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Abstract 
 

Many infrastructure systems in the US such as road networks, bridges, water and wastewater 

pipelines, and wind farms are aging and their condition are deteriorating. Accurate risk analysis 

is crucial to extend the life span of these systems, and to guide decision making towards a 

sustainable use of resources. These systems are subjected to fatigue-induced degradation and 

need periodic inspections and repairs, which are usually performed through semi-annual, annual, 

or bi-annual scheduled maintenance. However, better maintenance can be achieved by flexible 

policies based on prior knowledge of the degradation process and on data collected in the field 

by sensors and visual inspections.  

Traditional methods to model the operation and maintenance (O&M) process, such as 

Markov decision processes (MDP) and partially observable MDP (POMDP) have limitations that 

do not allow the model to properly include the knowledge available and that may result in non-

optimal strategies for management of infrastructure systems. Specifically, the conditional 

probabilities for modeling the degradation process and the precision of the observations are 

usually affected by epistemic uncertainty: this cannot be captured by traditional methods. 

The goal of this dissertation is to propose a computational framework for adaptive 

monitoring and control of infrastructures at the system-level and to connect different aspects of 

the management process together. The first research question we address is how to take optimal 

sequential decisions under model uncertainty. Second, we propose how to combine decision 

optimization with learning of the degradation of components and the precision of monitoring 

system. Specifically, we address the issue of systems made by similar components, where 
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transfer of knowledge across components is relevant. Finally, we propose how to assess the value 

of information in sequential decision making and whether it can be used as a heuristic for 

system-level inspection scheduling. 

In this dissertation, first a novel learning and planning method is proposed, called “Planning 

and Learning for Uncertain dynamic Systems” (PLUS), that can learn from the environment, 

update the distributions of parameters, and select the optimal strategy considering the uncertainty 

related to the model. Validating with synthetic data, the total management cost of operating a 

wind farm using PLUS is shown to be significantly less than costs achieved by a fixed policy or 

though the POMDP framework.  

Moreover, when the system is made up by similar components, data collected on one is also 

relevant in the management of others. This is typically the case of wind farms, which are made 

up by similar turbines. PLUS models the components as independent or identical and eithers 

learn the model for each component independently or learn a global model for all components. 

We extend that formulation, allowing for a weaker similarity among components. The proposed 

approach, called “Multiple Uncertain POMDP” (MU-POMDP), models the components as 

POMDPs, and assumes the corresponding model parameters as dependent random variables. By 

using this framework, we can calibrate specific degradation and emission models for each 

component while, at the same time, processing observations at the level of the entire system. We 

evaluate the performance of MU-POMDP compared to PLUS and discuss its potentials and 

computational complexity. 

Lastly, operation and maintenance of an infrastructure system rely on information collected 

on its components, which can provide the decision maker with an accurate assessment of their 

condition states. However, resources to be invested in data gathering are usually limited and 
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observations should be collected based on their value of information (VoI). VoI is a key concept 

for directing explorative actions, and in the context of infrastructure operation and maintenance, 

it has application to decisions about inspecting and monitoring the condition states of the 

components. Assessing the VoI is computationally intractable for most applications involving 

sequential decisions, such as long-term infrastructure maintenance. The component-level VoI 

can be used as a heuristic for assigning priorities to system-level inspection scheduling. In this 

research, we propose two alternative models for integrating adaptive maintenance planning based 

on POMDP and inspection scheduling based on a tractable approximation of VoI: the stochastic 

allocation model (and its two limiting scenarios called pessimistic and optimistic) that assumes 

observations are collected with a given probability, and the fee-based allocation model that 

assumes observations are available at a given cost. We illustrate how these models can be used at 

component-level and for system-level inspection scheduling. Furthermore, we evaluate the 

quality of solution provided by pessimistic and optimistic approaches. Finally, we introduce 

analytical formulas based on the stochastic and fee-based allocation models to predict the impact 

of a monitoring system (or a piece of information) on the operation and maintenance cost of 

infrastructure systems. 
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Chapter 1 

 

Introduction and Literature Review 
 

 

Abstract 

In this chapter, we illustrate the motivation of the research presented in this dissertation. 

Next, we review the literature on sequential decision making including MDPs and POMDPs, 

inspection scheduling, and application of them to the management of infrastructure systems. The 

limitations of the previous studies are also discussed. Next, we discuss the overall framework 

proposed in this research, and the connection among its different parts. Lastly, we list the journal 

and conference papers that we have submitted and published, presenting the outcome of this 

dissertation. 
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Managing a wind farm (or generally an infrastructure system) includes selecting appropriate 

O&M levels for the turbines (i.e. components of the system), scheduling inspections, and 

performing maintenance actions. A rational manager has to find a reasonable tradeoff between 

exploitation and exploration. Exploitation refers to the conservative maintenance policy to 

minimize the cost of O&M while exploration refers to learning the degradation behavior of 

components, the effectiveness of the maintenance actions, and the precision of the monitoring 

system. Thus, a robust decision making framework is needed to automatically evaluate the 

uncertainties related to the environment. In this context, the overall goal is to find an optimal 

policy that minimizes the total expected costs of the system over the management time horizon, 

making use of probabilistic models for predicting the degradation of the system and the 

effectiveness of maintenance actions.  

In order to develop such framework, we have collaborated with our industry partner, 

Everpower Wind Holdings, to conduct the research proposed in this dissertation. They provide 

us with the prior knowledge on the failure of the turbine components (e.g. gearbox and yaw 

system) that is basis for developing the numerical examples used for validation in this research. 

One example of the farms they operate is Highland wind farm located in Cambria County, PA. 

The farm is made up by 25 Nordex N-90 turbine generators, each with a power capacity of 2.5 

MW, and it is operative since August 2009. It is a very interesting application for our project, as 

all machines belong to the same model and have the same age. In total, Highland wind farm has 

the capacity to generate approximately 62.5 MW (producing enough electricity to power over 

15,000 households). The turbines are instrumented with wind sensors, power sensors, 

accelerometers, and are periodically inspected for measuring bolt torque and symptoms of 

corrosion and fatigue damage.  
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suitable for investigation the impact of information gathering. Madanat (1993) proposed a 

methodology for optimal inspection and maintenance policies for infrastructure networks called 

latent MDP (LMDP) that allows the partial observability of condition state of infrastructure 

components. Moving beyond analysis of single component, Smilowitz and Madanat (2000) 

incorporated the network-level budget and condition state constrains in LMDP. Guillaumot et al. 

(2003) proposed an adaptive optimization method for infrastructure maintenance and inspection 

decisions based on LMDPs under model uncertainty. Medury and Madanat (2013a, b) have 

extended the state-of-the-art MDP-based methodologies in infrastructure management to 

integrate the two aspects of the decision making process: the financial allocation of resources for 

maintenance, rehabilitation and replacement policies and the operational-level implementation. 

In particular, they use approximate dynamic programming (Powell 2007) to model complex 

problems in infrastructure management.  

To address the limitation of MDP, Partially Observable MDP (POMDP) generalizes MDP, 

where the exact state of the system cannot be observed directly but can be inferred by indirect 

and imperfect observations (Smallwood and Sondik 1973, Sondik 1978). Details regard POMDP 

formulation and implementations are provided in Chapter 2. 

Extensive literature on planning inspection and maintenance for civil structures using 

dynamic programming and Markov processes has been reviewed by Papakonstantinou and 

Shinozuka (2014a). Papakonstaintou and Shinozuka (2014b, c) implemented the POMDP 

framework for inspection and maintenance planning of corroding reinforced concrete structure. 

Their method suggests inspection/monitoring and maintenance actions. Availability of different 

monitoring and maintenance actions, uncertain observation and action outcomes and the cost-

benefit of the information are also incorporated in their formulation. Schobi and Chatzi (2015) 
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have used continuous POMDP for life cycle assessment and maintenance planning of 

infrastructure components. 

 

1.2.2 Literature on Management of Wind Farms 

In the literature, methods based on POMDP have been recently proposed for optimal 

management of wind farms. These methods use historical data to fix the model parameters (i.e. 

transition probability, describing the degradation of the system, and emission probability, 

describing precision of the monitoring system) and find the optimal policy based on them. Byon 

et al. (2010) have proposed an optimal maintenance strategy for wind turbine systems under 

stochastic weather conditions. They have formulated the degradation process of turbines as a 

POMDP, with the objective of deriving an optimal preventive maintenance policy that minimizes 

the expected average cost over an infinite horizon. Also, these authors have extended their 

proposed method to season-dependent condition-based maintenance of wind turbines to include 

the dynamic weather conditions, which makes the subsequent modeling of the resulting strategy 

season-dependent (Byon and Ding 2010). Nielsen and Sorensen (2012) have presented the use of 

limited information influence diagram and POMDP to assist in rational decision making for 

O&M of offshore turbines. McMillan and Ault (2008) have used Monte Carlo simulations to 

evaluate the cost effectiveness of condition based monitoring of wind turbines. Specifically they 

have found the effect of MDP in modeling the wind turbine deterioration and failure 

characteristics. 

A key limit in these studies is that transition and emission probabilities (i.e. model 

parameters) are assumed as fixed parameters, and epistemic (and model) uncertainty is not taken 

into account. In those studies that have included the model uncertainty, the correct model is 
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being chosen among few pre-specified candidates, instead of assigning a general prior model that 

describes the behavior of components’ parameters. Furthermore, the difference and similarities 

among the model parameters of different components on the system are not modeled.  

 

1.2.3 Literature on Sequential Decision Making under Model Uncertainty 

Researchers have incorporated uncertainty in the transition probabilities of the MDP 

framework directly in the formulations to find policies that are both optimal in terms of 

maximizing the total expected reward and robust to errors in the model parameters. Bagnell et al. 

(2001) have proposed a stochastic dynamic game to solve the problem of MDPs with uncertain 

transition probabilities. The proposed solution is equilibrium of the game that corresponds to that 

value function under the worst model. Li and Si (2007) have proposed a new optimality criterion 

that is a basis for development of robust policy iteration to solve this problem. Nilim and ghaoui 

(2005) have solved the uncertain MDP problem in the context of finite and infinite horizon using 

robust value iteration.  

The Bayes-Adaptive POMDP (BA-POMDP) framework is a generalization of POMDP, 

where the transition and emission probabilities are unknown and are treated as random variables, 

with a prior distribution, whose distribution can be learned and updated during the process of 

monitoring and management (Ross et al. 2011). Details of BA-POMDP’s formulation are 

provided in Chapter 2. Jaulmes et al. (2005a, b) have proposed an algorithm called Markovian 

exploration with decision based on the use of sampled model algorithm (MEDUSA) to find the 

optimal policy for a POMDP when the model is no known or poorly specified. Their algorithm 

tries to improve the POMDP incrementally using selected queries, while still optimizing the total 

expected reward.   
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1.2.4. Literature on Value of Information in Management of Infrastructure Systems 

In the maintenance process, information collected by inspectors and monitoring system can 

provide the agent with accurate assessments and prognoses of components’ condition states, 

which can be integrated in a probabilistic framework to model the effects of degradation and of 

the adopted maintenance policy. Information can reduce the uncertainty in the decision making 

process however, it is usually expensive to collect due to limited resources. Therefore, data 

collection needs to be prioritized, trading off the cost of gathering information against the 

potential benefits tis information might have in terms of selecting more appropriate maintenance 

actions. Pre-posterior analysis allows for predicting the impact of each available observation to 

the maintenance process, so that it can be the base for rational sequential information gathering. 

This is a relevant topic in a wide variety of applications from sensor scheduling (Ji et al. 2007, 

Shi et al. 2011, Mo et al. 2012a, Mo et al. 2012b) to scheduling for human or robot inspectors. 

Reference applications of the latter topic to civil infrastructure systems are provided by Straub 

and Faber (2004, 2005, and 2006), which proposed the so-called equidistant and threshold 

approaches for reliability-based inspection scheduling: a former finds an optimal inter-inspection 

period, whereas the latter schedules inspections when the probability of failure exceeds a 

threshold. Although inspection scheduling for a single component can be incorporated in the 

POMDP framework (Memarzadeh et al. 2015a, Papakonstantinou and Shinozuka 2014b), the 

system-level scheduling poses computational challenges. The concept of Value of Information 

(VoI) (Raiifa and Schlaifer 1961) is key to pre-posterior analysis, and can be taken as a 

consistent approach for ranking al available observations: VoI of an inspection is defined as the 

difference between the value of the management process with and without that specific 

observation. Introduction and application of VoI analysis to civil infrastructure systems is 
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provided by Pozzi and der Kiureghian (2011), Straub (2014), and Zonta et al. (2014). 

Application to long-term maintenance planning is shown by Straub and Faber (2006) and 

Konakli et al. (2015). 

As mentioned, the system-level scheduling poses computational challenges, when dealing 

with constraints in the available resources for information gathering. It is challenging to integrate 

optimization of information gathering of large systems in a dynamic controlled setting where the 

agent is optimizing the maintenance policy as well.  

In this research, we propose a framework and computational approaches that integrates 

learning, planning, and inspection scheduling at system-level for optimal management of 

infrastructure systems and addresses gaps in knowledge in the literature. 

 

1.3 Proposed Framework and Layout of the Dissertation 

Figure 3 shows three main contributions of this research and connections among them. 

 

Figure 3. The proposed framework connects three important aspect of sequential decision making: learning, 
planning, and data collection scheduling. 

Information Knowledge

Decision

PLUS Learning: Chapter 4, Section 4.1

MU‐POMDP: Chapter 4, Section 4.2

PLUS – Planning: 
Chapter 3

Value of Information: Chapter 5

System‐level Scheduling: Chapter 6
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PlanningInspection 
Scheduling
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First, we introduce the MDP and POMDP frameworks in full detail in Chapter 2, as we use 

POMDP as a baseline in the following chapters for developing the contributions of this research.  

The link between knowledge to decision corresponds to the decision making under model 

uncertainty (i.e. planning) addressed in Chapter 3. The research question corresponds to: given 

the learn model parameters, how the agent can take an action for maintenance of the system 

considering the future consequences of her action and the uncertainty caused by dynamic 

environment? 

The link from the information to knowledge corresponds to learning the condition state of the 

components as well as their degradation process (which we generally call “learning”) addressed 

in Chapter 4. The research question is the following: given the information collected from 

components on the system, how an agent can learn the their degradation behavior, effectiveness 

of maintenance actions, and precision of the monitoring system?  

Finally, the link between decision and information corresponds to the specific research 

question regard value of information and inspection scheduling addressed in Chapters 5 and 6. 

The research question is: how to predict the impact of a monitoring system as a pre-posterior 

analysis? Moreover, if there is restriction in availability of resources for information gathering, 

how an agent can prioritize this task and identify the critical components on the system at each 

time during the management process? 

 

1.4 Publications Derived from this Dissertation 

The first part of this dissertation was initially published in proceedings of 9th International 

Workshop on Structural Health Monitoring (IWSHM) (Memarzadeh et al. 2013). That paper 
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presents an approximate algorithm for planning and learning within the BA-POMDP framework. 

Later, we generalized the algorithm and proposed Planning and Learning for Uncertain dynamic 

Systems (PLUS) which is published in the ASCE Journal of Computing in Civil Engineering 

(Memarzadeh et al. 2015a). These publications are the bases for Chapter 3 and Chapter 4, section 

4.1. 

The second part of the research focuses on modeling systems with similar components. The 

preliminary results are published in the proceedings of 6th World Conference on Structural 

Control and Monitoring (Memarzadeh et al. 2014) and International Conference on Applications 

of Statistics and Probability in Civil Engineering (Memarzadeh et al. 2015f). The proposed 

Multiple Uncertain POMDP (MU-POMDP) framework with comprehensive validation and 

application on wind farm management is currently under review in Elsevier Journal of 

Reliability Engineering and System Safety (Memarzadeh et al. 2015b). The content of these 

publications is presented in Chapter 4, section 4.2. 

The third part of the research is related to the computation of value of information in 

sequential decision making and its application for system-level inspection scheduling. We first 

introduced two heuristics in the Journal of Computer-Aided Civil and Infrastructure Engineering 

(Memarzadeh and Pozzi 2015c). Later on, we extended these heuristics to the proposed 

stochastic future allocation and fee-based future allocation models; one conference paper is 

published in proceedings of 10th IWSHM (Memarzadeh and Pozzi 2015e) and a journal paper is 

finalized to be submitted to Elsevier Journal of Reliability Engineering and System Safety 

(Memarzadeh et al. 2015d). Content of these publications are reported in Chapters 5 and 6.  
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Chapter 2 

 

Markov Decision Processes:  

Full and Partial Observability 
 

 

Abstract 

In this chapter, we introduce the traditional methods for sequential decision making. The 

Markov decision process (MDP) is presented in detail and then the partially observable MDP 

(POMDP) is introduced as a generalization of MDP. We discuss details of the formulations, how 

to solve the optimization problem, and present an illustrative example of POMDP. In the last 

part, we discuss the recent advancement of POMDP to include the model uncertainty and the 

corresponding framework of Bayes-Adaptive POMDP (BA-POMDP). 
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2.1 Markov Decision Process 

A fundamental model for sequential decision making is the Markov decision process (MDP). 

In an MDP, the environment is modeled as a finite set of states and actions that an agent can 

take. The goal is to choose actions that maximize the total expected reward. A typical graphical 

model of MDP is shown in Figure 4. Graphical models in this document follow the notation of 

dynamic Bayesian network and influence diagrams adopted in the textbook of Barber (2012). 

Circles define random variables, squares decision variables, diamonds utility variables, and 

arrows dependence among variables.  

 

Figure 4. Graphical model of a Markov decision process 

An MDP is defined by a 5-tuple (ܵ, ,ܣ ,܂ ,܀ ܵ where ,(ߛ ൌ ሼ1,2, … , |ܵ|ሽ, ܣ ൌ ሼ1,2, … ,  ሽ are|ܣ|

finite sets of condition states and available actions. Transition is described by a 3-dimensioona 

matrixes of size |ܵ| ൈ |ܵ| ൈ ,whose entry are defined as ܶሺ݅ ,|ܣ| ݆, ݇ሻ ൌ ℙሾݏ௧ାଵ ൌ ݆ ∣ ௧ݏ ൌ ݅, ܽ௧ ൌ

݇ሿ. In the MDP, Markov property holds: given the current state of the system and the action that 

an agent has taken, future states are independent of the past, so that ℙሾݏ௧ାଵ ൌ ݆ ∣ തܽ௧, ௧ሿݏ̅ ൌ

ℙሾݏ௧ାଵ ൌ ݆ ∣ ,௧ݏ ܽ௧ሿ, where ̅ݏ௧ ൌ ሼݏ଴, ,ଵݏ … , ௧ሽ and തܽ௧ݏ ൌ ሼܽ଴, ܽଵ, … , ܽ௧ሽ indicate the history of 

states and actions, respectively. Reward (cost) matrix, of size |ܵ| ൈ ,is defined as ܴሺ݅ ,|ܣ| ݇ሻ ൌ

ॱሾݎ௧ ∣ ௧ݏ ൌ ݅, ܽ௧ ൌ ݇ሿ. Traditionally, letter ݎ indicates a “reward”, but in the context of 

infrastructure management, it refers to cost. Finally, future rewards are made equivalent to 

…



  
 

14 
 

current ones by using discount factor, ߛ. In the following, we summarize the parameters of a 

POMDP as follows: દ ൌ ሼ܂, ,܀  ሽ, since the dimension of the matrices carry information ofߛ

those of relevant sets.  

In the MDP, the agent starts in an initial state, ݏ଴. At any time step ݐ, the agent observes the 

current state of the system, ݏ௧, takes an action ܽ௧, receives a reward ܴሺݏ௧, ܽ௧ሻ (or pay the cost), 

and moves to the next state ݏ௧ାଵ with probability ܶሺݏ௧, ܽ௧, :ߨ ,௧ାଵሻ. A policyݏ ܵ →  is a mapping ܣ

from state space to actions. The value of a policy is the corresponding expected sum of 

discounted costs (or rewards) when starting in some state and executing actions according to the 

policy. The optimal policy ߨ∗ is that achieving the minimum value (maximum value, when 

dealing with rewards). The optimal value for infinite time horizon is stationary and can be 

described by Bellman’s equation (Bellman 1957): 

ܸ∗ሺݏ, દሻ ൌ min
௔∈஺

൜ܴሺݏ, ܽሻ ൅ ෍ߛ ܶሺݏ, ܽ, ,ᇱݏᇱሻܸ∗ሺݏ દሻ
௦ᇲ∈ௌ

ൠ (1) 

And the optimal policy is: 

,ݏሺ∗ߨ દሻ ൌ argmin
௔∈஺

൜ܴሺݏ, ܽሻ ൅ ෍ߛ ܶሺݏ, ܽ, ,ᇱݏᇱሻܸ∗ሺݏ દሻ
௦ᇲ∈ௌ

ൠ (2) 

Note that if the goal of the agent is to maximize the rewards, the optimization problem needs 

to change to maximization over actions. 

Optimal policy for MDP can be identified by two classical methods: value iteration and 

policy iteration. The details of these algorithms can be found in textbooks of Sutton and Barto 

(1998) and Russell and Norvig (2010).  
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One of the main limitation of MDP is that it assumes that the state of the system is fully 

observable, which is not a true assumption in many real-world applications. 

 

2.2 Partially Observable Markov Decision Process 

The POMDP framework shares many assumptions of MDP. At any time, the system’s state ݏ 

assumes one value in finite discrete set ܵ ൌ ሼ1,2, … , |ܵ|ሽ, while the agent can select one action ܽ 

among set ܣ ൌ ሼ1,2, … ,  Time is .ݎ ሽ. Based on the current state and action, she pays cost|ܣ|

discretized in steps, and variable ݏ௧, ܽ௧, ݎ௧ indicate state, action and cost at time ݐ respectively. 

Expected cost is assigned by function ܴሺ݅, ݇ሻ ൌ ॱሾݎ௧|ݏ௧ ൌ ݅, ܽ௧ ൌ ݇ሿ. After taking an action, the 

state evolves stochastically following a Markov process governed by transition probability 

function ܶሺݏ, ܽ, ᇱሻݏ ൌ ℙሾݏ௧ାଵ ൌ ௧ݏ|ݏ ൌ ,ݏ ܽ௧ ൌ ܽሿ. 

In MDPs, action ܽ௧ follows the observation of the full state ݏ௧ that, given the Markovian 

assumption, is a sufficient statistic for the process. On the contrary, POMDPs assume that at time 

 the agent has access only to a noisy and incomplete measure of the current state, summarized ݐ

by observation ݖ௧ which can assume one value in set ܼ ൌ ሼ1,2, … , |ܼ|ሽ. The relation between 

state and observation is capture by the emission probability function ܱሺݏ, ܽ, ሻݖ ൌ ℙሾݖ௧ ൌ

௧ݏ|ݖ ൌ ,ݏ ܽ௧ିଵ ൌ ܽሿ. The entire cost, transition and emission functions are listed in corresponding 

matrixes ۽,܂, |ܵ| of size ,܀ ൈ |ܵ| ൈ |ܵ| ,|ܣ| ൈ |ܼ| ൈ |ܵ| and |ܣ| ൈ  ,respectively. In summary |ܣ|

transition matrix ܂ defines the degradation model and the effectiveness of maintenance actions, 

emission matrix ۽ defines the accuracy of observations collected by instrumented and visual 

inspections, while cost matrix ܀ defines the economic model. 
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Figure 5 shows a graphical model of a POMDP, using the classical notation of dynamic 

Bayesian networks and influence diagrams (Barber 2012). Only shaded variables are observed. 

Figure 5 allows us to follow in details the temporal process. At time ݐ଴, the agent takes action ܽ଴ 

and pay cost ݎ଴; then time ∆t passes and state evolves to ݏଵ, that the agent observes imperfectly 

through ݖଵ. Cost, new state and observation depend on the taken action. Action ܽଵ is selected 

after having analysed ݖଵ, and the process is iterated indefinitely.  

 

Figure 5. Graphical model of a partially observable Markov decision process. 

The agent’s goal is to minimize value ܸ, defined as the expected sum of the discounted costs 

over an infinite time horizon: ܸ ൌ ॱሾ∑ ௧ஶݎ௧ߛ
௧ୀ଴ ሿ, using discount factor ߛ. At time ݐ, the agent’s 

knowledge about the current state is represented by a probability distribution, or belief vector ܊௧, 

so that the ith enty is ܾ௧ሺ݅ሻ ൌ ℙሾݏ௧ ൌ ,௧̅ݖ|݅ തܽ௧ሿ, with sets തܽ௧ ൌ ሼܽ଴, … , ܽ௧ିଵሽ and ݖ௧̅ ൌ ሼݖଵ, … ,  ௧ሽݖ

being the history of observations and actions up to time t, respectively. Being the belief a 

sufficient statistics for the process, the agent can base her decisions on that. Formally, a POMDP 

is defined by a 8-tuple ሺܵ, ܼ, ,ܣ ,܂ ,۽ ,܀ ,଴܊  ଴ is the initial belief. In the following, we܊ ሻ, whereߛ

summarize its parameters in set દ ൌ ሼ܂, ,۽ ,܀  ሽ, since the dimension of matrixes carryߛ

information of those of the sets ܵ, ܼ and ܣ. During the process, the agent updates her belief by 

iteratively processing any available observation. Transition and emission probabilities can be 

combined in operators that allows for predicting the state evolution and processing observations, 

…
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making use of Bayes’ rule. The move-forward (݂), emission (݁), and updating (ݑ) operators, or 

dimension |ܵ|, |ܼ| and |ܵ| respectively, are defined entry-by-entry as follows: 

ە
ۖۖ

۔

ۖۖ

ۓ 					 ௜݂ሺ܊, ݇, દሻ ൌ ℙሾݏ௧ାଵ ൌ ݅|ܽ௧ ൌ ݇, ௧܊ ൌ દሿ,܊ ൌ෍ ܶሺ݈, ݇, ݅ሻܾሺ݈ሻ
|ௌ|

௟ୀଵ
										

					 ௝݁ሺ܊, ݇, દሻ ൌ ℙሾݖ௧ାଵ ൌ ݆|ܽ௧ ൌ ݇, ௧܊ ൌ દሿ,܊ 																ൌ ෍ ܱሺ݅, ݇, ݆ሻ ௜݂ሺ܊, ݇, દሻ
|ௌ|

௜ୀଵ

,܊௜ሺݑ ݇, ݆, દሻ ൌ ℙሾݏ௧ାଵ ൌ ݅|ܽ௧ ൌ ݇, ௧܊ ൌ ,દ,܊ ௧ାଵݖ ൌ ݆ሿ ൌ
ܱሺ݅, ݇, ݆ሻ ௜݂ሺ܊, ݇, દሻ

௝݁ሺ܊, ݇, દሻ
																	

(3) 

In summary, if the agent has belief ܊ at time ݐ, takes action ݇ and observes ݆ at the next step, 

then the updated belief is ݑሺ܊, ݇, ݆, દሻ. We re-use ݎ for indicating expected immediate cost as a 

function of belief ܊ and action ܽ, as ݎሺ܊, ܽ, દሻ ൌ ∑ ܾሺݏሻܴሺݏ, ܽሻ|ௌ|
௦ୀଵ . 

The agent’s behavior is defined by a policy, i.e. a map between belief and actions. When 

policy ߨ is adopted, action at time ሺݐ ൅ 1ሻ is set as ܽ௧ାଵ ൌ  ߨ ௧ሻ. The value depends on policy܊ሺߨ

via the recursive equation: 

ܸగሺ܊, દሻ ൌ ,܊ሺݎ ,ሻ܊ሺߨ દሻ ൅ ෍ߛ ݁௭ሺ܊, ,ሻ܊ሺߨ દሻ ܸగሾݑሺ܊, ,ሻ܊ሺߨ ,ݖ દሻ, દሿ
|௓|

௭ୀଵ
 (4) 

while the optimal value is defined by the Bellman Equation (Bellman 1957) as in Eq. (1): 

ܸ∗ሺ܊, દሻ ൌ min
௔∈஺

ቊݎሺ܊, ܽ, દሻ ൅ ෍ߛ ݁௭ሺ܊, ܽ, દሻ ܸ∗ሾݑሺ܊, ܽ, ,ݖ દሻ, દሿ
|௓|

௭ୀଵ
ቋ (5) 

Note that if the goal of the agent is to maximize the rewards, the optimization problem needs 

to change to maximization over actions. 

Bellman’s equation for optimal policy ߨ∗ can be formulated as in Eq. (2): 
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,܊ሺ∗ߨ દሻ ൌ argmin
௔∈஺

ቊݎሺ܊, ܽ, દሻ ൅ ෍ߛ ݁௭ሺ܊, ܽ, દሻ ܸ∗ሾݑሺ܊, ܽ, ,ݖ દሻ, દሿ
|௓|

௭ୀଵ
ቋ (6) 

In principle, a POMDP is solved by applying the methods to solve MDPs to the belief state 

(Aoki 1965, Astrom 1965). However, as the belief state is a probability distribution, it is defined 

on an infinite space, and so exact solution for the POMDP is not generally available. In reacting 

to observations collected, an agent can select one conditional plan among the many available 

(Russell and Norvig 2010). The conditional plan can be interpreted as a policy function defined 

on the domain of the sequence of observations.  

The number of possible conditional plans, ݊௖, grows exponentially with the time horizon 

assumed for the project. Let ߙ௜,દሺݏሻ defined the value of executing the ݅-th conditional plan 

starting from perfect knowledge that the system is in state ݏ for the POMDP model defined by દ. 

The value of following that plan is linearly related to belief state ܾ as ௜ܸሺ܊, દሻ ൌ ∑ ܾሺݏሻ ∙௦

 ሻ. Figure 6, a graph inspired by Kaelbling et al. (1998) that refers to a simple example of aݏ௜,દሺߙ

two-state POMDP. Belief is completely described by a scalar value ܾሺݏଵሻ, as ܾሺݏଶሻ ൌ 1 െ ܾሺݏଵሻ. 

Figure 6 reports the value for four conditional plans, and the bold lie indicates the optimal value, 

depending on the belief state. 
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The computational complexity of solving POMDP problems and planning based on POMDP 

is discussed in detail by Hsu et al. (2007) and Shani et al. (2013). Exact solution of the POMDP 

problem can be found by the process known as exact value iteration (Kaelbling et al. 1998). In 

each iteration, the value function is updated cross the entire belief space and the size of ߙ-vectors 

created in each iteration is denoted by |ܸ|. The overall complexity of a single iteration is 

ܱ൫|ܸ| ൈ |ܣ| ൈ |ܼ| ൈ |ܵ|ଶ ൅ |ܣ| ൈ |ܵ| ൈ |ܸ||௓|൯ (Shani et al. 2013). In practice, exact value 

iteration is only feasible for small problems as the size of the set of ߙ-vectors grows 

exponentially with every iteration. As the computational cost of each iteration depends on the 

number of vectors in ܸ, an exponential growth makes the algorithm prohibitively expensive.  

Kaelbling et al. (1998) have proposed the so-called witness algorithm for finding the exact 

solution to POMDPs via value iteration. However, this algorithm is not practical when the set of 

states, actions, and observations are large. An alternative approach is to discretize the belief 

space, using either a fixed grid (Lovejoy 1991) or a variable grid (Zhou and Hansen 2001). The 

value of any belief is then defined by interpolation of the points on the grid. However, in general, 

regular grids do not scale well in problems with high dimensionality and non-regular grids suffer 

from expensive interpolation routines. Other point-based value iteration methods restrict search 

to the beliefs that can be reached starting from the initial belief state (Pineau et al. 2003). The full 

complexity of the point-based value iteration methods requires ܱሺ|ܸ| ൈ |ܣ| ൈ |ܼ| ൈ |ܵ|ଶ ൅ |ܣ| ൈ

|ܵ| ൈ |ܼ|ሻ, as compared with the ܱ൫|ܸ| ൈ |ܣ| ൈ |ܼ| ൈ |ܵ|ଶ ൅ |ܣ| ൈ |ܵ| ൈ |ܸ||௓|൯ of a single 

iteration of the exact method (Shani et al. 2013). In particular, one of the most effective point-

based value iteration methods is successive approximations of the reachable space under optimal 

policies (SARSOP) (Kurniawati et al. 2008), which identifies the optimally reachable belief 

states, and approximates the optimal value function using this set. SARSOP represents the state-
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of-the-art in solving POMDPs, in terms of efficiency and accuracy. As all algorithms for 

POMDP, SARSOP formally solves the finite horizon problem, but it can be used as an 

approximation to solve the infinite horizon case.  

 

2.2.1 Illustrative Example for POMDP 

In his section we illustrate how the POMDP framework operates by applying it to an 

illustrative example of managing a single component. Suppose an agent is managing a 

component whose condition state is described by only two possible states, Intact (ݏ ൌ 1) and 

Damaged (ݏ ൌ 2). She has access to two possible actions: Do-Nothing (ܽ ൌ 1, DN) and Replace 

(ܽ ൌ 2, RE). The cost of replacing a component is assumed to be $100 and cost of damage is 

assumed to be $200 and discount factor is 0.95. The transition probability of the component is 

given as follow: 

ଵ܂ ൌ ቂ0.99 0.01
0 1

ቃ											܂ଶ ൌ ቂ1 0
1 0

ቃ 

If the agent does nothing there is a chance of 1% for the component to become damaged in 

the next time step, while replacing the component improves its condition to intact with certainty. 

The agent also has access to noisy observations that is defined by the emission probability as 

follow: 

ଵ۽ ൌ ଶ۽ ൌ ቂ1 െ ߳ ߳
߳ 1 െ ߳

ቃ 

Where, ߳ is the probability of wrong measure. If the error is zero, then agent has perfect 

knowledge about the condition state of the component (which is MDP described in section 2.1), 

and she does nothing if the component is intact and replace otherwise. On the other hand, when 
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there is a probability of wrong measurement, the agent adapts a policy according to how reliable 

the information is. Figure 7 shows (a) the optimal value and (b) optimal policy as a function 

probability of damage ஽ܲ஺ெ for different measurement errors, ߳. It is clear from the figure that as 

the measurement error increases, the expected cost of operating this component increases as 

well, and the agent adapts a more conservative policy by replacing the component more often. 

For example in the case of ߳ ൌ 0.50, the measurements are useless and the agent cannot rely her 

maintenance policy on the observations, hence it adapts a very conservative policy of replacing 

the component as soon as the probability of damage is above 10%, while in the case of ߳ ൌ 0.01, 

agent has access to very reliable information about the component’s condition state, hence she 

adapts a less conservative policy and replaces only if the probability of damage is above 35%. 
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Figure 7. Optimal value (a) and optimal policy (b) as a function of ஽ܲ஺ெ for different ߳. 

 

2.3 Bayes-Adaptive Partially Observable Markov Decision Process  

Bayes-Adaptive POMDP (BA-POMDP) framework is a generalization of POMDP, where 

the transition and emission probabilities, ܂ and ۽, are unknown parameters of the model and are 

treated as random variables, with a prior distribution ܲሺદሻ where દ ൌ ሼ۽,܂ሽ. Technically, the 

BA-POMDP model can be interpreted as a POMDP with a continuous state space, and with an 

augmented belief state that also includes દ. The augmented belief state at time ݐ is now defined 

as ܊ሚ ௧ ൌ ܲሾݏ௧, દ ∣ തܽ௧ିଵ,  as a function of that ݐ ௧̅ሿ. In principle, we can express the belief at timeݖ
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at the previous step, as in POMDP formulation reported in Eq. (3).  However, as in most cases 

we cannot find any closed-form representation of the posterior, in BA-POMDP it is easier to 

express the belief at any step by integrating the joint probability: 

ܲሺ ,௧ݏ દ ∣∣ തܽ௧ିଵ, ௧̅ݖ ሻ ∝ ܲሺ ,௧̅ݖ ௧ݏ ∣∣ દ, തܽ௧ିଵ ሻܲሺદሻ

ൌ 	ܲሺદሻ෍ ܲሺ ,௧̅ݖ ௧ݏ̅ ∣∣ દ, തܽ௧ିଵ ሻ
௦೟̅షభ∈ௌ೟

	

ൌ ܲሺદሻ෍ ܲሺݏ଴ሻ ቎ ෑ ൫ܶሺݏ, ܽ, ᇱሻ൯ݏ
ே
ೞೞᇲ
ೌ ሺ௦೟̅,௔ത೟షభሻ

௦,௔,௦ᇲ∈ሾௌൈ஺ൈௌሿ

቏ ൈ
௦೟̅షభ∈ௌ೟

	

൥ ෑ ൫ܱሺݏ, ܽ, ሻ൯ݖ
ேೞ೥
ೌ ሺ௦೟̅,௔ത೟షభ,௭̅೟ሻ

௦,௔,௭∈ሾௌൈ஺ൈ௓ሿ

൩ 

(8) 

Where ܵ௧ is the set of possible sequences of states up to time ݐ, ௦ܰ௦ᇲ
௔ ሺ̅ݏ௧, തܽ௧ିଵሻ is the number 

of times the transition ሺݏ, ܽ, ᇱሻ appears in the process and ௦ܰ௭ݏ
௔ ሺ̅ݏ௧, തܽ௧ିଵ,  ௧̅ሻ is the number ofݖ

times the emission ሺݏ, ܽ,  .ሻ appears in the processݖ

BA-POMDP framework can incorporate the uncertainties in the probabilities defining the 

transition and emission models; however its computational complexity grows exponentially with 

increase in the dimensionality of the problem, or longer management time horizons. In the next 

chapters we introduce a tractable approximate method to perform planning and learning within 

the BA-POMDP framework. 
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Chapter 3 

 

Sequential Decision Making: 

Planning Under Model Uncertainty 
 

 

Abstract 

In this chapter, we propose an approximate method for planning under model uncertainty 

within the BA-POMDP framework. The proposed method includes the uncertainty in the model 

parameters describing the degradation behavior of components (i.e. transition probabilities) and 

precision of the monitoring system (i.e. emission probabilities) and it identifies the optimal 

action for operation and maintenance. The method is approximated, because it neglects the 

exploratory value of learning the model parameters. We compare the performance of the 

proposed method with POMDP planning on a numerical example of wind farm management.  
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3.1 Problem Formulation 

One of the main limitations of the planning within the POMDP framework is that it assumes 

that the transition and emission probabilities are known with certainty. This is not a realistic 

assumption in many real-world management problems, because these probabilities are affected 

by epistemic uncertainty. 

Now consider a decision making process, modeled as a POMDP, but with uncertain 

transition and emission probabilities, while cost function, initial belief and discount factor are 

fixed. The agent models her knowledge on these model parameters through a joint distribution, 

and she can solve the POMDP optimization problem for any model. In this setting, the problem 

is how to select an action: we refer to this as “planning under model uncertainty”. 

3.1 Proposed Method 

In this section, we propose an approximate method called Planning and Learning for 

Uncertain dynamic Systems (PLUS) (Memarzadeh et al. 2013, 2015a). The planning method is 

based on two approximations. First, to neglect the exploratory value of learning variables ۽ ,܂, 

i.e. the system model parameters, દ ൌ ሼ܂,  ሽ. PLUS aims at identifying the optimal policy as۽

that for transition and emission probabilities modeled by ܲሾદ ∣ തܽ௧ିଵ,  ௧̅ሿ, neglecting the updatingݖ

attributable to future observations. Consequently, according to the formulation of Durango and 

Madanat (2002), PLUS belongs to the “open-loop feedback control” method. They also propose 

the “closed-loop feedback control” method which incorporates the exploration by including the 

model uncertainty into the belief state. To formalize the second approximation, let us define 

ܳદሺܽ,  ሻ as the quality of a belief-state-action (Q-value) for a POMDP, i.e. the value of starting܊
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from belief ܊, performing action ܽ, and following the optimal policy after that, for a model 

defined by દ, defined as follow: 

ܳદሺܽ, ሻ܊ ൌ ,܊ሺݎ ܽ, દሻ ൅ ෍ߛ ݁௭ሺ܊, ܽ, દሻܸ∗ሾݑሺ܊, ܽ, ,ݖ દሻ, દሿ
|௓|

௭ୀଵ
 (9) 

So that: 

ܸ∗ሺ܊, દሻ ൌ min
௔
ܳદሺܽ,  ሻ (10)܊

We can identify the optimal action ܽ∗ by the following approximate formula: 

ܽ∗ ≅ argmin
௔

ॱદሾܳદሺܽ,  ሻሿ (11)܊

Where ॱ௫ indicates the statistical expectation, according to actual knowledge of variable ݔ, 

and the belief state at time ݐ is defined as in a POMDP as ܊ ൌ ܲሾݏ௧ ∣ દ, തܽ௧ିଵ,  ௧̅ሿ. Eq. (11)ݖ

represents an approximation, as it combines quantities related to optimal policies for different 

models. However, we do not use the approximation to estimate the value of the policy but only 

to select the current optimal action. Computationally, the advantage of Eq. (11) is that ܳદሺܽ,  ሻ܊

can be obtained from the results of a POMDP solver, i.e. SARSOP. Similar approaches have 

been used before for active learning in POMDPs with limited reinforcement using Bayes risk 

(Doshi-Velez et al. 2012). 

The Q-value of a belief-state-action can be related to the ߙ-vectors presented in section 2.2. 

For a model દ and belief ܊, we can identify the optimal conditional plan starting with action ܽ 

for each available action. We defined ߙ௔,܊,દ
∗ ሺݏሻ as the component referring to state ݏ of the 

corresponding ߙ-vector. The Q-value of a belief-state-action can be computed as: 
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ܳદሺܽ, ሻ܊ ൌ෍ ܾሺݏሻ ∙ દ,܊,௔ߙ
∗ ሺݏሻ

௦
 (12) 

Figure 8 presents the scheme of the planning algorithm, which is based on Eqs. (11-12). At 

time ݐ, augmented belief state ෨ܾ௧ is represented by ܰ samples. For each sample, we solve the 

corresponding POMDP problem, using SARSOP (Kurniawati et al. 2008). The outcome of 

SARSOP is the set of ݉ non-dominated ߙ-vectors. Among them, we select one optimal ߙ-vector 

per each action: this is the pruning routine mentioned in the algorithm. ߙ௝
∗ refers to the optimal 

vector for the ݆-th action, ܳ௝
ሺ௞ሻ to the Q-value of a belief-state-action for the ݇-th sampled model 

under the ݆-th action, and ܳ௝ to the expected Q-value of a belief-state-action for the entire model 

space, which we compute by sample average. Action ܽ∗ is selected by identifying the maximum 

(minimum, when the goal is minimizing the cost) of ܳ௝ among all possible actions.  

 

Figure 8. PLUS planning algorithm 

function PLANNING

for do

for do

end for
end for
for do

end for

return 
end function 

PLUS Planning Algorithm
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3.2 Numerical Validation of Wind Farm Management 

To validate our proposed planning approach, a numerical example of wind farm management 

is used through discussion with our industry collaborator, Everpower wind holdings (refer to 

Chapter 1 for more details). It is assumed that the condition state of each turbine can be modeled 

by a Markov process defined by a few states, and the observations collected can be classified 

within a few possible discrete values. Although PLUS can be applied to much more complicated 

problems, this simple setup allows us to extensively investigate the performance of the algorithm 

and compare it to other existing methods.  

The condition state of the turbine degrades due to fatigue and aging, potentially causing a 

structural failure and a relevant economical loss to the agent. In turn, the agent can perform 

repairs to avoid failures and inspections to refine the knowledge about each condition state. In 

detail, we assume the farm consists of 10 turbines of the same type, so that we can refer to a 

unique value of transition and emission probabilities. Specifically, we assume three condition 

states: ݏ ൌ 1 refers to an intact structure, ݏ ൌ 2 to a damaged one, and ݏ ൌ 3 to a collapsed 

turbine; three actions: ܽ ൌ 1 corresponds to “Do Nothing” (DN), ܽ ൌ 2 to “Repair” (RE), and 

ܽ ൌ 3 to performing a “Visual Inspection” (VI). When DN is selected, the condition state 

evolves according to the degradation process. RE models a costly intervention which is supposed 

to improve the condition state, while VI models an effort providing only information on the 

condition state, without affecting the degradation process. Each time step is assumed to be six 

months, and the agent takes one action per turbine at each time step. 

Observations are classified in 4 discrete outcomes: ݖ ൌ 1 is intended as a reassuring output, 

suggesting that the turbine is undamaged; ݖ ൌ 2 and ݖ ൌ 3 indicate two symptoms of damage; 

after recording ݖ ൌ 4, the agent knows that the turbine is collapsed. 
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We model the agent’s prior knowledge is modeled on transition and emission probabilities by 

independent Dirichlet distributions with parameters િ and ઺ respectively. Introduction to the 

Dirichlet distribution can be found in the textbook of Murphy (2012). The choice of Dirichlet 

distribution for prior on model parameters will be clear in the next chapter (the reason is that 

Dirichlet is conjugate prior to multinomial distribution and transition and emission probabilities 

in the discrete POMDP follow a multinomial distribution, hence the posterior would be also in 

the form of Dirichlet). Parameter િ can be represented by three matrices: િ஽ே, િோா, and િ௏ூ, 

referring to the actions listed above: 

િ஽ே ൌ િ௏ூ ൌ ൥
8 4 2
0 4 2
0 0 1

൩							િோா ൌ ൥
8 4 0
4 2 0
4 2 0

൩ 

The transitions are assumed to be identical for actions DN and VI. The zeros in the matrix 

 ஽ே indicate that, after any of these actions, the condition state cannot improve, so that, forߟ

example, the turbine stays in a collapsed state after action DN. Generally, according to this 

matrix, the turbine in the intact state has a tendency to stay undamaged, but it can also become 

damaged or directly collapse, while that in the damaged state has a tendency to stay there, but it 

can also collapse. After action RE, the turbine cannot be in a collapsed state, but it can still be 

damaged, as the intervention is not known to be perfect and, even after a perfect repair, the 

turbine can transit to the damage state during the following period, considering the long time step 

(six months). As for any feature of the process, the effectiveness of such an intervention can be 

learnt by the agent during the management history. Knowledge about emissions, depending on 

the action, are modeled by the following values: 

઺஽ே ൌ ઺ோா ൌ ൥
8 4 2 0
2 8 4 0
0 0 0 1

൩						઺௏ூ ൌ ൥
4 2 0 0
0 2 4 0
0 0 0 1

൩ 
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As can be deduced from these matrices, the agent thinks that, as a tendency, states 1 and 2 

generate observations 1 and 2 respectively, under actions DN or RE. The visual inspection VI is 

regarded as possibly imperfect and, again, its actual effectiveness can be discovered during the 

management process. It is to be noted that, independently of the action, the collapse state 3 is 

univocally related to observation 4, so that the agent is immediately aware of any failure event. 

The reward function is the sum of three components: the costs for repairing, inspecting, and 

down-time. The agent pays $10,000 for any repair, $500 for any visual inspection and $50,000 

for any time step in which a turbine is in the collapsed state. The discount factor is assumed to be 

ߛ ൌ0.95. 

The belief about the initial state is modeled as, 

଴܊ ൌ ሾ0.8		0.2		0ሿ 

therefore, the agent believes that the turbines are in the “Intact” state with 80% probability 

and in “Damaged” state with 20% probability. 

The behaviors of different turbines in the farm are assumed to be independent, and the agent 

refers her planning to the infinite horizon setting. 

Transition and emission were fixed to a value compatible with the available knowledge, 

referring to this as the true model. The true model was assigned to each turbine in the farm, and 

the planning algorithm was tested for the range of all possible models representing the turbines. 

In the experiments, we consider three types of agents: The True Model agent has perfect 

knowledge about the true underlying transition and emission probabilities, and adopts a POMDP 

model with correct value for ܂ and ۽, making use of SARSOP algorithm for planning: this 

represents a lower bound to the performance any planning strategy under uncertainty. The 
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Expected Model agent derives the expected value of ܂ and ۽ from the prior Dirichlet 

distribution, and again adopts POMDP solved by SARSOP: it represents the simplest and most 

common approach to solve the planning problem under model uncertainty in the literature. The 

third agent, PLUS, adopts the method presented in section 3.1.  

The immediate and cumulative management cost is evaluated for assessing the performance 

of the planning method, because they are directly related to what each agent is trying to optimize. 

Figure 9 reports the immediate (a) and cumulative (b) costs of O&M, for the true model, the 

expected model and the PLUS agents. Again, the true model agent represents the lower bound, 

leading to an immediate cost of about $2,900/6months, while the expected model agent achieves 

a cost of about $8,300/6months, and the PLUS agent a cost of about $7,700/6months. The 

difference between these latter values, i.e. $600/6months, quantifies the benefit of adapting the 

robust planning approach presented in this chapter. Naturally, adding the learning process as well 

would make PLUS perform much closer to the true model, but this experiment highlights the 

value of uncertainty-aware planning in and of itself. We evaluate the effect of learning in the 

next chapter. It should be noticed that these costs and savings are for a single turbine and the 

costs and savings regard the entire farm is ten times higher. 

 

Figure 9. The planning performance of PLUS algorithm compared to POMDP and “true model” agents. 
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Chapter 4 

 

Sequential Decision Making: 

Learning 
 

 

Abstract 

In this chapter, we focus on the problem of learning the degradation behavior of components 

(transition probabilities), as well as the precision of monitoring system (emission probabilities) 

by processing noisy observations. We first introduce the learning procedure in PLUS (planning 

and learning for uncertain dynamic systems). PLUS models the components as either 

independent (learning an independent model for each component) or identical (learning a global 

model for all components). When the system is made up by similar components, data collected 

on one is also relevant in the management of others. We extend the formulations of PLUS, 

allowing a weaker similarity among components. The proposed approach, called Multiple 

Uncertain POMDP (MU-POMDP), assumes the model parameters as dependent random 

variables among components, and allows the transfer of knowledge among them by using a set of 

hyper-parameters. We evaluate the performance of PLUS compared to state-of-the-art methods 

in reinforcement learning and then evaluate the performance of MU-POMDP compared to 

PLUS.  
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4.1 Planning and Learning for Uncertain dynamic Systems – PLUS 

4.1.1 Problem Statement 

PLUS introduces an approximate method for planning and learning under model uncertainty. 

The planning phase has been discussed in previous chapter. In this section, we focus on the 

learning phase. By processing noisy observations, how can an agent learn the degradation 

behavior and the precision of monitoring system? This is a challenging task as the condition 

states of the components are not observable. 

 

4.1.2 Proposed Method 

In this section, we propose an approximate method for optimally planning and learning in 

uncertain dynamic system (PLUS) within the BA-POMDP framework (Memarzadeh et al. 2013, 

2015a). Figure 10 shows the overall PLUS method, which is organized in two main parts: 

learning and planning. Details regard the planning part were discussed in Chapter 3. The 

algorithm can be called at any stage of the process. At time ݐ, it represents the augmented belief 

ሚ܊ ௧ by a set of samples, and it suggests action ܽ∗. In the algorithm, notation ݔሺ௞ሻ indicates the ݇-th 

sample of variable ݔ.  
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Figure 10. Planning and learning for uncertain dynamic systems (PLUS) algorithm 

The PLUS algorithm makes use of an approximate method based on Markov Chain Monte 

Carlo (MCMC) Gibbs sampling (Carter and Kohn 1994). The present approach is a slight 

variation of the beam sampling approach used in the context of infinite Hidden Markov Models 

(Van Gael et al. 2008) and infinite POMDPs (Doshi-Velez 2010). Figure 11 shows the details of 

the proposed algorithm for learning: the method samples ܰ instances of ۽ ,܂ and belief state ܊௧ 

from the joint posterior distribution. We start sampling ۽ ,܂ from the corresponding prior 

Dirichlet distributions, then we alternate between sampling state sequence ̅ݏ௧, and sampling ܂ 

and ۽. For each fixed ܂ and ۽, a state sequence is drawn by forward filtering backward 

sampling (FFBS) (Fruhwirth-Schnatter 2006), as described below in the next section. In turn, as 

noted above, the posterior distribution given each sample ̅ݏ௧ is still in the Dirichlet family. 

Parameter set િᇱdefines the updated Dirichlet distribution for the transition probabilities, 

depending on sampled state sequence ̅ݏ௧, while ઺ᇱ defines that of the emission probabilities, 

depending on ̅ݏ௧ and observations ݖ௧̅. It should be noticed that, in the limit of an infinite burn-in 

phase, this proposed method is selecting samples from the true posterior distribution. In Figure 

11, ݊௕ indicates the number of samples in the burn-in phase, to be discarded (Murphy, 2012), 

and the notation ݌~ݔ indicates that sample ݔ is generated from distribution ݌. 

function PLUS 
 Learning

 Planning

return 

end function

PLUS Algorithm
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Figure 11. PLUS learning algorithm 

 

4.1.2.1 Forward Filtering Backward Sampling 

FFBS is a multi-move sampling method for discrete systems (Fruhwirth-Schnatter 2006). 

The steps are as follow: (1) For each time step ݆ ranging from 0 to ݐ, we derive posterior 

probability ܲ൫ ௝ݏ ∣∣ દ, തܽ௝ିଵ, ௝̅ݖ ൯, solving the so-called “filtering” problem; and (2) We sample 

state ݏ௧ᇱ from the last distribution and ݏ௝
ᇱ, from time step ݆ ൌ ݐ െ 1 backward to ݆ ൌ 0, from 

distribution ܨ൫ݏ௝൯ ∝ ܲ൫ ௝ݏ ∣∣ દ, തܽ௝ିଵ, ௝̅ݖ ൯ܲ൫ ௝ାଵݏ
ᇱ ∣∣ ,܂ ,௝ݏ ௝ܽ ൯. The outcome of FFBS algorithm is 

the sequence of states ሼݏ଴
ᇱ , … , ௧ᇱሽ sampled from distribution ܲሺݏ ௧ݏ̅ ∣∣ દ, തܽ௧ିଵ, ௧̅ݖ ሻ. 

 

4.1.3 Numerical Validation of PLUS 

Details of the numerical example used for validation is provided in section 3.2 of previous 

chapter. We consider four types of agents: The true model agent has perfect knowledge about the 

function LEARNING

for do

end for

return 

end function

PLUS Learning Algorithm 
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true underlying transition and emission probabilities, and adopts a POMDP model with correct 

value for ܂ and ۽, making use of the SARSOP algorithm for planning: this represents a lower 

bound to the performance of any planning strategy under uncertainty. The Expected Model agent 

derives the expected value of ܂ and ۽ from the prior Dirichlet distribution and, again, adopts 

POMDP solved by SARSOP: it represents the simplest and most common approach to solve the 

planning problem under model uncertainty. The MEDUSA agent makes use of the algorithm 

described in Jaulmes et al. (2005a,b), while the PLUS agent adopts the method that was 

presented in sections 4.1.1 and 3.1. 

Two different metrics are used to validate the methods. First, the immediate and cumulative 

management cost for assessing the performance of the planning methods is evaluated, because 

they are directly related to what each agent is trying to optimize. For additional validation of the 

learning process itself, evaluate the Kullback-Leibler (KL) divergence (Cover and Thomas 2006) 

between the transition (or emission) probabilities as modeled by the posterior distribution and in 

the true model. The KL divergence is a non-symmetric measure of the differences between two 

probability distributions. Specifically, the KL divergence of distributions ܳ from distribution ܲ 

(both being distributions defined on ݊ discrete values), denoted as ܦ௄௅ሺܲ||ܳሻ, is a measure of 

information lost when ܳ is used to approximate ܲ, and is defined as: 

௄௅ሺܲ||ܳሻܦ ൌ෍lnቆ
ܲሺ݅ሻ

ܳሺ݅ሻ
ቇܲሺ݅ሻ

௡

௜ୀଵ

 (13) 

where ln indicates natural logarithm. In computing the KL divergence between two transition 

(or emission) models, the results referring to the average over all values of ݏ௧ and ܽ௧. 
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In order to validate, we have fixed a model and assigned it to all turbines. This is called the 

true model, and it is defined by transition ܂∗ and emission ۽∗, as listed in the following: 

஽ே܂
∗ ൌ ௏ூ܂

∗ ൌ ൥
0.9 0.08 0.02
0 0.9 0.1
0 0 1

൩						܂ோா
∗ ൌ ൥

1 0 0
0.9 0.1 0
0.9 0.1 0

൩ 

஽ே۽
∗ ൌ ோா۽

∗ ൌ ൥
0.8 0.1 0.1 0
0.05 0.9 0.05 0
0 0 0 1

൩					۽௏ூ
∗ ൌ ൥

1 0 0 0
0 0 1 0
0 0 0 1

൩ 

This specific model describes a turbine that is more reliable than that defined by the expected 

value of the distribution reported in the previous section. These models were selected by 

adapting examples from the literature (Byon et al. 2010, Byon and Ding 2010), Nielsen and 

Sorensen 2012) after discussion with industry experts from EverPower Wind Holdings 

(Pittsburgh, PA). For example, the probability of a collapse in one 6-month period, for an intact 

turbine, is only 2%. The emissions related to the Visual Inspection models perfect information on 

the condition state. 

For each agent, the management of the wind farm is simulated 20 times, and the average 

outcome is plotted in Figure 12. In each simulation, the initial state is sampled according to the 

distribution ܊଴. Figure 12a reports the average immediate cost vs the time step. The black dashed 

line represents the true model agent, the blue line represents the expected model agent, and the 

red dash-dotted line represents the PLUS agent, while other colors refer to the MEDUSA 

algorithm, with learning rate (LR) of 0.1, 0.5 and 1. 

Each agent starts with a low cost in the first steps due to the good state of the turbines, as 

assumed by the initial belief state. The true model and the expected model agents adopt a 

stationary policy, and the corresponding immediate cost converges to a constant value, which is 

about $2,200/6months for the former, and $3,500/6months for the latter agent. Fluctuations are 
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due to randomness in the average of the small set of simulations. Agents adopting the MEDUSA 

and the PLUS algorithm, on the other hand, adopt non-stationary policies because of the learning 

process. At each time, the knowledge about the model is affected by processing the previous 

observations, and the policy varies accordingly. Ideally, if sufficient information is collected, the 

policies (and consequently the immediate cost) of these agents should converge to that of the 

“true model” agent. As expected, it is apparent from the figure that the immediate cost grows in 

the first phase (i.e. the first 10-20 steps), and then is reduced in time, because of the effect of 

learning. The PLUS algorithm also performs well in the first phase because of the robust 

algorithm for planning. After 30 steps, the immediate cost is about $2,600/6months. In this 

simulation, the MEDUSA algorithm achieves a higher cost for a range of different learning rates. 

The benefit of the PLUS algorithm over the expected model approach can be quantified as about 

$1,000/6months.  

Figure 12b shows the cumulative costs of O&M, computed as the integral in time of the 

curves plotted in Figure 12a. This representation is useful for assessing the long term benefit of 

adopting alternative schemes. In a 100-step period (corresponding to 50 years), the true model 

agent expects a cost of about $220,000, the expected model agent a cost of about $350,000, 

while the PLUS agent expects a cost of about $250,000. Thus, the benefit of adopting PLUS is 

quantifiable to about $100K for this period. It should be noticed that these costs and savings are 

for a single turbine and the costs and savings regard the entire farm is ten times higher. 
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process, and we expect the KL divergence will go to zero when the information encoded in the 

collected observations is sufficient to identify the model. For these agents, the KL divergence is 

computed as the average from a set of samples generated according to the posterior distribution 

(as illustrated in section 4.1.1, PLUS algorithm requires to generate samples, so this further 

computation is straightforward). We have used 10 samples in this simulation. As shown in the 

figure, the learning is fast in the initial phase, but it becomes slow as more and more 

observations have been already collected. According to this simulation, the MEDUSA agents 

learn the transition probabilities well, but not the emission probabilities (Figure 14b). MEDUSA 

learns the emission probabilities poorly, perhaps because of their different planning approach 

compared with PLUS, and may need more data. However, in the long run, provided that 

sufficient exploration is performed, MEDUSA is conjectured to asymptotically learn the true 

model. Generally, MEDUSA and PLUS are different in terms of the tradeoff between 

computational cost and accuracy: MEDUSA is computationally cheaper and easier to scale; 

however, it provides less accurate solutions compared with PLUS. 

Figure 14 shows that initially the KL divergence of the expected model agent is lower than 

that of the PLUS agent. This is a random effect owing to the selection of the true model in this 

simulation. The expected model agent adopts the mean transition and emission. Depending on 

the actual model of the turbine, it may be the case that the KL divergence can be arbitrarily 

small, and possibly much smaller than that of the PLUS agent. In other words, it may be the case 

that the model assumed by the expected model agent is actually the correct one, and therefore no 

learning is needed. Generally, the performance of the alternative methods depends on the 

specific actual model. In the next section, we perform a validation of the planning algorithm for 

all possible models. 
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Figure 14. The performance of our proposed learning methodology (PLUS) compared to MEDUSA (with different 

learning rates (LR)) and POMDP (do not involve learning). The graphs show the KL divergence between each mode 
and the true model parameters. 

Figure 15 shows the same results in figure 13a, including the 95% confidence intervals for 

the learning process of PLUS agent. 

 

Figure 15. The performance of our proposed learning methodology (PLUS) compared to POMDP (do not involve 
learning) including the 95% confidence intervals. The graphs show the KL divergence between each model and the 

true model parameters. 
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4.1.4 Limitations of PLUS Learning Phase 

PLUS allows for a rational treatment of data collected in-field (e.g. by sensors and visual 

inspections), a reliable tracking of the condition state of turbines, and robust decision making 

support. There are two modes of implementing the PLUS algorithm for a system made up by a 

set of components. The first one, that we name Individual PLUS, assumes that components are 

completely independent from each other. The second, that we name Global PLUS, assumes that 

all components are identical. In Individual PLUS the observations collected on one component 

are only used for updating model parameters of that specific component while in Global PLUS 

the observations of one component are used to update the entire system. For both 

implementations, PLUS allows the agent to learn, during the management process, the 

degradation process and the performance and reliability of the monitoring system. 

 

4.2 Multiple Uncertain Partially Observable Markov Decision Process  

4.2.1 Problem Statement 

As mentioned above, depending on the implementation mode PLUS is an appropriate method 

to model the management of a set of components controlled by one single model (Global PLUS) 

or by independent models (Individual PLUS). However, a system can be composed by 

components controlled by similar but not identical models. This happens, e.g., when components 

of different typologies are exposed to the same environment, or when the components of the 

same typology are exposed to different environments. In this context it is appropriate to assume 

dependence among the models, with a degree that varies according to the application. Despite the 

limit cases of independent and of identical models can be solved by Individual and Global PLUS 
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respectively, the intermediate case poses specific computational problems, which we address in 

this section. Formally, the problem is defined as follow. Suppose to manage a set of components, 

each modeled by a POMDP. The set of parameters controlling the POMDPs are uncertain, and 

dependent among themselves. In this context, how can we (i) formulate a probabilistic model to 

capture the dependence among the parameters, (ii) develop an analytical and numerical 

technique to infer the variables in the problem, and (iii) define an approach to identify the 

optimal management policy? 

 

4.2.2 Proposed Method 

4.2.2.1 General MU-POMDP Framework 

To address the first research question posed in previous section, we make use of the 

hierarchical Bayesian modeling approach, based on the PLUS approach (Chapter 3 and Section 

4.1). Hierarchical Bayesian approach have been used before in the context of MDPs for multi-

task reinforcement learning to allow transferring knowledge between different by related 

reinforcement learning tasks (Wilson et al. 2007). We refer to the proposed framework as 

Multiple Uncertain POMDP (MU-POMDP), and Figure 16 shows the corresponding 

probabilistic graphical model, for a system with two components. Only variables related to time 

steps ሺݐ െ 1ሻ and ሺݐሻ are shown in the figure. The reader is referred to Chapter 2 for details of 

the classical POMDP framework which, as indicated in the figure, is used to model each 

component. 
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Figure 16. Graphical model of multiple uncertain POMDP (MU-POMDP) framework. 

Subscript “݇,  MU-POMDP makes use of an .ݐ refers the variable to component ݇ at time ”ݐ

additional layer of hyper-parameters, to model the dependence among the model parameters of 

different components. Hyper-parameters are marked as ்ߙ, ઺், ߙை and ઺ை in Figure 16: the first 

two values define the dependence in the transitions, while the latter define that of emissions. 

While model parameters are different for each component, hyper-parameters are common to the 

entire system. Formally, matrices ઺் and ઺ை have the same dimension of ܂௞ and ۽௞ respectively, 

while ்ߙ and ߙை are scalar variables. The role of these variables will become apparent in the 

following sections. Parameter matrices િ் and િை, of dimension equal to that of ܂௞ and ۽௞ 

respectively, and scalar variables ்ߣ and ߣை define the distribution of hyper-parameters. 

The overall purpose of the inference task is to represent the posterior distribution of the 

variables in the problem. In this context, the posterior distribution is defined as conditional to all 

observations ܼ and actions ܣ observed up to present time. In principles, once each conditional 

POMPD, 
component 2

POMPD, 
component 1
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distribution is analytically defined, prediction of any future variable can be performed, 

depending on the policy adopted. However, exact inference in not feasible in the general layout 

presented in Figure 16, and approximate methods needs to be adopted. 

 

4.2.2.2 MCMC Updating Scheme 

Extending the approach used in PLUS, in this section we propose to adopt a numerical 

scheme based on Markov Chain Monte Carlo (MCMC) (MacKay 2003). Using MCMC, the joint 

posterior distribution is represented by a set of samples. PLUS is based on Gibbs sampling, 

which is an effective implementation of MCMC. Specifically, PLUS alternates sampling the 

state trajectory and sampling model parameters. Using the specific distribution proposed in 

PLUS, the former task is accomplished by using forward filtering backward sampling (FFBS) 

(Fruhwirth-Schnatter 2006), once fixed the model parameters. On the other hand, once the state 

trajectory is assigned, the distribution of model parameters can be updated in theoretically, and a 

new sample can be generated. MU-POMDP is based on an extension of that method. Figure 17 

reports a scheme of the inference process. In that figure, the upper bar indicates a collection of 

variables, from the beginning of the management process up to a specific time. For example, ܵ௞̅,௧ 

indicates the state trajectory ൛ܵ௞,ଵ, … , ܵ௞,௧ൟ for component ݇. The superscript ሺ݆ሻ refers to the ݆-th 

samples generated by the MCMC algorithm. At component level, the sampling of states and 

model parameters is identical to that adopted by PLUS. At system level, the hyper-parameters 

are sampled conditional to the sampled model parameters for all components, and we indicate 

with ܂ ൌ ሼ܂ଵ, … , ۽ ௄ሽ, and܂ ൌ ሼ۽ଵ, … ,  ௄ሽ the set of transition and emission respectively. This۽

task can be accomplished by using the Metropolis-Hastings (M-H) approach (MacKay 2003). In 

summary, Figure 17 can be read as a recipe for generating samples from the joint posterior 
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distribution: model parameters and hyper-parameters are initialized at stage zero, then states and 

model parameters are sampled for each component, then hyper-parameters are sampled as well, 

and these latter steps are iterated indefinitely. 

 

Figure 17. The proposed Markov chain Monte Carlo (MCMC) sampling approach. 

 

4.2.2.3 Hierarchical Approach and Probabilistic Models 

The graphical model in Figure 16 requires a specific assignment of marginal and conditional 

distributions for every random variable. In this section, we propose a probabilistic model 

inspired by Kemp et al, (2007), defined as follows: 
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~ைߙ               ሻ்ߣExponentialሺ	~	்ߙ                                                   Exponentialሺߣைሻ
                                             ઺்	~	Dirichletሺિ்ሻ  ઺ை ~ Dirichletሺિைሻ
              ∀݇ ൌ 1,… , ை઺ைሻߙDirichletሺ	~	௞۽                    ઺்ሻ்ߙDirichletሺ	~	௞܂      ܭ
              ∀݇ ് ௞܂                 ݈ ٣ ௟܂ ∣ ,்ߙ ઺்                                          ۽௞ ٣ ௟۽ ∣ ,ைߙ ઺ை
ݐ∀               ൌ 1,2, … ,∞							ܵ௞,௧ ∣ ܵ௞,௧ିଵ, ௞,௧ܣ ~ Multinomialሺ܂௞ሻ

ܼ௞,௧ ∣ ܵ௞,௧, ௞,௧ܣ ~ Multinomialሺ۽௞ሻ 

(14) 

where ݔ	~	݂ሺݕሻ indicates that variable ݔ is distributed according to distribution ݂, 

parameterized with ݕ, and ݔ ٣ ݕ ∣  ,are independent ݕ and ݔ indicates that random variables ݖ

given ݖ. The reader can refer to text book of Kobayashi et al. (2012) for definition of 

Exponential, Dirichlet, and Multinomial distributions. Specifically, the Multinomial distribution 

of states and observations follows the classical assumptions of the POMDP framework. The 

PLUS framework can be obtained by the assumption outlined in Eq. (14), by fixing the hyper-

parameters, instead of treating them as random variables. The Dirichlet distribution on model 

parameters is appropriate in this context, because it is conjugate prior of the multinomial 

distribution, and this facilitates the implementation of the Gibbs approach. As noted above, the 

model parameters of different components are not marginally independent, because of the 

common hyper-parameters parents. Consequently, observations on any component, by affecting 

the knowledge of the hyper-parameter, affect in turn all variables in the system. It is worth to 

clarify the role of hyper-parameters ߙ and ઺ in the definition of the prior distribution of model 

parameters. Each row in matrix ઺ is normalized to one, as it follows the Dirichlet distribution. 

The entries in matrix ઺ define the expected value of the corresponding model parameters. Scalar 

variable ߙ affects the uncertainty of model parameters: intuitively a high value of ߙ induces a 

low variance of the model parameters. ߙ is modeled as an exponentially distributed random 

variable, and parameter ߣ defines the rate of this distribution. Similarly, the value of ઺ describing 
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the system is an uncertain quantity, and િ defines the parameters of the corresponding Dirichlet 

distribution. 

 

4.2.2.4 Inference on Hyper-parameters 

As outlined in Section 4.2.2.2, we propose to perform inference via the scheme reported in 

Figure 16. Samples of states and model parameters are generated as in PLUS, However, Eq. (14) 

does not allow to define in close form the conditional probability of the hyper-parameters: 

,்ߙሺ݌ ઺் ∣ ,܂ ,்ߣ િ்ሻ and ݌ሺߙை, ઺ை ∣ ,۽ ,ைߣ િைሻ. As anticipated above, we propose to make use 

of the M-H algorithm to generate samples from these distributions. Figure 18 reports a complete 

algorithm to do that, for hyper-parameters ்ߙ and ઺் only (the corresponding procedure for ߙை 

and ઺ை being identical, with obvious changes in the input variables). Input variables are the 

parameters defining the prior distribution (்ߣ and િ்), the transition probabilities for all 

components (܂), the step-size for the proposal distribution in the direction of ்ߙ (ߪఈ), the 

concentration parameter for the proposal distribution in the direction of ்ߚ ( ఉܿ), which acts as the 

inverse of a step-size, and the length of the Markov Chain (ܬ). The choice of the proposal 

distribution is derived by the work of Kemp et al. (2007). In Figure 18, Normalሺߤ,  ሻ indicatesߪ

the normal distribution with mean ߤ and standard deviation ߪ, Uniformሺܽ, ܾሻ the uniform 

distribution between ܽ and ܾ, Dirichletሺܠ;  ሻ the value assumed by the Dirichlet distributionܡ

with parameters ܡ at ܠ. ܲ indicates the un-normalized joint distribution of hyper-parameters and 

model parameters that, following Eq. (14), reads: 
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ܲሺ܂, ,்ߙ ઺், ,்ߣ િ்ሻ ൌ																					 																							

்ߣ expሺെ்ߙ்ߣሻ ൈ Dirichletሺ઺்; િ்ሻ ൈෑ Dirichletሺ܂௞; ઺்ሻ்ߙ
௄

௞ୀଵ
 

(15) 

 

Figure 18. Metropolis-Hasting (MH) algorithm for sampling hyper-parameters on transition. 

With this algorithm, we provide a complete recipe for a numerical implementation of the 

procedure outlined in Section 4.2.2.2. In that context, the value of ܂ is assigned as the sample got 

from the Gibbs step, as reported in Figure 17. 

At any state during the management process, the overall procedure provides samples of the 

model parameters and component state that can be used for the approximate decision 

optimization scheme of PLUS (Chapter 3). Following this remark, in this chapter we will not 

investigate the effectiveness of the policy search, and we will focus of the learning procedure 

input:  , , , , ,

initialize ,
for  do

sample 

sample 

p-ratio 

q-ratio 

accept = p-ratio q-ratio
sample  
if  

,   
else

,   
end

end

output: hyper-parameters  , 
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only. Specifically, we will investigate two aspects. (i) Despite it is well-known that Gibbs and 

M-H algorithms are consistent, we want to assess if the numerical procedure is feasible, using a 

reasonable number of samples; (ii) simplified procedure would derived assuming simpler 

dependence structure among model parameters, and we want to measure the degree of 

approximation induced by these assumptions. To address these questions, the next section refers 

to a simplified problem, which allows us an extensive numerical investigation. 

 

4.2.3 Illustrative Example of a System with Similar Binary Components 

4.2.3.1 Problem Formulation 

Figure 19 shows the graphical model of a special ܭ-component system that can modeled in 

the MU-POMDP framework. It is a static system, related to Figure 16 in the following way. 

Suppose only one action is available, so the decision variable is dummy, number of states (|ܵ|) is 

equal 2, transition probability is so that each state is independent of the previous one (given the 

model parameters), and observations are perfect, meaning that the emission matrix is the identity. 

Given this latter remark, states and observations are identical and we can drop the state variables 

from the graph, relating directly model parameters to observations. In this set-up, the only model 

parameters for each component are the marginal probabilities assigned to the two possible 

observations, at any time. We name the two possible observations as intact and failure, and we 

assign value ܻ ൌ ଵݏ ൌ 0 to the intact state ܻ ൌ ଶݏ ൌ 1 to the failure state. We define the 

corresponding probabilities as ߠ௞,௜ ൌ Pൣ ௞ܻ,௧ ൌ  th observation from-ݐ ௜൧, where ௞ܻ,௧ indicates theݏ

the ݇-th component. The two parameters describing the ݇-th component can be grouped in the 

normalized vector ી௞ ൌ ሾߠ௞,ଵ  ௞,ଶሿ. Following the analogy with Section 4.2.2.1, ી௞ߠ



  
 

52 
 

corresponds to ܂௞ as defined before. As indicated in Figure 19 by using the plate notation (or 

“plate model”) (Koller and Friedman 2009), we assume to have ݊ observations from each 

component. Actually, the reader should think that observations are collected in time, so ݊ 

corresponds to time indicator ݐ. 

 

Figure 19. The MU-POMDP framework’s probabilistic graphical model for the toy problem. 

This formulation models the behavior of components that have a tendency to fail at any time. 

 .௞,ଶ is the probability of failure for the ݇-th component, that we define as the model parameterߠ

Model parameters are not known, but are assumed to be time independent and similar among 

components. Failures of components are perfectly observed and repaired. We developed this toy 

application being inspired by the textbook of Gelman et al. (2004). An analogous problem can be 

formulated for coins with similar biases, where ߠ௞,ଶ represent the probability of the ݇-th coin to 

land Head, and ܻ indicates the outcome of the tossing. Adapting Eq. (14), distributions for 

variables in Figure 19 are assigned as: 

ሻߣExponentialሺ	~	ߙ																												 ઺ ~ Dirichletሺિሻ	

∀݇ ൌ 1,… , ઺ሻߙDirichletሺ	~	ી௞									ܭ ௞ܻ,௟ ~ Multinomialሺી௞ሻ 
(16) 

…
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It is to be noted that, as variables ܻs are binary, the Dirichlet is equivalent to a Beta 

distribution, and the Multinomial is equivalent to a Binomial distribution, so the formulation 

belongs to the so-called hierarchical Beta-Binomial case (Gelman et al. 2004). As before, the 

posterior distribution cannot be evaluated in closed-form and, in the next section, we will present 

the approximate numerical scheme adapted from Sections 4.2.2.2-4.2.2.4. 

 

4.2.3.2 Sampling Algorithm 

As outlined in Section 4.2.2.2, the MCMC procedure we propose alternates sampling the 

model parameters ી ൌ ሼીଵ, … , ી௄ሽ having fixed the hyper-parameters (ߙ and ઺) and sampling 

the hyper-parameters having fixed the model parameters. This latter step is executed following 

the M-H scheme reported in Figure 18, with obvious re-assignment of the random variables 

ߙ) → ,்ߙ ઺ → ઺், ી → ,܂ ߣ → ,்ߣ િ → િ்). It is worth describing briefly the former step. Let us 

group the observations collected on the ݇-th component as ܇௞ ൌ ൛ ௞ܻ,ଵ, … , ௞ܻ,௡ൟ, and define 

counting variable ݀௞ ൌ ∑ ௞ܻ,௧
௡
௧ୀଵ  and vector ܌௞ ൌ ሾ݊ െ ݀௞ ݀௞ሿ. Because of the well-known 

properties of the Dirichlet-Multinomial (or Beta-Binomial), for any value ߙ and ઺ of the hyper-

parameters, the conditional distribution ݌ሺી௞ ∣ ,௞܇ ,ߙ ઺ሻ is in the Dirichlet family, and it is 

defined by parameter ሺߙ઺ ൅  .௞ሻ (Same as PLUS learning algorithm presented in Section 4.1)܌

Consequently, generating samples from that distribution is computationally easy. The reader 

should note that the PLUS method and the procedure outlined in Section 4.2.2 are based on 

similar properties. 
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4.2.4 Numerical Validation of the Illustrative Example 

4.2.4.1 Alternative Processing Approaches Used for Comparison 

To investigate the performance of the proposed MU-POMDP framework to the problem 

outlined in the previous section, we compare its performance with two alternative approaches 

which follow the assumptions of Global and of Individual PLUS respectively. Figure 20 reports 

the graphical models for these approaches, and the reader should compare these with that of MU-

POMDP, as reported in Figure 18, to appreciate the differences. 

The scheme for Global PLUS is reported in Figure 20a. This approach models all 

components as controlled by a single global model, that is defined by ી. Consequently, the 

model cannot accommodate any discrepancy among the parameters, and all observations are on 

the same level, for the sake of inferring ી. Figure 20b shows the Individual PLUS approach, 

which assigns an independent model to each component. Consequently, observations collected 

on one component are completely irrelevant for  inferring the model of other components. For 

both approaches, we include a layer of hyper-parameters, consistently with the MU-POMDP 

approach. The reader should be aware that, for any practical implementation of Global PLUS or 

Individual PLUS, it would be easier to define directly a prior on the model paramaters, without 

making use of any hyper-parameter. For example, the choice of a fixed Dirichlet prior would 

permit to describe the posterior distribution of the model parameters in close form, without any 

need for sampling. However, in this section we make use of the additional layer of 

hyperparameters in order to achive fair comparison between MU-POMDP and the alternative 

approaches: making use of the same value for ߣ, િ and for the conditional distributions for hyper 

parameters and model parameters, we get the same marginal distribution for the model 

parameters among all three approaches. The core of the differences across approaches is capture 
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by the joint distribution of models: models are marginally independent under Invidual PLUS, 

identical under Global PLUS, while they can be similar but not identical under MU-POMDP. 

 

Figure 20. Graphical model for (a) Global PLUS, and (b) Individual PLUS. 

 

4.2.4.2 Parameters for Numerical Investigation 

To investigate the performance of MU-POMDP, and compare it with the alternative 

approaches, we consider a 5-component system and assign the following values: λ ൌ 1/1000 

and િ ൌ ሾߟଵ ଶሿߟ ൌ ሾ47.5 2.5ሿ. At this point, we can give a further insight about the relation 

between the choice of these values and the corresponding joint probabilities of the models. The 

expected value of the probability of failure ߠ௞,ଶ is ߟଶ/ሺߟଵ ൅  ଶሻ, that turns out to be 5% for thisߟ

choice. It is hard to derive other direct relations between those parameters and features of the 

distribution. However, we observe that, for very high values of ߙ ,ߣ tends to be of high 

magnitude, and so the hyper-parameters of the Dirichlet distribution controlling the model ી: 

consequently, parameters for different components are highly correlated. On the other hand, the 

uncertainty in the distribution of ઺ is decreasing with ሺߟଵ ൅  ଶሻ, so that ઺ tends to be a fixedߟ

quantity when this quantity goes to infinite. 

…

…

a) b)
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Figure 21a shows the marginal distribution for model parameter ߠ௞,ଶ for any ݇-th component. 

The standard deviation is 3.5%. Figure 21b shows the contour plot of the joint distribution of any 

pair of variables (ߠ௞,ଶ,ߠ௟,ଶ) for ݇ ് ݈, according to the MU-POMDP approach. As expected, 

random variables are dependent, and the correlation coefficient turns out to be 75%. In a nut-

shell, the alternative approaches can be intended as alternative prior joint distributions. 

According to the Global PLUS, all model parameters are identical so the joint distribution 

collapses on the identity line (ߠଵ,ଶ ൌ ⋯ ൌ  ௄,ଶ). According to Individual PLUS, the jointߠ

probability is the product of marginal distributions, as variables are independent (and therefore 

uncorrelated). 

 

Figure 21. (a) Marginal prior density on the model parameters for each component (b) Joint prior density of the 
model parameters for any pair of components in the MU-POMDP framework. 

 

4.2.4.3 Scheme for the Numerical Investigation 

We assume MU-POMDP captures the correct model for all variables, and investigate (i) if 

the numerical procedure proposed is effective, and (ii) how approximate approaches perform. 

We adopt the Kullback-Leilber (KL) divergence (Cover and Thomas 2006) as a metric to assess 
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the performance of all approaches. The KL divergence is a non-symmetric measure of the 

difference between two probability distributions. Specifically the KL divergence of distribution 

ܳ from distribution ܲ, denoted as ܮܭሺܲ, ܳሻ, is a measure of information lost when ܳ is used to 

approximate ܲ. In this context, suppose ી௞
∗  indicates the actual model parameters for the ݇-th 

component, and દ∗ ൌ ሼીଵ
∗, … , ી௄

∗ ሽ the set of corresponding values for all components in the 

system. An agent knowing દ∗ exactly would predict the states (i.e. the observations) at the next 

time step for all components ܡ ൌ ሼ ଵܻ, … , ௄ܻሽ with distribution ܲሺܡ|દ∗ሻ. Obviously, any previous 

observation will be irrelevant for such an agent. On the contrary, agents without perfect 

information on model parameters will base their prediction on inference: distribution ܲሺ܇|ܡ,ࣧሻ 

indicates the posterior probability respect to all previous observations ܇, assuming model ࣧ 

which, depending on the agent, can be MU-POMDP, Global or Individual PLUS. The KL 

divergence between the distribution adopted by agents is therefore ܮܭሾܲሺܡ|દ∗ሻ, ܲሺ܇|ܡ,ࣧሻሿ, and 

depends on દ∗ and ܇. Treating these latter quantities as random variables, we can define an 

expected error ݁, as: 

݁ሺ݊,ࣧሻ ൌ ॱ௣ሺદ∗ሻॱ௉ሺ܇|દ∗ሻܮܭሾܲሺܡ|દ∗ሻ, ܲሺ܇|ܡ,ࣧሻሿ (17) 

where ॱ௣ indicate the statistical expectation respect to distribution ݌, and ݊ indicated the 

number of observations collected per component (as indicated in Figs.19-20). This error 

measures the lack of information related to the use of model ࣧ in processing measures ܇, 

respect to observing directly દ∗, for the sake of predicting ܡ. The analytical definition of KL 

reads, in this context: 
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,દ∗ሻ|ܡሾܲሺܮܭ ܲሺ܇|ܡ,ࣧሻሿ ൌ ॱ௉ሺܡ|દ∗ሻ ቈlog
ܲሺܡ|દ∗ሻ

ܲሺ܇|ܡ,ࣧሻ
቉ (18) 

where the prediction using model ࣧ can be related to the inference on model parameters as: 

ܲሺ܇|ܡ,ࣧሻ ൌ ॱ௣ሺદ|܇,ࣧሻሾܲሺܡ|દሻሿ (19) 

where દ indicates the set of model parameters, for all components in the system. Note that 

the probability of outcome ܡ given parameters દ is: 

ܲሺܡ|દሻ ൌෑી௞,ଵ
௬ೖ ી௞,ଶ

ଵି௬ೖ

௄

௞ୀଵ

 (20) 

Adopting a Monte Carlo approach, we can approximate any expectation with arithmetical 

average across samples. We start generating samples of variable દ∗, from distribution 

ࣧ|ሺદ݌ ൌ MU_POMDPሻ, which is represented in Figure 21. Then, in sequence, we generate 

samples of ܇ from distribution of ܲሺ܇|દ∗ሻ. For each sample of ܇, we can sample દ from 

posterior distribution ݌ሺદ|܇,ࣧሻ, following the inference procedure outlined in Section 4.2.3.2, 

for each model ࣧ. Functions ܲሺܡ|દሻ and ܲሺܡ|દ∗ሻ can be evaluated analytically using Eq. (20) 

on its entire domain: the number of possible outcome ܡ is 2௄ for a system made up by ܭ 

components. 

As we assume MU-POMDP to be the generative models for the validation, the agent 

adopting MU-POMDP is consistent. For this agent, therefore, we can drop the notion of “actual 

parameters” દ∗, use દ in Eqs. (17) and (18), and get error ݁ as a quantity defined internally to 

the graphical model reported in Figure 19, as: 
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݁ሺ݊,ࣧ ൌ MU_POMDPሻ ൌ ॱ௣ሺદ,ܡሻ൛log ܲሺܡ|દሻ െ ॱ௉ሺ܇|દሻൣlog ॱ௣ሺદ|܇ሻܲሺܡ|દሻ൧ൟ (21) 

In this light, error ݁ resembles the concept of “regret”, according to the definition of Raiffa 

and Schlaifer (1961), related to random variable દ. 

It is worth describing in details how different agents consider the collected observations, for 

the sake of inferring the model parameters. According to the MU-POMDP formulation, 

observations can be partitioned in two subsets. As shown in Figure 19, observations ܇௞, collected 

on component ݇, are particularly useful to infer model parameters ી௞, and we can call them 

“direct measures”. On the other hand, observations ܇௟ஷ௞, collected on all components except the 

݇-th one, are also useful for inferring ી௞, but only via the hyper-parameters ߙ and ઺, and we call 

them “indirect measures”. In the limit for ܭ and ݊ going to infinite, the set of indirect measures 

is equivalent to a perfect observation of the hyper-parameters. This, however, would not allow to 

get a perfect prediction of ી௞. On the other hand, for ݊ going to infinite the direct measures 

correspond to observing ી௞ directly. 

As shown in Figure 20, the two PLUS approaches do not apply the distinction between direct 

and indirect measures. Global PLUS put all measures on the same level, for the sake of inferring 

ી. Suppose we are interested in inferring the model parameters for component ݇: Global PLUS 

makes use of all measures collected on the system, without giving any higher relevance to ܇௞ 

respect to ܇௟ஷ௞. On the other hand, Individual PLUS treats ી௞ and ܇௟ஷ௞ as independent variables, 

so observations collected on different components are discharged as irrelevant. Intuitively, 

indirect observations can be beneficial in many applications, especially for similar components 

and for a small value ݊ of observations per component. In this context we expect Global to be 

more effective than Individual PLUS, because of the its capability of using all data. However, 
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Individual is more flexible than Global PLUS, as it can accommodate discrepancies among the 

model parameters of different components. Therefore, for high values of ݊ we expect Individual 

to perform better than Global PLUS. MU-POMDP is supposed to capture the pros of both 

alternative methods. 

 

4.2.4.4 Results of the Numerical Investigation 

The following values have been assumed for the M-H steps (the reader is referred to Figure 

18): number of steps ܬ ൌ 20, concentration ఉܿ ൌ 600, random step size ߪఈ ൌ 0.1. Furthermore, 

the number of cycles in the MCMC approach, as reported in Figure 16 is 1000, and the first 300 

are discharged for the burn-in phase: therefore expectation in Eq. (19) is approximated by 

average among 700 samples. The expectation in Eq. (17) is approximation by 400 samples of 

“true models”. 

Figure 22 reports an example of outcome of the inference process, for the MU-POMDP 

framework. Pictures (a-b) show the joint domain of parameters (ߠଵ,ଶ,ߠଶ,ଶ) as in Figure 20b. The 

red star locates the value assumed as correct, and used for generating observations. The blue dots 

(a) and (b) show the samples generated from the posterior distribution for number of observation 

݊ equal 5 and 500 respectively. (c) and (d) report similar outcomes for the hyper-parameters (ߙ 

and ઺). Note that the pair ሺߙ,  ଵሻ is sufficient to represent the entire domain, as the secondߚ

component of ઺ can be derived as ߚଶ ൌ 1 െ  ଵ. As expected, the posterior distribution becomesߚ

more skewed as more observations are processed. The figure shows an appropriate behavior of 

the MCMC procedure. However, as well known (MacKay 2003), the tuning of the procedure 

requires careful selections of its parameters, to get an appropriate rejection rate. 
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Figure 22. An example of outcome of the inference process, for the MU-POMDP framework. Samples generated 
from the posterior distribution of model parameters (a,b) and hyper-parameters (c,d) for (a,c) 5, and (b,d) 500 

observations per component. 

Figure 23 shows the outcomes of the comparison among approaches. Error ݁ is plotted vs ݊ 

for the three approaches. Error in the computations of ݁ derives from approximation of expected 

values by samples, in Eqs. (17) and (19). We can easily estimate the confidence bound related to 

the approximation of Eq. (17), via computing the sample variance. Dashed lines in Figure 23 

report the 95% confidence bounds. In those bounds, however, the error related to the 

approximation of Eq. (19) has not been included. As it can be seen in the figure, as the number of 

observations per components leans to infinity (݊	 → 	∞), both MU-POMDP and Individual PLUS 

converge to the true model parameters while Global PLUS does not. This happens because true 

models exhibit variability among components, while Global PLUS assumes all models to be 
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identical: we except this approach to converge to the average of the components’ models, and the 

residual errors do not vanish. The learning rate of Individual PLUS is lower than those of both 

Global PLUS and MU-POMDP, since it does not make use of the indirect observations. For the 

specific application, Global performs better than Individual PLUS up to about 200 observations 

per component, because of the effect of indirect measures. Up to that level, Individual performs 

better, due to its flexibility. As expected, MU-POMDP performs better than both, since it is the 

correct generative model for the data. As shown by the confidence bounds, the outcomes are 

affected by large numerical uncertainty, due to the high number of dimensions in the nested 

expectation defined in Eqs. (17-19). 

 

Figure 23. Comparison between MU-POMDP, Global PLUS and Individual PLUS performances in learning the 
model parameters. 



  
 

63 
 

4.2.5 Application – Wind Farm Management 

In this section we evaluate the performance of proposed MU-POMDP methodology in an 

example of wind farm management, by adapting the setting investigated in Chapter 3 and 

Section 4.1. We have selected the prior parameters over the transition and emission probabilities 

based on literature on wind farm maintenance (Byon et al. 2010, Byon and Ding 2010, Nielesen 

and Sorensen 2012, Memarzadeh et al. 2013, Memarzadeh et al. 2015a) and discussion with our 

industry collaborator Everpower Wind Holdings. 

 

4.2.5.1 Parameters of Numerical Investigation 

For the purpose of validation, we consider a wind farm made up by 5 turbines of the same 

type placed in similar environmental conditions. The state condition of each turbine is discretized 

into three possible states where ݏ ൌ 1 refers to an intact structure, ݏ ൌ 2 to a damaged one, and 

ݏ ൌ 3 to the failure of the turbine; the agent receives observations from a set of four possible 

observations where ݖ ൌ 1 suggests that the turbine is undamaged, ݖ ൌ 2 and ݖ ൌ 3 indicate two 

symptoms of damage, and ݖ ൌ 4 indicates the failure of the turbine; three actions are available: 

Do-Nothing (DN), Repair (RE), and Visual Inspection (VI). When the agent chooses DN, the 

condition state of the turbine degrades owing to fatigue and aging, potentially causing a 

structural failure and a relevant economical loss. In turn, the agent can perform a costly 

intervention (i.e., RE) to avoid failure and improve the condition state of the turbines. VI better 

measures the condition state of the turbine (that evolves according to the degradation model, as 

for DN). Each time step is assumed to be six months, and the agent takes one action per turbine 

at each time step. 
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Table 1. Prior parameters over hyper-parameters for management of wind farm example. 

்ߣ ൌ ைߣ ൌ 1
1000ൗ

િ்,ୈ୒,୚୍ ൌ 	ߢ ൈ	൥
0.57 0.28 0.15
0 0.67 0.33
0 0 1

൩								િ்,ୖ୉ ൌ 	ߢ ൈ	൥
0.67 0.33 0
0.67 0.33 0
0.67 0.33 0

൩	

									િை,ୈ୒,ୖ୉ ൌ 	ߢ ൈ	൥
0.57 0.28 0.15 0
0.15 0.57 0.28 0
0 0 0 1

൩ 			િை,୚୍ ൌ 	ߢ ൈ	൥
0.67 0.33 0 0
0.33 0 0.67 0
0 0 0 1

൩		 

 

Table 1 shows the prior parameters over hyper-parameters; subscripts report the action 

symbol, ߢ controls the skewness of the prior and has been fixed to 50, so that the corresponding 

average coefficient of variation of the parameters is 0.26 (the average is computed only on 

uncertain entries of the prior parameters resulting from Table 1). Parameter ߣ controls the 

correlation among the model parameters across components: as ߣ decreases, the correlation 

increases, and it is about 75% given the values reported above. Entries in square brackets define 

the expected value of transition and emission probabilities: for example, the expected value of 

the probability that the undamaged turbine becomes damaged under DN is 28%. The costs for 

repair, visual inspections and down-time due to failure are assumed to be US $25,000, $500, and 

$50,000, respectively. The discount factor is assumed to be ߛ ൌ 0.95. The initial belief state for 

all turbines is defined as ܊଴ ൌ ሾ0.8 0.2 0ሿ, which means that the agent believes that, at the 

beginning of the process, the turbines are in the intact state with 80% probability and in damaged 

state with 20% probability. 
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4.2.5.2 Scheme for Numerical Investigation 

To investigate the performance of MU-POMDP, we simulate the response of a system 

characterized by model દ∗ ൌ ሼીଵ
∗, ીଶ

∗ , … , ી௄
∗ ሽ, where ી௞

∗ ൌ ሼ܂௞
∗, ௞۽

∗ ሽ defines transition and 

emission probabilities for component ݇. We evaluate the effectiveness of both learning and 

planning. 

For learning, we evaluate the effectiveness of MU-POMDP in term of accuracy in predicting 

future observation for components on the system. At time step t, the probability distribution of 

next observation for the entire farm is defined as ܲሺݖ௧ାଵ|દ∗, ,ത௧܈  ഥ௧ሻ, whereۯ

௧ݖ ൌ ൛ݖଵ,௧, ,ଶ,௧ݖ … , ௄,௧ൟ, ܼ̅௧ݖ ൌ ൛ܼ̅ଵ,௧, ܼ̅ଶ,௧, … , ܼ̅௄,௧ൟ, ̅ܣ௧ ൌ ൛̅ܣଵ,௧, ,ଶ,௧ܣ̅ … ,  ௄,௧ൟ and can be computedܣ̅

as follow (similar to Eq. (19)): 

ܲሺܢ௧ାଵ|܈ത௧, ഥ௧ሻۯ ൌ ॱ௣ሺદ∣ࢆഥ࡭,࢚ഥ࢚ሻሾܲሺܢ௧ାଵ|܈ത௧, ,ഥ௧ۯ દሻሿ (22) 

The expectation in Eq. (22) can be approximated via Monte Carlo. Error in the prediction can 

be measured by the KL divergence: 

,∗ሺદߝ ,ത௧܈ ഥ௧ሻۯ ൌ KLሾܲሺ ௧ାଵܢ ∣∣ દ∗, ,ത௧܈ ഥ௧ۯ ሻ, ܲሺܢ௧ାଵ ∣ ,ത௧܈  ഥ௧ሻሿ (23)ۯ

Function ߝሺદ∗, ,ത௧܈  .ഥ௧ሻ depends on the realization of model, actions, and observationsۯ

Despite expected value can be taken, in this paper we validate the effectiveness of MU-POMDP 

on a specific realization. To do so, we have sampled farm model દ∗ from the MU-POMDP 

priors outlined in section 4.2.5.1, and actions ۯഥ௧ and observations ܈ത௧ consequently. 
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4.2.5.3 Results of Numerical Investigation 

We evaluate the effectiveness of learning for ݐ ൌ 35, 70, 100, 500,	and 1000 (values 

ݐ ൌ 500 and 1000 allow us to investigate the long term behavior or the learning process). Figure 

24 reports the error in the prediction of next observation for MU-POMDP framework. 

 

Figure 24. MUPOMDP performance in predicting the future observation as a function of  number of observations 
received. 

As shown in the figure, the error in predicting the future observation is decreased by factor 

18% with only 100 data and by 50% with 1000 data. In the limit of infinite data, MU-POMDP’s 

error in prediction of future observation should converge to zero as it learns the true model 

parameters accurately.  

Figure 25 shows the examples of the inference process, plotting samples for one entry in the 

transition matrix (a-c) and emission matrix (d-f) under action DN, for components 1 and 2. The 

red star shows the value used for simulating the data, while the green points shows the samples 

generated from (a-d) the prior distribution, (b-e) MU-POMDP’s posterior at ݐ ൌ 70, and (c-f) 
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posterior at ݐ ൌ 1000. Coefficient of variation of the posterior distribution is 0.18 (i.e., it is 

decreased by factor 31.1% respect to the prior distribution) after receiving 70 data (25b), and 

0.14 (decreased by 47.16%) after receiving 1000 data (25c) for the specific element of transition 

matrix plotted in Figure 25. In the case of emission value plotted in the figure, coefficient of 

variation has decreased by 11.2% and 35.3% after receiving 70 (25e) and 1000 (25f) data 

respectively. The reader should note that only a fraction of the observations are useful for 

updating any specific parameter. For example, consider parameter ܶሺݏ௧ ൌ 1, ܽ௧ ൌ ,ܰܦ ௧ାଵݏ ൌ

1ሻ, i.e. the probability of next state being intact given that the current state is intact and agent 

performs Do-Nothing. First, no observation collected after any action except DN is relevant; 

second, only transitions starting from state 1 are relevant. Actually, given the stochastic approach 

for leaning, we cannot assess with certainty whether current state is 1 or not, at any time. 

However, we can count the occurrence of this event in each realization of state trajectory 

generated through FFSB. For the parameter mentioned above, we estimate that about 300 out of 

1000 observations are relevant. 
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Figure 25. Examples of samples of model parameter (green dots) and exact value (red star) for MU-POMDP and 
PLUS. 
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In the final numerical campaign, we investigate the economic impact of adopting the MU-

POMDP framework, showing how the more accurate learning algorithm, which accounts for 

discrepancies in the component models, allows for a more effective planning phase. 

Figure 26 shows the cumulative cost (i.e. the negative reward) of operation and maintenance 

for the wind farm as a function of the time step for (1) an agent with perfect knowledge about the 

actual model parameters (True Model: black line), (2) an agent following MU-POMDP (MU-

POMDP: red line), and (3) an agent adopting a POMDP fixed to the expectation of the prior 

distribution, without any learning (POMDP: blue line). Estimates are based on 100 independent 

simulations in the time domain, and MU-POMDP agent (red line) learns after receiving 35 and 

70 data. The agent with perfect knowledge about the true model represents a lower limit for the 

cost (i.e. an upper bound for negative rewards). For this specific example, the value (i.e. the sum 

of discounted costs) for true model agent is $56.25K per turbine, while for the MU-POMDP and 

POMDP agents are $60.78K and $63.4K per turbine respectively. We evaluate the economic 

benefit of using MU-POMDP framework over POMDP by computing the average reward after 

processing 70 observations (between ݐ ൌ 70 and ݐ ൌ 100 steps) and it is quantified as $356.06 

per time step per turbine. Of course, these values depend on the specific numerical example that 

have been chosen and might change with different application. 
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Figure 26. Cumulative O&M cost of the farm consists of five turbines for the agent knowing the true model (black), 
POMDP (blue), and MU-POMDP (red) 
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Chapter 5 

 

Sequential Decision Making: 

Value of Information 
 

 

Abstract 

Operation and maintenance of an infrastructure system rely on information collected on its 

components, which can provide the decision maker with an accurate assessment of their 

condition states. While the methods developed in previous chapters allow for optimal 

information gathering, they cannot incorporate system-level constraints on resources available 

for this task. In this chapter, we introduce the concept of value of information (VoI), that can be 

used as a guide for information-gathering and, as we’ll illustrate in Chapter 6, for system level 

inspection scheduling. In this chapter, we show how to compute the VoI in two settings: the 

stochastic future allocation, that assumes observations are collected with a given probability, and 

the fee-based future allocation that assumes observations are available at a given cost. We 

illustrate how these models can be used for evaluate the value of a permanent monitoring system 

(value of flow of information) as well as a piece of information at current time step (value of 

current information).  
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5.1 Problem Statement 

The POMDP framework allows for integrating uncertain observations in the sequential 

decision making, including exploratory and exploitative actions. The stochasticity in the belief 

evolution is essentially connected to that of collected observations. In this light, each action is 

characterized by its expected cost and its effect on the belief evolution. Among exploitative 

actions, repairing can be expensive but associated with an improvement in the belief, while doing 

nothing may be cheaper but related to a degradation of the belief. Exploratory actions may 

include performing visual inspection, or collecting additional information that, while expensive, 

affects the belief by reducing its uncertainty. Effects of the installation of a permanent 

monitoring system, or of exceptional information, on the overall cost of operation and 

maintenance can be quantified by assessing the corresponding value of information (VoI). 

 

5.2 Proposed Method 

5.2.1 Value of Flow of Information 

We assume to model the management of an infrastructure component as a POMDP. We start 

investigating the impact of receiving additional observations at all steps of the process, that we 

call a “flow of information” (Memarzadeh and Pozzi 2015d). This can happen, for example, 

when a monitoring system is installed, or when a component can be systematically inspected. We 

define ݄௧ the additional observation of at time ݐ, on discrete domain ܪ ൌ ሼ1,2, … ,  ሽ. The|ܪ|

relation between this observation and state ݏ௧ is modeled by emission function ܧሺ݆, ݅ሻ ൌ

ℙሾ݄௧ ൌ ௧ݏ|݆ ൌ ݅ሿ, summarized in matrix ۳ or size |ܵ| ൈ  ݄ The prediction of observation .|ܪ|

given the belief and the updating of this belief given the observation that h takes value ݆ are 
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defined by emission and updating operators ୍܍ and ୍ܝ, of dimension |ܪ| and |ܵ| respectively, 

whose entries are as follows: 

ە
ۖ
۔

ۖ
ۓ 				 ௝݁

୍ሺ܊, ۳ሻ ൌ ℙሾ݄௧ ൌ ௧܊|݆ ൌ ۳ሿ,܊ ൌ෍ ,ሺ݈ܧ ݆ሻܾሺ݈ሻ
|ௌ|

௟ୀଵ

௜ݑ
୍ሺ܊, ݆, ۳ሻ ൌ ℙሾݏ௧ ൌ ݅|݄௧ ൌ ݆, ௧܊ ൌ ۳ሿ,܊ ൌ

,ሺ݅ܧ ݆ሻܾሺ݅ሻ

∑ ,ሺ݅ܧ ݆ሻܾሺ݅ሻ|ு|
௝ୀଵ

						
 (24) 

The Value of a flow of can be derived by comparing the value with different emission 

probabilities, as illustrated below. 

 

5.2.1.1 Stochastic Allocation Model for Flow of Information 

We generalize the problem by assuming that the availability of additional observation is 

uncertain (Memarzadeh and Pozzi 2015d, 2015e): at each time step, the observation is 

independently available only with probability ܲ, that we call “availability”. This can model 

possible random malfunctions of the monitoring system occurring with probability ሺ1 െ ܲሻ. 

Computationally, to model this, we include an additional dummy outcome for variable ݄, 

indicating that no observation is available, with a flat emission on the state domain. The 

augmented emission matrix ۳ሺ௉ሻ
ୗ , of size |ܵ| ൈ |ܪ| ൅ 1 is defined as: 

۳ሺ௉ሻ
ୗ ൌ ܲሾ۳ ૙|ௌ|ൈଵሿ ൅ ሺ1 െ ܲሻሾ૙|ௌ|ൈ|ௌ| ૚|ௌ|ൈଵሿ (25) 

where ૙௦ൈ௩ and ૚௦ൈ௩ are matrix of zeros and ones respectively, of dimension ݏ by ݒ. We call 

this the Stochastic Allocation model (SA), and we use superscript S to indicate it. We integrate 

this emission with that related to POMDP observation as follows: 
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௔,ሺ௉ሻ۽
ୗ ൌ ௔۽ ൈ ۳ሺ௉ሻ

ୗ  (26) 

where, ۽௔ is the emission matrix related to action a, and ൈ indicates cross product matrices’ 

columns. Each column of this matrix refer to possible pair ሼݖ, ݄ሽ including the dummy outcome 

for ݄. By grouping matrix for all action we get emission ۽ሺ௉ሻ
ୗ , of size |ܵ| ൈ |ܼ|ሺ|ܪ| ൅ 1ሻ ൈ  ,|ܣ|

that can be embedded in a new POMDP with parameter set દሺ௉ሻ
ୗ ൌ ൛܂, ሺ௉ሻ۽

ୗ , ,܀  .ൟߛ

Figure 27a illustrates the decision graph of the SA model. Usually, managers consider a 

monitoring effort that includes also a measure of the initial state. To take this into account, we 

define an optimal value U∗ including this initial observation, making use of Eq. (24), as follows: 

ܷ∗ሺ܊, દ′, ۳′ሻ ൌ෍ ݁௛
୍ ሺ܊, ۳′ሻ ܸ∗ሾ୍ݑሺ܊, ݄, ۳′ሻ, દ′ሿ

|ு|

௛ୀଵ
 (27) 

where ۳′ is the emission of initial observation and દ′ the parameter set of the POMDP 

following that. The difference in value ΔV୤ between the decision graphs in Figure 5 and 27a can 

be expressed as: 

Δ ୤ܸሺ܊, દ′′, દᇱ, ۳′ሻ ൌ ܸ∗ሺ܊, દ′′ሻ െ ܷ∗ሺ܊, દ′, ۳′ሻ (28) 

where દ′′ indicates the parameter set of the POMDP without the initial observation. Function 

߂ ୤ܸ assesses the benefit (if positive), of the graph in Figure 27a respect to that of Figure 5. Using 

previous equations, we assess the VoI of this flow under the SA model (ܸܫ݋୤,ୗ) as follows: 

,܊୤,ୗሺܫ݋ܸ ܲሻ ൌ Δ ୤ܸ൫܊, દ, દሺ௉ሻ
ୗ , ۳ሺ௉ሻ

ୗ ൯ (29) 

where દ is the set of parameters without the additional observations (as in the graph of 

Figure 5), while ۳ሺ௉ሻ
ୗ  and દሺ௉ሻ

ୗ  are computed as in Eqs. (25-26). As expected, the VoI is a 
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function of multiple values: the overall setting without the flow of information (described by set 

દ), the availability and accuracy of the flow of measures (described by ܲ and ۳ respectively), 

and the initial belief ܾ. We express the VoI as a function of ܾ and ܲ, for convenience of notation. 

We also note that ܸܫ݋୤,ୗሺܾ, 0ሻ is zero, while ܸܫ݋୤,ୗሺܾ, 1ሻ express the VoI when the monitoring 

system is fully reliable. 

This VoI can be compared with the cost for installing and operating the monitoring system, 

and a rational agent should adopt the system only if its cost is below its value. 

 

Figure 27. Decision graphs for the (a) SA model and (b) FA model. 

 

 

 

(a) SA

(b) FA
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5.2.1.2 Fee-based Allocation Model for Flow of Information 

While SA model assumes that the agent has no to cover any additional cost for interrogating 

the monitoring system at time ݐ. If, on the contrary, such a fee exists, the agent may choose to 

interrogate the system only if the belief raises concerns. The Fee-based Allocation model (FA) 

assumes that, at any time, variable h can be observed at non-negative cost ܥ (Memarzadeh and 

Pozzi 2015d). At time t, therefore, the agent has to face two decisions in sequence: (i) in the 

inspection sub-step, binary decision i୲ selects between Inspect and Do NOT Inspect. Only if 

inspection is performed, variable h୲ is observed and cost ܥ paid. (ii) after having processed the 

outcome of previous sub-step, in the management sub-step a management decision is taken. 

Figure 27b reports the decision graph according to the FA model, where cost ܿ௧ can be 0 or ܥ 

depending on the decision ݅௧. It should be noted that, while we could easily introduce a not 

reliable observation, by using emission ۳ሺ௉ሻ
ୗ , defined in Eq. (25), we prefer not to combine the 

FA and the SA models, for simplicity in the illustration. 

To estimate the correspondent value, we have to re-formulate Eq. (5) using two sub-steps. 

Function Vሺେሻ
୍  is the value starting from the inspection sub-step, and function Vሺେሻ

୑  is that starting 

from the management sub-step, both defined on the same belief domain. Bellman Equation now 

reads as follows: 

ە
ۖ
۔

ۖ
ۓ

ሺܸ஼ሻ
୍ ሺ܊, દ, ۳ሻ ൌ min ቊܥ ൅෍ ݁௛

୍ ሺ܊, ۳ሻ ሺܸ஼ሻ
୑ ሾ୍ܝሺ܊, ݄, ۳ሻ, દ, ۳ሿ

|ு|

௛ୀଵ
; ሺܸ஼ሻ

୑ ሺ܊, દ, ۳ሻቋ				

ሺܸ஼ሻ
୑ ሺ܊, દ, ۳ሻ ൌ min

௔∈஺
ቊݎሺ܊, ܽ, દሻ ൅ ෍ߛ ݁௭ሺ܊, a, દሻ	 ሺܸ஼ሻ

୍ ሾܝሺ܊, ܽ, ,ܢ દሻ, દ, ۳ሿ
|௓|

௭ୀଵ
ቋ

 (30) 

The decision among inspecting or not is defined by the minimization in the first line, where 

the first entry refers to inspect and the second to do not. Eq. (30) assumes that the underling 
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hidden state does not change between the inspection and the management sub-steps. To solve Eq. 

(30) requires some numerical implementation, and we illustrate in Appendix A how to re-

formulate it as an equivalent single-step stationary POMDP, compatible with traditional solvers. 

Then VoI according to the FA model, VoI୤,୊, is a function of fee cost C, and it can be computed 

as follow: 

,܊୤,୊ሺܫ݋ܸ ሻܥ ൌ ܸ∗ሺ܊, દሻ െ ሺܸ஼ሻ
୍ ሺ܊, દ, ۳ሻ (31) 

To summarize, VoI୤,୊ quantifies the benefit of being able to observe, at all times, variable h୲ 

at cost C, before taking action a୲, respect to not having this privilege. We note that VoI୤,୊ሺb,∞ሻ 

is nil and VoI୤,୊ሺb, 0ሻ corresponds to VoI୤,ୗሺb, 1ሻ, as the agent will never inspect if the fee is 

infinite and always is inspection is free. 

 

5.2.2 Value of Current Information 

In previous section, we address the evaluation of a flow of information, as that provided by a 

monitoring system. Sometimes, however, an agent has to take a decision about a current 

inspection (or information collection), not about a long-term monitoring effort. In this section, 

we investigate how to assess of VoI of short-term effort. This evaluation, however, cannot be 

independent of assumption about the availability of future information. The same piece of 

information can be relevant or redundant, depending on what other information will be available. 

Consider, as before, a management process modeled by a POMDP, as in Figure 5, and an 

inspection modeled by variable ݄, as in section 5.2.1 To assess the VoI related to ݄, we need to 

define: when will the component be inspected in the future? Unless we give a (probabilistic) 

answer to this question, the VoI is not well-defined. A possible assumption is that the component 
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will never be inspected again in the future: this is the pessimistic assumption mentioned in 

Chapter 6. An alternative one is that it will be always expected from next step: this is the 

optimist assumption (Chapter 6). Clearly, the VoI is different in these two cases. The application 

of these two cases to system-level inspection scheduling is investigated in Chapter 6. By using 

the SA and FA models, we can define more flexible assumptions. 

 

5.2.2.1 Stochastic Future Allocation Model for Evaluating the Current Information 

We can derive from the SA model an assumption on the future allocation of resources for 

information collection. Let us assume that the component will be inspected, from the next step, 

with probability ܲ. To assess the corresponding VoI of current inspection, we define function 

Δ ୡܸ as the VoI of observing h at current step, when the underlying POMDP is modeled by દ′: 

Δ ୡܸሺ܊, દ′, ۳ሻ ൌ ܸ∗ሺ܊, દ′ሻ െ ܷ∗ሺ܊, દ′, ۳ሻ ൌ Δ ୤ܸሺ܊, દ′, દ′, ۳ሻ (32) 

According to the SA model, the POMDP is actually defined by દሺ௉ሻ
ୗ , so that the 

corresponding VoI is: 

,܊ୡ,ୗሺܫ݋ܸ ܲሻ ൌ Δ ୡܸ൫܊, દሺ௉ሻ
ୗ , ۳൯ (33) 

where subscript c stands for “current”. This quantity can be intended as the difference 

between the values of two decision graphs differing one another only for the first step. Figure 28 

reports the first step for the graph with and without inspection, while all future steps are modeled 

as in figure 27a. 

In summary, Eq. (33) answers to the following question: “how much are we willing to pay 

for inspecting now, if future (free) inspections will be available with probability ܲ?” 
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Figure 28. First step of the decision graph with (a) and without (b) inspection. The future steps are modeled as in 

Figure 27a. 

 

5.2.2.2 Fee-based Future Allocation Model for Evaluating the Current Information 

Similarly, we can base the VoI computation on an assumption related to the FA model. If we 

assume that the inspection can be repeated anytime in the future, at cost ܥ, we can assess the VoI 

of current inspection as follows: 

,܊ୡ,୊ሺܫ݋ܸ ሻܥ ൌ ሺܸ஼ሻ
୑ ሺ܊, દ, ۳ሻ െ ሺܸ஼ሻ

୓ ሺ܊, દ, ۳ሻ (34) 

where, as before, ܸ୑ is the value staring from a management sub-step, while value ܸ୓ is that 

starting by inspecting without paying any cost, obtainable as: 

ሺܸ஼ሻ
୓ ሺ܊, દ, ۳ሻ ൌ෍ ݁௛

୍ ሺ܊, ۳ሻ ሺܸ஼ሻ
୑ ሾ୍ܝሺ܊, ݄, ۳ሻ, દ, ۳ሿ

|ு|

௛ୀଵ
 (35) 

By confronting with Eq. (30), we can easily check that, in the setting of information flow, the 

agent inspects at current time only if ܸܫ݋ୡ,୊ is above ܥ. 

Eq. (34) answers to the following question: “how much are we willing to pay for inspecting 

now, if future inspections will be available at cost ܥ?” 

 

(a) (b)
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5.3 Illustrative Example for Assessing VoI 

We illustrate how the VoI depends on the assumed model and the decision making 

parameters by using a simple example. Let us consider a component whose state can assume 

|ܵ| ൌ 3 values, referring to Intact (ݏ ൌ 1), Damage (ݏ ൌ 2) and Failure (ݏ ൌ 3). Two 

maintenance actions are available to the agent: Do-nothing (ܽ ൌ 1, DN) and Replace (ܽ ൌ 2,

REሻ. The transition probability table is reported in Table 2, where ܂௔ indicated the sub-table 

referring to action a. If the agent does nothing, an intact component becomes damage with 

probability 0.5% and cannot fail directly, while a damage component cannot recover and can fail 

with probability 10%. If the agent replaces the component, the state becomes intact, 

independently on the current one. Without inspection, the only available observation 

discriminates between the failure and the first two states, but it does not between intact and 

damage: so the agent is aware of the failure as soon as it happens, but it receives no symptom of 

damage. Cost of repair is assumed to be $10K and the cost of failure and downtime to be $500K, 

while the discount factor is 95%. 

Table 2. Matrices of the illustrative example. 

ଵ܂ ൌ ൥
99.5% 0.5% 0
0 90% 10%
0 0 1

൩					܂ଶ ൌ ൥
1 0 0
1 0 0
1 0 0

൩ ଵିଶ۽ ൌ ൥
1 0
1 0
0 1

൩ ۳ ൌ ൥
1 െ ߳ ߳
߳ 1 െ ߳
0 1

൩  

 

In this context, the agent is evaluating a binary inspection that can detect damages according 

to the model reported in Table 2. The outcome of the inspection can be alarm or silence, and ߳ 

defines the inspector inaccuracy, both as probability of a “false alarm” (i.e. an alarm of a intact 

component) and of “false silence” (a silence on a damaged component), as we consider the two 
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probabilities to be the same for the easiness of illustration. The inspector may not be able to 

discriminate the failure with certainty but, as noted above, the other observation can. When ߳ is 

zero, the inspector is perfect and the problem becomes as MDP after current observation is taken; 

when ߳ is 50%, the outcome of the inspector is independent by the (not failed) state, and the 

inspector become useless. 

Because of the emission matrix O, at any time the belief can assign only probability zero or 

one to the failure state: the agent cannot have uncertainty about the current failure of the 

component, and if the component is failed, the agent will replace it. Because of this, belief ܊ can 

be completely described by the current probability of damage ୈܲ୅୑. Figure 29a-b shows ܸܫ݋୤,ୗ 

as a function of belief ୈܲ୅୑, for different values of availability ܲ and inaccuracy ߳. 

It is to be noted that the VoI is not monotonically increasing with ୈܲ୅୑: it is maximum 

where the uncertainty between doing-nothing and replacing the highest (around ୈܲ୅୑ ൌ 3%), 

while for very high probability of damage the agent needs almost inevitably to repair and the 

impact of the inspections is relatively lower. Actually, VoI is the difference between two convex 

piecewise linear functions (Smallwood and Sondik 1973, Sondik 1978) and thus it is piecewise 

linear (but not necessarily convex); in Figure 29a, however, we plot it in the log-scale to 

highlight its behaviour for low probabilities, and this masks this feature. Also, VoI is 

monotonically increasing with P, as can be proven by the principle that (more) information never 

hurts (Heckerman et al. 1993). The relation between VoI and the accuracy of the inspector is 

illustrated in Figure 30a. Again, an expected, it is a monotonic relation: going from the value of a 

perfect inspector (for ߳ ൌ 0) to the nil value of an independent useless inspector (for ߳ ൌ 50%). 

Graphs as that in Figure 30a allow us to compare accuracy and availability: the value of a perfect 

inspector available with probability 10% is almost equivalent to that of inspector with 30% 
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probability of false alarm, always available. It is not always possible to define a parameter able 

to capture the information accuracy (e.g. when false negative and false positive rates are different 

parameters). However, when this is possible (as in Pozzi and Der Kiureghian (2011), Madanat 

(1993)), the VoI is monotonically related to that. 

Figure 29b reports the corresponding graph for the FA model (note that the graph for ܥ ൌ 0 

is identical to that for ܲ ൌ 1 in Figure 29a). Again, we expected that the VoI is monotonically 

decreasing with fee cost ܥ, and the monotonic relation with ߳ is illustrated in Figure 30b. 

 
Figure 29. Value of flow of information for both SA (a,b) and FA (c,d) models as a function of probability of 

damage, ஽ܲ஺ெ and inaccuracy ߳. 
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Figure 30. Value of flow of information as a function of inaccuracy, ߳ for (a) SA model with change in ܲ and (b) 

FA model with change in ܥ. 

Figure 31 shows the values for the current inspection. First, we note that current VoI is zero 

when (as for ୈܲ୅୑ equals to zero or one) there is no uncertainty on the component’s state. As for 

those related to the flow, VoI is monotonically decreasing with inspector inaccuracy ߳. However, 

the VoI is not monotonically related to either availability ܲ or fee ܥ anymore. As noted in 

(Krause et al. 2008, Krause and Gusterin 2009, Memarzadeh and Pozzi 2015c), the VoI of one 

piece of information is related in a complicated way to the availability of others. If inspector is 

perfect and the probability of damage is 1%, the agent is ready to pay about $1K when ܥ ൌ $1K, 

and up to $2K when ܥ ൌ $3K. This can be explained as follows: when future inspections 

become expensive, it becomes more needed to inspect now. If, on the other hand, the probability 

of damage if 10% and inaccuracy is 25%, the agent is willing to pay up to about $2K when 

ܥ ൌ $1K, and up to about $500 when ܥ ൌ $3K. To explain this opposite behaviour, we reason as 

follows: when future inspections relatively cheap, it may be convenient to inspect at the present 

and future time without replacing; but when future inspections are expensive, it become pointless 

to inspect now, and it is more convenient to replace. Furthermore, in our framework, it is not 
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guarantee that the value of the flow is higher than that on the current inspection alone, even when 

parameters are the same. To understand why, sufficient is to note that, when availability ܲ is 

zero, the flow VoI is zero (as there is nothing to evaluate), while the current VoI is not (as, in 

that case, zero availability means that the component will not be inspected anymore in the 

future). Generally, availability and fee refers only to the future, when evaluating the current 

inspection, and also the present, when evaluating the flow. 

 
Figure 31. Value of current information for both SA (a,b) and FA (c,d) models as a function of probability of 

damage, ஽ܲ஺ெ and inaccuracy ߳. 
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The peaks of VoI in Figure 31a-b have similar values, independently on availability ܲ, 

ranging from 0.1 to 1. However, this cannot be generalized to other problem settings. On the 

contrary, availability generally affects all aspects of current VoI. To show this, we modify the 

parameters of the illustrative example in Table 2 by changing the cost function and transition 

probability. In the first scenario, we only change the cost of repair to $1K and cost of failure to 

$2K. The results are reported in Figure 32a-b for ܲ ൌ 0.1 and ܲ ൌ 1, respectively. The current 

VoI now decays with increase in availability. In the second scenario, component deteriorates 

faster; to model this, we change the transition probability (under action Do-Nothing) to the 

following one: 

ଵ܂ ൌ ൥
98% 2% 0
0 85% 15%
0 0 1

൩ 

 The results are reported in Figure 32c-d: now current VoI increases with future availability. 

These examples illustrate how current VoI may be highly sensitivity to future availability, and 

how the relation is complicate: this motivates the research of appropriate assumptions of this 

availability. 
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Figure 32. Value of current information for scenario 1 (a,b) and 2 (c,d) as a function of probability of damage, ஽ܲ஺ெ 

and inaccuracy ߳. 

 To better illustrate the relation between future availability of observations and management 

decisions, Figure 32 shows how optimal policy ߨ∗ results for the SA and FA models. For this 

problem, the agent will do nothing until the probability of damage reaches a threshold value, 

஽ܲ஺ெ
∗ , and she will replace after that (and if component fails), so that policy ߨ∗ is completely 

defined by the threshold. Figure 32a and b reports the threshold for the SA and FA models 

respectively, as a function of inspector inaccuracy, for different values of availability of fee. We 

note that the more inaccurate the inspector, the more conservative the policy. Also, the less 

available, of the more expensive the inspector, the more conservative the policy. An inspector 

0.1% 1% 10% 100%
0

1

2

3

4

5

6

7

8

9

0.1% 1% 10% 100%
0

1

2

3

4

5

6

7

8

9

0.1% 1% 10% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1% 1% 10% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
(a) 

(b)  (d) 

(c) 

Probability of Damage  Probability of Damage 

[K
$
]

[K
$
]



  
 

87 
 

with fee cost $5K and inaccuracy 30% is completely useless, as it will never be used: this 

follows consistently from both Figure 32b and 30b. 

 
Figure 33. Threshold value, ஽ܲ஺ெ

∗ , that the policy changes from do-nothing to repair as a function of inaccuracy, ߳, 
for (a) SA model with change in ܲ, and (b) FA model with change in ܥ. 
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Chapter 6 

 

System-level Inspection Scheduling 
 

 

Abstract 

Value of information (VoI) is a key concept for directing explorative actions, and in the 

context of infrastructure operation and maintenance, it has application to decisions about 

inspecting and monitoring the condition states of the components. The component-level VoI can 

be used as a heuristic for assigning priorities to system-level inspection scheduling, dealing with 

the limited resources for data collection. In this chapter, we evaluate the performance of the 

stochastic future allocation (and its two limiting scenarios called “pessimistic” and “optimistic”) 

and fee-based future allocation models for integrating adaptive maintenance planning based on 

POMDP and inspection scheduling based on a tractable approximation of VoI suggested by these 

models. We illustrate how these models can be used at system-level inspection scheduling with 

several numerical and analytical examples. Finally, we introduce analytical formulas based on 

these models to predict the impact of a monitoring system (or a piece of information). 
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6.1 Problem Statement 

Suppose an agent is managing a system made up of several components, periodically 

receiving imperfect observations about their condition states. The agent also has access to 

inspectors that can collect additional information but, due to resource restrictions, only a limited 

number of components per time can be inspected. The problem we focus on is how to schedule 

inspections and integrate this task in the maintenance policy. 

 

6.1.1 General Approaches for Inspection Scheduling 

Priority on sequential information gathering can be based on measures of uncertainty of 

component condition state: the less we know about a component, the higher the need to inspect 

it. In this context, methods based on entropy (Cover and Thomas 2006) have been developed for 

sensor placement (Krause et al. 2008, Malings et al. 2013). Entropy provides a useful heuristic, 

but it does not guarantee an optimal ranking among inspections. Some uncertainty, in fact, is 

irrelevant in the maintenance process and should not be considered in the ranking as, for 

example, when uncertainty for a specific component is high only among states that are all 

acceptable and related to the same optimal maintenance action. Furthermore, that measure is not 

affected by the relative importance of each component. 

An alternative heuristic is related to components’ probability of failure, as higher probability 

may call for more urgent attention (Straub and Faber 2006). It should be noted that for binary-

state components and low probabilities, this metric is consistent with the previous one based on 

entropy. While this metric is optimal in some applications, in a general context it is questionable 

for two reasons: (i) when the condition state is defined by many possible values, it is not 
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obvious how to define a unique “probability of failure”. (ii), for high probability of failure, the 

metric would lead to undesirable effects, assigning high priority to inspection of components 

that are known (even with certainty) to be in an unacceptable state, for which the prior 

maintenance action cannot be changed by any inspection outcome. 

VoI can be understood as a combination of the previous intuitions, measuring only the 

uncertainty that is relevant for the maintenance process and impacts on decision-making. 

 

6.2 Proposed Method 

6.2.1 Problem Formulation 

Consider a system made up of ܰ components, each modelled by an independent POMDP 

with known model parameters. Optimal system-level maintenance can be found by solving 

independently the component-level POMDPs. But now suppose that, at each time step, the agent 

has access to ܭ ൑ ܰ inspectors that, depending on the setting, can provide perfect or imperfect 

observations on condition states: at each time-step, the agent has to decide which components to 

inspect. Because this decision has to be taken at system-level, the management processes of all 

components become dependent: if some components are inspected, some others cannot be.  

Figure 33 provides a decision graph for the system level maintenance process. We add 

subscript ݅ to indicate that state, observation, action and reward refers to component ݅. 

Furthermore, variable ݄௜,௧ on domain ܪ identifies the outcome of inspection of component ݅ at 

time ݐ, that can be observed if inspection is executed. Formally, inspection accuracy can be 

modelled by invariant emission probability function ۳, defined over the space of states and 

inspection outcomes ܵ ൈ ܪ → ሾ0,1ሿ as follows: ܧሺݏ, ݄ሻ ൌ ܲ൫ ݄௜,௧ ൌ ݄ ∣∣ ௜,௧ݏ ൌ ݏ ൯. 
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Figure 34. Decision graph for a system made up of ܰ components modeled as POMDPs. Variables ݄s indicate 
outcomes of inspections. 

In a more general setting, each element of the 8-tuple defining the POMDP can be 

component-dependent: for example, the number of possible condition states can be different for 

each component. Furthermore, function ۳ could also depend on component and action. 

However, for ease of notation, we assume the 8-tuple and function ۳ to be the same for all 

components, the more general setting being a trivial extension of our formulation. Also, we do 

not include any inspection cost and instead impose a constraint on the number of available 

inspectors, the extension to include inspection cost being straightforward. It should be noted 

that, given the maintenance actions, stochastic processes are independent for each component, 

so beliefs after the initial step are generally different across components, because of the 

randomness in the components’ evolution and emission. 

POMDP
component  

POMDP
component  

…
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The problem of inspection scheduling can be described as “sequential variable selection”: at 

time step ݐ, while taking maintenance actions, the agent has to select only ܭ among ܰ variables 

ሼ݄ଵ,௧, … , ݄ே,௧ሽ to observe. 

In this formulation, we assume that the agent can inspect any component at any time, without 

the need of planning inspections well in advance. Furthermore, inspected components at each 

step have not to be close in space. Removing these assumptions would induce dependence 

among decisions in time and space, and require a more complicated formulation. 

 

6.2.2 Exact Solution 

In principle, the problem can be formulated as a single POMDP at system-level. We can list 

all component states, observations and actions at current time step into an augmented state ݏା, 

observation ݖା and action ܽା, defined on domains ܵା, ܣା and ܼା of size |ܵା| ൌ |ܵ|ே, |ܣା| ൌ

|ே and |ܼା|ܣ| ൌ |ܼ|ே respectively. The maintenance process alternates two types of decisions: 

the agent has to select maintenance actions ܽା and to select locations ܻ to send inspectors to, on 

domain Ω௒ of size |Ω௒| ൌ ቀܰ
ܭ
ቁ ≅ ܰ௄. Outcomes of all inspections are listed in augmented 

variable ݄ା, on domain ܪା of size |ܪା| ൌ  ௄. Details of the formulations are listed in|ܪ|

Appendix B. In summary, the size of each augmented domain (states, observations, actions) 

grows exponentially with the number of components, and the problem becomes intractable 

except for small problems. For example, when ܰ ൌ ܭ ,25 ൌ 1, |ܵ| ൌ |ܣ| ,3 ൌ 2, |ܼ| ൌ 4, and 

|ܪ| ൌ 3, the system-level dimension |ܵା| is 8.47 ൈ 10ଵଵ, which is computationally intractable. 

In the exact formulation, current inspection scheduling is coupled with future scheduling, as 

usually happens in sequential decision making. 
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6.2.3 Pessimistic and Optimistic Heuristics 

In this section, we propose an approximate method to find sub-optimal solutions to the 

problem using the concept of VoI, by decoupling the complicated system-level optimization 

problem to N tractable component-level POMDP problems (Memarzadeh and Pozzi 2015c). 

We introduce the idea by discussing Figure 34, which reports three schemes of observing 

variables ݄. At time ݐ, the agent should select the set of ܭ variables with the highest VoI. Figure 

33a shows a realization of variable selection, for ܭ ൌ 2. However, VoI of any set of current 

variables depends on availability of observations at future time steps. For example, the VoI of 

inspecting component i at the current step depends on whether that component will be inspected 

at the next step or not. However, future inspection scheduling has not been fixed yet, so the 

problem has the complexity described in 6.2.2. On the other hand, it should be noted that, 

because of independence among component POMDPs, once future inspection scheduling is 

fixed, VoI can be computed independently for each variable at the current step, and optimization 

can be decoupled into ܰ component-level optimization problems. 

Two limit cases we investigate in this paper are shown in Figure 34b-c, and we refer to them 

as optimistic and pessimistic respectively. The optimistic approach assumes all components will 

be inspected from the next time step onwards, while the pessimistic approach assumes that no 

component will ever be inspected after the current time step. Although neither approach is 

consistent with observing K variables per step, they provide limiting scenarios for the VoI. 
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Figure 35. For ܭ ൌ 2, (a) arbitrary consistent, (b) optimistic and (c) pessimistic assumptions on inspections 
scheduling. 

As noted above, the value related to any component can be computed independently when 

inspection scheduling is fixed. To compute pessimistic and optimistic VoI, we first define ௜ܸ
ା௔→ௗ 

as the optimal value of managing component ݅, evaluated at time ݐ, when inspections are 

scheduled for all times from ݐ ൅ ܽ to ݐ ൅ ݀ for that component. Specifically ௜ܸ
∅, ௜ܸ

ା଴, ௜ܸ
ାଵ→ஶ 

and ௜ܸ
ା଴→ஶ refer to never inspecting the component, inspecting it at the current time only, 

inspecting it from the next step onwards, and always inspecting the component, respectively. 
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6.2.3.1 Component-level Optimal Values 

For component i, we define two functions related to alternative emission probabilities: 

௜ܸ
ሺ௓ሻሺܾሻ and ௜ܸ

ሺ௓,ுሻሺܾሻ indicate optimal component value without and with inspections 

respectively at all steps, starting from belief ܾ. Both functions can be evaluated using traditional 

POMDP solvers. While function ௜ܸ
ሺ௓ሻ derives from emission ۽, function ௜ܸ

ሺ௓,ுሻ derives from 

emission ۽ and ۳, combining observations and inspections. In detail, we can concatenate 

observations and inspections in variable ݀ ൌ ሼݖ, ݄ሽ, on domain ܩ ൌ ܼ ൈ |ܩ| of size ܪ ൌ  .|ܪ||ܼ|

Because of conditional independence of ݖ and ݄ given ݏ, we can define the emission function 

including inspections as ܩሺݏ, ܽ, ݀ሻ ൌ ܱሺݏ, ܽ, ,ݏሺܧሻݖ ݄ሻ. 

Value ௜ܸ
∅ is equal to ௜ܸ

ሺ௓ሻ, while ௜ܸ
ା଴ can be computed as follows from the current belief of 

the component ܾ௜: 

௜ܸ
ା଴ ൌ෍ ௝݁

୍ሺ܊, ۳ሻ ௜ܸ
ሺ௓ሻሾ୍ݑሺ܊, ݆, ۳ሻ, દሿ

|ு|

௝ୀଵ
 (36) 

Where ௝݁
୍ and ୍ݑ is defined in Eq. (24). 

Figure 35 shows the decision tree for computing ௜ܸ
ାଵ→ஶ. T do so, we need to first find the 

reachable belief states in the next time step from the current belief, ܾ௜. If action ܽ is taken, belief 

is updated to ܾ௜,௔
ᇱ ሺݏ௧ାଵሻ ൌ ∑ ܾ௜ሺݏ௧ሻܶሺݏ௧, ܽ, ௧ାଵሻ௦೟ݏ . As from the next time step, the agent always 

inspects, the problem can be formulated as a POMDP with emission probabilities ۵ and 

observation ݀, as follow: 

௜ܸ
ାଵ→ஶ ൌ min௔∈஺ ቊݎሺ܊, ܽ, દሻ ൅ ෍ߛ ௝݁ሺ܊, ܽ, દሻ ௜ܸ

ሺ௓,ுሻሾݑሺ܊, ܽ, ݆, દሻ, દሿ
|஽|

௝ୀଵ
ቋ (37) 
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where ௝݁ and ݑ are defined in Eq. (3). 

 

Figure 36. Decision tree for computing ௜ܸ
ାଵ→ஶ. 

 

6.2.3.2 VoI According to Pessimistic and Optimistic Heuristics 

If inspection scheduling is decoupled, the agent allocates available inspectors to components 

based on an importance measure ܯܫ. As ܭ inspectors are available, only the ܭ components with 

highest importance measure can be inspected. Both the optimistic and pessimistic approaches 

agree that importance measure ܯܫ௜ for component ݅ is the VoI of current inspection on that 

component, but they disagree on how to approximate VoI. 

As the pessimistic approach (P) relies on the assumption that no inspection will be available 

from the next time step onwards, pessimistic VoI (ܸܫ݋ሺ୔ሻ) for component i can be computed as 

follows: 

…

… … …

time 

time 
inspection



  
 

97 
 

௜ܯܫ
ሺ୔ሻ ൌ ௜ܫ݋ܸ

ሺ୔ሻ ൌ ௜ܸ
ା଴ െ ௜ܸ

∅ (38) 

On the contrary, the optimistic approach (O) assumes that all components will be inspected 

starting next time step, and the corresponding optimistic VoI (ܸܫ݋ሺ୓ሻ) is derived as: 

௜ܯܫ
ሺ୓ሻ ൌ ௜ܫ݋ܸ

ሺ୓ሻ ൌ ௜ܸ
ା଴→ஶ െ ௜ܸ

ାଵ→ஶ (39) 

At each time step after having processed imperfect observations, the agent sends inspectors 

to components with the highest importance measures and, after receiving inspection outcomes, 

applies the resulting optimal maintenance policy. It is worth noting that the agents use different 

policies: that of the pessimistic approach is based on value function ௜ܸ
ሺ௓ሻ, while that of the 

optimistic approach is based on ௜ܸ
ሺ௓,ுሻ. 

 

6.2.3.3 Bounds on the Value of the Pessimistic and Optimistic Approaches 

Selecting an approach for inspection scheduling corresponds to selecting a policy, and the 

effectiveness of any policy should be assessed by its value. However, no closed formula is 

available to assess beforehand the values following the optimistic or the pessimistic policy, that 

we name ܷሺ୓ሻ and ܷሺ୔ሻ respectively. In this section, we define bounds for these values, which 

are relevant for two reasons: (i) to compare the effectiveness of different policies and (ii) to 

predict the overall expected discounted cost of the maintenance process. Furthermore, we can 

provide also bounds for the intractable optimal policy, to allow for an indirect comparison with 

the heuristics. 
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Let us define ܹ∅ ൌ ∑ ௜ܸ
∅ே

௜ୀଵ  and ܹାଵ→ஶ ൌ ∑ ௜ܸ
ାଵ→ஶே

௜ୀଵ  as the system-level values, while 

never inspecting any component and always inspecting all components from the next time step 

onwards, respectively. As in Section 6.2.2, let us define ܻ as the decision variable for inspection 

scheduling, listing the identification of K components to be inspected. The pessimistic estimate 

௒ܹ
ሺ୔ሻ of the system-level value is as follows: 

௒ܹ
ሺ୔ሻ ൌ ܹ∅ െ෍ ௜ܸ

∅

௜∈௒
൅෍ ௜ܸ

ା଴

௜∈௒
ൌ ܹ∅ ൅෍ ௜ܫ݋ܸ

ሺ୔ሻ

௜∈௒
 (40) 

It should be noted that, if no further inspection is available, ௒ܹ
ሺ୔ሻ is the optimal value, 

scheduling according to ܻ at the current step. Similarly, the optimistic estimate ௒ܹ
ሺ୓ሻ of the 

system-level value is as follows: 

௒ܹ
ሺ୓ሻ ൌ ܹାଵ→ஶ െ ∑ ௜ܸ

ାଵ→ஶ
௜∈௒ ൅ ∑ ௜ܸ

ା଴→ஶ
௜∈௒ ൌ ܹାଵ→ஶ ൅ ∑ ௜ܫ݋ܸ

ሺ୓ሻ
௜∈௒   (41) 

which, again, is the optimal value if inspections are available for all components from the 

next step onwards, scheduling according to ܻ at the current step. 

ܻሺ୔ሻ and ܻሺ୓ሻ are the scheduling assigned by the pessimistic and optimistic policy 

respectively, following the measures  defined in Eqs. (38-39). Corresponding optimal system-

level estimated values are computed as follows: 

൝
∗ܹ
ሺ୔ሻ ≜

௒ܹሺౌሻ
ሺ୔ሻ ൌ max௒ ௒ܹ

ሺ୔ሻ

∗ܹ
ሺ୓ሻ ≜

௒ܹሺోሻ
ሺ୓ሻ ൌ max௒ ௒ܹ

ሺ୓ሻ  (42) 

∗ܹ
ሺ୔ሻ and ∗ܹ

ሺ୓ሻ are defined as the maximum of the pessimistic and optimistic estimates over 

all possible allocation of inspections, ܻ, respectively. 
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Bounds for ܷሺ୔ሻ and ܷሺ୓ሻ are provided below and proved in Appendix C: 

൝ ∗ܹ
ሺ୔ሻ ൑ ܷሺ୔ሻ ൑

௒ܹሺౌሻ
ሺ୓ሻ

		 ܷሺ୓ሻ ൑ ∗ܹ
ሺ୓ሻ

  (43) 

ܷሺ୔ሻ is bounded between two values that can be computed beforehand. ܷሺ୓ሻ has an upper 

bound higher than the pessimistic one, but no relevant lower bound (or course, lower bounds 

can be found, but those computable beforehand are usually much lower than ∗ܹ
ሺ୔ሻ). 

Another upper bound for the value of each possible policy is that of the optimal policy (ܷ∗) 

defined as in Section 6.2.2. U∗ cannot be computed beforehand, and it is bounded as follows: 

∗ܹ
ሺ୔ሻ ൑ ܷ∗ ൑ ∗ܹ

ሺைሻ  (44) 

Figure 36 summarizes the inequalities among bounds for all values. The key observation is 

that adopting the optimistic approach exposes the agent to low values, while the pessimistic 

choice has a lower bound. The next section and the appendix provide examples and clarification 

about these behaviours. 

 

Figure 37. Bounds over values of the pessimistic, optimistic, and optimal agents. 

 

 

bounds

…
value
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6.2.4 Stochastic Future Allocation  

As illustrated in Section 5.2.2.1, by using the SA model we can assess the value of current 

inspection assuming the component will inspected randomly with probability ܲ at any future 

step. When all components belong to the same typology (i.e. parameter set દ is the same for each 

component), it is natural to assign availability as ܲ ൌ  to everyone, for the assessment of the ܰ/ܭ

current VoI. When components are heterogeneous, it is more challenges to assign appropriate 

availability, but we recommend two rules. First, to assign future availabilities ሼ ௠ܲሽே
௠ୀଵ, where 

௠ܲ is that assigned to component ݉, so that the sum of them all is one. Doing so, the expected 

value of inspections at any future step would be ܭ, as the constraint imposes. Second, if 

empirical data about the rate of inspection per each component, under an effective policy, are 

available, those data can be used for calibrating the availabilities. 

The SA-based approach is approximated for two reasons: because the constraint, which must 

be exactly fulfilled according to the problem statement, can only be fulfilled in the expected 

sense; furthermore, the approach assume that future inspections are randomly scheduled, while 

they are actually the result of an optimization process. 

 

6.2.5 Fee-based Future Allocation 

The use of the FA-based current VoI, as shown in Section 5.2.2.2, can be intended as an 

effort to overcome the latter limitation of SA-based approach. The FA approach recognizes that 

future inspections will be allocated to components that need them. This need can be 

approximated by the readiness to pay fee ܥ to receive the inspection. Therefore, even if no actual 

fee will ever be paid, a virtual fee ܥ is assumed, so that future inspectors are supposed to be 
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allocated to those ready to pay it. By doing this, the FA-based approach mimics the output of the 

future optimizations for inspection scheduling. If ܥ is set to a low value, too many components 

will assume the inspector available at future times, while too few will do if ܥ is too low. We 

would recommend to set ܥ so that, in the expected sense, ܭ components will ask for future 

inspections. Again, if data are available about the VoI during previous steps, that ܥ can be 

estimated as that necessary and sufficient to win the auction and get the inspector, in the average. 

 

6.2.6 Predicting the Impact of Optimal Inspection Scheduling 

By making use of the flow analysis, we can also assess the overall economic impact of 

integrating inspectors in the management process, respect to not using any inspector at all 

(Memarzadeh and Pozzi 2015d). According to SA model, the ܭ inspectors will be used randomly 

among the ܰ components, with corresponding availability ௠ܲ for component m. The overall 

system-level value of this distributed flow of information (ܸܵܫ݋ୗ) is: 

ୗܫ݋ܸܵ ൌ ∑ ,௠܊୤,ୗ,௠ሺܫ݋ܸ ௠ܲሻே
௠ୀଵ   (45) 

where ܸܫ݋୤,ୗ,୫ is computed as in Eq. (29) using all parameters for component m, including 

the initial belief ܾ௠. Eq. (45) tends to underestimate the system-level VoI, as it assumes that 

inspectors are allocated randomly. 

The corresponding estimate for the FA model is as follows: 

୊ܫ݋ܸܵ ൌ 	 ൣ∑ ,௠܊୤,୊,௠ሺܫ݋ܸ ሻேܥ
௠ୀଵ ൧ െ ஼∙௄

ଵିఊ
  (46) 
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where ܸܫ݋୤,ୗ,୫ derives from Eq. (31), and index m refers to the corresponding component. 

The FA model assumes that all components ready to pay ܥ will get the inspector, while the 

second term on the right hand side of Eq. (46) takes into account that the fee is not actual. 

 

6.3 Numerical Investigation of System-level Inspection Scheduling 

6.3.1 Pessimistic and Optimistic Approaches 

6.3.1.1 Example A: A System made up of 2-state Components 

To investigate the performance of proposed approaches depending on the system size, we 

investigate how values depend on number of components in a binary setting, where each 

component can be in one of two possible states: Intact (ݏ ൌ 1) or Failure (ݏ ൌ 2). Two 

maintenance actions are available to the agent, namely: Do-Nothing (a ൌ 1) and Replace (ܽ ൌ

2). No additional observation is available (equivalently, function ۽ is flat on all states), other 

than the outcomes of only one perfect inspector (ܭ ൌ 1). After doing nothing, the condition state 

cannot recover, while replacement improves the component’s state to intact. The transition 

probabilities for all components are reported in Table 3, where ሼ ௟ܶሽ௠,௡ ൌ ܶሺݏ௧ ൌ ݉, ܽ ൌ

݈, ௧ାଵݏ ൌ ݊ሻ. The cost of replacing is assumed to be $10K, and the cost of loss of production due 

to failure and down time to be $10K, as well. The initial belief state is assumed to be 80% for 

intact state and 20% for failure, and discount factor is 0.95. 
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Table 3. Transition and emission probabilities for numerical examples in section 6.3.1. 

example A 

ଵ܂      ൌ ቂ0.95 0.05
0 1

ቃ																	܂ଶ ൌ ቂ1 0
1 0

ቃ 

example B 

ଵ܂      ൌ ൥
0.90 0.08 0.02
0 0.90 0.10
0 0 1

൩				܂ଶ ൌ ൥
1 0 0

0.90 0.10 0
0.90 0.10 0

൩ 

example C 

ଵ܂      ൌ ൥
0.90 0.08 0.02
0 0.90 0.10
0 0 1

൩				܂ଶ ൌ ൥
0.90 0.10 0
0.80 0.20 0
0 0 1

൩					܂ଷ ൌ ൥
1 0 0
1 0 0
1 0 0

൩ 

ଵ۽      ൌ ଶ۽ ൌ ଷ۽ ൌ ൥
0.60 0.20 0.20 0
0.20 0.60 0.10 0.10
0 0.20 0.20 0.60

൩ 

     ۳ூ௉ ൌ ൥
0.90 0.08 0.02
0.05 0.90 0.05
0.02 0.08 0.90

൩				۳௉ ൌ ൥
1 0 0
0 1 0
0 0 1

൩	

 

 

Figure 37 shows the VoI based on the pessimistic and optimistic approaches, as calculated in 

Eq. (38) and (39), respectively, as a function of the probability of failure, ிܲ ൌ ܲሺݏ௧ ൌ 2ሻ. VoI is 

always non-negative (Heckerman et al. 1993) and it is zero when the state of a component is 

known with certainty ( ிܲ ൌ 0 or ிܲ ൌ 1). The maximum VoI occurs for ிܲ equal to 27.5% and 

to 53.0% for pessimistic and optimistic respectively. The difference between these two graphs 

indicates that priorities among components to be inspected are different depending on the 

approach. 
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Figure 38. VoI as a function of the probability of failure ( ிܲ) based on pessimistic and optimistic approaches. 

Processing 100 forward simulations, Figure 38 compares the values of pessimistic and 

optimistic policies normalized with respect to number of components as ܰ increases, reporting 

the 95% confidence intervals. For high ܰ, ܷሺ୔ሻ moves towards its lower bound ∗ܹ
ሺ୔ሻ: this 

behavior can be expected, as the assumption of not having any inspector available from next step 

becomes more and more realistic as ratio ܭ/ܰ goes to zero. On the other hand, the assumption of 

the optimistic agent becomes less and less accurate as that ratio vanishes, and it is to be noted 

that ܷሺ୓ሻ goes below even ∗ܹ
ሺ୔ሻ. At a first glance, it may seem counter-intuitive that the 

optimistic agent receives a value lower than that achievable with no future inspections at all, but 

this can be explained by analyzing the optimistic planning. By relying on the availability of 

future inspections that actually will not be done, the optimistic agent plans poorly, e.g. 

postponing repairs that should be timely executed. In detail, both agents will repair after 

detecting a failed component and do nothing when detecting an intact one, however their 

behavior for un-inspected components is different: the pessimistic agent will repair when 
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ிܲ ൐ 27.5%, while the optimistic repairs only when ிܲ ൐ 53.0% (it should be noted that these 

values correspond to the maximum VoI). While the former is the optimal policy without 

inspections, the latter policy is not effective when ܭ/ܰ is small. This also sheds light on why, as 

can be noted in Figure 37, ܸܫ݋ሺ୓ሻ can be higher or lower than ܸܫ݋ሺ୔ሻ for some values of ிܲ. 

Despite it seeming intuitive that an inspection has higher value if it cannot be repeated at the next 

step, it is well known that the value of observing one variable can be increased or decreased by 

the availability of other observations (Krause and Guestrin 2009). 

In this example, the upper bound for pessimistic (
௒ܹሺౌሻ
ሺ୓ሻ ) and optimistic ( ∗ܹ

ሺ୓ሻ) approaches is 

the same at the initial step, because beliefs for all components are the same. We note that the 

maximum gap between optimistic and pessimistic upper bounds can be found as follows: 

∗ܹ
ሺைሻ െ

௒ܹሺುሻ
ሺைሻ ൑ ܭ max

௜∈ሼଵ,…,ேሽ
ቄmax܊ ௜ܫ݋ܸ

ሺைሻቅ  (47) 

where ܊ is the belief, that here can be described by ிܲ. For this example, the maximum gap 

is $4K. 

When ܰ equals 2 and 5, we can also compute the optimal value following the procedure 

described in section 6.2.2. The black circle in the graph shows that, for this case, both pessimistic 

and optimistic agents perform approximately as good as the optimal agent. 
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Figure 39. Value of pessimistic and optimistic agents on management of the system in example A (CI stands for 

confidence interval). 

On this example, the performances of stochastic and fee-based future allocation models 

(described in Chapter 5) are similar to that of the pessimistic approach. However, we will show 

in Memarzadeh and Pozzi (2015c) and (2015e) that the stochastic model can outperform both 

pessimistic and optimistic in some settings. Moreover, we will show in section 6.3.2.3 that fee-

based model can better capture optimal behavior respect to the stochastic model. 

6.3.1.2 Example B: A System made up of 3-state Components 

To show that the optimistic approach can outperform pessimistic when the number of 

inspector is high e.g. for ratio ܭ/ܰ close to one), we investigate a system made up by ܰ ൌ 20 

components, by varying the number of inspectors. The condition state of each component is 

discretized into three possible states (Intact, Damaged, and Failure); again, two actions are 

available to the agent namely Do-Nothing (ܽ ൌ 1) and Repair (ܽ ൌ 2), and no observation is 

available other than the ones from perfect inspectors. The transition probabilities are reported in 
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Table 3. Cost of repair and failure are $30K and $100K respectively, while discount factor is 

0.95. Figure 39 shows the outcomes from 100 simulations: when ܭ ൌ 2, pessimistic outperforms 

optimistic while, as ܭ increases, optimistic performs better for ܭ ൐ 10, as her assumption is 

closer to reality. 

 

Figure 40. Value of pessimistic and optimistic agents on management of the system in example B (CI stands for 

confidence interval). 

 

6.3.1.3 Example C: Wind Farm Management 

By adapting the model presented in Chapter 3 and 4, we investigate the performances of the 

approaches for the operation and maintenance of a wind farm (the system) consisting of ܰ ൌ 25 

turbines (the components). Each turbine is in one of three states: Intact (INT: ݏ ൌ 1), Damaged 

(DAM: ݏ ൌ 2), and Failed (FAIL: ݏ ൌ 3); four possible imperfect observations are available, 

along with three actions, namely: Do-Nothing (DN: ܽ ൌ 1), Repair (RE: ܽ ൌ 2), and Replace 
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(REP: ܽ ൌ 3). The transition and emission probabilities are reported in Table 3. We investigate 

the process for different numbers ܭ of inspectors, in set ሼ1, 2, 3, 5, 10, 20ሽ. We also investigate 

two inspection accuracies: perfect and imperfect. The emission probabilities for imperfect 

inspection (۳୍୔) and perfect inspection (۳୔) are reported in Table 3. 

The repair, replacement and failure costs are $10K, $30K and $40K respectively. The initial 

belief state is 80% for intact and 20% for damaged state, while the discount factor is 0.95. 

Figure 40 shows the optimal policy as a function of belief without future inspections (a), and 

with use of imperfect (b) and perfect (c) inspections. The belief’s domain is represented by an 

equilateral tringle, and each belief’s component can be read by following the grid lines up to the 

corresponding side. Policy without inspections is more conservative than that of imperfect 

inspections, which in turn, is more conservative than that with perfect ones. 



  
 

109 
 

 

Figure 41. Policy as a function of the belief for management of the wind farm in example B (a) without any 
inspector, (b) with imperfect inspectors, and (c) perfect inspectors that can be available for all components at all 

time-steps. 
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if ratio ܭ/ܰ is equal to zero and one respectively (of course, in both settings no inspection 

scheduling is needed, and only planning is relevant). A reasonable conjecture that could be 

supported by this remark is that the optimistic value ܷሺ୓ሻ is above pessimistic value ܷሺ୔ሻ when 

ratio ܭ/ܰ is sufficiently high. However, this conjecture is incorrect in general: even one missing 

inspector (K ൌ N െ 1) can have a significant negative impact in the optimistic planning. On the 

other hand, there are cases in which ܷሺ୓ሻ is above ܷሺ୔ሻ even if the ratio is arbitrary low. 

 

Figure 43. Comparison between the performance of the (a) pessimistic and (b) optimistic approaches with perfect 
and imperfect inspectors. 

 

6.3.1.4 Discussion on Additional Examples 

Pessimistic and optimistic approaches are correct if ratio ܭ/ܰ is equal to zero and one 
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relevant). A reasonable conjecture that could be supported by this remark is that the optimistic 

value ܷሺ୓ሻ is above pessimistic value ܷሺ୔ሻ when ratio ܭ/ܰ is sufficiently high. However, in 

Appendix D, we discuss two examples, for which analytical solutions are available, disproving 

this conjecture. In summary, even one missing inspector (ܭ ൌ ܰ െ 1) can have a significant 
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negative impact in the optimistic planning. On the other hand, there are cases in which ܷሺ୓ሻ is 

above ܷሺ୔ሻ even if the ratio is arbitrary low. 

 

6.3.2 Stochastic and Fee-based Approaches 

6.3.2.1 Example of Pavement Management 

We start with an example adapted from that reported by Guillaumot et al. (2003), about 

pavement management. A component indicates here a road segment. The number of possible 

condition states is 8, where ݏ ൌ 1 indicates Intact and ݏ ൌ 1 Failure. The agent can do-nothing 

(ܽ ൌ 1, DN) or replace (ܽ ൌ 2, REሻ. Transition and emission probabilities are reported in Table 

4: while ܂ଵ models the degradation process, ܂ଵ models an imperfect replacement. Emission ۽ଵିଶ 

defines a binary observation that, depending on its outcome, can be a symptom of a good or of a 

deteriorated state. Cost of repair is $20K and the cost of failure, to be paid when ݏ is 8, is $1M, 

while the discount factor is 95%. 
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Table 4. Parameters of pavement management example. 

ଵ܂ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0.8 0.2 0 0 0 0 0 0
0 0.75 0.25 0 0 0 0 0
0 0 0.7 0.3 0 0 0 0
0 0 0 0.65 0.35 0 0 0
0 0 0 0 0.6 0.4 0 0
0 0 0 0 0 0.55 0.45 0
0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	 

ଶ܂ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … 0
0.6 0.4 0 … ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ଵିଶ۽								 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0.1 0.9
0.2 0.8
0.3 0.7
0.5 0.5
0.7 0.3
0.8 0.2
0.9 0.1
1 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

 

 

Figure 43 shows a realization of management for an independent component, following the 

corresponding optimal policy. Graph (a) reports the belief, (b) the observations and taken 

actions, and (c) the underlying realized state evolution that, needless to say, is not accessible to 

the agent. 
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Figure 44. Realization of management for an independent component without availability of inspectors: (a) belief 
state, (b) damage symptoms and repairs, and (c) underlying condition states. 

Figure 44 reports the realized management of a component is a system made of 20 (i.e., 

ܰ ൌ 20) modelled as belonging to the same typology. Now the agent has also access to two 

perfect inspectors (i.e., ܭ is two and ۳ the identity matrix) that needs to be allocated at each time 

step. The simulation is controlled by the FA model’s assumption with availability ܲ ൌ ܰ/ܭ ൌ

10%. Now graph (b) also reports the realized inspections, (c) the current VoI, with continuous 

line, while the underlying hidden state is in (d). Comparing Figure 43b with 44b, it appears that 

inspecting decreases the replacement rate. Usually, VoI increases while the agent does nothing, 

because of the degradation, depending in the detecting symptoms, up to when it is sufficiently 

high the component wins the auction and gets the inspection. With the inspections, uncertainty is 

reduced. When the inspection detects a good state, another one is scheduled after some steps, 

while if it detects a bad state, a replacement is scheduled. In details, each auction involves all 

0 10 20 30 40 50 60 70 80 90 100

7
6
5
4
3
2
1

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1
      

(c)

time steps 

(a)

(b)

Damage symptom

Repair



  
 

115 
 

components, so it may happen that the component does not get the inspector even when VoI is 

high, as happens at step 55: not being able to inspect, the agent prefers to replace. 

Figure 44 also shows the analysis of the FA model. The corresponding current VoI is plotted 

in (c) with a dashed line. The assessment is so similar to that of the SA model that, in this 

specific example, inspection and replacement scheduling is consistent between the models. 

 

Figure 45. Realization of management for an independent component with availability of inspectors: (a) belief state, 
(b) damage symptoms, repairs (black diamond show the repairs based on SA model and red circles show the repairs 
based on FA model) and inspections (green dots show the repairs based on SA model and magnet circles show the 

inspections based on FA model, (c) value of current information, and (d) underlying condition states. 
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Assessment current VoI according the FA model depends on an assumption of fee ܥ. Here 

we have adopted the following algorithm: fee is initialized at zero at step 0, and the components 

compete under the optimistic assumption. ܥெሺ௧ሻ indicates the minimum VoI sufficient for 

winning the auction at time t, while ̅ܥெሺ௧ሻ indicates the average during all steps up to t Both this 

quantities are plotted in Figure 45. At time t, we assume ܥ equal to ̅ܥெሺ௧ሻ, because this latter 

quantity provides a reasonable estimate of the offer needed for winning the auction and get the 

inspection. During the first steps, ܥெሺ௧ሻ assumes a low value. This is because the initial belief 

assumes the road components being in a good state, and no significant concern arises in the first 

steps. Consequently, current VoI is generally low in those steps, and so is ܥெ. After about step 

10, components may be in high need of attention, and the auction becomes more competitive, 

and so ܥெ grows. This poses challenges to the identification of an appropriate parameter ܥ in the 

FA model. At step 7, for example, basing on the data collected in so far, the agent can find 

appropriate to assign a low value to ܥ, say of about $1K; if so, each component would assume a 

future inspection available at that low cost anytime in the future. This assumption turns out to be 

incorrect, as future demand from older components is much higher, and an offer of about $5K is 

necessary (in the expected sense) to get the inspector. While this effect is not significant in this 

example, it can be in other settings. It is hard to provide a general formula to address this issue, 

but we recommend that, if the future ܥெ is predicted to change in the future (e.g. because the 

condition of the component population is predicted to deteriorate), ܥ should reflect this pattern. 
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Figure 46. Realization of the minimum value of information sufficient for winning the inspection auction (black line 
with square markers), and the average value of information during all management time steps till time ࢚ (red line 

with triangle markers). 

 

6.3.2.2 Evaluating the Impact of Inspectors 

To investigate the accuracy of the predictions on Eqs. (45-46), we compare them with the 

results of numerical simulations. Because of the high number of simulations needed (a total of 

6M steps), we use the smaller example illustrated in 5.3. We consider a system made by ܰ ൌ

100 components, and investigate the VoI using ܭ ൌ 1,2,5,10,20 and 50 perfect inspectors (i.e. 

߳ ൌ 0). The actual VoI at system level is estimated from 100 forward simulations, each carried 

on for 100 steps. The SA model with ܲ ൌ  controls the system. The value is then estimated ܰ/ܭ

as discounted arithmetical average of the costs, and the VoI as the difference respect to the value 

with no inspectors (given by the POMDP solver). 

The 95% Confidence Region of the system-level VoI is reported in Figure 46 with dash-

dotted lines, as a function of the number of inspectors. As expected, the VoI grows rapidly for 

low ܭ and slower for high ܭ (for ܭ ൌ ܰ components become MDPs). To avoid the issued about 

system-level synchronous aging mentioned in previous section, we assign initial beliefs to the 

components as those resulting from a 20-step simulation. Doing this, we assess the VoI when the 

system is made up by both intact and potentially damaged components. The Figure also shows 

the prediction of the models. For ܭ ൏ ܰ, SA systematically underestimates the system-level VoI, 
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as it assumes that inspectors are randomly allocated. With the appropriate selection of the virtual 

fee ܥ, on the other hand, FA is able to predict accurately the VoI, as the assumption that 

inspectors can be used by paying fee ܥ is able to mimic the optimal allocation the ܭ inspectors. 

This result requires an estimate of the virtual fee that, evidently, depends on the number of 

available inspectors. 

 
Figure 47. Confidence region of system-level value of information (red line with triangle markers) for a system of 
ܰ components as a function of increase in the number of inspectors ܭ, the SA model prediction of VoI (blue line 

with circle marker) and the FA model prediction of VoI (black line with square markers). 

 

6.3.2.3 Comparing the FA and SA Models 

Section 6.2.4 shows that the SA and FA models have similar performance in many settings. 

Section 6.2.5 shows how the prediction of impact using FA is more accurate, when an 

appropriate fee is used. Now we show how FA can be more effective than SA even in inspection 
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components, each made by many parts, can currently be in flawless (FL) or defective (DF) state, 

and this initial state is perfectly known to the agent. Because of this, inspecting is uninformative 

at initial step, but it is relevant at the next one. Unless protected at cost ܥ௉ோ, a flawless 

component deteriorates in few of its parts; and the agent can detect all flaws only by inspecting 

at next step and fix them at no cost. Without inspection, the agent has to maintain a flawed 

component under uncertainty, at cost ܥெ ൐  ௉ோ. A defective component, on the other hand, canܥ

be protected (say replaced with a protected one) at cost ܥோா; if not, high deterioration will occur 

in some parts, and the agent cannot fix an uninspected highly deteriorate component, that will 

fail at cost ܥி ൐  ோா. However, by inspecting at next step, again we assume the agent can detectܥ

and fix all issues at no cost. 

An agent convinced of receiving an inspector at next step should not protect the component. 

On the contrary, one convinced that no inspector will be available should protect it. Specifically, 

if the assumed availability is lower than ܲᇱᇱ ൌ 1 െ  ி, the agent should protect a defectiveܥ/ோாܥ

component, and if it is lower than ܲᇱ ൌ 1 െ ௉ோܥ ெ, also an intact one. If we assumeܥ/௉ோܥ ൌ

$1K, ܥெ ൌ $5K, ܥோா ൌ $10K and ܥி ൌ $100K, then ܲᇱ ൌ 90% and ܲᇱᇱ ൌ 80%. 

To investigate the optimal policy, we can assess the VoI for inspecting at next step. 

Inspecting at next step allows for skipping current protection, so the VoI for flawless and 

defective components are ܸܫ݋୬୶ሺFLሻ ൌ ୬୶ሺDFሻܫ݋ܸ ௉ோ andܥ ൌ  ୬୶ሺDFሻ isܫ݋ܸ ோா respectively. Asܥ

higher than ܸܫ݋୬୶ሺFLሻ, the agent will give priority to inspections of unprotected defective 

components: only if ܭ is higher than the number of these, unprotected flawless ones can also be 

inspected. Therefore, a long-sighed agent should assume a high probability of inspecting an 

unprotected defective component, and a low probability of inspecting an unprotected intact one. 

For example, if ܰ ൌ 100, K ൌ 20 and the probability of a defective component is 6% then, if all 
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components are left unprotected, inspectors are available with probability about 1 to defective 

and with probability 14.9% to intact one. Consequently, the optimal policy (using component 

level information alone) is to protect an intact component and do not protect a defective one, as 

reported in Table 5, counting on the availability of inspectors for the latter. The corresponding 

Value, normalized for one component, is $940. However, the SA model assumes a unique value 

for availability ܲ, independent of state or belief and, because of this, cannot mimic that policy. 

For example, by setting ܲ ൌ ܰ/ܭ ൌ 10%, the agent will protect all components. Figure 47a 

shows the corresponding Value (normalized for one component), depending on the assumed 

availability, and the corresponding policy is reported in Table 5. 

For the FA model, on the other hand, decision depends on assumed fee cost ܥ. If ܥ is higher 

than ܥ′ ൌ  ୬୶ሺDFሻ, the agent should protect an flawless component, and if it is higher thanܫ݋ܸ

′′ܥ ൌ  ୬୶ሺFLሻ, she should also protect a defective one. Figure 47b reports the normalizedܫ݋ܸ

Value, depending on ܥ and, again the corresponding policy can be read in Table 5. The optimal 

policy is reachable by setting ܥ between the two VoIs. 

 

Figure 48. Value of managing a system ܰ ൌ 100 components and ܭ ൌ 20 inspectors as a function (a) availability 
of future inspections ܲ and (b) the cost of inspection ܥ. The dotted line shows the optimal solution while the 

weighted line shows the performance of (a) SA and (b) FA models. 
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Table 5. Policy depending on model and assumption, described by answering the question: is the component to be 
protected? 

 

In summary, the example shows how the SA model is not able, in some settings, to emulate 

the optimal policy. Future inspection scheduling is the result of an optimization process and, 

consequently, availability is a function of the state. In the example above, the optimization gives 

priority to the unprotected defective components. But the FA model assumes that future 

inspections are randomly allocated, independently by the state and, doing so, it is not able to 

capture the optimal policy. The FA model, on the other hand, assumes that inspections will be 

available to those in needs (i.e. those able to cover the corresponding fee) and, by selecting an 

appropriate fee value, is able to get optimality. 

We conclude this discussion with two remarks. First, the reader may note that a better policy 

is conceivable, whether information is processed at system level: if more than ܭ components are 

defective, the agent can plan to inspect ܭ of them, and protect the remaining ones. Or, if they are 

less, she can plan to inspect all defective ones, and also some selected flawless ones, while only 

the remaining ones are to be protected. While such a policy (leading to Value of $800 for 

component) is identifiable for this small problem, it violates the principle of using just 

component-level features for current decision and inspection scheduling. The complexity of 

system level policies for planning and inspection scheduling is illustrated in Section 6.2.2 and 

FL DF

P ≤ P" yes yes
P'' < P < P' no yes

P ≥ P' no no
C ≤ C' no no

C' < C < C" yes no
C ≥ C'' yes yes

yes nooptimal

model assumption
initialstate

SA

FA
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suffer from the course of dimensionality. Second, the example leaves the issue of selecting an 

appropriate value for fee ܥ open, as it just shows that such appropriate value exists. 

Lastly, the reader is referred to Memarzadeh and Pozzi (2015c) and (2015e) for comparison 

between the SA model and the pessimistic and optimistic approaches. 
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Chapter 7 

 

Summary and Conclusions 
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In this dissertation, we have developed a computational framework for system-level adaptive 

monitoring and control of infrastructures. Specifically, we have addressed challenges regarding: 

i) sequential decision making under uncertainty in the model parameters describing the 

degradation behavior and the precision of the monitoring system; ii) learning the model 

parameters by processing noisy observations, as well as modeling the dependence among the 

components, allowing the knowledge transfer among them; and iii) assessing the component-

level value of the information and use it as a heuristic for system-level inspection scheduling, 

dealing with limited resources for data collection. 

As a first step, in Chapter 3 and 4 (section 4.1), we proposed a method named planning and 

learning for uncertain dynamic systems (PLUS) for learning and planning within the BA-

POMDP framework and applicable to the context of wind farm management, as well as other 

infrastructure systems. The BA-POMDP framework overcomes one of the primary limitations of 

POMDP framework by treating the transition and emission probabilities as random variables, 

whose distributions can be updated during the learning process. PLUS algorithm uses Markov 

chain Monte Carlo simulations to find an approximate solution for the BA-POMDP problem. 

The approach allows for a rational treatment of data collected by sensors and visual inspections, 

a reliable tracking of the condition states of components, and robust decision making support.  

PLUS algorithm has been validated with synthetic data and is shown to outperform state-of-

the-art reinforcement learning approaches, such as MEDUSA. MEDUSA was originally 

proposed for applications of robot navigation and it scales easier than PLUS, requiring less 

computational effort. However, for application to infrastructure systems, and specifically wind 

farms, it is believed that the computational drawback of PLUS is not a significant concern 

because the computational cost is low with respect to the direct costs for operation and 
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maintenance of a wind farm. On the contrary, in this context it is necessary to achieve a rational 

and robust selection of the maintenance policy, making use of the knowledge available at any 

state of the process. PLUS allows this; it also allows the agent to learn, during the management, 

the statistics of degradation process (transition probabilities) and the performance and reliability 

of the monitoring system (emission probabilities).  

In the second step in Chapter 4 (section 4.2), we have proposed a probabilistic framework, 

Multiple Uncertain POMDP (MU-POMDP), for learning models in systems made up by similar 

components that overcomes some limitations of PLUS by explicitly defining dependence among 

components through a set of hyper-parameters. While Individual and Global PLUS solve the 

limit cases of independent or identical components, respectively, the MU-POMDP framework 

can potentially solve a wide range of intermediate problems. The computational complexity of 

MU-POMDP is higher than that of PLUS, since the former requires an extra layer of hyper-

parameters. Specifically, the sampling approach makes use of the Metropolis-Hastings method, 

which needs careful selection of the proposal distribution to achieve effectiveness.  

In many applications it is appropriate to assume some degree of similarity among 

components, and MU-POMDP is a consistent framework for this problem. The accuracy of 

approximated approaches, as Individual and Global PLUS, depends on the number of 

observations, as well as on the number of components and on other parameters of the 

application. We have measured the quality of approximation in terms of expected error, and 

expected economic loss. However, practical implementation of MU-POMDP requires defining 

an appropriate level of similarity among components, which needs careful considerations 

depending on the application.  
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Finally in Chapter 5 and 6, using POMDP framework, we have illustrated how to assess the 

value of information in sequential decision making. Specifically, we have proposed methods 

based on the Value of Information (VoI) for evaluating the impact of a monitoring system (or a 

set of additional information) on decision making, ranking priorities among inspections, and 

integrating inspections in maintenance planning. The exact method (except for approximation of 

the POMDP solver) is available for current and periodic observations at component-level that 

can be used for assigning priorities for system-level inspection scheduling. While this method is 

intrinsically approximate, it allows for decomposing the complex system-level optimization into 

component-level computation, so that the problem complexity grows just linearly with respect to 

the number of components on the systems. We first defined two heuristics (optimistic and 

pessimistic), related to different assumptions on the availability of future inspections: the 

optimistic approach assumes inspectors will be available for all components from next time step, 

whereas the pessimistic approach assumes no inspector will be available in the future. Consistent 

with these assumptions, heuristics are also related to alternative planning policies.  

The exact solution is intractable except for small problems as discussed in Section 6.2.2.  

Each heuristic defines a myopic optimization algorithm whose complexity is linear with number 

of components ܰ. Any formulation less myopic than those cannot rely on independence between 

components’ values and a combinatorial explosion occurs. For example, in a two time-step 

search, inspections at the current step have to be coupled with those at next one, and  ܰ ൈ ቀܰ
ܭ
ቁ ≅

ܰ௄ାଵ combinations have to be explored. Complexities of the optimistic and pessimistic 

approaches are similar. We have shown bounds for the value of each approach, and the 

pessimistic approach has better guarantees against worst case scenarios. On the other hand, the 

upper bound of optimistic approach is higher; however, we have found this benefit to be small in 
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many applications. Based on these considerations, without any additional relevant domain 

knowledge, we recommend adopting the pessimistic approach.  

By extending the results of pessimistic and optimistic heuristics, we have introduced two 

models, stochastic future allocation (SA) and fee-based future allocation (FA), which differ for 

the assumption about the availability of future information (e.g. inspection): SA model assumes 

that observations are collected with a given probability (that is a generalization of the pessimistic 

and optimistic approaches), while FA model assumes that observations are available at a given 

cost. The computational complexity of FA is higher than that of SA, however it is proven to be 

more effective in some settings, as the assumption of a virtual fee for allocating resources on 

inspections can better predict the results of future optimization processes. Both models depend 

on the selection of internal parameters that can be chosen by expert judgment or by data analysis, 

if previous data are available. Specifically, the prior selection of an appropriate fee ܥ is an open 

issue, and we do not provide a general formula for this task. We note that we have investigated 

using the solution of ܥ ൌ ,܊ୡ,୊ሺܫ݋ܸ   .ܥ ሻ for initializingܥ

 

7.1 Future Work 

PLUS planning phase is based on an assumption of neglecting the exploratory value of 

learning the model parameters in the planning. Basically, PLUS assumes that from next time 

step, the agent will receive perfect knowledge about the true model parameters, and plans 

optimally in this context. However, the exploratory value of learning can be incorporated into the 

planning feasibly by using appropriate heuristics. The challenge is that in the application to 

management of civil and infrastructure systems, exploration can be really costly and hence there 
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is a need for careful management of incorporating the exploratory value in the planning, which is 

part of the future work. 

Moreover, one of the main assumptions in the proposed SA and FA methods is that the 

model parameters (i.e. transition and emission probabilities) of POMDP are assumed to be 

known with certainty. This assumption can be released by treating the model parameters as 

random variables by assigning priors to them and generalize the developed method to compute 

VoI under the model uncertainty, and acquire information not only with respect to their value of 

decreasing the uncertainty in conditions states and cost of operation and maintenance, but also 

with respect to their value in decreasing the uncertainty about the model parameters (i.e. 

transition and emission probabilities). This is a challenging task computationally, as the VoI also 

depends on the uncertain model parameters. 
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Appendix A 

 

Formulation of Fee-based Model 
 

In this appendix we describe how to solve Eq. (28) by reformulating the two-step process of 

the FA model described there as an equivalent one-step process, modeled as a standard stationary 

POMDP, which can be processed by a solver as SARSOP (Kurniawati et al. 2007). To do so, we 

group functions ሺܸ஼ሻ
୍  and ሺܸ஼ሻ

୑ , defined on the same belief domain, in a single value function 

defined on the duplicate belief domain, by augmenting the state. We define ݏା ൌ ሼݏ,݉ሽ as an 

augmented belief, where ݉ is 1 for inspection sub-steps, and 2 for management ones. We add 

action inspect to the original set of actions, so that the resulting set of available action (ܣା) is of 

dimensions |ܣା| ൌ |ܣ| ൅ 1. We force the management actions to be available in the management 

sub-steps only (and the inspection action to be available in the other sub-steps) by imposing 

unbearably high costs for untimely actions. Adjust discount factor. 

In the inspection sub-steps, the agent has access to two actions: do-nothing (that we assume, 

without loss of generality, is also an option for the management sub-steps) or inspect. Cost is ܥ 

for inspecting and nil for doing-nothing. Costs for other actions are assigned to be unbearable. 

Transition function ிܶ on the augmented state is assigned so the state stays the same, but index 

m moves from 1 to 2: for each actions ܽା, it is formally defined as ிܶሺሼݏ, 1ሽ, ܽା, ሼݏ′, 2ሽሻ ൌ  ,௦௦ᇲߜ

where ߜ is the Kronecker Delta. Observations are defined on the joint domain of ordinary 

observations and inspection outcomes. We define augmented observation ݖା on domain ܼା of 
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size |ܼା| ൌ |ܼ| ൅ |ܼ| for the first |ܼ| entries, and to ݖ ା maps toݖ so that ,|ܪ| ൅ ݄ for the last |ܪ| 

entries. Emission function ܱி is nil when inspection state when ݖା ൑ |ܼ|. For ݖା ൐ |ܼ|, it is 

defined, for each state s as: 

൜
ܱ୊ሺሼݏ, 1ሽ, ܽା		, ାሻݖ ൌ |ܪ|/1 ܽା ൏ |ାܣ|
ܱ୊ሺሼݏ, 1ሽ, ,|ାܣ| ାሻݖ ൌ ,ݏሺܧ ାݖ െ |ܼ|ሻ

 (A1) 

Cost function ܴி is nil for the do-nothing action (ܽା ൌ 1), except, for each state  

ܴிሺሼݏ, 1ሽ, ା|ሻܣ| ൌ  .For other actions, the cost is unbearable .ܥ

For management sub-step and ܽା ൏  ା|, transition and emission parameters copies those ofܣ|

the original POMDP, as ிܶሺሼݏ, 2ሽ, ܽା, ሼݏ′, 1ሽሻ ൌ ܶሺݏ, ܽ, ,ݏሻ and ܱிሺሼ′ݏ 2ሽ, ܽା, ାሻݖ ൌ ܱሺݏ, ܽ,  .ሻݖ

Cost is updated as ܴሺሼݏ, 2ሽ, ܽାሻ ൌ ܴሺݏ, ܽሻ/√ߛ and the overall discount factor is ߛା ൌ  We .ߛ√

also assign to ܴሺሼݏ, 2ሽ,  ା|ሻ an unbearable cost, so that the other parameters for the inspectionܣ|

action taken from a management sub-step are irrelevant. The discount factor is updated to take 

into account that the first management step should not be discounted. Hence the model 

parameters of the FA-model POMDP can be grouped as follow: દሺ஼ሻ
୊ ൌ ሼ܂୊, ,୊۽ ,୊܀  ାሽ. Theߛ

corresponding value ܩሺ஼ሻ
∗ , starting at belief ܊ in the sub-inspection step, can be computed using 

augmented belief ܊ା, defined as ܾାሼݏ, 1ሽ ൌ ܾሺݏሻ, ܾାሼݏ, 2ሽ ൌ 0. Also, value ሺܸ஼ሻ
୑  at management 

sub-step can be computed from augmented belief defined as ܾାሼݏ, 2ሽ ൌ ܾሺݏሻ, ܾାሼݏ, 1ሽ ൌ 0 but, 

in this case, the resulting value from the POMDP value has to be multiply by factor √ߛ. In 

summary: 

൝
ሺܸ஼ሻ
୍ ሺ܊, દሻ ൌ ܸ∗൫܊, દሺ஼ሻ

୊ ൯ ܽା ൏ |ାܣ|

ሺܸ஼ሻ
୑ ሺ܊, દሻ ൌ ඥߛ ܸ∗൫܊, દሺ஼ሻ

୊ ൯
 (A2) 
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Appendix B  

 

Formulating and Solving System-level 
POMDP 

 

In this appendix we describe how to formulate the system-level problem of Section 6.2.2 

into the POMDP framework presented in Chapter 2. The main difficulty to doing so is to 

convert a two-step process, alternating inspection scheduling and maintenance, into a process 

with uniform steps. To do so, each time step is divided into two sub-steps and, to distinguish 

between them, we define a binary indicator ݉, with possible values ݉ ൌ 1 for odd sub-steps 

and ݉ ൌ 2 for even ones. The intention is to use the odd sub-steps for inspections and, after 

receiving inspectors’ outcomes, select maintenance actions at even sub-steps, receiving reward 

and observation. Complete state, action, and observation are defined as ݏାା ൌ ାݏ ∪ ݉, ܽାା ൌ

ܽା ∪ ܻ, and ݖାା ൌ ାݖ ∪ ݄ା, where ݄ା lists all inspection outcomes, on domains of size 

|ܵାା| ൌ 2|ܵା| ൌ 2|ܵ|ே, |ܣାା| ൌ ቀܰ
ܭ
ቁ ൅ |ே, and |ܼାା|ܣ| ൌ ௄|ܪ| ൅ |ܼ|ே respectively. In this 

notation, while each possible value of state ݏାା is composed of two components (ݏା and ݉), 

actions and observations either belong to one or the other sub-domains, referring to inspection 

(݄ା and ܻ) or to maintenance (ݖା and ܽା). 

Complete transition probability function ܶାା: ܵାା ൈ ାାܣ ൈ ܵାା → ሾ0,1ሿ is zero if ݉௧ାଵ ൌ

݉௧; ܶାାሺሼݏ௧
ା, 1ሽ, ܽା, ሼݏ௧ାଵ

ା , 2ሽሻ is zero if  ݏ௧ାଵ
ା ് ௧ݏ

ା and one if ݏ௧ାଵ
ା ൌ ௧ݏ

ା; and 

ܶାାሺሼݏ௧
ା, 2ሽ, ܽା, ሼݏ௧ାଵ

ା , 1ሽሻ ൌ ∏ ܶ൫ݏ௜,௧, ܽ௜, ௜,௧ାଵ൯ݏ
ே
௜ୀଵ . 
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Complete emission probability function is defined as: ܱାା: ܵାା ൈ ାାܣ ൈ ܼାା → ሾ0,1ሿ. 

ܱାାሺሼݏ௧ାଵ
ା , 2ሽ, ܽା, ݄ାሻ ൌ 0, and ܱାାሺሼݏ௧ାଵ

ା , 2ሽ, ܽା, ାሻݖ ൌ ∏ ܱሺݏ௜,௧
ே
௜ୀଵ , ܽ௜,  ௜,௧ሻ; similarlyݖ

ܱାାሺሼݏ௧ାଵ
ା , 1ሽ, ܽା, ାሻݖ ൌ 0, and ܱାାሺሼݏ௧ାଵ

ା , 1ሽ, ܽା, ݄ାሻ ൌ ∏ ௜,௧ݏሺܩ
ே
௜ୀଵ , ݄௜,௧ሻ.  

The discount factor is the square root of the ߛ for the component-level POMDP (because we 

have discretized each time step into two sub-steps). 

The reward function is defined as ܴାା: ܵାା ൈ ାାܣ → Թ. ݎାାሺሼݏ௧
ା, 1ሽ, ܽାሻ ൌ െ∞, because 

at odd sub-steps we force the policy to inspect and ݎାାሺሼݏ௧
ା, 1ሽ, ܻሻ ൌ 0. Similarly, we force the 

policy to take maintenance actions in even sub-steps, so ݎାାሺሼݏ௧
ା, 2ሽ, ܻሻ ൌ െ∞ and 

௧ݏାାሺሼݎ
ା, 2ሽ, ܽ′ሻ ൌ ଵ

√ఊ
∑ ,௜,௧ݏሺݎ ܽ௜,௧ሻ
ே
௜ୀଵ . The factor before the sum compounds the rewards to the 

first even step. 

Initial belief models the knowledge that the system starts in an odd-step, so ܾ଴
ାାሺሼݏ଴

ାା, 1ሽሻ ൌ

∏ ܾ଴ሺݏ௜,଴ሻ
ே
௜ୀଵ  and ܾ଴

ାାሺሼݏ଴
ାା, 2ሽሻ ൌ 0. 

Once these parameters are defined, POMDP solvers can be used. As illustrated above, the 

computational complexity of the system-level POMDP problem grows exponentially with the 

number of components in the system and it is not tractable for most of real-world applications. 
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Appendix C  

 

Proofs of Bounds 
 

It can be proven that the VoI is always non-negative (Heckerman et al. 1993), according to 

the principle that Information Never Hurts (INH). 

Proof that: 

∗ܹ
ሺ௉ሻ ൑ ܷሺ௉ሻ ൑

௒ܹሺುሻ
ሺைሻ   (C1) 

Let us start proving that ∗ܹ
ሺ௉ሻ ൑ 	ܷሺ௉ሻ. Suppose no inspector is available from next time step. 

Then, ∗ܹ
ሺ௉ሻ ൌ ܷሺ௉ሻ based on the definition in Eq. (41) and the fact that the pessimistic agent acts 

optimally according to her assumption. During the actual management process following the 

pessimistic agent’s policy, future observations from inspectors will be available (despite the 

assumption of the pessimistic agent) and based on INH we can conclude that ∗ܹ
ሺ௉ሻ ൑ 	ܷሺ௉ሻ. Now 

let us prove that ܷሺ௉ሻ ൑
௒ܹሺುሻ
ሺைሻ . Based on INH, ܷሺ௉ሻ is always less than or equal to the optimistic 

system-level value estimate, inspecting all components whose indices are in set ܻሺ௉ሻ. In other 

words, we can conclude that ܷሺ௉ሻ ൑
௒ܹሺುሻ
ሺைሻ . 

Proof that: 

ܷሺைሻ ൑ ∗ܹ
ሺைሻ (C2) 
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Suppose inspectors are available for all the components of the system from the next time 

step. Then from Eq. (41) we have ܷሺைሻ ൌ ∗ܹ
ሺைሻ. During the actual management process 

following the optimistic agent’s policy, future observations will not be available for some 

components if ܭ ൑ ܰ, and because of INH (i.e., lack of information never helps) we can 

conclude that ܷሺ୓ሻ ൑ ∗ܹ
ሺ୓ሻ. 

Proof that: 

∗ܹ
ሺ୔ሻ ൑ ܷ∗ ൑ ∗ܹ

ሺ୓ሻ (C3) 

Let us first prove the upper bound. Suppose the current set of indices of the components to be 

inspected, selected by the optimal agent (that solves the system-level problem and finds the exact 

solution) is ܻ∗. Then from Eq. (43) we can infer that ௒ܹ∗
ሺ୓ሻ ൑ ∗ܹ

ሺ୓ሻ. Next, from INH we can infer 

that ܷ∗ ൑ ௒ܹ∗
ሺ୓ሻ, and hence ܷ∗ ൑ ∗ܹ

ሺ୓ሻ. Now let us prove the lower bound of Eq. (C3). We know 

that by inspecting the components in the set ܻሺ୔ሻ, and under the pessimistic assumption (that 

inspectors are not available from next time step) agent gets ∗ܹ
ሺ୔ሻ. By the optimality of the 

agent’s policy, the availability of future inspectors and the INH principle, we conclude that 

∗ܹ
ሺ୔ሻ ൑ ܷ∗. 
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Appendix D  

 

Analytical Examples 
 

We present two simple examples, for which analytical solutions are available, to illustrate 

how pessimistic or optimistic approaches can do better depending on the context. 

Example 1: In this example we show how the optimistic approach may lead to huge losses, 

even when ratio ܭ/ܰ is arbitrary close to one. Consider a set of components with equal 

transition probabilities and initial belief. Five states are possible, initial state is 1, with certainty, 

and absorbing states 4 and 5 represent failure and disposal respectively. Four actions are 

available, namely Wait (W), Dispose (D), Dispose-from-2 (A) and Dispose-from-3 (B). The 

transition graph of the component is shown in Figure 48. 

 

Figure 49. Transition graph for example 1 in Appendix D. 

From 1, state can transit to 2 or 3 with uniform probability at no cost under any actions W, A 

and B, while action D takes to state 5 with disposal cost ܥ஽. From 2 or 3, state can only move to 
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5, at a cost that depends on the action: from 2, failure cost ܥி ≫  ஽ has to be paid for all actionsܥ

except A, and no cost is due for this latter action; similarly, from 3 only one action (B) avoids 

the failure cost. The only available observations are those from perfect inspectors, and discount 

factor is unitary. In this setting, no cost has to be paid for a component inspected at time ݐଵ. 

At time zero the pessimistic agent, assuming she will not have access to any inspectors from 

the next time step onwards, disposes all components, paying cost ܷሺ୔ሻ ൌ ∗ܹ
ሺ୔ሻ ൌ  ஽. Theܥܰ

optimal agent knows that she has access to ܭ inspectors at each time step, hence she disposes 

only ܰ െ ∗ܷ components and her optimal value is ܭ ൌ ሺܰ െ  .஽ܥሻܭ

The optimistic agent assumes inspections for all components; hence she will wait (W) until 

next time step, computing ∗ܹ
ሺ୓ሻ ൌ 0. However at time ݐଵ she has access to only ܭ inspectors, 

and she has to select a risky action (say between A and B) for all uninspected components, so that 

value is ܷሺ୓ሻ ൌ ሺܰ െ  ி/2. Note that if the cost of failure is large, the value of optimisticܥሻܭ

agent can fall well below the lower bound ( ∗ܹ
ሺ୔ሻ) defined for the pessimistic approach. For any 

values of ܰ, ܭ and ܥ஽, we can find a ܥி so that relative benefit, defined by the following 

equation: 

ܷሺ୔ሻ െ ܷሺ୓ሻ ൌ ஽ܥܰ െ ሺܰ െ  ி/2 (D1)ܥሻܭ

is positive, and the pessimistic agent does better.  

The myopic planning exposes the optimistic agent to a relevant probability of failure, 

independent of how high failure cost ܥி is. As shown by the pessimistic agent, failure events 

can be easily avoided by timely disposal, and no failure is foreseen in the computation of either 

∗ܹ
ሺ୔ሻ or ∗ܹ

ሺ୓ሻ, but the optimistic approach suggests the agent to postpose the disposal until it is 
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too late. It also should be noted that failures can follow optimistic planning for any ܰ and 

ܭ ൏ ܰ, and thus for arbitrary high values of the ratio ܭ/ܰ. 

Example 2: The second example aims to show how the optimistic approach can outperform 

the pessimistic one even if ratio ܭ/ܰ is arbitrary low. We consider a system made up of two 

different kinds of component, with different transitions and rewards. We call one of the 

components “critical”, while the remaining ܰ െ 1 are “dummy” components. The agent can use 

only one perfect inspector on the critical or on a dummy component. Figure 49(a) shows the 

transition graph for dummy components. Dummy components have binary states (state 1 and 2) 

independent for each time step, and the initial beliefs for all dummy components are uniform. 

Actions for these components are also binary (action A and B2), and can be understood as 

“guessing the state”: if the guess is wrong, a fee 2݂ is paid, and if it is correct no fee is due. No 

observations are available beyond those from the inspector. Consequently, the agent has to pay 

expected fee ݂ for any dummy component left uninspected. As inspecting the critical 

component implies not inspecting a dummy one, ݂ can be intended as an equivalent expected 

fee for inspecting the critical component. The latter component is degrading up to failure related 

to unbearable consequences; however, failure time can be predicted with certainty, once it has 

been inspected. That component can be interpreted as a time-bomb, and inspecting it is 

equivalent to reading the timer. It can be disposed at a cost ܥ஽, to avoid the unbearable cost of 

failure ܥி ൌ ∞. We assume discount factor ߛ ൏ 1. 

We anticipate the moral of the example: all agents agree that the critical component has to 

be inspected, but they disagree on scheduling: pessimistic prefers to inspect at time zero, as she 

assumes she cannot do it in the future, while optimistic can adopt the optimal action, postponing 

inspection until actually needed. 
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The transition graph of the critical component is reported in Figure 49(b). 

 

Figure 50. Transition graphs for example 2 in Appendix D: (a) dummy and (b) critical component. 

The critical component’s state is defined over 5 possible values: states ሼ1,2,3ሽ are all safe, 

state 4 represents the failure, and state 5 the disposal. Two actions are available: namely Wait 

(W) and Dispose (D). Under Wait, state moves deterministically so that ݏ௧ାଵ ൌ ௧ݏ ൅ 1, up to 

failure. The failure and disposal states are absorbing states. Up to state 3, to Dispose takes 

component to state 5. Initial belief state is uniform between 1 and 2: this means that component 

is safe up to time ݐ ൌ 1, but at time ݐ ൌ 2 it may fail. 

The pessimistic agent inspects the critical component at ݐ ൌ 0, and is able to dispose it when 

in state 3. The optimistic agent disposes it at the same time, after having waited until ݐ ൌ 1 to 

inspect it. This is indeed the optimal policy, and the benefit with respect to the pessimistic value 

is: 

ܷሺ୔ሻ െ ܷሺ୓ሻ ൌ ሺ1 െ ሻ݂ߛ ൐ 0 (D2) 

This result is invariant with respect to the number of dummy components, ܰ െ 1, and this 

proves that the optimistic assumption can provide the optimal policy, even when ratio ܭ/ܰ is 

arbitrary low. 

The reader may note that, in the presented example, the ratio between the number of 

inspectors and critical components is actually one and, consequently, it is not a surprise that the 
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optimistic assumption is correct. However, our point is to disprove the conjecture that any 

conclusion on what agent performs better can be based on ratio ܭ/ܰ. It may be possible to 

define an adjusted ratio, identifying a sub-set of “critical” components. However, it is an open 

question how to define this feature in a general context. 
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