
The Stochastic Laplacian Heaviside

Method in Lattice QCD

and its First Applications

to Hadron Spectroscopy

by

Chik Him Wong

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

at

Carnegie Mellon University

Department of Physics

Pittsburgh, Pennsylvania, USA

Advisor: Professor Colin Morningstar

August 26, 2011





Abstract

Currently, the best way to extract the low-energy predictions of quantum chro-

modynamics (QCD) is by estimating the QCD path integrals using the Monte Carlo

method formulated on a space-time lattice. Determining the hadron mass spectrum

is one of the major applications of such an approach. To study a particular state

of interest, the energies of all states lying below that state must first be extracted,

and many of the levels lying below the masses of the excited resonances are multi-

hadron states. Reliably extracting multi-hadron energies is challenging since quark

propagators that begin and end on the same final time-slice are essential. A novel

method of estimating such quark propagators is proposed. This method, known as

the ‘stochastic Laplacian Heaviside’ algorithm, combines Laplacian-Heaviside quark

smearing with a new stochastic estimator of quark propagators. The method works

well even in large spatial volumes. The implementation of the method is discussed in

detail and its effectiveness is demonstrated in various systems, such as in determining

the isovector and isoscalar meson energies, and calculating the energies of two-pion

states. The inclusion of the scalar glueball is also studied.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) has been established as the gauge theory of the

strong interactions. Being an important part of the Standard Model of particle

physics, it describes the interactions among quarks and gluons as an SU(3) Yang-

Mills theory with color-charged fermions. There are 6 flavors of quarks known so far,

namely ‘up’ (u), ‘down’ (d), ‘strange’ (s), ‘charm’ (c), ‘bottom’ (b) and ‘top’ (t) in

the order of increasing masses. Together with the gauge boson, gluons (g), they form

composite particles known as hadrons. Only color-singlet hadrons have been observed

experimentally. They are classified into two categories, baryons and mesons. Baryons

have half-integral spins, while mesons have integral spin. Exotic mesons are currently

of great interest. These hadrons have quantum numbers that cannot be obtained from

a quark-antiquark pair with some orbital angular momentum. Hybrid hadrons are

expected to exist. They are composed of constituent quarks and antiquarks bound by

an excited gluon field. Exotic hadrons which are predominantly tetraquarks systems

may also be found in nature, and bound states of gluons known as glueballs may be

possible. There are candidates of the latter two categories but not confirmed yet.

QCD is a very successful theory in the sense that it has accumulated a lot of

experimental support. Perturbative expansions in the gauge coupling at high energy

(q2 ≈ M2
Z) and chiral effective theories at low energy (q2 ≈ m2

π) have successfully

reproduced numerous experimental data. For example, the running of the QCD cou-

pling αs(µ) with scale µ may be calculated perturbatively as well as measured exper-

imentally for many different processes at different scales. Such comparison is thus a

stringent test of our knowledge of perturbative QCD, as the behaviour of the running

coupling depends specifically on many aspects of the QCD Lagrangian. These results

1
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Figure 1.1: The value of the QCD coupling constant αs at the scale µ =MZ calculated
from various experimental inputs at different scales. The error displayed here is the
combined error from theoretical and experimental uncertainties. [1]

are shown in Fig. 1.1. Nearly all experimental data predict consistent values for

αs(MZ), giving tremendous support to perturbative QCD. However, in the medium

energy regime (q2 ≈ Λ2
QCD ≈ 1 GeV2), perturbative techniques are not applicable.

In such a regime, the QCD coupling is too large to admit a perturbative solution,

but the energy is high enough that many different hadrons can be created. The only

first-principles, model-independent, non-perturbative approach to calculation in this

regime is Lattice QCD, which computationally simulates the dynamics of the color

gauge field and quark fields on Euclidean spacetime lattices.

One of the theoretical challenges of QCD in the medium energy regime is the

calculation of the excited hadron spectra. Constituent quark models and chiral sym-

metry considerations can explain the properties of ground state hadrons reasonably

well. However, agreement is less apparent for the description of excited states. Fig.

1.2 shows an isovector meson spectrum from one of our Lattice QCD simulations. It

is presented in terms of lattice symmetry groups. The large shaded regions indicate

multi-hadron thresholds. There are also exotic channels that cannot be explained by

quark models. Information about these low-lying excited states and their properties

may lead to the identification of the relevant degrees of freedom of medium energy

2
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Figure 1.2: Isovector Meson Spectrum using 170 configurations of {243; 860} ensemble
in Table 2.4 (Refer to Ch. 2 for details of the ensemble). The energy levels shown
are computed using single-hadron operators. The error estimations are statistical.
The shaded regions indicate the multi-hadron thresholds. Within the shaded regions,
the states are expected to be mostly multi-hadron in nature. Therefore single-hadron
operators cannot capture these levels well. Multi-hadron operators will be included
to extract the levels more reliably in future calculations.

QCD. Once these degrees of freedom are identified, perhaps a rigorous, systematically-

improvable effective theory of medium energy QCD can be formulated. Lattice QCD

is therefore in a position to contribute to these discussions by computing the single-

and multi-hadron energies non-perturbatively. To do so, the masses of these excita-

tions need not be determined to high precision, but the general pattern of excited

states and their properties should be the goal of an exploratory calculation.

All Lattice QCD calculations are necessarily performed at finite lattice spacing,

spatial volume, and temporal extent. While improved actions may be used to miti-

gate discretization errors, special attention must be paid to finite volume effects. Ch.

2 of this work discusses this in more detail. In finite volume with periodic boundary

conditions, the spectrum of QCD consists of only discrete stationary states. The

relationship of these finite-box states with infinite-volume scattering states and reso-

nances has been studied in Ref. [2, 3]. For a sufficiently large volume, the mass of a

narrow resonance is usually well approximated by its finite-volume mass, away from

thresholds. Scattering states can usually be associated with finite-box stationary

3



states whose energies vary in inverse proportion to the volume.

Near a decay threshold, a resonance and its decay product states undergo signif-

icant mixing and their energies are somewhat distorted [2]. The resonance position

and decay width may be extracted via a fit to the ‘avoided level-crossing’ behavior [4],

which is demonstrated in Fig. 1.3 .

In Lattice QCD, finite box energies may be extracted from the temporal fall-off

of correlation functions between suitable interpolating fields. In order to reliably

extract resonance energies above decay thresholds, both single- and multi-hadron in-

terpolators must be included. The evaluation of correlation functions containing these

multi-hadron operators necessitates the calculation of the lattice quark propagator

starting from all spatial sites on an initial time-slice t0 to all spatial sites on a final

time-slice t1 , as spatial sums over the initial site are required to create single-hadron

states with definite momenta to be combined into multi-hadron operators. More im-

portantly, quark propagators that connect sites within the same time-slice are also

required to evaluate correlation functions involving multi-hadron and isoscalars oper-

ators. Direct calculation of such quark propagators turns out to be computationally

unfeasible, so alternative algorithms must be used. The algorithm developed in this

work is called the Stochastic Laplacian Heaviside (Stochastic LapH) algorithm. It

combines Laplacian Heaviside quark-field smearing [5] with stochastic estimations

using ‘dilution’ variance reduction [6] to give a practical approach to compute all

types of quark propagators, particularly same-time quark lines. Ch. 3 of this work

discusses this algorithm and demonstrates its effectiveness.

In Ch. 4, some basic calculations are performed on realistic lattices as the first

applications of the algorithm. The simulations mainly focus on mesons, ρ − ππ and

two-pion systems. This is not only because these calculations involve a lot of same-

time quark propagators at which the algorithm aims, but also these systems on their

own play important roles in non-perturbative physical predictions of QCD.

The light isoscalar meson channel is particularly interesting and challenging to

study. The ground state of the isoscalar scalar sector is known as σ or f0. It is

suspected to mix largely or entirely with a two-pion bound state. Therefore, multi-

hadron operators are especially important in this channel. Isoscalar mesons can be

constructed from quark-antiquark pairs of any flavor or even from states of pure

gluons (glueballs). In general, the QCD eigenstates will be superpositions of all of

these states. Experimentally, the GlueX collaboration [7, 8] aims at the discovery

4



Figure 1.3: The avoided level-crossing behavior is illustrated. Calculations were per-
form in a φ4 theory with two scalar fields (φ and ρ, with mφ < mρ) which interact
via a three-point coupling, g

2
ρφ2. Energies of zero total momentum decay products

and resonances are plotted for varying spatial box size. The horizontal dashed line
is the resonance position (mρ), while the lower and upper dotted lines indicate 2mφ

and 4mφ, respectively. The boxes indicate the resonance (ρ) energies while the circles
are the lowest two-φ states. Other symbols represent higher lying two-φ states. The
left plot is the g = 0 case while the right is g = 0.008. The left plot shows the
non-interacting case. Here the two-particle states follow the expected free-particle
dispersion relation, while the resonance energy is constant as a function of box size.
In the right plot, the interaction is turned on and free particle energies are distorted
such that the energies of the lowest two-particle state and the resonance never inter-
sect. The avoided level crossing is clearly visible on the right plot. Both resonance as
well as multi-particle energies must be measured to map out the excitation spectrum
in a finite box. [4]
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of the spectrum of gluonic excitations, the largely unknown sector of the Standard

Model of Particle Interactions. In order to fully decode such spectra, a good un-

derstanding of QCD predictions in the isoscalar channel spectra has to be obtained

non-perturbatively. The QCD vacuum structure can also be studied via the lowest

energy levels of isoscalar pseudoscalar channel, experimentally known as η and η′,

the masses of which are associated with the U(1) problem [9] and the anomaly of the

axial current.

The ρ meson is known to decay into two pions with a broad decay width. In finite

volume, it is therefore expected to be largely mixed with a two-pion state. The ρ-ππ

system is the easiest resonance to study and so, is one of the first applications of the

Stochastic LapH method.

It is important to be able to treat the two-pion system well since it is involved in

many channels. As mentioned above, the ground state of the isoscalar scalar channel

is believed to couple heavily to an I = 0 bound state of two pions. A complete

determination of ρ meson energy and decay width involves the I = 1 4-point function

of pions. Also the phase shift in the I = 2 channel pion scattering is one of the

observables that can be compared with experimental data.

In Ch. 5, the summary of this work is given and an outlook into the future plans

is presented. Much of the work presented here has already been published in Ref. [10]

and is an extension of previous works in Refs. [5, 6, 11–21]. The use of interlaced

time dilution to handle sink-to-sink quark lines in multi-hadron and isoscalar meson

correlators is the main new contribution of this work.
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Chapter 2

Lattice QCD

Lattice QCD [22] is a computation method in which QCD is regulated in a way that

numerical evaluation is possible. It is done via the introduction of an ultraviolet cut-

off arising from the discretization of spatial and temporal coordinates at lattice sizes

aµ. In other words, the maximum magnitude of (discrete) momentum allowed is ∼ 1
a
.

The discretized Lagrangian is therefore no longer invariant under the full Poincaré

group of rotations, translations and boosts, but is invariant under the subgroup cor-

responding to the allowed rotations, translations and boosts on a hyper-cubic lattice.

The discretization also produces artifacts that have to be fixed by introducing extra

correction terms in the Lagrangian. It turns out that some more desired symmetries

have to be broken explicitly to solve the so-called fermion doubling problem. It will

be discussed in more detail in this section.

Lattice QCD is formulated in terms of imaginary time, which is analytically con-

tinued, or so-called Wick rotated, from Minkowski time. Since the fermion fields

appear quadratically in the action, they can be integrated out exactly. This results in

a path integral with a gauge field only. In imaginary time, the weighting function in

such path integral is real and positive definite, allowing a probability interpretation.

Hence Monte Carlo Integration with importance sampling can then be applied to eval-

uate quantities of interest. In this work the Metropolis-Hastings algorithm [23, 24]

is used, in which an ensemble of gauge field configurations is obtained by updating

along a Markov chain [25]. Since it is expensive to compute the determinant of the

discretized Dirac Matrix coming from the fermion Grassmann integration, one has

to come up with an efficient global updating algorithm. In this work, the RHMC

algorithm [26], which is based on the HMC algorithm [27], is used (see later).

7



2.1 QCD Path Integrals

In the path integral formulation of quantum field theory, the vacuum expectation

value of a functional F of operators Oi,i.e. 〈F [O0, O1, O2, . . . , Omax]〉, is expressed

as a sum over field configurations, each weighted by an exponential factor with the

exponent being the action obtained from that configuration. In QCD, these fields are

the Nf quark fields ψf , f = u, d, s . . . and the gluon field Aµ. Therefore a 2-point

correlation function between operators Oi at time t and Oj at time t0, Cij(t; t0), can

be expressed as

Cij(t; t0) =
〈0|Oi(t)Ōj(t0)|0〉

〈0|0〉 (2.1)

=

∫
DψDψ̄DA Oi[ψ, ψ̄, A](t)Ōj [ψ, ψ̄, A](t0) exp(iSQCD[ψ, ψ̄, A])∫

DψDψ̄DA exp(iSQCD[ψ, ψ̄, A])
,

in which SQCD is the QCD action in the continuum. In the continuum, such an integral

is an infinite-dimensional functional integral. Regulating the theory by placing it on

a spacetime lattice reduces it into one with finite number of dimensions. On a lattice,

SQCD has to be constructed to have terms that differ from SQCD but diminish with

powers of the lattice spacing a. Before discussing the explicit expression of the lattice

action, Eq. 2.1 has to be transformed into a convenient form suitable for numerical

computations, in addition to the discretization.

Local gauge invariance requires that the gluon field Aµ in the discretized version of

Eq.2.1 is expressed by another quantity Uµ, the link variable [22], defined as follows:

[Uµ]ab(x) ≡ exp[ ig

∫

C

dx′Am
µ (x

′)Tm
ab ] (2.2)

≈ exp[ igaµA
m
µ (x+

aµ
2
µ̂)Tm

ab ],

in which Tm
ab are the 8 generators of SU(3) and C is a straight line connecting x and

x+aµµ̂. U themselves are also SU(3) matrices. To facilitate the Monte Carlo method

that will be discussed in Sec. 2.3, the exponential factor has to be real and positive

definite. This can be achieved by performing a Wick rotation that brings the theory

8



from Minkowski spacetime into Euclidean spacetime:

xEi = xMi , i = 1, 2, 3, xE4 = −ixM4 (2.3)

γ4 = γ4 = γ0M = γM0 , γk = γk = −iγkM = iγMk ,

{γµ, γν} = 2δµν , γ†µ = γµ, γ5 = γ5 = γ4γ1γ2γ3 = γ5M ,

in which xE and xM are Euclidean and Minkowski spacetime coordinates, and γµ

and γµM are Euclidean and Minkowski Dirac-γ matrices, respectively. Now Eq. 2.1

becomes

Cij(t; t0) =
〈0|Oi(t)Ōj(t0)|0〉

〈0|0〉 (2.4)

=

∫
DψDψ̄DU Oi[ψ, ψ̄, U ](t)Ōj [ψ, ψ̄, U ](t0) exp(−S[ψ, ψ̄, U ])∫

DψDψ̄DU exp(−S[ψ, ψ̄, U ]) ,

where S is the Euclidean version of SQCD expressed in terms of the link variables.

If the Euclidean correlation functions obey reflection positivity, it can be shown [28]

that they can be rotated back to their Minkowski spacetime counterparts. After the

Wick rotation, the exponential factor is real and positive definite. Normalized by

the denominator, it can be interpreted as a probability density. This fact becomes

obvious if one notices the resemblance between the mathematical form of the Wick-

rotated Eq. 2.4 with that of the expectation value of an ‘observable’ OiŌj, expressed

in terms of Boltzmann factor e−S and partition function Z ≡
∫
e−S in the context of

Statistical Mechanics. This feature is crucial for the application of the Monte Carlo

algorithm.

The anti-commuting Grassmann-valued fermion fields ψ and ψ̄ are integrated out

before applying the Monte Carlo Method. To do this, the action S is split into two

terms. The first one involves only U , while the other one can be expressed as a

bilinear form of Grassmann-valued quark fields:

S[ψ, ψ̄, U ] ≡ Sg[U ] + Sf [ψ, ψ̄, U ] (2.5)

Sf [ψ, ψ̄, U ] ≡
∑

x,y

ψ̄aα(x)Maα|bβ[U ](x, y)ψbβ(y),

in which Sg and Sf are the gauge action and fermion action respectively. Integrating
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the fermion fields, Eq. 2.4 becomes

Cij(t; t0) =
〈0|Oi(t)Ōj(t0)|0〉

〈0|0〉 (2.6)

=

∫
DU F [M−1[U ], U ] detM [U ] exp(−S[U ])∫

DU ′ detM [U ′] exp(−S[U ′]) ,

in which F is the result of the Wick contraction of Oi(t) and Ōj(t0). It is observed

that the cost of getting rid of the fermion fields is the introduction of detM in the

probability density and the occurrence of M−1 in the integrand. This determinant

is non-local and computationally expensive. Moreover, one must ensure that the

determinant is real and positive, otherwise the probability interpretation of the factor

will become problematic and, as a result, Monte Carlo simulation will become non-

applicable. It should be noted that although the above discussion was based on a

2-point correlation function, Eq. 2.6 is applicable to any quantities such as 3-point

correlator, 4-point correlator or even the vacuum expectation value(VEV) of O, i.e.

〈O〉 ≡ 〈0|Ō|0〉, by defining the corresponding F ’s that are in terms of M−1 after the

Wick contractions of the fermion fields.

2.2 QCD Action Discretization

In the previous section, the discretized version of the Wick-rotated QCD action

SQCD ≡
∫
d4xLQCD, S ≡

∫
d4xL, was not yet defined. In the continuum, the QCD

Lagrangian LQCD is given by

LQCD =
1

4
F a
µν(x)F

a
µν(x) +

Nf∑

f=1

ψ̄f
aα(x)([Dµ]abγ

µ
αβ +mf )ψ

f
bβ(x), (2.7)

in which

F a
µν(x) ≡ ∂µA

a
ν(x)− ∂νAa

µ(x) + gfabcA
b
µ(x)A

c
ν(x), (2.8)

[Dµ]ab ≡ δab∂µ − igTm
abA

m
µ (x),

Nf is the number of quark flavors and mf is the mass of the quark with flavor f . In

the medium energy regime, c, b and t are not directly produced because their masses
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are heavier than typical energy scales. Therefore in this work, only u, d and s are

considered, i.e. Nf = 2 + 1. The masses of u and d are set to be identical so that

isospin symmetry can be exploited.

It is tempting to naively discretize SQCD into S by replacing partial differentials

with finite differences without any further modifications. However it is known that

such so-called ‘Näıve Action’ suffers from the problem of fermion doubling, in which

additional low-lying fermionic degrees of freedom absent in the continuum arise on the

lattice. This can be solved by introducing correction terms in the action that vanish

in the continuum limit. However, according to the Nielson-Ninomiya theorem [29], it

is not possible to remove this degeneracy while keeping Hermiticity, locality, lattice

translational invariance and chiral symmetry at vanishing bare light quark mass.

Therefore one has to choose an action that breaks at least one of those desirable

symmetries on the lattice.

Although adding correction terms into the action cannot solve the doubling prob-

lem while keeping all desired symmetries, it is still possible to make use of this freedom

to reduce the effects of lattice artifacts. Additional terms are added to the action via

the Symanzik improvement procedure [30], stout-smearing [31] of the gauge links in

the quark action and scaling of the gauge links by tadpole improvement factors [32].

During these procedures, the positivity of the lattice transfer matrix has to be main-

tained so that highly excited hadron states can still be extracted. [33] This would

mean that the action should not contain terms that extend more than one time

slice (the clover term is an exception). Therefore the Symanzik improvement proce-

dures [30] are restricted not to produce such terms and only the spatial gauge links

are stout-smeared.

Since the information carried by the correlation function will be extracted by

analysing its temporal evolution, it is important to increase its temporal resolution

and it would be desirable to further reduce the temporal artifacts while maintaining

positivity. This can be achieved by simulating on an anisotropic lattice [33], in which

the temporal lattice spacing at is smaller than the spatial directions as ≡ ξat, ξ > 1

being the anisotropy parameter. The temporal lattice artifacts which are of orders

of powers of at are suppressed because of the reduced at, while a higher temporal

resolution also allows more accurate extraction of the temporal evolutionary behaviors

of the correlation functions. In this work, as ≈ 0.12 fm and ξ ≈ 3.5.
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2.2.1 The Quark Action

Because of the fermion doubling problem discussed before, there are many ways of

discretizing the quark action. Several popular formulations are clover-Wilson [34],

staggered [35–37], domain-wall [38,39] and overlap [40,41]. Each of them has different

pros and cons. The list is still expanding nowadays. In this work, the clover-Wilson

type is employed. The justification is the following.

The staggered formulation preserves chiral symmetry at finite lattice spacing, at

the expense that the effect of the degeneracy due to fermion doubling remains, causing

each fermion to have four degenerate partners. These extra ‘tastes’ impose difficulties

on the extraction and identification of low-lying excited states. Moreover, the posi-

tivity of the transfer matrix is spoiled by the temporal non-locality in the staggered

fermion action. Such violation causes oscillatory behavior in effective masses (defined

in Sec. 2.5.1) at small temporal intervals, which further complicates the extraction

of higher-lying excited states.

The domain-wall formulation introduces an additional spacetime dimension of

length Ld. Although the chiral symmetry violation in this case is suppressed exponen-

tially with Ld [38], the computational cost of this extra dimension is very significant.

The positivity of the transfer matrix is also violated. Moreover, chiral symmetry is

never restored exactly since any simulation must use a finite Ld. The overlap for-

mulation tackles this issue by analytically integrating over an infinite Ld instead of

direct simulation in that dimension, so that chirality is restored exactly at finite lat-

tice spacing. The non-locality and the presence of a square root in the overlap Dirac

operator which is computationally expensive in the resultant action is not preferred

here compared with the Wilson one.

The clover-Wilson formulation gives all doubler states masses of an order of the

inverse lattice spacing, so that they do not have any significant effects in the simulation

at small lattice spacings. It is numerically demonstrated that the positivity in transfer

matrix is not violated. Furthermore, recent algorithmic techniques [42] have greatly

reduced the computational cost for this formulation. The main problem of using

the Wilson-type fermion discretization is the broken chiral symmetry at finite lattice

spacing. This, along with other lattice artifacts, can be systematically reduced by

the Symanzik improvement [30] and by the use of stout links [31].

The Wilson formulation with clover improvement satisfies most of the needs of

this work and is thus employed. The Wilson action SW
f is composed of the ‘Näıve’
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action and the ‘Wilson’ term that lifts the masses of the doubler states:

SW
f [ψ, ψ̄, U ] ≡

∑

x,y

ψ̄aα(x)

[
m0δabδαβδxy +

1

ut

(
[γt]αβ [∇t]ax|by −

1

2
rrat [∆t]ax|by δαβ

)

(2.9)

+
1

νũs

∑

k

(
[γk]αβ [∇k]ax|by −

1

2
rsas [∆k]ax|by δαβ

)]
ψbβ(y),

[∇µ]ax|by ≡
1

2aµ

[
[Uµ]ab (x)δx+µ̂,y −

[
U †µ
]
ab
(x− µ̂)δx−µ̂,y

]
,

[∆µ]ax|by ≡
1

a2µ

[
[Uµ]ab (x)δx+µ̂,y +

[
U †µ
]
ab
(x− µ̂)δx−µ̂,y − 2δabδx,y

]
,

in which ut is the temporal tadpole factor, ũs is the tadpole factor for the smeared spa-

tial links, ν is the fermion anisotropy parameter, rt is the temporal Wilson parameter

and rs is the spatial Wilson parameter.

If rs = rt = 1 is imposed, the action can be shown to have the desirable property

of reflection positivity. The lattice artifacts of order O(as, at) can be reduced by the

introduction of correction terms via the Symanzik procedures [30]. At O(as), such
procedure produces the ‘clover’ term:

SC
f [ψ, ψ̄, U ] ≡

∑

x,y

ψ̄aα(x)

[
ctas
2ũ2su

2
t

∑

k

[σtk]αβ[Ftk]abδxy (2.10)

+
csas
2ũ4s

∑

k<l

[σkl]αβ[Fkl]ab(x)δxy

]
ψbβ(y)

[Fµν ]ab(x) ≡
1

8iaµaν

[
[Lµν ]ab(x)− [L†µν ]ab(x)

]

[Lµν ]ab(x) ≡ [Uµ]ad(x)[Uν ]de(x+ µ̂)[U †µ]ef (x+ ν̂)[U †ν ]fb(x)

+ [Uν ]ad(x)[U
†
µ]de(x− µ̂+ ν̂)[U †ν ]ef (x− µ̂)[Uµ]fb(x− µ̂)

+ [U †µ]ad(x− µ̂)[U †ν ]de(x− µ̂− ν̂)[Uν ]fb(x− ν̂)
+ [U †ν ]ad(x− ν̂)[Uµ]de(x− ν̂)[Uν ]ef (x+ µ̂− ν̂)[U †µ]fb(x),

in which ct is the temporal clover coefficient, σµν = 1
2i
[γµ, γν ]. For simplicity, we use

a definition of Fµν which is not color traceless. The full fermion action we use is thus

Sf [ψ, ψ̄, U ] ≡ SW
f [ψ, ψ̄, U ] + SC

f [ψ, ψ̄, U ]. In this work, cs = 1 and ct =
1
2
(1 + ξ−1) ac-

cording to tree-level lattice perturbation theory. These values are consistent with the
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non-perturbative tuning of these parameters [43]. Although the reflection positivity

of the clover-Wilson action has not been proven, we have numerically demonstrated

positivity for the lattice spacings and quark masses that we use.

The spatial gauge links in Sf have been stout-smeared. A single iteration of

stout-smearing transforms the link in this way:

U (n+1)
µ (x) ≡ exp

(
iQ(n)

µ (x)
)
U (n)
µ (x) (2.11)

Qµ(x) ≡
1

2
(Ω†µ(x)− Ωµ(x))−

i

6
Tr(Ω†µ(x)− Ωµ(x))

Ωµ(x) ≡ Cµ(x)U
†
µ(x)

Cµ(x) ≡
∑

ν 6=µ

ρµν
(
Uν(x)Uµ(x+ µ̂)U †ν(x+ µ̂) + U †ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)

)
.

In this work, two such iterations are employed with ρij ≡ ρ = 0.14 and ρit = 0, i.e.

the temporal links are not smeared to ensure positivity.

After these improvements, the leading discretization errors of Sf have become

O(g2as, g2at, a2s, a2t ).

2.2.2 The Gauge Action

We use the gauge action in Ref. [33] given by Sg[U ] = SW
g [U ] + SSZ

g [U ], where the

plaquette term is

SW
g [U ] ≡ 5β

3ξ0u4s
Ωs +

4βξ0
3u2su

2
t

Ωt (2.12)

Ωs ≡
∑

x,i<j

1− Pij(x)

Ωt ≡
∑

x,i

1− Pit(x)

Pµν(x) ≡
1

3
Re Tr

[
Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x)

]

β ≡ 2Nc/g
2,
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in which g is the gauge coupling and the correction term containing 2× 1 rectangle is

SSZ
g [U ] ≡ β

12ξ0u6s
ΩR

s +
βξ0

12u4su
2
t

ΩR
t (2.13)

ΩR
s ≡

∑

x,i 6=j

1−Rij(x)

ΩR
t ≡

∑

x,i

1−Rit(x)

Rµν(x) ≡
1

3
Re Tr[Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †µ(x+ µ̂+ ν̂)U †µ(x+ ν̂)U †ν(x)].

The leading lattice artifacts of this action are O(a2t , g2a2s, a4s) and the positivity is

maintained by the temporal locality of SSZ
g .

2.3 Monte Carlo Integration Methods

Equipped with the discretized actions, one is able to compute Eq. 2.6 numerically

using Monte Carlo algorithms. Such algorithms exploit the fact that an integral

I ≡
∫
dxf(x)p(x), in which the integrand can be expressed as a product of a positive

definite function p(x) and another function f(x) of argument x, can be numerically

evaluated by averaging f(x) on a sufficiently large number Ncfg of x’s sampled from

the ‘configuration’ space Sx|p in which x follows the probability density P (x) defined

as the normalized p(x), i.e.

I∫
dx p(x)

=

∫
dx f(x)p(x)∫
dx p(x)

(2.14)

≡
∫
dx f(x)P (x)

≈


 1

Ncfg

Ncfg−1∑

i=0

f(xi)




P

= E[f ]Sx|p,Ncfg
,

P (x) ≡ p(x)∫
dx p(x)

.

As mentioned in Sec. 2.1, Eq. 2.6 can be treated as an ensemble average of the ob-

servable F [M−1[U ], U ] over configurations U in the same way, replacing the numbers
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x with the links U :

∫
DU F [M−1[U ], U ] detM [U ] exp(−S[U ])∫

DU ′ detM [U ′] exp(−S[U ′]) (2.15)

≡
∫
DU F [M−1[U ], U ]P [U ]

≈


 1

Ncfg

Ncfg−1∑

i=0

F [M−1[U (i)], U (i)]




P

=E[F ]SU|P ,Ncfg
,

P [U ] ≡ detM [U ] exp(−S[U ])∫
DU ′ detM [U ′] exp(−S[U ′]) .

Due to the previous construction requirement that detM [U ] must be real and positive

definite, one can always make such a correspondence with well-behaved P [U ]. P [U ]

can be interpreted as a probability density only if such condition is satisfied. As a

result, any kind of correlation function can be, in principle, numerically evaluated by

sampling in a sufficiently large ensemble of U with probability density P [U ]. In this

way, the problem of computing the path integral is transformed into a problem of

generating such an ensemble of U with the desired distribution and evaluation of the

corresponding F [M−1[U ], U ] on it.

It turns out that this process is a difficult task. In the case of a usual simple

low-dimensional integral I in Eq. 2.14, the x ensemble can be generated by a simple

transformation of uniformly generated random numbers into P (x). However, it is

not possible for an ensemble of complicated many-dimensional gluon field U with

probability density P [U ] to be generated in the same way for Eq. 2.15. Thus, a

Markov process [25] is employed instead. A Markov process is a stochastic process

in which the current configuration is obtained from a random change of the previous

one, resulting in a collection of configurations that are linked like a chain, the so-called

Markov chain. If the chain is irreducible, aperiodic and ergodic, it can be shown (see,

for example, Ref. [44]) that, in the limit of a long chain, the configurations approach a

unique stationary distribution. The desired ensemble of U can therefore be generated

by a Markov process that has P [U ] as the stationary distribution.

The simplest implementation of a Markov process with stationary distribution ρ is

the Metropolis-Hasting algorithm [23,24]. In this method, a change from the current

configuration U into a new configuration U ′ is proposed according to an arbitrary
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proposal probability density R(U ′ ← U), which is not related to P [U ] in general. The

proposed new configuration is then accepted according to the acceptance probability

Pacc defined as follows:

Pacc ≡ min

(
1,
R(U ← U ′)P [U ′]

R(U ′ ← U)P [U ]

)
. (2.16)

The above scheme would have been straightforward, if the computational cost were

not an issue. It is known that detM in P is computationally too expensive to be

evaluated directly for each U because of its huge dimensionality. Therefore one has to

come up with a feasible way to evaluate it. R(U ′ ← U) should also be chosen cleverly

so that the correlation between configurations can be minimized, which implies an

efficient way of exploring the configuration space, while keeping an acceptable ac-

ceptance rate so that computational resources are not wasted on proposing changes

that keep being rejected. In this work, the RHMC (Rational Hybrid Monte Carlo)

algorithm [26], which is an improved version of Metropolis algorithm, is employed.

2.3.1 The RHMC Algorithm

Before going into the details of RHMC algorithm, it would be useful to have an

overview of the process first. It is illustrated in Fig. 2.1. The main process is still a

Metropolis updating [23, 24], which produces the link U (n) at step n. Each new link

is proposed by a process called Molecular Dynamics Evolution. Two additional in-

gredients are introduced. One is a set of scalar fields φ
(l)
l (x), φ

(l)
h (x), φ(s)(x) calculated

from corresponding pseudo-fermions η
(l)
l (x), η

(l)
h (x), η(s)(x) drawn from independent

Gaussian η(f) distribution, which take care of the detM issue. The other is a fic-

titious ‘momentum’ π conjugate to U (n), which is drawn from a π distribution as

well. These two fields, together with U (n), generates a new proposed link U (n)′ by

an algorithm called Molecular Dynamic Evolution, in which U (n) and π evolve into

U (n)′ and π′ respectively as if U were a classical field with conjugate momentum π,

which itself evolves according to U (n), φ and Sg[U ]. This calculation is sped up by

making use of tricks such as the Hasenbusch Preconditioning [45], Multiple Timescale

Integration [46] and Deflation [47]. The newly proposed link is then dictated by the

(n+1)th Metropolis step. U ′ becomes U (n+1) if it is accepted, otherwise the procedure

goes on without changes. The process is then repeated. It should be noted that only
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preconditioning)
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η
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l , η

(l)
h , η

(s)

φ
(l)
l , φ
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(s) π π Gaussian

Distribution
(e−η

†η) (e−π
†π)

Molecular Dynamics Evolution

H =
1

2
π†π + Seff[U, φ

(l)
l , φ

(l)
h , φ

(s)]

dU

dτ
= π;

dπ

dτ
= −∂S[U ]

∂U
− ∂S(l)[U, φ

(l)
l , φ

(l)
h ]

∂U
− ∂S(s)[U, φ(s)]

∂U

(Multiple Timescale Integration,Deflation)

U (n)′,π′

(n+ 1)th Metropolis Updating

Pacc = min(1, e−δH)

accept reject

U (n+1) = U ′ or U (n)

...

Figure 2.1: An overview of RHMC algorithm
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U is iterated in this process, while π and φ are not. The details of these steps are

depicted as follows.

Pseudo-Fermions

As mentioned before, it is computationally expensive to calculate the determinant of

M in Eq. 2.15. To overcome this, a pseudo-fermion method is employed. In general,

there are Nf factors of detM (f) for Nf flavors with degenerate masses mf . Due to

the γ5-hermiticity, M = γ5M †γ5, (detM (f))Nf = det(M (f)†M (f))Nf/2. Moreover, it is

known that

det(M (f)†M (f))Nf/2 ∝
∫
Dφ(f)e−φ

(f)†(M(f)†M(f))
−Nf/2

φ(f)

, (2.17)

for some complex non-Grassmann field φ(f)(x), with an additional requirement that

detM (f) > 0 if Nf is odd. Therefore one can trade the determinants with an ad-

ditional term, a Gaussian functional of the ‘pseudo-fermion’ field φ(f), in S. In this

work, u and d quarks are treated as degenerate in ‘bare’ masses ml, while s quark has

a different heavier ‘bare’ mass ms. (More details on the tuning of these parameters

are available in Sec. 2.4 ). Therefore Nl = 2 for the light quarks and Ns = 1 for s

quark. Since M (s) is supposed to be better conditioned due to the heavy mass ms,

detM (s) is believed to be (practically) always positive. Therefore the effective action

Seff becomes

Seff[U, φ
(f)] ≡ S[U ] + φ(l)†(M (l)†[U ]M (l)[U ])−1φ(l) + φ(s)†(M (s)†[U ]M (s)[U ])−1/2φ(s)

(2.18)

≡ S[U ] + S(l)[U, φ(l)] + S(s)[U, φ(s)].

If only S(l)[U, φ(l)] were taken into account in the Monte Carlo process, one only needs

to draw random fields η(l) from a Gaussian distribution, obtain φ(l) = M (l)†η(l), use

S[U ]+S(l)[U, φ(l)] as the effective action and update η(l) for each Metropolis step. The

whole U -updating algorithm that deals with such simpler situation is called Hybrid

Monte Carlo (HMC) method. It becomes more complicated when S(s)[U, φ(s)] is also

considered, due to the fact that φ(s) is now φ(s) = (M (s)†M (s))
1
4η(s). One way to
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approximate (M (s)†M (s))
1
4 is to approximate it with a sum of rational functions:

(M (s)†M (s))
1
4 ≈ α0I +

∑

k

αk

M (s)†M (s) + βk
, (2.19)

in which αk and βk are constants generated by the Remez algorithm [48]. (M (s)†M (s)+

βk)
−1η can be computed simultaneously for all k by a multiple-shift conjugate gradi-

ent solver, and thus is not too computationally expensive. The HMC algorithm that

includes s quarks in this way is called the RHMC (Rational Hybrid Monte Carlo) al-

gorithm. An alternative is called PHMC(Polynomial Hybrid Monte Carlo) algorithm.

However it is not as suitable for the purpose of this work because it is computationally

more expensive and multiple-shift solvers are not applicable in it.

Molecular Dynamics Evolution

Since the computational cost of each Metropolis step is high, it is crucial to explore

the configuration space efficiently, while keeping the correlation of U ’s between steps

acceptably small and the acceptance rate reasonable. This can be achieved by making

a clever choice in the proposal algorithm. Given the non-locality of M−1[U ], it is

obvious that a trivial local updating proposal algorithm is not feasible. The RHMC

algorithm adopts a proposing method called Molecular Dynamics Evolution.

In this algorithm, a fictitious ‘momentum’ [πµ]ab(x) canonically conjugate to U is

introduced, as if U were a classical field. It has to be introduced in a fashion that

does not ruin the desired distribution. In other words, its distribution should be

totally irrelevant to that of U or φ(f), so that any physical quantities of interest do

not depend on the distribution of π. It turns out that Eq. 2.17 has already provided a

solution for such distribution. By setting Nf = 2 and substituting M with
√
2 times

the identity, one obtains

2 ∝
∫
Dπe−

1
2
π†π. (2.20)

Therefore, it is acceptable to introduce a π field which follows the Gaussian distribu-

tion. This, again, implies an additional term in Seff, resulting in a ‘Hamiltonian’ H:

H[U, φ(f)] =
1

2
π†π + Seff[U, φ

(f)]. (2.21)

It should be noted that such a ‘Hamiltonian’ is not at all a physical quantity. It
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does not include the momenta of φ(f) and U does not ‘evolve’ physically according

to H nor π. However, H plays the same role as the Hamiltonian in the Boltzmann

factor (at ‘Temperature’ T = 1) in the analogy made in Sec. 2.1 between Wick-

rotated Path Integral formulation and Partition Function formulation of Statistical

Mechanics. Since U is not physically ‘evolving’ along any parameter, there is no

physical consequence of claiming π to be the canonical conjugate, i.e. canonical

momentum, of U that ‘evolve’ in some artificial time τ . In this sense, H is really the

Hamiltonian that governs such evolution in τ via classical equations of motion:

dU

dτ
={U,H} = ∂H

∂π
= π (2.22)

dπ

dτ
={π,H} = −∂H

∂U
= −∂Seff[U, φ

(f)]

∂U

=− ∂S[U ]

∂U
− φ(l)†

[
∂

∂U
(M (l)†[U ]M (l)[U ])−1

]
φ(l)

− φ(s)†

[
∂

∂U
(M (s)†[U ]M (s)[U ])−1

]
φ(s).

These equations are solved numerically using a symplectic (area-preserving) and re-

versible integration scheme with a finite step size δτ . The scheme used in this work

is the second order Omelyan integrator [49]. As a result, U and π ‘evolve’ into U ′

and π′ after the amount of ‘time’ τ , but H is only approximately conserved due to

the finiteness of δτ . The difference δH = Hnew −Hold can be used in the Metropolis

step. The proposed new link U ′ is then dictated in the Metropolis accept-reject step

with the acceptance probability

Pacc = min
(
1, e−δH

)
. (2.23)

Effectively this ‘evolution’ plays the role of the proposal probability R(U ′ ← U) that

provides a U ′ that is globally updated from U . This algorithm ensures that δH

is such that the acceptance probability is not small. As usual, U ′ becomes U (n+1)

if accepted, otherwise the π and φ fields are redrawn without updating U (n). The

process is repeated and the ensemble of U with desired distribution can then be

obtained.

There are a few improvements in this evolution algorithm. They are discussed

briefly below.
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Hasenbusch Preconditioning [45]

It is noted that in Eq. 2.22, an expensive (M (l))−1 is required in order to solve it

for each step of size δτ . Therefore if one can use a larger δτ , the number of such

inversions can be reduced and performance can be improved. The size of δτ required

to solve Eq. 2.22 at a certain level of accuracy and at a certain finite τ depends

on the size of the ‘force’ term of the equations(dπ
dτ
). The smaller this term is, the

larger δτ can be, and in turn the lower computational cost it requires. It is therefore

desirable to reduce ∂
∂U

(M (l)†[U ]M (l)[U ])−1 in some way. It turns out the Hasenbusch

Preconditioning techniques can improve this situation, at the expense of introducing

yet another independent fictitious pseudo-fermion field φ
(l)
h , which has a heavier ‘mass’

mh > ml. Since

det(M (l)†M (l)) =

(
detM (l)†M (l)

detM
(l)†
h M

(l)
h

)
det(M

(l)†
h M

(l)
h ) (2.24)

= det
(
M (l)†M (l)(M

(l)†
h M

(l)
h )−1

)
det(M

(l)†
h M

(l)
h ),

in which M
(l)
h represents the Dirac matrix of φ

(l)
h , S(l) can now be split into two parts:

S(l)[U, φ
(l)
h , φ

(l)
l ] = S

(l)
l [U, φ

(l)
l ] + S

(l)
h [U, φ

(l)
h ] (2.25)

S
(l)
l [U, φ

(l)
l ] ≡ (φ

(l)†
l M

(l)
h [U ])(M (l)†[U ]M (l)[U ])−1(M

(l)†
h [U ]φ

(l)
l )

S
(l)
h [U, φ

(l)
h ] ≡ φ

(l)†
h (M

(l)
h [U ]Mh[U ])

−1φ
(l)
h .

In this way, the fictitious ‘force’ term arising from the light quark is given by

∂S(l)[U, φ
(l)
h , φ

(l)
l ]

∂U
=φ

(l)†
l

∂

∂U

[
M

(l)
h [U ](M (l)†[U ]M (l)[U ])−1M

(l)†
h [U ]

]
φ
(l)
l (2.26)

+φ
(l)†
h

[
∂

∂U
(M

(l)†
h [U ]M

(l)
h [U ])−1

]
φ
(l)
h .

Since the first term now consists of the derivative of a ratio between Dirac matrices

of two similar masses with respect to U , this term tends to be smaller than the

corresponding original ‘force’ term. This achieves the aim that the size of δτ can be

increased. This is done at the cost of computing an additional inversion of M
(l)
h in

the second term. Therefore there are two competing requirements for the choice of

mh. It must be large enough so that (M
(l)
h )−1 is cheap to obtain, while mh must also
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be close enough to ml so that the ‘force’ term is small enough.

Multiple Timescale Integration [46]

When there is an anisotropy in the lattice, i.e. ξ ≡ as/at 6= 1, the ‘force’ in the

temporal direction is typically large due to the smallness of at. Instead of using a

smaller δτ for the whole lattice, one may adopt an integration scheme of smaller δτ

in the temporal direction than that in the spatial ones to save some computation of

the spatial ones, resulting in a multiple timescale integration scheme.

Deflation [47]

As the mass of a quark decreases, its corresponding M becomes increasingly ill-

conditioned. This requires more conjugate-gradient iterations to the inversion of M ,

resulting in an increased computational cost. The low-eigenmode deflation scheme is

able to improve this scaling behavior. This scheme forms a Krylov subspace of M

using the intermediate vectors generated by the conjugate-gradient algorithm. The

low-lying modes can then be calculated using an Arnoldi-type iteration. Such deflated

inversions do not significantly depend on quark masses, and therefore are considerably

cheaper.

2.4 Scale Setting and Lagrangian Parameters

In order to interpret the lattice results in terms of physical units, it is essential to

assign physical scales to quantities that define the lattice, such as lattice sizes, lattice

spacings and pion masses. It is also necessary to tune the bare anisotropy parameters

in the actions of gauge (ξ0 in Eq. 2.12) and that of quarks (ν in Eq. 2.9) on the

lattice to obtain the desired renormalized anisotropy ξ (which is 3.5 in this work).

This is done as follows [43,50].

The l and s quark masses, ml and ms respectively, are tuned using ratios of

dimensionless quantities

lΩ ≡
9m2

π

4m2
Ω

(2.27)

sΩ ≡
9(m2

K −m2
π)

4m2
Ω

,

23



in which mK ,mπ and mΩ are the masses of kaon, pion and omega baryon respectively.

lΩ and sΩ are proportional to ml and ms in leading order in chiral effective theory.

The bare s quark mass which corresponds to the physical value of sΩ is found to be

ms = −0.0743. Since at present time, simulation at physical pion mass is still not

reachable, the pion masses are chosen to be mπ ≈ 390 MeV and mπ ≈ 240 MeV,

giving ml = −0.0840 and ml = −0.0860 respectively in this work. The spatial

lattice spacing as is set by relating lattice mΩ with the physical value, resulting in

as ≈ 0.12 fm.

The anisotropy is tuned non-perturbatively by varying bare parameters in the

action to achieve the associated physical results. For the gauge anisotropy, ξ0,the

following Wilson loop ratios are considered

Rss(x, y) ≡
Wss(x, y)

Wss(x+ 1, y)
≡ e−asVs(yas) (2.28)

Rst(x, t) ≡
Wst(x, t)

Wst(x+ 1, t)
≡ e−asVs(tat)

Wµν(xµ, xν) ≡ 〈0|Tr
[
∑

x

Uµ(x)Uν(x+ xµµ̂)U−µ(x+ xµµ̂+ xν ν̂)U−ν(x+ xν ν̂)

]
|0〉.

Imposing the condition Rss(x, y) = Rst(x, ξy), ξ = 3.5 leads to ξ0 = 4.3. The fermion

anisotropy ν is obtained by requiring the dispersion relations of pseudoscalar and

vector mesons to satisfy:

a2tE
2(~p) = a2tm

2 +
1

ξ2
a2s|~p|2, (2.29)

giving ν = 3.4 for ξ = 3.5. It is observed that the anisotropy parameters weakly

depend on the quark masses.

Table 2.4 shows the relevant lattices that are used in this work. The relevant

parameters to specify them are the spatial lattice spacing as, spatial lattice size Ns,

temporal lattice size Nt and bare light quark mass mu = md = ml. All other param-

eters are common in all the lattices, with values specified in the previous paragraphs.

These lattices are referred to using the labels assigned in the table throughout this

work.
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Label ml Lattice Size(N3
s ×Nt)

{123; 743} −0.0743 123 × 96
{163; 840} −0.0840 163 × 128
{203; 840} −0.0840 203 × 128
{243; 840} −0.0840 243 × 128
{243; 860} −0.0860 243 × 128
{323; 860} −0.0860 323 × 256

Table 2.1: Relevant lattices used in this work
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2.5 Data Analysis Methods

There are three main stages in the simulations of Lattice QCD. An ensemble of

gauge configurations has to be first generated. The process used is described in Sec.

2.3.1. The second stage is to obtain the observables from the ensemble, which will be

discussed in Ch. 3. The third stage is to extract the physics of interest. In this work,

the energy levels are the physical quantities to be extracted.

2.5.1 Extraction of Excited-State Energies

Correlator Matrix

The purpose of simulating QCD on a lattice is to compute quantities that can only

be obtained non-perturbatively from the theory. The hadron spectrum is one of such

quantities. The energies of the hadrons can be extracted from the temporal correlators

computed on the lattice. In principle, one can perform a spectral decomposition of

the correlator C(t) of a particular operator O onto normalized energy eigenstates |n〉
with energies En to fit individual energy levels:

C(t) ≡ 〈0|O(t0 + t)Ō(t0)|0〉 =
∑

n

〈O|n〉〈n|O〉e−Ent, (2.30)

in which |O〉 ≡ Ō|0〉 and t > 0. However, in practice, the signal is dominated by the

slowest decaying exponential. Therefore it would be too noisy to extract the energy

levels above ground level using a single operator. To solve this, a correlator matrix

Cij is constructed from Nop operators {Oi} instead:

Cij(t) ≡ 〈0|Oi(t0 + t)Ōj(t0)|0〉. (2.31)

Then Cij is rotated in a way that it is diagonalized at a particular chosen time t = t∗

into C ′ij:

C ′ij(t) = 〈0|Ωi(t0 + t)Ω̄j(t0)|0〉 (2.32)

C ′ij(t∗) = δij〈0|Ωi(t0 + t∗)Ω̄j(t0)|0〉,

in which Ω’s are the transformed O’s via the eigenvectors of Cij. In the limit of

Nop → NE, NE being the maximum number of energy states allowed on the lattice,
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C ′ij will stay diagonalized for all time after t∗, since each of the diagonal elements

C ′ii represents the correlator of a single energy eigenstate |Ωi〉 ∝ |ni〉. In the usual

scenario, Nop ≪ NE. Thus |Ωi〉 can only be an approximation of |ni〉 due to the

contamination of other energy eigenstates. As a result, |Ωi〉 itself evolves slowly

with time after t∗, destroying the diagonalization of C ′ij at later time-slices. It can

indeed be shown that under certain conditions, the leading order correction to the

dominance of |ni〉 is given by e−(ENop+1
−Ei)t. Nonetheless, the dominance of |ni〉 for a

certain range of t is all one needs to fit it to a single exponential, since the signals will

be overwhelmed by the noises at later time anyways. A useful way to figure out the

range of time that C ′ij is diagonal is to define a normalized rotated correlator matrix:

C̃ ′ij(t) ≡
C ′ij(t)√

C ′ii(t)C
′
jj(t)

(2.33)

and deduce the range from its temporal evolution plot.

Effective mass meff

How well a correlator C(t) of a certain operator O is approximated by a single expo-

nential can be visually estimated by examining its effective mass meff(t), which is a

function of t:

atmeff(t) ≡
1

δt
ln

[
C(t)

C(t+ δt)

]
, (2.34)

in which δt is some time step which is taken to be 3at in this work, to reduce the

effects of uncorrelated temporally-local fluctuations resulting from the algorithm that

will be discussed in Ch. 3. It is trivial from the expression that meff would have

been a constant, the energy of |O〉, if it were really an energy eigenstate. Since it is

actually not, meff will only decrease from a large value and approach the lowest energy

|O〉 overlaps with at later time-slices, when the excited states ‘die out’. Therefore by

looking at the size of the range of time where meff plateaus, one can tell how well |O〉
approximates the energy state it corresponds to.

Since all simulations are done in periodic finite-sized lattices, C(t) is indeed a

combination of the correlators of the particle that propagates from t0 to t0 + t and

its antiparticle that travels from t0 to t0 + t, while the latter is equivalent to the

particle that travels backward from t0 + t to t0,or forward from t0 + t to t0 + Nt
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due to periodic boundary conditioned lattice. By temporal translational invariance

of the correlator, this extra piece is the same as the particle propagator from t0 to

t0 + (Nt − t). Therefore the actual form of C(t) at large t should be

C(t) ∼ e−mefft + e−meff(Nt−t), (2.35)

in which the definition of meff is now modified to be the solution of

C(t) cosh

(
meff(

Nt

2
− t− δt)at

)
= C(t+ δt) cosh

(
meff(

Nt

2
− t)at

)
. (2.36)

Since in the limit Nt → ∞ this wrap-around effect diminishes, in most of the cases

this definition yields practically identical result as Eq. 2.34. However, it is necessary

to include this lattice artifact if the lattice is small or the particle under consideration

has a small mass.

tmin Plots

A way to demonstrate how well a fitting value of energy estimates the true energy

is to use tmin plots. A tmin plot such as Fig. 4.1(c) shows the fitted mass mfit in a

range of time separation t with fixed maximum value tmax. In other words, it is a

function of minimum value tmin. The hollow symbols represent the fit ranges with

bad quality and the solid ones represent the fit ranges with good quality. A valid

fit value should acquire a stable value with good quality over a range of tmin, i.e.

insensitive to tmin. The fit values are expected to be valid if the asserted fit form is

correct. For single hadrons, a cosh form is a valid fit form. In general, the fit form

is different from cosh for multi-hadron correlation functions due to the interaction

between wrapped-around particles and non-wrapped-around particles.

Correlators with Vacuum Expectation Values (VEV)

In general, |O〉 has a non-zero projection back to the vacuum |0〉 if |O〉 attains the

same values of the quantum numbers as vacuum. For single hadron operators, all

isoscalar scalar mesons(σ’s) at rest in the lab frame have this property. For multi-

hadron operators, any combinations with isospin I = 0, angular momenta J = 0 and

total momenta ~P = ~0 have such property as well. This mixing with vacuum results
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in a non-zero constant in Eq. 2.30 :

C(t) ≡ 〈0|O(t0 + t)Ō(t0)|0〉 =
∑

n

〈O|n〉〈n|O〉e−Ent (2.37)

=
∑

n 6=0

〈O|n〉〈n|O〉e−Ent + 〈0|O|0〉〈0|Ō|0〉

=
∑

n 6=0

〈O|n〉〈n|O〉e−Ent + |〈O〉|2

≡ Ĉ(t) + |〈O〉|2,

assuming E0 = 0. Since E0 = 0, 〈O〉 is identical for all time-slices within statistical

fluctuations. This extra VEV term |〈O〉|2 is undesirable, because C(t) approaches at
late time-slices to the vacuum state with E0 = 0, which is usually not of interest in

spectroscopy or other contexts. In other words, only Ĉ(t) is the part of the correlator

of interest. This part of the correlator is equivalent to a redefinition of O:

Ĉ(t) = 〈0|O(t0 + t)Ō(t0)|0〉 − |〈O〉|2 (2.38)

= 〈0| [O(t0 + t)− 〈O〉]
[
Ō(t0)− 〈Ō〉

]
|0〉

≡ 〈0|Ô(t0 + t)
¯̂
O(t0)|0〉,

Ô(t) ≡ O(t)− 〈O〉.

Therefore replacing O with Ô in all the equations derived in the previous section

gives the physically interesting quantities. In this situation, there is an additional

requirement of subtracting the VEV term from C(t) after each calculation. In the

rest of this work, all correlators C(t) refer to the VEV-subtracted correlators unless

otherwise is specified.

2.5.2 Error Estimations

In any stochastic calculations, it is always important to estimate the statistical error.

Given that there are vacuum expectation values involved in the definition of the

correlators in general and that effective masses are functions of the mean of the

correlators, it is impossible to estimate the errors by plugging the data into common

autocorrelation formulas. Moreover, the correlation between successive configurations

along the Markov chain is significant enough to be taken into account. Although
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this can be reduced by only sampling configurations separated by a certain number

of steps, it is still necessary to have a measure to estimate how significant such

correlation is, in order to determine the size of separation and to make claims about

the independence of configurations within the resulting ensemble. On the other hand,

correlation arises between time-slices in the same configuration when averaging source

times t0 as well. In order to handle all these appropriately, the error analysis thus

has to be done through resampling techniques, such as the jackknife method and the

bootstrap method [51]. They will be discussed in the following parts, keeping the

VEV subtraction explicit to illustrate the ideas.

Jackknife Method

Given a collection of non-VEV-subtracted correlators C[U ](t) and their corresponding

VEV, V [U ] ≡ 〈O[U ]〉, on an ensemble of U of size Ncfg, i.e.

C = {{C[U (r)](t), V [U (r)]}, r = 0, 1, · · · , Ncfg − 1}, (2.39)

a ‘Jackknife ensemble’ CJac = {{C(r)
Jac(t), V

(r)
Jac}, r = 0, 1, · · · , Ncfg − 1} can be con-

structed as follows:

C
(r)
Jac(t) ≡

1

Ncfg − 1

Ncfg−1∑

r′=0,r′ 6=r

C[U (r′)](t), r = 0, 1, · · · , Ncfg − 1 (2.40)

V
(r)
Jac ≡

1

Ncfg − 1

Ncfg−1∑

r′=0,r′ 6=r

V [U (r′)], r = 0, 1, · · · , Ncfg − 1.

For any quantity f in terms of C[U ](t) and V [U ], such as Ĉ(t) ormeff(t), it can be eval-

uated on either C or CJac, giving respectively collections of f ’s F = {f [C, V ], {C, V } ∈
C } and FJac = {f [CJac, VJac], {CJac, VJac} ∈ CJac}. The variance of f can then be

found by

σ2
Jac[f ] =

Ncfg

Ncfg − 1

Ncfg−1∑

r=0

(f [C
(r)
Jac, V

(r)
Jac ]− 〈f〉C )2, (2.41)

〈f〉C ≡
1

Ncfg

Ncfg−1∑

r=0

f [C[U (r)](t), V [U (r)]].
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Note that the mean of f is the one taken in the original ensemble. It can be shown

that if f does not depend on V ’s, σ2
Jac[f ] coincides with the standard expression of a

usual variance obtained from Central Limit Theorem. Although the jackknife method

is easy to implement and clear in concepts, it has its limitations. It is based on the

assumption that the U ’s in the ensemble are independent from one another. If the

U ’s are correlated to one another, σ2
Jac underestimates the true variance. This can be

avoided by rebinning C . [52] One can construct a new collection of C’s and V ’s, Cb,

based on the original one:

Cb(t)
(r) ≡ 1

b

(r+1)b−1∑

r′=rb

C[U (r′)](t), r = 0, 1, · · · , Ncfg/b− 1 (2.42)

V
(r)
b ≡ 1

b

(r+1)b−1∑

r′=rb

V [U (r′)], r = 0, 1, · · · , Ncfg/b− 1,

in which b is some integer that governs the degree of rebinning (and preferably a

factor of Ncfg). It can be shown that the mean of f on Cb remains the same as the

original ensemble, while its variance would be significantly larger than the original

one if the original ensemble contains correlated elements. Therefore the independence

of U ’s (and the corresponding f ’s) can be examined by varying b and looking for a

range in which the variance remains unchanged within statistical fluctuations. The

variance found in this range is the uncorrelated estimate of the variance of f .

Bootstrap Method

An alternative method of error estimation is the bootstrap method. This method is

very similar to the jackknife method, but it resamples the ensemble randomly with

replacement:

C
(r)
Boo(t) ≡

1

Ncfg

Ncfg−1∑

s=0

C[Umr,s ](t), r = 0, 1, · · · , NBoo − 1 (2.43)

V
(r)
Boo ≡

1

Ncfg

Ncfg−1∑

s=0

V [Umr,s ], r = 0, 1, · · · , NBoo − 1

in which mr,s is a random integer in the range of [0, 1, · · · , Ncfg − 1]. Since repeated

use of U ’s is allowed, the resampled set can be of any size NBoo. The variance can
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then be computed as follows:

σ2
Boo[f ] ≡

1

NBoo

NBoo−1∑

r=0

(f [C
(r)
Boo, V

(r)
Boo]− 〈f〉C )2. (2.44)

In this work, Jackknife method is used for most quantities but bootstrap method is

used for fitted values of the particle masses.
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Chapter 3

Methodology

In Ch. 2, the lattice formulation of QCD was presented. The algorithms of nu-

merically generating the link variables and the analysis methods were introduced. In

this chapter, the methodology of obtaining the required N -point correlation functions

from gauge ensembles is discussed.

3.1 Field Smearing Schemes

The use of smeared fields is crucial for successfully extracting the spectrum of QCD

in Monte Carlo computations. Hadron operators constructed out of smeared fields

dramatically reduce the mixing with the highly excited states of the theory that

obscure extraction of the low-lying energy eigenstates of interest. In this work, the

operators are constructed using spatially-smoothed link variables Ũj(x) and spatially

smeared quark fields ψ̃(x).

3.1.1 Stout Link Smearing

Stout smearing [31] is employed as the smearing of the links Uµ(x). It is achieved via

the weighted sum of ‘staple’ terms Σµ defined as follows:

Σµ[U ] =
∑

ν 6=µ

ρµν [Uν(x)Uµ(x+ ν̂)U
†
ν(x+ µ̂)+U

†
ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂+ µ̂)], (3.1)

in which ρµν is some weighting factor. Since the temporal behavior of the correla-

tors is crucial in energy level extractions, only spatial staples are used in the link
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smoothening and temporal link variables are not smeared. For simplicity, the non-

vanishing weighting factors are taken to be identical, with the value ρ = 0.10. In

other words,

ρij = ρ, ρµ4 = ρ4µ = 0. (3.2)

The links Uµ(x) are smeared iteratively by:

U (n+1)
µ (x) ≡ eiQ

(n)
µ (x)U (n)

µ (x), (3.3)

in which

Q(n)
µ (x) ≡ i

2

((
Ω(n)

µ

)†
(x)− Ω(n)

µ (x)
)
− i

2N
Tr
((

Ω(n)
µ

)†
(x)− Ω(n)

µ (x)
)
, (3.4)

Ω(n)
µ (x) ≡ Σµ[U

(n)]U (n)†
µ (no sum over µ), (3.5)

where (n) indicates the nth iteration. Therefore the smeared link Ũµ is defined as

Ũµ = U (nρ)
µ , (3.6)

where the maximum number of iteration nρ = 10 in this work.

3.1.2 Laplacian Heaviside (LapH) Quark Smearing

The quark field of flavor A is smeared using

ψ̃A
aα(x) = Sab(x, y)ψ

A
bα(y), (3.7)

in which x,y are lattice sites, a,b are color indices, α is a Dirac spin component, and

the smearing kernel S is defined such that the smeared field behaves in exactly the

same way as the original field under all time-independent symmetry transforms on

a cubic lattice. Like the link smearing, only spatial smearing is adopted. In other

words, Sab(x, y) ∝ δx4y4 . In addition, S is independent of spin and flavor. The

smearing scheme used in this work is called Laplacian Heaviside (LapH) quark-field

smearing scheme. In such scheme, S is defined as

S ≡ Θ
(
σ2
S + ∆̃

)
, (3.8)
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in which σS is the smearing cutoff parameter and ∆̃ is the three-dimensional gauge-

covariant Laplacian operator given by:

∆̃ab(x, y;U) ≡
3∑

k=1

{
Ũab
k (x)δ(y, x+ k̂) + [Ũ †k(y)]

abδ(y, x− k̂)− 2δ(x, y)δab
}
, (3.9)

in which x, y are lattice sites and a, b are color indices. ∆̃ is a Hermitian matrix

block-diagonal in time. The stout-smeared gauge links are used since it can drastically

reduce the statistical error in the correlators of the hadron operators that involve

covariantly-displaced quark fields, which will be discussed in Sec. 3.2. A gauge-

covariant Laplacian operator is desired for smearing the quark field since it is one of

the simplest operators that locally averages the field in such a way that preserves all

relevant symmetry transformation properties of the original field.

The eigenvectors of ∆̃ form a unitary matrix V∆ that diagonalizes ∆̃,

∆̃ = V∆Λ∆V
†
∆, (3.10)

in which all eigenvalues in the diagonalized matrix Λ∆ are real and negative. There-

fore,

S = V∆Θ
(
σ2
S + Λ∆

)
V †∆. (3.11)

The Heaviside function Θ eliminates all eigenvalues with magnitudes larger than σ2
S.

Since ∆̃ is block-diagonal in x4, one can associate each eigenpair with a corresponding

time value. It is observed that among different time-slices, the numbers of eigenpairs

that survive the Θ filter, Nv’s, are approximately the same. It is also found that this

value is not dependent significantly on pion masses. Fig. 3.1 shows the calculation

based on 163 × 128 Nf = 2 + 1 lattices. It is observed that the eigenvalues do not

differ significantly between pion masses ∼ 0.64 GeV and ∼ 0.39 GeV. In other words,

S can be safely approximated by

S ≈ VSV
†
S , (3.12)

in which VS is the unitary matrix constructed by the Nv eigenvectors for each time-

slice. On a lattice with temporal size Nt, spatial size Ns and number of colors Nc = 3,

the NvNt eigenvectors, each having NtN
3
sNc components, span the so-called LapH

subspace.
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Figure 3.1: The small effect of the pion mass on the eigenvalues of the gauge-covariant
Laplacian operator demonstrated on 163×128 Nf = 2+1 lattices. λi is the i

th lowest
eigenvalue of −∆̃ on a given time-slice. The error bars correspond to the variation
over different time-slices. [10]
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Figure 3.2: The meff for three representative nucleon operators against the LapH
smearing cutoff σ2

S on {163; 840} ensemble. The circles show results (shifted down-
ward by 0.04) for a single-site operator. The squares correspond to a singly-displaced
nucleon operator, and the triangles are the results (shifted upward by 0.04) for a
triply-displaced-T operator [10]

The value of σS, and hence Nv, is chosen by minimizing the effective masses of

some simple hadron operators at some early time separation tS that is picked to be

1. Fig.3.2 shows how it is done. A single-site nucleon operator in which all three-

quark fields are taken at the same site is shown, as well as a singly-displaced nucleon

operator in which one of the quarks is displaced away from the other, and a triply-

displaced-T operator in which all three quarks are displaced from the others in a T

configuration. In this work, σ2
S ≈ 0.33 is used. It is found that the choice is insensitive

of the value of tS as long as the excited states still dominate the correlator at that

time.

3.2 Hadron Operators

The use of good hadron operators is crucial for extracting the mass spectrum. A

‘good operator’ is one that creates the states of interest out of the vacuum while

suppressing the creation of unwanted higher-lying states. The construction of such

operators has been discussed in Refs. [10, 12] and is not discussed here.
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In the continuum, local operators which annihilate a hadron with momentum ~p

and (anti)quarks of flavors Af can be written as

for mesons, (3.13)

OA0A1(~p, t) = δabe
−i~p·~xγJmJ

αβ ψ̄A0
aα (x)ψ

A1
bβ (x)

ŌA0A1(~p, t) = δabe
i~p·~xγJmJ∗

αβ ψ̄A1
bβ (x)ψ

A0
aα (x)

for baryons,

OA0A1A2(~p, t) = εabce
−i~p·~xγJmJ

αβδ ψ
A0
aα (x)ψ

A1
bβ (x)ψ

A2
cδ (x)

ŌA0A1A2(~p, t) = εabce
i~p·~xγJmJ∗

αβδ ψ̄A2
cδ (x)ψ̄

A1
bβ (x)ψ̄

A0
aα (x)

for some spin tensors γ with spin J and spin ẑ-component mJ . A two-point function

between operators O1 and O2 is then given by 〈O1Ō2〉, in which the average is by

Feynman integral. Similarly, it is expected that, on the lattice, O also carries the

flavors and Dirac spin indices of the constituent quarks it contains and has a phase of

a particular momentum. In order to construct extended operators that overlap better

to non-local states, gauge-covariant displacements are also applied to the quarks in

the definition of hadron operators. They are defined as follows:

D(ld),n(~x, ~x′) ≡ Ũn(~x
′)Ũn(~x

′ + n̂) . . . Ũn(~x
′ + (ld − 1)n̂)δ~x,~x′+ldn̂,

D(ld),0(~x, ~x′) ≡ δ~x,~x′ ,

D(ld),−n(~x, ~x′) ≡ Ũ−n(~x
′)Ũ−n(~x

′ − n̂) . . . Ũ−n(~x′ − (ld − 1)n̂)δ~x,~x′−ldn̂,

(3.14)

in which n runs from 1 to 3 and ld is the length of displacement taken to be 3 in

this work. Such displacement combinations of the quarks for a particular hadron

are denoted as Du with collective index u that specifies the number of displacement

operators applied and the values of ld and n of each quark. Thus a hadron operator

also carries displacement indices that specify how the quarks are displaced. In order to

ensure the Hermiticity of correlation matrices involving baryons, it is more preferable

to consider the antiquark field χ ≡ ψ̄γ4 instead of ψ̄. In the LapH subspace, according
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to Eq. 3.7, the smeared (anti)quark fields are given by

ψ̃A
aα(x) = VS(a; x)V

†
S (b; y)ψ

A
bα(y) ≡ VS(a; x)ψ̂

A
α (3.15)

χ̃A
aα(x) = χA

bα(y)VS(b; y)V
†
S (a; x) ≡ χ̂A

αV
†
S (a; x)

As mentioned in Ch. 2, the discretized Lagrangian is no longer invariant under

the full Poincaré group of rotations, translations and boosts, but is invariant under

the subgroup corresponding to the allowed rotations, translations and boosts on a

hyper-cubic lattice. This means the correlation matrix should be block diagonal if

the operators are constructed in a way that respects the symmetries on a lattice.

It is thus important to exploit this feature to design good operators in order to

efficiently obtain the hadron spectrum. The details of such construction are depicted

in Appendix A. A general expression for a hadron operator O in the LapH subspace is

therefore, introducing a collective index Λ which specifies the row and the ireducible

representation the operator corresponds to, given by

for mesons, (3.16)

OΛA0A1(~p, x4) ≡ CΛ
αβ;ue

−i~p·n̂0Γij
u (~p; x4)χ̂

A0,i
α ψ̂A1,j

β ,

ŌΛA0A1(~p, x4) ≡ CΛ∗
αβ;ue

i~p·n̂0Γij∗
u (~p; x4)χ̂

A1,j
β ψ̂A0,i

α ,

Γu(~p; x4) ≡ δabe
−i~p·~xDuV

†
S (a; x)VS(b; x)

for baryons,

OΛA0A1A2(~p, x4) ≡ CΛ
αβδ;uΓ

ijk
u (~p; x4)ψ̂

A0,i
α ψ̂A1,j

β ψ̂A2,k
δ ,

ŌΛA0A1A2(~p, x4) ≡ CΛ∗
αβδ;uΓ

ijk∗
u (~p; x4)ψ̂

A2,k
δ ψ̂A1,j

β ψ̂A0,i
α ,

Γu(~p; x4) ≡ εabce
−i~p·~xDuVS(a; x)VS(b; x)VS(c; x),

for some coefficients C. The extra exponential factor in terms of n̂0, the midpoint

between the displaced quark and antiquark, is inserted to ensure that the meson

operators acquire G-parity symmetry. The quantities Γ are known as ‘Hadron Ele-

mentals’. It is observed that Γ’s are independent from the constituent quark flavors.

Thus they can be recycled in the calculations of different operators that only differ by

C. In this work, only correlation functions that involve two time-slices are considered.

The earlier time is considered as the source time (denoted by t0) and the later one is

considered as the sink time (denoted by t1 ≡ t0+ t, t being the time separation). The
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hadrons created at the source time are considered as source hadron operators while

the hadrons annihilated at sink time are considered as sink hadron operators.

Since there are a lot of symmetry channels and displacement types for each hadron

sector, many possible hadron operator coefficients C can be constructed. Not only

it takes overwhelmingly huge resources to compute all of them, but also there is no

such need. The first reason is that some operators are intrinsically too noisy to give

significant signals, i.e. there is no impact on the computation by throwing them away.

The second one is that not all operators are independent from one another. Actually

many of them are not, indicated by the large condition numbers of the correlator

matrices constructed from them. Moreover, one does not need too many independent

operators to obtain the first few lowest-lying levels of the spectra. As a result, a

‘pruning’ has been performed to crop out optimal sets of quiet independent operators

in each sector. The results are described in Appendix B.

3.2.1 Glueball Operators

Glueballs G are particles believed to be composed mainly of gluons. Pure gauge

simulations [33] show that they are expected to be very heavy in mass and the lightest

state is known to be the ground state of scalar sector GS. As far as the low-lying

hadron spectra are concerned, GS is expected to be the only particle that will be

needed. It has the same quantum numbers as the isoscalar scalars so it will mix with

f0, as well as any multi-hadron combinations with the same set of quantum numbers.

Traditionally, GS states are probed by the smeared plaquette operators, which consist

of Wilson loops in different combinations [33]. Within the context of LapH smearing,

a convenient GS operator can be obtained immediately after the computation of the

eigenpairs of −∆̃. Such an operator is

G∆
S (x4) ≡ −Tr(P[x4]S∆̃) = −Tr

(
P[x4]Θ

(
σ2
S + ∆̃

)
∆̃
)
=

∑

|λi,x4
|<σ2

S

λi,x4 ≈
Nv−1∑

i=0

λi,x4 ,

(3.17)

where

P ab
[x4]

(x′, y′;U) ≡ δabδx4,x′
4
δx′,y′ (no sum over x′ or x′4) (3.18)

projects out the block of S∆̃ at time x4 and λi,x4 is the i
th eigenvalue of −∆̃ at time x4.

G∆
S (x4) is a valid operator because it is free from constituent quarks, gauge-invariant
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Figure 3.3: Comparison between glueball operators on 584 configurations of
{243; 860} ensemble. [53] The first row shows the correlator and effective mass of
a typical smeared plaquette operator, while the second row shows the correlator and
effective mass of the G∆

S operator defined in Eq. 3.17. It is observed that their
variances are very close to each other.

and has the same quantum numbers of GS. Such an operator is a bonus from the

LapH algorithm. It turns out that such operator gives signals of the same quality as

traditional smeared plaquettes. Fig. 3.3 compares the signals between the two on the

{243; 860} ensemble. It is observed that they give very similar signals.

3.3 LapH Quark Propagators

As discussed in Sec. 2.1 , the Grassmann-valued (anti)quark fields ψ̄ and ψ are not

quantities obtainable directly in the Monte Carlo simulation. They are integrated

out in favor of the propagator, M−1 = ψψ̄. Due to the re-definition of ψ̄ into χ, the

propagator is now defined as Ω−1 ≡ ψχ, where Ω ≡ γ4M . Smearing in the LapH
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subspace, using Eq. 3.7 and Eq. 3.12,

Ω̃−1 ≡ SΩ−1S = SψχS = ψ̃χ̃ = VSψ̂χ̂V
†
S ≡ VSKV

†
S , (3.19)

in which

K ≡ ψ̂χ̂ = V †SΩ
−1VS. (3.20)

The evaluation of K is computationally very expensive due to the enormous size of

the matrix. A straightforward way of doing so is as follows. Let

v
(i,α)
cβ (x) ≡ V i

S(c; x)δαβ, (3.21)

in which x is the lattice site, c is color index and α, β are spin indices. The solution

of Ωu = v(i,α) gives

u
(i,α)
dγ (y) = Ω−1dγ|cα(y, x)V

i
S(c; x), (3.22)

which can be computed numerically using variants of common Conjugate-Gradient

methods. After performing inversions for all Nv i’s and ND = 4 α’s, K = V †Su

can be obtained. Thus, for each gauge configuration and each quark mass, NvNtND

such inversions are required. In cases where only non-isoscalar single hadron 2-point

correlators are of interest, only quark lines that start from several source times, N
(src)
t ,

are involved. Therefore the number of inversions can be reduced to NvN
(src)
t ND. In

principle N
(src)
t can be taken to be 1, but statistics can be boosted by increasing it.

Thus the number of inversions can be as low as NvND. However, if multi-hadron or

isoscalar operators are considered, quark lines that start and end in the same time-

slice are needed. These quark lines may connect between the source hadron operators

or between the sink hadron operators. In particular, if it happens that such quark

lines connect the sink hadron operators, the number of inversion is proportional to

the number of sink time t1’s required, N
(snk)
t . This number can be comparable to

Nt if it happens that a long range of sink time is required for energy extraction.

Therefore the number of inversions needed becomes of the order of NvNtND again.

In small lattices, this amount of inversions can be handled at ease, so it is not really an

issue. However, Nv is actually proportional to the spatial volume. The eigenvalues

of −∆̃ go like |~k|2 for wavevectors ~k(suppressing other indices). It is known that

|~k| ∼ n2πN−1s for some integer n. For a given cutoff σS, the number of eigenstates
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Figure 3.4: The volume dependence of the eigenvalues of the gauge-covariant Lapla-
cian operator. λi is the ith lowest eigenvalue of −∆̃ on a given time-slice. The
error bars correspond to the variation over different time-slices. Within the region
0.3 < λi < 0.4 there are 9 eigenstates for 123 Lattice while there are 22 for the 163

one. [10]

with |~k|2 ≤ σ2
S ≡ |nmax2πN

−1
s |2, Nv, is given by:

Nv =
4π

3
n3
max (3.23)

=
1

6π2
σ3
SN

3
s .

In other words, for a fixed σS, Nv ∝ N3
s . Fig. 3.4 demonstrates this effect on spatial

lattice sizes 123 and 163. Within the region 0.3 < λi < 0.4 there are 9 eigenstates for

123 Lattice while there are 22 for the 163 one. Therefore, for larger lattices in which

each individual inversion is already more expensive, the number of required inversions

also increases proportionally due to the scaling of the number of eigenvectors with

spatial volume in order to keep the cutoff eigenvalue σS unchanged. This makes the

straightforward calculation of the quark lines very costly or even not feasible on larger

lattices. Thus some tricks have to be employed. In this work, noises are introduced

into the calculation to tackle this problem. Such an algorithm is named Stochastic

LapH method [10] and is described in detail in Sec. 3.4.
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3.4 Stochastic LapH Algorithm

In Sec. 3.3, it was found that straightforward calculations of quark lines are too

expensive to be performed in large lattices. In this work, the technique to solve the

problem is to introduce noises in the calculation of the inversions. Such an algorithm

is based on the important observation that an exact calculation of K is actually

unnecessary. The statistical errors in the estimation of the correlators of interest are

indeed limited by the statistical fluctuations of gauge generations from Monte Carlo

method. This means one cannot further improve the signals once the errors in the

estimation of quark lines of each gauge configuration has reached such ‘gauge noise

limit’. Therefore it is wasteful to calculate the inversions at maximum accuracy, i.e. in

an exact manner. This allows the notion of a stochastic estimation of the inversions at

an accuracy comparable to the ‘gauge noise limit’ without significant increases in the

variance in the correlators and consequently extracted energies. In this section, such

technique is discussed and there are some small-lattice results to determine the values

of stochastic parameters such as dilution schemes, to demonstrate the feasibility of

the method and thus to justify its application upon larger lattices.

3.4.1 Stochastic Estimator with Dilution Enhancement

In the LapH subspace and spin space, define an evenly-random vector ρ, in which

each component ρiα(x4) ∈ Zn, where Zn ≡ ei2πm/n for some integer n and integer m

satisfying 0 < m < n. n is taken to be 4 in this work. Consider the linear system

Ωφ = VS ρ, (3.24)

in which the solution φ can be numerically calculated using variants of Conjugate-

Gradient methods. Suppose there are Nr such random ρ’s. Since

1 = E(ρρ†) ≈ 1

Nr

Nr−1∑

r=0

ρ(r)ρ(r)†, (3.25)
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it is expected that

K = V †SΩ
−1VS (3.26)

= V †SE((Ω
−1VSρ)ρ

†)

= V †SE(φρ
†)

≈ 1

Nr

Nr−1∑

r=0

V †Sφ
(r)ρ(r)†

≡ 1

Nr

Nr−1∑

r=0

ϕ(r)ρ(r)†,

in which ϕ and ρ are defined as ‘Quark Sinks’ and ‘Quark Sources’ respectively. In

principle, if Nr is large enough for averaging, K can be approximately obtained in this

way. However, the statistical error can be huge. Therefore, given a target variance,

namely the gauge noise limit in the current case, it is not obvious whether more or

fewer inversions are needed compared with the ‘exact’ approach described in Sec. 3.3.

In fact, according to previous experiences of the same stochastic technique applied on

the lattice sites and color space instead of LapH subspace, such stochastic estimation

introduces a lot of additional noises that overwhelm important signals. It is expected

that this is also true in the LapH subspace. This leads to the notion of applying

the ‘dilution’ improvement technique that was previously developed in the former

situation [6].

In the stochastic estimation described above, ρ is defined on the entire LapH

subspace and spin space and is inverted all at once. Actually it does not need to be

the case. ρ can be projected onto different sets of indices and then inversions are

performed separately on each of them. The results can then be re-combined to give

an estimation of the full K. The implementation is as follows.

Denote the collection of the index values of time values by T, that of LapH eigen-

vectors by L and that of spin values by S. Divide these collections into disjoint subsets

denoted by T
dT , SdS and L

dL respectively, where d’s are integers specifying the sub-

sets. For each set, there are several ways of splitting. These schemes are known

as the ‘Dilution schemes’ D. In this work, 4 types of dilution schemes are studied.

‘Null’(N) dilution scheme refers to the situation in which one subset contains all ele-

ments. ‘Full’(F) dilution scheme refers to the situation in which there is one element

in each subset. ‘Interlace-q’(Id) dilution scheme refers to the situation in which each
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of q subsets contains N/q elements separated by q consecutive values, where N is the

total number of elements in the whole set. ‘Block-q’(Bq) dilution scheme refers to the

situation in which each of q subsets contains N/q consecutive values. In other words,

denoting P
[d]
mn

∣∣∣
D
as the projector that projects out the indices within dilution scheme

D,

P [d]
mn

∣∣
N
= δm,n, d =0 (3.27)

P [d]
mn

∣∣
F
= δm,nδd,m, d =0, 1, · · · , N − 2, N − 1

P [d]
mn

∣∣
Iq
= δm,nδd,m mod q, d =0, 1, · · · , q − 2, q − 1

P [d]
mn

∣∣
Bq

= δm,nδd,mq/N , d =0, 1, · · · , q − 2, q − 1.

Let P [dT ][dS ][dL]
∣∣
DTSL

denote the projector that projects out indices (x4, α, i) within

the set TdT ⊗ S
dS ⊗ L

dL for dilution scheme DTSL:

P
[dT ][dS ][dL]
x4,α,i|y4,β,j

∣∣∣
DTSL

≡ P [dT ]
x4y4

∣∣
DT

P
[dS ]
αβ

∣∣∣
DS

P
[dL]
ij

∣∣∣
DL

(3.28)

=
∑

x′
4∈T

dT

∑

α′∈SdS

∑

i′∈LdL

δx4x′
4
δx4y4δαα′δαβδii′δij

∣∣∣∣∣∣
DTSL

.

Then, for a given dilution scheme, the diluted noises can be defined as

ρ[dTSL](r) ≡ P [dT ][dS ][dL]ρ(r), (3.29)

in which dTSL is the collective index for dT , dS and dL. Since Eq. 3.25 is now

1 =
∑

dTSL

E(ρ[dTSL]ρ[dTSL]†) ≈ 1

Nr

Nr−1∑

r=0

∑

dTSL

ρ[dTSL](r)ρ[dTSL](r)†, (3.30)

Eq. 3.26 becomes

K ≈ 1

Nr

Nr−1∑

r=0

∑

dTSL

ϕ[dTSL](r)ρ[dTSL](r)†, (3.31)

where

ϕ[dTSL](r) ≡ V †SΩ
−1VSρ

[dTSL](r). (3.32)
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With dilution, the variance can be greatly reduced by ensuring exact zeros for many

of the E(ρmρ
∗
n) elements in Eq. 3.30 due to the orthogonality of the projectors. (Illus-

trated in Fig. 3.5) This improvement comes at a price of an increase in the number

of inversions per configuration per noise seed. Since the number of inversions per

noise seed is directly proportional to the number of dilution projectors, the variance

can be systematically reduced by tuning the dilution scheme until the variance is

comparable to the gauge noise limit. Once this is reached, there is no way to improve

further without generating more configurations. Thus it suffices to stay in such di-

lution scheme. The dilution scheme determined in this manner turns out to require

far fewer inversions than that required by the full dilution scheme, i.e. ‘Exact’ calcu-

lation, while the variance is still close to the full dilution scheme. It is discussed in

detail in Sec. 3.6.

Occasionally, the γ5-Hermiticity of the Dirac Matrix can be exploited. In Eu-

clidean spacetime, (
M−1

)†
= γ5M

−1γ5. (3.33)

In terms of K,

K† = (V †SM
−1γ4VS)

† (3.34)

= V †Sγ4
(
M−1

)†
VS

= γ4γ5V
†
SM

−1VSγ5

= −γ5γ4Kγ4γ5.

Therefore, according to Eq. 3.31, K can be estimated in a different way:

K = (−γ5γ4Kγ4γ5)† (3.35)

= −γ5γ4K†γ4γ5

≈ −γ5γ4
1

Nr

Nr−1∑

r=0

∑

dTSL

ρ[dTSL](r)ϕ[dTSL](r)†γ4γ5

≡ 1

Nr

Nr−1∑

r=0

∑

dTSL

ρ̄[dTSL](r)ϕ̄[dTSL](r)†,
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where

ρ̄[dTSL](r) ≡ −γ5γ4ρ[dTSL](r) (3.36)

ϕ̄[dTSL](r) ≡ γ5γ4ϕ
[dTSL](r).

Effectively, this algorithm is performing a Monte Carlo inside a Monte Carlo. Thus

it is equivalent to a larger Monte Carlo that includes the noises as one of the random

variables. Therefore in practice Nr = 1 will do the job most of the time. This

simplification is adopted in this work unless otherwise is specified.

Quarkline End Combinations Φ

Equipped with the expressions of the stochastic estimations of K in terms of ϕ and ρ,

one can finish the construction of O, the building blocks that would be used for the

estimation of the N -point correlation functions, by replacing the fermion fields with

ϕ and ρ. It is observed that computing the hadron operators separately is in fact not

possible if K were computed in a straightforward way. The elements of K needed are

diagram-dependent. Wick contraction has to be performed one diagram by another

to obtain the set of K’s to be generated. Unless all elements of K are generated,

it is always possible that new elements of K have to be generated when the study

develops from one correlation function to another. As discussed previously, it is not

practical to exhaust all elements of K using current computational resources. This

imposes an inconvenience of the simulation, especially multi-hadron calculations that

involve a variety of diagrams. Fortunately, in the stochastic estimation, according to

Eq. 3.31, the propagator is factorized back into two parts, ϕ and ρ:

ψ̂χ̂ = K (3.37)

≈ 1

Nr

Nr−1∑

r=0

∑

dTSL

ϕ[dTSL](r)ρ[dTSL](r)†

= ϕ[dTSL]ρ[dTSL]†, Nr = 1,

in which the summation over dTSL is implicitly implied. Alternatively, exploiting

γ5-Hermiticity (Eq. 3.35),

ψ̂χ̂ = ρ̄[dLTS ]ϕ̄[dLTS ]†. (3.38)
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
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(a) N: Null Dilution, Number of Projectors=1




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 6 0 0

0 0 6 1 0 0
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
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(b) B3: Block Dilution, Number of Projectors=3
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
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(c) I3: Interlace Dilution, Number of Projectors=3
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0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(d) F: Full Dilution, Number of Projectors=6

Figure 3.5: Illustration of Dilution Schemes on a 6-dimensional vector space. The
identity is diluted in different ways. Hollow symbols average to 0. The different
shapes represent three different projectors. It is observed that a lot of the off-diagonal
elements are 0 due to the orthogonality of the projectors once dilution is applied.
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This allows one to compute the ϕ and ρ separately and attach them separately to

different hadron operators before Wick contractions, accomplishing a factorization in

terms of O like the continuum case. This brings back the flexibility of the computa-

tion. However, it is noted that ϕ(or ρ̄) and ρ(or ϕ̄) do not correspond directly to ψ̂

and χ̂. There exists some residual dependence on the kind of N -point function to be

calculated, if the dilution schemes are different for different quark lines. There is also

a freedom of whether γ5-Hermiticity is employed. Moreover, the seeds of different

quarks within the same hadron operator have to be different in order to avoid bias.

Therefore each hadron operator is associated with a collection of combinations of

‘Quarkline Ends’ θ, which are either ϕ, ρ, ρ̄ or ϕ̄, with different dilution schemes Di

and noise seeds ri to accommodate the needs of different diagrams and conventions,

resulting in the forms Φ, Φ̄:

for meson operators , (3.39)

ΦΛ[θA0,D0(r0), θA1,D1(r1)]d0d1(~p, x4)

≡ CΛ
αβ;ue

−i~p·n̂0Γij
u (~p; x4)θ

[d0]A0,D0(r0)
α,i θ

[d1]A1,D1(r1)
β,j ,

Φ̄Λ[θA0,D0(r0), θA1,D1(r1)]d0d1(~p, x4)

≡
(
ΦΛ[ θA0,D0(r0), θA1,D1(r1)]d0d1(~p, x4)

)∗
,

for baryon operators ,

ΦΛ[θA0,D0(r0), θA1,D1(r1), θA2,D2(r2)]d0d1d2(~p, x4)

≡ CΛ
αβδ;uΓ

ijk
u (~p; x4)θ

[d0]A0,D0(r0)
α,i θ

[d1]A1,D1(r1)
β,j θ

[d2]A2,D2(r2)
δ,k ,

Φ̄Λ[θA0,D0(r0), θA1,D1(r1), θA2,D2(r2)]d0d1d2(~p, x4)

≡
(
ΦΛ[θA0,D0(r0), θA1,D1(r1), θA2,D2(r2)]d0d1d2(~p, x4)

)∗
.

In this work, only the quark lines that connect different time-slices and start from the

sink time-slices adopt the γ5-Hermiticity convention. It is natural that the dilution

schemes should be dependent on the type of quark line to be estimated, since the

quark lines starting and ending on the same time-slice (referred to as ‘relative-source-

time’ or ‘same-time’) are typically noisier than those propagating across different

time-slices (referred to as ‘fixed-source-time’). In this work, two different dilution

schemes are applied to these two types of quark lines, namely the ‘Fixed Dilution

Scheme’ (represented by subscripts f) for fixed-source-time quark lines and ‘Relative

50



Dilution Scheme’ (represented by subscripts r) for relative-source-time quark lines.

They are chosen to only differ in time dilution, since that is the only aspect that

the type of quark lines really matters. For the Fixed Dilution Scheme, Full Dilution

in time is preferable because the number of inversions required is proportional to

N
(src)
t , which does not scale with volume significantly. The only effect of using non-

Full dilution is just to introduce slightly more noise, which is not preferred. The

number of source time-slices are taken to be 4 in this work. In contrast, the number

of inversions required for the Relative Dilution Scheme is either a range of time-slices

if the quark line resides on the sink time-slices, or N
(src)
t if it resides on the source

time-slices. Recall that if the inversions were done in an exact manner (Full Dilution),

a lot of extra inversions have to be performed if the quark line resides on the sink

time-slices. Even if the quark lines reside on the source time-slices, N
(src)
t has to

be much higher than that used in the fixed-source-time quark lines due to the fact

that relative-source-time quark lines tend to be noisier. After all, this is one of the

motivations to introduce noises into the calculation, especially into the time domain,

in the first place. Therefore a non-Full Dilution in time is preferred in this type of

quark lines. The number of source time-slices of the correlator is chosen to be the

entire temporal extent Nt, since they are all available anyway after the inversions.

It is more preferable to be an interlaced scheme rather than blocked one in order

to minimize the noise contaminations on consecutive time-slices, since the temporal

behavior of the correlator is the most important information in determination of the

energy levels and it should be as clean as possible. However, it should be noted that

in cases where both types of quark lines exist on the source time-slice in the same

diagram, the dilution scheme is taken to be Full Dilution for both, since there are

only N
(src)
t source time-slices available for that diagram and there is no benefit of

using non-Full Dilution Scheme, which again only introduces unnecessary noises. For

simplicity, the quark line-ends and the combinations are represented as follows in the
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coming figures.

2(R) ≡ ϕ
(R)
f , b(R) ≡ ρ

(R)
f , (3.40)

4(R) ≡ ϕ̄
(R)
f , d(R) ≡ ρ̄

(R)
f ,

6(R) ≡ ϕ(R)
r , f(R) ≡ ρ(R)

r ,

≡ Φ, ≡ Φ̄,

(R3)
(R2)
(R1)

≡ (R3)
(R2)
(R1)

, (R3)
(R1)
(R2)

, (R1)
(R3)
(R2)

, (R3)
(R2)
(R1)

≡ (R3)
(R2)
(R1)

, (R2)
(R1)
(R3)

, (R1)
(R3)
(R2)

,

(R1)
(R2)
(R3)

, (R2)
(R3)
(R1)

, (R3)
(R1)
(R2)

,

I = 0

,
I = 0

: Isoscalars only, : Sum over Dilution Indices,

Arrow points towards ϕ’s

in which R represents the noise seeds that are labeled from 0 to 4 for Fixed Dilution

Scheme(f) and a to b for Relative Dilution Scheme(r) and other indices are sup-

pressed. The numbers of seeds used are chosen such that they satisfy the minimum

requirement of computing the diagrams of interest.
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For example, the single-hadron correlators at rest are computed by:

for mesons, (3.41)

CΛΛ̄(t) =
〈
−δĀ0Ā1

A0A1
ΦΛ[ϕ̄

A0(r0)
f , ϕ

A1(r1)
f ]d0d1(~0, t1)Φ̄

Λ̄[ρ̄
Ā0(r0)
f , ρ

Ā1(r1)
f ]d0d1(~0, t0)

+ δA1Ā1

A0Ā0
ΦΛ[ϕ̄A0(ra)

r , ϕA1(ra)
r ]d0d0(~0, t1)Φ̄

Λ̄[ρ̄Ā0(rb)
r , ρĀ1(rb)

r ]d1d1(~0, t0)
〉
U,r
,

for baryons,

CΛΛ̄(t) =
〈
ΦΛ[ϕ

A0(r0)
f , ϕ

A1(r1)
f , ϕ

A2(r2)
f ]d0d1d2(~0, t1)·

(
δĀ0Ā1Ā2
A0A1A2

Φ̄Λ̄[ρ
Ā0(r0)
f , ρ

Ā1(r1)
f , ρ

Ā2(r2)
f ]d0d1d2(~0, t0)

+ δĀ1Ā2Ā0
A0A1A2

Φ̄Λ̄[ρ
Ā1(r1)
f , ρ

Ā2(r2)
f , ρ

Ā0(r0)
f ]d1d2d0(~0, t0)

+ δĀ1Ā2Ā0
A0A1A2

Φ̄Λ̄[ρ
Ā2(r2)
f , ρ

Ā0(r0)
f , ρ

Ā1(r1)
f ]d2d0d1(~0, t0)

− δĀ0Ā2Ā1
A0A1A2

Φ̄Λ̄[ρ
Ā0(r0)
f , ρ

Ā2(r2)
f , ρ

Ā1(r1)
f ]d0d2d1(~0, t0)

− δĀ1Ā0Ā2
A0A1A2

Φ̄Λ̄[ρ
Ā1(r1)
f , ρ

Ā0(r0)
f , ρ

Ā2(r2)
f ]d1d0d2(~0, t0)

−δĀ2Ā1Ā0
A0A1A2

Φ̄Λ̄[ρ
Ā2(r2)
f , ρ

Ā1(r1)
f , ρ

Ā0(r0)
f ]d2d1d0(~0, t0)

)〉
U,r
,

in which δCD
AB ≡ δCAδ

D
B and δDEF

ABC ≡ δDA δ
E
Bδ

F
C . The diagrams involved are shown in Fig.

3.6.

Similar to Single-Hadron Operators, Multi-Hadron Operators can be constructed

by combining the Single-Hadron Operators according to the lattice symmetries de-

scribed in Appendix A. In this work, the multi-baryon operators and operators with

more than 2 hadrons are ignored, since the energy states they couple to lie above the

energy range of interest. After Wick contractions, the N -point correlators constructed

from the Multi-Hadron operators under consideration are linear combinations of the

diagrams listed in Fig. 3.7 and Fig. 3.8.

The most economical way to compute the hadron operators above is to determine

the minimal set of Φ’s required for the diagrams of interest with only 1 noise combi-

nation. Then, if more statistics are required, the number of noise combinations can

be increased by permuting them. This leads to the need of a survey of what kind of

combinations are needed in the entire intended simulation. Summarizing the previous

discussion, all types of diagrams under consideration are those shown in Fig. 3.6 to

Fig. 3.8. According to them, one can construct a minimal set of Φ’s required. Since

in the pruning of hadron operators, the list of hadron operators used in diagrams
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Figure 3.6: Diagrams needed in Single-Hadron Correlators

6

f(b)

(b)
I = 0

d

b

2

4

(1)
(0)

(1)
(0)

t1 t0

d

b

(b)
(b)

I = 06
f

2

4

(1)

(0)

(1)
(0)

t1 t0

f

6

4

2

b

d

(1)

(a)

(0)

(a)

(1)

(0)
I = 0

t1 t0

4

2

f

6

b

d

(a)

(1)

(a)

(0)

(1)

(0)

I = 0

t1 t0

d

b

2

b

2

4

(1)

(3)

(3)

(0)

(1)
(0)

t1 t0

2

b

d

b

2

4

(3)

(1)

(0)

(3)

(1)
(0)

t1 t0

4

6

f

2

b

d

(1)

(a)

(a)

(2)

(1)
(2)

t1 t0

f

2

4

6

b

d

(a)

(1)

(2)

(a)

(1)
(2)

t1 t0

6

f

6

f

6

f

(b)

(b)

(b)

(b)

(a)

(a)

I = 0

I = 0

I = 0

t1 t0

6

f

6

f

6

f

(a)

(b)

(b)

(a)

(a)

(a)
I = 0

t1 t0

f

6

f

6

f

6

(a)

(a)

(a)

(a)

(b)

(b)

I = 0

I = 0

I = 0

t1 t0

f

6

f

6

f

6

(a)

(b)

(b)

(a)

(b)

(b)
I = 0

t1 t0

6

f(b)

(b)
I = 0

b

b

b2

2

2

(4)
(3)
(2)(4)

(3)
(2)

t1 t0

2

b(4)

(1)

b

b

b2

2

2

(3)
(2)
(1)(4)

(3)
(2)

t1 t0

f

6(a)

(a)
I = 0

b

b

b

2

2

2 (4)
(3)
(2)

(4)
(3)
(2)

t1 t0

f

2(1)

(a)

b

b

b

2

2

6 (4)
(2)
(1)

(4)
(2)
(a)

t1 t0

Figure 3.7: Diagrams needed in Single-Hadron-Two-Hadron Correlators

involving multi-hadron operators is different from that for diagrams which do not

contain multi-hadron operators, it is useful to keep track of what kind of diagrams

the combinations come from in order not to compute extra operators. The results are

shown in Table 3.1 and Table 3.2.
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Figure 3.8: Diagrams needed in Two-Hadron-Two-Hadron Correlators
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Table 3.1: The Minimal Set of Quarkline End Combinations of Mesons. The com-

binations required by diagrams consisting multi-hadron operators are marked as ‘M’

and those that are required by diagrams consisting of single-hadron operators only

are marked as ‘S’.

# of Time-slices Quarkline Ends

N
(snk)
t Φ[ϕ̄f , ϕf ]

S,M:
2

4
(1)
(0)

,
2

4
(3)
(2)

Φ[ϕ̄f , ϕr]

M:
6

4
(a)
(2)

Φ[ρr, ϕf ]

M:

f

2(1)
(a)

N
(src)
t Φ̄[ρ̄f , ρf ]

S,M:
b

d
(1)
(0)

,
b

d
(3)
(2)

,
b

d
(1)
(2)

,
b

d
(2)
(0)

,
b

d
(3)
(0)

,
b

d
(4)
(0)

Φ̄[ϕf , ρf ]

M:

2

b(1)
(3)

,

2

b(4)
(3)

,

2

b(2)
(1)

,

2

b(3)
(1)

,

2

b(4)
(1)

,

2

b(2)
(3)

Nt Φ[ρr, ϕr]

M:
6

f
(a)
(b)

,
6

f
(b)
(a)

S,M:
6

f

(a)

(a)
I = 0

Φ̄[ϕr, ρr]

M:
f

6
(a)
(b)

,
f

6
(b)
(a)

S,M:
f

6

(b)

(b)
I = 0
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Table 3.2: The Minimal Set of Quarkline End Combinations of Baryons. The com-

binations required by diagrams consisting multi-hadron operators are marked as ‘M’

and those that are required by diagrams consisting of single-hadron operators only

are marked as ‘S’.

# of Time-slices Quarkline Ends

N
(snk)
t Φ[ϕf , ϕf , ϕf ]

S,M: 2

2

2(2)
(3)
(4)

Φ[ϕf , ϕf , ϕr]

M: 6

2

2(2)
(4)
(a)

Φ[ϕf , ϕr, ϕf ]

M: 2

6

2(2)
(a)
(4)

Φ[ϕr, ϕf , ϕf ]

M: 2

2

6(a)
(2)
(4)

N
(src)
t Φ̄[ρf , ρf , ρf ]

S,M: b
b

b

(4)
(3)
(2)

, b
b

b

(2)
(3)
(1)

b

b

b

(2)
(4)
(1)

, b
b

b

(4)
(3)
(1)

3.5 Implementation and Data Structure

The software in this work is written in C++ and links to the USQCD CHROMA

suite based on QDP++ library [54]. Some parts of the computations must be done

using the full four-dimensional lattice, but other parts are best handled time-slice by

time-slice in three dimensions. QDP++ does not handle both three and four dimen-

sional lattices simultaneously, so the different parts of the computations were done in

separate runs using both 3D and 4D versions of the software. Special input/output

routines were written to enable 4D QDP++ to read and write 3D time-slices of the

lattice.

The computations are carried out as a sequence of tasks for each gauge configura-
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tion in the Monte Carlo ensemble. The following quantities are generated and stored

in disk in sequence:

• Smeared Gauge Field Ũ

The spatial links of the gauge configuration are smeared using the stout-link

procedure. This task is done using a four-dimensional version of our software,

but the smeared spatial links are written to disk as individual time-slices suitable

for input into the three-dimensional version of our software.

• LapH Eigenvectors V i
S

The computation of the Laplacian eigenvectors is done time-slice by time-slice

in three dimensions. They are evaluated using a Krylov-Spectral Restarted

Lanczos (KSRL) method which is a modification of the thick restarted Lanc-

zos method described in Ref. [55]. Let A denote a Hermitian matrix whose

lowest-lying or highest-lying eigenvectors are sought. Given a starting vector u,

the KSRL method begins by constructing a Krylov space spanned by vectors

u,Au,A2u, . . . , Amu. The submatrix of A defined in this basis is then diagonal-

ized, and the eigenvalues and eigenvectors of this submatrix, known as the Ritz

values and Ritz vectors, are approximations to those of the full matrix A. Con-

vergence to the exact eigenpairs occurs as the Krylov space dimension increases,

but a better procedure is to stop the growth of the Krylov space at some point,

typically just above the number of desired eigenpairs, and restart the procedure

using a different starting vector or vectors. The use of a certain number of Ritz

vectors to restart the procedure is known as Krylov-Spectral restarting. Key is-

sues in the method are determining how many Ritz vectors to use in restarting,

determining the size of the Krylov space to use, and maintaining orthogonality

of the Lanczos vectors in finite-precision mathematics.

In this work, either a random vector or the vector whose components are all

equal for the starting vector is used. Full global reorthogonalization is used at

all steps. The decision to reorthogonalize multiple times is based on a simple

criterion [56]: if the norm of the vector decreases by 1/κ, where κ =
√
2, then

further reorthgonalization is done. A maximum of four reorthogonalizations is

enforced. Equation 5 in Ref. [57] is used to choose the number of Ritz vectors

to keep, except that the number must be at least as large as the number of

converged vectors and cannot exceed the dimension of the Krylov space minus
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the number of converged and locked vectors minus twelve. For an approximate

eigenvector x (with unit norm) and an estimate λ of its corresponding eigen-

value, the residual norm is defined by r = ||Ax−λx||. An eigenpair is considered

converged when r < tol||A||, where tol is the desired tolerance and the matrix

2-norm is defined by ||A|| = maxx 6=0 ||Ax||/||x||, and can be estimated by the

largest absolute value of any Ritz value encountered in the computation.

In calculating the eigenvectors of ∆̃, Chebyshev acceleration is used. The eigen-

values of −∆̃ are all real and lie between 0 and some maximum value denoted

by λL. The goal here is to determine the eigenvectors corresponding to the

lowest-lying eigenvalues lying between 0 and some cutoff λC . The rate of con-

vergence to solution increases with the spacing between the levels. Convergence

is much faster for widely spaced levels. Hence, convergence can be accelerated

by transforming the spectrum so that the desired part of the spectrum is more

widely spaced. The following transformation is applied first:

B = 1 +
2

(λL − λC)
(
∆̃ + λC

)
. (3.42)

The above transformation maps the unwanted spectrum to the range −1 · · · 1,
and the desired part lies above 1. Chebyshev polynomials are then applied:

A = Tn(B). (3.43)

Eigenvalues lying between −1 and 1 stay between −1 · · · 1, and the desired

eigenvalues above 1 get spaced out to large and widely-separated values above

1. The lowest-lying eigenvalue of −∆̃ becomes the highest-lying eigenvalue of

A. Transforming the desired levels to the region above 1 is most convenient

since it allows the use of Chebyshev polynomials of any order, both even and

odd. The Chebyshev polynomials are applied using the following recurrence

relation:

T0(x) = 1, T1(x) = x, (3.44)

Tn(x) = 2x Tn−1(x)− Tn−2(x).

For calculations done on {243; 840} and {243; 860} ensembles, the lowest-lying
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Nv = 112 eigenvectors are needed on each time-slice. A Krylov space dimension

of 160 was found to work well, and λL = 15 and λC = 0.5 were appropriate.

Chebyshev polynomials of order 8 were used, and the residual tolerance was set

to 10−9. Convergence of all Nv levels occurred within a dozen or less restarts.

The LapH eigenvectors are uniquely determined only to within an overall phase.

Given the way in which ZN noise is injected in the LapH subspace, one sees that

a given quark line is not invariant under a change of the phase multiplying each

eigenvector (due to the off-diagonal pieces not being exactly zero). It turns out

that changing the phase is equivalent to changing the noise by a U(1) phase.

This is not a problem, but erroneous results can occur if the original eigenvector

files used to determine the quark sinks get deleted and the eigenvectors have

to be reconstructed for making the hadrons. With different run parameters,

the eigensolver could produce a different phase. The introduction of a phase

convention eliminates this potential problem.

The eigenvectors for the different time-slices are then reorganized into four-

dimensional eigenvectors corresponding to the different eigenvalues.

• Quark Sinks ϕ

Once the needed eigenvectors of the Laplacian are computed and stored, the

next step is to compute the quark sinks. The inversions of the Dirac matrix

must be done using the full four-dimensional lattice, but the results are written

to disk once again as three-dimensional time-slices. Solving Ωφ = VSρ
[dTSL]

(diluted version of Eq. 3.24) for φ is accomplished using a mixed-precision im-

proved version of the biconjugate gradient method with even-odd precondition-

ing. This was found to be the fastest inverter available in Chroma. Occasionally

convergence is not achieved, and a slower conjugate gradient solver is applied

to the system Ω†Ωφ = Ω†VSρ
[dTSL]. There are only NtNv terms to store for each

noise r and each dilution projector dTSL, so storage of these quark propagation

coefficients is modest. Disk storage is actually dominated by the LapH eigen-

vectors. Another nice feature is the fact that the quark propagation coefficients

are gauge invariant, as long as the eigenvector phases are handled appropriately.

It is observed that the correlator estimates and their variances are insensitive

to the value of N used for the ZN noise, as long as N is not too small. It is

found that N = 4 produced results indistinguishable in quality from those of
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larger N . Hence, we use Z4 noise in this work. The Z4 noise vector for an

ensemble of gauge configurations is identified by a 16-bit unsigned integer s.

To create a noise vector ρ(s) for a gauge configuration labeled by an RHMC

trajectory number k (assumed to have a value ranging from 0 to 216 − 1), a

32-bit unsigned integer m is first formed in a particular manner using the 16

binary digits of s and the 16 bits of k. Although the procedure of forming

m is arbitrary, the same procedure must be used in every instance. The 32-

bit unsigned integer m is then taken as a seed to the 32-bit Mersenne twister

random number generator which is used to create the Z4 noise ρ(s)(t, i, α) for

each LapH eigenvector, labeled by time t and level i, and for each spin index

α. The elements of ρ(s) are generated in a particular order that is always the

same. Each Z4 element is chosen using the sequence of bits obtained from the

current state of the Mersenne twister, taking two bits at a time. It was found

that the linear congruential generator in QDP++/Chroma is not adequate for

generating the Z4 noise and leads to serious errors in some instances.

There is no need to store the quark sources ρ, since they are very cheap to

regenerate. It is noted that ϕ̄ and ρ̄ can be computed from ϕ and ρ via Eq.

3.36 and therefore it is not necessary to store them.

• Hadron Operators Φ

Quark Sinks and Sources are combined into hadron operators Φ using Eq. 3.39

and stored in disk. All hadron operators have definite three-momenta which

involve summations over all spatial sites of the lattice, so the resulting hadron

sources and sinks are no longer lattice-wide quantities.

• Correlators C(t)

The hadron sinks and sources are assembled in an appropriate way to form the

hadron correlation functions. At last the correlation matrices are formed and

physical quantities can be extracted using variational method described in Sec.

2.5.1.

Although in principle it is not necessary to keep all the intermediate data before

correlators, they are stored in case file corruptions or change of parameters occur.
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3.6 Dilution Schemes determined by Small Lattice

Simulations [11]

Sec. 2.4 has described the values of the parameters used in the lattices in this work and

how they are obtained, summarized in Table 2.4. To implement the Stochastic LapH

method, the dilution schemes to be used have to be determined. According to the

previous discussion, it is believed that the dependence of the variance on lattice sizes

is small. This assertion can be tested by studying the two-point correlators of simple

hadron operators on two lattices of different sizes. Such a test on the algorithm using

simple nucleon operators was done in previous works. In this work, it is repeated using

a simple pion operator ūγ5d. Fig. 3.9 shows the relative variance in the correlator

at time separations t = 10at with respect to the gauge limit for different dilution

schemes, characterized by the number of inversions per noise seed per source time,

Ninv, on lattices of sizes 163 × 128 and 203× 128( {163; 840} and {203; 840} of Table
2.4) for various dilution schemes. Increasing the spatial lattice volume for a fixed

eigenvalue cutoff and dilution scheme does lead to some increase in the statistical

error. However, it is observed that the scaling behavior of the variance is mild for

the dilution schemes under consideration and the difference in errors between the two

volumes decreases with higher levels of dilution. It is thus reasonable to expect that

the optimal dilution scheme found in a smaller lattice is very likely to be also the

one for a larger one. Therefore, various interesting diagrams on the smaller lattice

are performed to figure out the dilution schemes to be applied to other more realistic

lattices in the next chapter. Since strange quark lines should behave similar to light

quark lines as far as dilution schemes are concerned, the conclusions obtained here

are assumed to also apply for strange quark lines.

3.6.1 Isovector Simulations

From the simulation of the pions, one can also determine an optimal Fixed Dilution

Scheme to be used in the realistic runs. According to Fig. 3.9, the gauge noise limit

is almost reached(σ/σg = 1.58) at Ninv = 32, corresponding to dilution scheme [TF,

SF, LI8] which is thus chosen to be the Fixed Dilution Scheme. Fig. 3.10 shows the

pion correlator at this scheme. It is observed that there is almost no difference in

variance between this scheme and the full dilution scheme. This conclusion coincides
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Figure 3.9: Comparison between lattices of two volumes 163 × 128(solid symbols)
and 203 × 128(hollow symbols) at various dilution schemes. Nv = 32 for the former
and Nv = 64 for the latter to keep the cutoff eigenvalues the same. It is observed
that the blocked and interlaced dilution schemes with the same Ninv are comparable.
In order to reduce correlations between consecutive dilution indices, an interlaced
dilution scheme is more preferable to blocked ones. Therefore some blocked dilution
schemes are not shown here.
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Figure 3.10: Pion Correlator at the chosen fixed dilution scheme

with the previous tests done with nucleons [10] and therefore the same Fixed Dilution

Scheme is to be used in both mesons and baryons.

It is remarkable that the Ninv required in this scheme is only 8.33% of that in an

exact treatment, in which Ninv = Nv ×ND ×Nc = 32× 4× 3 = 384 is needed. The

computational resources required are therefore dramatically reduced while keeping

the variance comparable to the exact treatment. This reduction would become more

dramatic if the lattice size is increased, in which case Ninv stays the same for the

stochastic estimation due to the insensitivity of suitable dilution scheme to lattice

sizes, while Ninv in the exact treatment scales linearly with lattice sizes.

3.6.2 Isoscalar Simulations

In order to determine an optimal Relative Dilution Scheme, a test on the light quark

contribution of isoscalars is performed. Their 2-point (VEV subtracted) correlators
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Figure 3.11: Diagrams in VEV subtracted Correlators of isoscalars(light quark con-
tribution only). The first row corresponds to the ‘Forward’ Diagram Cfwd(t) and the
second row corresponds to the ‘Same-time’ diagram Csmt(t).

consist of two parts after Wick contractions. Suppressing irrelevant indices,

Ctotal(t) = (ūu+ d̄d)(t1)(ūu+ d̄d)(t0)− VEV (3.45)

= ūu(t1)ūu(t0) + d̄d(t1)d̄d(t0) + ūu(t1)d̄d(t0) + d̄d(t1)ūu(t0)− VEV

∝
〈
−ΦΛ[ϕ̄

l(r0)
f , ϕ

l(r1)
f ]d0d1(~0, t1)Φ̄

Λ̄[ρ̄
l̄(r0)
f , ρ

l̄(r1)
f ]d0d1(~0, t0)

〉
U,r

+
〈
2ΦΛ[ϕ̄l(ra)

r , ϕl(ra)
r ]d0d0(~0, t1)Φ̄

Λ̄[ρ̄l̄(rb)r , ρl̄(rb)r ]d1d1(~0, t0)
〉
U,r

− 2
〈
ΦΛ[ϕ̄l(ra)

r , ϕl(ra)
r ]d0d0(~0, t1)

〉
U,r

〈
Φ̄Λ̄[ρ̄l̄(rb)r , ρl̄(rb)r ]d1d1(~0, t0)

〉
U,r

≡ Cfwd(t) + Csmt(t),

in which the first diagram Cfwd without same-time quark lines is referred to as ‘For-

ward’ diagram and the second (VEV-subtracted) diagram Csmt that only involves

same-time quark lines is referred to as ‘Same-Time’ diagram. Fig. 3.11 shows the

diagrams involved. The first row corresponds to the Cfwd(t) and the second row cor-

responds to Csmt(t). Since the focus of this test is on the same-time quark lines but

not the full correlator, Cfwd(t) is ignored here. The pseudoscalar(PS) and scalar(S)

channels are investigated.

The ground state of the pseudoscalar channel corresponds to the η meson in

experiments. The operator used in this channel is a simple l̄γ5l operator(l is either

u or d), which couples to the light quark portion of η as the lowest energy state.

It is known that the RHMC algorithm suffers from a bias of sampling in topological

sectors, resulting in a finiteness of topological charge [58]. Therefore a VEV is induced
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in this channel, but it is also known to be small and is therefore ignored in this test.

In serious computations, it has to be subtracted.

Fig. 3.12 shows the dilution scheme dependence of the relative variance with

respect to the gauge noise limit in the same-time contribution of the PS correlator

on {123; 743} lattice. It is observed that most dilution schemes under consideration

give acceptable results. Therefore the Relative Dilution Scheme can be any of them.

In order to pin down a dilution scheme that also works for most isoscalar operators,

the noisiest channel, the scalar channel, is computed.

In the scalar channel, a vacuum expectation value(VEV) exists in the correlator as

described in Sec. 2.5.1. It is expected to be the noisiest channel because of the VEV

subtraction that extracts relatively small values from large and fluctuating VEVs.

It is thus believed that an applicable dilution scheme for the isoscalar scalars would

work for most hadrons. The simple operator l̄l is used in this test. This operator

couples to the light quark portion of f0 (also called σ) meson as the lowest energy

state. Fig. 3.14 shows the dilution scheme dependence of the relative variance with

respect to the gauge limit in the same-time contribution of the VEV-subtracted S

correlator on {123; 743} . It is observed that [FI12,SF,LI4] is an acceptable scheme.

Although [TI12,SF,LI4] is good enough on {123; 743} lattice, the temporal size of

larger lattices are not divisible by 12. Moreover, it is expected that the optimal LapH

dilution scheme should be the same for both Fixed and Relative Schemes. After all,

using a higher dilution scheme does more good than harm as long as computational

resources allow. In conclusion, the Relative Dilution Scheme on larger lattices is taken

to be [TI16,SF,LI8] in this work.

Fig. 3.13 and 3.15 show the correlators at [TI16,SF,LI8] compared with the gauge

noise limit. It is found that the variance is not significantly increased, while the cost

of computation is greatly reduced. For both channels, Ninv = 16 × 4 × 8 = 512 for

the stochastic method, which is only 3.125% of Ninv = 128× 4× 32 = 16384 required

by the exact treatment.

3.6.3 Multi-Hadron Simulations

Since one of the main motivations of computing same-time quark lines is to obtain

correlators that consist of multi-hadron operators, it is essential to check if the dilution

schemes chosen are also applicable to correlators with multihadron operators. Here
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Figure 3.12: Isoscalar PS channel at different relative dilution schemes on {123; 743}
ensemble with Nv = 12. It is observed that the variance decreases with the number
of dilution projectors.
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Figure 3.13: Same-time diagram contribution of PS channel Correlator at the chosen
dilution scheme on {163; 840} ensemble, compared with the gauge noise limit (left
plot). There are 52 configurations with separation nsep = 40 trajectories.
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Figure 3.14: Isoscalar S channel at different dilution schemes on {123; 743} ensemble.
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Figure 3.15: Same-time diagram Contribution of S channel Correlator at the chosen
dilution scheme {163; 840} ensemble, compared with the gauge noise limit. There
are 52 configurations with separation nsep = 40 trajectories.
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two useful and interesting cases are considered to demonstrate the quality of the

signals one can obtain from the algorithm using the chosen dilution schemes. The

first case is a ρ meson correlated with two pions and the other case is a 4-point

correlation function of pions.

These two correlators are interesting because the ρ meson decay width and two-

pion scattering phase shifts can be obtained from them. Also, the states extracted

from the diagonalization of the correlator matrix composed of these correlators are

the simplest and lowest-lying ones that take into account the contributions of multi-

hadron operators. It is the first step towards a full hadron spectrum with states that

mix with multi-hadrons.

Since the quark masses of the light quarks are taken to be identical, isospin is

conserved on the lattice. Therefore one can classify two-pion scatterings in terms of

the value of the isospins. The channels that acquire the lowest few energies are the

I = 0, 1, 2 channels. In this work only these channels are considered. Since the energy

is the same for different I3’s within the same I, only one I3 is used for each channel.

The two-pion operators are defined as follows(suppressing the spin and displacement

structure within the pions):

π̄+ ≡ ūd, π̄0 ≡
1√
2
(d̄d− ūu), π̄− ≡ −d̄u, (3.46)

I = 0 :

ŌI=0
ππ ≡ cΛI=0(~p0, ~p1) [π̄+(~p0)π̄−(~p1)− π̄0(~p0)π̄0(~p1) + π̄−(~p0)π̄+(~p1)]

I = 1 :

ŌI=1
ππ ≡ cΛI=1(~p0, ~p1) [π̄+(~p0)π̄0(~p1)− π̄0(~p0)π̄+(~p1)]

I = 2 :

ŌI=2
ππ ≡ cΛI=2(~p0, ~p1) [π̄+(~p0)π̄+(~p1)] ,

in which the multi-hadron operator coefficients cΛI (~p0, ~p1) specify how different mo-

menta are combined to give multi-hadron operators corresponding to the collective

index Λ. In the following tests, these coefficients are taken to be simple S-Waves with

zero relative momenta for I = 0, 2 and P-Wave with minimum back-to-back (on-axis)
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momenta for I = 1, i.e.

cΛI=0(~p0, ~p1) ≡ P 0(1)δ~p0,~0δ~p1,~0 (3.47)

cΛI=1(~p0, ~p1) ≡
1

3

∑

n̂=x̂1,x̂2,x̂3

P 1(p̂0 · n̂)δ~p0,−~p1δ|~p1|,2π/Ns

cΛI=2(~p0, ~p1) ≡ P 0(1)δ~p0,~0δ~p1,~0,

where P l(x) are the Legendre Polynomials.

In order to study two-pion scatterings, the 4-point correlator of pions(or equiva-

lently, 2-point functions of OI
ππ’s) are needed and a lot of diagrams are involved.(Fig.

3.16) These diagrams are classified into three types: without same-time quark lines

(‘Forward’), with both types of quark lines (‘Box’), and with same-time quark lines

only(‘Same-Time’). As far as dilution schemes are concerned, the behavior of the first

type should resemble that of isovectors while the behavior of the third type should

resemble the isoscalars. Therefore the focus of this section is the ‘Box’ diagram. A

more detailed and careful discussion of the full correlator will be discussed in Ch. 4.

Fig. 3.19 shows the contribution of the box diagram in the 4-point correlator of

pions relatively at rest. It is found that σ/σg ≈ 1.08(at t = 10at). It is remarkable

that approximately the gauge noise limit is reached at 15.8% of the cost of exact

inversions. Ninv = (16 + 3)× 4× 8 = 608 is required in the stochastic method while

Ninv = 30× 4× 32 = 3840 (if N
(snk)
t = 30) in the exact treatment.

The diagrams involved in the ρ-ππ system are shown in Fig. 3.17. In this test, a

ρk meson is represented by a simple operator −d̄γku, in which k = 1, 2, 3 is the spatial

direction. Due to the spatial isotropy of the lattice, the behaviors of all these three

directions should be the same. In serious runs, the correlators should be averaged

over these directions to boost statistics. However, since they are the same, it suffices

to compute one of them in this test. The ρ3 meson is chosen here.

Fig. 3.18 shows the correlator of a ρ3 meson at t0 correlated with a P-Wave I = 1

combination of two pions at t1. Since different rows of an ireducible representation are

orthogonal to one another, only the n̂ = x̂3 term in the P-Wave actually contributes.

It is observed that the variance is significantly larger than the gauge noise limit, but

still moderate. The ratio σ/σg ≈ 3.98(at t = 10at) is still small compared with the

cost reduction of 85% from Ninv = 30×4×32 = 3840(say N
(snk)
t = 30 sink time-slices

are needed) to Ninv = (16 + 2)× 4× 8 = 576.
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Figure 3.16: Diagrams in 4-point (VEV subtracted) correlators of pions in I = 0, 1, 2
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Strictly speaking, the comparison of computational resources above is not com-

pletely fair, since if same-time inversions on ∼ 30 time-slices were available in the

exact method, the number of t0’s would have gone from 4 to 30 in order to fully

utilize the available data without extra inversions. σ(and hence σg) would then de-

crease by a factor of approximately (4/30)1/2 = 36.5%, although the true factor would

be slightly less than that due to the autocorrelation between time-slices within each

configuration. This means one could have achieved a smaller absolute variance if

the exact method could be employed. However, the same boost in statistics can be

performed in the stochastic method as well, by increasing the number of t0’s from 4

to 30 in the same way. Even if such boost is performed in the stochastic method,

the number of inversions required only increases by a factor of 30/4 ≈ 7.5. Since

permutation of noise seeds can be employed to fully utilize the inversions so that

some number of t0’s can be omitted (assuming the effect of 1 permutation is close

to increasing t0 by 1), this factor can be reduced by 2 in the ρ-ππ system and 4 in

the two-pion ‘Box’ diagram. It is expected that after these boosts and improvements,

the variance is again close to the new gauge noise limit because they share the same

new reduced σg(36.5% of the original one). In this ‘fair’ comparison, the number of

inversions required by the stochastic method is still much smaller than that in the

exact method by 100%− 15%× 7.5/2 = 43.75% and 100%− 15.8%× 7.5/4 = 70.4%

in these two cases respectively. More importantly, it is actually impractical to employ

the exact method in larger lattices due to the limitation of computational resources.

On those larger lattices, the stochastic estimation is the only plausible way to carry

out such calculations.
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Chapter 4

First Applications

on Realistic Lattices [10]

Equipped with the optimal dilution schemes that are shown to work in small lattices,

one can apply them to more realistic lattices. To prepare for the coming studies,

some basic calculations are done on lattices with size 243 × 128, bare strange quark

mass parameter ms = −0.0743, and bare light quark mass parameters ml = −0.0840
and ml = −0.0860, i.e. {243; 840} and {243; 860} in Table 2.4. These include

scale determinations, simulations of simple hadrons and a revisit of isoscalars and

multi-hadron systems.

4.1 Scale Determination

As described in Sec. 2.4, one needs to determine the lattice sizes on the lattice

in order to make claims about physical quantities in physical units. This is done

by investigating the mass of Ω. Thus this particle is computed to set such scale.

Fig. 4.1 shows the results of ensembles {243; 840} and {243; 860} . There are 551

configurations in {243; 840} ensemble and 584 configurations in {243; 860} ensemble.

Consecutive configurations are separated by nsep = 20 RHMC trajectories. Four

widely-separated t0’s are used on each configuration. The first column shows the

correlators C(t), the second column shows the corresponding effective masses meff

and the third one shows the tmin plots. The blue lines and points are the chosen

range of fit. The experimental mass of Ω is found to be mexp
Ω = 1.67245(29) GeV. By

equating mΩ = mexp
Ω , it is found that a−1t = 5.661(17) GeV and a−1t = 6.015(17) GeV
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Figure 4.1: Ω Simulation on {243; 840} and {243; 860} ensembles. There are 551
configurations in {243; 840} ensemble and 584 configurations in {243; 860} ensemble.
Consecutive configurations are separated by nsep = 20 RHMC trajectories. Four
widely-separated t0’s are used on each configuration. ∆t = 3at in the meff plots.

for {243; 840} and {243; 860} respectively. According to Sec. 2.2, the anisotropy

parameter ξ ≈ 3.5. Therefore, using 1 GeV−1~c = 0.197fm, as ≈ 0.12fm and as ≈
0.11fm correspondingly.

4.2 Pions and Nucleons

The simplest hadrons that can be obtained are the pions and nucleons. As the

first step towards more complicated operators, the 2-point correlators of them are

computed to study the quality of the best signals.

Figs. 4.2 and 4.3 show the results of nucleons and pions respectively. The correla-

tors give accurate signals and the tmin plots show stable plateaus. Using the a−1t found

in previous section, it is found that mN = 1.1781(58) GeV and mπ = 0.3911(14) GeV
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on {243; 840} ensemble and mN = 1.048(14) GeV and mπ = 0.2439(20) GeV on

{243; 860} ensemble.

The {243; 840} ensemble was examined in previous works [15,17] using the exact

treatment of inversions. The masses of Ω, π and N obtained in this work not only

resembles the results in those works, but also maintains a comparable variance. It is

remarkable that the computational resources used in this work is only a tiny fraction

of the latter. This again verifies that the stochastic estimation is an important trick

in making the calculation much more efficient.

Fig. 4.4 shows the nucleon and Ω masses against (mπ/mΩ)
2 together with results

from previous works. It is encouraging that fitting the three leftmost Ω points to a

form linear in (mπ/mΩ)
2 and fitting the three leftmost nucleon points to an empirical

form linear in mπ/mΩ yields mN/mΩ ≈ 0.556 at the physical value of mπ/mΩ, which

compares well with the observed 0.561 value.

4.3 Isoscalars

In this section, the full correlators of simple isoscalars are calculated to demonstrate

that good signals can be obtained on realistic lattices. Again, the goal here is only

to test the feasibility of the algorithm. Only the simple single-site operators used on

{163; 840} are used and strange quark contributions are ignored. Therefore the masses

from the fits here are only preliminary values and do not necessarily correspond to

the ground state of the specified channels.

Pseudoscalar (PS) Channel

Fig. 4.5 shows the results of the pseudoscalar channel. The operator used here is

l̄(1− γ4)γ5l, which couples to the light quark portion of η as the lowest energy state.

As mentioned before, it is known that the topological sectors may not be properly

sampled in Monte Carlo simulations. This gives rise to a finite VEV in this channel

but it vanishes with increasing lattice sizes [59, 60]. This VEV is found to be small

so is ignored in this test. However, in serious computations, it has to be taken into

account to get an accurate estimation.

The ‘Forward’(‘fwd’) diagram Cfwd(t) corresponds to the isovector counterpart,

i.e. pions. Since the mass of pion has already been estimated with higher statistics in

last section, it is not estimated again here. The mass of (light-quark-only) η is found
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Figure 4.2: Nucleon on {243; 840} and {243; 860} ensembles. There are 551 con-
figurations in {243; 840} ensemble and 584 configurations in {243; 860} ensemble.
Consecutive configurations are separated by nsep = 20 RHMC trajectories. Four
widely-separated t0’s are used on each configuration. ∆t = 3at in the meff plots.
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Figure 4.3: π on {243; 840} and {243; 860} ensembles. There are 551 configurations
in {243; 840} ensemble and 584 configurations in {243; 860} ensemble. Consecutive
configurations are separated by nsep = 20 RHMC trajectories. Four widely-separated
t0’s are used on each configuration. ∆t = 3at in the meff plots.
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Figure 4.5: PS channel on {243; 840} and {243; 860} ensembles. There are 210 con-
figurations for {243; 840} ensemble and 198 configurations for {243; 860} ensemble,
both with nsep = 40 trajectories. ‘fwd’ represents the Forward diagram and ‘smt’
represents the Same-Time diagram. ∆t = 3at in the meff plots.

to be mη = 777(42) MeV and mη = 576(59) MeV on {243; 840} and {243; 860}
ensembles respectively. Although the operators used here do not contain the strange

quark field, the fact that the value on {243; 860} is consistent with the experimental

value of mexp
η = 547.853(24) MeV is encouraging.

Scalar (S) Channel

Fig. 4.6 shows the result of the scalar channel. The operator used is a single hadron

operator l̄l, which is experimentally known as f0 (or σ). However, it is believed

that the lowest-lying level is mixed with an I = 0 channel S-wave two-pion state in

experiments. The lattices under consideration are large enough to allow such mixing

to occur. This means a single-hadron operator can only poorly couple to the ground

state, resulting in a noisy signal with heavy contamination from first excited state

even at large time separation as seen in the figure. Since this test is not intended to
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Figure 4.6: S channel on {243; 840} and {243; 860} ensembles (VEV-subtracted).
There are 135 configurations for {243; 840} ensemble and 198 configurations for
{243; 860} ensemble, both with nsep = 40 trajectories. ‘fwd’ represents the Forward
diagram and ‘smt’ represents the Same-Time diagram. ∆t = 3at in the meff plots.

extract an accurate ground energy level, the energy is not fitted here.

However, it is remarkable that the correlator is obtained after a large VEV sub-

traction but still gives a signal which is acceptably quiet. The Forward(‘fwd’) diagram

Cfwd(t) again corresponds to the isovector counterpart, i.e. a0 meson. The masses

are found to be ma0 = 1.211(32) GeV and ma0 = 1.214(31) GeV on {243; 840} and
{243; 860} ensembles respectively. Experimentally, mexp

a0
= 980(20) MeV.

Vector (V) Channel

Fig. 4.7 shows the result of the vector channel. Experimentally the isovector (ρ)

and isoscalar (ω) vector mesons have very close masses(mexp
ρ = 775.49(34) MeV and

mω = 782.65(12) MeV). On the lattice they also show a similar feature. The Same-

time diagram contribution Csmt(t) is found to be very insignificant. The masses are
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Figure 4.7: V channel on {243; 840} and {243; 860} ensembles. There are 210 con-
figurations for {243; 840} ensemble and 198 configurations for {243; 860} ensemble,
both with nsep = 40 trajectories. ‘fwd’ represents the Forward diagram and ‘smt’
represents the Same-Time diagram. ∆t = 3at in the meff plots.

found to be mρ = 902(5) MeV and mω = 908(8) MeV on the {243; 840} ensemble,

while mρ = 820(13) MeV and mω = 863(21) MeV on the {243; 860} ensemble.

4.4 Multi-hadrons

As previously discussed, the correlators of ρ-ππ system and two-pion scattering can

be used as a test for multi-hadron computations. This is a preliminary examination

of them on the realistic lattices. The fitting form of the correlator is different from

cosh because of the interaction between a wrap-around pion and an original pion. If

the pion operator is symmetric under time reversal, the correlator is in the form of

a0 cosh(Efitt−Nt/2) + a1 (4.1)
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Figure 4.8: I = 0 channel two-pion scattering on {243; 840} and {243; 860} ensem-
bles. There are 551 and 584 configurations with separation nsep = 20 trajectories
respectively.

with fitted energy Efit and fitting parameters a0 and a1. However, the pion operators

used in this section are not symmetric under time reversal, therefore the correct fit

form is

a0 exp(−Efitt) + a1 exp(−Efit(Nt − t)) + a2. (4.2)

Since the wrap-around effect is not very significant and the main goal of this section

is not to precisely calculate the energy shifts, the a1 term is omitted. In the case of

I = 0, it is found that a2 term is also consistent with 0, and thus omitted.

4.4.1 I = 0 Channel

Fig. 4.8 shows the (VEV subtracted) correlators of the I = 0 channel two-pion

scattering. It is found that Cfwd(t) dominates the correlator, but the other diagrams

also contribute significantly. The energy is found to be lower than the total of free

non-interacting pions in Fig. 4.9, i.e. attractive. This matches the prediction from

chiral perturbation theory [61].
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Figure 4.10: ππ → ππ I = 1 channel two-pion scattering on {243; 840} and {243; 860}
ensembles. There are 551 and 584 configurations with separation nsep = 20 trajecto-
ries respectively.

4.4.2 I = 1 Channel

Fig. 4.10 shows the results of I = 1 two-pion scattering channel averaged over the

three n̂’s in Eq. 3.47. Since it is expected that ρ meson is a lower-lying energy level,

it has to be included in order to extract the ground energy level. Since the test is not

to extract the energy, a fit of the energy of the two-pion scattering is not performed.

In order to mix ρ with the two-pion operators, the off-diagonal elements of the

correlator matrix are necessary. Fig. 4.11 shows the quality of the corresponding

signals obtained. It is observed that there is significant mixing between the ρ and

ππ operators. After diagonalization on {243; 860} ensemble, two clean levels can be

obtained(Fig. 4.12). The ground level is ρ dominated and the first excited state is

ππ dominated. It should be noted that the errors in both levels are smaller than the

energy levels determined by ρ operator alone or two-pion operator alone. This shows

the importance of having more than one operators to extract the energy levels. In a

more serious calculation, more operators of both types have to be included to give an

acceptably good signal.
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Figure 4.11: ρ-ππ Correlators on {243; 840} and {243; 860} ensembles. There are
551 and 584 configurations with separation nsep = 20 trajectories respectively. The
correlators are averaged over all three directions.
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Figure 4.12: Diagonalized I = 1 channel on {243; 860} ensembles. There are 551 and
584 configurations with separation nsep = 20 trajectories respectively.
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Figure 4.13: I = 2 channel two-pion scattering on {243; 840} and {243; 860} en-
sembles. There are 551 and 584 configurations with separation nsep = 20 trajectories
respectively.

4.4.3 I = 2 Channel

Fig. 4.13 shows the result of I = 2 channel two-pion scattering. The energy tends

to be higher than the total of free non-interacting pions in Fig. 4.14, i.e. repulsive.

This matches the prediction from chiral perturbation theory [61]. However, if an

accurate energy shift is to be determined, the variance is clearly not small enough.

This indicates that better operators have to be employed to achieve this goal.

4.5 Conclusion

In this section, the results of some first applications of the Stochastic LapH algorithm

were presented. These include the simulation of simple hadrons, isoscalars and multi-

hadron systems. Energies are extracted from the corresponding correlators and the

accuracy is remarkably high compared with previous works. The results obtained are

very promising and demonstrate the fact that the algorithm has allowed a manageable

and feasible way of computing all diagrams one needs for extracting the spectrum.
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Chapter 5

Summary and Outlook

Monte Carlo path integration with spacetime (lattice) discretization provides a pow-

erful approach of obtaining non-perturbative predictions from QCD, the theory that

successfully describes the strong interactions among quarks and gluons. Our long-

term goal is to obtain the lowest-lying stationary-state energy levels of QCD in all

symmetry channels. Since most of the excited states are above multi-hadron thresh-

olds, multi-hadron operators have to be included to properly capture these states.

The main problem of computing multi-hadron correlators is the inclusion of same-

time quark lines which begin and end in the same sink time-slice. The evaluation of

such correlator functions is exceedingly difficult with standard point-to-all methods,

especially in lattices with large spatial volumes and light pion masses.

The Stochastic LapH algorithm was developed to facilitate computing excited

state and multi-hadron correlations in lattice QCD. Its development began in Ref. [62]

and additional needed features, mainly the crucial time dilution, were introduced in

this work. It provides a very efficient way of computing quark propagators, especially

the same-time quark lines. It makes use of Laplacian-Heaviside quark-field smearing

and solves the large volume problems by introducing dilution-improved stochastic

techniques. The LapH smearing suppresses the contamination from unwanted high-

lying modes, while the stochastic approach makes use of the fact that exact inversions

are unnecessary due to the dominance of intrinsic noise coming from the link variables.

The dilution technique greatly reduces the variance introduced by putting in stochas-

tic noise. We managed to find a dilution scheme that produces a variance near that of

the gauge noise limit. Dilution in the LapH subspace tames the linear spatial-volume

scaling behavior, while dilution in time allows computation of same-time quark lines
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for many values of time without sacrificing accuracy. Two extra bonuses were ob-

tained from this algorithm. The algorithm provides the scalar glueball operator for

free. Also, it restores factorization of source and sink hadron operators in the corre-

lators. This provides the flexibility and convenience in the computation of correlator

matrices that involve many different hadron operators.

The Stochastic LapH algorithm was shown to work well in both small and large

lattices, at both light and heavy pion masses. Suitable dilution schemes were found by

looking at the correlators of η, ρ-ππ and two-pion systems (box diagram contribution)

on the {163; 840} ensemble. A new glueball operator was also computed to show that

it is comparable to traditional smeared plaquette operators. The algorithm was then

applied to larger lattices {243; 840} and {243; 860}. The correlators of the lightest

meson π and lightest baryon N were computed and the corresponding ground state

energies were extracted. The energy of the Ω baryon was also extracted in order to

set the scale of the lattice spacing. The correlators of isoscalar mesons, which consist

of same-time diagrams, were computed. The pseudoscalar, scalar and vector channels

were studied. The correlators of the two-pion system in I = 0, 2 channels were also

computed. The I = 1 channel was studied together with ρ-ππ system. Energies were

extracted from the above correlators with good accuracy.

Our results to date are very encouraging and suggest that accurate extractions of

excited-state hadrons taking multi-hadron into full account will be possible. In the

future, more operators and better operators will be included to further improve the

results. The algorithm also provides a convenient tool for other related studies such

as the determination of phase shifts in multi-hadron scatterings and decay widths of

unstable hadrons.

In the near future, intensive studies will be carried out on the {243; 860} and

{323; 860} ensembles. These include the determination of the spectra of all channels

and analysis based on them. The phase shift of two-pion scattering and decay widths

of ρ will also be investigated. The method is very general and will eventually be used

for 3-point correlators and structure functions.
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Appendix A

Construction of

Hadron Operators [10, 12]

As mentioned in Ch. 3, it is very important to use well-constructed hadron operators

in order to extract the hadron spectra. The hadron operators used in this work are

constructed by considering the representations that obey the symmetries on a lattice,

including spatial rotations, reflections, isospins and charge conjugation(G-parity) for

mesons. [10, 12] Besides, one needs to consider the symmetries associated with the

momentum the hadron acquires. Given a momentum p, the transformations that leave

it unchanged define the little groups of p. The gauge-invariant hadron operators that

transform according to the rows of the irreps of the combinations of the little groups

with the groups corresponding to the other lattice symmetries are the operators used

in this work.

For each irrep, there are infinitely many ways to construct the corresponding

operators using the building blocks described in the main text. For simplicity, only

several types of operators are used in this work and the displacement lengths are fixed

to be 3. They are classified in terms of the displacements in the constituent quarks and

defined in Tables A.1 and A.2. Each operator constructed in this way was labeled

by this “spatial type” and an “ID” number. di = 0,±1,±2,±3 correspond to no

displacement and displaced in ±x-(±y-, ±z-) directions. For mesons, d0 corresponds

to the displacement direction of the anti-quark, while d1 and d2 correspond to the

directions of the displacements of the quark. For baryons, di corresponds to the

displacement direction of quark i.
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Visualization Name(Abbreviation) d1 d2 d3
Single-Site(SS) 0 0 0

Singly-Displaced(SD) 0 0 k

Doubly-Displaced-L(DDL) i 0 k

Triply-Displaced-U(TDU) i j i

Triply-Displaced-O(TDO) i j k

Table A.1: Spatial Types of Meson Operators (|i| 6= |j| 6= |k|) For mesons with
momenta, the spatial type SD is split into Longitudinal-Singly-Displaced(LSD) and
Transverse-Singly-Displaced(TSD). The former have momenta parallel with the dis-
placement, while the latter are the rest.

Visualization Name(Abbreviation) d1 d2 d3
Single-Site(SS) 0 0 0

Singly-Displaced(SD) 0 0 k

Doubly-Displaced-I(DDI) 0 k k

Doubly-Displaced-L(DDL) i 0 k

Triply-Displaced-T(TDT) i j −i

Triply-Displaced-O(TDO) i j k

Table A.2: Spatial Types of Baryon Operators(|i| 6= |j| 6= |k|) For baryons with
momenta, the spatial type SD is split into Longitudinal-Singly-Displaced(LSD) and
Transverse-Singly-Displaced(TSD). The former have momenta parallel with the dis-
placement, while the latter are the rest.
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Appendix B

Hadron Operator Selection

Although only several spatial types of operators are considered in this work, one can

still construct a lot of possible operators. However, not all constructed operators are

independent from one another. Moreover, not all operators are intrinsically quiet.

It is a waste of resources to compute dependent or noisy operators. Therefore it is

impractical, and also not necessary, to take all possible operators into account as long

as the lowest lying energy levels in the spectra are concerned. This results in the need

of constructing an optimal set of operators, or ‘pruning’.

The objective of the pruning is to construct two sets of operators for each channel

of each sector. The first one is used for the computation of the basic spectrum that

comes from single-hadron operators. Since all rows of each irrep give statistically

identical mass, only one row of each irrep is used. The second set is used to construct

the multi-hadron operators to be mixed with the single-hadron ones. All rows of each

irrep are used in this set. The single-hadron set is obtained before the multi-hadron

one. The following sections describe the details of this process. All simulations

mentioned are done in {163; 840} and {203; 840} ensembles in 2.4.

B.1 Operator Sets for Single-Hadron computations

The optimal set of operators to be used must satisfy the following conditions:

• The operators have to be as independent as possible. This is reflected in the

condition number of the correlator matrix formed. The closer to 1 this quantity

is, the more independent the operators are.

94



• The intrinsic noise in the operators have to be small in order to obtain a clear

signal.

The actual procedures of the pruning process in each channel of each sector can

be summarized as follows.

For Mesons, the procedures are straightforward:

1. Compute the correlator matrix with all available operators for all spatial types.

2. Construct the largest set of operators with acceptably small variances. This can

be determined from the effective masses obtained from individual operators.

3. Construct the largest subset of operators from the previous one, keeping a good

condition number.

The results are shown in Tables B.4 to B.5.

For Baryons, there are too many operators to be considered all together at the

same time. Therefore the procedure is slightly more complicated:

1. Compute the correlator matrix with all available operators for each spatial type.

2. Construct the largest set of operators with acceptably small variances for each

spatial type.

3. Construct the largest set of operators from the previous pre-pruned one, keeping

a good condition number.

The results are shown in Tables B.6 to B.10.

B.2 Operator Sets for Multi-Hadron computations

After the pruning of operators used for single-hadron computations, one can con-

struct the basic spectrum by diagonalizing the correlator matrices and fit the effec-

tive masses. By subduction of Oh into the little groups(Tables B.1 to B.3 ), one can

estimate how energy levels will emerge from the Oh channels when momenta are in-

troduced into those states. Therefore one is only interested in the energy levels below

a certain energy Emax(in this work, Emax ≈ 2.5GeV is chosen), one can estimate how

many energy levels will be relevant in each channel using the naive spectra obtained

95



Λ(Oh) Λ(Oh) ↓ C2v

A1g A1

A1u A2

A2g B2

A2u B1

Eg A1 ⊕B2

Eu A2 ⊕B1

T1g A2 ⊕ B1 ⊕B2

T1u A1 ⊕ B1 ⊕B2

T2g A1 ⊕ A2 ⊕ B1

T2u A1 ⊕ A2 ⊕ B2

G1g/u G
G1g/u G
Hg/u 2G

Table B.1: Subduction of C2v

from the single-hadron operators. Note that the maximum interested energy here

refers to the total energy that ends up in the spectra. Therefore, to construct the

operator sets used for multi-hadron computations, the energy cutoff for a hadron

operator with momentum ~p has to be Emax subtracted by the lightest hadron with

opposite momentum, i.e. π with momentum −~p. Therefore the operator sets for

multi-hadron computations only need to have a size large enough for extracting the

amount of energy levels below such energy.

Another complication comes into play for these operator sets. Baryon operators

are significantly more costly to be displaced than mesons. Since there are a lot of rows

and directions of momenta to be computed, the difference between the computation

costs of displaced operators and those of Single-Site(SS) ones is huge. Therefore

SS operators are much more preferred for these sets of baryons. To compensate for

the possible adverse effect of this bias in choices, many(if not all) SS operators are

generated as long as the numbers of independent operators are at least the required

ones.

To conclude, there are two additional conditions for these operator sets to satisfy:

• The size has to be at least the number of required levels deduced by subduction

so that the desired levels can be obtained after diagonalization of the correlator

matrix.
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Λ(Oh) Λ(Oh) ↓ C3v

A1g A1

A1u A2

A2g A2

A2u A1

Eg E
Eu E
T1g A2 ⊕ E
T1u A1 ⊕ E
T2g A1 ⊕ E
T2u A2 ⊕ E
G1g/u G
G1g/u G
Hg/u F1 ⊕ F2 ⊕G

Table B.2: Subduction of C3v

Λ(Oh) Λ(Oh) ↓ C4v

A1g A1

A1u A2

A2g B1

A2u B2

Eg A1 ⊕B1

Eu A2 ⊕B2

T1g A2 ⊕ E
T1u A1 ⊕ E
T2g B2 ⊕ E
T2u B1 ⊕ E
G1g/u G1

G1g/u G2

Hg/u G1 ⊕G2

Table B.3: Subduction of C4v
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• For Baryons, the Single-Site(SS) operators are more desirable for the multi-

hadron sets due to the computational constraints described above.

The results are shown in Tables B.11 to B.17.
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Table B.4: Isovector, d̄u, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh A+
1g SS 0

DDL 3

TDU 1, 2

TDO 0

A−1g SD 2

DDL 1

TDO 2, 3, 6

A+
1u SD 0

TDU 0, 1

TDO 0, 3

A−1u DDL 2

TDO 0, 1, 5, 9

A+
2g TDO 0, 1, 5, 7, 8, 9

A−2g DDL 3

TDU 0, 2

TDO 1, 2

A+
2u DDL 2, 3, 5

TDO 2, 3, 4

A−2u DDL 1

TDU 1, 5

TDO 0, 2

E+
g DDL 6, 7

TDU 7

TDO 6, 7

E−g SD 0

DDL 2

TDU 1, 4, 5

TDO 9, 15

continued in the next page

99



Group Irrep Spatial Type Operator IDs

E+
u DDL 3, 4, 5

TDU 0

TDO 5

E−u SD 0, 1

DDL 5

TDU 10

TDO 7

T+
1g SS 0

DDL 5, 7

TDU 0

TDO 7

T−1g SS 0

TDU 8, 9

TDO 6, 13

T+
1u SS 0, 1

DDL 2, 8

TDO 3

T−1u SD 1

DDL 0, 3

TDU 2, 4

T+
2g DDL 6, 7

TDU 5, 9

TDO 0, 7, 9

T−2g DDL 2, 7

TDU 3, 5, 6, 7, 10

TDO 5, 21, 24

T+
2u SD 1, 2

TDU 5, 7

TDO 4, 5

T−2u DDL 0, 2, 11

continued in the next page
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Group Irrep Spatial Type Operator IDs

TDU 2, 4, 8

TDO 14, 25
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Table B.5: Kaon K , s̄s, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh A1g SS 1

SD 0

TDU 5

TDO 3, 8

A1u SS 1

SD 2, 3

TDU 0

TDO 12

A2g DDL 7

TDU 5, 6

TDO 4, 6, 14

A2u DDL 3, 6

TDO 8, 10, 11, 12

Eg SD 3

DDL 4, 15

TDU 10

TDO 13

Eu SD 2

DDL 12

TDU 5, 12

TDO 30

T1g SS 0

SD 5

DDL 6

TDU 18, 21

TDO 29

T1u SS 1

DDL 1, 5, 13

continued in the next page
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Group Irrep Spatial Type Operator IDs

TDO 42

T2g DDL 0, 22

TDU 18

TDO 1, 36, 41

T2u SD 0, 1

DDL 13

TDU 20

TDO 47
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Table B.6: Nucleon N , uud, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 2

SD 12

DDI 9, 5

DDL 47, 54

TDT 29, 42, 45

G1u SS 1

SD 1, 18

DDI 5, 16

DDL 24, 33, 63

TDT 10, 23, 27, 37

G2g SD 7

DDI 1, 2, 6

DDL 14, 17, 54

TDT 16, 23, 29, 30, 31

G2u SD 2, 3

DDI 5, 6

DDL 35, 56, 33

TDT 35, 21, 19

Hg SS 0

SD 29, 18

DDI 10

DDL 88, 90, 100, 104

TDT 94, 99, 113, 127

Hu SS 0

SD 30

DDI 1, 21, 26

DDL 58, 68, 70

TDT 58, 70
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Table B.7: Delta ∆, uud, Operators used in Single-Hadron computations. The same

Operator set is used in the Single-Hadron computation for Omega, sss,since the mass

of uud is the same as that of uuu, which is the same set of operators for sss except

that a heavier quark mass is used. However it should be noted that this argument

does not apply to Multi-Hadron computations due to the difference in symmetrization

of the uuu(thus sss) and uud operators.

Group Irrep Spatial Type Operator IDs

Oh G1g SD 4, 8, 9

DDI 0, 1, 7

DDL 8, 28, 31

TDT 1, 12

G1u SD 4, 8, 13

DDI 6, 7

DDL 10, 28, 31

TDT 26

G2g SD 0, 2, 3, 4

DDL 7, 8, 21, 28

TDT 10, 13, 18

G2u SD 2, 3

DDL 8, 11, 19, 29

TDT 3, 13, 30

Hg SS 0

SD 17

DDI 3

DDL 19, 44

TDT 24, 25, 34

Hu SS 0, 1

DDI 9, 13

DDL 30, 62

TDT 29, 30, 48, 52
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Table B.8: Lambda Λ, uds, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g DDL 3

TDT 5, 8, 28, 38

SD 21

DDI 6, 21, 22

G1u DDL 82

TDT 16, 20

SD 21, 31

DDI 10, 16

G2u DDL 91

TDT 33, 94, 95

DDI 4, 7

G2g DDL 7

TDT 22, 23, 24, 59

Hg DDL 46, 120

TDT 134, 158

DDI 9, 17, 29, 45

Hu DDL 166

TDT 5, 66

SD 23

DDI 16, 27
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Table B.9: Sigma Σ, uds, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g DDL 55, 89

TDT 77, 65, 72, 12, 19

SD 9

DDI 0, 34, 22, 12

G1u DDL 34, 78

TDT 4, 91

SD 5

DDI 13

G2g DDL 36, 24, 91, 54

TDT 28, 43, 29, 79

DDI 11, 8, 2

G2u DDL 35

TDT 32, 33, 78

DDI 10

Hu DDL 3, 156

TDT 41, 5, 65, 184, 190

DDI 15, 3, 10

Hg DDL 54, 108, 94

TDT 3, 156, 135

SD 47

DDI 1, 31, 42, 29
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Table B.10: Cascade Ξ, ssu, Operators used in Single-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 2

SD 6

DDI 0, 6, 7, 9

DDL 88

TDT 20, 65

G1u SS 3

SD 3, 30

DDI 1, 20

DDL 34

TDT 9, 23, 17, 31

G2g SD 0, 1, 2, 4, 5

DDI 0

DDL 26, 32, 46, 47, 55, 89

TDT 42, 66, 67

G2u SD 1, 2, 4, 6

DDI 4, 7, 8

DDL 69, 74

TDT 32, 33, 44, 51, 86, 95

Hg SS 1, 2

DDI 4, 6, 7, 15, 16, 18, 28, 29, 41, 44

DDL 108, 174

TDT 2

Hu SS 0

SD 3

DDI 3, 5, 10, 15, 16, 17, 18, 19

TDT 8, 19
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Table B.11: Isovector , d̄u, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh A+
1g TDO 0

A−1g SD 2

TDO 2

A+
1u - -

A−1u TDO 0, 1, 9

A+
2g - -

A−2g TDO 2

A+
2u - -

A−2u TDO 2

E+
g - -

E−g TDU 4

TDO 9

E+
u TDU 0

E−u DDL 5

T+
1g SS 0

TDO 7

T−1g SS 0

TDO 13

T+
1u SS 0, 1

DDL 8

TDO 3

T−1u DDL 0

T+
2g - -

T−2g DDL 7

TDO 5, 24

T+
2u SD 1, 2

T−2u DDL 11

C2v A+
1 SS 1

continued in the next page
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Group Irrep Spatial Type Operator IDs

LSD 0, 1

TSD 1

A−1 LSD 6, 7

TSD 1, 2

A+
2 LSD 5, 6

TSD 1

A−2 SS 0

LSD 5, 7

TSD 3, 4, 5

B+
1 LSD 0, 1

TSD 1

B−1 LSD 4, 5

TSD 2

B+
2 LSD 1, 2, 3, 7

TSD 4, 5

B−2 LSD 6, 7

TSD 1

C3v A+
1 SS 1

SD 0, 2

A−1 SS 0

SD 7

A+
2 SD 7

A−2 SS 0, 2

E+ SS 0

SD 6, 8, 12

E− SS 0

SD 7, 11, 13

C4v A+
1 LSD 1, 3

TSD 1, 2

A−1 LSD 0, 3

continued in the next page
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Group Irrep Spatial Type Operator IDs

TSD 1

A+
2 LSD 0, 1

A−2 SS 0

TSD 0, 2, 3, 4, 5

B+
1 TSD 3

B−1 TSD 1, 2, 3

B+
2 TSD 0, 1

B−2 TSD 1, 2

E+ SS 0, 2

TSD 3, 6, 7

E− LSD 0, 1, 3

TSD 1
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Table B.12: Kaon K, s̄s, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh A1g SS 1

SD 0

TDO 3

A1u SS 1

TDU 0

A2g DDL 7

A2u TDO 10

Eg SD 3

Eu SD 2

TDU 5

T1g SS 0

SD 5

DDL 6

TDO 29

T1u SS 1

DDL 5, 13

TDO 42

T2g TDO 36, 41

T2u DDL 13

TDU 20

TDO 47

C2v A1 SS 1, 2, 3

LSD 0, 9

TSD 6

A2 SS 0, 1, 2

LSD 6, 13

TSD 6

B1 LSD 6, 9, 11, 14, 15

continued in the next page
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Group Irrep Spatial Type Operator IDs

LSD 4

B2 SS 0, 1, 2, 3

TSD 6, 7

C3v A1 SS 0, 1, 2, 3

A2 SS 0, 1

SD 8, 14

E SS 0, 1

SD 3, 10, 15, 18, 24

C4v A1 SS 0, 3

TSD 1, 2

A2 SS 1, 2

LSD 1, 7

TSD 0, 3

B1 TSD 4, 6, 7

B2 TSD 2, 4, 6, 7

E SS 0, 3

LSD 2, 4, 5

TSD 7, 8
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Table B.13: Nucleon N , uud, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 1, 2

G1u SS 0, 1, 2

G2g SD 7

G2u SD 3

Hg SS 0

SD 18, 29

Hu SS 0

SD 30, 31

C2v G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

C3v F1 SS 0, 1

F2 SS 0, 1

G SS 0, 1, 2, 3, 4, 5, 6, 7

C4v G1 SS 0, 1, 2, 3, 4, 5, 6, 7

G2 SS 0, 1

LSD 3, 7
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Table B.14: Delta ∆, uud, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0

SD 8

G1u SS 0

SD 13

G2u SD 2

G2g SD 0, 3, 4

Hg SS 0, 1

SD 11, 13, 15, 17

Hu SS 0, 1

C4v G1 SS 0, 1, 2, 3, 4, 5

G2 SS 0, 1, 2, 3

C2v G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

C3v F1 SS 0, 1, 2, 3

F2 SS 0, 1, 2, 3

G SS 0, 1, 2, 3, 4, 5
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Table B.15: Lambda Λ, uds, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 1, 2, 3

G1u SS 0, 1, 2, 3

G2g SD 3, 8

G2u SD 9

Hg SS 0

SD 29, 30, 42

Hu SS 0

SD 37, 38, 43

C2v G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

C3v F1 SS 0, 1

F2 SS 0, 1

G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

C4v G1 SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

G2 SS 0, 1

LSD 1, 3, 7, 9
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Table B.16: Sigma Σ, uds, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 1, 2, 3

G1u SS 0, 1, 2, 3

G2g SD 12

G2u SD 8

Hg SS 0, 1, 2

SD 35

Hu SS 0, 1, 2

SD 44

C2v G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

C3v F1 SS 0, 1, 2, 3, 4, 5

F2 SS 0, 1, 2, 3, 4, 5

G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

C4v G1 SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

G2 SS 0, 1, 2, 3, 4, 5
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Table B.17: Cascade Ξ, ssu, Operators used in Multi-Hadron computations

Group Irrep Spatial Type Operator IDs

Oh G1g SS 0, 1, 2, 3

Hg SS 0, 1, 2

G1u SS 0, 1, 2, 3

Hu SS 0, 1, 2

G2u SD 2

C2v G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

C3v F1 SS 0, 1, 2, 3, 4, 5

F2 SS 0, 1, 2, 3, 4, 5

G SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

C4v G1 SS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

G2 SS 0, 1, 2, 3, 4, 5
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