition and emission probabilities modeled by P[® | a;_,, Z;], neglecting the updating
attributable to future observations. Consequently, according to the formulation of Durango and
Madanat (2002), PLUS belongs to the “open-loop feedback control” method. They also propose
the “closed-loop feedback control” method which incorporates the exploration by including the
model uncertainty into the belief state. To formalize the second approximation, let us define

Qe(a,b) as the quality of a belief-state-action (Q-value) for a POMDP, i.e. the value of starting
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from belief b, performing action a, and following the optimal policy after that, for a model

defined by @, defined as follow:

Qo(a,b) = r(b,a,8) +y Zillez(b, a,0)V*[u(b, a,z, ), 0] )
So that:
V*(b,0) = min Qg (a,b) (10)
We can identify the optimal action a* by the following approximate formula:
a* = argénin Eg[Qe(a,b)] (11)

Where E, indicates the statistical expectation, according to actual knowledge of variable x,
and the belief state at time t is defined as in a POMDP as b = P[s; | ©,a;_4,2;]. Eq. (11)
represents an approximation, as it combines quantities related to optimal policies for different
models. However, we do not use the approximation to estimate the value of the policy but only
to select the current optimal action. Computationally, the advantage of Eq. (11) is that Qg(a, b)
can be obtained from the results of a POMDP solver, i.e. SARSOP. Similar approaches have
been used before for active learning in POMDPs with limited reinforcement using Bayes risk

(Doshi-Velez et al. 2012).

The Q-value of a belief-state-action can be related to the a-vectors presented in section 2.2.
For a model ©® and belief b, we can identify the optimal conditional plan starting with action a
for each available action. We defined a,, ¢(s) as the component referring to state s of the

corresponding a-vector. The Q-value of a belief-state-action can be computed as:
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Qo(a,B) = )" b(s) - Lopa(s) (12

Figure 8 presents the scheme of the planning algorithm, which is based on Egs. (11-12). At
time t, augmented belief state b, is represented by N samples. For each sample, we solve the
corresponding POMDP problem, using SARSOP (Kurniawati et al. 2008). The outcome of
SARSORP is the set of m non-dominated a-vectors. Among them, we select one optimal a-vector

per each action: this is the pruning routine mentioned in the algorithm. «; refers to the optimal

vector for the j-th action, Q](.k) to the Q-value of a belief-state-action for the k-th sampled model
under the j-th action, and Q; to the expected Q-value of a belief-state-action for the entire model

space, which we compute by sample average. Action a* is selected by identifying the maximum

(minimum, when the goal is minimizing the cost) of @; among all possible actions.

PLUS Planning Algorithm

k=1
function PLANNlNG({T(k),o(k),bg")} ,R,y)
N

fork =1:N do
{ap )=t « SARSOP(T®, 00, p® R )
[}, ..., @] = PRUNING({a,}2, b))
forj=1:Ado
Q) « T b
end for
end for
forj=1:Ado
1 K
Qj « 5 Zk=1 Q](- )
end for
a* « argmax Q;

j
return a*

end function

Figure 8. PLUS planning algorithm
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3.2 Numerical Validation of Wind Farm Management

To validate our proposed planning approach, a numerical example of wind farm management
is used through discussion with our industry collaborator, Everpower wind holdings (refer to
Chapter 1 for more details). It is assumed that the condition state of each turbine can be modeled
by a Markov process defined by a few states, and the observations collected can be classified
within a few possible discrete values. Although PLUS can be applied to much more complicated
problems, this simple setup allows us to extensively investigate the performance of the algorithm

and compare it to other existing methods.

The condition state of the turbine degrades due to fatigue and aging, potentially causing a
structural failure and a relevant economical loss to the agent. In turn, the agent can perform
repairs to avoid failures and inspections to refine the knowledge about each condition state. In
detail, we assume the farm consists of 10 turbines of the same type, so that we can refer to a
unique value of transition and emission probabilities. Specifically, we assume three condition
states: s = 1 refers to an intact structure, s = 2 to a damaged one, and s = 3 to a collapsed
turbine; three actions: a = 1 corresponds to “Do Nothing” (DN), a = 2 to “Repair” (RE), and
a = 3 to performing a “Visual Inspection” (VI). When DN is selected, the condition state
evolves according to the degradation process. RE models a costly intervention which is supposed
to improve the condition state, while VI models an effort providing only information on the
condition state, without affecting the degradation process. Each time step is assumed to be six

months, and the agent takes one action per turbine at each time step.

Observations are classified in 4 discrete outcomes: z = 1 is intended as a reassuring output,
suggesting that the turbine is undamaged; z = 2 and z = 3 indicate two symptoms of damage;

after recording z = 4, the agent knows that the turbine is collapsed.
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We model the agent’s prior knowledge is modeled on transition and emission probabilities by
independent Dirichlet distributions with parameters n and @ respectively. Introduction to the
Dirichlet distribution can be found in the textbook of Murphy (2012). The choice of Dirichlet
distribution for prior on model parameters will be clear in the next chapter (the reason is that
Dirichlet is conjugate prior to multinomial distribution and transition and emission probabilities
in the discrete POMDP follow a multinomial distribution, hence the posterior would be also in
the form of Dirichlet). Parameter i can be represented by three matrices: npy, Ngg, and Ny,

referring to the actions listed above:

8 4 2 8 4 0
Moy =Ny =0 4 2 Nee =14 2 0
0 0 1 4 2 0

The transitions are assumed to be identical for actions DN and VI. The zeros in the matrix
npy Indicate that, after any of these actions, the condition state cannot improve, so that, for
example, the turbine stays in a collapsed state after action DN. Generally, according to this
matrix, the turbine in the intact state has a tendency to stay undamaged, but it can also become
damaged or directly collapse, while that in the damaged state has a tendency to stay there, but it
can also collapse. After action RE, the turbine cannot be in a collapsed state, but it can still be
damaged, as the intervention is not known to be perfect and, even after a perfect repair, the
turbine can transit to the damage state during the following period, considering the long time step
(six months). As for any feature of the process, the effectiveness of such an intervention can be
learnt by the agent during the management history. Knowledge about emissions, depending on
the action, are modeled by the following values:

8 4 2 0 4 2 0 0
2 8 4 0 Byy=10 2 4 0

0 0 0 1

Bon = Bre =
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As can be deduced from these matrices, the agent thinks that, as a tendency, states 1 and 2
generate observations 1 and 2 respectively, under actions DN or RE. The visual inspection VI is
regarded as possibly imperfect and, again, its actual effectiveness can be discovered during the
management process. It is to be noted that, independently of the action, the collapse state 3 is

univocally related to observation 4, so that the agent is immediately aware of any failure event.

The reward function is the sum of three components: the costs for repairing, inspecting, and
down-time. The agent pays $10,000 for any repair, $500 for any visual inspection and $50,000
for any time step in which a turbine is in the collapsed state. The discount factor is assumed to be

y =0.95.
The belief about the initial state is modeled as,
b, = [0.8 0.2 0]

therefore, the agent believes that the turbines are in the “Intact” state with 80% probability

and in “Damaged” state with 20% probability.

The behaviors of different turbines in the farm are assumed to be independent, and the agent

refers her planning to the infinite horizon setting.

Transition and emission were fixed to a value compatible with the available knowledge,
referring to this as the #rue model. The true model was assigned to each turbine in the farm, and

the planning algorithm was tested for the range of all possible models representing the turbines.

In the experiments, we consider three types of agents: The True Model agent has perfect
knowledge about the true underlying transition and emission probabilities, and adopts a POMDP
model with correct value for T and O, making use of SARSOP algorithm for planning: this

represents a lower bound to the performance any planning strategy under uncertainty. The
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Expected Model agent derives the expected value of T and O from the prior Dirichlet
distribution, and again adopts POMDP solved by SARSOP: it represents the simplest and most
common approach to solve the planning problem under model uncertainty in the literature. The

third agent, PLUS, adopts the method presented in section 3.1.

The immediate and cumulative management cost is evaluated for assessing the performance
of the planning method, because they are directly related to what each agent is trying to optimize.
Figure 9 reports the immediate (a) and cumulative (b) costs of O&M, for the true model, the
expected model and the PLUS agents. Again, the frue model agent represents the lower bound,
leading to an immediate cost of about $2,900/6months, while the expected model agent achieves
a cost of about $8,300/6months, and the PLUS agent a cost of about $7,700/6months. The
difference between these latter values, i.e. $600/6months, quantifies the benefit of adapting the
robust planning approach presented in this chapter. Naturally, adding the learning process as well
would make PLUS perform much closer to the true model, but this experiment highlights the
value of uncertainty-aware planning in and of itself. We evaluate the effect of learning in the
next chapter. It should be noticed that these costs and savings are for a single turbine and the

costs and savings regard the entire farm is ten times higher.
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Figure 9. The planning performance of PLUS algorithm compared to POMDP and “true model” agents.
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Chapter 4

Sequential Decision Making:
Learning

Abstract

In this chapter, we focus on the problem of learning the degradation behavior of components
(transition probabilities), as well as the precision of monitoring system (emission probabilities)
by processing noisy observations. We first introduce the learning procedure in PLUS (planning
and learning for uncertain dynamic systems). PLUS models the components as either
independent (learning an independent model for each component) or identical (learning a global
model for all components). When the system is made up by similar components, data collected
on one is also relevant in the management of others. We extend the formulations of PLUS,
allowing a weaker similarity among components. The proposed approach, called Multiple
Uncertain POMDP (MU-POMDP), assumes the model parameters as dependent random
variables among components, and allows the transfer of knowledge among them by using a set of
hyper-parameters. We evaluate the performance of PLUS compared to state-of-the-art methods
in reinforcement learning and then evaluate the performance of MU-POMDP compared to

PLUS.
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4.1 Planning and Learning for Uncertain dynamic Systems — PLUS

4.1.1 Problem Statement

PLUS introduces an approximate method for planning and learning under model uncertainty.
The planning phase has been discussed in previous chapter. In this section, we focus on the
learning phase. By processing noisy observations, how can an agent learn the degradation
behavior and the precision of monitoring system? This is a challenging task as the condition

states of the components are not observable.

4.1.2 Proposed Method

In this section, we propose an approximate method for optimally planning and learning in
uncertain dynamic system (PLUS) within the BA-POMDP framework (Memarzadeh et al. 2013,
2015a). Figure 10 shows the overall PLUS method, which is organized in two main parts:
learning and planning. Details regard the planning part were discussed in Chapter 3. The
algorithm can be called at any stage of the process. At time ¢, it represents the augmented belief
b, by a set of samples, and it suggests action a*. In the algorithm, notation x) indicates the k-th

sample of variable x.
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PLUS Algorithm

function PLUS (1, B, by, @, Z¢, R, v, N)
» Learning

k=1

{Tac), 0w, b§’<>} < LEARNING (n, B, by, @y, 2, N)
N

» Planning

k=1
a* « PLANNING ({T("), 0@, b,f")} R, y)
N

k=1
return a*, {T("), 0, bgk)}

end function

N

Figure 10. Planning and learning for uncertain dynamic systems (PLUS) algorithm

The PLUS algorithm makes use of an approximate method based on Markov Chain Monte
Carlo (MCMC) Gibbs sampling (Carter and Kohn 1994). The present approach is a slight
variation of the beam sampling approach used in the context of infinite Hidden Markov Models
(Van Gael et al. 2008) and infinite POMDPs (Doshi-Velez 2010). Figure 11 shows the details of
the proposed algorithm for learning: the method samples N instances of T, O and belief state b,
from the joint posterior distribution. We start sampling T, O from the corresponding prior
Dirichlet distributions, then we alternate between sampling state sequence 5;, and sampling T
and O. For each fixed T and O, a state sequence is drawn by forward filtering backward
sampling (FFBS) (Fruhwirth-Schnatter 2006), as described below in the next section. In turn, as
noted above, the posterior distribution given each sample s; is still in the Dirichlet family.
Parameter set m'defines the updated Dirichlet distribution for the transition probabilities,
depending on sampled state sequence s, while B’ defines that of the emission probabilities,
depending on s, and observations z;. It should be noticed that, in the limit of an infinite burn-in
phase, this proposed method is selecting samples from the true posterior distribution. In Figure
11, n,, indicates the number of samples in the burn-in phase, to be discarded (Murphy, 2012),

and the notation x~p indicates that sample x is generated from distribution p.
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PLUS Learning Algorithm

function LEARNING(n, B8, by, @¢—1,Z¢, N, np)
T© ~Dir(n)
0@ ~Dir(B)
fork =1: (N +ny) do

(5%,b8) < FFBS(T®~D, 0%, by, 7, _,, Z,)

n' « UpdateDirichlet (n, §t(k), C_lt_l)

T® ~ Dir(n")

/ ‘o (k) = _

B’ < UpdateDirichlet (,8, S, Qp—1,Z¢

0" ~Dir(B")
end for
return {T(k), 0, bgk)}

end function

k=1+ny

N+np

Figure 11. PLUS learning algorithm

4.1.2.1 Forward Filtering Backward Sampling

FFBS is a multi-move sampling method for discrete systems (Fruhwirth-Schnatter 2006).
The steps are as follow: (1) For each time step j ranging from 0 to t, we derive posterior
probability P(sj | ©, c_lj_l,z'j), solving the so-called “filtering” problem; and (2) We sample
state s; from the last distribution and s;, from time step j =t — 1 backward to j = 0, from
distribution F(s;) o P(sj | ©,a;-1,2 )P(sj41 | T.sj,a; ). The outcome of FFBS algorithm is

the sequence of states {sy, ..., s;} sampled from distribution P(5; | ®, a;_4, Z; ).

4.1.3 Numerical Validation of PLUS

Details of the numerical example used for validation is provided in section 3.2 of previous

chapter. We consider four types of agents: The true model agent has perfect knowledge about the
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true underlying transition and emission probabilities, and adopts a POMDP model with correct
value for T and O, making use of the SARSOP algorithm for planning: this represents a lower
bound to the performance of any planning strategy under uncertainty. The Expected Model agent
derives the expected value of T and O from the prior Dirichlet distribution and, again, adopts
POMDP solved by SARSOP: it represents the simplest and most common approach to solve the
planning problem under model uncertainty. The MEDUSA agent makes use of the algorithm
described in Jaulmes et al. (2005a,b), while the PLUS agent adopts the method that was

presented in sections 4.1.1 and 3.1.

Two different metrics are used to validate the methods. First, the immediate and cumulative
management cost for assessing the performance of the planning methods is evaluated, because
they are directly related to what each agent is trying to optimize. For additional validation of the
learning process itself, evaluate the Kullback-Leibler (KL) divergence (Cover and Thomas 2006)
between the transition (or emission) probabilities as modeled by the posterior distribution and in
the true model. The KL divergence is a non-symmetric measure of the differences between two
probability distributions. Specifically, the KL divergence of distributions Q from distribution P
(both being distributions defined on n discrete values), denoted as D, (P]|@), is a measure of

information lost when Q is used to approximate P, and is defined as:

n P(i
D (Pli) = Y in (23 )P0 (13

=1

where In indicates natural logarithm. In computing the KL divergence between two transition

(or emission) models, the results referring to the average over all values of s; and a,.
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In order to validate, we have fixed a model and assigned it to all turbines. This is called the

true model, and it is defined by transition T* and emission O™, as listed in the following:

09 0.08 0.02 1 0 0
Tin=Ty =0 09 01| Ti=[09 01 o
o o0 1 09 01 0

08 01 01 0 100 0
Oy = 04; =005 09 005 0| Oy, =[0 0 1 0
o 0 0 1 00 0 1

This specific model describes a turbine that is more reliable than that defined by the expected
value of the distribution reported in the previous section. These models were selected by
adapting examples from the literature (Byon et al. 2010, Byon and Ding 2010), Nielsen and
Sorensen 2012) after discussion with industry experts from EverPower Wind Holdings
(Pittsburgh, PA). For example, the probability of a collapse in one 6-month period, for an intact
turbine, is only 2%. The emissions related to the Visual Inspection models perfect information on

the condition state.

For each agent, the management of the wind farm is simulated 20 times, and the average
outcome is plotted in Figure 12. In each simulation, the initial state is sampled according to the
distribution b,. Figure 12a reports the average immediate cost vs the time step. The black dashed
line represents the true model agent, the blue line represents the expected model agent, and the
red dash-dotted line represents the PLUS agent, while other colors refer to the MEDUSA

algorithm, with learning rate (LR) of 0.1, 0.5 and 1.

Each agent starts with a low cost in the first steps due to the good state of the turbines, as
assumed by the initial belief state. The true model and the expected model agents adopt a
stationary policy, and the corresponding immediate cost converges to a constant value, which is

about $2,200/6months for the former, and $3,500/6months for the latter agent. Fluctuations are
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due to randomness in the average of the small set of simulations. Agents adopting the MEDUSA
and the PLUS algorithm, on the other hand, adopt non-stationary policies because of the learning
process. At each time, the knowledge about the model is affected by processing the previous
observations, and the policy varies accordingly. Ideally, if sufficient information is collected, the
policies (and consequently the immediate cost) of these agents should converge to that of the
“true model” agent. As expected, it is apparent from the figure that the immediate cost grows in
the first phase (i.e. the first 10-20 steps), and then is reduced in time, because of the effect of
learning. The PLUS algorithm also performs well in the first phase because of the robust
algorithm for planning. After 30 steps, the immediate cost is about $2,600/6months. In this
simulation, the MEDUSA algorithm achieves a higher cost for a range of different learning rates.
The benefit of the PLUS algorithm over the expected model approach can be quantified as about

$1,000/6months.

Figure 12b shows the cumulative costs of O&M, computed as the integral in time of the
curves plotted in Figure 12a. This representation is useful for assessing the long term benefit of
adopting alternative schemes. In a 100-step period (corresponding to 50 years), the true model
agent expects a cost of about $220,000, the expected model agent a cost of about $350,000,
while the PLUS agent expects a cost of about $250,000. Thus, the benefit of adopting PLUS is
quantifiable to about $100K for this period. It should be noticed that these costs and savings are

for a single turbine and the costs and savings regard the entire farm is ten times higher.
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Figure 12. Costs for O&M of a wind farm versus time for six agents: (a) immediate; (b) cumulative average.

Figure 13 shows the cumulative costs for O&M of wind farm for PLUS, true model and

POMDP agents including the 95% confidence intervals.
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Figure 13. Cumulative costs for O&M of a wind farm vs time, for 3 agents including the 95% confidence intervals.

Figure 14 focuses on the learning process, showing the evolution of the KL divergence
between the posterior distribution of the model, as formulated by each agent, and the true model.
Figure 14a plots the transition probabilities and Figure 14b the emission probabilities. The
expected model agent does not learn during the process and, consequently, her KL divergence is

constant. The agents using MEDUSA or PLUS update their knowledge during the management
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process, and we expect the KL divergence will go to zero when the information encoded in the
collected observations is sufficient to identify the model. For these agents, the KL divergence is
computed as the average from a set of samples generated according to the posterior distribution
(as illustrated in section 4.1.1, PLUS algorithm requires to generate samples, so this further
computation is straightforward). We have used 10 samples in this simulation. As shown in the
figure, the learning is fast in the initial phase, but it becomes slow as more and more
observations have been already collected. According to this simulation, the MEDUSA agents
learn the transition probabilities well, but not the emission probabilities (Figure 14b). MEDUSA
learns the emission probabilities poorly, perhaps because of their different planning approach
compared with PLUS, and may need more data. However, in the long run, provided that
sufficient exploration is performed, MEDUSA is conjectured to asymptotically learn the true
model. Generally, MEDUSA and PLUS are different in terms of the tradeoff between
computational cost and accuracy: MEDUSA is computationally cheaper and easier to scale;

however, it provides less accurate solutions compared with PLUS.

Figure 14 shows that initially the KL divergence of the expected model agent is lower than
that of the PLUS agent. This is a random effect owing to the selection of the true model in this
simulation. The expected model agent adopts the mean transition and emission. Depending on
the actual model of the turbine, it may be the case that the KL divergence can be arbitrarily
small, and possibly much smaller than that of the PLUS agent. In other words, it may be the case
that the model assumed by the expected model agent is actually the correct one, and therefore no
learning is needed. Generally, the performance of the alternative methods depends on the
specific actual model. In the next section, we perform a validation of the planning algorithm for

all possible models.
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Figure 14. The performance of our proposed learning methodology (PLUS) compared to MEDUSA (with different
learning rates (LR)) and POMDP (do not involve learning). The graphs show the KL divergence between each mode

and the true model parameters.

Figure 15 shows the same results in figure 13a, including the 95% confidence intervals for

the learning process of PLUS agent.
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Figure 15. The performance of our proposed learning methodology (PLUS) compared to POMDP (do not involve
learning) including the 95% confidence intervals. The graphs show the KL divergence between each model and the

true model parameters.
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4.1.4 Limitations of PLUS Learning Phase

PLUS allows for a rational treatment of data collected in-field (e.g. by sensors and visual
inspections), a reliable tracking of the condition state of turbines, and robust decision making
support. There are two modes of implementing the PLUS algorithm for a system made up by a
set of components. The first one, that we name Individual PLUS, assumes that components are
completely independent from each other. The second, that we name Global PLUS, assumes that
all components are identical. In Individual PLUS the observations collected on one component
are only used for updating model parameters of that specific component while in Global PLUS
the observations of one component are used to update the entire system. For both
implementations, PLUS allows the agent to learn, during the management process, the

degradation process and the performance and reliability of the monitoring system.

4.2 Multiple Uncertain Partially Observable Markov Decision Process

4.2.1 Problem Statement

As mentioned above, depending on the implementation mode PLUS is an appropriate method
to model the management of a set of components controlled by one single model (Global PLUS)
or by independent models (Individual PLUS). However, a system can be composed by
components controlled by similar but not identical models. This happens, e.g., when components
of different typologies are exposed to the same environment, or when the components of the
same typology are exposed to different environments. In this context it is appropriate to assume
dependence among the models, with a degree that varies according to the application. Despite the

limit cases of independent and of identical models can be solved by Individual and Global PLUS

43



respectively, the intermediate case poses specific computational problems, which we address in
this section. Formally, the problem is defined as follow. Suppose to manage a set of components,
each modeled by a POMDP. The set of parameters controlling the POMDPs are uncertain, and
dependent among themselves. In this context, how can we (i) formulate a probabilistic model to
capture the dependence among the parameters, (ii) develop an analytical and numerical
technique to infer the variables in the problem, and (iii) define an approach to identify the

optimal management policy?

4.2.2 Proposed Method
4.2.2.1 General MU-POMDP Framework

To address the first research question posed in previous section, we make use of the
hierarchical Bayesian modeling approach, based on the PLUS approach (Chapter 3 and Section
4.1). Hierarchical Bayesian approach have been used before in the context of MDPs for multi-
task reinforcement learning to allow transferring knowledge between different by related
reinforcement learning tasks (Wilson et al. 2007). We refer to the proposed framework as
Multiple Uncertain POMDP (MU-POMDP), and Figure 16 shows the corresponding
probabilistic graphical model, for a system with two components. Only variables related to time
steps (t — 1) and (t) are shown in the figure. The reader is referred to Chapter 2 for details of
the classical POMDP framework which, as indicated in the figure, is used to model each

component.
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Figure 16. Graphical model of multiple uncertain POMDP (MU-POMDP) framework.

Subscript “k, t” refers the variable to component k at time t. MU-POMDP makes use of an
additional layer of hyper-parameters, to model the dependence among the model parameters of
different components. Hyper-parameters are marked as a, B, ap and B, in Figure 16: the first
two values define the dependence in the transitions, while the latter define that of emissions.
While model parameters are different for each component, hyper-parameters are common to the
entire system. Formally, matrices B and B, have the same dimension of T, and O, respectively,
while a; and a, are scalar variables. The role of these variables will become apparent in the
following sections. Parameter matrices n; and n,, of dimension equal to that of T, and O

respectively, and scalar variables A; and 4, define the distribution of hyper-parameters.

The overall purpose of the inference task is to represent the posterior distribution of the
variables in the problem. In this context, the posterior distribution is defined as conditional to all

observations Z and actions A observed up to present time. In principles, once each conditional
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distribution is analytically defined, prediction of any future variable can be performed,
depending on the policy adopted. However, exact inference in not feasible in the general layout

presented in Figure 16, and approximate methods needs to be adopted.

4.2.2.2 MCMC Updating Scheme

Extending the approach used in PLUS, in this section we propose to adopt a numerical
scheme based on Markov Chain Monte Carlo (MCMC) (MacKay 2003). Using MCMC, the joint
posterior distribution is represented by a set of samples. PLUS is based on Gibbs sampling,
which is an effective implementation of MCMC. Specifically, PLUS alternates sampling the
state trajectory and sampling model parameters. Using the specific distribution proposed in
PLUS, the former task is accomplished by using forward filtering backward sampling (FFBS)
(Fruhwirth-Schnatter 2006), once fixed the model parameters. On the other hand, once the state
trajectory is assigned, the distribution of model parameters can be updated in theoretically, and a
new sample can be generated. MU-POMDP is based on an extension of that method. Figure 17
reports a scheme of the inference process. In that figure, the upper bar indicates a collection of
variables, from the beginning of the management process up to a specific time. For example, Sy ,
indicates the state trajectory {Sk,l, s Sk_t} for component k. The superscript (j) refers to the j-th
samples generated by the MCMC algorithm. At component level, the sampling of states and
model parameters is identical to that adopted by PLUS. At system level, the hyper-parameters
are sampled conditional to the sampled model parameters for all components, and we indicate
with T = {T,, ..., T¢}, and O = {04, ..., O} the set of transition and emission respectively. This
task can be accomplished by using the Metropolis-Hastings (M-H) approach (MacKay 2003). In

summary, Figure 17 can be read as a recipe for generating samples from the joint posterior
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distribution: model parameters and hyper-parameters are initialized at stage zero, then states and
model parameters are sampled for each component, then hyper-parameters are sampled as well,

and these latter steps are iterated indefinitely.
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Figure 17. The proposed Markov chain Monte Carlo (MCMC) sampling approach.

4.2.2.3 Hierarchical Approach and Probabilistic Models

The graphical model in Figure 16 requires a specific assignment of marginal and conditional
distributions for every random variable. In this section, we propose a probabilistic model

inspired by Kemp et al, (2007), defined as follows:
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ar ~ Exponential(1;) a,~ Exponential(4,)

B ~ Dirichlet(ny) Bo ~ Dirichlet(my)
vk=1,..,K T, ~ Dirichlet(a;Br) 0y, ~ Dirichlet(apBo) (14)
Vk #1 TkJ_TllaT,BT Oklollao,ﬁo

Vt=12,..,0  Sp¢ | Ske—1,Arx¢ ~ Multinomial(Ty)
Zyt | Sker Akt ~ Multinomial(0y,)

where x ~ f(y) indicates that variable x is distributed according to distribution f,
parameterized with y, and x L y | z indicates that random variables x and y are independent,
given z. The reader can refer to text book of Kobayashi et al. (2012) for definition of
Exponential, Dirichlet, and Multinomial distributions. Specifically, the Multinomial distribution
of states and observations follows the classical assumptions of the POMDP framework. The
PLUS framework can be obtained by the assumption outlined in Eqg. (14), by fixing the hyper-
parameters, instead of treating them as random variables. The Dirichlet distribution on model
parameters is appropriate in this context, because it is conjugate prior of the multinomial
distribution, and this facilitates the implementation of the Gibbs approach. As noted above, the
model parameters of different components are not marginally independent, because of the
common hyper-parameters parents. Consequently, observations on any component, by affecting
the knowledge of the hyper-parameter, affect in turn all variables in the system. It is worth to
clarify the role of hyper-parameters a and B in the definition of the prior distribution of model
parameters. Each row in matrix B is normalized to one, as it follows the Dirichlet distribution.
The entries in matrix B define the expected value of the corresponding model parameters. Scalar
variable a affects the uncertainty of model parameters: intuitively a high value of a induces a
low variance of the model parameters. a is modeled as an exponentially distributed random

variable, and parameter A defines the rate of this distribution. Similarly, the value of § describing

48



the system is an uncertain quantity, and n defines the parameters of the corresponding Dirichlet

distribution.

4.2.2.4 Inference on Hyper-parameters

As outlined in Section 4.2.2.2, we propose to perform inference via the scheme reported in
Figure 16. Samples of states and model parameters are generated as in PLUS, However, Eq. (14)
does not allow to define in close form the conditional probability of the hyper-parameters:
p(ar, Br | T,Az,mp) and p(ap, Bo | 0, 19,Mp). As anticipated above, we propose to make use
of the M-H algorithm to generate samples from these distributions. Figure 18 reports a complete
algorithm to do that, for hyper-parameters a; and B4 only (the corresponding procedure for a,
and B, being identical, with obvious changes in the input variables). Input variables are the
parameters defining the prior distribution (A; and n;), the transition probabilities for all
components (T), the step-size for the proposal distribution in the direction of a; (o,), the
concentration parameter for the proposal distribution in the direction of 57 (cz), which acts as the
inverse of a step-size, and the length of the Markov Chain (J). The choice of the proposal
distribution is derived by the work of Kemp et al. (2007). In Figure 18, Normal(u, o) indicates
the normal distribution with mean u and standard deviation o, Uniform(a, b) the uniform
distribution between a and b, Dirichlet(x; y) the value assumed by the Dirichlet distribution
with parameters y at x. P indicates the un-normalized joint distribution of hyper-parameters and

model parameters that, following Eq. (14), reads:
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P(T,ar,Br,Ar,0r) =

K

Ar exp(—Arag) X Dirichlet(Br;my) X Dirichlet(Ty; arBr)

k=1

input: Az M7, T,04.C5.J

initialize (M g\

for j=1,..,] do
sample r~Normal(0,1)
ar = exp [log (a;j)) + 7 X O'a]
sample Br~Dirichlet (cﬁ B(Tj))

p-ratio = P(T, ar, B7, Ar.,n7)/P (T’ a;]), Bg!)JT,nT)
Dirichlet(BficgBY) _ al

pirichlet(8P;cqpp)

accept = p-ratio X g-ratio

sample r’'~Uniform(0,1)

if accept > r'

g-ratio =

i+1 i+1
af* =ap , YV =gy
else
g+1) _ () U+1) _ o)
ar =ar , Pr = Pr
end
end

output: hyper-parameters a;]-l-l), g~1+1)

Figure 18. Metropolis-Hasting (MH) algorithm for sampling hyper-parameters on transition.

(15)

With this algorithm, we provide a complete recipe for a numerical implementation of the

procedure outlined in Section 4.2.2.2. In that context, the value of T is assigned as the sample got

from the Gibbs step, as reported in Figure 17.

At any state during the management process, the overall procedure provides samples of the

model parameters and component state that can be used for the approximate decision

optimization scheme of PLUS (Chapter 3). Following this remark, in this chapter we will not

investigate the effectiveness of the policy search, and we will focus of the learning procedure
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only. Specifically, we will investigate two aspects. (i) Despite it is well-known that Gibbs and
M-H algorithms are consistent, we want to assess if the numerical procedure is feasible, using a
reasonable number of samples; (ii) simplified procedure would derived assuming simpler
dependence structure among model parameters, and we want to measure the degree of
approximation induced by these assumptions. To address these questions, the next section refers

to a simplified problem, which allows us an extensive numerical investigation.

4.2.3 lllustrative Example of a System with Similar Binary Components
4.2.3.1 Problem Formulation

Figure 19 shows the graphical model of a special K-component system that can modeled in
the MU-POMDP framework. It is a static system, related to Figure 16 in the following way.
Suppose only one action is available, so the decision variable is dummy, number of states (|S|) is
equal 2, transition probability is so that each state is independent of the previous one (given the
model parameters), and observations are perfect, meaning that the emission matrix is the identity.
Given this latter remark, states and observations are identical and we can drop the state variables
from the graph, relating directly model parameters to observations. In this set-up, the only model
parameters for each component are the marginal probabilities assigned to the two possible
observations, at any time. We name the two possible observations as intact and failure, and we
assign value Y =s; =0 to the intact state Y =s, =1 to the failure state. We define the
corresponding probabilities as 6, ; = P[Yk,t = si], where Y}, . indicates the t-th observation from
the k-th component. The two parameters describing the k-th component can be grouped in the

normalized vector 0, = [0k1 0Ok2]. Following the analogy with Section 4.2.2.1, 0,

51



corresponds to T, as defined before. As indicated in Figure 19 by using the plate notation (or
“plate model”) (Koller and Friedman 2009), we assume to have n observations from each

component. Actually, the reader should think that observations are collected in time, so n

corresponds to time indicator t.

AM

©
&y | |

Figure 19. The MU-POMDP framework’s probabilistic graphical model for the toy problem.

This formulation models the behavior of components that have a tendency to fail at any time.
By > Is the probability of failure for the k-th component, that we define as the model parameter.
Model parameters are not known, but are assumed to be time independent and similar among
components. Failures of components are perfectly observed and repaired. We developed this toy
application being inspired by the textbook of Gelman et al. (2004). An analogous problem can be
formulated for coins with similar biases, where 6, , represent the probability of the k-th coin to

land Head, and Y indicates the outcome of the tossing. Adapting Eq. (14), distributions for

variables in Figure 19 are assigned as:

a ~ Exponential(1) B ~ Dirichlet(n)

(16)
vk =1,..,K 0, ~ Dirichlet(af) Yi, ~ Multinomial(0y,)
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It is to be noted that, as variables Ys are binary, the Dirichlet is equivalent to a Beta
distribution, and the Multinomial is equivalent to a Binomial distribution, so the formulation
belongs to the so-called hierarchical Beta-Binomial case (Gelman et al. 2004). As before, the
posterior distribution cannot be evaluated in closed-form and, in the next section, we will present

the approximate numerical scheme adapted from Sections 4.2.2.2-4.2.2.4.

4.2.3.2 Sampling Algorithm

As outlined in Section 4.2.2.2, the MCMC procedure we propose alternates sampling the
model parameters @ = {0,, ..., 0} having fixed the hyper-parameters (« and ) and sampling
the hyper-parameters having fixed the model parameters. This latter step is executed following
the M-H scheme reported in Figure 18, with obvious re-assignment of the random variables
(¢ » ar,B—B7r,0 - T,A- A, — ny). It is worth describing briefly the former step. Let us
group the observations collected on the k-th component as Yy = {Y1, ..., Yirn}, and define
counting variable dj, = Y.t~ Y, and vector d, = [n —d), d,]. Because of the well-known
properties of the Dirichlet-Multinomial (or Beta-Binomial), for any value a and g of the hyper-
parameters, the conditional distribution p(0 | Y, @, B) is in the Dirichlet family, and it is
defined by parameter (ap + d;) (Same as PLUS learning algorithm presented in Section 4.1).
Consequently, generating samples from that distribution is computationally easy. The reader
should note that the PLUS method and the procedure outlined in Section 4.2.2 are based on

similar properties.
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4.2.4 Numerical Validation of the Illustrative Example
4.2.4.1 Alternative Processing Approaches Used for Comparison

To investigate the performance of the proposed MU-POMDP framework to the problem
outlined in the previous section, we compare its performance with two alternative approaches
which follow the assumptions of Global and of Individual PLUS respectively. Figure 20 reports
the graphical models for these approaches, and the reader should compare these with that of MU-

POMDP, as reported in Figure 18, to appreciate the differences.

The scheme for Global PLUS is reported in Figure 20a. This approach models all
components as controlled by a single global model, that is defined by 6. Consequently, the
model cannot accommodate any discrepancy among the parameters, and all observations are on
the same level, for the sake of inferring 0. Figure 20b shows the Individual PLUS approach,
which assigns an independent model to each component. Consequently, observations collected
on one component are completely irrelevant for inferring the model of other components. For
both approaches, we include a layer of hyper-parameters, consistently with the MU-POMDP
approach. The reader should be aware that, for any practical implementation of Global PLUS or
Individual PLUS, it would be easier to define directly a prior on the model paramaters, without
making use of any hyper-parameter. For example, the choice of a fixed Dirichlet prior would
permit to describe the posterior distribution of the model parameters in close form, without any
need for sampling. However, in this section we make use of the additional layer of
hyperparameters in order to achive fair comparison between MU-POMDP and the alternative
approaches: making use of the same value for A, n and for the conditional distributions for hyper
parameters and model parameters, we get the same marginal distribution for the model

parameters among all three approaches. The core of the differences across approaches is capture
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by the joint distribution of models: models are marginally independent under Invidual PLUS,

identical under Global PLUS, while they can be similar but not identical under MU-POMDP.

Figure 20. Graphical model for (a) Global PLUS, and (b) Individual PLUS.

4.2.4.2 Parameters for Numerical Investigation

To investigate the performance of MU-POMDP, and compare it with the alternative
approaches, we consider a 5-component system and assign the following values: A = 1/1000
andn = ["1 7M2] =[47.5 2.5]. At this point, we can give a further insight about the relation
between the choice of these values and the corresponding joint probabilities of the models. The
expected value of the probability of failure 6y, , is ,/(n1 + 1), that turns out to be 5% for this
choice. It is hard to derive other direct relations between those parameters and features of the
distribution. However, we observe that, for very high values of A, a tends to be of high
magnitude, and so the hyper-parameters of the Dirichlet distribution controlling the model 6:
consequently, parameters for different components are highly correlated. On the other hand, the
uncertainty in the distribution of B is decreasing with (n; +n,), so that g tends to be a fixed

quantity when this quantity goes to infinite.
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Figure 21a shows the marginal distribution for model parameter 6, , for any k-th component.
The standard deviation is 3.5%. Figure 21b shows the contour plot of the joint distribution of any
pair of variables (6 ,,0,,) for k # [, according to the MU-POMDP approach. As expected,
random variables are dependent, and the correlation coefficient turns out to be 75%. In a nut-
shell, the alternative approaches can be intended as alternative prior joint distributions.
According to the Global PLUS, all model parameters are identical so the joint distribution
collapses on the identity line (6;, = --- = 0x,). According to Individual PLUS, the joint
probability is the product of marginal distributions, as variables are independent (and therefore

uncorrelated).

(a) (b) P(6;2,0;2)
15 1 T T T
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o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘
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0;2 0i2

Figure 21. (a) Marginal prior density on the model parameters for each component (b) Joint prior density of the
model parameters for any pair of components in the MU-POMDP framework.

4.2.4.3 Scheme for the Numerical Investigation

We assume MU-POMDP captures the correct model for all variables, and investigate (i) if
the numerical procedure proposed is effective, and (ii) how approximate approaches perform.

We adopt the Kullback-Leilber (KL) divergence (Cover and Thomas 2006) as a metric to assess
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the performance of all approaches. The KL divergence is a non-symmetric measure of the
difference between two probability distributions. Specifically the KL divergence of distribution
Q from distribution P, denoted as KL(P, Q), is a measure of information lost when Q is used to
approximate P. In this context, suppose 0; indicates the actual model parameters for the k-th
component, and ©@* = {07, ..., 0%} the set of corresponding values for all components in the
system. An agent knowing @* exactly would predict the states (i.e. the observations) at the next
time step for all components y = {Y, ..., Yx } with distribution P(y|®*). Obviously, any previous
observation will be irrelevant for such an agent. On the contrary, agents without perfect
information on model parameters will base their prediction on inference: distribution P(y|Y, M)
indicates the posterior probability respect to all previous observations Y, assuming model M
which, depending on the agent, can be MU-POMDP, Global or Individual PLUS. The KL
divergence between the distribution adopted by agents is therefore KL[P(y|®*), P(y|Y, M)], and
depends on ®* and Y. Treating these latter quantities as random variables, we can define an

expected error e, as:

e(n, M) = EpoEpyvjen)KL[P(y|®"), P(y|Y, M)] (17)

where E, indicate the statistical expectation respect to distribution p, and n indicated the
number of observations collected per component (as indicated in Figs.19-20). This error
measures the lack of information related to the use of model M in processing measures Y,
respect to observing directly @, for the sake of predicting y. The analytical definition of KL

reads, in this context:
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P(y|®")

POyIY, M) (18)

KL[P(y|®"), P(y|Y, M)] = Ep(yjev llog

where the prediction using model M can be related to the inference on model parameters as:
P(ylY, M) = Eycev) [P(y10)] (19)

where @ indicates the set of model parameters, for all components in the system. Note that

the probability of outcome y given parameters O is:

K
Pyo) = | [or50; 7 (20)
k=1

Adopting a Monte Carlo approach, we can approximate any expectation with arithmetical
average across samples. We start generating samples of variable ©*, from distribution
p(®@|M = MU_POMDP), which is represented in Figure 21. Then, in sequence, we generate
samples of Y from distribution of P(Y|®*). For each sample of Y, we can sample @ from
posterior distribution p(@|Y, M), following the inference procedure outlined in Section 4.2.3.2,
for each model M. Functions P(y|®) and P(y|®*) can be evaluated analytically using Eq. (20)
on its entire domain: the number of possible outcome y is 2% for a system made up by K

components.

As we assume MU-POMDP to be the generative models for the validation, the agent
adopting MU-POMDP is consistent. For this agent, therefore, we can drop the notion of “actual
parameters” @, use ® in Eqgs. (17) and (18), and get error e as a quantity defined internally to

the graphical model reported in Figure 19, as:
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e(n, M = MU_POMDP) = E,g){log P(y|0©) — Epyje)[log E,om) P(¥10)]} (21)

In this light, error e resembles the concept of “regret”, according to the definition of Raiffa

and Schlaifer (1961), related to random variable ©.

It is worth describing in details how different agents consider the collected observations, for
the sake of inferring the model parameters. According to the MU-POMDP formulation,
observations can be partitioned in two subsets. As shown in Figure 19, observations Yy, collected
on component k, are particularly useful to infer model parameters 0,, and we can call them
“direct measures”. On the other hand, observations Y;.,, collected on all components except the
k-th one, are also useful for inferring 0,, but only via the hyper-parameters @ and 8, and we call
them “indirect measures”. In the limit for K and n going to infinite, the set of indirect measures
is equivalent to a perfect observation of the hyper-parameters. This, however, would not allow to
get a perfect prediction of 8,. On the other hand, for n going to infinite the direct measures

correspond to observing 0, directly.

As shown in Figure 20, the two PLUS approaches do not apply the distinction between direct
and indirect measures. Global PLUS put all measures on the same level, for the sake of inferring
0. Suppose we are interested in inferring the model parameters for component k: Global PLUS
makes use of all measures collected on the system, without giving any higher relevance to Y,
respect to Y;.,. On the other hand, Individual PLUS treats 0, and Y., as independent variables,
so observations collected on different components are discharged as irrelevant. Intuitively,
indirect observations can be beneficial in many applications, especially for similar components
and for a small value n of observations per component. In this context we expect Global to be

more effective than Individual PLUS, because of the its capability of using all data. However,
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Individual is more flexible than Global PLUS, as it can accommodate discrepancies among the
model parameters of different components. Therefore, for high values of n we expect Individual
to perform better than Global PLUS. MU-POMDP is supposed to capture the pros of both

alternative methods.

4.2.4.4 Results of the Numerical Investigation

The following values have been assumed for the M-H steps (the reader is referred to Figure
18): number of steps J = 20, concentration cg = 600, random step size o, = 0.1. Furthermore,
the number of cycles in the MCMC approach, as reported in Figure 16 is 1000, and the first 300
are discharged for the burn-in phase: therefore expectation in Eqg. (19) is approximated by
average among 700 samples. The expectation in Eq. (17) is approximation by 400 samples of

“true models”.

Figure 22 reports an example of outcome of the inference process, for the MU-POMDP
framework. Pictures (a-b) show the joint domain of parameters (6, ,,6,,) as in Figure 20b. The
red star locates the value assumed as correct, and used for generating observations. The blue dots
(a) and (b) show the samples generated from the posterior distribution for number of observation
n equal 5 and 500 respectively. (c) and (d) report similar outcomes for the hyper-parameters («
and B). Note that the pair (a, ;) is sufficient to represent the entire domain, as the second
component of B can be derived as 8, = 1 — ;. As expected, the posterior distribution becomes
more skewed as more observations are processed. The figure shows an appropriate behavior of
the MCMC procedure. However, as well known (MacKay 2003), the tuning of the procedure

requires careful selections of its parameters, to get an appropriate rejection rate.
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Figure 22. An example of outcome of the inference process, for the MU-POMDP framework. Samples generated
from the posterior distribution of model parameters (a,b) and hyper-parameters (c,d) for (a,c) 5, and (b,d) 500
observations per component.

Figure 23 shows the outcomes of the comparison among approaches. Error e is plotted vs n
for the three approaches. Error in the computations of e derives from approximation of expected
values by samples, in Egs. (17) and (19). We can easily estimate the confidence bound related to
the approximation of Eqg. (17), via computing the sample variance. Dashed lines in Figure 23
report the 95% confidence bounds. In those bounds, however, the error related to the
approximation of Eq. (19) has not been included. As it can be seen in the figure, as the number of
observations per components leans to infinity (n — o), both MU-POMDP and Individual PLUS
converge to the true model parameters while Global PLUS does not. This happens because true

models exhibit variability among components, while Global PLUS assumes all models to be
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identical: we except this approach to converge to the average of the components’ models, and the
residual errors do not vanish. The learning rate of Individual PLUS is lower than those of both
Global PLUS and MU-POMDRP, since it does not make use of the indirect observations. For the
specific application, Global performs better than Individual PLUS up to about 200 observations
per component, because of the effect of indirect measures. Up to that level, Individual performs
better, due to its flexibility. As expected, MU-POMDP performs better than both, since it is the
correct generative model for the data. As shown by the confidence bounds, the outcomes are
affected by large numerical uncertainty, due to the high number of dimensions in the nested

expectation defined in Egs. (17-19).
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—0—GLOBAL PLUS
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Figure 23. Comparison between MU-POMDP, Global PLUS and Individual PLUS performances in learning the
model parameters.
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4.2.5 Application — Wind Farm Management

In this section we evaluate the performance of proposed MU-POMDP methodology in an
example of wind farm management, by adapting the setting investigated in Chapter 3 and
Section 4.1. We have selected the prior parameters over the transition and emission probabilities
based on literature on wind farm maintenance (Byon et al. 2010, Byon and Ding 2010, Nielesen
and Sorensen 2012, Memarzadeh et al. 2013, Memarzadeh et al. 2015a) and discussion with our

industry collaborator Everpower Wind Holdings.

4.2.5.1 Parameters of Numerical Investigation

For the purpose of validation, we consider a wind farm made up by 5 turbines of the same
type placed in similar environmental conditions. The state condition of each turbine is discretized
into three possible states where s = 1 refers to an intact structure, s = 2 to a damaged one, and
s = 3 to the failure of the turbine; the agent receives observations from a set of four possible
observations where z = 1 suggests that the turbine is undamaged, z = 2 and z = 3 indicate two
symptoms of damage, and z = 4 indicates the failure of the turbine; three actions are available:
Do-Nothing (DN), Repair (RE), and Visual Inspection (VI). When the agent chooses DN, the
condition state of the turbine degrades owing to fatigue and aging, potentially causing a
structural failure and a relevant economical loss. In turn, the agent can perform a costly
intervention (i.e., RE) to avoid failure and improve the condition state of the turbines. VI better
measures the condition state of the turbine (that evolves according to the degradation model, as
for DN). Each time step is assumed to be six months, and the agent takes one action per turbine

at each time step.
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Table 1. Prior parameters over hyper-parameters for management of wind farm example.

A =20 =1/1000

0.57 0.28 0.15 067 033 0
NrpNv = K X 0 0.67 0.33 Nrreg = K X 0.67 033 0
0 0 1 067 033 0

0.57 028 0.15 0
0.15 0.57 028 0
0 0 0 1

NoDNRE = K X

067 033 0 O
Novi=kK X (033 0 067 0
0 0 0 1

Table 1 shows the prior parameters over hyper-parameters; subscripts report the action
symbol, x controls the skewness of the prior and has been fixed to 50, so that the corresponding
average coefficient of variation of the parameters is 0.26 (the average is computed only on
uncertain entries of the prior parameters resulting from Table 1). Parameter A controls the
correlation among the model parameters across components: as A decreases, the correlation
increases, and it is about 75% given the values reported above. Entries in square brackets define
the expected value of transition and emission probabilities: for example, the expected value of
the probability that the undamaged turbine becomes damaged under DN is 28%. The costs for
repair, visual inspections and down-time due to failure are assumed to be US $25,000, $500, and
$50,000, respectively. The discount factor is assumed to be y = 0.95. The initial belief state for
all turbines is defined as b, = [0.8 0.2 0], which means that the agent believes that, at the
beginning of the process, the turbines are in the intact state with 80% probability and in damaged

state with 20% probability.
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4.2.5.2 Scheme for Numerical Investigation

To investigate the performance of MU-POMDP, we simulate the response of a system
characterized by model @* = {07,053, ...,0%}, where 0, = {T;,0;} defines transition and
emission probabilities for component k. We evaluate the effectiveness of both learning and
planning.

For learning, we evaluate the effectiveness of MU-POMDP in term of accuracy in predicting
future observation for components on the system. At time step t, the probability distribution of
next observation for the entire farm is defined as P(z..|0*Z;,A,), where
ze ={216, 220, o Zk i} Ze = {214, Zoty v Zg )y Ay = {411, Aoy, o, Ak ¢} @nd can be computed

as follow (similar to Eq. (19)):
P(z4112,,A¢) = Ey 0,4, [P(Z¢411Z,, Ay, ©)] (22)

The expectation in Eq. (22) can be approximated via Monte Carlo. Error in the prediction can

be measured by the KL divergence:
€(0%,Z;,Ar) = KL[P(Z1q | ©%,Z,AL), P(Ze41 | Ze, Ap)] (23)

Function £(0* Z,,A,) depends on the realization of model, actions, and observations.
Despite expected value can be taken, in this paper we validate the effectiveness of MU-POMDP
on a specific realization. To do so, we have sampled farm model ®* from the MU-POMDP

priors outlined in section 4.2.5.1, and actions A, and observations Z, consequently.

65



4.2.5.3 Results of Numerical Investigation

We evaluate the effectiveness of learning for t = 35,70,100,500,and 1000 (values
t = 500 and 1000 allow us to investigate the long term behavior or the learning process). Figure
24 reports the error in the prediction of next observation for MU-POMDP framework.
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0.025F o]

20 50 100 200 500 1,000
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Figure 24. MUPOMDP performance in predicting the future observation as a function of number of observations
received.

As shown in the figure, the error in predicting the future observation is decreased by factor
18% with only 100 data and by 50% with 1000 data. In the limit of infinite data, MU-POMDP’s
error in prediction of future observation should converge to zero as it learns the true model

parameters accurately.

Figure 25 shows the examples of the inference process, plotting samples for one entry in the
transition matrix (a-c) and emission matrix (d-f) under action DN, for components 1 and 2. The
red star shows the value used for simulating the data, while the green points shows the samples

generated from (a-d) the prior distribution, (b-e) MU-POMDP’s posterior at t = 70, and (c-f)
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posterior at t = 1000. Coefficient of variation of the posterior distribution is 0.18 (i.e., it is
decreased by factor 31.1% respect to the prior distribution) after receiving 70 data (25b), and
0.14 (decreased by 47.16%) after receiving 1000 data (25c) for the specific element of transition
matrix plotted in Figure 25. In the case of emission value plotted in the figure, coefficient of
variation has decreased by 11.2% and 35.3% after receiving 70 (25e) and 1000 (25f) data
respectively. The reader should note that only a fraction of the observations are useful for
updating any specific parameter. For example, consider parameter T(s; = 1,a; = DN, S;41 =
1), i.e. the probability of next state being intact given that the current state is intact and agent
performs Do-Nothing. First, no observation collected after any action except DN is relevant;
second, only transitions starting from state 1 are relevant. Actually, given the stochastic approach
for leaning, we cannot assess with certainty whether current state is 1 or not, at any time.
However, we can count the occurrence of this event in each realization of state trajectory
generated through FFSB. For the parameter mentioned above, we estimate that about 300 out of

1000 observations are relevant.
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Figure 25. Examples of samples of model parameter (green dots) and exact value (red star) for MU-POMDP and
PLUS.
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In the final numerical campaign, we investigate the economic impact of adopting the MU-
POMDP framework, showing how the more accurate learning algorithm, which accounts for

discrepancies in the component models, allows for a more effective planning phase.

Figure 26 shows the cumulative cost (i.e. the negative reward) of operation and maintenance
for the wind farm as a function of the time step for (1) an agent with perfect knowledge about the
actual model parameters (True Model: black line), (2) an agent following MU-POMDP (MU-
POMDRP: red line), and (3) an agent adopting a POMDP fixed to the expectation of the prior
distribution, without any learning (POMDP: blue line). Estimates are based on 100 independent
simulations in the time domain, and MU-POMDP agent (red line) learns after receiving 35 and
70 data. The agent with perfect knowledge about the true model represents a lower limit for the
cost (i.e. an upper bound for negative rewards). For this specific example, the value (i.e. the sum
of discounted costs) for true model agent is $56.25K per turbine, while for the MU-POMDP and
POMDP agents are $60.78K and $63.4K per turbine respectively. We evaluate the economic
benefit of using MU-POMDP framework over POMDP by computing the average reward after
processing 70 observations (between t = 70 and t = 100 steps) and it is quantified as $356.06
per time step per turbine. Of course, these values depend on the specific numerical example that

have been chosen and might change with different application.
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Figure 26. Cumulative O&M cost of the farm consists of five turbines for the agent knowing the true model (black),
POMDRP (blue), and MU-POMDP (red)
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Chapter 5

Sequential Decision Making:
Value of Information

Abstract

Operation and maintenance of an infrastructure system rely on information collected on its
components, which can provide the decision maker with an accurate assessment of their
condition states. While the methods developed in previous chapters allow for optimal
information gathering, they cannot incorporate system-level constraints on resources available
for this task. In this chapter, we introduce the concept of value of information (\Vol), that can be
used as a guide for information-gathering and, as we’ll illustrate in Chapter 6, for system level
inspection scheduling. In this chapter, we show how to compute the Vol in two settings: the
stochastic future allocation, that assumes observations are collected with a given probability, and
the fee-based future allocation that assumes observations are available at a given cost. We
illustrate how these models can be used for evaluate the value of a permanent monitoring system
(value of flow of information) as well as a piece of information at current time step (value of

current information).
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5.1 Problem Statement

The POMDP framework allows for integrating uncertain observations in the sequential
decision making, including exploratory and exploitative actions. The stochasticity in the belief
evolution is essentially connected to that of collected observations. In this light, each action is
characterized by its expected cost and its effect on the belief evolution. Among exploitative
actions, repairing can be expensive but associated with an improvement in the belief, while doing
nothing may be cheaper but related to a degradation of the belief. Exploratory actions may
include performing visual inspection, or collecting additional information that, while expensive,
affects the belief by reducing its uncertainty. Effects of the installation of a permanent
monitoring system, or of exceptional information, on the overall cost of operation and

maintenance can be quantified by assessing the corresponding value of information (\ol).

5.2 Proposed Method

5.2.1 Value of Flow of Information

We assume to model the management of an infrastructure component as a POMDP. We start
investigating the impact of receiving additional observations at all steps of the process, that we
call a “flow of information” (Memarzadeh and Pozzi 2015d). This can happen, for example,
when a monitoring system is installed, or when a component can be systematically inspected. We
define h, the additional observation of at time t, on discrete domain H = {1,2, ..., |H|}. The
relation between this observation and state s, is modeled by emission function E(j,i) =
P[h; = j|s; = i], summarized in matrix E or size |S| X |H|. The prediction of observation h

given the belief and the updating of this belief given the observation that h takes value j are
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defined by emission and updating operators e' and u!, of dimension |H| and |S| respectively,

whose entries are as follows:

( e!(b,E) = P[h, = j|b, = b,E] =S b
=1
E(i, /)b(0) (24)

¥ EG, j)b(i)

j=

u{(b,], E) = IP[St = llht :j'bt = b'E] =

The Value of a flow of can be derived by comparing the value with different emission

probabilities, as illustrated below.

5.2.1.1 Stochastic Allocation Model for Flow of Information

We generalize the problem by assuming that the availability of additional observation is
uncertain (Memarzadeh and Pozzi 2015d, 2015e): at each time step, the observation is
independently available only with probability P, that we call “availability”. This can model
possible random malfunctions of the monitoring system occurring with probability (1 — P).
Computationally, to model this, we include an additional dummy outcome for variable h,

indicating that no observation is available, with a flat emission on the state domain. The

augmented emission matrix E(SP), of size |S| x |H| + 1 is defined as:
Egy = PE Opspxa] + (1 = P)[Oysixis) Lisixa] (25)

where 0,,,, and 1., are matrix of zeros and ones respectively, of dimension s by v. We call
this the Stochastic Allocation model (SA), and we use superscript S to indicate it. We integrate

this emission with that related to POMDP observation as follows:
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03 p) = 0a X E3p) (26)

where, O, is the emission matrix related to action a, and X indicates cross product matrices’
columns. Each column of this matrix refer to possible pair {z, h} including the dummy outcome
for h. By grouping matrix for all action we get emission O?P), of size |S| X |Z|(|H| + 1) X |A],

that can be embedded in a new POMDP with parameter set @75y = {T, 05, R, v}.

Figure 27a illustrates the decision graph of the SA model. Usually, managers consider a

monitoring effort that includes also a measure of the initial state. To take this into account, we
define an optimal value U™ including this initial observation, making use of Eq. (24), as follows:

IH]
U*(b,®,E) = g er (b,E") V*[ul(b,h,E"), 0]
h=1

(27)

where E' is the emission of initial observation and @' the parameter set of the POMDP

following that. The difference in value AV; between the decision graphs in Figure 5 and 27a can
be expressed as:

AV¢(b,®",0",E") =V*(b,0"") — U*(b, 0", E') (28)
where " indicates the parameter set of the POMDP without the initial observation. Function

AV; assesses the benefit (if positive), of the graph in Figure 27a respect to that of Figure 5. Using

previous equations, we assess the Vol of this flow under the SA model (Volgs) as follows:

Volgs(b, P) = AVg(b, ©, 0(,), E3y) (29)

where O is the set of parameters without the additional observations (as in the graph of
Figure 5), while Efp) and (E)?P) are computed as in Egs. (25-26). As expected, the Vol is a
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function of multiple values: the overall setting without the flow of information (described by set
0), the availability and accuracy of the flow of measures (described by P and E respectively),
and the initial belief b. We express the Vol as a function of b and P, for convenience of notation.
We also note that Volgs(b, 0) is zero, while Volgs(b, 1) express the Vol when the monitoring

system is fully reliable.

This Vol can be compared with the cost for installing and operating the monitoring system,

and a rational agent should adopt the system only if its cost is below its value.

(a) SA

L1 At

AR DN

Ztx2 heiq @

Figure 27. Decision graphs for the (a) SA model and (b) FA model.
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5.2.1.2 Fee-based Allocation Model for Flow of Information

While SA model assumes that the agent has no to cover any additional cost for interrogating
the monitoring system at time t. If, on the contrary, such a fee exists, the agent may choose to
interrogate the system only if the belief raises concerns. The Fee-based Allocation model (FA)
assumes that, at any time, variable h can be observed at non-negative cost C (Memarzadeh and
Pozzi 2015d). At time t, therefore, the agent has to face two decisions in sequence: (i) in the
inspection Sub-step, binary decision i; selects between Inspect and Do NOT Inspect. Only if
inspection is performed, variable h; is observed and cost C paid. (ii) after having processed the
outcome of previous sub-step, in the management sub-step a management decision is taken.
Figure 27b reports the decision graph according to the FA model, where cost c; can be 0 or C
depending on the decision i,. It should be noted that, while we could easily introduce a not

reliable observation, by using emission E(SP), defined in Eq. (25), we prefer not to combine the

FA and the SA models, for simplicity in the illustration.

To estimate the correspondent value, we have to re-formulate Eq. (5) using two sub-steps.
Function V(IC) is the value starting from the inspection sub-step, and function V(l‘é) is that starting

from the management sub-step, both defined on the same belief domain. Bellman Equation now

reads as follows:

|H|
Vs (b, ©,E) = min {C + thl e} (b,E) V¥ [u'(b, 1, E), ©,E]; VY (b, 0, E)} o

12
Vi (b, ©,E) = min {r(b, 0,0) +y Zzzl e,(b,a,0) V), [u(b,a,z,0),0, E]}

The decision among inspecting or not is defined by the minimization in the first line, where

the first entry refers to inspect and the second to do not. Eg. (30) assumes that the underling
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hidden state does not change between the inspection and the management sub-steps. To solve Eq.
(30) requires some numerical implementation, and we illustrate in Appendix A how to re-
formulate it as an equivalent single-step stationary POMDP, compatible with traditional solvers.
Then Vol according to the FA model, Volgg, is a function of fee cost C, and it can be computed

as follow:
Volge(b,C) = V*(b,0) — Vi (b, ©,E) (31)

To summarize, Volgg quantifies the benefit of being able to observe, at all times, variable h;
at cost C, before taking action a, respect to not having this privilege. We note that Vol g (b, o)
is nil and Vol g (b, 0) corresponds to Vol¢s(b, 1), as the agent will never inspect if the fee is

infinite and always is inspection is free.

5.2.2 Value of Current Information

In previous section, we address the evaluation of a flow of information, as that provided by a
monitoring system. Sometimes, however, an agent has to take a decision about a current
inspection (or information collection), not about a long-term monitoring effort. In this section,
we investigate how to assess of Vol of short-term effort. This evaluation, however, cannot be
independent of assumption about the availability of future information. The same piece of
information can be relevant or redundant, depending on what other information will be available.
Consider, as before, a management process modeled by a POMDP, as in Figure 5, and an
inspection modeled by variable h, as in section 5.2.1 To assess the Vol related to h, we need to
define: when will the component be inspected in the future? Unless we give a (probabilistic)

answer to this question, the Vol is not well-defined. A possible assumption is that the component
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will never be inspected again in the future: this is the pessimistic assumption mentioned in
Chapter 6. An alternative one is that it will be always expected from next step: this is the
optimist assumption (Chapter 6). Clearly, the Vol is different in these two cases. The application
of these two cases to system-level inspection scheduling is investigated in Chapter 6. By using

the SA and FA models, we can define more flexible assumptions.

5.2.2.1 Stochastic Future Allocation Model for Evaluating the Current Information

We can derive from the SA model an assumption on the future allocation of resources for
information collection. Let us assume that the component will be inspected, from the next step,
with probability P. To assess the corresponding Vol of current inspection, we define function

AV, as the Vol of observing h at current step, when the underlying POMDP is modeled by @':
AV.(b,®"E) =V*(b,0") — U*(b,®",E) = AV¢(b,®’,0",E) (32)

According to the SA model, the POMDP is actually defined by 0?1,), so that the

corresponding Vol is:
VOIC,S (bl P) = AI/c(b, O?P)’ E) (33)

where subscript ¢ stands for “current”. This quantity can be intended as the difference
between the values of two decision graphs differing one another only for the first step. Figure 28
reports the first step for the graph with and without inspection, while all future steps are modeled

as in figure 27a.

In summary, Eq. (33) answers to the following question: “how much are we willing to pay

for inspecting now, if future (free) inspections will be available with probability P?”

78



(a) (b)

Figure 28. First step of the decision graph with (a) and without (b) inspection. The future steps are modeled as in
Figure 27a.

5.2.2.2 Fee-based Future Allocation Model for Evaluating the Current Information

Similarly, we can base the Vol computation on an assumption related to the FA model. If we
assume that the inspection can be repeated anytime in the future, at cost C, we can assess the Vol

of current inspection as follows:
Vol.g(b,C) = V%) (b,©,E) — V2 (b,0,E) (34)

where, as before, VM is the value staring from a management sub-step, while value VO is that

starting by inspecting without paying any cost, obtainable as:

[H|
V(((),') (b! @F E) = Z 1 efll (b! E) V(I\C/‘I) [uI (bl h: E)I @F E] (35)

By confronting with Eqg. (30), we can easily check that, in the setting of information flow, the

agent inspects at current time only if Vol is above C.

Eq. (34) answers to the following question: “how much are we willing to pay for inspecting

now, if future inspections will be available at cost C?”
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5.3 Hlustrative Example for Assessing Vol

We illustrate how the Vol depends on the assumed model and the decision making
parameters by using a simple example. Let us consider a component whose state can assume
|S| =3 values, referring to Intact (s =1), Damage (s =2) and Failure (s =3). Two
maintenance actions are available to the agent: Do-nothing (a = 1, DN) and Replace (a = 2,
RE). The transition probability table is reported in Table 2, where T, indicated the sub-table
referring to action a. If the agent does nothing, an intact component becomes damage with
probability 0.5% and cannot fail directly, while a damage component cannot recover and can fail
with probability 10%. If the agent replaces the component, the state becomes intact,
independently on the current one. Without inspection, the only available observation
discriminates between the failure and the first two states, but it does not between intact and
damage: so the agent is aware of the failure as soon as it happens, but it receives no symptom of
damage. Cost of repair is assumed to be $10K and the cost of failure and downtime to be $500K,

while the discount factor is 95%.

Table 2. Matrices of the illustrative example.

99.5% 05% 0 1 0 O 1 0 1—-¢€ €
T, = 0 90% 10%| T,=|1 0 Of O,,=|1 Of E=]| € 1-¢€
0 0 1 1 0 O 0 1 0 1

In this context, the agent is evaluating a binary inspection that can detect damages according
to the model reported in Table 2. The outcome of the inspection can be alarm or silence, and €
defines the inspector inaccuracy, both as probability of a “false alarm” (i.e. an alarm of a intact

component) and of “false silence” (a silence on a damaged component), as we consider the two
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probabilities to be the same for the easiness of illustration. The inspector may not be able to
discriminate the failure with certainty but, as noted above, the other observation can. When € is
zero, the inspector is perfect and the problem becomes as MDP after current observation is taken;
when € is 50%, the outcome of the inspector is independent by the (not failed) state, and the

inspector become useless.

Because of the emission matrix O, at any time the belief can assign only probability zero or
one to the failure state: the agent cannot have uncertainty about the current failure of the
component, and if the component is failed, the agent will replace it. Because of this, belief b can
be completely described by the current probability of damage Ppay. Figure 29a-b shows Vol

as a function of belief Py, for different values of availability P and inaccuracy e.

It is to be noted that the Vol is not monotonically increasing with Ppay: it IS maximum
where the uncertainty between doing-nothing and replacing the highest (around Ppam = 3%),
while for very high probability of damage the agent needs almost inevitably to repair and the
impact of the inspections is relatively lower. Actually, Vol is the difference between two convex
piecewise linear functions (Smallwood and Sondik 1973, Sondik 1978) and thus it is piecewise
linear (but not necessarily convex); in Figure 29a, however, we plot it in the log-scale to
highlight its behaviour for low probabilities, and this masks this feature. Also, Vol is
monotonically increasing with P, as can be proven by the principle that (more) information never
hurts (Heckerman et al. 1993). The relation between Vol and the accuracy of the inspector is
illustrated in Figure 30a. Again, an expected, it is a monotonic relation: going from the value of a
perfect inspector (for e = 0) to the nil value of an independent useless inspector (for e = 50%).
Graphs as that in Figure 30a allow us to compare accuracy and availability: the value of a perfect

inspector available with probability 10% is almost equivalent to that of inspector with 30%
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probability of false alarm, always available. It is not always possible to define a parameter able
to capture the information accuracy (e.g. when false negative and false positive rates are different
parameters). However, when this is possible (as in Pozzi and Der Kiureghian (2011), Madanat

(1993)), the Vol is monotonically related to that.

Figure 29b reports the corresponding graph for the FA model (note that the graph for € = 0
is identical to that for P = 1 in Figure 29a). Again, we expected that the Vol is monotonically

decreasing with fee cost C, and the monotonic relation with € is illustrated in Figure 30b.

(c) € = $1K
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Figure 29. Value of flow of information for both SA (a,b) and FA (c,d) models as a function of probability of
damage, Pp 4y and inaccuracy €.
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Figure 30. Value of flow of information as a function of inaccuracy, e for (a) SA model with change in P and (b)
FA model with change in C.

Figure 31 shows the values for the current inspection. First, we note that current Vol is zero
when (as for Ppap equals to zero or one) there is no uncertainty on the component’s state. As for
those related to the flow, Vol is monotonically decreasing with inspector inaccuracy e. However,
the Vol is not monotonically related to either availability P or fee C anymore. As noted in
(Krause et al. 2008, Krause and Gusterin 2009, Memarzadeh and Pozzi 2015c), the Vol of one
piece of information is related in a complicated way to the availability of others. If inspector is
perfect and the probability of damage is 1%, the agent is ready to pay about $1K when C = $1K,
and up to $2K when C = $3K. This can be explained as follows: when future inspections
become expensive, it becomes more needed to inspect now. If, on the other hand, the probability
of damage if 10% and inaccuracy is 25%, the agent is willing to pay up to about $2K when
C = $1K, and up to about $500 when C = $3K. To explain this opposite behaviour, we reason as
follows: when future inspections relatively cheap, it may be convenient to inspect at the present
and future time without replacing; but when future inspections are expensive, it become pointless

to inspect now, and it is more convenient to replace. Furthermore, in our framework, it is not
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guarantee that the value of the flow is higher than that on the current inspection alone, even when
parameters are the same. To understand why, sufficient is to note that, when availability P is
zero, the flow Vol is zero (as there is nothing to evaluate), while the current Vol is not (as, in
that case, zero availability means that the component will not be inspected anymore in the
future). Generally, availability and fee refers only to the future, when evaluating the current

inspection, and also the present, when evaluating the flow.
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Figure 31. Value of current information for both SA (a,b) and FA (c,d) models as a function of probability of
damage, Pp 4, and inaccuracy e.
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The peaks of Vol in Figure 31a-b have similar values, independently on availability P,
ranging from 0.1 to 1. However, this cannot be generalized to other problem settings. On the
contrary, availability generally affects all aspects of current Vol. To show this, we modify the
parameters of the illustrative example in Table 2 by changing the cost function and transition
probability. In the first scenario, we only change the cost of repair to $1K and cost of failure to
$2K. The results are reported in Figure 32a-b for P = 0.1 and P = 1, respectively. The current
Vol now decays with increase in availability. In the second scenario, component deteriorates
faster; to model this, we change the transition probability (under action Do-Nothing) to the

following one:

0 85% 15%
0 0 1

98% 2% 0
Tl =
The results are reported in Figure 32c-d: now current Vol increases with future availability.
These examples illustrate how current Vol may be highly sensitivity to future availability, and

how the relation is complicate: this motivates the research of appropriate assumptions of this

availability.
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Figure 32. Value of current information for scenario 1 (a,b) and 2 (c,d) as a function of probability of damage, Pp 4y,
and inaccuracy e.

To better illustrate the relation between future availability of observations and management

decisions, Figure 32 shows how optimal policy * results for the SA and FA models. For this

problem, the agent will do nothing until the probability of damage reaches a threshold value,

P} am, @nd she will replace after that (and if component fails), so that policy m* is completely

defined by the threshold. Figure 32a and b reports the threshold for the SA and FA models

respectively, as a function of inspector inaccuracy, for different values of availability of fee. We

note that the more inaccurate the inspector, the more conservative the policy. Also, the less

available, of the more expensive the inspector, the more conservative the policy. An inspector
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with fee cost $5K and inaccuracy 30% is completely useless, as it will never be used: this

follows consistently from both Figure 32b and 30b.
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Figure 33. Threshold value, P} 4, that the policy changes from do-nothing to repair as a function of inaccuracy, e,
for (a) SA model with change in P, and (b) FA model with change in C.
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Chapter 6

System-level Inspection Scheduling

Abstract

Value of information (Vol) is a key concept for directing explorative actions, and in the
context of infrastructure operation and maintenance, it has application to decisions about
inspecting and monitoring the condition states of the components. The component-level Vol can
be used as a heuristic for assigning priorities to system-level inspection scheduling, dealing with
the limited resources for data collection. In this chapter, we evaluate the performance of the
stochastic future allocation (and its two limiting scenarios called “pessimistic” and “optimistic)
and fee-based future allocation models for integrating adaptive maintenance planning based on
POMDP and inspection scheduling based on a tractable approximation of Vol suggested by these
models. We illustrate how these models can be used at system-level inspection scheduling with
several numerical and analytical examples. Finally, we introduce analytical formulas based on

these models to predict the impact of a monitoring system (or a piece of information).
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6.1 Problem Statement

Suppose an agent is managing a system made up of several components, periodically
receiving imperfect observations about their condition states. The agent also has access to
inspectors that can collect additional information but, due to resource restrictions, only a limited
number of components per time can be inspected. The problem we focus on is how to schedule

inspections and integrate this task in the maintenance policy.

6.1.1 General Approaches for Inspection Scheduling

Priority on sequential information gathering can be based on measures of uncertainty of
component condition state: the less we know about a component, the higher the need to inspect
it. In this context, methods based on entropy (Cover and Thomas 2006) have been developed for
sensor placement (Krause et al. 2008, Malings et al. 2013). Entropy provides a useful heuristic,
but it does not guarantee an optimal ranking among inspections. Some uncertainty, in fact, is
irrelevant in the maintenance process and should not be considered in the ranking as, for
example, when uncertainty for a specific component is high only among states that are all
acceptable and related to the same optimal maintenance action. Furthermore, that measure is not

affected by the relative importance of each component.

An alternative heuristic is related to components’ probability of failure, as higher probability
may call for more urgent attention (Straub and Faber 2006). It should be noted that for binary-
state components and low probabilities, this metric is consistent with the previous one based on
entropy. While this metric is optimal in some applications, in a general context it is questionable

for two reasons: (i) when the condition state is defined by many possible values, it is not
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obvious how to define a unique “probability of failure”. (ii), for high probability of failure, the
metric would lead to undesirable effects, assigning high priority to inspection of components
that are known (even with certainty) to be in an unacceptable state, for which the prior

maintenance action cannot be changed by any inspection outcome.

Vol can be understood as a combination of the previous intuitions, measuring only the

uncertainty that is relevant for the maintenance process and impacts on decision-making.

6.2 Proposed Method

6.2.1 Problem Formulation

Consider a system made up of N components, each modelled by an independent POMDP
with known model parameters. Optimal system-level maintenance can be found by solving
independently the component-level POMDPs. But now suppose that, at each time step, the agent
has access to K < N inspectors that, depending on the setting, can provide perfect or imperfect
observations on condition states: at each time-step, the agent has to decide which components to
inspect. Because this decision has to be taken at system-level, the management processes of all

components become dependent: if some components are inspected, some others cannot be.

Figure 33 provides a decision graph for the system level maintenance process. We add
subscript i to indicate that state, observation, action and reward refers to component i.
Furthermore, variable h;, on domain H identifies the outcome of inspection of component i at
time t, that can be observed if inspection is executed. Formally, inspection accuracy can be
modelled by invariant emission probability function E, defined over the space of states and
inspection outcomes S x H — [0,1] as follows: E(s,h) = P(h;y = h | s;; = 5).
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Figure 34. Decision graph for a system made up of N components modeled as POMDPs. Variables ks indicate
outcomes of inspections.

In a more general setting, each element of the 8-tuple defining the POMDP can be
component-dependent: for example, the number of possible condition states can be different for
each component. Furthermore, function E could also depend on component and action.
However, for ease of notation, we assume the 8-tuple and function E to be the same for all
components, the more general setting being a trivial extension of our formulation. Also, we do
not include any inspection cost and instead impose a constraint on the number of available
inspectors, the extension to include inspection cost being straightforward. It should be noted
that, given the maintenance actions, stochastic processes are independent for each component,
so beliefs after the initial step are generally different across components, because of the

randomness in the components’ evolution and emission.
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The problem of inspection scheduling can be described as “sequential variable selection”: at
time step t, while taking maintenance actions, the agent has to select only K among N variables

{hy¢ ..., hy  } tO Observe.

In this formulation, we assume that the agent can inspect any component at any time, without
the need of planning inspections well in advance. Furthermore, inspected components at each
step have not to be close in space. Removing these assumptions would induce dependence

among decisions in time and space, and require a more complicated formulation.

6.2.2 Exact Solution

In principle, the problem can be formulated as a single POMDP at system-level. We can list
all component states, observations and actions at current time step into an augmented state s¥,
observation z* and action a*, defined on domains S*, A* and Z* of size |S*| = |S|V, |AT| =
|A|N and |Z*| = |Z|N respectively. The maintenance process alternates two types of decisions:

the agent has to select maintenance actions a* and to select locations Y to send inspectors to, on

N

domain Q, of size |Qy| = (K

)z NK. Outcomes of all inspections are listed in augmented

variable h*, on domain H* of size |[H*| = |H|¥. Details of the formulations are listed in
Appendix B. In summary, the size of each augmented domain (states, observations, actions)
grows exponentially with the number of components, and the problem becomes intractable
except for small problems. For example, when N = 25, K =1, |S| = 3, |A| = 2, |Z]| = 4, and

|H| = 3, the system-level dimension |S*]| is 8.47 x 1011, which is computationally intractable.

In the exact formulation, current inspection scheduling is coupled with future scheduling, as

usually happens in sequential decision making.
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6.2.3 Pessimistic and Optimistic Heuristics

In this section, we propose an approximate method to find sub-optimal solutions to the
problem using the concept of Vol, by decoupling the complicated system-level optimization

problem to N tractable component-level POMDP problems (Memarzadeh and Pozzi 2015c¢).

We introduce the idea by discussing Figure 34, which reports three schemes of observing
variables h. At time t, the agent should select the set of K variables with the highest VVol. Figure
33a shows a realization of variable selection, for K = 2. However, Vol of any set of current
variables depends on availability of observations at future time steps. For example, the Vol of
inspecting component i at the current step depends on whether that component will be inspected
at the next step or not. However, future inspection scheduling has not been fixed yet, so the
problem has the complexity described in 6.2.2. On the other hand, it should be noted that,
because of independence among component POMDPs, once future inspection scheduling is
fixed, Vol can be computed independently for each variable at the current step, and optimization

can be decoupled into N component-level optimization problems.

Two limit cases we investigate in this paper are shown in Figure 34b-c, and we refer to them
as optimistic and pessimistic respectively. The optimistic approach assumes all components will
be inspected from the next time step onwards, while the pessimistic approach assumes that no
component will ever be inspected after the current time step. Although neither approach is

consistent with observing K variables per step, they provide limiting scenarios for the Vol.
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Figure 35. For K = 2, (a) arbitrary consistent, (b) optimistic and (c) pessimistic assumptions on inspections
scheduling.

As noted above, the value related to any component can be computed independently when
inspection scheduling is fixed. To compute pessimistic and optimistic Vol, we first define ;744
as the optimal value of managing component i, evaluated at time t, when inspections are
scheduled for all times from t + a to t + d for that component. Specifically V2, V;*°, V11>
and ;¥ refer to never inspecting the component, inspecting it at the current time only,

inspecting it from the next step onwards, and always inspecting the component, respectively.
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6.2.3.1 Component-level Optimal Values

For component i, we define two functions related to alternative emission probabilities:
vA(b) and VE™P(b) indicate optimal component value without and with inspections
respectively at all steps, starting from belief b. Both functions can be evaluated using traditional
POMDP solvers. While function Vi(Z) derives from emission O, function Vi(Z'H) derives from
emission O and E, combining observations and inspections. In detail, we can concatenate
observations and inspections in variable d = {z, h}, on domain G = Z x H of size |G| = |Z||H|.

Because of conditional independence of z and h given s, we can define the emission function

including inspections as G(s,a,d) = 0(s,a,z)E(s, h).

Value VL-‘D is equal to Vi(z), while V;*° can be computed as follows from the current belief of

the component b;:

[H|
o= 3" e, B) YO 1,7, 5), 6] (3)

j=1
Where e] and u' is defined in Eq. (24).

Figure 35 shows the decision tree for computing V;*1>*. T do so, we need to first find the
reachable belief states in the next time step from the current belief, b;. If action a is taken, belief

is updated t0 b; ;(S¢+1) = X, bi(5e)T (S, @, Se41). As from the next time step, the agent always

inspects, the problem can be formulated as a POMDP with emission probabilities G and

observation d, as follow:
ID| @M
V17%® = minge, {7(b,a, ©) + yz ej(b,a,®)V; """ [u(b,a,j,0),0] (37)
Jj=1
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where e; and u are defined in Eq. (3).
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Figure 36. Decision tree for computing V;*1~.

6.2.3.2 Vol According to Pessimistic and Optimistic Heuristics

If inspection scheduling is decoupled, the agent allocates available inspectors to components
based on an importance measure IM. As K inspectors are available, only the K components with
highest importance measure can be inspected. Both the optimistic and pessimistic approaches
agree that importance measure IM; for component i is the Vol of current inspection on that

component, but they disagree on how to approximate Vol.

As the pessimistic approach (P) relies on the assumption that no inspection will be available
from the next time step onwards, pessimistic Vol (VoI®)) for component i can be computed as

follows:
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M =voI® =y —yp (38)

On the contrary, the optimistic approach (O) assumes that all components will be inspected

starting next time step, and the corresponding optimistic Vol (VoI (@) is derived as:
IM® = VoI(® = yro=e —yrioe (39)

At each time step after having processed imperfect observations, the agent sends inspectors
to components with the highest importance measures and, after receiving inspection outcomes,
applies the resulting optimal maintenance policy. It is worth noting that the agents use different

policies: that of the pessimistic approach is based on value function VL.(Z), while that of the

optimistic approach is based on V“",

6.2.3.3 Bounds on the Value of the Pessimistic and Optimistic Approaches

Selecting an approach for inspection scheduling corresponds to selecting a policy, and the
effectiveness of any policy should be assessed by its value. However, no closed formula is
available to assess beforehand the values following the optimistic or the pessimistic policy, that
we name U©) and U® respectively. In this section, we define bounds for these values, which
are relevant for two reasons: (i) to compare the effectiveness of different policies and (ii) to
predict the overall expected discounted cost of the maintenance process. Furthermore, we can
provide also bounds for the intractable optimal policy, to allow for an indirect comparison with

the heuristics.
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Let us define W? = YN, V2 and W+1>* = YN 1*1°® as the system-level values, while

l

never inspecting any component and always inspecting all components from the next time step
onwards, respectively. As in Section 6.2.2, let us define Y as the decision variable for inspection

scheduling, listing the identification of K components to be inspected. The pessimistic estimate

WY(P) of the system-level value is as follows:

W =we - Z vy + Z VO =wo + Z VoI (40)
LEY LEY LEY

It should be noted that, if no further inspection is available, WY(P) is the optimal value,

scheduling according to Y at the current step. Similarly, the optimistic estimate WY(O) of the

system-level value is as follows:
W(O) — W+1—>OO I o V'+1—>OO . V_+0—>00 — W+1—>OO I 1(0) (41)
Y - ZLEY i + ZLEY i - + ZLEY 0 i
which, again, is the optimal value if inspections are available for all components from the

next step onwards, scheduling according to Y at the current step.

Y® and Y(© are the scheduling assigned by the pessimistic and optimistic policy
respectively, following the measures defined in Egs. (38-39). Corresponding optimal system-
level estimated values are computed as follows:

P) 2 /P _ (P)
w® 2w = max, W
* - y(O) Y "y
W*(P) and W*(O) are defined as the maximum of the pessimistic and optimistic estimates over

all possible allocation of inspections, Y, respectively.
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Bounds for U® and U are provided below and proved in Appendix C:

(P) P ©)
W < UP < W)

U(O) < VV*(O) (43)

U® is bounded between two values that can be computed beforehand. U has an upper

bound higher than the pessimistic one, but no relevant lower bound (or course, lower bounds
can be found, but those computable beforehand are usually much lower than W*(P)).

Another upper bound for the value of each possible policy is that of the optimal policy (U*)

defined as in Section 6.2.2. U* cannot be computed beforehand, and it is bounded as follows:
w® <vr <w®@ (44)

Figure 36 summarizes the inequalities among bounds for all values. The key observation is
that adopting the optimistic approach exposes the agent to low values, while the pessimistic
choice has a lower bound. The next section and the appendix provide examples and clarification

about these behaviours.

bounds
P) (0) (0)
W, W W,
T value
Uy u® U

Figure 37. Bounds over values of the pessimistic, optimistic, and optimal agents.
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6.2.4 Stochastic Future Allocation

As illustrated in Section 5.2.2.1, by using the SA model we can assess the value of current
inspection assuming the component will inspected randomly with probability P at any future
step. When all components belong to the same typology (i.e. parameter set @ is the same for each
component), it is natural to assign availability as P = K /N to everyone, for the assessment of the
current Vol. When components are heterogeneous, it is more challenges to assign appropriate
availability, but we recommend two rules. First, to assign future availabilities {P,,}7=*, where
P, is that assigned to component m, so that the sum of them all is one. Doing so, the expected
value of inspections at any future step would be K, as the constraint imposes. Second, if
empirical data about the rate of inspection per each component, under an effective policy, are

available, those data can be used for calibrating the availabilities.

The SA-based approach is approximated for two reasons: because the constraint, which must
be exactly fulfilled according to the problem statement, can only be fulfilled in the expected
sense; furthermore, the approach assume that future inspections are randomly scheduled, while

they are actually the result of an optimization process.

6.2.5 Fee-based Future Allocation

The use of the FA-based current Vol, as shown in Section 5.2.2.2, can be intended as an
effort to overcome the latter limitation of SA-based approach. The FA approach recognizes that
future inspections will be allocated to components that need them. This need can be
approximated by the readiness to pay fee C to receive the inspection. Therefore, even if no actual

fee will ever be paid, a virtual fee C is assumed, so that future inspectors are supposed to be
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allocated to those ready to pay it. By doing this, the FA-based approach mimics the output of the
future optimizations for inspection scheduling. If C is set to a low value, too many components
will assume the inspector available at future times, while too few will do if C is too low. We
would recommend to set C so that, in the expected sense, K components will ask for future
inspections. Again, if data are available about the Vol during previous steps, that C can be

estimated as that necessary and sufficient to win the auction and get the inspector, in the average.

6.2.6 Predicting the Impact of Optimal Inspection Scheduling

By making use of the flow analysis, we can also assess the overall economic impact of
integrating inspectors in the management process, respect to not using any inspector at all
(Memarzadeh and Pozzi 2015d). According to SA model, the K inspectors will be used randomly
among the N components, with corresponding availability B,, for component m. The overall

system-level value of this distributed flow of information (SVols) is:
SVolg = Z%:l VOIf,S,m(bm' Pm) (45)

where Vol ,, is computed as in Eq. (29) using all parameters for component m, including
the initial belief b,,. Eq. (45) tends to underestimate the system-level VVol, as it assumes that

inspectors are allocated randomly.

The corresponding estimate for the FA model is as follows:
C'K
-y

SVolp = [Eh=1Volgpm(bpm, O] — = (46)
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where Volg ,, derives from Eq. (31), and index m refers to the corresponding component.
The FA model assumes that all components ready to pay C will get the inspector, while the

second term on the right hand side of Eq. (46) takes into account that the fee is not actual.

6.3 Numerical Investigation of System-level Inspection Scheduling

6.3.1 Pessimistic and Optimistic Approaches
6.3.1.1 Example A: A System made up of 2-state Components

To investigate the performance of proposed approaches depending on the system size, we
investigate how values depend on number of components in a binary setting, where each
component can be in one of two possible states: Intact (s = 1) or Failure (s = 2). Two
maintenance actions are available to the agent, namely: Do-Nothing (a = 1) and Replace (a =
2). No additional observation is available (equivalently, function O is flat on all states), other
than the outcomes of only one perfect inspector (K = 1). After doing nothing, the condition state
cannot recover, while replacement improves the component’s state to intact. The transition
probabilities for all components are reported in Table 3, where {T}},,, =T(s; =m,a =
l,s;+1 = n). The cost of replacing is assumed to be $10K, and the cost of loss of production due
to failure and down time to be $10K, as well. The initial belief state is assumed to be 80% for

intact state and 20% for failure, and discount factor is 0.95.
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Table 3. Transition and emission probabilities for numerical examples in section 6.3.1.

example A
_[0.95 0.05 1 o
L=1" 1] =11 0]
example B
090 0.08 0.02 1 0 0
T,=| 0 090 0.10f T,=({090 0.10 O
L 0 0 1 090 0.10 O
example C
0.90 0.08 0.02 090 0.10 O 1 0 O
T,=| 0 090 0.10f T,=1]0.80 020 0f Tz;=|1 0 O
0 0 1 0 0 1 1 0 0
0.60 0.20 020 O
0,=0,=03;=(0.20 0.60 0.10 0.10
0 0.20 0.20 0.60

E;» =(0.05 090 0.05 0 10

0.02 0.08 0.90 0 0 1

090 0.08 0.02 1 0 O
EP:

Figure 37 shows the Vol based on the pessimistic and optimistic approaches, as calculated in
Eq. (38) and (39), respectively, as a function of the probability of failure, P, = P(s; = 2). Vol is
always non-negative (Heckerman et al. 1993) and it is zero when the state of a component is
known with certainty (P = 0 or Pz = 1). The maximum Vol occurs for P equal to 27.5% and
to 53.0% for pessimistic and optimistic respectively. The difference between these two graphs

indicates that priorities among components to be inspected are different depending on the

approach.
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Figure 38. Vol as a function of the probability of failure (P;) based on pessimistic and optimistic approaches.
Processing 100 forward simulations, Figure 38 compares the values of pessimistic and

optimistic policies normalized with respect to number of components as N increases, reporting

the 95% confidence intervals. For high N, U® moves towards its lower bound W*(P): this
behavior can be expected, as the assumption of not having any inspector available from next step
becomes more and more realistic as ratio K /N goes to zero. On the other hand, the assumption of

the optimistic agent becomes less and less accurate as that ratio vanishes, and it is to be noted

that U(®) goes below even W*(P). At a first glance, it may seem counter-intuitive that the
optimistic agent receives a value lower than that achievable with no future inspections at all, but
this can be explained by analyzing the optimistic planning. By relying on the availability of
future inspections that actually will not be done, the optimistic agent plans poorly, e.g.
postponing repairs that should be timely executed. In detail, both agents will repair after
detecting a failed component and do nothing when detecting an intact one, however their

behavior for un-inspected components is different: the pessimistic agent will repair when
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Pr > 27.5%, while the optimistic repairs only when Pr > 53.0% (it should be noted that these
values correspond to the maximum Vol). While the former is the optimal policy without
inspections, the latter policy is not effective when K /N is small. This also sheds light on why, as
can be noted in Figure 37, VoI© can be higher or lower than VoI® for some values of Pg.
Despite it seeming intuitive that an inspection has higher value if it cannot be repeated at the next
step, it is well known that the value of observing one variable can be increased or decreased by

the availability of other observations (Krause and Guestrin 2009).

In this example, the upper bound for pessimistic (ng))) and optimistic (W*(O)) approaches is

the same at the initial step, because beliefs for all components are the same. We note that the

maximum gap between optimistic and pessimistic upper bounds can be found as follows:

W*(O) — W}fga)) < K max {maxb Voli(o)} (47)

i€{1,...N}

where b is the belief, that here can be described by Pg. For this example, the maximum gap

is $4K.

When N equals 2 and 5, we can also compute the optimal value following the procedure
described in section 6.2.2. The black circle in the graph shows that, for this case, both pessimistic

and optimistic agents perform approximately as good as the optimal agent.
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Figure 39. Value of pessimistic and optimistic agents on management of the system in example A (ClI stands for

confidence interval).

On this example, the performances of stochastic and fee-based future allocation models
(described in Chapter 5) are similar to that of the pessimistic approach. However, we will show
in Memarzadeh and Pozzi (2015c¢) and (2015e) that the stochastic model can outperform both
pessimistic and optimistic in some settings. Moreover, we will show in section 6.3.2.3 that fee-

based model can better capture optimal behavior respect to the stochastic model.
6.3.1.2 Example B: A System made up of 3-state Components

To show that the optimistic approach can outperform pessimistic when the number of
inspector is high e.g. for ratio K/N close to one), we investigate a system made up by N = 20
components, by varying the number of inspectors. The condition state of each component is
discretized into three possible states (Intact, Damaged, and Failure); again, two actions are
available to the agent namely Do-Nothing (a = 1) and Repair (a = 2), and no observation is

available other than the ones from perfect inspectors. The transition probabilities are reported in
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Table 3. Cost of repair and failure are $30K and $100K respectively, while discount factor is
0.95. Figure 39 shows the outcomes from 100 simulations: when K = 2, pessimistic outperforms
optimistic while, as K increases, optimistic performs better for K > 10, as her assumption is

closer to reality.

-100L _____________________________ RS SEE
ST |
A - ~ o
-120} LSRR EEEEEETE -
4, -~
e
’ ’
___ —140 L0 1
= ,/',, /,’
E -160 " 3 ,, ]
4
v l' a1 7 . . .
% L - | - Optimistic Upper Bound
_ o . . .
= 180‘ S - ® - Pessimistic Lower Bound
S - 4 - Pessimistic Value 95% CI
-200 k' ! - v - Optimistic Value 95% CI |
‘ 4
L Y —
-220“ """""""""""" 1
2 5 10 18 20

Number of Inspectors K

Figure 40. Value of pessimistic and optimistic agents on management of the system in example B (Cl stands for

confidence interval).

6.3.1.3 Example C: Wind Farm Management

By adapting the model presented in Chapter 3 and 4, we investigate the performances of the
approaches for the operation and maintenance of a wind farm (the system) consisting of N = 25
turbines (the components). Each turbine is in one of three states: Intact (INT: s = 1), Damaged
(DAM: s = 2), and Failed (FAIL: s = 3); four possible imperfect observations are available,

along with three actions, namely: Do-Nothing (DN: a = 1), Repair (RE: a = 2), and Replace
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(REP: a = 3). The transition and emission probabilities are reported in Table 3. We investigate
the process for different numbers K of inspectors, in set {1, 2,3, 5,10, 20}. We also investigate
two inspection accuracies: perfect and imperfect. The emission probabilities for imperfect

inspection (E;p) and perfect inspection (Ep) are reported in Table 3.

The repair, replacement and failure costs are $10K, $30K and $40K respectively. The initial

belief state is 80% for intact and 20% for damaged state, while the discount factor is 0.95.

Figure 40 shows the optimal policy as a function of belief without future inspections (a), and
with use of imperfect (b) and perfect (c) inspections. The belief’s domain is represented by an
equilateral tringle, and each belief’s component can be read by following the grid lines up to the
corresponding side. Policy without inspections is more conservative than that of imperfect

inspections, which in turn, is more conservative than that with perfect ones.
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Figure 41. Policy as a function of the belief for management of the wind farm in example B (a) without any
inspector, (b) with imperfect inspectors, and (c) perfect inspectors that can be available for all components at all
time-steps.
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Figure 41 shows the Vol as a function of belief state for the pessimistic approach with (a)
perfect and (b) imperfect inspectors, and for the optimistic approach with (c) perfect and (d)
imperfect inspectors. High Vol corresponds to beliefs close to the decision boundaries, where
changes in action assigned by the corresponding maintenance policy occur, and it is zero when

the state is known with certainty. The triangles’ axes are defined as in Figure 40.
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Figure 42. Vol as a function of the belief state for the pessimistic approach with (a) perfect and (b) imperfect
inspectors and optimistic approach with (c) perfect and (d) imperfect inspectors.

Figure 42 illustrates the performance of optimistic and pessimistic approaches, comparing
perfect and imperfect inspections. For both (a) pessimistic and (b) optimistic approaches, perfect
inspectors outperform imperfect inspectors, as expected. This analysis allows for investigating
the trade-off between the number of inspectors and their precision: for example, with the
pessimistic approach, 10 imperfect inspectors outperform 3 perfect ones, while 5 perfect ones

outperform 20 imperfect ones, as it can be seen in Figure 42a.

From these examples and other analytical examples not reported in this paper, we summarize

our evaluation of the two heuristics as follows. Pessimistic and optimistic approaches are correct
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if ratio K/N is equal to zero and one respectively (of course, in both settings no inspection
scheduling is needed, and only planning is relevant). A reasonable conjecture that could be
supported by this remark is that the optimistic value U is above pessimistic value U® when
ratio K /N is sufficiently high. However, this conjecture is incorrect in general: even one missing
inspector (K = N — 1) can have a significant negative impact in the optimistic planning. On the

other hand, there are cases in which U is above U™ even if the ratio is arbitrary low.
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Figure 43. Comparison between the performance of the (a) pessimistic and (b) optimistic approaches with perfect
and imperfect inspectors.

6.3.1.4 Discussion on Additional Examples

Pessimistic and optimistic approaches are correct if ratio K/N is equal to zero and one
respectively (of course, in both settings no inspection scheduling is needed, and only planning is
relevant). A reasonable conjecture that could be supported by this remark is that the optimistic
value U is above pessimistic value U® when ratio K/N is sufficiently high. However, in
Appendix D, we discuss two examples, for which analytical solutions are available, disproving

this conjecture. In summary, even one missing inspector (K = N — 1) can have a significant

111



negative impact in the optimistic planning. On the other hand, there are cases in which U is

above U® even if the ratio is arbitrary low.

6.3.2 Stochastic and Fee-based Approaches
6.3.2.1 Example of Pavement Management

We start with an example adapted from that reported by Guillaumot et al. (2003), about
pavement management. A component indicates here a road segment. The number of possible
condition states is 8, where s = 1 indicates Intact and s = 1 Failure. The agent can do-nothing
(a = 1, DN) or replace (a = 2, RE). Transition and emission probabilities are reported in Table
4: while T; models the degradation process, T; models an imperfect replacement. Emission 0, _,
defines a binary observation that, depending on its outcome, can be a symptom of a good or of a
deteriorated state. Cost of repair is $20K and the cost of failure, to be paid when s is 8, is $1M,

while the discount factor is 95%.
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Table 4. Parameters of pavement management example.

08 02 0 0 0 0 0 0 1
0 075 025 0 0 0 0 0
0 0 07 03 0 0 0 0
_— 0 0 065 035 0 0 0
L 0 0 0 0 06 04 O 0
0 0 0 0 0 055 045 0
0 0 0 0 0 0 05 05
L 0 0 0 0 0 0 0 14
0.6 04 0 01 0.1 0.9
06 04 0 0 0.2 0.8
06 04 0 0 0.3 0.7
T —|06 04 0 0 0. .—|05 05
27106 04 0 0 =2710.7 0.3
06 04 0 0 0.8 0.2
06 04 0 0 09 0.1
0.6 04 0 0- 1 0

Figure 43 shows a realization of management for an independent component, following the
corresponding optimal policy. Graph (a) reports the belief, (b) the observations and taken
actions, and (c) the underlying realized state evolution that, needless to say, is not accessible to

the agent.
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Figure 44. Realization of management for an independent component without availability of inspectors: (a) belief
state, (b) damage symptoms and repairs, and (c) underlying condition states.

Figure 44 reports the realized management of a component is a system made of 20 (i.e.,
N = 20) modelled as belonging to the same typology. Now the agent has also access to two
perfect inspectors (i.e., K is two and E the identity matrix) that needs to be allocated at each time
step. The simulation is controlled by the FA model’s assumption with availability P = K/N =
10%. Now graph (b) also reports the realized inspections, (c) the current VVol, with continuous
line, while the underlying hidden state is in (d). Comparing Figure 43b with 44b, it appears that
inspecting decreases the replacement rate. Usually, Vol increases while the agent does nothing,
because of the degradation, depending in the detecting symptoms, up to when it is sufficiently
high the component wins the auction and gets the inspection. With the inspections, uncertainty is
reduced. When the inspection detects a good state, another one is scheduled after some steps,

while if it detects a bad state, a replacement is scheduled. In details, each auction involves all
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components, so it may happen that the component does not get the inspector even when Vol is

high, as happens at step 55: not being able to inspect, the agent prefers to replace.

Figure 44 also shows the analysis of the FA model. The corresponding current Vol is plotted
in (c) with a dashed line. The assessment is so similar to that of the SA model that, in this

specific example, inspection and replacement scheduling is consistent between the models.

(a)
0

10 20 30 40 50 60 70 80 90 100

1

0.8
0.6

b (s)
0.4

0.2

0

Zt EEEE E EH ® = E = oEER = mm ] ] = EE = = mm = ® — Damage symptom

® ® -{ Repair
0} 0} ® - Inspection

L ] ® ®

Vol.(by) [KS]

0 10 20 30 40 50 60 70 80 90 100
time steps t

Figure 45. Realization of management for an independent component with availability of inspectors: (a) belief state,
(b) damage symptoms, repairs (black diamond show the repairs based on SA model and red circles show the repairs
based on FA model) and inspections (green dots show the repairs based on SA model and magnet circles show the
inspections based on FA model, (c) value of current information, and (d) underlying condition states.
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Assessment current Vol according the FA model depends on an assumption of fee C. Here
we have adopted the following algorithm: fee is initialized at zero at step 0, and the components
compete under the optimistic assumption. Cy ) indicates the minimum Vol sufficient for
winning the auction at time t, while €y, indicates the average during all steps up to t Both this
quantities are plotted in Figure 45. At time t, we assume C equal to EM(t), because this latter
quantity provides a reasonable estimate of the offer needed for winning the auction and get the
inspection. During the first steps, Cj; ;) assumes a low value. This is because the initial belief
assumes the road components being in a good state, and no significant concern arises in the first
steps. Consequently, current Vol is generally low in those steps, and so is Cy,. After about step
10, components may be in high need of attention, and the auction becomes more competitive,
and so Cy, grows. This poses challenges to the identification of an appropriate parameter C in the
FA model. At step 7, for example, basing on the data collected in so far, the agent can find
appropriate to assign a low value to C, say of about $1K; if so, each component would assume a
future inspection available at that low cost anytime in the future. This assumption turns out to be
incorrect, as future demand from older components is much higher, and an offer of about $5K is
necessary (in the expected sense) to get the inspector. While this effect is not significant in this
example, it can be in other settings. It is hard to provide a general formula to address this issue,
but we recommend that, if the future C,, is predicted to change in the future (e.g. because the

condition of the component population is predicted to deteriorate), C should reflect this pattern.
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Figure 46. Realization of the minimum value of information sufficient for winning the inspection auction (black line
with square markers), and the average value of information during all management time steps till time t (red line
with triangle markers).

6.3.2.2 Evaluating the Impact of Inspectors

To investigate the accuracy of the predictions on Egs. (45-46), we compare them with the
results of numerical simulations. Because of the high number of simulations needed (a total of
6M steps), we use the smaller example illustrated in 5.3. We consider a system made by N =
100 components, and investigate the Vol using K = 1,2,5,10,20 and 50 perfect inspectors (i.e.
€ = 0). The actual Vol at system level is estimated from 100 forward simulations, each carried
on for 100 steps. The SA model with P = K /N controls the system. The value is then estimated
as discounted arithmetical average of the costs, and the Vol as the difference respect to the value

with no inspectors (given by the POMDP solver).

The 95% Confidence Region of the system-level Vol is reported in Figure 46 with dash-
dotted lines, as a function of the number of inspectors. As expected, the Vol grows rapidly for
low K and slower for high K (for K = N components become MDPs). To avoid the issued about
system-level synchronous aging mentioned in previous section, we assign initial beliefs to the
components as those resulting from a 20-step simulation. Doing this, we assess the Vol when the
system is made up by both intact and potentially damaged components. The Figure also shows

the prediction of the models. For K < N, SA systematically underestimates the system-level Vol,
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as it assumes that inspectors are randomly allocated. With the appropriate selection of the virtual
fee C, on the other hand, FA is able to predict accurately the Vol, as the assumption that
inspectors can be used by paying fee C is able to mimic the optimal allocation the K inspectors.
This result requires an estimate of the virtual fee that, evidently, depends on the number of

available inspectors.
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Figure 47. Confidence region of system-level value of information (red line with triangle markers) for a system of
N components as a function of increase in the number of inspectors K, the SA model prediction of Vol (blue line
with circle marker) and the FA model prediction of Vol (black line with square markers).

6.3.2.3 Comparing the FA and SA Models

Section 6.2.4 shows that the SA and FA models have similar performance in many settings.
Section 6.2.5 shows how the prediction of impact using FA is more accurate, when an
appropriate fee is used. Now we show how FA can be more effective than SA even in inspection
scheduling, in specific settings. To do so, we refer to a simple two-step decision making problem
with no discounting, for which analytical solutions are available. Consider a setting where
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components, each made by many parts, can currently be in flawless (FL) or defective (DF) state,
and this initial state is perfectly known to the agent. Because of this, inspecting is uninformative
at initial step, but it is relevant at the next one. Unless protected at cost Cpr, a flawless
component deteriorates in few of its parts; and the agent can detect all flaws only by inspecting
at next step and fix them at no cost. Without inspection, the agent has to maintain a flawed
component under uncertainty, at cost C,; > Cpg. A defective component, on the other hand, can
be protected (say replaced with a protected one) at cost Cgg; if not, high deterioration will occur
in some parts, and the agent cannot fix an uninspected highly deteriorate component, that will
fail at cost Cr > Cry. However, by inspecting at next step, again we assume the agent can detect

and fix all issues at no cost.

An agent convinced of receiving an inspector at next step should not protect the component.
On the contrary, one convinced that no inspector will be available should protect it. Specifically,
if the assumed availability is lower than P" = 1 — Cgy/Cr, the agent should protect a defective
component, and if it is lower than P’ =1 — Cpr/Cy, also an intact one. If we assume Cpp =

$1K, Cyy = $5K, Crx = $10K and Cr = $100K, then P’ = 90% and P" = 80%.

To investigate the optimal policy, we can assess the Vol for inspecting at next step.
Inspecting at next step allows for skipping current protection, so the Vol for flawless and
defective components are Vol,,(FL) = Cpg and Vol (DF) = Cgg respectively. As Vol (DF) is
higher than Vol (FL), the agent will give priority to inspections of unprotected defective
components: only if K is higher than the number of these, unprotected flawless ones can also be
inspected. Therefore, a long-sighed agent should assume a high probability of inspecting an
unprotected defective component, and a low probability of inspecting an unprotected intact one.

For example, if N = 100, K = 20 and the probability of a defective component is 6% then, if all
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components are left unprotected, inspectors are available with probability about 1 to defective
and with probability 14.9% to intact one. Consequently, the optimal policy (using component
level information alone) is to protect an intact component and do not protect a defective one, as
reported in Table 5, counting on the availability of inspectors for the latter. The corresponding
Value, normalized for one component, is $940. However, the SA model assumes a unique value
for availability P, independent of state or belief and, because of this, cannot mimic that policy.
For example, by setting P = K/N = 10%, the agent will protect all components. Figure 47a
shows the corresponding Value (normalized for one component), depending on the assumed

availability, and the corresponding policy is reported in Table 5.

For the FA model, on the other hand, decision depends on assumed fee cost C. If C is higher
than €' = Vol,,(DF), the agent should protect an flawless component, and if it is higher than
C'" = Vol (FL), she should also protect a defective one. Figure 47b reports the normalized
Value, depending on C and, again the corresponding policy can be read in Table 5. The optimal

policy is reachable by setting C between the two Vols.
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Figure 48. Value of managing a system N = 100 components and K = 20 inspectors as a function (a) availability
of future inspections P and (b) the cost of inspection C. The dotted line shows the optimal solution while the
weighted line shows the performance of (a) SA and (b) FA models.
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Table 5. Policy depending on model and assumption, described by answering the question: is the component to be

protected?
model | assumption initialstate
FL | DF
pP<p" yes | vyes
SA |P"<P<P'| no | yes
P>pP no no
csc no | no
FA |C'’<C<C"| yes | no
c=c" yes | yes
optimal yes | no

In summary, the example shows how the SA model is not able, in some settings, to emulate
the optimal policy. Future inspection scheduling is the result of an optimization process and,
consequently, availability is a function of the state. In the example above, the optimization gives
priority to the unprotected defective components. But the FA model assumes that future
inspections are randomly allocated, independently by the state and, doing so, it is not able to
capture the optimal policy. The FA model, on the other hand, assumes that inspections will be
available to those in needs (i.e. those able to cover the corresponding fee) and, by selecting an

appropriate fee value, is able to get optimality.

We conclude this discussion with two remarks. First, the reader may note that a better policy
is conceivable, whether information is processed at system level: if more than K components are
defective, the agent can plan to inspect K of them, and protect the remaining ones. Or, if they are
less, she can plan to inspect all defective ones, and also some selected flawless ones, while only
the remaining ones are to be protected. While such a policy (leading to Value of $800 for
component) is identifiable for this small problem, it violates the principle of using just
component-level features for current decision and inspection scheduling. The complexity of

system level policies for planning and inspection scheduling is illustrated in Section 6.2.2 and
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suffer from the course of dimensionality. Second, the example leaves the issue of selecting an

appropriate value for fee C open, as it just shows that such appropriate value exists.

Lastly, the reader is referred to Memarzadeh and Pozzi (2015c) and (2015e) for comparison

between the SA model and the pessimistic and optimistic approaches.
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Chapter 7

Summary and Conclusions
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In this dissertation, we have developed a computational framework for system-level adaptive
monitoring and control of infrastructures. Specifically, we have addressed challenges regarding:
i) sequential decision making under uncertainty in the model parameters describing the
degradation behavior and the precision of the monitoring system; ii) learning the model
parameters by processing noisy observations, as well as modeling the dependence among the
components, allowing the knowledge transfer among them; and iii) assessing the component-
level value of the information and use it as a heuristic for system-level inspection scheduling,

dealing with limited resources for data collection.

As a first step, in Chapter 3 and 4 (section 4.1), we proposed a method named planning and
learning for uncertain dynamic systems (PLUS) for learning and planning within the BA-
POMDP framework and applicable to the context of wind farm management, as well as other
infrastructure systems. The BA-POMDP framework overcomes one of the primary limitations of
POMDP framework by treating the transition and emission probabilities as random variables,
whose distributions can be updated during the learning process. PLUS algorithm uses Markov
chain Monte Carlo simulations to find an approximate solution for the BA-POMDP problem.
The approach allows for a rational treatment of data collected by sensors and visual inspections,

a reliable tracking of the condition states of components, and robust decision making support.

PLUS algorithm has been validated with synthetic data and is shown to outperform state-of-
the-art reinforcement learning approaches, such as MEDUSA. MEDUSA was originally
proposed for applications of robot navigation and it scales easier than PLUS, requiring less
computational effort. However, for application to infrastructure systems, and specifically wind
farms, it is believed that the computational drawback of PLUS is not a significant concern

because the computational cost is low with respect to the direct costs for operation and
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maintenance of a wind farm. On the contrary, in this context it is necessary to achieve a rational
and robust selection of the maintenance policy, making use of the knowledge available at any
state of the process. PLUS allows this; it also allows the agent to learn, during the management,
the statistics of degradation process (transition probabilities) and the performance and reliability

of the monitoring system (emission probabilities).

In the second step in Chapter 4 (section 4.2), we have proposed a probabilistic framework,
Multiple Uncertain POMDP (MU-POMDP), for learning models in systems made up by similar
components that overcomes some limitations of PLUS by explicitly defining dependence among
components through a set of hyper-parameters. While Individual and Global PLUS solve the
limit cases of independent or identical components, respectively, the MU-POMDP framework
can potentially solve a wide range of intermediate problems. The computational complexity of
MU-POMDRP is higher than that of PLUS, since the former requires an extra layer of hyper-
parameters. Specifically, the sampling approach makes use of the Metropolis-Hastings method,

which needs careful selection of the proposal distribution to achieve effectiveness.

In many applications it is appropriate to assume some degree of similarity among
components, and MU-POMDP is a consistent framework for this problem. The accuracy of
approximated approaches, as Individual and Global PLUS, depends on the number of
observations, as well as on the number of components and on other parameters of the
application. We have measured the quality of approximation in terms of expected error, and
expected economic loss. However, practical implementation of MU-POMDP requires defining
an appropriate level of similarity among components, which needs careful considerations

depending on the application.
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Finally in Chapter 5 and 6, using POMDP framework, we have illustrated how to assess the
value of information in sequential decision making. Specifically, we have proposed methods
based on the Value of Information (Vol) for evaluating the impact of a monitoring system (or a
set of additional information) on decision making, ranking priorities among inspections, and
integrating inspections in maintenance planning. The exact method (except for approximation of
the POMDP solver) is available for current and periodic observations at component-level that
can be used for assigning priorities for system-level inspection scheduling. While this method is
intrinsically approximate, it allows for decomposing the complex system-level optimization into
component-level computation, so that the problem complexity grows just linearly with respect to
the number of components on the systems. We first defined two heuristics (optimistic and
pessimistic), related to different assumptions on the availability of future inspections: the
optimistic approach assumes inspectors will be available for all components from next time step,
whereas the pessimistic approach assumes no inspector will be available in the future. Consistent

with these assumptions, heuristics are also related to alternative planning policies.

The exact solution is intractable except for small problems as discussed in Section 6.2.2.
Each heuristic defines a myopic optimization algorithm whose complexity is linear with number
of components N. Any formulation less myopic than those cannot rely on independence between

components’ values and a combinatorial explosion occurs. For example, in a two time-step
search, inspections at the current step have to be coupled with those at next one, and N X (11\(1) =

NX+*1 combinations have to be explored. Complexities of the optimistic and pessimistic
approaches are similar. We have shown bounds for the value of each approach, and the
pessimistic approach has better guarantees against worst case scenarios. On the other hand, the

upper bound of optimistic approach is higher; however, we have found this benefit to be small in
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many applications. Based on these considerations, without any additional relevant domain

knowledge, we recommend adopting the pessimistic approach.

By extending the results of pessimistic and optimistic heuristics, we have introduced two
models, stochastic future allocation (SA) and fee-based future allocation (FA), which differ for
the assumption about the availability of future information (e.g. inspection): SA model assumes
that observations are collected with a given probability (that is a generalization of the pessimistic
and optimistic approaches), while FA model assumes that observations are available at a given
cost. The computational complexity of FA is higher than that of SA, however it is proven to be
more effective in some settings, as the assumption of a virtual fee for allocating resources on
inspections can better predict the results of future optimization processes. Both models depend
on the selection of internal parameters that can be chosen by expert judgment or by data analysis,
if previous data are available. Specifically, the prior selection of an appropriate fee C is an open
issue, and we do not provide a general formula for this task. We note that we have investigated

using the solution of C = Vol (b, C) for initializing C.

7.1 Future Work

PLUS planning phase is based on an assumption of neglecting the exploratory value of
learning the model parameters in the planning. Basically, PLUS assumes that from next time
step, the agent will receive perfect knowledge about the true model parameters, and plans
optimally in this context. However, the exploratory value of learning can be incorporated into the
planning feasibly by using appropriate heuristics. The challenge is that in the application to

management of civil and infrastructure systems, exploration can be really costly and hence there

127



is a need for careful management of incorporating the exploratory value in the planning, which is

part of the future work.

Moreover, one of the main assumptions in the proposed SA and FA methods is that the
model parameters (i.e. transition and emission probabilities) of POMDP are assumed to be
known with certainty. This assumption can be released by treating the model parameters as
random variables by assigning priors to them and generalize the developed method to compute
Vol under the model uncertainty, and acquire information not only with respect to their value of
decreasing the uncertainty in conditions states and cost of operation and maintenance, but also
with respect to their value in decreasing the uncertainty about the model parameters (i.e.
transition and emission probabilities). This is a challenging task computationally, as the Vol also

depends on the uncertain model parameters.
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Appendix A

Formulation of Fee-based Model

In this appendix we describe how to solve Eq. (28) by reformulating the two-step process of
the FA model described there as an equivalent one-step process, modeled as a standard stationary
POMDP, which can be processed by a solver as SARSOP (Kurniawati et al. 2007). To do so, we

group functions V(IC) and V(I‘C"), defined on the same belief domain, in a single value function

defined on the duplicate belief domain, by augmenting the state. We define s* = {s,m} as an
augmented belief, where m is 1 for inspection sub-steps, and 2 for management ones. We add
action inspect to the original set of actions, so that the resulting set of available action (A™) is of
dimensions |A*| = |A| + 1. We force the management actions to be available in the management
sub-steps only (and the inspection action to be available in the other sub-steps) by imposing

unbearably high costs for untimely actions. Adjust discount factor.

In the inspection sub-steps, the agent has access to two actions: do-nothing (that we assume,
without loss of generality, is also an option for the management sub-steps) or inspect. Cost is C
for inspecting and nil for doing-nothing. Costs for other actions are assigned to be unbearable.
Transition function T on the augmented state is assigned so the state stays the same, but index
m moves from 1 to 2: for each actions a™, it is formally defined as Tx({s, 1}, a™,{s’, 2}) = 84,
where § is the Kronecker Delta. Observations are defined on the joint domain of ordinary

observations and inspection outcomes. We define augmented observation z* on domain Z* of
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size |Z*| = |Z]| + |H|, so that z* maps to z for the first |Z| entries, and to |Z| + h for the last |H|
entries. Emission function O is nil when inspection state when z* < |Z|. For z* > |Z], it is

defined, for each state s as:

{OF({S, 1},a* ,z*) = 1/|H| at < |AY| (A1)

Or({s,1},147],z%) = E(s,z" — |Z])
Cost function Ry is nil for the do-nothing action (a* = 1), except, for each state

R:({s,1},|A*]) = C. For other actions, the cost is unbearable.

For management sub-step and at < |A™|, transition and emission parameters copies those of
the original POMDP, as Tz({s,2},a™,{s",1}) = T(s,a,s’) and 0r({s,2},a*,z*) = 0(s,qa, 2).
Cost is updated as R({s,2},a™) = R(s,a)/+/y and the overall discount factor is y* = /y. We
also assign to R({s, 2},|A*|) an unbearable cost, so that the other parameters for the inspection
action taken from a management sub-step are irrelevant. The discount factor is updated to take
into account that the first management step should not be discounted. Hence the model
parameters of the FA-model POMDP can be grouped as follow: @fc) = {Tg, O, Rg, y*}. The
corresponding value G, starting at belief b in the sub-inspection step, can be computed using
augmented belief b*, defined as b*{s, 1} = b(s), b*{s, 2} = 0. Also, value V(I?) at management
sub-step can be computed from augmented belief defined as b*{s,2} = b(s), b*{s, 1} = 0 but,

in this case, the resulting value from the POMDP value has to be multiply by factor /y. In

summary:

Vie)(b,8) = V*(b, 0, at < |A*|

A2
Viey(,0) = Jy V' (b, 0f)) -

136



Appendix B

Formulating and Solving System-level
POMDP

In this appendix we describe how to formulate the system-level problem of Section 6.2.2
into the POMDP framework presented in Chapter 2. The main difficulty to doing so is to
convert a two-step process, alternating inspection scheduling and maintenance, into a process
with uniform steps. To do so, each time step is divided into two sub-steps and, to distinguish
between them, we define a binary indicator m, with possible values m = 1 for odd sub-steps
and m = 2 for even ones. The intention is to use the odd sub-steps for inspections and, after
receiving inspectors’ outcomes, select maintenance actions at even sub-steps, receiving reward
and observation. Complete state, action, and observation are defined as s** = st um, a*t* =

atuY, and z*t =zt U ht, where ht lists all inspection outcomes, on domains of size

N

++| — + — N ++| —
I5+41 = 215*] = 2151V, 1471 = (

)+ |AIN, and |Z**| = |H|X + |Z|N respectively. In this
notation, while each possible value of state s** is composed of two components (s* and m),

actions and observations either belong to one or the other sub-domains, referring to inspection

(h* and Y) or to maintenance (z* and a*).

Complete transition probability function T*+:S*+ x A*™* x §** - [0,1] is zero if m,,; =
me; TH (s, 1}, a%,{sf1,2}) is zero if sf;#sf and one if s, =s/; and

T++({St+' 2},a", {5;+1' 1} = H?/:l T(Si,t' ai, Si,t+1)-
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Complete emission probability function is defined as: 0**:S** x A** x Z+* - [0,1].
0**({si1,2},a*, k") =0, and 0% ({s{\4,2},a*,2z%) =1\, O(se, a,2;¢);  similarly

0t ({st1, 1}, a%,z*) = 0,and 0" ({sf,1, 1}, a*, h*) =TT G(sit, hip).

The discount factor is the square root of the y for the component-level POMDP (because we

have discretized each time step into two sub-steps).

The reward function is defined as R**:S*+ x A** > R. r**({s/,1},a*) = —o, because
at odd sub-steps we force the policy to inspect and r**({s;/, 1},Y) = 0. Similarly, we force the

policy to take maintenance actions in even sub-steps, so r**({s;,2},Y) = —co and

r**({sf,2},d") = %Z?’zlr(sw a; ). The factor before the sum compounds the rewards to the

first even step.

Initial belief models the knowledge that the system starts in an odd-step, so bd*({sg¢*,1}) =

[Ti1 bo(si0) and b3 * ({3, 2}) = 0.

Once these parameters are defined, POMDP solvers can be used. As illustrated above, the
computational complexity of the system-level POMDP problem grows exponentially with the

number of components in the system and it is not tractable for most of real-world applications.
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Appendix C

Proofs of Bounds

It can be proven that the Vol is always non-negative (Heckerman et al. 1993), according to

the principle that Information Never Hurts (INH).

Proof that:
0
w < u® <w@ (C1)

Let us start proving that W*(P) < U™, Suppose no inspector is available from next time step.

Then, W*(P) = U based on the definition in Eq. (41) and the fact that the pessimistic agent acts
optimally according to her assumption. During the actual management process following the

pessimistic agent’s policy, future observations from inspectors will be available (despite the
assumption of the pessimistic agent) and based on INH we can conclude that W*(P) < U®P, Now
let us prove that U < WY((OP)). Based on INH, U®) is always less than or equal to the optimistic
system-level value estimate, inspecting all components whose indices are in set Y®). In other

words, we can conclude that U®) < W)

Proof that:

v <w (C2)
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Suppose inspectors are available for all the components of the system from the next time

step. Then from Eq. (41) we have U© = M(O). During the actual management process
following the optimistic agent’s policy, future observations will not be available for some

components if K < N, and because of INH (i.e., lack of information never helps) we can

conclude that U© < w,(?.

Proof that:

Let us first prove the upper bound. Suppose the current set of indices of the components to be

inspected, selected by the optimal agent (that solves the system-level problem and finds the exact

solution) is Y*. Then from Eqg. (43) we can infer that WY(*O) < W*(O). Next, from INH we can infer
that U* < WY(*O), and hence U* < W*(O). Now let us prove the lower bound of Eq. (C3). We know

that by inspecting the components in the set Y(®, and under the pessimistic assumption (that

inspectors are not available from next time step) agent gets W*(P). By the optimality of the

agent’s policy, the availability of future inspectors and the INH principle, we conclude that
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Appendix D

Analytical Examples

We present two simple examples, for which analytical solutions are available, to illustrate

how pessimistic or optimistic approaches can do better depending on the context.

Example 1: In this example we show how the optimistic approach may lead to huge losses,
even when ratio K/N is arbitrary close to one. Consider a set of components with equal
transition probabilities and initial belief. Five states are possible, initial state is 1, with certainty,
and absorbing states 4 and 5 represent failure and disposal respectively. Four actions are
available, namely Wait (W), Dispose (D), Dispose-from-2 (A) and Dispose-from-3 (B). The

transition graph of the component is shown in Figure 48.

disposal
WDB C

Figure 49. Transition graph for example 1 in Appendix D.

From 1, state can transit to 2 or 3 with uniform probability at no cost under any actions W, 4

and B, while action D takes to state 5 with disposal cost C;,. From 2 or 3, state can only move to
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5, at a cost that depends on the action: from 2, failure cost Cr > Cj, has to be paid for all actions
except 4, and no cost is due for this latter action; similarly, from 3 only one action (B) avoids
the failure cost. The only available observations are those from perfect inspectors, and discount

factor is unitary. In this setting, no cost has to be paid for a component inspected at time t;.

At time zero the pessimistic agent, assuming she will not have access to any inspectors from
the next time step onwards, disposes all components, paying cost U® = W*(P) = NCp. The
optimal agent knows that she has access to K inspectors at each time step, hence she disposes
only N — K components and her optimal value is U* = (N — K)Cp,.

The optimistic agent assumes inspections for all components; hence she will wait () until

next time step, computing W*(O) = 0. However at time t; she has access to only K inspectors,
and she has to select a risky action (say between 4 and B) for all uninspected components, so that

value is U® = (N — K)Cr/2. Note that if the cost of failure is large, the value of optimistic

agent can fall well below the lower bound (W*(P)) defined for the pessimistic approach. For any
values of N, K and Cp, we can find a Cr so that relative benefit, defined by the following

equation:
UP —y© =NC, — (N —K)Cr/2 (D1)

IS positive, and the pessimistic agent does better.

The myopic planning exposes the optimistic agent to a relevant probability of failure,
independent of how high failure cost Cr is. As shown by the pessimistic agent, failure events

can be easily avoided by timely disposal, and no failure is foreseen in the computation of either

W*(P) or W*(O), but the optimistic approach suggests the agent to postpose the disposal until it is
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too late. It also should be noted that failures can follow optimistic planning for any N and

K < N, and thus for arbitrary high values of the ratio K/N.

Example 2: The second example aims to show how the optimistic approach can outperform
the pessimistic one even if ratio K/N is arbitrary low. We consider a system made up of two
different kinds of component, with different transitions and rewards. We call one of the
components “critical”, while the remaining N — 1 are “dummy” components. The agent can use
only one perfect inspector on the critical or on a dummy component. Figure 49(a) shows the
transition graph for dummy components. Dummy components have binary states (state 1 and 2)
independent for each time step, and the initial beliefs for all dummy components are uniform.
Actions for these components are also binary (action A and B2), and can be understood as
“guessing the state”: if the guess is wrong, a fee 2f is paid, and if it is correct no fee is due. No
observations are available beyond those from the inspector. Consequently, the agent has to pay
expected fee f for any dummy component left uninspected. As inspecting the critical
component implies not inspecting a dummy one, f can be intended as an equivalent expected
fee for inspecting the critical component. The latter component is degrading up to failure related
to unbearable consequences; however, failure time can be predicted with certainty, once it has
been inspected. That component can be interpreted as a time-bomb, and inspecting it is
equivalent to reading the timer. It can be disposed at a cost C,, to avoid the unbearable cost of

failure Cp = co. We assume discount factor y < 1.

We anticipate the moral of the example: all agents agree that the critical component has to
be inspected, but they disagree on scheduling: pessimistic prefers to inspect at time zero, as she
assumes she cannot do it in the future, while optimistic can adopt the optimal action, postponing

inspection until actually needed.

143



The transition graph of the critical component is reported in Figure 49(b).

A2l
BO 50%

safe failure

50% A0
B2/

a)

Figure 50. Transition graphs for example 2 in Appendix D: (a) dummy and (b) critical component.

The critical component’s state is defined over 5 possible values: states {1,2,3} are all safe,
state 4 represents the failure, and state 5 the disposal. Two actions are available: namely Wait
(W) and Dispose (D). Under Wait, state moves deterministically so that s;,; = s; + 1, up to
failure. The failure and disposal states are absorbing states. Up to state 3, to Dispose takes
component to state 5. Initial belief state is uniform between 1 and 2: this means that component

is safe up to time t = 1, but at time t = 2 it may fail.

The pessimistic agent inspects the critical component at t = 0, and is able to dispose it when
in state 3. The optimistic agent disposes it at the same time, after having waited until ¢t = 1 to
inspect it. This is indeed the optimal policy, and the benefit with respect to the pessimistic value

is:
UP) —y©® =1 -y)f>0 (D2)

This result is invariant with respect to the number of dummy components, N — 1, and this
proves that the optimistic assumption can provide the optimal policy, even when ratio K/N is

arbitrary low.

The reader may note that, in the presented example, the ratio between the number of

inspectors and critical components is actually one and, consequently, it is not a surprise that the
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optimistic assumption is correct. However, our point is to disprove the conjecture that any
conclusion on what agent performs better can be based on ratio K/N. It may be possible to
define an adjusted ratio, identifying a sub-set of “critical” components. However, it is an open

question how to define this feature in a general context.
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