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Abstract

Thermal Transport in Semiconductors and Metals from First-Principles

by

Ankit Jain

Chair: Alan McGaughey

The objective of this work is to study thermal transport in bulk, nano-structured,

and two-dimensional semiconductors, and metals. While phonons (i.e., atomic vibrations)

dominate the thermal transport in crystalline semiconductors, electrons are the major

thermal and charge carriers in metals.

We predict the phonon and electron transport properties from first-principles calcu-

lations by considering phonon-phonon, electron-phonon, phonon-boundary, and phonon-

isotopes scattering and using the Boltzmann transport equation. The phonon-phonon

scattering rates are obtained from harmonic and anharmonic lattice dynamics calculations.

Harmonic and cubic force constants, which are required as an input for harmonic and an-

harmonic lattice dynamics calculations, are obtained from density functional theory and

density functional perturbation theory calculations. For electron-phonon scattering, we

used density functional perturbation theory to calculate mode-dependent electron-phonon

coupling coefficients on coarse grids and Wannier functions to interpolate them to finer

grids.

At a temperature of 300 K, for porous silicon thin films with minimum feature sizes

greater than 100 nm, we find that our particle-based phonon-boundary scattering model

can capture the experimental trend and magnitude (within 6%) for the in-plane thermal

conductivity. These results suggest the absence of coherent (i.e., wave) phonon transport

phenomenon.

In compound semiconductors (i.e., semiconductors with more than one atomic species),

we find that thermal conductivity depends on the frequency-gap between acoustic and opti-

cal phonons and the maximum acoustic phonon frequency. For model compound semicon-
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ductors with the zinc-blende structure, the maximum thermal conductivity occurs when

the frequency-gap between acoustic-optical phonons equals the maximum acoustic phonon

frequency.

We characterize the phonon thermal transport in black and blue phosphorene, which are

two-dimensional arrangements of phosphorus atoms and for which there is no experimental

thermal characterization. We find that black phosphorene has an unprecedented thermal

conductivity anisotropy ratio of three, with predicted values of 110 W/m-K and 36 W/m-K

along the two perpendicular in-plane directions at a temperature of 300 K.

We study the effect of electron exchange-correlation and pseudopotential types on the

thermal conductivity of isotopically pure silicon. We find that, with the exception of BYLP,

all XCs (LDA, PBE, PBEsol, PW91) predict a thermal conductivity between 127 and 148

W/m-K at a temperature of 300 K, which is an under-prediction of the experimental value

of 153 W/m-K by 3-17%.

In metals, we find that the phonon contribution towards the thermal conductivity can

be as high as 5.5% for aluminum at a temperature of 100 K. We also find that while the

phonon mean free paths exhibit a larger range (2-22, 2-62, and 1-64 nm in aluminum,

silver, and gold) than electron mean free paths (9-19, 30-53, and 21-38 nm for aluminum,

silver, and gold), the gray phonon mean free paths are smaller than gray electron mean free

paths in aluminum, silver, and gold at a temperature of 300 K. On comparing the phonon

thermal transport in aluminum with silicon, we find that the phonon thermal conductivity

is a factor of 15 smaller in aluminum at a temperature of 300 K, which is a result of (i)

smaller phonon group velocities, (ii) large anharmonicity, and (iii) higher three-phonon

phase space for low-frequency phonons in aluminum.
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Introduction

1.1 Motivation

Nanotechnology has enabled the design and fabrication of hybrid devices in which semi-

conductors and/or metals are nanostructured and fused together in an intricate fashion to

obtain superior device functionality. These resulting nano-engineered devices are at the

heart of the current technological boom and are used in applications varying from elec-

tronics, heat dissipators, and sensors to light emitting diodes (LEDs), thermoelectrics, and

solar cells. These devices offer new possibilities for optical, thermal, and charge transport

manipulation. For instance, the wavelength of emitted light in LEDs can be tuned by

controlling the dopant concentration [1]. Similarly, the wavelength of adsorbed light in

plasmonic solar cells can be tuned by varying the grating period [2].

The performance and efficiency of most of these semiconductor- and/or metal-based

nano-engineered devices depend on the operating temperature and material thermal trans-

port properties. For example, the figure of merit for semiconductor-metal superlattice-

based thermoelectric materials depends on the thermal carrier properties mismatch be-

tween the semiconductor and the metal [3]. Similarly, the number density of transistors

and hence performance of current microprocessor chips are limited by the rate of heat

dissipation in order to maintain the allowed operating temperature [4]. It is, therefore,

imperative to study the fundamental thermal carrier properties in semiconductors and

metals.
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1.2 Objective

The thermal conductivity, k, in materials is defined using the Fourier law as Q = −k∇T ,

where Q is the heat flux density and ∇T is the temperature gradient, and is a cumulative

result of contributions from different fundamental heat carriers. In semiconductors, with

few free electrons, the heat carriers are atomic vibrations, i.e., phonons. In metals, with a

lot of free electrons, the heat and charge transport is dominated by electrons.

The objective of this work is to study and understand the thermal transport in a broad

range of crystalline materials. We will apply first-principles based density functional

theory-driven lattice dynamics calculations to predict phonon properties and thermal con-

ductivity in (i) conventional three-dimensional (3D) semiconductors, (ii) two-dimensional

(2D) semiconductors, and (iii) metals. We will also predict the electron thermal and elec-

trical conductivities in metals. Our calculations will provide insight for understanding the

underlying physics of thermal transport in semiconductors and metals and will provide

guidance for interpreting cutting-edge experiments.

1.2.1 Conventional 3D Semiconductors

With miniaturization in size, thermal transport is becoming increasingly important in

the design and realization of semiconductor-based devices. Due to additional scattering

of heat carriers at boundaries, the thermal conductivity of semiconductors is reduced in

these devices [5, 6, 7, 8]. While the reduced thermal conductivity deteriorates device

performance and could result in device failure for applications such as microprocessors, it

is advantageous for thermoelectric energy conversion, where the thermoelectric figure of

merit is inversely proportional to the thermal conductivity.

We will investigate the thermal transport in conventional semiconductor nanostruc-

tures. We will also identify the origin of high thermal conductivity in some bulk conven-
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tional compound semiconductors.

1.2.2 2D Semiconductors

Two dimensional materials such as graphene, silicene, and MoS2 have been a focus of

intense research over the past decade because of their new and rich physics [9, 10, 11, 12].

For instance graphene, because of its planar structure, has a quadratic phonon dispersion

close to the gamma point as opposed to linear dispersion in conventional 3D materials. This

unique dispersion reduces phonon-phonon scattering and results in an ultrahigh thermal

conductivity (3000-5000 W/m-K at a temperature of 300 K) [13]. We will study phonon

thermal transport in a new and recently fabricated 2D semiconductor, phosphorene [14, 15],

which, similar to graphene, has a honeycomb-like structure but is non-planar.

1.2.3 Metals

Metals are different from semiconductors and insulators as they have a large number of

free electrons. Phonons in metals, apart from scattering from other phonons and impuri-

ties, are also scattered from these free electrons. We will investigate the contribution of

phonons towards the total thermal conductivity of metals by considering phonon-phonon

and phonon-electron scattering. Even though small, this phonon contribution towards

thermal transport in metals plays a crucial role in the analysis of laser-based thermal con-

ductivity measurement experiments such as time-domain thermoreflectance (TDTR) and

frequency-domain thermoreflectance (FDTR), where a metal layer is deposited as a trans-

ducer on the sample [16, 17, 18]. We will also investigate the mode-dependent contribution

of electrons towards the thermal and electrical conductivities in metals.
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Table 1.1: Comparison of molecular dynamics simulations and lattice dynamics calculations
for studying thermal transport in crystalline solids.

Molecular Dynamics Simulations Lattice Dynamics Calculations

System

Approach
Time-evolution of trajectories of
particles

Eigenvalue problem for coupled
spring-mass system

Statistics Classical (inherent) Classical and quantum

Force-fields Empirical (typical) Empirical and first-principles

1.3 Methods

The materials to be studied in this work are all crystalline. Crystalline materials are dif-

ferent from amorphous materials as they have long-range order and are characterized by

the periodic arrangement of groups of atoms. While experiments can be used to study the

thermal transport in crystalline materials, they typically are difficult to set up, trickier to

analyze [17, 19, 20, 21], and require phenomenological models for interpretation. Compu-

tational methods, on the other hand, can elucidate thermal transport physics but require

experiments for validation. The objective of this work is to complement experiments in the

understanding of thermal transport physics in crystalline materials using computational

methods. Computationally, thermal transport in crystalline materials can be studied by

using molecular dynamics simulations and/or lattice dynamics calculations [22, 23].

In molecular dynamics simulations, macroscopic material properties such as thermal
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conductivity, Young’s modulus, coefficient of diffusion are obtained by solving the time-

evolution of trajectories of atoms which are moving under the influence of Newton’s laws

of motion. Molecular dynamics simulations have been used by researchers in the past to

study the temperature [23, 24] and strain dependence [25] of thermal conductivity of ar-

gon, spectral phonon transport properties of silicon [26], interface roughness dependence

of thermal conductivities of semiconductor superlattices [27], thermal interface conduc-

tance of the silicon/germanium interface [28], length dependence of thermal conductivity

of single polymer chains [29], and many more systems. Molecular dynamics simulations

are inherently classical in nature and their predictive power depends on the accuracy of

the inter-atomic force-fields.

In lattice dynamics calculations, on the other hand, atoms/masses are connected to each

other through harmonic/anharmonic springs and the mode-dependent phonon transport

properties are obtained by solving the eigenvalue problem for this coupled spring mass

system. Lattice dynamics calculations have been used by researchers to study a variety of

systems varying from simple semiconductors such as bulk argon [30], krypton [30], silicon

[30, 31, 32, 33, 34], germanium [32], and diamond [35] to compound [36, 37] and two-

dimensional semiconductors [38]. Unlike molecular dynamics simulations, lattice dynamics

calculations can be used with both classical as well as quantum statistics. The predictive

power of lattice dynamics calculations, similar to molecular dynamics simulations, also

depends on the inter-atomic force-fields.

The force-fields governing the interactions between different atoms in molecular dy-

namics simulations and lattice dynamics calculations can be either obtained from empir-

ical potentials or from first-principles calculations. Empirical potentials are limited in

their capacity due to their relatively simple design and lack true predictive power. While

first-principles driven molecular dynamics simulations are computationally expensive, use
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of first-principles based force constants for lattice dynamics calculations is now routine

[32, 33, 34, 39].

We will apply lattice dynamics calculations to predict phonon thermal transport prop-

erties in semiconductors by considering three-phonon scattering processes. The force con-

stants required as an input for lattice dynamics calculations will be obtained from first-

principles driven density functional theory (DFT) and density functional perturbation the-

ory (DFPT). The phonon scattering rates and thermal conductivity will be calculated using

an iterative solution of the Boltzmann transport equation (BTE) [30]. In metals, where

phonons can scatter from electrons as well, we will use DFPT and Wannier functions to

calculate the electron-phonon coupling coefficients [40, 41, 42]. We will predict electron

thermal and electrical conductivities by using the relaxation time approximation (RTA) of

the BTE in metals.

1.4 Overview and Scope

The tools and framework necessary for predicting thermal transport properties in semi-

conductors and metals are discussed in Chapter 2. Theoretical derivations are presented

for calculation of phonon dispersion from harmonic lattice dynamics (HLD), three-phonon

scattering rates from anharmonic lattice dynamics (ALD) [43], phonon-isotope scattering

rates from the Tamura theory [44], and thermal conductivity prediction from the iterative

solution of the BTE [30]. The predicted thermal conductivities of silicon and germanium

using the developed tools are compared against experimental measurements. The impor-

tance of crystal symmetries in the extraction of force constants from DFT is analyzed.

The framework for the calculation of electron-phonon coupling coefficients and electronic

transport properties using DFPT [40] and Wannier functions [41, 42] is presented.

In Chapter 3, the thermal transport properties of phonons in nanostructured semicon-
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ductors are investigated and compared against experimental measurements. A framework

is developed for the calculation of scattering rates of phonons from nanostructure bound-

aries. The framework is compared with existing phonon-boundary scattering models and

available experimental data for simple silicon nanostructures. Phonon transport proper-

ties and thermal conductivity predictions are made and compared with the experimental

data from El-Kady et al. [45] and Hopkins et al. [46] for silicon nanoporous thin films at a

temperature of 300 K.

Chapter 4 is focused on the phonon thermal transport in compound semiconductors,

i.e., semiconductors with more than one atomic species. The thermal conductivities of

model compound semiconductors, which differ only in the mass-ratio of the atomic species,

are presented and analyzed. The effect of harmonic phonon properties on the phonon

scattering rates and thermal conductivity is studied. By normalizing the model system

thermal conductivities with the Slack group of parameters [47], a comparison is made

between the model system and IV, III-V, and II-VI real compound semiconductors.

In Chapter 5, the thermal transport properties of black and blue phosphorene are

investigated. The thermal conductivities are compared with the other 2D materials and

the factors affecting the thermal transport are analyzed. The possibility of strain tuning

the thermal transport through the application of uni-axial and bi-axial strain is discussed.

In Chapter 6, the effect of the choice of DFT electron exchange-correlations (XCs) and

pseudopotential types on the thermal conductivity of isotopically pure silicon is examined.

The local density approximation (LDA) and generalized gradient approximation (GGA)

(PBE [48], PBEsol [49], BYLP [50, 51], and PW91 [52]) XC-based ultrasoft (US), norm-

conserving (NC), and projected augmented wave (PAW) pseudopotentials are employed for

the thermal conductivity prediction. The predicted thermal conductivities are compared

with experimental measurements and causes of discrepancies between them are discussed
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at the phonon mode level. Recommendations are made for strategies of how to choose the

DFT parameters for the study of new materials.

Chapter 7 focuses on phonon and electron transport in metals (aluminum, silver, and

gold). The phonon thermal conductivity, electron thermal conductivity, and electrical con-

ductivity are predicted from first-principles calculations by considering phonon-phonon and

electron-phonon scattering. A comparison is made between the phonon thermal transport

in metals and semiconductors.

In Chapter 8, the major contributions of this work are presented and suggestions for

future study are discussed.
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Thermal Transport Theory
In this chapter, we describe the theoretical and computational framework needed for ther-

mal conductivity prediction in semiconductors and metals. The prediction of phonon scat-

tering rates, by considering three-phonon and electron-phonon scattering processes from

lattice dynamics and first-principles calculations, is discussed. Two different techniques are

presented for the extraction of harmonic and cubic force constants from the DFT calcula-

tions. The iterative solution of the BTE for the calculation of lattice thermal conductivity

in semiconductors and the RTA solution of the BTE for the calculation of thermal and

electrical conductivities in metals are discussed. The derivations presented in this chapter

are adopted from Refs. 43, 44, 53, 54, 55, 56.

2.1 Thermal Transport in Semiconductors

In semiconductors, thermal transport is dominated by phonons. The heat flux due to the

flow of phonons when a finite temperature gradient is applied across a material is given by

Q =
1

V

∑
q

∑
ν

ℏωqνvqνnqν . (2.1)

The summation in the above equation is over all the phonon wavevectors, q, and polar-

izations, ν, V is the crystal volume, ℏ is the reduced Planck constant, ωqν is the phonon

frequency, vqν is the phonon group velocity, and nqν is the phonon distribution function.

The heat flux is also related to the temperature gradient through the Fourier law:

Q = −k∇T, (2.2)
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where k is the thermal conductivity tensor. On equating the heat flux from Eqns. 2.1 and

2.2, we get:

− k∇T =
1

V

∑
q

∑
ν

ℏωqνvqνnqν . (2.3)

k is a rank-two symmetric tensor with zero non-diagonal elements. The non-zero diagonal

elements of k are represented as kx, ky, and kz in this work and denote thermal conductivity

for the x, y, and z direction of heat flow. For cubically isotropic materials, kx = ky = kz.

The evolution of the phonon distribution function (nqν in Eqn. 2.3) at any given time,

when a temperature gradient ∇T is applied across a material, is governed by the BTE. At

steady state with no external forces, the BTE is a balance between changes in the phonon

distribution due to drift and scattering,

vqν ·∇nqν =

(
∂nqν

∂t

)
coll

. (2.4)

The phonons in a material can scatter from other phonons, isotopes, defects, impurities,

grain/system boundaries, etc. and (∂nqν/∂t)coll denotes the total change in phonon dis-

tribution due to all scattering mechanisms. As will be shown in Sec. 2.1.4, Eqns. 2.3 and

2.4 can be solved together to obtain an expression for the thermal conductivity in the α

direction,

kα =
∑
q

∑
ν

cqνv
2
qν,ατqν,α, (2.5)

where cqν is the phonon specific heat, vqν,α is the α component of phonon group velocity

vector, and τqν,α is the phonon scattering time. Phonons are bosons and follow the Bose-

Einstein distribution, when in equilibrium. The phonon specific heat can be obtained from

10



the phonon vibrational frequencies as:

cqν =
ℏωqν

V

∂no
qν

∂T
=

kBx
2ex

(ex − 1)2
. (2.6)

The no
qν in Eqn. 2.6 is the Bose-Einstein distribution (no

qν = 1
ex−1

), kB is the Boltzmann

constant, and x = ℏωqν

kBT
.

2.1.1 Lattice Dynamics

The calculation of lattice thermal conductivity from Eqn. 2.5 requires phonon specific

heats, group velocities, and scattering times. Here, we discuss calculation of these phonon

properties from harmonic and anharmonic lattice dynamics calculations.

2.1.1.1 Harmonic Lattice Dynamics

The potential energy portion of the system Hamiltonian can be expanded using a Taylor

series as:

U = U0 +
∑
i

Πα
i u

α
i +

1

2!

∑
ij

Φαβ
ij u

α
i u

β
j +

1

3!

∑
ijk

Ψαβγ
ijk uα

i u
β
j u

γ
k +O

(
u4
)
, (2.7)

where,

Φαβ
ij =

∂2U

∂uα
i ∂u

β
j

, (2.8a)

Ψαβγ
ijk =

∂3U

∂uα
i ∂u

β
j ∂u

γ
k

. (2.8b)

U0 in Eqn. 2.7 represents the reference energy, Π represents the forces acting on atoms, ui

labels a small displacement of atom i in the α direction, and Φ and Ψ are the harmonic

and cubic force constants. In equilibrium, the sum of forces acting on all atoms are zero.
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Therefore, by taking the reference potential energy as zero and by expanding potential

energy Taylor series about the equilibrium positions of atoms, the first two terms on the

right hand side of Eqn. 2.7 can be ignored. The harmonic and cubic force constants are

the second- and third-order derivatives of the potential energy.

Using the first non-zero term on the right side of Eqn. 2.7, the equations of motion for

each atom under the harmonic approximation can be written as

mbü
α
bl(t) = −

∑
b′′ l′

Φαβ

bl;b
′
l
′u

β

b
′
l
′ (t). (2.9)

Here mb is the mass of atom b in the unit-cell and ubl(t) is the displacement of atom b in

the lth unit-cell from its equilibrium position at time t. The solution of Eqn. 2.9 can be

obtained by doing a Fourier coordinate transformation by assuming the following form for

the atomic displacements [43]:

ubl(t) =
1

√
mb

∑
q

∑
ν

ξqνeb,qν exp {i(q · rbl − ωqνt)}, (2.10)

where ξqν is the transformed coordinate, rbl is the equilibrium position of atom b in the

l unit-cell, and eb,qν is the eigenvector of atom b. Substituting Eqn. 2.10 into Eqn. 2.9

results in an eigenvalue problem:

ω2
qνeqν = Dq · eqν , (2.11)

where eqν is the eigenvector andDq is the Dynamical matrix whose elements,D
3(b−1)+α,3(b

′−1)+β
q ,

are given by:

D3(b−1)+α,3(b
′−1)+β

q =
1

√
mbmb

′

∑
l′

Φαβ

b0;b′ l′
exp {i[q.(rb′ l′ − rb0)]}, (2.12)
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where the summation is over all unit-cells in the lattice. With n atoms in the unit-cell,

the Dynamical matrix is a 3n× 3n Hermitian matrix with all real eigenvalues and orthog-

onal eigenvectors. The square root of the eigenvalues of Dq are the phonon vibrational

frequencies (ωqν) and the eigenvectors of Dq are the phonon mode shapes (polarization

vectors). Due to the Hermitian nature of Dq, the polarization vectors are normalized such

that eT
qν · e∗

qν = 1.

2.1.1.2 Anharmonic Lattice Dynamics

Within the harmonic approximation for a perfect crystal, phonons do not interact with

each other and have infinite lifetime. The higher-order terms in the system Hamiltonian

results in interactions between phonons and hence finite intrinsic lifetime. The expression

for phonon scattering rates by considering the three-phonon scattering processes can be

obtained by treating the cubic term (the fourth term on the right side of Eqn. 2.7) as a

perturbation to the harmonic phonons.

It is convenient to introduce the phonon creation and annihilation operators defined by

[43]:

a† |nqν⟩ = (nqν + 1)
1
2 |nqν + 1⟩ , (2.13a)

a |nqν⟩ = nqν

1
2 |nqν − 1⟩ . (2.13b)

The transformed Fourier coordinate (introduced in Eqn. 2.10) can be written in terms of

these phonon creation and annihilation operators as:

ξqν =

[
ℏ

2ωqν

] 1
2

(aqν + a†qν). (2.14)

By combining Eqns. 2.10 and 2.14, the atomic displacements can be expressed in terms of

13



the creation and annihilation operators to give

ubl =

(
ℏ

2Nmb

) 1
2 ∑

q

∑
ν

ω−1/2
qν ẽb,qν exp {i(q · r0l)}(aqν + a†−qν), (2.15)

where N is the number of unit-cells and ẽb,qν = eb,qν exp {i(q · rb0)}. Using Eqn. 2.14, the

cubic term in the system Hamiltonian (the fourth term in Eqn. 2.7) can be rewritten as:

U3 =
1

3!

(
ℏ
2N

) 3
2 ∑

bl

∑
b
′
l
′

∑
b
′′
l
′′

∑
αβγ

Ψαβγ

bl;b′ l′ ;b′′ l′′

∑
qq

′
q
′′

∑
νν

′
ν
′′

e[i(q·r0l+q
′ ·r

0l
′+q

′′ ·r
0l

′′ )]×

ẽαb,qν ẽ
β

b′ ,q′ν′
ẽγ
b′′ ,q′′ν′′

√
mbωqνmb′ωq′ν′mb′′ωq′′ν′′

(aqν + a†−qν)(aq′ν′ + a†−q′ν′
)(aq′′ν′′ + a†−q′′ν′′

).

(2.16)

Due to the translational invariance of the crystal, shifting all three of r0l, r0l′ , and r0l′′ by

a lattice vector R should leave the Hamiltonian unchanged. This invariance leads to the

following constraint on the exponential:

ei{(q+q
′
+q

′′
).R} = 1, (2.17)

or, equivalently,

q + q
′
+ q

′′
= G, (2.18)

where G is a reciprocal lattice vector. Further, in a crystal, only the relative positions of

the unit-cells, l
′ − l and l

′′ − l, affect the Hamiltonian. Therefore, by taking the origin

of the coordinate system at l = 0, the first term in the exponential can be ignored and

the summation over l can be evaluated to result in a constant prefactor of N . With these
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simplifications, the cubic term in the Hamiltonian reduces to

U3 =
1

3!

(
ℏ
2N

) 3
2

N
∑
b

∑
b′ l′

∑
b′′ l′′

∑
αβγ

Ψαβγ

bl;b′ l′ ;b′′ l′′

∑
qq′q′′

∆(q + q
′
+ q

′′
)
∑
νν′ν′′

e[i(q
′ ·r

0l
′+q

′′ ·r
0l

′′ )]×

ẽαb,qν ẽ
β

b
′
,q

′
ν
′ ẽ

γ

b
′′
,q

′′
ν
′′

√
mbωqνmb

′ωq
′
ν
′mb

′′ωq
′′
ν
′′
(aqν + a†−qν)(aq′

ν
′ + a†−q′ν′

)(aq′′
ν
′′ + a†−q′′ν′′

),

(2.19)

where ∆(q) is defined as

∆(q) ≡

 1 if q = G (reciprocal lattice vector)

0 otherwise
. (2.20)

2.1.2 Phonon Scattering Mechanisms

2.1.2.1 Phonon-Phonon Scattering

The scattering rate of phonons due to three-phonon scattering processes can be calculated

using the Fermi’s golden rule, according to which the transition rate, Ω, of three phonons

scattering from initial state |i⟩ to final state |f⟩ is given by

Ω =
2π

ℏ
|⟨f |U3 |i⟩|2 δ(Ei − Ef ), (2.21)

where ⟨f |U3 |i⟩ is the matrix element of the cubic Hamiltonian between initial and final

states and δ(Ei − Ef ) is the delta function ensuring conservation of energy.

For the three-phonon scattering mechanism (i) in Fig. 2.1, the initial and final states
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Final State Contribution to Transition Rate
Three-phonon

Process

(i)

(ii)-a

(ii)-b

(iii)-a

(iii)-b

(iv)

Figure 2.1: All possible three-phonon scattering processes. In processes (i), (ii)-a, and
(ii)-b one phonon gets annihilated to create two new phonons, and in (iii)-a, (iii)-b, and
(iv) two phonons scatter together to make one new phonon. All of these phonon scattering
processes are required to satisfy energy conservation.
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of the three phonons are:

|i⟩ = |nqν ;nq′ν′ ;nq′′ν′′ ⟩ , (2.22a)

|f⟩ = |nqν − 1;nq′ν′ + 1;nq′′ν′′ + 1⟩ . (2.22b)

Accordingly, from Eqns. 2.21 and 2.16, the matrix element of the cubic Hamiltonian be-

tween these states is

⟨f |U3 |i⟩(i) = ⟨nqν − 1;nq′ν′ + 1;nq′′ν′′ + 1|Ψνν
′
ν
′′

qq′q′′∆(q − q
′ − q

′′
)×

(aqν + a†−qν)(aq′
ν
′ + a†−q

′
ν
′ )(aq′′

ν
′′ + a†−q

′′
ν
′′ ) |nqν ;nq

′
ν
′ ;nq

′′
ν
′′ ⟩ ,

(2.23)

where Ψνν
′
ν
′′

qq
′
q
′′ is defined for convenience as:

Ψνν
′
ν
′′

qq′q′′ = N

(
ℏ
2N

) 3
2 ∑

b

∑
b′ l′

∑
b′′ l′′

∑
αβγ

Ψαβγ

bl;b
′
l
′
;b

′′
l
′′×

ẽαb,qν ẽ
β

b
′
,q

′
ν
′ ẽ

γ

b
′′
,q

′′
ν
′′

√
mbωqνmb

′ωq
′
ν
′mb

′′ωq
′′
ν
′′
e[i(q

′ ·r
0l

′+q
′′ ·r

0l
′′ )].

(2.24)

The effect of the creation and annihilation operators on |i⟩ and |f⟩ can be calculated

by using Eqns. 2.13a and 2.13b to give

⟨nqν − 1;nq′ν′ + 1;nq′′ν′′ + 1| (aqν + a†−qν)(aq′ν′ + a†−q′ν′
)(aq′′ν′′ + a†−q′′ν′′

)

|nqν ;nq
′
ν
′ ;nq

′′
ν
′′ ⟩ = n1/2

qν (nq
′
ν
′ + 1)1/2(nq

′′
ν
′′ + 1)1/2.

(2.25)

Thus, using Eqns. 2.21, 2.66, 2.24, and 2.25, the transition rate for process (i) of Fig. 2.1

is

Ω(i) =
2π

ℏ2
∣∣∣Ψνν

′
ν
′′

qq
′
q
′′

∣∣∣2 nqν (nq′ν′ + 1)(nq′′ν′′ + 1)∆(q − q
′ − q

′′
)δ(ωqν − ωq′ν′ − ωq′′ν′′ ).

(2.26)
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If we consider a particular phonon, qν, and wish to calculate its total scattering rate, we

need to sum over contributions from all the three-phonon processes shown in Fig. 2.1 that

includes the phonon under investigation. From the point of view of phonon qν, processes

(ii)-a and (ii)-b are equivalent, so we need to include only one of them. Similarly, we need

to include only one of the processes (iii)-a and (iii)-b. Processes (i) and (iv) will be counted

twice while performing the summation over all possible q
′
ν ′ and q

′′
ν ′′, and as such we need

to multiply them by 1/2. Thus, the total scattering rate of phonon qν due to three-phonon

scattering,
∂npp

qν

∂t
, is

∂npp
qν

∂t
=
∑
q′ν′

∑
q′′ν′′

[(
Ω(ii) − Ω(iii)

)
+

1

2

(
Ω(iv) − Ω(i)

)]
. (2.27)

By substituting Eqn. 2.26 and likewise into Eqn. 2.27, we get the final expression for the

total scattering rate of phonon, qν, to be

∂npp
qν

∂t
=

2π

ℏ2
∑
q
′
ν
′

∑
ν
′′

{{ ∣∣∣Ψνν
′
ν
′′

qq′q
′′
1

∣∣∣2 [(nqν + 1)(nq′ν′ + 1)nq
′′
1 ν

′′ − nqνnq′ν′ (nq
′′
1 ν

′′ + 1)
]
×

δ(ωqν + ωq
′
ν
′ − ωq

′′
1 ν

′′ )
}
+

1

2

{ ∣∣∣Ψνν
′
ν
′′

qq
′
q
′′
2

∣∣∣2 [(nqν + 1)nq
′
ν
′nq

′′
2 ν

′′

−nqν (nq
′
ν
′ + 1)(nq

′′
2 ν

′′ + 1)
]
δ(ωqν − ωq

′
ν
′ − ωq

′′
2 ν

′′ )
}}

,

(2.28)

with q
′′
1 = q + q

′
+G and q

′′
2 = q − q

′
+G.

2.1.2.2 Phonon-Isotope Scattering

The scattering rate of phonons due to scattering from isotopes can also be calculated using

the Fermi’s golden rule (Eqn. 2.21). Assuming that the presence of isotopes of an atom

does not alter the electronic environment, the modified total Hamiltonian of a system with
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isotope can be written as [44]:

H =
1

2

∑
bl

mbu̇
2
bl +

1

2

∑
bl

(mbl −mb) u̇
2
bl + U, (2.29)

where mb is the average mass of atom b defined as

mb =
1

N

∑
l

mbl =
∑
s

fs(b)mb,s, (2.30)

where fs(b) is the mass-fraction of isotope s of atom b with mass mb,s. By rewriting the

perturbed Hamiltonian (second term in Eqn. 2.29) using Eqn. 2.15, substituting it into

the Fermi’s golden rule (Eqn. 2.21), and carrying out the algebra, the expression for the

scattering rate of phonon qν due to presence of isotopes can be written as [44]

∂niso
qν

∂t
=

π

2N

∑
q
′
ν
′

ωqνωq′ν′

∑
b

g2(b)nqν(nq′ν′ + 1)
∣∣∣e∗

b,qν · e∗
b,q

′
ν
′

∣∣∣2 δ (ωqν − ωq′ν′
)
, (2.31)

where g2(b),

g2(b) =
∑
s

fs(b)

(
1− mb,s

mb

)2

, (2.32)

is the mass-variance parameter.

Please note that Eqn. 2.31 has been arrived at by using the second-order perturbation

theory (i.e., by ignoring the higher-order terms). See Ref. 44 for details.

2.1.2.3 Other Phonon Scattering Mechanisms

Apart from scattering with other phonons and isotopes, a phonon can also scatter from

grain and system boundaries, electrons, and defects. For a defect free semiconductor

with no free electrons, phonon-electron scatterings are negligible as compared to phonon-

phonon and phonon-isotope scatterings. The phonon-boundary scattering is significant in
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poly-crystalline and nanostructured semiconductors and is discussed in Ch. 3.

2.1.3 Linearized Boltzmann Transport Equation

As can be seen from Eqn. 2.28, the three-phonon scattering rate of phonon qν depends

on the distribution function of all other phonons in the system. Equation 2.28, therefore,

represents NqNν number of non-linear coupled equations, where Nq and Nν are the number

of phonon wavevectors and polarizations. In this section, we discuss the linearization of

Eqn. 2.28, which can then be solved iteratively, along with Eqns. 2.31 and 2.4, to obtain

the converged scattering rate of all phonons in a material.

In equilibrium, the rate of change of population of phonon qν is zero. This statement

leads to the following conditions from Eqn. 2.28:

(no
qν + 1)(no

q
′
ν
′ + 1)no

q
′′
ν
′′ = no

qνn
o
q
′
ν
′ (no

q
′′
ν
′′ + 1) (2.33)

(no
qν + 1)no

q
′
ν
′no

q
′′
ν
′′ = no

qν (n
o
q
′
ν
′ + 1)(no

q
′′
ν
′′ + 1). (2.34)

When a small temperature gradient, ∂T/∂α, is applied across a material in the α

direction, the non-equilibrium phonon distribution can be written as

nqν = no
qν + n1

qν , (2.35)

where n1
qν is a small deviation from the equilibrium Bose-Einstein distribution. Without

the loss of generality, the deviation distribution can be assumed to be of the form

n1
qν =

∂no
qν

∂(ℏωqν)

∂T

∂α
Θqν ,

= −
no
qν(n

o
qν + 1)

kBT

∂T

∂α
Θqν , (2.36)
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with Θqν as the measure of deviation from the equilibrium distribution. By substituting

Eqn. 2.36 into Eqn. 2.28 and ignoring second- and higher-order terms and using Eqns. 2.33

and 2.34, the expression for the scattering rate of phonon qν can be linearized as [57]:

∂npp
qν

∂t
=

1

kBT

∂T

∂α

∑
q′ν′

∑
ν′′

{
Υνν

′
ν
′′

qq
′
q
′′
1

(
Θqν +Θq

′
ν
′ −Θq

′′
ν
′′
)
+

1

2
Υνν

′
ν
′′

qq′q
′′
2

(
Θqν −Θq′ν′ −Θq′′ν′′

) }
,

(2.37)

where Υνν
′
ν
′′

qq′q
′′
1

and Υνν
′
ν
′′

qq′q
′′
2

are defined for convenience as

Υνν
′
ν
′′

qq′q
′′
1

=
2π

ℏ2
∣∣∣Ψνν

′
ν
′′

qq′q
′′
1

∣∣∣2 no
qνn

o
q
′
ν
′ (no

q
′′
1 ν

′′ + 1)δ(ωqν + ωq′ν′ − ωq
′′
1 ν

′′ ), (2.38)

Υνν
′
ν
′′

qq′q
′′
2

=
2π

ℏ2
∣∣∣Ψνν

′
ν
′′

qq′q
′′
2

∣∣∣2 (no
qν + 1)no

q
′
ν
′no

q
′′
2 ν

′′δ(ωqν − ωq′ν′ − ωq
′′
2 ν

′′ ). (2.39)

Finally, by combining Eqns. 2.4, 2.31, and 2.37, the following expression for the lin-

earized BTE can be obtained:

vαqν
∂no

qν

∂T

∂T

∂α
=

1

kBT

∂T

∂α

[∑
q′ν′

∑
ν′′

{
Υνν

′
ν
′′

qq
′
q
′′
1

(
Θqν +Θq

′
ν
′ −Θq

′′
ν
′′
)
+

1

2
Υνν

′
ν
′′

qq
′
q
′′
2

(
Θqν −Θq

′
ν
′ −Θq

′′
ν
′′
)}

+
∑
q′ν′

Υνν
′

qq′
(
Θqν −Θq

′
ν
′
) ]

,

(2.40)

where Υνν
′

qq
′ is

Υνν
′

qq′ =
π

2N
ωqνωq

′
ν
′

∑
b

g2(b)n
o
qν(n

o
q′ν′

+ 1)
∣∣∣e∗

b,qν · e∗
b,q′ν′

∣∣∣2 δ (ωqν − ωq
′
ν
′
)
. (2.41)

On simplifying Eqn. 2.40 to solve for Θqν by evaluating
∂no

qν

∂T
, canceling ∂T

∂α
, and by
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taking terms involving Θqν on the left hand side, we get

Θqν

∑
q
′
ν
′

∑
ν
′′

(
Υνν

′
ν
′′

qq′q
′′
1
+

1

2
Υνν

′
ν
′′

qq′q
′′
2

)
+
∑
q
′
ν
′

Υνν
′

qq
′

 =
vαqνn

o
qν(n

o
qν + 1)ℏωqν

T
+

∑
q
′
ν
′

∑
ν
′′

(
Υνν

′
ν
′′

qq′q
′′
1
(Θq′′ν′′ −Θq′ν′ ) +

1

2
Υνν

′
ν
′′

qq′q
′′
2
(Θq′′ν′′ +Θq′ν′ )

)
+
∑
q
′
ν
′

Υνν
′

qq
′Θq′ν′ .

(2.42)

After rearranging and defining Πqν as

Πqν =
∑
ν′′

(
Υνν

′
ν
′′

qq
′
q
′′
1
+

1

2
Υνν

′
ν
′′

qq
′
q
′′
2

)
+
∑
q′ν′

Υνν
′

qq′ , (2.43)

the expression to solve for Θqν from Eqn. 2.40 can be obtained as

Θqν =
vαqνn

o
qν(n

o
qν + 1)ℏωqν

TΠqν

+
1

Πqν

[∑
q′ν′

∑
ν′′

(
Υνν

′
ν
′′

qq′q
′′
1
(Θq′′ν′′ −Θq′ν′ )+

1

2
Υνν

′
ν
′′

qq′q
′′
2
(Θq′′ν′′ +Θq′ν′ )

)
+
∑
q
′
ν
′

Υνν
′

qq
′Θq′ν′

]
.

(2.44)

2.1.4 Relaxation Time Approximation, Iterative Solution of the

BTE, and Lattice Thermal Conductivity

Under the application of a temperature gradient, ∂T/∂α, across a material in the α direc-

tion, the lattice thermal conductivity is related to the phonon distribution function through

Eqn. 2.3 (derived in Sec. 2.1) as (one component of Eqn. 2.3)

− kα
∂T

∂α
=
∑
qν

1

V
ℏωqνv

α
qνnqν . (2.45)
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On substituting nqν from Eqn. 2.35 into Eqn. 2.45, we get

− kα
∂T

∂α
= −

∑
qν

1

V
ℏωqνv

α
qν

[
no
qν +

no
qν(n

o
qν + 1)

kBT

∂T

∂α
Θqν

]
. (2.46)

The first term in the summation on the right side of Eqn. 2.46 represents the equilibrium

heat flux (i.e., without any temperature gradient) and is, therefore, zero. Cancellation of

−∂T/∂α from both sides of Eqn. 2.46 results in

kα =
∑
qν

ℏωqν

V

no
qν(n

o
qν + 1)

kBT
vαqνΘqν . (2.47)

Equation 2.47 can be further rearranged to get:

kα =
∑
qν

ℏωqν

V

ℏωqνn
o
qν(n

o
qν + 1)

kBT 2
(vαqν)

2 TΘqν

vαqνℏωqν

, (2.48)

=
∑
qν

ℏωqν

V

∂no
qν

∂T
(vαqν)

2 TΘqν

vαqνℏωqν

, (2.49)

=
∑
qν

cqν(v
α
qν)

2τqν , (2.50)

where cqν = ℏωqν

V

∂no
qν

∂T
(Eqn. 2.6) is the phonon specific heat and τqν = TΘqν

vαqνℏωqν
is the phonon

scattering time. The phonon scattering time depends on Θqν , which is obtained from

Eqn. 2.44 by solving it iteratively with Θqν =
vαqνn

o
qν(n

o
qν+1)ℏωqν

TΠqν
as an initial guess. The

initial guess of Θqν results in τqν =
no
qν(n

o
qν+1)

Πqν
and is referred to as single mode relaxation

time (SMRT) approximation or the RTA solution of the BTE.

2.1.5 Solving the Linearized BTE

The prediction of phonon thermal conductivity using Eqn. 2.50 requires the evaluation of

Θqν from Eqn. 2.44. Eqn. 2.44 represents coupled system of linear equations in Θqν and can
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be solved using different numerical approaches. Here we discuss some of these approaches

for the numerical solution of Eqn. 2.44.

For convenience, rewriting Eqn. 2.44 as

Θi+1
qν = Θo

qν +∆Θi
qν , (2.51)

where Θo
qν and ∆Θi

qν are

Θo
qν =

vαqνn
o
qν(n

o
qν + 1)ℏωqν

TΠqν

,

∆Θi
qν =

1

Πqν

[∑
q
′
ν
′

∑
ν
′′

(
Υνν

′
ν
′′

qq′q
′′
1
(Θi

q′′ν′′
−Θi

q′ν′
) +

1

2
Υνν

′
ν
′′

qq′q
′′
2
(Θi

q′′ν′′
+Θi

q′ν′
)
)

+
∑
q
′
ν
′

Υνν
′

qq′Θi
q′ν′

]
,

(2.52)

the simplest possible approach to solve Eqn. 2.44 is to solve it iteratively. Eqn. 2.51 can be

solved by using Θo
qν as the initial guess and by adding ∆Θi

qν to Θo
qν after every iteration i,

where ∆Θi
qν is calculated using a current iteration value of Θqν (i.e., Θ

i
qν) [54]. The process

is repeated until the change in values of Θqν (or thermal conductivity from Eqn. 2.50 which

depends on Θqν) after two consecutive steps (
∣∣Θi+1

qν −Θi
qν

∣∣) is less than some pre-defined

small number. This approach is simple to implement but for some systems (we found for

graphene) result in non-convergence of Θqν (or thermal conductivity).

A slightly modified approach to solve Eqn. 2.44 is discussed by Chernatynskiy and

Phillpot [58], where the authors rigorously proved that the matrix representing Eqn. 2.44

is positive definite and symmetric and as such should always result in a converged solution.

The authors introduced a simple mixing rule,

Θi+1
qν =

1

2
Θi

qν +
1

2

{
Θo

qν +∆Θi
qν

}
, (2.53)
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and found that iterating on this new scheme always results in a convergence (we also found

iterative solution to convergence for graphene with this new scheme).

By using the same fact that matrix representing Eqn. 2.44 is symmetric and positive

definite, Fugallo et al. [59] developed a variational approach with pre-conditioning and con-

jugate gradient algorithm to solve for Θqν from Eqn. 2.44. This approach, like Chernatyn-

skiy and Phillpot approach [58], always converges. It also results in a faster convergence

as compared to previous two approaches but is computationally more involved.

We used the Chernatynskiy and Phillpot approach [58] in this work as it is easy to

implement and always leads to convergence.

2.1.6 Extracting Harmonic and Cubic Force Constants from DFT

Calculations

The calculation of the phonon dynamical matrix and phonon scattering rates from Eqns. 2.12

and 2.44 requires harmonic and cubic force constants as an input. Here we discuss ap-

proaches for extracting these force constants from empirical inter-atomic potentials or

from DFT calculations.

2.1.6.1 Taylor Series Fitting

The force constants were introduced in Eqn. 2.7 in the expression for the potential energy

of the system. Equation 2.7 can be differentiated to obtain an expression for the forces on

the atoms in terms of force constants as

Fα
i = − ∂U

∂uα
i

, (2.54)

≈ −
∑
j

Φαβ
ij u

β
j −

1

2

∑
jk

Ψαβγ
ijk uβ

j u
γ
k. (2.55)
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The force constants can be obtained using Eqn. 2.55 by creating different displaced struc-

tures/supercells and calculating forces on different atoms. The displaced supercells have

one or more atoms displaced from their equilibrium position and forces can be calculated

on these displaced supercells using empirical inter-atomic potentials or from DFT. The

calculated forces on different atoms in displaced supercells can then be simultaneously

fitted to extract both harmonic and cubic force constants at the same time by rewriting

Eqn. 2.55 in matrix from as,

uΦ = F , (2.56)

where u is the displacement matrix (displacement of atoms from their equilibrium posi-

tions), Φ is the unknown force constants vector and includes both harmonic and cubic

force constants, and F is the force vector (forces acting on different atoms in displaced

supercells). The number of rows in the displacement matrix equals the number of force-

displacement equations for force constant fitting. For a three-dimensional system in which

force-displacement equation can be written for Na atoms in the supercell (this number

can be less than number of atoms in a supercell, see App. A) and with Ns displaced su-

percells, the number of force-displacement equations are 3NaNs. The number of columns

in the displacement matrix equals the number of unknown harmonic and cubic force con-

stants. If the number of unknown force constants are less than number of equations, then

considered system of linear equations is over-specified and can be solved using least-square

fitting to obtain the best fit solution for the unknown force constants (using Singular Value

Decomposition).
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2.1.6.2 Finite Difference

The harmonic and cubic force constants are the second and third derivatives of the potential

energy (first and second derivatives of force)

Φαβ
ij =

∂2U

∂uα
i ∂u

β
j

= −∂Fα
i

∂uβ
j

, (2.57a)

Ψαβγ
ijk =

∂3U

∂uα
i ∂u

β
j ∂u

γ
k

= − ∂2Fα
i

∂uβ
j ∂u

γ
k

. (2.57b)

They can be approximated using four point central difference formulas as

Φαβ
ij = −∂F α

i

∂uβ
j

≈
F α
i (u

β
j = 2h)− 8F α

i (u
β
j = h) + 8Fα

i (u
β
j = −h)− Fα

i (u
β
j = 2h)

12h
,

(2.58a)

Ψαβγ
ijk = − ∂2Fα

i

∂uβ
j ∂u

γ
k

≈ − 1

2h

[
∂F α

i

∂uβ
j

(
uγ
k = h

)
− ∂Fα

i

∂uβ
j

(
uγ
k = −h

)]
,

≈ 1

4h2

Fα
i

 uβ
j = h

uγ
k = −h

− Fα
i

uβ
j = h

uγ
k = h

+ Fα
i

uβ
j = −h

uγ
k = h

− Fα
i

uβ
j = −h

uγ
k = −h


 ,

(2.58b)

where Fα
i

uβ
j = h

uγ
k = h

 is the force on atom i in the α direction when atoms j, k are displaced

in the β, γ directions by a small amount h.

Similar to the procedure described in previous section (Sec. 2.1.6.1), different supercells

can be created by displacing one or two atoms by ±h or ±2h from their equilibrium
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positions. The force constants can then be obtained by calculating forces on different atoms

and performing finite difference on forces according to Eqns 2.58. Note that multiple force

constants can be obtained from forces on a given displaced supercell. For instance Φα
′
β

i′j
,

where i
′
and α

′
vary over all atoms in the supercell and all directions, can all be obtained

from the same displaced supercell with atom j being displaced in the β direction.

We found that thermal conductivity prediction is very sensitive to the quality of the

harmonic force constants. Therefore, large interaction cutoffs should be used in the calcu-

lation of harmonic force constants. In real-space DFT calculations, using large interaction

cutoffs results in larger supercell size. In this work, therefore, harmonic force constants

are initially calculated in reciprocal space on a phonon wavevector grid using the DFPT

calculations and are later Fourier transformed to real space. The cubic force constants are

obtained using the finite-difference of DFT forces.

2.1.6.3 Crystal Symmetries

As discussed in App. A, the extraction of force constants from DFT (using a planewave

basis) requires the supercell/computational cell size to be at least twice as large as the force

constant range. Moreover, the forces calculated from DFT should be sufficiently accurate in

order to extract good quality force constants. The typical computational cell size for DFT

force calculation is ∼ 100 atoms. The number of such calculations required depends on the

number of unknown force constants. Therefore, in order to keep computations tractable,

it is imperative to use all the system symmetries to reduce the number of unknown force

constants.

Following Esfarjani and Stokes [60], the harmonic and anharmonic force constants sat-

isfy system symmetry constraints, which are categorized as follows.
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Permutation Symmetry The harmonic and cubic force constants are the second and

third derivatives of potential energy. Changing the order of differentiation leaves the result

unaffected, i.e.,

Φαβ
ij = Φβα

ji , (2.59a)

Ψαβγ
ijk = Ψβγα

jki = Ψγβα
kji = Ψαγβ

ikj = · · · . (2.59b)

Space Group Symmetry A general space group operation (ST ) of a system with ro-

tational and translational operator Sαα′ and Tα, transforms the position vector rαi into

vector rαST (i) such that
∑

α′ S
αα′rα′i + Tα = rαST (i). These symmetry operations relate the

force constants as,

Φαβ
ST (i),ST (j) =

∑
α′β′

Φα′β′
ij Sαα′Sββ′, (2.60a)

Ψαβγ
ST (i),ST (j),ST (k) =

∑
α′β′γ′

Ψα′β′γ′
ijk Sαα′Sββ′Sγγ′. (2.60b)

Application of permutation and space group symmetry operations in extracting force

constants drastically reduces the computational load. For instance, in silicon, considering

fifth- and third-neighbor cutoff for harmonic and cubic force constants, system symmetries

reduces the unknown number of force constants from 3384 and 90936 to 17 and 95.

2.1.6.4 Translational Invariance

Apart from the above mentioned crystal symmetries, the harmonic and the cubic force con-

stants also need to satisfy the translational invariance (TI) constraint which dictates that

displacing the crystal as a whole leaves the force constants unchanged. This requirement
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results in the following constraint on the force constants [60]:

∑
j

Φαβ
ij = 0 ∀(αβ, i), (2.61a)∑

k

Ψαβγ
ijk = 0 ∀(αβγ, ij). (2.61b)

While extracting force constants numerically from DFT calculations, the TI constraint

is not satisfied due to finite numerical precision errors (in extracting harmonic force con-

stants from DFPT calculations, TI constraint can be satisfied in the DFPT calculations

itself). Not satisfying TI results in non-physical results such as non-zero acoustic phonon

vibration frequencies at the center of the Brillioun zone. Therefore, TI should be satisfied

explicitly in the extraction of force constants from DFT calculations. The TI constraint

can be satisfied by either (i) using it along with the symmetry constraints to reduce the

number of unknown force constants or (ii) as a post-extraction step in which small cor-

rection is added to all extracted force constants so that they will satisfy the TI. The later

approach of satisfying TI is discussed in App. B

2.1.7 Implementation Details

2.1.7.1 Delta Functions

The calculation of phonon scattering rates from Eqn. 2.28 requires the evaluation of mo-

mentum and energy conservation delta functions. Using the uniformly spaced phonon

wavevector grid, the momentum conservation delta function can be satisfied exactly. Due

to the finite resolution of the phonon wavevector grid in the numerical calculations, how-

ever, the energy conservation delta function can never be satisfied exactly. Here, we discuss

numerical ways of handling this challenge in the calculations.

The most common method of handling the delta functions is to approximate them using
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a Gaussian or Lorentzian function of constant finite width. In the case of phonon scattering

processes, when the width is small, very few processes can satisfy the energy conservation

but the contribution from each of such processes is high. As the width is increased, more

and more processes can satisfy the energy conservation but the contribution from each

process decreases. There is, therefore, an optimal value of width is needed to have a

meaningful value of the phonon scattering rate. This optimal value, however, depends on

the phonon wavevector grid and convergence is required for all of the phonon wavevector

grids separately. This method is, therefore, computationally expensive.

Another method of satisfying the delta function is to interpolate [54]. In this approach,

two different grids are used to satisfy the momentum and energy conservation delta func-

tions. The momentum conservation delta functions are still satisfied using a uniformly

spaced grid, but another non-uniform grid is used to satisfy the energy conservation delta

function exactly. The second non-uniform grid is obtained through the interpolation of

energies from the uniform grid so that phonon energies can satisfy the energy conservation

delta function. This approach is computationally cheaper than previous approach but is

more challenging to implement.

The third approach is to use adaptive broadening and approximate the delta function

by [23, 61]

δ(ω) ≈ 1

π

ϵ

ω2 + ϵ2
, (2.62)

where ϵ is a small broadening parameter calculated as

ϵ =
1

2

(
∂npp

qν

∂t
+

∂npp

q
′
ν
′

∂t
+

∂npp

q
′′
ν
′′

∂t

)
. (2.63)

The delta function is satisfied by providing an initial guess for the broadening param-

eter and iterating until self-consistency is achieved. This method is straightforward to
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implement and does not require any convergence with respect to broadening parameter.

In this work, we used adaptive broadening for satisfying energy conservation delta func-

tions in three-phonon scattering processes (Eqn. 2.28) and a Lorentzian of finite-width for

the delta functions in phonon-isotope scattering processes (Eqn. 2.31).

2.1.7.2 Computation Flow

A flow chart showing the steps involved in the calculation of thermal conductivity from

the BTE using DFT forces is shown in Fig. 2.2. For a given new material, we start

with the relaxation of the structure using DFT calculations. An initial choice of electron

wavevector grid and planewave energy cutoff is made for this step. With the relaxed

structure and choice of harmonic and cubic force constant cutoffs, a full list of harmonic

and cubic force constants (containing all possible force constants within specified cutoffs)

is generated. Next, crystal symmetry operations are identified for the material under

consideration and the full list of force constants is converted into a list of symmetry-reduced

force constants. Depending on the number of force constants in the symmetry-reduced

list, different displaced supercells (see App. A) are created in which one or two atoms

are displaced from their equilibrium position by a small amount. The DFT calculations

are then performed on these displaced supercells to calculate forces on different atoms.

These forces are next used to calculate force constants in symmetry-reduced list which,

after satisfying translational invariance constraints, is mapped back to a full list of force

constants. Finally, harmonic and anharmonic lattice dynamics calculations are performed

to calculate phonon vibration frequencies, group velocities, and scattering rates using full/

iterative solution of the BTE for all phonons on a uniformly spaced wavevector grid.
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Choose electronic wavevector grid

and planewave energy cutoff
Relax the structure

Choose harmonic and cubic force

constants cutoffs

Generate full list of harmonic and cubic 

force constants wihtin the specified cutoffs.

1. Generate list of allowed symmetry operations in a

crystal.

2. Use allowed symmetry operations to generate

symmetry-reduced list of independent force

constants.

Generate different displaced supercell structures 

which are necessary to calculate all independent

force constants.

Choose displacement amount

and supercell size

Calculate forces on different displaced structures

1. Calculate symmetry reduced independent force

constants.

2. Enforce TI constraint on extracted force constants. 

3. Map symmetry reduced force constants to full 

list of force constants.

Choose uniformly spaced phonon 

wavevector grid

Create dynamical matrices and calculate phonon

vibration frequencies and group velocities for all

phonon wavevectors.

1. Calculate phonon scattering rates using the equili-

brium distribution of phonons.

2. Solve BTE iteratively and obtain non-equilibrium

distribution of phonons.

3. Calculate phonon scattering rates using the non-

equilibrium distribution of phonons (using the full

solution of the BTE). 

Calculate thermal conductivity

Figure 2.2: Computation flow chart for phonon thermal conductivity calculation using
DFT forces and full/ iterative solution of the BTE. The red boxes on the left represent
computational parameters and thermal conductivity is required to be converged with re-
spect to each of these computational parameters.
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2.1.7.3 Thermal Conductivity Convergence Parameters

The calculation of thermal conductivity using the approach discussed in previous sections

requires specification of certain computational parameters (some of those are shown in red

boxes in Fig. 2.2). Here, we list these parameters:

1. Electronic wavevector grid in DFT calculations.

2. Electron planewave energy cutoff in DFT calculations.

3. DFT supercell size for force constant extraction.

4. Small displacement amount for generating displaced supercells for force constant

extraction.

5. Harmonic and cubic force constants cutoff in lattice dynamics calculations (affects

number of DFT calculations).

6. Phonon wavevector grid in lattice dynamics calculations.

7. Fermi-Dirac function smearing in DFT calculations (in case of metals).

8. Amount of vacuum (to remove inter-layer interactions in 2D materials) in DFT cal-

culations.

The choice of these computational parameters varies with the material. For instance,

in the case of silicon, we found no change in our thermal conductivity predictions in going

from a 64 atom DFT supercell with a Gamma point electronic wavevector grid to a 216

atom DFT supercell with a Gamma point electronic wavevector grid. In gold, however, a

256 atom supercell with a Gamma point electronic wavevector grid results in very different

predictions as compared to those from a 256 atom supercell with a 3 × 3 × 3 electronic

wavevector grid. Since the required values of these parameters vary with different materi-

als, the convergence of phonon thermal conductivity is needed with respect to all of these

parameters for any new material.
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2.1.8 Validation

The thermal conductivities predicted from first-principles for pure (i.e., with no isotopes)

and naturally occurring silicon and germanium as a function of temperature are plotted

in Figs. 2.3(a) and 2.3(b). The continuous lines represent the computational predictions

and the discrete data points are experimentally measured values from Ref. [62] (orange),

Ref. [63] (purple), Ref. [64] (red), Ref. [65] (brown), and Ref. [66] (green). As can be seen,

without using any fitting parameters, the predicted thermal conductivities are in good

agreement with the experimental measurements (within 6%) for both pure and naturally

occurring silicon and germanium for temperature varying between 100 and 500 K, thereby

validating our calculations.

2.1.8.1 Computation Cost Scaling

The thermal transport properties prediction approach presented in this work has two main

computational components (i) supercell forces calculation from density functional theory

or density functional perturbation theory and (ii) phonon transport properties prediction

from lattice dynamics calculations. While the computational cost of each supercell force

calculation from density functional theory scales asO (n3
s), the computational cost of lattice

dynamics calculations scales as O (n4) and O (N2), where ns and n are the number of atoms

in the density functional theory supercell and lattice dynamics unit-cell and N is the

number of unit-cells (number of phonon wavevectors) in the lattice dynamics calculations.
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Figure 2.3: Thermal conductivity variation of (a) pure i.e., with no isotopes and (b) natu-
rally occurring silicon and germanium as a function of temperature. The continuous lines
represents computational predictions and discrete data points are experimentally measured
values from Ref. [62] (orange), Ref. [63] (purple), Ref. [64] (red), Ref. [65] (brown), and
Ref. [66] (green).
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2.2 Thermal and Electrical Transport in Metals

2.2.1 Electron Transport

The transport properties of electrons can be obtained by solving the BTE and using the

Onsager relations as [56]:

σαβ = −e2ns

V

∑
κm

∂fκm
∂ϵ

vκm,αvκm,βτκm,

[σS]αβ = − ens

V T

∑
κm

(ϵκm − µ)
∂fκm
∂ϵ

vκm,αvκm,βτκm,

Kαβ = − ns

V T

∑
κm

(ϵκm − µ)2
∂fκm
∂ϵ

vκm,αvκm,βτκm, (2.64)

where σ,S, and K are 3 × 3 tensors which represent electrical conductivity, Seeback

coefficient, and K relates to the electronic thermal conductivity, ke, as ke = K −SσST .

The summation in Eqn. 2.64 is over all the electrons enumerated using electronic wavevector

κ and band indexm. e is the elementary charge, ns is the number of electrons per state, fκm

is the Fermi-Dirac distribution, ϵκm is the electron energy, µ is the chemical potential, vκm,α

is the α component of electron velocity, vκm = 1
ℏ
∂ϵκm

∂κ
, and τκm is the electron transport

relaxation time. Similar to the phonon-phonon scattering, the Fermi’s golden rule can also

be used to calculate the electron transport relaxation time, limited by electron-phonon

scattering as,

1

τκm
=

2π

ℏ
∑
κ′n

∑
qν

∣∣∣gνmn(κ,κ
′
, q)
∣∣∣2 { (nqν + fκ′n) δ (ϵκm + ℏωqν − ϵκ′n)∆

(
κ+ q − κ

′
)

+(nqν + 1− fκ′n) δ (ϵκm − ℏωqν − ϵκ′n)∆
(
κ− q − κ

′
)}(

1− vκm · vκ
′
n

|vκm||vκ′n|

)
,

(2.65)
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where gνmn(κ,κ
′
, q) is the electron-phonon matrix element between states |κm⟩ and |κ′

n⟩,

gνmn(κ,κ
′
, q) =

√
ℏ

2ωqν

⟨κ′
n| ∂qνV |κm⟩ , (2.66)

and describes the electron-phonon coupling strength when an electron with state |κm⟩ gets

scattered into a state |κ′
n⟩ by phonon |qν⟩ of energy ℏωqν and occupation nqν . The delta

functions in Eqn. 2.65 ensures energy and crystal momentum conservation in the scattering

events.

We note that the additional
(
1− vκm·v

κ
′
n

|vκm||v
κ
′
n
|

)
factor in Eqn. 2.65 differentiates electron

transport relaxation time from electron scattering relaxation time. This additional fac-

tor ensures that even after getting scattered by a phonon, a scattered electron can still

contribute towards the transport [56].

2.2.2 Phonon Transport

Apart from scattering with other phonons, phonons in metals also scatter with free elec-

trons. The scattering rate of phonons limited by electron-phonon interaction can be cal-

culated using the Fermi’s golden rule as

1

τ epqν
=

2π

ℏ
∑
κmn

wκ

∣∣∣gνmn(κ,κ
′
, q)
∣∣∣2 (fκm − fκ+qn)

×∆
(
κ+ q − κ

′
)
δ
(
ϵkm + ℏωqν − ϵκ′

n

)
,

(2.67)

where wκ is the weight of the κ-point normalized to two for non-magnetic calculations.

The phonon-phonon and phonon-electron relaxation times can be combined using the

Matthiessen rule to obtain an expression for the effective relaxation time, τ effqν , of phonons
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(to be used in Eqn. 2.50 for predicting thermal conductivity due to phonons in metals) as

1

τ effqν

=
1

τ ppqν
+

1

τ epqν
. (2.68)

2.2.3 Calculation of Electron-Phonon Coupling Coefficients

The calculation of electron-phonon scattering rates require information about electron-

phonon coupling matrix elements. While one can obtain these coupling coefficients di-

rectly from DFT and DFPT theory, the computational cost of calculating these on fine

enough electron and phonon wavevector grids is large. In this work, therefore, we use max-

imally localized Wannier functions (MLWFs) to interpolate the DFT and DFPT calculated

electron-phonon coupling coefficients from coarse grids to fine grids. The details related to

the interpolation procedure can be found in Ref. [55]
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Phonon Transport in Periodic Silicon

Nanoporous Films with Feature Sizes

Greater than 100 nm

As the dimensions of electronic, optoelectronic, and energy conversion devices are reduced,

the thermal conductivities of the device components (e.g., thin films and nanowires) are

also reduced [7, 46, 67, 68, 69, 70, 71, 72, 73, 74, 75]. The large electrical power densities

in such devices cause Joule heating and the reduced thermal conductivities can lead to

high operating temperatures, sub-optimal performance, and poor reliability. Predicting

the thermal conductivity reduction in nanostructures is thus a critical part of developing

next-generation thermal management strategies.

We focus here on semiconducting and insulating nanostructures, where phonons (quan-

tized lattice vibrations) dominate thermal transport [76]. As a nanostructure gets smaller,

its thermal conductivity is reduced due to more frequent scattering between phonons and

the system boundaries [7, 46, 67, 68, 69, 70, 71, 72, 73, 74, 75]. For very small systems

(e.g., silicon films thinner than 20 nm), changes in the phonon density of states also affect

thermal transport [7, 68, 73]. Our interest here is nanostructures large enough that the

phonon density of states is bulk-like.

The thermal conductivities of solid silicon thin films and silicon thin films with peri-

odic pore arrays are predicted using a Monte Carlo technique to include phonon-boundary

scattering and the Boltzmann transport equation. The bulk phonon properties required

as input are obtained from harmonic and anharmonic lattice dynamics calculations. The
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Figure 3.1: Thin film with a square array of through cylindrical pores.

force constants required for the lattice dynamics calculations are obtained from forces cal-

culated using density functional theory. For both solid and porous films, the in-plane

thermal conductivity predictions capture the magnitudes and trends of previous experi-

mental measurements. Because the prediction methodology treats the phonons as particles

with bulk properties, the results indicate that coherent phonon modes associated with the

secondary periodicity of the pores do not contribute to thermal transport in porous films

with feature sizes greater than 100 nm.

3.1 Introduction

Experimental studies on silicon thin films with a periodic arrangement of unfilled cylindrical

pores (i.e., nanoporous films, see Fig. 3.1) measured thermal conductivities two orders of

magnitude smaller than bulk silicon [46, 73, 77]. Hopkins et al. studied four 500 nm

thick films with a square array of pores with diameters and pitches (pore center-to-center

distance) between 300 and 800 nm, finding cross-plane (i.e., parallel to the pore axis)

thermal conductivities between 5 and 7 W/m-K at a temperature of 300 K [46]. Yu et al.
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studied a 22 nm thick film with a square array of pores with diameter of 11 nm and pitch of

34 nm, finding an in-plane (i.e., normal to the pore axis) thermal conductivity of 2 W/m-K

that did not vary significantly between temperatures of 150 and 280 K [73]. Tang et al.

studied a 100 nm thick film with a triangular array of pores with diameter of 32 nm and

pitch of 55 nm, finding an in-plane thermal conductivity of 2 W/m-K at a temperature

of 300 K [77]. Such low thermal conductivities, combined with predictions of bulk-like

electrical transport properties [78], suggest the potential application of nanoporous films

in thermoelectric energy conversion.

The low thermal conductivities of these silicon nanoporous films, in which phonons

dominate thermal transport, cannot be predicted by considering thermal conductivity re-

duction due to material removal and the presence of phonon-boundary scattering [46, 79].

Based on the modeling work of Hao et al. [80], Tang et al. suggest a “necking effect,”

whereby phonons with mean free paths longer than the distance between two pores (i.e.,

the neck, equal to the pitch minus the diameter) become “trapped” behind pores. Yu et

al. and Hopkins et al. suggest that the low thermal conductivities are a result of “coherent

phonon effects,” whereby the phonon band structure and scattering are modified by the

secondary periodicity introduced by the pores.

More recently, El-Kady et al. [45] reported in-plane thermal conductivity measurements

for nanoporous films similar to those studied by Hopkins et al. They found thermal con-

ductivities between 33 and 80 W/m-K, an order of magnitude larger than the cross-plane

results reported by Hopkins et al. For a 500 nm thick solid silicon film, modeling work

suggests that the in-plane thermal conductivity will only be 15% larger than the cross

plane value [75]. Furthermore, the size of the structural features and the magnitudes of

the thermal conductivities measured by El-Kady et al. are similar to previous experimental

work on solid films and nanowires [67, 69, 81]. Phonon particle-based models that use bulk
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properties are able to capture the experimental thermal conductivity trends for these films

and nanowires by including phonon-boundary scattering [67, 69, 75, 82].

In this work, we will predict the thermal conductivity of solid silicon films and silicon

nanoporous films with feature sizes greater than 100 nm using the phonon free path sam-

pling technique [83]. This technique treats the phonons as particles with bulk properties

that are modified by phonon-boundary scattering. As such, any effects of the secondary

periodicity on the phonon transport, other than the geometry for the boundary scattering,

are excluded. Thus, we can determine if coherent effects play a role in phonon transport

in the nanoporous films studied by Hopkins et al. and El-Kady et al. Furthermore, this

technique includes Bose-Einstein phonon statistics (i.e., quantum effects), considers the full

phonon spectrum, is computationally fast, and can be applied to three-dimensional struc-

tures with arbitrary geometry. To ensure an accurate comparison with the experimental

measurements, phonon properties obtained from forces calculated using density functional

theory (DFT) [33, 60] are used as input, removing the need for empirical force fields or

fitting to experimental data.

3.2 Previous Modeling Work

Yang et al. [84], Prasher [85], and Romano et al. [86] solved the Boltzmann transport equa-

tion (BTE) under the gray approximation (i.e., frequency-independent phonon properties)

for periodic nanoporous films with a square array of cylindrical pores. They all considered

the scattering of phonons with other phonons and pore boundaries and found that the in-

plane thermal conductivity depends not only on porosity, but also on pore size and pitch.

Hao et al. used Monte Carlo simulations to study in-plane phonon transport in periodic sil-

icon nanoporous films with a square array of square pores, including frequency-dependent

phonon properties [80]. Including this frequency dependence is critical, since recent mod-
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eling work has demonstrated the importance of including mode-dependent phonon prop-

erties in calculating the thermal conductivity of bulk and nanostructured materials (e.g.,

the phonon mean free paths in bulk silicon cover five orders of magnitude) [26, 33, 87].

In these numerical and analytical models, the phonon modes that emerge due to the pore

periodicity were not included. Moreover, these studies considered two-dimensional geome-

tries and therefore cannot account for phonon scattering from the top and bottom film

boundaries or allow for examination of cross-plane thermal transport.

He et al. [88] used molecular dynamics (MD) simulations and lattice dynamics calcula-

tions to predict the in-plane thermal conductivity of periodic silicon nanoporous films with

diameters and pitches less than 10 nm. By separating the vibrational modes into phonons

and diffusons (i.e., non-propagating, diffusive entities) and including pore surface rough-

ness, they found thermal conductivities as much as 70 times smaller than bulk. For the

same geometry but with smaller diameters and pitches, Lee et al. used MD simulations to

predict thermal conductivities more than 100 times smaller than bulk [89]. Molecular dy-

namic simulations have the advantage of naturally capturing the wave nature of phonons,

but are limited to system sizes less than 100 nm due to computational cost. They therefore

cannot be used to model the films of Yu et al., Tang et al., Hopkins et al., or El-Kady et al.

Furthermore, MD simulations cannot incorporate Bose-Einstein statistics in the phonon

populations.

Dechaumphai and Chen define “coherent” phonons to be those with mean free paths

larger than the neck [79]. These phonons are modeled using the in-plane dispersion relation

for the periodic pores. They scatter with other phonons, but not from the pores. Phonons

with mean free paths shorter than the neck are termed “incoherent,” treated as bulk-like,

and scatter with other phonons and the pores. Dechaumphai and Chen predict that their

coherent phonons will contribute ∼ 1 W/m-K (i.e., ∼ 50%) to the in-plane thermal conduc-
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tivity of the nanoporous films of Yu et al. and Tang et al., but only 0.01 W/m-K (i.e., less

than 0.1 %) to the structures of Hopkins et al. and El-Kady et al. Using a similar approach

for the phonon dispersion, Reinke et al. [90] modeled the nanoporous films of El-Kady et

al., but do not differentiate in how “coherent” and “incoherent” phonons scatter. They

find similar trends compared to the experimental data in thermal conductivity versus neck

size and pore pitch, but their predicted magnitudes are ∼ 15 W/m-K too high. Hopkins et

al. [46] find reasonable agreement with their cross-plane experimental measurements using

a similar approach as Reinke et al., with the in-plane phonon dispersion applied to the

cross-plane transport.

3.3 Methodology

The phonon free path sampling approach [83] is used to study the phonon thermal transport

here. Turney et al. suggest that using bulk phonon properties to model suspended silicon

films is valid for limiting dimensions (i.e., film thicknesses) greater than 20 nm [7]. In a

nanoporous film, the limiting dimension is the lesser of the film thickness and the neck. As

such, the free path sampling technique can be applied to the nanoporous films studied by

Hopkins et al. and El-Kady et al., which have limiting dimensions of at least 200 nm. The

free sampling technique cannot be applied to the nanoporous films of Yu et al. (limiting

dimension 22 nm) or Tang et al. (limiting dimension 23 nm).

Diffuse boundaries are assumed for the phonon-boundary scattering. Modeling work by

Duda et al. suggests that all phonon-boundary scattering will be diffuse at a temperature

of 300 K [91]. The scattering of phonons by point defects is ignored. Previous experimen-

tal measurements on bulk silicon indicate that the effect of phonon-isotope scattering is

small compared to phonon-phonon scattering at a temperature of 300 K [92]. The doping

concentration of the experimental samples that we compare against is 1017 cm−3 or lower.
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Previous experimental measurements indicate that dopant atoms at these concentrations

do not significantly affect the thermal conductivity of silicon at a temperature of 300 K

[93, 94].

Based on the two-atom (i.e., primitive) unit cell description, harmonic and anharmonic

lattice dynamics calculations [23, 33, 95, 96, 97] are performed to calculate the bulk silicon

phonon frequencies and mean free paths for an 18 × 18 × 18 grid of uniformly spaced

wave vectors centered at the origin of the Brillouin zone. 34, 992 total phonon modes are

considered, which includes acoustic and optical branches. The second- and third-order

force constants are those obtained by Esfarjani et al. from forces calculated using DFT

and a numerical approach that enforces the required symmetries [33, 60]. Bose-Einstein

statistics at a temperature of 300 K are used to incorporate quantum effects.

3.4 Thermal Conductivity Predictions

3.4.1 Bulk Silicon

Using Eqn. 2.50, the bulk thermal conductivity of silicon is predicted to be 132 W/m-K,

while the experimental value for naturally occurring silicon is 144 W/m-K [92]. Due to

the finite resolution of the Brillouin zone, the contributions of phonons in the volume at

the Gamma-point are not included in the calculation. Following the approach described

by Esfarjani et al. [33], we estimate the contribution of these phonons to be 10 W/m-K.

Based on the work of Broido et al. [32], a further 10% increase in the thermal conductivity

of silicon is expected if one solves the BTE iteratively without making the relaxation time

approximation, making the predicted bulk thermal conductivity 156 W/m-K. This value

is higher than the experimental measurement because of the complete absence of point

defects, which will be present in any real samples, and uncertainty associated with the
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DFT calculations. We note that for this study (silicon nanoporous films), we obtained

bulk phonon properties from Esfarjani et al. [33]

3.4.2 Solid Thin Films

To validate the free path sampling technique and the use of bulk phonon properties for

modeling nanostructures, we first consider solid silicon thin films that have finite thickness

in one direction and are infinite in the other two directions. The predicted thermal con-

ductivity variation with film thickness, L, for heat flow in the in-plane direction obtained

using the free path sampling technique and the Matthiessen rule are shown in Fig. 3.2 with

available experimental data [6, 45, 67, 73, 77, 81, 98, 99]. The experimental data include

the solid films of Yu et al., Tang et al., and El-Kady et al. The thermal conductivity

predictions from the Matthiessen rule are obtained using

Λpb,i =
L

2 cos θi
, (3.1)

where θi is the angle between the cross-plane direction and the group velocity vector [75].

Also plotted in Fig. 3.2 are the predictions from a closed-form analytical model [101].

This model is based on the Debye approximation for the phonon dispersion and ignores

the contribution of optical phonons to thermal conductivity. The lattice constant, a sound

speed, and the bulk thermal conductivity are the required inputs.

The thermal conductivity increases with increasing film thickness due to a reduction

in phonon-boundary scattering. The free path sampling technique, the Matthiessen rule

approach, and the analytical model capture the experimental magnitudes and trend well for

thicknesses greater than 50 nm. This transition point is higher than the 20 nm suggested by

Turney et al. [7], which was based on the density of states and in-plane thermal conductivity

of suspended silicon thin films modeled using the Stillinger-Weber potential. The finite
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Figure 3.2: In-plane thermal conductivity of solid silicon thin films vs. film thickness at
a temperature of 300 K from the free path sampling technique, the Matthiessen rule, an
analytical model, and experiments [6, 45, 67, 73, 77, 81, 98, 99]. For the analytical model,
we take the sound speed to be 6733 m/s and the lattice constant to be 5.43 A [100]. The
bulk thermal conductivity in the analytical model is set to 132 W/m-K to be consistent
with the value found in Section 3.4.1.
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simulation size and relaxation time approximation errors are smaller in thin films compared

to bulk due to the scattering of long mean free path phonons from film boundaries, which

reduces their contribution to the thermal conductivity.

3.4.3 Periodic Nanoporous Films: In-Plane Direction

The periodic nanoporous films of interest have three characteristic length scales: pore

diameter, d, pore separation, a, and film thickness, t, as shown in Fig. 3.1. It is not

obvious what length scale is appropriate in the Matthiessen rule for these structures. We

therefore use the free path sampling technique to predict their thermal conductivities. To

allow for comparison with the experimental data, the predicted thermal conductivities

must be scaled by a volume correction factor to account for the porosity, ϕ. For the

in-plane direction, the correction factor is calculated using the COMSOL MultiphysicsR⃝

simulation package to solve the heat conduction equation with the finite element method

(FEM). Our FEM calculations agree with the correction factor proposed by Hashin and

Shtrikman, (1 − ϕ)/(1 + ϕ) [102], to within 1%. The Eucken factor, (1 − ϕ)/(1 + 2ϕ/3)

[103], overpredicts the FEM calculations with a deviation that increases with increasing

porosity. For a porosity of 0.4, the maximum considered here, the deviation is 10%. The

volume correction factor is 1− ϕ for the cross-plane direction.

The thermal conductivity variation with porosity for in-plane heat flow in 500 nm thick

nanoporous films predicted using the free path sampling technique is shown in Fig. 3.3(a).

The pore separations (400 to 900 nm) and diameters (200 to 500 nm) are chosen to match

the nanoporous films studied by El-Kady et al. The experimental thermal conductivity

measurements of El Kady et al. are also plotted in Fig. 3.3(a). Both the experimental mea-

surements and modeling predictions show a general decrease in thermal conductivity with

increasing porosity because of more phonon-pore scattering and a reduced solid fraction.
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The maximum error between the experimental and the predicted thermal conductivities is

6% (corresponding to the solid film, where ϕ = 0).

At a porosity of around 0.15 in Fig. 3.3(a), measurement and modeling results show an

increase in thermal conductivity with increasing porosity. To understand this result, we

plot thermal conductivity as a function of pore diameter for a fixed porosity of 0.15 in the

inset to Fig. 3.3(a). For this porosity, a thermal conductivity variation of up to 9% can

be obtained by varying the pore diameter across the range of diameters considered. This

finding is similar to what Yang et al. observed [84].

The predicted thermal conductivities are based on the bulk phonon dispersion and do

not take into account changes to the phonon band structure due to the pore periodicity.

Based on the good agreement between the measured and predicted thermal conductivities,

we do not believe that coherent phonon effects affect thermal transport in the nanoporous

films of El Kady et al.

We also predicted the in-plane thermal conductivity of the nanoporous film studied by

Song and Chen [98], which had thickness 4.67 µm, pore diameter 1.9 µm, and pore pitch

4 µm, to be 63 W/m-K. This value is higher than the experimental measurement of 44

W/m-K, but the difference is within the discrepancies between the experimental data and

modeling predictions for the solid films shown in Fig. 3.2.

In addition to the structure described earlier, Tang et al. also measured the thermal

conductivities of 100 nm thick nanoporous films with porosity of 0.35 and average pitch/-

neck of 350/152 nm and 140/59 nm. Inspection of Figs. 2(a) and 2(b) in their paper shows

large variability in the pore size, shape, and spacing. Furthermore, the second of these

films has a limiting dimension of 59 nm, which is close to where the solid film experimental

data deviates from the modeling predictions (see our Fig. 3.2). As such, we do not believe

that the free path sampling technique, which assumes a perfect periodicity of the pores, is
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appropriate for predicting the thermal conductivity of these two structures.

3.4.4 Periodic Nanoporous Films: Cross-Plane Direction

Measured [46] and predicted cross-plane thermal conductivities are plotted in Fig. 3.3(b).

As with the in-plane heat flow, the modeling results show a decrease in thermal conductivity

with increasing porosity. The experimental results, however, are an order of magnitude

smaller than the modeling predictions and show no significant porosity dependence. From

calculations on a large number of films, we find that the predicted ratio of the in-plane to

cross plane thermal conductivities varies linearly with porosity from 1.2 (ϕ = 0.07) to 0.82

(ϕ = 0.38). Moreover, the predicted solid film thermal conductivity (plotted at ϕ = 0) is

almost twice as high as that measured in the experiments.

3.5 Thermal Conductivity Accumulation

Recent experimental measurements suggest the possibility of resolving the contribution

of phonons with different mean free paths to thermal conductivity [16, 17, 104, 105, 106].

This information could be used to formulate strategies for reducing thermal conductivity by

selectively scattering specific phonon modes using defects, grain boundaries, and surfaces.

The thermal conductivity accumulation functions [107, 108] for bulk silicon and solid silicon

films with thicknesses of 50, 100, 500, and 1000 nm (in-plane direction) are plotted in

Figs. 3.4(a) and 3.4(b). The vertical coordinate of any point on the accumulation function

represents the thermal conductivity that comes from phonons with mean free path less

than the horizontal coordinate of that point. In Fig. 3.4(a), the bulk mean free path is

used to plot the accumulation functions, while the mean free paths in the structure of

interest are used in Fig. 3.4(b).

By plotting against the bulk mean free path in Fig. 3.4(a), we see where phonons
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start to be affected by boundary scattering. For all films, deviations in the accumulation

functions from bulk occur at bulk mean free paths smaller than the film thicknesses (e.g.,

around 100 nm for the 500 nm thick film). This result makes sense because phonons can

originate anywhere in the film. It is also important to note that most phonons do not

travel purely in the cross-plane direction. As such, depending on how its group velocity

vector is oriented compared to the film, each phonon mode will start to be affected at a

different film thickness.

When plotted vs. the film mean free path in Fig. 3.4(b), the accumulation functions

shift to the left as there are more phonon modes with smaller mean free paths. For the

50 and 100 nm films, the accumulation functions rise more quickly than the bulk curve

starting at a mean free path of 20 nm. The film accumulation functions must then cross

the bulk curve (at 70 and 95 nm) as their total thermal conductivities are smaller. For

the 500 nm film, the mean free path reductions cause the film accumulation function to

follow the bulk curve up to a mean free path of 400 nm. It then rises above the bulk curve,

crossing back over at 500 nm. For the 1000 nm film, the film accumulation function rises

above the bulk curve at 600 nm, then crosses it at 1275 nm. It is interesting to note that

the cross-overs occur close to the film thicknesses.

As discussed in Section 3.4.2, the length scale used in the Matthiessen rule for a solid

film is related to its thickness [Eqn. 3.1]. The results shown in Fig. 3.4(b) suggest that

this length scale can be estimated from the accumulation function from the cross-over

mean free path. Extending this idea, we can extract equivalent film thicknesses, Leq, for

nanoporous films from their accumulation functions. The accumulation functions for two

500 nm thick nanoporous silicon films with a pore pitch of 500 nm and porosities of 0.1

and 0.5 are plotted in Fig. 3.4(c), along with the bulk curve and that for a solid film of the

same thickness. The accumulation functions for the nanoporous films follow the bulk and
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Table 3.1: Equivalent film thickness extracted from thermal conductivity accumulation
function [see Fig. 3.4(c)] and in-plane thermal conductivity predicted using the Matthiessen
rule and Eqn. 3.1 for nanoporous films. The pore pitch and film thickness are 500 nm for
all structures.

ϕ Leq k (Matthiessen Rule w/Leq) k(Free Path Sampling)

(nm) (W/m-K) (W/m-K)

0.1 405 91 84

0.2 365 89 78

0.3 275 85 72

0.4 270 85 67

0.5 225 82 62

solid film curves closely up to a certain point, after which they level off.

The equivalent film thickness for the two nanoporous films included in Fig. 3.4(c) and

three more with different porosities are provided in Table 3.1. The thermal conductivities

predicted using these length scales in Eqn. 3.1 with the Matthiessen rule are also provided in

Table 3.1 along with those predicted from the free path sampling technique. We note that

using the minimum feature size (i.e., the smaller of the pore neck and the film thickness) as

the length scale in the Matthiessen rule [90] leads to an isotropic thermal conductivity and

so we do not pursue that direction. The relative error between the thermal conductivities

predicted from free path sampling and the Matthiessen rule using the equivalent film

thickness increases as the porosity increases, reaching a maximum value of 32%. This

result reinforces the need to use the free path sampling technique for structures with

multiple feature sizes.
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3.6 Discussion

The term “coherent phonon mode” has been used to describe vibrational modes that

emerge when a secondary periodicity is added to a system (e.g., the layers in a superlattice

or the pores in a periodic nanoporous film ) [46, 73, 79, 90, 109, 110, 111, 112]. It has

been argued that these phonons affect thermal transport in periodic nanoporous films by

modifying the dispersion curves and/or by changing the nature of the phonon scattering

[46, 73, 79, 90].

Coherence implies the interference of waves, either constructively or destructively. In

a periodic nanoporous film, coherent phonon modes will emerge if (i) the phonons scatter

specularly off the pores, maintaining information about their phase, and (ii) these phonons

do not scatter with other phonons between the pore collisions, allowing for interference

to develop. Specular scattering requires that the scale of the surface roughness be much

smaller than the phonon wavelengths that contribute to thermal transport. An absence of

scattering is a good approximation for light (photons) and a reasonable approximation for

phonons at acoustic frequencies (i.e., kHz to MHz). For thermal phonons, which have THz

frequencies, very low phonon-phonon scattering rates require a lack of scattering channels.

Such a condition may be found at low temperatures, in materials with a large phonon band

gap or reduced dimensionality, or in nanostructures with feature sizes much smaller than

the bulk mean free paths.

As discussed in Section 3.3, we expect that phonon-pore scattering at a temperature of

300 K will be primarily diffuse. Furthermore, as shown in Fig. 3.4(a), the majority of the

bulk mean free paths in silicon at a temperature of 300 K are comparable to or smaller

than the feature sizes of the nanoporous films studied by El Kady et al. and Hopkins et al.

Based on these two arguments, it is unlikely that coherent phonon effects are important in

those structures. This statement is supported by the agreement of the predictions of the
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free path sampling technique (which considers only bulk-like phonons and their interactions

with each other and system boundaries) with the in-plane experimental measurements, as

shown in Fig. 3.3(a).

That being said, it is worthwhile to discuss the conditions under which coherent phonon

effects may emerge and play a role in thermal transport. Generally speaking, for a sec-

ondary periodicity to affect thermal transport, it should be on a length scale comparable to

wavelengths of the phonons that contribute to thermal transport. In bulk silicon at room

temperature, the phonons that dominate thermal transport have wavelengths of 1-5 nm

[33], two orders of magnitude smaller than the feature sizes of the films studied by Hopkins

et al. and El-Kady et al. Luckyanova et al. recently reported thermal conductivity mea-

surements on multi-layer GaAs/AlAs structures with layer thickness 12 nm that indicate

the increasing importance of phonons related to the secondary periodicity as temperature

decreases from 150 K to 30 K [112].

In addition to a feature size that aligns with the dominant phonon wavelengths, there

is a second important criterion for the emergence of coherent phonon effects: the quality of

the periodicity. Consider the Si/Ge superlattices studied by Landry and McGaughey using

MD simulations, which have period lengths between 3 and 12 nm [27]. They predicted

the period-length dependence of the thermal conductivity of superlattices with perfect

interfaces and with interfaces where 12% of the atoms were switched in the layers next

to the interfaces. The superlattices with perfect interfaces show an initially decreasing

thermal conductivity with increasing period length that levels off, a trend consistent with

the secondary periodicity affecting thermal transport [113, 114, 115]. The results are

completely different for the superlattices with interfacial species mixing. At the smallest

period length, the thermal conductivity is almost an order of magnitude smaller than

that for the perfect interfaces and increases with increasing period length. This trend is
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related to phonon-interface scattering. As the period length increases, the interface density

decreases, and thermal conductivity increases. The key observation here is that a small

amount of disorder destroyed the coherent effects. When mixing is present, the phonon

modes are defined within each layer, but not across the interfaces. In the majority of

experimental superlattice samples (except systems such as GaAs/AlAs superlattices [112],

where epitaxial layers can be grown) such disorder will always be present. It thus seems

unlikely that coherent effects can explain experimental superlattice thermal conductivity

measurements, particularly at room temperature.

A similar argument can be made when considering the nanoporous films of Yu et al.

and Tang et al. which have pore pitches of 34 and 55 nm. Their structures show a strong

variability in pore size, shape, and spacing. It therefore seems unlikely that coherent

phonon effects will emerge. Only at very low temperatures, where the dominant phonon

wavelengths become comparable to the pore pitch might such effects be relevant.

How then to interpret the very low thermal conductivity measurements of Yu et al.

and Tang et al.? As suggested by the modeling work of He et al. [88], the thermal conduc-

tivity reduction may be a result of the emergence of non-propagating vibrational modes in

confined geometries. Such a mechanism could be present in rough silicon nanowires, which

also have very low thermal conductivities [70, 116].

3.7 Summary

We used bulk silicon phonon properties obtained from forces calculated from DFT and the

free path sampling technique to predict the thermal conductivities of solid and periodic

nanoporous films. Application of the Matthiessen rule to the nanoporous films is not

possible due to their multiple feature sizes. The free path sampling technique treats the

phonons as particles with bulk properties that scatter with the pore boundaries. No effects
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of the secondary periodicity are included other than the geometry. Our in-plane thermal

conductivity predictions are in good agreement with the experimental measurements of

El-Kady et al. for periodic nanoporous films with feature sizes greater than 100 nm. This

result indicates that coherent phonon effects in these films do not affect thermal transport.

At this time, we are not able to explain the cross-plane thermal conductivities measured

by Hopkins et al. on films similar to those studied by El-Kady et al.
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Thermal conductivity of compound

semiconductors: Interplay of mass

density and acoustic-optical phonon

frequency gap
The thermal conductivities of model compound semiconductors where the two species differ

only in mass are predicted using lattice dynamics calculations and the Boltzmann trans-

port equation. The thermal conductivity varies non-monotonically with mass ratio, with

a maximum value that is four times higher than that of a monatomic semiconductor of

the same density. The very high thermal conductivities are attributed to a reduction in

the scattering of optical phonons when the acoustic-optical frequency gap in the phonon

dispersion approaches the maximum acoustic phonon frequency. The model system pre-

dictions compare well to predictions for real compound semiconductors under appropriate

scaling, suggesting a universal behavior and a strategy for efficient screening of materials

for high thermal conductivity.

4.1 Introduction

The parameters that affect phonon transport include the lattice structure, the atomic

masses, anharmonicity, and defects (e.g., isotopes, dopants, dislocations, and interfaces)

[57, 94, 117, 118, 119, 120, 121]. For application in thermoelectric energy conversion,
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many previous studies have focused on how to reduce thermal conductivity [122, 123,

124]. Phonon scattering increases with increasing anharmonicity and defect concentration,

resulting in lower thermal conductivity. In single species (i.e., monatomic) materials, larger

atomic mass reduces the phonon group velocities and thus thermal conductivity.

To identify the features of high thermal conductivity semiconductors, Slack studied

diamond, boron nitride, boron phosphide, silicon carbide, and aluminum nitride [47]. He

concluded that high thermal conductivity is correlated to strong atomic interactions, low

anharmonicity, simple crystal structure, and low average atomic mass. Based on these

criteria, he predicted a monotonic variation of thermal conductivity with mass density and

estimated the room temperature thermal conductivity of boron arsenide (BAs) to be 210

W/m-K. Recently, Lindsay et al. [125] and Broido et al. [126] studied phonon transport

in cubic boron compound semiconductors using first principles calculations and found a

non-monotonic thermal conductivity variation with mass density. At a temperature of 300

K, their highest predicted thermal conductivity of 3170 W/m-K was for isotopically-pure

BAs, which compares to that of isotopically-pure diamond [127, 128]. They attributed the

ultrahigh thermal conductivity of BAs to a large acoustic-optical (a-o) frequency gap in

the phonon dispersion, acoustic bunching, strong covalent bonding, and low anharmonicity.

The relative importance of each of these effects in determining the thermal conductivity,

however, is unknown. A non-monotonic variation of thermal conductivity with mass ratio

was also observed by Steigmeier and Kudman for a subset of group III-V semiconductors

based on experimental measurements [129].

Our objective in this work is to study the competing effects of the mass density and the

phonon dispersion (i.e., a-o gap, acoustic bunching, and acoustic and optical widths) on the

thermal conductivity of compound semiconductors. The rest of the chapter is organized

as follows. In Section 4.2, the model system is presented and the lattice dynamics- and
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Boltzmann transport equation (BTE)-based methodology for predicting phonon properties

and thermal conductivity is described. The thermal conductivity predictions are presented

and interpreted in Section 4.3, where we argue that an a-o gap that is comparable to or

larger than the maximum acoustic phonon frequency is required to obtain high thermal

conductivities in compound semiconductors. The model system predictions are compared

to available data for a range of compound semiconductors in Section 4.4.

4.2 Methodology

We use a defect-free zinc-blende lattice where the mass of one atom in the primitive unit cell

(m1) is fixed at that of silicon while the second atom’s mass (m2) is varied from 0.1m1 to

10m1. The mass ratio is defined as m2/m1 and values of 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are considered. To isolate the effects of the phonon

dispersion and mass density on thermal conductivity, we use classical (i.e., Boltzmann)

statistics at a temperature of 500 K. Doing so compared to quantum statistics removes

the frequency dependence of the specific heat from the thermal conductivity prediction.

The lattice positions in the zinc-blende structure are equivalent. For classical statistics,

the thermal conductivity for a system with mass ratio of m2/m1 is proportional to that

of a system with ratio m1/m2 through the scaling factor of [(m1 +m2)/(m1 + 1/m2)]
−1/2

[130]. The Stillinger-Weber potential as parameterized for silicon [131] is used to model

all atomic interactions so that we can focus on the effects of the mass density and the

dispersion.

The calculation of phonon scattering rates by considering phonon-phonon scattering

processes must satisfy the delta functions (i.e., the selection rules) in Eqn. 2.28 (energy

conservation and lattice translational invariance). In compound semiconductors, for acous-

tic (a) phonons, a-a-a, a-a-o, and a-o-o processes are generally possible, where ‘o’ denotes an
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optical phonon. For optical phonons, because of their high frequencies and narrow width,

o-o-o processes typically cannot satisfy energy conservation. Optical phonons, therefore,

generally only scatter through a-o-o and a-a-o processes (i.e., they require an acoustic

phonon) [125]. We note that all phonon modes are active in the classical systems we are

studying. As such, all phonon-phonon scattering processes that satisfy the selection rules

can occur.

4.2.1 Phonon wave vector grid density dependence of thermal

conductivity

We predict thermal conductivity using a phonon wave-vector grid with an equal number

of uniformly-spaced grid points, No, in each direction (i.e., N = N3
o ). Of the systems

considered here, we find the maximum thermal conductivity at a mass ratio of 0.25 [132].

The thermal conductivity for this system is plotted in Fig. 4.1(a) vs No. The green squares,

purple crosses, and orange circles represent the acoustic phonon contribution, the optical

phonon contribution, and the total thermal conductivity. The acoustic phonon contribution

converges after No = 32. Because of the low scattering rate of optical phonons at this mass

ratio (to be discussed in Section 4.3), their contribution continues to decrease even at

No = 64. To resolve this issue, we obtain the bulk thermal conductivity by plotting 1/k

(the inverse of the total thermal conductivity) vs. 1/No in Fig. 4.1(b) and extrapolating a

linear fit to the No → ∞ limit. Systems with No = (24, 28, 32, 36, 40, 44) [open circles

in Fig. 4.1(b)] are used for fitting and extrapolation. The solid circles [No = (48, 52, 56,

60, 64)] are used to assess the quality of the fit. The extrapolation technique works well

and all non-fitted points lie on the fitted line. We note that 1/k increases with decreasing

1/No. This behavior is opposite to that observed in other studies, where 1/k decreases

with decreasing 1/No [23, 33]. In those cases, the 1/k vs 1/No fitting and extrapolation
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Figure 4.1: For the system with a mass ratio of 0.25: (a) Variation of total, acoustic,
and optical thermal conductivities with phonon wave-vector grid density. The acoustic
contribution converges after No = 32. (b) 1/k versus 1/No and linear fit for extrapolation
to the bulk thermal conductivity. The line is only fitted to the six rightmost points (open
circles).
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is used to include the contribution of acoustic phonon modes close to the center of the

Brillioun zone. We observe this effect in our systems typically for No < 22 and those data

are not used for fitting.

We employ No = 44 to specify the acoustic phonon thermal conductivity for all mass

ratios. For cases where the total thermal conductivity is not converged at No = 44 (mass

ratios of 0.1 to 0.3 and 4 to 10), No = (24, 28, 32, 36, 40, 44) systems are used to perform

the 1/k vs 1/No fitting and extrapolation. The optical contribution is then obtained by

subtracting the acoustic phonon contribution at No = 44 from the extrapolated total

thermal conductivity.

4.3 Results

4.3.1 Dispersion

We first consider the phonon dispersion to study the effect of mass ratio on the a-o gap,

bunching, and acoustic and optical widths. For the analysis to follow, we define: (i) the a-o

gap as the difference between the maximum acoustic frequency and the minimum optical

frequency, (ii) the acoustic (optical) width as the difference between the maximum and

minimum acoustic (optical) frequencies, and (iii) the acoustic bunching as the maximum

difference between the maximum frequencies of the three acoustic phonon polarizations

[125]. The maximum and minimum frequencies in these definitions are based on the entire

first Brillioun zone.

In Fig. 5.2(a), the dispersion in the [100] direction is plotted for mass ratios less than

1. The optical phonon frequencies increase with a reduction in the mass ratio, while

the acoustic phonons are largely unaffected. As a result, the a-o gap increases while the

acoustic width and bunching remain unchanged as mass ratio is reduced. The effect of
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increasing the mass ratio beyond 1 is shown in Fig. 5.2(b) for the [100] direction. The

a-o gap increases and the acoustic width and bunching decrease with an increase in the

mass ratio. For the monatomic system (mass ratio = 1), the acoustic and optical branches

intersect at the zone boundary (i.e., the a-o gap is zero). The optical width is a maximum

for the monatomic system and decreases with increasing and decreasing mass ratio.

4.3.2 Thermal conductivity

The total and acoustic thermal conductivities are plotted in Fig. 4.3(a) versus the mass

ratio. Also plotted is the total thermal conductivity of a monatomic system with the same

mass density as the corresponding compound semiconductor. For the monatomic system,

the thermal conductivity scales as [(m1 +m2)]
−1/2 and is always lower than that of the

corresponding compound semiconductor.

For the compound semiconductors, the minimum total thermal conductivity occurs at

a mass ratio of 1, where it equals that of the monatomic system. Moving away from the

mass ratio of 1, the total thermal conductivity initially increases with increasing mass ratio,

reaches a peak at a mass ratio of 4, then decreases with further increase in the mass ratio.

As expected, due to the mass ratio scaling, the trend is similar for mass ratios smaller

than 1, where the peak in total thermal conductivity occurs at a mass ratio of 0.25. This

behavior of total thermal conductivity in compound semiconductors is in contrast to that

in monatomic semiconductors, where thermal conductivity monotonically decreases with

increasing mass ratio.

The acoustic thermal conductivity is 93% of the total thermal conductivity at a mass

ratio of 1. On increasing the mass ratio, the acoustic thermal conductivity follows the total

thermal conductivity until the mass ratio reaches 3. The contribution of optical phonons to

the total thermal conductivity increases from 4% for a mass ratio of 3 to 34% for mass ratio
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of 4. The acoustic thermal conductivity thus deviates from the total thermal conductivity

beyond a mass ratio of 4, decreasing with further increase in the mass ratio. Between mass

ratios of 4 and 10, the acoustic thermal conductivity decreases from 487 to 333 W/m-

K (i.e., by 32%) which is comparable to the decrease in the thermal conductivity of the

monatomic semiconductor in this regime (33%). This decrease in thermal conductivity is

mainly due to the reduction in phonon group velocities with an increase in the mass density.

For mass ratios less than 1, the acoustic thermal conductivity increases with decreasing

mass ratio, but deviates from the total thermal conductivity for mass ratios below 0.4,

where the optical phonon contribution strongly increases.

4.3.3 Role of a-o gap

To understand the origin of the peaks in the total thermal conductivity and the large

contribution of optical phonons for certain mass ratios, we plot the variation of the a-o

gap, the acoustic width, and the optical width with mass ratio in Fig. 4.3(b). The locations

of the crossings of the a-o gap and the acoustic-width curves are shown in Fig. 4.3 using

vertical dashed lines.

In the neighborhood of a mass ratio of 1, the contribution of optical phonons to the

total thermal conductivity of the compound semiconductor is 7%. With increasing mass

ratio, the a-o gap widens, resulting in fewer a-a-o processes [36]. The acoustic and optical

thermal conductivities therefore both increase with increasing mass ratio in this region. At

a mass ratio of 4, the a-o gap is 86% of the acoustic-width, thereby reducing a-a-o processes

significantly. The optical phonon contribution to thermal conductivity increases to 34%.

Beyond this point, a-a-o processes are eliminated and optical phonons can only scatter

through a-o-o processes, while acoustic phonons can still scatter through a-a-a and a-o-o

processes. For mass ratios greater than 4, the mass density effect (reduction in phonon
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group velocities with an increase in the mass density) dominates the thermal conductivity

trend and the acoustic and optical contributions decrease with increasing mass ratio.

With a reduction in the mass ratio below 1, both the mass density and a-o gap effects

favor an increase in the thermal conductivity. The acoustic thermal conductivity, there-

fore, increases with decreasing mass ratio. For optical phonons, the thermal conductivity

increases with decreasing mass ratio up to a mass ratio of 0.25 and then decreases with

further decrease in the mass ratio. In Section 4.3.4, we will argue that this decrease is a

result of a reduction in the already small group velocities of optical phonons.

4.3.4 Roles of acoustic bunching, acoustic width, and optical

width

To this point, we have not considered the effects of acoustic bunching, acoustic width, and

optical width. Bunching affects the phonon-phonon scattering rates [125, 126] and the

widths affect the group velocities. The effect of these changes on thermal conductivity is

now analyzed.

In Figs. 4.4(a) and 4.4(b), the mass-ratio-dependent thermal conductivities, a-o gaps,

acoustic widths, and optical widths from Figs. 4.3(a) and 4.3(b) are replotted after scaling

with [(m1 +m2)]
1/2. This scaling factor eliminates any dependence of thermal conductivity

on the mass density of the system. Also plotted in Fig. 4.3(b) is the acoustic bunching.

The data are plotted versus the maximum of m2/m1 and m1/m2 and, as expected, collapse

onto one curve (i.e., the scaled value for a mass ratio of m2/m1 is the same as that for

m1/m2). Also, as expected, the scaled thermal conductivity of the monatomic system is

constant with mass ratio. The location of the crossing of the a-o gap and the acoustic-width

curves is shown in Fig. 4.4 using a vertical dashed line. The region to the left of the line

has a-o gaps less than the acoustic width (Region 1) and region to the right has a-o gaps
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greater than the acoustic width (Region 2). In Region 2, a-a-o processes cannot satisfy

the energy conservation selection rule. The a-o gap therefore has minimal effect on either

acoustic or optical thermal conductivities in this region. The acoustic and optical thermal

conductivities in Region 2 are, therefore, mainly affected by acoustic bunching, acoustic

width, and optical width. We note that the peak total thermal conductivity occurs just

before the a-o gap exceeds the acoustic width.

The scaled acoustic bunching and scaled acoustic width in Region 2 decreases by 8%

and 4% between mass ratios of 5 to 10, while the scaled acoustic thermal conductivity is

almost constant (decreases by 1%). This result suggests that there is a minimal effect of

acoustic bunching and acoustic width on the acoustic thermal conductivity for this model

system. The scaled optical thermal conductivity in Region 2 decreases by 61% for a 9%

decrease in the optical width. This result suggests that the reduction in the optical phonon

group velocities dominates over an increase in their lifetimes due to the reduced scattering.

4.4 Comparison with Real Compound Semiconduc-

tors

Our results suggest that thermal conductivity can increase or decrease with a change

in mass density depending on the relative sizes of the a-o gap and the acoustic width.

For materials that have an a-o gap less than the acoustic-width, the total, acoustic, and

optical thermal conductivity trends are predominantly decided by the a-o gap, with thermal

conductivity increasing with increasing a-o gap. For materials that have an a-o gap greater

than the acoustic-width, the acoustic and the optical thermal conductivities decrease with

increasing mass density. Recently, Mukhopadhyay and Stewart also observed an a-o gap

dependent thermal conductivity for cubic BN through the application of mechanical stress
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[133].

In our model system, we kept the same atomic interactions for all mass ratios. To

check the applicability of our findings to real materials, we now compare our model system

predictions to available data for a range of monatomic and compound semiconductors. The

materials considered have a zinc-blende structure and are from group III-V (BN, BP, BAs,

BSb, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb), group II-VI (BeS, BeSe,

and BeTe), and group IV (Si, Ge, SiC, GeC, and diamond). The thermal conductivities

used are from first-principles calculations of defect-free isotopically-pure structures at a

temperature of 300 K, as reported by Lindsay et al. [37, 125, 134] We use first-principles

based thermal conductivities predictions because experimental measurements are not avail-

able for isotopically-pure compounds.

To compare the data, all thermal conductivities are scaled by the Slack parameter

1/(maθ3D/T ), (4.1)

where m is the average atomic mass in the unit cell, a is the lattice constant, θD is the

Debye temperature [135], and T is the temperature [47, 136]. The Slack parameter at-

tempts to normalize the effects of mass density, crystal structure, atomic interactions, and

temperature on the thermal conductivity. Before scaling the thermal conductivities of the

model system, the values are first normalized so that the m2/m1 = 1 system has the same

thermal conductivity as first-principles silicon at a temperature of 500 K. Based on the

findings in Section 4.3, the thermal conductivities are plotted in Fig. 4.5 versus the ratio

of the a-o gap to the acoustic width. The phonon dispersions needed to specify the a-o gap

and the acoustic width for the real materials are calculated using density functional pertur-

bation theory as implemented in the plane-wave based density functional theory package

Quantum Espresso [40, 137].
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The scaled thermal conductivity of the model system increases with increasing a-o

gap/acoustic width ratio, reaches a peak when the ratio is 0.86, and then decreases with

further increase in the ratio. The trend is similar for the compound semiconductors, where

the peak in scaled thermal conductivity is for BAs, which has an a-o gap to acoustic-width

ratio of 0.87. As observed by Lindsay et al. [125], the thermal conductivity varies non-

monotonically for BX compounds (purple points). The same is true for BeX compounds

(green), where the scaled thermal conductivity is a maximum for BeSe, which has an a-o

gap to acoustic-width ratio of 1.03. All other compounds [AlX (brown), GaX (blue), InX

(black)] have an a-o gap less than the acoustic width. As a result, thermal conductivity

increases with increasing ratio and there is no peak in the scaled thermal conductivities of

these materials. We note that for the BX compounds, thermal conductivity decreases in

going from BN to BP. We believe that the deviations between the real materials and our

model system predictions are due to the lack of anharmonicity in the scaling factor and

the RTA solution of the BTE. The overall agreement in the trend, however, suggests that

we have identified a universal behavior.

4.5 Summary

We used lattice dynamics calculations and the BTE to study the competing effects of

mass density, a-o gap, acoustic width, optical width, and acoustic bunching on the thermal

conductivity of a family of model compound semiconductors where the species differ only in

mass. As shown in Figs. 4.3 and 4.4, we found that thermal conductivity depends strongly

on the mass difference of the two species and how it affects the a-o gap and the acoustic-

width. The thermal conductivity increases with increasing a-o gap to acoustic-width ratio,

attains a maximum close to ratio of 1, and decreases with further increase in the ratio. The

observed peak in the thermal conductivity is due to the competing effects of mass density
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(phonon group velocities, affected by widths) and phonon-phonon scattering rates (mainly

affected by a-o gap to acoustic-width ratio).

Our findings hold true for real compound semiconductors, where the atomic interac-

tions also vary with the atomic species. As shown in Fig. 4.5, the scaling factor proposed

by Slack along with the a-o gap to acoustic-width ratio can be used to estimate the ther-

mal conductivity of a wide variety of compound semiconductors. The material properties

involved in the Slack scaling factor and the a-o gap to acoustic-width ratio are all based

on the material structure and phonon dispersion and provide a simple measure for future

screening of high thermal conductivity materials.

We arrived at the results in this study by considering only three-phonon scattering

processes, classical statistics for phonons at one temperature, and the RTA solution of the

BTE [132]. The effects of four-phonon processes, quantum statistics, and different temper-

atures on the mass ratio dependence of thermal conductivity are intriguing directions for

future efforts.
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Strongly anisotropic in-plane thermal

transport in single-layer black

phosphorene

Using first principles calculations, we predict the thermal conductivity of the two-dimensional

materials black phosphorene and blue phosphorene. Black phosphorene has an unprece-

dented thermal conductivity anisotropy ratio of three, with predicted values of 110 W/m-K

and 36 W/m-K along its armchair and zigzag directions at a temperature of 300 K. For

blue phosphorene, which is isotropic with a zigzag structure, the predicted value is 78

W/m-K. The two allotropes show strikingly different thermal conductivity accumulation,

with phonons of mean free paths between 10 nm and 1 µm dominating in black phos-

phorene, while a much narrower band of mean free paths (50-200 nm) dominate in blue

phosphorene. Black phosphorene shows intriguing potential for strain-tuning of its thermal

conductivity tensor.

5.1 Introduction

Two-dimensional (2D) materials (e.g., graphene, MoS2, silicene) are a focus of intense

research because of their rich physics and potential for integration into next-generation

electronic and energy conversion devices [9, 10, 11, 12]. As opposed to their bulk coun-

terparts, the optical, electronic, mechanical, and thermal properties of 2D materials can

be easily tailored through the application of external strain, by introducing defects, or by
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Figure 5.1: Crystal structure of (a) black phosphorene and (b) blue phosphorene. Atoms
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stacking multiple layers of the same or different 2D materials. For example, the thermal

conductivity of freely-suspended single-layer graphene is reduced from 3000-5000 W/m-K

to 600 W/m-K by depositing it on amorphous SiO2 [138].

Recently, a new and promising 2D semiconductor, black phosphorene, was fabricated

by exfoliating a few layers from bulk black phosphorus [14, 15]. Similar to graphene, black

phosphorene has a honeycomb-like structure, but it is non-planar [Fig. 5.1(a)]. Single-layer

black phosphorene is a direct-gap semiconductor with a predicted band gap of 2 eV [139].

The band gap decreases with an increasing number of layers and is 0.3 eV for the bulk phase.
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Performance characteristics similar to or better than other 2D materials have been achieved

for a black phosphorene-based transistor.[15] What distinguishes black phosphorene from

other 2D materials is its anisotropic structure, which leads to direction-dependent optical

and electronic properties that vary by as much as 50% [139, 140].

Our objective is to study the lattice thermal conductivity of single-layer black phospho-

rene, for which there is no existing experimental data available. Ong et al. investigated

the effect of strain on the ballistic thermal conductance of black phosphorene using non-

equilibrium Green’s functions based on harmonic lattice dynamics calculations [141]. Our

aim is to predict the thermal conductivity of black phosphorene by including anharmonic

phonon-phonon scattering. Thermal transport characterization is important for applica-

tion in most devices, where large electrical currents can lead to Joule heating, non-radiative

recombination, and potentially high operating temperatures. We find that the in-plane

thermal transport in black phosphorene is strongly anisotropic, with thermal conductivity

varying by a factor of three over the two orthogonal directions. While strong anisotropy

in thermal conductivity is observed for van der Waals layered materials when comparing

the in-plane and cross-plane directions (e.g., two orders of magnitude in graphite [142]),

no other covalently-bonded 2D or 3D materials show the in-plane anisotropy we predict

for black phosphorene.

We also investigate the thermal transport in blue phosphorene, another single-layered

allotrope of phosphorus [Fig. 5.1(b)], which was recently predicted to be nearly as sta-

ble as black phosphorene [143]. First principles calculations predict a band gap in blue

phosphorene in excess of 2 eV [143], but unlike black phosphorene, blue phosphorene is

isotropic.
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5.2 Methodology

Thermal transport in semiconductors like black phosphorene and blue phosphorene is dom-

inated by atomic vibrations whose energy is quantized as phonons (Section 2.1). At a

temperature of 300 K, the electronic contribution to the thermal conductivity of black

phosphorene is predicted to be less than 3 W/m-K for a typical carrier concentration of

1012 cm−2 [144].

In our thermal conductivity calculations, the only required inputs are harmonic and

anharmonic force constants, which are obtained from density functional theory (DFT) and

density functional perturbation theory (DFPT) calculations. We use a scalar relativistic

pseudopotential generated using the projector augmented-wave method as implemented

in the plane wave-based quantum-chemistry package Quantum Espresso [40]. The plane

wave energy cutoff is 50 Ry. To remove inter-layer interactions due to the periodicity of

the computational cell, we use a vacuum of 30 Å for black phosphorene and 17 Å for

blue phosphorene. For black phosphorene, the harmonic force constants are calculated

on phonon and electronic wave-vector grids of 14 × 12 × 1. The cubic force constants

are obtained by finite differencing of Hellmann-Feynman forces on a 144-atom supercell

with a Gamma-point electronic wave-vector grid. For blue phosphorene, the electronic

and phonon wave-vector grids for the harmonic force constants are 10 × 10 × 1 and the

Hellmann-Feynman forces are obtained using a 128-atom supercell with a Gamma-point

electronic wave-vector grid. For the thermal conductivity calculation, the phonon wave

vector grid is 50 × 50 × 1 for both allotropes. Translational invariance (i.e., the acoustic

sum rule) for the cubic force constants is enforced using the Lagrangian approach presented

by Li et al. [145] We note that the thermal conductivities are converged within 20% (10%)

for black (blue) phosphorene for the above choice of parameters. Further details regarding

these choices are provided in App. C.
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5.3 Results

5.3.1 Phonon Dispersion

The phonon dispersion in the high-symmetry directions of the first Brillouin zone for black

phosphorene and blue phosphorene are plotted in Figs. 5.2(a) and 5.2(b) and closely match

those reported by Zhu et al [143]. Black(blue) phosphorene has a four(two)-atom unit cell,

resulting in twelve(six) dispersion branches. The maximum phonon frequency is similar in

both allotropes (14.0 THz in black and 16.3 THz in blue), but the phonon band gap in

blue phosphorene (4.9 THz) is almost double that in black phosphorene (2.5 THz). The

longitudinal acoustic phonon group velocity close to the Γ point (i.e., the sound speed), is

7,733 m/s in the Γ−Y (armchair) direction and 4,168 m/s in the Γ−X (zigzag) direction for

black phosphorene, an indication of anisotropic phonon transport. For blue phosphorene,

the sound velocity is 8,287 m/s in both the Γ−M and Γ−K directions.

5.3.2 Thermal Conductivity

The thermal conductivities of black phosphorene and blue phosphorene for temperatures

between 200 and 500 K are plotted in Fig. 5.3(a). For black phosphorene, thermal trans-

port is anisotropic and we plot the thermal conductivity in both the armchair and zigzag

directions [see Fig. 5.1(a)]. Predicting the thermal conductivity of a 2D material requires

specification of the layer thickness. We choose the bulk layer separation, which is 5.25 Å for

black phosphorus [146] and 5.63 Å for blue phosphorus [143]. As the thermal conductivity

scales linearly with the layer thickness, the values reported here can be easily modified for

other choices.

Thermal conductivity decreases with increasing temperature, as expected for a phonon-

dominated crystalline material. At a temperature of 300 K, the predicted thermal con-
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Figure 5.2: Phonon dispersion in the high symmetry directions for (a) black phosphorene
and (b) blue phosphorene. The slope of the longitudinal acoustic phonon branches at the
Gamma point (shown as dashed straight lines), which represents the sound velocity, is
anisotropic for black phosphorene and isotropic for blue phosphorene.

84



100 101 102 103 104

200 300 400 500

0

40

80

120

0

50

100

150

200

300 K

Mean Free Path (nm)

Black Blue
Zigzag

Armchair

Black Blue

Zigzag

Armchair

T
h
er

m
al

 C
o
n
d
u
ct

iv
it

y
 (

W
/m

-K
)

(a)

Temperature (K)

T
h
er

m
al

 C
o
n
d
u
ct

iv
it

y

A
cc

u
m

u
la

ti
o
n
 (

W
/m

-K
)

(b)

Figure 5.3: (a) Temperature-dependent thermal conductivity of black phosphorene and
blue phosphorene. The thermal conductivities are obtained using an iterative solution
of the linearized BTE. The predictions (symbols) are connected using lines to guide the
eye. (b) Thermal conductivity accumulation functions for black phosphorene and blue
phosphorene at a temperature of 300 K.
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ductivities are 110 W/m-K (zigzag) and 36 W/m-K (armchair) for black phosphorene and

78 W/m-K for blue phosphorene. For black phosphorene, the thermal conductivity in the

zigzag direction is three times higher than that in the armchair direction. This anisotropy

could be useful in the design of heat channeling in micro- and nano-devices. We attribute

this anisotropy in thermal conductivity to the anisotropic phonon dispersion, which leads

to direction-dependent group velocities [Fig. 5.2(a)]. Based simply on the zone-center lon-

gitudinal acoustic group velocities, Eqn. 2.50 predicts a thermal conductivity anisotropy

of 3.5, which is comparable to that from the full calculation. For blue phosphorene, the

thermal conductivity is isotropic and is up to 1.8 times lower than the zigzag direction

thermal conductivity of black phosphorene.

Our thermal conductivities are obtained using an iterative solution of the linearized

BTE. For single-layer graphene, Lindsay et al. showed that the commonly used relaxation

time approximation (RTA) of the BTE under-predicts the thermal conductivity by more

than a factor of five at a temperature of 300 K [13]. We find that the RTA under-predicts

the thermal conductivity by up to a factor of 1.3 for black phosphorene and 2.0 for blue

phosphorene at a temperature of 300 K (see App. C).

The thermal conductivity of black phosphorene has recently also been predicted by

other researchers. Zhu et al. used the RTA to predict values of 84 W/m-K (24 W/m-K)

in the zigzag (armchair) direction [143]. These values closely match our RTA predictions

of 81 W/m-K (30 W/m-K) (see App. C). Qin et al. predict black phosphorene thermal

conductivities a factor of three lower than our values [147]. This difference may be due to

(i) their use of the RTA, (ii) their choice of the cubic force constant cutoff, and/ or (iii) the

implementation of a translational invariance constraint on the third-order force constants.

Our predictions of the effects of these factors on thermal conductivity are presented in the

App. C.
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In Fig. 5.3(b), we plot the thermal conductivity accumulation functions for black phos-

phorene and blue phosphorene at a temperature of 300 K. The thermal conductivity accu-

mulation function describes the contribution of different mean free path phonons towards

the total thermal conductivity of a material [107]. Phonons with mean free paths spanning

over two orders of magnitude (10 nm to 1 µm) contribute towards the thermal conductivity

in black phosphorene. For blue phosphorene, however, the accumulation function closely

resembles a step function, with the major contribution coming from phonons with mean

free paths between 50 and 200 nm. This steep thermal conductivity accumulation in blue

phosphorene is similar to that in silicene (which also has buckled hexagonal structure),

where phonons with mean free path between 5 and 20 nm contribute more than 80% to

the thermal conductivity [148]. The thermal conductivity accumulation functions indicate

that, unlike in graphene where thermal conductivity is predicted to increase with sample

sizes even greater than 10 µm, changing the sample size beyond 10 µm will have a minimal

effect on the thermal conductivity of either phosphorene allotrope at a temperature 300 K.

As mentioned above, the structure of blue phosphorene is similar to that of silicene.

Blue phosphorene, however, has a thermal conductivity of 78 W/m-K at a temperature of

300 K, which is more than eight times higher than that predicted for silicene (9.4 W/m-K)

[148]. This higher thermal conductivity of blue phosphorene is the result of a larger sound

velocity and the larger frequency gap in its phonon dispersion [Fig. 5.2(b)], which reduces

the number of three-phonon scattering processes that can satisfy the energy conservation

selection rule [36, 125, 126, 149]. The zigzag direction thermal conductivities of black and

blue phosphorene are comparable in magnitude to that predicted for a 10 µm MoS2 sample

prediction at a temperature of 300 K (108 W/m-K) [150].

At a temperature of 300 K, Lindsay et al. [38] predicted the thermal conductivity of

graphene to be 3,600 W/m-K, which is more than 30 times higher than the thermal conduc-
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Table 5.1: Contribution of different phonon modes branches [longitudinal acoustic (LA),
transverse acoustic (TA), out-of-plane acoustic (ZA), and all optical] towards the total
thermal conductivity in black phosphorene, blue phosphorene, MoS2 (10 µm sample [150]),
and graphene (10 µm sample [38]) at a temperature of 300 K.

Material
Total thermal LA TA ZA Optical

conductivity (W/m-K) (%)

Black phosphorene (zigzag) 110 32 22 31 15

Black phosphorene (armchair) 36 28 33 12 27

Blue phosphorene 78 26 27 44 3

MoS2 [150] 108 28 24 39 9

Graphene [38] 3600 8 15 76 1

tivity of either black phosphorene or blue phosphorene. We believe that the lower thermal

conductivity of the phosphorene allotropes is due to their: (i) smaller sound velocities

(4,000-8,000 m/s compared to 21,300 m/s in graphene [151]), (ii) lower Debye tempera-

tures [500 K (see App. C) compared to 2,300 K for graphene [152]], resulting in higher

phonon-phonon scattering rates as more phonon modes are active at a given temperature,

and (iii) non-planar structure, which breaks the out-of-plane symmetry. This out-of-plane

symmetry exists in graphene and restricts the participation of odd numbers of ZA phonons

in phonon-phonon scattering events [13]. As a result, the predicted contribution of ZA

phonons to thermal conductivity in the phosphorene allotropes varies from 12%-44% as

compared to 76% in graphene at a temperature of 300 K [38], as presented in Table 5.1. We

note that the thermal conductivity contributions of the different acoustic phonon branches

in black phosphorene and blue phosphorene are similar to those predicted for MoS2 [150],

which also has a non-planar structure. More information is provided in the App. C.
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The thermal conductivity of freely-suspended single-layer graphene at a temperature of

300 K is reduced from 3000-5000 W/m-K to 600 W/m-K when it is deposited on amorphous

SiO2 [138], This more than a factor of five reduction in the thermal conductivity is due to

the increased scattering of ZA phonons in supported graphene. The results presented in

this work are for suspended phosphorene. As can be seen in Table 5.1, the contribution

of ZA phonons is 31% (12%) in the zigzag (armchair) direction in black phosphorene and

44% in blue phosphorene. We expect a comparable decrease in the thermal conductivity

of supported phosphorene samples.

5.3.3 Strain Tuning of Thermal Conductivity

We now consider the possibility of strain-tuning the thermal conductivity of black phos-

phorene and blue phosphorene. In Fig. 5.4(a), we plot the stresses in both allotropes

when they are subjected to a bi-axial tensile strain. For black phosphorene, the stress

is anisotropic and is three times lower in the armchair direction compared to the zigzag

direction. For blue phosphorene, which has a zigzag structure, the stress is isotropic and

is 1.5 times larger than the stress in the zigzag direction of black phosphorene.

As can be seen from Eqn. 2.50, thermal conductivity scales as the square of the phonon

group velocities. We plot the strain-dependence of the sound velocities in Fig. 5.4(b) for

black phosphorene and blue phosphorene under the bi-axial strain conditions. The sound

velocities are maximum at zero strain for both materials and decrease with increasing

strain. Using this reduction as a guide, we estimate that the thermal conductivities of

both allotropes may decrease by a factor of 1.7 at a strain of 8%. Similar calculations

for uni-axial strains suggest the possibility for strain-tailoring the thermal conductivity

anisotropy in black phosphorene. For example, the estimated anisotropy in the thermal

conductivity of black phosphorene is a factor of 4.6 (2.2) for uni-axial strain of 6% along
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Table 5.2: Anisotropy in thermal conductivity for selected materials with layered, wurtzite,
and orthorhombic crystal structure at a temperature of 300 K. ‘exp ’ and ‘pred’ in the first
column denote experimental measurements and simulation predictions.

Material
kmax kmin

r

(W/m-K)

Graphite (exp[153]) (1000− 2000) 6 ∼ 300

h-BN (exp[153]) (200− 300) 2 ∼ 100

Black
110 36 3.1

Phosphorene

SnSe (exp[154]) 0.70 0.46 1.52

GaN (pred[37]) 401 385 1.04

AlN (pred[37]) 322 303 1.06

NdFeO3 (pred[155]) 3.01 2.68 1.12

NdAlO3 (pred[155]) 6.61 5.72 1.16

the armchair (zigzag) direction (see App. C).

5.3.4 Anisotropy

To the best of our knowledge, no other 2D material displays anisotropic in-plane thermal

transport. Furthermore, the thermal conductivity anisotropy in black phosphorene is strik-

ing when compared to that found in layered, wurtzite, and orthorhombic three-dimensional

crystal structures, as compiled in Table 5.2. We quantify anisotropy, r, by the ratio of the

maximum and minimum direction-dependent thermal conductivities. The maximum r is

in the layered structures graphite and hexagonal boron nitride. These layers are weakly
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bonded through van der Waals interactions compared to the strong covalent bonds within

the layers, which results in poor inter-layer heat transport. Of the remaining materials in

Table 5.2, which are all covalently bonded, the maximum anisotropy is for our prediction

for black phosphorene, which is twice as large as the next highest value.

5.4 Summary

We predicted the thermal conductivity of black phosphorene and blue phosphorene using

first-principles-driven lattice dynamics calculations and a full (iterative) solution of the

BTE. We found a factor of three anisotropy in the thermal conductivity of black phospho-

rene, which could potentially be tuned up to 4.6 using strain. At a temperature of 300 K,

the predicted thermal conductivities of both phosphorene allotropes are larger than that

of silicene, similar to that of MoS2, and are up to two order of magnitude smaller than

that of graphene.
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Effect of exchange-correlation on

first-principles-driven lattice thermal

conductivity predictions of

crystalline silicon.
The effects of exchange-correlation (XC) and pseudopotential types on the density func-

tional theory-driven prediction of the thermal conductivity of isotopically pure silicon are

studied. The thermal conductivity is predicted by considering three-phonon scattering pro-

cesses and a full solution of the Boltzmann transport equation. The LDA, PBE, PBEsol,

and PW91 XCs predict thermal conductivities between 127 and 148 W/m-K at a temper-

ature of 300 K, which is an under-prediction of the experimental value of 153 W/m-K by

3-17%. The BLYP XC predicts a thermal conductivity of 172 W/m-K, an over-prediction

of 12%.

6.1 Introduction

The prediction of lattice thermal conductivity from first-principles-driven density func-

tional theory (DFT) calculations is becoming routine [32, 33, 34, 39]. As opposed to using

empirical potentials to describe the atomic interactions, which require fitting parameters

and lack true predictive power, DFT-driven calculations are fitting-parameter free. DFT-

driven calculations have been successfully used to predict the experimentally-measured
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thermal conductivities of materials ranging from simple semiconductors such as silicon [33]

and diamond [156] to compound semiconductors [39], graphene [38], and SiGe alloys [34].

DFT-driven calculations have also been used to study the effects of strain and isotopes

on the thermal conductivity of semiconductors [25, 36, 157] and to predict the thermal

conductivity of novel two-dimensional materials [38, 158, 159].

Within the framework of DFT, the many-body problem of interacting electrons is re-

duced to a tractable problem of non-interacting electrons with an effective potential. This

effective potential includes the effects of the Coulombic interactions (i.e., the Hartree term)

and many-body interactions [i.e., the exchange-correlation (XC) term]. The major chal-

lenge in DFT lies in describing the XC. The simplest form of the XC is the local density

approximation (LDA), in which the potential is only a function of the spatially-dependent

electron density [160]. A more involved approach, the generalized gradient approximation

(GGA), uses the electron density and its gradient. GGA XCs almost always over-predict

the experimental lattice constants of crystalline solids while LDA XCs almost always result

in an under-prediction [161]. The effect of this under-/over-binding by different XCs on

lattice thermal conductivity is unknown.

Thermal transport in semiconducting and electrically insulating crystalline solids is

dominated by lattice vibrations (i.e., phonons). The thermal conductivity of these mate-

rials is therefore highly-dependent on inter-atomic separation and bonding. Our objective

here is to study the effect of different XCs on the thermal conductivity of isotopically-pure

silicon. We employ LDA and GGA (PBE [48], PBEsol [49], BYLP [50, 51], and PW91 [52])

XC-based ultrasoft (US), norm-conserving (NC), and projected augmented wave (PAW)

pseudopotentials. We find that all XCs, with the exception of BYLP, predict a thermal

conductivity between 127 and 148 W/m-K at a temperature of 300 K, which is an under-

prediction of the experimental value of 153 W/m-K by 3-17% [63]. BLYP, on the other
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hand, over-predicts the experimental value by 12%. In what follows, we discuss the con-

vergence tests for the DFT calculations in Sec. 6.2. The predictions of the XC-dependence

of thermal conductivity are presented in Sec. 6.3 and a comparison to results from the

literature is made in Sec. 6.4.

6.2 DFT Parameters Convergence

Phonon frequency and lifetime predictions require harmonic and cubic force constants as

inputs. We obtained harmonic force constants from density functional perturbation theory

(DFPT) and cubic force constants from finite differencing of DFT forces. We employed

the planewave-based electronic-structure calculation package Quantum Espresso for our

DFPT and DFT calculations [40, 162]. The harmonic force constants are initially obtained

on an 8× 8× 8 phonon wave-vector grid and are later interpolated to a 24× 24× 24 grid.

For the cubic force constants, we calculated forces on different arrangements of a 216 atom

supercell with one or more atoms displaced by 0.01 Å from their equilibrium positions. The

translation invariance constraint in the calculation of the cubic force constants was enforced

using the Lagrangian approach presented by Li et al. [145]. The convergence of the thermal

conductivity of silicon with respect to supercell size and displacement amount is discussed

in Ref. [39]. We found that the change in thermal conductivity at a temperature of 300 K is

less than 1.5% when increasing the phonon wave-vector grid from 24×24×24 to 26×26×26.

Since we want our results to be converged within 2% (the experimental uncertainty in the

thermal conductivity of silicon [63]), we used the 24 × 24 × 24 phonon wave-vector grid

for all of our calculations. The phonon scattering rates in the present study are obtained

using an iterative solution of the BTE. The iterative solution, as opposed to the commonly-

used relaxation time approximation (RTA), does not treat normal three-phonon scattering

processes as resistive [32, 163].
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thermal conductivity of silicon at a temperature of 300 K with electronic wave-vector grid
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To specify the converged electronic wave vector grid (to be used in the self-consistent

field calculation), we plot the variation of the total energy, the relaxed lattice constant,

and the thermal conductivity at a temperature of 300 K with electronic wave-vector grid

density in Figs. 6.1(a) and 6.1(b) for the LDA XC-based NC pseudopotential with a 60 Ry

planewave energy cutoff. As can be seen in Fig. 6.1(b), the thermal conductivity decreases

by 7% on increasing the electronic wave-vector grid from 6×6×6 to 8×8×8 and is converged

to within 1.5% with further increase. The 7% decrease in the thermal conductivity in going

from the 6 × 6 × 6 wavevector grid to the 8 × 8 × 8 wavevector grid is mainly a result

of differences in the vibrational frequencies. For example, the transverse(longitudinal)

acoustic phonon group velocities close to the Gamma point in the [100] direction decrease

from 4806 m/s (7871 m/s) to 4653 m/s (7558 m/s). The changes in the total energy per

atom and the relaxed lattice constant [Fig. 6.1(a)] are less than 0.2 mRy and 0.001Å with

an increase in an electronic wave-vector grid beyond 8× 8× 8. These results suggest that

the total energy per atom and the lattice constant should be converged to within 0.2 mRy

and 0.001Å in order to achieve a converged thermal conductivity for silicon (within 2%).

We note that the 7% variation in the thermal conductivity with electronic wavevector

grid is not simply because of the change in the lattice constant. We performed thermal

conductivity calculations using lattice constants between 5.40 and 5.46 Å while keeping

the electronic wavevector grid and planewave energy cutoff fixed and found the variation

to be less than 4%.

We repeated the above convergence calculations for all the XCs with the criterion of

thermal conductivity changes of less than 2%. The converged electronic wave-vector grid

obtained for all XCs and pseudopotential types is 8 × 8 × 8. For the planewave energy

cutoff, we find convergence at 50 Ry for US and PAW pseudopotentials and 60 Ry for NC

pseudopotentials for all of the XCs considered. To see the effect of electronic wavevector
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grid on the supercell DFT forces (used for both the phonon lifetimes and the Grüneisen

parameters), we calculated thermal conductivity using the Gamma point supercell and a

supercell with a 2 × 2 × 2 wave vector grid for the LDA XC-based NC pseudopotential.

The difference in the two thermal conductivities is 2%, which is within our convergence

threshold.

6.3 Results

6.3.1 Lattice Constant

We report the relaxed lattice constants in Table. 6.1. The experimental value is 5.430 Å

[164]. All GGA XCs under-bind the lattice and over-predict the lattice constant while the

opposite is true for the LDA XC, which underpredicts by 0.6%. The PBEsol XC-predicted

lattice constant (5.430 Å) shows the best agreement with the experimental value while the

BLYP XC over-predicts the experimental value by the highest amount (1.4%). The PBE

and PW91 lattice constants are within 0.7% of the experimental value for the three types

of pseudopotential considered.

6.3.2 Phonon Dispersion

We plot the phonon dispersion calculated using the PBEsol (US) and BLYP (NC) XCs in

Fig. 6.2(a). As mentioned in Sec. 6.3.1, the PBEsol and BLYP predicted lattice constants

show the best and worst agreement with the experimental value. The transverse acoustic

phonon vibrational frequencies predicted using PBEsol (green lines) are lower than the

experimental values (blue circles [165]), whereas those predicted using BLYP (red lines)

are higher. For longitudinal acoustic phonons, both PBEsol and BLYP predict similar

vibrational frequencies. In the case of optical phonons, the PBEsol predicted frequencies
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agree well with the experiments whereas BLYP results in an under-prediction. The sound

velocities (estimated as the longitudinal acoustic phonon velocity close to the Γ-point in

the [100] direction) from the PBEsol (8330 m/s) and BLYP (8510 m/s) XCs both compare

well with the experimental value of 8430 m/s [167].

The sound velocities obtained using the different XCs and pseudopotential types are

provided in Table 6.1. PW91 underpredicts the sound velocity compared to the experimen-

tal value by the maximum amount (5970 m/s, a difference of 29%). The sound velocities

predicted from the other XCs and pseudopotential types are within 11% of the experimen-

tal value. The sound velocity of a one-dimensional harmonic mass-spring chain in solids

is a
√

K
m
, where a,K, and m are the lattice constant, the harmonic spring constant, and

the atomic mass. In examining Table 6.1, we note that there is not a direct correlation

between the sound velocities and the lattice constants. For example, for the LDA XCs, the

predicted sound velocities are 8320, 7560, and 8340 m/s from the US, NC, and PAW pseu-

dopotentials even though all predicted lattice constants are within 0.002 Å of each other.

This finding points to the important effect of the XC on the harmonic force constants.

6.3.3 Three-Phonon Phase Space

Differences in the phonon dispersions from the different XC and pseudopotential types re-

sult in different values of the three-phonon phase space, which is a measure of the scattering

space available for three-phonon processes. It is calculated using the phonon dispersion by

counting the number of three-phonon scattering processes that satisfy the energy and mo-

mentum conservation selection rules [168]. The three-phonon phase spaces obtained from

the different XC and pseudopotential types are provided in Table 6.1. The minimum phase

spaces are obtained from BLYP and PW91, with values of 0.0085 and 0.0089. All other

XC and pseudopotential types predict values between 0.0091 and 0.0093. These results
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Table 6.1: Predicted relaxed lattice constant, sound velocity, three-phonon phase space,
mode-averaged Grüneisen parameter, and phonon thermal conductivity (isotopically pure
at T = 300 K) of silicon with different XCs and pseudopotential types. The thermal
conductivities are converged to within 2% with respect to all simulation parameters.

Pseudopotential
type [162]

Ex-
change
Correla-
tion
[162]

Lattice
Con-
stant
(Å)

Sound
Velocity
(m/s)

Three-
Phonon
Phase
Space
(arbi-
trary
units)

Average
Grüneisen
Param-
eter

Ther-
mal
Con-
ductiv-
ity

(W/m-
K)

Experiment 5.430
[164]

8430
[167]

153 [63]

Ultrasoft

LDA 5.399 8320 0.0091 1.11 142

PBE 5.468 8120 0.0092 1.04 148

PBEsol 5.430 8330 0.0092 1.10 140

PW91 5.466 5970 0.0089 1.00 127

Norm-Conserving

LDA 5.402 7560 0.0092 1.04 144

PBE 5.461 8150 0.0093 1.02 148

BLYP 5.505 8510 0.0085 0.89 172

PAW

LDA 5.400 8340 0.0091 1.11 142

PBE 5.466 7830 0.0092 1.03 145

PBEsol 5.430 8320 0.0092 1.11 137
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indicate a smaller number of three-phonon scattering processes from the BLYP and PW91

XCs as compared to the other XCs. We note that the strength of these three-phonon

scattering processes depends on the cubic force constant and is discussed in Section 6.3.4.

6.3.4 Grüneisen parameters

To examine the effect of XC and pseudopotential types on the cubic force constants, we

next plot mode-dependent Grüneisen parameters, γi, calculated using the PBEsol (NC) and

BLYP (US) XCs in Fig. 6.2(b). The Grüneisen parameters describe the effect of changing

the crystal volume on the phonon frequencies and are a measure of crystal anharmonicity.

We calculated the Grüneisen parameters with the cubic force constants by using Eqn.

2 of Ref. [169]. For transverse acoustic phonons, PBEsol results in an over-prediction

(in magnitude) of the experimentally measured Güneisen parameter [166] at all of the

high-symmetry points considered. BLYP, on the other hand, matches the experimental

values at Γ and W, while under-predicting (in magnitude) at X and L by a factor of two.

The Grüneisen parameters for the transverse acoustic phonons from BLYP are smaller in

magnitude (less than half in some cases) than the corresponding values from PBEsol over

the entire Brillouin zone. This result suggests weaker anharmonic scattering of transverse

acoustic phonons from BLYP compared to PBEsol. For longitudinal acoustic and optical

phonons, except for the Γ − L direction, the BLYP- and PBEsol-predicted Grüneisen

parameters match with each other in all high-symmetry directions. Both the BLYP- and

PBEsol- predicted Grüneisen parameters match with the experiments at all of the high-

symmetry points for longitudinal acoustic and optical phonons.

We characterize the anharmonicity of the different XCs by calculating an average

Grüneisen parameter, γ, as a heat-capacity weighted average of the absolute values of
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the mode-dependent Grüneisen parameters as:

γ ≡
∑

i cph,i|γi|∑
i cph,i

. (6.1)

The average Grüneisen parameters are provided in Table 6.1. The minimum value of 0.89

(i.e., the least anharmonic) is obtained from the BLYP XC. All other XCs and pseudopo-

tential types result in average Grüneisen parameter values between 1.00 and 1.11.

6.3.5 Thermal Conductivity

Thermal conductivities at a temperature of 300 K calculated using the different XC and

pseudopotential types are provided in Table 6.1. The maximum and minimum predicted

thermal conductivities are 127 W/m-K (from PW91) and 172 W/m-K (from BLYP). All

other XCs predict values between 137 and 148 W/m-K, which is an under-prediction of the

experimentally-measured thermal conductivity of isotopically pure silicon of 153 W/m-K

[63] by 3-11%. As can be seen from Eqn. 2.50, thermal conductivity is proportional to

the phonon group velocities squared and the lifetimes. The strong under-prediction of the

sound velocity by PW91 (Sec. 6.3.2) is consistent with its low thermal conductivity. For

BLYP XC, the three-phonon phase space and average Grüneisen parameter are lower than

the other XCs. These lower values of the three-phonon phase space and average Grüneisen

parameter are an indication of weaker phonon-phonon scattering, larger phonon lifetimes,

and hence higher thermal conductivity. Apart from the XC and pseudopotential types, the

predicted thermal conductivities also depend on the pseudopotential generation method,

as found by Ward for diamond [54]. We find the predicted thermal conductivities from the

LDA XC based NC pseudopotentials generated using the Goedecker-Hartwigsen-Hutter-

Teter [170, 171], Martins-Troullier [172], and Von Barth-Car [173] methods to be 130, 134,

and 141 W/m-K.
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Figure 6.3: Thermal conductivity accumulation function of silicon at a temperature of 300
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result in a similar accumulation.

104



US NC PAW

100 200 300 400 500

Temperature (K)

T
h
er

m
al

 C
o
n

d
u
ct

iv
it

y
 (

W
/m

-K
)

102

103

Experiments

PBE

LDA

PBEsol

PW91

BLYP

Figure 6.4: Thermal conductivity variation of silicon with temperature from different XC
and pseudopotential types. The experimentally measured thermal conductivities from
Refs. [63] and [62] are shown as green and pink filled squares.

The thermal conductivity accumulation function with phonon mean free path (defined

as τi|vg,i|) at a temperature of 300 K from the different XC and pseudopotential types

is plotted in Fig. 6.3. The accumulation function describes the contribution of different

mean free path phonons towards the thermal conductivity [107]. As can be seen from

Fig. 6.3, phonons with mean free paths varying over three orders of magnitude (10 nm

- 10 µm) contribute to thermal transport. As compared to the other XCs, which show

similar accumulations, BLYP over-predicts the contribution of the mid-range mean free

path (∼100 nm) phonons.

The temperature variation of the thermal conductivity of silicon between 100 and 500

K from different XC and pseudopotential types is plotted in Fig. 6.4. Also plotted are

the experimentally-measured thermal conductivities from Inyushkin et al. [63] (green) and
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Glassbrenner and Slack [62] (red). BLYP over-predicts the experimental thermal conduc-

tivity at all of the temperatures considered. At a temperature of 100 K, BLYP predicts a

value of 1326 W/m-K, while all other XC and pseudopotential types predict values between

993 and 1239 W/m-K. The experimental values at a temperature of 100 K are 1194 and

950 W/m-K from Refs. [63] and [62].

6.4 Comparison with Literature

We now compare our predictions with reported values in the literature. The results are

summarized in Table 6.2. As a comparison point, our converged value of thermal con-

ductivity using the LDA XC based NC pseudopotential is 144 W/m-K using the iterative

solution of the BTE and 140 W/m-K when the BTE is solved under the RTA.

Lindsay et al. [39] predicted a value of 155 W/m-K using an iterative solution of the

BTE. They used the LDA XC based NC pseudopotential with a 6 × 6 × 6 electronic

wavevector grid and an 80 Ry planewave energy cutoff. Using the same parameters, our

predicted thermal conductivity is 153 W/m-K [175]. As can be seen from Fig. 6.1(b), an

electronic wavevector grid of 6× 6× 6 is not converged and leads to a 6% over-prediction

in the thermal conductivity compared to an 8× 8× 8 wavevector grid.

Esfarjani et al. [33] predicted a value of 132 W/m-K using the LDA XC and the RTA of

the BTE. They used a 40 Ry planewave energy cutoff and 10 electronic wavevectors in the

irreducible Brillouin zone (4× 4× 4 wave-vector grid) of a 64 atom supercell. They used a

18× 18× 18 phonon wavevector grid for the thermal conductivity calculation [176]. These

choices lead to an under-prediction of thermal conductivity (compared to finer phonon

wavevector grids) due to insufficient sampling of phonon modes near the Brillouin zone

center [33, 121]. Using the LDA XC based NC pseudopotential, and their parameters we

predict a thermal conductivity of 136 W/m-K.
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Table 6.2: Comparison of isotopically-pure silicon thermal conductivity predictions at a
temperature of 300 K between the present study and previous results.

Relevant/ Unconverged Simulation Pa-
rameters

Thermal
Conduc-
tivity
(W/m-K)

Our ther-
mal con-
ductivity
prediction
with same
parameters
(W/m-K)

Present Study Iterative (RTA) solution of the BTE
with LDA NC pseudopotential, 8× 8×
8 electronic wave-vector grid, 60 Ry
planewave energy cutoff, and 24× 24×
24 phonon wave-vector grid

144 (140)

Lindsay et al. [39] Iterative solution of the BTE with 6×
6× 6 electronic wave-vector grid

155 153

Esfarjani et al. [33] RTA solution of the BTE and 18×18×
18 phonon wave-vector grid

132 136

Garg et al. [174] Iterative (RTA) solution of the BTE
and 20 Ry planewave energy cutoff

136 (132) 140 (136)

Li et al. [15] Iterative solution of the BTE with 5×
5× 5 supercell based Γ-point DFT cal-
culations for harmonic force constants
using PBE based PAW pseudopotential

172 140

Parrish et al. [25] Iterative solution of the BTE with 6×
6× 6 electronic wave-vector grid

151 153

Broido et al. [32] Iterative solution of the BTE with LDA
based US pseudopotential

155

Ward et al. [54] Iterative solution of the BTE with
BHS-based NC pseudopotential

145
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The thermal conductivity predicted by Garg et al. [174] is 136 (132) W/m-K using

the full (RTA) solution of the BTE. They used the LDA XC-based NC pseudopotential

with an 8 × 8 × 8 electronic wavevector grid and a 20 Ry planewave energy cutoff. With

the same parameters, we predict thermal conductivities of 140 (136) W/m-K. These value

are an under-prediction of our converged values by 4 W/m-K (for both cases) due to an

insufficient planewave energy cutoff.

Li et al. [15] predicted the thermal conductivity of silicon to be 172 W/m-K using

an iterative solution of the BTE and the PBE XC based PAW pseudopotential. They

used a 23 Ry planewave energy cutoff and calculated harmonic (cubic) force constants on

a 5 × 5 × 5 (3 × 3 × 3) supercell using Γ-point DFT calculations. The harmonic force

constants calculated on a 5×5×5 supercell using Γ-point DFT calculations are equivalent

to those from DFPT calculations with 5 × 5 × 5 phonon and electronic wavevector grids.

Using the PAW XC based PBE pseudopotential, 5×5×5 phonon and electronic wavevector

grids in the DFPT calculations, and a 3 × 3 × 3 supercell for DFT force calculations, we

obtain a thermal conductivity of 140 W/m-K, which differs from the prediction of Li et al.

by 32 W/m-K. We hypothesize that Li et al.’s use of DFT forces to extract the harmonic

force constants (as opposed to the more accurate DFPT calculations in the present study)

is responsible for this difference between the two results.

Parrish et al. [25] predicted a thermal conductivity of 151 W/m-K using an iterative

solution of the BTE, the LDA XC based NC pseudopotential, and an 80 Ry planewave

energy cutoff with a 6× 6× 6 electronic wavevector grid. This value is an over-estimate of

our converged value by 5% due to an insufficient electronic wavevector grid.

The thermal conductivity of silicon has also been predicted by Broido et al. [32] and

Ward et al. [54]. Their values are 155 and 145 W/m-K using LDA-based US and Bachelet-

Hamann-Schlüter (BHS)-based NC pseudopotentials. Because the DFPT phonon wavevec-
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tor grid for the harmonic force constant calculation is not provided in Ref. [32] and the

BHS based NC pseudopotential in not available in Quantum Espresso [40], we are unable

to compare our prediction methodology with theirs.

6.5 Summary

We studied the effect of DFT parameters and XC and pseudopotential types on the ther-

mal conductivity of isotopically pure silicon. We found that the total energy per atom and

relaxed lattice constant should be converged to within 0.2 mRy and 0.001 Å with respect

to all DFT parameters in order to have a 2% convergence in the thermal conductivity. Fur-

thermore, we identified that with the exception of BLYP (which over-predicts by 12%), all

other XCs under-predict the experimental thermal conductivity by 3-17% at a temperature

of 300 K.

Our conclusions are for isotopically pure silicon. We recommend a careful selection of

XC and pseudopotential types for other materials by initially checking the sound velocity

and Grüneisen parameters, which can both be obtained with harmonic-level calculations.

While some XCs such as LDA and PBE are developed for condensed matter, other XCs are

developed for chemical energy calculations of molecules (e.g., BLYP). We also recommend a

careful convergence of thermal conductivity with all DFT parameters, especially electronic

wave-vector grid and planewave energy cutoff.
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Thermal transport by phonons and

electrons in metals from

first-principles

The phonon thermal transport and electron thermal and electrical transport properties are

presented in three different metals (Al, Ag, and Au) by considering phonon-phonon and

electron-phonon interactions with input from DFT and DFPT calculations. The temper-

ature dependent phonon and electron contributions toward the total thermal conductivity

and contribution of different mean free path carriers (phonons and electrons) towards the

thermal conductivity are discussed. The phonon thermal conductivity in Al is compared

with that in Si and the factors causing lower phonon thermal conductivity in Al are dis-

cussed.

7.1 Introduction

While there are numerous studies in the literature on the first-principles based phonon

thermal transport properties prediction in semiconductors [32, 33, 34, 39], the phonon

thermal transport in metals is mostly untouched, mainly because of the small contribution

of phonons towards the thermal transport in metals [57, 164] and the added computational

complexity [due to electron-phonon (e-p) interactions]. Metals, unlike semiconductors,

have free electrons that carry both heat and charge. Compared to semiconductors, where

heat is primarily carried by phonons, heat is primarily carried by electrons in metals [57,
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164]. Phonons create resistance to electron flow in metals through scattering events [57].

Even though the contribution of phonon towards the thermal transport is small in metals,

it is important, for instance, in analyzing the pump-probe based experimental thermal

conductivity measurement results using the two-temperature model [16, 17, 18, 177, 178]

and in the study of interfaces [3, 179].

Our objective in this work is to study the mode-dependent phonon thermal transport

in metals by considering both phonon-phonon (p-p) and e-p interactions. We will also

calculate the electron transport properties in metals by considering e-p interactions. We

investigate transport in three different non-magnetic metals namely Al, Ag, and Au by

using the first-principles-based DFT and DFPT calculations [40].

We find that the phonon contribution towards the thermal transport can be as high

as 5.5% in bulk Al at a temperature of 100 K. As in experiments [180], we find that the

Lorentz number, instead of being constant as suggested by the Wiedemann-Franz law, is

a function of both temperature and metal. Further, we also find that as opposed to semi-

conductors, where phonon mean free paths (mfps) are larger than electron mfps, phonon

mfps in metals are up to an order of magnitude smaller than electron mfps. On compar-

ing thermal transport in aluminum with silicon, the most-widely studied semiconductor,

we find that, even though aluminum and silicon have similar atomic masses, the phonon

contribution towards the thermal conductivity by considering only p-p interactions is an

order of magnitude less in aluminum than that in silicon. Our findings, apart from elu-

cidating phonon thermal transport physics in metals, will also help in improving existing

metal-semiconductor device designs.
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7.2 Methods and Calculation Details

The phonon (electron) transport properties can be obtained by solving the Boltzmann

transport equation and using the Fourier law (Onsager relations) with input from DFT and

DFPT (see Sec. 2.2 and App. D) [40, 42, 42]. We calculate e-p coupling coefficients using

DFPT as implemented in the package Quantum Espresso [40]. The coupling coefficients

are initially obtained on coarse 18× 18× 18 and 6× 6× 6 electron and phonon wavevector

grids and are later interpolated to finer 80× 80× 80 and 32× 32× 32 electron and phonon

wavevector grids using the maximally localized Wannier functions basis as implemented

in the electron-phonon Wannier (EPW) package [42, 42]. The harmonic and cubic force

constants, required for three-phonon scattering rate calculations, are obtained using finite

differencing of DFT forces. We calculated forces using 216 atom supercells with a 3×3×3

electronic wavevector grid and recommended planewave energy cutoffs (listed in Table D.1

of App. D) from the DFT package VASP. The LDA exchange-correlation is employed for

all of the calculations. Further details about the calculations and the DFT parameters

convergence are provided in Secs. D.1 and D.2 of the App. D.

7.3 Temperature Dependent Thermal and Electrical

conductivities

We first plot the temperature variation of the thermal conductivities of Al, Ag, and Au,

obtained by considering both p-p and e-p interactions (kp) and by considering only p-p

interactions (kp−p
p ), in Fig. 7.1(a) and in the inset of Fig. 7.1(a). Among the three metals

considered for this plot, Al is the lightest followed by Ag and then Au. The lighter mass

of Al results in higher phonon group velocities, which is reflected in its highest phonon

thermal conductivity (both kp and kp−p
p ) amongst the three metals at all temperatures.
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Figure 7.1: Variation of (a) phonon thermal conductivity, kp, (b) electron thermal con-
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scattering, kp−p
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number, L = ke/σT , with temperature for Al, Ag, and Au. The dashed line in inset (ii) of
(b) is the constant L value of 2.44× 10−8 W-Ω/K2 from the Wiedemann-Franz law.
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With an increase in temperature, T , the number of active phonons in a system increases

as ∼ kBT where kB is the Boltzmann constant. As a result, due to an increase in e-p and p-p

scattering at higher temperatures, both kp and kp−p
p decreases with rising temperature. The

effect of e-p interactions on the phonon thermal conductivity is maximum for Al amongst

the three metals. Upon removal of the e-p interactions, the phonon thermal conductivity

of Al increases by up to factor of two at a temperature of 100 K while the change is less

than 17% for Ag and Au. This result is consistent with the literature where the highest e-p

coupling parameters are reported for Al among the three metals [181]. For all three metals,

the maximum effect of e-p interactions is observed at a temperature of 100 K (97%, 17%,

and 6% increase in thermal conductivity on removing e-p interactions in Al, Ag, and Au)

and it decreases with an increase in temperature to 16%, 3%, and 2% at a temperature of

500 K for Al, Ag, and Au.

The temperature variation of electron thermal conductivity (ke) and electrical conduc-

tivity (σ) of Al, Ag, and Au are plotted in Fig. 7.1(b) and inset (i) of Fig. 7.1(b). Amongst

the three metals, ke is highest for Ag followed by Au and Al at all temperatures. While ke

initially decreases and then plateaus with an increase in temperature for Ag, the ke initially

increases and then plateaus with an increase in temperature for Al and Au. The origin of

this peak (not seen in Ag for considered temperature range) followed by plateau are the

competing affects of increasing electron specific heat (shown in Fig. D.6 in App. D) and

decreasing electron lifetime (due to increased e-p scattering at higher temperatures) with

increasing temperature. The electrical conductivities follow the electron lifetime trend and

decrease linearly with an increase in the temperature for all three metals.

The variation of the Lorentz number, L, calculated as L = ke/σeT , with temperature

is plotted in inset (ii) of Fig. 7.1(b). Based on the free electron gas model [164], the

Wiedemann-Franz law predicts L to be constant for all metals and at all temperatures.
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As can be seen from inset (ii) of Fig. 7.1(b), however, L is dependent on both material

and temperature. The maximum variation of L amongst the three metals is seen at a

temperature of 200 K with values of 2.74× 10−8 and 2.09× 10−8 W-Ω/K2 for Au and Ag.

From Figs. 7.1(a) and 7.1(b), while it is clear that electrons are the major contributor

towards the thermal transport in all three metals at all temperatures considered, the con-

tribution of phonons is as high as 5.5% in Al at a temperature of 100 K. In all three metals

considered, the contribution of phonon towards the thermal transport is maximum at a

temperature of 100 K (5.5%, 2.5%, and 2.0% for Al, Ag, and Au) and it decreases with an

increase in temperature to 1.5%, 0.5%, and 0.5% for Al, Ag, and Au at a temperature of

500 K.

At a temperature of 300 K, our predicted values of total thermal conductivities are 252,

374, and 278 W/m-K for Al, Ag, and Au which agree within 13% with the experimentally

measured values of 237, 429, and 317 W/m-K for Al, Ag, and Au [164]. For electrical

conductivities, our predicted values are 3.46×107, 5.89×107, and 3.42×107 S/m at a tem-

perature of 300 K for Al, Ag, and Au. These predictions agree with experiments within 6%

for Al and Ag and within 25% for Au (experimentally measured electrical conductivities

are 3.65×107, 6.21×107, and 4.55×107 S/m at a temperature of 295 K for Al, Ag, and Au)

[164]. This 25% under-prediction of electrical conductivity of Au from DFT calculations is

consistent with literature where other researchers also found over-estimation of electrical

resistivity of Au from DFT calculations [182].
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7.4 Thermal and Electrical Conductivities Accumu-

lation Functions

The electron and phonon thermal conductivities (Eqn. 2.64 and Eqn. 2.50) can be re-

written using the electron and phonon mean free paths, Λκm and Λqν , as

Kαβ = − ns

V T

∑
κm

(ϵκm − µ)2
∂fκm
∂ϵ

vκm,αvκm,β

|vκm|
Λκm, (7.1)

kp,αβ =
∑
qν

cqν
vqν,αvqν,β
|vqν |

Λqν , (7.2)

where the electron and phonon mean free paths are defined as Λκm = |vκm| τκm and Λqν =

|vqν | τqν . The mean free path of a carrier is a measure of the distance the carrier travels

before getting scattered. The electron and phonon thermal conductivity accumulations can

then be obtained using these new definitions of electron and phonon thermal conductivities

as

Kαβ(Λ) = − ns

V T

Λκm<Λ∑
κm

(ϵκm − µ)2
∂fκm
∂ϵ

vκm,αvκm,β

|vκm|
Λκm, (7.3)

kp,αβ(Λ) =

Λqν<Λ∑
qν

cqν
vqν,αvqν,β
|vqν |

Λqν . (7.4)

We plot the kp and ke accumulation functions of Al, Ag, and Au at a temperature of 300

K in Figs. 7.2(a) and 7.2(b). Phonons with mfp spanning around two orders of magnitude

contribute towards the kp in Ag and Au at a temperature of 300 K (2-62 and 1-64 nm

in Ag and Au). In Al, the kp accumulation is quite steep, with major contributions from

phonons with mfps spanning over only one order of magnitude (2-22 nm). As can be seen

from Fig. 7.2(b), the range of electron mfp is much smaller than that of phonons in the

considered metals. At a temperature of 300 K, 90% contribution towards ke comes from
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functions with respect to phonon/electron mfp for Al, Ag, and Au at a temperature of 300
K. The variation of gray phonon and electron mfp (Λp and Λe) as a function of temperature
for Al, Ag, and Au are shown in insets to (a) and (b).
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electrons with mfp between 9-19, 30-53, and 21-38 nm for Al, Ag, and Au. As opposed

to semiconductors, where the gray approximation results in incorrect phonon transport

physics [107], this narrow range of electron mfp suggests the applicability of the gray

approximation for electron transport in metals.

We define gray electron and phonon mean free paths, Λe and Λp as

Λe =

∑
κm(ϵκm − µ)2 ∂fκm

∂ϵ

v2κm,α

|vκm|Λκm∑
κm(ϵκm − µ)2 ∂fκm

∂ϵ

v2κm,α

|vκm|

, (7.5)

Λp =

∑
qν cqν

v2qν,α
|vqν |Λqν∑

qν cqν
v2qν,α
|vqν |

. (7.6)

The gray phonon and electron mfp (Λp and Λe) variation with temperature are plotted

in the insets of Figs. 7.2(a) and 7.2(b) for Al, Ag, and Au. Both Λp and Λe, decrease with

an increase in temperature due to increased p-p and e-p scatterings at higher temperatures.

Amongst the three metals considered, Λp and Λe are largest for Ag. Λp (Λe) decreases from

values of 11, 13, and 7 nm (42, 127, and 86 nm) at a temperature of 100 K to 2, 2, and 1

nm (10, 26, and 18 nm) at a temperature of 500 K for Al, Ag, and Au. The phonon mfp

in semiconductors are, typically, one to three orders of magnitude larger than the electron

mfp. As can be seen from the insets of Figs. 7.2(a) and 7.2(b) for metals, however, Λp is a

factor of 4 to a factor of 15 smaller than Λe at all temperatures.

7.5 Phonon Thermal Transport in Aluminum and

Silicon

To see the origin of small phonon mfp in metals, we next compare phonon thermal transport

in Al with the well studied semiconductor Si by considering only p-p interactions (see
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Figure 7.3: Aluminum and silicon phonon dispersion in high symmetry directions of the
first Brillioun zone.

Al

Si

0 4 8 12 1610-1

101

103

Frequency
(THz)

P
h

o
n

o
n

 L
if

et
im

e
(p

s)

300 K

0 4 8 12 16
Frequency (THz)

0

0.01

0.02

0.03

0.04

0.05

T
h

re
e-

p
h

o
n

o
n

 P
h

as
e 

S
p

ac
e 

(a
. 

u
.)

Figure 7.4: Frequency dependent three-phonon phase space for p-p scattering in Al and
Si. The variation of phonon relaxation times (obtained by considering only p-p scattering)
with frequency at a temperature of 300 K is shown in the inset.
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Sec. D.4 of App. D for details on Si calculations). Al and Si have similar atomic masses

(27 and 28 amu) and sit next to each other on the periodic table. Phonon dispersions

of Al and Si along the high symmetry directions of the first Brillioun zone are plotted in

Fig. 7.3. Both Al and Si have a face-centered cubic lattice structure with one and two

atoms in the primitive unit-cell. The phonon group velocities in Al are smaller than that

in Si [for instance, transverse acoustic phonon group velocity close to the Γ point in the

Brillioun zone is 2800 m/s in Al as oppose to 4700 m/s in Si (see Fig. 7.3)]. This less than

a factor of two difference in group velocities cannot fully explain the order of magnitude

difference in Al and Si mfp [Λp is 97 nm in Si at a temperature of 300 K as compared to

4 nm in Al (see Sec. D.5 of App. D)]. To isolate the origin of this difference in Al and Si

mfp, we plot the three-phonon phase space for Al and Si in Fig. 7.4.

The three-phonon phase space is a measure of the scattering space available for p-

p processes and is calculated by counting the number of p-p processes that satisfy the

phonon energy and momentum conservation selection rules [168]. As can be seen from

Fig. 7.4, for phonons with frequencies less than 4 THz, the available three-phonon phase

space in Al is up to five times higher than that in Si. At a temperature of 300 K, this

larger three-phonon phase space in Al, along with the larger Grüneisen parameters (see

Sec. D.5 of App. D), results in higher p-p scattering and up to two orders of magnitude

lower phonon lifetimes in Al than in Si (inset of Fig. 7.4). For phonon modes in Al with

frequencies larger than 4 THz, even though three-phonon phase space is smaller in Al than

in Si, have phonon lifetimes around an order of magnitude smaller than those in Si due

to higher anharmonicity of phonon modes in Al [the heat capacity weighted mode-average

value of the Grüneisen parameter in Al is 2.21 as oppose to 1.02 in Si at a temperature of

300 K (see Sec. D.5 of App. D)].
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7.6 Summary

We discussed thermal and electrical transport properties of Al, Ag, and Au from first-

principles based DFT and DFPT calculations. We found that the contribution of phonons

towards the thermal transport can be as high as 5.5% in Al at a temperature of 100 K.

Further, we also found that the electron mfp in all three metals have a narrower range but

larger magnitudes as compared to phonon mfp at a temperature of 300 K. On comparing

phonon thermal transport in Al with Si, we found that the near three orders of magnitude

smaller phonon mfp in Al, are a result of (i) smaller phonon group velocities in Al, (ii)

larger anharmonicity of Al as compared to Si, and (iii) an increased available three-phonon

phase space in Al for low frequency phonons. Our calculations elucidate mode-dependent

phonon and electron transport properties in metals which could be helpful in improving

the design and performance of metal-semiconductor devices.
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Summary and Outlook

8.1 Overview

The work presented in this thesis focused on the thermal transport in crystalline semi-

conductors and metals. The mode-dependent properties of fundamental thermal transport

carriers (phonons in semiconductors and phonons and electrons in metals) were predicted

from first-principles based density functional theory and density functional perturbation

theory calculations. As opposed to the use of empirical force-fields, density functional

theory force-fields are fitting-parameter free and result in a good agreement with experi-

mental measurements of thermal conductivity. The mode-dependent transport properties

of phonons were obtained from harmonic and anharmonic lattice dynamics calculations

by considering phonon-phonon scattering (and electron-phonon scattering in metals). The

mode-dependent electron transport properties were initially obtained using density func-

tional theory and density functional perturbation theory on coarse grids and then interpo-

lated using the maximally localized Wannier functions on finer grids.

In Chapter 2, for bulk simple semiconductors such as silicon and germanium, good

agreement was obtained between temperature-dependent predicted and measured thermal

conductivities for both isotopically enriched and naturally occurring materials. Use of the

phonon free path sampling approach to model the additional phonon-boundary scattering

in Chapter 3, resulted in an excellent agreement with experimental data for the in-plane

thermal transport in silicon nanoporous thin films. The work concluded that coherent

phonon affects are not present in silicon nanostructures at a temperature of 300 K with

feature size larger than 100 nm. In Chapter 4, in compound semiconductors, apart from a
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material’s Debye temperature, lattice constant, Grüneisen parameters, and atomic masses,

the thermal conductivity was found to also depend on the acoustic-optical phonon fre-

quency gap. The maximum thermal conductivity is obtained when the acoustic-optical

phonon frequency gap nearly equals the acoustic phonon frequency width.

For the novel materials black and blue phosphorene (two-dimensional arrangement of

phosphorus atoms), for which there is no experimental thermal characterization, temperature-

dependent thermal conductivities were predicted and compared with other two-dimensional

materials in Chapter 5. The thermal transport in black phosphorene was found to be

highly anisotropic and the anisotropy is predicted to be tunable with tensile uni-axial

strain. Further, in contrast to graphene where out-of-plane acoustic phonons contribute

75% to the thermal conductivity at room temperature, the contribution of out-of-plane

acoustic phonons is found to be less than 45% in both black and blue phosphorene at room

temperature.

For isotopically enriched silicon at a temperature of 300 K, the effect of exchange-

correlation function (used in pseudopotential generation for density functional theory cal-

culations) on the predicted thermal conductivity was studied in Chapter 6. All exchange-

correlation functions, with the exception of BLYP, were found to predict similar thermal

conductivities that were an under-prediction of the experimental value by 3-17%. The

BLYP exchange-correlation, on the other hand, was found to over-predict the experimental

thermal conductivity by 13%. Previous first-principles based predictions of silicon thermal

conductivity were found to possibly have better agreement with experimental results due

to the use of unconverged simulation parameters.

In Chapter 7, the phonon and electron contribution towards the thermal conductivity

were predicted in aluminum, silver, and gold by considering phonon-phonon and electron-

phonon scattering. At a temperature of 100 K, the phonon contribution was found to be
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as high as 5.5% in aluminum. While the range of phonon mean free paths were found to be

larger than the range of electron mean free paths, the gray electron mean free paths were

found to be larger than gray phonon mean paths in all three metals at all temperatures.

On comparing phonon thermal transport in aluminum with silicon, the origins of smaller

phonon mean free paths in aluminum were found to be (i) smaller phonon group velocities,

(ii) larger anharmonicity, and (iii) an increased three-phonon scattering phase space.

8.2 Future Work

The work presented in this thesis elucidated thermal transport physics and provides mode-

dependent thermal transport carrier properties in small unit-cell non-polar crystalline semi-

conductors and metals. Possible future directions include the study of crystals and polar

materials.

8.2.1 Large Unit-cell Crystals

Large unit-cell size crystals such as zeolites, hydrates, perovskites, and fullerene derivatives

have multiple technological applications, e.g., carbon dioxide capture, catalysts, and solar

cells [183, 184, 185, 186, 187]. These large unit-cell size crystals have more than 4 atoms in

the unit-cell and are computationally more expensive to study as compared to small unit-

cell size crystals. The scaling of computational cost with number of atoms is discussed in

Sec. 2.1.8.1.

8.2.1.1 Intermediate Unit-cells (4-12 atoms)

For intermediate unit-cell size crystals, depending on the available computational resources,

the thermal transport prediction approach presented in this work could be readily applied.

The relatively large number of atoms in the unit-cell of intermediate unit-cell size crystals
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would result in larger number of density functional theory supercell forces calculations

as compared to small unit-cell size crystals [the number of DFT calculations depend on

types of atoms and symmetry of the unit-cell (see App. A for details)]. The cost of each

computation, however, would be similar to small unit-cell size crystals.

8.2.1.2 Large Unit-cells (more than 12 atoms)

While the increase in lattice dynamics calculations cost due to an increase in number of

atoms would be partially compensated by reduced number of phonon wavevectors (number

of unitcells) needed (Sec. 2.1.8.1), the number of density functional theory supercell calcu-

lations and the size of the density functional theory supercell would increase significantly

for large unit-cell size crystals. As a result, thermal conductivity predictions for large

unit-cell size crystals would require better scaling methods such as linearly-scaling density

functional theory [188, 189]. Alternatively, instead of using lattice dynamics for phonon

lifetimes calculations, which require a large number of density functional theory supercell

calculations, one could also use empirical models with input from density functional theory

to study the thermal transport in large unit-cell size crystals (as done by Chen et al. for

up to 74 atoms unit-cell based quasi one-dimensional crystals [190]).

8.2.2 Polar Materials

Another category of crystals that were not studied in this work are polar materials such as

rock-salt ionic crystals, perovskites, and titania. These materials have potential applica-

tions in thermoelectric energy conversion, solar cells, and memory devices [191, 192, 193].

The computational challenge in studying these materials is how to handle the long range

Coulombic interactions. One of the ways of handling these long-range interactions in the

harmonic calculations is to add their contribution as an analytical correction in the phonon
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dynamical matrices [194, 195]. This analytical correction results in the splitting of longi-

tudinal optical and transverse optical phonon modes close to the Gamma point. The effect

of these long-range interactions is, however, still not well studied for cubic force constants

(i.e., their effect on phonon-phonon scattering). Due to the long-range interactions, the

calculation of cubic force constants for these crystals using the density functional theory

results in large computational cell sizes. For instance, Feng et al. [196] studied the ther-

mal transport in SrTiO3 using 320 atoms supercell for density functional theory based

force calculations. A possible alternative to handling these long-range interactions using

large supercell sizes is to use the density functional perturbation theory approach for cubic

force constants extraction as discussed by Mukhopadhyay and Stewart for cubic-BN under

pressure [133].
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Force Constants Cutoff and Supercell

Size

The thermal conductivity calculated using DFT calculations (and empirical force-fields

with electrostatic interactions) depends on the force constants cutoff and the supercell

size used in the force constants extraction. While the thermal conductivity converges with

using larger force constant cutoff and larger supercell size, using large force constant cutoffs

results in a large number of DFT supercell force calculations and a large supercell size

results in each supercell force calculation being more computationally expensive. Starting

with a small cutoff and increasing to a larger cutoff is troublesome in that not all larger

cutoff force constants can be calculated from a given supercell size. Hence, if a thermal

conductivity is not converged for the largest possible cutoff in a given supercell, then one

needs to repeat all the DFT force calculations on a larger supercell size. Further, even if

thermal conductivity is converged with respect to force constant cutoffs in a given supercell,

a convergence with respect to supercell size must be performed to make sure that there

is no effect of periodic images of atoms on the thermal conductivity. Here we discuss a

practical approach that could be helpful in reducing computational load by simultaneous

convergence of thermal conductivity with force constants cutoff and supercell size.
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A.1 Maximum allowed force constant cutoff in a given

supercell

Before discussing an approach to decide on supercell size and get an idea about the force

constant cutoff, we first briefly discuss the maximum allowed force constant cutoff in a

given supercell due to periodic boundary conditions. As can be seen from Fig. A.1, due

to periodic boundary conditions, the displacement given to an atom in the computational

cell is reflected in the displacement of atoms in the periodic images of the computational

cell. If the supercell is not big enough, then the forces experienced by different atoms in

the computational cell will include contribution from the displaced atom in the periodic

images as well. To avoid this issue, the computational cell size in the DFT calculations

(performed using the periodic planewaves based basis set) should be at least twice as large

as the force constant cutoff.

A.2 Force constant cutoff needed

To gauge an idea about the force constant cutoff and the supercell size needed in the

thermal conductivity calculations, we displace one atom from its equilibrium position and

look at the forces on different atoms in the computational cell. For instance, in Fig. A.2,

we displaced one of the corner atoms in a 216 atom silicon computational cell and plot

the magnitude of forces acting on different atoms as a function of their distance from the

displaced atom. We can make three observations from this force displacement plot:

1. The forces acting on different atoms go to less than 1% of the total/maximum force

after a distance of around 5 Å, which is less than half of the computational cell size

(computational cell size is 3× 5.4 = 16.2 Å). This result suggests that the maximum

force constant cutoff for this system is less than 5 Å and forces calculated using a 216
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r
c

Figure A.1: Computational/supercell with central atom (red color) displaced from its
equilibrium position. The dark atoms represent the central supercell and the light atoms
represent neighboring images due to periodic boundary condition. The red atom gets dis-
placed in the neighboring images of the computational cell as well. The force experienced
by atom blue is, therefore, the sum of forces due to displacement of the red atom in the
computational cell and displacement of red atoms in all periodic images of the computa-
tional cell which are within the cutoff radius rc. To make sure that atom blue experiences
force only due to displaced atom in the computational cell, the computational cell size
should be at least twice the interaction cutoff (please note that the computational cell
shown in this figure does not satisfy this nearest-image convention).
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Figure A.2: Forces acting on different atoms in the computational cell when one of the
corner atom is displaced by a small amount in a 216 atoms silicon computational cell. The
distance is calculated with respect to the displaced atom. The horizontal dashed line is to
guide the eye and represents 1% of the maximum force.
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atom computational cell will not have any affect due to periodic boundary conditions.

2. The 5 Å cutoff represents the total force cutoff and has contributions from both har-

monic and cubic force constants (and from higher-order force constants). Typically,

cubic force constants are shorter range as compared to the harmonic force constants

[60]. As such, one can always calculate harmonic force constants from a larger super-

cell and subtract out the contribution of these from the forces to gauge an idea about

the cubic force constants cutoff (the contribution of harmonic force constants towards

the forces can be obtained by using up to harmonic terms in the force Taylor series,

i.e., by performing the summation of harmonic force constants times displacement

for each atom).

3. In this case, if we perform summation of forces then we will see that the summation

goes to zero and remains zero after a distance of 5 Å (which is equivalent to satisfying

Newton’s second law). In some cases, however, we will see that the summation

does not go to zero after half of the computational cell size (or even at the cell

boundary!). From our experience, we found that this happens due to either very

small computational cell size or because of incorrect forces from DFT calculations

due to insufficient electron grid sampling or very small planewave energy cutoff.

We note that the 1% threshold that we used here is just for the discussion in this section.

Depending on the system, one could need a tighter threshold than 1%. Also, after getting

an idea about computational size and force constant cutoff, one still needs to do thermal

conductivity convergence with respect to both of these parameters.

The computational cost for this one simple force calculation is much cheaper as com-

pared to the total computational cost of calculating the thermal conductivity. Therefore,

one can simply do these simple calculations to get an idea about the initial guesses for

force constants cutoffs and computational cell size for a new system.
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Implementation of Translational

Invariance

The harmonic and cubic force constants obtained using DFT calculations do not satisfy

crystal TI constraints due to finite numerical precision errors. A failure to satisfy TI

constraints leads to non-physical results such as non-zero acoustic phonon vibration fre-

quencies at the center of the Brillioun zone. The TI constraints can be satisfied by either (i)

using TI constraints as extra equations in the force constant extraction, (ii) adding small

correction terms in the extracted diagonal/self-force constants elements, or (iii) by using

the Lagrange multipliers approach where small correction terms are added to all extracted

force constants [instead of adding to only diagonal term in approach (ii)]. In this work, we

used the Lagrangian approach. We present the derivation of the correction terms for the

cubic force constants here, which can be easily modified for harmonic force constants (if

harmonic force constants are extracted from DFPT calculations then TI constraints can be

satisfied in DFPT calculations itself). The derivation of correction terms presented here is

adopted from Ref. [145].

We present the derivation of the correction terms to be added to the cubic force con-

stants in two different forms. While the derivation is similar for both forms, the first form

is for satisfying TI on a full list of force constants and the second form is for a crystal

symmetry-reduced list of independent force constants.
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B.1 Translational invariance on full list of force con-

stants

The TI constraints for cubic force constants are:

∑
k

Ψαβγ,a
ijk = 0 ∀(αβγ, ij), (B.1)

where Ψαβγ,a
ijk represents the actual (analytical) cubic force constant element between atoms

i, j, and k in the α, β, and γ directions. In our calculations, atom index i vary over all

atoms in the unit-cell, while indices j and k vary over all atoms within the interaction

cutoff. Let’s say that the extracted numerical force constants are Ψαβγ,n
ijk and the small

correction to be added is Ψαβγ,c
ijk such that Ψαβγ,a

ijk = Ψαβγ,n
ijk +Ψαβγ,c

ijk . Using Eqn. B.1

Bαβγ
ij ≡

∑
k

(
Ψαβγ,n

ijk +Ψαβγ,c
ijk

)
= 0 ∀(αβγ, ij). (B.2)

Our objective is to minimize the magnitude of the correction needed for each force constant,

i.e., to minimize the cost function C defined as

C =
1

2

∑
ijk
αβγ

(
Ψαβγ,c

ijk

)2
, (B.3)

while satisfying Eqn. B.2. This is a standard optimization problem with constraints and

can be solved using the Lagrangian multiplier approach. Accordingly, after introducing
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the Lagrangian multipliers, Λαβγ
ij , we have

∂

C +
∑

i
′
j
′

α
′
β
′
γ
′

Λα
′
β
′
γ
′

i
′
j
′ Bα

′
β
′
γ
′

i
′
j
′


∂Ψαβγ,c

ijk

= 0,

∂

1
2

∑
i
′
j
′
k
′

α
′
β
′
γ
′

(
Ψα

′
β
′
γ
′
,c

i′j′k′

)2
+
∑

i
′
j
′

α
′
β
′
γ
′

[
Λα

′
β
′
γ
′

i′j′
∑

k
′

(
Ψα

′
β
′
γ
′
,n

i′j′k′
+Ψα

′
β
′
γ
′
,c

i′j′k′

)]
∂Ψαβγ,c

ijk

= 0,

(B.4)

which can be solved for the correction term as,

Ψαβγ,c
ijk = −Λα

′
β
′
γ
′

i′j′
. (B.5)

Equation B.5 can be substituted into Eqn. B.2 to solve for Λαβγ
ij as

Λαβγ
ij =

∑
k Ψ

αβγ,n
ijk∑
k 1

, (B.6)

which by back-substituting into Eqn. B.5 gives,

Ψαβγ,c
ijk = −

∑
k
′ Ψαβγ,n

ijk′∑
k′ 1

. (B.7)

Eqn. B.7 implies that the correction term is same for all force constants involved in a

given TI constraint and is the average of the amount by which the TI constraint is not

satisfied.
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B.2 Translational invariance on symmetry-reduced list

of independent force constants

As discussed in Sec. 2.1.6.3, all force constants are not independent. Some of these are

related to each other through crystal symmetries. If Mpq is the matrix which maps the full

list of force constants, Ψf , to symmetry-reduced list of force constants, Ψr, then

∑
q

MpqΨ
r
q = Ψf

p . (B.8)

[Please note that, as opposed to Sec. B.1, the cubic force constants here are enumerated

with single index p and q which vary over all possible cubic force constant elements in full

and symmetry-reduced lists.]

Further, TI constraints on cubic force constants, i.e., Eqn. B.1 can be re-written in the

matrix form as ∑
s

TtsΨ
f
s = 0 ∀(t), (B.9)

where index t vary over different TI constraints (equals 27× nu × nc, where nu and nc are

number of atoms in the unit-cell and number of atoms within the interaction cutoff). From

Eqn. B.8 and Eqn. B.9, TI constraints can be written in terms of symmetry-reduced force

constants as

∑
pq

TtpMpqΨ
r
q = 0 ∀(t) or,∑

q

AtqΨ
r
q = 0 ∀(t), (B.10)

where A = TM .

Assuming that a small correction factor, Ψc
q is needed to be added to the numerically
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extracted reduced force constants, Ψn
q , such that Ψr

q = Ψn
q +Ψc

q, Eqn. B.10 can be rewritten

as ∑
q

Atq

(
Ψn

q +Ψc
q

)
= 0 ∀(t). (B.11)

The objective is again to minimize the cost function, which similar to Sec. B.1 is defined

as C = 1
2

∑
q Ψ

c
q
2. By using the Lagrangian multiplier, Λt, the Ψc

q can be obtained from

the solution of
∂
{

1
2

∑
q Ψ

c
q
2 +

∑
t Λt

(∑
q Atq

(
Ψn

q +Ψc
q

))}
∂Ψc

s

= 0, (B.12)

which on solving results in

Ψc
s = −

∑
t

ΛtAts. (B.13)

Substituting Eqn. B.13 into Eqn. B.11 gives

∑
q

Atq

Ψn
q −

∑
t′

Λt
′At

′
q

 = 0, or

∑
t′

Λ
′

t

∑
q

AtqAt
′
q =

∑
q

AtqΨ
n
q ∀(t). (B.14)

Equation B.14 represents a set of linear equations that can be solved for Λt
′ . Once Λt

′ are

known, Eqn. B.13 can then be used to obtain the correction term Ψc
q in the numerically

extracted symmetry-reduced force constants.

In this work, we enforced TI constraints using the Lagrangian approach on symmetry-

reduced list of force constants as enforcing TI constraints on the full list result in more

numerical noise and lots of redundant/dependent constraints.
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Additional Information for “Strongly

anisotropic in-plane thermal

transport in single-layer black

phosphorene”

C.1 Thermal Conductivity Convergence

Predicting thermal conductivity from lattice dynamics calculations and the Boltzmann

transport equation (BTE) requires harmonic and anharmonic force constants as input. We

obtain these harmonic and anharmonic force constants from first-principles-driven density

functional perturbation theory (DFPT) and density functional theory (DFT) calculations.

The calculation of thermal conductivity from the DFPT and DFT force constants requires

specification of the supercell size, the force interaction cutoffs, and, for 2D materials like

black phosphorene and blue phosphorene. the amount of vacuum needed to remove inter-

layer interactions. In this section, we discuss the convergence of the thermal conductivity

of black phosphorene and blue phosphorene with these calculation parameters.

C.1.1 Cubic Force Constant Cutoff

In Figs. C.1(a) and C.1(b), we plot the thermal conductivity of black phosphorene and blue

phosphorene as a function of the cubic force-constant interaction cutoff at a temperature

of 300 K. The cubic force constants are obtained using 144 (128) atom supercells with 30
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Figure C.1: Thermal conductivity variation of (a) black phosphorene and (b) blue phos-
phorene with the cubic force constant interaction cutoff at a temperature of 300 K.

Å (17 Å) of vacuum for black (blue) phosphorene. Translational invariance (TI) is satisfied

using the Lagrangian approach presented by Li et al. [145] The thermal conductivities in

these figures are predicted using the relaxation time approximation (RTA) solution of the

BTE.

As can be seen from Figs. C.1(a) and C.1(b), the thermal conductivity for both black

phosphorene and blue phosphorene converges beyond an interaction cutoff of 5.5 Å. In all

reported calculations, we use a interaction cutoff of 6.2 Å for black phosphorene and 6.5 Å

for blue phosphorene. The predicted thermal conductivities changes by 12% (10%) when

the interaction cutoff is increased from 6.2 Å to 7.6 Å (6.5 Å to 8.6 Å) for black (blue)

phosphorene.

C.1.2 DFT Supercell Size and Vacuum Width

To determine the effect of supercell size and vacuum width on the predicted thermal con-

ductivities of black phosphorene and blue phosphorene, we compared cubic force constants

calculated using two different supercell sizes and vacuum widths. For black phosphorene,
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Figure C.2: The effect of translational invariance on the thermal conductivity of (a) black
phosphorene and (b) blue phosphorene.

we compared cubic force constants calculated on a 144 atom supercell with 30 Å of vacuum

to those from a 100 atom supercell with 20 Å of vacuum. The two sets of force constants

were found to be very close, with differences of less than 2% for the largest (i.e., the self)

force constant. For blue phosphorene, we compared force constants calculated on 128 and

98 atom supercells with 17 Å of vacuum and found a difference of less than 1% for the

largest force constant.

C.1.3 Translational Invariance of Cubic Force Constants

The cubic force constants obtained using finite differences of the Hellman-Feynman forces

do not satisfy crystal symmetries and translational invariance (TI) (i.e., the acoustic sum

rule) because of numerical errors. These small numerical errors can result in large changes

in thermal conductivity predictions, as shown by Lindsay et al. [39]. It is therefore necessary

to satisfy the crystal TI constraint by modifying the cubic force constants. In this study,

we satisfied this TI constraint using the Lagrangian approach presented by Li et al. [145]

The effect of TI on the thermal conductivity (calculated using the RTA) of black phos-
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Figure C.3: Thermal conductivity prediction of (a) black phosphorene and (b) blue phos-
phorene using the RTA and iterative (full) solution of the BTE.

phorene and blue phosphorene is shown in Figs. C.2(a) and C.2(b). At a temperature

of 300 K, not satisfying the cubic TI constraint results in an under-prediction of thermal

conductivity by 40% (47%) in the zigzag (armchair) direction of black phosphorene and

by 33% in blue photosphere. We note that the effect of not satisfying TI is more severe in

phosphorene, as compared to that reported by Lindsay et al. [39] for Ge (29% at 300 K),

because of fewer crystal symmetries in phosphorene.

C.1.4 RTA Versus Full Solution of the BTE

The thermal conductivity variation of black phosphorene and blue phosphorene using the

RTA and an iterative solution of the BTE are plotted as a function of temperature in

Figs. C.3(a) and C.3(b). The cubic force constants are obtained using the 144 atom

supercell with 30 Å of vacuum for black phosphorene and the 128 atom supercell with 17

Å of vacuum for blue phosphorene. The TI for cubic force constants is satisfied as discussed

in the previous section.
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As can be seen from Figs. C.3(a) and C.3(b), the RTA solution of the BTE under-

predicts the thermal conductivity for both black phosphorene and blue phosphorene. At

a temperature of 300 K, the under-predictions are by a factor of 1.4 and 1.2 in the zigzag

and armchair directions for black phosphorene and a factor of 2.0 for blue phosphorene. As

explained by Lindsay et al. [13] for graphene, these under-predictions in thermal conduc-

tivity are due to Normal phonon processes being treated as resistive in the RTA solution

of the BTE.

C.2 Debye Temperature

In Fig. C.4, we plot the volumetric heat capacity variation of black phosphorene and blue

phosphorene with temperature. In our calculations, we considered only the phonon (lattice)
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contribution towards the heat capacity. At a temperature of 300 K, the heat capacity of

blue phosphorene is 0.75 times the heat capacity of black phosphorene. We estimate the

Debye temperature as the temperature at which the heat capacity is 95% of its maximum

value. For both phosphorene allotropes, the Debye temperature is 500 K.

C.3 Contribution of Acoustic Phonon Branches to Ther-

mal Conductivity

We plot the contribution of the different acoustic phonon beaches towards the total ther-

mal conductivity as a function of temperature in Figs. C.5(a) [black phosphorene (zigzag)],

C.5(b) [black phosphorene (armchair)], and C.5(c) (blue phosphorene). For black phos-

phorene, the maximum contribution is from longitudinal acoustic (LA) phonon modes in

the zigzag direction and transverse acoustic (TA) phonon modes in the armchair direction.

The contribution of out-of-plane (ZA) phonon modes in black phosphorene remains con-

stant with temperature at around 31% (12%) for the zigzag (armchair) direction of heat

flow. For blue phosphorene, the maximum contribution comes from the ZA phonon modes

and is more than 42% for the range of temperatures considered.

C.4 Sound Velocity Variation with Uni-axial Strain

In Figs. C.6(a) and C.6(b), we plot the stress generated and sound velocity in the zigzag

and armchair direction of black phosphorene when it is subjected to a uni-axial strain along

the zigzag direction. The sound velocity decreases by 4.5% along the zigzag direction and

increases by 20% in the armchair direction when strain is changed from 0 to 6% along the

zigzag direction. These changes in the sound velocity suggest (according to Eqn. 1 in the

main text) a reduction in the thermal transport anisotropy to 2.2 for 6% strain along the
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Figure C.5: Contribution of acoustic phonon branches [longitudinal acoustic (LA), trans-
verse acoustic (TA), and out-of-plane acoustic (ZA)] towards the total thermal conductivity
of (a) black phosphorene in the zigzag direction, (b) black phosphorene in the armchair
direction, and (c) blue phosphorene.
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zigzag direction.

For uni-axial strain along the armchair direction [Figs. C.6(c) and C.6(d)] in black

phosphorene, the sound velocity decreases by only 2% in the zigzag direction and 15% in

the armchair direction when strain is changed from 0 to 6%. The thermal conductivity

anisotropy, therefore, is estimated to increase to 4.6 under 6% uni-axial strain in black

phosphorene along the armchair direction.
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Additional Information for “Thermal

transport by phonon and electrons in

metals from first-principles”

D.1 Simulation Parameters

For electronic transport properties calculations, we calculate the electron Hamiltonian, the

phonon dynamical matrix, and the electron-phonon coupling coefficients on coarse 18×18×

18 electron and 6×6×6 phonon wavevector grids using the density functional theory (DFT)

and density functional perturbation theory (DFPT) calculations as implemented in the

package Quantum Espresso (QE) [40]. The electron wavevector grid and planewave energy

cutoffs used in the integration of the Brillioun zone for constructing charge density and

dynamical matrices are reported in the Table D.1. We carefully checked for convergence

of total energy with respect to electronic wavevector grid and planewave energy cutoff.

We used Gaussian smearing of 0.1 Ry to improve convergence with number of electronic

k-points. After obtaining required properties on coarse grids, we used electron-phonon

Wannier (EPW) package to first calculate maximally localized Wannier functions (MLWF)

and then to perform the interpolation of required properties to 80× 80× 80 electron and

32 × 32 × 32 phonon wavevector grids using Wannier functions [40, 42, 42]. The number

of Wannier functions employed for different metals are reported in Table D.1. We used

a smearing of 30 meV for satisfying the energy conservation delta functions in electron-

phonon scattering rate calculations (Eqns. 2.65 and 2.67).
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For phonon-phonon scattering rate calculations, the inter-atomic force constants are

obtained using a finite differencing of the Hellmann-Feynman forces obtained on a 216

atom supercells with one or two atoms displaced from their equilibrium position by 0.01

Å using a DFT package VASP. We used a 3 × 3 × 3 electronic wavevector gird and first

order Methfessel-Paxton smearing of 0.1 eV [197]. The planewave energy cutoffs used are

reported in Table D.1. The convergence of phonon properties with respect to supercell size

and electron k-point sampling is tested thoroughly by Grabowski et al.[198] We used third

nearest neighbors interaction cutoff for cubic force constants and we satisfied translational

invariance using the Lagrangian approach [145]. The energy conservation delta functions

involved in phonon-phonon scattering rate calculations (Eqn. 2.28) are satisfied using the

adaptive broadening approach discussed by Turney et al. [23]

We performed non-spin calculations using the local density approximation (LDA) exchange-

correlation based norm-conserving and projected augmented wave pseudopotentials in QE

and VASP. The relaxed lattice structure obtained using QE (lattice constants reported in

Table D.1) is used for calculation of force constants in VASP as well. We note that since

we are using QE relaxed structure in force calculation from VASP, the extracted force

constants do not correspond to zero-pressure. The difference in relaxed lattice constant

using QE and VASP is found to be less than 1%. From our previous study on strain affects

on thermal conductivity of both a soft and hard material, we expect the effect of 1% strain

on the phonon thermal conductivity to be within the numerical uncertainties (10%) [25].

Please note that the choice to use VASP for supercell force calculations is a pragmatic one

as we are unable to get forces from QE (on 216 atom supercells with 3× 3× 3 electronic

wavevector grid) with our computational resources.
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Figure D.1: Phonon thermal conductivity variation of Ag with temperature for different
cubic force constant interaction cutoffs. The phonon thermal conductivity is obtained by
considering only the phonon-phonon scattering in this plot. NN and p-p denotes nearest
neighbors and phonon-phonon.

D.2 Convergence Tests

D.2.1 Cubic force constant cutoff

We first plot the phonon thermal conductivity of Ag as a function of temperature by

considering different cubic force constant cutoffs in Fig. D.1. The cubic force constant

interaction cutoff affects only the phonon-phonon scattering rate and as such we plot the

thermal conductivities obtained by considering only phonon-phonon interactions. As can

be seen from Fig. D.1, the phonon thermal conductivity of Ag remains unaffected (changes

less than 1%) in increasing the cubic force constant cutoff from second to third nearest

neighbors. For the other metals, we find that the thermal conductivity difference for in-

cluding up to second and third nearest neighbors is within the numerical uncertainties also.
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phonon-phonon.

Therefore, we include up to third nearest neighbor interactions in our thermal conductivity

calculations for all metals.

D.2.2 Phonon wavevector grid

The phonon thermal conductivity variation of Al as a function of phonon wavevector grid

at a temperature of 300 K is plotted in Fig. D.2. The phonon thermal conductivities for this

plot are obtained by considering only the phonon-phonon interactions. The dashed lines in

the figure are for guiding the eye and denotes 1% variation from the thermal conductivity

corresponding to the maximum phonon wavevector grid considered. As can be seen from

Fig. D.2, the phonon thermal conductivity is converged within 1% for an increase in the

grid size beyond 24 × 24 × 24. For other metals also, we found 24 × 24 × 24 phonon
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Table D.2: Fermi energy variation with coarse electronic wavevector grid for different
metals. 0.0001 eV convergence is obtained for Al, Ag, and Au for 18× 18× 18 electronic
wavevector grid.

Coarse Electronic Grid
Fermi Energy (eV)

Al Ag Au

6 8.1644 13.4523 15.9755

8 8.0881 13.4310 15.9427

10 8.1197 13.4372 15.9389

12 8.1112 13.4402 15.9386

14 8.1121 13.4409 15.9385

16 8.1123 13.4410 15.9385

18 8.1122 13.4410 15.9385

20 8.1122 13.4410 15.9385

22 8.1122 13.4410 15.9385

24 8.1122 13.4410 15.9385

wavevector grid to be converged within 1% for phonon thermal conductivity. As will be

shown in Sec. D.2.5, however, for electron transport properties calculations by considering

electron-phonon interactions, we need finer (i.e., 32 × 32 × 32 in present study) phonon

wavevector grids than 24× 24× 24. We used, therefore, 32× 32× 32 phonon wavevector

grid for phonon thermal conductivity calculations as well.
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D.2.3 Coarse electronic wavevector grid

To determine the converged coarse electronic grid for different metals, we first calculate the

Fermi energy using different resolutions of coarse electronic wavevector grid. The Fermi

energies obtained for different metals are reported in Table D.2. We note that the values

of Fermi energies reported in Table D.2 are obtained directly from the density functional

theory calculations without any need of Wannier functions. As can be seen from Table D.2,

the Fermi energy converges to within 0.0001 eV for electronic wavevector grids larger than

18 × 18 × 18 for all metals and, therefore, 18 × 18 × 18 coarse electronic wavevector grid

is used in this study.

D.2.4 Coarse phonon wavevector grid

To further check the convergence of coarse electronic wavevector grid and to get a con-

verged coarse phonon wavevector grid, we plot the spatial decay of the Hamiltonian, the

phonon dynamical matrix, and the electron-phonon coupling matrix elements in the Wan-

nier functions representation for silver in Fig. D.3. All of these quantities should decay to

zero to have localized Wannier functions which are necessary for good quality interpolation

of these quantities. As can be seen from Fig. D.3, all of these quantities decay very quickly

with distance between the unit-cells and thus suggests the sufficiency of coarse electronic

and phonon wavevector grids for interpolation.

D.2.5 Fine phonon wavevector grid and energy delta functions

for electron-phonon interactions

The variation of electrical conductivity and electron thermal conductivity of Au at a tem-

perature of 300 K with fine phonon wavevector grid and smearing amount for satisfying

energy conservation delta functions are shown in Figs. D.4 (a) and (b). The fine electronic
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Figure D.4: Variation of electrical conductivity and electron thermal conductivity of Au
at a temperature of 300 K with (a) phonon wavevector grid and (b) smearing/broadening
used in satisfying the energy delta functions. e-p represents electron-phonon.

wavevector grid of 80× 80× 80 k-points is used for all of the results reported in Fig. D.4.

For Fig. D.4 (a), a smearing of 30 meV is used to satisfy the delta functions and for Fig. D.4

(b) a fine phonon wavevector grid of 32 × 32 × 32 q-points is used. As can be seen from

Figs. D.4 (a) and (b), the variation in both electrical conductivity and electron thermal

conductivity is less than 5% with varying the fine phonon wavevector grid from 24×24×24

to 40× 40× 40 and varying the semaring amount from 3 meV to 50 meV.

D.2.6 Fine electron wavevector grid

The variation of electrical conductivity and electron thermal conductivity of Au at a tem-

perature of 300 K with fine electron wavevector grid is plotted in Fig. D.5. All data points

are calculated using a fine phonon wavevector grid of 36 × 36 × 36 and smearing of 30

meV. As can be seen from Fig. D.5, in varying the fine electronic wavevector grid around

80×80×80 to 60×60×60 and 100×100×100, changes in both electrical conductivity and

electron thermal conductivity are less than 11%. We note that among all the simulation
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Figure D.5: Variation of electrical conductivity and electron thermal conductivity of Au at
a temperature of 300 K with fine electron wavevector grid. e-p represents electron-phonon.

parameters, we found electron transport properties to be most sensitive to the fine electron

wavevector grid. For all the metals considered, the minimum variation is seen in Al with

variation less than 2%. For Ag, the variation is within 10% with an increase in grid from

70× 70× 70 to 80× 80× 80.

D.3 Heat Capacity

The contribution of electrons and phonons towards the volumetric heat capacity of Al, Ag,

and Au are plotted in Fig. D.6(a) and (b). As can be seen from Fig. D.6(a), the electron

contribution towards the heat capacity increases linearly with an increase in the tempera-

ture. The phonon contribution, on the other hand, initially increases with temperature at

lower temperatures and then plateaus to the Dulong-Petit limit at higher temperatures.

For the entire temperature range, the electron contribution towards the heat capacity is

less than 1% for both Al, Ag, and Au.
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D.4 Silicon Simulation parameters

We considered isotopically pure silicon. The harmonic force constants are obtained using

the DFPT calculations in QE [40]. The cubic force constants for phonon-phonon scattering

rate calculations are obtained using a finite differencing of the Hellmann-Feynman forces

obtained on a 216 atom supercells with one or two atoms displaced from their equilibrium

position by 0.02 Å using a DFT package QE. We used 8 × 8 × 8 electronic wavevector

grid, 60 Ry planewave energy cutoff, and LDA exchange-correlation based norm-conserving

pseudopotential generated using the Von Barth-Car [173] method. The harmonic force

constants are initially obtained on a 8 × 8 × 8 phonon wavevector grid and are later

interpolated to a 32× 32× 32 grid for phonon scattering rate calculations.

D.5 Aluminum and Silicon

The phonon thermal conductivity accumulation functions for Al and Si at a temperature

of 300 K by considering only p-p scattering are plotted in Fig. D.7. While the thermal
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Figure D.8: Mode-dependent Grüneisen parameters along the high-symmetry direction of
the first Brillioun zone in Al and Si.

transport in Al is due to phonons with mfp spanning over only one order of magnitude,

the phonon mfp in Si spans over four orders of magnitude. The gray phonon mfp (Λp) for

Al and Si at a temperature of 300 K are 97 and 4 nm.

Mode-dependent Grüneisen parameters along the high-symmetry direction of the first

Brillioun zone in Al and Si are plotted in Fig. D.8. Grüneisen parameters are a measure

of anharmonicity of a system. As can be seen from Fig. D.8, the Grüneisen parameters

for Al are significantly higher than that in Si suggesting higher anharmonicity of Al. We

characterize the anharmonicity of Al and Si by calculating an average Grüneisen parame-

ter, γ, as a heat-capacity weighted average of the absolute values of the mode-dependent

Grüneisen parameters as:

γ ≡
∑

i cph,i|γi|∑
i cph,i

. (D.1)

While the γ is 1.02 for Si, it is 2.21 for Al at a temperature of 300 K; thus indicating higher

anharmonicity and hence lower lifetime of phonon modes in Al.
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