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Abstract

Measurements were made of the magnetostriction of single crystals
of Fe-Si alloys varying in composition from 2.5 to & per cent silicon by
weight. Calculations were made to show how the magnetostriction constants
can be obtained accurately from the measurements.

Thé "form effect" of the specimens was calculated and subtracted
from the measured values.

For each of the alloys only two constants were found necessary
to describe the strain. For annealed material the constant hy (in Becker's
notation) was found to be zero at about 6 wt. per cent silicon and h, to be
zero at about 5 wt. per cent. Measurements on quenched crystals show that
at about 9 or 10 atomic per cent silicon a difference in the constant hl from
that for the annealed crystals begins to appear. Presumably the order-
disorder transformation begins at about this percentage.

In part II a survey is made of previous magnetostriction theories.
The only one susceptible to calculation is the magnetic dipole theory. For
silicon-iron this theory leads to values which are too small, but not
always negligible.

In the absence of exact knowledge as to the principal cause of

magnetostriction a semi~empirical theory is proposed.
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THE MAGNETOSTRICTION OF SINGLE CRYSTALS OF SILICON-IRON

Part I
Introduction

It has been known for some time that the magnetostriction of
polycrystalline Si-Fe alloys is much different from that observed in pure
iron and becomes zero for the composition by weight of about seven per
cént silicon. For compositions above seven per cent the magnetostriction
is reported to have a different sign.

The purpose of the present investigation was to determine the
fundamental magnetostriction constants of these alloys by measurements on
single crystals. This information is not readily obtainable from poly-
crystalline measurements due mainly to lack of knowledge of orientation
of the crystallites. Single crystals were prepared in the form of oblate
spheroids of silicon composition varying from 2.5 to & per cent by weight.

Preparation of Spheroids and Method of Measurement

From single crystals2 of various silicon compositions, discs
were mede which were in or near the (100) and the (110) planes and these
either were machined or ground into oblate spheroids with a major axis of
one inch and a minor of 0.1l. Due to their brittleness, it was ﬁecessary
to use the grinding procedure on the alloys of high silicon. Approxi-
mately one mil was etched off the surface of the specimens to prevent
formation of new crystallites énd they were annealed for five hours at
850°C, then furnace cooled. The results of a different heat treatment will
be discussed later. Table I gives a description of the ellipsoids,

1. A. Schultze, Z. Phys., 50, 4Lg8-505 (1928)
2. Grown by Mr. R. K. McGeary at the Westinghouse Research Lab., East

Pittsburgh, Pa.
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Table I
Wt. % Si Plane  Deviation from
Plane Indicated
(Degrees)
2.52 (100) 6
2.52 (110) 2
3,03 (100) h-1/2
'3.03 (110) 2
3.59 (100) -
4,32 (100) 12
4.83 (110) 7
5.80 (100) 1
5.80 (110) 2
7-79 (110) 1

For a measurement the ellipsoid was mounted on a smell turntable,
as shown in Figure 1, by placing it between the two upright members shown
and tightening & machine screw connecting them. Only enough pressure was
applied as was necessary to hold the sample in place.1 The turntable
rotated on a brass plate which was calibrated in degrees and by this means
the spheroid could be rotated to any angle with respect tc the applied
field. A brass cup was made tp fit over the spheroid in order to reduce
temperature fluctuations. The whole assembly, made entirely of brass, was
placed between the poles of an electromagnet (Fig. 2).

A field of 3300 oersteds was used throughout the experiments.2
1. The initial strain produced by this was of the order of TOR
2. In appendix A it is shown that this is large enough to make the

magnetization practically parallel with the applied field.



Figure 1
Spheroid Mounted on Turn Table

Figure 2
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Iwo different methods were used for measuring the magneto-
striction, both involving a measure of the change in resistance of a wire
strain gage. This offers a very simple method of mea.surement;.l’2 The
first method, which proved the most accurate, consisted simply in cementing
a wire gage on the sample and measuring the magnetostriction in a given
direction as the maghetization was rotated through various angles. For
this it was possible to use strain gages which are available commercially}
One gage is cemented on each side of the ellipsoid (Fig. 3) and the two
then connected in series to eliminate error in strain measurement due to
any bending of the sample. These two gages form the active arm of a
Wheatstone bridge, the other three arms being composed of identical dummy
gages which are mounted on a piece of brass in the stand on which the
turntable rests.

With a battery voltage of 10 volts, and the output of the bridge-
connected to a galvanometer with a five meter light beam a strain
sensitivity of about 5 x 10—8 per mm deflection was obtained. A warm up
period of about thirty minutes was required for the bridge to attain
temperature equilibrium.

l. J. E. Goldman, Phys. Rev. 72, 529 (1947)

2. J. E. Goldman and R. Smoluchowski, Phys. Rev. 75, 140 (1949)

3. A8, SR-4 gages made by the Baldwin Locomotive Works. These gages are
only 1/8" in length and consequently the curvature of the spheroid is

unimportant in the strain measurement.
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A large resistance in parallel with one arm of the bridge was
used for balancing it and by changing this resistance a calibration was
obtained. The change in resistance _A r of the strain gage is related to
the strain e by the gage factor, 1.83 ; 2%, as specified by the manu-
facturer. If D, is the galvanometer deflection for a change of resistance
AR in the resistance R in parallel with the resistance r, of one arm of

(o]

the bridge (r, = 240 ohms), the calibration is:

AR K

(.7, R (K+R)(1+ 2R _|
L+ R

For the purpose of making strain measurements in many directions

&
D

on the single crystal spheroids a method was devised making it unnecessary
to cement gages directly on the spheroid, since this was time consuming
due to the long drying time required. Instead, resistance wire strain
gages were cemented on each side of two 15 mil celluloid strips, 1/2 inch
wide and 1—5/8 inches long. These were then fastened on to two brass
blocks 3/16" thick. The spheroid was placed between these as shown in
Figure Y, By tightening the machine screw, the celluloid strips were
placed under an initial strain of lO_u,l and thereafter any magneto-
strictive strain in the sample was observed in the celluloid strips.
Unfortunately, it was not possible to reproduce results with this latter
method to closer than * 10% and only the first method was used for
determining the magnetostriction constants.

l. The strain in the crystal produced by this procedure was about one per

cent of that in the celluloid strips.
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The Magnetostriction Constants

A detailed discussion of magnetostriction processes is given by
Becker and DH}ing.1°2 They consider magnetostrictive strains to be of
three types: (1) a magnetostriction which is observed above technical
saturation in strong fields and which for most materials is quite small,

- and will be considered negligible for the field used in these experimentss
(2) A magnetostrictive "form effect" which depends upon the shape of the
sample or more precisely upon the energy associated with- the demagnetiziﬁg
field. The ellipsoids used in these experiments have small demagnetizing
factors and only a small correction is necessary to make the results
correspond to those for zero demagnétizing factor, i.e. no form effect.
(3) The third and most important is the strain produced in the crystal
lattice by the spontaneous magnetization. This is the process to be
studied in these experiments and the fundamental information desired is a
knowledge of how the crystal lattice is distorted as the magnetization is
rotated from an easy direction of magnetization to any other crystallo-
graphic direction.

In the past most of the measurements on single crystals have had
limited value Because the reference state from which the change in
dimensions was measured was an ambiguous demagnetized state. Since holo-
demagnetization can be achieved for any number of domain distributions it
is obvious that the demagnetized state is not a good reference for
l. R. Becker and W. Dgring, Ferromagnetismus, (Julius Springer 1939)

pp. 270-311,

2. Also see Francis Bitter, Introduction to Ferromagnetism, (McGraw-Hill

'1937) Chap. VII.
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measuring the magnetostrictive strains. Becker and Db’ring1 attempt to
overcome this uncertainty in demagnetized state by subtracting the magneto-
striction measured in a given direction, with the crystal magnetized to
saturation in the transverse direction, from the magnetostriction measured
in that same direction with the magnetization parallel.

It seems, however, much better to avoid the demagnetized state
entirely and use for the reference dimensions those of the crystal when
saturated in an easy or [iod] direction. One then has essentially a
single domain and the crystal lattice distortion which occurs as the
magnetization is rotated out of the easy direction can be measured directly.

Due to symmetry of the crystal it is necessary to make only a
small number of measurements to obtain the magnetostriction in any
direction, having direction cosineséz “£% hé% » for the magnetization in
any directiono<,,c><:2,c><:3° The strain in the /E% ,(EZ,AE;, direction in a
saturated crystal in terms of the strains Aj; along the coordinate axes
and the shearing strains Aik about these axes is (using the convention of
summing over subscripts that appear twice)

e = /44‘} @/Q? (i and j summed over 1,2,3) (1)
where the components of the symmetric strain tensor A are functions of the

direction of magnetization, o<

/,CXEscK . If the unstrained cubic axes of

3

the crystal are selected as the doordinate axes, and one of the A,. and Aik

ii
are known as a function of o<, s Cxé, and.czéthe other A's can immediately be
written from symmetry.

The strain components Aii and Aik can be expressed as a power

series of terms in.c<', cgé, andcx%. However, because of cubic symmetry

1. Ferromagnetismus, (Julius Springer, 1939) p. 276.
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many of the coefficients must be zero. From these considerations of

symmetry Becker and Déiingl give

Aj,{ = f(oﬁz) S)
/4,{£: “4’“47?(“;/5) icz4 Z/)

where 2 2 20D 202
= o< o< o<
S e F Z_Cx% 5 cx{.c><3

Upon expanding these

A

A

AA.{-: c><4-o<£-[__bo+b'o<;+ 5254— R __]

EEr 2 ' L
= 4, +0 <" + 6?23 +

2)

These expressions can be expanded to as many terms as desired and by making
measurements from which the a's and b's can be obtained, the magneto-
striction is completely determined.

In making measurements it is desirable to use samples in the
shape of thin oblate ellipsoids of revolution, for with these samples the
magnetization is uniform, and within the plane of the major axes the
demagnetizing factor is small, which likewise makes the magnetostrictive
form effect small. If one chooses a crystallographic plane in which none
of the &< 's is identically zero, the a's and b's, with precise measure-
ments, in principle, can be determined from this single plane. Consider

the plane (110). If © is the angle from the [:00!] direction,

= _Siné6 ~ Sindé - i
o<, . N8 ) o<, = 22 and oz =Cos &
In the [00L] direction, (,Bl =/92 =O/B3= 1), the magnetostriction is

1. Loc. Cit. p 274.
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ool 3

The al. aa,...obviously can be evaluated by rotating the magnetization into

o ’ j ) 4
& -:.-/4 5,= a, + C/, COSZQ +02(605295/f729 8 Si @).,.. 50 (3)

various angles 6.

If the magnetostriction in the direction [111]

= -;l_ - i is measured
(g' =% /?3"17?-)

: = A+ A+ A _ _
%lij I 322 33 —!-_32_(,423 /4/2 ,4/3)

. 4
= 0,4+ 9 +a,(cos’o sin*6 + Sin _.6_)-/. ..
3 2 4

D Sl A 2 2 o 3 \)
+2 (Sm 5 ; ).;.sz [sin®oCose +5irf Cose
3 Eo 5 +V25/n6Cos & =il s o

> 7 ! . 4
+§2—52(5’£ © +VE sinécos 9)(60529511429 +5/‘: ¢9)+. . /49

Since the a's are known the b's can be determined in a like manner.

In none of the measurements in the (110) does evidence appear
that constants beyond al and bo are important for describing the magneto-
striction. For example, equation (3) for strain in the [50%] is an even
function in sin © and cos 6. It is symmetrical about,90 degrees. An
examination of the curves in Appendix B for strain in the [ooi] shows
the deviation of measured curves from a squared sinusoid does not have this
.Bymmetry and thus cannot be due to additional terms in equation (3). It is

shown in the next section that the discrepancies can be explained, or at
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least the largest part of them, by the fact that the major planes of the
ellipsoids are slightly out of the crystallographic plane indicated, and
the direction of strain measurement may be slightly different from that
indicated. Angles of the order of éne or two degrees can account for the
discrepancy.

For strain in the [Eli} in (110) planes (see Appendix B again)
the difference between the experimental curves and the term in bo” which is
plotted as a dotted line, appears greater. It will be observed, however,
that these curves approach zero and 180 degrees as the b, term. The other
terms in (u) fall off much more rapidly near these points. Thus bo is the
predominate term. An examination of the other terms in equation (4) will
show that, at least by itself, none seems to account for the difference
between the measured values and the b0 term. The best fit of this
difference seems to be a sine squared term, and again it is possible for
this to arise as explained above.

A similar discussion applies for measurements made in the (100)
plane. Figures 24 and 25 are two possible exceptions, however. Here,
the accuracy of the measurement seems good enough to indicate a sin2 28
term in addition to the sin 26 curve shown. An expansion of the power
series for strain in the Ebli] direction for magnetization in the (100)
plane shows that a term of this type can arise for non-vanishing values of
some of the higher terms in the a's in equation (2) (ap for example),
Nevertheless, even if this term is real (as it appears to be), and not due
to some unknown error in the measurement, it still has little effect on

1
the magnetostriction and will be neglected in the following discussion.

if

In the curves mentioned it introduces a maximum effect of about B.x 10 .

l. It would be important, however, if the change in volume were being
measured.
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Evaluating the Constants

In the expressions for strain that have been used it is to be
understood that equation gives the strain from a hypothetical unmagnetized
state (such as would exist above the Curie temperature) to a state in which
the crystal is magnetically saturated. Thus the constant a, is of no
" interest here since it really cannot be evaluated experimentally without
taking the material through its Curie point. If instead of an unmagnetized

state, the reference dimensions are those of a crystal saturated in the

direction Y : Y ,‘Y then the expression for strain becomes
2 32

@ A (/) 2) 3) /:? /] ( )5/3/

Dropplng the terms beyond ay and bo in each of the strain
components and letting a1 = hj and by, = hp to conform with a notation

established by Becker, gives

/— /2 2 2 2 M, PR ) . o
= hbsis - Vg )t hloe s 1 488) A nk
Hereafter the prime will be dropped. If the expresgion is written so that

i and j are summed over all the values 1, 2, 3 then

C=lh-hlaes 4" +hbrsa8 - 1ns) 6

4 A

Consider now the magnetostriction in any arbitrary plane, Figure
5, where I (cx} SO C‘? is the magnetization vector,I 5 (1 Y 'Y) the

magnetization in the reference state and e (,é? A? A? ) is the strain

being measured.
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Since Cos ((P - 8) =O<:gf 5 Cos® (gﬂ —0) =c></(g,{,(><f‘g.

7
and 008299 Z/%

fz(Al—/)Z)(é.Zcx.a— 4.‘2 )+/7 [&052/50 9) Cos"'é] (é)

Further, iféf/ o J "'_[3 are the direction cosines of a normal to the
2

y . Thus (5) becomes
%

- plane thens

o(zg =0
o:;); = Cos & (7)
C><‘(C>§{-=:: 1
o, =0
gjf Cos (8)
4. 1

from which one can solve for thec<'s andg 's and express e in terms of
the angles © and @ for a given plane,A(; q <f2 . <7éand given initial
direction of magnetization, Yu YL) Y3 o

The expression for strain will now be evaluated for planes which
are only slightly out of the (100) and (110), since these were used in the
experiments, and for initial directions of magnetization slightly out of

the [OO]_._{ . Thus if X A /’( . S are small angles

y,;— Cos(éf—;()g 7<) YZ: Cos(_;:f_rz) =R

and

=Cos E ~
V,=CosE =1
Now for a plane slightly out of the (100),

d = cOsa,u 1, d=cos(F-A)= A and dy=Cos (T - €)= €

where LP and 6 are again small angles.
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Using these in (7) and (8) one can readily establish that to a first
approximation )%
e, (6<><3+ >
o, = 5ih® +hCos 6
X g = Cos @—RSthé
~and theﬁ?“s are similar with 77 replacing ©. Substituting these in (6)

gives

e =4, sinecosz gﬂ -/-f_z_sin 26simz
: 2
“/‘(A, ‘/72)/?(25/'n2651'n2§ﬂ i \s'/r)29 Cos 2%) (7)

Also, since there may be a small uncertainty in the direction in

which the strain gages lie, one should replace qg with qp + 4390 so (9)

becomes

C = "‘4, Sin‘e 505'2¢+_A_2_ SinzéSin2¢
2
1 (A,—Az)n (25/}72@ Sinzg - Sin2eécos 2%)

+ 89(2h,sin6sinz@ + h,sin 20cosz2g) (9

Two cases of interest aret?Q = 0 (the strain is measured in the

direction in which the crystal was initially saturated, i.e., nearly in

the [001] for which

€= —hsin®e — (h-h,)nsinze +h,APsinze (1)
and 9£7= 45 degrees (the strain is measured close to the [ali] ) for
which
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€= hysinze +2()-h )nsine + 2ha¢ sine (12)
From (11) it is observed that at © = 90° e = =h; and from (12)

the difference in strain for the magnetization at 45° with that at 135° is

' h2. The constants measured in this way are obtained to about the same

accuracy that the strain is measured (*+ about 3%) except in the special

case where the one constant becomes very small compared with the other. ‘In

this case it is not correct to neglect higher powers of the small angles

N , etc. For a plane slightly out of the (110) let
n
=cos(L—-q)e2 {+0
“{I (4- )

vz
J:Cos.ﬂ:—’]’c{/-#’f
= cos (E-7) = Lz

<{3:605(2I—f)2f

Proceeding in the previous way one finds in this plane

¢ 2, 9.2 e 2 . ' .
€ =-hsin e+(34.,2+éz)5m 5 Sin'y +__g£ sine@sinze

+(n-%) (h-h)(35in285iH P +3sinz@sine~2 sin2e)
212 |

+A$9[(342'+A2)S/ng?75,‘,72@ _,_/,ac@sa;zﬂs}nzé] (13)

For¢= 0 (strain near EOO]J )

. 2 . .
€ =-hsing --(QV 2—7()(/,,-42)5//7 26 +4@h, 51N 28 (14)

and at & = 90° ¢ = -h, .

For ? = 90° (strain near [il(‘)] direction)
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e=rhlsite + N-2)(h-4,)51n26 = 2fhsinze  (i5)
2 27z |

and at ® = 90° h, = 2e - hy
This is not an accurate way to evaluate h, if A, ~ 2€ &

 better way is to measure the strain for q:) = 54° Y4 (near [ilg ). Then
e= b (5//72@4- VZSinz ‘«‘“) +(q->()(l.,—Aa)sinaeﬁkﬁfz'(ély%)siﬂze—/'25/” 2¢ (I¢)
3 3

At © =45°

€= _he(Lovz) +(-)(h-1) + 2P [ (3h+h) _ 4.
be o)1) +2 [t 4] ()
At 6=135°

o= he(4~12) + (-0 (h-4,) 128 [Bth) L4 ] (8)
2 . VE

and the difference between these two is g_/-): (Vg _AS[)) & = Ve h

[

This gives an accurate measure of h2 in this plane. (Bxcept of course

when h, —> 0)

The values obtained from the curves in the Appendix B are given

in Table II.

Correction for Form Effect

1
It has been shown by several writers and verified by Becker and

Kornetski? that the shape of the sample measured is important in

determining its magnetostriction. To compare the measurements made here

l. R. Becker, Z. Phys. 87, 547 (1934)

2. M. Kornetski, Z. Phys. 87, 560 (1934)
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with a sample of the same material having no demagnetizing field, one must
subtract the form effect. A method of calculating this is as follows:
write expressions for the elastic energy and demagnetizing energy as a
fugction of strain., Minimize the sum of these energies/with strain.
An expression for energy of the demagnetizing field of a spheroid
"as a function of strain already has been calculated by Powell, for the
special case where the axes of the spheroid coincide with the cubic axes.l
Taking his results and changing the notation somewhat, one finds that thé

energy to be minimized is (in so far as it depends upon strain and direction

of magnetization)

E:_Cél, (4"2+/4222+A323) +C/2('4’/Aaa+4u'433 /Lﬂ’q )+2C ('4 +'4:2+A22)
T2 a + 2 “ 2 ;
+-"-‘§—Z(IC\2/4 +c{/4 )+/¢I(\,4+0<‘/4 )+_5-_3__4'_‘?Io<2c><3/123 19

This expression is for spheroid cut and magnetized in the (100)
plane. The C's are elastic constants, I the magnetization and for an

oblate spheroid Powell gives

,a—~‘=?77'/# Fogy =2 __»_'5;
#e= 2L ( Nerze) -2 i €

In terms of thé pr1n01pal axes, a, b and c, the eccentric1tyw€ ig given by

b_

m“

l. F. C. Powell, Proc. of the Cambridge Phil. Soc., 27, 561, (1931). We
are not concerned with Powell's complete expression (6) since this is
based on a special theory. We take, here, only that part which was

. Obtained from the expre881on.__,a jr_I_ for the “demagnetizing energy"

,lL Shoold really be wmg“en Ae=V (V,f-AeVo/ume) o
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Table II
gasurenl . shosrestel )
4 Si I Plane  nyxl10°  hoxl0.  mxl0°  hxl0
2.52 1640 (100)  +41.5 -10.4 39.7 -11.2
2.52 (110) 40.7 -10.7 38.9 -11.5
3.03 . 1620  (100) 39.9 - é.o 38.1 - 8.7
3,03 (110) 4o.2 - 7.28 38.4 - 8.U
3.59 1590 (100) 40.0 ' 38.3
4.32 1560 (100) 33.2 - 1.4 31l.5 - 2.1
4.83 1535 (110) 27.7 - 0.43 26.1 -1.1
5.80 1490 (100) 6.45 3.03% 4.9 2.4
5.80 (110) Bl . 2.93 5.2 2.3
7.-79 1370 (110) -13.6 4,28 -14.9 3.7
The solutions of OL — are
a/L-f
A“ = Copfst
Aoy = Const — fLo¢
==
= CoNSTH — fu.LE o<t
A33 i; -57?;;‘C72)
/]"3 = "‘/[-’f'iz\‘:’z‘/‘i
é;cz$4

In the initial state the spheroid is assumed to be magnetized in

o<

the [001] direction (¢g= 1,00,

=l =0

); consequently with this as

a reference the form effect strains become

Ao, angn Foog”
22
3(:,,-6,?_)

2,
L D

3 CQ:II- C;:a)
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FIG.6
MAGNETOSTRICTION OF ANNEALED CRYSTALS

O—0 MEASURED CURVE
—=—=WITH FORM EFFECT SUBTRACTED
X — D.A.SHTURKIN, PHYSICS ABSTRACTS, 5l, 1884 p 19l (1948)
g — S.KAYA AND HTAKAKI ANNIVERSARY VOL. DEDICATED TO PROF HONDA
(SENDAI [936) 314
® — W.WEBSTER, PROC. ROYAL SOC. OF LONDON, 109, 570 (1925)
A — K.HONDA AND Y.MASIYAMA, SCIENCE REPORTS TOHOKU IMB UNIV, IS 755 (1926)
—+— CURVE GOES TO VALUES BECKER CONSIDERS MOST ACCURATE.
RM 5364
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o,

,433’“"“/&"" )()& “j/ = /ii,f /z»,'@,?
3(c,- J 3(c,-<)

A = -l 51hecos (20)

23 =
CCha
'411-'4/::'4;3 T

P 3 ]
If the strain is measured in any direction, /2., = sin 70 5

5 s :
/2 = cos ;’ , in this plane (100), the form effect is
]

e = /,(/I(S“m c—’h,a;a“?gl — :.JH?&.;—-—SIM -
Ze= 2 ([ 2 Cesz (z1)
h | & ‘4“9#4L

For a dimensional ratio, a/ec, of lO,,{i = =1.9 . If the elastic

12 12
constants for ironol Chh =1.1 x 10 and C11 = 612 = 0.95 x 10 are used

i iy oy Bl Sxe
C_ =671 T 5in’ Cos 2+ - x15 L SInzoSinzg (29

*e.
/ Il &
T hus hl/{é’- = 67X10” I )
= hy = 28X10 P =4
These are evaluated and subtracted from the measured results in
Table II.

In evaluating the form effect for an oblate spheroid with major

axes in an arbitrary piane9 obviously the expression for energy of the

1. R, F. S. Hearmon, Rev. of Modern Phys., 18, 428 (19u6), Since the elastic
constants of Fe-Si ambarently have not been measured those for pure Fe are

used as an approximation. The assumption that the elastic constants are
independent of the direction of magnetization will be discussed in Part II.
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demagnetizing field, which depends only upon the shape of the spheroid,
will be of the same form as that in (19) if the direction cosines and
strains involved in this part of the energy are referred to the principal
axes of the spheroid rather than the cubic crystal axes. Thus in the

general case

) 2. 2
E:;ﬂ (A"2+’422+ '433) N z Az A A +2 (4 +’4/3 23)

e 2l p2ad /2g ¢ 2 / 240 /
Ll (cx, A+ /4%“)444' <! A +-'g<3’/l )+—2MI <, o /%23
2: e - = e 23 22

where the primed quantities refer to the spheroid axes and the unprimed to
the cubic axes. It is necessary now to transform the unprimed quantities
to the primed. Our interest here is only in a spheroid with principal axes
in the (110) plane. This transformation can be obtained as followa.

Choose the EllO_-] A [il(ﬂ and [60];’ directions as the X', y,, and 3/
axes of the spheroid. Thus in relation to the cubic axes the primed axes

are rotated U5° about Oz, and the relations
/ | / | /
g,=é/+éa//éé=éz‘g 4?»7//:73::/

: ¢
Vz = &

exist for the cosines of any direction. One can write equation (1) in the

form

6 '—‘AAJ@(@ /4 (/4“ 22 —/4

(Al2he oA, g;%; A+ (A _Az_é/w

( )”44 r (A +43) 244 2,
=




o &

from which the transformation for the A's is immediately evident.

Substituting these in equation (25) gives

U"‘n*"aa) Y e +cz[4n+"zz A, )@:‘
2@,4[(4:':4' ) ’2’ HA | 4T (o( A')

33

-+'/"’ (//‘,4 /42/2) +£§&Ii<2/o<_3/42: /2(/

Again, call & the angle the magnetization makes with the [E)Oﬂ

= Cos © and since the magnetization is confined in the (110) plane

/
= gin 8. As before, the solutions of the equations 9 E; =0

are obtained. Alj

2C

/ 5 . -
A, = Const +[ L R S
_ STRTS 44- &

/e p !
,422_5017=f+[cn_q ]P«f Cos @

,43’3: Const — e LCos%
3(c,-52)

/4 = - /tzzf/né&sé
€y

/4 =0
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And since the reference state is still saturation in the

[001] tne

strain components referred to this state are

/ e g AC
A5 T e j’“ sm%

" 1z
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ZC44-

,4*4

Whence, the straln in any direction (/2 —'casfg 5,"// =0 )

in this plane is

/ .4 . 2 .
Eeidpbog lpl & gl sze—-ﬂfT Sh
he et / 3(5//_‘:;2) 6 L4=% +ZC ]5,"%51”50
: /LIZ . ‘
—_ Sih 28 Sin 2 z2
ar ; z

Finally, for %
2. 2
( C/z)

and for ? = 51+° 44 (strain in. Eflig

© (strain in BJO]J

e =i fil”

e re (5/:7 8 +Vz Sin 26)

(30)



- 23 -

The appropriate corrections implied here are made in Table II. These
corrections, in terms of hl and h2 are the same as those for measurements
in the (100) plane.

Longitudinal and Transverse Magnetostriction

In the past it has been the custom to make magnetostriction
measurements by determining the so-called longitudinal and transverse
magnetostriction, i.e. the strain in the direction of the magnetization
and the strain in a direction transverse to the magnetization. Measure-
ments of this type for a 3.03 and a 4.8% per cent alloy are shown in
Appendix C and give further verificatian.of the fact that two constants
are adequate for the theoretical curve. The second, less accurate, method
described under the section "Method of Measurement" was used to make the
measurements since the direction of the strain measurement had to be
changed for each point on the curve.

In one respect, the curves in Appendix C are still different
from the usual magnetostriction curves for single crystals, in as much as
the reference state is saturation in the [50%] rather than the
demagnetized condition. |

The equations for the longitudinal and transverse effect as
used here are obtained as follows. From equation (6) the longitudinal
magnetostriction is

& = (h=hy) (< ocP—o<?) + hysin®e &)

since O{(‘-—-é ﬁ”a/é:// )/I:);:‘O

In the (100) plane o(l =0/ O(Z‘:S/‘” 9/ 0<3 = Cos &
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and
=2(h~4,)5m% — (h~24,)5/n% @Gz
In the (110) plane o¢ = 5)”6 — o C —=ic. s 6
2 = Jty=a
and
@:—‘;.-(A ~by)sine — (h~24,)sm28 (33

With the magnetization transverse to the direction in which the

s#rain is measured (9 = %‘f‘%—)

E,.= (4,-42)(4%2_42/ — 4, Cas’” G4
In the (100) plane o¢ =2 =0 é B 5/.
/ / i 3 ”';/
and 43 '—:O(Z:COS‘/

S0

€. = (h-2hy)cos? = 2 (4-4,) cos % (54
In the (110) plane _ﬁ A = S 9 é-? = 6’057/

0 3@)@5/ 3.(h=b) Cos*s” (3¢/

Qualitatively there is good agreement between the magneto-
striction calculated from these equations and the measured points. No

independent calibration was made for the measurements shown in these



curves. The calibration was obtained by making the peak value of the
measured curve agree with the calculated value.

Effect of Order and Disorder

It has been shown by Goldman and Smoluchowski1 that ordering in
an alloy can appreciably change the magnetostriction. Since, over a
certain range of composition, the Fe-=5i system is known to order one would
expect to measure different constants for annealed and quenched crystals.
The values given in Table II and plotted in Fig. 6 are for annealed
material, furnace cooled, and presumably ordered for compositions for which
ordering can take place.

Above 12.5 atomic per cent silicon ordering definitely has been
observed by & number of investigators and the superstructure is of the

FeBSi typee’B”b'°

Below 12.5 per cent no superlattice lines have been
detected in the X-ray photographs, but there are reasons to believe that
ordering, at leas}i of short range character, commences at about 9 or 10
atomic per cent since there is a discontinuity in the curve of lattice
constant vs. per cent silicon near this composition5°6, Also a

discontinuity appears at 9.86 atomic per cent silicon in a plot of the

magnetic aniscotropy constant against per cent silicon,

o Bl Gode;n ;nd R. Smolucho:rski,, ;’hys. ;evt 7;, Iuo—(19[$9)*

2. G. Phragmén, Journal of the Iron and Steel Inst. 114, 397 (1926)

3. Eric R. Jette and Rarl S. Greiner, Trans. A.I.M.M.E. 105, 259 (1933)

b, Margaret C. M. Farquhar, H. Lipson and Adriénne R. Weill, Journal of
the Iron and Steel Inst. 152, 457 (19u5)

5. Eric R. Jette and ®arl S. Greiner, Loc. cit.

6. Margaret C. M. Farquhar, etc., Loc. cit.
7. L. P. Tarasov, Phys. Rev. 56, 1231 (1939)
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Meagurements of the magnetostriction for specimens quenched in
0il, shown in Table III and plotted in Figure 7, 2dd credence to the belief
that ordering tegins toc take place in the region of 9 to 10 atomic per cent.

Due to the brittleness of the specimens it was not possible to
subject these crystals to a severe guench. For the heat treatment indicated

cracks appeared in the specimens which

TABLE 111
Quenching 6 6
W, Si Plane Temperature Ql_g;ig_ 22_5_19_
2.52 (110) 900°¢ 39,4 =10.7
4,32 (100) 900°¢ 34.0 - 1.0
5.80 (110) 900°¢ 12.0 3.3
5.80 (100) 700°¢ 13,0 b9
7.79 (110) 900°¢ No significant change from

annealed material.

MAGNETOSTRICTION CONSTANTS OF CRYSTALS QUENCHED IN OIL

made magnetostriction measurements difficult. For this reason the above
values are not as accurate as measurements on the annealed specimens.
Comparing the values with those of Table II, one sees thet the only
significant change that has occurred is the value of hl for the 5.8 wt,

per cent alloy. The constant hl for the quenched alloy is nearly double

that for the annealed; hy has changed but little and within the accuracy of
the measurements no change has occurred in the constants for specimens with
smaller amounts of silicon. Also no change appears in the values for the
7.79 wt. per cent alloy. The latter in the annealed condition should

possess some order. Since no difference large enough to measure was detected

in its magnetostriction after an 0il quench from 900°C one may suppose

either the magnetostriction of this alloy is insensitive to order or that
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900° is still below the critical temperature where disorder sets in. The
criﬁical tempe;catureD from magnetostriction measurements, for the 5.8 wt,
per cent alloy was found to be somewhere in the neighborhood of 450°C.

Near the composition where ordering first appears, however, the critical
temperature theoretically should rise rapidly as the alloying element is

1
increased.

Part II

Survey of Magnetostriction Theories

As of the present time, no adequate theory of magnetostriction
(i.e. the spontaneous lattice distortion) has been published, although
several explanations with some amount of merit have been proposed.

Before discussing these it is desirable to show in general how
the magnetostriction strains are related to an energy function which depends
linearly on the strain, and to the elastic constants of the material,
which are assumed known. Thus the scope of the theory is reduced to
calculating this energy function, which is sometimes called the magneto-
striction energy. The way this is brought about has been explained in
various degrees of detail by many authors. In essence the argument goes
as follows: the free energy of a magnetically saturated crystal is assumed
%o be described, at constant temperature, by the direction cosines of the
magnetization vector and by the components of the strain tensor. This
energy will be thought of as an energy per unit volume of the unstrained
crggtalo or in other words, as referred to a given mags. For definiteness,
the unstrained state will be taken as one for which the crystal lattice

= e o= = oo oo = = e = = - = = o= = - - - - e oo - - -

1. C. E. Easthope, Proc. Cambridge Phil. Soc. 33, 502 (1937)
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still possesses its cubic shape. Only cubic crystals will be discussed here.

If one does work on the crystal by applying stresses (ng which
distort it, the change in free energy, for the case in which the magneti-
zation vector is kept fixed, is

DE
dE = S c//?f U(-;-G/A;}

For small stresses, a ferromagnetic material that is saturated
obeys a Hooke's law, in that for a fixed direction of magnetization the

change in strain is proportional to the change in stress. In other words,

2
307 9 k = where the C's are constants,
- — Id L3
)Z'!i 3:4 3,4 Imd 2
the” elastic constghts, and in as far as this is true no powers of strain
greater than two are involved in the expression for free energy.
One can write
£ = L e (1)
Lo L Pl
where Eo is independent of strain and includes the ordinary crystalline
anisotropy energy; El depends linearly on the strain and may be referred
to as the magnetostriction energy and E, is the elastic energy quadratic
in the strain components. It is customafy to assume the elastic constants
to be independent of the direction of magnetization.

Under equilibrium conditions, subject to the constraints, the
energy is a minimum. If the only constraint on the system is that the
direction of magnetization is fixed, then

_Q_.ﬁ.:_
A,
For a cubic crystal the elastic energy is

- = - - - o= =S = = = o o =~ o = - - — - - - — - - - o

1. There seems to be a paucity of experimental data on this. It appears
reasonable to assume, however, that the orientation of the electron spins
will have no great effect on the electrostatic forces which determine the
elastic constantse.

= 0 2)
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Only six components appear because Aﬁj = A ..

Jji

The solutions of (2) are

C’,g_ +5)_§1)_ €, +c,) '35 4

33" +'ZC {

A IR,
W
etc. =

strain the strain components due to any particular part of El can be calcu-

It is worth mentioning here that since E; is a linear function of

lated separately, as was done for the form effect in Part I.
One can now write El as a series involving only the terms in the
direction cosines which crystal symmetry will allow. For a cubic crystal,

in the manner of Becker and Doring,

=4 (B e s w Bt )
%)

2
+4Ia°<19(2 (/771 +m20< +W5+m40<34+ sl .)
4‘4?7%?; Vbe’ /922u) _33‘)/4 éVévd/ 415'/*77 e Sam e
Constants
where S = o<'2b.(22‘ +-o(lzc>(;' R N;xsa and the k's and m's are
constants.

Equation (5) was obtained, however, from considerations of the
lattice symmetry only. But for a finite crystal, the shape of the boundary
should be considered too. It, of course, should not be cubic since an

ellipsoidal boundary is required for uniform magnetization. Of these, only

1. Becker and Doring, Ferromagnetismus, (Julius Springer, Berlin, 1939) p 136
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the sphere will have all the symmetry of a cube, so strictly speaking (5)
is for a crystél with a cubic lattice and a spherical boundary. For other
boundaries one will have to understand (5) as the magnetostriction energy
after the part depending on shape (i.e. the dimensions of the ellipsoid)
has been subtracted. The shape part arises from the term in the energy
contributed by the demagnetizing field and is therefore quadratic in the
components of magnetization.

Our interest here is in the silicon-iron alloys, for which as
the pfeceeding experiments have shown, terms beyond kj and mq in (5) are

unimportant, so

E/- = ’4// /{"‘"{"(ﬁ) = 422({"" {“zz) = ’433/4’“{"(32)

)
+ 17y (A <0¢, + A, 2%, + Ay 0202, )
A substitution in (4) gives
2.
A = const — {“4'

AA
=T <2 (‘7/

fre= =I5

Thus from the expressig;: for strain given in Part I, one obtains the rather

familiar result

AI = __ ’{/
<= Ce (?)
h, =

- I
%C%%, : : :
The theor&tical problem for iron (and Si-Fe alloys) is thus

simplified to the following: one must find an energy which is quadratic

in the direction cosines of magnetization, as in (6), and whose megnitude is
(1) For an oblate ellipsoid magnetized only in the equatorial plane, the
part depending on shape that must be added to (5) is given in the second
line of equation (25), Part I (in so far as it depends on direction of
magnetization).
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such as to satisfy (8) for the experimental values of hy and h We can

20
now proceed to discuss some attempts to do this.

It is natural that the first attempts to develop a magneto-
striction theory were based upon classical magnetic dipole interaction

b

between atoms. The dipoles were assumed situated at the lattice points

of the crystal, the energy between a parallel pair was written as a linear
function of strain and the strain dependent part was summed over all pairs
in the lattice, leading, correctly for the case of iron, to a quadratic
energ& expression in the direction cosines.

The lattice sum for a spherical crystal converges rapidly enough
so that the sum can be performed by taking a moderate number of terms.
McKeehan has made an accurate calculation of this.3 Using his result (0.36
instead of the value 0.4 which Becker uses for S)u one observes from
equation (4) of Becker's paper that according to this theory ky = _681° and
my = SSI2 or 2

/)': é.éé’z\’/dué (7)

-6
bho= =T %10
2 6
(I is the intensity of magnetization.) F. C. Powell pointed out,
however, that Becker's results were correct only for a spherical crystal.
(1) N. Akulov, Z. Physik, 52, 389 (1928)
(2) R. Becker, Z. Physik, 62, 253 (1930)
(3) L. W. McKeehan, Phys. Rev., 43, 1022 (1933)
(4) R. Becker, Z. Physik, 62, 253, (1930)
(5) It should be noted that Becker's actual calculation of the strain is
not quite correct since he uses an isotropic expression for the elastic

energy instead of the one appropriate for a cubic crystal.

(6) F. C. Powell, Proc. of the Cambridge Phil. Soc., 27, 561 (1931)
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The lattice sum for the energy between pairs of dipoles is only
conditionally convergent. For the general case one should actually
perform the sum over all pairs and the result will depend upon the
boundary of the crystal. Powell did this by using the Lorentz method
which replaces the summation for distant pairs by the interaction of a
given atom with the field of the distant atoms, obtained by integration
over the pole densitys i.e. for a particular dipole, one first sums its
interaction with all dipoles in a small sphere surrounding it, obtaining
approximately Becker's result. Then to account for its interaction with
dipoles outside the sphere, assume a pole density, 'In° on the surface of
the sphere and a pole density, In, on the surface of the crystal, where
In is the normal component of the magnetization. The density on the
crystal boundary is precisely what leads to the "form effect".

For a spherical'boundary the effects of the two pole densities
cancel; measurements, however, are always made on crystals of small
demagnetizing factor rather.than the spherical shape. Powell showed that
Akulov's calculations are the appropriate ones for the case of no
demagnetizing factor.

In Part I the magnetostriction due to the "poles" on the boundary
of the crystal, the form effect, was calculated. The form effect (in the
sense of Becker) gives the difference between the magnetostriction of an
arbitrary spheroid and that for the limiting case of a spheroid with no
demagnetizing factor in the direction of magnetization. The correction

which Powell makes is from a sphere to an arbitrary spheroid. But

- = =~ - o= - o - - oo - — — = o= - o — - - - - = - -

1. Akulov's numerical values are incorrect due to a mistake which Powell
points out.
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; < = +
obviously, spheroid sphere f.e. sphere f.e. spheroid

sc Powell's correction also can be explained in terms of form effect which
can be calculated from rather fundamental prihciples without any
consideration of the atomic nature of the interaction.

The measurements in Part I are given for zero form effect. To
determine the form effect of a sphere, equation (19) in Part I can be
referred to. This gives the elastic energy and the anisotropic part of the
demagnetizing energy for the special case of an oblate ellipsoid magnetized

in the (100) plane (i.e.®¢, = 0). By comparing this with (6) and using

/4 = =12 T appropriate for a sphere one obtains k =~N7T12 and
ak
‘3 f.e. sphere :r
my = ==87T12n so from (8) for an iron crystal
f.e. sphere “’3”’
- -
A/’; =75 e ¢
vEm G%?};f‘g Ae
Y P re (/0)

4 -
2 =334 X110
Porm elfect, Sph §
These Zé? be sé%%réctgg E;:; (9) to compare the theory with

measurements. The result is

-6
b = =11 Ko (1)

/72:-5.2 X /0_é

Comparing these with the values for iron on Fig. 6, Part I, one
observes that the hl is of the wrong sign and almost negligible. The h2
calculated is too small by a factor of 5, although the corresponding

calculation for iron-silicon in the region where h2 is small would give an

= o = =a = - = = o - £ —_ - - - - - - o= - - -— - - -

1. R. Becker, Z. Physik, 87, 547 (1934)
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appreciable‘valueul

Actﬁally these figures may be somewhat misleading. A better test
of Becker's calculations ig to add (10) to the measured constants, thereby
obtaining what one would expect to measure on a spherical crystal, and to

compare this with the calculations of (9). Thus h, and h, of (9) both

1 2
have the correct sign for iron but are too small by factors of 6 and 13
respectively.

Goldman and Smoluchowskig have made calculations which, for an
iron-cobalt alloy, show the effect of order on the magnetic dipole
interactions. They modify the theory so as to associate with each atom a
dipole moment that depends not alone upon the type of atom but also upon
its atomic environment. Only the effects of nearest and second nearest
neighbors are considered. By this means, they calculate, for the EEOQ]
direction, the difference between the magnetostriction of an ordered and a
disordered alloy. Percentagewise, it agrees within a factor of two with
measurements they made on polycrystalline material. In actual magnitude,
howevérD the theory, as for iron, would apparently lead to values much too
small,

It is sometimes suggested that calculations based on a distri-
bution of dipole moment over the atom as given by the actuwal wave functions
of the electrons responsible for magnetism (in place of considering it
concentrated at the lattice point which is allowable only for non-overlapping,
spherically symmetrical wave functions) might remove the quantitative defect
of the magnetic dipole theory. This does not seem likely, however, at least

= - S o= o= = oo = o= - - -— — - = - - oo - - — oo - - -

1. Powell reports the calculations for iron as being too small by a factor
of 13, This is because he evaluates h, - h, to compare with experiment.
2. J. E. Goldmen and R. Smoluchowski, PhyS. Rev. 75, 140 (1949)
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for iron and iron-silicen alloys, since the magnetostriction of these is
quadratic in the direction cosines of megnetization. Neglecting any over-
lapping, the effect of distributing the dipole moment is to introduce
quadrupole and higher order interactions,1 These if large enough to
affect the magnetostriction would probably lead to appreciable terms of
higher order in the direction cosines and ruin the symmetry properties of
the theory.

Thus one is led to look for some other interaction as the pre-
dominate cdause of magnetostriction. In doing this it is necessary to pass
over exchange interaction, which causes ferromagnetism, since this, in the
usual approximation, has no anisotropy and as such could produce only a
volume change when the magnitude of the spontaneous magnetimation changes.

A suggestion of Van Vleck2 that magnetostriction arises from
spin-orbit coupling in the étom in the manner that magnetic anisotropy is
thought to arise seems quite plausible. The idea here is that the
anisotropic electrostatic coupling of orbital momenta between atoms in the
crystal is the important factor. This is communicated to the electron
spins by the spin-orbit coupling and thus the energy becomes a function of
the direction of magnetization. Apparently, no calculations on this have
been attempted. The magnetic anisotropy calculations have been tried by
Van Vleck2 and Brooks3 and their approximations leave the result uncertain
within a factor of 10. The magnetostriction calculation would require a
derivative of this energy.

(1) For example see L. W, McKeehan, Phys. Rev., 52, 18 (1937)
(2) J. H, Van Vleck, Phys. Rev. 52, 1178 (1937)

(3) Harvey Brooks, Phys. Rev. 58, 909 (1940)
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A recent observation by Snoek1 concerning magnetostriction is
that several alléys made up of ferromagnetic components and possessing a
simple close packed lattice structure have zero magnetostriction at the
composition giving one mean Bohr magneton. He postulates that this is dus
to the integral number of magnetons, but as yet, no theory concerning this
has been published.

Magnetic Dipole Interaction for Fe-Si

In general, if the free energy of the crystal, or at least the
part depending upon the magnetization vector, can be obtained by a summation
th
over all pairs of atoms of an expressimné;MN for the interaction of the M

th
and N atoms in their respective lattice positions, then the magnetostriction

energy is

9
S5 f Sy if agy 0

,,MJNQ)({ Y

The’thare the coordinates, taken along the unstrained cubic axes, of the

th th
N lattice point with the M taken as the origin; Vo is the volume of the
unstrained crystal. The repeated small subscripts are to be summed over
l, 2, 3, and the summation sign indicates a sum over all pairs in the crystal.

For the present problem of magnetic dipole interaction

-

X 2 2 = 2 ;
&= 227cas™P = 23T (o vocx vocx, ) (3)

My 3
ho 7 -
giving the energy between two vparallel dipoles of moment (= and direction
2,3
cosines °<1, C><2,, and C><3 >

1. J L Snoek, Nature 163, 837 (1949)
2. The first term in the energy G' | - 2 is of no interest here
3;::45:5z7
since it is isotropic.
3. For this problem the dipoles are all assumed parallel, which of course,
is strictly true only at absolute zero of temperature.
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It will now be assumed that the dipoles are associated only with
the iron atoms so (13) applies when M and N are both iron and is zero
otherwise.

Thus for the Fe-Si alloy

e & S
5_2V5NPPM (4)

where PM and P are {he respective probabilities of finding iron atoms at

the M ‘and Nth lattice positions.

For a completely random alloy having atomic fraction of silicon
£, Py = Py = (1-f) and for the approximation being made, (1-f) = I , the
ratio of intensity of magnetization to that for iron, a relation iﬁich is
nearly true for small amounts of silicon. So the constants in both (9)
and (11) become multiplied by I)

In Fig. 8, the contrlbutlon this makes to the constant h2
subtracted from the measured values, leaving the resultant for the random
alloys which is yet to be explained. The contribution to hy is considered
negligible,

To carry out the calculation for the ordered alloys it would be

necessary to know the order parameters.

A Semi-empirical Theory for Fe-Si

In the absence of exact knowledge as to the predominate cause of
magnetostriction one can only attempt to explain the resultant curves of
Fig. 8 in a semi-empirical manner.

It is supposed that short range forces are involved, which
simplify the lattice sum in as much as only immediate neighbors are

important. If so desired one may think of these forces arising in the manner
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suggested by Van Yleck,1 The atoms will be assumed to interact in pairs.

Consider first an iron atom, imagined as being in a body centered.
position in the body centered cubic lattice and surrounded by its eight
nearest neighbors on the corners of the cube. This arrangement has cubic
symnmetry and the magnetostriction energy of the average iron atom with its
nearest neighbors must be generally of the form (5), or specifically for
these alloys of the form (6). For a specific alloy let A%;zfrepresent the
average energy between iron-iron pairs of nearest neighbors, and,
neglecting the isotropic ko term, let

= oy
/
[Ir:-. 41' @'oﬁa+422«aa+4?3“32 + m:.r( gl ""4 =5 # A 52 3) Jg)

2
E/
Let IS ve the average energy between iron-silicon pairs of

nearest neighbors and

t rs( o 4 A, 5 + Ag™ 3)+m:;(’4/2°7°§+’4/3°7°§+423°<2°‘3) @

Thus the average energy between an iron atom and its eight nearest
neighbors is
e =7 b + (-7 ) g (17)
where pII is the probablllty that a nearest neighbor of an iron atom is iron.
Next, consider the six second nearest neighbors of an iron atom
and use double primes to describe the corresponding quantities here. The

-l -t
average energies between pairs are Z:IZT and A:I.S . Also

B
_E /rz rr ("'f” _z's_ i (7

1. Loc. cite.
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Only the nearest and next nearest neighbors will be considered
although one could readily include more. This mekes the magnetostriction

energy of an iron atom with its neighbors given by

g=£;+£:’,"=/ﬂfé;+ s ”"(’ i‘rr)és"(’ Fidk, (7

One must now express the same thing for a silicon atom. In doing

this, silicon-silicon interactions will be ignored since it is assumed that

these do not depend upon the magnetization. Thus

(4 // o 4
: o YWooi=
~ _—_EH:- = £ Z
where pSI is the probability a nearest neighbor of a silicon atom is iron,

pé; the probability any one of the second nearest neighbors is iron.
For NI iron atoms per unit volume and Ns silicon atoms, the

anisotropic magnetostriction energy per unit volume is

£ = IL- +2’st 1)

The one-half is the usual factor which prevents each pair from
being counted twice. This expression can be simplified by observing that
SNsPéI gives the number of pairs of nearest neighbors having one iron and
one silicon atom; 8Ny (1-pj;) gives the same thing, so these are equal.
A 1y = 1_!!°

1so NSPSI Ny ( PII)

Therefore the magnetostriction energy becomes

£ = e[ e 26 plal -2 e 202 ] @2

For an annealed crystal the probabllltles pII and pii are

determined both by the composition and the state of order of the material,

for which additional assumptions would have to be made. For the present,
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only the quenched, presumably random, alloys will be considered. For these
piI = p”} = 1-f where f is the atomic fraction of gilicon. Also replace
NI by N(1-f) where N is the total number of atoms per unit volume.

Thus for a random alloy

7
£ = N(-H)E rE - ~
/ B " “rr 7[/1-1- rr Eé_fm Zﬁ‘rs) 23)
and from (8), (15) and (16)

/"""M:"i[ %. 7‘/ -2,{ 2,{”)] (24)

/72"'" “M[’”J;: 7£( e ﬂ_—2/77 2’77;5)_7 (25)
£,

It is understood that the parameters k and m, and also the
elastic constants refer to values for a particular alloy, and may be
different for different alloys. The k‘s and m's will most certainly
depend upoﬁ the distance between the inferacting atoms, which varies with
composition. This change in lattice constant with composition is large,
compared with that produced by the magnetostrictive strain, and may be
large enough to appreciably change the interaction energy between pairs.
Further, one might imagine the interaction of a pair to be dependent
upon the surroundings of the pair and consequently upon composition.
Also the elastic constants may be expected to vary.

In view of this, one can imagine the dependence on f of the
parameters in (24) and (25) as being expressed by a power series, and it
is hoped that over the small range of silicon considered here only a

constant and a linear term in f are needed. As far as effects due to
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changes of the laptice constant are concerned this is reasonable
because, at least up to 9 or 10 atomic pef cent silicon, the lattice
constant varieg linearly with the percentage of silicon];92 Beyond 10
per cent the lattice constant apparently has not been measured for the

disordered alloys.

To simplify the notation let kII = k;I o+ k;%, etc. Then

according to the above assumption

C‘;,"‘C,z_ (C‘—C" ) (26}

Mer 1
= ', .
< —-a;-;-e-(H ez F)

m
--;zai- = —é:ZEEiQ (7 + A4§:5-7C

=

where the K's and M 's af§4f%ur new constants and the subscript zero
refers to values for nearly pure iron.

The equations for h become

A = -
e fil e A e o 1 )

o= Mt b2 e oo ) ] (o)

As shown in Fig. 8 these fit the measured curves (with the

calculated magnetic dipole effect subtracted) very well if

1. Eric R. Jette and Barl S. Greiner, Trans. A.I.M.M.E. 105, 259 (1933).

2. Margaret C. M. Farquhar, H. Lipson and Adrienne R. Weill, Journal of
the Iron and Steel Inst. 152, 457 (1945)
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z. 5 o ~16
’g‘s/_(z_-s Z;fg/(}f = /450 X /0 o)
mz:z; — i

/77_,_:2; %:4_ 2 M,

= hergl el
] MIJQ" P23 X/

B el ) 4 sh
ZMI%/V,/I‘S /7:71.1;/‘?1_[ = /340 x4

giving the equations

A,z(/-yf/(z'?nfézo f— €850 752/)(/0'6 Ba)

b= (1-£)(~22 +4/0f = 1360£2) x10™© &)

Thus, at least, one can say that (27) and (28) have a form
capable of explaining the measured results,; even though this in itself
is not very convincing. If the expressions are correct, the values (29)
tend to indicate that the ironesilicon interactions are large compared
with the iron-iron.

It would be of interest to measure the magnetostriction of
some of these alloys under large initial strains, near the elastic limit,
for in this way one could determine whether the change in lattice constant
alone could produce expressions such as (26) with the required magnitude.
It would be necessary, also, in future work to know if the elastic

constants for these alloys vary significantly with composition.
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APPENDIX A
The angle 8, the abé&ssa of the magnetostriction curves is,
'strictlyn the direction of the applied field. The angle(*l between the
external field H and the saturation magnetization I for the case of
magnetization in the plane of the major axes of an oblate spheroid isl
Sin ¢ = e
ITH 3

Where

- L % 2 S 2 2 2
o /C+/(/,/0<,o<,_#0<70{3+c>(1x3)+/(2_o<,o(10{?
|

and the K's are the anisotropy constants, the®<§the direction cosines
of I.
In the (100) plane
- , 2
F=K,+ K, sim2/cos™/
where b/ is the angle between the [502] direction and the magnetization.

Since ©, the angle the applied field makes with [BOi] direction} equals b/—-ﬁb

F=k,+ Ksin?le1y)cos™(6+y)

and 5‘/‘ —— /( .
1y '__L'zzﬁl Sin 46 +¢)
5(2)

Teking K; = 4 x 10 , I = 1700 and H = 3300 gives
y )
Sihy = =036 5/n4(6+4)
Thustf/ is always less than about two degrees and is zero .at values of

8 = H5 and 90 degrees where the constants are measured.

1. Becker and Doring, Ferromagnetismus, (Julius Springer, 1939) p.122

@.) This is approximately the value for & 2% Si alloy. It becomes
smaller for higher Si content. L.P. Tarasov, Phy. Rev. 56 (1939) p.l234
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A similar calculation for the (110) plane shows

T G SO -~ . ~
Sinf == LN T RS tort)f [2-3sin*le+¢)[sin 2004 ¢
2T H
The constant K2 is small compared with Kl and can be neglected.

Since L,V is small

:.;f e /(/ 2_3 s 2 s
‘/" 21_#( Sih s).S‘M 249

which is the same order of magnitude as the previously calculated angle.
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