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ABSTRACT 

The operating environment of cellular networks can be in a constant state of change due 

to variations and evolutions of technology, subscriber load, and physical infrastructure. 

One cellular operator, which we interviewed, described two key difficulties. Firstly, they 

are unable to monitor the performance of their network in a scalable and fine-grained 

manner. Secondly, they find difficulty in monitoring the service quality experienced by 

each user equipment (UE). Consequently, they are unable to effectively diagnose 

performance impairments on a per-UE basis. They currently expend considerable manual 

efforts to monitor their network through controlled, small-scale drive-testing. If this is not 

performed satisfactorily, they risk losing subscribers, and also possible penalties from 

regulators. 

In this dissertation, we propose Tattle1, a distributed, low-cost participatory sensing 

framework for the collection and processing of UE measurements. Tattle is designed to 

solve three problems, namely coverage monitoring (CM), service quality monitoring (QM) 

and, per-device service quality estimation and classification (QEC). 

In Tattle, co-located UEs exchange uncertain location information and measurements 

using local-area broadcasts. This preserves the context of co-location of these 

measurements. It allows us to develop U-CURE, as well as its delay-adjusted variant, to 

discard erroneously-localized samples, and reduce localization errors respectively. It allows 

operators to generate timely, high-resolution and accurate monitoring maps. Operators 

                                      
1 The meaning of Tattle, as a verb, is to gossip idly. By letting devices communicate their observations with 
one another, we explore the kinds of insights that can elicited based on this peer-to-peer exchange. 
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can then make informed, expedient network management decisions, such as adjusting 

base-station parameters, to making long-term infrastructure investment. 

We propose a comprehensive statistical framework that also allows an individual UE to 

estimate and classify its own network performance. In our approach, each UE monitors 

its recent measurements, together with those reported by co-located UEs. Then, through 

our framework, UEs can automatically determine if any observed impairment is endemic 

amongst other co-located devices. Subscribers that experience isolated impairments can 

then take limited remedy steps, such as rebooting their devices. 

We demonstrate Tattle's effectiveness by presenting key results, using up to millions of 

real-world measurements. These were collected systematically using current generations 

of commercial-off-the-shelf (COTS) mobile devices. 

For CM, we show that in urban built-up areas, GPS locations reported by UEs may have 

significant uncertainties and can sometimes be several kilometers away from their true 

locations. We describe how U-CURE can take into account reported location uncertainty 

and the knowledge of measurement co-location to remove erroneously-localized readings. 

This allows us to retain measurements with very high location accuracy, and in turn 

derive accurate, fine-grained coverage information. Operators can then react and respond 

to specific areas with coverage issues in a timely manner. Using our approach, we showcase 

high-resolution results of actual coverage conditions in selected areas of Singapore. 

For QM, we show that localization performance in COTS devices may exhibit non-

negligible correlation with network round-trip delay. This can result in localization errors 

of up to 605.32m per 1,000ms of delay. Naïve approaches that blindly accepts 

measurements with their reported locations will therefore result in grossly mis-localized 

data points. This affects the fidelity of any geo-spatial monitoring information derived 
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from these data sets. We demonstrate that using the popular localization approach of 

combining Global-Positioning System together with Network-Assisted Localization, may 

result in a median root-mean-square (rms) error increase of over 60%. This is in 

comparison to simply using the Global-Positioning System on its own. We propose a 

network-delay-adjusted variant of U-CURE, to cooperatively improve the localization 

performance of COTS devices. We show improvements of up to 70% in terms of median 

rms location errors, even while subjected to uncertain real-world network delay conditions, 

with just 3 participating UEs. This allows us to refine the purported locations of delay 

measurements, and as a result, derive accurate, fine-grained and actionable cellular quality 

information. Using this approach, we present accurate cellular network delay maps that 

are of much higher spatial-resolution, as compared to those naively derived using raw 

data. 

For QEC, we report on the characteristics of the delay performance of co-located devices 

subscribed to 2 particular cellular network operators in Singapore. We describe the results 

of applying our proposed approach to addressing the QEC problem, on real-world 

measurements of over 443,500 data points. We illustrate examples where “normal” and 

“abnormal” performances occur in real networks, and report instances where a device can 

experience complete outage, while none of its neighbors are affected. We give quantitative 

results on how well our algorithm can detect an “abnormal” time series, with increasing 

effectiveness as the number of co-located UEs increases. With just 3 UEs, we are able to 

achieve a median detection accuracy of just under 70%. With 7 UEs, we can achieve a 

median detection rate of just under 90%. 
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GLOSSARY 

1. RSCP: Received Signal Code Power, the received power on one code measured on 

the Primary Common Pilot Channel (CPICH) [1]. 

2. RSRP: Reference Signal Received Power, defined as the linear average over the 

power contributions (in watts) of the resource elements that carry cell-specific 

reference signals within the considered measurement frequency bandwidth [1]. 

3. UE: User Equipment, in particular smart devices such as smart phones and tablets. 

4. Down-link: Direction of data flow, from the cellular base-station down to the UE. 

5. Up-link: Direction of data flow, from the UE up to the cellular base-station. 

6. UMTS: Universal Mobile Telecommunications System, a term for the 3G (third 

generation) radio technologies developed by the 3GPP [2]. 

7. HSPA: High Speed Packet Access, an enhanced 3G (third generation) radio 

technology which allows Universal Mobile Telecommunications System (UMTS) 

cellular networks to feature higher data transfer speeds and capacity through the 

implementation of adaptive modulation and coding (AMC), hybrid automatic 

repeat requests (HARQ), and greatly reducing the transmission time interval (TTI) 

[3][4]. 

8. LTE: Long-term Evolution, a new, 4G (fourth generation) cellular network 

technology that features evolutions in the radio access and core network systems 

to support a wholly packet-switched, Internet Protocol (IP) based access network 

[5].
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1. INTRODUCTION 

We are becoming increasingly-dependent on our smart phones and smart devices to assist 

us in our day-to-day activities. These can range from booking cabs, searching for nearby 

restaurants, navigation, to couponing for retail discounts. Pervasive applications such as 

these have helped to fuel an explosive growth of mobile data services, with more than half 

a billion smart devices and connections added worldwide in 2013. These spurred 2013’s 

year-on-year growth of global mobile traffic to 81% [6]. Up to 102 billion mobile apps were 

downloaded [7] in 2013 alone. 

Robust and resilient cellular networks are necessary to support such growth, both in the 

number of mobile devices as well as the amount of data that each device generates. 

However, the operating environment of these cellular networks can be in a constant state 

of change. Over the course of hours and days, cell loads can change due to diurnal cycles, 

or events such as spectator sports. Over the course of weeks and months, network topology 

can change due to the addition of new cells, and resizing of existing cells. Over the course 

of months and years, changes in the physical operating environment can come about when 

new physical infrastructure, like buildings, is constructed. An example of such a situation 

is given in Figure 1. Due to evolution of the operating environment, operators may 

therefore have to regularly tune their networks so that cell service is not degraded. 

1.1 Background and Motivation 

Singapore’s urban landscape, like in many developing cities, is always rapidly evolving. 

We had a series of interactions with a local network operator to better understand their 

operating challenges and difficulties. One of the key issues they intimated was that the 
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pace of urban development often exceeds the operator’s ability to keep up with network 

reconfiguration and infrastructure investment. Just as in many cities that grapple with 

space constraints, low-lying buildings constantly make way for increasingly taller ones 

that routinely exceed 40 floors in height. These new and tall structures cause heavy 

shadowing and coverage holes. The operator has to rely on subscriber complaints to 

discover areas that are poorly served. The lead time between discovering the need for a 

new base-station, to its installation and commission is around 6 months. In the meantime, 

the operator has to reconfigure existing base-stations to alleviate coverage problems, and 

yet minimize any impact to areas that are previously well-served. 

However, besides just making phone calls and sending short text messages like in the past, 

many subscribers are already heavily-dependent on cellular data services for various day-

to-day aspects of their lives. Any form of impairment, both structural (e.g. insufficient 

base-stations, antennas, or back-haul capacity) and temporal (e.g. surge of demand due 

to diurnal travel patterns) will quickly erode subscriber satisfaction and confidence if not 

 
Figure 1: Newly-constructed high-rise buildings often suffer from poor 
coverage, especially at higher floors. The existence of such poorly-covered 
areas are mainly discovered through subscriber complaints. 
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tackled, or at least acknowledged in an expedient manner. Otherwise, subscribers that are 

chronically-affected by these issues (with little avenues of redress) may switch operators. 

This dissertation addresses three areas related to the monitoring of cellular networks, 

namely, (1) building quasi-real-time, accurate cellular coverage maps on large geographical 

scales to identify coverage holes to meet regulatory requirements, (2) constructing 

accurate, large-scale cellular quality maps that are robust towards user mobility for quasi-

real-time monitoring of subscriber experience, and (3) estimating and classifying local 

cellular network performance on a per-UE2 basis to determine whether a device’s observed 

poor performance is an isolated incident (possibly caused by a device’s hardware or 

software, or simply due to unavoidable physical phenomena such as fading [8]), or endemic 

to the area it is in. 

In the following sections, we briefly discuss the backgrounds and motivations for 

addressing each of the aforementioned areas. 

1.1.1 Coverage Monitoring 

Due to evolution of the operating environment, dynamic parameters (such as radio, 

antenna, handover and load-balancing) may therefore have to be regularly reconfigured 

so that cell service is not degraded. One of the key problems which the interviewed 

network operator put to us is coverage monitoring (CM): how can they efficiently verify 

that minimum coverage is met for an area of interest? Minimum coverage is defined by 

the local regulatory authority to be a threshold percentage of Received Signal Code Power 

                                      
2 UE, or User Equipment, is a common terminology in 3rd Generation Partnership Project (3GPP) 
standards that refers to subscriber devices that consume the network provider’s cellular services. In this 
dissertation, we use the term device, smart device, and UE interchangeably to refer to current generations 
of mobile devices such as smart phones and tables. 
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(RSCP) samples that must exceed -100 dBm. The RSCP is the received code power from 

the down-link Common Pilot Channel (CPICH), broadcast as a “beacon” from cellular 

base-stations [1]. In an outdoor environment, at least 99% of all sampled RSCP 

measurements must exceed -100 dBm. In an indoor environment, at least 85% of 

measurements must exceed that same threshold. These requirements are invariant to other 

spatial-temporal evolutions, such as time-of-day, month-of-day, or how populated or 

crowded an area is. 

The operator currently follows a manual approach. Areas with poor coverage are first 

identified through subscriber feedback. Coverage is then appraised by manual walk-tests. 

If minimum coverage is not attained, radio and antenna configuration parameters (such 

as pan, tilt and power) are iteratively tweaked. After each iteration, walk-tests will be 

conducted to re-appraise coverage. This is repeated until minimum coverage is obtained. 

Furthermore, areas that were previously amply-covered should not be significantly 

impacted after this tuning. Such an approach is labor-intensive, expensive and limited in 

scale. It provides a non-real-time and non-continuous snap-shot of coverage. The process 

has to be repeated whenever the operating environment evolves, especially over long 

periods due to aforementioned reasons. 

1.1.2 Quality of Service Monitoring 

The next problem that was put to us is that of quality of service monitoring (QM). The 

operator does not have a method or system that is currently able to effectively monitor 

the quality of data service experienced by each UE, in a scalable manner. The operator 

intimates that subscribers often complain about the inability to access remote content 

using their subscribed data service (e.g. 3G HSPA, LTE). The complaints are also often 

vague because most complainants lack the technical knowledge to describe the impairment 
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in a comprehensive manner. Most complaints can be as vague as “Help, I cannot access 

the Internet”, “I can’t watch videos on YouTube.com”, or “My websites are loading 

slowly”. The helpline operator then responds with a sequence of pre-determined questions 

and instructions to try and diagnose the problem. These often includes questions such as 

“Where is your current location?”, “Are you able to access other websites, such as 

FaceBook.com?”, and “Can you try and restart your device?” 

The customer service center is also often a separate division from that of the network 

management center. Hence, the complaint generally has to be translated into a trouble 

ticket, with a description of the technical issue faced by the complainant. If the network 

is suspected to be the cause of the issue, this trouble ticket is then passed on to the 

network management and operations team to be further investigated. This approach is 

tedious and labor-intensive, both for the subscriber and the operator. Besides submitting 

the complaint, the subscriber generally has no other avenues of support until the operator 

investigates and addresses the specific issue, or until the problem goes away on its own. 

The latter often happens when the problem is caused by temporary, or diurnal temporal-

spatial congestion, e.g. rush hour in a busy subway station. 

Unfortunately, the complainant is left with a poor service experience that cannot be 

remedied or explained in a timely manner. The operator also loses the ability to gather 

spatial-temporal context about the complaint, after the fact. Important details such as 

“were UEs that were in the same area facing the same impairment?” are difficult to glean 

or ascertain once the complaint has been filed. 
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1.1.3 Quality of Service Estimation and Classification 

The general focus in the previous two sections is on monitoring cellular coverage and 

quality on a large, aggregated scale. Here, we turn our attention towards addressing real-

time issues with the quality of experiences for individual UEs. 

Oftentimes, when subscribers experience frustratingly high network delays and timeouts, 

they would like to know whether their experiences are shared by other users nearby. The 

question that is often asked is essentially this: “is it just me, or do others around me face 

the same problem?” 

As traffic load increases, cellular networks naturally become increasingly congested. 

Subscribers tend to experience high network delays, slow speeds, and possibly service 

outages in cells and areas that are overloaded. This can be a common occurrence and a 

frustrating experience, especially during periods of congestion, such as rush hours and 

spectator events. 

Whenever a subscriber experiences periods of unsatisfactory network performance, the 

subscriber may often blame the cellular operator for providing inadequate coverage and 

resource for the cellular plan they are paying. On the other hand, the cellular operator 

may deflect the cause of the performance issue back to the subscriber’s device hardware 

or software. It is then difficult to derive any conclusion to the network performance issue 

after the fact. In cellular networks, systemic problems manifest themselves in a fate-

sharing manner (i.e. users in the same area tend to collectively suffer from network-related 

problems). It is then instructive to estimate and classify network quality of service (QEC) 

on a per-UE basis, as being ‘normal’ or ‘abnormal’, in the context of its neighbors’ 

observed performances. 
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1.2 Thesis Objectives 

The objectives of this thesis is therefore summarized as follows. 

1. Develop an overall framework for cellular network monitoring, which is robust, 

scalable, timely, works on a large geographical scale with good measurement location 

fidelity, and requires minimal involvement of the subscribers, as well as minimizes 

manual efforts by the operators. 

2. This framework must be beneficial to both the operators (so that they can 

efficiently monitor and manage their cellular networks) and the subscribers (so that 

they can derive meaningful insights and explanations to their own observed 

performances, and take limited mitigation steps whenever possible). This increases the 

possibility of adoption. 

1.3 Thesis Contributions 

The main contributions of this thesis is summarized as follows. 

1. The design of Tattle [9], a wireless service monitoring framework that is distributed, 

low-cost and exploits peer-to-peer measurement-exchange to preserve the co-locality 

of readings and conserve power. These key features of Tattle allow operators to 

generate high-resolution, fine-grained, accurate and large-scale monitoring maps. 

Tattle also allows devices to determine if their service qualities are comparable to those 

of their co-located neighbors’. To the best of our knowledge, we are the first to 

implement and demonstrate the achievable, real-world benefits of such a framework 

when applied to cellular networks. Our findings are derived from an actual proof-of-

concept which we developed and tested. The findings are validated through millions 
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of real-world measurements, collected using commercially-available commodity 

handsets in actual production cellular networks. 

2. The design of an algorithm, U-CURE (extended from the original CURE algorithm 

[10]), and its delay-adjusted variant. These are exemplary clustering algorithms that 

the Tattle framework admits, in order to improve the location accuracy of 

measurements collected using commodity handsets. These algorithms are designed to 

be key enablers for operators to derive very fine-grained, large-scale, accurate, and 

actionable coverage and quality information about their networks. Our algorithms 

result in much more accurate geographic representations of the measurements, as 

compared to naively accepting all measurements and their purported locations in good 

faith. For a pair of co-located devices that are physically less than 1 meter apart, U-

CURE can reduce the maximum positioning distance error from as high as 3 kilometers 

to less than 40 meters. For a group of just 6 co-located devices, Delay-Adjusted U-

CURE can reduce median positioning errors of measurements by over 60%. These are 

validated through hundreds of thousands of real-world measurements, collected from 

a production cellular network, using commodity mobile devices. To demonstrate the 

efficacy of these algorithms, we present actual network quality maps that reveal 

problematic areas accurate to the order of meters. This is in contrast to quality maps 

generated using existing or naïve approaches, which are often aggregated to the order 

of hundreds or thousands of meters. 

3. The design of a delay estimation and classification framework that uses Tattle and 

its peer-to-peer measurement-exchange mechanism. It allows a UE to collect 

measurements from its co-located neighbors, and determine if it is performing normally 

or abnormally through quantile regression. To the best of our knowledge, we are the 



Page | 9  
 

first to propose, describe and implement such a peer-to-peer mobile network fault 

detection application. We validate our approach with hundreds of thousands of data 

points, collected through actual experiments conducted with COTS mobile devices, in 

actual production cellular networks. With just 6 participating devices, we are able to 

detect abnormal network delays with a median accuracy of up to 90%. Of those mis-

detected samples, we are able to reduce frustrating false-negative occurrences to just 

18%. 

Figure 2 illustrates the scope of this dissertation, which addresses two general aspects of 

network performance monitoring. They are namely the challenge of accurately monitoring 

coverage and quality on a large, aggregated scale, as well as monitoring performance on 

a per-UE basis. 

 
Figure 2: The scope of this dissertation, addressing two general aspects of 
network performance monitoring, namely the challenge of monitoring 
coverage and quality on a large, aggregated scale, as well as monitoring 
performance on a per-UE basis. 
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1.4 Thesis Organization 

This thesis is organized in the following manner. In Chapter 2, we provide a background 

review of existing work in the areas of cellular network coverage estimation and assertion, 

UE localization techniques, as well as network- and device-level fault monitoring and 

management. Next, in Chapter 3, we describe the Tattle monitoring framework, and 

explain how it can be used, in conjunction with the U-CURE clustering algorithm, to 

construct large-scale, geographically-accurate cellular coverage maps for monitoring 

purposes. We showcase real-world results gathered from extensive data-collection and 

measurements from a production cellular network, using commercial off-the-shelf (COTS) 

devices that best reflect the reality of network coverage. Then, in Chapter 4, we discuss 

how the cellular quality may be impacted under different mobility conditions. We use 

Tattle together with a delay-adjusted variant of U-CURE to construct accurate cellular 

quality monitoring maps. As before, results from extensive real-world experiments and 

data collection will be presented to demonstrate the efficacy of our proposed approach. 

Next, in Chapter 5, we turn our attention to the performance of individual devices, and 

describe how Tattle, together with a quantile-regressed-based framework, can be used to 

distill the local performance context of co-located COTS devices. It automatically 

determines if a device is performing normally, or abnormally with reference to its 

neighbors. Finally, in Chapter 6, we give concluding remarks, as well as discuss future 

directions. 
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2. BACKGROUND SURVEY 

This dissertation touches on several areas relating to (1) crowd-sourcing and participatory 

sensing, (2) cellular network performance estimation and assertion, (3) UE localization 

techniques, and (4) network- and device-level fault monitoring and management in 

wireless networks. Although we are unable to exhaustively survey all related work, we 

reference in this chapter some representative work in each of the above areas. Figure 3 

illustrates how these areas relate to the work presented in this dissertation. 

 
Figure 3: An overview of how the areas surveyed are related to the work 
presented in this dissertation. 

2.1 Crowd-Sourcing and Participatory Sensing 

Subscribers are the best monitors of coverage wherever they are and wherever they require 

service. Hence, rather than expending considerable manual efforts to selectively monitor 
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and participatory sensing [11] as a core approach to gather network performance 

measurements from subscribers themselves. The key feature of crowd-sourcing and 

participatory sensing is the engagement and encouragement of willing participants. They 

contribute individually-gathered sensory information (which, in this case, are network 

measurements collected by their devices wherever they are) to form a larger body of 

knowledge (such as a real-time geographic map of network coverage). 

The proliferation of smart devices has been a key enabler for many interesting research 

projects in this area. Related work in participatory sensing leverages on the potential 

collaborative and participative nature of co-located smart devices to achieve various 

greater goals. In [12], the authors use commodity smartphones, mounted on vehicle 

dashboards, to collaboratively predict traffic signals in real-time, using the smartphones’ 

camera and peer-to-peer 802.11 connectivity capabilities. In another study [13], its authors 

propose a Wi-Fi Access Point recommendation system based on gathering historical and 

empirical evaluations from participating clients. Other diverse participatory sensing 

applications include finding suitable biking routes [14], fuel-efficient driving routes [15], 

and estimating bus arrival times [16]. 

2.2 Cellular Network Performance Estimation and Assertion 

The FCAPS framework (addressing fault, configuration, accounting, performance and 

security management) forms the core principles of any cellular management system. In 

[17], the objectives and requirements of cellular network management are broadly 

described. We begin by examining the background work addressing network coverage 

monitoring in Section 2.2.1. In Section 2.2.2, we briefly discuss how operators use walk- 

and drive-tests to monitor the general performance of their networks. We also introduce 
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other independent efforts currently underway to monitor cellular network performance on 

a distributed basis. 

2.2.1 Coverage Assertion: An Empirical Approach 

The coverage assertion problem is generally related to performance and configuration 

management, and is loosely related to the problem of coverage estimation. The latter has 

a rich history of background work, yet because of the complexities of real-world 

deployments, existing proposed approaches find limited application. These approaches can 

be categorized into three groups, namely deterministic, stochastic and empirical. 

Deterministic models, such as ray-tracing [18], are used when the complete 3-D 

propagation environment is known. However, obtaining complete knowledge of the 

propagation environment is prohibitively expensive. Stochastic models are often used in 

analysis. They typically model coverage as a random variable or random process. A 

comprehensive treatment of cellular coverage, modeled as a point process, is given in [19]. 

While stochastic models are often analytically tractable, they have limited use for the 

coverage assertion problem because the assumed propagation models are often too 

generalized. Empirical estimation is based on empirical observations, such as from UE 

measurement reports, and drive-tests [20]. We review this in detail as it is the approach 

currently undertaken by operators. 

The operator typically finds out about areas with poor coverage through subscriber 

feedback. It may dispatch technicians to those specific localities to perform walk-/drive-

tests. RSCP samples are generally collected with dedicated measurement and diagnostic 

equipment. The operator’s main complaints about the current approach are that it is too 

labor-intensive, time-consuming, and expensive to conduct. Subscriber feedback can also 

often be vague, subjective, and after the fact. Useful spatial-temporal clues (such as the 
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occurrence of a temporary surge in human traffic, resulting in high radio frequency signal 

attenuation by human bodies) may be omitted. Operating expense is high, yet a 

satisfactory survey of signal coverage is not guaranteed for two reasons as follows. 

1. It is prohibitively expensive to collect samples from all areas where there might be 

subscribers (especially in pedestrian or indoor areas). 

2. The readings collected by their measuring equipment may not directly reflect the 

coverage experienced by subscribers due to device heterogeneity. 

Instead of a manual approach, the operator desires a system and framework in which 

quantitative measurements are collected, localized, and reported to the network by the 

UEs themselves, in real-time. 

In the literature, the following generic approach to coverage monitoring is commonly 

assumed. A typical operator may collect physical layer measurement reports from UEs 

[20][21][22], monitor cell-wide statistics [23] and alarms [24], and perform periodic drive-

tests to assert cell performance. They also depend on subscriber feedback and support 

ticketing to determine if a cell is providing satisfactory coverage. However, in the context 

of coverage assertion, our operator finds that directly relying on UEs’ reported physical 

layer measurements has several drawbacks. We list them as follows. 

1. The ability to gather measurement reports from UEs is tightly coupled with their 

abilities to obtain full cell service. Any impairment to the service can affect 

measurement reporting. For places which are very poorly-served, UEs often do not get 

a chance to send measurement reports. 

2. Measurement reports are made and tagged with any location estimate that the UE 

may have. No additional effort will normally be imposed to refine location information 
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for power saving purposes [21][25]. Because of this, most reported measurements tend 

to have very coarse location information (mostly within the confines of the UEs’ cells). 

Hence, they are only useful for cell-wide analysis. We shall further discuss the current 

state-of-the-art in device localization in Section 2.3. 

3. Direct and frequent reporting of measurements can quickly consume UE power, as 

well as uplink capacity. This problem is especially important when trying to monitor 

poorly-served areas, because UEs in those areas have to transmit at higher powers to 

overcome poor channel conditions. 

Due to these issues, the local operator which we interviewed does not depend on UE 

reported measurements. Instead, they conduct manual walk- and drive-tests where 

conditions (e.g. mobility, equipment used) are well-controlled. Measurements are tagged 

with precise GPS locations. However, these results may not be representative of subscriber 

experience due to device heterogeneity. The geographic extent of their tests is also limited 

due to resource constraints. 

One related study considers overlaying estimated performance information, gleaned from 

UE measurements, over a geographic map. However, the authors consider all reporting 

UEs to be perfectly localized either using GPS or the Observed-Time-Difference-Of-

Arrival (OTDOA) technique [26]. Parameterized empirical path-loss models, such as the 

Okumura-Hata or COST-231 model, can be synthesized from large-scale studies. They are 

useful for coarse-grained estimation of large-scale path-loss [27], but not suitable for 

coverage assertion. Other in-depth empirical studies [28][29] have investigated real-world 

performances of cellular networks, but these are expensive to conduct, limited in 

geographic extent, and difficult to scale. 
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In this dissertation, we will show through real-world measurements that assumptions of 

perfect localization may not be valid for current generations of commercial-off-the-shelf 

(COTS) devices. Based on this, we will propose, in Chapter 3 and Chapter 4, a distributed, 

scalable peer-to-peer measurement exchange framework to gather performance 

measurements on a large geographic scale, with good location fidelity. 

2.2.2 Other approaches to cellular network performance monitoring 

Besides just surveying their network’s coverage, a battery of tests for network performance 

are also conducted during an operator’s regular walk- and drive-tests [30][31]. These tests 

try to detect and capture common issues with cellular networks, such as interference, bit 

errors, handover failures, and call drops. As aforementioned, this approach, together with 

customer complaints and trouble-ticketing, is still the primary means of detecting and 

monitoring network performance today. Hence, the shortcomings of such an approach 

discussed earlier unfortunately continue to apply here. 

Official performance surveys done by operators through these walk- and drive-tests are 

mostly not released to subscribers (especially if the results are not ideal). Several 

independent projects are now ongoing, to gather independent, real-world feedback on 

cellular network performance from subscribers. In [32], the regulatory authority in 

Singapore maintains a smart device application that allows people to passively contribute 

various network performance measurements, such as packet loss and voice call drop rates. 

However, they do not impose any localization accuracy constraint on submitted 

measurements. Measurements are naively accepted regardless of how egregious the 

location error may be. Because of this, they may only be able to glean performance 

information on a coarse geographic basis. 
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RootMetrics [33] is another popular large-scale cellular performance mapping project. 

Their aim is to provide independent evaluations of cellular networks through drive- and 

walk-tests, conducted by a small number of hired ‘scouts’. While the tests that they 

conduct are exhaustive, they are unable to capture small-scale spatial-temporal evolutions 

in the network performance as they have a limited number of scouts. Hence, locations are 

only surveyed twice a year (so the effects of crowd dynamics or changes in physical 

environments may not be sufficiently captured), and the location resolution of their 

reported performance maps is in the order of hundreds of meters (which may not be 

sufficient to capture small coverage holes). 

OpenSignal [34] is a similar large-scale cellular performance mapping project. Instead of 

relying on hired scouts to perform exhaustive tests while walking and driving, OpenSignal 

makes use of subscribers to contribute network performance measurements. However, it 

still suffers from the same shortcoming as in [32], where a lack of any localization accuracy 

constraints may imply that only coarse-grained location information is available. The 

location resolution of its performance maps, like that of RootMetrics, is in the order of 

hundreds of meters. 

Unlike these efforts, the framework proposed in this dissertation allows the operator to 

glean geographically fine-grained network performance information, in the order of meters 

to tens of meters. 

2.3 UE Localization Techniques 

Studies that feature crowd-sourcing and participatory sensing typically assume that smart 

devices are able to always geo-locate themselves accurately. This is because most devices 

have Global Positioning System (GPS) and/or network-assisted localization capabilities. 

In this dissertation, we shall show through extensive real-world measurement collection 
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that this assumption is not always true. Hence, we briefly discuss background work related 

to this area. 

Localization of cellular devices has always attracted considerable attention in terms of 

research, and more so in recent years. This is a direct result of the growing pervasiveness 

of location-based services. Before the emergence of “smart” devices, localization of simple 

mobile terminals were required by legislation, mostly for emergency-response services to 

locate users in need of assistance [35]. 

Early work in mobile localization focused on network-based approaches, where the 

computation of a mobile terminal’s location occurs within the network. This is based on 

identifiable features such as the terminal’s associated Cell ID [36][37]. Subsequent coarse-

grained mobile-assisted localization techniques are generally measurement-based 

triangulation approaches. These require mobile terminals to measure various signals from 

multiple base-stations. Time-of-Arrival (TOA), Time-Difference-of-Arrival (TDOA), 

Angle-of-Arrival information are distilled from these measurements as collected by the 

mobile terminal. They will then be used by the network to compute coarse-grained 

location [38]. This is still the current approach in use by network providers today at the 

network-plane level [21]. The best network-based localization technique in the 3GPP 

Universal Terrestrial Radio Access Network standard is the Observed-Time-Difference-of-

Arrival (OTDOA) method. The main shortcomings are that it incurs high signaling costs 

if constantly used, and its accuracy suffers from many sources of errors, such as multipath 

[25]. 

Recent developments in sensor networks have also touched on cooperative wireless node 

localization for sensors in-the-wild [39]. Many of these are “anchor-node” based approaches, 

where one or more nodes in the network have definitive knowledge on their positions. 
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Other nearby nodes with unknown locations can estimate their positions based on 

aforementioned techniques like TOA [40]. In particular, ultra-wideband technology is a 

promising radio interface for node-to-node communications that enables fine-grained TOA 

computations. It has gained considerable attention because of its resilience to multi-path 

effects, and its ability to penetrate obstacles [41]. It has been demonstrated in a controlled 

indoor environment that cooperative UWB-based localization can resolve locations up to 

centimeter-level [41]. However, till date, to the best of our knowledge, no commercial 

COTS devices have built-in UWB radios. Also, implementation of UWB-based schemes 

require nanosecond level operating-system (OS) interrupts [42], while current generations 

of smart device OSs are only capable of interrupts in the order of milliseconds [43]. 

Pedestrian Dead-Reckoning (PDR) [44][45][46] is another emerging area that has gathered 

research attention due to the proliferation of sensor-rich smart devices. The basic idea of 

this approach is to fuse intra-device information gathered from various sensors on a smart 

device. Readings from sensors such as accelerometers, and even sound, light, and image 

sensors [47], can be fused together to directly localize a mobile phone. Otherwise, they 

can correct displacements or drifts from known locations, either from anchor locations or 

opportunistic GPS readings. A comprehensive review of this approach can be found in 

[48]. This approach is interesting and potentially-deployable in current generations of 

COTS devices. The work described in this dissertation complements the PDR approach 

by operating at an inter-device level, but implementation of aforementioned PDR schemes 

is out of the scope of this dissertation. 

The framework and algorithms proposed in this dissertation complement these localization 

techniques, as well as any others that might be developed in the future, which offer a 
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reasonable probability that at least one or several devices in a co-located area will be well-

localized. 

2.4 Network- and Device-Level Fault Monitoring and Management 

Fault management in wireless networks, as a core component under the FCAPS 

framework, is a fairly-well studied topic. Strong existing contributions address the 

management of Wi-Fi network faults in particular. In [49], the authors propose the use of 

large arrays of commodity desktop computers, equipped with Wi-Fi cards or dongles, as 

enterprise network sensors and monitors. In another study [50], its authors suggest that 

Wi-Fi clients and access points can be instrumented to become diagnostic agents. These 

agents can be directed to switch to promiscuous mode to help detect and relay problems. 

Cellular networks have conventionally required different, more centralized approaches to 

fault management. This is due to their large geographical spreads, provisioned QoS, strict 

centrally-managed infrastructure, and until recently, ‘dumb’ clients, which cannot be 

easily instrumented to perform any complex tasks [17]. Existing work has a strong focus 

on detecting network-side faults, down to at most a cell-wide level, by examining key 

performance indicators (KPIs). In [51][52], the authors provide a brief description of 

possible network-side faults and symptoms in cellular networks. They then propose a 

Bayesian inference model to compute the probability of a fault based on observed KPIs. 

In another recent study [53], its authors propose a two-stage detection-diagnosis model 

where each monitored KPI is compared against normal ‘profiles’. Deviations are then 

matched to known root causes. These aforementioned work are useful for back-end 

diagnosis and after-the-fact root-cause identification. However, they do not provide 

immediate relief, nor timely acknowledgement of a user’s perceived troubles with his 

network connection. 
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The estimation and classification framework proposed in this dissertation is, to the best 

of our knowledge, the first designed specifically to cooperatively address UE-level faults. 

It identifies, in a timely manner, on a per-device basis, whether a user’s observed 

performance impairment is an isolated one, or endemic to those in the same vicinity. This 

complements existing fault management methodologies currently practiced by network 

operators, by providing critical spatial-temporal context to any customer feedback and 

complaints. Using this framework, the network operator, as well as participants, can 

quickly determine whether performance impairments are a result of problems with the 

network, or just transient, isolated issues that require no further attention.  

2.5 Summary of Related Work 

We summarize the main findings of the survey as follows. 

1. The proliferation of smart devices has enabled a wave of innovative participatory 

sensing and crowd-sourcing applications that relies on users to contribute sensory 

information. 

2. Deterministic and stochastic tools that model cellular network performance, such 

as coverage, are useful for aggregate analysis. However, they finds limited application 

in the real-world. Empirical approaches, such as manual drive-testing, is still the main 

technique used by operators today. 

3. Independent third-party projects that aim to map out cellular performance are 

becoming popular, with interests from regulatory authorities, commercial companies, 

as well as users themselves. The main drawback of these efforts is that they are unable 

to capture fine-grained location resolution of measurements. This is either due to 
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limited manpower (as in the case of [33]), or lack of constraints on subscribers’ reported 

location accuracy (as in the case of [32][34]). 

4. Current research efforts in device localization report encouraging results, where 

devices are able to be localized down in centimeter-level in controlled and limited 

indoor laboratory settings. However, these are dependent on radio technologies, such 

as UWB, which to the best of our knowledge is not yet available in commercial off-

the-shelf devices. They may also not be available for the foreseeable future. Without 

specific chipset support, running fine-grained, nanosecond-level Time-of-Arrival-based 

computations on current generations of devices is not possible. 

5. Fault management in cellular networks conventionally differs from that of wired 

networks. This is because of their large geographical spreads, and, until recently, 

‘dumb’ clients that cannot be instrumented to perform complex tasks. Hence, majority 

of related work on fault management in cellular networks typically focused on back-

end diagnosis and root-cause identification of cell-wide problems. There is little 

emphasis on providing timely relief to the subscriber whenever any service impairment 

is perceived. 

To address the gaps and drawbacks identified above, this dissertation proposes a 

comprehensive monitoring framework, which possesses the features listed as follows. 

1. The framework relies on subscribers themselves, wherever they are, to perform and 

collect empirical network measurements on a fine-grained, large-scale basis. This 

minimizes operator expenditure on manual walk- and drive-testing efforts. Compared 

to existing approaches that monitors areas on the order of hundreds to thousands of 

meters, our framework can generate monitoring maps that are accurate to the order 

of meters. 
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2. This framework advocates short-range, peer-to-peer exchange of measurements 

using low-power, local-area radio technologies that are pervasive in current generations 

of smart devices. This allows the preservation of the context of co-location between 

measurements collected in the same vicinity. Using this context of co-location, 

complementary algorithms will be proposed in this dissertation to reduce and remove 

measurements that are poorly-localized. Accurate, high-resolution network monitoring 

maps can then be constructed. To the best of our knowledge, this is a unique feature 

that has not been discussed or implemented before, for cellular network monitoring. 

3. Through local-area measurement exchange, this framework allows for a basic and 

immediate level of fault diagnosis for participants. This is achieved through a proposed 

comprehensive statistical framework. It estimates and classifies, on a per-device basis, 

whether any perceived network impairment is isolated to that device, or endemic to 

other devices in the same area. If the former is identified, participants can take remedy 

steps to alleviate their impairments (e.g. restart their devices). Otherwise, they attain 

some level of closure and comfort in knowing their impairments are likely the fault of 

the network, and are shared by others in the vicinity. To the best of our knowledge, 

we are the first to propose and implement this novel peer-to-peer collaborative 

application for device-level fault diagnosis in cellular networks. 
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3. TATTLE - CELLULAR COVERAGE 

MONITORING THROUGH UE PARTICIPATORY 

SENSING 

The operating environment of cellular networks can be in a constant state of change. Over 

the course of hours and days, cell loads can change due to diurnal cycles, or events such 

as spectator sports. Over the course of weeks and months, network topology can change 

due to the addition of new cells, and resizing of existing cells. Over the course of months 

and years, changes in the physical operating environment can come about when new 

physical infrastructure, like buildings, is constructed. Due to this evolution, dynamic 

parameters (such as radio, antenna, handover and load-balancing) may therefore have to 

be regularly reconfigured so that cell service is not degraded. However, operators can 

sometimes struggle to keep pace with the regularly-changing operating landscape. For 

example, in many space-constrained urban areas, low-lying buildings constantly make way 

for increasingly taller ones. These new and tall structures cause heavy shadowing and 

coverage holes. 

The operator has to rely on subscriber complaints to discover areas that are poorly served. 

For the cellular network operator that we interviewed, their lead time between discovering 

the need for a new base-station, to its installation and commission, is around 6 months. 

In the meantime, the operator has to reconfigure existing base-stations to alleviate 

coverage problems, and yet minimize any impact to areas that were previously well-served. 
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3.1 Coverage Monitoring – Problem Overview 

One of the specific problems that the operator which we interviewed put to us is coverage 

monitoring (CM): how can they efficiently verify that minimum coverage is met for an 

area of interest? 

Minimum coverage at any given spatial location is defined by Singapore’s regulatory 

authority to be a minimum threshold percentage of Received Signal Code Power (RSCP) 

samples (collected at that location) which exceed -100 dBm. The RSCP is the received 

code power from the downlink Common Pilot Channel (CPICH), broadcast as a “beacon” 

from base-stations [54]. The regulatory authority in Singapore mandates that at least 85% 

and 99% of RSCP samples, collected within any indoor and outdoor area respectively, 

must exceed -100 dBm. If areas which fail these requirements are overlooked, the operator 

faces penalties by the regulator, and stands to lose subscribers to other competitors. 

The operator currently follows a manual approach. Areas with poor coverage are first 

identified through subscriber feedback. Coverage is then appraised by manual walk-tests. 

If minimum coverage is not attained, parameters (such as pan, tilt and power) are 

iteratively tweaked. After each iteration, walk-tests will be conducted to re-appraise 

coverage. This is repeated until minimum coverage is obtained. Furthermore, areas that 

were previously amply-covered should not be significantly impacted after this tuning. 

Such an approach is labor-intensive, expensive and limited in scale. It only provides a 

non-real-time and non-continuous snap-shot of coverage. The process has to be repeated 

whenever the operating environment evolves, especially over long periods due to 

aforementioned reasons. 
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3.2 Contributions 

In this chapter, we introduce Tattle, a distributed, low-cost and comprehensive RSCP 

monitoring framework that addresses the CM problem in a scalable and real-time manner. 

Tattle has 3 key components, namely: 

1. the local exchange of RSCP measurements between devices, and subsequently the 

uploading of co-located readings to the network, 

2. the real-time pre-processing of co-located readings at the network side to discard 

erroneously-localized measurements, and, 

3. the visualization of coverage based on collected RSCP measurements in specific 

regions-of-interest. 

Tattle is designed to minimize operator expenses and labor, and yet monitor coverage in 

real-time on large geographical scales with good fidelity. It does this by removing 

erroneously-localized measurements. It enables operators to effectively appraise coverage 

without conducting expensive walk-/drive-tests. Operators can also proactively identify 

and mitigate spots with poor coverage in a timely manner, instead of reactively acting 

only upon subscriber complaints. 

We demonstrate through experiments that current-generation commodity handsets can 

exhibit wild variations in terms of reported GPS location under urban conditions. A pair 

of devices that are physically placed 1 m apart can report erroneous locations of up to 

kilometers of pair-wise distance. We are the first to demonstrate that using local-area 

measurement exchange and our proposed U-CURE clustering algorithm, co-located mobile 

devices can reduce their errors of their reported pair-wise distances by up to 40%. 
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To the best of our knowledge, we are the first to implement, validate and demonstrate 

the achievable, real-world benefits of such a complete monitoring framework when applied 

to cellular networks. We use real-world, COTS devices to collect more than 3.78 million 

readings of RSCP using Tattle in an actual production cellular network. We show its 

efficacy in performing CM by presenting high-resolution results of actual coverage 

conditions in selected areas of Singapore. 

3.3 Chapter Organization 

In Section 3.4, we describe our proposed Tattle framework, and give details on the Tattle 

app and prototype. In Section 3.5, we discuss how readings can be pre-processed based 

on co-location to remove samples with location errors. In Section 3.6, we describe our 

measurement collection procedures, and evaluate Tattle in terms of the localization 

fidelity of resulting measurements. We collect over 3.78 million RSCP measurements, and 

present real-world mean RSCP coverage maps and RSCP cumulative distribution 

functions (CDFs) of various areas in Singapore. Finally, we give a summary of this chapter 

in Section 3.7. 

3.4 Tattle – Monitoring Through Participation 

We propose Tattle, a distributed monitoring framework that is scalable, minimizes manual 

labor and operator expense on drive-tests. It monitors real-time coverage on a large 

geographical scale with good measurement location fidelity, and requires minimal 

involvement of subscribers (other than simply running a background app on their smart 

devices). 
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Figure 4 illustrates the overall system architecture of the Tattle framework. In the context 

of network coverage monitoring, there are 3 key components, namely: 

1. the local exchange of RSCP measurements between devices, and uploading of co-

located readings to the network, 

2. the pre-processing of co-located readings to discard erroneously-localized 

measurements (either at the backend or at the UE-level), and, 

3. the visualization of coverage based on collected measurements in specific regions-

of-interest. 

We will discuss each of the above components in the rest of this chapter. 

 
Figure 4: A diagrammatic description of Tattle, a distributed, low-cost and 
comprehensive cellular network measurement collection and processing 
framework. In this chapter, we exemplify Tattle by leveraging on participating 
UEs to report on network coverage in real-time. 
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3.4.1 Benefits of Low-Power Measurement Exchange 

Subscribers are the best monitors of coverage wherever they are and wherever they require 

service. In our framework, the UEs form distributed mobile sensor networks to monitor 

the RSCP experienced by each UE. Instead of purely relying on the cellular service to 

upload measurement reports, we advocate using low-power local communications (such 

as Bluetooth Low Energy [55], or WiFi Direct [56]) to exchange RSCP measurements 

between UEs. This preserves the co-locality of measurements and conserves UE power. 

Conventionally, when a UE reports its measurement, together with its coarse location 

information, its measurement is taken in insolation. Two reports from separate UEs 

cannot be corroborated unless they have very accurate location fixes. However, if readings 

are exchanged through local communication, the principle of co-locality is preserved. This 

is because a UE that overhears a report from another UE can be sure that the transmitter 

is within range (depending on the interface used). In our indoor range test experiment, 

we find that the devices used in our experiments (specifically the Asus Nexus 7’s, and the 

Samsung Galaxy Tab 2 7.0’s) can reliably receive each other’s WiFi Direct broadcasts 

within 30 meters. 

In Section 3.5.1, we will use this communication range as an evaluation condition to 

determine whether an assessed reading should be admitted into the group of accepted 

readings. This is based on the knowledge that these readings were co-located. We can 

reject and discard a measurement if the reported GPS-location’s distance to the admitted 

group is beyond local transmission range. This is a key feature of Tattle. Naïve reporting 

of measurements in isolation lacks the context of co-location, and the network has to 

accept all reports in good faith. This includes those that have GPS locations which are 

egregiously wrong. Outdoor communication range may be higher, but we chose to use the 
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observed indoor range of 30 meters as a conservative upper limit. This keeps the group of 

admitted measurements tightly clustered in space. We stress that the emphasis is on 

keeping measurements that are likely to be well-localized, rather than admitting as many 

measurements as possible. 

The aforementioned local-area radio technologies, such as Bluetooth and WiFi Direct, are 

pervasive in smart devices. Hence, they become ideal candidates for local-area 

communications [12]-[16]. The industry is also starting to see value in allowing mobile 

devices to directly communicate with each other through the cellular interface. Promising 

research and development efforts, such as in [57], are currently underway. If none of these 

interfaces are available, we then rely on the cellular service as a fallback. Figure 5 shows 

how the measurements can be communicated from UEs back to the network. 

 
Figure 5: Participating users form local-area communication networks using 
interfaces such as WiFi Direct, to exchange signal strength readings. Elected 
Group Owners forward overheard readings to the network. 
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3.4.2 The Tattle App – Description and Operation 

The eponymously-named Tattle app is a simple prototype to demonstrate the efficacy of 

our proposed coverage monitoring framework. It exploits WiFi Direct as a local 

communication interface for UEs to exchange RSCP measurements. The app can be easily 

extended to use other local communication interfaces, such as Bluetooth. The app has the 

ability to scan for and form an ad-hoc network with other participating devices within 

WiFi Direct range. WiFi Direct is an attractive choice because it can work in tandem 

with a user’s existing WiFi association to any WiFi Access Point. Once a device-pair 

creates a network, one UE will be nominated transparently by the WiFi Direct protocol 

to be the group owner. One limitation of WiFi Direct is that the setup time for connections 

is in the order of seconds. However, we believe that further revisions and improvements 

to WiFi Direct, and other peer-to-peer protocols, such as BLE, will in the future enable 

seamless peer-to-peer on-demand connectivity. 

The group owner assigns an Internet Protocol (IP) address to each client that 

subsequently joins the network. Every time a new device joins the WiFi Direct network, 

the group owner broadcasts an Address List Update to notify all existing devices of the 

incoming device’s IP address. Multi-hop transmission is not yet supported by WiFi Direct, 

but it is not essential for our purposes. This is because a client is only admitted to the 

WiFi Direct group when it is one hop from the group owner. 

Upon joining a network, each device periodically broadcasts its GPS location, current 

network type (UMTS/ HSPA/HSDPA/HSDPA+), and the signal reading associated with 

its network type. In our prototype, we configured our broadcast period to be 1 second. In 

an active deployment, the sensing and broadcasting interval can be extended to 

automatically adapt to remaining battery power, current signal conditions, etc. It may 
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also, for example, dynamically adapt to the number of participating UEs that were last 

overheard. So, the broadcast periodicity may be decreased whenever a large number of 

co-located participating UEs are overhead. Whenever a signal reading is overheard, the 

overhearing device will log the broadcast, and update the Tattle app GUI to reflect the 

reported signal of the corresponding device. A simple round-robin approach is used to 

determine which UE in the network reports the next batch of overheard signal readings 

to the measurement database. All uploads will be tagged with the timestamp of reception, 

and appended with the reporter’s current GPS location. 

We stress that our framework readily admits the use of reporting schemes (other than 

round-robin) which may robustly adapt to dynamic conditions, such as remaining device 

power, signal conditions of individual UEs, etc. However, this dissertation focuses on the 

Tattle framework and system, hence the investigation of other detailed reporting schemes 

is out of the scope of this dissertation. 

 
Figure 6: Screen capture of the Tattle app in operation. Nearby devices will be 
invited to join the network, and periodically exchange GPS location and signal 
readings. 
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Figure 6 demonstrates the Tattle app in action, with all 6 devices (as shown in the 

screenshot) connected to the same WiFi Direct network. In our experiments, all devices 

operate on one common provider’s network. The Tattle framework can also be adopted 

by third-party data collection entities that are not affiliated with the cellular operators. 

In this case, devices on different cellular networks can exchange measurements of their 

own network’s coverage. Then, the data collection entities collect uploaded reports at 

their backend servers, which are independent of any cellular operator. They can 

subsequently provide operators and subscribers with coverage information as a service. 

This can also boost the number of participating subscribers if the use of Tattle is not 

limited to subscribers of any particular operator. 

3.4.3 Motivation for Users 

Oftentimes, when users experience poor or no signal coverage (as evinced by the display 

of ‘signal bars’ on most phones), they often ask: is this phenomenon observed by others? 

Knowing that others are experiencing similar coverage conditions does not necessarily 

help a user. It however provides some level of comfort in knowing that the network, and 

not the user’s equipment, is likely the source of the problem. On the other hand, if a user 

knows that most other subscribers are getting adequate signal coverage while his own 

signal readings are poor to non-existent, he can take some limited steps to alleviate the 

situation (e.g. restart his device, check his device settings, etc.). Through local-exchange 

of measurements, the user can gain a new level of insight into the service. The same kind 

of measurement reporting and retrieval can conceivably be implemented entirely based 

on the cellular interface instead of using local communication. However, there are several 

drawbacks to this approach, which we refer to as naïve reporting. 
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Firstly, transmitting measurements to the network over the long-distance cellular link 

consumes more power than sending them to co-located peers, using short-range local-area 

interfaces such as WiFi Direct. In poorly-served areas, this problem is exacerbated because 

devices have to transmit to the cellular base-station at higher powers to overcome poor 

channel conditions. Secondly, pulling real-time measurements of nearby users from the 

network consumes precious downlink capacity. This is made worse in congested and 

poorly-served areas, whereby a multitude of users who want real-time signal information 

actually contribute further to congestion. Thirdly, by relying on the cellular network, we 

lose the knowledge of co-location. We show in Section 3.4.4 that reported GPS locations 

of devices can sometimes be as far as several kilometers away from their actual location, 

which can result in numerous misleading readings. 

Compared to naïve reporting, short-range exchange consumes less power and does not 

consume downlink capacity. It enables users to obtain real-time signal information from 

other users that are guaranteed to be within local communication range. 

To further incentivize subscribers to participate, recent studies have focused on monetary-

based reward schemes that provide payouts to participants based on various criterions. 

These may be their current locations [58], or their sensing contributions [59]-[62]. The 

operator can readily leverage on these mechanisms to instate a reward system. They can 

either providing monetary compensation to participating UEs (taken from a small 

percentage of the operating cost savings gained by avoiding the need for walk-/drive-

tests), or even using subscription rebates, loyalty points, or handset discounts to 

incentivize participants. 
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3.4.4 Tattle – of Power and Location Uncertainty 

In Figure 7, we demonstrate results of battery drain tests conducted with 3 Samsung GT-

P3100s. All 3 were first set to perform naïve reporting where RSCP readings and GPS 

locations were uploaded every second to a remote server, in a JavaScript Object Notation 

format using the HTTP POST method. The GT-P3100s’ batteries were fully charged at the 

commencement of the experiment. The same experiment was repeated using Tattle’s 

RSCP local exchange and round-robin network reporting approach. Each GT-P3100 

broadcasts its RSCP reading and GPS location every second. Using round-robin, each 

device reported all overheard measurements, including its own, for consecutively 20 

seconds in every 60 second window. These two experiments were each repeated thrice. 

With naïve reporting, the devices lasted an average of 15.38 hours with a standard 

 
Figure 7: Battery drain test demonstrating the battery consumption of the naïve 
reporting method vs. the Tattle prototype round-robin approach. 
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deviation of 0.33 hours. With Tattle, the devices drained completely after a mean of 17.22 

hours with a standard deviation of 0.82 hours, lasting 12% longer on average. 

We stress that further power savings are possible if more robust schemes other than 

round-robin are used. The choice of the latter is simply for ease of prototyping. The 

framework readily admits other reporting approaches. 

We then conducted a ground-truth experiment at a known location to investigate the 

performance of GPS accuracy in an outdoor urban environment populated with low-lying 

buildings. We co-located 6 static devices, 3 of which are GT-P3100s and the other 3 are 

Asus Nexus 7s. The first several minutes of the experimental data were discarded in order 

to allow each device sufficient time to obtain a coherent GPS signal. In total, 18,191 

samples were collected. 50% of these had mean locations more than 27.22 m off from the 

true location, while 2.79% had mean locations that were 2,877.69 m away from the known 

 
Figure 8: CDF plot of the root-mean-square distances of 18,191 static sample 
points from a known true location. 
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spot. The maximum observed discrepancy between a sample’s mean location and the 

known spot was 2,996.07 m. Only 22.42% of measurements were less than 20 m distance 

from the true spot. 

Figure 8 shows the cumulative distribution function of the root-mean-square (rms) 

distances between the sample points and the known spot, before and after processing. In 

Section 3.5, we detail how the rms distance is evaluated. We then introduce the CURE 

algorithm, as well as our extended U-CURE algorithm, which we used to pre-process the 

data in order to discard readings that are wrongly localized. After processing with U-

CURE, the number of readings with rms location errors below 30 m saw a 17.85% 

improvement, compared to that of a naïve reporting approach, and a 16.19% improvement 

over CURE. 

 
Figure 9: CDF plot of the pair-wise root-mean-square distance of sample 
locations known to be co-located from local-communication exchange. 
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Figure 9 demonstrates the cumulative distribution of pair-wise rms distance between each 

sample-pair in each co-located batch of readings. Using the naïve reporting method, all 

context of co-location is lost. However, using U-CURE, we are able to exploit the 

knowledge of measurement co-location to discard samples that are likely to be erroneously-

localized. All samples after U-CURE processing had less than 39.15 m rms pair-wise 

distances. The naïve reporting method had pair-wise rms distances as high as 3,032.22 m, 

even though they were physically juxtaposed. 

Figure 10 is an illustrative temporal snapshot of the reported spatial locations of each co-

located device captured sometime into the experiment. It clearly demonstrates the 

 
Figure 10: A snapshot of device reports taken from our urban outdoor 
experiments. All 6 devices were actually co-located in a fitted box, each 
spaced apart by Styrofoam paddings. The spread of reported locations 
demonstrate the problem of inaccurate location reports. We will further 
investigate deviations from location ground truths in Chapter 4. 
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problem of location uncertainty in urban environments, even when outdoors. Though the 

devices were physically juxtaposed, the maximum reported pair-wise distance between 

device location means actually exceeds 50 meters. 

Next, we investigate whether there exists any meaningful correlation between coverage 

conditions and the magnitude of localization errors, as reported by our devices. It is 

important to establish this because any processing of measurements based on their 

reported locations must not skew the final computed result of coverage. If devices that 

are in areas with poor signal coverage tend to have higher localization errors, then any 

bias against those RSCP measurements (for example, if we were to discard these 

 
Figure 11: A plot of 1,628 Received Signal Code Power measurements and their 
corresponding localization errors in a challenging high-speed mobility 
condition, collected by 3 sets of GT-P3100s. The Pearson correlation coefficient 
between RSCP and localization error is -0.0441, suggesting little to no 
correlation between the two variables. 
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measurements based on their location errors) will result in an artificially-positive 

representation of coverage conditions. We demonstrate the results of this investigation in 

Figure 11. Using three units of GT-P3100s, we collected 1,628 RSCP measurements in a 

challenging, high-speed mobility setting to elicit any relationship between coverage 

conditions and the magnitude of localization errors. As shown in the figure, the mean 

trend-line stays relatively flat. The quantitative Pearson correlation coefficient turns out 

to be -0.0441, suggesting very little to no correlation between RSCP values and the 

magnitude of localization errors. 

 
Figure 12: A plot of 9,226 location measurements and their corresponding 
localization errors, collected by 4 sets of SM-T325s. The Pearson correlation 
coefficient between the reported location uncertainties and actual error 
distances between the reported location means, and the actual ground truth, 
is 0.6344, suggesting a strong correlation between the two variables. 
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These experiments serve to establish the fact that, for commercial off-the-shelf (COTS) 

devices that are very closely co-located (where inter-pair distance is less than a meter), 

their reported locations may be upwards of tens of meters apart, and sometimes more. 

We will investigate in further detail the localization performances of COTS devices in 

Chapter 4. But now, we continue the discussion on the systems aspect of Tattle and its 

application to the CM problem in the rest of this chapter. 

Finally, we investigate whether the location uncertainties reported by COTS devices 

directly correlates with the actual error between their reported locations and their ground 

truth locations. Figure 12 illustrates the result of this investigate. Using four units of SM-

T325s, we collected 9,226 location measurements reported by the devices, and their actual 

ground-truth locations as measured by a commercial, aviation-grade GPS. The fitted 

trend clearly suggests an obvious increase in the ground-truth error as the reported 

location uncertainty increases. The Pearson correlation coefficient turns out to be 0.6344, 

which further supports this observation. 

3.4.5 A Note on Security, Privacy and Trust 

In this dissertation, we focus on the systems aspect of our Tattle measurement collection 

and monitoring framework. Hence we omit, for brevity, comprehensive security, privacy 

and trust mechanisms in our Tattle prototype. However, we note the importance of having 

these mechanisms in an active, full-scale deployment, and briefly discuss some existing 

work in this area. 

In any general participatory sensing system, security [11], privacy [63] and trust [64][65] 

of both the system and its participants need to be considered. For Tattle, there are two 

primary concerns that we note: 
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1. How does the operator increase the likelihood that the measurements overheard 

and reported to the measurement database are what was actually observed by the 

participating UEs, and not fabricated by malicious participants? 

2. How can participating subscribers be assured of their anonymity and privacy, while 

retaining their trustworthiness and ability to be recognized and rewarded for their 

contributions? 

In the context of the first concern, participants can lie about their measurement values, 

their purported locations, or both. In the case of fabricated measurement values, [66] 

suggests the possibility of using hardware-based solutions for trusted computing, such as 

Trusted Platform Modules (TPMs) [67].  

One critical feature provided by this hardware-based solution is that of remote attestation. 

It serves to verify that the software (in this case, the Tattle app running on the UE, as 

well as the OS-level API calls to retrieve GPS and network measurements) has not been 

maliciously modified. While TPMs exist primarily within desktop computers, there are 

on-going efforts that seek to implement the mobile-equivalent of TPMs on consumer 

devices [68]. Mechanisms to prevent intentional physical damage to disrupt GPS, sensors, 

and radio functionality are beyond the scope of this discussion. Some participating UEs 

(whose measurements were overheard by others) may deliberately lie about their 

purported locations. Tattle inherently considers this by discarding their measurements 

should it be beyond possible overhearing range. We will explain this in Section 3.5. 

As for the second concern, the authors in [69] propose a comprehensive reputation and 

trust framework to address the “trust without identity” problem. Using this framework 

in the context of Tattle, we can decouple the participant from the device (and hence from 

the network-level parameters, such as IP addresses, which can be used to identify the 
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subscriber) by allowing participants to register user accounts. Any reputation, or rewards, 

will be attributed to the account instead of the device. The framework also decouples the 

account from its actual measurements reported to the network. The system then rewards 

individual measurements, as opposed to accounts, by sending reward coupons which can 

only be redeemed by the account that sent those measurements. In this case, the identity, 

privacy and reputation of the participant can be preserved. 

3.5 Hierarchical Clustering With Uncertainty 

In a naïve reporting approach, the operator has to accept each report in good faith. 

However, the use of local measurement exchange guarantees that a device-pair is surely 

at least within local communication range. This context is important because it allows us 

to design techniques to discard patently incorrect reports that can otherwise affect the 

fidelity of the results. We apply pre-processing to co-located readings as the second key 

component of the Tattle framework. 

The goal is to identify and discard samples which have GPS locations that are likely to be 

wrong, rather than to improve on the accuracy of localization of individual samples. The 

key which allows us to achieve this goal is through the use of local communications. To 

this end, we propose U-CURE (uncertain clustering using representative points), an 

extension of the CURE clustering algorithm [10]. We chose to extend the original CURE 

algorithm because:  

1. it is robust against outliers, and, 

2. it identifies clusters that are non-spherical in shape. 

The latter feature is especially desirable because the spatial distribution of participating 

devices does not conform to any particular shape. We stress that our proposed framework  
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function u_cure(S, k, max_dist) 
% S is an input of N×3 matrix of N rows of [x, y, uncertainty] entries 
% k is the desired number of clusters 
% max_dist is the maximum expected distance allowed between clusters 
1. Initialize C, a sorted array of clusters, each cluster has: 

a. list of points inside the cluster, 
b. a pointer to its nearest cluster, 
c. expected distance to nearest cluster, 
d. centroid in [x, y], simply the mean of all x's and all y's of points in C, 
e. a list of representative points for this cluster 

2. Sort C according to ascending distances to nearest cluster 
3. Initialize r, the number of representative points that represents each cluster 
4. While length(C) > k, 
  if distance of cluster C{1} to the next nearest cluster is > max_dist, 
   break; 
  else 
   merge top two clusters of C; 
 endwhile 
 
function merge_clusters(C, r) 
1. Sort C according to ascending distances to nearest cluster 
2. Merge the first two clusters of C 
3. Evaluate centroid of the newly merged cluster 
4. Find the representative points of the newly merged cluster 
5. Re-compute expected distance between every cluster-pair and re-sort C 
 
function find_rep_points(p, centroid, r) 
% p is the complete set of points in the cluster that we want representative points for 
1. If length(p) ≤ r 
  return p, 
 else 
  set the first representative point as the point furthest from centroid 
2. While length(rep_points) < r, 

a. find the point from p whose min. distance to other rep_points is max 
b. add that point to rep_points and clear it from p 

 endwhile 
return rep_points 

 
Figure 13: The U-CURE algorithm. 
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readily admits other choices of pre-processing algorithms. The choice of U-CURE is 

intended to be instructive rather than exclusive. We make 2 important modifications to 

the CURE algorithm to handle the reported uncertainty in a measurement’s location, as 

well as to discard samples with likely incorrect locations. We refer to the modified 

algorithm as U-CURE, and a sketch of the U-CURE algorithm is given in Figure 13. 

3.5.1 U-CURE: Extending the Original CURE Algorithm 

We first briefly describe the CURE algorithm. One can refer to [10] for more details. 

CURE considers each data point as a point source in Cartesian space. The distance 

between two clusters 𝐴𝐴  and 𝐵𝐵  is the minimum distance between all the possible 

representative point-pairs. It is given by: 

 𝑑𝑑(𝐴𝐴, 𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑(𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵)� ∀ 𝑟𝑟𝐴𝐴 ∈ 𝑅𝑅𝐴𝐴, 𝑟𝑟𝐵𝐵 ∈ 𝑅𝑅𝐵𝐵, (1) 

where 𝑑𝑑(. , . )  is a measure of Euclidean distance between the two inputs, 𝑟𝑟𝐼𝐼  is a 

representative point in the set of representative points 𝑅𝑅𝐼𝐼 of cluster 𝐼𝐼, where 𝐼𝐼 ∈ (𝐴𝐴,𝐵𝐵). 

It works as follows: 

1. Start by considering every point as a separate cluster, and each point is its own 

cluster’s representative point. 

2. Find the two clusters that are closest in distance, and merge them. 

3. Find the representative points of the newly merged cluster, where the first point 

chosen is furthest from the centroid. Each subsequent point is chosen sequentially such 

that its minimum distances to all previous representative points is maximum, until a 

desired number of representative points is reached. 

4. Repeat Step 2 and Step 3 until the desired number of clusters remain. 
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At the conclusion of CURE, we pick the largest cluster as the set of admitted points, and 

discard the rest. We extend CURE in 2 important ways to further improve clustering 

accuracy. First, we implement a stopping condition: when the closest two clusters have a 

root-mean-square (rms) distance larger than the maximum range of the local 

communications interface, they should not be merged and the algorithm should stop. This 

corresponds to the max_dist condition in the algorithm. Since we are interested in the 

cluster with the largest number of sample points most closely located together, we set the 

desired cluster parameter k as 2. This is equivalent to classifying samples into either the 

primary cluster (which we are admit), or the secondary, out-lying cluster (which we 

discard). The max_dist condition then terminates U-CURE clustering early if clusters are 

too far apart to be co-located. In doing this, we exploit the knowledge of co-location 

garnered through local measurement exchange. In the next section, we describe the second 

extension to the original CURE algorithm. 

3.5.2 Considering Uncertainty in U-CURE 

Unlike the assumption of location certainty in CURE, GPS locations are expressed as a 

3-tuple of latitude, longitude, and uncertainty [70][71]. This uncertainty is expressed as a 

𝜎𝜎 value in meters, and modeled as a 2D normal distribution with the mean location given 

by the latitude and longitude. Hence, the ‘true’ location is said to fall within a radial 

distance of 𝜎𝜎 meters from the mean location with 68.2% probability. 

We convert reported latitudes and longitudes into Cartesian (𝑥𝑥, 𝑦𝑦) space using the Map 

Grid Reference System (MGRS) [72] so that distances are easily evaluated. In order to 

extend CURE to take into account the uncertainty of sample locations, we consider the 

expected square-distance between uncertain location points, instead of just the distance 

between their means. Hence, the distance metric becomes the following: 
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 𝑑𝑑′(𝐴𝐴,𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑′(𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵)� ∀ 𝑟𝑟𝐴𝐴 ∈ 𝑅𝑅𝐴𝐴, 𝑟𝑟𝐵𝐵 ∈ 𝑅𝑅𝐵𝐵, (2) 

where 𝑑𝑑′(. , . ) is a measure of mean square distance between the two uncertain location 

points. Because the measure of distance on the ℝ2 Cartesian plane is real and non-negative, 

the order statistics after squaring a distance measure is preserved. We formalize the 

evaluation of the expected square-distance between two uncertain location points as 

follows. 

Lemma: The expected square-distance between two samples 𝑈𝑈 = (𝑋𝑋𝑈𝑈,𝑌𝑌𝑈𝑈)  and 𝑉𝑉 =

(𝑋𝑋𝑉𝑉 , 𝑌𝑌𝑉𝑉 ), centered in Cartesian space (𝑋𝑋𝑈𝑈, 𝑌𝑌𝑈𝑈) and (𝑋𝑋𝑉𝑉 , 𝑌𝑌𝑉𝑉 ) respectively, where 𝑋𝑋𝑈𝑈 ∼

𝒩𝒩(𝑥𝑥𝑈𝑈, 𝜎𝜎𝑈𝑈
2 ), 𝑌𝑌𝑈𝑈 ∼ 𝒩𝒩(𝑦𝑦𝑈𝑈, 𝜎𝜎𝑈𝑈

2 ), and 𝑋𝑋𝑉𝑉 ∼ 𝒩𝒩(𝑥𝑥𝑉𝑉 , 𝜎𝜎𝑉𝑉
2 ) as well as 𝑌𝑌𝑉𝑉 ∼ 𝒩𝒩(𝑦𝑦𝑉𝑉 , 𝜎𝜎𝑉𝑉

2 ), is equal 

to 2(𝜎𝜎𝑈𝑈
2 + 𝜎𝜎𝑉𝑉

2 ) + (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 )2 + (𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 )2. 

Proof: We construct two random variables (R.V.) 𝑋𝑋 and 𝑌𝑌  as follows, 

 𝑋𝑋 = 𝑋𝑋𝑈𝑈 − 𝑋𝑋𝑉𝑉 , 𝑌𝑌 = 𝑌𝑌𝑈𝑈 − 𝑌𝑌𝑉𝑉 . (3) 

Since the difference of Gaussian R.V.s is also normally distributed, we know that, 

 𝑋𝑋 ∼ 𝒩𝒩(𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 , 𝜎𝜎𝑋𝑋
2 = 𝜎𝜎𝑈𝑈

2 + 𝜎𝜎𝑉𝑉
2 ), 𝑌𝑌 ∼ 𝒩𝒩(𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 , 𝜎𝜎𝑌𝑌

2 = 𝜎𝜎𝑈𝑈
2 + 𝜎𝜎𝑉𝑉

2 ). (4) 

Next, we construct a R.V. 𝐷𝐷 representing the square-distance between samples 𝑈𝑈  and 𝑉𝑉 , 

where, 

 𝐷𝐷 = 𝑋𝑋2 + 𝑌𝑌 2. (5) 

Now, we can make use of the non-central 𝜒𝜒2 distribution and its properties to evaluate 

E(𝐷𝐷). Let 𝐷𝐷′ be a R.V. of the following, 

 𝐷𝐷′ = � 𝑋𝑋
𝜎𝜎𝑋𝑋

�
2
+ � 𝑌𝑌

𝜎𝜎𝑌𝑌
�

2
= 1

𝜎𝜎𝑈𝑈
2 +𝜎𝜎𝑉𝑉

2 (𝑋𝑋2 + 𝑌𝑌 2). (6) 

Since 𝑋𝑋  and 𝑌𝑌  are independent and normally distributed, the sum of their squares 

normalized by their variances is represented by the non-central 𝜒𝜒2 distribution where, 
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 𝐷𝐷′ ∼ 𝜒𝜒2 �𝑘𝑘 = 2, 𝜆𝜆 = �𝜇𝜇𝑋𝑋
𝜎𝜎𝑋𝑋

�
2
+ �𝜇𝜇𝑌𝑌

𝜎𝜎𝑌𝑌
�

2
� , E(𝐷𝐷′) = 𝑘𝑘 + 𝜆𝜆. (7) 

Applying the linearity of expectation on Equation (6) yields, 

 E(𝐷𝐷′) = 1
𝜎𝜎𝑈𝑈

2 +𝜎𝜎𝑉𝑉
2 E(𝑋𝑋2 + 𝑌𝑌 2) = 1

𝜎𝜎𝑈𝑈
2 +𝜎𝜎𝑉𝑉

2 E(𝐷𝐷). (8) 

Finally, combining Equations (7) and (8), we get, 

∎ E(𝐷𝐷) = 2(𝜎𝜎𝑈𝑈
2 + 𝜎𝜎𝑉𝑉

2 ) + (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝑉𝑉 )2 + (𝑦𝑦𝑈𝑈 − 𝑦𝑦𝑉𝑉 )2. (9) 

This lemma is an important one because it allows us to easily evaluate the numerical 

result of the expected square-distance between any two samples without having to 

evaluate any computationally-expensive integrals. This makes U-CURE more efficient in 

terms of computation. By taking into consideration location uncertainty and measurement 

co-location, U-CURE enables the pre-processing of co-located readings to discard samples 

that are likely to be mis-localized. Finally, Figure 10 illustrates a real-world example of a 

spatial-temporal snapshot of device measurement locations taken from our experiments. 

It demarcates the primary, accepted cluster of measurements after pre-processing it with 

U-CURE. The secondary, rejected measurement is also shown. 

3.6 Measurement Collection, Processing, and Signal Coverage Representation 
with U-CURE 

In this section, we describe the third key component of Tattle: the visualization of 

coverage based on collected RSCP measurements in specific regions-of-interest. We 

conducted extensive RSCP measurement collection over the course of more than 4 weeks, 

gathering over 3.78 million samples. 6 tablets were used in our experiments, namely 3 

GT-P3100s, and 3 Asus Nexus 7s. All 6 tablets were always co-located and maintained 

WiFi Direct connections to one another. Collection of data points was done throughout 

the day, in all kinds of environments. 
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3.6.1 Mean Coverage Visualization 

In Figure 14, Figure 15 and Figure 16, we first illustrate the efficacy of Tattle in the mass-

collection of data points, particularly on our local public rail system and roads. The plots 

of mean RSCP maps should be of particular interest to cellular operators, who will find 

difficulty in achieving this scale of sampling by performing walk-/drive-tests. Our 

framework enables this by allowing participating UEs to undertake the task of coverage 

monitoring. This map is obtained by: 

1. taking every sample point and weighing its RSCP value with a two-dimensional 

Gaussian filter, centered at the sample’s reported mean, with sigma value equal to the 

sample’s 𝜎𝜎 uncertainty, and, 

2. summing up the resulting two-dimensional matrix generated for each measurement, 

and, 

3. computing the weighted average for every 1 meter by 1 meter bin. 

The corresponding scatter plots of measurements for naïve reporting, CURE and U-CURE 

are juxtaposed. In reality, all of the sample points should lie on the main veins, which 

correspond to the high-speed rail tracks and roads. In both the naïve reporting and CURE 

approaches, we see the debilitating effects of stray signal points with especially large 

uncertainties in the highlighted areas. They pollute the overall signal map with large blobs 

of measurements (due to their large 𝜎𝜎 values) that extend way beyond the main veins. 

These cause measurements with high location accuracies (and correspondingly low 𝜎𝜎 

values) to be averaged out. We term this as the ‘smudging’ effect. Interesting features, 

which are specific areas with either excellent or unacceptable coverage are difficult to spot. 
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This poses a problem for operators as they require a high degree of fidelity to identify 

specific problem areas. In contrast, U-CURE processing removed most of the mis-localized 

points and reveals a significant coverage hole demarcated at the bottom right. Localized 

features are more accentuated with much less ‘smudging’ blobs. 
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Figure 14: Mean coverage map obtained using naïve reporting, with 39,947 
sample points in the region (1.307, 103.791) to (1.320, 103.763), in given as 
latitude and longitude coordinates. The size of the area is approximately 1.5 
km by 3.2 km. The scatter plot of sample points’ mean positions is given at the 
top. The bottom represents the mean signal map (where orange to red regions 
represent areas of barely- to unacceptable coverage, i.e. -90 dBm to -110 
dBm, and blue to yellow regions represent regions of excellent- to barely 
acceptable coverage -50 dBm to -90 dBm ). Areas of interest are marked out 
with rectangles. 
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Figure 15: Mean coverage map obtained using the standard CURE algorithm, 
with 39,947 sample points in the region (1.307, 103.791) to (1.320, 103.763), in 
given as latitude and longitude coordinates. The size of the area is 
approximately 1.5 km by 3.2 km. Contrast this with Figure 14 and Figure 16. 
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Figure 16: Mean coverage map obtained using the U-CURE algorithm, with 
39,947 sample points in the region (1.307, 103.791) to (1.320, 103.763), in given 
as latitude and longitude coordinates. The size of the area is approximately 
1.5 km by 3.2 km. Contrast this with Figure 14 and Figure 15. 
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In Figure 17 and Figure 18, we present mean RSCP signal maps, overlaid with scatter plots 

for a newly-developed area which is known to have poor signal coverage. The 1-𝜎𝜎 

uncertainty radius for measurements with 𝜎𝜎  exceeding 90 m were also plotted for 

illustration purposes. Without processing, the signal map has indistinct features that 

appear ‘smudged’ and averaged out. This is evident by the existence of large numbers of 

points with high location uncertainty. However, after applying U-CURE to discard 

polluting points with large location uncertainties, the areas that had either excellent 

 
Figure 17: Mean coverage map of a high-rise residential area obtained using 
naïve reporting, derived from 30,352 samples in the region (1.309, 103.772) to 
(1.312, 103.768). The size of the area is approximately 350 m by 450 m. This sub-
region was chosen from the above region to highlight the importance of 
removing wrongly-localized sample points. The 1-𝝈𝝈  uncertainty radii were 
plotted for points with location uncertainty exceeding 90 m. 
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coverage or poor coverage are now clearly demarcated. No remaining measurements had 

𝜎𝜎 exceeding 90 m. Although no areas in this case demonstrate pointedly poor coverage 

(e.g. at a mean of -100 dBm and below), we remark that subscribers in those areas that 

have mean levels of coverage below -90 dBm will likely suffer from regular impairments 

to their services. These may result in call drops and poor call quality. 

Figure 19 shows the differences in the mean signal map between U-CURE and naïve 

reporting. U-CURE reveals that some areas had worse RSCP reception by up to 5.23 

 
Figure 18: Mean coverage map of a high-rise residential area obtained using 
the U-CURE algorithm, derived from 30,352 samples in the region (1.309, 
103.768) to (1.312, 103.772). The size of the area is approximately 350 m by 450 
m. Contrast this with Figure 17. Here, no samples with 1- 𝝈𝝈  uncertainty 
exceeding 90 m remains. 
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dBm compared to naïve reporting, and better reception in others by up to 10.06 dBm. 

These correspond to the false-positive and false-negative areas derived by naïve reporting 

respectively. These differences will otherwise be ‘smudged’ out by large uncertainties in 

naïve reporting. We remark that these are mean spatial RSCP maps. Hence, areas with 

only barely-acceptable mean coverage will most likely fail the minimum coverage 

requirement described in Section 3.1. 

3.6.2 Region-of-Interest Based CDF Derivation 

In Figure 20, we present another representation of signal coverage that allows cellular 

operators to directly solve the CM problem. In this figure, the cumulative distribution of  

 
Figure 19: The spatial plot of differences in the mean RSCP maps observed in 
Figure 17 and Figure 18. 
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(a) 

 
(b) 

 
(c) 

Figure 20: The figures above represent the cumulative probability distribution 
of (a) the 1- 𝝈𝝈  location uncertainty of sample points before and after 
processing, (b) RSCP for GT-P3100s in the same area, and (c) RSCP for Asus 
Nexus 7s in the area, constructed from 34,837 sample points in the region-of-
interest from (1.332, 103.741) to (1.335, 103.743). 
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RSCP readings, rather than just the mean, is illustrated for an urban outdoor area. Figure 

20(a) represents the distribution of 34,837 RSCP measurements’ location uncertainty 

collected over the 187 m x 374 m area. U-CURE processing results in a 25% increase of 

points with under 20 m uncertainty. We see another dimension of analysis when we 

separate the data by the type of reporting device, as illustrated in Figure 20(b) and Figure 

20(c). In all of our experiments, we observed that the GT-P3100 reports RSCP 

measurements very responsively, and the delta of consecutive RSCP measurements is 

often as small as ±1 dBm within a space of 1 second. 

However, the Nexus 7s tend to be comparatively sluggish and often go tens of seconds or 

more without reporting any change in RSCP, even when mobile. This can either be due 

to a driver implementation issue (e.g. a large smoothing window) or hardware differences 

(in terms of antenna size, build and quality). The ability for Tattle to be extended to 

include device make and model in RSCP reporting is especially useful for operators, which 

have to support a plethora of mobile devices on their networks. Knowing that a model of 

UE is particularly problematic helps the operator in making either network (e.g. increase 

cell tower antenna coverage at places with higher number of these devices) or business 

(stop offering these devices to subscribers altogether) decisions. 
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3.6.3 Limitations of Our Current Prototype 

We also discovered situations where our current prototype tends towards the performance 

achievable by naïve reporting. This is illustrated in Figure 21, where 1,118,384 sample 

points were collected in a fully indoor environment. Every sample point had large location 

uncertainties. In this type of cases, there is no basis to keep or discard any particular data 

point, as their rms distance between one another, even when co-located, is large. The 

resulting CDF or mean signal map between U-CURE and naïve reporting has no 

significant differences. However, we remark that in terms of measurement location fidelity, 

naïve reporting forms the lower bound of performance. Tattle will not perform worse than 

naïve reporting. 

 
Figure 21: Indoor residential area, where Tattle’s effectiveness is tapered. 
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3.7 Summary 

In this chapter, we described Tattle, a comprehensive, large-scale cellular network 

monitoring framework. It leverages on participating UEs to address the CM problem. The 

Tattle framework relies predominantly on opportunistic inter-UE measurement exchange 

to preserve the co-location of measurements and conserve UE power. 

We show through experiments that in urban built-up areas, GPS locations reported by 

UEs may have significant uncertainties. They can sometimes even be several kilometers 

away from their true locations. We describe how U-CURE can take into account reported 

location uncertainty and the knowledge of measurement co-location to remove 

erroneously-localized readings. 

We then illustrate several real-world representations of signal distribution that are of 

interest to cellular operators. These are made possible through the Tattle monitoring 

framework. When deployed on a large-scale with sufficient participants, operators can 

minimize their operational costs of conducting manual walk-/drive-tests. They can also 

proactively mitigate poor coverage conditions in a timely manner. Otherwise, they have 

to continue to depend on subscriber complaints after the fact, which can often be vague 

and subjective. 
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4. QUALITY MONITORING OF CELLULAR 

NETWORK DELAY WITH TATTLE 

In Chapter 3, we introduced the Tattle crowdsourcing-based monitoring system and 

framework. We explained how it can be used to construct high-resolution signal coverage 

maps to address the coverage monitoring (CM) problem. It gathers passive downlink-only 

Received Signal Code Power (RSCP) readings from participating devices. It then leverages 

on the knowledge of co-location to discard readings that are patently mis-localized. In this 

chapter, we shall further extend Tattle to address the problem of quality monitoring (QM) 

of cellular network services. 

4.1 Quality Monitoring – Problem Overview 

Besides just surveying their network’s coverage, a battery of tests for network performance 

are typically conducted during an operator’s regular walk- and drive-tests [30][31]. These 

are to ascertain the quality-of-service of their network. These tests try to detect and 

capture common issues with cellular networks, such as interference, bit errors, handover 

failures, and call drops. This approach, together with customer complaints and trouble-

ticketing, is still the primary means of detecting and monitoring network performance 

today. Hence, the shortcomings of such an approach discussed in Chapter 2 unfortunately 

continue to apply here. 

Aggregate coverage (as measured by the aggregate downlink received signal level at any 

given geographic location) is influenced primarily by the distance to the nearest cellular 

base-station (also known as path-loss), as well as the effects of shadowing due to obstacles 
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in the physical environment (such as buildings)3 [8]. However, service quality is subjected 

to these and many more factors, such as cell load, backhaul capacity and end-to-end 

latency. Having excellent coverage therefore does not necessarily imply that the quality-

of-service experienced by a subscriber will be good. 

Hence, instead of passively collecting measurements and discarding those that are mis-

localized (as we did for CM), we now have to establish a consistent measurement 

methodology to measure quality-of-service metrics of the network. 

In this dissertation, we choose to focus on network delay as the example quality-of-service 

metric to measure. This is due to its fundamental and well-studied importance to the 

perceived performance [74][75][76] of most of the user-centric applications that we use 

through our smart devices (such as surfing the web, searching for nearby restaurants, and 

even hailing a cab). Operators that closely monitor and optimize their networks for 

network delay can therefore gain huge boosts in terms of their networks’ perceived quality-

of-service. 

We will show later in this chapter that correlations between network delay and 

localization error exist for COTS smart devices. Instead of simply discarding mis-localized 

readings (which will skew the remaining results of the measured metric), we leverage on 

this correlation, as well as the knowledge of co-location, to improve on a measurement’s 

position error (instead of discarding it). We do this using a delay-adjusted extension of 

the U-CURE algorithm. In this way, we preserve the statistics of the measured metric, 

                                      
3 The downlink signal received power is also influenced by effects of fast-fading. However, fast-fading is 
known to perturb the signal power rapidly in time (in the order of milliseconds [73]) around a mean typically 
determined by slow-fading. Since our intention is to design a system to monitor aggregate coverage on a 
reasonably useful time-resolution (e.g. on the order of minutes), we neglect discussions on fast-fading as its 
effect is assumed to be sufficiently averaged out over any reasonably-useful monitoring period. 
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which we are inherently trying to measure, and also improve the geographic accuracy of 

derived aggregate result. In order to understand this correlation better, we shall 

investigate in detail how current generations of mobile devices make use of Global 

Positioning System (GPS), together with network-assisted localization (also known as the 

Network Location Provider (NLP) service in Android), to estimate their locations. We 

will evaluate the real-world performance of these localization techniques under different 

mobility conditions, and network delay conditions. We then quantitatively establish the 

relationship between the metric under measurement and localization error. This will 

clearly motivate the introduction of the Delay-Adjusted U-CURE algorithm. 

We summarize the differences between CM and QM in Table 1. Just as in CM, we will show 

how these knowledge come together to allow us to build real-world, accurate, high-spatial-

resolution monitoring maps of network delay. By extension, we can address the QM 

problem just using commercially-available devices and our ready-to-deploy Tattle 

framework. This can be done without keeping expensive system states. We do not require 

any location anchors or additional instrumentation, nor any external knowledge that is 

not available programmatically to application designers (e.g. time-of-arrival information). 

                                      
4 This is discussed in detail in Section 3.4.4. 
5 We will demonstrate this in Section 4.5. 

Table 1: Summary of pertinent differences between Coverage Monitoring and Quality 
Monitoring 

Category 
Metric 

Measured 
Correlation with 

Localization Error 
Will Discarding Poorly-Localized 

Measurements Skew Results? 
CM RSCP Value Little to None4 No 
QM Network Delay Strong5 Yes 
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4.2 Contributions 

In this chapter, we make the following contributions. 

1. We report on the performance of localization techniques, used by commercial off-

the-shelf mass-market Android mobile devices, based on more than 100,000 data points 

gathered over 2 months. 

1.1. We compare the localization performance of various makes and models of 

devices, on both pedestrian and high-speed mobility, as well as across different 

network round-trip delay conditions. We focus on a particular example make and 

model of a popular Android device (Samsung SM-T325) and show through 

extensive data collection (of over 37,000 data points) that its localization 

performance using Global Positioning System (GPS), together with Android’s 

network-assisted Network Location Provider (NLP), may be modeled with a simple 

least-squares fit under high mobility. The mean reported location’s root-mean-

square (rms) error is non-negligibly correlated with network round-trip delay, 

increasing by 605.32m per 1,000ms of delay. 

1.2. To the best of our knowledge, we are the first to systematically compare 

and contrast the localization results of using GPS+NLP vs GPS-Only, using over 

35,000 data points collected in an actual production network. Our evidence suggests 

that using a combination of GPS+NLP can be detrimental to localization accuracy 

in both pedestrian and high-speed mobility environments, when compared with 

using GPS only. In the latter, the median rms error may be increased by over 60%. 

2. Based on our quantitative observation of the relationship between network delay 

and localization error, we make use of Tattle, the cooperative distributed monitoring 

framework detailed in Chapter 3, and propose the novel Delay-Adjusted U-CURE 
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clustering algorithm. It extends U-CURE by ‘shifting’ the reported locations of high-

delay, possibly mis-localized, samples towards a computed cluster center. We show 

through extensive real-world measurements that Delay-Adjusted U-CURE greatly 

improve the localization performance of both GPS-only, and GPS+NLP techniques. It 

does not require keeping expensive system states, nor requiring any location anchors. 

No additional instrumentation, nor any external knowledge that is not available 

programmatically to application designers (e.g. time-of-arrival information) is needed. 

Our results are promising, demonstrating that median rms location error can be 

reduced by over 30% with just 3 cooperative co-located devices. Improvements of 70% 

and more can be seen by having just 6 cooperative devices in a local-area. 

3. Finally, we demonstrate that, through extensive real-world measurements of over 

34,000 data points, accurate crowd-sourced cellular network delay maps can be derived 

with Tattle and the Delay-Adjusted U-CURE algorithm. It performs admirably in 

terms of measurement accuracy, compared to naively relying on raw data. 

4.3 Chapter Organization 

This chapter is organized as follows. In Section 4.4, we briefly review how Network-

Assisted Localization is implemented in Android, our chosen experimental platform. In 

Section 4.5, we present results of localization performance using GPS+NLP, compared to 

using GPS only. The impact of factors such as device heterogeneity, mobility, and network 

round-trip delay will be investigated. Real-world, in-the-wild results of localization 

performance will be presented. Based on these insights, we briefly describe in Section 4.6 

how we use Tattle, and the Delay-Adjusted U-CURE clustering algorithm, to greatly 

improve the localization performance of both GPS-only, and GPS+NLP techniques. In 

Section 4.6.3, we apply Tattle and Delay-Adjusted U-CURE to generate accurate, real-
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time crowd-sourced network round-trip delay maps. We do this by leveraging on the 

insights and improvements drawn from the above to address the QM problem. We then 

conclude this chapter in Section 4.7. 

4.4 Localization in Current Generations of Mobile Devices 

Global Positioning System (GPS) is a well-understood and mature technology that has 

found its way into an over-whelming majority of smart devices. As such, studies such as 

[78], [79], and [80] have sought to establish the performances of GPS positional-tracking 

in commodity mobile handsets. These studies form a useful basis in the understanding of 

how GPS chipsets perform in the real-world. However, to the best of our knowledge, we 

are the first to conduct an extensive study of how GPS, and its use in conjunction with 

Android’s Network Location Provider (NLP), performs across different makes and models 

of devices, network delay, and mobility types. 

A comprehensive overview of how Assisted-GPS (A-GPS) is implemented in modern 

smart-phones is given in [81]. Basically, in most mobile devices, including those used in 

this dissertation, the device downloads some assistance data (in the form of a file, 

downloaded using HTTP) from the Internet to aid its searching and decoding of GPS 

signals. For example, the Samsung SM-T325 downloads this file from 

http://xtra1.gpsonextra.net/xtra2.bin. The assistance data contained in this 

file include the precise orbital information of satellites, known as the ephemeris, and the 

coarse orbital parameters and status information of satellites, known as the almanac. 

Obtaining these data directly from the satellites, which broadcast at a rate of 50 bits/s, 

can take upwards of minutes or longer [81]. Hence, downloading these data from the 

network is comparatively much faster. In this dissertation, we use the terms GPS, and A-

GPS interchangeably. 
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Another form of network-assisted localization is through finger-printing, which is the basis 

of how Android’s NLP (and Apple’s equivalent location service) operates. It works based 

on vast databases of known cellular towers and Wi-Fi Access Point locations collected 

through war-driving or clandestine crowd-sourcing using consumers’ own devices running 

on Android [82][83] or iOS [84]. Google’s or Apple’s location service can then estimate a 

mobile phone’s position based on its current associated cell tower ID, and a list of Wi-Fi 

Access Points it currently ‘hears’ [85]. In Android’s case, we found that our devices were 

submitting these information vectors to a single domain name using HTTPS at 

google.com, and getting estimated locations in return. This was verified by blocking the 

IP address resolution of google.com at the kernel-level, which disabled the NLP, and 

then re-enabling it, which restored the network-assisted localization function. 

In typical Android devices, users are presented with a choice of localization techniques, 

as shown in Figure 22. GPS+NLP is used when the first option is chosen, and NLP- or 

GPS-only is used when the second or third option is selected respectively. 

 
Figure 22: The localization technique selection screen presented to the user, 
captured from a Samsung Galaxy TabPRO SM-T325. All Android mobile 
devices display similar variants of this menu to their users. 
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4.5 Experimental Methodology and Localization Performance 

We first detail our experimental methodology, and explain our choice of devices, as well 

as mobility and network conditions under which we conducted our experiments. 

4.5.1 Experimental Devices 

In our experimental setup, we used the following devices, all connected to the same cellular 

network service provider, as listed in Table 2. We focus on Android devices due to the 

following reasons: 

1. The base Android OS source code is freely available for usage and inspection [86]. 

For example, the Java code detailing how the Android OS handles location requests 

from both GPS, and NLP is given in the path /frameworks/base/services/

java/com/android/server/location/. This can be seen in its entirety in [87]. 

This gives us the opportunity to interpret our results with more context. 

2. Android is still the overwhelmingly dominant smartphone OS, powering 84.4% of 

smartphones in Q3 2014 [88]. Amongst handset manufacturers, Samsung has the 

largest market share, owning 23.7% [89]. Hence, we focus our attention on the Samsung 

SM-T325’s from Section 4.5.6 onwards, in order to generate as large a data-set as 

possible during data collection. It also allows us to control for device variability. 

However, this should not detract from our main insights presented throughout the 

chapter as we will show that the results in Section 4.5 are consistent across the 

investigated devices. 
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Although we do not focus on Apple’s popular range of mobile devices, our location 

improvement scheme proposed in Section 4.6 is independent of device make and model, 

and hence equally applicable to Apple’s mobile products. 

To determine the ground-truth location, we log our corresponding positions using a 

commercial aviation-grade Bluetooth GPS device, the Garmin GLO™. To improve 

accuracy, this device can also receive position information from Russian-based Global 

Navigation Satellite System (GLONASS) satellites, and it refreshes position information 

at 10 times per second. 

4.5.2 Mobility 

We defined two controlled paths in the island-country of Singapore, which we follow in 

order to investigate the effects of mobility on localization accuracy. 

1. Pedestrian path: This is an outdoor path measuring around 940 meters in length, 

and the devices were carried within a backpack while traversing this path at pedestrian 

speed, that is, around 4.5 km/h. We occasionally had to stop for traffic. In this path, 

the line-of-sight to the open sky is always unblocked as buildings on both sides of the 

path are not tall. The path is shown in Figure 23. 

2. High-speed path: This is a public-transport class train route measuring 

approximately 8 km in length. While moving, trains travel at a mean speed of around 

Table 2: The devices that were used in our experiments. For units of the same make and 
model, we updated all devices to their latest official stable firmware, with no other after-
market apps installed, except for the location-collection app. 

Manufacturer Model # Units Android 
Samsung GT-P3100 03 v4.1.2 

Asus Nexus 7 3G 03 v4.4.4 
Samsung SM-T325 09 v4.4.2 
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15 km/h, and up to 80 km/h at top speed. Between the start- and end-point stations, 

there are also three designated stations, where the train always stops to allow 

passengers to board and alight. Along this path, there are occasionally tall buildings 

shadowing either side of the track, thus GPS fixes are not always consistent along the 

path. This track is illustrated in Figure 24. 

 
Figure 23: An outdoor pedestrian path measuring around 940 meters in length. 

 
Figure 24: An outdoor high-speed train route measuring approximately 8 
kilometers in length. 
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From this point henceforth, we shall use the term ‘pedestrian mobility’ to mean travelling 

on the pedestrian path, and ‘high-speed mobility’ to mean travelling on the high-speed 

train track. We chose two specific paths to focus on, in order to generate large datasets 

for analysis while subjected to experimental resource constraints, instead of evaluating 

many trace routes with small datasets. 

4.5.3 Network Delay 

As a reference, in a period of over 4 days, we collected over 35,000 samples of network 

round-trip delay on high-speed mobility. We found that the median delay was 250 ms, 

and the 5th, 25th, 75th and 95th percentile delay was 144 ms, 198 ms, 558 ms and 1,243 

ms respectively. For reference, the maximum timeout value is set at 10,000 ms, and 

attempted measurements that exceed this timeout value will be set at the nominal value 

of 10,000 ms. Hence, at the higher ranges of network delays (e.g. those above 1,000 ms), 

we have much less available data corresponding to location errors at those delays. As such, 

we setup all our devices to connect to an Amazon EC2 instance hosted in Singapore, 

operating as an OpenVPN server, and tunnel all packet traffic to and from the devices 

through that instance. We then use the Linux program, NetEm, to introduce controlled 

delays ranging from 100 ms to 500 ms per direction, in intervals of 100 ms, at the VPN 

tunnel interfaces to emulate various degrees of network round-trip delays. This allows us 

to collect sufficient location data, corresponding to higher network delays (up to around 

1,600 ms), to draw meaningful insights. From the application-level, and even to Android’s 

NLP, this method of emulating network delays is not any different from experiencing real 

network delays, as they all operate at the packet-based user-plane level. 

To measure network round-trip delay at a packet-level, each device issues very small 

packet probes in the form of HTTP HEAD messages to our Amazon EC2 instance, and 
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measures the time it takes for the HTTP response to be returned. Each probe results in 

less than 2000 bytes transferred in total on the uplink and downlink. 

4.5.4 Distance to Ground Truth Computation 

At every 5 second interval, each device records its location obtained (at the application-

level, which developers see) from Android’s LocationManager class. The class is instantiated 

as faithfully described in [90]. It allows the recommended logic to decide which location 

fix (provided either by the GPS, or Android’s NLP) is the best. In this way, an estimated 

location, in terms of latitude and longitude, is returned to an application developer. We 

convert each estimate to a location sample 𝑈𝑈 = (𝑋𝑋𝑈𝑈,𝑌𝑌𝑈𝑈) in Cartesian coordinates. Every 

estimate has an associated uncertainty, expressed as a 𝜎𝜎 value in meters, and modeled as 

a two-dimensional normal distribution with the mean location given by the latitude and 

longitude [91]. In other words, 𝑋𝑋𝑈𝑈 ∼ 𝒩𝒩(𝑥𝑥𝑈𝑈, 𝜎𝜎𝑈𝑈
2 ) and 𝑌𝑌𝑈𝑈 ∼ 𝒩𝒩(𝑦𝑦𝑈𝑈, 𝜎𝜎𝑈𝑈

2 ). The ground-truth 

estimate taken from the GLO is also taken as such. Hence from this point onwards, we 

compute the root-mean-square distance 𝐷𝐷𝑆𝑆↔𝐺𝐺 for any sample 𝑈𝑈𝑆𝑆 to the ground truth 

location 𝑈𝑈𝐺𝐺  as 𝐷𝐷𝑆𝑆↔𝐺𝐺 = �2(𝜎𝜎𝑆𝑆
2 + 𝜎𝜎𝐺𝐺

2 ) + (𝑥𝑥𝑆𝑆 − 𝑥𝑥𝐺𝐺)2 + (𝑦𝑦𝑆𝑆 − 𝑦𝑦𝐺𝐺)2 . This follows directly 

from our proof given in Equation (9). 

4.5.5 Effects of Device Heterogeneity 

First, we present the results of using GPS+NLP as the localization approach in a 

pedestrian mobility setting. This involves three different models of devices, collecting over 

3,600 data points per model of device over 3 hours. The results are illustrated in Figure 

25. Minor variability in the mean rms error distance can be observed across a range of 

network delays, where the mean is taken for data points within bin widths of 100 ms, 

from those below 100 ms, up to those within 1500 ms to 1600 ms. This range effectively 

covers just over 95% of all measured delays described in Section 4.5.3.  
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An immediate takeaway from these set of results is that the rms location errors for each 

device model vary little across network round-trip delays. Each of the least-squares fit 

demonstrates little correlation between localization error and network delay. We also 

observe that the device make and model can introduce fairly different localization 

performance, echoing the findings given in [79]. Somewhat surprisingly, even under ideal 

conditions with constant unblocked LOS skywards, rms errors upwards of several 

 
(a) 

 
(b) 

 
(c) 

Figure 25: (a) Nexus 7 / (b) GT-P3100 / (c) SM-T325 - Network localization 
performance under pedestrian mobility. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

Delay (s)

D
is

ta
nc

e 
to

 g
ro

un
d 

tru
th

 (m
)

GPS + Network−Assisted Localization: Pedestrian Mobility (NEXUS 7)

0.0s Delay
0.2s Delay
0.4s Delay
0.6s Delay
0.8s Delay
1.0s Delay
Overall Mean Line
Least−Squares Fit
Overall Median Line

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

Delay (s)

D
is

ta
nc

e 
to

 g
ro

un
d 

tru
th

 (m
)

GPS + Network−Assisted Localization: Pedestrian Mobility (GT−P3100)

0.0s Delay
0.2s Delay
0.4s Delay
0.6s Delay
0.8s Delay
1.0s Delay
Overall Mean Line
Least−Squares Fit
Overall Median Line

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

Delay (s)

D
is

ta
nc

e 
to

 g
ro

un
d 

tru
th

 (m
)

GPS + Network−Assisted Localization: Pedestrian Mobility (SM−T325)

0.0s Delay
0.2s Delay
0.4s Delay
0.6s Delay
0.8s Delay
1.0s Delay
Overall Mean Line
Least−Squares Fit
Overall Median Line



Page | 74  
 

hundreds of meters can be frequently observed. We observe that in our experiments, these 

correspond to points in time where the reported location “jumps” across large distances, 

or when the uncertainty of the location (corresponding to 𝜎𝜎𝑈𝑈
2 ) suddenly grows very large. 

Next, we conducted the same experiment using GPS+NLP, but this time over high-speed 

mobility. The results are given in Figure 26. Under this mobility, the correlation between 

 
(a) 

 
(b) 

 
(c) 

Figure 26: (a) Nexus 7 / (b) GT-P3100 / (c) SM-T325 - Network localization 
performance under high-speed mobility. 
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localization error and network delay is now obvious. This strong correlation is seen across 

all three models of devices, albeit to varying degrees. 

In Table 3, we give the slopes of the least-squares fit to each of the models’ localization 

error behavior, in relation to the network round-trip delay. In this particular experiment, 

the SM-T325s demonstrate positive rms error correlations with network delays as high as 

1416 m/s. This is in stark contrast with its performance with pedestrian mobility. 

In the high-speed mobility scenario, we often observe that the devices' GPS receptions 

may drop out for up to tens of seconds, owing to the occasional shadowing conditions 

along the mobility path. Hence, each device’s location estimate is supplanted by NLP 

readings which are ‘newer’, but may be significantly way off from the ground truth as the 

network delay grows. There are three possible aggravating factors that result in the large 

correlation between network delay and localization error. Firstly, as discussed in Section 

4.4, NLP works by transmitting a vector of information, such as a mobile phone’s 

associated Cell ID and overheard Wi-Fi Access Points, to www.google.com. It then 

awaits the server to return an estimated location. In periods of high network-delay and 

high-speed mobility, the mobile terminal may have already moved large distances before 

the estimated location is returned. 

Secondly, due to its the dependence on overheard Wi-Fi Access Points and Cell IDs, NLP 

tend to give very bad results in areas where Wi-Fi Access Points are sparse or non-existent, 

and cell sizes are large. This is the typical circumstance in the high speed mobility path 

which we evaluated. In such cases, NLP has very little data to triangulate upon. As a 

result, NLP may only return an approximate location that is near or at the cell tower 

which the device is associated with. With large cell sizes, which can be upwards of 
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kilometers in radius [92], NLP will return locations with errors of those orders of distances 

as well. 

Thirdly, under high speed conditions, the signal strengths of Wi-Fi APs and cellular 

towers also tend to be subject to large Doppler spreads as a result of fading [8]. Hence, at 

each point where a snapshot of overheard WiFi APs and Cell IDs is taken, their resulting 

RF strength readings can be significantly different than those registered within Google's 

databases. Using these snapshots for Radio Frequency matching and triangulation 

therefore may result in considerable errors in the location estimated by NLP. 

Summary: Across the device models investigated, network round-trip delay has a 

negligible effect on GPS+NLP performance when mobility is low. However, at high-

mobility, all devices demonstrate a high margin of localization error as network round-

trip delay increases.  

4.5.6 Effects of Combining GPS with Network Localization vs. Using GPS Only 

We have established the effects of network round-trip delay on the performance of 

GPS+NLP localization for high-speed mobile terminals. Next, we investigate the impact 

of a user’s choice of GPS+NLP, or GPS-only localization on an application’s localization 

performance. 

Table 3: Gradient of least-squares fit (rms error per second of network round-trip delay) 

Manufacturer Model Pedestrian High-Speed 
Samsung GT-P3100 0.8542 m/s 572.1040 m/s 

Asus Nexus 7 3G -0.5403 m/s 1282.3936 m/s 
Samsung SM-T325 -9.8075 m/s 1416.6122 m/s 
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We now focus on results from the SM-T325s for brevity. However, the overall trends 

gathered and observed herein are seen in both the GT-P3100’s and the Nexus 7’s as well. 

In Figure 27, we demonstrate the results of another data set, collected while on pedestrian 

mobility, with eight sets of SM-T325s. Four were configured to obtain locations using 

GPS+NLP, and the other four set to use only locations given by the GPS receiver. This 

 
(a) 

 
(b) 

Figure 27: (SM-T325) - (a) GPS+NLP vs. (b) GPS-Only under pedestrian mobility. 

 
(a) 

 
(b) 

Figure 28: (SM-T325) - (a) GPS+NLP vs. (b) GPS-Only under high-speed mobility. 
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collection yielded almost 14,700 data points in total. This allows us to remove the 

temporal variability (e.g. data sets collected on different days may give different results 

due to weather difference) and directly compare the results. 

 
(a) 

 
(b) 

Figure 29: (SMT-325) Performance of (a) GPS+NLP vs. (b) GPS-Only, without artificially-
introduced network delay, in a high-speed mobility environment. 

 
(a) 

 
(b) 

Figure 30: (a) Cumulative distribution function of GPS-Only vs. GPS+NLP, and (b) the 
corresponding quantile-based percentage improvement, without artificially-
introduced network delay. 
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The overall rms errors look well-controlled despite any increasing network delays. However, 

it is immediately apparent from the corresponding trend lines that the ‘high accuracy’ 

mode (see Figure 22) does peculiarly worse than simply using the GPS. In fact, the mean 

rms error of using GPS-only is 20.55 m, with a standard deviation of 8.36 m. However, 

GPS+NLP yields a mean of 28.09 m, with a standard deviation of 42.84 m. 

Next, in Figure 28, we illustrate the results of repeating this setup while on high-speed 

mobility. The two configurations yielded over 18,700 data points each. The stark 

difference in terms of performance between using GPS+NLP and GPS-only is immediately 

apparent, and undoubtedly interesting. In this experiment, the former’s fitted mean rms 

error increases by 605.32 m per second of round-trip network delay, while the latter 

demonstrated only a very slight positive correlation, at an error-increase rate of just 87.60 

m/s. 

Then, to reinforce our observations, we repeated the experiments with the SM-T325s 

under high-speed mobility conditions, but without introducing any network delays. These 

results are illustrated in Figure 29. Furthermore, we present detailed rms error distribution 

functions yielded by the two different configurations in Figure 30. While the mean trend 

line obviously demonstrates much better results if only GPS localization is used, we see 

better the vast improvements yielded when comparing across quantiles. At the median, 

an app developer can possibly improve the accuracy of localization by close to 65%, just 

by ignoring results given by Android’s NLP. Note that the correlation between delay and 

rms location error is not as apparent in this case, as a vast majority of samples experienced 

less than 400 ms of round-trip delay, unlike that shown in Figure 28. In the latter, we can 

draw more representative results with a much more uniform spread of network delays. 
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Summary: The results in this section suggest that using the ‘high accuracy’ mode of 

GPS+NLP in fact yields worse, and sometimes much worse, results that simply relying 

on GPS-only. This is especially apparent in the high-speed scenario, where mean rms 

location errors grow as a function of increasing network round-trip delay. However, NLP 

still has important roles to play for some applications. It provides coarse location estimates 

in GPS-denied environments, where getting GPS locations are near impossible (e.g. at 

some sections of the high-speed track, where tall buildings shadow either side of the track). 

In such cases, perhaps a coarse location estimate may be more desirable than having no 

location estimate. So, in order to mitigate the shortcomings of GPS+NLP, we propose a 

location refinement technique described in the following section. 

4.6 Tattle – Cooperative Localization through Delay-Adjusted Clustering 

Tattle is a cooperative local measurement-exchange system that we detailed in Chapter 

3. It comprises of a distributed monitoring framework that is scalable, is designed to 

monitor real-time network performance on large geographic areas with good measurement 

location fidelity. It requires minimal instrumentation of smartphone hardware and 

involvement of subscribers (other than to run a passive background app, as seen in Figure 

6). 

Just as we used Tattle to address the CM problem, we propose to use the framework in a 

similar manner to address the QM problem. This allows users in urban areas to simply 

broadcast their purported locations (gathered at the application-level as described earlier) 

periodically, at synchronized intervals. This is possible since mobile smartphones can 

already be time-synchronized to sub-second accuracy using the NITZ protocol [93], or the 

Network Time Protocol [94]. In this way, each user gathers periodically a vector of 

<Timestamp, Estimated Location> from all the neighbors that it overhears, together with its 
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own. The range of overhearing depends on the type of local-area interface used. Because 

our implementation relies on the WiFi-Direct interface for peer-to-peer exchange, we 

define the overhearing range to be 30 m, as described in Section 3.4.4. 

4.6.1 Delay-Adjusted Clustering using U-CURE 

We have established in Section 4.5 that smartphones’ estimated locations, especially in 

high-speed mobility scenarios, can sometimes be egregiously far from their true locations 

(see Figure 29). This error can be influenced by the smartphones’ experienced round-trip 

delay (see Figure 28). We shall then use these two observations, together with an extension 

of the U-CURE clustering algorithm, to improve a mobile phone’s own location estimate. 

This is done without keeping expensive system states, nor requiring any location anchors 

or additional instrumentation. It does not require any external knowledge that is not 

available programmatically to application designers (e.g. time-of-arrival information). 

We have also given details on the U-CURE algorithm in Section 3.5. In normal 

circumstances where this algorithm is executed at some backend server (e.g. for crowd-

sourcing of some aggregate information), those locations that cannot be merged into the 

primary, largest cluster are deemed to be outliers. This is because they claim to be too 

far away from the ‘majority’ of their peers. However, based on our observations made in 

Section 4.5.6, we can leverage on this algorithm to improve on the location estimates of 

those previously deemed to be outliers. This is done simply through the wisdom of the 

crowds, without needing any anchors or ground truths. 

We briefly illustrate an example of this in Figure 31. This snapshot is taken from a real, 

high-speed mobility scenario from our experiments with nine SM-T325s. We see that the 

individual reported locations of each device (represented by the diamond-shaped markers) 

can be upwards of hundreds of meters away from the ground-truth (as measured by the 
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Garmin GLO, represented by the square-shaped marker). We remark that the knowledge 

of ground-truth locations is generally unobtainable in real deployments. The beauty of 

using the U-CURE algorithm lies in its ability to estimate the primary cluster centroid 

(as represented by the star-shaped marker, and then taken as the estimated ground truth), 

in the presence of outliers, and without having to conform to any cluster shapes [10] (since 

the shape of crowds is determined by geographic limitations). 

We learnt previously that network round-trip delays tend to affect localization 

performance, especially for GPS+NLP in high-speed scenarios. So, we can shift the 

estimated locations of all those points outside of the primary cluster towards the primary 

cluster centroid, by a factor of their experienced network round-trip delays (605.32m per 

second of delay, as described in Section 4.5.6). This is in contrast to our approach of 

simply discarding mis-localized measurements, as taken for CM. That approach was  

 
Figure 31: A real-world example of using Delay-Adjusted U-CURE to improve 
the individual devices’ reported positions by shifting them towards the primary 
cluster centroid by a function of their network round-trip delays. 
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justified as our experiments showed little to no correlation between coverage conditions 

and localization errors, as detailed in Section 3.4.4. However, we cannot discard 

measurements for QM as the quality metric under investigation can be intricately 

correlated with localization errors. 

In Figure 31, the displacements of the secondary location points towards the primary 

cluster centroid are represented as gray lines, and their displaced distances are annotated 

accordingly. 

4.6.2 Experimental Evaluation of Delay-Adjusted U-CURE 

Using the procedure explained in Section 4.6.1, we evaluate the localization performance 

through another set of experiments, first with nine SM-T325s. They are configured to use 

GPS+NLP localization. The devices were then brought on the high-speed mobility path 

for a duration of close to three hours, collecting over 17,000 data points in total. Each 

device broadcasts its own location every 5 seconds, with all the devices’ clocks 

 
(a) 

 
(b) 

Figure 32: (a) Cumulative distribution function of using GPS+NLP after delay-adjusted 
U-CURE processing, and (b) the corresponding quantile-based percentage 
improvement, across different number of neighbors. 
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synchronized to within at most a few hundred milliseconds using NTP. Therefore, at each 

time-step, a snapshot is taken as a vector of nine estimated locations (obtained through 

GPS+NLP), corresponding to each of the nine devices. In this way, over 1,900 snapshots 

were generated. The Delay-Adjusted U-CURE algorithm, using the error-per-delay value 

corresponding to the SM-T325 as illustrated in Table 3, is then applied to every snapshot. 

Every possible combination of number of devices is taken into consideration (i.e. choosing 

𝑖𝑖 ∈ {3,… ,9} out of 9 devices). 

In Figure 32, the cumulative distribution function of the aggregated rms errors before and 

after applying Delay-Adjusted U-CURE is shown. It is immediately obvious that applying 

the algorithm yields very tangible improvements in terms of reducing rms location error. 

With just three co-located devices, using the wisdom of crowds and our proposed 

algorithm can yield an impressive 32.27% improvement in the median rms location error, 

from 171 m down to 115.6 m. Though a small amount of regression (around -2.7%) is seen 

between the 60th and 61st quantile, considerable gains are made more than half the time, 

and also from the 62nd quantile onwards. 

Interestingly, the improvements of having just six co-located devices and beyond will hit 

diminishing returns. At the median, upwards of 60% reduction in rms error can be 

achieved. With nine co-located devices, even a 75% improvement is possible in the 30th 

percentile. Taken as a whole, these results are very promising for a relatively-simple 

approach such as this. We also believe that in populated urban areas, having upwards of 

3 or more co-located devices in many areas is often possible. 

 

 

 

 

 

 

Summary: We have proposed a simple, ready-to-deploy algorithm that involves very 

little complexity in terms of implementation, but yields very promising results in reducing 

localization errors in a high-speed mobility scenario while using GPS+NLP. Our proposed 
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approach involves nothing more than devices exchanging their locations periodically. No 

expensive system states, nor any location anchors, nor additional instrumentation are 

required. There is no dependency on any external, pseudo-oracular knowledge that is not 

available programmatically to application designers (e.g. nano-second level information 

such as time-of-arrivals). 

4.6.3 Putting It Together – Tattle, Delay-Adjusted U-CURE, and Building 
Crowd-Sourced Quality Monitoring Maps 

We established the localization performances of devices under various factors such as 

heterogeneity, network delays, and mobility in Section 4.5. Then, we proposed a simple, 

ready-to-deploy location refinement method of devices travelling at high-speed scenarios 

in Section 4.6.1, and subsequently demonstrated its effectiveness in Section 4.6.2. We are 

now motivated to put together an example QM application to demonstrate the usefulness 

of our work discussed in this chapter. 

Here, we propose a crowd-sourcing QM application whereby participating users 

periodically contribute network round-trip delay information. This allows us to construct 

near real-time aggregate mean network delay heat-maps of places where users frequent. 

Such applications are finding increasing attention [32][33][34], as irate users in congested 

places often have no avenues nor means to corroborate their displeasure at the network 

service. However, unlike these existing applications, our goal is to build very high location-

resolution network delay maps that are in the order of meters, just as we did for CM. This 

is unlike those afore-referenced approaches, which only collect network metrics that are 

location-accurate to the order of hundreds of meters. 

Users run a passive background app, the eponymously-named Tattle, on their Android 

devices. It collects network delay information, as well as constantly tracks their 
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whereabouts, using GPS+NLP or GPS only. Each participating device attempts to 

measure network delay by probing a standard set of servers. Each probe is a HTTP HEAD 

request for each server, which includes google.com.sg, youtube.com, and our 

Amazon EC2 instance hosted in Singapore. Each probing attempt generates a very small 

amount of data transferred on the cellular uplink and downlink. For instance, we found 

that each fetch to google.com.sg involves only 484 bytes transferred on the uplink, 

and 1079 bytes downloaded, fully inclusive of HTTP and TCP/IP overheads. These are 

based on interface packet captures. 

At the start of every five second interval, in accordance with the Tattle framework, each 

device initiates concurrent probes to the standard set of servers. It logs its estimated 

location at the start of the probing attempt. At the same time, it broadcasts its location 

to any nearby neighbors. It will then log any overheard locations together with those 

broadcasters’ IDs, as well as all the delays of the returning probes. This becomes the data 

vector for that interval, and one vector is thus generated per device per interval. In an 

actual deployment, the device can immediately upload each vector to a backend for real-

time processing. However, in our implementation, we perform computations off-line. 

We conduct trials of this application over the course of 2 days, each session lasting more 

than 3 hours, and collecting over 17,000 data points for the GPS+NLP case, and the same 

amount in the second day for the GPS-only case. 
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Figure 33: Heat-map of crowd-sourced network round-trip delay using 
GPS+NLP, before (top), and after (middle) delay-adjusted U-CURE processing, 
vs. the ground-truth (bottom). 
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We present visualization results of the reconstructed network delay map for the 

GPS+NLP case in Figure 33. We illustrate the raw, unprocessed results of crowd-sourcing, 

compared with the one after processing with our proposed Delay-Adjusted U-CURE. We 

also provide the ground-truth version of the mean network delay map, where location 

ground-truths were established using our aviation-grade Garmin GLO. Visually, it is 

immediately apparent that simply and naively taking the raw data in good faith yields a 

comparatively very poor representation of the network delay (Figure 33, top). This is in 

comparison with the actual ground-truth (Figure 33, bottom). However, a much more 

visually-pleasing mean delay map can be derived just by using our proposed Delay-

Adjusted U-CURE together with the Tattle framework (Figure 33, middle). 

In order to quantitatively evaluate how well the map was reconstructed, we use two 

measures. Firstly, we define the rms delay error as follows,  

 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟(𝐌𝐌𝑋𝑋𝑋𝑋 ,𝐓𝐓𝑋𝑋𝑋𝑋 ) = �∑ ∑ [𝐓𝐓𝑋𝑋𝑌𝑌 (𝑥𝑥,𝑦𝑦)−𝐌𝐌𝑋𝑋𝑋𝑋 (𝑥𝑥,𝑦𝑦)]𝑌𝑌
𝑦𝑦

𝑋𝑋
𝑥𝑥

∑ ∑ 𝟏𝟏ℤ+�𝐓𝐓𝑋𝑋𝑋𝑋 (𝑥𝑥,𝑦𝑦)�𝑌𝑌
𝑦𝑦

𝑋𝑋
𝑥𝑥

, (10) 

where 𝐌𝐌𝑋𝑋𝑋𝑋  and 𝐓𝐓𝑋𝑋𝑋𝑋  are the estimated and ground-truth network delay 2D matrix of 

width 𝑋𝑋 meters and height 𝑌𝑌  meters respectively. 𝟏𝟏ℤ+(𝑡𝑡) represents the indicator function 

that returns 1 if 𝑡𝑡 > 0, and 0 otherwise. The 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 is computed at each snapshot (of 5 

seconds interval). More than 1,900 rms errors were collected. 

Next, we define the ‘smudge’ error 𝑠𝑠 as follows,  

 𝑓𝑓(𝐖𝐖𝐌𝐌,𝐖𝐖𝐓𝐓) = 𝟏𝟏ℤ+(𝐖𝐖𝐌𝐌 − 𝐖𝐖𝐓𝐓), (11) 

 𝑠𝑠(𝐖𝐖𝐌𝐌,𝐖𝐖𝐓𝐓) = ∑ ∑ (𝑓𝑓(𝐖𝐖𝐌𝐌,𝐖𝐖𝐓𝐓) × 𝑑𝑑𝐓𝐓(𝑥𝑥, 𝑦𝑦) × 𝐖𝐖𝐓𝐓)𝑌𝑌
𝑦𝑦

𝑋𝑋
𝑥𝑥 , (12) 

where 𝐖𝐖𝐌𝐌 and 𝐖𝐖𝐓𝐓 are the estimated and the ground-truth 2D matrix (of width 𝑋𝑋 

meters and height 𝑌𝑌  meters) respectively of the ‘weight’ contained in each element. The 
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weight matrix is simply a sum of all the normally-distributed location probability masks 

contained in that snapshot, as explained in Section 4.5.4. 𝑑𝑑𝐓𝐓(𝑥𝑥, 𝑦𝑦) is a 2-D matrix where 

every element at (𝑥𝑥, 𝑦𝑦) contains a numeric distance from (𝑥𝑥, 𝑦𝑦) to the actual ground-truth 

location measured by the Garmin GLO at that snapshot. 

Simply put, the ‘smudge’ error measures how much artificial ‘spread’ of the measurements 

has occurred. These are due to the mis-localized, far-away points that are patently not 

where they estimate themselves to be, and also those measurements tagged with large 

location uncertainties. We present the distribution functions of the rms errors and the 

‘smudge’ errors in Figure 34. We find that after correcting location errors by a function of 

network delay, we increased the median 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 slightly, from 45.49 ms to 61.81 ms, and 

introduced a minor increase in delay error across the 10th to 90th quantile. However, we 

argue that the slight error increase (in the order of tens of milliseconds, which is almost 

unperceivable by the average user) is a valuable trade-off considering that we are able to 

reduce the ‘smudge’ error tremendously, as shown in Figure 34(b). 

 
(a) 

 
(b) 

Figure 34: Quantitative evaluation of the heat-map derivation accuracy, based on (a) 
the rms error of measured delay, and (b) the amount of ‘smudge’ generated by mis-
localized data points, using GPS+NLP localization. 
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Figure 35: Heat-map of crowd-sourced network round-trip delay using GPS-
Only localization, before (top), and after (middle) delay-adjusted U-CURE 
processing, vs. the ground-truth (bottom). 
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From an application developer’s stand-point, greatly reducing ‘smudge’ in exchange for a 

slight increase in measurement error can be preferable, resulting in a greater visual match 

as illustrated in Figure 33. 

We are also interested in examining whether Delay-Adjusted U-CURE can help in a 

setting where only GPS localization is used. We illustrate the results of this experiment 

in Figure 35. First, we make the observation that from the first day (where the GPS+NLP 

experiment was conducted) to the second (where the GPS-only experiment was 

conducted), the network delay situation changes drastically. This is even though both 

were weekdays, and the experiments conducted at the same times of the day. This 

motivates the use case of building up-to-date cellular service quality heat maps to track 

poorly-serviced areas. 

Next, we also observe that even though the raw unprocessed map appears slightly less 

‘smudged’ than the corresponding one using GPS+NLP, the application of Delay-Adjusted 

 
(a) 

 
(b) 

Figure 36: Quantitative evaluation of the heat-map derivation accuracy, based on (a) 
the rms error of measured delay, and (b) the amount of ‘smudge’ generated by mis-
localized data points, using just GPS localization. 
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U-CURE again reduces the ‘smudges’ greatly. We see this quantitatively in Figure 36, 

where, with a very slight, minor increase in 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 across the quantiles, we are able to again 

suppress the effects of mis-localized points. These points tend to have very large 𝜎𝜎𝑈𝑈
2  

uncertainties, which can be upwards of hundreds of meters under shadowing conditions 

that occur as part of the high-speed route. 

Based on the above experiments, we can see how Tattle, and the Delay-Adjusted U-CURE 

algorithm, can help us to build real-world, accurate, high-spatial-resolution monitoring 

maps of network delay. By extension, we can address the QM problem by just using 

commercially-available devices and our ready-to-deploy Tattle framework. We believe 

that with these high-resolution monitoring maps, operators can mitigate small blind spots 

using cost-effective measures, such as deploying femto- and micro-cells. They do not have 

to resort to always installing large cell-towers, which are expensive and time-consuming 

to deploy. By remaining agile and fixing small blind spots quickly, operators can also gain 

favor with subscribers easily. 

4.7 Summary 

In this chapter, we detailed a comprehensive approach that builds upon our work in 

Chapter 3, to address the QM problem. We first study extensively the achievable, in-the-

wild localization performance of commodity retail smart devices. We investigate the 

effects of mobility and network delay on localization performance. Based on this, we 

observe that across three types of evaluated devices, using GPS+NLP (as recommended 

by Android as the ‘High accuracy’ mode) can result in very poor location estimates in 

high-speed scenarios. Over 600 meters of rms location error per second of network round-

trip delay may be introduced in the case of the SM-T325s. Under pedestrian mobility, 

however, localization performance of these retail devices are much more robust to network 
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delays. Surprisingly, using GPS+NLP in this type of mobility still yields worse results 

than relying on GPS alone. 

We leverage on the Tattle cooperative framework detailed in Chapter 3 and propose 

Delay-Adjusted U-CURE. It is a novel clustering algorithm that greatly improves the 

localization performance of both GPS-only, and GPS+NLP techniques. It does this 

without keeping expensive system states, nor requiring any location anchors. Additional 

instrumentation is not needed, nor any external knowledge that is not available 

programmatically to application designers. Our results are promising, demonstrating that 

median location accuracy improvements of over 30% is achievable with just 3 co-located 

devices. Close to 60% improvement can be observed with just 6 co-located devices. Finally, 

we demonstrate that Delay-Adjusted U-CURE can accurately reconstruct visually-

comparable heat-maps that are close to the ground-truth. This is in stark contrast to 

maps constructed using raw, unprocessed samples. This is demonstrated for both GPS-

only and GPS+NLP localization. 
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5. ESTIMATING AND CLASSIFYING UE-
SPECIFIC NETWORK PERFORMANCE THROUGH 

TATTLE 

As traffic load increases, cellular networks naturally become increasingly congested. 

Subscribers tend to experience high network delays, slow speeds, and possibly service 

outages in cells and areas that are overloaded. This can be a common occurrence and a 

frustrating experience, especially during periods of congestion, such as rush hours and 

spectator events. 

5.1 Quality Estimation and Classification – Problem Overview 

Whenever a subscriber experiences periods of unsatisfactory network performance, the 

subscriber may often blame the cellular operator for providing inadequate coverage and 

resource for the cellular plan they are paying. On the other hand, the cellular operator 

may point the performance issue back to the device or the software. Indeed, there are 

websites such as PC Advisor [95], which compares web performance among the many 

smart phones available in the market today. It is then hard to derive any conclusion to 

the network performance issue. Network-side rectification is also often unlikely since the 

root cause cannot be easily identified. 

In Chapter 3 and Chapter 4, we detailed how CM and QM can be performed on an accurate, 

aggregate, pseudo real-time and large geographic-scale basis using the Tattle framework. 

These will allow operators to detect coverage and quality impairments in a timely manner. 

However, when subscribers themselves experience problems with network service quality, 
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they immediately, and understandably, want to understand whether the perceived fault 

is network-wide, or one that is just isolated to their devices. Two devices on the same 

cellular network may experience differing levels of service quality when considered in 

isolation. However, interesting insights may be drawn when the service qualities of three 

or more co-located devices on the same cellular network are compared and contrasted. 

We believe that one natural way to assist the diagnosis of the root cause of the service 

quality impairment, from the subscriber’s perspective, is to ask: “am I the only one 

suffering from this, or is this also experienced by others?” The subscriber’s intention 

(often without consciously realizing) is to determine if the fault lies with his own device 

(possibly as a result of software/hardware issues), or with the network. If the subscriber 

is able to determine that the former is true, he can take some limited mitigation steps. 

These can include rebooting his device, or closing errant apps that are hogging network 

resources. If the fault lies with the network, then the subscriber gains closure in knowing 

that his device is likely to be working fine. He may also find comfort in knowing that 

other co-located subscribers of the same network in the same area are experiencing the 

same kinds of performance impairments. 

For ease of reference, we shall refer to this as the Quality Estimation and Classification 

(QEC) problem, where two key general questions, listed below, need to be addressed. 

1. What is level of service quality one can ‘expect’ at this moment, wherever one is? 

2. Given some level of service quality one can ‘expect’ to have, does the actual 

observed service quality suggest any fault that is isolated to one’s device? 

In this chapter, we will turn our attention from monitoring coverage and quality on large 

aggregate scales, to estimating and classifying performances of mobile devices on a per-
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device basis. We continue to leverage on the Tattle local-area measurement exchange 

framework to preserve the context of co-location. This allow devices to draw insights 

about their own performances as compared to those of their immediate neighbors in the 

same vicinity. We apply quantile regression, a robust statistical technique to estimate a 

median level of network performance that can be expected at any location with 

participating devices. We then design a classifier based on robust outlier detection to 

determine if a device is performing normally, or abnormally. Taken together, these will 

allow us to directly address the QEC problem. 

5.2 Contributions 

The contributions of this chapter are as follows: 

1. We develop a complete and flexible statistical framework, based on quantile 

regression and outlier classification, to analyze and systematically identify points in 

time where a device is not performing as well as its co-located neighbors. This approach 

allows a device to determine if it is performing “normally”, or “abnormally”. To the 

best of our knowledge, we are the first to propose, implement, and validate such a 

peer-to-peer mobile network fault detection application. 

2. We report on the characteristics of the delay performance of co-located devices 

subscribed to two particular cellular network operators in Singapore, and describe the 

results of applying our proposed approach to addressing the QEC problem. These are 

derived from real-world measurements of over 7,300 time-series of network delay, 

consisting of over 443,500 data points. 

With these contributions, this chapter provides a framework to comprehensively and 

systematically answer the key QEC question. A device can determine whether its observed 
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poor network performances is an isolated problem, or an endemic condition that affects 

most other devices in a its area. The latter can possibly be caused by poor signal coverage, 

frequent congestions, or other network- or location-related issues. Through this framework, 

upwards of 90% accuracy can be observed in the median case in the detection of “normal” 

and “abnormal” performance with just 6 co-located neighbors. 

5.3 Chapter Organization 

This chapter is organized as follows. In Section 5.4, we describe how we use the Tattle 

framework. Smart devices will leverage on low-power, short-range peer-to-peer 

information exchange to glean performance measurements from other co-located 

participants. In Section 5.5, we introduce the accompanying statistical framework that we 

will leverage on in order to address the QEC problem. In Section 5.6, we describe our 

measurement collection methodology, and present some key features of the 7,300 real-

world network delay time-series that was collected. We then apply our proposed algorithm 

on the data, and report on the results. Finally, we conclude this chapter in Section 5.7. 

5.4 Tattle – Cooperative Estimation and Classification of Network Delay 

Tattle, as detailed in Chapter 3, is a distributed monitoring framework that is scalable, 

and monitors real-time network performance on large geographic areas with good 

measurement location fidelity. It requires minimal involvement of participants (other than 

to allow their devices to participate in monitoring by running a background app on their 

smart device). In the context of answering the QEC problem, we focus on the peer-to-peer 

front-end component of the framework. As explained in Section 4.1, we choose to measure 

network delay as a representative metric of network quality because of its great impact 

on perceived user experience [74][75][76]. 
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In our prototype, each participating device attempts to measure network delay by probing 

a standard set of servers. We probe several servers so as to determine if the delay trends 

that are measured are mostly due to the access link (in which case, the general delay 

trends should be consistent regardless of the choice of probed server), or influenced mostly 

by the choice of server (where probing different servers return considerably different delay 

observations). We will show in Section 5.6.2 that most of the delay variability observed 

is not dependent on the choice of server, so long as the servers are hosted in the same 

wide-area network (WAN). 

Each probe is a HTTP HEAD request for each server, such as google.com.sg, 

youtube.com, and our self-managed physical server, which we shall refer to as UNISENSE. 

Each probing attempt generates a very small amount of data transferred on the cellular 

uplink and downlink. For example, based on interface packet captures, we found that 

each fetch to google.com.sg involves only 484 bytes transferred on the uplink, and 

1079 bytes downloaded. These are fully inclusive of HTTP and TCP/IP overheads. We 

designed our prototype such that each device attempts to measure the network delay 

every five seconds. This interval is chosen so as to avoid excessive and unnecessary traffic, 

and to conserve power. More importantly, it avoids the cellular Buffer Bloat problem [96] 

which can cause an undesirable skew in measured delay. Probing each server in this 

manner generates just a little over 1 megabyte of data in total per hour. Simple PING 

probes are not used because many networks and servers actively blocks ICMP traffic. 

PING behaviors also do not fully reflect the overheads incurred at the transport and 

application layer. In a production system, this probing interval may be extended to reduce 

load on the network. 
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The devices’ times are synchronized to the order of milliseconds using the Network 

Identity and Time Zone (NITZ) protocol [93]. Every time a network probe is complete, 

each device will broadcast the result of that probe as a tuple of <Probe Timestamp, Hashed 

Device ID, Measured Server ID, Measured Delay>. For probes that experience time-outs (where 

the HTTP connection did not receive a reply after more than 10 seconds), a nominal value 

of 20 seconds is used. This broadcast is done on the Wi-Fi Direct interface, and any device 

that overhears this broadcast simply retains it in memory. If a peer’s broadcast is not 

received by its co-located neighbors due to transmission loss, then the peer’s contribution 

will simply not be considered. That is, in a given area, broadcast losses simply mean that 

devices will see less neighbors, and will not otherwise adversely impact our proposed 

system. 

This loop of probing and exchanging of measurements, in a production system, is meant 

to be performed on-demand. For example, a user experiencing impairments to his network 

service can broadcast a “help” beacon through the local-area wireless interface. Nearby 

willing participants can then begin the process of limited probing and exchanging of 

measurements to assist in diagnosis. 

So, in order to address the QEC problem, the goal is to collect these measurements from 

other nearby devices, as well as a participant’s own measurements. This is done for a 

small window of time. Subsequently, we apply a statistical algorithm that essentially 

determines the following: 

1. In the given window of time, at which periods were a given device performing 

considerably worse than others? 

2. Given those periods that a device was said to be performing worse than others, is 

the device performing “normally”, or “abnormally” on the whole? 
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If the device is deemed to be performing “normally”, then any service impairment will 

also clearly be shared by other participating devices in the same vicinity. If the device is 

determined to be performing “abnormally”, then any observed service impairment is only 

isolated to one or a few neighboring devices, but not suffered by others. This algorithm 

can then be repeated as desired using a sliding window approach, or simply at fixed 

intervals. It can be implemented either on the individual devices, or at the back-end. In 

the latter case, each device transmits the results of its own measurement window, as well 

as that of those that it overheard, to the back-end. The results of the algorithm is then 

sent back to the device. The choice of either approach will depend on the energy cost of 

the computation vs. the energy cost of transmission over the cellular interface, as well as 

whether the device is facing total cellular outage. For our prototype, computation is 

performed at the back-end. 

5.5 Optimal Classification Based On Robust Estimation 

In this section, we will detail how we develop our statistical framework to perform QEC, 

given a set of network delay observations of a device, as well as those of its neighbors’. 

Hence, our overall goal is to design a classifier, such that given a frame of 𝐿𝐿 observations 

of measured network delay at a selected device, denoted by Y ∶= {𝑌𝑌𝑖𝑖}𝑖𝑖=1
𝐿𝐿 ∈ ℝ𝐿𝐿, as well as 

those of its 𝐾𝐾 neighboring devices, denoted by X ∶= {X𝑖𝑖}𝑖𝑖=1
𝐿𝐿 ∈ ℝ𝐿𝐿×𝐾𝐾 , the classifier will 

detect if the device under investigation performs “normally”, or “abnormally”. 

To do so, we perform the following steps: 

1. Fit a regression model to explain the relationship between the observations Y from 

the device under investigation, and the explanatory variables X , which are the 

realizations from the stochastic processes measured by the neighboring devices. 
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2. Perform outlier detection using quantile regression residual analysis, based on the 

regression coefficients. 

3. Count the number of outliers 𝑛𝑛  in a given window. We assume that 𝑛𝑛  is a 

realization of the random variable 𝑁𝑁 ∼ 𝐹𝐹𝑚𝑚(𝑛𝑛; 𝜃𝜃𝑚𝑚) that is an outcome of one of two 

models, namely “normal”, or “abnormal”, where 𝑚𝑚 is the model indicator. 

4. Perform hypothesis testing to decide if the number of outliers in a given window 

is consistent with a “normal” behavior (the null hypothesis, ℋ0) or an “abnormal” 

behavior (the alternative hypothesis, ℋ1). 

5.5.1 Algorithm Description 

We now detail each of the steps in our algorithm. 

5.5.1.1 Quantile Regression Model Fitting 

The most standard regression model structure is mean regression, in which one would 

assume for instance a linear relationship between the observed process and the 𝑝𝑝 

explanatory variables 𝒙𝒙𝑖𝑖 = �𝑥𝑥𝑖𝑖1,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖�, which include the measurements of the other 

devices, given by,  

 𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖
𝑝𝑝
𝑗𝑗=1 . (13) 

𝜖𝜖𝑖𝑖 is a random variable representing the residual error, which accounts for the fact that 

the regression model does not capture all variation in the observed process. In the case 

that the random variables 𝜖𝜖𝑖𝑖 were all i.i.d. with a symmetric zero mean distribution, then 

this would be equivalent to modelling the conditional mean of the process given a linear 

function:  

 𝔼𝔼[𝑌𝑌𝑖𝑖|𝒙𝒙𝑖𝑖] = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1 . (14) 
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The estimation can then be solved via maximum likelihood if the distribution of the errors 

is assumed, or simply using least-squares. The coefficients are given by:  

 �𝛼𝛼0̂,⋯ , 𝛼𝛼𝑝̂𝑝� = arg min
𝛼𝛼

∑ �𝑦𝑦𝑖𝑖 − 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1 �

2𝐿𝐿
𝑖𝑖=1 . (15) 

The main limitation of linear regression relates to its high sensitivity (and hence, lack of 

robustness) to outliers in the observed data. Cellular network delay is one such type of 

data where outliers occur frequently. This is illustrated in Figure 37, which is a 

representative plot of actual measured delays experienced by eight co-located devices 

when attempting to fetch a common HTTP resource. These types of outlier occurrences 

are pervasive throughout our experimental data set, consisting of over 7,300 time-series 

of actual measured network delay. With data-sets such as these, mean regression will 

 
Figure 37: A representative plot of real HTTP fetch delay measurements 
conducted by 8 co-located devices. Each device fetches a small HTML 
resource from google.com.sg every 5 seconds and measures the delay taken 
for the fetch to be completed. It is noteworthy that even while co-located, 
some devices can experience very large variability in network delay, while 
others see consistently low delays. 
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unbiasedly adapt to the numerous, random ‘spikes’ in the delay by minimizing the overall 

square error. This behavior is the reason why mean regression is not robust to outliers. 

In contrast to mean regression, quantile regression models are capable of dealing with the 

presence of outliers in the data. Our approach is hence based on Quantile Regression 

(QR), which has the following properties: 

1. QR is a robust framework that can identify outliers (i.e., spikes in network delay 

that are not observed by other neighboring devices), and heavy-tail realizations from 

the observed process, which in this case is represented by the measurement of network 

delay. 

2. QR is flexible and allows us to introduce any relevant covariates (independent 

regressor variables) to make inference on the properties of the observed process. 

3. QR reconstructs the desired level sets, such as a certain percentile, for the physical 

process in a consistent and model-based approach, which does not rely upon 

simplifying assumptions on the distribution of the underlying process properties. This 

is exceedingly ideal for our approach as we do not need to assume that the statistical 

distribution of network delay follows any particular class of distributions. 

Under a parametric approach, we assume that 𝑌𝑌𝑖𝑖
∗ ∼ 𝐹𝐹(𝑦𝑦∗|𝜽𝜽) , where 𝐹𝐹(𝑦𝑦∗|𝜽𝜽)  is the 

conditional cumulative distribution function and 𝜽𝜽 ∈ 𝚯𝚯 is a vector of model parameters, 

all unknown coefficient parameters, and distributional parameters. The quantile function 

for the conditional distribution of 𝑌𝑌𝑖𝑖
∗ given 𝒙𝒙𝑖𝑖 at a quantile level 𝑢𝑢 ∈ (0,1) is:  

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) ≡ inf{𝑦𝑦∗ ∶ 𝐹𝐹(𝑦𝑦∗|𝜽𝜽) ≥ 𝑢𝑢} = arg min
𝜽𝜽∈𝚯𝚯

𝔼𝔼[𝜌𝜌𝑢𝑢(𝜖𝜖𝑖𝑖)], (16) 

where the loss function in the expectation is given by: 
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 𝜌𝜌𝑢𝑢(𝜖𝜖) = 𝑦𝑦(𝑢𝑢 − ∏[𝑦𝑦 > 0]), (17) 

Under this formulation, the conditional quantile function in Equation (16) is given by,  

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) =  𝜇𝜇𝑖𝑖 + 𝑄𝑄𝜖𝜖(𝑢𝑢)𝜎𝜎𝑖𝑖, (18) 

where 𝑄𝑄𝜖𝜖(𝑢𝑢) = 𝐹𝐹𝑧𝑧∗
−1(𝑢𝑢) is the inverse cumulative distribution function for the standardized 

variable 𝑍𝑍𝑖𝑖
∗ = 𝑌𝑌𝑖𝑖

∗−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

, and: 

 location: 𝜇𝜇𝑖𝑖 =  𝛼𝛼0 + ∑ 𝛼𝛼𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚
𝑘𝑘=1 ,  

 scale: 𝜎𝜎𝑖𝑖
2 = 𝑒𝑒�𝛽𝛽0+∑ 𝛽𝛽𝑘𝑘𝑠𝑠𝑖𝑖𝑖𝑖

𝑣𝑣
𝑘𝑘=1 �. (19) 

This optimization problem can be solved efficiently using the approach given in [97]. 

5.5.1.2 Calculating Residuals and Classifying Outliers 

To decide if the 𝑖𝑖th sample in 𝑌𝑌𝑖𝑖 is an outlier/inlier, we perform a residual-based outlier 

detection, as detailed in [98]. To achieve that, we calculate the residual for the 𝑖𝑖th sample 

as:  

 𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖), (20) 

where 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖) is the 50th conditional quantile for the 𝑖𝑖th observation. This corresponds 

to a median regression instead of a mean regression. We perform the following hypothesis 

test:  

 ℋinlier : 𝑟𝑟𝑖𝑖 < 𝑘𝑘𝑟𝑟𝜎̂𝜎, (inlier) 

 ℋoutlier : 𝑟𝑟𝑖𝑖 ≥ 𝑘𝑘𝑟𝑟𝜎̂𝜎, (outlier)  

where 𝑘𝑘𝑟𝑟 is a resistant parameter that controls the cut-off rate, and 𝜎̂𝜎 is the corrected 

median of the absolute residuals:  

 𝜎̂𝜎 = median �|𝑟𝑟𝑖𝑖|
𝛽𝛽0̂

, 𝑖𝑖 = 1, ⋯ , 𝐿𝐿�, (21) 
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where 𝛽𝛽0̂ ≔ Φ−1(𝑝𝑝) is the inverse cumulative distribution function (CDF) of Gaussian 

density with the 𝑝𝑝th quantile. Note that the formulation of Equation (20) distinguishes 

between positive residuals (where the actual delay is higher than the regressed quantile) 

and negative residuals. The latter case, where actual delay 𝑦𝑦𝑖𝑖 is better (lower) than the 

regressed quantile 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖), is actually desirable. This corresponds to the case where a 

device experiences better network delay compared to the median derived from its co-

located neighbors, and hence will always be considered an inlier. 

5.5.1.3 Counting the Number of Outliers in a Given Frame 

We define the following random variable 𝑁𝑁  to represent the number of outliers identified 

in a given window, where,  

 𝑁𝑁 = ∑ 𝟏𝟏(𝑟𝑟𝑖𝑖 declared as ℋoutlier)
𝐿𝐿
𝑖𝑖=1 , (22) 

𝟏𝟏(.) is the indicator function, and 𝐿𝐿 is the frame length. We used extensive analysis of 

real data from both “normal” and “abnormal” representations to model 𝑁𝑁  as a realization 

from a Geometric distribution with different success probabilities 𝑝𝑝, as follows: 

ℋ0 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝normal), 

ℋ1 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝abnormal), 

where Geo(𝑝𝑝) is the Geometric distribution defined as P(𝑁𝑁 = 𝑛𝑛; 𝑝𝑝) = (1 − 𝑝𝑝)𝑛𝑛𝑝𝑝. To find 

the values 𝑝𝑝normal and 𝑝𝑝abnormal, we used 384 time-series as a training data set, based on 

which we performed a Maximum Likelihood estimation (MLE), as presented next. The 

likelihood function is given by:  

 P(𝑁𝑁1 = 𝑛𝑛1,⋯ ,𝑁𝑁𝐿𝐿 = 𝑛𝑛𝐿𝐿) = ∏ (1 − 𝑝𝑝)𝑛𝑛𝑙𝑙𝑝𝑝𝐿𝐿
𝑙𝑙=1 . (23) 

By taking the derivative of the logarithmic transform, setting it to zero and solving, we 

obtain the MLE estimate as follows:  
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 𝑝𝑝̂ = 1
∑ 𝑁𝑁𝑙𝑙

𝐿𝐿
𝑙𝑙=1

𝐿𝐿 +1
, (24) 

where 𝐿𝐿 is the number of training examples for each model. 

5.5.1.4 Device Classification via Likelihood Ratio Test 

The final step of the algorithm involves a second hypothesis test to classify the behavior 

of the device under investigation. This step tests whether the number of outliers detected 

is best explained by a “normal” behavior (the null hypothesis, denoted by ℋ0) or an 

“abnormal” behavior (the alternative hypothesis, denoted by ℋ1). To achieve this, we 

derive the Likelihood Ratio Test (LRT), given by:  

 Λ(𝑌𝑌1:𝐿𝐿) ≔ P�𝑁𝑁 = 𝑛𝑛�ℋ0�
P�𝑁𝑁 = 𝑛𝑛�ℋ1�

ℋ0
≷

ℋ1

𝛾𝛾, (25) 

where the threshold 𝛾𝛾 can be set to assure a fixed system false-alarm rate under the 

Neyman-Pearson approach, or can be chosen to minimize the overall probability of error 

under the Bayesian approach [99]. Since the marginal distribution under both hypotheses 

follows a geometric distribution with different probabilities 𝑝𝑝, the test statistic is given 

by:  

 Λ(𝑌𝑌1:𝐿𝐿) = (1−𝑝𝑝normal)𝑛𝑛𝑝𝑝normal
(1−𝑝𝑝abnormal)𝑛𝑛𝑝𝑝abnormal

. (26) 

It is important to note that there is no objective way to choose “optimal” values of 𝑘𝑘𝑟𝑟 

and 𝛾𝛾, as it reflects a trade-off between detection rate and false-alarm rate. The values of 

both parameters should be chosen by the policy makers to reflect the Quality-of-Service 

(QoS) that is acceptable in a particular network, and may change as a function of time 

and location. In our experiments, we chose the values 𝑘𝑘𝑟𝑟 = 5, 𝛾𝛾 = 1 as these provided good 

detection performance with low false alarm rate. 
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5.5.2 Addressing the QEC problem 

Once hypothesis testing is complete, we can then answer the QEC problem for each 

investigated device, given its observed network delay, together with those of its co-located 

neighbors’. If the null hypothesis ℋ0 is accepted, the device is classified as experiencing 

“normal” network delays as compared to its neighbors. Hence, any impairments 

experienced by one’s device can also be said to be shared by other co-located devices. If 

the alternative hypothesis ℋ1 is accepted, then there is evidence to suggest that the 

device is experiencing “abnormal” network delays that are not observed by others. The 

participant should then proceed to perform checks on his device. 

We also note that our approach will inherently adapt to situations where most devices 

experience very high network delay (in the order of seconds and above). In such cases, 

the threshold expressed in Equation (21) will be elevated accordingly, such that only 

extreme deviations will be labeled as outliers. In this case, the algorithm will consider 

devices that jointly experience very high network delays as performing “normally”, which 

is a result we expect. 

5.6 Experimental Setup and Results 

In our experimental setup, we used the devices listed in Table 4. For each of these devices, 

we collected HTTP HEAD delay measurements every 5 seconds for google.com.sg, and 

Table 4: The devices that were used in our experiments. For units of the same make and 
model, we updated all devices to their latest official firmwares, with no other after-market 
apps installed, except for the Tattle app. 

Manufacturer Model No. of Units Cell Provider 
Samsung GT-P3100 2 #1 

Asus Nexus 7 3G 3 #1 
Samsung SM-T325 3 #1 
Samsung SM-T325 3 #2 
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UNISENSE, for a window of 5 minutes, at each of the 24 positions, located on a busy 

outdoor train station platform, as illustrated in Figure 38. 

 
Figure 38: The train station platform, as well as the individual spots where data 
collection was performed, are illustrated in this figure. 

Each set of collection lasts for two hours, and is repeated twice a day, over a stretch of 7 

consecutive days. Over 7,300 time-series of five minutes each are collected in this way, 

comprising a total of 443,500 delay measurements. 

This train platform was chosen for its consistent crowdedness, which is typical of the type 

of congested urban areas that are pervasive in Singapore. Our proposed approach is 

inherently applicable in such scenarios, where there are large crowds, and unreliable 

cellular network connectivity. 
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5.6.1 Temporal Correlation of Network Delay 

In regression analysis of time-series data, one of the core assumptions is that the 

observations come from an i.i.d. process. In order to validate this assumption, we examine 

 
Figure 39: The distribution of autocorrelation coefficients for 2,680 time-series 
of network delay. Each time-step is 5 seconds in length. Data were collected 
with the GT-P3100’s, Nexus 7’s, and SM-T325’s on Provider #1’s network.  

(a) (b) 

Figure 40: (a) A comprehensive characterization of the HTTP fetch delays for 
google.com.sg, experienced by each device in our entire data-set of over 
220,000 data points. Provider #2’s network performs considerably and 
observably worse than Provider #1’s network in largely every experiment. (b) 
The same plot is given, but these devices instead perform HTTP fetches on our 
self-managed UNISENSE server, located in Singapore. 
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the temporal autocorrelation of each time-series collected by devices on Provider #1’s 

network. 

Figure 39 illustrates the distribution of the autocorrelations computed for 2,680 time-series 

(collected for google.com.sg, using the GT-P3100s, Nexus 7s and SM-T325s on 

Provider #1’s network), over a range of lags. The interval between each time-step is five 

seconds. The key result here is that even at a lag of one time-step, close to 80% of the 

time-series demonstrated very little autocorrelation (coefficient ≤ 0.25). 

To further validate the assumption, we next apply the parameterized Ljung-Box Q-Test 

to the data. It tests each time-series under the strict null hypothesis that the 

autocorrelations under the first 𝑥𝑥 lags are jointly zero. The results are given in Table 5. 

The ratio of non-rejection indicates the percentage of those 2,680 time-series tested that 

does not reject the null hypothesis at a significance level 𝛼𝛼 of 0.05. Even at a lag of 𝑥𝑥 = 1, 

there is no evidence to reject the null hypothesis, more than 78% of the time. 

Table 5: The Ljung-Box Q-Test for temporal autocorrelation. The null hypothesis 𝓗𝓗null  is 
constructed such that the autocorrelation coefficients 𝝆𝝆𝟏𝟏, 𝝆𝝆𝟐𝟐,⋯ , 𝝆𝝆𝒙𝒙 considering the first 𝒙𝒙 
lags are jointly zero (that is, completely uncorrelated). 

Null Hypothesis, 𝓗𝓗null Ratio of non-rejection 
𝜌𝜌1 = 0 78.02% 
𝜌𝜌1 = 𝜌𝜌2 = 0 71.79% 
𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 0 72.05% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌4 = 0 73.02% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌5 = 0 74.78% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌6 = 0 75.90% 



Page | 111  
 

5.6.2 Choice of Probed Servers 

The observed variability in delay is mostly due to the performance of the cellular access 

portion of the network, and not influenced by the choice of probed servers. To demonstrate 

this, we provide the cumulative distribution functions of the HTTP HEAD fetch delay for 

both google.com.sg and UNISENSE in Figure 40. Clearly, the overall trends in 

performance are almost identical. This is also patently observed on Provider #2’s network. 

Hence, without loss of generality, we focus on the delays measured for google.com.sg 

henceforth. 

 
Figure 41: An illustration of two sets of representative time-series, representing 
the HTTP fetch delay for google.com.sg. The devices were co-located at the 
same place, and are the exact same make and model, but 3 were connected 
to Provider #1’s network, while the others were connected to Provider #2’s 
network. The interval between each time step is 5 seconds. 
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5.6.3 Performance Differences between Cellular Providers 

It can be seen in Figure 40 that the difference between the delay performances of Provider 

#1’s and Provider #2’s network is drastic, regardless of the choice of probed servers. The 

median fetch delay for both google.com.sg and UNISENSE on Provider #2’s network 

is almost 300% longer than that of Provider #1’s. Figure 41 shows an example of this 

difference in the temporal domain. Delays on Provider #1’s network were subjected to 

much less variability compared to Provider #2’s network, and this is true in most of the 

time-series that we collected. Low delay variability, in general, is desirable for applications 

that are sensitive to delay jitters, such as video conferencing. 

5.6.4 Performance Differences between Device Models 

Figure 40 also reveals some interesting relationships between the delays observed and the 

make and model of the device performing the measurement. The Samsung GT-P3100, 

introduced in 2012, performs very stably, with around 90% of its measurements coming 

in below 500 ms for both servers probed. In contrast, Samsung’s latest flagship tablet, the 

SM-T325, performs poorly, with 90% of their measurements coming in between 1500 to 

2000 ms, on the same network. This however, does not invalidate our approach of taking 

all co-located participants’ measurements into consideration, regardless of make and 

model, to determine if a device is doing worse than its neighbors. This exactly is in line 

with the basic intention of QEC. However, if there are other co-located devices in the same 

area with the same make and model, further extensions may be easily made to consider 

only same device types. This is however beyond the scope of this dissertation. 
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5.6.5 “Normal” vs. “Abnormal” Performance 

There are numerous periods in the course of our experiments where sudden, persistent 

spikes in delay are observed by many devices. These will result in windows that could 

stretch over several minutes where many devices observe very high delays, or complete 

outage of data service. 

This is illustrated in Figure 42, where within a window stretching over more than one 

minute, devices experience abrupt spikes in their fetch delays. At least 6 out of the 8 

 
Figure 42: An illustration of three sets of representative time-series, representing 
the HTTP fetch delay for google.com.sg. The devices were co-located at the 
same place, using the same provider, but are arranged according to their 
makes and models. Periods of high delay can affect many devices in the same 
area, as shown. 
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devices tested were affected. For applications that are somewhat tolerant of delay, such 

as web-surfing, this may not appear to be wholly debilitating. However, this could have 

frustrating consequences for users that are streaming videos from youtube.com, or are 

having live conversations on Skype. Nevertheless, in situations such as these, many co-

located devices indeed suffer together (although to varying degrees). Hence, each 

participant’s device that are faced with such delays can be said to be performing 

“normally”. 

 
Figure 43: An illustration of three sets of representative time-series, representing 
the HTTP fetch delay for google.com.sg. The devices were co-located at the 
same place, using the same provider, but are arranged according to their 
makes and models. Oftentimes, a device may experience severe outage of 
network service, but most other devices are unaffected. 
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There are also significant stretches during our experiments where one or two of our devices 

experience severe outages that are not observed by other devices. Figure 43 illustrates this 

phenomenon exactly. In this scenario, the device GT-P3100 #A experiences a sudden stretch 

of high delays and timeouts that lasted more than 3 minutes. Besides NEXUS-7 #A, which 

also saw some spikes and a short outage of less than 30 seconds, the rest of the devices 

experienced delays that were fairly normal. In fact, the worst-ever time-series that we 

observed in a 60 sample window (lasting 5 minutes) had 58 fetch attempts which 

experienced time-outs. This is despite its 7 other neighbors observing 0, 0, 2, 2, 0, 3 and 

0 time-outs respectively. In these types of scenarios, addressing the QEC question is 

 
Figure 44: An illustration of two sets of time-series. Here, a time-series of HTTP 
fetch delays for google.com.sg, belonging to a device connected to Provider 
#2’s network, is mixed into that of the data set of time-series of fetch delays for 
devices on Provider #1’s network. We chose this foreign time-series from 
Provider #2 because it offers many points in time in which the delay 
experienced by the foreign device is radically different from those on Provider 
#1’s network. The goal of our algorithm is then to detect those points in time 
where the foreign time-series is deemed to be behaving “abnormally” from 
others. Those detected points are then marked out as shown. 
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obviously useful. When the device is deemed to be performing “abnormally”, the 

participant can proceed to perform limited diagnostic checks, and possibly reboot his 

device to try and mitigate the outage. 

In the real world, there can be many reasons why such outages happen. For example, the 

device could be physically damaged, or experiencing a rare and very unfortunate 

prolonged period of deep fading. Other reasons may include bugs in the firmware that 

manifest themselves after prolonged use (e.g. software aging), having errant malware that 

are hogging system resources, or simply having left a Virtual Private Network (VPN) 

connection switched on in the background. Identifying the root cause of such outages is 

beyond the scope of this dissertation. 

5.6.6 Outlier Detection Performance 

In the second step of our statistical framework introduced in Section 5.5, we consider a 

given delay time-series measured by a device, as well as those of the device’s co-located 

neighbors’. We identify points in time where the device is doing considerably worse than 

its neighbors, using QR. We term those points as outliers. The result of this approach can 

be seen in Figure 44. We took a time-series of delay measurements collected on Provider 

#2’s network, and used four other time-series collected on Provider #1’s network as those 

of its neighbors, and performed the regression analysis and outlier detection. The outliers 

that were detected by the algorithm are clearly marked out in Figure 44. 

The algorithm patently detected points in time where delay spikes seen by the foreign 

device were not observed by its neighbors. More importantly, during periods where spikes 

were observed by its artificially-introduced neighbors, the algorithm adapts, and correctly 

classifies those measurements as inliers. This is evident in time-steps 22, 48, and 51. 
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5.6.7 Effectiveness of the Overall Algorithm 

In the previous subsections, we illustrated results for selected sets of time-series that 

highlight the effects discussed above. Here, we setup the following experiment to test the 

effectiveness of the algorithm as a whole, on how accurate it is in detecting time-series 

that are known to be “abnormal”. In order to do this, for each of the set of 8 time-series 

(belonging to 8 devices) collected per position (over 24 positions), per experiment (over 2 

experiments), per day (over 7 consecutive days) on Provider #1’s network, we introduce 

a foreign time-series that were collected at the same corresponding times by a device on 

Provider #2’s network. This resulted in 336 sets of 9 time-series (with 8 devices using 

Provider #1, and another SM-T325 using Provider #2). Each of the 336 foreign time- 

series was manually and individually inspected, and labeled as “normal” or “abnormal”. 

This is based on whether its median delay is closer to those of the SM-T325s’ on Provider 

#1’s network (labeled as “normal”), or those of SM-T325s’ on Provider #2’s network 

(labeled as “abnormal”), with reference to Figure 40. 

Using a window length of 60 samples (collected in 5 minutes), we apply our 4-step 

algorithm on each set of 9 time-series. We vary the number of neighbors used in the 

regression analysis to also examine the effects of increasing the number of co-located 

participants on detection accuracy. The goal is then to check if the algorithm labels the 

foreign time-series correctly, or incorrectly (which we term as a mis-detection). Figure 45 

shows the results of this experiment. Using our approach, the median mis-detection rate 

is around 30% when only 2 neighbors are considered in the regression analysis. As more 

neighbors are introduced, the detection rate improves steadily. When 6 neighbors are 

used, the median mis-detection rate drops to only around 10%. In populated urban areas, 

we believe that having 6 or more co-located devices in many areas is often possible.  
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Figure 45: A complete characterization of the misdetection rates of a foreign 
time-series of HTTP fetch delays, belonging to Provider #2’s network, when 
mixed into the time-series of delays experienced by devices on Provider #1’s 
network. As the number of neighbors considered by the algorithm increases, 
the detection performance of our algorithm becomes better. 

 
Figure 46: An illustration of the false negative rates of our algorithm. The false 
positive rate can be inferred by flipping the line-series about the (0,0)-(100,1) 
diagonal. Of all the times that a misdetection happens, having more neighbors 
helps to suppress the false negative rate, in favor of the false positive. 
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We do not show the results of considering 1, 7 or 8 neighbors because these combinations 

only result in 336 readings, which are insufficient to obtain a smooth cumulative 

distribution. However, with 7 neighbors, our algorithm can already reduce the median 

mis-detection rate to zero. With 8 neighbors, we can in fact detect the foreign time-series 

with 100% accuracy, in more than 80% of the time-series. 

5.6.8 False Negatives vs. False Positives Performance 

False negative mis-detection happens when a participant experiences very poor network 

delays compared to its neighbors, but the algorithm returns a “normal” verdict. This can 

be an exasperating experience because the user’s frustrations are not validated. So, we 

argue that false positives (where the network delay seen by the participant is actually 

comparable to that of its neighbors’, but the algorithm returns an “abnormal” verdict) 

are preferable in the context of QEC. Figure 46 illustrates comprehensively the false 

negative rates demonstrated by our algorithm, for the same set of experiments. Having 

just 2 neighbors results in a median false negative rate of over 53%. This improves steadily 

as more neighbors are added into the regression analysis. With 6 neighbors, the median 

false negative rate drops to around 18%, which reduces the potential frustrations of 

participants. 

Hence, taking the results presented in Section 5.6.7 and Section 5.6.8 together, we can see 

that with just 6 co-located participating neighbors, we can very effectively identify 

abnormal delays experienced by one or just a few devices with up to 90% accuracy in the 

median case. Of those 10% mis-detected delays, we can suppress the frustrating false 

negative detections to just 18%. These are very promising results, which suggest that our 

approach is viable for QEC. 
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5.7 Summary 

In this chapter, we first describe the QEC question that should be asked by cellular service 

subscribers when they experience periods of poor network performance. This will assist in 

diagnosing the root cause of the performance problem from a users’ perspective rather 

than relying solely on cellular operators. We describe how we use Tattle, a comprehensive, 

large-scale cellular network monitoring framework, to allow participating devices to glean 

networking performance information from one other in real-time. They do this by 

leveraging on their capabilities to opportunistically exchange network measurements, to 

preserve the context of co-location and conserve device power. 

We then introduce and develop a robust statistical framework, based on Quantile 

Regression, which cumulates into a 4-step algorithm. It first derives a regression model 

based on a device and its neighbors’ network delay measurements. Then, it identifies 

points in time where a device performs poorly compared to its neighbors. Next, it counts 

𝑛𝑛, the number of these identified outliers in a small finite window. Finally, it performs 

hypothesis testing by deciding which one of two estimated geometric distributions (from 

which “normal”, and “abnormal”, numbers of outliers are drawn) that 𝑛𝑛 most likely 

belongs to. Through this approach, we can directly perform QEC. 

We validate our approach based on real-world measurements of network delay, collected 

using several devices of assorted makes and models. In total, we collected over 7,300 time-

series of measurements, comprising over 443,500 samples. This includes measurements on 

2 different providers’ networks for comparison. We first show that at a sampling interval 

of 5 seconds, close to 80% of all the time-series demonstrated very little autocorrelation, 

so as to fulfill the necessary prerequisite of i.i.d in order to apply regression. 
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We then illustrate examples where “normal” and “abnormal” performances occur in real 

networks. We report that there are numerous real-world instances where a device can 

experience complete outage, while none of its neighbors are affected. We give quantitative 

results on how well our algorithm can detect an “abnormal” time series, with increasing 

effectiveness as the number of neighbors increases. With just 2 neighbors, we are able to 

achieve a median detection rate of just under 70%. With 6 co-located devices, we can 

achieve a median detection rate of just under 90%. 

We also characterize the false negative and false positive tendencies of our algorithm. We 

demonstrate that our algorithm favors false positives, which is more desirable than 

frustrating false negatives in the context of QEC. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, we investigate three broad areas of cellular monitoring, namely 

aggregate coverage monitoring (CM), aggregate quality monitoring (QM), and per-device 

quality estimation and classification (QEC), and describe a unifying framework that relies 

on peer-to-peer measurement exchange to address these three areas, with promising results. 

We now conclude with a summary of our main research contributions, and discuss some 

brief areas for future investigations. 

6.1 Summary of Research Contributions 

In Chapter 3, we propose Tattle, a comprehensive unifying framework that relies on 

participating subscribers to report on the network coverage conditions wherever they are. 

Tattle relies predominantly on opportunistic inter-device measurement exchange to 

preserve the co-location of measurements, as well as conserve device power, to build high-

resolution aggregate coverage maps. Through this framework, operators can minimize 

expenditure on laborious walk- and drive-test regimes in order to ascertain coverage of 

their networks. They can quickly identify and react to micro-scale coverage issues (e.g. 

coverage holes in the order of meters or tens of meters) in a timely manner. 

We show through real-life experiments that in urban built-up areas, the GPS locations 

reported by devices may have significant uncertainties, as well as errors that can 

sometimes be upwards of several kilometers from their true locations. We describe the U-

CURE algorithm, and how it takes into account reported location uncertainties, as well 

as the knowledge of measurement co-location, to reduce and remove erroneously-localized 

readings. In the median case, using U-CURE can reduce pair-wise rms distance errors, for 
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a pair of devices physically less than 1 meter apart, from 40 meters, to less than 25 meters. 

Large extreme inter-pair errors that spans up to 3 kilometers can be brought down 

significantly, to less than 40 meters, by using U-CURE. We then demonstrate exactly 

how Tattle can be used for CM by using our prototype app, running on COTS devices. 

Through this, we collect more than 3.78 million RSCP measurements, and illustrated 

detailed, high-resolution coverage maps constructed from these data. 

In Chapter 4, we move on from monitoring coverage, to monitoring the quality of network 

service (QM), using network delay as a key example metric of network quality of service. 

We report in detail the performance of localization techniques used by COTS Android 

mobile devices, based on more than 100,000 real-world data points. We establish that a 

strong correlation exists between network delay and localization error when the purported 

‘High Accuracy’ mode of localization is used. This correlation manifests especially when 

a device undergoes high-speed mobility. For the Samsung SM-T325, this correlation 

results in increases of over 600 meters per 1,000 ms of network delay. This correlation 

motivates our introduction of the Delay-Adjusted U-CURE algorithm. Instead of safely 

discarding mis-localized data points, we leverage on the knowledge of correlation to reduce 

the localization errors of mis-localized data points. This approach does not require any 

location anchors or additional instrumentation. Our results are very promising, 

demonstrating that improvements, in terms of median rms location error reduction, of 

over 30% can be achieved with just 3 co-located participants. Upwards of 60% reduction 

in median rms location error can be observed with 6 co-located neighbors. 

We then demonstrate how QM can be achieved with very good location fidelity and 

measurement accuracy. We present accurate and high-resolution aggregate network delay 
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maps constructed using over 34,000 real-world data points, collected using our COTS 

devices, with the Tattle framework and Delay-Adjusted U-CURE. 

Then, in Chapter 5, we take a different approach to monitoring, and shift our focus from 

aggregate network monitoring, to considering observed network performance on a per-

device basis. By using the Tattle framework, we empower devices to collect network 

quality measurements (in the form of network round-trip delay) from their co-located 

neighbors. Through this, they can then derive context about their own observed 

performances. We develop a complete and flexible statistical framework based on quantile 

regression and outlier classification. It systematically estimates and classifies a device’s 

observed network delay (QEC) as “normal” or “abnormal”. This allows an affected 

subscriber to very quickly determine if his or her observed impairment is an isolated one, 

or also suffered by others in the same area. In this way, if the former is determined, then 

the subscriber can take immediate remedy steps (such as rebooting his or her device) to 

try and alleviate the impairment. If it is determined that others also suffer from long 

network delays, then subscribers can quickly attain some level of closure and validation 

to their negative experiences. They can also gain some comfort in knowing that their 

devices are working fine. 

We validate our approach by using real-world measurements of over 7,300 network delay 

time-series, comprising over 443,500 samples. Then, using our statistical framework, we 

can very effectively identify abnormal delays with up to 90% accuracy in the median case 

with just 6 co-located participants. Of those 10% mis-detected delays, we can suppress 

frustrating false negative detection rates to just 18%. These are very promising results for 

QEC. 
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6.2 Future Directions 

The technology behind smart devices continues to advance at an exhilarating pace. By 

the time this dissertation is published, there is no doubt that manufacturers would have 

already announced the next generation of their smart devices that boast faster processors, 

more memory and new features. However, Tattle’s principle of relying upon inter-device 

communication to improve location estimates, as well as derive context of localized 

network performance, will continue to be applicable for the foreseeable future. This 

remains until realistic and affordable localization techniques with very tight guaranteed 

bounds, as well as advanced fault monitoring and management modules, are available in 

COTS devices. However, there are several directions that can be further explored in 

relation to the work presented in this dissertation. 

6.2.1 Applicability to Indoor Positioning Techniques 

Thus far, we have seen how well Tattle can work outdoors, where there is a good chance 

where some or at least one device can be accurately-localized with small location 

uncertainty. However, current generations of smart devices still lack the capability to be 

localized indoors in a reliable fashion. When indoor positioning systems with reasonable 

levels of error bounds become commercially feasible, we will be eager to apply the Tattle 

framework to these systems to see how much gains can be achieved to further reduce 

location uncertainty. In such cases, fine-grained indoor coverage monitoring becomes 

possible. It will allow operators to become even more agile in addressing network issues. 

Small-scale cellular network technologies (such as distributed antennas, micro-cells, pico-

cells, and femto-cells) can be rapidly deployed in a complementary fashion wherever Tattle 

detects coverage holes and areas with endemic network quality problems. 
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6.2.2 Automatic Coverage Adaptation through Network Reconfiguration 

The goal of this dissertation is to design a framework for cellular network monitoring, and 

hence we proposed and implemented Tattle to achieve this objective. Another important 

area of network management that was not considered in this thesis is that of network 

configuration. When CM and QM become sufficiently adopted, dynamic and self-adapting 

reconfigurations of network parameters, such as antenna pan, antenna tilt, and transmit 

power, may happen in real-time. This is in response to the timely insights gathered 

through CM and QM. If adaptive self-configuration, and subsequently self-optimization of 

cellular networks is realized, the potential impact on the operating expenditure of cellular 

operators is tremendous. We believe that a fine-grained monitoring framework such as 

Tattle serves as an important first step to realizing the ultimate vision of self-optimizing 

cellular networks. 

6.2.3 Heterogeneous Networks 

Recently, the concept of heterogeneous networks is piquing considerable interest from 

academia, governments, regulatory authorities, network operators, service providers, and 

vendors. The vision of a heterogeneous network is one where multiple radio technologies 

and interfaces of various differing capabilities, spanning across different providers and 

infrastructure management domains, all inter-operate to provide subscribers with a single, 

logical and coherent wireless link, regardless of wherever they are. To realize such a vision, 

we believe that the Tattle framework can be extended to monitor the performances of all 

these radio technologies. It can then provide a consistent, timely, and accurate basis in 

order to support rapid and predictive radio switching techniques. Thus, it may ensure 

seamless connectivity, even for subscribers under high-speed mobility. 
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6.2.4 Validation-as-a-Service for Other Mobile Applications 

Many mobile applications require some form of validation for the data that is generated 

by the subscriber. For example, loyalty-reward tracking applications may offer subscribers 

perks, rewards and coupons based on their spending and shopping trends, locations and 

patterns. However, some unscrupulous subscribers may engage in deceitful behavior to 

earn these perks by falsifying their reported locations (e.g. using apps that falsify GPS 

locations). Tattle inherently handles these types of location-spoofing by validating a user’s 

reported location with others in his or her vicinity. If the location is patently wrong, 

application developers can detect these errant users and suspend their privileges. This will 

work unless a majority of users engage in such behaviors.  
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	Abstract
	The operating environment of cellular networks can be in a constant state of change due to variations and evolutions of technology, subscriber load, and physical infrastructure. One cellular operator, which we interviewed, described two key difficulties. Firstly, they are unable to monitor the performance of their network in a scalable and fine-grained manner. Secondly, they find difficulty in monitoring the service quality experienced by each user equipment (UE). Consequently, they are unable to effectively diagnose performance impairments on a per-UE basis. They currently expend considerable manual efforts to monitor their network through controlled, small-scale drive-testing. If this is not performed satisfactorily, they risk losing subscribers, and also possible penalties from regulators.
	In this dissertation, we propose Tattle, a distributed, low-cost participatory sensing framework for the collection and processing of UE measurements. Tattle is designed to solve three problems, namely coverage monitoring (CM), service quality monitoring (QM) and, per-device service quality estimation and classification (QEC).
	In Tattle, co-located UEs exchange uncertain location information and measurements using local-area broadcasts. This preserves the context of co-location of these measurements. It allows us to develop U-CURE, as well as its delay-adjusted variant, to discard erroneously-localized samples, and reduce localization errors respectively. It allows operators to generate timely, high-resolution and accurate monitoring maps. Operators can then make informed, expedient network management decisions, such as adjusting base-station parameters, to making long-term infrastructure investment.
	We propose a comprehensive statistical framework that also allows an individual UE to estimate and classify its own network performance. In our approach, each UE monitors its recent measurements, together with those reported by co-located UEs. Then, through our framework, UEs can automatically determine if any observed impairment is endemic amongst other co-located devices. Subscribers that experience isolated impairments can then take limited remedy steps, such as rebooting their devices.
	We demonstrate Tattle's effectiveness by presenting key results, using up to millions of real-world measurements. These were collected systematically using current generations of commercial-off-the-shelf (COTS) mobile devices.
	For CM, we show that in urban built-up areas, GPS locations reported by UEs may have significant uncertainties and can sometimes be several kilometers away from their true locations. We describe how U-CURE can take into account reported location uncertainty and the knowledge of measurement co-location to remove erroneously-localized readings. This allows us to retain measurements with very high location accuracy, and in turn derive accurate, fine-grained coverage information. Operators can then react and respond to specific areas with coverage issues in a timely manner. Using our approach, we showcase high-resolution results of actual coverage conditions in selected areas of Singapore.
	For QM, we show that localization performance in COTS devices may exhibit non-negligible correlation with network round-trip delay. This can result in localization errors of up to 605.32m per 1,000ms of delay. Naïve approaches that blindly accepts measurements with their reported locations will therefore result in grossly mis-localized data points. This affects the fidelity of any geo-spatial monitoring information derived from these data sets. We demonstrate that using the popular localization approach of combining Global-Positioning System together with Network-Assisted Localization, may result in a median root-mean-square (rms) error increase of over 60%. This is in comparison to simply using the Global-Positioning System on its own. We propose a network-delay-adjusted variant of U-CURE, to cooperatively improve the localization performance of COTS devices. We show improvements of up to 70% in terms of median rms location errors, even while subjected to uncertain real-world network delay conditions, with just 3 participating UEs. This allows us to refine the purported locations of delay measurements, and as a result, derive accurate, fine-grained and actionable cellular quality information. Using this approach, we present accurate cellular network delay maps that are of much higher spatial-resolution, as compared to those naively derived using raw data.
	For QEC, we report on the characteristics of the delay performance of co-located devices subscribed to 2 particular cellular network operators in Singapore. We describe the results of applying our proposed approach to addressing the QEC problem, on real-world measurements of over 443,500 data points. We illustrate examples where “normal” and “abnormal” performances occur in real networks, and report instances where a device can experience complete outage, while none of its neighbors are affected. We give quantitative results on how well our algorithm can detect an “abnormal” time series, with increasing effectiveness as the number of co-located UEs increases. With just 3 UEs, we are able to achieve a median detection accuracy of just under 70%. With 7 UEs, we can achieve a median detection rate of just under 90%.
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	1. RSCP: Received Signal Code Power, the received power on one code measured on the Primary Common Pilot Channel (CPICH) [1].
	2. RSRP: Reference Signal Received Power, defined as the linear average over the power contributions (in watts) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth [1].
	3. UE: User Equipment, in particular smart devices such as smart phones and tablets.
	4. Down-link: Direction of data flow, from the cellular base-station down to the UE.
	5. Up-link: Direction of data flow, from the UE up to the cellular base-station.
	6. UMTS: Universal Mobile Telecommunications System, a term for the 3G (third generation) radio technologies developed by the 3GPP [2].
	7. HSPA: High Speed Packet Access, an enhanced 3G (third generation) radio technology which allows Universal Mobile Telecommunications System (UMTS) cellular networks to feature higher data transfer speeds and capacity through the implementation of adaptive modulation and coding (AMC), hybrid automatic repeat requests (HARQ), and greatly reducing the transmission time interval (TTI) [3][4].
	8. LTE: Long-term Evolution, a new, 4G (fourth generation) cellular network technology that features evolutions in the radio access and core network systems to support a wholly packet-switched, Internet Protocol (IP) based access network [5].
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	1. Introduction
	We are becoming increasingly-dependent on our smart phones and smart devices to assist us in our day-to-day activities. These can range from booking cabs, searching for nearby restaurants, navigation, to couponing for retail discounts. Pervasive applications such as these have helped to fuel an explosive growth of mobile data services, with more than half a billion smart devices and connections added worldwide in 2013. These spurred 2013’s year-on-year growth of global mobile traffic to 81% [6]. Up to 102 billion mobile apps were downloaded [7] in 2013 alone.
	Robust and resilient cellular networks are necessary to support such growth, both in the number of mobile devices as well as the amount of data that each device generates. However, the operating environment of these cellular networks can be in a constant state of change. Over the course of hours and days, cell loads can change due to diurnal cycles, or events such as spectator sports. Over the course of weeks and months, network topology can change due to the addition of new cells, and resizing of existing cells. Over the course of months and years, changes in the physical operating environment can come about when new physical infrastructure, like buildings, is constructed. An example of such a situation is given in Figure 1. Due to evolution of the operating environment, operators may therefore have to regularly tune their networks so that cell service is not degraded.
	1.1 Background and Motivation

	Singapore’s urban landscape, like in many developing cities, is always rapidly evolving. We had a series of interactions with a local network operator to better understand their operating challenges and difficulties. One of the key issues they intimated was that the pace of urban development often exceeds the operator’s ability to keep up with network reconfiguration and infrastructure investment. Just as in many cities that grapple with space constraints, low-lying buildings constantly make way for increasingly taller ones that routinely exceed 40 floors in height. These new and tall structures cause heavy shadowing and coverage holes. The operator has to rely on subscriber complaints to discover areas that are poorly served. The lead time between discovering the need for a new base-station, to its installation and commission is around 6 months. In the meantime, the operator has to reconfigure existing base-stations to alleviate coverage problems, and yet minimize any impact to areas that are previously well-served.
	Figure 1: Newly-constructed high-rise buildings often suffer from poor coverage, especially at higher floors. The existence of such poorly-covered areas are mainly discovered through subscriber complaints.
	However, besides just making phone calls and sending short text messages like in the past, many subscribers are already heavily-dependent on cellular data services for various day-to-day aspects of their lives. Any form of impairment, both structural (e.g. insufficient base-stations, antennas, or back-haul capacity) and temporal (e.g. surge of demand due to diurnal travel patterns) will quickly erode subscriber satisfaction and confidence if not tackled, or at least acknowledged in an expedient manner. Otherwise, subscribers that are chronically-affected by these issues (with little avenues of redress) may switch operators.
	This dissertation addresses three areas related to the monitoring of cellular networks, namely, (1) building quasi-real-time, accurate cellular coverage maps on large geographical scales to identify coverage holes to meet regulatory requirements, (2) constructing accurate, large-scale cellular quality maps that are robust towards user mobility for quasi-real-time monitoring of subscriber experience, and (3) estimating and classifying local cellular network performance on a per-UE basis to determine whether a device’s observed poor performance is an isolated incident (possibly caused by a device’s hardware or software, or simply due to unavoidable physical phenomena such as fading [8]), or endemic to the area it is in.
	In the following sections, we briefly discuss the backgrounds and motivations for addressing each of the aforementioned areas.
	1.1.1 Coverage Monitoring

	Due to evolution of the operating environment, dynamic parameters (such as radio, antenna, handover and load-balancing) may therefore have to be regularly reconfigured so that cell service is not degraded. One of the key problems which the interviewed network operator put to us is coverage monitoring (CM): how can they efficiently verify that minimum coverage is met for an area of interest? Minimum coverage is defined by the local regulatory authority to be a threshold percentage of Received Signal Code Power (RSCP) samples that must exceed -100 dBm. The RSCP is the received code power from the down-link Common Pilot Channel (CPICH), broadcast as a “beacon” from cellular base-stations [1]. In an outdoor environment, at least 99% of all sampled RSCP measurements must exceed -100 dBm. In an indoor environment, at least 85% of measurements must exceed that same threshold. These requirements are invariant to other spatial-temporal evolutions, such as time-of-day, month-of-day, or how populated or crowded an area is.
	The operator currently follows a manual approach. Areas with poor coverage are first identified through subscriber feedback. Coverage is then appraised by manual walk-tests. If minimum coverage is not attained, radio and antenna configuration parameters (such as pan, tilt and power) are iteratively tweaked. After each iteration, walk-tests will be conducted to re-appraise coverage. This is repeated until minimum coverage is obtained. Furthermore, areas that were previously amply-covered should not be significantly impacted after this tuning. Such an approach is labor-intensive, expensive and limited in scale. It provides a non-real-time and non-continuous snap-shot of coverage. The process has to be repeated whenever the operating environment evolves, especially over long periods due to aforementioned reasons.
	1.1.2 Quality of Service Monitoring

	The next problem that was put to us is that of quality of service monitoring (QM). The operator does not have a method or system that is currently able to effectively monitor the quality of data service experienced by each UE, in a scalable manner. The operator intimates that subscribers often complain about the inability to access remote content using their subscribed data service (e.g. 3G HSPA, LTE). The complaints are also often vague because most complainants lack the technical knowledge to describe the impairment in a comprehensive manner. Most complaints can be as vague as “Help, I cannot access the Internet”, “I can’t watch videos on YouTube.com”, or “My websites are loading slowly”. The helpline operator then responds with a sequence of pre-determined questions and instructions to try and diagnose the problem. These often includes questions such as “Where is your current location?”, “Are you able to access other websites, such as FaceBook.com?”, and “Can you try and restart your device?”
	The customer service center is also often a separate division from that of the network management center. Hence, the complaint generally has to be translated into a trouble ticket, with a description of the technical issue faced by the complainant. If the network is suspected to be the cause of the issue, this trouble ticket is then passed on to the network management and operations team to be further investigated. This approach is tedious and labor-intensive, both for the subscriber and the operator. Besides submitting the complaint, the subscriber generally has no other avenues of support until the operator investigates and addresses the specific issue, or until the problem goes away on its own. The latter often happens when the problem is caused by temporary, or diurnal temporal-spatial congestion, e.g. rush hour in a busy subway station.
	Unfortunately, the complainant is left with a poor service experience that cannot be remedied or explained in a timely manner. The operator also loses the ability to gather spatial-temporal context about the complaint, after the fact. Important details such as “were UEs that were in the same area facing the same impairment?” are difficult to glean or ascertain once the complaint has been filed.
	1.1.3 Quality of Service Estimation and Classification

	The general focus in the previous two sections is on monitoring cellular coverage and quality on a large, aggregated scale. Here, we turn our attention towards addressing real-time issues with the quality of experiences for individual UEs.
	Oftentimes, when subscribers experience frustratingly high network delays and timeouts, they would like to know whether their experiences are shared by other users nearby. The question that is often asked is essentially this: “is it just me, or do others around me face the same problem?”
	As traffic load increases, cellular networks naturally become increasingly congested. Subscribers tend to experience high network delays, slow speeds, and possibly service outages in cells and areas that are overloaded. This can be a common occurrence and a frustrating experience, especially during periods of congestion, such as rush hours and spectator events.
	Whenever a subscriber experiences periods of unsatisfactory network performance, the subscriber may often blame the cellular operator for providing inadequate coverage and resource for the cellular plan they are paying. On the other hand, the cellular operator may deflect the cause of the performance issue back to the subscriber’s device hardware or software. It is then difficult to derive any conclusion to the network performance issue after the fact. In cellular networks, systemic problems manifest themselves in a fate-sharing manner (i.e. users in the same area tend to collectively suffer from network-related problems). It is then instructive to estimate and classify network quality of service (QEC) on a per-UE basis, as being ‘normal’ or ‘abnormal’, in the context of its neighbors’ observed performances.
	1.2 Thesis Objectives

	The objectives of this thesis is therefore summarized as follows.
	1. Develop an overall framework for cellular network monitoring, which is robust, scalable, timely, works on a large geographical scale with good measurement location fidelity, and requires minimal involvement of the subscribers, as well as minimizes manual efforts by the operators.
	2. This framework must be beneficial to both the operators (so that they can efficiently monitor and manage their cellular networks) and the subscribers (so that they can derive meaningful insights and explanations to their own observed performances, and take limited mitigation steps whenever possible). This increases the possibility of adoption.
	1.3 Thesis Contributions

	The main contributions of this thesis is summarized as follows.
	1. The design of Tattle [9], a wireless service monitoring framework that is distributed, low-cost and exploits peer-to-peer measurement-exchange to preserve the co-locality of readings and conserve power. These key features of Tattle allow operators to generate high-resolution, fine-grained, accurate and large-scale monitoring maps. Tattle also allows devices to determine if their service qualities are comparable to those of their co-located neighbors’. To the best of our knowledge, we are the first to implement and demonstrate the achievable, real-world benefits of such a framework when applied to cellular networks. Our findings are derived from an actual proof-of-concept which we developed and tested. The findings are validated through millions of real-world measurements, collected using commercially-available commodity handsets in actual production cellular networks.
	2. The design of an algorithm, U-CURE (extended from the original CURE algorithm [10]), and its delay-adjusted variant. These are exemplary clustering algorithms that the Tattle framework admits, in order to improve the location accuracy of measurements collected using commodity handsets. These algorithms are designed to be key enablers for operators to derive very fine-grained, large-scale, accurate, and actionable coverage and quality information about their networks. Our algorithms result in much more accurate geographic representations of the measurements, as compared to naively accepting all measurements and their purported locations in good faith. For a pair of co-located devices that are physically less than 1 meter apart, U-CURE can reduce the maximum positioning distance error from as high as 3 kilometers to less than 40 meters. For a group of just 6 co-located devices, Delay-Adjusted U-CURE can reduce median positioning errors of measurements by over 60%. These are validated through hundreds of thousands of real-world measurements, collected from a production cellular network, using commodity mobile devices. To demonstrate the efficacy of these algorithms, we present actual network quality maps that reveal problematic areas accurate to the order of meters. This is in contrast to quality maps generated using existing or naïve approaches, which are often aggregated to the order of hundreds or thousands of meters.
	3. The design of a delay estimation and classification framework that uses Tattle and its peer-to-peer measurement-exchange mechanism. It allows a UE to collect measurements from its co-located neighbors, and determine if it is performing normally or abnormally through quantile regression. To the best of our knowledge, we are the first to propose, describe and implement such a peer-to-peer mobile network fault detection application. We validate our approach with hundreds of thousands of data points, collected through actual experiments conducted with COTS mobile devices, in actual production cellular networks. With just 6 participating devices, we are able to detect abnormal network delays with a median accuracy of up to 90%. Of those mis-detected samples, we are able to reduce frustrating false-negative occurrences to just 18%.
	Figure 2: The scope of this dissertation, addressing two general aspects of network performance monitoring, namely the challenge of monitoring coverage and quality on a large, aggregated scale, as well as monitoring performance on a per-UE basis.
	Figure 2 illustrates the scope of this dissertation, which addresses two general aspects of network performance monitoring. They are namely the challenge of accurately monitoring coverage and quality on a large, aggregated scale, as well as monitoring performance on a per-UE basis.
	1.4 Thesis Organization

	This thesis is organized in the following manner. In Chapter 2, we provide a background review of existing work in the areas of cellular network coverage estimation and assertion, UE localization techniques, as well as network- and device-level fault monitoring and management. Next, in Chapter 3, we describe the Tattle monitoring framework, and explain how it can be used, in conjunction with the U-CURE clustering algorithm, to construct large-scale, geographically-accurate cellular coverage maps for monitoring purposes. We showcase real-world results gathered from extensive data-collection and measurements from a production cellular network, using commercial off-the-shelf (COTS) devices that best reflect the reality of network coverage. Then, in Chapter 4, we discuss how the cellular quality may be impacted under different mobility conditions. We use Tattle together with a delay-adjusted variant of U-CURE to construct accurate cellular quality monitoring maps. As before, results from extensive real-world experiments and data collection will be presented to demonstrate the efficacy of our proposed approach. Next, in Chapter 5, we turn our attention to the performance of individual devices, and describe how Tattle, together with a quantile-regressed-based framework, can be used to distill the local performance context of co-located COTS devices. It automatically determines if a device is performing normally, or abnormally with reference to its neighbors. Finally, in Chapter 6, we give concluding remarks, as well as discuss future directions.
	This dissertation touches on several areas relating to (1) crowd-sourcing and participatory sensing, (2) cellular network performance estimation and assertion, (3) UE localization techniques, and (4) network- and device-level fault monitoring and management in wireless networks. Although we are unable to exhaustively survey all related work, we reference in this chapter some representative work in each of the above areas. Figure 3 illustrates how these areas relate to the work presented in this dissertation.
	Figure 3: An overview of how the areas surveyed are related to the work presented in this dissertation.
	2.1 Crowd-Sourcing and Participatory Sensing

	Subscribers are the best monitors of coverage wherever they are and wherever they require service. Hence, rather than expending considerable manual efforts to selectively monitor network performance in small geographic areas, our Tattle framework uses crowd-sourcing and participatory sensing [11] as a core approach to gather network performance measurements from subscribers themselves. The key feature of crowd-sourcing and participatory sensing is the engagement and encouragement of willing participants. They contribute individually-gathered sensory information (which, in this case, are network measurements collected by their devices wherever they are) to form a larger body of knowledge (such as a real-time geographic map of network coverage).
	The proliferation of smart devices has been a key enabler for many interesting research projects in this area. Related work in participatory sensing leverages on the potential collaborative and participative nature of co-located smart devices to achieve various greater goals. In [12], the authors use commodity smartphones, mounted on vehicle dashboards, to collaboratively predict traffic signals in real-time, using the smartphones’ camera and peer-to-peer 802.11 connectivity capabilities. In another study [13], its authors propose a Wi-Fi Access Point recommendation system based on gathering historical and empirical evaluations from participating clients. Other diverse participatory sensing applications include finding suitable biking routes [14], fuel-efficient driving routes [15], and estimating bus arrival times [16].
	2.2 Cellular Network Performance Estimation and Assertion

	The FCAPS framework (addressing fault, configuration, accounting, performance and security management) forms the core principles of any cellular management system. In [17], the objectives and requirements of cellular network management are broadly described. We begin by examining the background work addressing network coverage monitoring in Section 2.2.1. In Section 2.2.2, we briefly discuss how operators use walk- and drive-tests to monitor the general performance of their networks. We also introduce other independent efforts currently underway to monitor cellular network performance on a distributed basis.
	2.2.1 Coverage Assertion: An Empirical Approach

	The coverage assertion problem is generally related to performance and configuration management, and is loosely related to the problem of coverage estimation. The latter has a rich history of background work, yet because of the complexities of real-world deployments, existing proposed approaches find limited application. These approaches can be categorized into three groups, namely deterministic, stochastic and empirical.
	Deterministic models, such as ray-tracing [18], are used when the complete 3-D propagation environment is known. However, obtaining complete knowledge of the propagation environment is prohibitively expensive. Stochastic models are often used in analysis. They typically model coverage as a random variable or random process. A comprehensive treatment of cellular coverage, modeled as a point process, is given in [19]. While stochastic models are often analytically tractable, they have limited use for the coverage assertion problem because the assumed propagation models are often too generalized. Empirical estimation is based on empirical observations, such as from UE measurement reports, and drive-tests [20]. We review this in detail as it is the approach currently undertaken by operators.
	The operator typically finds out about areas with poor coverage through subscriber feedback. It may dispatch technicians to those specific localities to perform walk-/drive-tests. RSCP samples are generally collected with dedicated measurement and diagnostic equipment. The operator’s main complaints about the current approach are that it is too labor-intensive, time-consuming, and expensive to conduct. Subscriber feedback can also often be vague, subjective, and after the fact. Useful spatial-temporal clues (such as the occurrence of a temporary surge in human traffic, resulting in high radio frequency signal attenuation by human bodies) may be omitted. Operating expense is high, yet a satisfactory survey of signal coverage is not guaranteed for two reasons as follows.
	1. It is prohibitively expensive to collect samples from all areas where there might be subscribers (especially in pedestrian or indoor areas).
	2. The readings collected by their measuring equipment may not directly reflect the coverage experienced by subscribers due to device heterogeneity.
	Instead of a manual approach, the operator desires a system and framework in which quantitative measurements are collected, localized, and reported to the network by the UEs themselves, in real-time.
	In the literature, the following generic approach to coverage monitoring is commonly assumed. A typical operator may collect physical layer measurement reports from UEs [20][21][22], monitor cell-wide statistics [23] and alarms [24], and perform periodic drive-tests to assert cell performance. They also depend on subscriber feedback and support ticketing to determine if a cell is providing satisfactory coverage. However, in the context of coverage assertion, our operator finds that directly relying on UEs’ reported physical layer measurements has several drawbacks. We list them as follows.
	1. The ability to gather measurement reports from UEs is tightly coupled with their abilities to obtain full cell service. Any impairment to the service can affect measurement reporting. For places which are very poorly-served, UEs often do not get a chance to send measurement reports.
	2. Measurement reports are made and tagged with any location estimate that the UE may have. No additional effort will normally be imposed to refine location information for power saving purposes [21][25]. Because of this, most reported measurements tend to have very coarse location information (mostly within the confines of the UEs’ cells). Hence, they are only useful for cell-wide analysis. We shall further discuss the current state-of-the-art in device localization in Section 2.3.
	3. Direct and frequent reporting of measurements can quickly consume UE power, as well as uplink capacity. This problem is especially important when trying to monitor poorly-served areas, because UEs in those areas have to transmit at higher powers to overcome poor channel conditions.
	Due to these issues, the local operator which we interviewed does not depend on UE reported measurements. Instead, they conduct manual walk- and drive-tests where conditions (e.g. mobility, equipment used) are well-controlled. Measurements are tagged with precise GPS locations. However, these results may not be representative of subscriber experience due to device heterogeneity. The geographic extent of their tests is also limited due to resource constraints.
	One related study considers overlaying estimated performance information, gleaned from UE measurements, over a geographic map. However, the authors consider all reporting UEs to be perfectly localized either using GPS or the Observed-Time-Difference-Of-Arrival (OTDOA) technique [26]. Parameterized empirical path-loss models, such as the Okumura-Hata or COST-231 model, can be synthesized from large-scale studies. They are useful for coarse-grained estimation of large-scale path-loss [27], but not suitable for coverage assertion. Other in-depth empirical studies [28][29] have investigated real-world performances of cellular networks, but these are expensive to conduct, limited in geographic extent, and difficult to scale.
	In this dissertation, we will show through real-world measurements that assumptions of perfect localization may not be valid for current generations of commercial-off-the-shelf (COTS) devices. Based on this, we will propose, in Chapter 3 and Chapter 4, a distributed, scalable peer-to-peer measurement exchange framework to gather performance measurements on a large geographic scale, with good location fidelity.
	2.2.2 Other approaches to cellular network performance monitoring

	Besides just surveying their network’s coverage, a battery of tests for network performance are also conducted during an operator’s regular walk- and drive-tests [30][31]. These tests try to detect and capture common issues with cellular networks, such as interference, bit errors, handover failures, and call drops. As aforementioned, this approach, together with customer complaints and trouble-ticketing, is still the primary means of detecting and monitoring network performance today. Hence, the shortcomings of such an approach discussed earlier unfortunately continue to apply here.
	Official performance surveys done by operators through these walk- and drive-tests are mostly not released to subscribers (especially if the results are not ideal). Several independent projects are now ongoing, to gather independent, real-world feedback on cellular network performance from subscribers. In [32], the regulatory authority in Singapore maintains a smart device application that allows people to passively contribute various network performance measurements, such as packet loss and voice call drop rates. However, they do not impose any localization accuracy constraint on submitted measurements. Measurements are naively accepted regardless of how egregious the location error may be. Because of this, they may only be able to glean performance information on a coarse geographic basis.
	RootMetrics [33] is another popular large-scale cellular performance mapping project. Their aim is to provide independent evaluations of cellular networks through drive- and walk-tests, conducted by a small number of hired ‘scouts’. While the tests that they conduct are exhaustive, they are unable to capture small-scale spatial-temporal evolutions in the network performance as they have a limited number of scouts. Hence, locations are only surveyed twice a year (so the effects of crowd dynamics or changes in physical environments may not be sufficiently captured), and the location resolution of their reported performance maps is in the order of hundreds of meters (which may not be sufficient to capture small coverage holes).
	OpenSignal [34] is a similar large-scale cellular performance mapping project. Instead of relying on hired scouts to perform exhaustive tests while walking and driving, OpenSignal makes use of subscribers to contribute network performance measurements. However, it still suffers from the same shortcoming as in [32], where a lack of any localization accuracy constraints may imply that only coarse-grained location information is available. The location resolution of its performance maps, like that of RootMetrics, is in the order of hundreds of meters.
	Unlike these efforts, the framework proposed in this dissertation allows the operator to glean geographically fine-grained network performance information, in the order of meters to tens of meters.
	2.3 UE Localization Techniques

	Studies that feature crowd-sourcing and participatory sensing typically assume that smart devices are able to always geo-locate themselves accurately. This is because most devices have Global Positioning System (GPS) and/or network-assisted localization capabilities. In this dissertation, we shall show through extensive real-world measurement collection that this assumption is not always true. Hence, we briefly discuss background work related to this area.
	Localization of cellular devices has always attracted considerable attention in terms of research, and more so in recent years. This is a direct result of the growing pervasiveness of location-based services. Before the emergence of “smart” devices, localization of simple mobile terminals were required by legislation, mostly for emergency-response services to locate users in need of assistance [35].
	Early work in mobile localization focused on network-based approaches, where the computation of a mobile terminal’s location occurs within the network. This is based on identifiable features such as the terminal’s associated Cell ID [36][37]. Subsequent coarse-grained mobile-assisted localization techniques are generally measurement-based triangulation approaches. These require mobile terminals to measure various signals from multiple base-stations. Time-of-Arrival (TOA), Time-Difference-of-Arrival (TDOA), Angle-of-Arrival information are distilled from these measurements as collected by the mobile terminal. They will then be used by the network to compute coarse-grained location [38]. This is still the current approach in use by network providers today at the network-plane level [21]. The best network-based localization technique in the 3GPP Universal Terrestrial Radio Access Network standard is the Observed-Time-Difference-of-Arrival (OTDOA) method. The main shortcomings are that it incurs high signaling costs if constantly used, and its accuracy suffers from many sources of errors, such as multipath [25].
	Recent developments in sensor networks have also touched on cooperative wireless node localization for sensors in-the-wild [39]. Many of these are “anchor-node” based approaches, where one or more nodes in the network have definitive knowledge on their positions. Other nearby nodes with unknown locations can estimate their positions based on aforementioned techniques like TOA [40]. In particular, ultra-wideband technology is a promising radio interface for node-to-node communications that enables fine-grained TOA computations. It has gained considerable attention because of its resilience to multi-path effects, and its ability to penetrate obstacles [41]. It has been demonstrated in a controlled indoor environment that cooperative UWB-based localization can resolve locations up to centimeter-level [41]. However, till date, to the best of our knowledge, no commercial COTS devices have built-in UWB radios. Also, implementation of UWB-based schemes require nanosecond level operating-system (OS) interrupts [42], while current generations of smart device OSs are only capable of interrupts in the order of milliseconds [43].
	Pedestrian Dead-Reckoning (PDR) [44][45][46] is another emerging area that has gathered research attention due to the proliferation of sensor-rich smart devices. The basic idea of this approach is to fuse intra-device information gathered from various sensors on a smart device. Readings from sensors such as accelerometers, and even sound, light, and image sensors [47], can be fused together to directly localize a mobile phone. Otherwise, they can correct displacements or drifts from known locations, either from anchor locations or opportunistic GPS readings. A comprehensive review of this approach can be found in [48]. This approach is interesting and potentially-deployable in current generations of COTS devices. The work described in this dissertation complements the PDR approach by operating at an inter-device level, but implementation of aforementioned PDR schemes is out of the scope of this dissertation.
	The framework and algorithms proposed in this dissertation complement these localization techniques, as well as any others that might be developed in the future, which offer a reasonable probability that at least one or several devices in a co-located area will be well-localized.
	2.4 Network- and Device-Level Fault Monitoring and Management

	Fault management in wireless networks, as a core component under the FCAPS framework, is a fairly-well studied topic. Strong existing contributions address the management of Wi-Fi network faults in particular. In [49], the authors propose the use of large arrays of commodity desktop computers, equipped with Wi-Fi cards or dongles, as enterprise network sensors and monitors. In another study [50], its authors suggest that Wi-Fi clients and access points can be instrumented to become diagnostic agents. These agents can be directed to switch to promiscuous mode to help detect and relay problems.
	Cellular networks have conventionally required different, more centralized approaches to fault management. This is due to their large geographical spreads, provisioned QoS, strict centrally-managed infrastructure, and until recently, ‘dumb’ clients, which cannot be easily instrumented to perform any complex tasks [17]. Existing work has a strong focus on detecting network-side faults, down to at most a cell-wide level, by examining key performance indicators (KPIs). In [51][52], the authors provide a brief description of possible network-side faults and symptoms in cellular networks. They then propose a Bayesian inference model to compute the probability of a fault based on observed KPIs. In another recent study [53], its authors propose a two-stage detection-diagnosis model where each monitored KPI is compared against normal ‘profiles’. Deviations are then matched to known root causes. These aforementioned work are useful for back-end diagnosis and after-the-fact root-cause identification. However, they do not provide immediate relief, nor timely acknowledgement of a user’s perceived troubles with his network connection.
	The estimation and classification framework proposed in this dissertation is, to the best of our knowledge, the first designed specifically to cooperatively address UE-level faults. It identifies, in a timely manner, on a per-device basis, whether a user’s observed performance impairment is an isolated one, or endemic to those in the same vicinity. This complements existing fault management methodologies currently practiced by network operators, by providing critical spatial-temporal context to any customer feedback and complaints. Using this framework, the network operator, as well as participants, can quickly determine whether performance impairments are a result of problems with the network, or just transient, isolated issues that require no further attention. 
	2.5 Summary of Related Work

	We summarize the main findings of the survey as follows.
	1. The proliferation of smart devices has enabled a wave of innovative participatory sensing and crowd-sourcing applications that relies on users to contribute sensory information.
	2. Deterministic and stochastic tools that model cellular network performance, such as coverage, are useful for aggregate analysis. However, they finds limited application in the real-world. Empirical approaches, such as manual drive-testing, is still the main technique used by operators today.
	3. Independent third-party projects that aim to map out cellular performance are becoming popular, with interests from regulatory authorities, commercial companies, as well as users themselves. The main drawback of these efforts is that they are unable to capture fine-grained location resolution of measurements. This is either due to limited manpower (as in the case of [33]), or lack of constraints on subscribers’ reported location accuracy (as in the case of [32][34]).
	4. Current research efforts in device localization report encouraging results, where devices are able to be localized down in centimeter-level in controlled and limited indoor laboratory settings. However, these are dependent on radio technologies, such as UWB, which to the best of our knowledge is not yet available in commercial off-the-shelf devices. They may also not be available for the foreseeable future. Without specific chipset support, running fine-grained, nanosecond-level Time-of-Arrival-based computations on current generations of devices is not possible.
	5. Fault management in cellular networks conventionally differs from that of wired networks. This is because of their large geographical spreads, and, until recently, ‘dumb’ clients that cannot be instrumented to perform complex tasks. Hence, majority of related work on fault management in cellular networks typically focused on back-end diagnosis and root-cause identification of cell-wide problems. There is little emphasis on providing timely relief to the subscriber whenever any service impairment is perceived.
	To address the gaps and drawbacks identified above, this dissertation proposes a comprehensive monitoring framework, which possesses the features listed as follows.
	1. The framework relies on subscribers themselves, wherever they are, to perform and collect empirical network measurements on a fine-grained, large-scale basis. This minimizes operator expenditure on manual walk- and drive-testing efforts. Compared to existing approaches that monitors areas on the order of hundreds to thousands of meters, our framework can generate monitoring maps that are accurate to the order of meters.
	2. This framework advocates short-range, peer-to-peer exchange of measurements using low-power, local-area radio technologies that are pervasive in current generations of smart devices. This allows the preservation of the context of co-location between measurements collected in the same vicinity. Using this context of co-location, complementary algorithms will be proposed in this dissertation to reduce and remove measurements that are poorly-localized. Accurate, high-resolution network monitoring maps can then be constructed. To the best of our knowledge, this is a unique feature that has not been discussed or implemented before, for cellular network monitoring.
	3. Through local-area measurement exchange, this framework allows for a basic and immediate level of fault diagnosis for participants. This is achieved through a proposed comprehensive statistical framework. It estimates and classifies, on a per-device basis, whether any perceived network impairment is isolated to that device, or endemic to other devices in the same area. If the former is identified, participants can take remedy steps to alleviate their impairments (e.g. restart their devices). Otherwise, they attain some level of closure and comfort in knowing their impairments are likely the fault of the network, and are shared by others in the vicinity. To the best of our knowledge, we are the first to propose and implement this novel peer-to-peer collaborative application for device-level fault diagnosis in cellular networks.
	3. Tattle - Cellular Coverage Monitoring Through UE Participatory Sensing
	The operating environment of cellular networks can be in a constant state of change. Over the course of hours and days, cell loads can change due to diurnal cycles, or events such as spectator sports. Over the course of weeks and months, network topology can change due to the addition of new cells, and resizing of existing cells. Over the course of months and years, changes in the physical operating environment can come about when new physical infrastructure, like buildings, is constructed. Due to this evolution, dynamic parameters (such as radio, antenna, handover and load-balancing) may therefore have to be regularly reconfigured so that cell service is not degraded. However, operators can sometimes struggle to keep pace with the regularly-changing operating landscape. For example, in many space-constrained urban areas, low-lying buildings constantly make way for increasingly taller ones. These new and tall structures cause heavy shadowing and coverage holes.
	The operator has to rely on subscriber complaints to discover areas that are poorly served. For the cellular network operator that we interviewed, their lead time between discovering the need for a new base-station, to its installation and commission, is around 6 months. In the meantime, the operator has to reconfigure existing base-stations to alleviate coverage problems, and yet minimize any impact to areas that were previously well-served.
	3.1 Coverage Monitoring – Problem Overview

	One of the specific problems that the operator which we interviewed put to us is coverage monitoring (CM): how can they efficiently verify that minimum coverage is met for an area of interest?
	Minimum coverage at any given spatial location is defined by Singapore’s regulatory authority to be a minimum threshold percentage of Received Signal Code Power (RSCP) samples (collected at that location) which exceed -100 dBm. The RSCP is the received code power from the downlink Common Pilot Channel (CPICH), broadcast as a “beacon” from base-stations [54]. The regulatory authority in Singapore mandates that at least 85% and 99% of RSCP samples, collected within any indoor and outdoor area respectively, must exceed -100 dBm. If areas which fail these requirements are overlooked, the operator faces penalties by the regulator, and stands to lose subscribers to other competitors.
	The operator currently follows a manual approach. Areas with poor coverage are first identified through subscriber feedback. Coverage is then appraised by manual walk-tests. If minimum coverage is not attained, parameters (such as pan, tilt and power) are iteratively tweaked. After each iteration, walk-tests will be conducted to re-appraise coverage. This is repeated until minimum coverage is obtained. Furthermore, areas that were previously amply-covered should not be significantly impacted after this tuning. Such an approach is labor-intensive, expensive and limited in scale. It only provides a non-real-time and non-continuous snap-shot of coverage. The process has to be repeated whenever the operating environment evolves, especially over long periods due to aforementioned reasons.
	3.2 Contributions

	In this chapter, we introduce Tattle, a distributed, low-cost and comprehensive RSCP monitoring framework that addresses the CM problem in a scalable and real-time manner. Tattle has 3 key components, namely:
	1. the local exchange of RSCP measurements between devices, and subsequently the uploading of co-located readings to the network,
	2. the real-time pre-processing of co-located readings at the network side to discard erroneously-localized measurements, and,
	3. the visualization of coverage based on collected RSCP measurements in specific regions-of-interest.
	Tattle is designed to minimize operator expenses and labor, and yet monitor coverage in real-time on large geographical scales with good fidelity. It does this by removing erroneously-localized measurements. It enables operators to effectively appraise coverage without conducting expensive walk-/drive-tests. Operators can also proactively identify and mitigate spots with poor coverage in a timely manner, instead of reactively acting only upon subscriber complaints.
	We demonstrate through experiments that current-generation commodity handsets can exhibit wild variations in terms of reported GPS location under urban conditions. A pair of devices that are physically placed 1 m apart can report erroneous locations of up to kilometers of pair-wise distance. We are the first to demonstrate that using local-area measurement exchange and our proposed U-CURE clustering algorithm, co-located mobile devices can reduce their errors of their reported pair-wise distances by up to 40%.
	To the best of our knowledge, we are the first to implement, validate and demonstrate the achievable, real-world benefits of such a complete monitoring framework when applied to cellular networks. We use real-world, COTS devices to collect more than 3.78 million readings of RSCP using Tattle in an actual production cellular network. We show its efficacy in performing CM by presenting high-resolution results of actual coverage conditions in selected areas of Singapore.
	3.3 Chapter Organization

	In Section 3.4, we describe our proposed Tattle framework, and give details on the Tattle app and prototype. In Section 3.5, we discuss how readings can be pre-processed based on co-location to remove samples with location errors. In Section 3.6, we describe our measurement collection procedures, and evaluate Tattle in terms of the localization fidelity of resulting measurements. We collect over 3.78 million RSCP measurements, and present real-world mean RSCP coverage maps and RSCP cumulative distribution functions (CDFs) of various areas in Singapore. Finally, we give a summary of this chapter in Section 3.7.
	3.4 Tattle – Monitoring Through Participation

	We propose Tattle, a distributed monitoring framework that is scalable, minimizes manual labor and operator expense on drive-tests. It monitors real-time coverage on a large geographical scale with good measurement location fidelity, and requires minimal involvement of subscribers (other than simply running a background app on their smart devices).
	Figure 4: A diagrammatic description of Tattle, a distributed, low-cost and comprehensive cellular network measurement collection and processing framework. In this chapter, we exemplify Tattle by leveraging on participating UEs to report on network coverage in real-time.
	Figure 4 illustrates the overall system architecture of the Tattle framework. In the context of network coverage monitoring, there are 3 key components, namely:
	1. the local exchange of RSCP measurements between devices, and uploading of co-located readings to the network,
	2. the pre-processing of co-located readings to discard erroneously-localized measurements (either at the backend or at the UE-level), and,
	3. the visualization of coverage based on collected measurements in specific regions-of-interest.
	We will discuss each of the above components in the rest of this chapter.
	3.4.1 Benefits of Low-Power Measurement Exchange

	Subscribers are the best monitors of coverage wherever they are and wherever they require service. In our framework, the UEs form distributed mobile sensor networks to monitor the RSCP experienced by each UE. Instead of purely relying on the cellular service to upload measurement reports, we advocate using low-power local communications (such as Bluetooth Low Energy [55], or WiFi Direct [56]) to exchange RSCP measurements between UEs. This preserves the co-locality of measurements and conserves UE power.
	Conventionally, when a UE reports its measurement, together with its coarse location information, its measurement is taken in insolation. Two reports from separate UEs cannot be corroborated unless they have very accurate location fixes. However, if readings are exchanged through local communication, the principle of co-locality is preserved. This is because a UE that overhears a report from another UE can be sure that the transmitter is within range (depending on the interface used). In our indoor range test experiment, we find that the devices used in our experiments (specifically the Asus Nexus 7’s, and the Samsung Galaxy Tab 2 7.0’s) can reliably receive each other’s WiFi Direct broadcasts within 30 meters.
	In Section 3.5.1, we will use this communication range as an evaluation condition to determine whether an assessed reading should be admitted into the group of accepted readings. This is based on the knowledge that these readings were co-located. We can reject and discard a measurement if the reported GPS-location’s distance to the admitted group is beyond local transmission range. This is a key feature of Tattle. Naïve reporting of measurements in isolation lacks the context of co-location, and the network has to accept all reports in good faith. This includes those that have GPS locations which are egregiously wrong. Outdoor communication range may be higher, but we chose to use the observed indoor range of 30 meters as a conservative upper limit. This keeps the group of admitted measurements tightly clustered in space. We stress that the emphasis is on keeping measurements that are likely to be well-localized, rather than admitting as many measurements as possible.
	Figure 5: Participating users form local-area communication networks using interfaces such as WiFi Direct, to exchange signal strength readings. Elected Group Owners forward overheard readings to the network.
	The aforementioned local-area radio technologies, such as Bluetooth and WiFi Direct, are pervasive in smart devices. Hence, they become ideal candidates for local-area communications [12]-[16]. The industry is also starting to see value in allowing mobile devices to directly communicate with each other through the cellular interface. Promising research and development efforts, such as in [57], are currently underway. If none of these interfaces are available, we then rely on the cellular service as a fallback. Figure 5 shows how the measurements can be communicated from UEs back to the network.
	3.4.2 The Tattle App – Description and Operation

	The eponymously-named Tattle app is a simple prototype to demonstrate the efficacy of our proposed coverage monitoring framework. It exploits WiFi Direct as a local communication interface for UEs to exchange RSCP measurements. The app can be easily extended to use other local communication interfaces, such as Bluetooth. The app has the ability to scan for and form an ad-hoc network with other participating devices within WiFi Direct range. WiFi Direct is an attractive choice because it can work in tandem with a user’s existing WiFi association to any WiFi Access Point. Once a device-pair creates a network, one UE will be nominated transparently by the WiFi Direct protocol to be the group owner. One limitation of WiFi Direct is that the setup time for connections is in the order of seconds. However, we believe that further revisions and improvements to WiFi Direct, and other peer-to-peer protocols, such as BLE, will in the future enable seamless peer-to-peer on-demand connectivity.
	The group owner assigns an Internet Protocol (IP) address to each client that subsequently joins the network. Every time a new device joins the WiFi Direct network, the group owner broadcasts an Address List Update to notify all existing devices of the incoming device’s IP address. Multi-hop transmission is not yet supported by WiFi Direct, but it is not essential for our purposes. This is because a client is only admitted to the WiFi Direct group when it is one hop from the group owner.
	Upon joining a network, each device periodically broadcasts its GPS location, current network type (UMTS/ HSPA/HSDPA/HSDPA+), and the signal reading associated with its network type. In our prototype, we configured our broadcast period to be 1 second. In an active deployment, the sensing and broadcasting interval can be extended to automatically adapt to remaining battery power, current signal conditions, etc. It may also, for example, dynamically adapt to the number of participating UEs that were last overheard. So, the broadcast periodicity may be decreased whenever a large number of co-located participating UEs are overhead. Whenever a signal reading is overheard, the overhearing device will log the broadcast, and update the Tattle app GUI to reflect the reported signal of the corresponding device. A simple round-robin approach is used to determine which UE in the network reports the next batch of overheard signal readings to the measurement database. All uploads will be tagged with the timestamp of reception, and appended with the reporter’s current GPS location.
	We stress that our framework readily admits the use of reporting schemes (other than round-robin) which may robustly adapt to dynamic conditions, such as remaining device power, signal conditions of individual UEs, etc. However, this dissertation focuses on the Tattle framework and system, hence the investigation of other detailed reporting schemes is out of the scope of this dissertation.
	Figure 6: Screen capture of the Tattle app in operation. Nearby devices will be invited to join the network, and periodically exchange GPS location and signal readings.
	Figure 6 demonstrates the Tattle app in action, with all 6 devices (as shown in the screenshot) connected to the same WiFi Direct network. In our experiments, all devices operate on one common provider’s network. The Tattle framework can also be adopted by third-party data collection entities that are not affiliated with the cellular operators. In this case, devices on different cellular networks can exchange measurements of their own network’s coverage. Then, the data collection entities collect uploaded reports at their backend servers, which are independent of any cellular operator. They can subsequently provide operators and subscribers with coverage information as a service. This can also boost the number of participating subscribers if the use of Tattle is not limited to subscribers of any particular operator.
	3.4.3 Motivation for Users

	Oftentimes, when users experience poor or no signal coverage (as evinced by the display of ‘signal bars’ on most phones), they often ask: is this phenomenon observed by others? Knowing that others are experiencing similar coverage conditions does not necessarily help a user. It however provides some level of comfort in knowing that the network, and not the user’s equipment, is likely the source of the problem. On the other hand, if a user knows that most other subscribers are getting adequate signal coverage while his own signal readings are poor to non-existent, he can take some limited steps to alleviate the situation (e.g. restart his device, check his device settings, etc.). Through local-exchange of measurements, the user can gain a new level of insight into the service. The same kind of measurement reporting and retrieval can conceivably be implemented entirely based on the cellular interface instead of using local communication. However, there are several drawbacks to this approach, which we refer to as naïve reporting.
	Firstly, transmitting measurements to the network over the long-distance cellular link consumes more power than sending them to co-located peers, using short-range local-area interfaces such as WiFi Direct. In poorly-served areas, this problem is exacerbated because devices have to transmit to the cellular base-station at higher powers to overcome poor channel conditions. Secondly, pulling real-time measurements of nearby users from the network consumes precious downlink capacity. This is made worse in congested and poorly-served areas, whereby a multitude of users who want real-time signal information actually contribute further to congestion. Thirdly, by relying on the cellular network, we lose the knowledge of co-location. We show in Section 3.4.4 that reported GPS locations of devices can sometimes be as far as several kilometers away from their actual location, which can result in numerous misleading readings.
	Compared to naïve reporting, short-range exchange consumes less power and does not consume downlink capacity. It enables users to obtain real-time signal information from other users that are guaranteed to be within local communication range.
	To further incentivize subscribers to participate, recent studies have focused on monetary-based reward schemes that provide payouts to participants based on various criterions. These may be their current locations [58], or their sensing contributions [59]-[62]. The operator can readily leverage on these mechanisms to instate a reward system. They can either providing monetary compensation to participating UEs (taken from a small percentage of the operating cost savings gained by avoiding the need for walk-/drive-tests), or even using subscription rebates, loyalty points, or handset discounts to incentivize participants.
	3.4.4 Tattle – of Power and Location Uncertainty

	Figure 7: Battery drain test demonstrating the battery consumption of the naïve reporting method vs. the Tattle prototype round-robin approach.
	In Figure 7, we demonstrate results of battery drain tests conducted with 3 Samsung GT-P3100s. All 3 were first set to perform naïve reporting where RSCP readings and GPS locations were uploaded every second to a remote server, in a JavaScript Object Notation format using the HTTP POST method. The GT-P3100s’ batteries were fully charged at the commencement of the experiment. The same experiment was repeated using Tattle’s RSCP local exchange and round-robin network reporting approach. Each GT-P3100 broadcasts its RSCP reading and GPS location every second. Using round-robin, each device reported all overheard measurements, including its own, for consecutively 20 seconds in every 60 second window. These two experiments were each repeated thrice. With naïve reporting, the devices lasted an average of 15.38 hours with a standard deviation of 0.33 hours. With Tattle, the devices drained completely after a mean of 17.22 hours with a standard deviation of 0.82 hours, lasting 12% longer on average.
	Figure 8: CDF plot of the root-mean-square distances of 18,191 static sample points from a known true location.
	We stress that further power savings are possible if more robust schemes other than round-robin are used. The choice of the latter is simply for ease of prototyping. The framework readily admits other reporting approaches.
	We then conducted a ground-truth experiment at a known location to investigate the performance of GPS accuracy in an outdoor urban environment populated with low-lying buildings. We co-located 6 static devices, 3 of which are GT-P3100s and the other 3 are Asus Nexus 7s. The first several minutes of the experimental data were discarded in order to allow each device sufficient time to obtain a coherent GPS signal. In total, 18,191 samples were collected. 50% of these had mean locations more than 27.22 m off from the true location, while 2.79% had mean locations that were 2,877.69 m away from the known spot. The maximum observed discrepancy between a sample’s mean location and the known spot was 2,996.07 m. Only 22.42% of measurements were less than 20 m distance from the true spot.
	Figure 8 shows the cumulative distribution function of the root-mean-square (rms) distances between the sample points and the known spot, before and after processing. In Section 3.5, we detail how the rms distance is evaluated. We then introduce the CURE algorithm, as well as our extended U-CURE algorithm, which we used to pre-process the data in order to discard readings that are wrongly localized. After processing with U-CURE, the number of readings with rms location errors below 30 m saw a 17.85% improvement, compared to that of a naïve reporting approach, and a 16.19% improvement over CURE.
	Figure 9: CDF plot of the pair-wise root-mean-square distance of sample locations known to be co-located from local-communication exchange.
	Figure 10: A snapshot of device reports taken from our urban outdoor experiments. All 6 devices were actually co-located in a fitted box, each spaced apart by Styrofoam paddings. The spread of reported locations demonstrate the problem of inaccurate location reports. We will further investigate deviations from location ground truths in Chapter 4.
	Figure 9 demonstrates the cumulative distribution of pair-wise rms distance between each sample-pair in each co-located batch of readings. Using the naïve reporting method, all context of co-location is lost. However, using U-CURE, we are able to exploit the knowledge of measurement co-location to discard samples that are likely to be erroneously-localized. All samples after U-CURE processing had less than 39.15 m rms pair-wise distances. The naïve reporting method had pair-wise rms distances as high as 3,032.22 m, even though they were physically juxtaposed.
	Figure 10 is an illustrative temporal snapshot of the reported spatial locations of each co-located device captured sometime into the experiment. It clearly demonstrates the problem of location uncertainty in urban environments, even when outdoors. Though the devices were physically juxtaposed, the maximum reported pair-wise distance between device location means actually exceeds 50 meters.
	Figure 11: A plot of 1,628 Received Signal Code Power measurements and their corresponding localization errors in a challenging high-speed mobility condition, collected by 3 sets of GT-P3100s. The Pearson correlation coefficient between RSCP and localization error is -0.0441, suggesting little to no correlation between the two variables.
	Next, we investigate whether there exists any meaningful correlation between coverage conditions and the magnitude of localization errors, as reported by our devices. It is important to establish this because any processing of measurements based on their reported locations must not skew the final computed result of coverage. If devices that are in areas with poor signal coverage tend to have higher localization errors, then any bias against those RSCP measurements (for example, if we were to discard these measurements based on their location errors) will result in an artificially-positive representation of coverage conditions. We demonstrate the results of this investigation in Figure 11. Using three units of GT-P3100s, we collected 1,628 RSCP measurements in a challenging, high-speed mobility setting to elicit any relationship between coverage conditions and the magnitude of localization errors. As shown in the figure, the mean trend-line stays relatively flat. The quantitative Pearson correlation coefficient turns out to be -0.0441, suggesting very little to no correlation between RSCP values and the magnitude of localization errors.
	Figure 12: A plot of 9,226 location measurements and their corresponding localization errors, collected by 4 sets of SM-T325s. The Pearson correlation coefficient between the reported location uncertainties and actual error distances between the reported location means, and the actual ground truth, is 0.6344, suggesting a strong correlation between the two variables.
	These experiments serve to establish the fact that, for commercial off-the-shelf (COTS) devices that are very closely co-located (where inter-pair distance is less than a meter), their reported locations may be upwards of tens of meters apart, and sometimes more. We will investigate in further detail the localization performances of COTS devices in Chapter 4. But now, we continue the discussion on the systems aspect of Tattle and its application to the CM problem in the rest of this chapter.
	Finally, we investigate whether the location uncertainties reported by COTS devices directly correlates with the actual error between their reported locations and their ground truth locations. Figure 12 illustrates the result of this investigate. Using four units of SM-T325s, we collected 9,226 location measurements reported by the devices, and their actual ground-truth locations as measured by a commercial, aviation-grade GPS. The fitted trend clearly suggests an obvious increase in the ground-truth error as the reported location uncertainty increases. The Pearson correlation coefficient turns out to be 0.6344, which further supports this observation.
	3.4.5 A Note on Security, Privacy and Trust

	In this dissertation, we focus on the systems aspect of our Tattle measurement collection and monitoring framework. Hence we omit, for brevity, comprehensive security, privacy and trust mechanisms in our Tattle prototype. However, we note the importance of having these mechanisms in an active, full-scale deployment, and briefly discuss some existing work in this area.
	In any general participatory sensing system, security [11], privacy [63] and trust [64][65] of both the system and its participants need to be considered. For Tattle, there are two primary concerns that we note:
	1. How does the operator increase the likelihood that the measurements overheard and reported to the measurement database are what was actually observed by the participating UEs, and not fabricated by malicious participants?
	2. How can participating subscribers be assured of their anonymity and privacy, while retaining their trustworthiness and ability to be recognized and rewarded for their contributions?
	In the context of the first concern, participants can lie about their measurement values, their purported locations, or both. In the case of fabricated measurement values, [66] suggests the possibility of using hardware-based solutions for trusted computing, such as Trusted Platform Modules (TPMs) [67]. 
	One critical feature provided by this hardware-based solution is that of remote attestation. It serves to verify that the software (in this case, the Tattle app running on the UE, as well as the OS-level API calls to retrieve GPS and network measurements) has not been maliciously modified. While TPMs exist primarily within desktop computers, there are on-going efforts that seek to implement the mobile-equivalent of TPMs on consumer devices [68]. Mechanisms to prevent intentional physical damage to disrupt GPS, sensors, and radio functionality are beyond the scope of this discussion. Some participating UEs (whose measurements were overheard by others) may deliberately lie about their purported locations. Tattle inherently considers this by discarding their measurements should it be beyond possible overhearing range. We will explain this in Section 3.5.
	As for the second concern, the authors in [69] propose a comprehensive reputation and trust framework to address the “trust without identity” problem. Using this framework in the context of Tattle, we can decouple the participant from the device (and hence from the network-level parameters, such as IP addresses, which can be used to identify the subscriber) by allowing participants to register user accounts. Any reputation, or rewards, will be attributed to the account instead of the device. The framework also decouples the account from its actual measurements reported to the network. The system then rewards individual measurements, as opposed to accounts, by sending reward coupons which can only be redeemed by the account that sent those measurements. In this case, the identity, privacy and reputation of the participant can be preserved.
	3.5 Hierarchical Clustering With Uncertainty

	In a naïve reporting approach, the operator has to accept each report in good faith. However, the use of local measurement exchange guarantees that a device-pair is surely at least within local communication range. This context is important because it allows us to design techniques to discard patently incorrect reports that can otherwise affect the fidelity of the results. We apply pre-processing to co-located readings as the second key component of the Tattle framework.
	The goal is to identify and discard samples which have GPS locations that are likely to be wrong, rather than to improve on the accuracy of localization of individual samples. The key which allows us to achieve this goal is through the use of local communications. To this end, we propose U-CURE (uncertain clustering using representative points), an extension of the CURE clustering algorithm [10]. We chose to extend the original CURE algorithm because: 
	1. it is robust against outliers, and,
	2. it identifies clusters that are non-spherical in shape.
	The latter feature is especially desirable because the spatial distribution of participating devices does not conform to any particular shape. We stress that our proposed framework 
	Figure 13: The U-CURE algorithm.
	readily admits other choices of pre-processing algorithms. The choice of U-CURE is intended to be instructive rather than exclusive. We make 2 important modifications to the CURE algorithm to handle the reported uncertainty in a measurement’s location, as well as to discard samples with likely incorrect locations. We refer to the modified algorithm as U-CURE, and a sketch of the U-CURE algorithm is given in Figure 13.
	3.5.1 U-CURE: Extending the Original CURE Algorithm

	We first briefly describe the CURE algorithm. One can refer to [10] for more details. CURE considers each data point as a point source in Cartesian space. The distance between two clusters 𝐴 and 𝐵 is the minimum distance between all the possible representative point-pairs. It is given by:
	 𝑑𝐴,𝐵=𝑚𝑖𝑛𝑑𝑟𝐴,𝑟𝐵 ∀ 𝑟𝐴∈𝑅𝐴,𝑟𝐵∈𝑅𝐵, 
	where 𝑑.,. is a measure of Euclidean distance between the two inputs, 𝑟𝐼 is a representative point in the set of representative points 𝑅𝐼 of cluster 𝐼, where 𝐼∈𝐴,𝐵. It works as follows:
	1. Start by considering every point as a separate cluster, and each point is its own cluster’s representative point.
	2. Find the two clusters that are closest in distance, and merge them.
	3. Find the representative points of the newly merged cluster, where the first point chosen is furthest from the centroid. Each subsequent point is chosen sequentially such that its minimum distances to all previous representative points is maximum, until a desired number of representative points is reached.
	4. Repeat Step 2 and Step 3 until the desired number of clusters remain.
	At the conclusion of CURE, we pick the largest cluster as the set of admitted points, and discard the rest. We extend CURE in 2 important ways to further improve clustering accuracy. First, we implement a stopping condition: when the closest two clusters have a root-mean-square (rms) distance larger than the maximum range of the local communications interface, they should not be merged and the algorithm should stop. This corresponds to the max_dist condition in the algorithm. Since we are interested in the cluster with the largest number of sample points most closely located together, we set the desired cluster parameter k as 2. This is equivalent to classifying samples into either the primary cluster (which we are admit), or the secondary, out-lying cluster (which we discard). The max_dist condition then terminates U-CURE clustering early if clusters are too far apart to be co-located. In doing this, we exploit the knowledge of co-location garnered through local measurement exchange. In the next section, we describe the second extension to the original CURE algorithm.
	3.5.2 Considering Uncertainty in U-CURE

	Unlike the assumption of location certainty in CURE, GPS locations are expressed as a 3-tuple of latitude, longitude, and uncertainty [70][71]. This uncertainty is expressed as a 𝜎 value in meters, and modeled as a 2D normal distribution with the mean location given by the latitude and longitude. Hence, the ‘true’ location is said to fall within a radial distance of 𝜎 meters from the mean location with 68.2% probability.
	We convert reported latitudes and longitudes into Cartesian 𝑥,𝑦 space using the Map Grid Reference System (MGRS) [72] so that distances are easily evaluated. In order to extend CURE to take into account the uncertainty of sample locations, we consider the expected square-distance between uncertain location points, instead of just the distance between their means. Hence, the distance metric becomes the following:
	 𝑑′𝐴,𝐵=𝑚𝑖𝑛𝑑′𝑟𝐴,𝑟𝐵 ∀ 𝑟𝐴∈𝑅𝐴,𝑟𝐵∈𝑅𝐵, 
	where 𝑑′.,. is a measure of mean square distance between the two uncertain location points. Because the measure of distance on the ℝ2 Cartesian plane is real and non-negative, the order statistics after squaring a distance measure is preserved. We formalize the evaluation of the expected square-distance between two uncertain location points as follows.
	Lemma: The expected square-distance between two samples 𝑈=𝑋𝑈,𝑌𝑈 and 𝑉=𝑋𝑉,𝑌𝑉, centered in Cartesian space 𝑋𝑈,𝑌𝑈 and 𝑋𝑉,𝑌𝑉 respectively, where 𝑋𝑈∼𝒩𝑥𝑈,𝜎𝑈2, 𝑌𝑈∼𝒩𝑦𝑈,𝜎𝑈2, and 𝑋𝑉∼𝒩𝑥𝑉,𝜎𝑉2 as well as 𝑌𝑉∼𝒩𝑦𝑉,𝜎𝑉2, is equal to 2𝜎𝑈2+𝜎𝑉2+𝑥𝑈−𝑥𝑉2+𝑦𝑈−𝑦𝑉2.
	Proof: We construct two random variables (R.V.) 𝑋 and 𝑌 as follows,
	 𝑋=𝑋𝑈−𝑋𝑉,𝑌=𝑌𝑈−𝑌𝑉. 
	Since the difference of Gaussian R.V.s is also normally distributed, we know that,
	 𝑋∼𝒩𝑥𝑈−𝑥𝑉,𝜎𝑋2=𝜎𝑈2+𝜎𝑉2,𝑌∼𝒩𝑦𝑈−𝑦𝑉,𝜎𝑌2=𝜎𝑈2+𝜎𝑉2. 
	Next, we construct a R.V. 𝐷 representing the square-distance between samples 𝑈 and 𝑉, where,
	 𝐷=𝑋2+𝑌2. 
	Now, we can make use of the non-central 𝜒2 distribution and its properties to evaluate E𝐷. Let 𝐷′ be a R.V. of the following,
	 𝐷′=𝑋𝜎𝑋2+𝑌𝜎𝑌2=1𝜎𝑈2+𝜎𝑉2𝑋2+𝑌2. 
	Since 𝑋 and 𝑌 are independent and normally distributed, the sum of their squares normalized by their variances is represented by the non-central 𝜒2 distribution where,
	 𝐷′∼𝜒2𝑘=2,𝜆=𝜇𝑋𝜎𝑋2+𝜇𝑌𝜎𝑌2, E𝐷′=𝑘+𝜆. 
	Applying the linearity of expectation on Equation (6) yields,
	 E𝐷′=1𝜎𝑈2+𝜎𝑉2E𝑋2+𝑌2=1𝜎𝑈2+𝜎𝑉2E𝐷. 
	Finally, combining Equations (7) and (8), we get,
	∎ E𝐷=2𝜎𝑈2+𝜎𝑉2+𝑥𝑈−𝑥𝑉2+𝑦𝑈−𝑦𝑉2. 
	This lemma is an important one because it allows us to easily evaluate the numerical result of the expected square-distance between any two samples without having to evaluate any computationally-expensive integrals. This makes U-CURE more efficient in terms of computation. By taking into consideration location uncertainty and measurement co-location, U-CURE enables the pre-processing of co-located readings to discard samples that are likely to be mis-localized. Finally, Figure 10 illustrates a real-world example of a spatial-temporal snapshot of device measurement locations taken from our experiments. It demarcates the primary, accepted cluster of measurements after pre-processing it with U-CURE. The secondary, rejected measurement is also shown.
	3.6 Measurement Collection, Processing, and Signal Coverage Representation with U-CURE

	In this section, we describe the third key component of Tattle: the visualization of coverage based on collected RSCP measurements in specific regions-of-interest. We conducted extensive RSCP measurement collection over the course of more than 4 weeks, gathering over 3.78 million samples. 6 tablets were used in our experiments, namely 3 GT-P3100s, and 3 Asus Nexus 7s. All 6 tablets were always co-located and maintained WiFi Direct connections to one another. Collection of data points was done throughout the day, in all kinds of environments.
	3.6.1 Mean Coverage Visualization

	In Figure 14, Figure 15 and Figure 16, we first illustrate the efficacy of Tattle in the mass-collection of data points, particularly on our local public rail system and roads. The plots of mean RSCP maps should be of particular interest to cellular operators, who will find difficulty in achieving this scale of sampling by performing walk-/drive-tests. Our framework enables this by allowing participating UEs to undertake the task of coverage monitoring. This map is obtained by:
	1. taking every sample point and weighing its RSCP value with a two-dimensional Gaussian filter, centered at the sample’s reported mean, with sigma value equal to the sample’s 𝜎 uncertainty, and,
	2. summing up the resulting two-dimensional matrix generated for each measurement, and,
	3. computing the weighted average for every 1 meter by 1 meter bin.
	The corresponding scatter plots of measurements for naïve reporting, CURE and U-CURE are juxtaposed. In reality, all of the sample points should lie on the main veins, which correspond to the high-speed rail tracks and roads. In both the naïve reporting and CURE approaches, we see the debilitating effects of stray signal points with especially large uncertainties in the highlighted areas. They pollute the overall signal map with large blobs of measurements (due to their large 𝜎 values) that extend way beyond the main veins. These cause measurements with high location accuracies (and correspondingly low 𝜎 values) to be averaged out. We term this as the ‘smudging’ effect. Interesting features, which are specific areas with either excellent or unacceptable coverage are difficult to spot.
	This poses a problem for operators as they require a high degree of fidelity to identify specific problem areas. In contrast, U-CURE processing removed most of the mis-localized points and reveals a significant coverage hole demarcated at the bottom right. Localized features are more accentuated with much less ‘smudging’ blobs.
	Figure 14: Mean coverage map obtained using naïve reporting, with 39,947 sample points in the region (1.307, 103.791) to (1.320, 103.763), in given as latitude and longitude coordinates. The size of the area is approximately 1.5 km by 3.2 km. The scatter plot of sample points’ mean positions is given at the top. The bottom represents the mean signal map (where orange to red regions represent areas of barely- to unacceptable coverage, i.e. -90 dBm to -110 dBm, and blue to yellow regions represent regions of excellent- to barely acceptable coverage -50 dBm to -90 dBm ). Areas of interest are marked out with rectangles.
	Figure 15: Mean coverage map obtained using the standard CURE algorithm, with 39,947 sample points in the region (1.307, 103.791) to (1.320, 103.763), in given as latitude and longitude coordinates. The size of the area is approximately 1.5 km by 3.2 km. Contrast this with Figure 14 and Figure 16.
	Figure 16: Mean coverage map obtained using the U-CURE algorithm, with 39,947 sample points in the region (1.307, 103.791) to (1.320, 103.763), in given as latitude and longitude coordinates. The size of the area is approximately 1.5 km by 3.2 km. Contrast this with Figure 14 and Figure 15.
	Figure 17: Mean coverage map of a high-rise residential area obtained using naïve reporting, derived from 30,352 samples in the region (1.309, 103.772) to (1.312, 103.768). The size of the area is approximately 350 m by 450 m. This sub-region was chosen from the above region to highlight the importance of removing wrongly-localized sample points. The 1-𝝈 uncertainty radii were plotted for points with location uncertainty exceeding 90 m.
	In Figure 17 and Figure 18, we present mean RSCP signal maps, overlaid with scatter plots for a newly-developed area which is known to have poor signal coverage. The 1-𝜎 uncertainty radius for measurements with 𝜎 exceeding 90 m were also plotted for illustration purposes. Without processing, the signal map has indistinct features that appear ‘smudged’ and averaged out. This is evident by the existence of large numbers of points with high location uncertainty. However, after applying U-CURE to discard polluting points with large location uncertainties, the areas that had either excellent coverage or poor coverage are now clearly demarcated. No remaining measurements had 𝜎 exceeding 90 m. Although no areas in this case demonstrate pointedly poor coverage (e.g. at a mean of -100 dBm and below), we remark that subscribers in those areas that have mean levels of coverage below -90 dBm will likely suffer from regular impairments to their services. These may result in call drops and poor call quality.
	Figure 18: Mean coverage map of a high-rise residential area obtained using the U-CURE algorithm, derived from 30,352 samples in the region (1.309, 103.768) to (1.312, 103.772). The size of the area is approximately 350 m by 450 m. Contrast this with Figure 17. Here, no samples with 1-𝝈 uncertainty exceeding 90 m remains.
	Figure 19 shows the differences in the mean signal map between U-CURE and naïve reporting. U-CURE reveals that some areas had worse RSCP reception by up to 5.23 dBm compared to naïve reporting, and better reception in others by up to 10.06 dBm. These correspond to the false-positive and false-negative areas derived by naïve reporting respectively. These differences will otherwise be ‘smudged’ out by large uncertainties in naïve reporting. We remark that these are mean spatial RSCP maps. Hence, areas with only barely-acceptable mean coverage will most likely fail the minimum coverage requirement described in Section 3.1.
	Figure 19: The spatial plot of differences in the mean RSCP maps observed in Figure 17 and Figure 18.
	3.6.2 Region-of-Interest Based CDF Derivation

	In Figure 20, we present another representation of signal coverage that allows cellular operators to directly solve the CM problem. In this figure, the cumulative distribution of 
	Figure 20: The figures above represent the cumulative probability distribution of (a) the 1-𝝈 location uncertainty of sample points before and after processing, (b) RSCP for GT-P3100s in the same area, and (c) RSCP for Asus Nexus 7s in the area, constructed from 34,837 sample points in the region-of-interest from (1.332, 103.741) to (1.335, 103.743).
	RSCP readings, rather than just the mean, is illustrated for an urban outdoor area. Figure 20(a) represents the distribution of 34,837 RSCP measurements’ location uncertainty collected over the 187 m x 374 m area. U-CURE processing results in a 25% increase of points with under 20 m uncertainty. We see another dimension of analysis when we separate the data by the type of reporting device, as illustrated in Figure 20(b) and Figure 20(c). In all of our experiments, we observed that the GT-P3100 reports RSCP measurements very responsively, and the delta of consecutive RSCP measurements is often as small as ±1 dBm within a space of 1 second.
	However, the Nexus 7s tend to be comparatively sluggish and often go tens of seconds or more without reporting any change in RSCP, even when mobile. This can either be due to a driver implementation issue (e.g. a large smoothing window) or hardware differences (in terms of antenna size, build and quality). The ability for Tattle to be extended to include device make and model in RSCP reporting is especially useful for operators, which have to support a plethora of mobile devices on their networks. Knowing that a model of UE is particularly problematic helps the operator in making either network (e.g. increase cell tower antenna coverage at places with higher number of these devices) or business (stop offering these devices to subscribers altogether) decisions.
	3.6.3 Limitations of Our Current Prototype

	Figure 21: Indoor residential area, where Tattle’s effectiveness is tapered.
	We also discovered situations where our current prototype tends towards the performance achievable by naïve reporting. This is illustrated in Figure 21, where 1,118,384 sample points were collected in a fully indoor environment. Every sample point had large location uncertainties. In this type of cases, there is no basis to keep or discard any particular data point, as their rms distance between one another, even when co-located, is large. The resulting CDF or mean signal map between U-CURE and naïve reporting has no significant differences. However, we remark that in terms of measurement location fidelity, naïve reporting forms the lower bound of performance. Tattle will not perform worse than naïve reporting.
	3.7 Summary

	In this chapter, we described Tattle, a comprehensive, large-scale cellular network monitoring framework. It leverages on participating UEs to address the CM problem. The Tattle framework relies predominantly on opportunistic inter-UE measurement exchange to preserve the co-location of measurements and conserve UE power.
	We show through experiments that in urban built-up areas, GPS locations reported by UEs may have significant uncertainties. They can sometimes even be several kilometers away from their true locations. We describe how U-CURE can take into account reported location uncertainty and the knowledge of measurement co-location to remove erroneously-localized readings.
	We then illustrate several real-world representations of signal distribution that are of interest to cellular operators. These are made possible through the Tattle monitoring framework. When deployed on a large-scale with sufficient participants, operators can minimize their operational costs of conducting manual walk-/drive-tests. They can also proactively mitigate poor coverage conditions in a timely manner. Otherwise, they have to continue to depend on subscriber complaints after the fact, which can often be vague and subjective.
	4. Quality Monitoring of Cellular Network Delay With Tattle
	In Chapter 3, we introduced the Tattle crowdsourcing-based monitoring system and framework. We explained how it can be used to construct high-resolution signal coverage maps to address the coverage monitoring (CM) problem. It gathers passive downlink-only Received Signal Code Power (RSCP) readings from participating devices. It then leverages on the knowledge of co-location to discard readings that are patently mis-localized. In this chapter, we shall further extend Tattle to address the problem of quality monitoring (QM) of cellular network services.
	4.1 Quality Monitoring – Problem Overview

	Besides just surveying their network’s coverage, a battery of tests for network performance are typically conducted during an operator’s regular walk- and drive-tests [30][31]. These are to ascertain the quality-of-service of their network. These tests try to detect and capture common issues with cellular networks, such as interference, bit errors, handover failures, and call drops. This approach, together with customer complaints and trouble-ticketing, is still the primary means of detecting and monitoring network performance today. Hence, the shortcomings of such an approach discussed in Chapter 2 unfortunately continue to apply here.
	Aggregate coverage (as measured by the aggregate downlink received signal level at any given geographic location) is influenced primarily by the distance to the nearest cellular base-station (also known as path-loss), as well as the effects of shadowing due to obstacles in the physical environment (such as buildings) [8]. However, service quality is subjected to these and many more factors, such as cell load, backhaul capacity and end-to-end latency. Having excellent coverage therefore does not necessarily imply that the quality-of-service experienced by a subscriber will be good.
	Hence, instead of passively collecting measurements and discarding those that are mis-localized (as we did for CM), we now have to establish a consistent measurement methodology to measure quality-of-service metrics of the network.
	In this dissertation, we choose to focus on network delay as the example quality-of-service metric to measure. This is due to its fundamental and well-studied importance to the perceived performance [74][75][76] of most of the user-centric applications that we use through our smart devices (such as surfing the web, searching for nearby restaurants, and even hailing a cab). Operators that closely monitor and optimize their networks for network delay can therefore gain huge boosts in terms of their networks’ perceived quality-of-service.
	We will show later in this chapter that correlations between network delay and localization error exist for COTS smart devices. Instead of simply discarding mis-localized readings (which will skew the remaining results of the measured metric), we leverage on this correlation, as well as the knowledge of co-location, to improve on a measurement’s position error (instead of discarding it). We do this using a delay-adjusted extension of the U-CURE algorithm. In this way, we preserve the statistics of the measured metric, which we are inherently trying to measure, and also improve the geographic accuracy of derived aggregate result. In order to understand this correlation better, we shall investigate in detail how current generations of mobile devices make use of Global Positioning System (GPS), together with network-assisted localization (also known as the Network Location Provider (NLP) service in Android), to estimate their locations. We will evaluate the real-world performance of these localization techniques under different mobility conditions, and network delay conditions. We then quantitatively establish the relationship between the metric under measurement and localization error. This will clearly motivate the introduction of the Delay-Adjusted U-CURE algorithm.
	Table 1: Summary of pertinent differences between Coverage Monitoring and Quality Monitoring
	Category
	Metric Measured
	Correlation with Localization Error
	Will Discarding Poorly-Localized Measurements Skew Results?
	RSCP Value
	Little to None
	No
	Network Delay
	Strong
	Yes
	We summarize the differences between CM and QM in Table 1. Just as in CM, we will show how these knowledge come together to allow us to build real-world, accurate, high-spatial-resolution monitoring maps of network delay. By extension, we can address the QM problem just using commercially-available devices and our ready-to-deploy Tattle framework. This can be done without keeping expensive system states. We do not require any location anchors or additional instrumentation, nor any external knowledge that is not available programmatically to application designers (e.g. time-of-arrival information).
	4.2 Contributions

	In this chapter, we make the following contributions.
	1. We report on the performance of localization techniques, used by commercial off-the-shelf mass-market Android mobile devices, based on more than 100,000 data points gathered over 2 months.
	1.1. We compare the localization performance of various makes and models of devices, on both pedestrian and high-speed mobility, as well as across different network round-trip delay conditions. We focus on a particular example make and model of a popular Android device (Samsung SM-T325) and show through extensive data collection (of over 37,000 data points) that its localization performance using Global Positioning System (GPS), together with Android’s network-assisted Network Location Provider (NLP), may be modeled with a simple least-squares fit under high mobility. The mean reported location’s root-mean-square (rms) error is non-negligibly correlated with network round-trip delay, increasing by 605.32m per 1,000ms of delay.
	1.2. To the best of our knowledge, we are the first to systematically compare and contrast the localization results of using GPS+NLP vs GPS-Only, using over 35,000 data points collected in an actual production network. Our evidence suggests that using a combination of GPS+NLP can be detrimental to localization accuracy in both pedestrian and high-speed mobility environments, when compared with using GPS only. In the latter, the median rms error may be increased by over 60%.
	2. Based on our quantitative observation of the relationship between network delay and localization error, we make use of Tattle, the cooperative distributed monitoring framework detailed in Chapter 3, and propose the novel Delay-Adjusted U-CURE clustering algorithm. It extends U-CURE by ‘shifting’ the reported locations of high-delay, possibly mis-localized, samples towards a computed cluster center. We show through extensive real-world measurements that Delay-Adjusted U-CURE greatly improve the localization performance of both GPS-only, and GPS+NLP techniques. It does not require keeping expensive system states, nor requiring any location anchors. No additional instrumentation, nor any external knowledge that is not available programmatically to application designers (e.g. time-of-arrival information) is needed. Our results are promising, demonstrating that median rms location error can be reduced by over 30% with just 3 cooperative co-located devices. Improvements of 70% and more can be seen by having just 6 cooperative devices in a local-area.
	3. Finally, we demonstrate that, through extensive real-world measurements of over 34,000 data points, accurate crowd-sourced cellular network delay maps can be derived with Tattle and the Delay-Adjusted U-CURE algorithm. It performs admirably in terms of measurement accuracy, compared to naively relying on raw data.
	4.3 Chapter Organization

	This chapter is organized as follows. In Section 4.4, we briefly review how Network-Assisted Localization is implemented in Android, our chosen experimental platform. In Section 4.5, we present results of localization performance using GPS+NLP, compared to using GPS only. The impact of factors such as device heterogeneity, mobility, and network round-trip delay will be investigated. Real-world, in-the-wild results of localization performance will be presented. Based on these insights, we briefly describe in Section 4.6 how we use Tattle, and the Delay-Adjusted U-CURE clustering algorithm, to greatly improve the localization performance of both GPS-only, and GPS+NLP techniques. In Section 4.6.3, we apply Tattle and Delay-Adjusted U-CURE to generate accurate, real-time crowd-sourced network round-trip delay maps. We do this by leveraging on the insights and improvements drawn from the above to address the QM problem. We then conclude this chapter in Section 4.7.
	4.4 Localization in Current Generations of Mobile Devices

	Global Positioning System (GPS) is a well-understood and mature technology that has found its way into an over-whelming majority of smart devices. As such, studies such as [78], [79], and [80] have sought to establish the performances of GPS positional-tracking in commodity mobile handsets. These studies form a useful basis in the understanding of how GPS chipsets perform in the real-world. However, to the best of our knowledge, we are the first to conduct an extensive study of how GPS, and its use in conjunction with Android’s Network Location Provider (NLP), performs across different makes and models of devices, network delay, and mobility types.
	A comprehensive overview of how Assisted-GPS (A-GPS) is implemented in modern smart-phones is given in [81]. Basically, in most mobile devices, including those used in this dissertation, the device downloads some assistance data (in the form of a file, downloaded using HTTP) from the Internet to aid its searching and decoding of GPS signals. For example, the Samsung SM-T325 downloads this file from http://xtra1.gpsonextra.net/xtra2.bin. The assistance data contained in this file include the precise orbital information of satellites, known as the ephemeris, and the coarse orbital parameters and status information of satellites, known as the almanac. Obtaining these data directly from the satellites, which broadcast at a rate of 50 bits/s, can take upwards of minutes or longer [81]. Hence, downloading these data from the network is comparatively much faster. In this dissertation, we use the terms GPS, and A-GPS interchangeably.
	Another form of network-assisted localization is through finger-printing, which is the basis of how Android’s NLP (and Apple’s equivalent location service) operates. It works based on vast databases of known cellular towers and Wi-Fi Access Point locations collected through war-driving or clandestine crowd-sourcing using consumers’ own devices running on Android [82][83] or iOS [84]. Google’s or Apple’s location service can then estimate a mobile phone’s position based on its current associated cell tower ID, and a list of Wi-Fi Access Points it currently ‘hears’ [85]. In Android’s case, we found that our devices were submitting these information vectors to a single domain name using HTTPS at google.com, and getting estimated locations in return. This was verified by blocking the IP address resolution of google.com at the kernel-level, which disabled the NLP, and then re-enabling it, which restored the network-assisted localization function.
	Figure 22: The localization technique selection screen presented to the user, captured from a Samsung Galaxy TabPRO SM-T325. All Android mobile devices display similar variants of this menu to their users.
	In typical Android devices, users are presented with a choice of localization techniques, as shown in Figure 22. GPS+NLP is used when the first option is chosen, and NLP- or GPS-only is used when the second or third option is selected respectively.
	4.5 Experimental Methodology and Localization Performance

	We first detail our experimental methodology, and explain our choice of devices, as well as mobility and network conditions under which we conducted our experiments.
	4.5.1 Experimental Devices

	In our experimental setup, we used the following devices, all connected to the same cellular network service provider, as listed in Table 2. We focus on Android devices due to the following reasons:
	1. The base Android OS source code is freely available for usage and inspection [86]. For example, the Java code detailing how the Android OS handles location requests from both GPS, and NLP is given in the path /frameworks/base/services/​java/com/android/server/location/. This can be seen in its entirety in [87]. This gives us the opportunity to interpret our results with more context.
	2. Android is still the overwhelmingly dominant smartphone OS, powering 84.4% of smartphones in Q3 2014 [88]. Amongst handset manufacturers, Samsung has the largest market share, owning 23.7% [89]. Hence, we focus our attention on the Samsung SM-T325’s from Section 4.5.6 onwards, in order to generate as large a data-set as possible during data collection. It also allows us to control for device variability. However, this should not detract from our main insights presented throughout the chapter as we will show that the results in Section 4.5 are consistent across the investigated devices.
	Table 2: The devices that were used in our experiments. For units of the same make and model, we updated all devices to their latest official stable firmware, with no other after-market apps installed, except for the location-collection app.
	Manufacturer
	Model
	# Units
	Android
	Samsung
	GT-P3100
	03
	v4.1.2
	Asus
	Nexus 7 3G
	03
	v4.4.4
	Samsung
	SM-T325
	09
	v4.4.2
	Although we do not focus on Apple’s popular range of mobile devices, our location improvement scheme proposed in Section 4.6 is independent of device make and model, and hence equally applicable to Apple’s mobile products.
	To determine the ground-truth location, we log our corresponding positions using a commercial aviation-grade Bluetooth GPS device, the Garmin GLO™. To improve accuracy, this device can also receive position information from Russian-based Global Navigation Satellite System (GLONASS) satellites, and it refreshes position information at 10 times per second.
	4.5.2 Mobility

	We defined two controlled paths in the island-country of Singapore, which we follow in order to investigate the effects of mobility on localization accuracy.
	1. Pedestrian path: This is an outdoor path measuring around 940 meters in length, and the devices were carried within a backpack while traversing this path at pedestrian speed, that is, around 4.5 km/h. We occasionally had to stop for traffic. In this path, the line-of-sight to the open sky is always unblocked as buildings on both sides of the path are not tall. The path is shown in Figure 23.
	2. High-speed path: This is a public-transport class train route measuring approximately 8 km in length. While moving, trains travel at a mean speed of around 15 km/h, and up to 80 km/h at top speed. Between the start- and end-point stations, there are also three designated stations, where the train always stops to allow passengers to board and alight. Along this path, there are occasionally tall buildings shadowing either side of the track, thus GPS fixes are not always consistent along the path. This track is illustrated in Figure 24.
	Figure 23: An outdoor pedestrian path measuring around 940 meters in length.
	Figure 24: An outdoor high-speed train route measuring approximately 8 kilometers in length.
	From this point henceforth, we shall use the term ‘pedestrian mobility’ to mean travelling on the pedestrian path, and ‘high-speed mobility’ to mean travelling on the high-speed train track. We chose two specific paths to focus on, in order to generate large datasets for analysis while subjected to experimental resource constraints, instead of evaluating many trace routes with small datasets.
	4.5.3 Network Delay

	As a reference, in a period of over 4 days, we collected over 35,000 samples of network round-trip delay on high-speed mobility. We found that the median delay was 250 ms, and the 5th, 25th, 75th and 95th percentile delay was 144 ms, 198 ms, 558 ms and 1,243 ms respectively. For reference, the maximum timeout value is set at 10,000 ms, and attempted measurements that exceed this timeout value will be set at the nominal value of 10,000 ms. Hence, at the higher ranges of network delays (e.g. those above 1,000 ms), we have much less available data corresponding to location errors at those delays. As such, we setup all our devices to connect to an Amazon EC2 instance hosted in Singapore, operating as an OpenVPN server, and tunnel all packet traffic to and from the devices through that instance. We then use the Linux program, NetEm, to introduce controlled delays ranging from 100 ms to 500 ms per direction, in intervals of 100 ms, at the VPN tunnel interfaces to emulate various degrees of network round-trip delays. This allows us to collect sufficient location data, corresponding to higher network delays (up to around 1,600 ms), to draw meaningful insights. From the application-level, and even to Android’s NLP, this method of emulating network delays is not any different from experiencing real network delays, as they all operate at the packet-based user-plane level.
	To measure network round-trip delay at a packet-level, each device issues very small packet probes in the form of HTTP HEAD messages to our Amazon EC2 instance, and measures the time it takes for the HTTP response to be returned. Each probe results in less than 2000 bytes transferred in total on the uplink and downlink.
	4.5.4 Distance to Ground Truth Computation

	At every 5 second interval, each device records its location obtained (at the application-level, which developers see) from Android’s LocationManager class. The class is instantiated as faithfully described in [90]. It allows the recommended logic to decide which location fix (provided either by the GPS, or Android’s NLP) is the best. In this way, an estimated location, in terms of latitude and longitude, is returned to an application developer. We convert each estimate to a location sample 𝑈=𝑋𝑈,𝑌𝑈 in Cartesian coordinates. Every estimate has an associated uncertainty, expressed as a 𝜎 value in meters, and modeled as a two-dimensional normal distribution with the mean location given by the latitude and longitude [91]. In other words, 𝑋𝑈∼𝒩𝑥𝑈,𝜎𝑈2 and 𝑌𝑈∼𝒩𝑦𝑈,𝜎𝑈2. The ground-truth estimate taken from the GLO is also taken as such. Hence from this point onwards, we compute the root-mean-square distance 𝐷𝑆↔𝐺 for any sample 𝑈𝑆 to the ground truth location 𝑈𝐺 as 𝐷𝑆↔𝐺=2𝜎𝑆2+𝜎𝐺2+𝑥𝑆−𝑥𝐺2+𝑦𝑆−𝑦𝐺2. This follows directly from our proof given in Equation (9).
	4.5.5 Effects of Device Heterogeneity

	First, we present the results of using GPS+NLP as the localization approach in a pedestrian mobility setting. This involves three different models of devices, collecting over 3,600 data points per model of device over 3 hours. The results are illustrated in Figure 25. Minor variability in the mean rms error distance can be observed across a range of network delays, where the mean is taken for data points within bin widths of 100 ms, from those below 100 ms, up to those within 1500 ms to 1600 ms. This range effectively covers just over 95% of all measured delays described in Section 4.5.3. 
	Figure 25: (a) Nexus 7 / (b) GT-P3100 / (c) SM-T325 - Network localization performance under pedestrian mobility.
	An immediate takeaway from these set of results is that the rms location errors for each device model vary little across network round-trip delays. Each of the least-squares fit demonstrates little correlation between localization error and network delay. We also observe that the device make and model can introduce fairly different localization performance, echoing the findings given in [79]. Somewhat surprisingly, even under ideal conditions with constant unblocked LOS skywards, rms errors upwards of several hundreds of meters can be frequently observed. We observe that in our experiments, these correspond to points in time where the reported location “jumps” across large distances, or when the uncertainty of the location (corresponding to 𝜎𝑈2) suddenly grows very large.
	Figure 26: (a) Nexus 7 / (b) GT-P3100 / (c) SM-T325 - Network localization performance under high-speed mobility.
	Next, we conducted the same experiment using GPS+NLP, but this time over high-speed mobility. The results are given in Figure 26. Under this mobility, the correlation between localization error and network delay is now obvious. This strong correlation is seen across all three models of devices, albeit to varying degrees.
	In Table 3, we give the slopes of the least-squares fit to each of the models’ localization error behavior, in relation to the network round-trip delay. In this particular experiment, the SM-T325s demonstrate positive rms error correlations with network delays as high as 1416 m/s. This is in stark contrast with its performance with pedestrian mobility.
	In the high-speed mobility scenario, we often observe that the devices' GPS receptions may drop out for up to tens of seconds, owing to the occasional shadowing conditions along the mobility path. Hence, each device’s location estimate is supplanted by NLP readings which are ‘newer’, but may be significantly way off from the ground truth as the network delay grows. There are three possible aggravating factors that result in the large correlation between network delay and localization error. Firstly, as discussed in Section 4.4, NLP works by transmitting a vector of information, such as a mobile phone’s associated Cell ID and overheard Wi-Fi Access Points, to www.google.com. It then awaits the server to return an estimated location. In periods of high network-delay and high-speed mobility, the mobile terminal may have already moved large distances before the estimated location is returned.
	Secondly, due to its the dependence on overheard Wi-Fi Access Points and Cell IDs, NLP tend to give very bad results in areas where Wi-Fi Access Points are sparse or non-existent, and cell sizes are large. This is the typical circumstance in the high speed mobility path which we evaluated. In such cases, NLP has very little data to triangulate upon. As a result, NLP may only return an approximate location that is near or at the cell tower which the device is associated with. With large cell sizes, which can be upwards of kilometers in radius [92], NLP will return locations with errors of those orders of distances as well.
	Thirdly, under high speed conditions, the signal strengths of Wi-Fi APs and cellular towers also tend to be subject to large Doppler spreads as a result of fading [8]. Hence, at each point where a snapshot of overheard WiFi APs and Cell IDs is taken, their resulting RF strength readings can be significantly different than those registered within Google's databases. Using these snapshots for Radio Frequency matching and triangulation therefore may result in considerable errors in the location estimated by NLP.
	Summary: Across the device models investigated, network round-trip delay has a negligible effect on GPS+NLP performance when mobility is low. However, at high-mobility, all devices demonstrate a high margin of localization error as network round-trip delay increases. 
	Table 3: Gradient of least-squares fit (rms error per second of network round-trip delay)
	Manufacturer
	Model
	Pedestrian
	High-Speed
	Samsung
	GT-P3100
	0.8542 m/s
	572.1040 m/s
	Asus
	Nexus 7 3G
	-0.5403 m/s
	1282.3936 m/s
	Samsung
	SM-T325
	-9.8075 m/s
	1416.6122 m/s
	4.5.6 Effects of Combining GPS with Network Localization vs. Using GPS Only

	We have established the effects of network round-trip delay on the performance of GPS+NLP localization for high-speed mobile terminals. Next, we investigate the impact of a user’s choice of GPS+NLP, or GPS-only localization on an application’s localization performance.
	Figure 27: (SM-T325) - (a) GPS+NLP vs. (b) GPS-Only under pedestrian mobility.
	Figure 28: (SM-T325) - (a) GPS+NLP vs. (b) GPS-Only under high-speed mobility.
	We now focus on results from the SM-T325s for brevity. However, the overall trends gathered and observed herein are seen in both the GT-P3100’s and the Nexus 7’s as well.
	In Figure 27, we demonstrate the results of another data set, collected while on pedestrian mobility, with eight sets of SM-T325s. Four were configured to obtain locations using GPS+NLP, and the other four set to use only locations given by the GPS receiver. This collection yielded almost 14,700 data points in total. This allows us to remove the temporal variability (e.g. data sets collected on different days may give different results due to weather difference) and directly compare the results.
	Figure 29: (SMT-325) Performance of (a) GPS+NLP vs. (b) GPS-Only, without artificially-introduced network delay, in a high-speed mobility environment.
	Figure 30: (a) Cumulative distribution function of GPS-Only vs. GPS+NLP, and (b) the corresponding quantile-based percentage improvement, without artificially-introduced network delay.
	The overall rms errors look well-controlled despite any increasing network delays. However, it is immediately apparent from the corresponding trend lines that the ‘high accuracy’ mode (see Figure 22) does peculiarly worse than simply using the GPS. In fact, the mean rms error of using GPS-only is 20.55 m, with a standard deviation of 8.36 m. However, GPS+NLP yields a mean of 28.09 m, with a standard deviation of 42.84 m.
	Next, in Figure 28, we illustrate the results of repeating this setup while on high-speed mobility. The two configurations yielded over 18,700 data points each. The stark difference in terms of performance between using GPS+NLP and GPS-only is immediately apparent, and undoubtedly interesting. In this experiment, the former’s fitted mean rms error increases by 605.32 m per second of round-trip network delay, while the latter demonstrated only a very slight positive correlation, at an error-increase rate of just 87.60 m/s.
	Then, to reinforce our observations, we repeated the experiments with the SM-T325s under high-speed mobility conditions, but without introducing any network delays. These results are illustrated in Figure 29. Furthermore, we present detailed rms error distribution functions yielded by the two different configurations in Figure 30. While the mean trend line obviously demonstrates much better results if only GPS localization is used, we see better the vast improvements yielded when comparing across quantiles. At the median, an app developer can possibly improve the accuracy of localization by close to 65%, just by ignoring results given by Android’s NLP. Note that the correlation between delay and rms location error is not as apparent in this case, as a vast majority of samples experienced less than 400 ms of round-trip delay, unlike that shown in Figure 28. In the latter, we can draw more representative results with a much more uniform spread of network delays.
	Summary: The results in this section suggest that using the ‘high accuracy’ mode of GPS+NLP in fact yields worse, and sometimes much worse, results that simply relying on GPS-only. This is especially apparent in the high-speed scenario, where mean rms location errors grow as a function of increasing network round-trip delay. However, NLP still has important roles to play for some applications. It provides coarse location estimates in GPS-denied environments, where getting GPS locations are near impossible (e.g. at some sections of the high-speed track, where tall buildings shadow either side of the track). In such cases, perhaps a coarse location estimate may be more desirable than having no location estimate. So, in order to mitigate the shortcomings of GPS+NLP, we propose a location refinement technique described in the following section.
	4.6 Tattle – Cooperative Localization through Delay-Adjusted Clustering

	Tattle is a cooperative local measurement-exchange system that we detailed in Chapter 3. It comprises of a distributed monitoring framework that is scalable, is designed to monitor real-time network performance on large geographic areas with good measurement location fidelity. It requires minimal instrumentation of smartphone hardware and involvement of subscribers (other than to run a passive background app, as seen in Figure 6).
	Just as we used Tattle to address the CM problem, we propose to use the framework in a similar manner to address the QM problem. This allows users in urban areas to simply broadcast their purported locations (gathered at the application-level as described earlier) periodically, at synchronized intervals. This is possible since mobile smartphones can already be time-synchronized to sub-second accuracy using the NITZ protocol [93], or the Network Time Protocol [94]. In this way, each user gathers periodically a vector of <Timestamp, Estimated Location> from all the neighbors that it overhears, together with its own. The range of overhearing depends on the type of local-area interface used. Because our implementation relies on the WiFi-Direct interface for peer-to-peer exchange, we define the overhearing range to be 30 m, as described in Section 3.4.4.
	4.6.1 Delay-Adjusted Clustering using U-CURE

	We have established in Section 4.5 that smartphones’ estimated locations, especially in high-speed mobility scenarios, can sometimes be egregiously far from their true locations (see Figure 29). This error can be influenced by the smartphones’ experienced round-trip delay (see Figure 28). We shall then use these two observations, together with an extension of the U-CURE clustering algorithm, to improve a mobile phone’s own location estimate. This is done without keeping expensive system states, nor requiring any location anchors or additional instrumentation. It does not require any external knowledge that is not available programmatically to application designers (e.g. time-of-arrival information).
	We have also given details on the U-CURE algorithm in Section 3.5. In normal circumstances where this algorithm is executed at some backend server (e.g. for crowd-sourcing of some aggregate information), those locations that cannot be merged into the primary, largest cluster are deemed to be outliers. This is because they claim to be too far away from the ‘majority’ of their peers. However, based on our observations made in Section 4.5.6, we can leverage on this algorithm to improve on the location estimates of those previously deemed to be outliers. This is done simply through the wisdom of the crowds, without needing any anchors or ground truths.
	We briefly illustrate an example of this in Figure 31. This snapshot is taken from a real, high-speed mobility scenario from our experiments with nine SM-T325s. We see that the individual reported locations of each device (represented by the diamond-shaped markers) can be upwards of hundreds of meters away from the ground-truth (as measured by the Garmin GLO, represented by the square-shaped marker). We remark that the knowledge of ground-truth locations is generally unobtainable in real deployments. The beauty of using the U-CURE algorithm lies in its ability to estimate the primary cluster centroid (as represented by the star-shaped marker, and then taken as the estimated ground truth), in the presence of outliers, and without having to conform to any cluster shapes [10] (since the shape of crowds is determined by geographic limitations).
	Figure 31: A real-world example of using Delay-Adjusted U-CURE to improve the individual devices’ reported positions by shifting them towards the primary cluster centroid by a function of their network round-trip delays.
	We learnt previously that network round-trip delays tend to affect localization performance, especially for GPS+NLP in high-speed scenarios. So, we can shift the estimated locations of all those points outside of the primary cluster towards the primary cluster centroid, by a factor of their experienced network round-trip delays (605.32m per second of delay, as described in Section 4.5.6). This is in contrast to our approach of simply discarding mis-localized measurements, as taken for CM. That approach was 
	Figure 32: (a) Cumulative distribution function of using GPS+NLP after delay-adjusted U-CURE processing, and (b) the corresponding quantile-based percentage improvement, across different number of neighbors.
	justified as our experiments showed little to no correlation between coverage conditions and localization errors, as detailed in Section 3.4.4. However, we cannot discard measurements for QM as the quality metric under investigation can be intricately correlated with localization errors.
	In Figure 31, the displacements of the secondary location points towards the primary cluster centroid are represented as gray lines, and their displaced distances are annotated accordingly.
	4.6.2 Experimental Evaluation of Delay-Adjusted U-CURE

	Using the procedure explained in Section 4.6.1, we evaluate the localization performance through another set of experiments, first with nine SM-T325s. They are configured to use GPS+NLP localization. The devices were then brought on the high-speed mobility path for a duration of close to three hours, collecting over 17,000 data points in total. Each device broadcasts its own location every 5 seconds, with all the devices’ clocks synchronized to within at most a few hundred milliseconds using NTP. Therefore, at each time-step, a snapshot is taken as a vector of nine estimated locations (obtained through GPS+NLP), corresponding to each of the nine devices. In this way, over 1,900 snapshots were generated. The Delay-Adjusted U-CURE algorithm, using the error-per-delay value corresponding to the SM-T325 as illustrated in Table 3, is then applied to every snapshot. Every possible combination of number of devices is taken into consideration (i.e. choosing 𝑖∈3,…,9 out of 9 devices).
	In Figure 32, the cumulative distribution function of the aggregated rms errors before and after applying Delay-Adjusted U-CURE is shown. It is immediately obvious that applying the algorithm yields very tangible improvements in terms of reducing rms location error. With just three co-located devices, using the wisdom of crowds and our proposed algorithm can yield an impressive 32.27% improvement in the median rms location error, from 171 m down to 115.6 m. Though a small amount of regression (around -2.7%) is seen between the 60th and 61st quantile, considerable gains are made more than half the time, and also from the 62nd quantile onwards.
	Interestingly, the improvements of having just six co-located devices and beyond will hit diminishing returns. At the median, upwards of 60% reduction in rms error can be achieved. With nine co-located devices, even a 75% improvement is possible in the 30th percentile. Taken as a whole, these results are very promising for a relatively-simple approach such as this. We also believe that in populated urban areas, having upwards of 3 or more co-located devices in many areas is often possible.
	Summary: We have proposed a simple, ready-to-deploy algorithm that involves very little complexity in terms of implementation, but yields very promising results in reducing localization errors in a high-speed mobility scenario while using GPS+NLP. Our proposed approach involves nothing more than devices exchanging their locations periodically. No expensive system states, nor any location anchors, nor additional instrumentation are required. There is no dependency on any external, pseudo-oracular knowledge that is not available programmatically to application designers (e.g. nano-second level information such as time-of-arrivals).
	4.6.3 Putting It Together – Tattle, Delay-Adjusted U-CURE, and Building Crowd-Sourced Quality Monitoring Maps

	We established the localization performances of devices under various factors such as heterogeneity, network delays, and mobility in Section 4.5. Then, we proposed a simple, ready-to-deploy location refinement method of devices travelling at high-speed scenarios in Section 4.6.1, and subsequently demonstrated its effectiveness in Section 4.6.2. We are now motivated to put together an example QM application to demonstrate the usefulness of our work discussed in this chapter.
	Here, we propose a crowd-sourcing QM application whereby participating users periodically contribute network round-trip delay information. This allows us to construct near real-time aggregate mean network delay heat-maps of places where users frequent. Such applications are finding increasing attention [32][33][34], as irate users in congested places often have no avenues nor means to corroborate their displeasure at the network service. However, unlike these existing applications, our goal is to build very high location-resolution network delay maps that are in the order of meters, just as we did for CM. This is unlike those afore-referenced approaches, which only collect network metrics that are location-accurate to the order of hundreds of meters.
	Users run a passive background app, the eponymously-named Tattle, on their Android devices. It collects network delay information, as well as constantly tracks their whereabouts, using GPS+NLP or GPS only. Each participating device attempts to measure network delay by probing a standard set of servers. Each probe is a HTTP HEAD request for each server, which includes google.com.sg, youtube.com, and our Amazon EC2 instance hosted in Singapore. Each probing attempt generates a very small amount of data transferred on the cellular uplink and downlink. For instance, we found that each fetch to google.com.sg involves only 484 bytes transferred on the uplink, and 1079 bytes downloaded, fully inclusive of HTTP and TCP/IP overheads. These are based on interface packet captures.
	At the start of every five second interval, in accordance with the Tattle framework, each device initiates concurrent probes to the standard set of servers. It logs its estimated location at the start of the probing attempt. At the same time, it broadcasts its location to any nearby neighbors. It will then log any overheard locations together with those broadcasters’ IDs, as well as all the delays of the returning probes. This becomes the data vector for that interval, and one vector is thus generated per device per interval. In an actual deployment, the device can immediately upload each vector to a backend for real-time processing. However, in our implementation, we perform computations off-line.
	We conduct trials of this application over the course of 2 days, each session lasting more than 3 hours, and collecting over 17,000 data points for the GPS+NLP case, and the same amount in the second day for the GPS-only case.
	Figure 33: Heat-map of crowd-sourced network round-trip delay using GPS+NLP, before (top), and after (middle) delay-adjusted U-CURE processing, vs. the ground-truth (bottom).
	We present visualization results of the reconstructed network delay map for the GPS+NLP case in Figure 33. We illustrate the raw, unprocessed results of crowd-sourcing, compared with the one after processing with our proposed Delay-Adjusted U-CURE. We also provide the ground-truth version of the mean network delay map, where location ground-truths were established using our aviation-grade Garmin GLO. Visually, it is immediately apparent that simply and naively taking the raw data in good faith yields a comparatively very poor representation of the network delay (Figure 33, top). This is in comparison with the actual ground-truth (Figure 33, bottom). However, a much more visually-pleasing mean delay map can be derived just by using our proposed Delay-Adjusted U-CURE together with the Tattle framework (Figure 33, middle).
	In order to quantitatively evaluate how well the map was reconstructed, we use two measures. Firstly, we define the rms delay error as follows, 
	 𝑒𝑟𝑚𝑠𝐌𝑋𝑌,𝐓𝑋𝑌=𝑥𝑋𝑦𝑌𝐓𝑋𝑌𝑥,𝑦−𝐌𝑋𝑌𝑥,𝑦𝑥𝑋𝑦𝑌𝟏ℤ+𝐓𝑋𝑌𝑥,𝑦, 
	where 𝐌𝑋𝑌 and 𝐓𝑋𝑌 are the estimated and ground-truth network delay 2D matrix of width 𝑋 meters and height 𝑌 meters respectively. 𝟏ℤ+𝑡 represents the indicator function that returns 1 if 𝑡>0, and 0 otherwise. The 𝑒𝑟𝑚𝑠 is computed at each snapshot (of 5 seconds interval). More than 1,900 rms errors were collected.
	Next, we define the ‘smudge’ error 𝑠 as follows, 
	 𝑓𝐖𝐌,𝐖𝐓=𝟏ℤ+𝐖𝐌−𝐖𝐓, 
	 𝑠𝐖𝐌,𝐖𝐓=𝑥𝑋𝑦𝑌𝑓𝐖𝐌,𝐖𝐓×𝑑𝐓𝑥,𝑦×𝐖𝐓, 
	where 𝐖𝐌 and 𝐖𝐓 are the estimated and the ground-truth 2D matrix (of width 𝑋 meters and height 𝑌 meters) respectively of the ‘weight’ contained in each element. The weight matrix is simply a sum of all the normally-distributed location probability masks contained in that snapshot, as explained in Section 4.5.4. 𝑑𝐓𝑥,𝑦 is a 2-D matrix where every element at 𝑥,𝑦 contains a numeric distance from 𝑥,𝑦 to the actual ground-truth location measured by the Garmin GLO at that snapshot.
	Figure 34: Quantitative evaluation of the heat-map derivation accuracy, based on (a) the rms error of measured delay, and (b) the amount of ‘smudge’ generated by mis-localized data points, using GPS+NLP localization.
	Simply put, the ‘smudge’ error measures how much artificial ‘spread’ of the measurements has occurred. These are due to the mis-localized, far-away points that are patently not where they estimate themselves to be, and also those measurements tagged with large location uncertainties. We present the distribution functions of the rms errors and the ‘smudge’ errors in Figure 34. We find that after correcting location errors by a function of network delay, we increased the median 𝑒𝑟𝑚𝑠 slightly, from 45.49 ms to 61.81 ms, and introduced a minor increase in delay error across the 10th to 90th quantile. However, we argue that the slight error increase (in the order of tens of milliseconds, which is almost unperceivable by the average user) is a valuable trade-off considering that we are able to reduce the ‘smudge’ error tremendously, as shown in Figure 34(b).
	Figure 35: Heat-map of crowd-sourced network round-trip delay using GPS-Only localization, before (top), and after (middle) delay-adjusted U-CURE processing, vs. the ground-truth (bottom).
	From an application developer’s stand-point, greatly reducing ‘smudge’ in exchange for a slight increase in measurement error can be preferable, resulting in a greater visual match as illustrated in Figure 33.
	We are also interested in examining whether Delay-Adjusted U-CURE can help in a setting where only GPS localization is used. We illustrate the results of this experiment in Figure 35. First, we make the observation that from the first day (where the GPS+NLP experiment was conducted) to the second (where the GPS-only experiment was conducted), the network delay situation changes drastically. This is even though both were weekdays, and the experiments conducted at the same times of the day. This motivates the use case of building up-to-date cellular service quality heat maps to track poorly-serviced areas.
	Figure 36: Quantitative evaluation of the heat-map derivation accuracy, based on (a) the rms error of measured delay, and (b) the amount of ‘smudge’ generated by mis-localized data points, using just GPS localization.
	Next, we also observe that even though the raw unprocessed map appears slightly less ‘smudged’ than the corresponding one using GPS+NLP, the application of Delay-Adjusted U-CURE again reduces the ‘smudges’ greatly. We see this quantitatively in Figure 36, where, with a very slight, minor increase in 𝑒𝑟𝑚𝑠 across the quantiles, we are able to again suppress the effects of mis-localized points. These points tend to have very large 𝜎𝑈2 uncertainties, which can be upwards of hundreds of meters under shadowing conditions that occur as part of the high-speed route.
	Based on the above experiments, we can see how Tattle, and the Delay-Adjusted U-CURE algorithm, can help us to build real-world, accurate, high-spatial-resolution monitoring maps of network delay. By extension, we can address the QM problem by just using commercially-available devices and our ready-to-deploy Tattle framework. We believe that with these high-resolution monitoring maps, operators can mitigate small blind spots using cost-effective measures, such as deploying femto- and micro-cells. They do not have to resort to always installing large cell-towers, which are expensive and time-consuming to deploy. By remaining agile and fixing small blind spots quickly, operators can also gain favor with subscribers easily.
	4.7 Summary

	In this chapter, we detailed a comprehensive approach that builds upon our work in Chapter 3, to address the QM problem. We first study extensively the achievable, in-the-wild localization performance of commodity retail smart devices. We investigate the effects of mobility and network delay on localization performance. Based on this, we observe that across three types of evaluated devices, using GPS+NLP (as recommended by Android as the ‘High accuracy’ mode) can result in very poor location estimates in high-speed scenarios. Over 600 meters of rms location error per second of network round-trip delay may be introduced in the case of the SM-T325s. Under pedestrian mobility, however, localization performance of these retail devices are much more robust to network delays. Surprisingly, using GPS+NLP in this type of mobility still yields worse results than relying on GPS alone.
	We leverage on the Tattle cooperative framework detailed in Chapter 3 and propose Delay-Adjusted U-CURE. It is a novel clustering algorithm that greatly improves the localization performance of both GPS-only, and GPS+NLP techniques. It does this without keeping expensive system states, nor requiring any location anchors. Additional instrumentation is not needed, nor any external knowledge that is not available programmatically to application designers. Our results are promising, demonstrating that median location accuracy improvements of over 30% is achievable with just 3 co-located devices. Close to 60% improvement can be observed with just 6 co-located devices. Finally, we demonstrate that Delay-Adjusted U-CURE can accurately reconstruct visually-comparable heat-maps that are close to the ground-truth. This is in stark contrast to maps constructed using raw, unprocessed samples. This is demonstrated for both GPS-only and GPS+NLP localization.
	5. Estimating and Classifying UE-Specific Network Performance through Tattle
	As traffic load increases, cellular networks naturally become increasingly congested. Subscribers tend to experience high network delays, slow speeds, and possibly service outages in cells and areas that are overloaded. This can be a common occurrence and a frustrating experience, especially during periods of congestion, such as rush hours and spectator events.
	5.1 Quality Estimation and Classification – Problem Overview

	Whenever a subscriber experiences periods of unsatisfactory network performance, the subscriber may often blame the cellular operator for providing inadequate coverage and resource for the cellular plan they are paying. On the other hand, the cellular operator may point the performance issue back to the device or the software. Indeed, there are websites such as PC Advisor [95], which compares web performance among the many smart phones available in the market today. It is then hard to derive any conclusion to the network performance issue. Network-side rectification is also often unlikely since the root cause cannot be easily identified.
	In Chapter 3 and Chapter 4, we detailed how CM and QM can be performed on an accurate, aggregate, pseudo real-time and large geographic-scale basis using the Tattle framework. These will allow operators to detect coverage and quality impairments in a timely manner. However, when subscribers themselves experience problems with network service quality, they immediately, and understandably, want to understand whether the perceived fault is network-wide, or one that is just isolated to their devices. Two devices on the same cellular network may experience differing levels of service quality when considered in isolation. However, interesting insights may be drawn when the service qualities of three or more co-located devices on the same cellular network are compared and contrasted.
	We believe that one natural way to assist the diagnosis of the root cause of the service quality impairment, from the subscriber’s perspective, is to ask: “am I the only one suffering from this, or is this also experienced by others?” The subscriber’s intention (often without consciously realizing) is to determine if the fault lies with his own device (possibly as a result of software/hardware issues), or with the network. If the subscriber is able to determine that the former is true, he can take some limited mitigation steps. These can include rebooting his device, or closing errant apps that are hogging network resources. If the fault lies with the network, then the subscriber gains closure in knowing that his device is likely to be working fine. He may also find comfort in knowing that other co-located subscribers of the same network in the same area are experiencing the same kinds of performance impairments.
	For ease of reference, we shall refer to this as the Quality Estimation and Classification (QEC) problem, where two key general questions, listed below, need to be addressed.
	1. What is level of service quality one can ‘expect’ at this moment, wherever one is?
	2. Given some level of service quality one can ‘expect’ to have, does the actual observed service quality suggest any fault that is isolated to one’s device?
	In this chapter, we will turn our attention from monitoring coverage and quality on large aggregate scales, to estimating and classifying performances of mobile devices on a per-device basis. We continue to leverage on the Tattle local-area measurement exchange framework to preserve the context of co-location. This allow devices to draw insights about their own performances as compared to those of their immediate neighbors in the same vicinity. We apply quantile regression, a robust statistical technique to estimate a median level of network performance that can be expected at any location with participating devices. We then design a classifier based on robust outlier detection to determine if a device is performing normally, or abnormally. Taken together, these will allow us to directly address the QEC problem.
	5.2 Contributions

	The contributions of this chapter are as follows:
	1. We develop a complete and flexible statistical framework, based on quantile regression and outlier classification, to analyze and systematically identify points in time where a device is not performing as well as its co-located neighbors. This approach allows a device to determine if it is performing “normally”, or “abnormally”. To the best of our knowledge, we are the first to propose, implement, and validate such a peer-to-peer mobile network fault detection application.
	2. We report on the characteristics of the delay performance of co-located devices subscribed to two particular cellular network operators in Singapore, and describe the results of applying our proposed approach to addressing the QEC problem. These are derived from real-world measurements of over 7,300 time-series of network delay, consisting of over 443,500 data points.
	With these contributions, this chapter provides a framework to comprehensively and systematically answer the key QEC question. A device can determine whether its observed poor network performances is an isolated problem, or an endemic condition that affects most other devices in a its area. The latter can possibly be caused by poor signal coverage, frequent congestions, or other network- or location-related issues. Through this framework, upwards of 90% accuracy can be observed in the median case in the detection of “normal” and “abnormal” performance with just 6 co-located neighbors.
	5.3 Chapter Organization

	This chapter is organized as follows. In Section 5.4, we describe how we use the Tattle framework. Smart devices will leverage on low-power, short-range peer-to-peer information exchange to glean performance measurements from other co-located participants. In Section 5.5, we introduce the accompanying statistical framework that we will leverage on in order to address the QEC problem. In Section 5.6, we describe our measurement collection methodology, and present some key features of the 7,300 real-world network delay time-series that was collected. We then apply our proposed algorithm on the data, and report on the results. Finally, we conclude this chapter in Section 5.7.
	5.4 Tattle – Cooperative Estimation and Classification of Network Delay

	Tattle, as detailed in Chapter 3, is a distributed monitoring framework that is scalable, and monitors real-time network performance on large geographic areas with good measurement location fidelity. It requires minimal involvement of participants (other than to allow their devices to participate in monitoring by running a background app on their smart device). In the context of answering the QEC problem, we focus on the peer-to-peer front-end component of the framework. As explained in Section 4.1, we choose to measure network delay as a representative metric of network quality because of its great impact on perceived user experience [74][75][76].
	In our prototype, each participating device attempts to measure network delay by probing a standard set of servers. We probe several servers so as to determine if the delay trends that are measured are mostly due to the access link (in which case, the general delay trends should be consistent regardless of the choice of probed server), or influenced mostly by the choice of server (where probing different servers return considerably different delay observations). We will show in Section 5.6.2 that most of the delay variability observed is not dependent on the choice of server, so long as the servers are hosted in the same wide-area network (WAN).
	Each probe is a HTTP HEAD request for each server, such as google.com.sg, youtube.com, and our self-managed physical server, which we shall refer to as UNISENSE. Each probing attempt generates a very small amount of data transferred on the cellular uplink and downlink. For example, based on interface packet captures, we found that each fetch to google.com.sg involves only 484 bytes transferred on the uplink, and 1079 bytes downloaded. These are fully inclusive of HTTP and TCP/IP overheads. We designed our prototype such that each device attempts to measure the network delay every five seconds. This interval is chosen so as to avoid excessive and unnecessary traffic, and to conserve power. More importantly, it avoids the cellular Buffer Bloat problem [96] which can cause an undesirable skew in measured delay. Probing each server in this manner generates just a little over 1 megabyte of data in total per hour. Simple PING probes are not used because many networks and servers actively blocks ICMP traffic. PING behaviors also do not fully reflect the overheads incurred at the transport and application layer. In a production system, this probing interval may be extended to reduce load on the network.
	The devices’ times are synchronized to the order of milliseconds using the Network Identity and Time Zone (NITZ) protocol [93]. Every time a network probe is complete, each device will broadcast the result of that probe as a tuple of <Probe Timestamp, Hashed Device ID, Measured Server ID, Measured Delay>. For probes that experience time-outs (where the HTTP connection did not receive a reply after more than 10 seconds), a nominal value of 20 seconds is used. This broadcast is done on the Wi-Fi Direct interface, and any device that overhears this broadcast simply retains it in memory. If a peer’s broadcast is not received by its co-located neighbors due to transmission loss, then the peer’s contribution will simply not be considered. That is, in a given area, broadcast losses simply mean that devices will see less neighbors, and will not otherwise adversely impact our proposed system.
	This loop of probing and exchanging of measurements, in a production system, is meant to be performed on-demand. For example, a user experiencing impairments to his network service can broadcast a “help” beacon through the local-area wireless interface. Nearby willing participants can then begin the process of limited probing and exchanging of measurements to assist in diagnosis.
	So, in order to address the QEC problem, the goal is to collect these measurements from other nearby devices, as well as a participant’s own measurements. This is done for a small window of time. Subsequently, we apply a statistical algorithm that essentially determines the following:
	1. In the given window of time, at which periods were a given device performing considerably worse than others?
	2. Given those periods that a device was said to be performing worse than others, is the device performing “normally”, or “abnormally” on the whole?
	If the device is deemed to be performing “normally”, then any service impairment will also clearly be shared by other participating devices in the same vicinity. If the device is determined to be performing “abnormally”, then any observed service impairment is only isolated to one or a few neighboring devices, but not suffered by others. This algorithm can then be repeated as desired using a sliding window approach, or simply at fixed intervals. It can be implemented either on the individual devices, or at the back-end. In the latter case, each device transmits the results of its own measurement window, as well as that of those that it overheard, to the back-end. The results of the algorithm is then sent back to the device. The choice of either approach will depend on the energy cost of the computation vs. the energy cost of transmission over the cellular interface, as well as whether the device is facing total cellular outage. For our prototype, computation is performed at the back-end.
	5.5 Optimal Classification Based On Robust Estimation

	In this section, we will detail how we develop our statistical framework to perform QEC, given a set of network delay observations of a device, as well as those of its neighbors’. Hence, our overall goal is to design a classifier, such that given a frame of 𝐿 observations of measured network delay at a selected device, denoted by Y∶=𝑌𝑖𝑖=1𝐿∈ℝ𝐿, as well as those of its 𝐾 neighboring devices, denoted by X∶=X𝑖𝑖=1𝐿∈ℝ𝐿×𝐾, the classifier will detect if the device under investigation performs “normally”, or “abnormally”.
	To do so, we perform the following steps:
	1. Fit a regression model to explain the relationship between the observations Y from the device under investigation, and the explanatory variables X, which are the realizations from the stochastic processes measured by the neighboring devices.
	2. Perform outlier detection using quantile regression residual analysis, based on the regression coefficients.
	3. Count the number of outliers 𝑛 in a given window. We assume that 𝑛 is a realization of the random variable 𝑁∼𝐹𝑚𝑛;𝜃𝑚 that is an outcome of one of two models, namely “normal”, or “abnormal”, where 𝑚 is the model indicator.
	4. Perform hypothesis testing to decide if the number of outliers in a given window is consistent with a “normal” behavior (the null hypothesis, ℋ0) or an “abnormal” behavior (the alternative hypothesis, ℋ1).
	5.5.1 Algorithm Description

	We now detail each of the steps in our algorithm.
	5.5.1.1 Quantile Regression Model Fitting

	The most standard regression model structure is mean regression, in which one would assume for instance a linear relationship between the observed process and the 𝑝 explanatory variables 𝒙𝑖=𝑥𝑖1,⋯,𝑥𝑖𝑝, which include the measurements of the other devices, given by, 
	 𝑌𝑖=𝛼0+𝑗=1𝑝𝛼𝑗𝒙𝑖𝑗+𝜖𝑖. 
	𝜖𝑖 is a random variable representing the residual error, which accounts for the fact that the regression model does not capture all variation in the observed process. In the case that the random variables 𝜖𝑖 were all i.i.d. with a symmetric zero mean distribution, then this would be equivalent to modelling the conditional mean of the process given a linear function: 
	 𝔼𝑌𝑖|𝒙𝑖=𝛼0+𝑗=1𝑝𝛼𝑗𝒙𝑖𝑗. 
	The estimation can then be solved via maximum likelihood if the distribution of the errors is assumed, or simply using least-squares. The coefficients are given by: 
	 𝛼0,⋯,𝛼𝑝=argmin𝛼𝑖=1𝐿𝑦𝑖−𝛼0+𝑗=1𝑝𝛼𝑗𝒙𝑖𝑗2. 
	Figure 37: A representative plot of real HTTP fetch delay measurements conducted by 8 co-located devices. Each device fetches a small HTML resource from google.com.sg every 5 seconds and measures the delay taken for the fetch to be completed. It is noteworthy that even while co-located, some devices can experience very large variability in network delay, while others see consistently low delays.
	The main limitation of linear regression relates to its high sensitivity (and hence, lack of robustness) to outliers in the observed data. Cellular network delay is one such type of data where outliers occur frequently. This is illustrated in Figure 37, which is a representative plot of actual measured delays experienced by eight co-located devices when attempting to fetch a common HTTP resource. These types of outlier occurrences are pervasive throughout our experimental data set, consisting of over 7,300 time-series of actual measured network delay. With data-sets such as these, mean regression will unbiasedly adapt to the numerous, random ‘spikes’ in the delay by minimizing the overall square error. This behavior is the reason why mean regression is not robust to outliers.
	In contrast to mean regression, quantile regression models are capable of dealing with the presence of outliers in the data. Our approach is hence based on Quantile Regression (QR), which has the following properties:
	1. QR is a robust framework that can identify outliers (i.e., spikes in network delay that are not observed by other neighboring devices), and heavy-tail realizations from the observed process, which in this case is represented by the measurement of network delay.
	2. QR is flexible and allows us to introduce any relevant covariates (independent regressor variables) to make inference on the properties of the observed process.
	3. QR reconstructs the desired level sets, such as a certain percentile, for the physical process in a consistent and model-based approach, which does not rely upon simplifying assumptions on the distribution of the underlying process properties. This is exceedingly ideal for our approach as we do not need to assume that the statistical distribution of network delay follows any particular class of distributions.
	Under a parametric approach, we assume that 𝑌𝑖∗∼𝐹𝑦∗𝜽, where 𝐹𝑦∗𝜽 is the conditional cumulative distribution function and 𝜽∈𝚯 is a vector of model parameters, all unknown coefficient parameters, and distributional parameters. The quantile function for the conditional distribution of 𝑌𝑖∗ given 𝒙𝑖 at a quantile level 𝑢∈0,1 is: 
	 𝑄𝑌∗𝑢𝒙𝑖≡inf𝑦∗∶𝐹𝑦∗𝜽≥𝑢=argmin𝜽∈𝚯𝔼𝜌𝑢𝜖𝑖, 
	where the loss function in the expectation is given by:
	 𝜌𝑢𝜖=𝑦𝑢−𝑦>0, 
	Under this formulation, the conditional quantile function in Equation (16) is given by, 
	 𝑄𝑌∗𝑢𝒙𝑖= 𝜇𝑖+𝑄𝜖𝑢𝜎𝑖, 
	where 𝑄𝜖𝑢=𝐹𝑧∗−1𝑢 is the inverse cumulative distribution function for the standardized variable 𝑍𝑖∗=𝑌𝑖∗−𝜇𝑖𝜎𝑖, and:
	 location: 𝜇𝑖= 𝛼0+𝑘=1𝑚𝛼𝑘𝑥𝑖𝑘, 
	 scale: 𝜎𝑖2=𝑒𝛽0+𝑘=1𝑣𝛽𝑘𝑠𝑖𝑘. 
	This optimization problem can be solved efficiently using the approach given in [97].
	5.5.1.2 Calculating Residuals and Classifying Outliers

	To decide if the 𝑖th sample in 𝑌𝑖 is an outlier/inlier, we perform a residual-based outlier detection, as detailed in [98]. To achieve that, we calculate the residual for the 𝑖th sample as: 
	 𝑟𝑖=𝑦𝑖−𝑄0.50𝒙𝑖, 
	where 𝑄0.50𝒙𝑖 is the 50th conditional quantile for the 𝑖th observation. This corresponds to a median regression instead of a mean regression. We perform the following hypothesis test: 
	 ℋinlier :𝑟𝑖<𝑘𝑟𝜎, (inlier)
	 ℋoutlier :𝑟𝑖≥𝑘𝑟𝜎, (outlier) 
	where 𝑘𝑟 is a resistant parameter that controls the cut-off rate, and 𝜎 is the corrected median of the absolute residuals: 
	 𝜎=median𝑟𝑖𝛽0,𝑖=1,⋯,𝐿, 
	where 𝛽0≔Φ−1𝑝 is the inverse cumulative distribution function (CDF) of Gaussian density with the 𝑝th quantile. Note that the formulation of Equation (20) distinguishes between positive residuals (where the actual delay is higher than the regressed quantile) and negative residuals. The latter case, where actual delay 𝑦𝑖 is better (lower) than the regressed quantile 𝑄0.50𝒙𝑖, is actually desirable. This corresponds to the case where a device experiences better network delay compared to the median derived from its co-located neighbors, and hence will always be considered an inlier.
	5.5.1.3 Counting the Number of Outliers in a Given Frame

	We define the following random variable 𝑁 to represent the number of outliers identified in a given window, where, 
	 𝑁=𝑖=1𝐿𝟏𝑟𝑖 declared as ℋoutlier, 
	𝟏. is the indicator function, and 𝐿 is the frame length. We used extensive analysis of real data from both “normal” and “abnormal” representations to model 𝑁 as a realization from a Geometric distribution with different success probabilities 𝑝, as follows:
	ℋ0 :𝑁∼Geo𝑝normal,
	ℋ1 :𝑁∼Geo𝑝abnormal,
	where Geo𝑝 is the Geometric distribution defined as P𝑁=𝑛;𝑝=1−𝑝𝑛𝑝. To find the values 𝑝normal and 𝑝abnormal, we used 384 time-series as a training data set, based on which we performed a Maximum Likelihood estimation (MLE), as presented next. The likelihood function is given by: 
	 P𝑁1=𝑛1,⋯,𝑁𝐿=𝑛𝐿=𝑙=1𝐿1−𝑝𝑛𝑙𝑝. 
	By taking the derivative of the logarithmic transform, setting it to zero and solving, we obtain the MLE estimate as follows: 
	 𝑝=1𝑙=1𝐿𝑁𝑙𝐿+1, 
	where 𝐿 is the number of training examples for each model.
	5.5.1.4 Device Classification via Likelihood Ratio Test

	The final step of the algorithm involves a second hypothesis test to classify the behavior of the device under investigation. This step tests whether the number of outliers detected is best explained by a “normal” behavior (the null hypothesis, denoted by ℋ0) or an “abnormal” behavior (the alternative hypothesis, denoted by ℋ1). To achieve this, we derive the Likelihood Ratio Test (LRT), given by: 
	 Λ𝑌1:𝐿≔P𝑁=𝑛ℋ0P𝑁=𝑛ℋ1ℋ0≷ℋ1𝛾, 
	where the threshold 𝛾 can be set to assure a fixed system false-alarm rate under the Neyman-Pearson approach, or can be chosen to minimize the overall probability of error under the Bayesian approach [99]. Since the marginal distribution under both hypotheses follows a geometric distribution with different probabilities 𝑝, the test statistic is given by: 
	 Λ𝑌1:𝐿=1−𝑝normal𝑛𝑝normal1−𝑝abnormal𝑛𝑝abnormal. 
	It is important to note that there is no objective way to choose “optimal” values of 𝑘𝑟 and 𝛾, as it reflects a trade-off between detection rate and false-alarm rate. The values of both parameters should be chosen by the policy makers to reflect the Quality-of-Service (QoS) that is acceptable in a particular network, and may change as a function of time and location. In our experiments, we chose the values 𝑘𝑟=5, 𝛾=1 as these provided good detection performance with low false alarm rate.
	5.5.2 Addressing the QEC problem

	Once hypothesis testing is complete, we can then answer the QEC problem for each investigated device, given its observed network delay, together with those of its co-located neighbors’. If the null hypothesis ℋ0 is accepted, the device is classified as experiencing “normal” network delays as compared to its neighbors. Hence, any impairments experienced by one’s device can also be said to be shared by other co-located devices. If the alternative hypothesis ℋ1 is accepted, then there is evidence to suggest that the device is experiencing “abnormal” network delays that are not observed by others. The participant should then proceed to perform checks on his device.
	We also note that our approach will inherently adapt to situations where most devices experience very high network delay (in the order of seconds and above). In such cases, the threshold expressed in Equation (21) will be elevated accordingly, such that only extreme deviations will be labeled as outliers. In this case, the algorithm will consider devices that jointly experience very high network delays as performing “normally”, which is a result we expect.
	5.6 Experimental Setup and Results

	Table 4: The devices that were used in our experiments. For units of the same make and model, we updated all devices to their latest official firmwares, with no other after-market apps installed, except for the Tattle app.
	Manufacturer
	Model
	No. of Units
	Cell Provider
	Samsung
	GT-P3100
	2
	#1
	Asus
	Nexus 7 3G
	3
	#1
	Samsung
	SM-T325
	3
	#1
	Samsung
	SM-T325
	3
	#2
	In our experimental setup, we used the devices listed in Table 4. For each of these devices, we collected HTTP HEAD delay measurements every 5 seconds for google.com.sg, and UNISENSE, for a window of 5 minutes, at each of the 24 positions, located on a busy outdoor train station platform, as illustrated in Figure 38.
	Figure 38: The train station platform, as well as the individual spots where data collection was performed, are illustrated in this figure.
	Each set of collection lasts for two hours, and is repeated twice a day, over a stretch of 7 consecutive days. Over 7,300 time-series of five minutes each are collected in this way, comprising a total of 443,500 delay measurements.
	This train platform was chosen for its consistent crowdedness, which is typical of the type of congested urban areas that are pervasive in Singapore. Our proposed approach is inherently applicable in such scenarios, where there are large crowds, and unreliable cellular network connectivity.
	Figure 39: The distribution of autocorrelation coefficients for 2,680 time-series of network delay. Each time-step is 5 seconds in length. Data were collected with the GT-P3100’s, Nexus 7’s, and SM-T325’s on Provider #1’s network. 
	/(a)
	/(b)
	Figure 40: (a) A comprehensive characterization of the HTTP fetch delays for google.com.sg, experienced by each device in our entire data-set of over 220,000 data points. Provider #2’s network performs considerably and observably worse than Provider #1’s network in largely every experiment. (b) The same plot is given, but these devices instead perform HTTP fetches on our self-managed UNISENSE server, located in Singapore.
	5.6.1 Temporal Correlation of Network Delay

	In regression analysis of time-series data, one of the core assumptions is that the observations come from an i.i.d. process. In order to validate this assumption, we examine the temporal autocorrelation of each time-series collected by devices on Provider #1’s network.
	Figure 39 illustrates the distribution of the autocorrelations computed for 2,680 time-series (collected for google.com.sg, using the GT-P3100s, Nexus 7s and SM-T325s on Provider #1’s network), over a range of lags. The interval between each time-step is five seconds. The key result here is that even at a lag of one time-step, close to 80% of the time-series demonstrated very little autocorrelation (coefficient ≤ 0.25).
	Table 5: The Ljung-Box Q-Test for temporal autocorrelation. The null hypothesis 𝓗null is constructed such that the autocorrelation coefficients 𝝆𝟏,𝝆𝟐,⋯,𝝆𝒙 considering the first 𝒙 lags are jointly zero (that is, completely uncorrelated).
	Null Hypothesis, 𝓗null
	Ratio of non-rejection
	To further validate the assumption, we next apply the parameterized Ljung-Box Q-Test to the data. It tests each time-series under the strict null hypothesis that the autocorrelations under the first 𝑥 lags are jointly zero. The results are given in Table 5. The ratio of non-rejection indicates the percentage of those 2,680 time-series tested that does not reject the null hypothesis at a significance level 𝛼 of 0.05. Even at a lag of 𝑥=1, there is no evidence to reject the null hypothesis, more than 78% of the time.
	Figure 41: An illustration of two sets of representative time-series, representing the HTTP fetch delay for google.com.sg. The devices were co-located at the same place, and are the exact same make and model, but 3 were connected to Provider #1’s network, while the others were connected to Provider #2’s network. The interval between each time step is 5 seconds.
	5.6.2 Choice of Probed Servers

	The observed variability in delay is mostly due to the performance of the cellular access portion of the network, and not influenced by the choice of probed servers. To demonstrate this, we provide the cumulative distribution functions of the HTTP HEAD fetch delay for both google.com.sg and UNISENSE in Figure 40. Clearly, the overall trends in performance are almost identical. This is also patently observed on Provider #2’s network. Hence, without loss of generality, we focus on the delays measured for google.com.sg henceforth.
	5.6.3 Performance Differences between Cellular Providers

	It can be seen in Figure 40 that the difference between the delay performances of Provider #1’s and Provider #2’s network is drastic, regardless of the choice of probed servers. The median fetch delay for both google.com.sg and UNISENSE on Provider #2’s network is almost 300% longer than that of Provider #1’s. Figure 41 shows an example of this difference in the temporal domain. Delays on Provider #1’s network were subjected to much less variability compared to Provider #2’s network, and this is true in most of the time-series that we collected. Low delay variability, in general, is desirable for applications that are sensitive to delay jitters, such as video conferencing.
	5.6.4 Performance Differences between Device Models

	Figure 40 also reveals some interesting relationships between the delays observed and the make and model of the device performing the measurement. The Samsung GT-P3100, introduced in 2012, performs very stably, with around 90% of its measurements coming in below 500 ms for both servers probed. In contrast, Samsung’s latest flagship tablet, the SM-T325, performs poorly, with 90% of their measurements coming in between 1500 to 2000 ms, on the same network. This however, does not invalidate our approach of taking all co-located participants’ measurements into consideration, regardless of make and model, to determine if a device is doing worse than its neighbors. This exactly is in line with the basic intention of QEC. However, if there are other co-located devices in the same area with the same make and model, further extensions may be easily made to consider only same device types. This is however beyond the scope of this dissertation.
	5.6.5 “Normal” vs. “Abnormal” Performance

	There are numerous periods in the course of our experiments where sudden, persistent spikes in delay are observed by many devices. These will result in windows that could stretch over several minutes where many devices observe very high delays, or complete outage of data service.
	Figure 42: An illustration of three sets of representative time-series, representing the HTTP fetch delay for google.com.sg. The devices were co-located at the same place, using the same provider, but are arranged according to their makes and models. Periods of high delay can affect many devices in the same area, as shown.
	This is illustrated in Figure 42, where within a window stretching over more than one minute, devices experience abrupt spikes in their fetch delays. At least 6 out of the 8 devices tested were affected. For applications that are somewhat tolerant of delay, such as web-surfing, this may not appear to be wholly debilitating. However, this could have frustrating consequences for users that are streaming videos from youtube.com, or are having live conversations on Skype. Nevertheless, in situations such as these, many co-located devices indeed suffer together (although to varying degrees). Hence, each participant’s device that are faced with such delays can be said to be performing “normally”.
	Figure 43: An illustration of three sets of representative time-series, representing the HTTP fetch delay for google.com.sg. The devices were co-located at the same place, using the same provider, but are arranged according to their makes and models. Oftentimes, a device may experience severe outage of network service, but most other devices are unaffected.
	Figure 44: An illustration of two sets of time-series. Here, a time-series of HTTP fetch delays for google.com.sg, belonging to a device connected to Provider #2’s network, is mixed into that of the data set of time-series of fetch delays for devices on Provider #1’s network. We chose this foreign time-series from Provider #2 because it offers many points in time in which the delay experienced by the foreign device is radically different from those on Provider #1’s network. The goal of our algorithm is then to detect those points in time where the foreign time-series is deemed to be behaving “abnormally” from others. Those detected points are then marked out as shown.
	There are also significant stretches during our experiments where one or two of our devices experience severe outages that are not observed by other devices. Figure 43 illustrates this phenomenon exactly. In this scenario, the device GT-P3100 #A experiences a sudden stretch of high delays and timeouts that lasted more than 3 minutes. Besides NEXUS-7 #A, which also saw some spikes and a short outage of less than 30 seconds, the rest of the devices experienced delays that were fairly normal. In fact, the worst-ever time-series that we observed in a 60 sample window (lasting 5 minutes) had 58 fetch attempts which experienced time-outs. This is despite its 7 other neighbors observing 0, 0, 2, 2, 0, 3 and 0 time-outs respectively. In these types of scenarios, addressing the QEC question is obviously useful. When the device is deemed to be performing “abnormally”, the participant can proceed to perform limited diagnostic checks, and possibly reboot his device to try and mitigate the outage.
	In the real world, there can be many reasons why such outages happen. For example, the device could be physically damaged, or experiencing a rare and very unfortunate prolonged period of deep fading. Other reasons may include bugs in the firmware that manifest themselves after prolonged use (e.g. software aging), having errant malware that are hogging system resources, or simply having left a Virtual Private Network (VPN) connection switched on in the background. Identifying the root cause of such outages is beyond the scope of this dissertation.
	5.6.6 Outlier Detection Performance

	In the second step of our statistical framework introduced in Section 5.5, we consider a given delay time-series measured by a device, as well as those of the device’s co-located neighbors’. We identify points in time where the device is doing considerably worse than its neighbors, using QR. We term those points as outliers. The result of this approach can be seen in Figure 44. We took a time-series of delay measurements collected on Provider #2’s network, and used four other time-series collected on Provider #1’s network as those of its neighbors, and performed the regression analysis and outlier detection. The outliers that were detected by the algorithm are clearly marked out in Figure 44.
	The algorithm patently detected points in time where delay spikes seen by the foreign device were not observed by its neighbors. More importantly, during periods where spikes were observed by its artificially-introduced neighbors, the algorithm adapts, and correctly classifies those measurements as inliers. This is evident in time-steps 22, 48, and 51.
	5.6.7 Effectiveness of the Overall Algorithm

	In the previous subsections, we illustrated results for selected sets of time-series that highlight the effects discussed above. Here, we setup the following experiment to test the effectiveness of the algorithm as a whole, on how accurate it is in detecting time-series that are known to be “abnormal”. In order to do this, for each of the set of 8 time-series (belonging to 8 devices) collected per position (over 24 positions), per experiment (over 2 experiments), per day (over 7 consecutive days) on Provider #1’s network, we introduce a foreign time-series that were collected at the same corresponding times by a device on Provider #2’s network. This resulted in 336 sets of 9 time-series (with 8 devices using Provider #1, and another SM-T325 using Provider #2). Each of the 336 foreign time- series was manually and individually inspected, and labeled as “normal” or “abnormal”. This is based on whether its median delay is closer to those of the SM-T325s’ on Provider #1’s network (labeled as “normal”), or those of SM-T325s’ on Provider #2’s network (labeled as “abnormal”), with reference to Figure 40.
	Using a window length of 60 samples (collected in 5 minutes), we apply our 4-step algorithm on each set of 9 time-series. We vary the number of neighbors used in the regression analysis to also examine the effects of increasing the number of co-located participants on detection accuracy. The goal is then to check if the algorithm labels the foreign time-series correctly, or incorrectly (which we term as a mis-detection). Figure 45 shows the results of this experiment. Using our approach, the median mis-detection rate is around 30% when only 2 neighbors are considered in the regression analysis. As more neighbors are introduced, the detection rate improves steadily. When 6 neighbors are used, the median mis-detection rate drops to only around 10%. In populated urban areas, we believe that having 6 or more co-located devices in many areas is often possible. 
	Figure 45: A complete characterization of the misdetection rates of a foreign time-series of HTTP fetch delays, belonging to Provider #2’s network, when mixed into the time-series of delays experienced by devices on Provider #1’s network. As the number of neighbors considered by the algorithm increases, the detection performance of our algorithm becomes better.
	Figure 46: An illustration of the false negative rates of our algorithm. The false positive rate can be inferred by flipping the line-series about the (0,0)-(100,1) diagonal. Of all the times that a misdetection happens, having more neighbors helps to suppress the false negative rate, in favor of the false positive.
	We do not show the results of considering 1, 7 or 8 neighbors because these combinations only result in 336 readings, which are insufficient to obtain a smooth cumulative distribution. However, with 7 neighbors, our algorithm can already reduce the median mis-detection rate to zero. With 8 neighbors, we can in fact detect the foreign time-series with 100% accuracy, in more than 80% of the time-series.
	5.6.8 False Negatives vs. False Positives Performance

	False negative mis-detection happens when a participant experiences very poor network delays compared to its neighbors, but the algorithm returns a “normal” verdict. This can be an exasperating experience because the user’s frustrations are not validated. So, we argue that false positives (where the network delay seen by the participant is actually comparable to that of its neighbors’, but the algorithm returns an “abnormal” verdict) are preferable in the context of QEC. Figure 46 illustrates comprehensively the false negative rates demonstrated by our algorithm, for the same set of experiments. Having just 2 neighbors results in a median false negative rate of over 53%. This improves steadily as more neighbors are added into the regression analysis. With 6 neighbors, the median false negative rate drops to around 18%, which reduces the potential frustrations of participants.
	Hence, taking the results presented in Section 5.6.7 and Section 5.6.8 together, we can see that with just 6 co-located participating neighbors, we can very effectively identify abnormal delays experienced by one or just a few devices with up to 90% accuracy in the median case. Of those 10% mis-detected delays, we can suppress the frustrating false negative detections to just 18%. These are very promising results, which suggest that our approach is viable for QEC.
	5.7 Summary

	In this chapter, we first describe the QEC question that should be asked by cellular service subscribers when they experience periods of poor network performance. This will assist in diagnosing the root cause of the performance problem from a users’ perspective rather than relying solely on cellular operators. We describe how we use Tattle, a comprehensive, large-scale cellular network monitoring framework, to allow participating devices to glean networking performance information from one other in real-time. They do this by leveraging on their capabilities to opportunistically exchange network measurements, to preserve the context of co-location and conserve device power.
	We then introduce and develop a robust statistical framework, based on Quantile Regression, which cumulates into a 4-step algorithm. It first derives a regression model based on a device and its neighbors’ network delay measurements. Then, it identifies points in time where a device performs poorly compared to its neighbors. Next, it counts 𝑛, the number of these identified outliers in a small finite window. Finally, it performs hypothesis testing by deciding which one of two estimated geometric distributions (from which “normal”, and “abnormal”, numbers of outliers are drawn) that 𝑛 most likely belongs to. Through this approach, we can directly perform QEC.
	We validate our approach based on real-world measurements of network delay, collected using several devices of assorted makes and models. In total, we collected over 7,300 time-series of measurements, comprising over 443,500 samples. This includes measurements on 2 different providers’ networks for comparison. We first show that at a sampling interval of 5 seconds, close to 80% of all the time-series demonstrated very little autocorrelation, so as to fulfill the necessary prerequisite of i.i.d in order to apply regression.
	We then illustrate examples where “normal” and “abnormal” performances occur in real networks. We report that there are numerous real-world instances where a device can experience complete outage, while none of its neighbors are affected. We give quantitative results on how well our algorithm can detect an “abnormal” time series, with increasing effectiveness as the number of neighbors increases. With just 2 neighbors, we are able to achieve a median detection rate of just under 70%. With 6 co-located devices, we can achieve a median detection rate of just under 90%.
	We also characterize the false negative and false positive tendencies of our algorithm. We demonstrate that our algorithm favors false positives, which is more desirable than frustrating false negatives in the context of QEC.
	6. Conclusions and Future Directions
	In this dissertation, we investigate three broad areas of cellular monitoring, namely aggregate coverage monitoring (CM), aggregate quality monitoring (QM), and per-device quality estimation and classification (QEC), and describe a unifying framework that relies on peer-to-peer measurement exchange to address these three areas, with promising results. We now conclude with a summary of our main research contributions, and discuss some brief areas for future investigations.
	6.1 Summary of Research Contributions

	In Chapter 3, we propose Tattle, a comprehensive unifying framework that relies on participating subscribers to report on the network coverage conditions wherever they are. Tattle relies predominantly on opportunistic inter-device measurement exchange to preserve the co-location of measurements, as well as conserve device power, to build high-resolution aggregate coverage maps. Through this framework, operators can minimize expenditure on laborious walk- and drive-test regimes in order to ascertain coverage of their networks. They can quickly identify and react to micro-scale coverage issues (e.g. coverage holes in the order of meters or tens of meters) in a timely manner.
	We show through real-life experiments that in urban built-up areas, the GPS locations reported by devices may have significant uncertainties, as well as errors that can sometimes be upwards of several kilometers from their true locations. We describe the U-CURE algorithm, and how it takes into account reported location uncertainties, as well as the knowledge of measurement co-location, to reduce and remove erroneously-localized readings. In the median case, using U-CURE can reduce pair-wise rms distance errors, for a pair of devices physically less than 1 meter apart, from 40 meters, to less than 25 meters. Large extreme inter-pair errors that spans up to 3 kilometers can be brought down significantly, to less than 40 meters, by using U-CURE. We then demonstrate exactly how Tattle can be used for CM by using our prototype app, running on COTS devices. Through this, we collect more than 3.78 million RSCP measurements, and illustrated detailed, high-resolution coverage maps constructed from these data.
	In Chapter 4, we move on from monitoring coverage, to monitoring the quality of network service (QM), using network delay as a key example metric of network quality of service. We report in detail the performance of localization techniques used by COTS Android mobile devices, based on more than 100,000 real-world data points. We establish that a strong correlation exists between network delay and localization error when the purported ‘High Accuracy’ mode of localization is used. This correlation manifests especially when a device undergoes high-speed mobility. For the Samsung SM-T325, this correlation results in increases of over 600 meters per 1,000 ms of network delay. This correlation motivates our introduction of the Delay-Adjusted U-CURE algorithm. Instead of safely discarding mis-localized data points, we leverage on the knowledge of correlation to reduce the localization errors of mis-localized data points. This approach does not require any location anchors or additional instrumentation. Our results are very promising, demonstrating that improvements, in terms of median rms location error reduction, of over 30% can be achieved with just 3 co-located participants. Upwards of 60% reduction in median rms location error can be observed with 6 co-located neighbors.
	We then demonstrate how QM can be achieved with very good location fidelity and measurement accuracy. We present accurate and high-resolution aggregate network delay maps constructed using over 34,000 real-world data points, collected using our COTS devices, with the Tattle framework and Delay-Adjusted U-CURE.
	Then, in Chapter 5, we take a different approach to monitoring, and shift our focus from aggregate network monitoring, to considering observed network performance on a per-device basis. By using the Tattle framework, we empower devices to collect network quality measurements (in the form of network round-trip delay) from their co-located neighbors. Through this, they can then derive context about their own observed performances. We develop a complete and flexible statistical framework based on quantile regression and outlier classification. It systematically estimates and classifies a device’s observed network delay (QEC) as “normal” or “abnormal”. This allows an affected subscriber to very quickly determine if his or her observed impairment is an isolated one, or also suffered by others in the same area. In this way, if the former is determined, then the subscriber can take immediate remedy steps (such as rebooting his or her device) to try and alleviate the impairment. If it is determined that others also suffer from long network delays, then subscribers can quickly attain some level of closure and validation to their negative experiences. They can also gain some comfort in knowing that their devices are working fine.
	We validate our approach by using real-world measurements of over 7,300 network delay time-series, comprising over 443,500 samples. Then, using our statistical framework, we can very effectively identify abnormal delays with up to 90% accuracy in the median case with just 6 co-located participants. Of those 10% mis-detected delays, we can suppress frustrating false negative detection rates to just 18%. These are very promising results for QEC.
	6.2 Future Directions

	The technology behind smart devices continues to advance at an exhilarating pace. By the time this dissertation is published, there is no doubt that manufacturers would have already announced the next generation of their smart devices that boast faster processors, more memory and new features. However, Tattle’s principle of relying upon inter-device communication to improve location estimates, as well as derive context of localized network performance, will continue to be applicable for the foreseeable future. This remains until realistic and affordable localization techniques with very tight guaranteed bounds, as well as advanced fault monitoring and management modules, are available in COTS devices. However, there are several directions that can be further explored in relation to the work presented in this dissertation.
	6.2.1 Applicability to Indoor Positioning Techniques

	Thus far, we have seen how well Tattle can work outdoors, where there is a good chance where some or at least one device can be accurately-localized with small location uncertainty. However, current generations of smart devices still lack the capability to be localized indoors in a reliable fashion. When indoor positioning systems with reasonable levels of error bounds become commercially feasible, we will be eager to apply the Tattle framework to these systems to see how much gains can be achieved to further reduce location uncertainty. In such cases, fine-grained indoor coverage monitoring becomes possible. It will allow operators to become even more agile in addressing network issues. Small-scale cellular network technologies (such as distributed antennas, micro-cells, pico-cells, and femto-cells) can be rapidly deployed in a complementary fashion wherever Tattle detects coverage holes and areas with endemic network quality problems.
	6.2.2 Automatic Coverage Adaptation through Network Reconfiguration

	The goal of this dissertation is to design a framework for cellular network monitoring, and hence we proposed and implemented Tattle to achieve this objective. Another important area of network management that was not considered in this thesis is that of network configuration. When CM and QM become sufficiently adopted, dynamic and self-adapting reconfigurations of network parameters, such as antenna pan, antenna tilt, and transmit power, may happen in real-time. This is in response to the timely insights gathered through CM and QM. If adaptive self-configuration, and subsequently self-optimization of cellular networks is realized, the potential impact on the operating expenditure of cellular operators is tremendous. We believe that a fine-grained monitoring framework such as Tattle serves as an important first step to realizing the ultimate vision of self-optimizing cellular networks.
	6.2.3 Heterogeneous Networks

	Recently, the concept of heterogeneous networks is piquing considerable interest from academia, governments, regulatory authorities, network operators, service providers, and vendors. The vision of a heterogeneous network is one where multiple radio technologies and interfaces of various differing capabilities, spanning across different providers and infrastructure management domains, all inter-operate to provide subscribers with a single, logical and coherent wireless link, regardless of wherever they are. To realize such a vision, we believe that the Tattle framework can be extended to monitor the performances of all these radio technologies. It can then provide a consistent, timely, and accurate basis in order to support rapid and predictive radio switching techniques. Thus, it may ensure seamless connectivity, even for subscribers under high-speed mobility.
	6.2.4 Validation-as-a-Service for Other Mobile Applications

	Many mobile applications require some form of validation for the data that is generated by the subscriber. For example, loyalty-reward tracking applications may offer subscribers perks, rewards and coupons based on their spending and shopping trends, locations and patterns. However, some unscrupulous subscribers may engage in deceitful behavior to earn these perks by falsifying their reported locations (e.g. using apps that falsify GPS locations). Tattle inherently handles these types of location-spoofing by validating a user’s reported location with others in his or her vicinity. If the location is patently wrong, application developers can detect these errant users and suspend their privileges. This will work unless a majority of users engage in such behaviors. 
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