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Abstract

The subject of this thesis is investigation of the morphology of a crystal surface by means
of statistical mechanics and Monte Carlo simulations. We employ solid-on-solid models,
modified to include the effects of corner and edge energies of faceted surfaces. We also
account for surface configurational entropy associated with various surface configurations
(colonies of facets). This is an extension of the work of Herring who ignored corner and
edge energies and effectively treated periodic hill-and-valley structures, which have no
configurational entropy. The excess energies from the corners and edges of a surface also
affect the equilibrium shape of very small crystals. These and other related effects are
studied on solid-on-solid models for nearest-neighbor forces with central symmetry and
additive bond energies. We obtain theoretical formulae for configurational entropy and
theoretical distributions of the heights and lengths of facets on one-dimensional crystal
surfaces (two-dimensional crystals). These results are tested by comparison with simu-
lation data and good agreement results. A modified solid-on-solid model with nearest
neighbor energy proportional to the nearest neighbor height difference raised to a power
p is used to account for effects of corner and edge energies for two-dimensional surfaces
(three-dimensional crystals). On an initially flat (100) surface, a slight change of p-value
has a significant effect on surface morphology. Especially for p = 0.9, which corresponds
to positive corner energies, a “macroscopic smoothing” transition from a faceted surface
at low temperatures to a non-faceted surface at high temperatures is observed. This tran-
sition is only evident for surfaces that are initially tilted with respect to a close-packed
surface. We also develop a symmetric solid-on-solid model that preserves crystal sym-
metry. For this symmetric model, the “macroscopic smoothing” transition for p = 0.9
is still observed on (111) and (112) surfaces, but now the surface structure is consistent
with crystal symmetry. We find a hysteresis effect in these transitions, which is less pro-
nounced for large systems. We calculate the correlation time of the surface by several
different measures to study the relaxation of the system. A discrete Fourier analysis of
the surface is implemented and we verify that there exists a long-wave fluctuation in the
surface. We also study the distribution of facet areas and facet heights, which turns out to
be exponential. A histogram method is employed to extend results at a given temperature
to nearby temperatures.
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Chapter 1

Background and Motivation

1.1 Crystals

Crystals are solids in which the elementary building blocks, the atoms, are arranged reg-
ularly in a space lattice with specific geometrical symmetry elements. There is no such
thing as a “perfect crystal” in nature; although single crystals with a high degree of per-
fection can be grown, especially for semiconductors such as Si. For many practical appli-
cations, imperfections of the chemical and structural atomic arrangement are essential to
obtain useful properties. Natural crystals have often been formed at relatively low temper-
atures by crystallization from solutions, sometimes for hundreds and thousands of years.
Nowadays, crystals are produced artificially and rapidly to satisfy the needs of science,
technology and other fields.

A crystal is a solid in which the atoms form a periodic arrangement, but not all
solids are crystals. The first thing we often notice about a natural crystal is the presence
of facets, which constitute its external boundaries. What distinguishes and defines a true
crystal is that these facets develop spontaneously and naturally as the solid forms from
a melt or from solution. When forces are applied to a crystal in certain directions, it
will often break cleanly into two pieces along what is known as cleavage plane. The
presence of facets is due to the ordered arrangement of lattice points at the microscopic
level; however, growth conditions of a crystal ultimately determine its morphology, so
many crystals do not display facets.

The underlying order of a crystalline solid can be represented by an array of regu-
larly spaced points that indicate the locations of the crystal’s basic structural units, which
contains a few atoms in a specific arrangement known as a basis. This array is called a
Bravais lattice [1] and was studied by Auguste Bravais. Crystal lattices can be thought of
as being built up from repeating units containing just a few atoms or molecules. Although

1



2 CHAPTER 1. BACKGROUND AND MOTIVATION

real crystals do not actually grow in this manner, this visualization is conceptually impor-
tant because it allows us to classify a lattice type in terms of the simple repeating unit that
is used to “build” it. The symmetry of a crystal is constrained by the requirement that the
unit cells stack perfectly with no gaps. There are 219 possible crystal symmetries, called
crystallographic space groups, and these are grouped into 7 crystal systems. In addition
to their microscopic structure, large crystals are often identifiable by their macroscopic
geometrical shape, consisting of flat faces with specific, characteristic orientations.

There are two extreme cases of the microstructure of crystal surfaces: atomically
rough and atomically flat. Atomically rough surfaces are typical of many metallic sys-
tems and provide many sites for the attachment of atoms from the melt during crystal
growth. Atomically flat interfaces are related to macroscopically flat, crystallographically
well oriented surfaces or facets and are typical of complex molecular crystals. Atomic
attachments on these interfaces are more difficult and require higher driving forces asso-
ciated with nucleation of a new layer. Facets are oriented in a specific way relative to the
underlying atomic arrangement of the crystal. This occurs because some surface orien-
tations are more stable than others (lower surface free energy) or because of the growth
kinetics associated with such surfaces. As a crystal grows, new atoms attach easily to the
rougher and less stable parts of the surface, but less easily to the flat, stable surfaces.

1.2 Wulff Construction and Herring’s Theorem

Suppose that a crystal is cleaved and a surface is created. The creation of this surface adds
energy, precisely surface free energy [2], which is proportional to the amount of surface
area created. The surface free energy is defined as the excess of the grand potential per
unit area due to a surface of a material as compared to the bulk. A surface free energy
is necessarily positive, because otherwise bulk crystals would cleave spontaneously. It
quantifies the disruption of intermolecular bonds and rearrangement of atoms that occurs
when a surface is created. Surfaces must be intrinsically less energetically favorable than
the bulk of a material for stability.

It is very desirable to measure the surface free energy of a solid interface because
it is a fundamental quantity that emerges from calculation of the surface properties. The
many theories of surfaces also benefit from a comparison to reliable experimental data.
Theoretically, from a microscopic point of view, surface free energies will be different for
surfaces of a crystal having various orientations. The number of bonds that have to be
broken to generate a certain surface plane depends on surface orientation. Therefore, we
can write the surface free energy with a dependence on orientation n̂, as characterized by
a γ-plot, or mathematically γ(n̂), which can be represented by a polar plot of surface free
energy as a function of orientation.
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A small solid crystal at equilibrium with vapor or liquid can often have a shape for
which a large fraction of the surface area is occupied by crystal planes having low surface
free energies. More formally, such an equilibrium shape is the result of minimizing the
total surface free energy [3], under the constraint of constant volume, over all possible
orientations.

It was Wulff [4] who first made the connection between the microscopic and the
macroscopic level. If the γ − plot for a given crystal is known, the equilibrium shape
can be found by Wulff’s construction. The procedure is simple: Draw vectors from the
origin to every point on the γ-plot; then construct planes that are perpendicular to each
vector at the point of intersection with the γ -plot; the inner envelope of these planes is
the equilibrium shape of the crystal.

The equilibrium shape is of practical interest only for very small crystals because
of the significant mass transport needed to change its overall shape. For large crystals,
the free energy of a planar surface can possibly be lowered by rearranging the atoms into
hills and valleys of a size large compared with atomic dimensions but still small from the
macroscopic standpoint, as governed by Herring’s Theorem [5, 6]:

“If a given macroscopic surface of a crystal does not coincide in orientation
with some portion of the boundary of the equilibrium shape, there will always
exist a hill-and valley structure which has a lower free energy than a flat
surface, while if the given surface does occur in the equilibrium shape, no
hill-and valley structure can be more stable.”1

1.3 Motivation

Surface free energy results from the bond energies among atoms and the entropy associ-
ated with their structures at a given temperature. According to Herring’s analysis, we can
tell for a surface with any orientation whether it is energetically favorable (or neutral) to
either keep the original orientation or to form a hill-and-valley structure. The free energy
of a faceted suface (hill-and valley structure) is given by

(1.1) γh = γ1 f1 + γ2 f2 + γ3 f3

where γ1, γ2, γ3 are the surface free energy of the three boundary planes, and f1, f2, f3 are
determined by the following

(1.2) n̂ = f1n̂1 + f2n̂2 + f3n̂3

1There are special (degenerate) γ-plots for which such a faceted surface has a surface free energy that is
equal to that of the original planar surface, as illuminated below.
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where n̂ is the unit vector in the direction investigated and n̂1, n̂2, n̂3 are the unit normal
vectors of the facets.2

Let τ1, τ2, τ3 be the reciprocal vectors to σ1, σ2, σ3 respectively, and let c = γ1τ1 +
γ2τ2 + γ3τ3. Then Eq(1.1) can be re-writen as

(1.3) γh = c · n̂.

If γh < γ(n̂), the faceted hill-and-valley structure will be energetically favorable; whereas,
if γh = γ(n̂), there will be no driving forces for faceting (neutral case).

Figure 1.1: Gamma plot of the simple square lattice with additive nearest neighbor forces.

Kossel crystals [8] are simple squares (two dimensional crystals) or cubes (three
dimensional cyrstals) that interact through nearest-neighbor additive forces having central
symmetry (bond energies). The γ-plot for a two dimensional Kossel crystal is illustrated
in Fig. 1.1. It is composed of segments of four circles that pass through the origin; for
a three dimensional Kossel crystal, it is composed of segments of eight spheres that pass
through the origin. For this γ-plot, we can examine the possibility of a surface breaking
up into a hill-and-valley structure with orientations [10] and [01]. In this simple case, c
is a vector that lies at 45◦ with respect to these axes and a length such that it touches
the γ-plot. Then, because an angle inscribed in a semicircle is a right angle, we see that
γh = c · n̂ = γ(n̂) for this model. This is a special case for which the free energy of the hill-
and-valley structure is exactly equal to the free energy of any faceted surfaces. In other
words, there is no driving force for faceting, even through a hill-and-valley structure can
exist for any orientations tilted with respect to [01] or [10].

However, there are some important considerations that are missing from the preced-
ing analysis. One missing thing is the entropy that results from various surface configu-

2It turns out that it is to use only three orientations; for a proof, see [7]
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rations, e.g. a mixture of small facets and large facets, as shown in Fig. 1.2. When the
system size gets large, the variation of surface configurations will increase significantly.
There will be a lot of possible surface configurations corresponding to the same minimal
surface free energy, but the classical surface energy does not include this configurational
entropy per unit area, Scon f . (See Chapter 4, Figure 4.1 for actual results from simula-
tions.) If Herring’s analysis is generalized to include the configurational entropy due to
these colonies, the free energy for a faceted surface will be lower by an amount T Scon f .
Therefore, the role of this configuraitonal entropy should be investigated.

(a) Surface with larger facets (b) Surface with smaller facets

Figure 1.2: Surface composed of a mixture of facets with various sizes.

Another missing thing is the energy associated with corners and edges of a surface
due to facets. When a surface is large, a hill-and-valley structure most likely results in a
lot of corners and edges. The excess energies of these would have a significant effect on
morphology. Edge and corner energies also give rise to the sizes of facets that compose a
hill-and-valley structure. In other words, a change of scale of any surface topology would
result in new corners and edges. The contributions of corners and edges to crystal faceting
should also be investigated.

Furthermore, although Herring’s theorem pointed out the existence of the hill-and-
valley structure and their orientations, it does not give the sizes of the structures. As
mentioned above, size can be influenced by including the effects of corners, edges, and
the configurational entropy.

Therefore, this simple model is a good test case for the role of configurational en-
tropy, edge and corner energies in crystal faceting.
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Chapter 2

Solid-on-Solid Model

2.1 Growth Models

Growth processes are phenomena of considerable scientific interest with a broad range of
practical applications. Almost all forms in nature are products of some kind of growth.
An understanding of growth has relevance in various fields: materials science, chemical
physics, medicine, and even sociology.

Mechanisms of growth are usually quite complicated; however, one can often use
a more-or-less simplified model to describe some its most important features. The large
variety of materials and the various mechanisms of growth lead to a large number of
growth models, and many have been developed and investigated.

Interest in growth models is motivated, in part, by connection with practically im-
portant processes in which the material is either added (e.g. crystal growth, biological
growth) or removed (e.g. corrosion, erosion). On the other hand, much of this interest
arises from the fact that these growth models exhibit new features that are interesting from
the point of view of non-equilibrium statistical physics.

One of the most challenging problems is understanding the dynamics of growth
and morphology of rough surfaces. One measure of the morphology of a surface can
be characterized by roughness. At equilibrium, the idea of a thermal roughening transi-
tion between a flat interface and a rough high-temperature interface was suggested long
ago by Burton and Cabrera [9]; later it was confirmed experimentally and the equilib-
rium roughening transition was studied extensively. Today, the roughening transition is
well understood. Since growth is a non-equilibrium process, the roughening for growing
surfaces is more difficult. An example would be diffusion limited aggregation [10].

Growth models can be divided crudely into two classes according to the character
of the growth mechanism: models with mechanisms based on energy considerations, for

7



8 CHAPTER 2. SOLID-ON-SOLID MODEL

which the temperature is usually the most important parameter, are able to describe the
kinetics of crystal growth; and models based on random events and random numbers.

Growth models can be divided roughly into continuous models and discrete models.
The former are governed by a stochastic differential equation in the variables that describe
the surface. The latter are given by defining a space of configurations and by giving rules
of growth that govern the possible processes and their probabilities.

In the case of discrete models, the surface configuration can often be represented
by a d-dimensional array of integers - heights of the columns of atoms relative to a flat
reference surface. Discrete models can be defined for various kinds of lattices (the sim-
ple cubic lattice is often used). In numerical simulations, relatively small finite systems
must be used; however, periodic boundary conditions can be employed to relate to large
surfaces.

2.2 Solid-on-Solid Models

A special class of models, so-called solid-on-solid (SOS) models [11], have been used
to study the equilibrium statistical mechanics of surfaces. These models fulfill a SOS-
constraint that every occupied site is directly above another occupied site (thus there are
no overhangs or holes). A particular variant is a restricted solid-on-solid model (RSOS)
defined on a simple cubic lattice and having the additional constraint that the difference of
heights of neighboring sites i, j is restricted by a condition |hi−h j|< S, where S is some
integer. Even more restricted is a single step solid-on-solid model in which the difference
can take only two values, 0 or 1. The surface configurations in the RSOS model can be
mapped into the N-state vertex model [12, 13].

It turns out that the mathematics of the solid-on-solid model is similar to the math-
ematics of the Ising model [14]. An atom has one interaction energy with an occupied
neighboring crystalline site and a different interaction energy with neighboring site which
is not occupied. This is similar to the Ising model, where there is one interaction energy
if the neighboring atom has the same spin and a different interaction energy if it does not.

The random deposition model, in which particles simply fall vertically down until
they reach the top of the column in which they were dropped or they reach the substrate,
with normal incidence (with or without diffusion) also fulfills the SOS-condition.

In the case of SOS-models, in addition to the SOS-constraint, the energy for each
surface configuration is given by a monotonically increasing function V of the difference
of heights

∣∣hi−h j
∣∣ of neighboring columns i, j:

(2.1) HSOS = ∑
<i, j>

V (
∣∣hi−h j

∣∣)
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Various SOS models with different functions V can be considered. In a standard SOS
model the function V is just the absolute value

∣∣hi−h j
∣∣. If the energy is taken of quadratic

form (hi−h j)
2, one arrives at the so-called Discrete Gaussian model (DGSOS).

For a SOS model on some lattice where the space of possible configurations is given,
one must complete the growth model by specifying the rules of growth. In addition, one
can consider not only growth processes but also evaporation processes in which a particle
is removed from the surface.

2.3 Roughening Transition

Some surfaces are smooth on the atomic scale and others are rough. The surfaces that
are rough on an atomic scale usually have isotropic properties, and so are the rounded on
a macroscopic scale. The surfaces that are smooth on an atomic scale have anisotropic
properties and tend to form macroscopic facets. A surface can be in different states hav-
ing different roughness, and by changing physical parameters it can undergo a phase
transition, known as surface roughening transition. The idea that there could be a phase
transition of this type in the equilibrium structure of crystal surfaces was first suggested
by Burton and Cabrera [9, 15]. They conjectured that the low index crystal faces in equi-
librium with vapor, melt or solution, would become rough above a certain temperature
TR, the so-called roughening temperature. This can have important consequences for the
speed of growth (for small deviations from equilibrium) as well as the equilibrium shape
of a crystal.

Typically, a two-dimensional surface in equilibrium undergoes a roughening transi-
tion at a temperature TR: the surface is microscopically smooth below TR but rough above.
Growing surfaces are even rougher than at equilibrium; because, in addition to the ther-
mal fluctuations there are stochastic fluctuations due to the growth process itself, even at
temperatures below TR.

The roughening transition is defined to occur when there is a logarithmic divergence
of the height fluctuations for T > TR [12]. The roughening transition was first simulated
for SOS-models. It has been shown that the SOS model gives rise to a roughening transi-
tion and that the height-height correlation function diverges logarithmically with distance
along the surface [12]. The critical temperature for the roughening transition depends on
the specific material system and the details of the interactions between the atoms. Fur-
thermore, the numerical value of the roughening transition depends on both the crystal
structure and the orientation of the surface.
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2.4 Modified Solid-on-Solid Model

We consider a growth model of the form

H = ∑(i, j),(i′, j′) are NN′s
∣∣hi j−hi′ j′

∣∣p
where (i, j) and (i′, j′) are nearest neighbors and hi j is the height of the surface at site
(i, j).

The well-known solid-on-solid model corresponds to the case p = 1, and the dis-
crete Gaussian model corresponds to p= 2. The roughening transition has been simulated
for these models [16]. But one problem with these models is the lack of explicit or im-
plicit inclusion of the energies from corners and edges of the surface. On a crystal surface,
these energies from corners and edges, especially on a tilted surface, have a significant
impact on the behavior of the surface. In order to investigate these effects, we employed
various values of p.

For p < 1, hp is a convex function, such that hp
1 + hp

2 > (h1 +h2)
p. This means

that a big step has lower energy than two smaller steps, which is equivalent to saying that
this model gives positive energies to corners and edges. Therefore this model disfavors
corners and edges and results in big steps and facets. For p > 1, hp is a concave function,
such that hp

1 + hp
2 < (h1 + h2)

p. This means that a big step has higher energy than
two smaller steps, which is equivalent saying that this model gives negative energies to
corners and edges. Therefore this model favors corners and edges at the expense of big
steps. However, corner and edge energies are small compared to bulk bond energies, so
we allow p to take the values 0.9, 1, 1.1 to simulate various cases.

Although the changes in p values from 1 are not very large, we will later see how
these small changes affect the surface configuration and result in interesting and signifi-
cant morphologies.



Chapter 3

Monte-Carlo Simulation

3.1 History, Background and Application

Experimental physics has been carried out by experiments for centuries. Gradually, ideas
about why certain natural phenomena occur were formulated by many people. Eventually
these ideas were made more logical by the use of mathematics and gave rise to the what
we call “theory” today. However, some experiments are too complicated to explain by tra-
ditional theoretical methods or are limited by many conditions and sometimes impossible
to implement. With the development of fast computers, computer simulation becomes
easier and more and more powerful, especially for solving some intractable problems. In
many fields, computer simulation first enables the possibility for deep investigation, new
models and techniques. Computer simulation becomes a brand new way to carry out re-
search, providing a theoretical model for the experimental data, or providing results that
can be compared directly with data from experiments.

Monte Carlo (MC) simulations are often used in computer simulations of physi-
cal systems [17]. Rather than following the time evolution of a system, Monte Carlo
simulations use stochastic methods to sample configurations. In particular, Monte Carlo
simulations are based on a sequence of random numbers representing a random process.
As a result, different sequences of random numbers will not give identical results but will
give the same results statistically, within sampling errors.

An early reference to the Monte Carlo method is that of Comte de Buffon [18] who
proposed a Monte Carlo-like method to evaluate the probability of tossing a needle onto
a ruled sheet. The modern Monte Carlo age was ushered in by von Neumann and Ulam
[19] during the initial development of thermonuclear weapons. Ulam and von Neumann
used the phrase “Monte Carlo” and were pioneers in the development of Monte Carlo
techniques and their implementations on digital computers.

11



12 CHAPTER 3. MONTE-CARLO SIMULATION

Monte Carlo methods [20–22] are especially useful for simulating systems with
many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled
solids, and cellular structures. The range of different problems that can be explored by
using Monte Carlo simulations is very broad. Models that can be naturally or approx-
imately discretized can be treated. There are many examples of the use of the Monte
Carlo method that can be drawn from many areas, e.g., social science, traffic flow, popu-
lation growth, finance, genetics, quantum chemistry, radiation sciences, radiotherapy, and
radiation dosimetry.

One important advantage of simulations is that various physical effects that are si-
multaneously present in real systems may be isolated by means of separate considerations.
We can strive to understand physical properties and processes as completely as possible
by varying “experimental conditions” of simulations.

On the other hand, because of limits on computer speed there are some complex
problems that are inherently not suitable for computer simulations. Long computation
times and insufficient computer memory that is a problem now may be alleviated in the
future, but one can sometimes use novel algorithms to overcome them. Another problem
is statistical and computational error. The storage of data and computation can generate
and accumulate error, and inherent errors of algorithms can result in unavoidable statisti-
cal error due to a finite number of samples or ensembles.

3.2 Random Numbers

In computer simulation, the generation of random numbers is crucial. It may be concep-
tually impossible to generate true random numbers from a computer because computer
output is entirely predictable. Fortunately, the random numbers in computer simulations
can just be pseudo-random, which means that random sequences that are generated are
statistically uncorrelated, and therefore different from each other in all measurable re-
spects. In other words, it suffices if two different random number sequences give the
same results statistically. It is worthy mentioning that randomness is also related to the
problem to which it is applied. What is “random enough” for one problem may not be
random enough for another. Therefore, a good random number generator should at least
meet the requirements fro a specific application.

In many cases, we want to generate random numbers which obey certain proba-
bility distributions, e.g., normal distributions, exponential distributions. One of the most
fundamental distributions is the uniform distribution, which generates random numbers
within a specified range, with any one number just as likely as any other. Many other ran-
dom numbers from other distribution are basically also generated indirectly from uniform
random numbers. So a reliable uniform random number generator is an essential part of
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modeling by means of Monte Carlo simulations [23].

One of the oldest and most widely used methods of Pseudo Random Number Gen-
eration is the Linear Congruential Generator, which generates the sequence of integers
R1,R2,R3, · · · , each between 0 and m−1 by the following recurrence relation:

(3.1) R j+1 = aR j + c (mod m)

The sequence generated using this equation would eventually repeat itself, with a period
less than m. If the numbers m,a and c are chosen properly, the period will be of maximal
length comparable to m. Though this sounds complicated, it really means is that we take a
starting value (the seed) in the generating functions and the resulting number is then used
as a random number, it becomes the new seed for generating the next random number.

The linear congruential method is really fast in implementation and of universal
use, but it has the disadvantages of suffering from sequential correlation on successive
numbers. If n sequential random numbers are used as coordinates in n dimensional space,
the points will tend to lie on (n−1) dimensional hyperplanes. If we deal with a problem
in which only a small fraction of the the n dimensional random number space is used,
then the discreteness becomes a pronounced issue. Thus, good random number gener-
ators either maximize the number of planes that are constructed to give the illusion of
randomness or practically eliminate this artifact entirely.

Selecting the right numbers to use in linear congruential generators is complex
and easy to get wrong. Luckily the hard work has already been done for us. Back in
1969 Lewis, Goodman and Miller [24] suggested n = n ∗ 16807 mod 2147483647. This
choice has been studied widely and tested and has been used extensively and success-
fully. In 1988 Stephen Park and Keith Miller [25] wrote an excellent paper called “Ran-
dom Number Generators: Good Ones Are Hard To Find”. In it they look at some of the
problems with commonly used random number generators and suggest that a = 16807,
m = 2147483647 in R j+1 = a∗R j mod m be adopted as a “minimum standard”.

Because of multiplication in the generation recursion, it is impossible to implement
the recursion directly in a high-level language because the product of a and m− 1 will
exceed the maximum value that a certain computer can handle. A trick due to Schrage [26]
without using any intermediates is therefore extremely interesting. Schrage’s algorithm is
based on an approximate factorization of m,

(3.2) m = aq+ r, i.e.,q = [m/a],r = m mod a

with square brackets denoting the integer part. In the case of small r, especially when
r < q and 0 < z < m−1, it can be shown that

az mod m =

{
a(z mod q)− r[z/q] if it is ≥ 0
a(z mod q)− r[z/q]+m otherwise
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Schrage’s algorithm uses the values q = 127773 and r = 2836.

This minimal standard satisfies the majority of applications. It has been shown
that other multipliers a can also be used and substituted for the minimal standard. Low
order correlations, the cross-correlation of data with itself as a function of time separation
between, can be calculated. In Figure 3.1, 100 successive random numbers are used for
calculating the auto correlations up to a maximal time separation, time-lag, of 10.

Figure 3.1: Auto correlation coefficients vs. Lag for 100 generated random numbers

In Figure 3.2, 10000 successive random numbers are used for calculating the auto
correlations up to a maximal lag of 10. In both cases, the auto correlation is generally
small for the low orders. When the sequence is short, the auto correlation is much larger
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than that for a longer sequence. This indicates the shortcoming of this random generator
for short sequences.

Figure 3.2: Auto correlation coefficients vs. Lag for 10000 generated random numbers

A very simple way to get rid of the low order serial correlation is to shuffle the
output. Random numbers are stored and picked out later on a randomized basis. It has
been shown that this generator passes almost all statistical tests. For even longer random
sequences, a better way is simply to add two different random sequences. Combining the
two sequences breaks up the serial correlations to a considerable extent.
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3.3 Markov Chain and Metropolis Sampling

The concept of Markov chains is central and essential to Monte Carlo simulations. A
Markov chain [27,29,31], named after Andrey Markov, is a stochastic process that under-
goes transitions from one state to another, among a finite or countable number of possible
states. A discrete-time random process involves a system which is in a certain state at
each step, with the state changing randomly between steps. Since the system changes
randomly, it is generally impossible to predict with certainty the state of a Markov chain
at a given time in the future. However, the statistical properties of the system’s future can
be predicted. In many applications, it is these statistical properties that are important.

We define a stochastic process at discrete times labeled sequentially as t1, t2, · · · ,
for a system with a finite set of possible states S1,S2, · · · . The process starts in one of
these states and moves successively from one state to another, and each such move is
called a step. If the chain is currently in state Si, then it moves to state S j at the next
step with a probability Wi j. If this probability does not depend upon which state the chain
was in before the current state, then such a process is called a Markov process [30]. The
corresponding sequence of states is called a Markov chain, and the above conditional
probability Wi j can be interpreted as the transition probability to jump from state i to state
j [31]. It is obvious and required to meet the following

(3.3) Wi j ≥ 0, ∑
j

Wi j = 1

The total probability that the system is in state S j at time t is given by P(S j, t)=∑iWi jP(Si, t−
1). The master equation describes the change of the probability with time t:

(3.4)
dP(S j, t)

dt
=−∑

i
WjiP(S j, t)+∑

i
Wi jP(Si, t)

This equation indicates that the total probability is conserved, so the probability of a state
S j that is lost by transitions is gained in the probability of staying at that state, and it
describes the balance of gain and loss processes. It is very important in “importance
sampling” of Monte Carlo processes.

The Metropolis sampling algorithm [32,33] is a Markov chain Monte Carlo method
to obtain a sequence of random samples from a probability distribution for which direct
sampling is difficult. In classical physics, the configurations generated from Metropolis
sampling are obtained from a previous state by using a transition probability that depends
on the energy difference between the initial and final states. The resulting sequence of
states forms a time ordered path which is referred to as a Monte Carlo time (steps). In
equilibrium, the time behavior is steady and the differential term in the master equation
becomes zero. Equilibrium is guaranteed by employing the additional condition known
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as “detailed balance”:

(3.5) WjiP(S j, t) =Wi jP(Si, t),

which is used as a simple and reliable condition to provide the desirable equilibrium state.
Therefore, it causes the RHS of equation 3.4 to be zero term by term. The probability of
state Si occurring in a classical system is given by

(3.6) P(Si, t) = e−Ei/kBT/Z

where Z is the partition function which contains all of the essential information about the
system under consideration, T is the temperature, and kB is the Boltzmann constant. The
general form for the partition function for a classical system is

(3.7) Z = ∑
allstates

e−H/kBT

where H is the Hamiltonian for the system. The summation is over all possible states
of the system and thus depends upon the size of the system and the number of degrees
of freedom. It is generally not easy to calculate the partition function for a complex
system; however, one can avoid this by generating a Markov chain of states. Each new
state is generated directly from the preceding state. In the generation of the Markov
chain process, the denominator Z cancels and the relative probability is the ratio of the
individual probabilities. Therefore, only the energy difference ∆E = Ei−E j between the
two successive states is needed.

Any transition rate that satisfies detailed balance is acceptable. The Metropolis
sampling used in statistical physics is the following:

Wi j =

{
exp(−∆E/kBT ) ∆E > 0
1 ∆E < 0

The Metropolis algorithm is implemented as follows:

1. Start from an initial state

2. Randomly choose another state according to a symmetric jump function from the
current state

3. Calculate the energy change ∆E

4. Generate a random number r such that 0 < r < 1

5. if r < exp(−∆E/kBT ), jump to the new state; otherwise, stay in current state

6. Go back to (2) and continue until one reaches a desired number of iterations



18 CHAPTER 3. MONTE-CARLO SIMULATION



Chapter 4

Surface Measurements

The following is a snapshot of a surface configuration from simulation on a one dimen-
sional surface of slope 1 with projected length 100 at low temperatures.

Figure 4.1: Surface configuration on a one dimensional surface of slope 1 with projected
length 100 at low temperatures

From the plot, we can clearly observe colony structures consisting of larger and
smaller facets on a small scale, as well as surface fluctuations on a large scale. To better
understand the surface configurations, we can study the correlations and fluctuations in
detail in the follwoing [34].

19
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4.1 Correlation Function and Correlation Time

Time-correlation functions are an effective and intuitive way of representing the dynam-
ics of a system [35]. This is one of the most common tools of time-dependent thermal
dynamics and provides a statistical description of the time-evolution of a variable for an
ensemble at thermal equilibrium. Correlation functions are generally applicable to any
time-dependent process for an ensemble, but are commonly used to describe random (or
stochastic) and irreversible processes [37]. Their use is equivalent to autocorrelation in
statistics, which measures the similarity between observations as a function of the time
separation between them.

It is interesting and important to study the correlation function to determine the cor-
relation time of the simulated system. This enables us to get an idea how fast the system
will achieve a statistically independent equilibrium configuration following a previous
one. The correlation function also describes the fluctuations of the system and is essential
to calculate error terms of other important quantities. Roughly speaking, the statistical
error in a property calculated as an average over a simulation run is proportional to square
root of the correlation time [36].

The correlation function describes the similarity or the correlation at various time
lags in the system. It takes the form

(4.1) f (t) = [< h(t ′) ·h(t ′+ t)>−< h(t ′)2 >]/[< h(t ′)2 >−< h(t ′)>2]

where h(t) is a characteristic function of concern and < · > represents the expectation
value. In our case, h(t) is the surface height used to describe surface configurations. f (t)
is therefore a correlation of height for a time lag t.

By using the correlation function given above, the correlation time tC of the system
is

(4.2) tC =
∞

∑
t=1

f (t)

The RHS of Equation 4.2 sums the correlations with various simulation time lags. In
practice, the summation cuts off at some point where the correlation is small and the sum
of the rest terms is in the desired error range; the summation also stops when negative
correlation occurs.

In calculating the correlation function by using equation 4.2, the unit time lag can
be any meaningful time length compared with the correlation time. Here, the correlation
function and correlation time tC are calculated by using two different time units, one is
a time unit of every simulation step and the other is a simulation sweep (one simulation
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sweep equals to the number of steps needed to sample each member of the system). The
results using simulation steps are then converted back to simulation sweeps and compared
with the results using simulation sweeps, as shown in Figure 4.2. Here f (t) is the number
of steps of height 1 on a one dimensional surface since this is a significant and easy
function to investigate the surface configurations.

(a) f (t) on slope=1 surface

f (t)

t

(b) f (t) on slope=1/2 surface

f (t)

t

Figure 4.2: Correlation function calculated by using (a) time lag unit in simulation step
and (b) simulation sweep for a one dimensional surface with length 20

We see that the correlation function calculated in both ways are highly similar in
values and almost identical for surface of both slope = 1 and slope = 1/2. The corre-
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sponding correlation time for slope = 1 is equivalently 1.126 sweeps when calculated in
step units and 1.123 sweeps when calculated in sweep units. The corresponding correla-
tion time for slope = 1/2 is equivalently 2.915 sweeps when calculated in step units and
2.708 sweeps when calculated in sweep units. The correlation time calculated in both
ways are very close compared with the sweep scale. The values are slightly higher using
step intervals as expected since a smaller grid is used to sum the correlation functions.
Since in practice the simulation is generally carried out using the time scale of simulation
sweeps, this comparison tells us that using simulation sweeps as the time lag in calcu-
lating the correlation time is much more efficient compared to the case using simulation
steps and that the errors are small compared to the units of simulation sweeps. Therefore,
we should use the simulation sweep as the time scale for calculating correlation functions.

Correlation functions are calculated for various system sizes L from 8 to 256 for a
one dimension surface of slope 1. The results are shown in Figure 4.3. From the plots,
we can see that the correlations behave similarly in all cases. A correlation curve consists
of two segments, a relatively steep curve at early times and a relative shallow curve at
later times. The inverse of the slope from the semi-log plot corresponds to the correlation
time as well. Therefore, the observation tells us there is a relatively fast relaxation at early
times and followed by a relatively slow relaxation.

We can also see the difference between various system sizes. The correlation time
is then plotted as a function of system sizes for the above results in Figure 4.4. From
the plot, a power law is observed. As the system size gets larger, the correlation time
gets longer and the relaxation gets slower. The exponent of the power law is significantly
greater than 1, which would give rise to quite long computation time for much larger
systems.

In order to understand the correlation more deeply, calculations of the correlation
function are carried for various system sizes and plotted in 4.5. The three curves overlap in
the first part of the fast relaxation region and then separate in the slow relaxation regions.
The larger the system size, the slower the relaxation.

Fig. 4.6 shows relation between the correlation time and the inverse surface slope.
We see that there are more available sites to add and remove atoms on a steep slope than
on a shallow slope, which results in a shorter correlation time for a steep slope.

4.2 Surface Fluctuations

From the plots of the correlation functions above, we infer that the slow relaxation corre-
sponds to long-wave surface fluctuations, which will also affect other quantities pertaining
to the surface. In order to study surface fluctuation, we employ a discrete Fourier trans-
formation (DFT) [38].
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(a) ln f (t) vs. t on L = 8 surface (b) ln f (t) vs. t on L = 16 surface

(c) ln f (t) vs. t on L = 32 surface (d) ln f (t) vs. t on L = 64 surface

(e) ln f (t) vs. t on L = 128 surface (f) ln f (t) vs. t on L = 256 surface

Figure 4.3: Semi-log plot of correlation function (ln f (t)) of a one dimensional surface of
slope 1 for various system sizes L from 8 to 256

In mathematics, DFT is a specific kind of discrete transform, used in Fourier anal-
ysis [39]. It transforms one function into another, which is called the frequency domain
representation, or simply the DFT, of the original function (which is often a function in
the time domain). The DFT is a discrete variant of the continuous Fourier transform
and requires an input function that is discrete. The input to the DFT is a finite sequence
of real or complex numbers, making the DFT ideal for processing information stored in
computers.

We can use DFT to analyze the surface configurations generated by our simulation
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Figure 4.4: Correlation time vs. System size on a one dimensional surface of slope 1

ln f (t)

t

Figure 4.5: Correlation function for a one dimensional surface of slope = 1/2 with length
L = 16, 32, 64

data. At various simulation time steps, the current surface configurations are subtracted
from their initial configuration to form a discrete data series. The DFT is then carried out
on this data to explore the surface fluctuations. Figure 4.7 shows the subtracted surface
configurations and their DFT at time tick 1000 sweeps, 2000 sweeps and 3000 sweeps
for a one dimensional surface of slope 1 and size L = 128. From the surface configura-
tion plots, it is shown clearly that the surface is still evolving, even when the surface is
near to an equilibrium configuration. We also see, at each time tick, that the DFT has
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tC

1/slope

Figure 4.6: Correlation time vs. 1/slope on a one dimensional surface with length L = 20

similar characteristics. The amplitudes of the long waves (especially the first a few) are
much larger than for the short waves because there are ever present long-wave fluctuations
resulting in slow relaxation of the surface.

Having observed long-wave fluctuations of the surface, we can now generate some
simple, but yet meaningful, quantities to study the surface. At a certain time tick, we
can subtract the initial configuration from the current configuration to form a so-called
excess configuration. We then generate an quantity called excess difference, which is the
difference between the total number of excess atoms on the first and second half of the
excess configuration. By using the quantity excess difference, we can again study the
surface correlations.

For the simulation, we use two different models. One is the conserved model (CM),
where the total number of surface atoms are fixed, so an atom can only be removed from
a site and then added to another site on the surface. For the other model, called the non-
conserved model (NCM), the total number of surface atoms is not fixed. Removing an
atom from the surface is independent of adding an atom to the surface. The CM model
requires a pair of added and removed atoms at the same time while the NCM model has
equal probability of adding and removing atoms. Eventually, the two models will give the
same results statistically.

We can use our new quantity excess difference to study the correlation time for
these two models to check whether any significant difference occurs. In Figure 4.8, we
show semi-log plots of the correlation function on a one dimensional surface of slope
1 for system sizes L = 8, 16, 24, 32, 40, 48. Here we observe very nice correlation
functions having a long linear region for both the conserved and non-conserved model.
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(a) t = 1000 sweeps (b) t = 1000 sweeps

(c) t = 2000 sweeps (d) t = 2000 sweeps

(e) t = 3000 sweeps (f) t = 3000 sweeps

Figure 4.7: Subtracted surface configurations (left) and their DFT (right) at time ticks
1000 sweeps, 2000 sweeps and 3000 sweeps for a one dimensional surface of slope 1 and
size L = 128

The correlation functions for the two models are very similar, and the only difference
being the tail. It is expected that the correlation time of these two models should be close
from a statistical point of view, and this is verified by our calculation.

Figure 4.9 shows the log-log plot of the the excess difference of the correlation time
calculated for both models against system size. A power law is clearly shown with an
exponent around two. This means that the larger the system size, the longer the correlation
time, and the longer the system takes a long time to relax from previous configurations.
In order to compare the new quantity excess difference with the previous quantity of the
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(a) ln f (t) vs. t on L = 8 surface (b) ln f (t) vs. t on L = 16 surface

(c) ln f (t) vs. t on L = 24 surface (d) ln f (t) vs. t on L = 32 surface

(e) ln f (t) vs. t on L = 40 surface (f) ln f (t) vs. t on L = 48 surface

Figure 4.8: Semi-log plots of the excess difference of the correlation function on a one
dimensional surface of slope 1 for system sizes L = 8, 16, 24, 32, 40, 48

number of steps of height 1, we also present the correlation function calculated by using
step height for both the two models. In Figure 4.10, the semi-log plot of the correlation
function on a slope=1 one dimensional surface with system sizes L = 8, 16, 32, 64 using
height 1 steps is shown.

Again, the correlation function are very close for both the conserved and non-
conserved model, apart from the tail parts. We still observe a fast relaxation region and
slow relaxation region in the plots. In Figure 4.11, the log-log plot of the correlation time
calculated for both models with system size is present. Aside from calculational error,
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ln tC

lnL

Figure 4.9: Log-log plot of the excess difference of the correlation time against system
size on a one dimensional surface of slope 1 for system sizes L = 8, 16, 24, 32, 40, 48

(a) ln f (t) vs. t on L = 8 surface (b) ln f (t) vs. t on L = 16 surface

(c) ln f (t) vs. t on L = 32 surface (d) ln f (t) vs. t on L = 64 surface

Figure 4.10: semi-log plot of the correlation function on a slope=1 one dimensional sur-
face with system sizes L = 8, 16, 32, 64 using height 1 steps
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a power law with system size is exhibited. The results are better for the non-conserved
model, since the first point for the conserved model is far from the fitted line.

ln tC

lnL

Figure 4.11: Log-log plot of the excess difference of the correlation time against system
size on a one dimensional surface of slope 1 for system sizes L = 16, 24, 32, 40, 48

In summary, by investigating the surface correlation time of the CM and NCM by
using various quantities, the two models behave similarly in regard to relaxation. These
two models are statistically the same and in addition, the non-conserved model is more
efficient for simulation and calculation. Therefore, the non-conserved model is chosen
for our later simulations.

4.3 Histogram Methods

Results from Monte Carlo simulations exhibit a statistical distribution. The histogram
method [40, 42] then can be used to extract information from Monte Carlo simulations,
for example, to study transformation.

Suppose that a simulation is carried out at a temperature T0 corresponding to β0 =
kT0. Since the surface configurations follow the Boltzmann distribution, the generated
configurations have a frequency proportional to exp(−β0E), where E is the total energy
for the system. Therefore, a histogram H(E) of the simulated surface configurations
provides an estimate for the equilibrium probability distribution. According to the Law
of Large Numbers, histogram estimates tend to the exact values in the limit of an infi-
nite number of runs. Though the histogram will suffer from statistical error in practice,
H(E)/N still provides an good estimate for the probability distribution P(E;β0) of having



30 CHAPTER 4. SURFACE MEASUREMENTS

energy E at temperature β0. Thus,

(4.3) H(E) =
N

Z(β0)
W ′(E)e−β0E

where W ′(E) is an estimate for the true density W (E) of states and Z(β0) is the partition
function of the system.

As we know, the density of states does not change with temperature. Therefore we
can extract the approximate density of states

(4.4) W ′(E) =
Z(β0)

N
H(E)eβ0E

By using W ′(E) to approximate the the true density of states W (E), we can relate
the histogram measured at β0 to estimate the probability distribution P(E;β ) for other
arbitrary β , namely

(4.5) P(E;β ) =
H(E)e∆βE

∑H(E)e∆βE

where ∆β = (β0−β ).

From a knowledge of the probability distribution at β , the average value of other
quantities are easy to calculate. Thus, the heat capacity, entropy and free energy can be
obtained at β .

In our p-value models, the range of the energy is undetermined and the number of
possible energy values are not known. In this case, instead of keeping a simple list of all
energies, we can take a bin-count of the energy to accumulate the histogram. The finer
the bins, the better the result, but the slower the calculation, and more importantly, many
bins may become empty which results in high variance of the estimation. Therefore,
there exists a trade-off between the bin width and the calculation efficiency and computer
memory.

Figure 4.12 shows the estimated energies and the heat capacity per site around kT =
1.05 for a initially tilted (111) surface with p = 0.9. We observe smooth curves for both
quantities, which can be used for studying a transition.

Because of statistical errors, the estimation for other temperatures works well only
for small temperature differences. The errors become significant for large temperature
differences, especially for high temperatures.
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(a) Estimated energy per area vs. kBT (b) Estimated heat capacity per area vs. kBT

Figure 4.12: Estimated energy and heat capacity per projected site around kBT = 1.05 for
a initially tilted (111) surface for p = 0.9
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Chapter 5

Configurational Entropy

5.1 Configurational Entropy

In statistical mechanics, configurational entropy is the portion of a system’s entropy that is
related to the position of its constituent particles rather than to their velocity, momentum
and internal structure. It is physically related to the number of ways of arranging all the
particles of the system while maintaining some overall set of specified rules and system
properties. Configurational entropy is also known as macroscopic entropy or conforma-
tional entropy in the study of macromolecules. In general, configurational entropy is a
fundamental aspect of statistical thermodynamics.

Configurational entropy is related to the number of possible configurations by Boltz-
mann’s entropy formula

(5.1) S = kB lnW,

where kB is the Boltzmann constant and W is the number of possible configurations.

The mathematical field of combinatorics, and in particular the mathematics of com-
binations and permutations, is important in the calculation of configurational entropy.
In particular, this field of mathematics offers formalized approaches for calculating the
number of ways of choosing or arranging discrete objects, in our case of interest, atoms
or molecules. However, it is important to note that the positions of molecules are not,
strictly speaking, discrete (classical, not quantum). Thus a variety of approximations may
be used in discretizing a system to allow for a purely combinatorial approach. Alter-
natively, integral methods may be used in some cases to work directly with continuous
position functions.

33
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5.2 Theoretical Derivation for Two Dimensional Simple
Lattice

For a system in equilibrium at temperature T , we propose an associated configurational
entropy for a 1-D surface.

For a particular simulation, denote by hi the number of steps of height i and by l j
the number of facets of length j. Then the two dimensional configurational entropy is
given empirically by

(5.2) Se/kB ≡Se = lnΩe

where

(5.3) Ωe =
(h1 + · · ·+hi + · · ·+hh)!

h1! · · ·hi! · · ·hh!
·
(l1 + · · ·+ l j + · · ·+ ll)!

l1! · · · l j! · · · ll!

Theoretically, for a system of height H and length L, to reach the right side of a
staircase structure from the left requires L horizontal moves and H vertical moves, each
of one unit. All staircase structures are obtained by making all (H + L)! permutations
of H + L moves and dividing by the number H!L! of indistinguished moves. Thus the
number of possible configurations is:

(5.4) Ω =
(H +L)!

H!L!

By using the first two terms of Stirling’s approximation, we obtain the theoretical
entropy

(5.5) S = (H +L) ln(H +L)−H lnH−L lnL

If equation 5.5 is used, the entropy per unit length can be written

(5.6)
S

L
=−H

L
ln(

H
H +L

)− ln(
L

H +L
),

and depends only on the ratio H/L, which is the average slope of the surface. Therefore,
Eq. 5.6 gives the theoretical entropy per unit length for a infinite system.

If we use a more accurate approximation, we obtain the theoretical entropy of a
arbitrary large system

(5.7) S = (H +L) ln(H +L)−H lnH−L lnL+
1
2

ln(H +L)− 1
2

lnH− 1
2

lnL− ln
√

2π
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Therefore, the entropy per unit length S
L depends explicitly on L and not just the

ratio H/L, as shown in the Eq. 5.8.

(5.8)
S

L
=−H

L
ln(

H
H +L

)− ln(
L

H +L
)+

1
2L

ln(
H +L

H
)− 1

2L
ln2πL

5.3 Comparison with Entropy from Simulation Results

In order to investigate the consistency of the above empirical entropy Se with the entropy
S , a comparison is needed for various surface configurations. A consistent measurement
is the entropy per unit system length for various configurations, so the comparison is
meaningful for different system sizes.

Simulations are carried out for various system sizes and slopes. The average empir-
ical entropy per unit length over 10000 runs each for each slope and length are compared
to the theoretical results for a infinitely large system and illustrated in Figure 5.1. Mean-
while, the theoretical entropy for the same systems are also compared to the infinitely
large system and illustrated in Figure 5.2. The theoretical entropy per unit length are
much closer to the one for the infinitely large system. As the system sizes get larger,
the empirical entropies get closer to theoretical entropy introduced above. This is strong
evidenace that supports the correctness of our theoretical interpretation of the configura-
tional entropy. As the slope of the surface gets steeper, the entropy gets larger as well.
This is because a surface with a steeper slope has more possible configurations. We fur-
ther check to see if the use of Eq5.8 make any significant change in the theoretical entropy.
Results are present in Figure 5.2 and make very little difference compared to the spread
of empirical entropy per unit length.

Figure 5.1: Theoretical entropy per unit length based on Eq. 5.6 and empirical entropy
per unit length vs. surface slopes for different system sizes
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Figure 5.2: Theoretical entropy per unit length based on Eq. 5.6 and theoretical entropy
per unit length based on Eq. 5.8 vs. surface slopes for different system sizes

It is worth mentioning that this consistency of the theoretical and empirical entropy
is true at low temperatures. In this case, our theoretical formula describes the same situa-
tion as the simulation. At high temperatures, the surface would have holes and adatoms,
not just a staircase structure.

The above analysis is based on a one dimensional surface but it can be extended to
a three dimensional dimensional surface. The result is similar and the comparison with
simulation is still good for low temperatures. For higher temperatures where the surface
gets rough, the corresponding formula would not be suitable.

5.4 Height and Length Distribution

To get the distribution of height and length, we must maximize the entropy with the con-
straint of constant total height and length. By using Stirling’s approximation, we obtain

S = (∑
i

hi) ln(∑
i

hi)−∑
i
(hi lnhi)+(∑

j
l j) ln(∑

j
l j)−∑

j
(l j ln l j)(5.9)

We must maximize S with constraints ∑i hi · i = H, ∑ j l j · j = L.

By using Lagrange multipliers λ1 and λ2, we obtain
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∂

∂hi

[
S−λ1(∑

i
hi · i)−λ2(∑

j
l j · j)

]
= 0

⇒ ln(∑
i

hi)− lnhi−λ1 · i = 0

⇒ hi = (∑
i

hi)e−λ1·i(5.10)

∂

∂ l j

[
S−λ1(∑

i
hi · i)−λ2(∑

j
l j · j)

]
= 0

⇒ ln(∑
j

l j)− ln l j−λ2 · j = 0

⇒ l j = (∑
j

l j)e−λ2· j(5.11)

We see that both the height and length obey exponential distributions. To verify
these results, we get the height and length distributions solely from the geometry of the
system by means of a technique illustrated in Figure 5.3.

Figure 5.3: Inserting a step into a smaller system to form a larger system

For a system of length L and height H, we could have a step with L+1 edges, but
we also have a periodic boundary condition. Therefore, we do not allow a step at the last
edge. The number of possible configurations will be CL−1

L−1+H = (L−1+H)!/(L−1)!H!

We proceed to calculate the probability of a step of height n at a given site, namely,
(possible configurations with step of height n at a given site)/(all possible configurations)
[45].
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A configuration with step of height n at a given site is equivalent to inserting a 1×n
step into a (L−1)× (H−n) configuration. We denote possible configurations with step
of height n at a given site by CL−2

L−2+H−n.

The probability of a step of height n at a given site: P(n) =CL−2
L−2+H−n/CL−1

L−1+H .

We also know that:

Cr
r +Cr

r+1 + · · ·+Cr
n =Cr+1

n+1
H

∑
n=0

CL−2
L−2+H−n =CL−2

L−2 +CL−2
L−1 + · · ·+CL−2

L−2+H =CL−1
L−1+H

H

∑
n=0

P(n) =CL−2
L−2/CL−1

L−1+H +CL−2
L−1/CL−1

L−1+H + · · ·+CL−2
L−2+H/CL−1

L−1+H = 1(5.12)

The expected number of height n is L ·P(n). Thus we can also verify that ∑
H
n=0 L ·

P(n) ·n = H, specifically CL−2
L−2+H−n ·n =CL−1

L−1+H ·H/L =CL
L−1+H .

5.5 Comparison of Theoretical and Simulation Distribu-
tions

To test the theoretical distribution of heights and lengths, simulations are carried out for
various slopes for relatively large system sizes. The system size chosen here is 200, which
gives us a significant range of distribution and minimizes the size effect due to periodic
boundary conditions. The empirical distribution is fitted to an exponential distribution to
verify the our results of exponential distributed height and length distributions.

Figure 5.4 shows results for simulation of a one dimensional surface with system
size 200 and slope 1, averaged over 100 runs. We see that the average value from the
simulation is in good agreement with the expected value from the theoretical prediction.
More important, the fitted exponential distribution is in good agreement with the simula-
tion. Since the slope is 1, the height and length distribution should be equivalent. This
has been verified from the simulation as well. The fitted parameters in height and length
distribution are almost identical.

Figure 5.5 shows results for simulation of a one dimensional surface with system
size 200 and slope 1/2, averaged over 100 runs. Again, we see that the average count
from the simulation is in good agreement with the expected count from the theoretical
predictions. The fitted exponential distribution is consistent with the simulation. Since
the slope is 1/2, the height and length distributions should be different. This is verified
from the simulation as well. There are more larger lengths than higher heights and the
distribution for length distribution covers a broader range.
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(a) Heights Count

(b) Lengths Count

Figure 5.4: Average height and length count on a one dimensional surface with system
size 200 and slope 1, averaged over 100 runs

Figure 5.6 shows the simulation of a one dimensional surface with system size 200
and slope 1/4, averaged 100 runs. Again, we can see that the average count from the sim-
ulation is in good agreement with the expected count from the theoretical predictions. The
fitted exponential distribution is in good agreement with the simulation. Since the slope
is 1/2, the height and length distribution should be different. This is verified from the
simulation as well. There are even larger lengths than higher heights and the distribution
for length distribution covers an even larger range.

There is a trade-off between the height and length distribution for different slopes.
If the height distribution is confined by the configuration, then the length distribution
can cover a broader range. If the height distribution covers a broader range, the length
distribution will be confined to a narrow range.

Note again that the height and length distributions are only valid at low temperatures
where the surface configuration has a staircase structure.
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(a) Heights Count

(b) Lengths Count

Figure 5.5: Average height and length count on a one dimensional surface with length
size 200 and slope 1/2, averaged over 100 runs

5.6 Size effect of height and length distributions

As shown above, the theoretical and simulated height and length distributions are consis-
tent. What is what happens to the distribution when the system size changes?

We approach this problem by just tracking the probability of the height 0 steps P(0)
and height 1 steps P(1) and varying the system sizes and the slopes of one dimensional
surfaces.

In Figure 5.7, P(0) and P(1) obtained from simulation results are shown as a func-
tion of system sizes on various slopes. The behavior for P(0) and P(1) for various slopes
are similar. The values for P(0) increase very fast for small system sizes and then grow
very slowly. The values for P(1) decrease very fast for small system sizes and then change
very slowly again. For small system sizes, the distribution is confined by the size; when
the size increases to a certain value, the size effect is limited and the distribution converges
to values for infinite system sizes.



5.6. SIZE EFFECT OF HEIGHT AND LENGTH DISTRIBUTIONS 41

(a) Heights Count

(b) Lengths Count

Figure 5.6: Average height and length count on a one dimensional surface with length
200 and slope 1/4 averaged over 100 runs
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(a) P(0) vs. L on slope = 1 surface (b) P(1) vs. L on slope = 1 surface

(c) P(0) vs. L on slope = 1/2 surface (d) P(1) vs. L on slope = 1/2 surface

(e) P(0) vs. L on slope = 1/4 surface (f) P(1) vs. L on slope = 1/4 surface

Figure 5.7: The probability of height 0 steps P(0) and height 1 steps P(1) for various
system sizes and for various slopes.



Chapter 6

Simulation of Two Dimensional
Surfaces

In order to characterize quantitatively a crystal surface, one natural measurement could
be the variance of the surface height, which is the deviation of the surface from the initial
surface,

var(h) =
〈

∑
N
i, j(hi j−hinit

i j )2

N2

〉
· cosα

where N is the edge length of a square system, < ·> denotes the average value calculated
from simulation data, and α denotes the angle between the tilted surface with respect to
the corresponding (100) surface. Therefore, N2 is the projected area size on the (100)
surface, and N2/cosα is the area of the original tilted surface.

Average energy < E > per area and heat capacity cv per area (here, averaged on a
N by N matrix) are also calculated:

cv =
<E2>−<E>2

kBT 2·N2 · cosα .

Here, E is the total system energy calculated for the Hamiltonian H given by

H = ∑(i, j),(i′, j′) are NN′s
∣∣hi j−hi′ j′

∣∣p
where (i, j) and (i′, j′) are nearest neighbors and hi j is the height of the surface at site
(i, j).

The simulations are carried out from high temperatures to low temperatures. From
a physical point of view, this corresponds to an annealing process, typical of experiments.
From the point of view of simulation, this process helps the simulation to reach an equi-
librium state [43].
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6.1 Initially Flat (100) Surface

It is usual in the statistical mechanics literature to indicate critical roughening tempera-
tures as calculated for the Ising model. This is a good starting point for our simulations
with a flat surface and enables comparison with SOS results [44].

The first crystal surface studied is a simple cubic (100) surface. Monte Carlo sim-
ulations are carried out for p = 0.9, 1, and 1.1 at temperature ranges between kBT = 0.8
to kBT = 1.5 for system length sizes N = 4,8,16,32. A total of 5000 simulation sweeps
were done for each case.

6.1.1 p = 1

For p = 1, the variance of height is plotted as a function of temperature in Figure 6.1a. At
low temperatures, the variance of height is small and the values for various system sizes
are close because, at those temperatures, the surface does not vary a lot from the initial
(100) surface. At high temperatures, the surface roughens and the variance of height
is different for various system sizes. In order to better understand this size effect, the
variance of height is plotted as a function of lnN in Figure 6.1b. From the plot, there
is a clear linear relation between the variance of height and lnN, which represents the
existence of a power law for the size effect.

(a) var(h) vs. kBT for various sizes

var(h)

kBT

(b) var(h) vs. lnN for various temperatures

var(h)

lnN

Figure 6.1: Variance of height for p = 1 for an initially flat (100) surface (a)as a function
of temperature for various system sizes N = 4,8,16,32, (b)as a function of lnN for various
kBT

The heat capacity per area is plotted in Figure 6.2. The heat capacities for all system
sizes have peaks around kBT = 1.1, which suggests that a roughening transition [45–
47] occurs at that temperature. The plots of surface morphology below and above this
temperature also give evidence of this transition. Figure 6.2 also shows that the peak gets
higher when system size gets larger.
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cv

kBT

Figure 6.2: cv vs. kBT for various system sizes N: heat capacity per area as a function of
temperature for p = 1 for an initially flat (1 0 0) surface

6.1.2 p = 0.9

For p = 0.9, the variance of height is plotted as a function of temperature in Figure 6.3a.
The variance of height is qualitatively similar to the p = 1 case, except the values are
larger for p = 0.9. The variance of height is plotted as a function of lnN in Figure 6.3b
and the slopes are also larger than that for p = 1.

(a) var(h) vs. kBT for various sizes

var(h)

kBT

(b) var(h) vs. lnN for various temperatures

var(h)

lnN

Figure 6.3: Variance of height for p= 0.9 for an initially flat (100) surface (a)as a function
of temperature for various system sizes N = 4,8,16,32, (b)as a function of lnN for various
kBT

The heat capacity per area is plotted in Figure 6.4. The heat capacities for all system
sizes again have peaks around kBT = 1.1 which indicates that a roughening transition
occurs at that temperature [48]. The peak gets higher and sharper as the system size
increases. Plots of surface morphology below and above this transition temperature also
gives evidence of this transition. Figure 6.4 also shows that the peak for each system size
is larger than for p = 1.
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cv

kBT

Figure 6.4: cv vs. kBT f or various sizes: heat capacity per area as a function of tempera-
ture for p = 0.9 for an initially flat (1 0 0) surface for systems of various length sizes

6.1.3 p = 1.1

For p = 1.1, the variance of height is plotted as a function of temperature in Figure 6.5a.
The variance of height is similar to the that for p = 0.9 and p = 1, but is the smallest
among all three cases. The variance of height is plotted as a function of lnN in Figure
6.5b; the slopes are also the smallest of the three cases.

(a) var(h) vs. kBT for various length sizes

var(h)

kBT

(b) var(h) vs. lnN for various temperatures

var(h)

lnN

Figure 6.5: Variance of height for p= 1.1 for an initially flat (100) surface (a)as a function
of temperature for various system sizes N = 4,8,16,32, (b)as a function of lnN for various
kBT

The heat capacity per area is also plotted in Figure 6.6. The heat capacity for all
system sizes have peaks around kBT = 1.1, which indicates that a roughening transition
occurs at that temperature. Plots of surface morphology below and above this transition
temperature also give evidence of this transition. The peak for each system size is the
smaller than for p = 0.9 and p = 1.

All three models behave similarly with respect to the variance of height, and the
heat capacity per area. The variance of height increases as temperature increases, and the
larger the system size, the faster it increases with T . The variance of height increases
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cv

kBT

Figure 6.6: cv vs. kBT for various sizes: Heat capacity per area as a function of tempera-
ture for p = 1.1 for an initially flat (1 0 0) surface for various length sizes

linearly with the logarithm of the system size.

The effect of p-value can also be seen by comparing the variance of height and the
peak in the heat capacity [49]. The larger the p-value, the smaller the variance of height,
and the lower the peak in the heat capacity. For p values smaller than 1, the model favors
corners, which gives a higher value in variance of height; for p values bigger than 1, the
model disfavors corners, which gives a lower value in variance of height.

6.1.4 High Temperature Behavior of Heat Capacity

At high temperatures, the effect of various p-values is not dominating. All three models
behave similarly and only differ slightly in values. The heat capacity at high temperatures
is proportional to 1/p, as shown below.

The Hamiltonian is:

H = ∑(i, j),(i′, j′) are NN′s
∣∣hi j−hi′ j′

∣∣p
At high temperature, the summation in the partition function can be converted to

integral:

Z =
∫
{hi j} e−β ∑|hi j−hi′ j′|

p

dhA

where A = N2 is the total number of sites over the surface.

Let xi j = β 1/p ·hi j

Then,

Z =
∫
{hi j}β−A/pe∑|xi j−xi′ j′|

p

dxA = β−A/p · const
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The average energy is:

< E > = − ∂

∂β
lnZ = A/p · kBT

Therefore

⇒ cv/AkB = 1/p; high temperatures.

In order to test this high temperature behavior, simulations are carried out for vari-
ous p values at high temperatures. The heat capacity at various p values at kBT = 3 and
kBT = 5 are plotted in Figure 6.7. By fitting the data at various p values, a 1/p behavior
is clearly evident at high temperatures.

According to the derivation above, this general behavior does not depend on p or
the initial surface configurations. Later, we showed that the results from other surface
configurations indicate such a behavior at high temperatures.

(a) cv vs. 1/p, kBT = 3.0

cv

1/p

(b) cv vs. 1/p, kBT = 5.0

cv

1/p

Figure 6.7: Heat capacity cv vs. 1/p values at high temperatures for an initially flat surface

6.2 Initially Tilted (111)Surface

For an initially flat (1 0 0) surface, various p values do not effect the properties signifi-
cantly. Here, the same model as above is extended to an initially tilted surface with respect
to the close-packed (100) surface, to see the effect of various p values. The initial (111)
surface is plotted in Figure 6.8.

The simulations are the same as above, same p values (1, 0.9, 1.1) and same system
length sizes (4, 8, 16, 32). The simulations are carried out in two temperature regions,
one is the low temperature region where potential transition may occur, and the other is at
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Figure 6.8: Initial configuration of a small (111) surface

high temperatures. In both regions, the variance of height, energy per area, heat capacity
per area and the acceptance ratio of the simulation are calculated.

The first tilted surface studied is the (111) surface. The initial condition is a surface
parallel to (111) and contains only of monotonic steps. It can also be thought of as a plane
consists of kink sites. This tilted surface is important and interesting in both theoretical
and experimental studies. This is also a high-symmetry surface that might give general
and meaningful results for other tilted surfaces.

6.2.1 p = 1

The case p = 1 corresponds to the common solid-on-solid model and the results are plot-
ted in Figure 6.9. From these plots, we see at temperatures lower than kBT = 0.5 that
the variance of height is almost constant but has different values due to the size effect.
The larger the system size, the higher are the values. The energy is also constant so the
heat capacity is zero. The acceptance ratios of the process at lower temperatures are also
constant because, for the p = 1 model, atoms at the surface can rearrange at the many
kink sites where there is no energy cost. This rearrangement is based on the initial (111)
configuration and only the system size can change the values correspondingly. At higher
temperatures, the surface atoms would have enough energy to go beyond the limitation
of the surface configuration to form hill-and-valley structures, so the surface gets rougher
and rougher. Even at higher temperatures, the energy, the heat capacity and the acceptance
ratio have similar values for various system sizes.

Figure 6.10 shows the snapshots of surface at kBT = 0.1 and kBT = 1.0. From the
figure, we see that there is no qualitative changes in the surface configuration, but the
surface gets somewhat rougher at the higher temperature.
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(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Acceptance ratio vs. kBT

Accept. ratio

kBT

Figure 6.9: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at low temperatures for p = 1 on an initial (111) surface

(a) kBT = 0.1 p = 1 (b) kBT = 1.0 p = 1

Figure 6.10: Snapshots of an initial (111) surface at kBT = 0.1 and kBT = 1.0 for p = 1.
The numbers on the right denote height above the (100) surface.

6.2.2 p = 0.9

Results for p = 0.9 are plotted in Figure 6.11. This model favors large steps and big
facets, but for the initially tilted surface, it is much easier to add atoms to or remove
atoms from the many kink sites than for a flat surface. Therefore, at low temperatures,
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(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Acceptance ratio vs. kBT

Accept. ratio

kBT

Figure 6.11: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at low temperatures for p = 0.9 on an initial (111) surface

surface contains big steps and has a very large variance of height. The variance of surface
height in the plot is larger and flatter as the system size gets larger because, the system size
gets larger, facets can get larger and steps can get higher; this results in higher variance of
height and lower energy per area for larger system sizes. In the faceted state, the variance
of height and surface energy stay relatively constant, the heat capacity is almost zero,
and the acceptance ratio is very low. This means that there is not much happening on
the surface once the surface is locked into the faceted state; this becomes more obvious
for larger system sizes. As the temperature gets higher, the surface atoms get enough
energy to rearrange to get rid of the faceted state. Therefore, a transition from the faceted
surface to a macroscopically smooth surface occurs as the temperature gets higher. This
phenomenon is quite different from the typical roughening transition, and we could call
it a ”smoothing transition”, although microscopically the surface becomes rougher. The
transition from faceted to non-faceted occurs at different temperatures for various system
sizes; the transition temperature shifts to higher values as the system size gets larger, and
the transition is more obvious for larger system sizes. Associated with this transition,
there is also a transition in the energy and a peak in the heat capacity becomes apparent.
Especially for larger system sizes, a sharp transition is observed in variance of height,
energy per area and acceptance ratio, and a sharp peak is observed in the heat capacity.
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Snapshots of surface at kBT = 1.0 and kBT = 0.1 are shown in Figure 6.12. From
the figure, we can see that there are large facets and steps at lower temperatures and the
faceted surface gets smooth and roughened as the temperature gets higher.

(a) kBT = 0.1 p = 0.9 (b) kBT = 1.0 p = 0.9

Figure 6.12: Snapshots of an initial (111) surface at kBT = 0.1 and kBT = 1.0 for p = 0.9.
The numbers on the right denote height above the (100) surface.

6.2.3 p=1.1

Results for p = 1.1 are plotted in Figure 6.13. The model disfavors large steps and big
facets; therefore, the surface is smooth at low temperatures and roughens microscopically
as the temperature increases. At temperatures lower than kBT = 0.05, the variance of
height is almost zero, the energy per area is close to 2 which is a indication of the staying
at the initial surface, and the acceptance ratio is nearly zero. At these low temperatures,
the surface is almost the initial (111) surface without any significant changes. As the
temperature gets a little bit higher, the surface atoms begin to rearrange to form rougher
surfaces. There seems to be a transition from a smooth tilted surface to a roughened
surface around kBT = 0.1, and the sharp peak in the heat capacity is a sign of such a
transition. Above the transition temperature kBT = 0.1, the variance of height increases
fast and increases with system size. For the energy per area, heat capacity and acceptance
ratio the values seem to be independent of system sizes. For p = 1.1, the variance of
height and the energy per area is not increasing as fast as that in the p = 1 case.

Snapshots of the surface at kBT = 0.1 and kBT = 1.0 are shown in Figure 6.14.
We see that the surface configurations are similar to the p = 1 case but smoother at low
temperatures and not very rough at high temperatures.

For both the p = 0.9 and p = 1.1 cases, the existence of a peak in the cv plot at low
temperatures suggests a likely transition. The p = 0.9 case is likely to be a “smoothing
transition”, while the p = 1.1 case is likely to be a microscopic “roughening transition”.
The behavior of the p = 1 case is in between these two cases.
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(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Acceptance ratio vs. kBT

Accept. ratio

kBT

Figure 6.13: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at low temperatures for p = 1.1 on the (111) surface

(a) kBT = 0.1 p = 1.1 (b) kBT = 1.0 p = 1.1

Figure 6.14: Snapshots of an initial (111) surface at kBT = 0.1 and kBT = 1.0 for p = 1.1.
The numbers on the right denote height above the (100) surface.

Size Effect

From the calculations above, we see that the variance of height shows a size effect for
various system sizes [50].

For p = 0.9, var(h)/N2 is plotted as function of temperature for each of the system
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sizes in Figure 6.15, where N is the edge length of the system. As system size gets larger,
var(h)/N2 seems to saturate and the transition region from faceted to non-faceted seems
to be narrower as system size increases.

var(h)/N2

kBT

Figure 6.15: var(h)/N2 vs. kBT for p = 0.9 on an initial (111) surface at various temper-
atures

For p = 1 and p = 1.1, var(h) is plotted as a function of lnN at various temperatures
in Figure 6.16, where N is the edge length of the system. In both cases, there is a linear
relation between these two quantities. This linear relation has a unique slope at various
temperatures in the p = 1 case, while the slope gets bigger as temperatures increases in
the p = 1.1 case. From this size effect, we can predict the behavior for larger system
sizes. As we discussed above, the faceted state at low temperatures in the p = 1.1 case is
structure-related and temperature dependent and this results in different slopes for various
temperatures.

(a) var(h) vs. lnN for p = 1

var(h)

lnN

(b) var(h) vs. lnN for p = 1.1

var(h)

lnN

Figure 6.16: var(h) vs. lnN for p = 1 and p = 1.1 on an initial (111) surface

6.2.4 High Temperatures

At high temperatures, the surface would be microscopically rough and no transition is
expected for all three models. The effect of various p values is dominated by temperature
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and all three models behave similarly.

For p = 1, the high temperature results are plotted in Figure 6.17. By fitting the
data, one can see that the variance of height increases as a function of temperature for all
system sizes. The larger the system size, the faster the variance increases. The energy
per area increases linearly as a function of temperature and the values fro various system
sizes are close. The heat capacity per area seems to converge to 1/p, which is 1 in this
case, at high temperatures for all system sizes, as expected as in the discussion of the high
temperature behavior on a initially flat surface earlier.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Acceptance ratio vs. kBT

Accept. ratio

kBT

Figure 6.17: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at high temperatures for p = 1 on an initial (111) surface

For p = 0.9, the high temperature results are plotted in Figure 6.18 and resemble
those for p = 1. The differences are: the variance of height and energy per area increases
faster, the acceptance ratio is higher and the heat capacity seems to converge to 1/p =
1/0.9 = 1.1.

For p = 1.1, the high temperature results are plotted in Figure 6.19. The results are
similar to p = 1 and p = 0.9. The variance of height and energy site increases slowest
of all three models and the acceptance ratios are the smallest as well. The heat capacity
seems to converge to 1/p = 1/1.1 = 0.9.
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(a) var(h) vs. kBT
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(b) Energy vs. kBT
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(d) Acceptance ratio vs. kBT
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Figure 6.18: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at high temperatures for p = 0.9 on an initial (111) surface

6.3 Initially Tilted (112) Surface

The (112) surface is similar to the (111) surface but has shallower slopes in both direc-
tions. The same models are examined for an initial (112) surface to see whether some-
thing new or different happens. The initial (112) surface is plotted in Figure 6.20.

6.3.1 p = 1

The results are plotted in Figure 6.21. The plots are qualitatively similar to the (111) case
and only differ in values. The energy per projected site is exactly half of the previous
values, which is true since the slopes in both directions are just half of that on the (111)
surface. The values of other quantities are all smaller than for (111) surface. And at
lower temperatures, the values of the variance of height and the acceptance ratios are
approximately half of those for the (111) surface.

Snapshots of the surface at kBT = 0.1 and kBT = 1.0 are shown in Figure 6.22. From
the figure we could see that there is no qualitative changes in the surface configurations,
but the surface gets rougher as the temperature gets higher.
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(a) var(h) vs. kBT
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(b) Energy vs. kBT
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(c) cv vs. kBT
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(d) Acceptance ratio vs. kBT
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Figure 6.19: Variance of height, energy per area, heat capacity per area and the acceptance
ratio at high temperatures for p = 1.1 on an initial (111) surface

Figure 6.20: Initial configuration of a small (112) surface

6.3.2 p = 0.9

The results are plotted in Figure 6.23. A macroscopic “smoothing transition” is still ob-
served, similar to the (111) surface. The variance of height at lower temperatures is
approximately a quarter of that on the (111) surface, the energy per area at lower temper-
atures is approximately half of that on the (111) surface, and the peak in the heat capacity
is also smaller.
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(a) var(h) vs. kBT
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(b) Energy vs. kBT
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cv

kBT

(d) Acceptance ratio vs. kBT
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Figure 6.21: Variance of height, energy per area, heat capacity per area and the acceptance
ratio for p = 1 on an initial (112) surface

(a) kBT = 0.1 p = 1 (b) kBT = 1.0 p = 1

Figure 6.22: Snapshots of an initial (112) surface at kBT = 0.1 and kBT = 1.0 for p = 1.
The numbers on the right denote height above the (100) surface.

Snapshots of the surface at kBT = 0.1 and kBT = 1.0 are shown in Figure 6.24. We
see that there are large facets and steps at lower temperatures and the faceted surface gets
macroscopically smooth and microscopically roughened as the temperature gets higher.



6.3. INITIALLY TILTED (112) SURFACE 59

(a) var(h) vs. kBT
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(b) Energy vs. kBT
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Figure 6.23: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 0.9 on an initial (112) surface

(a) kBT = 0.1 p = 0.9 (b) kBT = 1.0 p = 0.9

Figure 6.24: Snapshots of an initial (112) surface at kBT = 0.1 and kBT = 1.0 for p = 0.9.
The numbers on the right denote height above the (100) surface.

6.3.3 p = 1.1

Results are plotted in Figure 6.25. The plots still indicate similar characteristics as those
for the (111) surface. At temperatures lower than kBT = 0.05, the (111) surface does not
change a lot from the initial configuration since adding atoms to or removing atoms from
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this surface would increase the surface energy; however, the (112) surface does allow a
few atoms to be added or removed without increasing the surface energy. Therefore, the
variance of height at these low temperatures has different values for various system sizes.
The transition from a smooth tilted surface to a roughened tilted surface is not as obvious
as for the (111) surface. The peak in the heat capacity therefore is not as sharp. The
values of variance of height, energy per area and acceptance ratio at higher temperatures
are approximately half of the values for the (111) surface.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Acceptance ratio vs. kBT
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Figure 6.25: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 1.1 on an initial (112) surface

Snapshots of the surface at kBT = 0.1 and kBT = 1.0 are shown in Figure 6.26.
We see that the surface configuration is similar to the p = 1 case but smoother at low
temperatures and not very rough at high temperatures.

6.4 Initially Tilted (110) Surface

The (110) surface is studied since it is tilted only in one direction and is studied for
p = 1, 0.9 and 1.1. The same model is applied to an initial (110) surface to see whether
something new or different would happen. The initial (110) surface is plotted in Figure
6.27.
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(a) kBT = 0.1 p = 1.1 (b) kBT = 1.0 p = 1.1

Figure 6.26: Snapshots of an initial (112) surface at kBT = 0.1 and kBT = 1.0 for p = 1.1.
The numbers on the right denote height above the (100) surface.

Figure 6.27: Initial configuration of a small (110) surface

6.4.1 p = 1

The results are plotted in Figure 6.28. For the p = 1 case, the fundamental trends in
variance of height and heat capacity are more complicated than the other two surface
configurations above. The variance of height in low temperatures behaves differently. We
observed that the variance of height is larger compared to higher temperatures, which is
not seen for the (111) and (112) surfaces. The underlying reason is that the initial (110)
surface configuration consists of ledge sites but not kink sites, which are present on the
initial (111) and (112) surfaces. For the (111) and (112) surfaces at low temperatures,
there are enough kink sites to add or remove atoms; therefore, significant large steps are
hard to form and the surface only fluctuates thermodynamically. For the (110) surface,
the only possible way to nucleate a step in a ledge, which provides kinks and growth of
that ledge, and then nucleates another step, etc. As a result, it is possible to form larger
steps, so the variance of height also fluctuates accordingly, as seen in Figure 6.28. As
the system sizes gets larger, the variance of height gets larger and the fluctuation also
becomes more obvious.

In order to verify the fluctuation of the surface at low temperatures, we carried out
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(a) var(h) vs. kBT
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Figure 6.28: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 1 on an initial (110) surface

simulation at kB = 0.3 for a surface with system length size 32. The results are shown
in Figure 6.29. We observed that the variance of height, the heat capacity per area and
acceptance ratio all fluctuates as simulation proceeds and the energy keeps constant as
expected.

Snapshots of the surface at kBT = 0.4 and kBT = 1.0 are shown in Figure 6.30. At
low temperatures, the surface has a slight hill-and-valley structure on the surface. What
is important is that the rows are roughened collectively. Although still seems smooth, this
morphology results in big values of variance of height. At high temperatures, the surface
is microscopically roughened overall and the hill-and-valley structure no longer exists.

6.4.2 p = 0.9

The results are plotted in Figure 6.31. For the p = 0.9 case, the characteristics are similar:
there are big facets and large steps at low temperatures and the surface smooths out at
high temperatures; the clear peak in the heat capacity and the jump in variance of height
suggests a transition. Such transitions occur at higher temperatures (kBT ≈ 0.7)compared
to the (111) surface (kBT ≈ 0.45)and the peak values are smaller.
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(a) var(h) vs. sweeps
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Figure 6.29: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 1 on an initial (110) surface, as a function of simulation sweeps

(a) kBT = 0.4 p = 1 (b) kBT = 1.0 p = 1

Figure 6.30: Snapshots of an initial (110) surface at kBT = 0.4 and kBT = 1.0 for p = 1.
The numbers on the right denote height above the (100) surface.

Snapshots of the surface at kBT = 0.4 and kBT = 1.0 are shown in Figure 6.32.
From the figure, we see that there are big facets and big steps at lower temperatures and
the faceted surface becomes “macroscopically smooth” and “microscopically roughened”
as the temperature gets higher.
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(a) var(h) vs. kBT
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Figure 6.31: Variance of height, energy per area, heat capacity per area for p = 0.9 on an
initial (110) surface

(a) kBT = 0.4 p = 0.9 (b) kBT = 1.0 p = 0.9

Figure 6.32: Snapshots of an initial (110) surface at kBT = 0.4 and kBT = 1.0 for p = 0.9.
The numbers on the right denote height above the (100) surface.

6.4.3 p=1.1

The results are plotted in Figure 6.33. For p = 1.1 case, the overall trends are still the
same as for (111) and (112) surfaces but the peak in heat is not as obvious as before; the
transition region is not that sharp and is wider in range. And the variance of height seems
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to show a fluctuation at low temperatures. The energy and acceptance ratios in (110)
surface are really close to those for the (111) surface.

(a) var(h) vs. kBT
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(b) Energy vs. kBT
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(d) Acceptance ratio vs. kBT
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Figure 6.33: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 1.1 on an initial (110) surface

Snapshots of the surface at kBT = 0.4 and kBT = 1.0 are shown in Figure 6.34. At
low temperatures, the surface does not change a lot from the initial (110) surface and is
very smooth. At high temperatures, the surface is roughened as before.

6.5 Finite Size Scaling Analysis

From the calculations above, we see that the variance of height shows a size effect for
various system sizes.

For p = 0.9, var(h)/N2 is plotted as function of temperature for each of the system
size in Figure 6.35. As the system size gets larger, var(h)/N2 seems to saturates at lower
temperatures and the transition region from a faceted to a non-faceted surface seems to be
narrower as the system size increases.

For p = 1 and p = 1.1, var(h) is plotted as a function of lnN in Figure 6.36, where
N is the edge length of the system. In both cases, there is a linear relation between these
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(a) kBT = 0.4 p = 1.1 (b) kBT = 1.0 p = 1.1

Figure 6.34: Snapshots of an initial (110) surface at kBT = 0.4 and kBT = 1.0 for p = 1.1.
The numbers on the right denote height above the (100) surface.

var(h)/N2

kBT

Figure 6.35: var(h)/N2 vs. kBT for p = 0.9 on an initial (112) surface

two parameters; the slope gets larger as temperatures increases.

(a) var(h) vs. lnN for p = 1

var(h)

lnN

(b) var(h) vs. lnN for p = 1.1

var(h)

lnN

Figure 6.36: var(h) vs. lnN for p = 1 and p = 1.1 on an initial (112) surface
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6.6 Other p Values

As we saw above, small changes in p values result in significant changes in the behavior
of the surface configurations. Besides the three values we investigated above, some other
values are also studied.

In Figure 6.37, the variance of height, energy per area, specific heat capacity and
the acceptance ratio for p = 1.5 is plotted. The behavior is very similar to the results in
p = 1.1 model. The difference is that the peak at low temperature is more obvious and
the peak temperature moves to a higher value.
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Figure 6.37: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 1.5 on an initial (111) surface

In Figure 6.38, the variance of height, the energy per area, the heat capacity and
the acceptance ratio for p = 2 is plotted. The biggest difference is that the peak is even
more obvious and the peak moves to the higher end. The reason is that the model with
p values larger than one disfavors high steps; the bigger the p values, the more difficult
to have high steps. As discussed previously, there is a trade-off between the p values and
the temperature. Large p values will avoid having high steps, but high temperature will
enhance the probability of having high steps. Therefore, large p values will result in a
higher-end peak position in heat capacity.
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Figure 6.38: Variance of height, energy per area, heat capacity per area and acceptance
ratio for p = 2 on an initial (111) surface

If the p value is much larger, the peak in heat capacity will move to a even higher
value. If the p value equals infinity, the surface will stay at the initial smooth surface and
nothing much will occur.

6.7 Facet Area Distributions

In the previous sections, one key measurement used to study the property of the crys-
tal surface is the variance of height. This quantity indicates the surface morphology by
measuring the variance from the initial configuration, but it is not necessarily linked to
the surface roughness directly. For example, a surface configuration with large steps and
large facets at low temperatures would have similar variance of height to a rough surface
configuration formed at high temperatures, but these two surface configurations are quite
different from one another. Therefore, the variance of height alone is not a convincing
indication of the morphology of the crystal surface, so we need other measurements.

What we are interested in is whether large facets would form on a crystal surface.
An intrinsic measurement would be a histogram of facet areas on a given surface. For a
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faceted surface at low temperatures, there would be a few large facets, while for a micro-
scopically roughened surface at high temperatures, there would be many small facets of
various heights.

Another related measurement would be the the area decomposition of the total crys-
tal surface. Although the histogram of the facet areas provides meaningful information
about the surface morphology, it does not weight various facets with their sizes. The sur-
face may contain very few large facets but this will not be apparent in a histogram of the
facet area, because the histogram is still dominated by many smaller facets. One possible
improvement is to count the total area for a given facet size, so the large facets will be
accentuated.

We denote by ni the number of facets of size i and by Ai = ni · i the total area for
facets of size i. So ni provides the histogram for facets of size i over the surface, and Ai
provides the total area for facet of size i over the surface. Such measurements are used to
investigate the surface morphology at various temperatures and surface configurations.

The high symmetry (111) surface is studied by using the two measurements men-
tioned above at various temperatures for all three p-values. Low temperatures and high
temperatures are studied to see whether there are different features and whether there are
different patterns. For the p = 0.9 and p = 1.1 cases, more attention is payed to the mea-
surements near the transition region to see whether something significant is happening.
The area of the surface studied is 32 by 32.

6.7.1 p = 1

For the p = 1 case, the crystal surface gets rougher as the temperature gets higher. It is
not expected to have special transitions in the surface morphology, and this is verified
by using the two measures for various temperatures. The histograms of the facet area
(ni vs. i) and the area decomposition (Ai vs. i) are measured at kBT = 0.1,1.0,5.0. The
histogram of the facet area and the area decomposition are decreasing functions of the
area size, and appear to be exponential distributions. Therefore, log plots of the results
are presented below to get a better understanding.

For kBT = 0.1, Figure 6.39(a) shows that the histogram of facet area obeys an ex-
ponential distribution aside from the first a few small sizes. Figure 6.39(b) shows an
exponential distribution in the area decomposition. There is a very small probability of
getting facets larger than 60. The average number of facets for the 32 by 32 surface is
331.

For kBT = 1.0, Figure 6.40 shows behavior similar to kBT = 1.0. The slopes of the
log plots get larger in negative values, and the largest facet obtained is smaller than the
one for kBT = 0.1. The average number of facets for the 32 by 32 surface is 365. As the
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(a) ln(ni) vs. i (b) ln(Ai) vs. i

Figure 6.39: Log plot of the histogram of facet area and the area decomposition at kBT =
0.1 for a 32 by 32 (111) surface, p = 1. ni is the number of facets with area size i, Ai is
the total area for facets with area size i

temperature gets higher, the surface gets rougher and there are more smaller facets and
fewer larger ones.

(a) ln(ni) vs. i (b) ln(Ai) vs. i

Figure 6.40: Log plot of the histogram of facet area and the area decomposition at kBT =
1.0 for a 32 by 32 (111) surface, p = 1. ni is the number of facets with area size i, Ai is
the total area for facets with area size i

For kBT = 5.0, Figure 6.41 shows the same trend as indicated in Figure 6.40. As
the temperature gets higher, the surface gets even rougher and there are no facets larger
than 25.

6.7.2 p = 0.9

For the p = 0.9 case, there is a faceted surface at low temperatures and a roughened
surface at high temperatures. A transition occurs between kBT = 0.45 and kBT = 0.5 as
shown by the variance of height for a 32 by 32 surface. The measurements are taken for
low and high temperatures and temperatures around the transition.
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(a) ln(ni) vs. i (b) ln(Ai) vs. i

Figure 6.41: Log plot of the histogram of facet area and the area decomposition at kBT =
5.0 for a 32 by 32 (111) surface, p = 1. ni is the number of facets with area size i, Ai is
the total area for facets with area size i

(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.42: Plot of the area decomposition for all facets and log plot of the area decom-
position for small facets at kBT = 0.3 for a 32 by 32 (111) surface, p = 0.9. Ai is the total
area for facets with area size i

At the low temperature kBT = 0.3, the faceted surface has one large facet which is
about 1000 in size. There are a few very small facets near the steps between facets. The
log plot of the area distribution for these small facets is shown in Figure 6.42(b). There
are only a few small facets and the their area decomposition is close to an exponential
distribution.

Beginning at the low temperature kBT = 0.45, as the temperature gets slightly
higher, there are more small facets and larger small facets. The largest small facet is
increased from 20 to 60 in size and the one big facet has a broader variation in size. The
log plot of area decomposition for the small facets also shows an exponential distribution
aside from the first few small facets, as shown in Figure 6.43.

At temperature kBT = 0.5, the transition from the faceted surface to a roughened
surface occurs and there are no large facets and steps. The largest facet decreases from
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(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.43: Plot of the area decomposition for all facets and log plot of the area decom-
position for small facets at kBT = 0.45 for a 32 by 32 (111) surface, p = 0.9. Ai is the
total area for facets with area size i

about 1000 to about 100 in size. Log plots of the histograms of facet area and area
decomposition are shown in Figure 6.44. The log plot of the area decomposition shows
an exponential distribution while the log plot of the histogram of facet area shows an
exponential distribution in the tail part. The properties are similar to the ones shown for
the the p = 1 case. The average number of facets is 242.

(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.44: Log plot of the histogram of facet area and the area decomposition at kBT =
0.5 for a 32 by 32 (111) surface, p = 0.9. Ai is the total area for facets with area size i

At the high temperature kBT = 5.0, the surface gets very rough and the effect from
the p value is nearly eliminated. Log plots of the histogram of facet area and the area
decomposition are plotted in Figure 6.45. Now, there are no big facets, and the largest
one is no larger than 20. The average number of facets is 770.



6.7. FACET AREA DISTRIBUTIONS 73

(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.45: Log plot of the histogram of facet area and the area decomposition at kBT =
5.0 for a 32 by 32 (111) surface, p = 0.9. Ai is the total area for facets with area size i

6.7.3 p = 1.1

In the p = 1.1 case, there is a peak in the heat capacity around kBT = 0.1. Therefore,
temperatures around kBT = 0.1 are studied together with high temperature cases.

At the very low temperature kBT = 0.08, the model does not allow the crystal sur-
face to change a lot from the initial configuration since it does not favor big steps. As
shown in Figure 6.46, the overall distributions are similar to previous cases with an ex-
ponential distribution, but an odd-and-even effect is also clearly present in both the plots.
One reason for this is related to the initial (111) configuration and the model with p= 1.1.
This model does not favor big steps, so adding or removing an atom from the initial con-
figuration is non-favorable. In the initial configuration, the facets are all of size one. If
one atom is added to or removed from the surface, a facet of size three would be formed.
One would need to add or remove another atom nearby to form a facet of size two. There-
fore it is more likely to have facets of odd rather than even sizes. The average number of
facets is 855.

At slightly higher temperature kBT = 0.1, the effect of the initial configuration is
mitigated by the higher temperature and the odd-and-even effect is largely reduced. Log
plots of the histograms of facet area and the area decomposition are plotted in Figure 6.47.
Both log plots show nice exponential distributions as expected. The average number of
facets is 518, which is greatly reduced compared to kBT = 0.08, which again shows that
the odd-and-even effect is reduced and larger facets get easier to create.

From low temperature kBT = 0.1 to high temperature kBT = 5.0, the surface gets
rougher and the variance of height gets larger. The facets area and number of facets
does not change significantly. The average number of facets is 682 compared to 518 at
kBT = 0.1. Only the facet heights change a lot and result in higher variance of height.
Log plots of the histograms of facet area and the area decomposition are plotted in Figure
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(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.46: Log plot of the histogram of facet area and the area decomposition at kBT =
0.08 for a 32 by 32 (111) surface, p = 1.1. Ai is the total area for facets with area size i

(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.47: Log plot of the histogram of facet area and the area decomposition at kBT =
0.1 for a 32 by 32 (111) surface, p = 1.1. Ai is the total area for facets with area size i

(a) Ai vs. i (b) ln(Ai) vs. i for small i′s

Figure 6.48: Log plot of the histogram of facet area and the area decomposition at kBT =
5.0 for a 32 by 32 (111) surface, p = 1.1. ni is the number of facets with area size i, Ai is
the total area for facets with area size i

6.48. The area decomposition has an exponential distribution and the histogram of facet
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area has an exponential distribution.

For various p values, the properties at high temperature are similar, both the log
plots has exponential or nearly exponential distributions. For p = 0.9, the slopes in the
plots have the largest absolute values and have the largest number of facets; the p = 1.1
slopes have the smallest absolute values and have the smallest number of facets. This is
because the p = 0.9 model favors big steps and it is easier to roughen. It is harder to
form larger facets, which results in larger slope and a larger number of facets. The same
arguments apply to other cases.

6.8 Facet Height Distribution

From the previous section, the histograms of facet area and area decomposition both have
exponential distributions at various temperatures for all three p values. The area de-
composition has a very nice exponential distribution at both low and high temperatures.
Therefore, it is worthwhile to investigate the underlying mechanism of this exponential
distribution.

One approach is to check the height distribution over all surface steps. The intuition
is that if there is high probability of having a step, there would be lower probability of
having a large facet. If we could find a link between the height distribution over the
surface steps, we may also find an explanation of the exponential distribution for the area
decomposition.

6.8.1 p = 0.9 for (111) surface

For the (111) surface, the p = 0.9 model shows exponential distribution in the area de-
composition above the transition temperature. At low temperatures, most of the steps
are positive. As the temperature gets higher, the surface gets rougher and there are more
negative steps. Thus both the positive step heights and negative step heights measured at
kBT = 0.5, which is just above the transition, and kBT = 5.0. The total step height, which
is a combination of the positive and negative heights are also calculated.

Denote posi to be the number of positive steps with height i, negi to be the number
of negative steps with height i, and toti to be the total steps of height i.

At temperature kBT = 0.5, there are a lot of positive steps and just a few negative
steps. The log plot of number of positive and negative steps are plotted in Figure 6.49.
The number of total steps and the log plot are plotted in Figure 6.50. For the positive
steps, there are steps of relatively large heights and the log plot shows that the distribution
of positive steps has a parabolic behavior, which indicates that the positive steps have a
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(a) ln(posi) vs. i (b) ln(negi) vs. i

Figure 6.49: Log plot of the histogram of positive and negative steps at kBT = 0.5 for a
32 by 32 (111) surface. posi is the number of positive steps of height i, negi is the number
of negative steps of height i

(a) toti vs. i (b) ln(toti) vs. i

Figure 6.50: Histogram of total steps and the log plot of it at kBT = 0.5 for a 32 by 32
(111) surface. toti is the number of steps of height i

Gaussian distribution. For the negative steps, there are only shallow negative steps and
the log plot shows that they obey a exponential distribution. For total steps, there is a
Gaussian distribution mainly contributed by positive steps.

At temperature kBT = 5, the surface is rough with a comparable number of positive
and negative steps. Log plots of number of positive and negative steps are plotted in
Figure 6.51. The plot of number of total steps and the log plot are plotted in Figure 6.52.
From these plots, both the positive and negative steps have similar Gaussian distributions
and the total steps also has a Gaussian distribution.

6.8.2 p = 1 for (111) surface

For the (111) surface, the p = 1 model shows exponential distribution in the area de-
composition at both low and high temperatures. The height distribution is similar to the
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(a) ln(posi) vs. i (b) ln(negi) vs. i

Figure 6.51: Log plot of the histogram of positive and negative steps at kBT = 5 for a 32
by 32 (111) surface. posi is the number of positive steps of height i, negi is the number
of negative steps of height i

(a) toti vs. i (b) ln(toti) vs. i

Figure 6.52: Histogram of total steps and the log plot of it at kBT = 5 for a 32 by 32 (111)
surface. toti is the number of steps of height i

p = 0.9 case. Log plots of number of steps at kBT = 0.5 and kBT = 5 are plotted in Figure
6.53. At both temperatures, the steps obey a Gaussian distribution. At low temperatures,
there is a mainly small steps and at higher temperatures, there are higher probability of
having higher steps as the surface gets rougher.

6.8.3 p = 1.1 for (111) surface

For the (111) surface, the p = 1.1 model also shows exponential distribution in the area
decomposition at both low and high temperatures. The height distribution should also be
similar to the other cases. The log plot of number of steps at kBT = 0.5 and kBT = 5
are plotted in Figure 6.54. At both temperatures, the steps obey a Gaussian distribution
as before. At low temperatures, there are mainly small steps and at higher temperatures,
there are higher probability to have higher steps as the surface gets rougher.
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(a) ln(toti) vs. i (b) ln(toti) vs. i

Figure 6.53: Log plot of the histogram of total steps at kBT = 0.5 and kBT = 5 for a 32
by 32 (111) surface. toti is the number of steps of height i

(a) ln(toti) vs. i (b) ln(toti) vs. i

Figure 6.54: Log plot of the histogram of total steps at kBT = 0.5 and kBT = 5 for a 32
by 32 (111) surface. toti is the number of steps of height i

6.8.4 Connection with Facet Area

The height distribution for various p values all obey a Gaussian distribution and we want
to connect this to the exponentially distributed area decomposition. Assume the probabil-
ity of facet with area a is 1

λ
e−λada. Then the probability of having a facet with area a or

larger is
∫

∞

a
1
λ

e−λada = e−λa.

On the other hand, since the heights obey a truncated Gaussian distribution, the
probability of not having a step is approximately ∝ e−const , where the const involves
the fitting parameters in each individual case. Therefore, in order to have a facet with
size at least a requires a neighboring atoms having no steps between them, which is
∝ ∏

a
1 e−const = e−const·a.

This approximation may give a hint to the reason one observes exponential distri-
bution for the area decomposition, but no explicit form is given.
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6.9 Hysteresis Effect

Hysteresis is widely present in the condensed matter, both as an adverse effect and a phe-
nomenon useful in technological applications. Hysteresis occurs in several phenomena.
In physics we encounter it in plasticity, friction, ferro magnetism, ferro electricity, super-
conductivity, adsorption and desorption. More generally, hysteresis arises in phase tran-
sitions. Hysteresis also appears in chemistry, biology, economics, even in experimental
psychology, and so on. In natural systems hysteresis is often associated with irreversible
thermodynamic change.

Hysteresis effects are often caused by phase transitions [51] which are accompanied
by abrupt changes of some of the involved physical quantities, as well as by the absorption
or release of energy in the form of the latent heat. The area of the hysteresis loop itself
gives a measure of the amount of energy that has been lost or absorbed during the phase
transformation.

In our previous p = 0.9 models, the smoothing transition is observed when the sim-
ulation is carried out from high temperatures to low temperatures. When the simulation
is continued to raise the temperatures again, the hysteresis effect is also observed.

The simulation is started from a initially titled surface from temperatures higher
than the transition temperature. The temperature is lowered gradually and at each temper-
ature, various length of simulation is carried out for comparison. When the temperature
is significantly below the transition temperature, the temperature is then raised gradually
at the same temperatures as before at various simulation lengths. By implementing the
simulation, we can investigate whether there is a hysteresis effect and how it depends on
the rate of temperature changes.

In Figure 6.55, the various of surface height and energy per area is plotted for vari-
ous simulation lengths, from 5120 to 81920 sweeps at each temperature. The simulation
is carried out from kBT = 0.6 to kBT = 0.2 and then back to kBT = 0.8. We can easily
and obviously see the hysteresis effect and different size of the hysteresis loops for various
rates of temperature changes.

The ”jumps” of physical properties in phase transitions are never instant. Upon heat-
ing or cooling they always spread over a temperature range, narrow or wide. The width
of a transition range is not a fixed value. As we saw in the above figure, the transition
covers a different area for different temperature rates. This suggests that the smoothing
transition we have here has a rate-dependent hysteresis effect, which is due to a dynamic
lag between the temperature rate and the surface configurations. It is expected that the
hysteresis effect will disappear when the temperature changes really slow.

To further verify this rate-dependent hysteresis effect, more simulation is carried
out for fast rate changes. In Figure 6.56(a), the simulation is started from an initially
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(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

Figure 6.55: Variance of height, energy per area for a initially tilted (111) surface with
p = 0.9. The temperature is from kBT = 0.6 to kBT = 0.2 and back to kBT = 0.8. At
each temperature, various simulation sweeps are carried out for comparison, from 5120
sweeps to 81920 sweeps

tilted surface and the temperature is lowered at various fast rates, from 10 to 5120 sweeps
at each temperature. We can see that the transition is more diffuse for faster rates and
the transition occurs at a lower temperature. What is more important, for the faster-
rate changes, the variance of the faceted surface below the transition region is smaller,
compared to the steady faceted surface after a long simulation run. The reason is that
the simulation rate is fast and the system just does not have time to fully respond to the
temperature change. If given longer simulation, the surface will eventually go to the
equilibrium configuration. In Figure 6.56(b), the simulation is started from a equilibrium
faceted surface below the transition. The temperature is raised at various rates same as in
(a) for comparison. The transition region covers different sizes of area and the transition
temperature is different as well, but the surface will all eventually go to a smooth surface.

The above comparison is carried out for two directions of temperature change. One
natural question is what will happen if we carry out the simulation continuously from
high temperatures to low temperatures and then back to high temperatures at fast rates.
In Figure 6.57, the simulation is started from kBT = 0.5 to kBT = 0.2 and then back to
kBT = 0.8 at various rates, from 640 sweeps to 5120 sweeps at each temperature. For the
fastest rate, 512 sweeps, the various of surface height below the transition temperature is
much lower than others. When the temperature is raised, the variance does not increase
again and just follows an ordinary hysteresis loop. For the slowest rate, 5120 sweeps, the
surface below the transition temperature is already in equilibrium and it also follows an
ordinary hysteresis loop. For the the mid-rate cases, when raising the temperature, the
variance of surface height increases as well, and then deceases when the temperature is
even higher.

As above, we saw that for fast rates, the surface does not come to the equilibrium
configuration immediately. One may ask, how long will it take to come to the equilibrium.
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(a) var(h) vs. kBT from high temperature to
low temperature

var(h)

kBT

(b) var(h) vs. kBT from low temperature to
high temperature

var(h)

kBT

Figure 6.56: Variance of height for a initially tilted (111) surface with p = 0.9. The
temperature is from kBT = 0.5 to kBT = 0.2 in (a) and from kBT = 0.3 to kBT = 0.8 in
(b). At each temperature, various simulation sweeps are carried out for comparison, from
10 sweeps to 5120 sweeps

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

Figure 6.57: Variance of height, energy per area for a initially tilted (111) surface with p
= 0.9. The temperature ranges from kBT = 0.5 to kBT = 0.2 and back to kBT = 0.8. At
each temperature, various simulation sweeps are carried out for comparison, from 640 to
5120 sweeps

So we can investigate this problem by starting the simulation from a initially tilted smooth
surface at temperature below the transition, to see how the variance of surface height
changes.

In Figure 6.58, the simulation is carried on a (111) surface at kBT = 0.3 for the
p = 0.9 model. The variance of surface height is calculated after every 10000 sweeps.
Three different characteristic cases are plotted.

We can see that the variance takes different paths in these three cases. In (a), the
variance rapidly goes to the equilibrium value and the jump is very sharp. In (b), the
variance increases gradually and has several intermediate steps. In (c), the variance locks
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(a) 1

var(h)

time

(b) 2

var(h)

time

(c) 3

var(h)

time

Figure 6.58: Variance of height for a initially tilted (111) surface with p = 0.9 at kBT =
0.3. The simulation is calculated after every 10000 sweeps and the time unit is also in
10000 sweeps.

in a intermediate phase for a relatively long time and then goes into the equilibrium. Some
other simulation shows that it may take even longer time at these phases.



Chapter 7

Symmetric Model

7.1 Symmetric Extension

The SOS model treated in former chapters is used mainly to focus on the effect of various
p values on the surface morphology, but does not take into account the symmetry of sur-
face configurations that would pertain to an actual crystal. This problem arises because
the SOS model favors a specific direction, say the z direction, but we know for a cubic
crystal that the x and y directions are equivalent. Therefore, facets are observed corre-
sponding to the z direction; facets are not observed for x and y directions. Especially for a
initially tilted highly symmetric surface, say (111), a SOS simulation does not result in a
highly symmetric faceted surface that would be expected on the basis of crystal symmetry.

In order to address this symmetry issue, the previous SOS model can be extended
to include the generic symmetry. One simple and natural extension is to include simi-
lar terms for the other two directions which are not considered in the previous model.
Therefore, the symmetric solid-on-solid (SSOS) model is based on a Hamiltonian of the
form:

H = ∑(i, j),(i′, j′) are NN′s

∣∣∣hxi j −hxi′ j′

∣∣∣p +∑(i, j),(i′, j′) are NN′s

∣∣∣hyi j −hyi′ j′

∣∣∣p +
∑(i, j),(i′, j′) are NN′s

∣∣∣hzi j −hzi′ j′

∣∣∣p
where (i, j) and (i′, j′) are nearest neighbors, hxi j is the height of the surface in the x
direction at site (i, j), hyi j is the height of the surface in the y direction at site (i, j), and
hzi j is the height of the surface in the z direction at site (i, j).

The SSOS model is symmetric in the x, y and z directions but still follows a solid-
on-solid constraint. The extra terms give extra solid-on-solid constraints for the surface.
Many previous surface morphologies are prohibited since they violate the solid-on-solid

83
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requirements in other directions. The result is that only kink sites on the surface are pos-
sible sites for adding and removing atoms. Such a model is quite similar to that originally
proposed by Kossel and Stranski, except that model had no SOS constraint at all.

Since the Hamiltonian in the SSOS model has more terms than the one for the SOS
model, simulations are even more expensive and require more computational time. Thus,
this model is mainly used to investigate initially highly symmetric surfaces to see what
differences occur.

Monte Carlo simulations are carried out for p = 0.9,1,1.1 in both high and low
temperature ranges for system sizes N = 16 and 32. A total of 2000 sweeps of simulation
are done for each case. As for the SOS model, the variance of height, energy per area,
heat capacity per area and the acceptance ratio of the simulation are calculated.

7.2 Simulations on the (111) Surface

The (111) surface is a highly symmetric surface and symmetry plays an important role in
crystal equilibrium facets and growth facets. The SSOS model is applied to an initially
tilted (111) surface for all three p values particularly investigated for the SOS model.

7.2.1 (111), p = 1

p = 1 is used for the conventional SOS model. For the SSOS model, the corresponding
simulation results are shown in Figure 7.1. The effect of the extra constraints are obvious.
The variance of the surface height is nearly constant for a broad temperature range and
the energy per area is nearly constant as well. As discussed above, adding and removing
atoms only occurs at kink sites for the SSOS model. In the p = 1 case, morphological
change does not result in energy changes. Therefore, the energy is fixed at the same value
as for the initial configuration and the simulation result is not dependent on temperature.
As a result, the heat capacity is always zero and the acceptance ratio of the simulation is
always one. Even as the temperature gets higher, this model would not generate a rougher
surface configuration as observed in the SOS model for p = 1 and would not result in
larger variance of the surface height.

Snapshots of surface are taken at (a) kBT = 0.5 and (b) kBT = 5 respectively in
Figure 7.2. The surface is smooth at both low and high temperatures. The morphologies
are not significantly different.
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(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

Figure 7.1: (a) Variance of height, (b) energy per area for p = 1 on an initially titled (111)
surface

(a) kBT = 0.5 p = 1 (b) kBT = 5 p = 1

Figure 7.2: Snapshots for an initial (111) surface at kBT = 0.5 and kBT = 5 for p = 1

7.2.2 (111), p = 0.9

The simulation results are plotted in Figure 7.3. The most important finding is that the
SSOS model still preserves some of the same qualitative characteristics of the SOS model.
As seen in Figure 7.3, facets are observed at low temperatures and the variance of the
surface height is still dependent on the system size. Once the facets are formed at lower
temperatures, the variance of surface height and the energy per area are almost constant,
the heat capacity is almost zero, and the acceptance ratio decreases as the temperature
decreases. This suggests that the surface is in a faceted state only, and equilibrium is
reached by adding and removing atoms at kink sites. As the temperature increases, a
transition from a faceted surface to a smooth surface occurs around kBT = 1. The variance
of height decreases, the energy per area increases in the transition region, and a peak
exists in the heat capacity. In the SOS model, p = 1 case results in different transition
temperatures for various system sizes, the energy per area also differs for different system
sizes for the faceted surface, and the acceptance ratio is also different. For the SSOS
model, the transition occurs in the same temperature region with almost same energy and



86 CHAPTER 7. SYMMETRIC MODEL

acceptance ratio for various system sizes. The transition temperatures are higher than for
the SOS model due to the introduction of the extra terms in the Hamiltonian.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Accept ratio vs. kBT

Accept. ratio

kBT

Figure 7.3: Variance of height, energy per area, heat capacity per area and the acceptance
ratio for p = 0.9 on an initial (111) surface

Snapshots of the surface are taken at temperatures in the transition region, kBT =
0.95, 1, 1.05 and 1.1, as shown in Figure 7.5. The transition from the faceted surface to
the smooth surface is clearly evident. At higher temperatures, the surface would be even
smoother and get close the the case p = 1.

Snapshots of the simulated surfaces clearly demonstrate true crystal symmetry.
Compared to the SOS model, these facets are now in all (x,y,z) directions. Compare
Figure 7.5(b) from SSOS model with Figure 6.12(a) from the SOS model to observe the
difference.

7.2.3 (111), p = 1.1

The results are plotted in Figure 7.6 and somewhat resemble the results for the SOS model.
For the case when p = 1.1, the model disfavors large steps and big facets; therefore, the
variance of height and energy per area is relatively smaller than for p = 1 and p = 0.9 and
gets larger as the temperature increases. At very low temperatures, the variance of height
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(a) kBT = 0.95 p = 0.9 (b) kBT = 1.0 p = 0.9

(c) kBT = 1.05 p = 0.9 (d) kBT = 1.1 p = 0.9

Figure 7.4: Snapshots on an initial (111) surface at (a) kBT = 0.95, (b) kBT = 1.0 for
p = 1, (c) kBT = 1.05 and (d) kBT = 1.1 for p = 0.9. Note expecially that there are facets
in all (x,y,z) directions

(a) kBT = 0.95 p = 0.9 SSOS model (b) kBT = 0.1 p = 0.9 SOS model

Figure 7.5: Snapshots on an initial (111) surface (a) at kBT = 0.95 from SSOS model (b)
at kBT = 0.1 from SOS model for p = 0.9

is almost zero, the energy per area is closed to 2, and the acceptance ratio is nearly zero.
At these low temperatures, the surface is again almost the initial (111) surface without any
significant changes. As the temperature gets a little bit higher, the surface atoms begin
to be added and removed at the kink sites. There seems to be a transition from a smooth
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tilted surface to a relatively roughened surface at low temperatures, and the sharp peak in
the heat capacity shows evidence of this. Above the transition temperature, the variance
of height increases faster and has larger values for larger system sizes. The energy per
area, heat capacity and acceptance ratio have similar values for various system sizes. Due
to the effect of p values and the constraint of the model, the variance of height and energy
per area saturates to values smaller than for the p = 1 case at high temperatures.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT

cv

kBT

(d) Accept ratio vs. kBT

Accept. ratio

kBT

Figure 7.6: Variance of height, energy per area, heat capacity per area and the acceptance
ratio for p = 1.1 on an initial (111) surface

Snapshots of surface morphology are shown at kBT = 0.5 and kBT = 5 respec-
tively in Figure 7.7. No significant difference in morphology is observed. The surface is
smoother at low temperature and it gets a little bit rough at higher temperatures, resulting
in a higher variance of surface height and energy per area.

7.3 Simulations on the (112) Surface

The (112) surface has shallower slopes in two directions as compared to (111). The SSOS
model is applied to an initial (112) surface and the Monte Carlo simulations are carried
out as before.
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(a) kBT = 0.5 p = 1.1 (b) kBT = 5 p = 1.1

Figure 7.7: Snapshots on an initial (111) surface at (a)kBT = 0.5 and (b)kBT = 5 for
p = 1.1

7.3.1 (112), p = 1

The results are plotted in Figure 7.8. The plots are similar to the (111) case and only
differ in values. The energy per area is quantitatively half of the previous values, which is
true since the slopes in both directions are just half of that on (111) surface. The variance
of surface height is also close to half of values of the (111) surface.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

Figure 7.8: Variance of height, energy per area for p= 1 on an initially titled (112) surface

7.3.2 (112), p = 0.9

The results are plotted in Figure 7.9. A transition is still observed, similar to the (111) sur-
face, but covers a broader range of temperature. The variance of height at lower temper-
atures is smaller than that on the (111) surface, the energy per area at lower temperatures
are approximately a half of that on the (111) surface, and the peak in the heat capacity is
also close to the value for the (111) surface.
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(a) var(h) vs. kBT
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(b) Energy vs. kBT
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Figure 7.9: Variance of height, energy per area, heat capacity per area and the acceptance
ratio for p = 0.9 on an initial (112) surface

Snapshots of surface are taken at kBT = 0.5 in Figure 7.10 to show the faceted
surface, together with Figure 6.24(a), for a initially tilted (112) surface.

(a) kBT = 0.5 p = 0.9 SSOS model (b) kBT = 0.1 p = 0.9 SOS model

Figure 7.10: Snapshots on an initial (112) surface (a) at kBT = 0.5 from SSOS model (b)
at kBT = 0.1 from SOS model for p = 0.9
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7.3.3 (112), p = 1.1

The results are plotted in Figure 7.11. The characteristics are similar to the results from
(111) surface, but the values of the energy per area is approximately half. The peak in the
heat capacity is close to the one from (111) surface but with a smaller value due to fact
that (112) surface is flatter surface than the (111) surface and thus the transition is not
that obvious.

(a) var(h) vs. kBT

var(h)

kBT

(b) Energy vs. kBT

Energy

kBT

(c) cv vs. kBT
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(d) Acceptance ratio vs. kBT
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Figure 7.11: Variance of height, energy per area, heat capacity per area and the acceptance
ratio for p = 1.1 on an initial (112) surface

7.4 Scaling Analysis for Finite Size

From the calculations above, we also see that the variance of height shows a size effect
for various system sizes. The calculations and comparisons are carried out on an initial
(111) surface.

For p= 1, the variance of the height is plotted as a function of temperature in Figure
7.12. The variance of height is kept at a relative fixed level for various system sizes and
the semi-log plot shows almost the same slopes of lines for various temperatures.
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(a) var(h) vs. kBT for p = 1

var(h)
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(b) var(h) vs. ln(N) for p = 1
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lnN

Figure 7.12: var(h) vs. kBT and var(h) vs. ln(N) on an initial (111) surface for p = 1

For p = 0.9, the variance of the height is plotted as a function of temperature in
Figure 7.13. The variance of height falls from high values for the faceted surface and then
stays at a relatively fixed level for various system sizes. The semi-log plot shows different
slopes of lines for various temperatures. As the temperature get higher, the slopes get
closer to each other.

(a) var(h) vs. kBT for p = 0.9

var(h)

kBT

(b) var(h) vs. ln(N) for p = 0.9

var(h)

lnN

Figure 7.13: var(h) vs. kBT and var(h) vs. ln(N) on an initial (111) surface for p = 0.9

For p = 1.1, the variance of the height is plotted as a function of temperature in
Figure 7.14. The variance of height is increasing gradually for various system sizes as
the temperature gets higher. The semi-log plot shows different slopes of lines for various
temperatures.

From the simulations are comparisons carried out above, we could see that the sym-
metry of the initial configuration is preserved in the SSOS model and verified by the snap-
shots of the surface topologies. What is more important is that the transition properties
are also preserved for the p = 0.9 case.
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(a) var(h) vs. kBT for p = 1.1
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(b) var(h) vs. ln(N) for p = 1.1
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Figure 7.14: var(h) vs. kBT and var(h) vs. ln(N) on an initial (111) surface for p = 1.1
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Chapter 8

Summary and Conclusions

Following Gibbs, surface free energy is defined as the surface excess per unit area of
the grand potential energy of a material compared to its bulk. It quantifies the disruption,
relaxation and rearrangement of intermolecular bonds that occur when a surface is created.
Surfaces must be intrinsically less energetically favorable than the bulk of a material for
stability. Surface free energies of crystals are anisotropic and provide a driving force for
morphological changes, such as the formation of facets. The Wulff Construction is an
important method to determine the ultimate equilibrium shape of a crystal by minimizing
its surface free energy. Equilibrium shape is of practical interest only for very small
crystals because of the mass transport needed to change shape. For a large crystal, the
free energy of a large planar surface can sometimes be lowered by rearranging the atoms
into a hill-and-valley structure of a size large compared with atomic dimensions but still
small compared to the size of the crystal. According to Herring’s Theorem:“If a given
macroscopic surface of a crystal does not coincide in orientation with some portion of the
boundary of the equilibrium shape, there will always exist such a hill-and-valley structure
that has a lower free energy than a flat surface.”

The above result was based only on the surface free energy of a single large surface,
which includes some entropy but does not take into account the free energy associated
with surface structure, such as the entropy associated with the morphology of faceting
(colonies of facets having different sizes). Variations in the configurations that occupy
the crystal surface lead to positive entropy that would further lower the effect of surface
free energy. Moreover, Herring’s result only pointed out the orientations that the hill-
and-valley structure can have but did not show the sizes of facets, which are influenced
by corner and edge energies as well as the entropy associated with the surface configu-
rations. Therefore, the effect and role of configurational entropy and corner energies in
crystal surface structure was studied by using Monte Carlo simulation. Our model con-
sists of simple squares (two dimensional crystals) or cubes (three dimensional cyrstals)
that interact through nearest-neighbor additive forces having central symmetry (bond en-
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ergies). These are known as “Kossel crystals”.

For a two-dimensional Kossel crystal, the empirical configurational entropy can be
measured from a knowledge of the various heights and lengths of the facets that result
from the simulation. The theoretical configurational entropy can also be calculated by
using statistical mechanics. As the size of simulated systems gets larger, the empirical
entropy gets closer to the theoretical entropy. Furthermore, by maximizing the surface
entropy for a surface composed of only positive steps, one can determine that the heights
and lengths should follow an exponential distribution and this is verified by simulation.
One can also obtain from statistical mechanics the size distributions of facet heights and
lengths, which agrees well with simulation. These results are only valid at low tempera-
tures because at high temperatures steps of alternating signs will occur.

Another important factor that can influence the surface configurations is the effect
of corner and edge energies on a faceted crystal surface. We study such effects for a three
dimensional Kossel crystal (two dimensional surface) by means of a modified solid-on-
solid model. This is done by means of a Hamiltonian which accounts for nearest-neighbor
height differences raised to a power p. For p = 1, the model becomes the usual solid-on-
solid (SOS) model with no specific energies assigned to corners and edges. For p slightly
smaller than 1 (for example p = 0.9), the model gives positive energies to corners and
edges; therefore, this model disfavors corners and edges. For p slightly greater than 1
(for example p = 1.1), the model gives negative energies to corners and edges; there-
fore, this model favors corners and edges. On an initially flat (100) surface, different p
values do not have a significant effect on surface configurations, which only differ quan-
titatively. There is a roughening transition for all three p values, and at high temperatures
the heat capacity is proportional to 1/p. However, on an initially tilted surface, such as
(111), (112) and (110), an interesting “macroscopic smoothing” transition is observed
for p = 0.9. Unlike the traditional roughening transition, the surface is faceted at low
temperatures and is smooth at high temperatures. For this “macroscopic smoothing” tran-
sition, a hysteresis effect is observed but becomes less pronounced as the simulation gets
longer at each temperature.

To further investigate these surface configurations, more analysis is carried out. At
high temperatures, the area of small facets follows an exponential distribution for all three
p-values. Facet height follows a Gaussian distribution for all three p-values. Based on
these results, a theoretical connection between facet areas and facet height distributions
is made. In order to identify precisely the location of the smoothing transition in the
p = 0.9 case, a histogram method is implemented to calculate physical quantities at other
temperatures, based on simulation results at a certain temperature. In particular, we study
the variation of surface height per unit area, the energy per unit area, the heat capacity
per unit area, and the acceptance ratio. To investigate the relaxation of the system, the
correlation time is calculated by using several different measures. A fast relaxation is
observed, followed by a very slow relaxation. A discrete Fourier analysis of the surface
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was implemented and we verified that there exists a long-wavelength fluctuation of the
surface, which may account for the slow relaxations.

The modified SOS model discussed above is biased by reference to a specific growth
direction. Therefore, it does not represent the true symmetry of a crystal. We introduce a
symmetric solid-on-solid (SSOS) model that takes the symmetry of surface configurations
into account. For the SSOS model, the qualitative smoothing transition is still observed
for p = 0.9, but values of surface variance are more restricted and bounded by certain
limits at high temperature for all three p-values. Snapshots of the simulated surfaces
clearly demonstrate true crystal symmetry. Compare, for example, Figure 6.12(a) with
Figure 7.5(a) and 7.10(a) with 6.24(a).

In the future, we hope to extend our theoretical analysis of one-dimensional sur-
faces, for example to determine a formulae for the facet height and length distributions
for two-dimensional surfaces and compare with simulation results. Moreover, a similar
modified SOS model can be applied to other lattices, for example, an hexagonal lattice,
to investigate possible transitions. Finally, we might be able to treat a variety of crystals
by using realistic interaction potentials, and hence provide a link to experiments.
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