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Abstract

Building on the Polymer system designed by Bauer, Ligatti and Walker, which

allowed enforcing user-defined security policies on single-threaded Java applications,

this research extends Polymer to enforce policies on multiple applications, possibly

distributed across several hosts. Using Android as a case study, we adapted Poly-

mer to equip each app with a monitor, and we added communication capability

and central storage so that monitors can regulate interactions between apps and

make decisions based on their shared state. Our central storage design also includes

load-linked and store-conditional operations to support synchronization of parallel

updates, and each communication module is accompanied by a non-circumvention

policy designed to protect the integrity, authenticity and confidentiality properties

of the channel. The non-circumvention policy can be composed with user-defined

policies that involve two or more apps. To demonstrate the efficacy of the sys-

tem, we implemented and tested three policies: the first prevents apps from making

background calls caused by confused deputy attacks or collusion attacks; the second

disallows sending background SMS messages exceeding a specified quota, and the

third enforces a specified device location sampling rate among all apps on the device.
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1

Introduction

Among mobile platforms, Android is the most popular globally, and since Android

apps require access to a wealth of personal data to provide numerous services, they

can also use that data for purposes that are not approved by its owners such as

advertising, user profiling, and sending SMSes to premium numbers once the access

is allowed. To detect and stop this abuse of personal data, one major direction is to

use run-time monitoring. TaintDroid [6] is a run-time monitoring system for Android

devices that detects apps who transmit privacy-sensitive data such as phone numbers,

IMEI, IMSI, and geo-coordinates to external servers without informing their users.

Because apps can also provide useful services while leaking privacy-sensitive data,

AppFence [7] is another run-time monitoring system that can fake the transmission

of privacy-sensitive data to keep those apps running. TaintDroid and AppFence are

special-purpose run-time monitoring systems whose sole focus is protecting sensitive

user information. On the other hand, Aurasium [9] is a general-purpose run-time

monitoring system that can enforce a variety of run-time policies: stopping sensitive

data from being transmitted to external servers, stopping apps from sending SMSes to

premium numbers or executing as root user, and more. Furthermore, it allows users
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to decide at run-time whether an action is allowed or not. However, Aurasium has

two major drawbacks. First, though Aurasium’s researchers claimed that Aurasium

could "enforce any defined policy", they have not published a language specification

to write policies for their system. Second, Aurasium cannot enforce policies that

involve multiple apps.

A general-purpose system gives Android users custom access control over what

Android’s permission system already provides because users can define conditions

where access to a resource should be granted or not. In addition, it also gives

users more control than TaintDroid and AppFence do because it can enforce user-

defined policies regarding privacy-sensitive data such as allowing apps to send geo-

coordinates to external servers a limited number times instead of stopping all trans-

mission. We aim to design a general-purpose run-time monitoring system that can

enforce a wide variety of policies like Aurasium can but without its drawbacks. Our

system would have a clearly defined policy language, and it would be able to enforce

both policies involving individual apps and policies involving groups of apps. In or-

der to enable our system to enforce the latter type of policies, our monitors need to

communicate and exchange information about their targets, and this research will

explore different methods of communication between monitors. We choose our com-

munication methods based on a few example policies that we want our system to

enforce. We now present those policies.

An example policy that regulates individual apps is one that allows each app

to send only a limited number of SMSes without user intervention. If apps can

send SMSes without user intervention, they can send many SMSes without users’

knowledge, but the users will have to pay for those SMSes. Thus, sending SMSes

without user intervention is an action that needs to be monitored. A user may want

to grant an app this ability if it provides a useful service in return while limiting

financial damages should the app abuses its power. To do so, users can define the
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maximum number of SMSes that apps can send without their knowledge in the above

policy and use our run-time monitoring system to enforce it.

The second example policy belongs to a class of policies to stop one of Android’s

infamous privilege escalation attacks, in which an app that does not have access to

a resource uses another app that has access to retrieve that resource. This policy

demonstrates why monitor communication is essential. When monitors can com-

municate, the monitor of an app that starts another app can tell the monitor of

the latter which resources its target can access, so the latter’s monitor can decide

whether the caller app is allowed to access the requested resource. If the caller app

does not have the required access, then the callee app’s monitor will stop it from

returning the requested data or performing the requested action. This policy allows

apps with permission to make background calls to make background calls themselves

or by using other apps to do so while prohibiting apps without this permission from

calling other apps to make background calls.

Another example policy where monitor communication is necessary is a policy

that limits the number of geo-coordinates given to apps in a period of time. Although

geo-coordinates can be used for extremely privacy-invasive purposes such as surveil-

lance, they can also be used to provide great benefits such as navigation or getting

a list of nearby amenities. Thus, to reduce the amount of data that can be used for

privacy-invasive purposes, users may choose to enforce the described policy. If there

is no monitor communication, the run-time monitoring system won’t know if apps

have gathered more geo-coordinates than the limit as a group while not exceeding

that limit individually. Then, they can pool their knowledge, which would result in

each app having more geo-coordinates than the users want. To effectively prevent

apps from knowing more about users’ movement, we need the monitor of each app

on all location-enabled Android devices that users may carry with them at the same

time (e.g. smart phones, smart watches and tablets) to tell each other how many
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geo-coordinates their targets have gathered, so they can stop apps from exceeding

the collective limit.

Our system can also provide on-demand authorization, where users can allow or

prohibit an action at run-time. This is similar to a feature of Aurasium, where a

dialog box appears whenever a privacy- or security-relevant action is intercepted,

and Aurasium’s users can choose "Yes" to permit the action, "No" to suppress it,

and "Kill App" to stop the offending app. However, unlike Aurasium, our system

would allow a user of one device to authorize an action on another device. With this

capability, we can enforce a variety of parental control policies where monitors on

a child’s device can request permissions to execute from his parents, and they can

grant or deny them using their own devices.

In addition to having communication capability, there are other requirements to

make a mobile device’s monitoring system usable. First, it should not modify the

devices’ platform because many users don’t know how or don’t like to root their

devices. Second, it should have a policy language that is easy to understand and in

which it is easy to express different policies. Third, it should have a user-friendly

control interface to give feedback about policy enforcements to help users refine their

policies. Useful features of this interface are: a list of monitored apps, a history of

enforced policy decisions, and a place for users to specify policy parameters if they

are needed.

There are two reasons why we chose to extend Polymer [4] into a general-purpose

run-time monitoring system: first, it has a formal policy language that allows policy

composition, which makes policy writing easier; second, it works for Java applications

(albeit only single-threaded ones), and Android apps are typically written in Java.

We also chose to modify only apps’ deliverables, which is anything in an APK file. At

a starting point, we limit ourselves to two high-level tasks: one, adapting Polymer to

run on Android; two, adding communication capability as we discussed previously.
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The layout of this paper is as follows: Section 2 will give the background on run-time

monitoring, Polymer, and Android; Section 3 will discuss related work on Android

and Java run-time monitoring; Section 4 will give an overview of our extensions to

Polymer; Section 5 will talk about the implementation details; Section 6 will evaluate

our resulting system; Section 7 contains our conclusions, and Section 8 discusses

future work.
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2

Background

2.1 Run-time monitoring

Before we dive into Polymer’s system overview, this section will give a short discus-

sion of run-time monitoring’s concepts.

Conceptually, a run-time monitor runs in parallel with the program that it is

monitoring. A program’s execution is expressed as a sequence of actions; the mon-

itor intercepts each action and decides whether to allow or disallow the action or

execute another action altogether. A run-time policy defines the monitor’s decisions.

It can be thought of as a transformation function for action sequences, but with

the requirement that it must create the output action sequence by transforming one

action at a time because monitors make decisions as the program "runs". By ex-

tension, this also means that a run-time policy cannot undo its transformation of a

past action; nor can it decide to transform a current action based on a future action

that it hasn’t intercepted. For action sequences in which no action depends on the

output of a previous action, a run-time monitor can make its decision after observing

the whole sequence by suppressing every action in the sequence until the last one, at
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which time the monitor makes a decision and outputs the transformed sequence. An

example sequence that has this property is { print("Hello"); print("World");

}, and an example sequence that doesn’t have this property is { x = input(); y =

x * x;}.

2.2 Polymer

Polymer is a run-time monitoring system with a combination of features that will

later prove indispensible for writing policies that use monitor communication.

First, it has a policy language for defining how a program is to be altered. Among

related research, only Java-MAC (section 3.2) and MOP (section 3.3) have formal

language specifications. AppFence (section 3.1) has no language; the system defines

a fixed transformation for each action. Aurasium (section 3.4) uses a configuration

file, but its format was not published, so it is unclear what can or cannot be ex-

pressed by Aurasium configuration specifications. Then, out of the two systems with

formal language specifications, Java-MAC’s language allows only one modification

to a program’s behavior, which is raising an alarm when there is a policy violation.

This is a system-defined action, and users cannot change it. However, Java-MAC

language specifies actions in term of changes to variables and method calls while

Polymer’s language can only specify actions in term of the latter. MOP has several

languages, all of which describe actions in term of method calls, and their various

handlers are like Polymer’s replace suggestions since they both allow users to define

arbitrary code to be run when a condition is met. However, unlike Polymer, they

also have expressions to describe action sequences, such as {Iterator.hasNext();

Iterator.next();} and state transitions triggered by actions. In this regard, Poly-

mer’s users have to create their own methods to express state changes and action

sequence matches.

Despite this shortcoming, Polymer’s policy language has an important feature
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that no other language has, which is the support for policy composition because

it separates the making of a policy decision from the enforcement of that decision.

When two policies are composed, both of them maybe asked to make a decision,

but only one decision may be enforced. Since none of MOP’s languages has this

distinction, it is not possible to compose policies in a methodical way using them.

While a MOP policy writer can still write one policy that is the combination of two

sub-policies, this process is not simplified by any mechanism provided by MOP’s

languages. Java-MAC has the same drawback as MOP, and since Aurasium does

not publish its configuration format, it is unknown whether they have that support.

Policy composition is important because it allows a complex policy to be built from

simpler ones. This not only makes policy writing easier, but it also makes proving

the correctness of a policy easier because proving the correctness of a policy means

showing that the written policy both captures all of functions relevant to the user-

intended policy and makes the appropriate decisions about them, and reasoning

about a policy that captures only five functions is easier than reasoning about one

that captures twenty.

The remainder of this section will be a detailed discussion of Polymer’s system

architecture, its many components, how policies are compiled, how function calls are

captured and how the monitoring process works.

2.2.1 Polymer’s system architecture

The overall design of Polymer is illustrated in Figure 2.1. The system requires

three inputs: the policy definition written in Polymer language (this file has a .poly

extension), the target program as a collection of .class files, and a file that lists all

security-relevant functions. The third file is used to reduce the number of functions

that need to be monitored and thus reduces the performance overhead that a monitor

imposes on its target. The diagram only shows one policy file for clarity, but users can
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Figure 2.1: Polymer system overview

input multiple policy definitions along with Java source code for any support classes.

After the inputs are processed, the system produces the instrumented program as a

collection of .class files, along with the policies’ .class files.

There are two components that make up Polymer: a policy compiler and an

instrumentation engine. The policy compiler translates .poly files to .java files.

Then, any Java compiler can be used to compile those files to .class files. The

instrumentation engine is responsible for adding the monitor’s software to the target

program. This software is a library that includes two important functions: the

first defines the policy to be enforced, and the second tells the monitor whenever a

security-relevant action is about to be executed and which one it is. This is how

the monitor knows when it needs to make decisions according to which policy. Since

these APIs are to be called from inside the target program, the instrumentation

engine modifies the main function to define a policy before starting the program;

it also modifies all security-relevant functions to call the monitor before executing.
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aswitch ( a ) {
case <void android . app . Ac t i v i ty . s t a r tA c t i v i t y ( In tent i ) >:
// Compute monitor d e c i s i on
case <∗ android . te lephony . SmsManager . sendTextMessage ( . . ) >:
// Compute monitor d e c i s i on

}

Figure 2.2: aswitch example

In order to do this, it uses Apache’s BCEL [1] library to manipulate classes and

methods that are compiled in bytecode. The modified target program is then packed

with compiled policies from before.

2.2.2 Policy language

The policy language is an extension of Java. One extension is a new aswitch state-

ment that accepts Polymer’s Action objects as input. aswitch’s case selector uses

action pattern expressions. Figure 2.2 shows two types of matching: the first is

exact matching where the method’s fully-qualified name, return type and all inputs

are specified; the second is partial matching where a wildcard character "*" replaces

the return type and a wildcard string ".." replaces the arguments of the function.

In the first case, only calls to the function android.app.Activity.startActivity

that take a single input of type Intent and the return type void would match,

whereas in the second case, any call to any function with the name

android.telephony.SmsManager.sendTextMessage would match. The character

"*" would match any return type, and the string ".." would match any type and

any number of arguments.

Figure 2.3 shows a simplified Policy class. In order to define a policy, policy

authors must sub-class Policy class and define the query() method. Optionally,

they can also overload the accept() and handleResult() methods if their policies
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public abstract class Pol i cy {
abstract public Suggest ion query ( Action a ) ;

public void accept ( Suggest ion s ) { }

public void handleResult ( Suggest ion s , Object r e su l t , boolean
wasExnThn) { } ;

}

Figure 2.3: Policy class

are not stateless. Every time the monitor intercepts a security-relevant function, it

calls the query() method. This method returns its transformation in the form of

a Suggestion object. Then, before the monitor enforces the transformation repre-

sented by Suggestion, it calls accept(). After enforcement, if the executed action

returns a value, the monitor sends that value to policy by calling handleResult().

If the executed action results in an exception, the monitor also calls handleResult()

with wasExnThn=true.

Figure 2.4 shows that there are six types of Suggestion, and each type is a

sub-class of the Suggestion class.

• Irrelevant: an identity transformation. Policies return this suggestion when an

Action is not relevant to them.

• OK: also an identity transformation. Policies return this when an Action is

relevant and is allowed to run.

• Replace: transforms an Action to another Action.

• Insert: transforms action A to the sequence (B, A) where B is defined by the

policy.

• Suppress: transforms A to nil, meaning the Action is not executed.
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public abstract class Suggest ion {
public abstract boolean i s I r r e l e v a n t ( ) ;
public abstract boolean isOK ( ) ;
public abstract boolean i sRep lace ( ) ;
public abstract boolean i s Suppre s s ( ) ;
public abstract boolean i sHa l t ( ) ;
public abstract boolean i s I n s e r t i o n ( ) ;
public abstract Action ge tTr igge r ( ) ;
public abstract Pol i cy ge tSugge s t ingPo l i cy ( ) ;

}

Figure 2.4: Suggestion class

import . . / po lyandro id /comm/ po l i c y /DataBankComm. i f c ;

<∗ android . app . Ac t i v i ty . s t a r tA c t i v i t y ( . . )>
<∗ android . l o c a t i o n . LocationManager . requestS ing leUpdate ( . . )>
<∗ ∗ . onCreate ( . . )>
<∗ android . te lephony . SmsManager . sendTextMessage ( . . )>

Figure 2.5: List of security-relevant functions

• Halt: not only transform A to nil, but also stop the application.

2.2.3 List of security-relevant functions

This list describes all security-relevant functions that the target program may have.

Since there can be many security-relevant functions especially due to method over-

loading, they are expressed as action patterns like the one used in aswitch, and each

pattern may match more than one function. The list is written in one file or more;

there is one pattern per line, and the import statement allows one file to include

other files. Figure 2.5 is an example of this file.
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public class EditAutoMonitor {
public stat ic void s e tP o l i c yF i l e ( S t r ing f i l ename ) {}
public stat ic void run_$$POLY_METHOD$$( Action a ) {}
public stat ic void after_$$POLY_METHOD$$( Object r e su l t ,

boolean wasExnThrown) {}
public stat ic void ha l tTarget ( Po l i cy p) {}

}

Figure 2.6: EditAutoMonitor

2.2.4 Polymer monitors

EditAutoMonitor class is the implementation of a Polymer monitor. Since there

is only one monitor per application, all of EditAutoMonitor functions are static.

Figure 2.6 shows the relevant functions of EditAutoMonitor. The function

setPolicyFile() is called in the program’s main() function to define the pol-

icy class. run_$$POLY_METHOD$$() is called whenever a function in the security-

relevant list is about to be invoked. In turn, it calls the policy module’s query()

and accept(). If the policy returns HaltSuggestion, it calls haltTarget(). If the

policy returns ReplaceSuggestion, it executes the replacement action and calls

after_$$POLY_METHOD$$(), which calls the policy’s handleResult().

after_$$POLY_METHOD$$() is not called when SuppressSuggestion is returned be-

cause the action won’t be executed, so there is no result. For the remaining Sug-

gestions, OK and Irrelevant, after_$$POLY_METHOD$$() is called after the original

function runs.

2.2.5 Instrumentation

The previous section discussed when various functions of EditAutoMonitor are called

to perform their roles in monitoring a target program; this section will discuss how

the target program is modified, so those functions are called at the right time.

The instrumentation engine uses BCEL library to parse .class files, add new func-
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public stat ic void main ( St r ing [ ] a rgs ) {
EditAutoMonitor . s e tP o l i c yF i l e ( " po l i c y . MyPolicy" ) ;
// o r i g i n a l code o f main ()

}

Figure 2.7: Policy installation

public class MyClass {
private stat ic Scanner openFi l e ( S t r ing name) {

return new Scanner (new F i l e (name) ) ;
}

public stat ic void main ( St r ing [ ] a rgs ) {
Scanner s = openFi l e ( " h e l l o . txt " ) ;
// more code

}
}

Figure 2.8: An example of uninstrumented program

tions, and change existing ones. Figure 2.7 shows the addition of setPolicyFile()

at the beginning of the main() function. That is an example of a simple modifica-

tion; the modification needed to call

run_$$POLY_METHOD$$() and after_$$POLY_METHOD$$() for each security-relevant

function is more extensive. There are two variants: call definition instrumentation

modifies the body of the intercepted functions and their classes while call site in-

strumentation modifies the callers of those functions and the callers’ classes. To

demonstrate how each variant intercepts a method, we created a simple example.

• First, Figure 2.8 shows an example of a program’s original code that calls a

security-relevant function, openFile(). The definition of openFile() is also

shown.

• Next, Figure 2.9 shows the transformation to the program when a function’s

14



private stat ic Scanner openFi l e ( S t r ing name) {
Object [ ] arrayOfObject = { name } ;
Action monaction = new Action (null , "MyClass" , " openFi l e " ,

" ( Ljava/ lang / St r ing ; ) Ljava/ u t i l /Scanner " ,
arrayOfObject , " openFi l e " ) ;

try {
EditAutoMonitor .run_$$POLY_METHOD$$(monaction ) ;

} catch ( ReplaceException rep laceExcept ion ) {
Scanner r e s u l t = ( Scanner ) rep laceExcept ion . getValue ( ) ;
return r e s u l t ;

} catch ( SuppressExcept ion suppressExcept ion ) {
return null ;

}

try {
Scanner r e s u l t = MyClass . openFile_WRAP(name) ;
EditAutoMonitor . after_$$POLY_METHOD$$( r e su l t , fa l se ) ;
return r e s u l t ;

} catch ( RuntimeException e ) {
EditAutoMonitor . after_$$POLY_METHOD$$( e , true ) ;
throw e ;

}
}

private stat ic Scanner openFile_WRAP( St r ing name) {
return new Scanner (new F i l e (name) ) ;

}

public stat ic void main ( St r ing [ ] a rgs ) {
// openFi le i s s e cu r i t y ´r e l e v an t f unc t i on
Scanner s = openFi l e ( " h e l l o . txt " ) ;
// more code

}

Figure 2.9: Example call definition instrumentation

call definition is instrumented. The code body of openFile() is moved to a

new function, openFile_WRAP(), which has the same parameter, return type,

and modifiers. openFile() has a new body in which run_$$POLY_METHOD$$()

and after_$$POLY_METHOD$$() are called. Because the body of the original

function is changed, whenever it is called, the monitor is called. The call site

in main() is unchanged.
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private stat ic Scanner openFi l e ( S t r ing name) {
return new Scanner (new F i l e (name) ) ;

}

public stat ic void main ( St r ing [ ] a rgs ) {
Scanner s = openFile_WRAP(null , " h e l l o . txt " ) ;
// more code

}

private stat ic Scanner open_WRAP( St r ing param1 ) {
Object [ ] arrayOfObject = { param1 } ;
Action monaction = new Action (null , "MyClass" , " openFi l e " ,

" ( Ljava/ lang / St r ing ; ) Ljava/ u t i l /Scanner " , arrayOfObject , " openFi l e "
) ;

try {
EditAutoMonitor .run_$$POLY_METHOD$$(monaction ) ;

} catch ( ReplaceException rep laceExcept ion ) {
Scanner r e s u l t = ( Scanner ) rep laceExcept ion . getValue ( ) ;
return r e s u l t ;

} catch ( SuppressExcept ion suppressExcept ion ) {
return null ;

}

try {
Scanner r e s u l t = MyClass . openFi l e ( param1 ) ;
EditAutoMonitor . after_$$POLY_METHOD$$( r e su l t , fa l se ) ;
return r e s u l t ;

} catch ( RuntimeException localRuntimeExcept ion ) {
EditAutoMonitor . after_$$POLY_METHOD$$( localRuntimeException , true ) ;
throw localRuntimeExcept ion ;

}
}

Figure 2.10: Example call site instrumentation

• Alternatively, Figure 2.10 shows the transformation to the program when call

site instrumentation is used. The original function is unchanged while the call

site in main() is modified to call a new function, openFile_WRAP(). This func-

tion invokes the monitor. In this example, openFile() has only one call site in

MyClass.main(), so there is only one openFile_WRAP() created in MyClass. If

MyClass contains more calls to openFile(), then all of them would be changed

to call MyClass.openFile_WRAP(). If there are classes Foo and Bar that have
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calls to MyClass.openFile(), then there will be a Foo.openFile_WRAP() and

a Bar.openFile_WRAP(); the call sites in Foo will be changed to the former,

and the call sites in Bar will be changed to the latter. This is different from

call definition instrumentation where all changes are in MyClass. This also

means that an implementation of call site instrumentation may not intercept

all invocations of a function: for example, if a function is invoked by native

code, and native code is not instrumented, then that invocation won’t trigger

the monitor.

While there are minor differences between the two implementations, such as how

the original code is called once it is allowed to run, they are largely the same. When a

function is invoked, run_$$POLY_METHOD$$() is called. after_$$POLY_METHOD$$()

is called after the original function body is executed, but in the case where the original

function body won’t be executed (e.g. when Replace, Suppress, or Halt Suggestion is

returned by a policy), run_$$POLY_METHOD$$() will invoke after_$$POLY_METHOD$$().

Replace or SuppressException are used to deliver a return value when a Replace or

SuppressSuggestion is enforced.

2.2.6 Conjunction combinator

Combinators are used to compose policies. While there are other combinators, this

section will only discuss the Conjunction combinator because it is used to compose

user-defined policies with non-circumvention policies.

A conjunction combinator is composed of two sub-policies; it is also a Policy.

When it is queried, it queries the two sub-policies and returns the most restrictive

Suggestion of the two. However, if either sub-policy returns InsertSuggestion or

ReplaceSuggestion, a HaltSuggestion is returned by the combinator because an Ac-

tion is altered in Insert or ReplaceSuggestion, and it is not possible to quantify the

restrictiveness of each.
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2.3 Android Application

Since Polymer is designed to monitor Java applications running inside JVMs, trans-

forming it into a monitoring system for Android apps requires changes necessitated

by the design of the Android system and its apps. Therefore, this section will give a

brief overview of Android and how apps are packed and distributed.

Android system executes each app in the app’s own process with its own user-

name. The process runs a Dalvik VM, which is similar to JVM but is designed for

efficiency. Android apps are mainly written in Java, but some apps also contain na-

tive code. Typically, if apps are developed on Android Studio, Android Studio will

compile Java source code to Dalvik bytecode, but if another development method

is used, Java source code can be compiled to JVM bytecode, then be converted to

Dalvik bytecode with a number of open-source tools; dex2jar [2] is one tool.

Each Android app can have multiple entries: each Activity, Service, Content-

Provider, and BroadcastReceiver is one. Each of these entries must be declared in

AndroidManifest.xml. Android apps are typically multi-threaded: if an app has both

a UI component and a Service, then each runs in their own thread. Furthermore,

apps can spawn background threads to handle long-running tasks so that they won’t

freeze device screens.

To access a resource, apps need to request permission from users. There are over

100 defined resources with associated permissions in Android. Prior to Android 6.0,

apps declare the permissions they need in AndroidManifest.xml, a file that accom-

panies each app. The Android system uses this file to ask users to grant permissions

when apps are being installed. As of Android 6.0, in addition to declaring permissions

in AndroidManifest.xml, apps also need to call requestPermissions() as well be-

cause Android only asks users to grant permissions whenever requestPermissions()

is called.
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Apps’ deliverables are packed into .apk files. Users can install these files onto

devices using "adb" program provided by Android SDK. apktool [3] is an open-

source tool that we use to unpack .apk files in our research.
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3

Related Work

This section discusses several run-time monitoring systems where users can alter

target programs’ control flow in some ways. We also describe their drawbacks.

3.1 AppFence

AppFence [7] is designed to prevent privacy-sensitive data from being leaked by apps

while keeping the apps running by fooling them with shadow data. An example of

shadow data is an empty contact list. It can also stop exfiltration attempts, which

is when privacy-tainted data is sent to external servers, by intercepting OS-provided

network functions and dropping buffers containing private data. Then, it will fool

the offending apps into thinking that the data has been sent or that there is no

network connection by manipulating the return value of network functions. The first

drawback of this system is that it enforces only the policy discussed here because it is

a special-purpose system. The second drawback is that it modifies many components

of Android.
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3.2 Java-MAC

Java-MAC [8] is a run-time verification system that can verify user-defined properties.

It has a language to define events and conditions to be tracked. According to the

taxonomy of this system, events occur when the program is running, and conditions

are states that hold for a period of time. Its language allows users to define which

events and conditions to monitor and when to raise alarms. However, it does not

allow policy writers to modify the behavior of the monitored programs beyond raising

alarms, which is a system-defined action. Its language does not have expressions to

distinguish the monitor of one program from another’s because it was designed to

monitor individual applications only.

3.3 MOP

MOP [5] is one of the most prominent run-time monitoring system for Java applica-

tions. The MOP framework has several languages for specifying run-time properties

and handlers for when violations are detected; each of the languages is called a logic

module in MOP’s taxonomy. Handlers are a way to divert the control flow of a

program when a condition is met. Therefore, while there is no native expression for

communication between monitors in MOP, policy authors can create their own by

defining a handler. However, MOP can only enforce policies on an individual process,

and there is no expression in its language to compose policies, so adding the same

communication mechanism to different policies requires each policy to be updated

differently to prevent the communication from being corrupted. Additionally, the

resulting policies will need to be reviewed entirely for correctness.
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3.4 Aurasium

Aurasium [9] is a run-time monitoring system for Android that can enforce a wide

range of policies without modifying Android. It claims to be able to intercept virtu-

ally any calls to Android functions from apps by adding a few native code modules

to APK files. These modules would trap all calls from an app to the Linux kernel to

call its monitor first. Aurasium can intercept calls regardless whether they are from

Java code or native code. However, the monitoring system is not yet accompanied

by any policy language, and without a clear policy language, users can’t be sure that

they have expressed a policy that makes the monitors work the way they want it to.

Another drawback is that Aurasium only monitors individual apps so far.
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4

Overview of Polyandroid

This section will provide an overview of the additions to Polymer. Each sub-section

will having a matching sub-section in "Implementation of Polyandroid" (Section 5).

Apps and policies that are mentioned in this section and the next are also summarized

in "Evaluation" (Section 6) along with our evaluation of these additions.

From this point on, to distinguish this extended version of Polymer that monitors

Android apps from the original Polymer that monitors regular Java applications, the

former will be referred to as Polyandroid.

4.1 Design constraints

This section will list the constraints that influence Polyandroid’s designs. One of

them is self-imposed, and the other are to simplify its requirements.

The first constraint, which is self-imposed, is that Polyandroid cannot modify

any component of the Android system, or any Google apps because they are signed

by Google’s key, and therefore they have more privileges than the other apps. We

set this constraint so that the users of Polyandroid won’t have to root their devices.

The second constraint is that for each communication method used by a monitor,
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its non-circumvention policy must be enforced on every app that can access the

medium used by the method. Each communication method is accompanied by a non-

circumvention policy as will be discussed in Section 4.3. Non-circumvention policies

detect unauthorized accesses to monitors’ communication media by non-monitors,

and they are only effective when every app that can access those media is monitored.

For example, if inter-process communication (IPC) is used by two monitors, then

every app on the same device will need to be monitored for unauthorized accesses to

the same IPC channel; if two monitors on different devices communicate by leaving

messages on a web server, then all apps on both devices need to be monitored for

making unauthorized HTTP requests to that server, and the server must also block

all connections that are not from monitored devices. Still, users can enforce different

policies on each app; they would only need to combine their policies with non-

circumvention policies. There is one consequence due to the first constraint: Because

we cannot modify Google apps, we cannot enforce policies on them. This means that

Google apps are trusted components in our system.

The third constraint is to monitor only single-threaded apps because Polymer

only works on single-threaded Java applications, and monitoring multi-threaded ap-

plications requires thoughtful design changes that are outside the scope of this re-

search. This means that we can monitor apps that only have Activities and create

no background threads because Android multiplexes the execution of all activities

of an app onto a single UI thread. A monitored single-threaded app can still in-

teract with unmonitored multi-threaded apps without affecting the efficacy of its

monitor, but as a consequence of the second constraint, since multi-threaded apps

cannot be monitored, existing monitors cannot use any communication medium that

an unmonitored multi-threaded app can access.
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4.2 Communicators

Like Polymer, Polyandroid is a Java library that is added to apps by the instrumen-

tation engine. Communicators are classes in this library; each communicator class

implements communication using a different medium. Since each app is equipped

with a monitor, policy writers can choose a suitable communicator class for their

policies to exchange messages between monitors of different apps. We created two

communicator classes, IntentExtraComm and DataBankComm; they are the primary

additions to Polymer. This section will describe general APIs and requirements of a

communicator class, and Section 5.2 will discuss them in more detail.

Monitors send each other messages to help make policy decisions, so each message

is a parameter to a decision function. Therefore, each message is designed as a

key-value pair to identify the parameter and its value. A communicator class will

have methods for sending and receiving messages, and a method to specify its non-

circumvention policy.

Because efficient power consumption is very important to mobile devices, com-

municators cannot be constantly running in the background when there may be no

communication. Because monitors are active only when the monitored apps are run-

ning, not all monitors are active at the same time; therefore, it is very likely that

a message’s intended recipient may not receive a message until long after it is sent.

Thus, most communicators’ design should include a way to store messages until they

are retrieved. This also means that sending operations are asynchronous. Receiving

operations may or may not be synchronous. Our current communicators only have

synchronous receive functions because neither of them takes more than a few seconds

to receive a message. However, we expect inter-device communicators to have asyn-

chronous receive functions because an operation may take more than a few seconds

due to congested network traffic, busy devices or weak signal strength. The lack of
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synchronous send functions implies that if policy decisions depend on one monitor’s

answer to another monitor’s question, the policy must be written to put the mon-

itored apps on hold in the background or to stop it temporarily until an answer is

received.

There are two kinds of communication: one-to-one is a communication between

only two monitors, and one-to-many is a communication between a group of monitors.

Currently, we only have a global group, which includes all monitors that communicate

via the same communicator class. In order to have different groups defined by their

members, we will need membership registration and group IDs; this is a future task.

IntentExtraComm is an example of one-to-one communicators and DataBankComm

is an example of one-to-many communicators. However, it is possible to extend

DataBankComm to support one-to-one communication as well.

4.3 Preventing circumvention of communicators

From the perspective of the Android operating system, monitors are part of the

monitored apps; therefore, they run with the same privileges. Since communica-

tors store messages that directly affect policy decisions, the messages are attractive

targets for corruption, meaning unauthorized modification, removal, or insertion of

messages done by non-monitors. This section gives an overview of how to craft

non-circumvention policies for communicators.

There are two places where messages can be corrupted. The first is during trans-

misison, and the second is during storage. Since communicators uses Android APIs

to transmit and store messages, they rely on the Android operating system to pro-

tect messages in transmission and storage. This means that they rely on the guar-

antees that messages won’t be read or changed except through well-defined APIs

provided by Android. For example, a communicator stores its messages in a private

file of MonitorDataBank app, which has a ContentProvider. The ContentProvider’s
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insert() is the only function that reads or writes to this file. That communicator

relies on two guarantees given by the Android system. First, no app other than

MonitorDataBank can read or write to the file. Second, messages won’t be modified

during IPC, which facilitates exchanges with ContentProviders.

Consequently, preventing message corruption is reduced to defining a

non-circumvention policy to intercept all functions that would modify the messages

in the target program and halt the program when such a modification is attempted.

This means that the more functions there are, the larger the policy is, and the more

overhead it adds to the target program. Therefore, a good communicator’s design

should restrict the number of APIs that apps can use to insert, remove or modify

messages.

4.4 Declaring Android permissions

Sometime a policy module requires monitors to have certain Android permissions in

order to enforce its decisions. This section will discuss possible reasons for requiring

permissions, and the mechanism by which permissions are obtained.

One reason to require permissions is so that monitors can communicate. For com-

munication between apps on different devices, the INTERNET permission is typically

needed, but the monitored apps may not need Internet and so may not declare that

permission.

Even without communication, a policy may also require some permissions. For

example, a policy that logs the invocations of security-relevant functions may need

WRITE_EXTERNAL_STORAGE permission if the logs are on an external storage, and this

permission needs to be declared if it isn’t already declared by the target apps.

The instrumentation engine is responsible for modifying the AndroidManifest.xml

file of each app to add any permission that is required by a policy but is not already

declared by the app itself. In order for the instrumentation engine to know which
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Figure 4.1: Example of a monitor notifying users about an enforcement

permissions to add, a new API is added to Policy class, and this API returns a list

of required permissions.

4.5 Informing users of enforcement

Because the goal of Polyandroid is to give users more controls over the apps they use,

the execution of the monitors themselves should not be a blackbox. Otherwise, users

will not know whether their policies are enforced as they intended. Figure 4.1 shows

an example of a monitor informing a device’s user that the Spyware app cannot

make background calls because it lacks that permission. The Spyware app in this
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example is attempting to use the Utilities app to make background calls, which is a

privilege escalation attack that the example’s policy disallows. This is a notification

feature that monitors use to inform users of important actions. While users may

not be notified of every monitor action because there are likely to be too many to

constantly disrupt users’ focus, this is a first step in letting them know when their

policies are enforced.
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5

Implementation of Polyandroid

Our first task is porting Polymer to Android. Sub-section 5.1 will talk about changes

that we made to Polymer to accomplish this task and a challenge that we encoun-

tered while doing so. Our second task is creating APIs for different communication

methods that policy writers can choose for their monitors. We encapsulated the

implementation of each communication method in its own Java class. Each class

has its own public functions that can be used to facilitate communication. However,

we also created a Java interface, called Communicator, to impose a set of common

functions that all communication classes should provide, and each class implements

this interface. Sub-section 5.2 describes the Communicator interface and two classes

that implement two communication methods, IntentExtraComm and DataBankComm,

along with the use case for each communication method which affects their designs.

Because Section 4.3 already mentioned why non-circumvention policies were needed

and what they contained at a high-level, our third task is to show readers how to

construct non-circumvention policies via an example. Sub-section 5.3 will show the

non-circumvention policy of one of our communication classes, DataBankComm, and

explain how it prevents messages from being corrupted. Our fourth task is to explain
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how the instrumentation engine adds permissions that a policy needs to Android-

Manifest.xml and to discuss the implications of adding new permissions to apps.

This is carried out in Sub-section 5.4. Sub-section 5.5 will carry out our final task,

which is detailing how the user-notification feature that was mentioned in Section

4.5 is implemented.

5.1 Porting Polymer to Android

Before we can implement communicators, we must adapt Polymer to work on An-

droid first, so this section will discuss the necessary changes to do so.

5.1.1 Policy installation

The first change is where policies are installed on the apps. Originally, the policies

are installed in main() functions (see Figure 2.7). However, Android apps do not

have main() functions, so policies will have to be installed somewhere else.

In Android, an application has multiple entries: each Activity, ContentProvider,

Service, and BroadcastReceiver is an entry point. Whenever one of these compo-

nents is used, Android automatically instantiates it if there is no existing instance

of that component. Then, right after a component is instantiated, its onCreate()

method is called. BroadcastReceiver is the exception since that component does

not have an onCreate() method. We can install the policy module by calling

EditAutoMonitor.setPolicyFile() in onCreate() for Activities, ContentProviders,

and Services, while for BroadcastReceivers, we can put this call in their constructors.

However, since we limit our scope to monitor only Activities, we did not instrument

the other three components yet.
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public abstract class Pol i cy {
private Act iv i ty a c t i v i t y ;

// e x i s t i n g APIs

public void s e tAc t i v i t y ( Act i v i ty a ) { this . a c t i v i t y = a ; }
public Act iv i ty g e tAc t i v i t y ( ) { return this . a c t i v i t y ; }

}

Figure 5.1: Policy tracking of current Activity

5.1.2 Tracking Android Activities in policies

In Android, Activities are UI components, and Android multiplexes their execu-

tion onto a single UI thread for each app. However, sometime it is useful for a

policy to stop an Activity instead of halting the app because halting is a severe

punishment. An app is halted by killing its process, which means killing all of its

running components in addition to quitting without closing any open resources like

files or sockets, leaving those tasks to the operating system. In order to allow pol-

icy writers to tell monitors to quit an Activity, we added two APIs to Policy class:

getActivity() and setActivity() (see Figure 5.1). Whenever a policy wants to

finish the current activity, it creates a ReplaceSuggestion whose value is the action

getActivity().finish().

Even though all Activities are multiplexed on the same thread, separating the

execution trace of each activity may be useful. An Activity can be thought of as

an encapsulated module that interacts only through well-defined APIs which are

startActivity(), startActivityForResult() and onActivityResult(). These

methods allow one Activity to invoke another, specify parameters and receive results.

While it is possible for two Activities of the same app to interact by calling each

other’s methods, or passing data through app-global variables, this is not a typical

design. By separating the execution trace of one Activity from another’s, one can eas-
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public stat ic void setMain ( Act i v i ty m) ;
public stat ic void resetMain ( Act i v i t y m) ;

Figure 5.2: setMain() and resetMain()

ily write a policy that analyzes the behavior of each Activity and guesses its purpose.

Thus, we create a different Policy instance for each running Activity. This is achieved

by instantiating the policy class in EditAutoMonitor.setPolicyFile(), which is

called in Activity.onCreate(). Then, to associate a policy instance with an Activ-

ity, we added two functions to EditAutoMonitor, setMain() and resetMain() (see

Figure 5.2). setMain() is called after setPolicyFile() in Activity.onCreate(),

and it calls Policy.setActivity() of the policy instance that was just created.

The function resetMain() is needed because Android Activities can be paused and

unpaused as they come out and come back in focus on a device’s screen. When

an Activity is paused, another Activity may be unpaused. EditAutoMonitor must

replace the policy instance of the old Activity with one of the new Activity, and this

is accomplished by calling resetMain(). This function looks up a mapping from

Activities to Policies to find the existing Policy object associated with the input

Activity. The call to resetMain() is added to Activity.onResume() method.

5.1.3 Making BCEL work with dex2jar

To our surprise, we discovered that the dex2jar tool sometimes won’t convert the

bytecode that we modified with BCEL. To make sure that we did not have a bug in

our implementation, we wrote a simple test in which:

1. We parse the original code with BCEL, and create a MethodGen object, which

can be used to modify Java methods, for each method in every class.

2. Then we call MethodGen.toMethod() to write out the original method without
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private void f oo ( Object arg ) {
// code
arg = new St r ing [ 2 ] ;
// code

}

Figure 5.3: Decompilation of some methods from Dalvik bytecode

making any changes.

Even when we didn’t make any changes, the code that is generated by BCEL

is different from the original code, causing dex2jar to fail. Upon investigation, we

found that for some methods in some .class files that are written by BCEL have

local_variables_table attributes that didn’t exist before. The existence of this

attribute in combination with the quirk of Dalvik bytecode shown Figure 5.3 causes

dex2jar to fail when it detects an object of one type is assigned to a variable of a

different type.

We bypassed this problem by calling MethodGen.removeLocalVariables() be-

fore calling MethodGen.toMethod() to remove the local_variables_table attribute

from all methods’ bytecode.

5.2 Communicators

Our design of IntentExtraComm is to enable enforcement the anti-privilege escalation

policy that we mentioned in "Introduction" (Section 1), where an app with the

permission to make background calls is permitted to make them, but an app without

that permission is not allowed to use another app to make background calls. Our

design of DataBankComm is to help enforce a simpler version of another policy that we

also mentioned in "Introduction", a policy that limits the number of geo-coordinates

that all apps can collect as a group. However, instead of monitoring all apps on all
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public interface Communicator {
public void send ( St r ing r e c e i v e r , S t r ing key , S t r ing value ) ;
public void send ( St r ing r e c e i v e r , S t r ing key , byte [ ] va lue ) ;
public Message recv ( S t r ing key ) ;
public Message [ ] recvAl lMessages ( ) ;
public stat ic Class <? extends Pol icy> getNonCircumventionPolicy

( ) {
return null ;

}
}

Figure 5.4: Communicator interface

devices that are at the same location, we limit ourselves to monitor only apps on a

single device. Each of the communicators implements our Communicator interface

in Figure 5.4. In the process of perfecting these communicators’ designs, we discover

some important requirements that a communicator should have. This section will

discuss those requirements and the implementation of each communicators in detail.

5.2.1 Communicator interface

Figure 5.4 shows the basic APIs of a communicator: some for sending messages,

some for receving messages, and one for returning a non-circumvention policy to be

composed with the policies that use the communicator. When sending, a monitor

can optionally specify a receiver ID. If no ID is specified, the message can be read

by any monitor that has access to the communication medium. A message’s value

can be a String or an array of bytes. The Message class is a way for recv()

and recvAllMessages() functions to return tuples of (senderID, key, value).

The communicator automatically attaches the sender’s ID to each message that it

sends. How monitor IDs are given to communicators depends on the design of each

communicator.
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5.2.2 IntentExtraComm

IntentExtraComm is a one-to-one communicator, created to enable enforcement of

anti-privilege escalation policies like our example. Because this type of privilege

escalation always involves one app starting another app, and an Android’s Intent

object is delivered by the Android system from the caller app to the callee app in

the process, IntentExtraComm uses this object to deliver messages from the caller’s

monitor to the callee’s monitor. Each message is added to the Intent object as an

extra parameter.

To demonstrate how IntentExtraComm is used, we will describe its use case in

detail, starting with how privilege escalation works followed by how a policy can

detect and stop offending apps.

Making background calls with privilege escalation

1. Suppose Utilities is an app with CALL_PHONE permission, which is the per-

mission for making background calls. To make calls, it will create an Intent

with ACTION_CALL, and use that to start an activity. The Android system will

process this Activity and dial the number specified in the Intent object. This

feature is implemented in Utilities’ CallActivity class.

2. Utilities’ CallActivity is declared as a public activity, and any app can start it

by calling startActivity().

3. Suppose Spyware is an app that does not have CALL_PHONE permission. To

make calls, it will start Utilities’ CallActivity.

Policy definition

BackgroundCallPolicy prevents Spyware from making background calls while per-

mitting Utilities to do so. Even though Utilities doesn’t use a third app to make
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background calls in our example, this policy would also allow Utilities to use one

because it has CALL_PHONE permission.

The actual policy definition has about 100 lines, but Figure 5.5 shows the pseu-

docode version. Below is an explanation of how this policy works:

• The policy prevents privilege escalation attacks by intercepting calls to

Activity.startActivity() function.

• startActivity() is chosen for interception because by intercepting its calls

we can capture two pertinent events: the first is when an Activity attempts to

make background calls directly; the second is when an Activity starts another

Activity to make calls.

• In the caller Activities, the policy uses this logic: For those making background

calls directly by calling startActivity() with Intent.ACTION_CALL, the pol-

icy let Android decide whether those Activities can make background calls or

not; for those that start another Activity, the policy uses IntentExtraComm to

send the list of permissions their apps have to the Activity that is about to be

started.

• In the callee Activities, the policy uses this logic: If the Activity is not started

by another, then it’s started by the user, and since there is no privilege esca-

lation, it is allowed to continue; if the Activity is started by another Activity,

the policy will use IntentExtraComm to retrieve the list of permissions of the

caller Activity and will call Activity.finish() if the caller Activity does not

have CALL_PHONE permission.
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public Suggest ion query ( Action a ) {
aswitch ( a ) {

case <∗ Act iv i ty . s t a r tA c t i v i t y ( In tent i ) >:
S t r ing ac t i on = i . getAct ion ( ) ;
i f ( ac t i on != null &&

! ac t i on . equa l s ( In tent .ACTION_CALL) )
// Not making background c a l l s
return OKSuggestion ( this , a ) ;

Ac t i v i ty myActivity = ge tAc t i v i t y ( ) ;
i f ( ac t i on == null ) {

// s t a r t i n g an Ac t i v i t y in some app
IntentExtraComm comm = new IntentExtraComm( i , myActivity .

getPackageName ( ) ) ;
S t r ing pe rmi s s i ons = ge tA l lPe rmi s s i on s ( myActivity ) ;
comm. send (null , PERMS_KEY, pe rmi s s i ons ) ;
return OKSuggestion ( this , a ) ;

}

// ac t i on . e qua l s ( In t en t .ACTION_CALL) , which means
// t ha t t h i s i s the r e c e i v i n g Ac t i v i t y
In tent s t a r t i n g I n t e n t = myActivity . g e t In t en t ( ) ;
i f ( s t a r t i n g I n t e n t == null )

// Ac t i v i t y i s s t a r t e d by user s
return OKSuggestion ( this , a ) ;

IntentExtraComm comm = new IntentExtraComm( s t a r t i n g In t en t , null ) ;
S t r ing pe rmi s s i ons = comm. recv (PERMS_KEY) ;
i f ( ! hasCallPerms ( pe rmi s s i ons ) )

return ReplaceSuggest ion (
/∗ r ep l a ced by myAct iv i ty . f i n i s h ( ) wi th reason
"Don ' t have permiss ions "∗/ ) ;

return OKSuggestion ( this , a ) ;

default : return I r r Sugge s t i on ( this , a ) ;
}

}

Figure 5.5: BackgroundCallPolicy
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Implementation of IntentExtraComm

Each instance of IntentExtraComm uses an Intent object to send messages, by

calling Intent.putExtra(). The receiving functions are implemented by calling

Intent.getStringExtra() or similar functions for different types of data. The In-

tent object is delivered by Android to the started Activity, so the use of Intents as a

delivery mechanism has several benefits:

1. The Android system guarantees that the message is sent to the intended recip-

ient.

2. The ID of the recipient is not needed in send() because it is specified as a

component’s name in the Intent object.

3. The monitor is the last module to modify the Intent object, so the starting app

cannot overwrite any of its monitor’s messages.

4. This communication method has very low overhead: the only overhead is the

time it takes to read messages from and write messages to Intent objects.

5.2.3 DataBankComm

Because IntentExtraComm only delivers messages between two monitors, it is diffi-

cult to use when a policy requires communication between a group of monitors (the

monitor would need to make M exchanges, where M is the number of monitors in

the group). Thus, DataBankComm is created. DataBankComm is a one-to-many com-

municator for all monitors on the same device. It uses a ContentProvider to store

and retrieve messages. Monitors send messages by sending them to the Content-

Provider, and they receive messages by querying it. This ContentProvider is not a

part of any monitored app; instead, it belongs to a Polyandroid special app, called

MonitorDataBank.
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To demonstrate how DataBankComm is used, we will again describe the use case

in detail followed by an explanation of the policy’s definition.

How apps can collude to exfiltrate more location readings per 15 minutes

To demonstrate the enhanced enforcement when monitors can communicate, we will

assume that the apps in the below example are already monitored individually to

prevent each from getting more than one location reading per 15 minutes.

1. Utilities is an app with FINE_LOCATION permission, which is used for getting

precise location reading.

2. Spyware is another app that also has FINE_LOCATION permission.

3. The developers of Utilities and Spyware agree to share the location data that

their respective app gathers.

4. Utilities will start listening for a new location whenever the current time’s

minute value is divisible by 10. It will send every reading it gets to an external

server.

5. Spyware will do the same but it will start whenenver the current time’s minute

value is one of 5, 15, 25, 35, 45, or 55. It will also send every reading it gets to

the same external server.

6. When an app reads its first location value, its monitor starts a clock which

resets every 15 minutes. Before the clock resets, any calls to read new location

will return the previous value.

When the two apps pool their knowledge, the users’ location will leak twice every

15 minutes instead of once because Utilities and Spyware stagger the start time of

their monitors.
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Policy definition

This policy allows at most one geo-coordinate to be read by any app on a device

every 15 minutes. Repeated attempts to read more geo-coordinates by the same app

or a different one will receive the old value until the 15-minute period expires. We

called this policy LocationPolicy.

Figure 5.6 shows the query() method of LocationPolicyHelper, which is the user-

defined portion of LocationPolicy. Basically, the policy intercepts calls to

LocationManager.requestSingleUpdate() to swap an app’s LocationListener with

the monitor’s own listener. Note that LocationManager.requestSingleUpdate()

is only one of several methods that install a LocationListener. For this policy

to be complete, all of them should be intercepted, but as this is a proof of con-

cept, we intercept only requestSingleUpdate(). In order to explain the logic of

MonitorLocationListener clearly, I will explain its simplest version first before

explaining more complex versions.

Figure 5.7 shows the pseudocode of MonitorLocationListener, which uses Data-

BankComm to read and write the value of the last published location. Read is

done by calling recv(), and write is done by calling send(). If the last pub-

lished location is recorded not more than 15 minutes before the current time, then

MonitorLocationListener will call the app’s listener with the old value; otherwise,

it will call the app’s listener with the new value.

Conceptually, this algorithm is simple. Nonetheless, its implementation can be

fraught with synchronization problems as shown in Figure 5.7. Adding synchroniza-

tion APIs is discussed in the following sub-section.

One-to-many communicators’ synchronization needs

The synchronization issue demonstrated in Figure 5.7 arises because DataBankComm’s

send() and recv() are used in a similar manner to write and read operations to
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public Suggest ion query ( Action a ) {
aswitch ( a ) {
case <public void android . l o c a t i o n . LocationManager .

requestS ing leUpdate
( S t r ing provider , Loca t i onL i s t ene r l i s t e n e r , Looper l oope r )> :
Moni torLocat ionLi s tener l = new MonitorLocat ionLi s tener ( l i s t e n e r ,
g e tAc t i v i t y ( ) ) ;
return new ReplaceSuggest ion ( this , l , a ) ;

}
return new I r r Sugge s t i on ( this , a ) ;

}

Figure 5.6: LocationPolicyHelper’s query() method

// LAST_LOCATION i s a keyword

MonitorLocat ionLi s tener . onLocationChanged ( newLocation ) {
DataBankComm comm = new DataBankComm( this . a c t i v i t y ) ;

l = comm. recv (LAST_LOCATION) ; // 1

i f ( ( newLocation . time ´ l . time ) < 15 minutes ) {
app_l i s t ener . onLocationChanged ( l ) ;
return ;

}

comm. send (null , LAST_LOCATION, newLocation ) ; // 2
app_l i s t ener . onLocationChanged ( newLocation ) ;

}

// what i f another app modi f ied LAST_LOCATION between
// 1 and 2?

Figure 5.7: MonitorLocationListener without synchronization
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and from shared memory locations. The reason that send() and recv() are used

in this manner is because all monitors may not be active at the time messages are

sent, and it is unlikely they ever will be. Thus, receiving a message means reading

from shared storage, and sending a message means writing to shared storage.

To solve a synchronization problem, one’s first thought is to use lock() and

unlock(). However, they are not the best solution in the case of LocationPol-

icy. Figure 5.8 shows how lock() and unlock() operations can be used to provide

synchronization. These functions would be additional APIs of the communicator.

Since the communicator can be used to transmit different shared values, lock()

and unlock() APIs take a conversation ID to know which conversation to lock or

unlock. lock() and unlock() functions are fairly simple to use, but it requires

three operations even if there is no update to the shared value and four if there is.

DataBankComm’s communicaton is between processes, and is much slower comparing

to IntentExtraComm’s; therefore, policy authors should not use more operations if

they can do with less.

We found that using load-linked (or ll()) and store-conditional (or sc()) would

provide synchronization in a fewer number of operations. Figure 5.9 shows how these

operations are used.

ll() is the same as recv(), but it is designed to work in concert with sc(). sc()

is similar to send(), but it only succeeds when no other monitors called sc() since

the last time this monitor called ll().

In Figure 5.9, MonitorLocationListener uses ll() and sc() to detect if another

app has updated the shared LAST_LOCATION after this app makes a decision

based on the value that it just read. If no app has updated LAST_LOCATION,

then this app updates it and returns the new location. If another app updated

LAST_LOCATION, then this app reads the new value and re-tests whether the

new location should be returned. Because MonitorLocationListener only updates
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MonitorLocat ionLi s tener . onLocationChanged ( newLocation ) {
DataBankComm comm = new DataBankComm( this . a c t i v i t y ) ;

comm. lock (LAST_LOCATION) ; // 1
l = comm. recv (LAST_LOCATION) ; // 2

i f ( ( newLocation . time ´ l . time ) < 15 minutes ) {
comm. unlock (LAST_LOCATION) ; // 3
app_l i s t ener . onLocationChanged ( l ) ;
return ;

}

comm. send (null , LAST_LOCATION, newLocation ) ; // 4
comm. unlock (LAST_LOCATION) ; // 5
app_l i s t ener . onLocationChanged ( newLocation ) ;

}
// When the r e i s an update to LAST_LOCATION, the r e are
// 4 opera t i ons : 1 , 2 , 4 , 5 .
// When the r e i sn ' t an update to LAST_LOCATION, the re are
// 3 opera t i ons : 1 , 2 , 3 .

Figure 5.8: MonitorLocationListener with lock()/unlocked()

LAST_LOCATION with a more recent one, eventually the loop will terminate.

In our algorithm, typically, the sc() calls should succeed as not a lot of time has

passed between the ll() call at 1 and the sc() call at 2, so it should typically take

only two operations (1, 2). In the unlikely event that there is contention, it takes

three operations (1, 2, 3).

It is possible that one app can take more iterations in the do-while loop if it

is constantly interrupted by the Android system after it executes 1 but before it

executes 2, and other apps constant update LAST_LOCATION at the same time,

but this is unlikely.

In general, it is more efficient to use ll() and sc() than using lock() and

unlock() when the shared values are not frequently updated.
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public class MonitorLocat ionLi s tener {
private DataBankComm comm;
private Locat ion l ;

Moni torLocat ionLi s tener ( Loca t i onL i s t ene r o r i g i n a l L i s t e n e r , Ac t i v i ty
a c t i v i t y ) {

comm = new DataBankComm( a c t i v i t y ) ;
l = comm. read (LAST_LOCATION) ;

}

public void onLocationChanged ( newLocation ) {
do {

i f ( ( newLocation . time ´ l . time ) < 15 minutes ) {
app_l i s t ener . onLocationChanged ( l ) ;
return ;

}

l_temp = l l (LAST_LOCATION) ; // 1
i f ( l_temp == l ) {

i f ( sc (LAST_LOCATION, newLocation ) == SUCCESS) { // 2
l = newLocation ;
app_l i s t ener . onLocationChanged ( l ) ;
return ;

}
// sc ( ) f a i l e d when L i s updated a f t e r l l ( ) c a l l
l_temp = l l (L) ; // 3

}
// l_temp != l when l i s too outdated

l = l_temp ;
} while ( true ) ;
// loop w i l l t erminate because l inc rea se wi th every i t e r a t i o n

}
// Typ i ca l l y r e qu i r e 2 opera t i ons to update , 3 when
// the re i s content ion , p l u s 1 when Ac t i v i t y i s
// crea ted .
}

Figure 5.9: MonitorLocationListener with ll()/sc()
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Implementation of DataBankComm

DataBankComm uses a ContentProvider from the MonitorDataBank app to send, re-

ceive and store messages. This section will explain the implementation of send(),

recv(), ll(), and sc() in detail.

The send() operation is implemented by calling the update() method of Mon-

itorDataBank’s ContentProvider (see Figure 5.10). Similarly, the recv() operation

is implemented by calling the query() function.

Figure 5.11 shows how ll() and sc()methods are implemented. Just like send()

and recv(), ll() and sc() also call query() and update() methods. However, they

use an additional argument, selection, to distinguish themselves from the regular

send() and recv() by setting selection to "LL" or "SC". The following explains

how sc() can detect when the value it’s about to change is already updated by

another monitor after ll() is called:

1. When query() is called with "LL", an additional value is returned along with

the message. Let’s call this the lockValue. This value is saved by the com-

municator to use with the next sc() call.

2. When update() is called with "SC", selectionArgs is used to transmit the

previously recorded lockValue. The ContentProvider will compare this

lockValue with the one that is currently associated with the message. If the

two match, then it will write the message; otherwise, it won’t.

3. Once lockValues matches, not only is the message written by sc(), but the

associated lockValue is also updated. The new value is provided by the moni-

tor that calls sc(), and this value must be unique among all potentially parallel

sequences of ll() and sc().

4. To create unique lockValues, whenever a DataBankComm object is instantiated,
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/∗∗
∗ @param re c e i v e r i s ignored because t h i s i s a
∗ one´to´many communicator
∗ @param convoID
∗ @param message
∗/

public void send ( St r ing r e c e i v e r , S t r ing convoID , byte [ ] message ) {
// error check ing

// ContentProvider . update ( )
ContentResolver mContentResolver = a c t i v i t y . getContentReso lver ( ) ;
ContentValues va lue s = new ContentValues ( ) ;
va lue s . put ( convoID , message ) ;

S t r ing u r i = STORE_URI + "/" + convoID ;
mContentResolver . update ( Uri . parse ( u r i ) , va lues , null , null ) ;
return ;

}

Figure 5.10: DataBankComm’s send()

it generates a channelID based on an app-global counter and the app’s name.

Thus, this ID is unique among all DataBankComm instances among all apps. In

an sc() operation, the communicator passes this value to the ContentProvider

by putting it in the second column of values.

In this design, a message remains in DataBankComm’s storage until a monitor

overwrites it with a new message. DataBankComm doesn’t guarantee that all monitors

get to read the message before it is overwritten because many policies are only

interested in the most updated values. In addition, making sure that all monitors

get to read a message before it is deleted from the communicator can easily cause

resource leaks if the communicator cannot promptly detect when the monitor that

it is waiting on is uninstalled.
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public byte [ ] l l ( S t r ing key ) {
// Error check ing code here

St r ing u r i = STORE_URI + "/" + key ;
ContentResolver mContentResolver = a c t i v i t y . getContentReso lver ( ) ;
Cursor cur so r = mContentResolver . query ( Uri . parse ( u r i ) ,

null , "LL" , null , null ) ;

i f ( ! cu r so r . moveToFirst ( ) ) {
this . lockVal = "␣" ;
return null ;

}

// Lockva l would be re turn in the second column
this . lockVal = new St r ing ( cur so r . getBlob (1 ) ) ;
return cur so r . getBlob (0 ) ;

}

public boolean sc ( S t r ing key , byte [ ] message ) {
// Error check ing code here

ContentResolver mContentResolver = a c t i v i t y . getContentReso lver ( ) ;
ContentValues va lue s = new ContentValues ( ) ;
va lue s . put ( key , message ) ;

S t r ing id = this . channelID + "/" + key ;
va lue s . put ( key + LOCK_EXTENSION, id . getBytes ( ) ) ; // 1

St r ing u r i = STORE_URI + "/" + key ;
int numUpdated = mContentResolver . update ( Uri . parse ( u r i ) ,

va lues , "SC" , new St r ing [ ] { lockVal }) ;
return numUpdated == 1 ;

}

Figure 5.11: DataBankComm’s ll() and sc()

5.3 Preventing circumvention of communicators

As mentioned in Section 4.3, communicators transport messages that directly affect

policy decisions, and if monitored apps can modify these messages, they may be

able to circumvent their monitors. If Spyware can add CALL_PHONE to the list of

permissions sent to Utilities even though it doesn’t have that permission, Utilities

would make background calls on its behalf, which would mean that Spyware evaded
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its monitor. If Spyware is allowed to write messages to MonitorDataBank’s Con-

tentProvider, it will overwrite the timestamp of the last published location to an

earlier time. Consequently, its monitor will always think that the 15-minute period

has expired and permit Spyware to get the latest geo-coordinates.

The DataBankComm is an example of a communicator that needs a non-circumvention

policy: the target apps can easily start the MonitorDataBank’s provider and call

query() and update() just like DataBankComm does in send() and recv(). This

section will show how its non-circumvention policy is defined.

An app can only modify stored messages by calling MonitorDataBank’s Con-

tentProvider’s update() method and can only read messages by calling its query()

method. These methods are actually called by calling a ContentResolver’s methods

with the same name. Thus, the non-circumvention policy for MonitorDataBank is

simple: it intercepts ContentResolver.update() and ContentResolver.query()

calls from the target apps, and if their URI input points to MonitorDataBank, then

the apps are halted. Figure 5.12 shows a DataBankComm’s non-circumvention policy

that does exactly this.

Since LocationPolicy uses DataBankComm, the full policy is then a composition

of the user-defined policy and DataBankCommPolicy. Figure 5.13 shows how these

policies are composed using Conjunction combinator. Please refer to Section 2.2.6

for a brief explanation of the conjunction combinator.

5.4 Declaring Android permissions

This section will describe how new permissions, which are required by policies but

are not already declared by monitored apps, are added to apps. Then, it will discuss

the consequences of adding new permissions.

Section 4.4 already explained why new permissions may be needed, and that

AndroidManifest.xml needs to be changed in order to declare them. It also mentioned
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public class DataBankCommPolicy extends Pol i cy {
// MONITOR_DATA_BANK i s the URI to MonitorDataBank
public Suggest ion query ( Action a ) {

aswitch ( a ) {
case <public Cursor android . content . ContentResolver . query ( Uri ur i ,

S t r ing [ ] p ro j e c t i on , S t r ing s e l e c t i o n , S t r ing [ ] s e l e c t i onArg s ,
S t r ing sortOrder )>:
i f ( u r i . getAuthor i ty ( ) . equa l s (MONITOR_DATA_BANK) )

return new HaltSuggest ion ( this , a ,
"App␣ t r i e d ␣ to ␣ circumvent ␣monitor ␣and␣ got ␣ k i l l e d " ) ;

return new OKSuggestion ( this , a ) ;

case <public Uri android . content . ContentResolver . update ( Uri ur i ,
ContentValues values , S t r ing s e l e c t i o n , S t r ing [ ] s e l e c t i onArg s )>:
i f ( u r i . getAuthor i ty ( ) . equa l s (MONITOR_DATA_BANK) )

return new HaltSuggest ion ( this , a ,
"App␣ t r i e d ␣ to ␣ circumvent ␣monitor ␣and␣ got ␣ k i l l e d " ) ;

return new OKSuggestion ( this , a ) ;
}

return new I r r Sugge s t i on ( this , a ) ;
}

}

Figure 5.12: Example non-circumvention policy

a new API in Policy class to tell the instrumentation engine which permissons to

add. That API is Policy.getAdditionalPerms(). This function returns an array

of permissions required by a policy as String objects. The instrumentation engine

compares the permissions in this array against the permissions listed in each app’s

AndroidManifest.xml to find permissions that aren’t declared by the app. Then, it

will declare the missing permissions by adding <uses-permission> elements to the

AndroidManifest.xml file. Therefore, to define required permissions, policy authors

overload this function in their policy files.

Prior to Android 6.0, permissions declared in AndroidManifest.xml are requested

at an app’s installation time. Since Android 6.0, the permissions are not requested

at installation time though they still need to be declared in AndroidManifest.xml.
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public class Locat ionPo l i cy extends Conjunction {
private stat ic f ina l Pol i cy COMM_POLICY;

stat ic {
try {

COMM_POLICY = DataBankComm. getNonCircumventionPolicy ( ) .
newInstance ( ) ;

} catch ( In s t an t i a t i onExcep t i on e ) {
throw new PolymerException ( e ) ;

} catch ( I l l e g a lAc c e s sExc ep t i on e ) {
throw new PolymerException ( e ) ;

}
}

public Locat ionPo l i cy ( ) {
super (COMM_POLICY, new Locat ionPo l i cyHe lper ( ) ) ;

}
}

Figure 5.13: Composition with non-circumvention policy

Apps must request each permission when they need it by calling

ActivityCompat.requestPermissions(). However, once granted, the app can con-

tinue accessing the permission’s associated resource until it is revoked. The instru-

mentation engine does not add calls to ActivityCompat.requestPermissions() to

apps, so policy authors must call this function inside their policy.

Adding new permissions to an app must be done with caution because it would

give an app more capabilities than it needs to have. While one may assume that if the

original app doesn’t request a given permission (e.g. INTERNET) that it would never

use the associated resource (e.g. connecting to external servers), that assumption

could be disastrously incorrect. Suppose that an app does not declare INTERNET

permission, but its monitor informs a device’s user that it needs INTERNET permission

to monitor the app. The user trusts the monitor and thereby grants that permission.

A malicious app that knows its users use this run-time monitoring system can take

advantage of this scenario by continually attempting to exfiltrate users’ data out of
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their devices until it succeeds without ever requesting INTERNET permission. This is

an example of how a monitoring system can create new security vulnerabilities by

requesting additional permissions.

A potential solution to this problem is to add a new prevention policy to prevent

apps from using privileges granted to monitors. However, this policy is far more

complicated than non-circumvention policies for two reasons:

1. Certain resources have many associated APIs. For example,

WRITE_EXTERNAL_STORAGE allows an app to write to files on external storage,

and there are many file I/O APIs, which means the size of the prevention policy

for this permission alone can be huge.

2. Some apps that a user wants to use may already have the requested permissions

while others may not. Thus, the prevention policy must be composed with

the user-defined policy for some apps and not for others. If there are multiple

permissions involved, then the number of compositional combinations increases

quickly. Polyandroid currently does not support this kind of dynamic policy

compositions.

In summary, policy authors must be cautious in requesting permissions, possibly

limiting themselves to permissions that an app already has or those that can cause

less damage, such as WAKE_LOCK or VIBRATE.

5.5 Informing users of enforcement

This section will discuss how the current user notification feature shown in Figure

4.1 and Section 4.5 is implemented and its limitation.

The aforementioned feature displays notifications using Android’s Toast, and

the message to be displayed is specified in Suggestions. Whenever a policy returns
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public void accept ( Suggest ion s ) {
i f ( a c t i v i t y == null ) return ;

S t r ing reason = s . getReason ( ) ;

i f ( reason == null | | reason . l ength ( ) == 0)
return ;

Toast . makeText ( a c t i v i t y . getAppl i cat ionContext ( ) ,
reason , Toast .LENGTH_SHORT) . show ( ) ;

}

Figure 5.14: Implementing user-notification

a Suggestion, it can optionally add a reason for making that Suggestion. Whenever

a Suggestion is accepted, if it is accompanied by a reason, the monitor will display

that reason as a Toast. Figure 5.14 shows the modified Policy.accept() method

where this feature is implemented.

The use of Toast to display user notifications has a flaw, however. Because

the code to display Toasts runs in an app’s process, the reason for HaltSuggestion

cannot be displayed because the process is halted right after Policy.accept() is

called. This is undesirable because halting an app is the most severe enforcement for

which an explanation is needed. In the future, we hope to employ MonitorDataBank

to display the reasons as Android Notifications instead.
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6

Evaluation

In order to test Polyandroid, we created three apps and wrote three policies. This

section will discuss how we used them to evaluate the efficacy of Polyandroid and

what we found.

6.1 Test apps

While there have been many references to the apps listed below in sections 4 and 5,

this section will act as a reference of their features and their purposes.

6.1.1 MonitorDataBank

This is an app that is used solely by the monitoring system, and the users can install

it on any device where Polyandroid is installed. Currently, its only functional com-

ponent is a GenericContentProvider, which provides the communication media for

DataBankComm. Its development was motivated by the needs of DataBankComm,

but it has many other potential uses: as an interface for users to specify policy

parameters, as a viewer of enforcement history, and as a user-notification system.
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6.1.2 Utilities

Utilities represents apps that provide useful services and are directly granted per-

missions to access sensitive resources by its users. It has the following Activites:

• BackgroundCallActivity: Make background calls

• BackgroundSmsActvity: Send background SMSes

• LocationActivity: Read fine location, and start Google Maps activity to display

the location on a map

• ContactActivity: Read contact list and display it on the screen

6.1.3 Spyware

Spyware represents apps that provide some useful services while exploiting users’

data for nefarious purposes. Spyware has the following Activites:

• MainActivity: Start Utilities’ BackgroundCallActivity to make background

calls or start Utilities’ BackgroundSmsActivity to send background SMSes

• GetLocationActivity: This Activity is identical to Utilities’ LocationActivity.

Spyware requests its own permission to get users’ fine location here instead of

starting Utilities’ LocationActivity

• It has an optional feature that we can add or remove depending on each test

case: Just before it attempts to read a location value, it contacts MonitorData-

Bank and changes the timestamp of the last published location, so if Location-

Policy is used, the policy module will always think that the last published

location is outdated and so will return the latest location to Spyware.
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6.2 Implemented Policies

Like the apps, most of our policies are already discussed in earlier chapters, so this

section will only summarize them.

6.2.1 BackgroundSmsPolicy

Unlike the other two, this policy does not use any communication module, so it

hasn’t been discussed until now. It is designed to prove that Polyandroid preserves

Polymer’s abilities to enforce individual apps. Following is its summary:

• The policy stops an app with permission to send background SMSes from

sending more than 4 background SMSes.

• The policy enforces this by storing the count of background SMSes that an app

has sent in a file.

• This policy is also an example of adding customized controls over Android

permissions. In this case, the app has permission to send background SMSes,

but it is subjected to a user-defined limit.

• A use case of this policy is for users to allow a small amount of a resource to

be consumed in exchange for services provided by apps, but disallow apps from

abusing this resource, especially without their notice.

6.2.2 BackgroundCallPolicy

This policy requires one-to-one communication. Following is its summary:

• The policy disallows an app that doesn’t have CALL_PHONE from using another

app to make background calls.
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• The policy enforces this by using IntentExtraComm to send the list of permis-

sions that the starting app has to the app that makes background calls, and

the monitor in the latter will determine whether it should make the calls or

not.

• When the starting app does not have CALL_PHONE permission, the started app

finishes and displays a message to inform users that privilege esclation has

happened.

• This is an example that Polyandroid can enforce specific cases of privilege

escalation.

6.2.3 LocationPolicy

This policy requires one-to-many communication. Following is its summary:

• This policy returns the same value to every request to read fine location within

15-minute intervals, even if the requests are from different apps.

• This policy uses the DataBankComm to store the last location published, and

whenever an app’s LocationListener.onLocationChanged() is called, if the

current time is less than 15 minutes from the timestamp of the last location,

the last location is returned; otherwise, it is updated, and the new location is

returned.

• This is an example of creating customized control over a granted resource.

• DataBankComm has an accompanying non-circumvention policy, so Location-

Policy is also an example of how to compose a user-defined policy with a non-

circumvention policy.
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6.3 Results

We tested our apps and policies on the Android 6.0 platform. We used both a Google

Nexus 5 phone and Android emulators for testing.

After verifying that our system can successfully enforce the policies that we listed,

we evaluated our system based on the ease of writing policies, the average amount of

time needed to instrument an app, and the degradation of monitored apps’ perfor-

mance. We chose these criteria for the following reasons: First, if having monitors

slow apps’ performance greatly, then users will likely choose not to use our monitor-

ing system; second, if it takes a lot of writing to express a policy that users desire,

they would likely make mistakes or choose not to write that policy; however, because

policies can be written by an expert and share with average users, having users writ-

ing long policy definitions is not necessarily detrimental to a run-time monitoring

system; lastly, making apps’ instrumentation take fewer steps and less time would

be make the system more acceptable to users. However, our analyses are qualitative

because our dataset is small.

6.3.1 Enforcement result

We found that Polyandroid can successfully enforce the above policies on the apps

we created according to the following success criteria:

• When BackgroundSmsPolicy is in effect: Utilities can only send background

SMSes 4 times. On the 5th time, instead of sending an SMS, an on-screen

message appears telling the users that the app’s limit for sending background

SMSes has been reached.

• When BackgroundCallPolicy is in effect: Utilities can make background calls,

but Spyware cannnot. Whenever Spyware failed to start, an on-screen message
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appears and informs users that Spyware does not have permission to make

background calls.

• When LocationPolicy is in effect (and calls to corrupt DataBankComm’s mes-

sages are removed from Spyware): Utilities’ LocationActivity is activated first,

then Spyware’s GetLocationActivity is activated 5 minutes later; both display

the same location even though the tester has moved several blocks. The policy

was tested several times, and the result showed that only when the interval

between starting each Activity is 15 minutes or more will a new Location be

returned to the later Activity.

• When LocationPolicy is in effect and Spyware invokes code to circumvent Data-

BankComm, Spyware cannot start.

6.3.2 Ease of writing policies

We measured the ease of writing policies by counting the number of lines of code

to define a policy. BackgroundSmsPolicy comprises 120 lines. BackgroundCallPolicy

comprises 104 lines. LocationPolicy includes 200 lines from the user-defined

policy and 30 lines from DataBankComm’s non-circumvention policy.

6.3.3 Ease of compiling policies and instrumentating apps

Instrumenting Utilities or Spyware takes approximately the same amount of

time: 65 seconds on average. Most of the time is used by jar2dex tool to

convert JVM bytecode to Dalvik bytecode. Here is a list of factors that affect

the run-time of instrumentation:

– Size of apps: Utilities has approximately 600 lines of code, and Spyware

has about 250 lines of code.
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– Number of security-relevant functions to be intercepted: we intercept

nine functions, including those that are checked by DataBankComm’s non-

circumvention policy.

– The platform on which apps are instrumented: a personal laptop with

quad-core processor, 2.4 GHz processor speed and 8 GB memory.

At this point, users have to download apps on their computers, where the

apps are instrumented, and install them using the adb tool. Though this is

a more cumbersome process than installing an uninstrumented app, privacy-

and security-conscious users may be willing to accept.

6.3.4 Effects on performance

Using either IntentExtraComm or DataBankComm, the degradation of perfor-

mance is imperceptible. Making background calls on Utilities doesn’t take

perceivably more time when there is a monitor comparing to when there is not.

Comparing the time an app takes to receive geo-coordinates when there is a

monitor to when there is not is more difficult because Android doesn’t release

these values at a constant rate, but there is no consistent delay in the former

case. Still, both the size of apps and the number of functions to be intercepted

that our tests used are small, and the effect of Polyandroid on the performance

of typical apps in Googple Play Store may be more visible.
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7

Conclusions

Our preliminary experiments show that it is possible to assert customized access

control over Android apps. Using Polyandroid communicator modules, users can

regulate the collective behavior of multiple apps such as stopping privilege escala-

tion or limiting the release of privacy-sensitive data to a group of apps to a set

amount. This access control is a customized version of Android-provided access con-

trol because it only grants apps limited access to a resource whereas Android’s access

control either grants unlimited access or none at all. Customized access controls are

added by writing policies, and due to Polymer’s ability to compose policies, users

can easily combine their own policies with non-circumvention policies accompanying

communicators of their choice, and be confident that the resulting policies do not

diminish the non-circumvention policies due to incorrect composition.

During the course of our research, we also found a few requirements to designing

monitor communication:

• Sending and receiving messages between monitors is likely to be asynchronous

because senders and receivers won’t be simultaneously available. This means
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that there must be a way to store messages that are not yet retrieved by

recipients.

• Because monitors are integrated in their targets, their communication can be

corrupted by malicious targets. Thus, each communication module will have

to be accompanied by a non-circumvention policy unless trusted components

are used by the module to deliver and and store their messages.

• A communication module backed by a medium that has fewer APIs to access its

messages is better than one with a medium that has more because the former

would have a smaller non-circumvention policy.

• Synchronization is likely required for any group communication.

• The designer of a communication scheme must be careful while choosing designs

that require Android permissions because any permission granted to a monitor

is also granted to its target, and that would give an app more privileges when

it is monitored than when it is not.

These requirements show that designing a communication scheme is a non-trivial

task. Therefore, encapsulating communication into its own module and enabling

reuse is important.
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8

Future Work

This section lists several tasks remaining to be done before Polyandroid can be a

useful tool for the average Android users.

8.1 Monitoring of multi-threaded apps

Android apps are likely to be multi-threaded because it is likely that they must re-

trieve data from external servers to enable many features, and it is also likely that

data retrieval runs on background threads to avoid affecting the apps’ interactivity.

Examples of such features are retrieving user profiles or images from the cloud. With-

out a correct model for monitoring multiple threads, Polyandroid can only monitor

an extremely limited set of real apps, maybe even none.

8.2 Tracking ContentProviders, Services, and BroadcastReceivers in
Policy

Currently, policy writers can call getActivity() to finish an Activity if that Activity

is about to violate a policy. This is a noninvasive way to stop a violation, but it only

applies to Activity. We can also stop policy violation in ContentProviders by making
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their methods such as query(), update(), insert(), etc., return empty results

instead of to killing the app. Similarly, we stop a Service by calling stopService()

or stopSelf(). As for BroadcastReceivers, when they violate a policy, we can call

abortBroadcast().

8.3 Instrument native methods

Some apps may have native code, which we haven’t instrumented. In other to have

more comprehensive monitoring, we should also instrument native code.

8.4 Adding features to MonitorDataBank

MonitorDataBank can be used as an interface between the monitoring system and

users. We can add an Activity to let users view enforcement history, and another one

to let users specify which policies to use, or parameters that can further personalized

a policy.
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