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Abstract
Miniaturization of on-board actuation and powering engenders the proliferation of biohybrid

microrobots, which integrate motile bacteria or cells with synthetic functional components to
achieve micron-scale actuations. Flagellated bacteria like S. marcescens are among the leading
candidates for the actuators of swimming microrobots. However, the high intrinsic stochastic-
ity in bacteria-driven microrobots severely limits their potential applications, such as targeted
drug delivery. Taxis behaviors (e.g., chemotaxis), which help free-swimming bacteria to nav-
igate towards favorable environments and away from hazardous ones, may offer an elegant
means to control the motion of bacteria-driven microrobots. Therefore, this thesis focuses on:
(a) addressing the motion guiding of bacteria-driven microrobots using common bacterial taxis
behaviors, specifically chemotaxis and pH-taxis, (b) explaining the physical mechanisms asso-
ciated with the tactic motions in bacteria-driven microrobots, and (c) developing a biophysical
model to describe the bacterial propulsion and the chemotaxis in bacteria-driven microrobots.

In order to produce considerable chemotactic motion in bacteria-driven microrobots, an ap-
propriate chemical concentration profile needs to be determined, which requires the knowledge
of the chemotaxis response of the integrated bacterial species. Thus, we first propose an experi-
mental and modeling framework to characterize bacterial chemotaxis. The chemotaxis response
of a species against a chemoattractant is experimentally quantified under a linear concentration
gradient of the attractant. A signaling pathway model is fitted to the experimental measurements
over a series of gradients to determine the species-specific parameters in the model, thereby ful-
filling an analytical characterization of the chemotaxis.

Subsequently, in a multi-bacteria-driven microrobotic system, we quantify the chemotactic
drift of the microrobotic swarms towards a potent chemoattractant L-serine and elucidate the
physical mechanisms associated with the drift motion by statistical trajectory analysis. It shows
that the microrobots have an apparent heading preference for moving up the gradient, which
constitutes the major factor that produces the chemotactic drift. The apparent heading bias is
caused by a higher persistence in the heading direction when a microrobot moves up the the
L-serine gradient compared to traveling down the gradient. Besides chemotaxis, we explore
the potential of utilizing ambient pH to guide the motion of the bacteria-driven microrobots.
Under three different pH gradients, we demonstrate that the microrobots exhibit both unidirec-
tional and bidirectional pH-tactic behaviors. Two factors, a swimming heading bias and a speed
bias, are found to be responsible for the pH-tactic motion while the heading bias contributes
more. Like in chemotaxis, the heading directions of the microrobots are also significantly more
persistent when they move towards favored pH regions.

Finally, a biophysical model is developed to describe the bacterial propulsion and the
chemotaxis in an extensively adopted design of bacteria-driven microrobots. The model traces
helical trajectories and chemotactic motion that resemble those observed from experiments,
which validates the basic correctness of the model. The model simulation also suggests that the
seemingly collective chemotaxis among the multiple bacteria attached to a microrobot could be
explained by a synchronized signaling pathway response among these bacteria. Furthermore,
we investigate the dependencies of the microrobots’ performances on their system parameters,
towards an optimized design of the biohybrid system.
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Chapter 1

Introduction

1.1 Motivation

Although the term “microrobot” has not been defined exactly, it typically refers to control-

lable/guidable and possibly mobile devices whose component, workspace, or overall size is

below 1 mm and down to 1 µm. Microrobots maintain the advantages of working in small

spaces and/or accessing enclosed spaces via tiny openings. As such, they have been proposed

for applications in various fields such as health care, bioengineering and lab-on-a-chip devices.

Constrained by the grand challenge of miniaturizing on-board actuation and powering, tra-

ditional untethered microrobots are often actuated off-board by delivering an energy field, in

a form of magnetic field, laser, or acoustics, to their working spaces. Such remote actuation

and control schemes not only require complex external equipments, but also may introduce

non-biocompatible materials (e.g., magnets) or need special media or passages to deliver the

energy field; this potentially limits their applications in certain areas, such as delivering thera-

peutics inside the human body. Biohybrid microsystems, which integrate motile microorgan-

isms or contractile cells with synthetic functional components, have the potential to overcome

the challenges in the miniaturization of on-board actuation and powering for mobile micro-

robots. Although there are cases where microrobots are specifically developed for working on
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dry substrates (e.g., surfaces in air), the most likely working condition for mobile microrobots

are inside liquid medium, as can be inferred from their potential applications, which are usually

inside the human body or in microfluidic chips. Also, operating in a medium with higher vis-

cosity increases the damping of microrobots and thus makes them easier to stabilize. Therefore,

although biohybrid microrobots normally require a liquid medium to nourish their biological

components, it does not affect their potential applications in the slightest.

The past decades has seen a proliferation of biohybrid microrobots actuated by different

types of microorganisms and biological cells. Flagellated bacteria, such as Escherichia coli (E.

coli) and Serratia marcescens (S. marcescens), is among the leading candidates for the actuators

of mobile biohybrid microrobots, not only because of their ease of cultivation and high motil-

ity, but also due to their various environmental sensing capabilities, such as chemotaxis, which

potentially offer natural ways to guide the motion of such microrobots. Another advantage of

using bacteria as the actuators of microrobots is that they can be easily genetically modified,

which provides an engineering approach to tune their behaviors based on application needs.

To be more precise, we use “bacteria-driven microrobot” to refer to the type of biohybrid mi-

crorobots which integrate flagellated bacteria as their actuators. To improve the performance

of bacteria-driven microrobots, such as motility and guidability, various design and fabrication

heuristics have been explored, including patterning the bacterial attachment location on mi-

crorobots, aligning the orientation of bacterial attachment, and using different body shapes of

microrobots. A very important application proposed for bacteria-driven microrobots is to be

used as drug carriers for targeted delivery of therapeutics, as illustrated in Fig. 1.1. To this

end, appropriate and reliable guiding approaches must be developed to control the motion of

biohybrid systems. Although a number of studies have demonstrated the steering control of

bacteria-driven microrobots at the single-agent level, control of such microrobots at the swarm

level has remained challenging, partly because of their high intrinsic stochasticity and hetero-

geneity. The grand variance in the behaviors of bacteria-driven microrobots could result from
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the factors such as the randomness in bacterial assembly process and the stochastic behavior of

the assembled bacterial actuators.

motile bacteriumhealthy cell tumor cell

Figure 1.1: A concept of applying bacteria-driven microrobots for targeted drug delivery, where
the microrobots are guided by a local chemical gradient in the site of interest, such as a chemoat-
tractant gradient or a pH gradient.

It has been established that flagellated bacteria such as Escherichia coli (E. coli) and Serra-

tia marcescens (S. marcescens) swim through a combination of runs and tumbles, which serve

to translate and randomly reorient the cell body, respectively. In an isotropic environment, the

tumble rate is uniform over all swimming directions, yielding a purely random walk in free-

swimming bacteria. However, if the environment is anisotropic for bacteria, they spontaneously

tune their tumble rate based on their swimming directions such that a biased random walk is

performed, generating a taxis behavior. Chemotaxis is a common and well-understood taxis

behavior for typical flagellated bacteria; it navigates bacteria towards favorable environments

(e.g., nutrient sources) or away from hazardous ones and thus is crucial for bacterial survival.

Under an appropriate concentration gradient of a potent chemoattractant, the random walk of

free-swimming bacteria is changed into a biased random walk through a biased flagellar tumble
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rate over bacterial swimming directions; the biased random walk associates with a chemotactic

drift velocity towards the favorable direction in the gradient. Likewise, bacteria can also sense

and respond to ambient pH, temperature, and salt level, producing corresponding taxis behav-

iors. These tactic behaviors of bacteria may offer elegant means to control the otherwise random

motion of bacteria-driven microrobots. Although recent studies have observed chemotaxis in

bacteria-driven microrobots, less is know about the underlying biophysical mechanisms of this

behavior. In fact, the chemotaxis of bacteria-driven microrobots could be significantly different

from the chemotaxis of free-swimming bacteria in that it is associated with a seemingly cooper-

ative behavior among the multiple bacteria attached to a microrobot, and this kind of collective

chemotaxis has never been studied to date.

Thus far, studies on bacteria-driven microrobots are mostly based on experiments. The de-

velopment of such biohybrid systems have been heavily relied on intuitions and experimental

observations, lacking a systematic method to optimize their design about the key performance

indicators including motility and chemotactic guidability. The performances of bacteria-driven

microrobots could be highly dependent on their system parameters, such as the concentration

gradient attractant, size of microrobots, number of attached bacteria, etc. Not only is it time

consuming to experiment on the entirety of these parameters, but also the experimental result is

hard to generalize, since the trends applied to one specific system may work for another slightly

modified one. If, instead, we could develop a biophysical model to describe the behaviors,

particularly the swimming motion and the chemotaxis, of typical bacteria-driven microrobotic

systems, the design optimization would be significantly easier to carry out: study the parame-

ters of interest via the model simulation and choose the set of parameters that lead to the best

performance. Such a model may not necessarily manifest every detailed aspect of a real phys-

ical system, but should describe the fundamental biophysical components of the system and

reproduce the major motion characteristics observed from experiments. To build the model for

a specifically designed bacteria-driven microrobots, the experimental characterizations of the

4



motion and the chemotaxis of the biohybrid system are essential, for model calibration and

validation.

A critical prerequisite to characterize the taxis behavior, e.g., chemotaxis, of bacteria-driven

microrobots is to find an appropriate environment setting that can elicit considerable tactic mo-

tion on the microrobots. Since the tactic motion of bacteria-driven systems is a result of the

corresponding taxis behavior of free-swimming bacteria, it turns out that characterization of the

free-swimming bacteria in response to a certain stimulus is a necessity; by which we could not

only determine the potential environmental conditions for the taxis of bacteria-driven micro-

robots, but also fully characterize the bacterial tactic response through calibrating its signaling

pathway model, if there exits one. Such a model for the bacterial taxis behavior may also be

included as one component in the model of bacteria-driven microrobots.

1.2 Literature Survey

1.2.1 Mobile Microrobots

Untethered mobile microrobots have the advantages of motility in small working space, ease of

deployment and potential to work cooperatively in a group or at the swarm level; these char-

acteristics are essential for their future applications in health care, such as minimally invasive

surgery and targeted drug delivery [1, 2, 3, 4, 5]. Advances in microelectromechanical sys-

tems (MEMS) during the last two decades engender the increasing developments of untethered

microrobots by allowing microscale features to be fabricated using a wide range of materials.

Recent technology of 3D printing at the micrometer or even nanometer level offers more free-

dom to the design of the functional structures of microrobots and thus is expected to promote

the development of mobile microrobots. To actuate and operate the mobile microrobots, various

different techniques have been proposed and developed.

Driven remotely by a rotating magnetic field, a screw-shaped micro-machine developed by
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Ishiyama et al. (2001) can swim at a Reynolds number [6] smaller than swimming bacteria,

though the overall size of the mcirorobot is at the millimeter scale. The screw-shaped propul-

sion is similar to the helical flagella which are commonly found on flagellated bacteria. In

2009, Zhang et al. fabricated an artificial bacterial flagella (ABF) using MEMS techniques [7],

pushing the helical size close to its counterpart in nature, the bacterial flagella. The ABF has

an length around 47 µm, and can be rotated to swim and reoriented by an external magnetic

field. Using a vapor deposition method, Ghosh and Fischer further scaled the size of ABF down

to 1 to 2 µm in length and demonstrated the control of the microrobot at a micrometer-level

precision [8]. Tottori et al. (2012) used laser writing and e-beam evaporation to fabricate a

helical structure with a load locking feature, which was also actuated and controlled by external

magnetic field [9]. Different from helical propulsion, beating flagella/cilia is another common

propulsive method in nature at low Reynolds number. Dreyfus et al. (2005) connected magnetic

particles using DNA strands, obtained a chain structure with a length around 24 µm, and created

beating patterns along the structure to propel itself in fluids by an external magnetic field [10].

Besides mimicking nature, a few studies created novel ways to achieve locomotion at the

microscale both in fluids and on surfaces. Using magnetic gradient pulling method, Martel et

al. (2007) and Kummer et al. (2010) demonstrated the remote 3D position control of magnets at

the millimeter scale inside fluids [11, 12]. Also driven by magnetic field, a stick-slip microrobot

was devised and characterized by Pawashe et al. (2009), which can both move on flat surfaces

and surmount obstacles [13]. Electric fields have also been applied to actuated untethered mi-

crorobots. Donald et al. (2006) developed an MEMS microrobot which is actuated by a scratch

drive actuator enabled by electrostatic forces and can move and steer on the flat driving plate

[14]. A laser was used to power an impact-driven microdevice by thermal actuation, by Sul et

al. (2006) [15], and to actuate a type of structured microrobots on dry surfaces relying on light

deflections, by Búzás et al. (2012) [16]. Relying on light induced thermal gradients, a bubble

microrobot driven by temperature gradients was developed by Hu et al. (2011) to manipulate
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micro-objects in liquids for assembly tasks at the microscale [17]. Different fields can also be

combined to actuate microrobots, such as the magneto-acoustic nanomotor devised by Li et

al., which can be actuated by either magnetic or acoustic field or both [18]. As an example of

on-board actuation, Solovev et al. (2009) used chemical reaction to generate bubbles inside a

microtube, and the ejection of the bubbles propelled the microtube to swim in a fluid medium

[19].

While magnetic fields are a popular way to provide remote off-board actuation for unteth-

ered microrobots, it has intrinsic limitations, which may severely limit the applications of mag-

netically actuated microrobots. For example, microrobots actuated by magnetic fields must

contain magnetic materials, which are usually non-biocompatible and hard to collect back af-

ter deployment. Moreover, when scaling down the size of microrobots, the volume associated

magnetic force decreases faster than the surface area related viscous drags do, which imposes

an applicable size limitation on such microrobots. In addition, strong and high frequency mag-

netic fields may cause heating and bring damages to human tissues over long-time exposures,

as a result of which, the application duration of magnetic fields may be limited. Other actuation

methods may have their own major disadvantages for medical applications of untethered micro-

robots: delivery and control of laser and heating inside human body has remained challenging

for effective and reliable actuation, and electric field is not only hard to deploy in vivio but also

could induce changes in local pH level as well as potential damages to tissues.

1.2.2 Biohybrid Microrobots

To overcome the limitations of current off-board actuation techniques at the microscale, bio-

hybrid methods have been heavily investigated over the past decade. Biohybrid microsys-

tems, which integrate swimming bacteria [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37], algae [38], or contractile cells [39, 40, 41, 42] with synthetic functional

components, has the potential of overcoming the grand challenges in miniaturizing on-board
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actuation and power supply for microsystems. Prototypes, including swimming microrobots

[22, 24, 29, 31, 32, 33, 34, 35, 36, 37, 38, 43], micromotors [23, 27, 28, 30], and microflu-

idic components [20, 21, 25, 26], have been extensively developed for potential applications

in medicine, bioengineering, and lab-on-a-chip devices. As mobile swimming microrobots are

of particular interest for use in future biomedical applications such as targeted drug delivery

[1, 36, 37, 44], some major advances in biohybrid swimming microrobots are reviewed in this

thesis briefly.

The first biohybrid swimming microrobots was developed using a biflagellated algae by

Weibel et al. (2005). The swimming algae can carry a load with a size range of 1 to 6 µm (com-

parable to the size of the algae) and its swimming direction can be dictated by light [38]. Martel

et al. (2006) used magnetotactic bacteria to push a 3µm bead along a preplanned path, by con-

trolling the magnetic torque on the magnetosomes inside the bacteria [22]. In 2007, Behkam and

Sitti fabricated a self-propelled microrobot by attaching multiple flagellated bacteria to a 10µm

diameter microbead, and they performed on/off control on the motion of the microrobot through

chemical mediated stopping and resuming of the bacterial motors [24]. Aiming to enhance the

motility of bacteria-driven microrobots, Park et al. (2010) achieved selective attachment of bac-

teria on a certain surface of a microcube with surface patterning techniques, and an improved

motility was observed on the microrobots with selective bacterial attachment [29]. Liposomes,

commonly used as a drug delivery vehicle for controlled drug release, was firstly combined

with motile bacteria by Kojima et al. (2012) via antibody and biotin-streptavidin to produce

self-propelled liposomes [32]. Most of the studies characterized the motion of biohybrid micro-

robots in a condition close to surfaces or substrates, therefore the characterizations were subject

to wall effects. Edwards et al. (2013) studied the far-wall motion of bacteria-driven microrobots

for the first time; they found that the microrobots with a few bacteria attached traced out helical

swimming trajectories, which was concluded to be produced by exerting a nearly constant force

and a nearly constant torque on the microrobot [34]. Recently, motile sperm cells were utilized
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by Magdanz et al. (2013) to propel a microtube wherein a sperm cell is trapped head-in [45].

In vivo studies of utilizing bacteria-driven microrobots for targeted drug delivery has also been

conducted by Park et al. [36] and Felfoul et al. [37].

From the brief history of biohybrid microrobots, we can see that different types of cells,

various shapes of the microrobots, and patterned attachment of bacteria have been investigated

either to expand the scope of the design or to enhance the performance of the biohybrid mi-

crorobots. Bacteria, in particular, have several advantages as microactuators of biohybrid mi-

crorobots: (a) they typically maintain adhesion which allow for natural attachment to many

materials; (b) they have versatile environmental sensing abilities which could offer potential

ways to guide the motion of biohybrid microrobots; (c) they can be easily genetically engi-

neered to fulfill desired properties; and (d) they are potentially scalable and configurable as the

cells can be selectively patterned on the microrobot.

1.2.3 Control of Biohybrid Microrobots

Although it seems straightforward to harness the motility of swimming cells, by simply in-

tegrating intact cells with synthetic components, control of such systems is rather challenging,

partially due to their intrinsic stochasticity and the heterogeneity among individual microrobots.

Relying on external magnetic fields and magnetization of microrobots, steering control has been

performed on single biohybrid microrobots with different designs. Martel et al. (2006) con-

trolled the motion of a microbead propelled by a single magnetotactic bacterium to follow a

path at an average speed of 7.5 µm/s [22]. Magdanz et al. (2013) used external permanent

magnets to steer the swimming direction of a single sperm propelled microtube, which could

reach a speed as high as 100 µm/s [45]. In a bacteria-driven microrobot which consists of a

magnetic bead with multiple randomly attached bacteria, Carlsen et al. (2014) demonstrated

the steering control of the microrobot [46]. Although the three microrobots have different de-

signs, they share a similar actuation and control mechanism: the actuation is provided on board
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by the integrated biological cells, while the control is applied by magnetically steering the body

of a microrobot, which is off board.

In some applications, such as targeted drug delivery and particle sorting, control of mobile

microrobots at the swarm level is required, where the microrobots may not necessarily follow

a designated path but need to transport from one location to another at the population scale.

Since the bacterial tactic behaviors are usually observed at the swarm level, taxis-based guid-

ing approaches have been explored to navigate bacteria-driven microrobotic swarms. Using

magnetic field, Chen et al. (2014) guided a swarm of magnetotactic bacteria in a microfluidic

device to isolate pathogen [47], where the bacteria were pre-modified by an antibody to realize

automatic loading of the pathogens. In a similar fashion, magneto-aerotactic bacteria were also

demonstrated in vivo for the application of targeted drug delivery in a tumor by Felfoul et al.

(2016) [37]. However, the off-board magnetic control are subject to the disadvantages that were

discussed previously. Chemotaxis is a phenomenon that bacteria can respond to their local con-

centration changes of a certain chemical cue and choose to move to a favorable concentration of

that chemical. Since concentration gradients are ubiquitous inside the human body, chemotaxis

could possibly be applied to guide the motion of bacteria-driven microrobots for the medical ap-

plications such as targeted drug delivery. Chemotaxis of bacteria-driven microrobots has been

reported by several studies. Traoré et al. (2011) and Kim et al. (2012) measured an increased

directionality of microrobots when exposed to a chemoattractant gradient [48, 49]. Under a

chemoattractant/repellent gradient, Park et al. (2014) recorded a biased distribution of bacteria-

driven microrobots in a web-shaped microfluidic device [50]. A similar biased distribution of

bacteria-driven microrobots was also observed by Sahari et al. (2014), in both spherical and

ellipsoidal shaped microrobots [51]. Bacteria-driven microrobots whose motion is guided rely-

ing on bacterial chemotaxis has also been demonstrated for potential applications, such as for

targeted drug delivery by Park et al. [36] and for particle sorting by Suh et al. [52]. Despite

these remarkable results, the associated drift motion and the underlying physical mechanisms
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of the chemotaxis in biohybrid microrobots have not been investigated yet. Studying of these

aspects is not only crucial for a better understanding of bacteria-driven microrobots but also a

necessity to model such systems and hence to optimize their designs.

1.2.4 Model of Bacteria-Driven Microrobots

The theoretical study of bacteria-driven microrobots is quite at a very preliminary stage; only

a few studies have made attempts to model the type of mostly studied bacteria-driven micro-

robot which consists of a spherical shape propelled by multiple attached bacteria. Arabagi et

al. (2011) proposed a simple linear propulsion model for the multi-bacterial propulsion in the

biohybrid system [53]. However, this model failed to capture the helical shaped trajectories

observed by Edwards et al. [34]. Traoré et al. (2011) adopted a similar propulsion model

and a classical bacterial chemotaxis model, aiming to simulate the chemotaxis observed in the

bacteria-driven microrobots, but they couldn’t present any results regarding to the chemotactic

drift of the simulated system. Recently, Cho et al. (2015) developed a population-scale model

which was constructed by assuming a stochastic bacterial propulsion from all directions and in-

troducing an imaginary factor of propulsion bias, named ”chemotactic effect”, in the presence of

stimuli. Although their model simulated chemotactic drift, the model is strongly phenomenon-

oriented by its construction, leaving the biophysical mechanisms of the bacterial propulsion and

the chemotaxis of bacteria-driven microrobots as black boxes. To understand these mechanisms

and optimize the design of bacteria-driven microrobots, it is necessary to have a model which

explicitly accounts for the essential biophysical components of the system and also simulates

the observed motion behaviors of the system.
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1.3 Research Objectives

In this thesis, our studies are based on the most widely adopted design of bacteria-driven micro-

robots, which are made of spherical microparticles each attached by a few flagellated bacteria,

as shown in Fig 1.1. In fact, almost all of the previous experimental studies were based on

this design, for the convenience of prototyping. Therefore, the term “bacteria-driven micro-

robot”, unless stated otherwise, refers to this specific design and its prototypes throughout this

dissertation.

To utilize the bacterial taxis behaviors for motion guiding of bacteria-driven microrobots,

it is essential to characterize the tactic behavior of both their actuators, the free-swimming

bacteria, and the bacteria-driven microrobots themselves. We propose an experimental and

modeling framework to characterize the chemotaxis of free-swimming bacteria under a chem-

ical concentration gradient. The experimental results can be used to determine the parameters

in a signaling pathway model of chemotaxis, which provides an analytical characterization of

the bacterial chemotaxis. The framework is supposed to be also applicable for the quantifica-

tion of taxis against pH gradients or other concentration-gradient-based stimuli. The bacterial

taxis characterization serves to find an appropriate concentration profile of a certain chemoat-

tractant/repellent to study the tactic behavior of bacteria-driven microrobots. We present the

materials and fabrication procedure of a bacteria-driven microrobot prototype and the neces-

sary characterizations of the prototype. For each taxis behavior (chemotaxis and pH-taxis), we

characterize the tactic drift of a swarm of such bacteria-driven microrobots, and outline the

physical mechanisms of the tactic drift motion by statistical analysis on their swimming trajec-

tories. Finally, we develop a mathematical model based on the fundamental biophysical compo-

nents involved in the propulsion and the chemotaxis of bacteria-driven microrobots. The model

simulation helps understand the apparent “collective chemotaxis” among the multiple bacteria

attached to a microrobot and also reveals the potential dependencies of the performances of

bacteria-driven microrobots on their system parameters.

12



The main objectives of this thesis are:

• Develop a framework to quantify the chemotactic response of bacteria under a concentra-

tion gradient of certain chemoattractant/repellent;

• Characterize the tactic drift motion of free-swimming bacteria under chemotaxis and pH

taxis;

• Characterize the tactic drift motion of bacteria-driven microrobots under chemotaxis and

pH taxis;

• Through motion analysis, understand the biased drifting motion associated with the

chemotaxis and pH-taxis in bacteria-driven microrobots;

• Develop a bio-physical model to simulate the 3D swimming motion and the chemotaxis

of bacteria-driven microrobots;

• Via model simulation, understand the chemotaxis in bacteria-driven microrobots and per-

form parameter study for their design optimization.

Chapter Organization

Chapter 2 introduces an analytical and experimental framework to characterize the chemotaxis

in typical free-swimming flagellated bacteria. The framework is demonstrated by characteriz-

ing the chemotaxis of S. marcescens towards L-aspartate. Results in this chapter are adapted

from published work [54, 55]. Chapter 3 characterizes the chemotaxis in a bacteria-driven

microrobotic system. The physical mechanisms of the associated collective chemotaxis are elu-

cidated by statistical analysis on the swimming trajectories of the microrobots. Results in this

chapter are adapted from published work [56]. Chapter 4 introduces a new approach that uti-

lizes the pH-sensing capability of bacteria to perform drift control on a swarm of bacteria-driven

microrobots. Both an unidirectional and a bidirectional tactic drift behaviors are demonstrated.

The physical mechanism of pH-taxis in biohybrid microrobots are found to be similar to that of

chemotaxis. Results in this chapter are adapted from published work [57]. Chapter 5 presents
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a biophysical model to describe the mechanics of multi-bacterial propulsion associated with

bacteria-driven microrobots. The model, in combination with the signaling pathway model of

bacterial chemotaxis, simulates the chemotaxis of bacteria-driven microrobots, and the model

simulation suggests that the collective chemotaxis among the multiple bacteria attached to a

microrobot could be explained by a synchronized signaling pathway response among these bac-

teria. The dependences of the motility and the chemotaxis of bacteria-driven microrobots on

their major system parameters, suggested from the model simulation, are also presented in this

chapter. Finally, a summary and future work are outlined in Chapter 6.

Bacterial cultures (S. marcescens and E. coli) and details about the microfluidic concentra-

tion gradient generator used for chemotaxis characterizations are included in the appendix. The

developed visual tracking algorithms for the motion tracking of bacteria and bacteria-driven

microrobots and the program flow of the model simulation are also presented in the appendix.

1.4 Contributions

Major contributions of this thesis include: (a) developing a systematic methodology for studying

the chemotaxis and other chemical-based taxis behaviors of bacteria-driven microrobots as well

as free-swimming bacteria, (b) elucidating the physical mechanisms of the chemotactic and pH-

tactic drift in bacteria-driven microrobots, (c) developing a biophysical model to describe the

motion and the chemotaxis in bacteria-driven microrobots, and (d) predicting a possible driving

mechanism of the collective chemotaxis of the multiple bacteria on a microrobot. With the

proposed driving mechanism for the collective bacterial chemotaxis, results and conclusions in

this thesis may engender broad interest in the disciplines of biology, bio-physics and engineering

for follow-up studies. In addition, this thesis presents an experimental and modeling framework

to characterize bacterial chemotaxis, which enables more accurate quantification of chemotaxis

in flagellated bacteria. Finally, the proposed biophysical model for bacteria-driven microrobots

could be extended to describe other designs of bacteria-driven microrobots and different types
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of stimuli, and our simulation results would be helpful for optimizing the design of bacteria-

driven microrobots to enhance their tactic behaviors.

In summary, this thesis is expected to provide contributions to the areas of microrobotics,

microfluidics, and biophysics.

1.4.1 Contributions in Microrobotics

Motion guiding of bacteria-driven microrobots:

• Empirical determination of the optimal concentration profiles of L-serine and L-aspartate

for the motion guiding of bacteria-driven microrobots;

• Specification of the pH gradients to realize both unidirectional and bidirectional drift

control of bacteria-driven microrobots;

• Characterization of the chemotactic and pH-tactic drift processes of bacteria-driven mi-

crorobots in a microfluidic channel;

• Determination of the drift velocity of bacteria-driven microrobots by statistical trajectory

analysis;

• Elucidating the physical mechanisms of the chemotactic and pH-tactic drifts in bacteria-

driven microrobots;

• Corroborating the interchangeability of different taxis behaviors in the motion guiding of

bacteria-driven microrobots.

Design of bacteria-driven microrobots:

• Identifying the importance of motility on the chemotaxis and pH-taxis of bacteria-driven

microrobots;

• Proposing and demonstrating the approach of model-based simulation for the design op-

timization of bacteria-driven microrobots;
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• Determination of a series of design heuristics to enhance the motility and the chemotaxis

in bacteria-driven microrobots.

1.4.2 Contributions in Microfluidics

Particle transportation/sorting:

• Demonstration of targeted particle transportation by the chemotaxis and pH-taxis of

bacteria-driven microrobots.

Three-channel microfluidic device

• Modification to the three-channel microfluidic device to reduce the undesired pressure-

driven flows in the sample channel

• Fabrication process of the three-channel microfluidic device with an increased channel

depth

Diffusion-based pH gradient in microfluidic devices:

• Generation of pH gradients in the three-channel microfluidic device by diffusion;

• Qualitative characterization of the pH gradients in vitro in the device using pH indicators.

1.4.3 Contributions in Biophysics

Bacterial taxes:

• Development of an analytical and experimental framework to characterize bacterial

chemotaxis;

• Characterization of the chemotactic response of S. marcescen to L-aspartate;

• Characterization of the chemotactic response of S. marcescen to L-serine;
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• Characterization of the chemotactic response of E. coli to L-aspartate;

• Observation of the unidirectional and bidirectional pH-taxis of S. marcescens.

Collective chemotaxis in microrobots:

• Developing a drift velocity model for 1D random walk and applying it to tactic drift

analysis;

• Elucidating the physical mechanisms of the chemotactic and pH-tactic drifts in bacteria-

driven microrobots;

• Development of a biophysical model to describe the multi-bacterial propulsion and the

chemotaxis in bacteria-driven microrobots;

• Suggesting that the collective chemotaxis among the multiple bacteria on a microrobot

could be explained by a synchronized signaling pathway response among the bacteria.
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Chapter 2

Characterization of Bacterial Chemotaxis

2.1 Introduction

Flagellated bacteria have been actively explored as an integral part of biohybrid microsystems

[20, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 43, 48, 49, 53, 58, 59, 60, 61, 62], where

the bacteria provide on-board actuation by transforming chemical energy into mechanical mo-

tions. Among the studied species, S. marcescens has shown promise to become an on-board

bio-actuator due to its surface adhesion properties [63] and high motility [20]. Since chemo-

taxis of bacteria constitutes a potential way to guide the motion of bacteria-driven microrobots,

several groups have demonstrated varying levels of chemotaxis-based control [48, 49, 50, 51].

However, these studies are empirical in nature because the chemotaxis of the associated bac-

teria has not been well-characterized. To bridge this gap, we propose an experimental and

modeling framework for studying the bacterial chemotaxis under a stable linear concentration

profile of a chemoattractant/chemorepellant, in a fashion that produces more accurate quantifi-

cation of bacterial chemotaxis and is helpful to study the chemotaxis-based motion guiding of

bacteria-driven microrobots. We characterize the chemotaxis of S. marcescens towards a canon-

ical chemoattractant L-aspartate along with the introduction of the framework, but the bacterial

species and/or the chemoattractant can be readily replaced for new characterizations.
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The swimming behavior of flagellated bacteria is highly dependent on the arrangement of

flagella on the cell body [64, 65]. S. marcescens, like E. coli, is a kind of peritrichous bacteria

that can form a flagellar bundle to obtain self-propulsion [20, 65]. The chemotactic behavior of

E. coli or S. marcescens, can be explained by studying the motion of individual bacteria. Swim-

ming trajectories of E. coli in a liquid environment have been tracked by Berg and Brown using

a 3D tracking microscope [66]; the tracked trajectories are composed of smooth directional runs

that are interrupted by short periods of tumbles. The running state corresponds to the rotation

of the flagella in a counterclockwise direction (CCW), while the tumble state corresponds to

a clockwise (CW) rotation of the flagella. The tumble events help bacteria randomly reorient

their swimming directions. In an isotropic environment, the tumble rate is the same in all swim-

ming directions, yielding a persistent random walk in free swimming bacteria. For E. coli, the

average value of the tumble rate was measured to be 1.2 s−1 [66]. However, when bacteria are

exposed to certain stimuli, like a chemoattractant gradient, the tumble rate can be preferentially

decreased when swimming up the gradient [66, 67]. A directionally biased tumble rate gener-

ates a directional drift velocity, defined as the chemotactic velocity, VC [68]; this helps bacteria

change their persistent random walk motion into a biased random walk.

In order to create an environment suitable for studying bacterial chemotaxis, various

microfluidic assays have been developed [69, 70, 71, 72, 73, 74, 75, 76]. Among them,

the three-channel gradient generator has been extensively used in recent chemotaxis studies

[49, 70, 71, 72, 76, 77] since it eliminates the flow-induced force on bacteria. Consequently, we

apply the design of the three-channel device in the characterization framework. For the three-

channel gradient setup, a biased distribution in bacterial population can usually be observed

in experiments and chemotactic response is evaluated by the chemotaxis migration coefficients

(CMC) [70, 71, 76, 77]. However, the quantitative characterization of chemotaxis by measur-

ing population density requires most bacteria to be motile, which is rather hard to guarantee

in the experiment. In 2008, Ahmed et al. tried to calculate the chemotactic velocity by 2D
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individual-cell tracking technique, where they used an average traveling time bias to approx-

imate the tumble rate bias [72]. However, this approximation is not valid since the bacterial

diffusion driven by the population density gradient contributes to the average traveling time

asymmetry significantly. Instead, we directly measure the bacterial tumble rates with respect to

their swimming directions using a bacteria tracking technique and a trajectory analysis method.

By definition, the chemotactic velocity can thus be readily calculated from the tumble rates and

other measured motility parameters.

In the following sections, we first introduce the major components of the characterization

framework, including analytical models, microfluidic device, and tracking and analysis meth-

ods. Then, using the framework, we characterize the chemotactic response of S. marcescens

towards L-aspartate by measuring VC over a range of concentrations and gradients. A chemo-

taxis signaling pathway model is fitted to the experimental measurements and hence the major

parameters in the model are determined for the species, fulfilling an analytical characterization

of the chemotaxis.

2.2 Analytical Models

In this section, two models, the chemotaxis pathway model and bacterial transport model, are

presented. The chemotaxis pathway model describes the signaling transduction from bacterial

sensing of local concentration to flagellar dynamics. The transport model is for better under-

standing of bacterial transportation at the population level, and it introduces the chemotactic

velocity, VC .

2.2.1 Full Chemotaxis Pathway Modeling

Here, we describe the most widely used models for the bacteria chemotaxis pathway. In general,

the chemotaxis pathway has three components: the cooperative chemoreceptor, the phosphory-
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lation pathway, and the flagellar motor [78]. The chemoreceptor senses extracellular concentra-

tion changes and transduces the signal to a intracellular regulator, which regulates the tendency

of flagellar motor rotation direction. For each component, there are several models available

which have been used in various studies [77, 79, 80, 81, 82]. In the following subsections, we

will discuss the applicability of these models in the chemotaxis characterization framework.

Cooperative chemoreceptor cluster

To describe the cooperativity of chemoreceptors, the Ising and Monod-Wyman-Changeux

(MWC) models are commonly used [78]. The Ising model is based on the conformational

spread of receptor proteins [83]. Specifically, it models the individual receptors and the interac-

tions among them in a way that the states of the receptors tend to agree with each other, therefore

showing high cooperativity in the receptor clusters. Due to the nature of this individual receptor

based approach, the Ising model is suitable for single cell evaluations, but the computational re-

quirements become prohibitive for population level simulations. The MWC model (also known

as the concerted model or symmetry model) describes the allosteric effects of receptor clusters

that are made up of identical receptors. This high level model is concise, easy to use, and has

shown very good agreement with experiments [78, 84]. Therefore, we describe next the latest

MWC models with two different methylation kinetics.

The first one is the SPEC (signaling pathway-based E. coli chemotaxis) model for the

chemoreceptors that captures the essential features of bacteria chemotactic activity and adapta-

tion [77, 81]. More specifically, each functional methyl-accepting chemotaxis protein (MCP)

receptor complex can be either in the active or the inactive states, which are determined by a

free energy difference F (m, [L]), where m is the methylation level of the receptors, [L] is the

concentration of the ligand, and N is the number of receptor dimers in a MCP complex. We use

N = 6 for Tar receptors in a complex; the average activity of the receptor can be expressed as
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[77, 85]:

a = (1 + exp(F (m, [L])))−1 . (2.1)

According to the MWC model, the free energy difference can be written as:

F (m, [L]) = fm(m) + ln

(
1 +

[L]

Ka

)
− ln

(
1 +

[L]

Ki

)
, (2.2)

where fm(m) is the methylation level dependent free energy difference, and Ka and Ki are

the dissociation constants of the ligand to the active and the inactive receptors, respectively.

For the binding of L-aspartate onto the Tar receptors, we use the values fitted to in vivo FRET

(fluorescence resonance energy transfer) data [77], namely, Ka = 3 mM and Ki = 18.2 µM.

The impact of receptor methylation on its free energy is considered to be a linear function of m

as suggested by recent experimental work [86, 87]:

fm(m) = α(m0 −m) , (2.3)

where α ≈ 1.7 and m0 ≈ 1.

The first form of methylation kinetics is based on the Barkai and Leibler model for a near

perfect adaptation system [88]. More precisely, the methylation kinetics is assumed to have a

linear form:
dm

dt
= kR(1− a)− kBa , (2.4)

where kR = kB are the methylation and demethylation rates, respectively; the values are deter-

mined by fitting the experimental measurements of the characterized species to the model.

The second form of methylation kinetics is based on the fact that chemotactic behavior is

related to the relaxation time of the receptor-kinase activity [89, 90, 91]:

dm

dt
= −1

τ
[m(t)− m̄(C)] + σm

√
2/τΓ(t) , (2.5)
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where τ is the relaxation time, σm is the variance of fluctuations in the methylation dynamics,

Γ(t) is a normally distributed homogeneous random process with zero mean and unit variance,

and m̄ is the average adapted methylation level at a given ligand concentration.

In order to model the chemotactic response of a bacterial species over a wide range of

chemoattractant gradients, which is typical for flagellated bacteria like E. coli, it it beneficial to

select the model with the widest response range. In the second form of methylation dynamics,

the adaptation rate is determined by the difference between the current methylation level and

the average methylation level. This only applies to a shallow gradient; in a deep gradient,

the adaptation rate would be unrealistically fast and unlimited due to the large methylation

difference. However, in the first form of methylation dynamics, the adaption rate would be

constrained, since there is a range limit of (0, 1) for the receptor activity a. Specifically, in

a deep gradient, the receptor activity a(t) would be suppressed to 0 for a long time before

its methylation level catches up and regains activity, therefore the adaptation rate will not be

unrealistically high. Consequently, in our simulations, we use the first form of methylation

kinetics (Barkai-Leibler type receptor model) as shown in Fig. 2.1(a) [77, 88].

Phosphorylation relay and flagellar motor

An active receptor enhances the autophosphorylation of the receptor-associated kinase CheA,

which transmits the signal to the flagellar motors by the phosphorylation of a diffusive response

regulator CheY. In most chemotaxis full pathway models, the concentration of phosphorylated

CheYp is assumed to be proportional to the kinase activity, [Yp] = βa(t) as shown in Fig. 2.1(b),

without considering the nonlinear dependence [92].

Thermal fluctuations and upstream signaling cause the flagellar motor to spontaneously

change between CCW and CW states. To model the state transition, the SPEC model uses

a hill function to calculate the probability of tumble with [Yp], and assumes an average fixed

tumble time τ = 0.2 s [77]. Specifically, when a bacterium is running, the probability of the
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Figure 2.1: Full signaling pathway model for chemotaxis. (a) The methylation kinetics is based
on the Barkai and Leibler model with a linear form: dm/dt = kR(1− a)− kBa. (b) The signal
transduction from chemoreceptor to the flagellar motor regulator Yp, where the concentration
of phosphorylated CheYp is proportional to the kinase activity, [Yp] = βa(t). (c) The two-state
model to describe the motor behavior of flagellated bacteria, where the transition rates of CCW
to CW and CW to CCW are k− and k+, respectively.
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cell going into a tumble state is p(a) = τ−11 (a/a1/2)
H , where a1/2 is a fitted constant, and H

is the Hill coefficient of the motor response function. However, under some gradient condi-

tions, the bacteria flagellar motor may stay in the tumble state for a time significantly shorter or

longer than the average value, which biases the swimming dynamics considerably. Therefore,

we adopt a two state potential well model to describe the motor behavior of flagellated bacteria,

which sets their two states in two potential wells as shown in Fig. 2.1(c) [93].

The energy barriers of CCW to CW and CW to CCW transitions are G0([Yp]) and

−G0([Yp]), with transition rates k− and k+, respectively [94]:

G0([Yp]) =
g0
4
− g1

2

(
[Yp]

KD + [Yp]

)
k+ = w0 exp(G0([Yp]))

k− = w0 exp(−G0([Yp]))

(2.6)

where parameters w0 = 1.3 s−1, g0 = g1 = 40 kBT , and KD = 3.06 µM are chosen to fit the

experimental data [95]. The configuration of the implemented full pathway model is shown in

Fig. 2.1.

2.2.2 Bacterial Transport Model

As discussed previously, in a bounded channel with chemical gradient, change in the motion of

single bacterium leads to a biased distribution of bacterial density. Based on probabilistic mod-

eling of individual bacteria, the model described in this section relates the population kinetics

to the motility parameters of individual cells. The chemotactic velocity (VC) introduced in the

model quantifies the effect of chemotaxis on the bacterial population transport; by construction,

VC is directly related to the tumble rate bias of individual bacteria. Therefore, by extracting VC

from this model and determining it through tracking of individual bacteria, our approach quan-

tifies chemotaxis from the measurement of individual cells, as opposed to most recent studies,

which have made measurements at the population level [70, 71, 76, 77].
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In an environment with a one-dimensional (along x direction) chemoattractant gradient, as

shown in Fig. 2.2 the transport kinetics of bacteria density can be described with the following

equation [68, 96]:

Figure 2.2: Bacterial transportation along a 1D (along the x-axis) chemoattractant gradient, in
which bacteria show a biased distribution. The bacterial transportation across an arbitrary plane,
denoted by the yellow dashed line, is contributed by two terms, random motility (blue arrow)
and chemotactic drift (red arrow).

Jx = −µ∂B(x, t)

∂x
+ VCB(x, t) , (2.7)

where Jx is the density flux of bacteria through a slice that is perpendicular to the x axis, µ

is the motility coefficient, B(x, t) is the bacteria density, and VC is the chemotactic velocity

as previously discussed. The motility coefficient, µ, similar to the diffusion coefficient, is a

proportionality measure between the bacterial density flux and the gradient of the bacterial

density. Bacteria transport in the channel is subject to two effects: the diffusivity motility

and the chemotactic drift, which are described by the first and second terms on the right hand

side of Eq. 2.7, respectively. The diffusivity motility keeps the transport of bacteria down the

gradient of bacterial population density, while the chemotactic velocity pumps bacteria up the

chemoattractant gradient. From the probabilistic modeling of individual bacteria, the motility

coefficient and chemotactic velocity can be expressed as follows [72, 97]:
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VC =
2(p− − p+)

3(p− + p+)
v , (2.8)

µ =
2v2

3(p− + p+)(1− cos 〈φ〉)
, (2.9)

where, p+ and p− are the average tumble rates when bacteria travel up and down the chemical

gradient, respectively, v is the average 3D swimming speed of bacteria, and 〈φ〉 is the average

tumble angle, which is defined as the swimming direction change during a tumble. Instead of

a simple model based on average rate processes, models based on random walk theories that

consider distributions of running and tumbling durations are also available [98, 99]. These

advanced models could provide a more accurate characterization of single bacterium motility

and population transport if both the run and tumble durations of the characterized bacteria can

be measured experimentally in the future.

2.3 Three-Channel Concentration Gradient Generator

This section introduces the concentration gradient generator and the calibrations of the setup. It

has been shown that bacteria maintain different degrees of chemotactic response under different

concentration gradient. In order to quantify the bacterial chemotactic response to concentration

profile, it is crucial to keep the concentration profile constant over the duration of measurement.

Therefore, we calibrate the time required to establish a stable linear concentration profile in

the microfluidic device. A linear concentration profile also guarantees that bacteria at different

locations in the channel see the same concentration gradient.

2.3.1 Configuration of the Concentration Gradient Generator

The configuration and geometry of the device are shown in Fig. 2.3. The device consists of

three channels: the source, sample, and sink channel. The channels are all 500 µm wide and
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around 80 µm high. They are separated from each other by two 250 µm wide agarose gel ridges.

Two flows containing higher and lower concentrations of chemoattractant are pumped into the

source and sink channel, respectively, by a programmable syringe pump (Braintree Scientific

Inc.). The manufacturing and assembly process of the setup is described in Appendix B.

Sink Source 

Sample 

1 mm

Figure 2.3: The three parallel-channel linear gradient generator. Top view of the three channels,
where the green color (source side) indicates a higher concentration and the white (sink side)
stands for a lower concentration. A linear gradient can be seen in the sample (center) channel
at steady state.

2.3.2 Diffusion Time Calibration and Concentration Profile Probe

To calibrate the diffusion time and concentration profile in the sample channel, we observed the

diffusion of 10−4 M fluorescein (Sigma-Aldrich Co.) solution from the source to the sink. For

small molecules like fluorescein, when the concentration is lower than 10−3 M, the intensity

of the fluorescent image is proportional to the concentration [71]. The normalized intensity

profiles of the fluorescent images therefore indicate the concentration profiles. During tests,

flows of fluorescein solution and deionized water (DI water) were maintained in the source and

sink channels, respectively, both at a rate of 5 µL/min. The middle channel was infused with DI

water manually at the onset of the test.

We acquired the fluorescent images using a fluorescent microscope (Axiovert 200, 5X A-
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Plan, 0.12) and a CCD camera (AxioCam HR). The original fluorescent images in a temporal

sequence are shown in Fig. 2.4(a). From the normalized intensity profiles in Fig. 2.4(b) and

the linearity error plot of the profiles in Fig. 2.4(c), it can be determined that a linear gradient

between the source and sink channel is generated in 20 minutes from the input of the flows.

L-aspartate has a diffusion coefficient of 9.0× 10−6 cm2/s [74], while it is 4.25× 10−6 cm2/s

for fluorescein. Thus we can conclude that about 10 minutes are needed for L-aspartate to

generate a linear gradient. To guarantee a linear gradient in the experiments, all of the data

were measured 15 minutes after the input of the source and sink flows.

2.4 Visual Tracking and Trajectory Analysis

This section introduces the methods of image acquisition, visual tracking of bacterial motion

from recorded images, and trajectory analysis.

2.4.1 Image Acquisition and Visual Tracking

To record bacterial swimming motion, the chemotaxis setup was put under an inverted phase

contrast microscope (Zeiss Axiovert 100, 32× or 40×, Carl Zeiss, Oberkochen, Germany) and

video data was recorded by a camera (Foculus Inc.). The frame rates of the videos were around

88 frame/s and each video was 30 seconds long. Videos were taken at locations that were far

from the top and the bottom walls and near the center line of the sample channel, which well

eliminated the wall effects on the swimming bacteria. For each data point, at least 4 videos were

taken and analyzed.

Two different in-house visual tracking programs for 2D and 3D tracking, were developed

in MATLAB (R2012a, The MathWorks, Inc, Natick, MA) to analyze the video data. The ba-

sic algorithms used for the visual tracking is included in Appendix C, Algorithm 1 and Al-

gorithm 2. The 2D tracking program can accurately capture the x-y plane projections of the

29



0 200 400 600 800 1000
x position (µm)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
In
te
n
si
ty

(a
.u
.)

Sample Channel
1 min
13 min
25 min

0 10 20 30
Time (s)

0

0.05

0.1

0.15
L
in
ea
ri
ty

E
rr
o
r
(a
.u
.)

Agarose GelAgarose Gel

1 min 

9 min 

5 min 

25 min 

21 min 

13 min 29 min 

17 min 
Source Agar Sample Sink Agar Source Agar Sample Sink Agar 

a

(min)

b
c

Figure 2.4: Diffusion time and concentration profile calibration of the setup. (a) Original flu-
orescent images across the three channels in a temporal sequence. (b) Normalized fluorescent
intensity profile. The curves colored from cyan (lighter) to magenta (darker) indicate that the
concentration profile of fuorescencein becomes more and more linear with elapsed time. The
bumps and dips appearing at the interfaces of the gel and solution are caused by optical diffrac-
tion. (c) Linearity error of the normalized intensity profiles at different times. A linear gradient
can be approximately achieved after a diffusion of about 20 minutes.
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three-dimensional trajectories, which was mainly used to perform analysis of tumble rates with

respect to the swimming directions. Fig. 2.5 shows the trajectories of the bacteria captured in

the current frame, where the displayed trajectories are tracked from previous video frames. The

3D tracking program is able to calculate the z position with an accuracy of ±1 µm over a range

of ±20 µm, through a calibrated linear correlation between the size of the diffraction ring and

the z-axis position. The tracking method is described in greater detail in Edwards et al. [55].

This way, we can calculate the average 3D swimming speed and the tumble angle distribution

of the observed bacteria. A total of 1000 to 1500 trajectories with lengths varying form 1 to 15

seconds could be extracted from each sample video. At each concentration profile, at least four

sample videos were taken and analyzed.
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Figure 2.5: A sample frame showing traced trajectories of individual bacteria in the current
video frame.

2.4.2 Trajectory Analysis

To detect the tumble events along a swimming trajectory, we apply an angle threshold (5 de-

grees) to the direction change between 10 frames; changes in the swimming direction that ex-
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ceed this threshold correspond to tumbling events [55]. As shown in Fig. 2.6, a sample trajectory

is analyzed by the program and seven tumble events are detected along the swimming trace. Fig.

2.7 plots the instantaneous 2D velocity and the heading direction change along the trajectory;

it can be seen that the tumble events are normally associated with significant swimming speed

changes. However, detection of tumble events based on the speed change can be misleading

since it is usually very noisy during a tumble event. By such analysis, the entire information

about the trajectory can be extracted, such as the instantaneous swimming direction, the swim-

ming directions before (solid arrows in Fig. 2.6) and after a tumble (dashed arrows in Fig. 2.6),

and the location of the tumble (Ti). Since the swimming bacteria in the microfluidic device

only experience concentration gradient along y-axis, the x-y projection analysis is sufficient to

calculate the tumble rate bias. In case of a tumble that purely occurs in x-z or y-z plane, the

program may fail to detect it. However, such cases are considered to be rare events, and thus

cause negligible effects to the statistical analysis of the tumble rate over swimming directions.

T1

T2

T3
T4

T5

T6
T7

End

Start

High

Low

Figure 2.6: A sample trajectory with tumbles (Ti) detected by the tracking program, where
the solid and dashed arrows stand for the swimming directions before and after the tumbles,
respectively.
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Figure 2.7: Swimming speed and heading change along a sample trajectory, as shown in Fig.
2.6, where seven tumble events were detected by applying a threshold to the heading change.

2.5 Framework Demonstration and Results

2.5.1 Materials and Experiment Settings

The chemotactic response of S. marcescens (see Appendix A for details) towards the concentra-

tion profile of L-aspartate was characterized as a demonstration of the framework. L-aspartate

has been extensively used as a chemoattractant for E. coli, which exhibits the strongest chemo-

tactic behavior at a concentration gradient around 0.1 mM/mm [71, 72, 74, 76]. We have deter-

mined experimentally that S. marcescens loses motility in L-aspartate solutions with concentra-

tions higher than 10 mM. Therefore, we measure the chemotactic response of S. marcescens in a

concentration gradient range of 10−3 mM/mm to 5 mM/mm, with 5× 10−3 mM and 2.5 mM as

the lowest and highest average concentration, respectively. All the concentrations of L-aspartate

were obtained by suspending L-aspartate in the motility medium, therefore no gradient of other

substances existed in the sample channel. The experiments were conducted at room tempera-
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ture, around 20◦C. To initialize the experiment, solutions with higher and lower concentrations

of L-aspartate were flowed in the source and sink channels, respectively. Upon the infusion of

solutions in the two side channels, we pipetted bacterial solution with appropriate density into

the sample channel. Videos were taken after a linear concentration profile had been established

in the sample channel.

2.5.2 Characterization Results

Parameters of full pathway model

We implement the full pathway model in a bacteria population simulator BNSim [100]. Based

on the measurements at data points 1-7 in Fig. 2.11, the adaptation rates (kR, kB) and phospho-

rylation coefficient (β) are fit to 0.0033/s (kR = kB) and 5.8, respectively, by the least squared

fitting method. We did not alter the values of other intrinsic parameters such as the dissociation

constants since it is reasonable to assume that the Aspartate-Tar and CheYp-motor reactions of

S. marcescens maintain similar kinematics to E. coli due to their high resemblance in other as-

pects. The values of major parameters in the full pathway model of S. marcescens in chemotaxis

are presented in Table 5.1.

Table 2.1: Key parameters used in signaling pathway model simulation
Name Description Value Source
N Number of receptors in a receptor complex 6 [77, 85]
Ka Dissociation constant of aspartate to active Tar receptor 3 mM [101]
Ki Dissociation constant of aspartate to inactive Tar receptor 18.2 µM [101]
α The free energy contribution coefficient 1.7 [77]
m0 The free energy contribution coefficient 1 [77]
kR Receptor methylation rate 0.0033/s This work
kB Receptor demethylation rate 0.0033/s This work
β Linear phosphorylation coefficient 5.8 This work
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Figure 2.8: Bacterial speed (2D) distribution of a sample. The distribution was measured on
all the bacterial trajectories tracked in the field of view (FOV) over the duration of the sample
video.

Bacterial motility parameters

To determine the chemotactic velocity in Eq. 2.8, the parameters associated with the population

of S. marcescens are needed, namely, the average swimming speed v, and the average tumble

rates p− and p+. The average tumble angle φ is required to evaluate the motility coefficient µ

via Eq. 2.9. All the parameters are measured from a population of 10,000 bacteria.

Swimming Speeds. Using the 3D tracking method, we measure the average swimming

speeds of S. marcescens far away from walls in the agarose gel channel. The average 3D speed

is 34 µm/s with an average speed of 30 µm/s in the x-y plane projection. The swimming speed

of a measured sample generally follows a distribution close to normal distribution, as shown in

Fig. 2.8, and the average swimming speeds are almost identical from sample to sample, with a

variation smaller than 1 µm/s. The addition of L-aspartate gradient makes no significant differ-

ence to the swimming speed. We also observe the average swimming speed over elapsed time,

but no obvious change is seen during a duration of four hours.
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Tumble Angles. The tumble angle is also measured by 3D tracking. Our measurement of

the mean tumble angle yields a similar distribution with that of E. coli with an average of 62

degrees [66]. The probability distributions of tumble angle with and without chemoattractant

gradient are indistinguishable, which means that the L-aspartate gradient does not substantially

change the tumble angle of S. marcescens.

Tumble Rates. Since the difference in the computed tumble rate between the 2D and 3D

tracking was minimal (< 5%) and the computational time was significantly less with the 2D

tracking, the x-y plane (2D) projection of the trajectories was used to measure the tumble rate

with respect to the swimming direction. The histograms in Fig. 2.9(a) and Fig. 2.9(b) show the

tumble rates with respect to the swimming directions in the x-y plane, where the radius of each

red segment indicates the average tumble rate when bacteria swim within that angle interval.

We calculate the tumble rate for each angle interval through normalizing the cumulative number

of tumble events occurring in an interval by the total time that bacteria swim in that interval.
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Figure 2.9: Comparison of bacterial tumble rate: (a) isotropic tumble rates over the swimming
directions when there is no L-aspartate gradient in the channel, and (b) biased tumble rates when
bacteria swim in an environment with a linear gradient of L-aspartate, which is 0.2 mM/mm for
the case shown. In (a) and (b), the radii of the black (dashed) and blue (solid) semicircles
indicate the average tumble rates when bacteria travel up and down the gradient, respectively.

For an environment without a chemoattractant gradient, in Fig. 2.9(a), the tumble rate is
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same in all swimming directions, resulting an average tumble rate around 1.0 s−1. However,

under a concentration gradient, the tumble rate when bacteria swim up the gradient is substan-

tially decreased, while no significant change is seen in the tumble rate when they swim down

the gradient, as shown in Fig. 2.9(b). The average tumble rates when bacteria travel up and

down the gradient are 0.75 s−1 and 1.05 s−1, respectively. For a linear gradient of 0.2 mM/mm,

the bias generates a drift velocity for bacteria towards higher concentration regions. Although

bacteria experience a slightly different gradient according to the swimming direction, we ne-

glect this difference and treat them identically. This approximation should not bias the results

significantly since the difference in gradient from swimming direction is negligible given their

wide sensing range in the ligand gradient.

Motility Coefficient. The motility coefficient quantifies the diffusivity of a population of

bacteria when they are subjected to a random walk or a biased random walk. Based on Eq. 2.9,

when there is no chemical gradient, an average tumble rate of 1.0 s−1 is used to calculate the

motility coefficient, which gives a value for µ of 7.25 × 10−6 cm2/s. For the case shown in

Fig. 2.9(b), where the average of the tumble rate is 0.9 s−1, the motility coefficient is calculated

as 8.05 × 10−6 cm2/s. A slightly higher diffusive motility is expected in the presence of a

chemoattractant gradient since the average tumble rate of the population decreases. The motility

coefficient does not vary significantly over different concentration gradients, as shown in Fig.

2.10. The motility coefficient for E. coli has been measured with different methods giving

results varying from 1× 10−7 cm2/s to 7.2× 10−5 cm2/s [72, 102], but most reported values are

on the order of 10−6 cm2/s.

Chemotactic velocity

Data Distribution. The chemotactic velocity VC is the primary index we use to study the re-

sponse of S. marcescens to different gradients and average concentrations of L-aspartate. The

value of VC at each data point is calculated using Eq. 2.8 with the measured average tumble
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Figure 2.10: Dependence of the motility coefficient on the ligand concentration gradient.

rates up and down the gradients and the average swimming speed. A total of ten data points

were measured as indicated in Fig. 2.11. The diagonal seven points are measured in a gradient

generated by a non-zero concentration in the source and zero concentration in the sink, while

the three off-diagonal points are created by inputing a higher concentration of L-aspartate in the

source and a lower concentration of it in the sink.

For our gradient generator, there is an inequality between the average concentration and the

concentration gradient: C ≥ (l/2)dC/dx, where C is the average concentration in the channel,

dC/dx is the concentration gradient along the x-axis, and l is the diffusion distance (1 mm for

our setup). Due to the physical constraint imposed by the inequality, we could not create data

points in the gray region above the diagonal as shown in Fig. 2.11.

Chemotactic Response Curve. We measure VC at points 1 through 7; the chemotactic ve-

locity profile from the experiment and simulation is shown in Fig. 2.12. Since the average

concentration is proportional to the concentration gradient, Fig. 2.12 also reveals the chemotac-

tic response of S. marcescens against the average concentration. From the chemotactic response

curve, a maximum chemotactic velocity is seen to occur at a gradient around 0.2 mM/mm with

an average concentration of 0.1 mM. It can also be concluded that S. marcescens can respond

to a wide range of chemoattractant gradients (average concentrations), as wide as three to four
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Figure 2.11: The distribution of experimental data points (circular markers). For data points
1-7, the gradient is generated by a known concentration of L-aspartate in the source and a zero
concentration of it in the sink. For points 8, 9 and 10, the gradient is generated by a higher
concentration of L-aspartate in the source and a lower concentration in the sink.

decades in concentration gradient (average concentration). Measurements based on the popu-

lation density distribution of E. coli indicate a similar response trend, with a slight shift in the

location of the peak [70, 77].

Relative Ligand Concentration Sensing. Chemotaxis behavior is not only dependent on the

chemoattractant gradient, but it is also related to the local concentration [77]. Hence we mea-

sure the change in the chemotactic velocity with the gradient and the average concentration. Fig.

2.13(a) presents the change of VC with respect to the concentration gradient, where the average

concentration in the sample channel is kept constant at 0.25 mM (points 5, 8, and 9 in Fig. 2.11).

It can be seen that the chemotactic velocity increases with an increase in the relative concentra-

tion gradient, denoted by
dC

dx

1

C
. We then fix the gradient (0.1 mM/mm), and measure VC with

an increasing average concentration (points 3, 8 and 10 in Fig. 2.11). As shown in Fig. 2.13(b),

there is a consistent decrease in the chemotactic velocity with an decrease in
dC

dx

1

C
. Although

the two trends are found from measurements at three data points, it should hold true for the
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Figure 2.12: Chemotactic response curve. Plotted data for points 1-7 in Fig. 2.11 and a zero
concentration gradient control experiment (data point 0). The strongest chemotactic response
of S. marcescens occurs at a gradient around 0.2 mM/mm (0.1 mM in average concentration).

entire chemotaxis-response concentration domain due to the consistent inner regulating mech-

anism of chemotaxis. It can be concluded from the two figures that the chemotactic velocity

increases monotonically with the value of
dC

dx

1

C
. The full pathway model with fitted parame-

ters from Group 1 (points 1-7) is in agreement with the measurements from Group 2 (points 5,

8 and 9) and Group 3 (points 3, 8 and 10), as shown in Fig. 2.13. Measurements through the

analysis of the density distribution of E. coli also show a similar sensing mechanism[77].

2.6 Discussion and Summary

2.6.1 Discussion

We have measured the chemotactic velocity and quantified the chemotactic response of S.

marcescens to L-aspartate by the measured VC . The accuracy of measured VC for a popula-

tion depends on the accuracy that we can obtain in the measurement of the tumble rates via Eq.

2.8. We applied an angle threshold (5 degrees) to detect tumbles from the swimming direction
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Figure 2.13: Relative gradient sensing measured from the experiment and captured by the simu-
lation. (a) The chemotactic velocity increases with the gradient when the average concentration
in the channel is kept as a constant of 0.25 mM. Experimental data points are the points 5, 8
and 9 in Fig. 2.11. (b) The chemotactic velocity decreases with average concentration when the
gradient is kept as a constant value of 0.1 mM/mm. Experimental data points are the points 3,
8 and 10 in Fig. 2.11.
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change in the 2D projection between frames. This could miss some tumbles and take direction

change due to the bacterial collisions as tumbles. However, tumbles with angle changes smaller

than 5 degrees can occur with a small probability, as verified from the 3D tracking of swimming

bacteria [66].

By analyzing the mean free path of swimming bacteria, we can show that the swimming

angle changes due to bacterial collisions are negligible . In particle mechanics, mean free path

is evaluated by: l = (nσ)−1, where l is the mean free path, n is the number of particles per

volume, and σ is the effective cross sectional area. S. marcescens is a rod shaped bacterium with

a diameter around 1 µm and length around 2 µm, leading to a cross sectional area smaller than

2 µm2. The bacterial sample density is below 108 cm−3, thus the mean free path is longer than

5 mm; since the swimming speed of the bacteria is around 34 µm/s, the mean free swimming

duration is around 147 seconds, which is much longer than the the mean run duration of one

second. Therefore the collisions (or apparent collisions) due to bacteria traveling over each

other cannot induce considerable error in the measurement of the tumble rates.

We note that recent characterizations of chemotaxis in E. coli mainly rely on population

density analysis and typically use the CMC to quantify the chemotactic response [69, 70, 74,

77]. CMC captures the extent of bias in the bacterial density distribution along the x direction

and can be calculated by: CMC =
∑

(Nx(x− w/2))/(
∑
Nx(w/2)), where x is the bacteria

position along the gradient direction, Nx is the number of bacteria in a small area that has a

mean position of x, andw is the width of the sample channel. Although we used the chemotactic

velocity to quantify the chemotactic response, the following analysis leads to a determination

of the CMC from the measured VC and µ in a bounded channel.

Considering an enclosed channel (assuming conservation of bacteria number), at steady

state, we can find the bacterial density distribution profile from Eq. 2.7 by setting J = 0,

then: B(x) = B0e
VCx/µ, where B0 is bacteria density at x = 0. Thus, the model predicts

an exponential density distribution of bacteria along the chemical gradient direction, which
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is generally observed experimentally as a biased distribution of bacteria along the chemical

gradient [70, 71, 76, 77]. The CMC can thus be integrated by substitutingB0e
VCx/µ forNx in the

previous formula, yielding CMC = −[2e−VCw/µ(−w/2−µ/VC)+2µ/VC−w]/[w(−e−VCw/µ+

1)]. As a result, the CMC of S. marcescens can be calculated with the measured values of VC

and µ, as shown in Fig. 2.14. It can be seen that the VC and CMC are nearly proportional to

each other for a bounded channel, where the bacteria number is conserved.
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Figure 2.14: Chemotaxis migration coefficient (CMC) of S. marcescens over concentration
gradient of L-aspartate. The maximum CMC corresponds to a concentration gradient of 0.2
mM/mm and an average concentration of 0.1 mM (L-aspartate).

The CMC curve of S. marcescens is similar to the studies on E. coli that measure CMC

directly [70, 77]. Consequently, our characterization through individual bacterial analysis is

consistent with the studies based on population density analysis. This also justifies that at low

cell density, the population behavior in chemotaxis is indeed an aggregate rendering of individ-

uals, and therefore the probabilistic modeling of individual bacteria in population transport is

reliable.

In our results, the full pathway model is able to simulate the relative gradient sensing mech-

anism found in the chemotaxis of S. marcescens. Considering the concentration range we used

in the characterization, we can perform a minimum interpretation of how the model treats the

input of the ligand concentration profile and why the feature of the relative gradient sensing is
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captured. In the full pathway model, Eq. 2.2 is in charge of the transduction of the the ligand

concentration to a signal (the free energy difference F ) for the inner pathway; when the bac-

teria travel in an environment with a one-dimensional gradient of chemoattractant, the rate of

change of the free energy difference along the gradient ∂F/∂x (∂F
∂x

= ∂F
∂[L]

d[L]
dx

) is the signal that

bacteria extract from the concentration profile. Notice that Ki is much smaller than Ka, then

the differentiation can be approximated to ∂F
∂x

= ( −Ka[L]
(Ka+[L])(Ki+[L])

)(d[L]
dx

1
[L]

). On the right hand

side of this equation, −Ka[L]
(Ka+[L])(Ki+[L])

is a slowly changing term between 0.35 and 0.85 with [L]

varying from 0.01 to 5 mM. As a result, the sensed signal ∂F
∂x

is dominated by the residual part:

d[L]
dx

1
[L]

, which denotes the relative concentration gradient of the ligand. However, when [L] is

much higher than Ka, the sensed signal becomes proportional to d[L]
dx

1
[L]2

, revealing a saturation

kinetics at high ligand concentration in chemotaxis sensing. In practice, we use concentrations

smaller or comparable with Ka, thus the model successfully traces out the relative gradient

sensing trend as found in the experiments.

The calibrated setup and founded optimal concentration profile for S. marcescens can be

used to perform a chemotactic steering control study of bacteria-driven micro-objects. S.

marcescens generates a biased motion in a chemoattractant gradient by actively biasing its

tumble rate according to the swimming direction, and the bias obtains a maximum at a gra-

dient of 0.2 mM/mm (0.1 mM in C) for L-aspartate. To realize directional control of bacteria

propelled micro-objects, the minimum requirement is that the attached bacteria can generate a

biased propulsion. It is reasonable to expect that the attached bacterial flagella still maintain

the transition of rotational direction between CW and CCW, but do not necessarily form a bun-

dle; the flagellum rotating in the CCW direction still generates a propulsive force to the beads

but not for the flagellum rotating in the CW direction. Thus for a given micro-object with S.

marcescens attached, on average, there should be more propulsive force exerted on the bead

when the object moves up the chemoattractant gradient. Since the bacteria sensing machinery

should be independent of their physical attachment, we expect that the concentration profile for
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optimal control of S. marcescens propelled microbead should coincide with the concentration

profile that yields the strongest chemotactic behavior. As will be shown in the next chapter, we

observed prominent chemotaxis in bacteria-driven microbeads under the optimal concentration

profile for the free-swimming bacteria.

2.6.2 Summary

This chapter presents an experimental and modeling framework to characterize the chemo-

taxis of free-swimming flagellated bacteria, such as E. coli and S. marcescens. The framework

characterizes the chemotactic response of a species under a linear concentration gradient of a

chemoattractant, which is generated and maintained in a flow-free microfluidic channel and thus

eliminating any flow-induced effect on bacterial motion. The chemotactic response is quantified

using chemotactic velocity (VC), measured by tracking individual swimming bacteria and sta-

tistical trajectory analysis. This approach is not affected by the non-motile bacteria in a sample,

which indeed causes measurement biases for the conventional methods based on density anal-

ysis. By fitting a signaling pathway model to the experimental measurements, the framework

delivers an analytical description of the chemotaxis being characterized. This framework may

also be readily adapted to study other bacteria taxis behaviors such as pH-taxis and salt-taxis.

Chemotaxis of S. marcescens towards L-aspartate has been characterized using this framework.

The chemotactic response was measured over a series of L-aspartate concentration gradients,

ranging from 10−3 mM/mm to 5 mM/mm. It was found that the optimal concentration gradient

of L-aspartate that leads to the strongest chemotactic behavior of S. marcescens is around 0.2

mM/mm. We have also verified the relative gradient sensing machinery in the chemotaxis of

S. marcescens, by measuring the change of VC with the average concentration and the gradi-

ent; about which, the adopted signaling pathway model with fitted parameters agrees with the

experimental measurements. Our results suggest a high level resemblance between the chemo-

tactic responses of S. marcescens and E. coli, which indicates that it is highly possible that the
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two bacterial species share a similar biochemical regulating pathway for chemotaxis; this may

in turn corroborate why the full pathway model for E. coli also applies well to describe the

chemotaxis of S. marcescens. The chemotaxis characterization of S. marcescens brings new

knowledge towards integrating the species for chemically-guidable biohybrid microrobots.
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Chapter 3

Chemotaxis of Bacteria-Driven

Microrobots

3.1 Introduction

As we discussed previously, flagellated bacteria, like Serratia marcescens (S. marcescens), is

among the leading candidates for the actuators of self-propelled biohybrid microrobots, not

only because of their ease of cultivation and high motility, but also due to their chemotactic

behavior, which is a potentially elegant way to control bacteria-driven microrobots at the swarm

level. Although several studies have observed chemotaxis of bacteria-driven microrobots [48,

49, 50, 51], none of them has quantified the associated chemotactic drifting motion and the

importance of the microrobots’ motility for their chemotaxis. Thus, the physical mechanisms

of the collective chemotaxis among the multiple bacteria attached to a microrobot has been

unclear to date. Despite the well established theory on bacterial chemotaxis [66, 67], it is

not readily understandable how a bacteria-driven microrobot, consisting of a micro-structure

propelled by multiple randomly attached bacteria, is endowed with chemotaxis. To shed light

on this, notable chemotactic drift motion of bacteria-driven microrobots must be created and

observed experimentally, and the motion should be characterized quantitatively to elucidate the
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critical factors that drive their chemotaxis.

The major goal of this chapter is to investigate the chemotactic drift motion of bacteria-

driven microrobots under a linear chemoattractant gradient, as illustrated in Fig. 3.1, in a fash-

ion helpful to understand the associated chemotactic drift motion and meaningful to develop

bacteria-driven microrobots with enhanced chemotactic behavior. To this end, we first intro-

duce a prototype of bacteria-driven microrobots, including a brief introduction of its swimming

dynamics and development procedures. Subsequently, relying on the three-channel microfluidic

concentration gradient generator (see details in Appendix B), we characterize the chemotactic

response of the free swimming bacteria S. marcescens to L-serine (chemoattractant), and an

optimal concentration gradient that leads to the strongest chemotactic response is empirically

determined. Using the optimal gradient, the chemotactic drifting process of the bacteria-driven

microrobotic swarms are captured and quantified. By tracking the individual microrobots and

statistically analyzing their swimming trajectories, we identify the critical factors and the phys-

ical mechanisms which enable the chemotaxis in the bacteria-driven microrobots. Finally, we

present a dependency of the chemotaxis in the bacteria-driven microrobots on their swimming

speed.

Figure 3.1: An illustration of the chemotactic guiding of bacteria-driven microrobots, where
each microrobot is attached and propelled by a few chemotactic bacteria.
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3.2 Bacteria-Driven Bio-Hybrid Microrobot

One of the advantages of utilizing bacteria as actuators of biohybrid microrobots is its scalabil-

ity. The average density of bacterial attachment on a microrobot can be controlled by adjusting

the bacterial density in the solution, attachment duration or other factors if more sophisticated

attachment methods are being used. The most widely adopted design of bacteria-driven mi-

crorobots consists of a spherical structure with multiple bacteria attached in random locations

and directions. Recent studies have tried to pattern the bacterial attachment [29, 50] and de-

signing different body shapes [51, 103], aiming to enhance the performance of bacteria-driven

microrobots, such as motility and directionality. In some special cases, such as in a cube-shaped

design of bacteria-driven microrobots, an enhancement of the motility by selectional bacterial

attachment has been reported [29]. However, since there is no effective way to align the ori-

entation of the attached bacteria, the attachment patterning and shape optimization could not

improve the motility or directionality of bacteria-driven microrobots in a considerable manner.

Without loss of generality, we adopted the mostly widely adopted design of bacteria-driven

microrobots, which is a spherical body with a few bacteria attached randomly, to characterize

the chemotaxis in such biohybrid systems. To the end of this section, it can be seen that the

optimized designs, namely, attachment patterning and optimized shape, are expected to share

the same mechanism of chemotaxis and may have enhanced chemotactic behavior.

3.2.1 Configuration and Propulsion Model

Fig. 3.2 shows a simplified depiction of bacteria randomly attached to a microsphere, where

the bacterial flagella may not represent the reality, because they may not be bundled at low

swimming speed or in tumble state. F and T are instantaneous net propulsive force and torque

exerted on the sphere by all of the attached bacteria. As a result of the bacterial propulsion, there

generates instantaneous translational velocity, v, and angular velocity, ω, on the microrobot.

Since bacteria-driven microrobots typically swim at the Reynolds number regime (Re ≈ 10−5),
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any inertial effect can be neglected. For a spherical body, Stokes’ law describes the viscous

drag forces from the surrounding fluid when the microrobot swims through the fluid medium:

f = −6πηRv ,

τ = −8πηR3ω ,

(3.1)

where, f and τ are translational and rotational drags, respectively, η is the dynamic dynamic

viscosity of the liquid medium, and R is the radius of the spherical microrobot. Since there

is no acceleration on the microrobot, the translation and rotational drags are balanced by the

propulsive forces at every moment, namely,

F = −f ,

T = −τ .
(3.2)

It should be noted that the propulsive vectors, F and T , are usually not collinear due to the

random configuration of bacteria on microrobots. This property is important for understanding

the trajectory shape of bacteria-driven microrobot.

F 

T 
ω 
v 

f 

τ 

Figure 3.2: Free-body diagram of a swimming bacteria-driven microrobot, where v and ω are
instantaneous translational velocity and angular velocity of the microrobot.
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3.2.2 Characteristics of Motion

Using the optical aberration ring of a defocused object under a phase contrast microscope, Ed-

wards et al. were able to track the 3D motion of bacteria-driven microrobots. The studied

microrobots were fabricated by randomly attaching bacteria to 5µm diameter polystyrene mi-

crobeads. For the microrobots swimming in the far-wall regime (Fig. 3.3(b)), they captured

helical or approximately helical swimming trajectories in some microrobots, on each of which

the attached bacteria exerted a nearly constant force and a nearly constant torque. In normal

cases, the force and torque on a microrobot were not collinear, thus producing a helical trajec-

tory on the microrobot. However, for the microrobots swimming in the near-wall regime, almost

no trajectories were found to be helical or close to helical shape, as shown in Fig. 3.3(a). This

difference suggests that the walls in close proximity of bacteria-driven microrobots can disturb

the bacterial propulsion on microrobots and hence break their natural motions. Therefore, to

avoid the wall effects on the chemotactic motion of bacteria-driven microrobots, we study the

motion of bacteria-driven microrobots in the far-wall regime.

From 3.3(b), although durations of stable propulsion were manifested in some trajectories,

frequent deviations from helical motions did show along the trajectory. Moreover, a substantial

portion of the trajectories were more of random walks, indicating that the forces and torques

applied on the corresponding microrobots changes constantly. The stochasticity in the motion

of the bacteria-driven microrobots increased with the average number of bacteria attached to

the microrobots. Over long durations, the motion of the bacteria-driven microrobot could be

characterized as a random walk.

3.2.3 Prototyping Bacteria-driven Microrobots

The bacteria-driven microrobots used in our study were fabricated by randomly attaching bac-

teria to 3µm diameter fluorescent polystyrene beads (ρ = 1.05 g/cm3, Fisher Scientific, Inc.). To

enable natural attachment between the bacteria and beads, the original coating of the beads was
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a b

Figure 3.3: (a) Near- and (b) far-wall 2D swimming trajectories of a prototype of bacteria-driven
microrobots (figure reprinted from [34]).

removed by alternately ultrasonicating the beads in deionized (DI) water or isopropyl alcohol

(IPA, 50%) for a total of five cycles; residual IPA in the bead solution was removed by three

more ultrasonication cycles with DI water. The washed beads were soaked in motility buffer

at a volume concentration of 0.05%. The microrobots were assembled by placing an aliquot of

2.5 µL bead solution onto the leading edge of the bacteria colony on the agar plate and gently

pipetting 3 - 5 times to mix the bacteria and beads sufficiently. The solution was collected back

immediately and incubated at room temperature for 5 minutes, allowing for random attachment

of the bacteria to the beads. Then, the solution was diluted by adding 40 µL of Percoll (ρ =1.13

g/cm3, Sigma-Aldrich, St. Louis, MO) and 57.5 µL of motility buffer to the solution. Percoll

was added to increase the density of the fluid, thereby making the microrobots neutrally buoy-

ant. The final solution was further diluted to achieve an appropriate concentration for vision

tracking of the microrobots.

Fluorescent staining of bacteria enabled the simultaneous visualization of the attached bac-

teria and bead (Fig. 3.4). The mean and standard deviation of the number of assembled bacteria
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to each microrobot were determined to be 9.0 ± 3.4, based on an examination of 20 instances

randomly picked from the whole population.

Figure 3.4: Fluorescent images of the prototype of bacteria-driven microrobots, which are com-
posed of multiple attached bacteria (yellow-green) and a spherical polystyrene bead (red).

3.3 Chemotactic Response of S. marcescens to L-serine

According to the fabrication procedure, the position and orientation of the attached bacteria

on the microbeads were purely random, resulting in high stochasticity in the configuration of

bacteria on the microrobots (Fig. 3.4). To achieve considerable chemotactic drift in such a

stochastic system, we first characterized the chemotactic response of the bio-actuator alone,

S. marcescens, towards the chemoattractant L-serine. This step served to find the optimum

concentration profile, which could elicit the strongest bacterial chemotactic response, to be

used for the study of the chemotaxis in the prototyped bacteria-driven microrobots.

L-serine is a canonical and potent chemoattractant for bacteria like E. coli and Salmonella

typhimurium [32, 66, 72, 77, 104, 105, 106], and has shown to be mainly sensed by the abundant

transmembrane receptor Tsr [107, 108, 109]. S. marcescens, a species that highly resembles E.

coli in terms of motility and taxis behaviors [55], is believed to exhibit remarkable chemotaxis

to L-serine as well. It has been established that flagellated bacteria, such as S. marcescens and
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E. coli, swim through a combination of runs and tumbles, which are responsible for translation

and random reorientation of the bacteria, respectively. In an environment with a chemoattractant

gradient, bacteria decrease their tumble rate when they move towards a favorable direction while

maintaining at a normal state (i.e. normal tumble rate) when moving towards the unfavorable

direction. Such a biased tumble rate on individuals produces a population level drift up the

concentration gradient of the chemoattractant, which is described by the chemotactic velocity,

VC [68, 72], as follows

VC =
8v2D
3π

r− − r+

r− + r+
. (3.3)

where, r+ and r− are the mean tumble rates when bacteria travel up and down the chemi-

cal gradient, respectively, v2D is the two-dimensional (2D) mean swimming speed of bacteria.

Compared with Eq. 2.8, this equation evaluates the chemotactic drift velocity by using 2D data

of bacterial swimming motion. Here, in the three channel concentration gradient generator (see

details in Chapter 2 and Appendix B.), we tested the the chemotaxis of S. marcescens under a

series of linear concentration profiles of L-serine, and quantified the chemotactic response using

VC , which can be readily determined from the 2D trajectories of the swimming bacteria [54].

For each concentration gradient, the chemotactic velocity, VC , was measured over five indepen-

dent video samples which were taken from different locations in the sample channel (far away

from any walls to avoid any wall effects). Two-dimensional (2D, xy-dimension) swimming

trajectories of bacteria under chemotaxis was extracted and analyzed with similar methods as

introduced in our previous studies [54, 55]. The number of swimming trajectories captured

in each video varied from 500 to 3000. As shown in Fig. 3.5, the chemotactic velocity peaks

around a concentration gradient of 10−4 M/mm, which is of the same order of magnitude of

that of E. coli [77]; moreover, the chemotactic response trend is similar to that of E. coli, which

suggests a resemblance in the signaling pathway dynamics for L-serine chemotaxis between

these two bacterial species.
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Figure 3.5: Chemotactic response of S. marcescens to linear concentration gradient of L-serine.
At the data points of chemotaxis (red squares), the corresponding L-serine gradients were cre-
ated by a nonzero concentration in the source channel and a zero concentration (buffer flow) in
the sink; the gradient of control (blue circle) was zero, enabled by simply inputing both source
and sink with a buffer flow.
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Figure 3.6: Bacterial distribution in the sample channel under the optimum concentration pro-
file.
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3.4 Chemotactic Drift of Microrobotic Swarms

3.4.1 Experimental Setup and Conditions

After finding the optimal concentration profile for the free swimming bacteria, we characterized

the chemotaxis of bacteria-driven microrobots under the optimal concentration profile, which is

10−4 M/mm. We used the same design of the three-channel microfluidic device, but the height

of the channels was increased to 200 µm to eliminate wall effects. Moreover, the sample chan-

nel were fully closed upon the loading of the sample to avoid undesired pressure driven flows.

Therefore, in the sample channel of the microfluidic concentration gradient generation device

(Fig. 3.7(a)), we created a quiescent fluid environment with a spatial concentration gradient

of L-serine to characterize the chemotaxis of the prototyped bacteria-driven microrobots. Fig.

3.7(b) shows a fluorescent image of the biased distribution of the microrobots in the sample

channel, where the entire width of the channel is fully captured in the image. The bright dots in

the field indicate individual microrobots and the bigger bright areas closer to the source chan-

nel correspond to clusters of microrobots which were accumulated as a result of chemotactic

drift. A sample microrobot is shown in Fig. 3.7. All the experiment were conducted in room

temperature, around 20◦C.

3.4.2 Drifting Process

The chemotactic drifting process was observed on five independent samples of bacteria-driven

microrobotic swarms. Each sample started with a uniform distribution of microrobots in the

sample channel. The drifting process of one of the samples is shown in Fig. 3.8. It can be seen

that the initial uniform distribution of the microrobotic swarm in the sample channel evolved

gradually into a highly biased distribution: the side with a higher concentration of L-serine was

associated with a remarkably higher density of microrobots than the other side. This indicates

that the bacteria-driven microrobots preserve the chemotactic behavior observed in the free
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Figure 3.7: (a) Top view of the three parallel microfluidic channels. (b) Fluorescent image of a
swarm of microrobots, where the topside corresponds to higher concentration of L-serine. (c)
Fluorescent image of a sample microrobot.

swimming bacteria of S. marcescens.

To quantify the chemotactic drift of the bacteria-driven microrobots, we examined the center

of mass (COM) position of the microrobots captured in each imaging frame and plotted its y

component (COM-y) over time (Fig. 3.9). The COM-y of a frame can be calculated by: COM-

y = 1
n

∑n
i=1 yi, where yi is the y-position of the i-th microrobot, and n is the number of the

captured microrobots in the frame. As can be seen in Fig. 3.9, the initial drift process (up to

7.5 min) traces out a linearly increasing COM-y over time, which suggests an approximately

constant chemotactic drift velocity of the swarm. After the linear region, the distribution tends

to stabilize to a final state. We observed that the microrobots gradually drifted to the higher

concentration side of the sample channel and then formed clusters, whereas those scattered in

the channel were non-motile, typically without attached bacteria. The clusters initially appeared

because the motion of the microrobots were constrained by the walls of the sample channel.

Since both groups, the clusters and the scattered individuals, had rather low motilities, the

system reached a relatively stable final state.
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Figure 3.8: Fluorescent images show the distribution of a swarm of bacteria-driven microrobots
at a fixed location in the sample channel over time, of which the starting point is when the
diffusion of the chemoattractant starts, i.e., when the flow is initiated in the source and sink
channels. As indicated by the gradient color bars, the chemoattractant gradient is aligned with
the y-dimension of the images along the width of the sample channel. The initial two minutes
were not recorded in order to allow for disturbance-induced flows to settle down.
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Figure 3.9: COM-y of bacteria-driven microrobot swarm over time. For each of the five sam-
ples, 3,000 image frames were captured over 10 min and the COM-y of each frame is plotted.
The red curve and the shaded area indicate the mean and standard deviation found among the
five samples.
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3.4.3 Probability Distribution at Final State

Fig. 3.10 presents the probability distributions of the y-position of the bacteria-driven micro-

robots for both the chemotactic samples at final state and the control samples at steady state.

The chemotactic sample manifest a significant bias in the distribution: most of the microrobots

located within 100 µm from the source-side channel wall. However, the control sample (without

L-serine gradient) trace out a more uniform distribution with a slight higher density at the near-

wall regions, because the walls confined the motions of the microrobots close to the walls. By

the comparison between these two distributions, it can be concluded that the unidirectional drift

of the bacteria-driven microrobots under the L-serine gradient was due to chemotaxis rather

than other factors, such as wall effects.
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Figure 3.10: Probability distribution of microrobots across the width of the sample channel at
final state. The means and standard errors of the chemotaxis group (0.1 mM/mm gradient) were
evaluated on five different samples while the control group (no gradient) was based on three
independent samples.
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3.5 Visual Tracking and Trajectory Analysis

3.5.1 2D Tracking of Microrobots

The microfluidic device was placed under an inverted microscope (Axio Observer 100, Carl

Zeiss, Oberkochen, Germany), and the samples were imaged with either a 10x (fluorescence

imaging of microrobots) or 40x (phase contrast imaging of bacteria) objective. Videos of mi-

crorobots were captured at frames rates of 5 fps (QICAM, 520 × 696 pixels, QImaging). A

custom visual tracking program developed in MATLAB (R2012a, The MathWorks, Inc, Natick,

MA) was used to capture the moving trajectories (2D, xy-dimension) of microrobots. Image

intensity thresholding was applied to detect the likable bodies of microrobots in a video frame,

the bodies belonged to the same microrobot in consecutive frames were linked by a moving

search from every frame to their own adjacent next one. The basic algorithms used for the

visual tracking is included in Appendix C, Algorithm 1 and Algorithm 2. The motion of micro-

robots was recorded far from (≥ 10 body lengths) any walls of the sample channel to eliminate

wall effects.

3.5.2 Trajectory Analysis

Drift analysis based on swarm distributions hides the important information about the physical

mechanism that enables the chemotactic motion of the individual microrobots. In addition, cal-

culating the chemotactic velociy from the COM-y leads to an underestimated value due to the

restricted motion of the microrobots near the channel walls and the biased contribution from the

non-motile microrobots. In light of these limitations, we tracked the swimming trajectories of

the microrobots and performed statistical analysis on them, aiming to unveil the physical mech-

anism that allows the chemotaxis of the individual microrobots, which produces the swarm-level

chemotactic drift. For each sample presented in Fig. 3.8, hundreds of trajectories were captured

from the recorded video of drift motion, and Fig. 3.11 shows some randomly picked tracks of a
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sample.

Figure 3.11: Sample swimming trajectories of bacteria-driven microrobots.

In the microfluidic device, the bacteria-driven microrobots were only subject to chemotactic

stimulus along one dimension, namely along the y-axis; thus, the x- and z-components of the

motion should be independent of the direction of the respective axis. In other words, their

motion was only biased along the y-axis, and hence a 1D model is sufficient to capture the

chemotaxis in the bacteria-driven microrobots.

Drift velocity of a 1D biased random walk

A particle that conducts random walk along one direction, namely the y-axis, is considered to

determine the factors that can contribute to the drift velocity of a system exhibiting an inherent

biased random walk. Assuming that the particle maintains different mean speeds when moving

towards +y and −y directions, denoted by v+y and v−y, respectively; the particle can switch

its direction of motion in a way such that the portion of time it spends moving towards the +y

direction, t+y, is different from the time it spends moving towards the −y direction, t−y. It is

straightforward to describe the 1D mean speed v1D and the drift velocity Vdrift (with +y be the
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default direction) of the particle,

v1D =
v+yt+y + v−yt−y

t+y + t−y
, (3.4)

Vdrift =
v+yt+y − v−yt−y

t+y + t−y
. (3.5)

In Eq. 3.5, the drift velocity is essentially caused by the bias in swimming speed and the

bias in the time spent in moving in a given direction. To include the two biasing factors, we

define two ratios: the the speed ratio, α = v−y/v+y, which is the ratio of the mean speeds in

the −y and +y directions, and the heading ratio, β = t−y/t+y, which is the ratio of the time

spent moving towards −y and +y directions. Substituting these coefficients into the two above

equations, Vdrift can be expressed in terms of the 1D mean speed v1D,

Vdrift =
1− αβ
1 + αβ

v1D . (3.6)

Trajectory decomposition

The 2D swimming trace of a microrobot can be decomposed into segments persistently heading

towards +y (heading up) and segments persistently heading towards −y (heading down) based

on the y-component of its instantaneous heading direction, as illustrated in Fig. 3.12. There-

fore, under the L-serine gradient, the motion of bacteria-driven microrobots along the y-axis is

identical to a 1D biased random walk, and we can easily conform the trajectory analysis to the

above model.
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Figure 3.12: A sample trajectory is decomposed into two kinds of segments: the heading-up,
during which the microrobot persistently moves up (+y) the L-serine gradient, and the heading-
down, during which the microrobot persistently moves down (−y) the gradient. Correspond-
ingly, along the trajectory, there are two types of direction reversing along the y-axis: reverse
when heading up (+y → −y) and reverse when heading down (−y → +y).
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3.6 Physical Mechanisms of Chemotaxis in Microrobots

3.6.1 Heading and Speed Biases

As revealed in Eq. 3.6, two factors could contribute to the drifting velocity, the heading bias and

the speed bias. We quantified both of them by statistical analysis on the swimming trajectories

of the microrobots in the five different samples.

Fig. 3.13(a) shows the time spent moving along each direction of the y-axis, represented by

the number of frames counted in each direction. Across five independent samples, the portion

of time spent moving up the L-serine gradient is considerably higher than that spent travel-

ing down the gradient, which we call a “heading bias”. This suggests that the bacteria-driven

microrobots under the L-serine gradient exhibit a strong heading preference for moving up the

gradient. Another factor that contributes to the 1D drift velocity is the speed difference, revealed

by the speed ratio, α in Eq. 3.5. As shown in Fig. 3.13(b), a measurable mean speed difference

exists between the components of motion heading up and heading down, which we refer to as

the “speed bias”. Though the speed bias is not as significant as the heading bias, the heading-up

component has a higher mean speed, and the trend is consistent over all the samples. Since the

translational speed is linearly related to the net propulsive force in the Stokes flow regime, the

attached bacteria exert a slightly larger force when a microrobot moves up the L-serine gradi-

ent; presumably, the propulsive force is biased due to a lower probability of flagellar clockwise

rotation (CW, corresponds to the tumble state of bacteria, and flagellar counterclockwise rota-

tion, CCW, corresponds to the running state) in the attached bacteria when a microrobot swims

up the gradient. The analysis based on swimming traces of the motile microrobots which were

free from wall effects yielded a chemotactic drift velocity of 39.6± 12.9 µm/min, to which the

heading bias contributes nearly five times more than the speed bias does based on the relative

significance of the heading ratio and the speed ratio. Thus, the heading bias is the dominant

driving factor of the chemotactic motion in the bacteria-driven microrobots.
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Figure 3.13: (a) Across all trajectories captured in each sample, number of frames (correspond-
ing to time duration) counted for the heading-up and heading-down segments. (b) The mean
speeds of the heading-up segments and the heading-down segments extracted from all trajecto-
ries captured in each sample.

3.6.2 Direction Reversing Rate Bias

To understand how the heading bias was generated in the bacteria-driven microrobots, we fur-

ther inspected the relationship between the y-direction reversing rate and the heading direction.

As illustrated by Fig. 3.13(a), the y-direction reversing events along a sample swimming trace

were classified into two types; reverses associated with the heading-up segments (+y → −y),

and reverses associated with the heading-down segments (−y → +y). The heading-up re-

versing rate is defined as the total number of direction reverses occurring while moving up the

gradient divided by the total length of time traveling in the upward direction, and vice versa for

the heading-down reversing rate. Fig. 3.14 shows the heading-up and heading-down reversing

rates of each sample; the reversing rates when heading up are unanimously lower than those of

heading down across the five samples. This concludes that, compared to moving down the gra-

dient, the microrobots showed higher persistence in their y-direction heading when moving up

the L-serine gradient. Given that the attachment between bacteria and the microbeads is merely
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a physical adhesion [55], the signaling transduction pathway of the bacteria should not be dis-

torted; therefore, the probability of flagellar CW rotation of the attached bacteria is expected

to be higher when the microrobot which carries them moves down the gradient. The biased

reversing rate of the bacteria-driven microrobots leads to the conjecture that the CW rotations

of the flagella associated with the bacteria attached to a microrobot do increase the reorientation

probability of the microrobot, which leads to the heading bias towards the up-gradient direction.

Samp 1 Samp 2 Samp 3 Samp 4 Samp 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ev

er
si

ng
 r

at
e 

(s
−

1 )

 

 
Heading up
Heading down

Figure 3.14: The direction reversing rates computed for the heading-up segments and the
heading-down segments based on all the trajectories in each sample. More than 250 trajec-
tories were captured for each of the five independent samples.

3.6.3 Effect of Speed on Chemotaxis

When described in 2D, as shown in Eq. 2.8, the chemotactic velocity is linearly dependent on

the relative reversing rate bias, which can be described by (r−y − r+y)/(r−y + r−y), where r+y

and r−y are the reversing rates of the heading up and heading down cases, respectively. Fig. 3.15

plots the relative reversing rate bias with respect to the mean speed of the trajectories, where

the relative reversing rate bias grows in a superlinear fashion, although it was shown earlier that

the speed bias does not contribute significantly to the drift velocity. It can be concluded that the
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mean speed influences the chemotactic velocity not only through being a scale factor of VC as

shown in Eq. 3.3, but also by affecting the relative reversing rate bias. Overall, the dependence

of the chemotactic velocity on the mean swimming speed should be superquadratic. Since

bacteria sense a spatial gradient in the form of temporal gradients as they swim through their

environment, a higher translational speed usually produces a larger temporal gradient and thus,

leads to improved bacterial sensing of the spatial chemical gradient.
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Figure 3.15: Dependence of relative reversing rate bias on mean speed. Trajectories from all
five measured samples are classified into six speed intervals (4 - 5, 5 - 6, 6 - 7, 7 - 8, 8 - 9 and ≥
9 µm/s) according to their mean speeds. The horizontal data points denote the mean speeds of
the trajectories that fall within each range, with the error bars indicating the standard deviations
of the means.

3.7 Discussion and Summary

3.7.1 Discussion

Chemotaxis is a rather common and understood behavior of flagellated bacteria, such as S.

marcescens and E. coli; it is crucial for bacteria survival because chemotaxis navigates them

towards nutrient sources or away from hazardous environments. Interestingly, recent studies
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[48, 49, 50, 51] have observed chemotactic phenomenon in a microrobotic system driven by

multiple bacteria, which implies a collective chemotactic behavior of the group of bacteria at-

tached to a microrobot. By statistical analysis on the swimming trajectories of the prototyped

bacteria-driven microrobots, for the first time this study elucidates the basic physical mecha-

nisms which drive the seemingly cooperative chemotaxis among multiple bacteria attached to

a common microstructure. Such chemotactic capability may prove to be beneficial for bacte-

rial survival under certain conditions, such as when multiple bacteria are interlocked with each

other, given that bacterial adhesion is ubiquitous in nature.

S. marcescens bacteria swim by a combination of runs and tumbles, of which the runs are di-

rectional movements with constant speeds, and the tumbles are random reorientations of the cell

body with negligible displacements. However, the motion of the bacteria-driven microrobots is

characterized as a movement with relatively stable speed but incessantly changing heading di-

rection. The propulsive forces exerted on a microrobot at an arbitrary moment can be reduced

to a force and a torque which are normally noncolinear [34]. In spite of the difference in the

motion between the free swimming bacteria and the microrobots, they share the same driving

mechanism for chemotaxis in a general sense, namely, the heading direction is more persistent

when moving towards higher concentrations of chemoattractant. A consistent heading bias is

also found on the free-swimming bacteria, as shown in Fig. 3.16(a), but it is less pronounced

than that revealed on the bacteria-driven microrobots; this discrepancy is due to the prominent

wall effect on the motion of free-swimming bacteria, where their natural chemotactic transport

is constrained by the channel wall. The free swimming bacteria also manifests a slight speed

bias during chemotaxis in a similar fashion, as shown in Fig. 3.16(b). Assuming no chemical

interactions between the bacteria attached to the same microrobot, it is the flagellar rotation dy-

namics of the individual bacteria in response to their local chemical concentration changes that

leads to the seemingly cooperative behavior of the attached bacteria during chemotaxis. As we

will see in Chapter 4, a similar physical mechanism has also been found in the pH-taxis of the
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Figure 3.16: Heading bias (a) and speed bias (b) of free swimming bacteria under an L-serine
gradient of 0.1 mM/mm. Five experiments were conducted on independent bacterial samples in
the three-channel microfluidic concentration generator, and each sample has around 2000 bac-
terial swimming trajectories extracted and analyzed. The result shows that there is a consistent
heading bias towards the up-gradient direction (a), where the time spent on moving towards the
higher concentrations is about 10% longer than that spent on moving towards the lower con-
centrations. In addition, compared to the mean speed of down the gradient, the free swimming
bacteria manifest a slightly higher (5% higher) speed when swimming up the chemoattractant
gradient.

bacteria-driven microrobots, which in turn corroborates that a similar signaling pathway model

is shared between pH-taxis and chemotaxis [110, 111].

Differences in the measured values are seen across the five analyzed samples, as shown

in Fig. 3.13(a, b). One source of these differences is the variances in the fabrication process

between samples. For example, the mean speed of the bacteria-driven microrobots mainly

depends on the average motility of the bacteria and the mean number of bacteria attached to

a microrobot. Since the bacterial motility and the percentage of motile bacteria are associated

with the location where the bacteria are extracted from the colony [55], slight discrepancies in

the extracting location of bacteria among the samples could introduce variances in the mean

speed between samples. In general, the bacterial motility parameters, such as the mean speed

and the mean tumble rate, as well as the average number of bacteria attached to a microrobot

all affect the motion characteristics, such as the mean speed and the heading direction reversing
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rate.

The results of this study not only help us better understand the physical mechanisms of

chemotaxis in bacteria-driven microrobots, but also offer us some guidelines for designing and

fabricating bacteria-driven microrobots with enhanced chemotactic performance. We find that

the chemotactic drift velocity increases superquadratically with the mean speed. Therefore, an

effective way to enhance the chemotaxis in bacteria-driven microrobots is to increase their mean

speed, which can be achieved by various techniques, such as using bacteria with higher motility,

aligning the bacteria on microrobots instead of random attachment, patterning the attachment

location [50] to increase the net propulsive force, and possibly decreasing the size or modifying

the shape [51] of microrobots to reduce the Stokes’ drag coefficient. On the other hand, depend-

ing on the availability or ease of deployment of a certain chemical gradient, chemotaxis may

be applied interchangeably with other taxes to implement drift control in bacteria-driven micro-

robots. The resemblance between chemotaxis and pH-taxis (studied in the next chapter) in the

bacteria-driven microrobots suggests that any potent tactic behavior of free swimming bacteria

that shares a similar signaling pathway with chemotaxis can be utilized to yield effective drift

control of properly designed bacteria-driven microrobots.

3.7.2 Summary

In this chapter, we have shown that potent chemoattractant can perform effective drift motion

control on properly designed bacteria-driven microrobots. The chemotactic drift in a multi-

bacteria-driven microrobotic system has been characterized, and the physical mechanism of the

associated chemotactic motion has been elucidated. First, we introduced the swimming model

of the bacteria-driven microrobots, which will also be used for the pH-taxis study in Chapter 4.

Before investigating the chemotaxis in the bacteria-driven microrobots, we studied the chemo-

tactic response of their actuators, S. marcescens bacteria, towards a potent chemoattractant of

L-serine, and the optimal concentration gradient (0.1 mM/mm) that elicits the highest chemo-
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tactic velocity was found. Subsequently, using the optimal concentration profile of L-serine,

we quantified the chemotactic drift of the bacteria-driven microrobots, and for the first time

we elucidated the physical mechanism associated with the chemotactic motion by the statisti-

cal analysis of over a thousand swimming trajectories of the bacteria-driven microrobots. The

results show that the microrobots have a strong heading preference for moving up the L-serine

gradient, while their speeds do not change considerably when moving up and down the gradi-

ent; therefore, the heading bias constitutes the major factor that produces the chemotactic drift.

The heading direction of a microrobot was found to be significantly more persistent when it

moves up the L-serine gradient than when it travels down the gradient; this effect causes the

apparent heading preference of the microrobot and is the crucial mechanism that enables the

seemingly cooperative chemotaxis of the multiple bacteria on a microrobot. At last, we found

that the chemotactic drift velocity of the microrobots increases superquadratically with their

mean swimming speed, suggesting that chemotaxis can be enhanced by designing and building

faster microrobots.

72



Chapter 4

pH-Taxis of Bio-Hybrid Microrobots

4.1 Introduction

Maintaining an appropriate pH level is vital to the survival of most microoganisms like bacteria,

and they have evolved various sensing and regulatory strategies to adjust their cytoplasmic pH

[112, 113]. Flagellated bacteria such as E. coli have also been found to exhibit bidirectional

pH-tactic behavior [110, 111, 114], i.e., moving away from both strong acidic and alkaline

pH environments, as illustrated by Fig. 4.1. Given the pH tactic response of these bacterial

strains and knowing that cancerous tumors have a lower pH compared to that of periphery

normal tissue [115, 116], it would be enticing to explore the potential of applying pH-taxis

based control of bacteria-driven microrobotic systems for targeted drug delivery applications.

To further explore the feasibility of such an approach, greater insight into the pH-tactic behavior

of typical bacteria-driven microrobots is required.

In this chapter, we present a method that takes advantage of the bacterial sensing of ambient

pH to achieve robust drift control of bacteria-driven microrobots. The same design and fab-

rication procedure are followed to prototype the bacteria-driven microrobots for the pH-taxis

study. S. marcescens is employed as the bioactuator, not only because it is a typical flagellated

bacterial strain with high motility and tactic behaviors, but also because of its natural adhesion
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Figure 4.1: Bacterial pH-tactic migration towards their preferred pH region, enabled by the
opposite pH-tactic responses of two major receptors Tar and Tsr (reprinted from [110]).

to negatively-charged, hydrophobic surfaces [55, 63], which greatly simplifies the assembly

process of the microrobots. S. marcescens bacteria swim in liquid environments by incessant

alternation of run and tumble states similar to E. coli [66], with an average tumble rate mea-

sured to be around 1.3 s−1 [55]. Their mean swimming speed can be as high as 47 µm/s [20].

Temperature responses and chemotaxis of S. marcescens have been characterized and have also

been found to resemble those of E. coli [54, 55, 57]. Since a common signaling machinery is

suggested for chemotaxis, thermotaxis, and pH-taxis [111], it is expected that S. marcescens

also maintain a similar pH-tactic behavior as E. coli.

To perform a drift control study of bacteria-driven microrobots, we use the three-channel

microfluidic device (see details in Appendix B) to generate three stable pH gradients. The

bidirectional pH-taxis of free swimming bacteria is observed for the first time using the config-

ured pH gradients; tracking of the swimming bacteria allows us to determine that the bacterial

pH-tactic motion is mediated by the biased flagellar tumble rates. Subsequently, we study the

distribution and motion of the microrobotic swarms driven by S. marcescens. Depending on the

applied pH gradient profile, the bacteria-driven microrobots are shown to exhibit either bidirec-

tional or unidirectional tactic motion. Since it is not intuitively clear how a microrobot with

multiple bacteria attached in random directions can produce the similar pH-tactic response as
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free-swimming bacteria, we perform a detailed analysis on the swimming trajectories of indi-

vidual microrobots, which enable us to conclude that it is two motion bias factors that contribute

to the tactic drift of the bacteria-driven microrobots.

4.2 pH Gradient Calibration

Unlike the generation of pH gradients by electrolysis [117], a diffusion-based method can elimi-

nate the electrical field induced effects on the motion of bacteria-driven microrobots. Therefore,

a flow-free diffusion based gradient generator design [70, 71] was applied to fabricate the pH

gradient generator. As shown in Fig. 4.2(a,b), the gradient generator consists of three parallel

channels, namely the sample channel and two side channels. The width of the channels is 500

µm and the height is around 200 µm. The channels are separated from each other by two 250

µm wide agarose gel ridges. A constant flow of fluid was pumped through the outlets of the

two side channels, whereas the outlets of the sample channel were sealed to decrease undesired

drift flows. A programmable syringe pump (Braintree Scientific Inc.) was used to pump fluid

with different pH values into the two side channels at a flow rate of 5 µL/min. Generation of a

linear concentration gradient in the device has been fully calibrated in Chapter 2.

To create solutions with different pH values, either HCl or NaOH solution was added to

motility buffer (0.01 M KH2PO4, 0.067 M NaCl, 10−4 M EDTA, pH = 7.0). Three stable pH

gradients were generated by pumping motility buffer with different values of pH into the two

side channels of our device. To verify the existence of a stable pH gradient in the sample chan-

nel, the same concentration of an appropriate pH indicator was added to all three channels.

The pH gradients were visualized in situ and the pH transition in the sample channel was de-

termined, as shown in Fig. 4.2(b). Based on the indicator color charts and the resulting color

profiles, the following pH ranges were measured: Gradient 1 maintains a pH range between 6.0

(bottom) and 7.6 (top) in the sample channel, and a neutral pH region lies close to the center

line of the sample channel; Gradient 2 maintains a pH range between 3.8 (bottom) and 5.4 (top),
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Figure 4.2: (a) Configuration of the three-channel diffusion-based pH gradient generator (side
view). (b) Top view of the three parallel channels and the three gradient profiles visualized
in situ by three appropriate pH indicators, where bright lines in the color profiles indicates the
channel walls. The pH gradient in the sample channel was generated by pumping two fluids with
different constant pH values into the side channels, while the sample channel was completely
closed and quiescent. The pH indicators used to visualize the three gradients from left to right
were Bromothymol Blue (sensitive pH 6.0 - 7.6, with color transitioning from yellow to blue),
Bromocresol Green (sensitive pH 3.8 - 5.4, with color transitioning from yellow to blue) and
Cresolphthalein (sensitive pH 8.2 - 9.8, with color transitioning from colorless to purple).
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creating a more acidic environment along the bottom; the color profile of Gradient 3 indicates

a pH range between 8.2 (bottom) and 9.8 (top), showing that the top is more alkaline. The

pH gradients generated by the diffusion of ions were verified to be stable by the constant color

profiles of the indicators after the estimated diffusion time. Since the time scale of ionization

and recombination is negligible compared to that of diffusion, the diffusion time of H+ (0.9

min) and OH− (1.6 min) across the two side channels was used to characterize the stabilization

time of the pH gradients. In addition, we can treat the ionization of the sample solution to be

quasistatic at each moment, i.e., there was no electric field induced by the diffusion of ions.

4.3 pH-Taxis of Free-Swimming Bacteria

Using a diffusion based microfluidic gradient generator, three stable pH gradient profiles

(named Gradient 1, 2 and 3 for convenience) were created in a quiescent fluidic channel, where

samples of bacteria and bacteria-driven microrobots were loaded and tested. Gradient 1 was

created to study the bidirectional pH-taxis of bacteria and also to demonstrate that the bacteria-

driven microrobots can be navigated by the ambient pH distribution, while Gradients 2 and 3

were used to quantify the unidirectional drift of the bacteria-driven microrobots and therefore

unveil the multi-bacterial driving and steering mechanism.

4.3.1 Bacterial Bidirectional pH-taxis

Based on recent fluorescence resonance energy transfer (FRET) results as well as mathematical

models, it has been proposed that E. coli is capable of taxis away from both strongly acidic

and alkaline environmental conditions, resulting in accumulation of the bacteria at an optimal

pH region [110, 114]. However, such bidirectional taxis has never been visualized directly, and

the associated swimming behavior has not been studied. Using Gradient 1 (pH: ∼6.0 to 7.6+),

which is a stable pH gradient that covers the pH transition from acidic to alkaline, we were able
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to observe the bidirectional pH-taxis of S. marcescens (see Appendix A for growing conditions.)

directly. As shown in Fig. 4.3(a, b), the bacteria accumulate to form a band around the center

line of the sample channel after about 1.5 min from the start of the experiment; the position of

the band corresponds to a pH value slightly above 7.0. From the color chart of the pH indicator,

the optimal pH was found to correspond to values between 7.0 and 7.3. The distribution profile

shows a sharper decrease in bacterial number in the transition from ambient to alkaline pH than

the transition from ambient to acidic pH; this is probably due to the drastic pH change at this

corresponding location.
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Figure 4.3: Bacterial bidirectional pH-taxis. (a) A phase contrast image of the free swimming
S. marcescens at steady state (stabilized after ∼1.5 min) under Gradient 1, where the black and
white dots are cell bodies of bacteria. (b) Probability distribution of bacteria position extracted
from multiple images at steady state.
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4.3.2 Bacteria Tumble Rate Distribution

Bacteria in an isotropic environment follow a purely random walk, which generates a uniform

distribution of bacteria in a bounded space at steady state; a nonuniform distribution of inces-

santly moving bacteria in our sample channel reveals a motion deviating from a random walk.

A biased distribution of bacteria is often seen in bacterial chemotaxis, which has been attributed

to a biased tumble rate distribution based on swimming direction. Since FRET results [110] in-

dicate that similar signaling pathways are employed in both bacterial pH-taxis and chemotaxis,

it is reasonable to expect that the banded distribution of S. marcescens under a pH gradient is

also a result of a biased tumble rate. By tracking the bacterial swimming direction and detecting

the number of tumble events in two rectangular regions with pH values below and above the op-

timal value, we find that the tumble rate distribution is significantly biased and is dependent on

the swimming direction (Fig. 4.4). For both regions, the average tumble rate (based on ∼2000

trajectories) of the bacteria is found to be substantially lower when swimming toward the opti-

mal pH (∼1.0 s−1) than when swimming toward the opposite direction (∼1.5 s−1). Our results

corroborate the reported bidirectional pH-taxis signaling pathway model [114] and indicate a

resemblance between E. coli and S. marcescens in terms of pH-tactic behavior.

4.4 pH Tactic Drift of Microrobotic Swarms

In this section, we characterize the pH tactic drift of the bacteria-driven microrobotic swarms

under: (a) bidirectional pH-taxis away from both acidic and alkaline regions (Gradient 1), and

(b) unidirectional pH-taxis away from more acidic region or more alkaline region (Gradient 2,

3). All the experiments were done at room temperature, around 20◦. The video recording was

started immediately after the initiation of flows in source and sink channels.
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Figure 4.4: Bacterial tumble rate distribution (Gradient 1). A phase contrast image of the bac-
terial distribution in the sample channel is shown in the middle; the image height corresponds
to the full channel width. (a) Tumble rate distribution on the acidic side of optimal pH (∼7.0).
(b) Tumble rate distribution on the basic side of optimal pH. In both cases, the average tumble
rate when bacteria move towards the optimal pH is around 1.0 s−1, while it is around 1.5 s−1

when moving towards unfavored pH regions.

80



4.4.1 Bidirectional Tactic Drift

By exposing a large number of microrobots to Gradient 1, we demonstrate pH-tactic drift of

the bacteria-driven microrobots. As shown in Fig. 4.5, the microrobots were initially uniformly

distributed. Over time, the uniform distribution evolves into a dense band of microrobots located

around the centerline of the channel. This steady state distribution is achieved after about 6

minutes. The most probable location for the bacteria-driven microrobots at steady state, which is

shown in Fig. 4.6, coincides with that of free swimming bacteria (the optimal pH value). A side

by side comparison between the distribution profile of free swimming bacteria and microrobots

indicates a high degree of resemblance; in both distributions, there is a sharp decrease on the

alkaline side of the optimal pH.

4.4.2 Unidirectional Tactic Drift

While the bidirectional pH-taxis shows the versatility of bacterial pH-taxis, it is preferable to

study the bias factors that drive the tactic behavior under unidirectional taxis. Therefore, two

more pH gradients, Gradient 2 (pH: 3.8- to 5.4+) and Gradient 3 (pH 8.2- to 9.8+) (see more

details in the methods section), were created to achieve the unidirectional drift control of the

bacteria-driven microrobots. It took approximately 10 minutes for the majority of the micro-

robots to accumulate on one side of the channel in the two cases studied: taxis away from a

more acidic condition (Fig. 4.7(a)) and taxis away from a more alkaline condition (Fig. 4.7(b)).

By image processing, the y component of the center of mass (COM-y, see details in Chapter

3) of the microrobots in the sample channel can be computed at different time points. In Fig.

4.8(a, b), the drift behavior is shown to be highly consistent among the three tested samples for

the two cases. In the drifting process, some microrobots reached the channel wall and stopped

their drifting motion but were still taken into account when calculating the average COM-y.

This results in an artificial decrease in the slope of the COM-y over time as shown in Fig. 4.8(a,

b). Thus, the time derivative of the COM-y produces an underestimation of the actual pH-taxis
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Figure 4.5: Fluorescent images of the microrobots (green dots) show the evolution of the mi-
crorobot distribution in a fixed focal plane over time. The height (y dimension) of each image
covers the full channel width. The inset on the left side of each panel indicates the intensity
profile of the frame along the y-axis. The color bars on the right hand side indicate the ambient
pH gradient profile (Gradient 1).
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Figure 4.6: Probability distribution of the microrobot position across the width of the sample
channel, where each distribution is averaged from 200 fluorescent images taken around the
corresponding time point.

drift velocity of the microrobotic swarm; a more accurate characterization of the pH-taxis drift

velocity is obtained in the following section via analysis of the swimming trajectories of the

microrobots.

4.5 Phenomenological Mechanisms of pH-Taxis in Micro-

robots

4.5.1 Tracking of Microrobots and Trajectory Analysis

To understand how a bacteria-driven microrobot, which consists of a microsphere propelled

by a group of randomly oriented bacteria, is endowed with pH-taxis capabilities, we tracked

the individual microrobots subjected to unidirectional pH-taxis. Details of the visual tracking

system were described in Chapter 3. Motions of slowly moving microrobots are susceptible to
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Figure 4.7: Unidirectional pH-tactic drift of bacteria-driven microrobots. Fluorescent images
show the tactic motion of microrobots away from more acidic (a) and more alkaline (b) con-
ditions in the sample channels, where Gradients 2 and 3 were applied, respectively. The inset
on the left side of each panel in (a) and (b) indicates the intensity profile of the frame along the
y-axis.
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Figure 4.8: Drifting process of bacteria-driven microrobotic swarm characterized by the COM-
y of the swarm: (a) and away from more alkaline regions (b). The results for three different
system samples are shown for each case.

ambient flows (0.41 ± 0.21 µm/s); thus we only included the trajectories of the microrobots

with an average speed greater than 4 µm/s (∼10 times the ambient flow speed) in our analysis.

In addition, trajectories that came within 50 µm (∼15 times the body length of the microrobot)

of the walls were removed from the analysis since these microrobots were subjected to wall

effects. Using these two criteria, over 900 trajectories were collected and analyzed for each

swarm sample undergoing unidirectional taxis. A number of sample trajectories are plotted

in Fig. 4.9, where the locations of the trajectories represent their real locations in the sample

channel. The same 1D drift model (Eq. 3.6) and trajectory decomposition method (see details

in Chapter 3) were used to analyze the trajectories of the bacteria-driven microrobots under

pH-taxis.

4.5.2 Heading Bias

The heading direction of all the trajectories (from three swarm samples) were determined on a

frame-by-frame basis. By counting the number of frames where the swimming direction (i.e.
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Figure 4.9: Sample swimming trajectories of bacteria-driven microrobots. The trajectories are
randomly picked from the previous samples undergoing unidirectional taxis away from an acidic
pH condition (Gradient 2). The starting positions are marked by circles (green and blue); the
red trajectories have net y-displacements from acidic to neutral pH, while the gray ones have
net y-displacements from neutral to acidic pH.
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orientation angle) was within a defined angle interval, the probability distributions of the swim-

ming heading could be generated. The distributions also represent the portion of time that the

microrobots spend on swimming in each direction. Substantial biases in heading distributions

are observed in Fig. 4.10(a, b). The least probable swimming directions correspond with the

unfavorable conditions and the most probable directions correspond with the favorable condi-

tions. The heading distribution provides a quantification of the swimming angle preference of

the microrobots and can be used to calculate the tactic drift velocity; however, it is not intu-

itively clear how the heading bias is achieved. Our following study on the swimming direction

reversing rate along the y-axis (pH gradient direction) sheds light on the answer.

  2000
30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

0.025

0.050

P

  1000
  2000 30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

0°180°

0.025

0.050

P
Neutral

Acidic

Basic

Neutral

a b

Figure 4.10: Probability distributions of the swimming heading in 2D, (a) Away from more
acidic condition, (b) Away form more alkaline condition. The pink color indicates results from
motion towards favored pH regions while the gray color shows the corresponding results from
motion towards unfavored pH regions; this rule is also true for Fig. 4.11 and Fig. 4.12.

4.5.3 Speed Bias

In addition to the heading bias, there is also a bias in the average swimming speed with respect

to the swimming direction (Fig. 4.11(a, b)); namely, a higher speed is observed when moving

toward the favored pH region. Due to the low Reynolds number of the swimming motion, the

hydrodynamics of a swimming bacteria-driven microrobot can be described by Stokes’ law,
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as described in detail in Chapter 3. From the linear relationship between F and v, we can

conclude that on average the bacteria attached to a microrobot exert a higher propulsive force

on the microrobot when it moves towards a favored pH environment.
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Figure 4.11: Average 2D swimming speed with respect to the heading direction along the y-
axis. (a) Away from more acidic condition, (b) Away form more alkaline condition.

4.5.4 pH Tactic Drift Velocity

Base on Eq. 3.6, the 1D drift velocity of the bacteria-driven microrobots in the gradient direc-

tion can be readily computed from our measurements on the heading bias, speed bias, and the

average swimming speed along the pH gradient direction. The average headings (the dashed

arcs in Fig. 4.10) are used to evaluate the average heading time bias β (expressed in the methods

section). The drift velocities of the two cases (moving away from more acidic pH regions and

moving away from more alkaline pH regions) were calculated to be similar, both of which are

around 0.5 µm/s. We further examined the relative contributions of the heading bias and speed

bias to the overall drift velocity: the heading bias contributes to ∼75% of the total drift velocity

while the speed bias contributes to ∼25% of the total. This indicates that, in addition to the
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heading bias, the speed bias is an essential mechanism of the microrobot’s tactic motion; this

is a departure from the mechanisms known to cause the biased random walk observed in free

swimming bacteria under pH-taxis or chemotaxis.

4.5.5 Direction Reversing Rate Bias

In Fig. 4.12(a, b), we present the heading direction reversing rate (y-component) of the bacteria-

driven microrobots with respect to their heading directions. Since the y component of the ve-

locity of a microrobot determines whether the microrobot is swimming towards the optimal

pH region or not, we classified the headings of all frames into two groups in terms of their y

direction: heading towards the optimal pH (shaded in red) and heading away from the opti-

mal pH (shaded in gray). The direction reversing rate of each heading group is simply defined

as the total number of y direction switchings (from +y to −y or vice versa) observed in that

group divided by the total number of frames of that heading group. As shown in Fig. 4.12(a,

b), across the three different samples of each case, the average direction reversing rate when the

microrobots move towards favored pH regions is consistently smaller than that of moving to-

wards unfavored pH regions. In other words, the orientation of the bacteria-driven microrobots

is more persistent and less likely to change when they move towards the favored pH regions;

this yields a larger portion of time spent moving towards an optimal pH region, as revealed by

the heading bias in Fig. 4.10(a, b).

4.5.6 Dependence on Speed

Since a wide variance in the swimming speeds of the bacteria-driven microrobots was observed,

it is meaningful to inquire about the potential influence of the absolute swimming speed on the

motion bias. To analyze the dependence on swimming speed, the captured trajectories for each

unidirectional pH-taxis case were divided into groups based on their mean instantaneous speed,

as shown along the x-axis in Fig. 4.13. The relative reversing rate bias ((r− − r+)/(r− + r+),
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Figure 4.12: Heading direction reversing rate with respect to the heading direction along the
y-axis. (a) Away from more acidic condition, (b) Away form more alkaline condition.

where r− and r+ are reversing rates towards and away from optimal pH, respectively) quantifies

the dependence of the drift velocity on the direction reversing rate [68]. Both speed and relative

reversing rate biases increase with increasing mean swimming speed, and this trend holds true

for both cases (away from acid, away from base). Since the speed bias and reversing rate bias

(or heading bias) are factors that contribute to a biased random walk, it can be concluded that the

bacteria-driven microrobots exhibits a stronger tactic motion when a higher swimming speed is

achieved.

4.6 Discussion and Summary

4.6.1 Discussion

We have studied the pH-tactic behavior of a large number of bacteria-driven microrobots in a

microfluidic channel with a stable spatial pH gradient. It has been demonstrated that the spatial

pH gradient can effectively and consistently generate drift motion in the biohybrid system. To
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Figure 4.13: Dependences of motion biases on the swimming speed. (a) Swimming speed bias
with respect to the average swimming speed. (b) Relative reversing rate bias with respect to
the average swimming speed. The horizontal error bars indicate the standard deviation of mean
speeds for the trajectories grouped within a given speed interval (4 - 5, 5 - 6, 6 - 7, 7 - 8, 8 - 9
and ≥ 9 µm/s). The vertical error bars in (a) denote the standard deviation of the speed bias for
the trajectories falling within the corresponding speed intervals. In both (a) and (b), each speed
interval has over 80 sample trajectories measured.
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fully understand the biased motion of the bacteria-driven microrobots and the mechanisms that

produce the biased motion, we tracked individual microrobots and analyzed their trajectories.

For free swimming bacteria, the tumble rate is biased with respect to swimming direction, yield-

ing a heading bias, which in turn generates a pH-tactic or chemotactic drift velocity. However,

unlike the clear run and tumble switching pattern of free swimming bacteria, the motion of

bacteria-driven microrobots can be described as an incessant translation with gradual changes

in heading direction. From a trajectory analysis, the drift velocity of the bacteria-driven micro-

robots under a stable pH gradient is found to result from two factors, namely, the heading bias

and the swimming speed bias.

To explain how the heading bias is produced in the bacteria-driven microrobots, we must

understand the effect of pH on the flagellar tumbling rate. Free swimming bacteria increase

their flagellar tumbling rates when moving towards unfavored pH regions or when sensing un-

favored temporal pH changes. Since the assembly of bacteria onto micro polystyrene beads

relies on physical adherence, we do not expect fundamental changes to the chemical sensing

machinery of the bacteria after integration with the beads. Therefore, when a microrobot moves

toward unfavored pH regions, the average flagellar tumbling rate of the attached bacteria tends

to increase, and this introduces more disturbances to the motion of the microrobot by frequently

changing the applied forces and torques. As a result, compared with the motion towards favored

pH regions, the microrobots maintain less consistency in their swimming directions when mov-

ing towards unfavorable pH regions; this leads to the reversing rate bias and hence the heading

bias.

As we already discussed, the swimming speed bias reveals a bias in the propulsive force

on the bacteria-driven microrobot. Presumably, when a microrobot moves towards a favorable

pH, less flagella are in a tumble state than when compared to moving towards an unfavorable

pH. However, a detailed observation of the flagellar morphology when bacteria are attached to

a moving objects is essential to fully understand the physical mechanisms. The dependencies of
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the motion bias on the swimming speed is potentially due to the fact that bacteria sense the tem-

poral change of the ambient pH [67]; since the spatial pH profile is constant, it is the swimming

velocity that determines the temporal pH gradient seen by the bacterial receptors. Therefore,

the enhanced motion bias at higher swimming speeds could be explained by a stronger temporal

pH gradient being sensed.

The work of Hu and Tu indicates that a common biochemical signaling pathway is respon-

sible for different kinds of bacterial taxis behaviors, including pH-taxis, chemotaxis, and ther-

motaxis [111]. We have demonstrated the motion guiding of bacteria-driven microrobots via

chemotaxis, and it is highly possible that appropriate temperature gradients could also enable

effective drift control of bacteria-driven microrobots; thermotaxis is expected to bear the same

physical driving mechanisms that we have found in the pH-taxis and chemotaxis of bacteria-

driven microrobots. To apply bacteria-driven microrobots for applications in bioengineering

and medicine, reliable and efficient control of them at the swarm scale is a critical step. Our

demonstrations of robust drift control using pH gradients expand the current scope of the mo-

tion control methods of bacteria-driven microrobots. The availability of a pH gradient or ease

of deploying a gradient in the workspace will highly depend on the specific application. This

study suggests the potential feasibility of applying pH-taxis, chemotaxis, and thermotaxis as

motion control methods of bacteria-driven microrobots, and from which an appropriate method

can be chosen based on the specific application.

4.6.2 Summary

In this chapter, we have characterized the pH-taxis in a prototype of bacteria-driven micro-

robots, which concludes that bacterial pH-taxis can be used an effective drift control means

for properly designed bacteria-driven microrobots. In the three-channel concentration gradient

generator we created and qualitatively calibrated three different pH gradients, which can induce

two types of tactic behaviors on free swimming bacteria: (a) unidirectional pH-tactic behavior
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away from more acidic pH or away form more alkaline pH, and (b) bidirectional pH-tactic be-

havior away from both higher and lower pH regions. Subsequently, we demonstrated that the

bacteria-driven microrobots also exhibited both unidirectional and bidirectional pH-tactic be-

haviors, and the associated tactic drifting processes was quantified; in the case of unidirectional

pH-taxis, the microrobotic swarm maintains an approximately constant drift velocity when free

from wall effects. To understand the physical mechanism of pH-taxis in the bacteria-driven mi-

crorobots, thousands of the swimming trajectories of the microrobots were tracked by a visual

tracking program. Based on the trajectory analysis, we have found that the swimming heading

bias and the speed bias are two factors which contribute to their tactic drift motion, where the

heading bias is dominant over the speed bias. The trajectory analysis also shows that the swim-

ming direction of a microrobot is found to be more persistent when it moves towards favored

pH regions, which is the cause of the observed heading bias. Furthermore, the pH-taxis is found

to be enhanced on faster microrobots; this trend is also followed by the chemotaxis of bacteria-

driven microrobots. Finally, the resemblance of the physical mechanism between the pH-taxis

and chemotaxis of the bacteria-driven microrobots corroborates that a similar signaling path-

way is shared between bacterial chemotaxis and pH-taxis. By demonstrating the pH-taxis of

bacteria-driven microrobots and identifying the physical mechanism that drives the pH-tactic

motion, this chapter opens up an new avenue towards improving the control of such biohybrid

microrobots.
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Chapter 5

Modeling Bacteria-Driven Microrobots

5.1 Introduction

Onboard micron-scale actuation and powering has been remained a grand challenge for the

miniaturization of active devices down to scales of a few microns. However, nature has its

own solutions since billions of years ago: flagellated swimming bacteria can efficiently con-

vert chemical energy into mechanical actuation with their nanoscale biomotors. Over the

past decade, numerous studies have been conducted on harnessing flagellated bacteria, such

as E. coli and S. marcescens, as propellers for biohybrid microrobots [22, 24, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 52, 58, 62, 118], aiming to solve the pressing engineering prob-

lems like targeted drug delivery for tumor therapy [36, 37, 119, 120]. Recently, efforts have

also been made to guide the motion of such bacteria-driven microrobots through taxis-based

[36, 48, 49, 50, 51, 52, 56, 57] and magnetic steering [37, 46] approaches. Among these stud-

ies, the most common way to integrate bacteria into biohybrid microrobots is attaching intact

bacterial cells onto the surfaces of synthetic microstructures, such as polystyrene beads, where

the attachment could be enabled either by physical attraction [24] or through chemical bonding

[36]. Current bacteria-driven microrobots vary vastly in materials, body shape and size, and

bacterial attachment configurations; choices of these design parameters, however, have been
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mostly based on human intuition and empirical observation, lacking a systematic method to

optimize the design of such biohybrid microsystems with respect to the their performance in-

dicators, such as motility and guidability. To this end, it is essential to develop an analytical

model that can describe the motion of bacteria-driven microrobots by incorporating critical de-

sign parameters, bacterial propulsion mechanics, and common guiding mechanisms such as

chemotaxis.

In fluid media, free-swimming peritrichous flagellated bacteria like E. coli propel them-

selves through a combination of running states, during which the flagella form a bundle rotating

counterclockwise (CCW) and propel the cell body straight forward, and tumble states, during

which the flagella fall apart by clockwise (CW) rotation and the cell body is randomly reori-

ented. Three-dimensional (3D) tracking results of bacterial swimming motion indicate that their

speed during the running states is nearly constant, but it drops significantly or almost to zero

during the tumble states [66]. Following from the linear force-speed relation characterized by

Stoke’s law, we can conclude that the propulsive force of the running states is approximately

constant, while the propulsive force is relatively negligible during the tumble states. Apart from

the translational motion resulted from the propulsive force, the bacterial cell body also rotates

due to a reaction torque, and the rotation frequency is measured to be around 20 Hz for E. coli

[121, 122]. The kinematic and dynamic quantities related to free-swimming bacteria propulsion

can be measured through visual tracking methods [121] and optical tweezers [122]. Although

the free-swimming propulsion of flagellated bacteria is well characterized, less is known about

how the attached bacteria exert forces and torques on biohybrid systems, such as bacteria-driven

microrobots. Recently, helical-shaped trajectories have been observed for bacteria-driven mi-

crobeads, each with only one or few bacteria attached [34], which suggests that the microbeads

were propelled by near-constant forces and torques during the helical trajectory segments. Two

simple stochastic models have been proposed to simulate the swimming motion of spheres pro-

pelled by bacteria [53, 123]; however, these models fail to capture the helical motion observed
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experimentally, possibly due to oversimplified construction of the model.

Bacteria are generally sensitive to various environmental conditions, including chemoattrac-

tant/repellant, pH, oxygen level, temperature, and light. Some cues, such as spatial chemoattrac-

tant gradient, can elicit strong biased motion in bacteria, called taxis behavior, e.g., chemotaxis.

Such natural sensing abilities of bacteria are considered to be ideal guiding mechanisms for the

motion of biohybrid microsystems, especially for healthcare applications in the human body,

where chemical cues are ubiquitous. Thus far, the taxis-based guiding method constitutes the

major way to regulate the otherwise highly stochastic motion of bacteria-driven microrobots,

which has been studied both in vitro [48, 49, 50, 51, 52, 56, 57] and in vivo [36, 37]. Chemo-

taxis, one of the most common taxis behavior in bacteria, has been well understood [124] and its

signaling pathway has been mathematically modeled [79, 81, 84, 85, 86, 91, 94]. In general, the

chemotaxis of free-swimming bacteria associates with a biased random walk, enabled by pref-

erentially suppressed tumble tendency when the bacteria travel up a chemoattractant gradient;

whereas in an uniform medium, the tumble tendency is isotropic over all swimming directions.

Chemotaxis drift has been observed in bacteria-driven microrobots [48, 49, 50, 51, 52, 56],

which typically consist of a spherical particle with multiple bacteria attached at random posi-

tions and orientations. Since the chemotaxis of bacteria-driven microrobots involves multiple

bacteria whose cell bodies are interconnected through their commonly attached particle, this be-

havior is featured with some collective characteristics. As a result, despite the well-established

mechanisms of bacterial chemotaxis, the chemotaxis of bacteria-driven microrobots can hardly

be readily explained.

In this chapter, to shed more light on the bacterial propulsion and the chemotaxis in bacteria-

driven microrobots, we propose a model to simulate the 3D motion of a multiple bacteria-driven

microrobot system. The whole system is modeled though a combination of two subsystems:

(a) multi-bacterial propulsion and microrobot swimming dynamics, and (b) bacterial chemo-

sensing and flagellar rotation dynamics. For model validation, the results of model simulations
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are compared to the experimental characterizations of bacteria-driven microrobots from differ-

ent aspects: 3D swimming trajectory, motility characteristics, and chemotaxis. The simulation

of the model indicates that the collective chemotaxis of the multiple bacteria attached to a mi-

crorobot could be due to the synchronized kinase activity among these bacteria as a result of

their close spatial proximity. Furthermore, we use this model to study the critical parameters

that affects the performance of bacteria-driven microrobots, serving as the first step towards the

optimized design of bacteria-driven microrobots for specific application objectives.

5.2 Biophysical Models for Bacteria-Driven Microrobots

In general, the model treats each bacterium attached to a microrobot as a two-state machine, and

describes the whole system with two subsystem models: the multi-cellular propulsion model

and the bacterial chemotaxis signaling pathway model. The multi-cellular propulsion model

describes how the attached bacteria exert forces and torques on a microrobot and how the mi-

crorobot swims in a fluid medium given its instantaneous propulsion force and torque. The

bacterial signaling pathway model outlines the state transition dynamics of a bacterium in re-

sponse to its local chemical concentration changes over time. Details of these two models are

described in the following subsections.

5.2.1 Multi-cellular Propulsion Model

Most of the studies on bacteria-driven microrobots adopt a similar design, which is a sphere-

shaped microobject driven by single or multiple flagellated bacteria attached to the sphere in

random locations and orientations [24, 29, 32, 34, 35, 36, 48, 49, 50, 51, 52, 56, 57, 62]. This

particular design is chosen for its easier fabrication, characterization, and analysis, and also

isotropic physical properties, such as drag coefficient, in all orientations. Therefore, we focus

on modeling and experimental validation of such design of bacteria-driven microrobots in this
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study.

To simplify the system, we only consider the case that bacteria attached to the sphere are

fully fixed (no position and orientation change) on the surface and perform rigid body transla-

tion and rotation with the sphere. Indeed, this condition is usually satisfied in practice by using

relatively strong binding mechanisms, such as covalent and biotin-streptavidin binding. Scan-

ning electron microscope (SEM) imaging (Fig. 5.1(a)) shows that bacteria typically attach to

sphere surfaces on their sides or with a small tilt angle, but other than that, the attachment ori-

entation of bacteria is purely random. Flagella morphology is another important consideration

in the bacterial propulsion model, because it determines the propelling forces exerted on the mi-

crorobot. A video published by Carlsen et al. [46] indicates a bundling behavior of flagella over

the bacterial propulsion of a 6µm diameter bead. In addition, through analysis of 3D swimming

trajectories, Edwards et al. reported a near-constant propulsive force on the microsimmers,

consisting of a 5µm diameter bead attached by a single S. marcescens bacterium [34], which

suggests that the attached bacterium could be running over that period. Although the bacte-

rial flagella could have more complicated morphologies over bacterial propulsion, based on the

available observations, we conjecture that a “bundle-and-unbundle” dynamics, corresponding

to the bacterial “run-and-tumble” motility, could still be the dominant flagellar morphology

transition pattern. Following from this assumption, the attached bacteria can be modeled as a

finite state machine with two states, running and tumbling, and the transition between these two

states are determined by their chemical signaling pathway, discussed in the next subsection.

The force and torques exerted by a bacterium on the sphere is state dependent, as illustrated in

Fig. 5.1(b); the total propulsive force and torques on the sphere are the summed contributions

of all attached bacteria under their current states (run or tumble). Furthermore, we adopted a

relatively stiff flagella (bundle) models: each flagellar bundle has a predefined orientation but a

stochastic oscillation is allowed around the predefined orientation, which tends to represent the

experimental observations [46]. However, except for introducing some white noise to simulate
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the stochasticity of the real system, the oscillation consideration does not affect the the model

behavior.

F

T

f r

 r

f t
 t
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Tumbling

a b

1 μm

Figure 5.1: Bacteria-driven microrobots with a spherical body. (a) SEM pictures showing 2µm
diameter polystyrene microspheres, each attached by a few E. coli bacteria. (b) An illustration
of the forces and torques exerted on the spherical microrobot body by its attached bacteria,
where the force and the motor reaction torque of each bacterium are state dependent.

Below is a summary of the major assumptions of the bacterial multi-cellular propulsion

model:

• Attached bacteria maintain their positions and orientations over time and perform rigid

body translation and rotation together with the sphere;

• Attached bacteria transition between run and tumble states and exert different forces and

torques under different states;

• Interactions between the attached bacteria on a common sphere, if exist, are small and

thus negligible for studying the average behavior of the microrobots;

• The swimming motion occurs at low Reynolds numbers and can be approximated by

Stokes’ law;

• Physical interactions among the microrobots are neglected due to their low concentration

in medium.
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With these assumptions, the instantaneous propulsive force F and torque T on a microrobot

can be described as follows:

F =
∑
s∈{r,t}

ns∑
i=1

f̄
s
i + f̃

s

i

||f̄ si + f̃
s

i ||
||f̄ si ||, (5.1)

T =
∑
s∈{r,t}

ns∑
i=1

τ̄ si + τ̃ si
||τ̄ si + τ̃ si ||

||τ̄ si ||+ rsi ×
f̄
s
i + f̃

s

i

||f̄ si + f̃
s

i ||
||f̄ si ||, (5.2)

where s indicates bacterial state, either running (r) or tumble (t), ns is the number of bacteria

currently in state s, f̄ si and τ̄ si are the predefined force and torque of the i-th bacteria under state

s, respectively, f̃
s

i and τ̃ si are the oscillation force and torque of the i-th bacteria under state s,

respectively, and ri is the position vector of the i-th bacteria under state s with respect to the

sphere frame. Described in Eq. 5.1, the current force vector of a bacterium is determined by

its predefined force f̄ , where the direction is aligned with the longitude of the cell body, plus a

small oscillation component f̃ , which is a random vector perpendicular to f̄ ; the magnitude of

the current force is regularized to an measure average value, ||f̄ ||. The instantaneous resultant

propulsive forceF on the sphere is computed by summing up the current propelling forces of all

of the attached bacteria. The force denotation and modeling rules are also applied to the motor

reaction torque τ , as shown in the first term in the summation of Eq. 5.2, where the second term

in the summation computes the force-induced toque by the propelling force. Thus, the torque

contribution of a bacterium includes two parts, the motor reaction torque and the force-induced

torque; summing them over all of the attached bacteria gives the instantaneous driving toque T

on the sphere, as described by Eq. 5.2.

Bacteria-driven microrobots typically operate at Reynolds numbers below 10−4, in which

inertial effects are neglected and fluid motion is governed by the Stokes equation. Consider-

ing the spherical rigid body in our model, instantaneous fluid drag force (F drag) and torque

(T drag) can be expressed in terms of the velocity and the angular velocity of the moving sphere,
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respectively, as follows:

F drag = −6πηRv, (5.3)

T drag = −8πηR3ω, (5.4)

where η is the dynamic viscosity of the fluid medium, R indicates the radius of the sphere,

and v and ω are the instantaneous velocity and the angular velocity of the sphere. Because the

drag force and torque are always balanced by the propulsive force and torque, respectively, i.e.,

F = −F drag and T = −T drag, we can infer the instantaneous velocity and angular velocity

of the sphere from its present propulsive force and torque. At each time step of the model

simulation, rigid body translation and rotation are performed for the sphere and the attached

bacteria to update their positions and orientations.

5.2.2 Bacterial Signaling Pathway Model

Although bacterial attachment to microrobots could block some of the ligand binding sites of

some methyl-accepting chemotaxis proteins (MCP, a transmembrane protein of bacteria for

sensing extracellular concentrations of molecules and transducing the signals to intracellular

regulators) physically, it is unlikely that their signaling pathway, which occurs mostly inside the

cell body, can be significantly affected by the attachment. Therefore, we adopted the chemotaxis

signaling pathway models established recently as the basic component of chemical sensing and

response for the bacteria attached to microrobots. Details of the signaling pathway models are

described as follows.

The chemotaxis signaling pathway of E. coli was modeled with three major components,

and their corresponding models were adapted from recent studies [79, 81, 84, 85, 86, 91, 94].

The first component, MCP complex, was represented with a Monod-Wyman-Changeux (MWC)

model [125] to describe the allosteric effects of receptor clusters with identical receptors. Each

MCP complex switches rapidly between active (on) and inactive (off) states, determined by a
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free-energy difference F as follows [79, 81, 85]:

F (m, [L]) = fm(m) + ln

(
1 +

[L]

Ka

)
− ln

(
1 +

[L]

Ki

)
, (5.5)

where m is the total methylation level of the receptor complex, [L] indicates the ligand concen-

tration, Ka and Ki are the dissociation constants of active and inactive receptors, respectively,

and fm(m) = α(m0 −m), with α ≈ 1.7 and m0 ≈ 1 [77], is the methylation level-dependent

free energy difference. The suggested dissociation constants are Ka = 3 mM and Ki = 18.2

µM [126] but may be shifted slightly in simulation to match the most sensitive ligand concen-

tration. Hence the receptor kinase activity can be expressed as [81, 85]

a =
1

1 + exp(F (m, [L]))
, (5.6)

where N is the number of receptors in a receptor complex (N = 6 for Tar receptor and N = 13

for Tsr receptor [100]). The methylation kinetics was described by [86]

dm

dt
= kR(1− a)− kBa, (5.7)

where KR and KB are methylation and demethylation rates of the receptor, respectively; their

values were determined by fitting the experimental data on bacterial chemotaxis response. The

second component models the signal transduction from kinase activity to the concentration of

Che-Y-P, Yp, and we adopted a linear relationship in our simulation [81, 94], Yp = βa(t). The

third component in the signaling pathway deals with the flagellar rotation dynamics in response

to Yp. Enlightened by Sneddon et al. [94], we treated all the flagella of a bacterium as a single

stochastic bistable system bearing the transition rates k+ and k− to running and tumble state,
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respectively, which were modeled as a function of Yp:

k± = ω0 exp
{
±
[g0

4
− g1

2

( Yp(t)

Yp +KD

)]}
, (5.8)

where the parameter values were ω0 = 1.3 s−1, g0 = g1 = 40 kBT , KD = 3.06 µM [94].

The bacterial chemotaxis signaling pathway model simulates the signal transduction from

the local chemical concentration of a bacterium to its flagellar motor rotation response. Bacteria

typically sense a wide range of chemical concentration (gradient), spanning a total of 3 ∼ 4

orders of magnitude, by a receptor adapting mechanism. The bacterial flagellar motors can

produce biased tendency of rotation in CCW or CW direction, depending on the local chemical

concentration changes. The signaling pathway model captures these biophysical behaviors, and

the model simulation was compared to the corresponding experimental measurements [94, 100],

which served as the benchmark tests of the signaling pathway model. To verify the correctness

of our implementation of the model, we performed such benchmark tests, as shown in Fig. 5.2,

and which results confirms a correct implementation.

As a summary, the signal flow of the integrated model for bacteria-driven microrobots is

depicted in Fig. 5.3.

5.3 Simulation Setup and Experimental Methods

5.3.1 Simulation Setup

The simulated environmental conditions were 20◦C in temperature and 1 cP in viscosity, sim-

ulating the room temperature and the liquid medium used in experiments, and these conditions

were common to all simulations. The boundary condition, however, was different depending on

the simulation. For motion study of bacteria-driven microrobots, no boundaries were set, which

approximated the far-wall condition of the experimental measurements. In the chemotaxis stud-

104



Figure 5.2: Tests of bacterial chemotaxis signaling pathway model. (a) Methylation level adap-
tation and (b) kinase activity dynamics when a series different environmental concentration
were applied over time. (c) Flagellar motor counterclockwise (CW) rotation bias and (d) rota-
tion direction switching frequency as a function of intracellular CheYp concentration.
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Figure 5.3: Signal flow of the integrated model for bacteria-driven microrobots, including the
bacterial propulsion model and the chemotaxis signaling pathway model.

ies of free-swimming bacteria and bacteria-driven microrobots, a bounded environment was

simulated to mimic the microfluidic channel in the gradient generator. Specifically, the motion

of the simulated agents (bacteria or bacteria-driven microrobots) was constrained in a box with

dimensions x× y × z = 500× 500× 250 µm3, where the linear chemoattractant gradient was

applied along the x dimension, as shown in Fig. 5.4. Since the experimental measurements

were taken far away from the walls perpendicular to the y-axis and z-axis, the wall effect along

these two dimensions were simply set to be reflecting the agent’s (bacteria or bacteria-driven

microrobots) motion upon hitting a wall, as illustrated in Fig. 5.5(a), which avoided affecting

the agents’ transportation along the x-axis while preserved the total number of agents in the

simulated box. The wall effect along the x-axis (the gradient direction) was treated differently

between the free-swimming bacteria and bacteria-driven microrobots, based on experimental

observations. Once a free-swimming bacterium reached a wall perpendicular to the x-axis, it

could be trapped into swimming along the wall for couple seconds [81] before leaving the wall,

as depicted in Fig. 5.5. However, the bacteria-driven microrobots would mostly become immo-

bilized if they swim into the x-walls [56], and thus this wall effect was reflected as a permanent

trapping in our simulations, as illustrated in Fig. 5.5.
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Figure 5.4: The bounded simulation space with a number of randomly distributed simulation
agents upon initialization.

Figure 5.5: Different types of simulated wall effects: (a) reflection, (b) temporary trap, and (c)
permanent trap.
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A program was developed in Matlab (R2016a, The MathWorks, Inc., Natick, MA, USA)

to simulate the proposed models. A simulation was conducted in two steps: initialization and

iteration. In the initialization step, a given number of agents were randomly placed within the

simulation environment, as shown in Fig. 5.4, and their associated state variables, e.g., signaling

pathway states, were initialized according to the statistics of experimental measurements. The

iteration step kept updating the position and other state variables of each agent, based on its

local chemoattractant concentration input, the agent’s swimming dynamics, and the predefined

wall effects, until the end of the given simulation duration. Fig. D.1 shows the procedure of the

simulation program for bacteria-driven microrobots. Necessary state traces, such as positions

and pathway activities, were recorded over the iteration step for further analysis.

5.3.2 Prototyping Bacteria-driven Microrobots

The bacteria-driven microrobots for motion study were fabricated by randomly attaching E.

coli bacteria to 2.2µm diameter Poly(methyl methacrylate) (PMMA) (PolyAn, Berlin, Ger-

many) spherical particles, where the specific and strong attachment was enabled through biotin-

streptavidin bonding. The fabrication process of the microrobots is briefly described as follows.

First, 1 ml of the bacterial liquid culture was washed with PBS (centrifuged at 1500 g for 5 min)

for a total of 3 cycles, with a final suspension of 1 ml. Then, an aliquot of a biotin conjugated E.

coli LPS antibody (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was added to the

bacterial suspension to reach a dilution of 1:50, followed by an 1 hr incubation of the mixture

on a shaker (300 rpm, 30◦C). Subsequently, the bacteria-antibody mixture was washed with

PBS for 3 cycles to remove the excess, unconjugated antibodies, and the streptavidin function-

alized PMMA particles was washed with PBS (centrifuged at 5000 g for 1 min) for 3 cycles to

eliminate the surfactant that came with the particles. Finally, the antibody-conjugated bacteria

was mixed with the particles at an appropriate density ratio and incubated on a shaker (600

rpm, 30◦C) for 30 min to allow for biotin-streptavidin interactions between the bacteria and
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particles. To enhance motility, the assembled bacteria-driven microrobots were suspended in a

motility medium (0.01 M KH2PO4, 0.067 M NaCl, 10−4 M EDTA, 0.01 M glucose, pH = 7.0)

for experimental observations.

5.3.3 Imaging and Visual Tracking

Two optical systems, an inverted microscope (Zeiss Axio Observer A1, Oberkochen, Germany)

and a digital holographic microscope (DHM T-1000, Lyncée Tec SA, Lausanne, Switzerland),

were applied to study the chemotaxis of free-swimming bacteria and the 3D motion of bacteria-

driven microrobots, respectively. The distribution of bacteria in the sample channel of the gra-

dient generator was observed using a 20x (NA 0.50) objective, and phase contrast images were

acquired and analyzed using an in house program developed in Matlab (R2016a, The Math-

Works, Inc., Natick, MA, USA). The holograms of the bacteria-driven microrobots were ob-

served using a 40x (NA 0.75) objective, which gives a 2D field of view around 165× 165 µm2.

The numerical reconstruction was conducted by a commercial software (Koala, Lyncée Tec) to

obtain the z−stacked images of the view volume, which was 110×110×110 µm3 with a chosen

z-range of 110 µm. Further, the reconstructed image stacks were analyzed by an in-house pro-

gram developed in Python 2.7 to detect the 3D positions of the bacteria-driven microrobots in

the view volume and perform 3D motion tracking. The 3D positioning and tracking algorithms

used in this program is included in Appendix C.

5.4 Model Calibration and Validation

We first calibrated and validated the bacterial chemotaxis model and the bacterial propulsion

model separately. Then the two models were combined to simulate the chemotaxis in bacteria-

driven microrobots, which results were compared to the experimental characterizations from

our previous study.
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5.4.1 Chemotaxis of Free-Swimming Bacteria

Before integrating the chemotaxis signaling pathway model with the bacterial propulsion model

to simulate the motion and the chemotaxis of bacteria-driven microrobots, we studied the

chemotaxis response of free-swimming bacteria via both simulations and experiments, to verify

the model and to estimate the model parameters.

The chemotaxis response of free-swimming E. coli bacteria was tested in a three-channel

concentration gradient generator [70, 71], which has been widely used to characterize bacterial

chemotaxis. The device generates a one-dimensional (1D) stable linear gradient in a quiescent

microfluidic channel, featuring a minimum yet controllable condition for observing bacterial

chemotactic drift. Our previous study shows that the bacterial distribution in the test channel

can reach a steady state [54], resulting from a balance between bacterial random diffusion and

chemotactic drift. Here, we characterized the steady-state distribution of E. coli against different

magnitudes of linear L-aspartate gradients, in a quantity called “chemotaxis migration coeffi-

cient (CMC)” [70], which quantifies how the distribution is biased along the gradient. CMC is

defined as CMC =
∑

i(xi − x0)/w, where xi indicates the position of the i-th bacteria along

the direction of interest (i.e., the gradient direction), x0 is a reference position, usually defined

to be the middle of the channel, and w is the width of the channel. Fig. 5.6(a) is an example

image showing the biased distribution of bacteria under a gradient of 0.1 mM/mm along the

vertical direction. For each experimental data point showed in Fig. 5.7, we computed the CMC

based on hundreds of such distribution images, and multiple samples were analyzed to obtain

the averages and the standard deviations. Side by side, the simulation results of biased bacterial

distribution and chemotactic response are presented in Figs. 5.6(b) and 5.6(c), respectively (de-

tails about the simulation conditions are explained in Section 5.3.1). The inset in Fig. 5.7 traces

the dynamic transition of the simulated bacterial distribution before it reaches a steady state, as

shaded in yellow; the CMC data in Fig. 5.7 were calculated based on steady-state distributions.

In the simulated pathway model, the methylation and demethylation rates KR = KB = 0.008
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s−1, as model parameters [81], were determined by creating the best fit of the simulation to the

experimental data over the entire range of gradients. From the close match displayed between

the model simulation and the experimental result, we can conclude that the fitted model is able

to describe the chemotaxis response of the studied bacterial type towards L-aspartate.

a b

Figure 5.6: Bacterial chemotaxis in a bounded channel with a linear attractant gradient. (a)
Steady-state distribution of E. coli under a linear concentration gradient of L-aspartate, where
the white and black blobs indicate bacterial cell bodies. The linear gradient is 0.1 mM/mm
and is along the vertical direction of the image, with the top having a higher concentration. (b)
Simulated steady-state distribution of bacteria under the same gradient condition (i.e., E. coli
against 0.1 mM/mm L-aspartate), where the black dots indicates bacteria and the color profile
represents the concentration gradient field.

5.4.2 3D Motion of Bacteria-driven Microrobots

3D swimming trajectories of microrobots driven by a small number of bacteria were studied

to validate the proposed multi-cellular propulsion model. The microrobots were fabricated by

randomly attaching E. coli bacteria to 2.2µm diameter PMMA microspheres, each of which had

one to three bacteria attached, observed from SEM images. The 3D motion of the microrobots

were observed and visually tracked using a digital holographic microscopy (DHM) system. A

total of 87 trajectories were collected, and 10 sample trajectories are plotted in Figs. 5.8(a)
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Figure 5.7: Bacterial chemotaxis response, measured in CMC, over different magnitudes of
linear L-aspartate gradients. The inset plot shows a typical CMC dynamics during simulation,
and the chemotaxis response (CMC) was measured from the yellow-shaded region, where a
steady-state distribution was formed.

and 5.8(b), in 3D and 2D, respectively; the trajectory length varies from 4 to 40 seconds. As

can be seen from the plots, one prominent shape of the trajectories is helical or near-helical,

similar to what has been reported by Edwards et al. [34] on 5µm diameter beads propelled

by S. marcescens bacteria. A basic free body diagram of the system indicates that, while

tracing helices, the propulsion dynamics of the microrobots is dominated by a near-constant

force and a near-constant torque which are not colinear. As another important characteristic

of the trajectories, there are apparent interruptions between the consistent helices, which pro-

vide drastic reorientations for the helices; this phenomenon resembles the tumbling behavior

of free-swimming bacteria. The sudden divergence from a previous helical orientation is due

to changes in the exerted force and torque, and presumably, it is the flagellar morphological

transformation that causes the propulsion changes. Enlightened by this observation, our model

indeed incorporates a mechanism that allows changes in the propulsive force and torques ex-
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erted by a bacterium upon its state transition. For the running state, the average propulsive force

||f̄ || and motor reaction torque ||τ̄ ||were estimated from the stable helical trajectories produced

by single bacteria-driven microrobots [34], using the instantaneous speed and the approximated

period of a helix, as illustrated in Fig. 5.9. In the tumble state, the average propulsive force

was set to zero, considering the near-zero translation during bacterial tumble, and the average

motor reaction torque was reduced by a factor based on the difference of flagellar rotational fre-

quency [121]. The average propulsive force and motor reaction torque used in our simulation

are summarized in Table 5.1. The magnitudes of the oscillation components in Eqs. 5.1 and

5.2 are set to be about 10% of the corresponding predefined components to mimic the system

uncertainties.

Table 5.1: Average propulsive force and torque
Parameter Symbol Value
Average force on run ||f̄ r|| 0.3 pN
Average motor reaction torque on run ||τ̄ r|| 0.7 pN·µm
Average force on tumble ||f̄ t|| 0 pN [66]
Average motor reaction torque on tumble ||τ̄ t|| 0.4 pN·µm [121]

We simulated the model with conditions similar to those of experiments, and compared the

trajectory pattern/shape and the motility characteristics, including the mean squared displace-

ment (MSD) and tumble angle, between simulations and experiments to validate the propulsion

model. Figs. 5.10(a) and 5.10(b) present 10 simulated sample trajectories in 3D and 2D, re-

spectively, whose length is about 15 seconds, matching the average length of the experimen-

tally captured trajectories. Clearly, the model reproduces the helical pattern that are generally

observed along the trajectories from experiments, and the simulated helices morphologically

resemble the measured ones in terms of the pitch and size of helix turns.

Considering the likely random reorientations occurred among the helical tracks, motility of

the microrobots was studied using MSD, the most common motion measurement for random

walk systems. As shown in Fig. 5.11, the MSD is examined within two different regimes, bal-
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Figure 5.8: Motion of microrobots propelled by a few attached bacteria (experiment). 3D tra-
jectories (a) and their xy-plane (2D) projections (b) of 10 example microrobots.
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Figure 5.9: Illustration of angular velocity evaluation from the 2D projection of a helical trajec-
tory. (a) x-position over time, where the inset shows the 2D projection. (b) Count number of
helical turns using periodicity along dx.
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Figure 5.10: Motion of microrobots propelled by a few attached bacteria (simulation). 3D
trajectories (a) and their xy-plane (2D) projections (b) of 10 example microrobots.
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listic and diffusive regimes, which are determined by a characteristic time τR = 1.5 s, estimated

through fitting the MSD formula to the experimental data [127]. Manifested by the quadratic

shape of the MSD plots at short time intervals (considerably shorter that τR), as shown in Figs.

5.11(a) and 5.11(c), the microrobots exhibit ballistic behavior, and the fitted mean speed of

the simulation, vmean = 9.9 µm/s, approximates that of the experiment, 10.9 µm/s. The MSD

over larger time intervals (considerably longer than that τR) traces a linear profile, as shown in

Figs. 5.11(b) and 5.11(d), revealing a diffusive motility of the swimming motion over long time

scales. The effective diffusion coefficients drawn from line fittings are 30.1 µm2/s for simula-

tion and 22.4 µm2/s for experiment; the lower experimental value is caused by the fact that the

faster microrobots are hard to track for a long time, as shown in Fig. 5.11(d), and thus biasing

the measurement towards slower instances.

Besides, it has been shown that the random diffusivity of the “run-and-tumble” type of ran-

dom walk strongly depends on the reorientation angle following a tumble event [68]. Thus, we

analyzed the helical reorientation angle of the swimming trajectories, as demonstrated with a

sample trajectory in Fig. 5.12(a). Fig. 5.12 shows the probability distributions of the reorien-

tation angle, where the simulation closely matches the experiment and both of them appear to

follow a normal distribution, with a most probable value around 80 degrees. The comparable

trajectory and matched motility characterizations imply that the propulsion model captures the

fundamental mechanisms associated with the physical system of multi-bacteria driven micro-

robots.

5.4.3 Chemotaxis of Bacteria-Driven Microrobots

By assuming that the individual bacteria attached to a microrobot sense their own local chemical

concentrations and perform signal transduction independently, we propose an integrated model

for the chemotaxis of multi-bacteria driven microrobots, which combines the multi-cellular

propulsion model and the bacterial chemotaxis pathway model. All of the model parameters
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Figure 5.11: MSD of bacteria-driven microrobots attached by a few bacteria. (a) 3D MSD plots
of all the experimentally collected tracks and swimming speed fitted in the ballistic regime.
(b) 3D MSD plot and random motility estimation by line fitting in the diffusive regime (green
shaded). (c) and (d) show the corresponding results from the model simulations.
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Figure 5.12: Tumble reorientation angle of bacteria-driven microrobots. (a) A sample trajectory
with five tumbles detected, and the orientations before (blue) and after (green) each tumble are
marked with arrows. (b) A comparison of probability distribution of tumble angles between ex-
periment and simulation, where the most probable tumble angle lies around 80 degrees. About
90 trajectories were assessed in both experiment and simulation.
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were derived from the chemotaxis of free-swimming bacteria and bacteria-driven microrobots

under isotropic conditions. The model was simulated and qualitatively validated via compar-

isons with the chemotaxis experiment data from our previous study [56]. Specifically, we con-

sidered the situation of randomly placing a swarm of microrobots in a bounded channel holding

a linear attractant concentration gradient and observing how their distribution changed over

time, mainly along the direction of interest (i.e., along the gradient).

Figs. 5.13(a) and 5.13(b) show the drifting dynamics of a swarm of microrobots from

simulation and experiment, respectively, where the microrobots are made of 3µm diameter

spheres driven by 6-12 attached bacteria. Although the two quantities, CMC and COM-y (the

y-component of center of mass, computed as the mean y-position of all microrobots in the

field of view), are defined differently, they are all linear functions of the microrobots’ positions,

and thus linearly related to each other. Both results show that, starting with a nearly uniform

distribution, the swarm undergoes an approximately linear drifting process, associated with a

constant chemotactic drift velocity, and eventually it settles down to a biased distribution, in

which the microrobots are more concentrated on the side with a higher concentration of the

attractant. Note that such a final distribution is formed because the gradient is bounded by

walls, which constrain the motion of the microrobots. The simulated drifting process, however,

appears to be faster than the experimental one, reaching a steady state distribution after 4 min

as compared to 8 min for experiment; this could be resulted from the fact that, compared with

a simulated ideal system, the experimental system of microrobots bears various imperfections,

such as the existence of non-motile instances and the aggregations of microrobots. The analysis

on the simulated trajectories suggests that the swimming direction of a microrobot is more per-

sistent when it travels up the gradient than when it moves reversely, and this is consistent with

experimental observations [56, 57]. When projected onto one axis, such biased motion can be

quantified by the “relative reversing rate bias” [57], defining the bias in the direction reversing

rate over the heading of an object performing an 1D random walk; the quantity contributes to
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the chemotactic drift velocity as a linear factor [72]. As shown in Fig. 5.14, the simulation and

experiment agree that the relative reversing rate bias increases with the mean speed, which in

further means that the chemotactic drift velocity is enhanced on faster microrobots.
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Figure 5.13: Chemotaxis of multi-bacteria driven microrobots. (a) The drifting dynamics (quan-
tified in CMC) of a swarm of simulated microrobots in a channel with a linear attractant gradi-
ent. The mean CMC is assessed from five independent samples, and the red shading represents
their standard deviation. The two insets show the distribution profile of the microrobots at 1.5
min, when they are randomly located, and 5 min, when the distribution is biased towards the
side with a higher attractant concentration. (b) Experimental measurement of the drifting pro-
cess of a swarm of microrobots propelled by S. marcescens bacteria, where the quantity COM-y
indicates y component of the center-of-mass. The two insets are fluorescent images represent-
ing the distribution profile of the microrobots at 2 min (initial stage) and 12 min (final stage).
This figure is reprinted from [56].

Although the chemotactic drift of bacteria-driven microrobots can be phenomenologically

explained by the heading persistence bias, it is not readily understandable why the multiple

bacteria attached to a microrobot in random orientations can perform chemotaxis in a seem-

ingly cooperative fashion. However, our model, which successfully traces the chemotaxis of

the microrobots, rules out any explicit chemical or physical interactions among the attached

bacteria on a microrobot. But the group of physically interlocked bacteria must have an implicit

avenue to “agree” with each other in order to perform chemotaxis, because the otherwise ran-
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Figure 5.14: Dependence of the relative direction reversing rate bias of the microrobots on their
swimming speed.

dom competition among them would lead to a pure random walk in the microrobot. Since the

integrated model is supposed to explicitly account the essential biophysical components of the

multi-bacteria driven system, all of the states of each involved bacterium is observable through-

out a simulation, and thus we can identify the functioning mechanism that enables them to

agree on chemotaxis. A quick conjecture is that such consensus is implicitly obtained through

their mechanical bonding, by attaching to a common microsphere. To prove this, we plotted

the MCP kinase activity dynamics of the bacteria attached to a microrobot, and eight different

microrobots were examined and displayed in Fig. 5.15. Interestingly, despite their indepen-

dent signaling pathway, the kinase activities of the group of bacteria attached to a common

microsphere are highly synchronized, and such synchronization tends to produce a downstream

run-and-tumble synchronization among these bacteria. Based on the nature of the signaling

pathway model, the synchronization must be produced by a similar concentration input trace

for the group of bacteria, which is indeed guaranteed as they are interlocked in close proximity

to each other by the microsphere. It is highly possible that the synchronization of signaling
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pathways, which explains the chemotaxis in our model, could be the reason for the chemotaxis

in the experimental system, given the biophysical formulation of the model and the high level

resemblance between the model simulation and experiment.
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Figure 5.15: Synchronized MCP kinase activity of the multiple bacteria attached to a microrobot
(simulation). Eight different microrobots are presented, where each microrobot has five bacteria
attached randomly in both position and orientation.

5.5 Parameter Studies

The development of bacteria-driven microrobots has been based on experimental intuition thus

far, and the dependencies of microrobots’ performance on system parameters has not been ad-

dressed before, leaving the design optimization of of the biohybrid system challenging. Here,

we propose an approach to optimize the design of bacteria-driven microrobots through model-

based simulation. Chemotactic guidability and motility are the two most important consider-
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ations for the application of the bacteria-driven microrobots; therefore, focusing on these two

performance indicators, we studied their dependencies on certain system parameters that could

be easily configured in experiment. Fig. 5.16 shows the chemotaxis response of microrobots

over different attractant concentration gradients, which has a profile very similar to that of

free-swimming bacteria (Fig. 5.7(c)), and the optimal concentration gradient for chemotactic

guidance is around 0.1 mM/mm. However, for the microrobots that are significantly slower than

free-swimming bacteria, we expect their strongest chemotaxis occurs at a higher concentration

gradient (see Discussions). The dependencies of chemotaxis and speed on the size of micro-

robots is presented in Fig. 5.17(a), where the number of bacteria attached to a microsphere is

proportional to its surface area and the number density is 1 bacterium per 7 µm2. It shows that

increasing the body size of microrobots does not affect the motility notably but causes signifi-

cant decrease in CMC, almost dropping to zero for a body size over 9 µm in diameter. Larger

body size would increase the average distance between cells, making the attached bacteria sense

rather different concentrations and hence reducing the synchronization of the signaling pathway

behavior among them, as shown in Fig. 5.18. This indicates that, to achieve better chemotactic

guidance, microrobots with smaller body size are strongly preferable. Finally, we examined the

effect of the number of bacteria attached on chemotaxis and motility. As shown in Fig. 5.17(b),

the CMC is generally insensitive to the number of bacteria, while the speed increases almost

linearly with the number of bacteria. However, the potential interactions among the attached

bacteria would become more and more prominent as the number of bacteria increases, and since

such interactions are not accounted in our model, the trends in Fig. 5.17(b) might not hold true

for any arbitrary ranges.
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Figure 5.16: Chemotaxis response of microrobots over different attractant concentration pro-
files. Chemotaxis (CMC) is evaluated based on the final distribution of the simulated micro-
robots in the bounded channel. The configuration of the simulations is 3µm diameter micro-
spheres, with around 5 bacteria attached to each microrobot.

5.6 Discussion and Summary

5.6.1 Discussion

We have developed a mathematical model to describe the propulsion mechanisms of a type

of biohybrid microrobot driven by a few attached flagellated bacteria. The simulations of the

model produces 3D trajectories and motility characteristics that resemble those of experiments.

The model, in combination with the signaling pathway models of bacterial chemotaxis, also

traces out the chemotaxis behavior of bacteria-driven microrobots reported by recent studies

[36, 48, 49, 50, 51, 52, 56, 57]. The agreement between simulation and experiment implies

that our model assumptions are reasonable and the model captures the fundamental biophysical

mechanisms of of the system. Furthermore, our simulation data suggests that the seemingly

cooperative chemotaxis of multiple bacteria attached to a microrobot could be explained by a

synchronized signaling pathway response among these bacteria. However, proof of such predic-
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Figure 5.17: Performance of bacteria-driven microrobots on system parameters (simulation).
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Figure 5.18: Unsynchronized MCP kinase activity of the multiple bacteria attached to a big
microrobot (simulation). Eight different microrobots are presented, where each microrobot has
five bacteria attached randomly in both position and orientation.
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tion may need molecular level characterizations of the bacterial cells that are operated under a

similar condition. In addition, the model reveals the potential dependences of the microrobots’

performances (motility and chemmotactic guidability) on system parameters, including the at-

tractant gradient, microrobot body size, and number of bacteria attached; such dependences

may offer useful clues for the optimized design of bacteria-driven microrobots in future.

In the multi-cellular propulsion model, we adopted a relatively stiff model for the bacterial

flagellar bundle, which has a preferred orientation that is not affected by its local fluid field.

This choice, in part illuminated by an experimental observation, appears to be rather critical for

the resulting motion behaviors of the model. However, the simulation based on a purely soft

flagellar bundle model (i.e., the flagellar bundle is aligned with its local flow) demonstrates a

similar level of chemotaxis as the stiff flagella model. This implies that a predefined flagellar

bundle orientation is not a necessity to generate chemotactic drift for the model, although it

might be the case that flagellar bundles bear their own preferred orientations, and so is the

preferred orientations of flagellar filaments. Besides, the consideration of flagellar oscillation in

the model serves to represent the noise in the real system, and including it could introduce minor

irregularities to the helical shaped trajectories, but does not fundamentally alter the average

motion behavior or chemotaxis of the simulated system. The flagellar motor reaction torque,

however, is essential for producing the helical shaped trajectories. This has been proven on

single bacterium-driven microrobots: failure to include the motor reaction torque would yield

circular trajectories in our simulation, instead of the helical motions observed experimentally.

Although the motion of bacteria-driven microrobots is highly stochastic over long

timescales, their short-term motion could be rather deterministic, as shown by the helical-shaped

tracks in [34] and this study. Previous models [53, 123] for bacteria-driven microrobots, fail to

reproduce the recurrent helical shapes along the swimming trajectories; instead, purely stochas-

tic motions over all timescales were simulated by these models. The major cause of their failures

is oversimplified representation of biophysical components in the system. For example, both
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models describe each bacterium attached to a microrobot as a single point force exerted on the

microrobot, ignoring the motor reaction torque(s) associated with the rotating flagellar bundle

(or flagella). In addition, considerations of stochastic/noisy contributions could possibly smear

the short-term deterministic behaviors. In the model by Cho et al., part of the propulsion on

microrobots was contributed from the free-swimming bacteria, by stochastically colliding with

the microrobots [123]. Likewise, a Brownian effect was considered in the model by Arabagi

et al. [53]. As our major goal is investigating how propulsion is generated for microrobots

driven by multiple attached bacteria, other unrelated contributions were mostly ruled out in

both simulations and experiments.

Bacteria naturally sense temporal changes of an attractant concentration, by comparing the

presently sensed value with that of the immediate past; this temporal sensing ability allows

them to sense spatially varying signals by constantly moving around. Therefore, in a given

spatial concentration gradient, the magnitude of the temporal gradient seen by a bacterium is

dependent on its swimming speed, and hence the chemotactic response is speed dependent.

Fig. 5.19 shows the signaling pathway states of two bacteria with rather different swimming

speed, 2 µm/s and 20 µm/s, but under a same linear chemoattractant gradient; clearly, the one

with higher swimming speed manifests a significantly stronger signaling pathway response. It

follows from this observation that the chemotaxis of bacteria-driven microrobots should also

be speed dependent: the higher the swimming speed, the stronger the chemotactic response, as

demonstrated in Fig. 5.13(c). From the perspective of design, within a certain range, optimizing

the swimming speed of bacteria-driven microrobots is expected to enhance their chemotactic

guidability. Potential methods to enhance the speed of bacteria-driven microrobots include

patterning the attachment location of bacteria on microrobots, aligning the attached bacteria,

and using species with higher motility.
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Figure 5.19: Dependency of signaling pathway response on bacterial swimming speed under a
linear spacial concentration gradient, where a stronger response is observed on the bacteria with
higher speed.

5.6.2 Summary

Despite the large body of experimental work on biohybrid microsystems, few studies have fo-

cused on theoretical modeling of such systems, which is essential for us to understand their

underlying functioning mechanisms and hence design them optimally for a given application

task. Therefore, this chapter focuses on developing a mathematical model to describe the 3D

motion and the chemotaxis of a type of widely studied biohybrid microrobot, where spheri-

cal microparticles are driven by multiple attached bacteria. The model was developed based

on the biophysical observations of the experimental system and has been validated by com-

paring the model simulation with experimental 3D swimming trajectories and other motility

characteristics, including mean squared displacement (MSD), speed, diffusivity, and turn an-

gle. The chemotaxis results of bacteria-driven microrobots from the model simulation also

agree well with the experiments, where a collective chemotactic behavior among multiple bac-

teria is observed. The simulation result implies that such collective chemotaxis behavior is due
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to a synchronized signaling pathway across the multiple bacteria attached to the same micro-

robot. Furthermore, by simulating the model, we studied the dependences of the motility and the

chemotaxis of the microrobots on certain system parameters, such as the attractant concentration

gradient, microrobot’s body size, and number of attached bacteria, towards an optimized design

of such biohybrid system. The optimized microrobots would be used in targeted cargo, e.g.,

drug, imaging agent, gene, and RNA, transport and delivery inside the stagnant or low-velocity

fluids of the human body as one of their potential future biomedical application. The developed

model not only helps us gain more insights into the biophysical mechanisms of bacteria-driven

microrobots, but also serve as a potential means to optimize the design of such systems.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Biohybrid microrobots have shown the potential of overcoming the grand challenges in minia-

turization of on-board actuation and power supply. Flagellated bacteria are among the leading

candidates for the actuators of biohybrid swimming microrobots. However, bacteria propul-

sion maintains high intrinsic stochasticity, which constitutes a major reason why the motion of

bacteria-driven microrobots are hard to regulate at the swarm level by conventional methods,

such as magnetic steering. Instead, this thesis focuses on addressing the motion guiding of

bacteria-driven microrobots using the natural taxis behaviors of free-swimming bacteria. Criti-

cal questions regarding this topic have been approached systematically, such as (a) how to find

an optimal concentration profile used for motion guiding of bacteria-driven microrobots, (b)

what could be the guiding performances and the physical mechanisms of the typical taxes, such

as chemotaxis and pH-taxis, in bacteria-driven microrobots, and (c) how to biophysically model

the bacteria-driven microrobotic system to describe its motion and chemotaxis.

The first task addressed was to develop a systematic method to characterize chemotaxis in

free-swimming bacteria. To this end, we have proposed an experimental and modeling frame-

work which characterizes the chemotactic motion of a typical flagellated bacterial species, such
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as E. coli and S. marcescens, under a linear concentration gradient of a canonical chemoattrac-

tant, such as L-aspartate and L-serine. Specifically, the framework first measures the chemotac-

tic velocity of the species across different linear concentration gradients of the chemoattractant,

generating a chemotaxis response curve, and the result is then fitted by a bacterial chemotaxis

signaling pathway model to determine the model parameters that are specific to the species.

We demonstrated the framework by characterizing the chemotaxis of S. marcescens against

L-aspartate. The chemotactic response of S. marcescens was quantified over a range of con-

centration gradients (10−3 to 5 mM/mm) and average concentrations (0.5 × 10−3 to 2.5 mM).

Through the analysis of a large number of bacterial swimming trajectories, the tumble rate of

the bacteria was found to have a significant bias with respect to their swimming directions. The

optimal concentration gradient of L-aspartate that yielded the highest chemotactic velocity was

0.2 mM/mm. We also verified the relative gradient sensing machinery in the chemotaxis of S.

marcescens by measuring the change of VC against the average concentration and the gradient.

The signaling pathway model with fitted parameters agreed with the experimental results, and

thereby describes the chemotaxis of S. marcescens towards L-aspartate biophysically. Finally,

we showed that our measurements based on the individual bacteria in a population lead to the

determination of the motility coefficient µ (7.25× 10−6 cm2/s) of the population. The proposed

chemotaxis characterization framework can also be readily adapted to study other bacterial tac-

tic behaviors, such as pH-taxis and salt-taxis.

The second task addressed was to study the chemotaxis of a multi-bacteria driven micro-

robotic system. Using the bacterial chemotaxis characterization framework, we first studied the

chemotactic response of S. marcescens towards a potent chemoattractant L-serine and deter-

mined the optimal concentration gradient to be 0.1 mM/mm. Under this optimal concentration

profile, in a microrobotic system driven by multiple S. marcescens bacteria, we quantified the

chemotactic drift of the microrobots and elucidated the physical mechanisms of the chemotac-

tic motion by the statistical analysis of over a thousand swimming trajectories of the bacteria-
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driven microrobots. Our results showed that the microrobots had a strong heading preference

for moving up the L-serine gradient, while their speeds did not change considerably when mov-

ing up and down the gradient; therefore, the heading bias was the major factor that produced

the chemotactic drift. The heading direction of a microrobot was found to be significantly more

persistent when it was moving up the L-serine gradient than traveling down the gradient; this

effect caused the apparent heading preference of the microrobots and is the crucial physical

mechanism that drives the chemotactic drift in the bacteria-driven microrobots. Additionally,

we found that the chemotactic drift velocity of the microrobots increases superquadratically

with their mean swimming speed, suggesting that chemotaxis could be enhanced by designing

and building faster microrobots.

Besides chemotaxis, the third task addressed was exploring the potential of utilizing the am-

bient pH to guide the motion of bacteria-driven microrobots. Under three specifically configured

pH gradients, we demonstrated that the bacteria-driven microrobots, the same prototype used

in chemotaxis study, exhibit both unidirectional and bidirectional pH-tactic behaviors, which

were also observed in free-swimming bacteria. Thus, we were able to conclude that the ambi-

ent pH constitutes an effective means to perform motion guiding of the microrobotic swarms.

Through trajectory analysis, we found that a swimming direction bias and a speed bias are two

major factors that contribute to their tactic drift motion. The motion analysis of the microrobots

also shed important light on the propulsion dynamics of flagellated bacteria as micro-actuators.

The resemblances in the physical mechanism of the chemotaxis and pH-taxis in bacteria-driven

microrobots suggest that a similar signaling pathway is shared between bacterial chemotaxis

and pH-taxis. By demonstrating pH-taxis in the bacteria-driven microrobots and identifying

the physical mechanism of the pH-tactic motion, we have opened up an new avenue towards

improving the control of bacteria-driven microrobots. Presumably, if it is possible to tune the

preferred pH of bacteria by genetic engineering, bacteria-driven microrobots could potentially

be guided by the pH gradients induced by cancerous cells inside the human body and thus
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perform targeted delivery of cargoes, such as drugs, genes, and stem cells.

The fourth task addressed was to develop a biophysical model to describe the propulsion and

the chemotaxis in bacteria-driven microrobots, on the one hand to better understand the system

and on the other hand for optimizing the design of the system in terms of its performances. To

this end, we have developed a bacterial propulsion model that describes the exertion of forces

and torques on a microrobot by its attached bacterial motors. This model, in combination with a

bacterial chemotaxis signaling pathway model, not only simulated the helical featured trajecto-

ries observed in experiments, but also traced out a chemotactic drift motion similar to that of a

real physical system. The model simulation also suggests that a synchronization of the signaling

pathways of the multiple bacteria attached to a microrobot could be the mechanism of the as-

sociated bacterial collective chemotaxis in bacteria-driven microrobots, but further biophysical

characterizations are necessary to corroborate this conjecture. Furthermore, by simulating the

model, we studied the dependences of the motility and the chemotactic guidability of bacteria-

driven microrobots on their common system parameters, including the chemoattractant gradi-

ent, microrobot body size, and number of attached bacteria, which results could be important

guidelines for the design optimization of bacteria-driven microrobots.

6.2 Future Work

6.2.1 Salt-Taxis of Bacteria-Driven Microrobots

Ambient salt concentration is crucial for bacteria to maintain a normal cellular osmotic pressure

and the intracellular ion concentrations. It has been shown that E. coli is attracted by the opti-

mum concentrations of various salts [128], and such tactic behaviors are highly dependent on

MCP-I, a major chemotaxis receptor. Therefore, it is reasonable to expect that appropriate salt

concentration profiles can be used to guide the motion of bacteria-driven microrobots. How-

ever, this has never been tested out experimentally. Although salt-taxis potentially shares the
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signaling pathway with chemotaxis, it might elicit different levels of tactic behavior in bacteria

and thus becomes meaningful to be characterized separately. Here, we qualitatively demon-

strate that a salt gradient can bias the distribution of a swarm of bacteria-driven microrobots,

which were initially randomly distributed in the gradient. Specifically, in the three-channel mi-

crofluidic device, we input the source channel with a motility buffer (0.01 M KH2PO4, 0.067 M

NaCl, 10−4 M EDTA, pH = 7.0), which is a saline buffer used to maintain the normal bacterial

activity, input the sink channel with DI water (close to zero concentrations for any salts), and

loaded the sample (middle) channel with the same motility buffer containing a concentration of

bacteria-driven microrobots. A flow rate of 5 µl/min were maintained in the source and sink

channels, while the middle channel was quiescent. Fig. 6.1 shows the effect of the ambient salt

concentration profile on the distribution of the bacteria-driven microrobots, where the upside of

the sample channel corresponds to a salt level close to the motility buffer while the bottom side

has a much lower salt-level.
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Figure 6.1: Distribution of microrobots in the sample channel at (a) 2 min and (b) 54 min after
the initiation of the source and sink flows.

Suggested future work includes:

• Characterizing prominent salt-taxis in free-swimming bacteria using the chemotaxis char-

acterization framework;
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• Observing the salt-tactic drift process of bacteria-driven microrobots;

• Quantifying the salt-taxis of bacteria-driven microrobots by trajectory analysis and com-

paring the results with those of chemotaxis and pH-taxis.

6.2.2 Optimize the Design of Bacteria-Driven Microrobots

Parameter study via experiment

Our model for bacteria-driven microrobots only describes their motion and the chemotaxis be-

havior given that the assumptions are satisfied. These assumptions, however, might be only

weakly held or even broken down in some situations of the real system development. For exam-

ple, the model assumes negligible effect from the interactions among the attached bacteria on a

microrobot, but the interactions could become a statistically significant effect as the distances

among the bacteria decrease, which could be caused by increasing the average number of the

bacteria attached to a microrobot. In such situations, the model simulation could be inaccurate

or fail to describe the physical system and hence could not direct the design optimization sen-

sibly. As a result, it is necessary to experimentally characterize the dependencies of the system

performances on its major design parameters. Such experimental characterizations can solve

the following problems:

• Determining the scope of the system parameters in which the model describes the system;

• Refining the model by including more biophysical components to fit experimental obser-

vations;

• Optimizing the design of bacteria-driven robots based on experimental parameter studies.

Here, we show an example of how the parameter study based on experiments could help

reveal more biophysical aspects of the system of bacteria-driven microrobot. Fig. 6.2(a) shows

the dependency of the swimming trajectory of a microrobot on the average number of attached

bacteria, a major system parameter. It can be seen that the more the bacteria attached, the more
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random the swimming motion is, manifested by the degraded regularity (helical shape) along

the swimming trajectories as the number of attached bacteria increases. This could be due to

the reason discussed previously, namely, the emergent interactions among the attached bacteria

on a microrobot. As our model ignores such interactions, the model simulation, showed in Fig.

6.2(b), seems to have failed to capture this trend, although it agrees well with the experiment

on the helical-shaped trajectories when there are only a few bacteria attached. If the bacterial

interactions could be accounted appropriately in the model, it is expected to describe the system

regardless of the number of bacteria attached (or the density of bacterial attachment).

a b 

Figure 6.2: Effect of the number of attached bacteria on the swimming motion of bacteria-
driven microrobots, (a) experimental characterization of 5µm diameter microrobots propelled
by S. marcescens bacteria (figure reprinted from [34]) and (b) preliminary simulation based on
the current model of bacteria-driven microrobots.

Towards a more accurate model

The current bacterial propulsion model is a coarse grained model in that it treats each bac-

terium as a single flagellar motor transitioning between run and tumble states. However, typical

flagellated bacteria like E. coli usually have multiple flagellar filaments which rotate respec-

tively about the cell body, and their rotation directions (either in CCW or CW) may not be
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synchronized. The multi-flagellar configuration brings more intermediate motion states to free-

swimming bacteria during the transition between the two classically acknowledged states, run

and tumble. Along a running state, in which all flagella rotate in CCW, a tumble event can

be triggered by one or more of the involved flagella change their rotation directions into CW.

Relatively recently, the flagellar observation based on high-resolution fluorescent microscopy

sheds more details on the state transition in multi-flagellated bacteria [121]; Fig. 6.3 depicts

the idealized state transition sequence in an multi-flagellated bacteria, caused by the rotation

direction change of a single flagellar motor. It can be seen that a multi-flagellated bacterium is

not an ideal two-state machine, as has been adopted in our model, but a rather complicated and

stochastic system with more states and state transition dynamics.

Moreover, in consequence of the multi-flagella of a bacterium, the bacterial state transition

can be more complicated than the case of single-flagellum, as the tumble events can be trig-

gered under different situations and behave heterogeneously. Sneddon et al. studied the effect

of multi-falgella on a cell’s swimming state transition using a probabilistic model [82]: com-

pared to a single flagellar motor, multiple flagellar motors can help on reducing the latency of

chemotactic response while shorten the expected length of runs. Based on their conclusion, the

motion of bacteria-driven microrobots is likely to be less persistent due to the increased state

transition frequency of the attached bacteria, although we are not clear about the exact impli-

cations of multi-flagella on the bacterial propulsion in bacteria-driven microrobots. To reveal

this, we suggest to treat each bacterium as a multi-flagellated propeller and model its state tran-

sition accordingly. However, an appropriate model of the state transition under the condition of

multi-flagella may need further experimental characterizations on the corresponding behaviors.

Accounting for the above complications would inevitably increase the complexity and

stochasticity of the model, because each multi-flagellated bacterial propeller could have many

states along its propulsion and which in turn allows for a significant number of state combina-

tions for a multi-bacteria driven microrobotic system. However, it might be just the case that
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Figure 6.3: Idealized sequence of events in a tumble caused by the reversal of a single motor
(figure reprinted from [121]). The upper timeline indicates the direction of motor rotation of
the flagellum causing the tumble, and the lower timeline indicates the motion state of the bac-
terium. The transition can be documented in eight stages: (1) the bacterium in running state
with all flagella rotate CCW; (2) a flagellum switching its rotation from CCW to CW, causing
the flagellar bundle to start unbundling and the cell body to deflect slightly; (3) the flagellum
starting to transition from the left-handed normal form to the right-handed semicoiled form, as-
sociated with a large deflection of the cell body; (4) completion of the morphological transition
of the flagellum to be semicoiled and reorientation of the cell body; (5) movement of the cell
body in the new orientation, propelled by a semicoiled (partially in curly-1 form) flagellum and
a normal bundle by the rest of the flagella; (6) the flagellum completely in curly-1 form and be
flexible enough to wrap around the bundle; (7) the flagellum switching its rotation from CW
to CCW, causing its morphological transition from curly-1 to normal left-handed; and (8) the
bacterium back to normal run after the flagellum joining the bundle.
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such biohybrid systems would exhibit a broad spectrum of behaviors and high stochasticity, as

has been observed on the microrobots driven by relatively more (over 10) bacteria.

Suggested future work includes:

• Experimentally characterize the dependences of the swimming behaviors (trajectory,

motility and chemotaxis) of bacteria-driven microrobots on their major design parame-

ters, such as body size, bacterial attachment density, and attachment patterning;

• Compare the parameter study results between experiments and model simulations, and

improve the model by accounting for more biophysical aspects of the system, such as the

interactions among the bacteria on a microrobot;

• Refine the model by including more characterized bacterial transition states and being

aware of the consequences of multi-flagella on a cell’s state transition dynamics and

propulsion.
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Appendix A

Bacteria and Growth Conditions

A.1 Serratia marcescens

Serratia marcescens (ATCC 274, American Type Culture Collection, Manassas, VA) was ini-

tially cultured to exponential growth phase in a nutrient broth (25 g Difco LB Miller Broth and

1 L deionized (DI) water, pH 7.0) on a shaker at 37 ◦C for 3.5 - 4 hours. Then an aliquot of 2.0

µL of the liquid culture was transfered to an agar plate (25 g Difco LB Miller Broth, 6 g Bacto

Agar, 5 g glucose, 1 L de-ionized water), followed by an incubation of the agar plate at 30◦C

for 16 - 20 hours. After the incubation, the culture is ready for use. Fig. A.1 shows a sample

plate culture of S. marcescens with different colony locations labeled.

A.2 Escherichia coli

The Escherichia coli (E. coli) strain MG1655 (Yale University, New Haven, USA) was cultured

in 5 ml LB broth (Sigma-Aldrich, St. Louis, MO, USA) at 30 ◦C for 4 h to its exponential growth

phase. The resulted liquid culture was directly diluted with PBS (Thermo Fisher Scientific,

Waltham, Massachusetts, USA) for the chemotaxis response test of free-swimming bacteria.

To prepare bacteria-driven microswimmers, the resulted liquid culture was washed with PBS
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Figure A.1: A plate culture of S. marcescens.

before mixed with particles.
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Appendix B

Microfluidic Setup

The microfluidic concentration gradient generator was assembled from a molded hydrogel chip

containing the channel features [71]. To mold the hydrogel chip, a master mold of the channel

patterns was fabricated by a standard soft lithography method. To increase the channel height,

two layers of photoresist were used. The hydrogel chips were molded by pouring 4% (weight

ratio) hot agarose (Eiken Chemical Co.) solution onto the silicon master mold, where the chan-

nel patterns were surrounded by polydimethylsiloxane (PDMS) enclosures. After the agarose

gels were cured, the outlets of the source and sink channels were punched into the gel. Subse-

quently, the sample solution to be tested was carefully pipetted into the sample (middle) channel

ensuring that there was neither overflow nor much vacant space left in the sample channel. The

channel-patterned side of the agarose gel was covered with a cover slip immediately after load-

ing the sample solution. To complete the assembly of the gradient generator, the agarose gel

chip (including the diffusion section, a PDMS enclosure and a cover slip) was sandwiched be-

tween two acrylic panels. Fig. B.1 shows the detailed configuration of the microfluidic device.
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Figure B.1: Three-channel microfluidic concentration gradient generator. (a) 3D, (b) top, and
(c) side views of the device. A linear gradient is created in the sample channel between the high
concentration source channel and lower concentration sink channel.
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Appendix C

Tracking Algorithms
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Algorithm 1 2D and 3D tracking
1: function TRACKBACT(v) . Where v - the input video, a list of 2D or 3D frames
2: maxDist← max distance between two consecutive frames
3: n← total number of frames
4: openTracks← empty list of open tracks
5: closedTracks← empty list of closed tracks
6: Bacts← empty list of bacterial cell bodies
7: for i = 1 : n do
8: tmpOpenTracks← empty list of open tracks for next iteration
9: frame← v.getFrame(i)

10: if 2D then
11: bacts← findBactPoses2D(frame)
12: else if 3D then
13: bacts← findBactPoses3D(frame)
14: end if
15: for pos : bacts do
16: closestTrack ← None
17: curMinDist← maxDist
18: for track : openTracks do
19: curDist← findDistance(track.getPos(end), pos)
20: if curDist < curMinDist then
21: closestTrack ← track
22: curMinDist← curDist
23: end if
24: end for
25: if closestTrack 6= None then
26: track.append(pos)
27: tmpOpenTracks.add(openTracks.remove(track))
28: else
29: tmpOpenTracks.add(createNewTrack(pos))
30: end if
31: end for
32: closedTracks.addAll(openTracks)
33: openTracks← tmpOpenTracks
34: end for
35: closedTracks.addAll(openTracks)
36: return closedTracks
37: end function
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Algorithm 2 Find island features in a 2D image
1: function FINDBACTPOS2D(img) . Where img - the input image, a 2D matrix (or 3D if

chromatic)
2: img ← basicF ilter(img)
3: bactPoses← regionProps(img) . Where regionProps() is a standard Matlab

function
4: end function
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Algorithm 3 Find 3D position in z-stack (DHM)
1: function FINDBACTPOS3D(imgStack) . Where imgStack - the input image stack, a list of

images
2: max2DDist← max 2D (xy) distance to consider z-correlation
3: n← total number height of z-stack
4: openPoses← empty list of open poses
5: closedPoses← empty list of closed poses
6: poses2D ← empty list of feature positions in 2D
7: for i = 1 : n do
8: tmpOpenPoses← empty list of open positions for next a higher stack
9: img ← v.getStack(i)

10: poses2D ← findBactPoses2D(img)
11: for pos2D : poses2D do
12: closestPos← None
13: curMinDist← max2DDist
14: for pos : openPoses do
15: curDist← findDistance(pos.get2DPos(end), pos2D)
16: if curDist < curMinDist then
17: closestPos← Pos
18: curMinDist← curDist
19: end if
20: end for
21: if closestPos 6= None then
22: pos.append(pos2D)
23: tmpOpenPoses.add(openPoses.remove(pos))
24: else
25: tmpOpenPoses.add(createNewPos(pos2D))
26: end if
27: end for
28: closedPoses.addAll(openPoses)
29: openPoses← tmpOpenPoses
30: end for
31: closedPoses.addAll(openPoses)
32: poses3D ← empty list of 3D positions
33: for pos : closedPoses do
34: poses3D.add(pos.get3DPos())
35: end for
36: return poses3D
37: end function
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Algorithm 4 Connect tracks with small gaps
1: function CONNECTTRACK(tracks) . Where tracks - 2D or 3D raw tracks
2: unconnectedTracks← sortByStartingFrame(tracks)
3: connectedTracks← emptylistoftracks
4: maxFrameGap← max frame gap to be considered connected
5: maxDist← max 2D or 3D distance to be considered connected
6: while unconnectedTracks.size() ≥ 2 do
7: curTrack ← unConnectedTracks.get(1) . Get the first track
8: closestTrack ← None
9: curMinDist← maxDist

10: for i = 2 : unconnectedTracks.size() do
11: tmpTrack ← unconnectedTrack.get(i)
12: if tmpTrack.startFrame ≤ curTrack.endFrame+maxFrameGap then
13: curDist← getDistanceGap(curTrack, tmpTrack)
14: if curDist ≤ curMinDist then
15: curMinDist← curDist
16: closestTrack ← tampTrack
17: end if
18: end if
19: end for
20: if closestTrack 6= None then
21: connect(curTrack, closestTrack) . Simply connect the two tracks by putting

linearly spaced vector over the frame gap, and update the start and end frame of curTrack
22: unconnectedTracks.remove(closestTrack)
23: else
24: connectedTracks.add(unconnectedTracks.remove(curTrack))
25: end if
26: end while
27: connectedTracks.addAll(unconnectedTracks)
28: return connectedTracks
29: end function
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Appendix D

Microrobot Simulation Flow
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Figure D.1: Flowchart showing the simulation procedure of bacteria-driven microrobots.
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