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Abstract

In this thesis, we present three image processing tools inspired by and designed for histology image analysis.
Histology, which is the examination of biological tissue under a microscope, is a critical technique in biomed-
ical research and clinical practice. While slide preparation and imaging is increasingly becoming automated,
the analysis of the resulting histology images is not: even routine analyses still require the trained eyes of a
pathologist. In our work, we aim to understand histology images as a class of signals and develop tools to aid
in the automated analysis of these signals. Our first contribution is in the area of histology image normaliza-
tion, where the goal is to digitally remove the variation in staining between histology images, an important
preprocessing step in many histology image analysis systems. To this end, we created a new benchmark
dataset with which to compare normalization methods and proposed our own. Our second contribution is
a tissue segmentation method, which delineates single-tissue regions in histology images. Along with this
method, we propose a new mathematical model for histology images. Our final contribution is a method
for describing distributions of angles, which is useful for segmentation as well as a variety of other image
processing tasks.
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Chapter 1

Introduction

Histology, which is the examination of biological tissues using a microscope, is a crucial and ubiquitous
technique in medicine, serving as the gold standard diagnostic technique for many diseases. The 2010
Nation Hospital Discharge Survey [13] estimates that, of the 40 million hospital stays ending in 2010 in the
United States, 1.5 million involved histology, as compared to only 250 thousand involving magnetic resonance
imaging (MRI). Histology also serves as a tool in a wide range of research applications, such as studying
cancer and embryogenesis.

Tissue processing for histology has become increasingly automated, drastically increasing the speed at
which histology labs can produce tissue slides for viewing. Another trend is the digitization of these slides,
allowing them to be viewed on a computer rather than through a microscope. Despite these changes, much
of the routine analysis of tissue sections remains a painstaking, manual task that can only be completed by
highly trained pathologists at a high cost per hour. There is, therefore, a niche for image analysis methods
that can automate some aspects of this analysis. In the clinical domain, these methods could improve the
accuracy and consistency of diagnoses and free pathologists to focus on the most difficult cases. In the
research domain, these methods could complete tasks that are prohibitively time-consuming for humans,
e.g., discovering new disease markers from hundreds of whole-slide images (WSIs) or precisely delineating
tissues within a tumor, allowing for quantitative comparison of tumors grown under different conditions.

Given that whole-slide scanners entered the market in 2000 [14] while computer vision was (famously and
over-optimistically) proposed as a summer project at MIT in 1966 [15], one might expect that the mature
methods of computer vision could immediately solve the new problems arising in automated histology image
analysis. This is not the case. One reason is that computer vision is difficult and there are many problems
left to solve in the field, another is that histology images differ from natural images (Figure 1.1). To point
out a few of many differences: generally speaking, histology images are at a single depth and thus they are
always in focus and lack physical occlusions; they represent a slice of a volume of tissue; the colors in the
images are created by stains engineered to give contrast to specific structures; the illumination is even; and
the tissue being imaged is highly ordered. Edges are a critical cue in natural images because they often mark
boundaries between objects; this is not the case in histology images, where the transitions between tissues
is usually gradual.

Given the differences between histology images and natural images, our approach has been to study
histology images as a unique class of images and to design image processing tools tailored to these images.

The long-term goal of our work is to develop a suite of image processing tools well suited to
images of histology samples stained with hematoxylin and eosin (H&E).

We focus on this specific stain because (1) the H&E slide is the universally accepted means to examine
tissue sections, (2) the vast majority of diagnoses rendered by pathologists are based solely on H&E slides
without ancillary tissue testing, (3) the processing techniques are universal and standardized, and (4) the
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(a) Natural image. (b) Histology image.

Figure 1.1: (a) A natural image of an office scene. (b) A histology image of a teratoma. In natural images,
objects appear at different depths and may block each other or be out of focus. In histology images, the
tissue is at a single depth. Compared to natural images, histology images are relatively smooth.

cost is low. The tools we develop will facilitate the creation of automated histology analysis systems for a
plethora of tasks, increasing pathologists’ efficiency, reducing cost, improving consistency of diagnosis, and
enabling previously impossible studies. The new image processing tools may also prove useful outside of
histology image processing, e.g. in the analysis of satellite images, which share many similarities.

1.1 Thesis Contributions and Outline

The main contributions of this thesis are

1. an algorithm and benchmark dataset for stain separation and normalization of H&E histology images
(Chapter 4 and [16]);

2. a mathematical framework and algorithm for histology image segmentation based on color distributions
(Chapter 5 and [17]); and

3. a rotation invariant descriptor for angular distributions (Chapter 6 and [18], submitted).

The outline of the thesis is as follows. In Part I, we give important background information on histology
(Chapter 2) and automated histology systems (Chapter 3), including a literature review of current work in
the field. In Part II, we present our work on histology image normalization (Chapter 4) and segmentation
(Chapter 5). The discussion of segmentation leads to our work on a rotation invariant descriptor for angular
distributions (Chapter 6). We conclude in Chapter 7.

1.2 List of Publications

Reviewed journal publications.

1. M. T. McCann, M. C. Fickus, and J. Kovačević, “Fourier series of kernel density estimates for rotation
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2. M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, and J. Kovačević, “Automated histology
analysis: Opportunities for signal processing,” IEEE Signal Process. Mag., vol. 32, no. 1, pp. 78-87,
Jan. 2015.
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3. R. Bhagavatula, M. T. McCann, M. Fickus, C. A. Castro, J. A. Ozolek, and J. Kovačević, “A vocabulary
for the identification and delineation of teratoma tissue components in hematoxylin and eosin-stained
samples,” J. Path. Inform., vol. 5, p. 19, Jun. 2014.

4. M. T. McCann, D. G. Mixon, M. C. Fickus, C. A. Castro, J. A. Ozolek, and J. Kovačević, “Images as
occlusions of textures: A framework for segmentation,” IEEE Trans. Image Process., vol. 23, no. 5,
pp. 2033-2046, May 2014.
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Chapter 2

Histology

In this chapter, we present background information on histology. We describe how tissue is collected and
processed as well as typical analysis tasks in both the clinical and research domains. Throughout, we focus
on slides stained with the ubiquitous H&E stain and imaged with brightfield microscopy. This chapter is
an expanded version of Section 2 of our histology review paper [19] and is based on standard histology
texts [20, 21], as well as the years of experience in the field of pathology of Drs. John Ozolek and Carlos
Castro.

Figure 2.1 presents the histology process from tissue processing to diagnosis from the perspective of the
diagnostic pathologist. In the following sections, we explain each of the steps in this process. We conclude
with a section on the sources of variability in histology images.

2.1 Tissue Collection

The clinical histology process begins when the treating physician, after assessing the patient by history,
physical examination, and/or radiographic and laboratory studies, determines that treatment can proceed
no further without histology confirmation. The treating physician then must obtain enough good-quality
tissue to obtain a diagnosis. There are several possible approaches to tissue collection, including fine-needle
aspiration, needle biopsy, excisional biopsy, or excision of the lesion in its entirety. The sensitivity (likelihood
of getting the correct diagnosis) and specificity (likelihood of not getting the incorrect diagnosis) increase
from fine-needle aspiration to excision of the entire lesion. This is because the larger biopsies preserve more
cellular context and allow the pathologist to examine multiple slides from different areas of the sample.

After biopsy, the pathologist evaluates the tissue on the macroscopic scale, measuring it and recording a
description of its color and characteristics. For larger tissues (e.g., tumor resections or colon resections), the
tissue must be trimmed to fit into the tissue cassettes (approximately 10× 10× 3 mm) that will contain it
for the subsequent processing steps (Figure 2.2).

2.2 Processing

The next step in the histology process is tissue processing, which involves chemically and physically stabilizing
the tissue. The tissue is first immersed into a fixative solution that is used to stop cells from breaking down

tissue
sample

processing embedding sectioning staining visualization diagnosis

Figure 2.1: Block diagram of the histology process.
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(a) Large tissue piece. (b) Small tissue pieces in cassettes.

Figure 2.2: A large piece of tissue must be cut into smaller pieces and placed into cassettes for further
processing.

and prevent microorganism growth. In general, tissue is fixed for a few hours (small biopsies) to about 24
hours (large biopsies). Fixation is critical because poorly fixed tissue leads to poor tissue sectioning and
poor microscopic morphology.

After fixation, the tissue is physically stabilized by one of several methods (freeze drying, microwave,
chemical) with the end goal of preserving the cellular morphology. The most commonly employed method
involves the use of alcohols and xylene and is automated in most laboratories: First, the tissue is dehydrated,
which clears the water and aqueous fixative from it. Next, the tissue is cleared of the dehydrating agent,
leaving the tissue ready for paraffin infiltration. Finally, the paraffin warms in the processor until it is
liquefied, infiltrates the tissue under vacuum, and then cools so that the tissue becomes firm. This process
takes approximately nine hours and in many laboratories is run overnight. One of the end results of processing
tissue in this manner is that the tissue section is slightly smaller than the original fresh or fixed tissue prior
to processing.

2.3 Embedding

After processing, the tissue is embedded in a block of support material, as shown in Figure 2.3. To achieve
this, the tissue is placed on the bottom of a mold and paraffin is poured over it. The original tissue cassette
is placed over the mold and then placed onto a cooling plate to solidify the paraffin. The result is a tissue
block, tissue that is impregnated with and surrounded by hardened paraffin. Because the tissue will be sliced
parallel to the cassette, orientation of the tissue during embedding is key; see Figure 2.4 for an example.

2.4 Sectioning

Sectioning is cutting thin slices of tissue and mounting them on microscope slides (Figure 2.5). The cutting
is achieved with a tool called a microtome, which operates like a deli slicer. This step can be manual,
semi-automated, or automated. For example, the manual rotary microtome advances the block by a set
amount with each turn of the wheel and thus produces a ribbon of tissue. Most tissue sections for diagnostic
purposes are cut at 3 to 4 µm thickness. Thinner sections are more difficult to obtain without damaging the
tissue, while thicker sections tend to make staining dark and obscure nuclear detail.

These thinly cut sections are floated out onto a water bath heated to about 10 ◦C below the melting
point of the paraffin. This allows dispersion of any wrinkles generated by the microtome blade at sectioning.
Once the sections are cut and floated, they are placed onto 25× 75× 1 mm glass microscope slides.
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(a) Embedding. (b) Tissue blocks after embedding.

Figure 2.3: (a) Paraffinized tissue is oriented and embedded into a block of paraffin. (b) Tissue blocks after
embedding.

(a) Photograph of cyst. (b) Histology image of cyst.

Figure 2.4: Importance of proper orientation during embedding. (a) Gross photograph showing an opened
enteric duplication cyst (arrowhead) intimately joined to the bowl (arrow). (b) Histology image of the cyst
with normal bowel (arrow) abutting cyst wall (arrowhead). This can only be observed when sectioning
occurs perpendicular to the cyst wall.

2.5 Staining

At this point, the tissue slices are nearly invisible under a light microscope and must be stained to create
contrast. The most widely used stains for both diagnostic and research histology are hematoxylin and eosin.
Hematoxylin stains nucleic acids and appears blue/purple, while eosin stains proteins and appears pink/red
when visualized under a brightfield microscope. So for most tissues, cell nuclei are blue, while cytoplasm can
vary from clear to red to purple depending on its constituents. The reason that H&E staining of tissue has
persisted for decades as the primary tissue stain in diagnostic and research pathology is that these stains
attach themselves to almost every cellular component, allowing for visualization of whole cells and all tissue
components. Another reason is that these stains provide excellent contrast between cellular constituents
by having chemical properties that produce colors at opposite ends of the visual spectrum. These color
perceptions are helpful in diagnosis, though not entirely necessary, since, even in grayscale, distinctions
between and within tissues can be made and diagnoses rendered.
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(a) Sectioning. (b) Placing tissue on a slide.

Figure 2.5: (a) During sectioning, the the tissue block is sliced into 3 to 4 µm sections, which remain connected
in a ribbon. (b) Collecting a ribbon from the water bath with a glass slide.

2.6 Visualization

Once stained, the slides must be visualized (Figure 2.7). A growing trend in pathology is to digitize slides so
that pathologists can make diagnoses based solely on the digital image [22, 23]. The advent and refinement
of whole-slide scanners have made rapid scanning and high-resolution WSIs commonplace. These systems
are now offered by many companies and offer spatial resolutions using the 40× objective of approximately
0.25 µm/pixel. Storing digital images would be an attractive alternative to storing glass slides, since glass
slides take considerably more space, can be damaged or lost, and fade over time, but currently institutions
must keep their glass slides and tissue blocks for at least ten years.

Despite these advantages, in most medical centers the pathologists still rely on visualization of the slide
through a microscope. According to pathologists, a microscope offers faster panning, faster focusing, and an
intangible sense of being closer to the tissue. This last advantage is more difficult to explain, but the sense
is that the eye can capture greater detail through the microscope than from a digital image on a monitor.
Even so, studies have shown no appreciable difference in diagnoses rendered by pathologists using digitized
images compared to diagnoses rendered using a microscope [24–27].

2.7 Analysis

The goals of the pathologist in the clinical domain versus the research domain are different; we discuss each
separately.

2.7.1 Clinical Practice

The main goal of the pathologist in a diagnostic practice is to examine tissue and render a correct diagnosis
that will ultimately translate to a therapeutic intervention for the patient. The therapeutic response may
range from no action, in the case of a diagnosis of normal or unremarkable, to close follow-up, local excision,
medical treatment only (for a benign diagnoses), or radical chemotherapy and/or surgery (for a malignant
diagnoses).

For a given slide, the pathologist analyzes a wide variety of characteristics including tissue architecture,
cellular color and texture (Figure 2.8), and cellular/nuclear morphometry (Figure 2.9) to produce diagnoses.
Computer algorithms may automate some of these tasks. For example, in cytopathology, automated methods
for screening Pap smear slides limit the number of cytotechnologists needed to complete these screenings
(though they may not yet be cost-effective [28]). In the future, we could similarly automate or semi-automate
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(a) Staining machine. (b) Stained slide.

(c) Set of stained slides.

Figure 2.6: (a) A staining machine which moves slides through a series of stains and rinses. (b) A single
finished slide; the purple/pink color is caused by the H&E stain. (c) A set of finished slides in a slide tray.

histology screenings, e.g., of the gastrointestinal tract. Such automation could reduce healthcare costs and
provide pathologists more time for challenging cases and research.

2.7.2 Research

In the research domain, pathologists may aim to quantify differences between histology samples in terms
of a variety of parameters including cellular/nuclear morphometry, amount of stroma (the connective tissue
cells that support the function of cells around them) present, types of tissue present, etc. Although some
basic analyses can be readily performed using available image analysis software (e.g., Adobe Photoshop,
ImageJ [29], or Molecular Devices MetaMorph), most analysis in pathology remains semiquantitative: stain-
ing intensity may be rated as low, moderate, or strong ; the amount of a certain cell type may be visually
estimated as 0 to 25%, 25 to 50%, or >50% of the total population; and morphometric descriptions of cells
are limited to semantic descriptions such as larger, thickened, pleomorphic, or cellular.

For some studies, this type of analysis is not accurate enough, because many biologically or clinically
relevant features cannot be easily captured and processed by the human visual system. For example, given
two tumors, how would a pathologist support the claim that the average nucleus size is different between
them? Similarly, how can pathologists quantify complex patterns such as chromatin distribution? Automated
analysis of histology images would allow researchers to perform these types of quantifications.
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(a) Visualization setup. (b) Teratoma WSI.

Figure 2.7: (a) Visualization setup including a microscope with attached camera and desktop computer. (b)
WSI of a teratoma collected as a set of tiles and stitched together into a large image.

(a) (b)

Figure 2.8: Examples of important visual cues in histology. (a) In this teratoma section, color makes
distinguishing cartilage (blue/gray, arrow) from bone (pink/red, arrowhead) easy, even at low magnification.
(b) In this liver section of a child with mitochondrial disorder, texture is important. Under high magnification,
cell borders are accentuated and cytoplasm shows tiny red granules representing abnormal mitochondria
(arrow).

2.8 Sources of Variability

There are three main sources of variability in a histology-based diagnosis: biological variability, inter-observer
variability, and technical variability. Biological variability encompasses the normal variability among people
and the myriad of pathological processes that can affect any tissue group. Due to biological variability,
slides generated from the same tissue in different patients can look different. Interobserver variability is
the variability in interpretation among pathologists looking at the same histology slide. Finally, technical
variability is the variability in a slide’s appearance due to how it was prepared. We focus here on the details
of technical variability.

In the best case, a slide that is generated from the tissue processing process we described in this chapter
will show tissue that is properly oriented, sectioned, stained, and coverslipped. Unfortunately, each of these
steps can introduce variability into the final product, and differences in protocol between labs can greatly
alter the appearance of even biologically similar tissue samples. Some variables such as fixation, specimen
orientation in the block, and microtome sectioning are heavily dependent on human skill, and even though
tissue processing, staining, and coverslipping are largely automated, they still depend on human monitoring,
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(a) (b)

Figure 2.9: Examples of the importance of nuclear shape and distribution in colon screening. (a) In normal
colon tissue, nuclei are regular in size and distribution around the colon gland (arrow). (b) In colitis, nuclei
become much less regular (arrow).

machine maintenance, and solution preparation.
For automated analysis systems, each source of variability presents a significant obstacle. Tissue that is

poorly fixed will not cut well and has a blurry appearance, removing important cues such as edges. Tissue
that has been dried out will be shrunken and have poor morphology and stain contrast. Sectioning artifacts
are some of the most commonly encountered and can produce folds in the tissue, chatter artifacts from a
dull blade (seen as alternating light and dark regions), or missing pieces of the tissue.

Staining is a critical source of variability because it produces the color and contrast on the slide (Fig-
ure 2.10). Many different formulations of H&E exist, each producing a slightly different appearance. The
stain can also be applied in different manners. In progressive staining, the sample remains in the hema-
toxylin solution for a specified amount of time to render appropriate staining. In regressive staining, the
sample remains in the hematoxylin long enough to overstain, and is then destained back to the desired
contrast with an acid alcohol solution. Furthermore, both hematoxylin and eosin solutions can have their
staining capabilities altered by prolonged storage, contamination by other reagents or water, precipitation,
and changes in pH. Staining artifacts can include light staining with either hematoxylin or eosin, precipi-
tated hematoxylin (seen as blue chunks under the microscope), or lack of staining with either hematoxylin,
eosin, or both. These artifacts are well understood by pathologists, but may be problematic for automated
histology analysis systems that rely on color.
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(a) Bone appears pink. (b) Bone appears purple.

Figure 2.10: Example of staining variability. Both images are of bone, but the color of the bone varies from
pink to purple due to staining variability. Such color variations present a challenge for automated analysis
systems.



Chapter 3

Automated Histology Image Analysis

In this chapter, we review the current methods and signal processing challenges in automated histology
image analysis, including some of our own previous work in the area (both unpublished and from [30]).
Again, we restrict the review to slides stained with the common and inexpensive H&E stain and imaged
with brightfield microscopy. This focus allows us to study a more coherent group of methods; we argue
that the approaches to a single task, e.g. nucleus detection, vary considerably across staining and imaging
modalities. This chapter is an expanded version of Section 3 of our histology review paper [19].

We are aware of four previous reviews of automated histology analysis: (1) [31] deals with analysis of
histology images including H&E images as well as fluorescence and multispectral images. It covers prepro-
cessing, segmentation of glands, nuclei, and other subcellular components, feature extraction, dimensionality
reduction, and classification. (2) [32] tackles the broader field that the authors term computational pathology,
which includes histology as well as cytology analysis. It discusses issues of data and ground truth collec-
tion, including variation among experts and publicly available datasets, and describes automated analysis
primarily from a statistical pattern recognition viewpoint. (3) [23] discusses histology WSI informatics,
including quality control during image acquisition, feature extraction, region of interest (ROI) detection,
and visualization. (4) [33] focuses on breast cancer histology image analysis, including both H&E and
immunohistochemical (IHC) stains.

While we do not include every paper on automated histology, we aim to give the reader a sense of what
has been tried for the various histology analysis tasks we present. We have given priority to recent journal
papers except where necessary. Also note that we do not focus on results of or comparison between methods.
This is because, at this stage, automated histology research is diffuse: most methods are tailored to private
datasets and there is no consensus on what quantitative metrics should be reported. Moving toward shared
datasets and metrics will be a critical step forward in the field.

This chapter is organized around a generalized block diagram of a histology analysis system (Figure 3.1).
For each block in the diagram, we describe the signal processing challenge and review the current approaches
in the literature.

histology
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other
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registration display/

annotation
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diagnosis/

grading
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Figure 3.1: Block diagram of a generic automated histology analysis system.
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3.1 Preprocessing

Histology images exhibit the same types of artifacts and noise as any digital microscopy image, as well as
some novel ones introduced by tissue processing. These can affect analysis unless removed with appropriate
preprocessing. A good overview of noise and artifacts in digital microscopy and methods to correct them is
given in [34]; in this section we focus on the issues specific to H&E images of tissue processed as described
above.

Stain normalization.

As discussed in Section 2.8, staining variations affect the appearance of histology images; such variations
are problematic for automated analysis because color is a critical feature in histology. Stain normalization
is the process of taking two H&E images that have staining variation between them and removing this
variation. Doing so has been shown to improve histology image segmentation [35,36]. One approach to stain
normalization is to use color normalization techniques from photography such as histogram equalization; e.g.,
in [35] the rank statistics of the input image are scaled to match those of the reference image separately in
each color channel. The method has been successfully used in other automated histology work, including [37].
Such methods are especially suited for cases where the images to be normalized show approximately the same
tissue, e.g., in the case of serial sections such as in [38].

An approach more specifically tailored for H&E image normalization is to first separate the image into
hematoxylin-only (H-only) and eosin-only (E-only) images (sometimes called color deconvolution), then
normalize these images separately and recombine. This approach better handles cases where, e.g., the
hematoxylin stain is too intense but the eosin stain is too weak. When the stain colors are known, the color
deconvolution method in [39] solves the separation. When they are not known, the problem becomes more
challenging. The approach taken in [10,36,40] is to estimate the stain colors and deconvolve as before. In [10],
the stain colors are estimated using the fact that all stained pixels will lie on a wedge in color space; this
is a special case of the non-negative matrix factorization (NMF) problem studied elsewhere. Reference [40]
uses expectation-maximization to find clusters in chromaticity space that correspond to stain colors, and [36]
finds pixels stained with only one stain via supervised classification and uses their mean color to estimate
the stain colors. A different approach is to estimate the single-stain images directly; e.g. [9] searches for an
H-only image that removes most of the contrast from the red channel of the input, based on the assumption
that most of this contrast comes from the nuclei, which are stained only by hematoxylin.

These separation methods all produce qualitatively fair results, but it is unclear which comes closest
to the correct separation, i.e., the way the tissue would look if it were stained with hematoxylin or eosin
separately. One of the contributions of this thesis is a new stain separation method and benchmark [16],
which we discuss in depth in Chapter 4. Our benchmark indicates that the method of [10] is superior to
that of [9], but we did not evaluate any of the more recent approaches.

Tissue deformation.

Because the tissue slices are very thin, they can fold over on themselves during processing, creating a tissue
area that is doubly thick. The authors of [41] proposed detecting these folds by their high color saturation,
and the authors of [42] devised a method for selecting a good saturation threshold for this detection, but,
to our knowledge, no work addresses correcting tissue folds digitally. Additionally, differences in the water
content of different tissues can cause them to pull apart when the tissue is dehydrated during processing; the
result is white cracks that are not biologically meaningful. Again, we are aware of no work that addresses
correcting these artifacts.

Stitching.

High-resolution WSIs are often acquired by imaging several strips or tiles separately, which then must be
stitched together to create the final image. Because the offsets between the strips or tiles are known, adequate
stitching results are often provided by the microscope/scanner software or can easily be achieved with simple
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compositing techniques. A more challenging stitching problem occurs when a large gross specimen must be
sectioned and imaged as several pieces. In [43], the authors describe software that allows stitching of high-
resolution images of such tissue fragments via hand-selected control points and linear transformation. We
are not aware of a work that addresses histology image stitching with automatic control point selection or
explores a richer set of transforms.

3.2 Registration

There are a variety of H&E histology image registration tasks, depending on the image modalities involved.
In this section, we review three common registration tasks involving H&E images. For another review of
single- and mutli-stain registration in histology, see [44].

H&E to H&E.

Given serial sections of a tissue sample, each stained with H&E, one aim is to register them to create a tissue
volume. This 3D reconstruction can more fully show the extent of a pathological process or show relationships
of tissue types to one another. This is a difficult registration task: each slice undergoes nonrigid deformation
during processing and may exhibit cracking or folding artifacts. The standard approach is to register in a
coarse to fine manner as in [38], where the authors register images of serial tissue slices to explore the 3D
shape of cervical tumor fronts using a series of three registrations: (1) a rigid registration using a frequency
domain method, (2) a polynomial registration using control points automatically selected with correlation
matching on small patches, and (3) a registration consisting of unconstrained local displacements regularized
by local curvature. An approach more tailored to histology is to use specific anatomical landmarks; e.g., [45]
registers based on blood vessels.

H&E to another stain.

One may also want to register images of two adjacent tissue slices that use different stains; e.g. H&E to IHC
stains. This task is difficult because, by design, the stains will give contrast to different structures. One way
to overcome this obstacle is with the selection of an appropriate pixel-wise similarity measure, e.g. the authors
of [44] register H&E images to a variety of IHC images using mutual information and the elastix software
package [46]. They solve the problem of large image size by finding the transform on downsampled images
and then applying it in real time only to the region of the slide being viewed. Another approach is given
in [47], where distinctive landmarks such as blood vessels are segmented and used to compute the registration.
Correspondences between these objects are found based on size and eccentricity and used to compute an
initial rigid segmentation and subsequent non-rigid registration. An accurate non-rigid registration follows
based on correspondences between groups of the same objects.

Multi-stain registration can also be completed with new laboratory techniques. In [48], the authors
propose H&E staining followed by chemical destaining and IHC of the same slide, removing the need for
anything but translational registration. The drawback of the technique is that it requires non-standard
processing and may not work with all staining types. Furthermore, careful examination of the results
of the study shows that some tissue deformation still occurs, which has also been our experience with
chemical destaining [16]. Therefore, chemical destaining is unlikely to completely obviate the need for digital
registration methods.

H&E to MRI.

Compared to histology, magnetic resonance imaging (MRI) has low contrast and resolution, but has the
advantage of being noninvasive. Registering histology images to MR images could help train radiologists,
provide better non-invasive diagnoses, and enable the development of MRI-based computer-aided diagnosis
tools [49]. This task is difficult because MR images are 3D while histology images are 2D, MR images are
lower resolution than histology images, and because the contrast in MR and histology images is generated
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in different ways. When considering MR images collected in vivo, registration is even more difficult because
surgical extraction and histology processing can greatly deform the tissue. In [50], histology images are
registered to in vivo MR images via two intermediates, the block face photo and the ex vivo MR image,
with the idea that the deformations between these intermediate stages are less drastic and therefore easier to
estimate. Each step of the registration is completed using mutual information as the metric and thin plate
splines to deform the image with control points initialized by hand. In [49], histology images are registered
to MR slices to create a histology volume, then the MR volume is registered in 3D to the histology volume
and resliced. The process is iterated until convergence.

In each of these scenarios, comparison between methods is difficult because no ground truth exists. This
problem is intensified in the first two scenarios because qualitatively good registrations may actually remove
true differences between the adjacent tissue slices being registered.

3.2.1 Our Previous Work

In unpublished work, we experimented with registration of WSIs of a teratoma tumor. Our approach was to
detect SURF [51] control points in low resolution grayscale versions of the WSIs, find correspondences via
RANSAC [52], then solve for a rigid transformation and apply it to the full resolution WSIs. This approach
provided reasonable results at gross scale (Figure 3.2), was not accurate on the scale of structures like
glands, much less individual nuclei (Figure 3.3). Small-scale accuracy will require non-rigid transformation
to correct the deformation that tissue sections undergo during microtomy. Specifically which class of non-
rigid transformations should be used and how they should be regularized remain open questions.

3.3 Display and Annotation

A fundamental problem in the display of histology images is that they can be huge, easily several GB
for uncompressed WSIs. As a result, commercial slide scanners often save images in a proprietary format
for which the manufacturers provide viewing software. For the researcher interested in reading the images
themselves, one solution is OpenSlide [53], a C library that aims to allow slides from any vendor to be opened,
manipulated, or converted to other formats. One format that OpenSlide can convert to and is a natural
fit for large histology images is the Deep Zoom (DZI) format [54], which creates from a large image a tiled
image pyramid, allowing real-time viewing of images of arbitrary size, even streaming over the Internet. One
example of this approach can be found in [55], which involves displaying WSIs from The Cancer Genome
Atlas dataset [56] on the Internet using the similar Zoomify format [57]. The system in [58] is designed
specifically for viewing histology images and avoids the time-consuming calculation of image pyramids by
creating the current view in real time from image tiles.

Beyond simply viewing large histology images, researchers may want to collect expert annotations for
them for the purpose of training and testing their analysis algorithms. In the simplest case, the expert
pathologist may label an entire image, e.g., as normal or cancer. For more fine-grained labeling, Aperio
ImageScope [59], PathCore Sedeen Viewer [60], and Cytomine [61] provide freehand annotation tools for
large images. The next step for histology image display and annotation is systems allowing the pathologist
to interact with automated analyses, teaching and correcting the system in real time. Some efforts have been
made in this area: after the automated segmentation in [62], experts can click on nuclei to indicate that
they either need to be split or merged; Cytomine includes collaborative proofreading of automated cancer
segmentation; and 3D-DOCTOR [63] includes automated segmentation.

3.3.1 Our Previous Work

In unpublished work, we created a web-based histology WSI viewer and annotation tool using the DZI
format. This was a convenient way explore WSIs and share them with others (sending a web link rather
than a large image file), but given the plethora of free and commercial solutions that do similar things, we
discontinued development.
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(a) (b)

(c)

Figure 3.2: (a and b) Two adjacent sections from a teratoma tumor registered via a rigid transform. (c)
A visualization of their difference (pink and green represent disagreement, gray indicates agreement). The
tumor is about 1cm in diameter. At this scale, the agreement between the two images is good.
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(a) (b)

(c)

Figure 3.3: (a-c) Zoomed versions the images in Figure 3.2. At this scale, inaccuracies in the registration
are apparent, indicating the need for non-rigid registration.

3.4 Region of Interest Identification

A single biopsy can generate dozens of high-resolution WSIs, however, often, only a small region of this vast
quantity of tissue is diagnostically useful; these areas are known as regions of interest (ROIs). There is a
need for fast computational methods that can identify these ROIs in histology WSIs. Once identified, these
regions can be passed to a pathologist or to subsequent steps of a larger automated histology system. The
key performance metric for these systems is false negative rate: wrongly tagging regions as ROIs when they
are normal may waste time, but missing a true ROI could lead to a disease not being diagnosed.

One approach is to simply downsample the input; e.g. [64] uses a low-resolution input to extract features
based on color and sparse coding of subpatches. These features are classified via support vector machine
(SVM) to detect ROIs. Another approach is to process the image at multiple scales, such as in [65], where
WSIs of breast cancer tissue are recursively partitioned via color clustering at increasingly fine resolutions
to efficiently identify tissue vs. non-tissue and lesion vs. normal regions. Yet another approach is to detect
objects such as glands and identify ROIs based on these [66]. There are generally fewer objects on a slide
than pixels, so processing objects can be more efficient than processing pixels.

3.5 Nucleus Detection

Nuclei are prevalent in histology images and their size, shape, distribution, and texture are relevant for
many analysis tasks such as determining tissue type, identifying inflammation, and identifying and grading
cancer. Therefore, locating nuclei is a critical step in many histology analysis systems. Nucleus detection
in histology images is challenging because nuclei can be tightly clustered and vary in size, shape, and color
depending on their cell type. Even within a single cell type, the stain may not penetrate all nuclei equally,
leaving some darkly stained and others lightly stained. Finally, human nuclei have diameters approximately
equal to the thickness of the tissue slice (5 µm), meaning that, for some nuclei, only a portion appears on
the slide.

Basic approaches to nucleus detection involve color clustering of the pixels; e.g. the work in [67] uses
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clustering in the Lab color space to identify four subcellular components, namely nuclei, cytoplasm, neuropil,
and background, and [68] uses expectation-maximization clustering to identify regions of lymphocyte nuclei,
stroma, cancer nuclei, and background.

Using only local information omits the strong prior knowledge we have about nucleus size and shape.
Approaches that move beyond local information include [64] and [68], which use active contours to refine
their initial color segmentation, and [37], which uses a graph cut based on color and Laplacian of Gaussian
features. Similarly, the authors in [62] use Laplacian of Gaussian filtering with clever scale selection to detect
nucleus seed points, followed by local maximum clustering to form a rough segmentation. Another approach
is to frame nucleus detection as a classification problem; e.g. in [69], an SVM is trained to detect rectangular
windows containing nuclei; the features used are pixel intensities and Laplacian of Gaussian edge intensities.

Finally, several methods use heuristics to separate clustered nuclei, including the curvature-based rea-
soning in [37] and concavity detection in [68]. The method in [62] separates nuclei via graph cuts. These
approaches achieve impressive-looking results even when nuclei are clustered, but large, hand-annotated
datasets will be necessarily to quantitatively compare them. Reference [70] provides a step in this direction
with a set of 58 breast cancer histology images including expert nucleus segmentations.

3.5.1 Our Previous Work

In [30], we developed a nucleus detection scheme as part of an automated colitis detection system. We now
describe this scheme. From a P by Q color input image, I : ZP × ZQ → R3, we first create a nucleus mask,
1N : ZP × ZQ → {0, 1}, based on color clustering. This mask takes the value one at the location of pixels
which have a color similar enough to a predefined nucleus color and zero elsewhere. We extract local shape
information from the nucleus mask using local moment filters in an approach similar to [71]. Briefly, we
begin with a windowing filter, w, that is non-negative, symmetric, and sums to one. From this window, we
define the order-p, q local moment filter

wp,q[m,n] = w[m,n] mpnq.

At location [m,n], the local moment transform of the image, I, is

mp,q(I)[m,n] = wp,q[m,n] ∗ I[m,n], (3.1)

where ∗ denotes convolution and where we choose w to be Gaussian with a standard deviation of 1/3 the
expected radius of a nucleus (in pixels).

We apply (3.1) to the input image to obtain m00, m10, m01, m11, m20, and m02. We then convert them
to central moments,

x̄ =
m10

m00
, ȳ =

m01

m00
,

µ20 = m20 −m00x̄
2, µ02 = m02 −m00ȳ

2, µ11 = m11 −m00x̄ȳ,

and form the inertia matrix J [m,n] =


µ20[m,n] µ11[m,n]

µ11[m,n] µ02[m,n]


. At each pixel location [m,n], J describes the

horizontal and vertical spread of the pixels within the support of w centered at the location [m,n], calculated
around the local center of mass [m + x̄, n + ȳ] rather than around [m,n]. From J , we calculate the local
eccentricity

e[m,n] =
(µ20 − µ02)2 + 4µ11

2

(µ20 + µ02)2
. (3.2)

In a departure from [71], we then use the shape information computed by the moment filters to locate
nucleus centers. We take as candidates each position where m00 reaches a local maximum, that is, every
pixel for which m00 is larger than at any of its eight neighbors. We then remove candidates for which m00 is
too small (less than 0.25) or for which the eccentricity is too high (greater than 0.1). Intuitively, this scheme
tags pixels that are the centers of nucleus-sized blobs, rejecting those that are too oblong to be nuclei. An
example comparing this scheme to simple maxima detection is shown in Figure 3.4.
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(a) Local maxima. (b) Moment filter.

Figure 3.4: Comparison of nucleus detection methods, with black dots marking detections. (a) Using simple
maxima detection. (b) Using moment filter-based detection. The moment-filter approach rejects the two
objects at the center-left because they are overly oblong.

3.6 Cell Classification

Most histology images contain cells of several types; moving beyond nucleus detection to cell classification
can provide valuable diagnostic information. For example, the method in [72] classifies cells as centroblasts
or normal, which is useful for cancer grading. It uses color and Fourier-based texture features with quadratic
discriminant analysis as the classifier. The nuclei found in [68] are classified as belonging to lymphocytes or
other based on their color.

Other work focuses on detecting mitotic cells. Notably, [73] presents a contest dataset for this task which
comprises 50 images collected on each of two different slide scanners as well as a multispectral scanner. The
highest-scoring approach at the time of the contest was based on a deep convolutional neural network [74].

3.7 Multicellular Structure Detection

Cells in histology images are not solitary, rather they are part of organized structures (e.g., glands, acini).
Detecting and analyzing these structures is a unique challenge in histology image analysis. Because there
are many types of multicellular structures, these tasks tend to be more varied and application-driven than
the ones we have discussed before, hence we give only a few examples here.

Glands are a multicellular structure common to many tissue types (e.g. salivary, breast, prostate, pan-
creatic, sinonasal, gastrointestinal tissues), and changes in their morphology can be an important indicator
of disease. In histology images, most glands appear as clear areas surrounded by cells. The method in [66]
leverages the clear areas to find seed pixels and then uses region growing to segment the glands. Going
further, [66] classifies glands as malignant or normal based on their size with a Markov random field to
impose spatial smoothness. In [75], a graph is built on top of a colon tissue image with nodes corresponding
to either nucleus or non-nucleus objects. The colon glands can then be described by subgraphs around a
user-selected point at their center. Matching these subgraphs to reference ones from healthy or diseased
glands allows classification of the input image.

Some approaches to segmenting multicellular structures treat them like nuclei, e.g. [76] segments lymphoid
follicles, which are organized groups of lymphoid cells, using active contours. Detected regions are split based
on curvature and false detections are further trimmed based on color.
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3.8 Tissue Segmentation

Tissues are organized groups of cells. Identifying them in an image is important for diagnosis or giving
context to subsequent analyses. The wide variety of tissues and the complexity of their appearances makes
this a challenging problem. The method in [77] uses local pixel intensities as features and is able to segment
bone, cartilage, and fat tissue in teratoma tumor images. We presented a segmentation method [17] inspired
by the lack of edges in histology images. It uses local color histograms rather than edge-based features and
outperforms generic methods for tissue segmentation. This paper forms the basis of Chapter 5 of this thesis.

Other methods rely on histology-specific features. The authors in [78] showed that segmentations seeking
homogeneity of objects such as cells and crypts, rather than simply pixel homogeneity, perform well on colon
tissue. We developed a method [79] that classifies pixels based on local features such as nucleus density and
color.

Some tissue-level analyses amount to diagnoses; e.g. in [80], small subregions of a prostate tissue image
are classified as normal, stroma, or prostatic adenocarcinoma. Normal regions are those around glands,
which are simple to segment because of their white centers. Stroma and cancer regions are distinguished
using Haralick texture features. Another group [81] used a graph-based methodology to segment regions of
cancer in colon images, where features were based on the frequency of co-occurrence of nodes.

Tissue segmentation is one of the main contributions of this thesis, we discuss our approach in Chapter 5.

3.9 Diagnosis

Automated diagnosis is essentially image classification: given a histology image, what disease does it rep-
resent? As such, most approaches follow the paradigm of feature extraction followed by classification. The
authors in [82] address the problem of classifying subtypes of renal tumor in expert-selected ROIs. They use
Fourier shape descriptors extracted from binary masks of nuclei, cytoplasm, and unstained regions as fea-
tures and a series of SVM classifiers arranged in a directed acyclic graph to distinguish between three types
of renal cell carcinoma and one benign tumor. Based on which shape descriptors are most distinguishing
during classification, the authors can identify which shapes are indicative of each tissue type. In [83], hand-
selected ROIs of breast tissue are classified as normal, in situ cancer, or invasive cancer. They use generic
features including local binary patterns, cooccurence matrix statistics, and curvelet coefficient statistics.
Classification proceeds in two stages, first a random subspace ensemble of SVMs, then a random subspace
ensemble of neural networks. Each stage may either classify an image or reject it as too difficult. Images
rejected from the first stage move on to the second, while images rejected from the second stage are viewed
by a human expert. The method achieves accuracy of over 99% with a 1.94% rejection rate. The recent
conference paper [84] moves away from hand-designed features by learning features from the data using
sparse representation.

Grading is diagnosing the severity of a disease. Established grading scales are useful guides for algorithm
development, and automated grading promises increased repeatability over human grading. The method
in [64] grades breast cancer by analyzing the size, shape, and texture of the nuclei inside an ROI using a
Bayesian classifier. Another approach is to include some notion of cellular components without specifically
segmenting nuclei. In, [85] greyscale thresholding and morphology are used to find blobs that are then
classified based on intensity and size into three different nucleus types and stroma. The image is then
segmented into areas of high and low nucleus density. Features including nucleus count, nucleus spacing,
and tubule count are extracted for the high density areas only. The images are finally classified into grade
one, two, or three with a quadratic classifier. In [67], Haralick features are extracted from cytoplasm and
neuropil regions and used to determine the differentiation level of neuroblastoma tumors. The classification
step is an ensemble of seven different classifiers and dimensionality reduction methods combined via weighted
voting. The method handles WSIs by splitting them into small tiles that are processed in parallel as well as
first classifying a downsampled version of the tile and using higher resolution data only if the classification
certainty is low.

Finally, generic features can be used. In [86], prostate cancer is detected and graded based on color
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and color co-occurrence features and a random forest classifier. In [87], two different lung cancer subtypes
are differentiated in images of tissue microarrays and hand-selected ROIs from full slides. The red and
blue channels of the image are histogram-stretched to enhance the H&E contrast, and then Haralick and
densitometric (e.g. mean pixel value, pixel center of mass, etc.) features are used in a boosting decision tree,
achieving accuracy over 90%.

3.9.1 Our Previous Work

In [30], we explored the use of local features (based on our previous work [79]) combined with multiple-
instance learning (MIL) [88] for an automated colitis detection system. We describe that system here.

Features.

We use color to assign each pixel in the input image to one of four object types: nuclei, red blood cells,
background tissue, and empty slide. Since each of these objects has a distinct color under H&E staining, we
use our prior knowledge to assign a set of color values to each object (shades of blue for nuclei, red for red
blood cells, pink for background, and white for empty slide). For each image, we adjust these color values by
running five iterations of k-means clustering. This step helps account for illumination and staining intensity
variations. We then label pixels according to their nearest cluster (Euclidean distance in RGB space).

As described in Section 3.5.1, we use the pixel labels to create a nucleus mask, 1N , a binary version of
the input image that takes a value of one wherever nuclei are present. Similarly, we create masks for red
blood cells and background tissue, 1R and 1B , respectively. We also use the nucleus center detections from
Section 3.5.1 to form a new mask, 1C , which takes the value one for those pixels that have been labeled
as nucleus centers. We proceed to use these masks and an averaging filter, ŵ (Gaussian with standard
deviation of nine times the expected nucleus radius) to create the feature set we list in Table 3.1, where ·
and represent pointwise multiplication and division, respectively. These six features form a length-ten
(because there are two color features) feature vector for each pixel in the image.

Feature name Expression

Nucleus density ŵ ∗ 1C

Average nucleus size [ŵ∗(m00·1C)]
[ŵ∗1C ]

Average nucleus eccentricity [ŵ∗(e·1C)]
[ŵ∗1C ]

Average nucleus color [ŵ∗(I·1N )]
[ŵ∗1N ]

RBC coverage ŵ ∗ 1R

Average background color [ŵ∗(I·1B)]
[ŵ∗1B ]

Table 3.1: Colitis feature set.

Pixel-level classifier.

After feature extraction, we classify pixels using an artificial neural network (MATLAB Neural Network
Toolbox). The network has ten input nodes, no hidden layers, and one output node, with a bias connected
only to the output node; activation functions are linear throughout. For training, we throw away all nontissue
pixels, then label the remaining pixels according to the image they come from. We call this version of the
system the pixel-level classifier (PLC).

Since our goal is to label images rather than pixels, we need a way to convert the pixel-level labels into
into image-level labels. We accomplish this by selecting a threshold and labeling any image with a number
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of inflamed pixels greater than the threshold as colitis. The threshold is selected from the training data so
as to give the least training error at the image level.

Multiple-instance learning.

The PLC training we just described overlooks an important aspect of the colitis problem: even in an image
labeled colitis, some pixels actually belong to normal tissue. To understand how to adapt our PLC training
to this problem, we look at the classification task in the multiple-instance learning (MIL) framework [88].

Let X be a set of N digital images, X = {xi}Ni=1. Each xi contains multiple instances (pixels) {xi,j}P×Qj=1 ,
where P and Q denote the height and width of each image, respectively. Each pixel xi,j has a corresponding
label, yi,j where yi,j ∈ {0, 1} (in our case, 0 denotes normal and 1 colitis), but only the overall label for each
image, {yi}Ni=1 with yi ∈ {0, 1}, is known during training. For each image, the relationship between yi and

{yi,j}P×Qj=1 is given by

yi =

{
1, there exists a j such that yi,j = 1;

0, otherwise.

In other words, a pathologist will label (diagnose) an image as colitis if any region in the image exhibits
inflammation.

The goal is to create an image-level classifier function d such that d(x∗) = y∗ for any unseen image, x∗,
with true label y∗. This is accomplished by learning a pixel-level classifier function p such that p(x∗,∗) = y∗,∗
for any unseen pixel, x∗,∗, with true label y∗,∗, such that

d(x∗) =

{
1, there exists a j such that p(x∗,j) = 1;

0, otherwise.
.

We thus see that some of the training labels for the PLC training described earlier were incorrect: some
colitis pixels should have been labeled as normal. To address this issue, we first use the basic PLC to identify
the top 50% most inflamed pixels in each colitis image and create a new training set with only these pixels
labeled as colitis, and retrain the classifier. We call the retrained classifier the PLC-MIL.

Experiments and discussion.

We compared the performance of the PLC and the PLC-MIL to two freely available biological image clas-
sifiers. The first is WND-CHARM [8], which extracts a large number generic image-level features, then
classifies images with a nearest neighbor algorithm. We used the expanded color feature set. The second
is the multiresolution classification system (MRC) [6], which decomposes the image into subspaces via a
multiresolution transform, extracts features and classifies within each subspace separately, then combines
the subspace decisions via weighted voting. We used two levels of a wavelet packet decomposition and the
expanded Haralick texture feature set.

Feature extraction for WND-CHARM required a powerful desktop computer (2x Intel Xeon E7540
2.00GHz and 64GB RAM), while the PLC and MRC features were computed on a laptop (Intel Core i7
2.67 GHz and 4 GB of RAM). For a single image, feature extraction required 30 seconds for the PLC, 5
seconds for the MRC, and 140 minutes for WND-CHRM. Each classifier was evaluated at each magnification
level (40×, 100×, 200×, and 400×) with a leave-one-out cross-validation over twenty normal and twenty
colitis images.

Table 3.2 summarizes the results. They show that no classifier is consistently better than the others
at all scales. For all four classifiers, accuracy is generally higher at lower magnifications and decreases
as magnification increases. While the PLC classifier performs well, the PLC-MIL classifier improves its
performance at high magnification. Notably, the PLC-MIL performs comparably to both the MRC and
WND-CHRM, with the advantage of simple, physiologically meaningful features and pixel-level labels (see
Figure 3.5).
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Magnification WND-CHRM MRC PLC PLC-MIL

40× 100.0 95.0 97.5 97.5

100× 97.5 90.0 90.0 87.5

200× 87.5 85.0 77.5 90.0

400× 77.5 85.0 80.0 85.0

Table 3.2: Comparison of classification accuracy (in %), with the best accuracy for each magnification in
bold.

(a) Normal. (b) Colitis.

Figure 3.5: Example pixel-level classification results for PLC-MIL (100×). These results are physiologically
reasonable: inflammation (black) is detected in regions of high nuclei density and not in crypts or in areas
of hemorrhage, which are generally artifacts of the biopsy procedure.
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As noted in Section 2.8, variations in H&E stain intensity and color are a challenge for automated histology
analysis systems. In this chapter, which is based on our work published in [16], we present a method
to separate and normalize the stains on images of H&E histology slides, as well as a new benchmark for
stain separation. Our experiments show that our method achieves more accurate stain separation than two
comparison methods and that this improvement in separation accuracy leads to improved normalization. In
an unpublished experiment, we show that normalization improves the performance of an automated colitis
detection system.

4.1 Introduction

Automated histology analysis systems would benefit from accurate stain normalization techniques. Variations
in stain color and intensity between slides may arise from differences in staining protocol, differences between
stain brands, or the shelf life of stains. This problem is complicated by the fact that H&E images have two
stains which must be normalized separately, meaning that standard color correction techniques [89] do not
apply. Therefore, stain separation is an important first step in stain normalization. To address this need,
this work presents a new algorithm and benchmark dataset for digital stain separation.

4.1.1 Previous Work

Throughout this chapter, we compare to the stain separation methods of [9] and [10]. For example results
from these methods as well as our proposed method, see Figure 4.1.

In [9], stain separation is based on the idea that the contrast in the red channel comes from hematoxylin.
Therefore, the method finds the E-only image by adding an inverted and scaled version of the image’s red
channel to its red, green, and blue channels, searching for the scaling in each channel that reduces its variance
the most. The result is an image with constant red channel and low variance in the green and blue channels.
These changes make the image mostly red and lacking in nuclei, so this is the E-only estimate. The H-only
estimate is found by subtracting the E-only estimate from the input and re-white balancing. Throughout
the chapter, we will refer to this method as the color inversion method.

26
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(a) Input. (b) Truth. (c) Color inversion [9]. (d) Wedge-finding [10]. (e) Proposed.

Figure 4.1: Example stain separation showing (a) an input image of an H&E-stained slide, (b) the ground
truth stain separation, and the digital stain separation results from (c) color inversion [9], (d) wedge-
finding [10], and (e) our proposed method. The left half of each image shows the H-only estimate and
the right half shows the E-only estimate.

We, instead, build on the work in [10]; it is explained in detail in Section 4.3.1. The idea is that the
color of each pixel in the H&E image is a positive linear combination of the two unknown stain vectors.
This means that all the pixels of the image lie inside a wedge with its apex at the color white and its edges
determined by the color of hematoxylin and eosin; for this reason we call this approach wedge finding. Wedge
finding is a special case of NMF, but rather than rely on generic algorithms, the authors propose a geometric
solution.

4.1.2 Current Work

Our method improves on the state of the art by adjusting the contrast of its eosin-only estimate and including
a notion of stain interaction.

The main contributions of this chapter are

1. a new benchmark dataset, generated via chemical destaining, containing ground truth images for stain
separation and

2. a new stain separation algorithm for H&E histology images.

The outline of the chapter is as follows: In Section 4.2, we describe our benchmark dataset. In Section 4.3,
we describe the wedge-find method [10] and our method, which builds off of it. In Section 4.4, we describe
our experiments and discuss their results. We conclude in Section 4.5.

4.2 Benchmark Dataset

A key obstacle in advancing the state of the art in digital stain separation is the lack of a publicly available
benchmark dataset. In [9], a benchmark is created via a process of staining and destaining a single slide;
but it is only used for qualitative evaluation of the result and is not, to our knowledge, available online.

Following a procedure similar to that of [9], we have created our own stain separation benchmark using
chemical destaining according to standard histological practice [90]. Our goal was to generate images of the
same slide under three staining conditions: H-only, E-only, and H&E. Thus, the H-only and E-only images
can serve as the ground truth for separation of the H&E image.

Our procedure was as follows: (1) image an unstained slide; (2) apply eosin stain and image; (3) destain
the slide totally and image; (4) apply hematoxylin stain and image; and (5) apply eosin stain and image. At
each imaging step, we photographed the slide at the same three locations, giving us three images of the same
slide under blank, E-only, destained, H-only, and H&E conditions (Figure 4.2). (We did not capture more
images because they are essentially redundant as we don’t expect the stain to vary spatially on the slide).
The blank and destained images serve as controls: since both show no staining, we can be certain that the
destaining process was successful. We provide all of these images in the reproducible research compendium
to this work [91].
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(a) Blank. (b) E-only. (c) Destained. (d) H-only. (e) H&E.

Figure 4.2: Images collected during benchmark creation.

4.3 Methods

In this section, we review the details of the wedge-finding method of [10], describe our proposed method,
which extends it, and explain how we turn a stain separation technique into a stain normalization technique.

4.3.1 Wedge Finding

Let fHE be an M ×N RGB image of an H&E-stained slide with the value [1, 1, 1]T corresponding to white
and [0, 0, 0]T to black. Making the assumption that the stains follow the Beer-Lambert law [92], we can
write the absorbance of the H&E image at each pixel x as a weighted sum of the unknown absorbances of
the hematoxylin and eosin stains,

fODHE (x) = − log(fHE(x)) = ϕHaH(x) + ϕEaE(x), (4.1)

where ϕH and ϕE are unit-length 3×1 vectors giving the color of hematoxylin and eosin and aH(x) and aE(x)
are positive scalars for all x. We refer to fODHE as the optical density (OD) space version of fHE, because high
values correspond to high density of stain on the slide (dark colors).

Stacking all of the pixels of fODHE together into a matrix, we can rewrite (4.1) as

fODHE
[3×MN ]

= ΦHE
[3×2]

aHE
[2×MN ]

,

where ΦHE =
[
ϕH ϕE

]
and aHE =

[
aTH aTE

]T
.

Performing stain separation on fODHE then amounts to an NMF problem where the goal is to find ΦHE and
aHE. To do this, we use singular value decomposition (SVD) to project the OD space image onto a plane,

fODHE
[3×MN ]

≈ Φ
[3×2]

a
[2×MN ]

=
[
ϕ0 ϕ1

]

a0

a1


 .

To move from the arbitrary orthogonal basis Φ to an estimate of the H&E basis Φ̂HE, we assume that some
pixels exist that are stained with hematoxylin only and that some pixels exist that are stained with eosin
only; therefore all the pixels should exist inside a wedge, the extreme members of which correspond to pure
hematoxylin and pure eosin. The extreme pixels are those that form the maximum and minimum angle with
the ϕ0 axis,

x4 = arg max
x

arctan

(
a1(x)

a0(x)

)
and x5 = arg min

x
arctan

(
a1(x)

a0(x)

)
,

and ϕ̂H and ϕ̂E are their projections back into OD space,

ϕ̂H = Φ


a0(x4)

a1(x4)


 and ϕ̂E = Φ


a0(x5)

a1(x5)


 .
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To complete the stain separation, we find weights, âHE =
[
âTH âTE

]T
= (Φ̂HE)−1

leftf
OD
HE , and project the

input H&E image separately onto the hematoxylin and eosin vectors, so f̂ODH = ϕ̂HâH and f̂ODE = ϕ̂EâE.
Finally we convert back from OD space to RGB space and reshape the results into the single-stain images
f̂H and f̂E.

In practice, we replace the minimum and maximum with the αth and (100 − α)th percentile, which
provides robustness against outlier pixels (e.g. dirt on the slide). We also exclude nearly white pixels from
these calculations because estimation of x4 and x5 becomes unstable when ||a|| is small. Finally, we may
need to swap the identities of ϕ̂H and ϕ̂E, since the method described so far does not impose that the
hematoxylin stain should be blue and the eosin stain pink. This is easily achieved by, e.g., comparing the
red values of the estimated stain vectors and assigning ϕ̂E to be the one that is more red.

4.3.2 Initial Explorations

The collection of the benchmark dataset allows us to evaluate some of the assumptions of the image formation
model, (4.1):

Linearity of stains.

We first test that the stains are only of a single color, no matter their concentration; i.e. that pixels having
only been stained with one stain lie on a straight line in OD space. For example, this assumes that the
eosin stain is always a shade of pink and does not become more yellow at high concentrations. We test the
assumption computationally by converting the single-stain images we collected into OD space and checking
that the pixels lie on a single line. Deviation from this line suggests that the stain absorbs different frequencies
of light as it increases in concentration. Our results (Figure 4.3) show that both stains are mostly linear,
with slightly more deviation for hematoxylin.

Addition of stains.

We then test whether each pixel in the H&E image is a positive linear combination of the stain vectors in
OD space, as stated in (4.1). Our approach is to compare the color histograms of the H-only, E-only, and
H&E images, as shown in Figure 4.4. If (4.1) held, then each point in the H&E image would be a sum of
one point in the H-only and one point in the E-only image; however the histograms show a large number of
points that cannot have been formed in this way. This suggests that either there is an interaction between
H and E when they are mixed that has the effect of strengthening the E stain, or that the E-only image is
not representative of the eosin staining in the final H&E image.

4.3.3 Proposed Method

Our proposed method uses two observations from our benchmark dataset to build on the wedge-finding
method presented above. First, real E-only images exhibit lower contrast when compared to digitally sepa-
rated E-only images using the wedge-finding method (compare the right half of Figure 4.1b and Figure 4.1d
to see this). Second, the optical density of some regions of the H&E image is significantly higher than the sum
of the optical densities of the corresponding H-only and E-only image. This points to an interaction between
the stains beyond summing in the OD space. Our proposed method is motivated by these observations.

Contrast of Eosin. Our first improvement to the wedge-finding method is to reduce the contrast of the
E-only image. To better quantify the observation that real E-only images have low contrast, we examined the
order statistics of the norms of the pixel values of our ground truth single-stain images in OD space. We found
that the order statistics change smoothly and that for each pair of H- and E-only images, the order statistics
of the two single-stain images were similar except for a multiplicative constant, ||fODE (xi)|| ≈ C||fODH (yi)||,
where xi denotes the pixel location of the ith smallest element in fODE and yi denotes the pixel location
of the ith smallest element in fODH . Performing the same investigation on H- and E-only images created
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Figure 4.3: Contour plots indicating pixel density as a function of position along u0 and u1, the first two
singular vectors of the matrix of pixel colors for (a) H-only and (b) E-only images. The highest density
of points for both stains is at the origin, which corresponds to white. If the stains were truly linear, the
pixel matrix would be rank one and therefore all pixels would lie only along u0. For both hematoxylin and
eosin this is not the case, indicating that neither stain is completely linear, however the deviation is more
significant for hematoxylin.
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(c) H&E.

Figure 4.4: Contour plots indicating pixel density as a function of position along u0 and u1, the first two
singular vectors of the matrix of pixels in the H&E image. Each pixel in the H&E image should be the sum
of a pixel from the H-only and E-only image; however some of the density of the H&E image lies in the
lower-right corner of the plot, which cannot be formed in this way.
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digitally using the wedge-finding method, we noted significant deviation from the smooth behavior for the
E-only estimate.

Therefore, starting with âHE found via the wedge-finding method, we estimate C as the median of
âE(xi)/âH(yi). To correct the contrast of the E-only image, we let

â∗E(xi) = (1− γ)âE(xi) + γCâH(yi),

where γ controls the degree of smoothing: when γ = 0, the contrast reduction has no effect; when γ = 1,
the eosin coefficients are shifted so their order statistics are exactly the same as the hematoxylin coefficients
times a constant. We can then compute a new stain separation

f̂ODE = ϕ̂Eâ
∗
E, f̂ODH = f̂ODHE − f̂ODE .

Stain Interaction. The method described in the previous section results in improved estimates of the
E-only image and, when γ is low, it also improves the H-only estimate by adding some pink which is indeed
present in the ground truth (Figure 4.1b). When γ is high, the H-only estimate begins to suffer because it
contains too much pink. According to (4.1), however, whenever the E-only estimate improves, the H-only
estimate should too, because they exactly sum to the H&E image. We therefore extend (4.1) by adding an
interaction term,

fODHE (x) = ϕHaH(x) + ϕEaE(x) + I(x).

In general, I(x) could have a complicated dependence on aH(x), aE(x), and the underlying tissue, making it
hard to calculate directly. Instead, we assume that interaction occurs only in those places where the contrast
of the eosin coefficients is adjusted. We let some fraction λ of the change in eosin be due to that interaction
and the rest be due to pinkness within the H-only image, giving our final stain separation expression,

f̂ODE = ϕ̂Eâ
∗
E, f̂ODH = (1− λ)(f̂ODHE − f̂ODE ) + λϕ̂HâH.

When λ is high, most of the adjustment in the E-only image is assumed to be due to the interaction term,
so f̂ODH is unaffected; when λ is low, the eosin adjustment is assumed to be due to pinkness in the H-only

image, so f̂ODH changes a lot.

4.3.4 Stain Normalization

After stain separation, we can normalize images using an approach similar to that of [10]. Given two H&E
images, our goal is to normalize the staining of the input image to match the target image. To do this, we
stain separate both input and target images and represent each (OD space) pixel in the single-stain estimates
as a scalar weight times a unit-length stain vector. For the color inversion technique [9], we find the the
stain vectors and weights via 1D SVD on the single-stain images. For the wedge-finding method [10], the
stain vectors are ϕ̂H and ϕ̂E and the weights are âH and âE. For our method, we also use ϕ̂H and ϕ̂E as the
stain vectors, but use â∗E for the eosin weights and ||f̂ODH (x)|| for the hematoxylin weight at each pixel x.
To adjust for variations in stain intensity, we independently scale the input eosin and hematoxylin weights
so that their 95th percentile values match the 95th percentile values of the corresponding weights from the
target image. To adjust for variations in stain color, we replace the input stain vectors with those of the
target. We complete the normalization process by recombining the single-stain images of the input.

4.4 Experiments and Discussion

We validate our method with four experiments: (1) We compare our stain separation method to the color
inversion [9] and wedge finding [10] methods quantitatively, using our newly created benchmark dataset
(described in Section 4.2). (2) We again use the benchmark dataset to explore the effects of our method’s
three parameters. (3) We compare the performance of the same three methods on a stain normalization
task. (4) We explore whether stain normalization improves automated diagnosis. We now describe these
experiments and discuss their results in detail.
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Method

color inversion [9] wedge finding [10] proposed

H E H E H E

Image 1 26.13 25.54 26.07 25.34 27.31 26.42

Image 2 23.39 22.89 23.29 21.54 23.56 23.04

Image 3 25.20 26.04 28.48 24.89 29.56 27.32

Mean 24.91 24.82 25.95 23.92 26.81 25.59

Table 4.1: Results of the stain separation comparison reported as SNR [dB] for hematoxylin and eosin, with
the best result for each image and stain in bold. The proposed method improves SNR by around one dB.

4.4.1 Stain Separation Comparison

For each of the three methods, we performed a stain separation on each of the three images H&E images
in our dataset. We set parameters at typical values: for the wedge finding, α = 0.5; for our method,
α = 0.5, γ = .75, λ = 0.5. We explore parameter selection in depth in the next section; here our goal was
to compare the methods with default parameters, since in the real use case for stain separation no ground
truth exists with which to tune parameters. To quantitatively evaluate the results, we use affine registration
to align each ground truth H- or E-only image with the corresponding H&E image. Then, for each digital
separation result, we blur the ground truth image and the result with a Gaussian (σ = 15px) and calculate
the signal to noise ratio (SNR); this blurring is intended to reduce the effect of small misalignments between
the two images being compared, it does not affect the trend in the results.

Figure 4.1 shows the qualitative results on a single image and Table 4.1 shows the results in terms of
SNR. Both our method and the color inversion method result in low contrast for the E-only estimate; but
our method additionally captures some of the pink tone in the H-only estimate, especially in the bone tissue
(long regions in the center of the image). Quantitatively, our proposed method outperforms the others for
each image and stain.

4.4.2 Parameter Analysis

In order for our method to be really useful, its strong performance must hold over a wide range of parameters.
To explore whether this is true, we performed a parameter analysis over the wedge percentile α, the eosin
contrast reduction γ, and the interaction amount λ for the first image in our dataset (first row of Table 4.1).

We began by investigating α and γ with λ set to zero (Figure 4.5). Focusing on the γ = 0 case (solid
lines), we see that α does not affect performance much unless it is too small; a setting of 0.5 or slightly less
is optimal for this image, but larger values also work. This is intuitive because setting α to be very small
would allow outliers to greatly affect the estimation of the hematoxylin and eosin vectors. Increasing γ (from
solid to dashed to dotted lines) always improves the estimate for the E-only image, but at the cost of the
H-only estimate for high values. Intuitively, the H-only image gets too pink when γ is high. The mean SNR
shows that γ = 1 (dotted line) is still a good choice for all values of α.

Next, we explore how increasing the interaction amount λ can improve the estimate of the H-only image.
Starting at the point that gives highest mean SNR (α = 0.3, γ = 1) in the previous experiment, we vary
λ (Figure 4.6). For any λ between 0 and 0.8, the SNR of the H-only estimate improves, with a maximum
improvement of .47dB at λ = 0.4. Taken together, these parameter studies show that the proposed method
is robust with respect to parameter choices.
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Figure 4.5: Effects of wedge percentile α and eosin contrast reduction γ (solid, dashed, dotted lines cor-
responding to γ = 0, 0.5, 1) on (a) the H-only reconstruction, (b) the E-only reconstruction, and (c) their
mean. When γ = 0, our method reduces to wedge finding [10]; setting γ to 0.5 improves both the H-only
and E-only reconstruction. Setting γ to 1 improves the E-only reconstruction at the expense of the H-only
reconstruction.

4.4.3 Stain Normalization Comparison

We now compare the performance of the stain separation methods on a normalization task. For each method,
we used the process described in Section 4.3.4 to normalize an input image (Figure 4.1a) to a target image
(Figure 4.7b). Qualitatively, the normalization results (Figure 4.7) are similar among the wedge-finding,
color inversion, and our proposed method.

Quantifying the results of this experiment is difficult because simply subtracting the normalized and
target images yields no useful information, since the images are of different tissue areas. We therefore seek
an image similarity metric that compares the colors occurring in each image without accounting for their
location or frequency. To accomplish this, we generate a signature (along the lines of [93]) for the normalized
and target image by clustering their pixels using k-means in the Lab color space, which we selected for
its perceptual uniformity. We then calculate an optimal linear assignment (with the MATLAB code [94])
between the sets of cluster centers. We use the total cost of the optimal assignment as our measure of
distance. Using ten cluster centers, we find the total costs of assignment to be 122.4, 96.3, and 51.1 for
color inversion, wedge-finding, and our method, respectively. Although this experiment is small and the
proper distance metric is an open question, these results at least suggest that our method’s improved stain
separation performance translates into more accurate stain normalization as well.

4.4.4 Normalization and Diagnosis

In a final experiment (unpublished), we aim to determine whether or not stain normalization is actually
a useful preprocessing step in a larger histology image analysis system. To do this, we repeat the colitis
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Figure 4.6: Effects of interaction amount λ for wedge percentile α = 0.3 and eosin contrast reduction γ = 1.
A wide range of λ values all improve the SNR of the H-only estimate.

(a) Input. (b) Target. (c) Color inversion [9]. (d) Wedge-finding [10]. (e) Proposed.

Figure 4.7: Results of the stain normalization experiment, showing (a) the input, (b) the target, and the
results using (c) color inversion [9], (d) wedge-finding [10], and (e) our proposed method. The results are
similar across methods; the main difference is the depth of color in the bone tissue (long purple structure in
(c)-(e), best viewed in color).
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detection experiment described in Section 3.9.1 using the WND-CHRM classifier on three new versions
of the colitis dataset: (1) The illumination-corrected dataset has had its illumination corrected via linear
regression. (2) The stain-varied dataset has had its stain colors and intensities jittered to simulate stain
variability between labs. (3) The stain-normalized dataset has had its stains normalized according to the
method described in this chapter to the median stain colors and intensities of the set. We compare these to
the raw dataset which was used in Section 3.9.1. See Figure 4.8 for sample images from each of these four
datasets.

(a) Raw images.

(b) Illumination-corrected images.

(c) Stain-varied images.

(d) Stain-normalized images.

Figure 4.8: Examples of (a) the original colitis dataset images, (b) their illumination-corrected versions, (c)
their stain-varied versions, and (d) their stain-normalized versions.

The results of our normalization and diagnosis experiment are given in Table 4.2. Accuracy for the
raw, illumination-corrected, and stain-normalized datasets is similar, which makes sense because the raw
images were all stained and imaged by the same lab with well-controlled lighting conditions, meaning that
correcting for illumination and staining variation has little effect. On the other hand, the simulated staining
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variability in the stain-varied dataset is large enough to negatively impact the accuracy of the classifier.
These results do suggest that stain normalization can improve automated analysis accuracy, but a larger
experiment involving images collected from multiple labs is necessary to show whether these results will hold
for real-world staining variation.

Dataset

Magnification raw illumination varied normalized

40× 100.0 100.0 97.5 97.5

100× 100.0 82.5 87.5 95.0

200× 85.0 95.0 82.5 90.0

400× 85.0 72.5 67.5 90.0

Table 4.2: Comparison of classification accuracy (in %) of the WND-CHARM classifier on raw, illumination-
corrected, stain-varied, and stain-normalized images. The best accuracy for each magnification is shown
in bold. The stain-normalized dataset gives better results than the stain-varied dataset, suggesting that
staining variability does negatively impact computer-aided diagnosis.

4.5 Conclusions and Future Work

In this chapter, we have presented a new algorithm and benchmark dataset for digital H&E stain separation.
The benchmark provides a way to quantitatively evaluate digital stain separations via images of chemically
destained slides. We showed that our algorithm outperforms the currently available methods on all test
images and is robust to parameter selection. We also showed that this improved separation leads to improved
stain normalization.

In our future work, we will explore more principled priors on the E-only contrast, perhaps by finding a
parametric description of the order statistics. We would also like to continue to improve the image formation
model. One approach would be to explore more complex lighting models including reflection in addition to
absorbance; another would be to study the interaction term more closely. All of this work would benefit from
chemical experiments including a wider variety of stain brands, staining procedures, lighting conditions, and
tissues.
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Tissue segmentation is a fundamental part of many automated histology systems, but generic image seg-
mentation techniques often fail to produce meaningful results on histology images. In this chapter, which is
based on our work published in [17], we present a new model for histology images that helps explain why
they are challenging to segment, and then present a new segmentation method based on this model. Results
on synthetic texture mosaics and real histology images show the promise of the method.

5.1 Introduction

Image segmentation is the process of locating the boundaries between visually distinct regions in an im-
age, thereby partitioning the pixels. Applications of image segmentation are numerous: from remote sens-
ing [95] and video processing [96] to non-destructive testing [97]. Within the biomedical field, segmentation
is used with diverse imaging modalities such as MRI [98], both light microscopy [99–101] and electron
microscopy [102], ultrasound [103], and many others to identify regions at all scales from organelles to
organisms.

5.1.1 Previous Work

There exists a wide variety of classic approaches to generic image segmentation, including graph cuts [7], ac-
tive contours [104], level sets [105], Gabor filtering and clustering [106], random fields [107], watersheds [108],
region growing [109], and mean shift [110]. In addition, there also exist engineered segmentation systems,
such as BlobWorld [111], JSEG [5], EDISON [1], and CTex [112]. Broadly, these methods vary in how the
segmentation regions are parametrized and whether edge or region information is used.

Even with this plethora of methods to try, working on a new segmentation problem is not trivial. Each
existing method makes assumptions about the images it aims to segment. When these assumptions are
met, the method works. When they are not, it fails. Because many of these assumptions are implicit,
selecting a method to use on a new segmentation problem involves educated guessing. When no suitable
method can be found, a new method is designed. This is especially true for biomedical imaging, where
the diversity of imaging modalities and analysis objectives means that new algorithms are often designed
for each specific application. For example, the active shape models in [113] aim to segment the complex
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shapes in computed tomography (CT) scans, the active masks in [100] work for the punctate appearance of
fluorescence microscopy images, and the multiple model approach in [103] handles the problems of speckle
and motion in ultrasound images of the heart.

Here, we were inspired by the problem of segmenting tissues in bright field microscopy images of H&E-
stained slices of teratoma tumors (see Figure 5.1 for examples; more details on this dataset can be found
in [114]). Previous work in our lab [115] began exploring models for these complicated tissues and proposed
a simple supervised segmentation method for them. In a separate line of work [79], we proposed image
features based on the local density and color of cellular structures such as nuclei. Other works that address
segmentation of histology images are reviewed in Section 3.8.

Figure 5.1: Examples of difficult tissue boundaries in teratoma images (black lines denote tissue boundaries
as drawn by a pathologist). The lack of distinct edges between regions makes automated segmentation
difficult, and even experts cannot reliably localize the boundaries at pixel level.

5.1.2 Current Work

Our working hypothesis is that segmenting histology images is difficult because tissues are complicated, while
tissue boundaries are sometimes subtle and not marked by edges. To formalize this idea, we propose a new
model for images formed from multiple tissues. Working from this model, we design a new unsupervised
segmentation method based on local histograms that is well suited to a broad class of images with poorly
defined boundaries. We expect this class to include images such as aerial photos of grass and trees (“Where
is the edge of the forest?”), photographs of crowds (“Where is the edge of the crowd?”), and, as is our focus
here, histology images (“Where is the edge of the adipose tissue?”).

The main contributions of this chapter are as follows:

1. We propose a mathematical framework for image segmentation which models images as occlusions of
textures. Given an image formed according to this model, we prove that its local value histograms will
approximately be convex combinations of the value distributions of its component textures.

2. Based on this result, we present a new algorithmic framework for image segmentation based on his-
togram factorization and deconvolution.

The outline of the chapter is as follows: In Section 5.2, we introduce local histograms, occlusions, and
necessary notation. We then describe our proposed model and present the main theorem. In Section 5.3,
we propose an algorithmic framework for image segmentation based on this theorem and describe one im-
plementation of it. We present experimental results of a comparison of our algorithm to other segmentation
algorithms in Section 5.4 and conclude in Section 5.5.
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5.2 Mathematical Framework

In this section, we introduce necessary notation, then build the texture model as follows: We first define
dependence decay, which describes how well a texture can be characterized by its local histograms, show how
to construct textures with a known dependence decay, and explore dependence decay in real textures. Based
on this, we propose modeling images as occlusions of textures. Under this model, we present our main result,
which describes how the local histograms of this class of images are mixtures of the value distributions of
their component textures.

5.2.1 Notation and Background

Let f be an image, f : X → V , where X is a discrete set of pixel locations and V is a discrete set of pixel
values. For example, for a 512 × 512 8-bit grayscale image, X = Z512 × Z512 (we use ZK to denote the
set of integers modulo K) and V = Z256, while for a stack of ten 1600 × 1200 8-bit RGB color images,
X = Z1600 × Z1200 × Z10 and V = Z256 × Z256 × Z256. Clearly, the elements of V can be vectors or scalars;
since the set is always discrete, however, without loss of generality we treat it as a set of integers 0, 1, . . . ,
|V | − 1.

We now define the local histogram and occlusion operators (our definitions are a slight adjustment of
those presented in [115]). Define first the indicator function,

1A(x) =

{
1, for x ∈ A;

0, for x /∈ A.

Then, the local histogram transform of an image f is

Lwf(x, v) =
∑

x′∈X
1{v}(f(x′))w(x− x′), (5.1)

for x ∈ X and v ∈ V , and where w is an averaging filter that sums to one. For example, when w is a constant
averaging filter of size 3× 3, the local histogram transform Lwf(x, v) gives the fraction of the pixels in the
3× 3 neighborhood around x that have value v.

We call a function σ : X → {0, 1, . . . , N − 1} a labeling function. We define the occlusion of a set of
images {fn}N−1

n=0 with respect to a labeling function σ as

Oσ{fn}N−1
n=0 (x) =

N−1∑

n=0

1{n}(σ(x)) fn(x) (5.2)

for x ∈ X. In other words, an occlusion of a set of images is itself an image that matches one of its component
images at each pixel; which image “shows through” at each pixel is governed by σ. Note that we use the
term occlusion because we view the set of images as a stack with one image blocking, or occluding, the others
at each pixel.

5.2.2 Flat Textures

We now define a texture as we use it in our work; note that it is simply a random-valued image and that
many other texture definitions exist.

Definition 1 (Texture). A texture F = {F (x)}x∈X is a V -valued random field indexed by pixel locations,
X.

In other words, for each x ∈ X, F (x) is a V -valued random variable; one realization of a texture is an
image. Associated with each of these random variables is a probability mass function, pF (x) : V → [0, 1]; the
probability that F (x) is equal to v is pF (x)(v). While each F (x) may have its own unique probability mass
function, we find it useful to consider only those textures for which these functions are the same, which we
call flat textures.
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Definition 2 (Flat texture). A texture F is flat when pF (xi)(v) = pF (xj)(v), for all xi, xj ∈ X and v ∈ V .

In other words, a flat texture is one where the distribution of values is the same at every pixel, and we
can therefore refer to the value distribution of the texture, pF (v), without dependence on x. Note that this
does not imply that the random variables F (xi) are independent, only that they have the same distribution.
Flat textures may have complex and spatially varying patterns of dependence; we will further explore this
dependence in the following sections.

Flatness is not a highly restrictive condition. In fact, it is a property of most real-world textures. For
example, take F to be the texture for 128× 128 color images of grass. Intuitively, we would assign one color
distribution to F , with peaks for brown, yellow, and green. We would not say that grass images are more
likely to be brown in the bottom right corner or green at the top. The fact that colors do not appear more
or less frequently in specific areas of the image means that this texture is flat.

5.2.3 Histograms of Flat Textures

Many textures can be distinguished based solely on their value distribution, pF (v). For example, consider a
grass texture and a sky texture; pgrass(v) would have a peak around green, while psky(v) would have peaks
around blue and white. If our goal is to classify whether an image is of grass or sky, we could build a value
histogram from the pixels in the image and compare it to our model of pgrass(v) and psky(v).

We now consider more closely the relationship between the histograms of a realization of a flat texture
and that texture’s value distribution, pF (v). Let

p̂
{xi}k−1

i=0

f (v) =
1

k

k−1∑

i=0

1{v}(f(xi)) (5.3)

be a histogram built from k pixels at the unique locations x0, x1, . . . , xk−1 of the image f . If k is large

enough, we expect that p̂
{xi}
f (v) will estimate pF (v); intuitively, sampling f over a small region will give a

worse estimate than sampling f over a large one. The quality of the estimate will be determined by the
number and position of the pixels and the way the statistical dependence between pixels of F changes over
space. Moreover, for some textures, such an estimate may never be good. We quantify how quickly these
estimates improve by introducing the notion of dependence decay.

Definition 3 (Dependence decay). A flat texture F exhibits dependence decay with complexity a if, with
probability 1− δ and for any v ∈ V and unique x0, x1, . . . , xk−1 ∈ X,

|p̂{xi}
k−1
i=0

f (v)− pF (v)| ≤ ak−1/2,

with 0 < a and 0 < δ � 1.

The value δ is a small positive number so that 1−δ is our standard of high probability. If the complexity, a, is
small, then F is simple in the sense that even histograms formed from a small number of pixels approximate
pF well. (Note: using this definition, a texture may have multiple complexities, a0, a1, . . . ; when we refer
to the complexity of texture, we generally mean the smallest a satisfying Definition 3.)

5.2.4 Constructing Dependence-Decay Textures

Though any texture can exhibit dependence decay with a very loose bound (for example, select a such that
a|X|−1/2 > 1), we focus on the class of textures for which the dependence between pixels decays sufficiently
so that this bound is useful, that is, ak−1/2 � 1 even when k � |X|; informally, we will refer to these as
dependence-decay textures. At this point, it is natural to wonder whether there exist any dependence-decay
textures. To find the answer, we explore a property of textures we call persistence length and show that
when a texture’s persistence length is short enough, it is dependence-decay.
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Definition 4 (Persistence length). A texture F has a persistence length ε if, for any two pixel locations, xi
and xj, the random variables F (xi) and F (xj) are independent whenever ||xi − xj ||1 > ε.

Persistence length is another way of thinking about the scale of a texture. For example, consider a texture
F that generates images of colored pebbles. If we know that the value of a sample of this texture at pixel
location xi is blue, we can expect the value at pixel location xj to be blue as well when xi and xj are close;
when these locations are far enough apart, however, f(xi) no longer gives any predictive information about
f(xj). The distance at which f(xi) stops being helpful in predicting f(xj) is F ’s persistence length. In this
example, it is the diameter of the pebbles.

Persistence length is related to dependence decay, since statistically independent samples are the best
ones with which to estimate a texture’s value distribution. We make this relationship explicit with a theorem;
the proof is given in Appendix 5.A.

Theorem 1 (Persistence length and dependence decay). A flat texture with persistence length ε exhibits
dependence decay with complexity a = (−2Aε log 1

2 (1− Aε
√

1− δ))1/2, with Aε = 2ε2 + 2ε+ 1.

If we could create textures with a given persistence length, this theorem would allow us to establish their
dependence decay properties as well. One straightforward way of doing this is to use a dead leaves model;
that is, generate images by layering templates of random size, shape, position, and value on top of each other
(see Figure 5.2 for examples and [116] for a more thorough description). Textures defined in this way have
a persistence length equal to the `1-diameter of their largest template, since pixels separated by more than
this distance cannot belong to the same template and are therefore independent.

(a) (b) (c)

Figure 5.2: Examples of dead leaves images with different maximum template sizes and value distributions.
The templates in (a) and (b) have twice the maximum diameter of those in (c). The value distributions in
(a) and (c) are uniform, while the value distribution in (b) is normal.

We also note that Theorem 1 will overestimate the complexity, a, of many textures. This is because
the concept of persistence length only considers complete independence. In a real texture, the dependence
between pixel values may decay rapidly but only reach true independence over long distances (or never). In
this case, the persistence length of the texture will be large and the complexity from Theorem 1 will also be
large, but estimates of pF will actually improve quickly as the sample size increases.

5.2.5 Dependence Decay in Real Images

We now discuss how the above theory applies to real images. As our example textures, we take grayscale
images from the Prague Texture Segmentation Benchmark [11]. For each image in the dataset, we define
a corresponding F that assigns equal probability to this image and all its circular translates. This means
pF (v) is equal to the global histogram of the image. To show that F is a dependence-decay texture we must
set a probability δ (in our experiment, δ = 0.05), then for each k = 1, 2, . . ., find the arrangement of points,
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(a) (b)

Figure 5.3: (a) Example texture from the Prague set [11]. (b) Cropped and quantized version used in our
dependence decay analysis.

x0, x1, . . . , xk−1, that maximizes |p̂{xi}f (v) − pF (v)| in at least a fraction δ of the realizations of F . If this
maximum error,

E(k) = max
x0,x1,...,xk−1

|p̂{xi}
k−1
i=0

f (v)− pF (v)| (5.4)

can be bounded usefully by a function ak−1/2, then F is a dependence decay texture.
In practice, we cannot check every possible arrangement of k pixels even for small k, so we make the

simplifying assumption that, in the worst case, the xi will be eight-connected and perform a greedy search
for worst-case arrangements. This assumption is reasonable for natural images because adjacent pixels are
nearly always more correlated that those that are far apart. To further speed up the computation, we crop
the image to a size of 100× 100 pixels and quantize it to eight values (Figure 5.3).

Our experiments show that many of these images do exhibit dependence decay, see Figure 5.4 for an
example. This supports the claim that many real-world textures exhibit dependence decay. For the periodic
textures in the dataset, the complexity a is large because pixels are highly correlated, see Figure 5.5 for an
example. If the search were not constrained to contiguous regions of pixels, the complexity would be even
higher. This is because when the offset between samples matches the period, the samples are completely
dependent on each other. We will see in the next section that the high a value associated with periodic
textures means that they are not usefully governed by our main result, Theorem 2. This essentially says that
periodic textures can be combined into pathological images that are impossible to segment. We will stress
here, however, that periodic textures can still be segmented by the algorithm we present in Section 5.3,
because the worst case error only happens with very specific corner cases that are unlikely to occur in
practice.

5.2.6 Occlusions of Dependence-Decay Textures

We now come to the main result of the chapter. We propose modeling images as occlusions of realizations
of textures, Oσ{fn}N−1

n=0 , where the component textures, F0, F1, . . . , FN−1, and the labeling function, σ, are
not known. Under this model, segmentation is equivalent to recovering σ.

Figure 5.6 illustrates modeling a natural image as such an occlusion. Starting with an original image as
in Figure 5.6a, imagine there exist three textures, Fsky, Fwindow, and Fbrick, each generating images of the
corresponding texture, as in Figure 5.6b. We can then use a labeling function σ (Figure 5.6c) to create a
new image flighthouse = Oσ{fsky, fwindow, fbrick} (Figure 5.6d).
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E, 2.42k−.5

k

100 102 104
10−3

10−2

10−1

100

(a) (b)

Figure 5.4: Dependence decay for the image in Figure 5.3. The plot in (a) shows how the approximation
error (5.4) (solid line) is bounded by the function 2.42 k−1/2 (dashed line). The regions shown in (b) are
four worst-case arrangements (described in Section 5.2.5). When pixels sampled in these patterns are used
to estimate the color distribution of the texture, they lead to errors of 2−1, 2−2, 2−3, and, 2−4 (decreasing
error from black to light gray). The corresponding points are marked with circles in (a).

If we use occlusions of textures as our model for images, then we can define segmentation as the problem
of taking an image and recovering the labeling function that was used to generate it. If the component
textures of the image are dependence-decay, then a reasonable approach is to examine the local histograms
of f , since these histograms well approximate the true distribution of values in each texture. For example,
in Figure 5.6a, local histograms taken from the upper right corner will approximate psky, while those from
the lower left corner will approximate pbrick. Local histograms taken around the window will be mixtures of
pbrick and pwindow. The following theorem formalizes this process; the proof is given in Appendix 5.B.

Theorem 2 (Local histograms of occlusions are mixtures of component value distributions). Given a set
of dependence-decay textures {F0, F1, . . . , FN−1} with complexities a0, a1, . . . , aN−1, a constant averaging
window w, and a labeling function σ, then with probability (1− δ)N , and for any x ∈ X and v ∈ V ,

∣∣∣∣∣LwOσ{fn}N−1
n=0 (x, v)−

N−1∑

n=0

[
w ∗ 1{n}(σ)

]
(x) pFn(v)

∣∣∣∣∣

≤ a

( |w|
N

)−1/2

,

(5.5)

with |w| =
∑
x∈X 1(0,1](w(x)), a = max{a0, a1, . . . , aN−1}, and δ the threshold for high probability selected

in Definition 3.

Here we use the notation (0, 1] to indicate the interval {x | 0 < x ≤ 1}.
In other words, if an image is formed from the occlusion of realizations of several dependence-decay

textures, then each of its local histograms will be approximately a convex combination of the true value
distributions of those textures. The amount that each texture contributes to a histogram is proportional
to how much of that texture exists in the neighborhood of the local histogram. This theorem offers a key
insight about how to do segmentation because it relates the local histograms of f , which we can calculate,
to the labeling function σ, which we want to discover.
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(a) (b) (c)

Figure 5.5: (a) An example of a periodic texture from the Prague set [11]. (b) Cropped and quantized
version used in our dependence decay analysis. (c) Four worst-case arrangements (described in Section 5.2.5),
increasing in size from black to light gray. Sampling pixels in these vertical stripes leads to very poor estimates
of the true color distribution of this texture because the sample may, e.g., contain only black pixels, omitting
the lighter pixels in the image.

5.3 Proposed Algorithm

Based on our discussion, the task of segmentation can now be seen as finding the labeling function σ using
local histograms of f , which we can calculate. Thus, based on Theorem 2, the task of segmenting an image
modeled as occlusions of realizations of textures, f = Oσ{fn}N−1

n=0 , into N regions can be approached as an
optimization

arg min
σ

∣∣∣∣∣

∣∣∣∣∣Lwf −
N−1∑

n=0

[w ∗ 1{n}(σ)] p̂Xnf

∣∣∣∣∣

∣∣∣∣∣ , (5.6)

where Xn = {x | σ(x) = n} is the set of pixels belonging to the nth region and p̂Xnf (v) is a histogram
formed from the pixels in Xn as defined in (5.3). This optimization finds a labeling function, σ, that splits
the image into N regions. These regions are such that for each x ∈ X, the local histogram, Lwf(x, v), is
approximated by a convex combination of the value histograms of those regions, p̂Xnf (v), with the weights
of this convex combination determined by the amount of each label in the neighborhood of the histogram,
[w ∗ 1{n}(σ)](x).

Our approach is philosophically similar to the method in [117], which uses an active contour to separate
the image into a foreground and a background region that have maximally distinct color distributions. This
method differs from ours in two key ways: First, our method does not find maximally distinct distributions,
rather it finds distributions that are consistent with the local histograms taken inside their corresponding
region. Second, our method does not parametrize the boundary between regions as a level set, allowing it
to more naturally handle segmentation of more than two regions. In short, though both methods focus on
color distributions rather than edges, they actually optimize different quantities in different ways.

Rather than solve (5.6) directly, we approximate it via variable splitting [118, 119] and relaxation [120]
as

arg min
σ,p0,p1,...,pN−1
α0,α1,...,αN−1

∣∣∣∣∣

∣∣∣∣∣Lwf −
N−1∑

n=0

αnpn

∣∣∣∣∣

∣∣∣∣∣ +

N−1∑

n=0

λn
∣∣∣∣w ∗ 1{n}(σ)− αn

∣∣∣∣ +

N−1∑

n=0

µn

∣∣∣
∣∣∣p̂Xnf − pn

∣∣∣
∣∣∣ ,

(5.7)
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(a) Image, flighthouse. (b) Textures, {fsky, fwindow, fbrick}.

(c) Labeling function, σ. (d) Oσ{fsky, fwindow, fbrick}.

Figure 5.6: Modeling an image as an occlusion of realizations of textures according to a labeling function.
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subject to
∑

v∈V
pn(v) = 1,

N−1∑

n=0

αn(x) = 1, pn(v), αn(x) ≥ 0,

where {λn} and {µn} are Lagrange multipliers. The first term of the optimization finds histograms
p0, p1, . . . , pN−1 that can be combined with weights α0, α1, . . . , αN−1 to create the local histograms of f .
The second term finds an indicator function for each region in the image 1{n}(σ(x)), such that the blurred
version of this indicator is similar to the corresponding weight image αn. The third term keeps the histograms
p0, p1, . . . , pN−1 close to the empirical histograms of the regions p̂Xnf .

The benefit of working with (5.7) is that the third term is straightforward and the first two terms are
well-studied problems, NMF [121, 122] and image deconvolution (deblurring) [89, 123], respectively. To find
a local minimum of (5.7), we draw on the wide variety of existing approaches for each of these subproblems
to iteratively minimize each of the three terms.

local histogram
transform

factorization deconvolution

Figure 5.7: Block diagram of the proposed algorithm.

Figure 5.7 shows the block diagram of our proposed algorithm and the following pseudocode gives more
details:

1: procedure [σ] = segment(f)
2: compute the local histogram transform of f
3: factor the histograms to initialize {αn} and {pn}
4: while not converged do
5: deconvolve {αn} to estimate σ
6: use σ to compute p̂Xnf
7: set pn = p̂Xnf
8: use pn and the local histograms to calculate {αn}
9: end while

10: end procedure

The following subsections present the details of one implementation of each of these steps; others are
possible.

5.3.1 Local Histogram Transform

Implementation of the local histogram transform is straightforward based on its definition: each level of
the local histogram can be computed as a single convolution. The size and shape of the window w over
which local histograms are computed is an important parameter of the method. In general, when w has
small support, the resulting segmentation will have better-localized boundaries, but may be noisy. Making
w larger smooths the boundaries but also makes the segmentation less susceptible to noise.

The main challenge in computing the local histogram transform is memory, since an image can have 24
bits of color and 2 million pixels, meaning that the full local histogram of the image would have 224×2×106 ≈
3.4 × 1013 values in it. Luckily, real-world images rarely make meaningful use of this color depth. We can
therefore safely quantize the image down to tens of values. The result is a new image, f ′ : X → V ′ with
|V ′| � |V |. The specific quantization method can be chosen to fit the problem; we use k-means clustering.

The quantization step can also be understood as a way to control the value bandwidth of the local his-
tograms. Using empirical histograms rather than, for example, kernel density estimation implicitly assumes
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1: procedure [H, W ] = factor als(A)
2: initialize H with random values
3: while not converged do
4: W = (HHT )−1HA
5: set negative values in W to zero
6: H = (WTW )−1WTA
7: set negative values in H to zero
8: normalize H and W
9: end while

10: end procedure

Figure 5.8: Alternating least-squares method for non-negative matrix factorization.

that pF (vi) and pF (vj) are unrelated, no matter how similar the values vi and vj are. This assumption is
more accurate for a well-quantized image than one with 24 bits of color.

5.3.2 Factorization

To compute the initial factorization of the local histograms of f ′, we arrange them into a matrix, A, of size
|V ′| × |X|. Our goal is to express A as A = HW , where H is a |V ′| ×N matrix of histograms and W is an
N × |X| matrix of weights. We frame this as the optimization

arg min
H,W

||A−HW ||

subject to Hij ≥ 0,Wij ≥ 0, for all i, j,
∑

i

Hij = 1,
∑

j

Wij = 1,

which we solve with a variant of the alternating least-squares method [124], described in Figure 5.8.
To increase the robustness of the algorithm, we repeat it multiple times with different random initializa-

tions of H and keep the result with the lowest error. To reduce the computational cost, we factor only a
random subset of the histograms in each iteration.

We used alternating least-squares for its simplicity, but repeat that our framework is flexible: any NMF
method can be used. Other approaches in the literature may be faster or allow for the inclusion of priors.
For example, encouraging W to be sparse would correspond to the assumption that each point in the image
is only near a small number (one or two) texture regions. For more discussion of approaches to the NMF
problem, see [122].

5.3.3 Deconvolution

Each row of the matrix W from the factorization step can be reshaped into an image of weights αn that
represents a blurred version of one level of the labeling function, w∗1{n}(σ). To recover σ from these images,
we must deconvolve them, that is, solve

arg min
σ

N−1∑

n=0

∣∣∣∣w ∗ 1{n}(σ)− αn
∣∣∣∣ . (5.8)

The problem in (5.8) is a sum of N deconvolution problems with the added complexity that the image to
be recovered in each of the problems, 1{n}(σ), is {0, 1}-valued. In general, existing deconvolution methods
can be adapted to this problem by relaxing σ to be a set of real-valued images, {σ̂n} with the constraint

that
∑N−1
n=0 σ̂n(x) = 1. Then the joint deconvolution can be solved by working on each σ̂n in turn and

renormalizing every few iterations. Then, σ can be recovered from {σ̂n} via σ(x) = arg maxn σ̂n(x).
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The design freedom our framework offers is especially valuable in the deconvolution step, as there exist
numerous deconvolution methods that allow the use of prior knowledge about the image to be recovered.
If we can describe the shape of the regions with a few parameters, parametric deconvolution can achieve
excellent results. In less constrained cases, many looser priors may be used. For example, total variation
regularization [125] promotes solutions with a blocky appearance.

In this work, we explore two deconvolution methods: The first method is to assume that σ̂n = αn for
all n. This means that the label at a given point corresponds to the histogram with the largest weight at
that point, so σ(x) = arg maxn αn(x). This method, while basic, is useful because it is fast and requires
no particular knowledge about the properties of the labels we want to recover. The downside is that the
resulting labelings tend to be smooth.

The second method is parametric deconvolution. We assume that the regions to be labeled, 1{n}(σ), are
the Voronoi cells of three seed pixel locations. We then deconvolve using gradient descent on the seed pixel
locations. This method is useful only on images that fit this model; we include it as a proof of concept for
parametric deconvolution.

5.3.4 Selecting the Number of Textures

In what we have presented so far, the number of textures N must be known beforehand. While this may be
sufficient in certain applications, we may also want a method for selecting an appropriate N automatically
from the input image. Selecting the number of textures is essentially the same problem as selecting the
number clusters for any unsupervised clustering algorithm. There are numerous approaches to this problem;
for an overview see Section 3.3 in [126]. In general these methods replace the parameter N with one or
more new parameters that control the trade-off between having tight clusters and having a small number of
clusters.

In our work, we have experimented with a simple method in which we set a parameter r < 1 that controls
how much we expect the model error to decrease when the number of textures increases by one. We begin
by setting N = 1, running the whole algorithm, and measuring the model error as the value of the norm
in (5.6). We then increase N by one and repeat this process. As soon as the error at Ni+1 fails to be smaller
than r times the error at Ni, we select Ni as the final number of textures.

5.4 Experiments and Discussion

We compared our segmentation method to five other methods from the literature on synthetic test images
and on real histology images; results are given in Table 5.1 and example segmentations in Figures 5.9,
5.10, 5.11, and 5.12. We now describe the test data, the specifics of these experiments, and each of the
comparison methods and discuss the results of the comparison. The test data and MATLAB code for our
proposed algorithm is available in the reproducible research compendium for this work, [127].

5.4.1 Datasets

The three datasets we used for testing are as follows:
The random texture dataset is a synthetic dataset designed to illustrate the difficulty of segmenting

edgeless images. To generate these images, we choose three seed pixel locations at random and let the ground
truth regions be the Voronoi cells formed by these seeds. For each region, we select a color distribution at
random and select each pixel independently from this distribution (since each pixel is independent of its
neighbors, these images have a persistence length of zero). The resulting images can be segmented by eye,
but lack distinct edges between regions. At the same time, the high frequency content within regions can
be mistaken for edges. We created 25 such images. The number of unique colors in each image is eight and
the size of each image is 128× 128.

The histology dataset consists of color images of H&E-stained tissue (for more details on these images,
see [114]). The ground truth was drawn by an expert pathologist via visual inspection. From a set of 36
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Dataset

Method random texture histology Prague

Normalized 0.785 ± 0.122 0.736 ± 0.176 0.812 ± 0.064

JSEG 0.943 ± 0.067 0.751 ± 0.141 0.839 ± 0.056

EDISON 0.697 ± 0.084 0.798 ± 0.148 0.784 ± 0.077

Efficient 0.566 ± 0.189 0.619 ± 0.129 0.823 ± 0.070

gPb-owt-ucm 0.707 ± 0.206 0.787 ± 0.130 0.835 ± 0.062

ORTSEG 0.989 ± 0.002 0.830 ± 0.144 0.766 ± 0.073

ORTSEG-D 0.992 ± 0.004

Table 5.1: Results of the segmentation comparison (Section 5.4) in terms of the Rand index mean and
standard deviation, with the best result for each dataset in bold. The value one indicates perfect agreement
with the ground truth.

images comprising more than 20 tissue types, we manually selected 36 128× 128 subimages such that each
contained only two tissues. The aim of this process was to include only subimages that had very accurate
ground truth labeling. This dataset is relatively small because only trained pathologists can reliably label
histology images and creating pixel-wise labels is very time-consuming; we hope to expand the dataset in
the future. In the histology dataset, some regions have clearly defined boundaries while many do not, we
expect that our edgeless approach should work well.

The Prague dataset contains the grayscale mosaics from the Prague Texture Segmentation Bench-
mark [11]. These images were designed to be similar to the natural images in datasets like the Berkeley
Segmentation Dataset and Benchmark [3], while avoiding the ambiguity in the ground truth that comes with
human labeling. We take this dataset to be indicative of performance on natural image segmentation; it is
not representative of the class of edgeless images for which our algorithm is designed. The dataset contains
twenty images of size 512× 512 with the number of textures per image varying from three to twelve.

5.4.2 Algorithms Tested

We implemented two versions of the algorithm described in Section 5.3:
ORTSEG (Occlusion of Random Texture SEGmenter) uses the maximum weight deconvolution method

and therefore includes no strong prior information about the region boundaries. The parameters are the
number of textures N (or the automatic selection parameter r), the size of the window |w|, and the number
of colors to quantize to, |V ′|.

ORTSEG-D uses parametric deconvolution. Since it makes strong assumptions on the region bound-
aries, it is only useful on the random texture dataset. The parameters are the same as those for ORTSEG.

We compare our two algorithms to five others:
Normalized Cut [7] forms a graph from an image by using pixels as nodes and assigning edge weights

based on distance and color similarity. It segments by recursively finding graph cuts that maximize the
similarity within and dissimilarity between regions. The only parameter is the number of regions.

JSEG [5] quantizes the colors in an image and then searches for segmentations that produce regions of
uniform color distribution via region growing. JSEG does not rely on edge information, and is therefore the
most similar to ORTSEG of these comparison methods. The parameters are the region merging threshold,
the quantization threshold, and the number of scales.

EDISON [1] uses mean shift to cluster pixels in terms of their color and location. Edge information is
included as a weight during the mean shift computation.
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The parameters are the spatial bandwidth, the range bandwidth, and the minimum region size.
Efficient Graph-Based Segmentation [2] is another graph-based algorithm. Pixels are used as nodes

and edges are assigned between adjacent pixels based on difference in intensity. It groups pixels into regions
when there is no evidence of a boundary between them. The parameters are the smoothing σ, scale k, and
the minimum region size.

gPb-owt-ucm [3] detects local edges with a combination of color and texture features. Global infor-
mation is combined with the local edges via spectral clustering to detect contours in the image. Finally, a
watershed transform finds regions from the contours. As of its publication in 2010, this method was the
top performer on the Berkeley Segmentation Dataset [128], which is a large and well-annotated dataset for
benchmarking natural image segmentation methods. The only parameter is the edge strength required to
create a segment, k.

Note that we do not compare to our previous work [115] because it presented a supervised segmentation
method, while ORTSEG and all the comparison methods are unsupervised.

5.4.3 Experimental Setup

The comparison was performed as a leave-one-out cross validation. For each method and dataset, each
image was sequestered in turn while the others were used to perform a parameter sweep over the parameters
mentioned in Section 5.4.2 with the goal of allowing each method to achieve its maximum performance.
Specifically, we set up the sweep according the principles: (1) When the authors of the method specified
an operating range for a parameter, we swept between its minimum and maximum value. When they did
not, we swept between values that produced opposite kinds of bad results (e.g. too coarse and too fine
segmentations) to ensure that the optimal value was between our end points. (2) When the correct value
for a parameter (e.g. number of regions) was known for an entire dataset, this value was the only one used.
(3) When methods had comparable parameters (e.g. a window size), comparable values were swept. (4) The
total number of parameter settings to sweep did not exceed 150 for any method.

The performance of the method was then evaluated on the sequestered image using the parameters that
resulting in the best average performance on the training set. The results in Table 5.1 represent the average
performance when this process was repeated over all images.

As our performance metric, we chose the Rand index [129,130], calculated as

PR(σtest, σtruth) =
1(
N
2

)
∑

x,y
x<y

c(x, y)d(x, y) + (1− c(x, y))(1− d(x, y)),

where

c(x, y) = 1{σtest(x)}(σtest(y)),

d(x, y) = 1{σtruth(x)}(σtruth(y)).

The Rand index gives the fraction of pairs of pixels that are either grouped into a single region in both
the ground truth and the test image or are in different regions in both the ground truth and the test
image. It therefore ranges from zero to one, with one being perfect agreement between the test image and
the ground truth. We selected it because it naturally handles multi-region unsupervised segmentation and
avoids degenerating when a method greatly over- or under-segments an image. There are a wide variety
of other, similarly good performance metrics for segmentation algorithms; see Section 3 of [131] for a good
overview. In addition to the Rand index, we give results in terms of the variation of information [132]
in Appendix 5.C. The ranking of methods is largely unchanged between metrics and the best-performing
method for each dataset does not change.

5.4.4 Discussion

On the random texture dataset (Figure 5.10), ORTSEG is clearly superior to the comparison methods, which
shows that it excels when segmenting truly edgeless images. ORTSEG-D performs slightly better, giving
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essentially perfect segmentations (Figure 5.9), because it leverages prior knowledge about how the region
boundaries were formed. JSEG has the next best performance, which makes sense because it does not rely
on edge information. We believe that ORTSEG outperforms JSEG in this case because ORTSEG optimizes
its labels over the whole image rather than in a region merging scheme. The other methods have a difficult
time with the random texture dataset, likely due to their reliance on edge information.

(a) Input. (b) ORTSEG (.992). (c) ORTSEG-D (.995).

Figure 5.9: Example segmentation results from ORTSEG and ORTSEG-D on a synthetic texture; Rand
indexes are given in parentheses. The parametric deconvolution in ORTSEG-D forces region boundaries to
be linear, improving the segmentation quality.

On the histology dataset (Figure 5.11), ORTSEG also outperforms the comparison methods, though the
next best method is within a standard deviation. On this dataset, ORTSEG selects a relatively large window
w (25× 25, as opposed to 9× 9 on the random textures), resulting in smoother boundaries compared to e.g.
EDISON. This is an asset because the tissues generally have smooth boundaries. We believe that ORTSEG
performs worse on the histology images than on the random textures because the histology images are much
more complex. The relatively stronger performance of the comparison methods makes sense because at least
some of the images in this dataset do have sharp edges.

On the Prague dataset (Figure 5.12), ORTSEG does not outperform the comparison methods. We believe
that ORTSEG’s relatively poor performance is because, by design, it does not detect the sharp edges between
regions, while other methods do (e.g. note the sharp edges that Normalized Cut finds). Surprising, JSEG
has the best performance on this dataset. We have a few ideas why. First, this may be because the seeded
region growing approach is good at finding the correct number of regions in the image. Second, while JSEG
does not explicitly look for edges, it uses high J values as evidence of boundaries, which may let it leverage
the edges in these images to some degree. Finally, JSEG uses information at a variety of scales while our
implementation of ORTSEG does not, which may help in the Prague dataset where the scale of the textures
is large relative to the complexity of the boundaries.

Parameter selection.

Here we make a few observations about the parameters selected for ORTSEG during the cross validation.
For the random texture dataset, the typical window size selected was 9× 9, while the quantization was set
to 8 colors and the number of textures was set to 3. This relatively small window size makes sense: the
textures in images are small scale (neighboring pixels are statistically independent) so only a small window
is needed to recognize them and has the advantage of localizing the boundaries better than a larger window.
The performance on this dataset is not very sensitive to scale, however, as window sizes from 5 × 5 to
25 × 25 generally give Rand indexes that vary less than .01. In the histology dataset, the typical window
size selected was 25 × 25 and the typical quantization selected was 50 colors. The number of textures was
set to two. Though the histology images are the same size as the random images, the increased scale of
the textures means that a larger window is necessary, reducing the ability of the algorithm to accurately
localize boundaries. Again, results were not very sensitive to changes in window size. Changes to the
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(a) Input. (b) Ground truth (1.000). (c) Normalized (.778). (d) JSEG (.962).

(e) EDISON (.692). (f) Efficient (.602). (g) gPb-owt-ucm (.347). (h) ORTSEG (.987).

Figure 5.10: Example segmentation results for (c)-(g) the comparison methods and (h) our method on the
random texture dataset; Rand indexes are given in parentheses. This dataset is challenging due its lack of
meaningful edges.

number of quantized colors did not make much difference once the number of colors was greater than ten.
The performance of ORTSEG on the Prague dataset was not strong enough to draw any conclusions about
parameters.

Complexity and performance.

The computation complexity of ORTSEG is dependent on the particular implementation of the individual
steps. The local histogram transform is a filtering operation and will therefore scale well with input image
size; this is also true of many deconvolution algorithms. The factorization step as we described it involves
inverting a matrix that grows in size with the square of the number of pixels in the image, however if the
number of textures remains low and no texture region is very small, then in practice a random subset of
pixels can be used for factorization, reducing the complexity of this step.

For our non-optimized MATLAB implementation, run times per image on a Windows 7 laptop with an
Intel Core i7-620M processor for the random texture, histology, and Prague datasets are about 1.5 seconds,
2.5 seconds, and 22 seconds, respectively. On the same computer, segmenting a color 1600 × 1200 image
into five regions (result not shown) takes about 30 seconds. Selecting the number of textures automatically
as described in Section 5.3.4 increases these times multiplicatively because it simply runs the algorithm
repeatedly with different values of N .

5.5 Conclusions and Future Work

Inspired by the difficult task of segmenting histology images, we proposed a new mathematical and al-
gorithmic framework for image segmentation. We began with the idea of textures as random fields and
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(a) Input. (b) Ground truth (1.000). (c) Normalized (.500). (d) JSEG (.821).

(e) EDISON (.851). (f) Efficient (.614). (g) gPb-owt-ucm (.903). (h) ORTSEG (.924).

Figure 5.11: Example segmentation results for (c)-(g) the comparison methods and (h) our method on the
histology dataset; Rand indexes are given in parentheses. This is a real-world example of a dataset in which
the lack of edges is challenging for many segmentation methods.

explored how the dependence between pixels in these textures varies spatially by introducing the notions of
dependence decay and persistence length. We then modeled images as occlusions of textures and showed in
Theorem 2 that the local histograms of these images are convex combinations of the value distributions of
their component textures. Based on this theorem, we proposed a segmentation framework that first discovers
the value distributions of the component textures of an image, finds the contribution of each texture to every
local histogram of the image, then deconvolves the contributions to recover a segmentation.

We presented one implementation of this framework, ORTSEG, and compared it to five segmentation
methods from the literature on three datasets. ORTSEG outperformed the other methods on images of
random textures and real histology images, indicating that it handles the difficult class of edgeless images
and has real applicability to histology image segmentation.

In the future, we aim to expand our mathematical model by studying histograms of filter responses rather
than simply colors. This would allow for a richer characterization of textures and has interesting algorithmic
ramifications. We will also explore other implementations of the presented algorithmic framework, including
calculating histograms over multiple scales and testing a wider variety of deconvolution approaches.
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(a) Input. (b) Ground truth (1.000). (c) Normalized (.819). (d) JSEG (.853).

(e) EDISON (.799). (f) Efficient (.813). (g) gPb-owt-ucm (.813). (h) ORTSEG (.733).

Figure 5.12: Example segmentation results for (c)-(g) the comparison methods and (h) our method on the
Prague dataset; Rand indexes are given in parentheses. This dataset simulates segmentation of natural
images. Our method is not well suited to such images because it by design does not make use of edges as
evidence of boundaries.



Appendix

5.A Proof of Theorem 1

Proof. Let F be a flat texture with value distribution pF and persistence length ε. Given any set of N0

unique pixel locations, Θ = x0, x1, . . . , xN0−1, we aim to partition that set into subsets such that the
minimum distance between two locations in a subset is larger than ε. We call the locations within ε of a
location, xi, its neighbors. We sort the locations in order of decreasing number of neighbors. Let the largest
number of neighbors of any location be A0. We build a subset by first selecting the location with the largest
number of neighbors and then selecting the location with the next largest number of neighbors among all
those that are not neighbors of the first location. We continue this process with each new location selected
such that it is not a neighbor of any previously selected location. We end this process after forming a subset

of size K0 =
⌊
N0

A0

⌋
. This is possible because each addition to the subset can only preclude a maximum of A0

locations from further consideration. Additionally, each location with A0 neighbors must either be in this
set or be a neighbor of a location in this set. If this is not the case, then there are A0 locations not in the
set, which leads to N0 ≥ K0 +A0, which is a contradiction.

Removing the locations in the first subset from consideration, let N1 be the number of remaining locations
and A1 be the maximum number of neighbors among them. We know that A1 ≤ A0−1 because, similarly to
the reasoning above, each point that had A0 neighbors belongs to the first subset or lost at least one neighbor

to the first subset. We now follow the same procedure as above, creating a subset of size K1 =
⌊
N1

A1

⌋
. We

continue the process until all points have been placed in subsets. The same argument as above gives that
Ai+1 ≤ Ai − 1 and therefore,

Ki+1 =

⌊
Ni+1

Ai+1

⌋
=

⌊
Ni −Ki

Ai+1

⌋
=


Ni −

⌊
Ni
Ai

⌋

Ai+1



≥
⌊
Ni − Ni

Ai

Ai+1

⌋
≥
⌊
Ni − Ni

Ai

Ai − 1

⌋

=

⌊
AiNi −Ni
Ai(Ai − 1)

⌋
=

⌊
Ni
Ai

⌋
= Ki.

The above implies that Ki ≥ K0 =
⌊
N0

A0

⌋
. Finally, since the largest possible value for A0 is Aε = 2ε2 +2ε+1,

which is the number of locations in the `1-ball with radius ε, we can define K where Ki ≥ K =
⌊
N0

Aε

⌋
. Thus

we have partitioned the N0 locations of the original set Θ into subsets where all members are separated by
a distance greater than ε, and we have shown that each subset has at least K members.

Let Yi = {y0, y1, . . . , yKi−1} be the ith subset. By the definition of persistence length and flatness, the
random variables F (y0), F (y1), . . . , F (yKi−1) are i.i.d. (persistence length gives independence, flatness gives
identical distribution) with distribution pF . Let the empirical distribution of F (y0), F (y1), . . . , F (yKi−1)

55
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be

p̂YiF (v) =
1

Ki

Ki−1∑

k=0

1{v}(F (yk)).

We can select an arbitrary ordering on the set of values and define the cumulative value distribution and the
empirical cumulative value distribution of F as

PF (v) =

v∑

w=0

pF (w)

and

P̂YiF (v) =
1

Ki

Ki−1∑

k=0

1[0,v](F (yk)),

respectively.
Then, by the Dvoretzky-Kiefer-Wolfowitz inequality [133],

Pr(max |P̂YiF (v)− PF (v)| > α) ≤ 2e−2Kiα
2

.

To return to the (non-cumulative) color distributions we note that

|p̂YiF − pF |(v)

= |(P̂YiF (v)− P̂YiF (v − 1))− (PF (v)− PF (v − 1))|
≤ |(P̂YiF (v)− PF (v))− (P̂YiF (v − 1)− PF (v − 1))|
≤ 2 max |P̂YiF (v)− PF (v)|,

so
Pr(max |p̂YiF (v)− pF (v)| > α) ≤ 2e−Kiα

2/2.

Finally, letting α =
√
−2 log γ

2

Ki
, gives

max |p̂YiF (v)− pF (v)| ≤
√
−2 log γ

2

Ki
≤
√
−2 log γ

2

K
(5.9)

with probability at least 1− γ.
We now examine the histogram formed from all the locations in the original set Θ rather than a single

subset. If we have a total of I subsets, then

p̂Θ
F (v) =

1

N0

N0−1∑

n=0

1{v}(F (xn))

=
1

N0

I−1∑

i=0

∑

y∈Yi
1{v}(F (y)) =

1

N0

I−1∑

i=0

Kip̂
Yi
F (v)
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and therefore

max|p̂Θ
F (v)− pF (v)|

= max

∣∣∣∣∣
1

N0

I−1∑

i=0

Kip̂
Yi
F (v)− pF (v)

∣∣∣∣∣

= max

∣∣∣∣∣
1

N0

I−1∑

i=0

Kip̂
Yi
F (v)− 1

N0

I−1∑

i=0

KipF (v)

∣∣∣∣∣

= max
1

N0

I−1∑

i=0

Ki

∣∣∣p̂YiF (v)− pF (v)
∣∣∣

≤ 1

N0

I−1∑

i=0

Ki

√
−2 log γ

2

K

=

√
−2 log γ

2

K
=

√√√√−2 log γ
2⌊

N0

Aε

⌋ ≤
√
−2Aε log γ

2

N0

with probability at least (1 − γ)I , because each of the I inequalities from (5.9) must hold simultaneously.

Given that the minimum subset size is
⌊
N0

Aε

⌋
, we know that I ≤ Aε, and thus this probability is at least

(1− γ)Aε . We finally set γ = 1− Aε
√

1− δ. The result is

max |p̂Θ
F (v)− pF (v)| ≤

√
−2Aε log 1− Aε

√
1−δ

2

N0

with probability at least (1− δ). This means that F has dependence decay complexity a = (−2Aε log 1
2 (1−

Aε
√

1− δ))1/2, proving the theorem.

5.B Proof of Theorem 2

Proof. Start with the first term of the left-hand side of (5.5),

LwOσ{fn}N−1
n=0 (x, v)

(a)
= Lw

N−1∑

n=0

1{n}(σ(x))fn(x)

(b)
=
∑

x′∈X
1{v}

(
N−1∑

n=0

1{n}(σ(x′))fn(x′)

)
w(x− x′)

(c)
=

N−1∑

n=0

∑

x′∈X
1{n}(σ(x′))1{v}(fn(x′))w(x− x′), (5.10)

where (a) follows from the definition of occlusion (5.2), (b) from the definition of the local histogram trans-
form (5.1), and (c) because, for a given v and n, the indicator functions are only nonzero when σ(x′) = n
and fn(x′) = v.

We now manipulate (5.10) so that it becomes, for each n, a histogram sampled from fn. Using the fact
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that w is a constant filter (that is, it takes only the value 1/|w| or 0), (5.10) becomes

N−1∑

n=0

∑
x′∈X 1{n}(σ(x′))1{v}(fn(x′))1(0,1](w(x− x′))

|w|
(a)
=

N−1∑

n=0

|Θn(x)|
|w|

∑
x′∈X 1{n}(σ(x′))1{v}(fn(x′))1(0,1](w(x− x′))

|Θn(x)|

(b)
=

N−1∑

n=0

|Θn(x)|
|w| p̂

Θn(x)
fn

(v), (5.11)

where Θn(x) = {y | σ(y) = n and w(x − y) > 0}. The equality (a) is a multiplication by one and (b) uses
the definition of a histogram, (5.3).

Turning our attention to the second term of the left-hand side of (5.5), we have

N−1∑

n=0

[
w ∗ 1{n}(σ)

]
(x)pFn(v)

(a)
=

N−1∑

n=0

∑

x′∈X
w(x− x′)1{n}(σ(x′))pFn(v)

(b)
=

N−1∑

n=0

∑
x′∈X 1(0,1](w(x− x′))1{n}(σ(x′))

|w| pFn(v)

(c)
=

N−1∑

n=0

|Θn(x)|
|w| pFn(v), (5.12)

where (a) follows from the definition of convolution, (b) from w being a constant filter, and (c) from defining
Θn(x) as above.

Subtracting (5.12) from (5.11), we have

∣∣∣∣∣
N−1∑

n=0

|Θn(x)|
|w| (p̂

Θn(x)
fn

(v)− pFn(v))

∣∣∣∣∣
(a)

≤
N−1∑

n=0

|Θn(x)|
|w|

∣∣∣p̂Θn(x)
fn

(v)− pFn(v)
∣∣∣

(b)

≤
N−1∑

n=0

|Θn(x)|
|w| an|Θn(x)|−1/2, (5.13)

where (a) follows from the triangle inequality and positivity of |Θn(x)| and |w| and (b) from the dependence-
decay property of {F0, F1, . . . , FN−1}. The probability of (b) holding for each n is 1−δ, thus the probability
of it holding for all of them simultaneously is (1− δ)N .

We aim to bound (5.13) by its maximum. To do this, we first replace an with a = max{a0, a1, . . . , aN−1}.
We then maximize the quantity over |Θ0|, |Θ1|, . . . , |ΘN−1| with the constraint that |Θ0| + |Θ1| + . . . +
|ΘN−1| = |w|. This maximum occurs at |Θ0| = |Θ1| = . . . = |ΘN−1| = |w|/N , meaning that (5.13) is
bounded by

N−1∑

n=0

1

N
a

( |w|
N

)−1/2

= a

( |w|
N

)−1/2

,

thus proving the theorem.
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5.C Variation of Information Results

Dataset

Method random texture histology Prague

Normalized 0.819 ± 0.354 0.640 ± 0.336 1.632 ± 0.218

JSEG 0.294 ± 0.188 0.618 ± 0.269 1.327 ± 0.237

EDISON 1.317 ± 0.341 0.509 ± 0.228 1.573 ± 0.392

Efficient 0.918 ± 0.210 0.756 ± 0.252 1.485 ± 0.429

gPb-owt-ucm 0.590 ± 0.285 0.578 ± 0.200 1.545 ± 0.400

ORTSEG 0.097 ± 0.015 0.452 ± 0.268 1.472 ± 0.367

ORTSEG-D 0.065 ± 0.031

Table 5.C.1: Results of the segmentation comparison (Section 5.4) in terms of the variation of information
mean and standard deviation, with the best result for each dataset in bold. The value 0 indicates perfect
agreement with the ground truth.



Chapter 6

Describing Angular Distributions
with the FS-KDE

The segmentation method of Chapter 5 describes textures by their distribution of colors. What about
textures that have the same colors arranged in different patterns? In this chapter, we were inspired by
this question to create a descriptor for distributions of angles. Distributions of angular quantities, such as
gradients, are a central part of several state-of-the-art image processing algorithms, but these distributions
are usually described via histograms, and therefore lack rotation invariance due to binning artifacts. Like
histograms, our method allows angular distributions to be represented by a finite number of values, but
removes binning artifacts. We discuss how our method can produce a rotation invariant descriptor and then
show that it compares favorably to gradient histograms for patch matching, person detection, and texture
segmentation.

6.1 Introduction

Central to the tissue segmentation approach of Chapter 5 was the idea that a tissue (or, in fact, any
texture), could be described by its distribution of colors. But there is more to texture than color: a
checkerboard and pattern of black and white stripes have the same distribution of colors, but they are
certainly different textures. One way to address this problem is to include the distribution of edges in the
texture description. Checkerboards have both horizontal and vertical edges, while black and white stripes
have only horizontal (or only vertical) edges. The focus of this chapter is to explore how to efficiently represent
distributions of oriented edges; our representation is useful in a variety of image processing applications
including segmentation.

6.1.1 Previous Work

In image processing, distributions of angular quantities are usually described via histograms. These angular
histograms are a key component of many of the most successful algorithms for a variety of image processing
tasks. For example, SIFT [134], along with some of its variants including GLOH [135], SIFT+GC [136],
and CSIFT [137] (but not SURF [51] or PCA-SIFT [138]), use histograms of local gradient angles to form
a keypoint descriptor. SIFT descriptors are widely used, with applications including medical image regis-
tration [139], human activity analysis [140], and object recognition [141]. HOG [4] and its extensions, such
as part-based models [142], calculate local gradient histograms at every point in an image and are useful in
human [143] and object [144] detection.

Despite their widespread use in vision, histograms have a fundamental weakness when estimating dis-
tributions of angular quantities because they rely on binning and are therefore not invariant to rotation.
That is, a rotation of the input angles results in a rotation of the histogram plus distortion; see Figure 6.1.
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Figure 6.1: Top row: A weighted set of angles, its 20-bin histogram, and the estimate based on the proposed
method (FS-KDE) using 20 numbers. Bottom row: The same set of angles rotated counter-clockwise by
45◦, its histogram, and FS-KDE. While the rotation distorts the histogram, it only causes a corresponding
rotation in the FS-KDE.

This problem affects even methods that attempt to be invariant to rotation. For example, SIFT [134] builds
histograms with respect to a dominant angle, but this dominant angle is itself estimated from an angular
histogram. The radial gradients computed in RIFF [145] are invariant to rotation, but are collected into
angular histograms which are not.

6.1.2 Current Work

In this chapter, we present a new method for estimating the distribution of a set of angular quantities without
resorting to binning. Our new estimate can be used as a replacement for histograms in any algorithm where
rotation invariance is beneficial.

The outline of the chapter is as follows. In Section 6.2, we develop the theory of our method including its
derivation, properties, and extensions. In Section 6.3, we provide experiments in three domains that support
the efficacy of the method as a tool in image processing. We conclude in Section 6.4.

6.2 The Fourier Series Kernel Density Estimate

We call our method for estimating and representing angular distributions the Fourier Series Kernel Density
Estimate (FS-KDE); we now describe its properties, canonicalization, image version, and implementation
details.

6.2.1 Derivation of the FS-KDE

The FS-KDE builds on the idea of kernel density estimates (KDEs) [146]. A KDE builds an estimate of a
continuous distribution from its samples by putting a lump (kernel) of density at the location of each sample.
KDEs create smooth estimates and, under certain assumptions, converge to the correct distribution with
fewer samples than histograms [146]. However, KDEs are not as useful as histograms in image processing,
because (1) evaluating the KDE at a point requires all of the samples to be stored in memory and (2) there
is no straightforward way to compute distances between KDEs. Histograms alleviate these problems, but are
not well suited to estimating angular distributions because they rely on binning, which, as Figure 6.1 shows,
causes distortion when the input sample is rotated. The key insight of the FS-KDE is that with correct
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H(θ) = CK cos2K
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Figure 6.1: Examples of the powered cosine kernel (6.2) for different orders, K. Each kernel is 2π-periodic
and integrates to one. As K increases, the kernels become sharper.

kernel selection, the KDE of a set of angles will be band-limited, meaning that it can be exactly represented
by a finite number of its Fourier series coefficients. As our subsequent discussion will show, storing the KDE
in terms of its Fourier series coefficients addresses both the aforementioned limitations of KDEs without
binning.

Given an angle-weight pair, (Θ,W ), consisting of a set of angles, Θ =
{
θ0, θ1, . . . , θN−1

}
, and a

set of positive scalar weights, W =
{
w0, w1, . . . , wN−1

}
, we form a KDE, f :

[
−π, π

]
→ R, of their

distribution as a sum of kernels,

f(θ) =
1

N

N−1∑

n=0

wnH (θ − θn) , (6.1)

where the kernel, H(θ), is a positive function that integrates to one.1 For example, the the angle-weight pair
might come from the angles and magnitudes of the gradients in an image.

We now select a specific kernel,

H(θ) = CK cos2K

(
θ

2

)
, (6.2)

where CK is a normalizing constant and K, which we call the order, controls the width of the kernel
(Figure 6.1). We pick this kernel because it is well localized in the angular domain, it has a controllable
width, and because it results in a KDE that is bandlimited.

We can rearrange (6.1) to reveal the Fourier series coefficients of the KDE, f ,

1For greater flexibility, we do not require f to integrate to one; we thus use the term distribution loosely.
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f(θ) =
1

N

N−1∑

n=0

wnCK cos2K

(
θ − θn

2

)

(a)
=

CK
N

N−1∑

n=0

wn

(
e
j
2 (θ−θn) + e−

j
2 (θ−θn)

2

)2K

(b)
=

CK
22KN

N−1∑

n=0

wn

2K∑

p=0

(
2K

p

)
e
j
2p(θ−θn)e−

j
2 (2K−p)(θ−θn)

(c)
=

2K∑

p=0

CK
22KN

(
2K

p

)N−1∑

n=0

wne
j(K−p)θnej(p−K)θ

(d)
=

K∑

k=−K

(
CK

22KN

(
2K

K + k

)N−1∑

n=0

wne
−jkθn

)

︸ ︷︷ ︸
Fk

ejkθ (6.3)

where (a) follows from Euler’s formula; (b) from the binomial theorem; (c) from an interchange of finite sums
and combining the exponents; and (d) from the substitution k = p−K. Equation (6.3) is the expression of f

in terms of its Fourier series coefficients, Fk. We denote the relationship between f(θ) and Fk as f(θ)
FS↔ Fk.

From (6.3), we see that f is bandlimited: it has 2K + 1 non-zero Fourier series coefficients. We also see
that F−k is the complex conjugate of Fk, so, in practice, only K + 1 complex values must be computed and
stored to represent f . Thus, an FS-KDE of order K takes the same amount of storage as a histogram with
2(K + 1) bins, which addresses the first limitation of KDEs discussed in Section 6.2.1.

6.2.2 Properties

We now discuss some useful properties of the FS-KDE. First, since F is simply the Fourier series represen-
tation of f , we can leverage all of the properties of the Fourier series [147]. Of specific interest here are

linearity, αf(θ) + βg(θ)
FS←→ αFk + βGk, and Parseval’s equality, ||f ||2 = 2π||F ||2. Together, these mean

that the distance between two FS-KDEs, ||f − g||2, can be computed as the finite sum 2π||F −G||2, which
addresses the second limitation of KDEs discussed in Section 6.2.1.

The FS-KDE is rotation invariant in the sense that a rotation of the angles in the angle-weight pair
results in a corresponding rotation in the FS-KDE. To be more precise, begin with an angle-weight pair

(Θ,W ). Form its rotation, (Θφ,W ), where Θφ =
{
θ0 + φ, θ1 + φ, . . . , θN−1 + φ

}
. If F is the FS-KDE

for (Θ,W ) and Fφ is the FS-KDE for (Θφ,W ), then from (6.3),

Fφ,k =
CK

22KN

(
2K

K + k

)N−1∑

n=0

wne
−jk(θn+φ)

= e−jkφ
CK

22KN

(
2K

K + k

)N−1∑

n=0

wne
−jkθn

= e−jkφFK . (6.4)

By the shift in time property of Fourier series, (6.4) means that fφ is equal to f circularly shifted by φ.
Thus, a rotation in the input angles has caused a corresponding rotation in the KDE.

6.2.3 Image Version

A common approach in object detection is to estimate local angular distributions for every location in an
image. For example, this is the approach of deformable parts models [142]. In this section, we describe
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efficient computation of local FS-KDE estimates on images via linear filtering.
Let (Θ(x),W (x)) be a weighted angular image, where Θ : X → [−π, π] is an image of angles and W :

X → R is a corresponding image of weights, where X is a discrete set of pixel locations (e.g. Z1200×Z1600).
For example, (Θ(x),W (x)) may be formed from computing the gradient of a traditional image. (Note that
we write the argument x in (Θ(x),W (x)) to make a distinction between the weighted angular image and the
angle-weight pair introduced in Section 6.2.1.)

We aim to compute a KDE around each point x ∈ X, with a neighborhood defined by h, a positive
window function with ||h||1 = 1. We define the FS-KDE for (Θ(x),W (x)) at location a x and angle θ as

f(x, θ) =
∑

y∈X
W (y)CK cos2K

(
θ −Θ(y)

2

)
h(x− y),

where, as before, K controls the sharpness of the kernel. Then, following a similar procedure as in Sec-
tion 6.2.1, we arrive at an expression for f(x, θ) in terms of its Fourier series coefficients,

f(x, θ) =

K∑

k=−K
Fk(x)ejkθ,

where

Fk(x) =
CK
22K

(
2K

K + k

)(
We−jkΘ ∗ h

)
(x),

∗ denotes convolution, and We−jkΘ is computed pointwise. This means that local FS-KDEs of order K can
be computed via K + 1 complex filtering operations.

6.2.4 Canonicalization

We showed in Section 6.2.2 that the FS-KDE is rotation invariant in the sense that a rotation of the input
angles causes a corresponding rotation in the density estimate. We may, however, also desire that a rotation
of the input angles cause no change at all to the estimated distribution. The would be useful if, e.g., FS-
KDEs are being used as point descriptors in an image matching application. We can achieve this by rotating
FS-KDEs to a standard, or canonical, position, such that all FS-KDEs that are rotations of each other end up
with the same canonical version. In this section, we present two methods of achieving this canonicalization.

F1 Canonicalization

A natural way of canonicalizing an angle-weight pair, (Θ,W ), is to rotate the angles such that their mean
is equal to zero. One way to define the angular mean is to assign to each angle θn a complex number,
zn = wne

jθn with modulus wn and argument θn, and then sum these numbers and take the argument of the

result, θ̄ = arg
(∑N−1

n=0 zn

)
, where we use arg(z) to denote the argument of the complex number z. Then,

the canonical angle-weight pair is (Θ̃,W ), where Θ̃ = Θ−θ̄, which is the rotation of Θ by −θ̄.
From (6.3) we see that the argument of the first Fourier series coefficient of the corresponding FS-KDE,

arg(F1), is equal to −θ̄. As a result, canonicalizing the angle-weight pair causes F1 to be real because θ̄ = 0.
Using this fact, we can directly canonicalize an FS-KDE, f , without having to know the angle-weight pair
that it came from. We define the canonical version of f as

f̃(θ)
FS←→ F̃k = e−jk arg(F1)Fk, (6.5)

which is the rotation of f that makes F1 real.
We now show that this canonicalization has the property that rotating a set of angles does not change its

canonical FS-KDE. In other words, all rotations of an angle-weight pair have the same canonical FS-KDE,
f̃ .
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Lemma 1. Let (Θ,W ) be an angle-weight pair, let (Θφ,W ) be its rotation by φ, and let F and Fφ be the
corresponding FS-KDEs. Then,

F̃φ,k = F̃k

Proof. Beginning with the FS-KDE (6.3), we have

arg(Fφ,1) = arg

(
CK
22K

(
2K

K + 1

)N−1∑

n=0

wne
−j(θn+φ)

)

= arg

(
e−jφ

CK
22K

(
2K

K + 1

)N−1∑

n=0

wne
−jθn

)

= arg(F1)− φ.

We know from Section 6.2.2 that Fφ,k = e−jkφFk, and thus using the definition of canonicalization (6.5),

F̃φ,k = e−jk arg(Fφ,1)Fφ,k

= e−j(arg(F1)−φ)ke−jkφFk

= e−jk arg(F1)Fk = F̃k.

Stability of F1 Canonicalization

Now that we have shown that F1 canonicalization aligns distributions that are exact rotations of each other,
we study its effect on distributions that are noisy rotations of each other. Intuitively, a good canonicalization
will give similar canonical versions to all FS-KDEs that are noisy rotations of each other; We call this property
stability. Conversely, a bad canonicalization might amplify small amounts of noise, assigning similar FS-KDEs
very different canonical versions. The following theorem states that the stability of F1 canonicalization is
related to the magnitude of the first Fourier series coefficient of the distribution that is being canonicalized,
|F1|. We leave the proof of the theorem to Appendix 6.A.

Theorem 3 (Stability of F1 Canonicalization). Let (Θ,W ) be an angle-weight pair. Without loss of gener-

ality, assume θ̄ = 0 and
∑N−1
n=0 wn = N . Let (Θε, αW ε) be its noisy version such that wεne

jθεn = wne
jθn + εn

where the εn are drawn according to the complex normal distribution with mean zero and standard deviation
σ/
√
N (i.e., I(εn) ∼ N (0, σ2/N) and R(εn) ∼ N (0, σ2/N)), and α scales W ε such that

∑N−1
n=0 αw

ε
n = N .

Let f and f ε be the Kth-order FS-KDEs of (Θ,W ) and (Θε,W ε), respectively. Then

E
[
||F ε − F̃ ε||

]
≤ E



√√√√

K∑

k=−K

(
2BkN sin

(
k

2
arctan

(
B1ε

|F1|+B1υ

)))2

 , (6.6)

with ε ∼ N (0, σ2), υ ∼ N (0, σ2), and Bk being the coefficient from (6.3), Bk = CK
22KN

(
2K
K+k

)
.

To make use of Theorem 3, we note that the distance between a canonical distribution and its canonical
noisy version is bounded by the distance due to noise and the distance due to canonicalizing the noisy version,
i.e. ||F − F̃ ε|| ≤ ||F − F ε|| + ||F ε − F̃ ε||. The theorem lets us calculate the expected value of ||F ε − F̃ ε||
only as a function of |F1| relative to the variance of the noise, σ, without having to know f or f ε. Notably,

E
[
||F ε − F̃ ε||

]
approaches zero as |F1| grows relative to the noise. Because the norm is always non-negative,

its expected value approaching zero implies that its variance is also approaching zero. This means that as
noise gets smaller, ||F − F̃ ε|| ≈ ||F − F ε|| ≈ 0, which is what we set out to show.

We illustrate this with a simulation (Figures 6.2 and 6.3). We first generate two random distributions,
one with a large |F1| and one with a small |F1|. For each of these distributions, we generate noisy versions for
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a range of noise levels and calculate ||F − F ε|| and ||F ε − F̃ ε||. Comparing Figures 6.2 and 6.3, we see that
||F ε − F̃ ε|| is expected to be smaller in Figure 6.2, where |F1| is large. For comparison, we plot the distance
caused by rotating these distributions, ||F − Fφ|| (Figure 6.2(e) and 6.3(e)). In Figure 6.2, the distance
caused by rotation is larger than the distance due to canonicalizing the noisy versions, but in Figure 6.3, the
distance due to canonicalization is significant compared to the rotation distance.

As a concrete example, take a patch matching application, such as we describe in Section 6.3.1. If
distributions in a dataset are randomly rotated and |F1| for each patch is large relative to the expected
noise, it makes sense to canonicalize the distributions before matching because much of the distance between
corresponding patches will come from their rotation, which canonicalization will remove. If, on the other
hand, patches in the dataset are not rotated, canonicalization will hurt performance because ||F ε − F̃ ε||
will increase the distance between matching patches. As |F1| for the patches shrinks relative to the noise,
canonicalization becomes increasingly unstable. This is because when |F1| is small, a small amount of noise
can greatly affect arg(F1). This situation can arise in two ways. The first is when all weights are small,
meaning the distribution being calculated is essentially zero; instability is no problem in this case because
rotation has no effect on FS-KDEs that are nearly zero. The second is when the distribution has symmetry,
e.g., when Θ contains only angles only at zero and π. Such cases may arise in practice, leading us to explore
a generalization of F1 canonicalization that can remove these symmetries.

Fk Canonicalization

We can easily generalize the idea in (6.5) to rotating f such that any one of the Fks is real,

f̃ `(θ)
FS←→ F̃ `k = e−jk arg(F`)/`Fk.

For any choice, 1 ≤ ` ≤ K, we can show that rotating the input set of angles does not affect the canonical
version, using the same steps as for F1 canonicalization.

The benefit of using ` > 1 is that for angular distributions with a certain kind of symmetry, |F1| may
be small (and thus F1 canonicalization will not be robust to noise), while, e.g., |F2| may be large, meaning
F2 canonicalization will be robust to noise. The trade-off is that if |F1| and |F2| are of similar size, F1

canonicalization will be more robust to noise. (To see this, note that F2 canonicalization is just another
mean subtraction, except that the mean is calculated by first doubling all the angles in Θ. This doubling
can remove unwanted symmetry, but it also amplifies noise.)

In our experiments, we leverage this in the following way: When what is important is pairwise distances
between FS-KDEs, then we can define a canonical distance,

||f − g||canonical = 2πmin
φ
||F − e−jkφG||.

Finding this distance requires an optimization over φ, so is not appropriate when many pairwise distances
must be computed. A reasonable approximation, however, is

||f − g||Fk canonical = min
1≤`≤K

||f̃ ` − g̃`||, (6.7)

which only requires the calculation of K distances.

6.2.5 Practical Considerations

In this section, we explore a few practical considerations that must be taken into account when implement-
ing the FS-KDE algorithm, including calculation of CK , a normal approximation to (6.3), and creating
approximate FS-KDEs via truncation.



CHAPTER 6. DESCRIBING ANGULAR DISTRIBUTIONS WITH THE FS-KDE 67

(a)

(b)
σ/

√
N

||F − F ǫ||

0 0.1 0.2
0

0.1

(c)

σ/
√
N

||F ǫ − F̃ ǫ||

0 0.1 0.2
0

0.1

0.2

0.3

(d)

||F − Fφ||

φ

−π −π
2 0 π

2 π
0

0.2

0.4

(e)

Figure 6.2: (a) A distribution, f . (b) Two of its noisy versions, f ε. (c) The distance between f and its noisy
versions plotted as a function of increasing noise. (d) The additional error introduced by F1 canonicalization
of the noisy versions, along with the expectation from Theorem 3. Because this distribution has a large |F1|
value compared to the noise, F1 canonicalization makes small changes to noisy versions of f . (e) Curves
indicate ||F−Fφ|| (bold line) and ||F−F εφ|| (thin lines) for f , two noisy versions of f , and their rotations by φ.

Because |F1| is large compared to the noise, ||F − F̃ εφ|| (horizontal lines) is almost as small as minφ ||F −F εφ||.
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Figure 6.3: (a) A distribution, f . (b) Two of its noisy versions, f ε. (c) The distance between f and its noisy
versions plotted as a function of increasing noise. (d) The additional error introduced by F1 canonicalization
of the noisy versions, along with the expectation from Theorem 3. Because this distribution has a small |F1|
value compared to the noise, F1 canonicalization may make large changes to noisy versions of f . (e) Curves
indicate ||F − Fφ|| (bold line) and ||F − F εφ|| (thin lines) for f , two noisy versions of f , and their rotations

by φ. Because |F1| is small compared to the noise, ||F − F̃ εφ|| (horizontal lines) is sometimes large.
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Normalization

We have not yet calculated CK , the normalizing constant for the kernel H in (6.2). We do this via a specific
selection of (Θ,W ) and (6.3), giving

∫ 2π

0

H(θ)dθ
(a)
=

∫ 2π

0

f(θ)|Θ={0},W={1} dθ

(b)
=

∫ 2π

0

K∑

k=−K

(
CK
22K

(
2K

K + k

))
ejkθdθ

(c)
=

∫ 2π

0

CK
22K

(
2K

K

)
dθ =

CK
22K−1

(
2K

K

)
π,

where (a) follows from the definition of a KDE (6.1), (b) from the expression of an FS-KDE in terms of its
Fourier series coefficients (6.3), and (c) from the symmetry of ejkθ for k 6= 0. So to make the kernel, H,
integrate to one, we set

CK =
22K−1

(
2K
K

)
π
. (6.8)

Thus, the formula for Fourier series coefficients of the FS-KDE is

Fk =
(K!)2

2πN(K − k)!(K + k)!

N−1∑

n=0

wne
−jkθn . (6.9)

Normal Approximation

For large Ks, the binomial coefficients in (6.3) and (6.8) can be replaced with a normal approximation,
(
n

k

)
≈ 1

(1/2)n
√
nπ/2

e−
((k−n)/2)2

n/2 ,

giving a approximate version of (6.9),

Fk =
1

2πN
e−k

2/K
N−1∑

n=0

wne
−jkθn . (6.10)

This approximation saves computation as compared to (6.9) and also reveals that the Fks decay exponentially.
The quality of the normal approximation improves as K increases; in our implementation we switch from
(6.9) to (6.10) when 2K ≥ 80.

Truncation

In our current formulation, the bandwidth of the kernel density estimate is controlled by K, which also
governs how many Fourier series terms are nonzero. Careful inspection of Figure 6.1 reveals that the kernels
do not sharpen quickly as K increases: sharp kernels require a large K and therefore a long descriptor.
One way to achieve sharp kernels with a shorter descriptor is through truncation. The approximation (6.10)
reveals that when K is large, the decaying exponential term will cause |Fk| to be very small for k near K.
In fact,

max
Θ

|Fk|
|F0|

= e−k
2/K .

Thus, for a fixed K and a small truncation threshold ε, we create a truncated FS-KDE, F̂ , according to

F̂k =

{
0 if e−k

2/K < ε,

Fk otherwise.
(6.11)
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Figure 6.4: Examples of the powered cosine kernel of order 64 with different levels of truncation, where ` is
the number of non-zero coefficients. Distortion is barely noticeable even when three quarters of the Fks are
set to zero (upper-right panel).

In the angular domain, truncation introduces distortion into the kernel, but this distortion is slight even
when many coefficients are truncated (see Figure 6.4). We provide MATLAB code for the FS-KDE in the
reproducible research compendium for this work, [148].

6.3 Experiments and Discussion

We now present experiments in keypoint description, person detection, and texture segmentation that show
the promise of the FS-KDE as a tool in image processing.

6.3.1 Keypoint Description

A typical approach to image registration involves selecting keypoints from the images to be matched, finding
pairs of corresponding keypoints, and solving for the transform based on the location of these pairs. One way
to find correspondences between keypoints is to calculate a keypoint descriptor from the pixels around each
keypoint. When two keypoints correspond, the distance between their descriptors should be low; when they
do not, it should be high. A good keypoint descriptor should be highly discriminative while simultaneously
being invariant to the transform that the registration aims to reverse.

We evaluate the performance of the FS-KDE as a keypoint descriptor using the University of British
Columbia Multi-view Stereo Correspondence Dataset [12]. This dataset was constructed by extracting
image patches around difference of Gaussian interest points in many images of the same few scenes (Statue
of Liberty, Yosemite National Park, and Notre-Dame Cathedral). Depth maps of the scenes were used to
determine which interest points match in 3D space, resulting in lists of corresponding and non-corresponding
image patches (see Figure 6.1). The patches are 64× 64 greyscale images; in our experiments we crop them
to a circular region with a diameter of 60 pixels to avoid artifacts when rotating the patches.

We compare three simple keypoint descriptors: (1) The raw intensity descriptor is formed by concate-
nating the pixel values of the patch into a vector. It has dimension equal to the number of pixels in the
patch, 2828. (2) The gradient histogram descriptor is formed by computing the image gradient at each pixel
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(a) Corresponding. (b) Non-corresponding.

Figure 6.1: Examples of (a) corresponding and (b) non-corresponding pairs of patches from the British
Columbia Multi-view Stereo Correspondence Dataset [12]. Though the patches are rotated to a canonical
orientation, corresponding patches still exhibit viewpoint and intensity variation.
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in the patch and forming a histogram of the gradient angles weighted by the norm of the gradient. The
dimension of the descriptor is equal to the number of histogram bins; we vary it between 4 and 32. (3) The
FS-KDE descriptor is formed by computing the image gradient at each pixel and computing an FS-KDE of
the gradient angles weighted by the norm of the gradient. We truncate the descriptors according to (6.11)
(ε = 1× 10−5) and we vary the descriptor length between 4 and 32.

Additionally, we compare three canonical versions of these descriptors: (1) The canonical gradient his-
togram, which is the same as the gradient histogram but with its bins rotated so that the first bin has
the largest value. (2) The F1 canonical FS-KDE, which follows the canonicalization procedure from (6.5).
(3) The Fk canonical FS-KDE, which follows the canonicalization procedure from (6.7).

We use each of these methods to compute descriptors for 250,000 pairs of corresponding patches and
250,000 pairs of non-corresponding patches. Again, a good descriptor will give small distances between
corresponding patches and large distances between non-corresponding patches. Figure 6.2 shows the dis-
tributions of these distances for the FS-KDE descriptor with dimension equal to sixteen. To quantify the
performance of each descriptor, we estimate its probability of matching error, E. That is, if a corresponding
and non-corresponding pair are selected at random, what is the probability that the descriptor distance
between the non-corresponding pair is smaller than the descriptor distance between the corresponding pair?

Given C =
{
c0, c1, . . . , cM−1

}
and D =

{
d0, d1, . . . , dN−1

}
, lists of descriptor distances between

corresponding and non-corresponding pairs with lengths M and N , respectively,

E =

M−1∑

i=0


 1

M

N−1∑

j=0

1

N
1dj≤ci


 , (6.12)

where 1P is an indicator function equal to one when P is true and zero otherwise.
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Figure 6.2: Distribution of distances between descriptors for corresponding and non-corresponding patches
for the FS-KDE patch descriptor on 500,000 pairs of patches from the University of British Columbia Multi-
view Stereo Correspondence Dataset [12]. Lines represent 50-bin histograms.

Figure 6.3 shows the results of our comparison of keypoint descriptors in terms of error probability, E.
The FS-KDE shows the best overall performance, giving lower error chance for all descriptor sizes larger
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than four and also achieving the lowest error chance of any of the descriptors (.168 at descriptor length
10). Its performance declines as the descriptor length increases, which is consistent with the idea that the
descriptor becomes overly specific when it is long, increasing distances between corresponding patches and
therefore increasing the error chance. The error chance of the gradient histogram descriptor also increases
with descriptor size, for the same reason. We attribute the gap in performance between the FS-KDE and
gradient histogram descriptors to the FS-KDE’s smooth handling of small rotations: Even though the patches
in the dataset are rotated to a canonical orientation, small rotations do exist between corresponding patches
(see Figure 6.1 for examples), which could distort the gradient histograms. The canonical versions of the FS-
KDE and histograms perform uniformly worse than their non-canonical counterparts, which is as expected
since no canonicalization should be necessary for this dataset. In this case, canonicalization will decrease
the distance between non-corresponding patches more than it does for corresponding patches, increasing the
error chance.

Error chance

Descriptor size

intensity

c hist

Fk FS-KDE

F1 FS-KDE

hist

FS-KDE

0 4 8 12 16 20 24 28 32 2828

0.15

0.20

0.25

0.30

Figure 6.3: Estimated chance of a patch matching error (calculated via (6.12)) for intensity, gradient his-
togram, and FS-KDE descriptors of varying size. The best performance (lowest error chance) is achieved by
the FS-KDE descriptor of size ten. The canonical descriptors perform poorly in this experiment because the
patches are already in a canonical orientation.

In a separate experiment, we randomly rotated each patch in the dataset and ran the same comparison
(Figure 6.4). As expected, this greatly increased the error rate for the histogram and FS-KDE descriptors
(recall that the FS-KDE is a rotation invariant transform, but that the descriptor it creates is not rotation
invariant). The canonical versions of these descriptors were mostly unaffected by the change, since they
are rotation invariant descriptors. Both canonical versions of the FS-KDE were superior to the canonical
gradient histogram, which we hypothesize is due to the robustness to noise of the FS-KDE canonicalization.
The Fk canonicalization was better than the F1 canonicalization, which suggests that symmetries of the type
discussed in Section 6.2.4, which break the F1 canonicalization, exist in this dataset.

6.3.2 Person Detection

We now evaluate the usefulness of the FS-KDE as a feature in a person detection application. A typical
approach to person detection (or, in general, object detection), is to train a classifier on features which
consist of distributions of angles. To preserve some spatial information, these distributions are calculated
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Figure 6.4: Estimated chance of a patch matching error for intensity, gradient histogram, and FS-KDE
descriptors of varying size on patches with random orientation. The FS-KDE and gradient histogram de-
scriptors cannot handle patch rotations, so have much higher error chance than in Figure 6.3. The best
performance (lowest error chance) is now achieved by the FS-KDE descriptor with Fk canonicalization.

in a few windows of the input, e.g., upper left, upper right, lower left, lower right, and then concatenated
together to form the final feature vector.

We use the INRIA person dataset [4] to do a comparison of feature detectors for human detection. This
dataset is intended for supervised classification of images as containing a person (positive image) and not
containing a person (negative image). It includes a training set of 2,416 positive and 1,218 negative images
and a testing set of 1,126 positive and 453 negative images. For all images, we use the center 64× 128 pixels
for feature extraction.

We compare four feature extractors: (1) The raw intensity descriptor simply uses the pixels of the image
as features and therefore has length 8192. (2) The gradient histogram descriptor separates the image into
8× 8-pixel blocks and computes a histogram of gradients inside each block, concatenating these histograms
into a feature vector. We vary the number of bins per block from four to sixty-four. (3) The HOG descriptor,
originally described in [4], also forms gradient histograms from blocks of the input image, but includes an
additional block normalization step that can increase the feature’s illumination invariance. We use the
implementation in [149] and vary the number of orientations per block from four to sixty-four. (4) The
FS-KDE descriptor forms truncated (ε = 1 × 10−5) FS-KDEs for 8 × 8-pixel blocks of the input. We vary
the descriptor length per block from four to sixty-four.

We use each of these methods to extract features from the training and test sets. For each set of features,
we train a linear SVM classifier (in MATLAB) on the training set, then use it to classify each image in the
test set as negative or positive. In a separate experiment, we create new testing and training datasets by
rotating each image between 15 and −15 degrees uniformly at random. This rotation is not enough that
canonicalization is necessary, but is meant to test the robustness of the features to small rotations. We
report accuracy, the number of correctly classified images in the testing set divided by the total number of
images in the testing set, from both experiments in Figure 6.5.

For the unrotated set, the HOG features have the highest accuracy, except when the feature vector size is
very small (four numbers per image block, resulting in 256 numbers per image). We consider HOG features
to be state of the art for this problem, so their strong performance is not surprising; we suspect that the
increase in performance over the gradient histogram and FS-KDE features comes from the normalization
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Figure 6.5: Accuracy on a person detection task for the intensity, gradient histogram, HOG, and FS-KDE
feature extractors, plotted as a function of the feature vector length per image block. The top set of lines is
for the INRIA person dataset [4], the bottom set is for the same dataset with small random rotations added.
Without rotations, HOG features have the highest accuracy for most lengths and the intensity features (as
expected) have the lowest. With rotations, the performance of all four methods declines, but the FS-KDE
declines the least, leaving it with accuracy comparable to HOG. The accuracy of the intensity features for
the rotated dataset was below chance and not plotted.



CHAPTER 6. DESCRIBING ANGULAR DISTRIBUTIONS WITH THE FS-KDE 76

scheme used in HOG, which gives it an invariance to illumination changes missing in the other methods.
The low accuracy of the intensity features is also as expected, given that greyscale intensity is not a reliable
way to distinguish people from background clutter. The accuracy of the histogram gradient and FS-KDE
features are similar, except that the accuracy of the FS-KDE features is more stable as the feature vector
size changes. We attribute this to the lack of binning effects in the FS-KDE. We also note that the decline
in performance as descriptor length increases seen in Figure 6.3 is not evident here because we use an SVM
as opposed to simply calculating distances.

When a small amount (± 15 degrees) of rotation is added to the images in the dataset, the accuracy
of all the feature sets decreases, but the decrease is smallest for the FS-KDE features. The rotation makes
intensity features worse than chance (not plotted in Figure 6.5) because these features have no invariance to
rotation. We suspect that binning artifacts (as discussed in Figure 6.1) explain the relatively larger decrease
in accuracy for the gradient histogram and HOG features, because they both rely on gradient histograms.
This experiment shows that the smooth kernel used in the FS-KDE provides greater invariance to small
rotations than the binning employed by histograms, resulting in higher accuracy in the person detection
task.

6.3.3 Texture Segmentation

Distributions of angles are also useful as texture features. In this experiment, we extend ORTSEG (Chap-
ter 5) to include distributions of angles as well. We compare the effectiveness of histograms versus FS-KDEs
to capture these distributions of angles.

We compare the methods on the random texture dataset from Section 5.4 plus an additional synthetic
dataset, which we refer to as dead leaves. The dead leaves dataset (Figure 6.6) images each comprise three
textures with the same color distributions but differently oriented edges. To create this dataset, we first pick
three seed locations at random and use them to partition the image into the three Voronoi regions. We then
generate the image via a dead leaves procedure: we sequentially place shapes of random color into the image
at random locations until every pixel is covered. Depending on which of the three regions a shape lands in,
it is selected to be either a vertical bar, horizontal bar, or diagonal bar. We select the ground truth label of
each pixel to correspond to the shape that covered it most recently.

(a) Input. (b) Ground truth.

Figure 6.6: An example image and corresponding ground truth from the dead leaves dataset. For images
like these, angular distributions are an important feature.

We compare three methods on this dataset. (1) ORTSEG is the original segmentation system described
in Chapter 5, which relies only on color histograms. (2) ORTSEG-hist uses both color histograms and local
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gradient histograms, with the number of bins selected from training between eight and forty. (3) ORTSEG-
FS-KDE uses color histograms and local FS-KDEs of gradients, with no canonicalization, and with the
number of complex coefficients selected from training between four and twenty. We do not evaluate canonical
versions of these methods because canonicalization will make the angular distributions in the different texture
regions of the dead leaves images match, resulting in low segmentation accuracy. The choice of whether or
not to canonicalize for segmentation depends on whether textures that match except for their orientation
are intended to be grouped together or not.

The experiment is structured exactly as in Section 5.4; in short, it is a leave-one-out cross validation.
The results are reported in terms of Rand index [129, 130], which measures the fraction of pairs of pixels
that are either in the same region in both the segmentation result and ground truth or in different regions
in both the segmentation result and ground truth. It therefore ranges between zero and one, with one being
perfect agreement with the ground truth.

The results of the segmentation experiment are given in Table 6.1. The three methods perform similarly
well on the random texture, histology, and Prague datasets (Figure 6.7), which makes sense because color
information alone is enough to distinguish the textures. The slightly lower performance of the gradient
histogram and FS-KDE versions suggests that angular distributions are not discriminative in these datasets.
On the dead leaves dataset (Figure 6.8), the basic ORTSEG method, which relies only on color, cannot
distinguish the textures at all and thus performs poorly. The gradient histogram and FS-KDE versions
of ORTSEG improve performance by including edge information. That performance increase is most pro-
nounced for the FS-KDE version. We attribute this difference to the FS-KDE’s smooth kernel giving better
robustness to small variations in gradient angle as compared to histograms. These results serve as a proof
of concept for the efficacy of the FS-KDE for including gradient information into the segmentation method
ORTSEG.

(a) Input. (b) Ground truth (1.000). (c) Basic (.989).

(d) Hist (.989). (e) FS-KDE (.990).

Figure 6.7: Example segmentation results for (c) the basic, (d) histogram, and (e) FS-KDE versions of
ORTSEG on the random texture dataset. Rand indexes are given in parentheses. Here, color is enough to
distinguish the textures and therefore all three methods perform well.
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(a) Input. (b) Ground truth (1.000). (c) Basic (.505).

(d) Hist (.797). (e) FS-KDE (.936).

Figure 6.8: Example segmentation results for (c) the basic, (d) histogram, and (e) FS-KDE versions of
ORTSEG on the dead leaves dataset. Rand indexes are given in parentheses. Here, color is not enough to
distinguish the textures, so the basic version of ORTSEG fails.

6.4 Conclusions

In this work, we presented the FS-KDE, a method that computes a kernel density estimate of a set of angular
quantities and represents it in terms of its Fourier series coefficients. We argue that the properties of the
FS-KDE make it a useful tool in the myriad vision applications where gradient histograms are traditionally
used.

In Section 6.2, we show that our specific choice of kernel ensures that the Fourier series is bandlimited,
meaning that the continuous kernel density estimate is represented by a finite number of coefficients. We
next describe the properties of the FS-KDE, most importantly that it is immune to binning artifacts: when
the input angles rotate, the FS-KDE rotates by the same amount without distortion. We go on to describe
two methods for canonicalizing the FS-KDE, i.e., aligning all FS-KDEs that are rotations of each to a single
position, and prove a theorem about the robustness of one of these methods to noise. Finally, we present
a version of the FS-KDE that works at every location in an image via linear filtering and discuss practical
considerations for implementing these methods.

In Section 6.3, we compare FS-KDEs to histograms in the contexts of patch matching, person detection,
and texture segmentation. The patch matching experiment shows that FS-KDE-based descriptors give
a lower chance of making a patch matching error than histogram-based descriptors; it also shows that
canonicalization improves the matching performance of the FS-KDE when patches are randomly rotated.
The person detection experiment shows that FS-KDE features provides higher person detection accuracy
than histogram features, especially when a small amount of random rotation is added to the dataset. Finally,
the segmentation experiment suggests that the FS-KDE is better way to capture texture information than
histograms in the context of texture segmentation. Taken together, these experiments provide strong proof
of concept for the efficacy of the FS-KDE as a tool for describing distributions of angles in image processing
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Dataset

Method random texture dead leaves histology Prague

basic 0.989 ± 0.002 0.551 ± 0.087 0.830 ± 0.134 0.772 ± 0.083

hist 0.988 ± 0.002 0.702 ± 0.161 0.817 ± 0.142 0.772 ± 0.091

FS-KDE 0.989 ± 0.002 0.907 ± 0.094 0.796 ± 0.156 0.729 ± 0.121

Table 6.1: Comparison of the basic ORTSEG method with versions using gradient histograms and FS-KDEs
in terms of Rand index mean and standard deviation. The augmented versions improve the performance on
the dead leaves dataset, where edge information is critical. The addition of angular descriptors is not helpful
in the histology or Prague datasets; we hypothesis that this is because the textures in these datasets do not
exhibit discriminative angular distributions.

applications.



Appendix

6.A Proof of Theorem 3

Proof.

||F ε − F̃ ε|| (a)
=
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K∑

k=−K
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∣∣2
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, (6.13)

where (a) follows from the definition of norm, (b) from factoring, and (c) from Euler’s formula and the fact
that |ejθx| = |x| for all x.

In order to find arg(F ε1 ), we note that arg(F ε1 ) = arg(F ε1/α) and that

F ε1/α = B1

N−1∑

n=0

wne
−jθn + εn = F1 +B1

N−1∑

n=0

εn

by assumption and the definition of the FS-KDE (6.3). Therefore

arg(F ε1 ) = arctan

(
I(F ε1/α)

R(F ε1/α)

)

= arctan

(
B1

∑N−1
n=0 I(εn)

|F1|+B1

∑N−1
n=0 R(εn)

)
, (6.14)

because F1 is real by assumption.
To bound |F εk |, we use the fact that |Bk

∑N−1
n=0 wne

−jkθn | ≤ |Bk
∑N−1
n=0 wn| for any choice of (Θ,W ),

meaning that
|F εk | ≤ BkN. (6.15)

To finish the proof, we replace the sums in (6.14) with new random variables ε and υ, the distributions of
which we know because of the noise model assumed in the proof.
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Chapter 7

Conclusions and Future Work

In this thesis, we have presented three tools for automated histology image analysis. Throughout the work,
our guiding principle has been to develop tools rather than to address specific applications. We believe the
variety of histology image analysis applications is much larger than the variability among H&E histology
images, and therefore these tools will find wide applicability.

In Chapter 4, we presented a new benchmark dataset for H&E stain separation and used it to develop
improvements to an existing stain separation method, suggesting that the currently accepted model of H&E
image formation is incomplete. The next step for this work is to propose a new image formation model
which can provide a solid theoretical basis for further development of stain separation methods.

In Chapter 5, we developed a model of histology images as occlusions of random textures. We used
this model to develop a new unsupervised segmentation method, ORTSEG, and showed its efficacy with an
experiment on a small two-tissue segmentation dataset. In the future, we would like to explore a multiscale
and multiresolution version of ORTSEG that would allow simultaneous segmentation of structures of different
sizes, e.g., nuclei and glands.

In Chapter 6, we developed a new descriptor of angular distributions, which we called the FS-KDE.
We described its properties and showed that it compares favorably to angular histograms in several image
processing applications. One future direction for the work would be to generalize the concept from the
powered cosine kernel to a larger family of bandlimited kernels, which might lead to the discovery of kernels
with better angular localization properties (i.e., a sharper lump using fewer coefficients). Another would be
to include image gradients into the texture theory developed for ORTSEG. Finally, we need more experi-
mentation to show that using angular distributions inside ORTSEG can improve segmentation in real-world
images and especially histology images.
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Conf. Pattern Recogn., vol. 4, Québec City, Aug. 2002, pp. 150–155.

[2] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” Int. J. Com-
put. Vis., vol. 59, no. 2, pp. 167–181, 2004.
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[65] V. Roullier, O. Lézoray, V.-T. Ta, and A. Elmoataz, “Multi-resolution graph-based analysis of
histopathological whole slide images: application to mitotic cell extraction and visualization.” Comput.
Med. Imaging Graph., vol. 35, no. 7-8, pp. 603–615, May 2011.

[66] J. P. Monaco, J. E. Tomaszewski, M. D. Feldman, I. Hagemann, M. Moradi, P. Mousavi, A. Boag,
C. Davidson, P. Abolmaesumi, and A. Madabhushi, “High-throughput detection of prostate cancer in
histological sections using probabilistic pairwise Markov models.” Med. Image Anal., vol. 14, no. 4, pp.
617–629, Aug. 2010.

[67] J. Kong, O. Sertel, H. Shimada, K. L. Boyer, J. H. Saltz, and M. N. Gurcan, “Computer-aided
evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differ-
entiation,” Pattern Recogn., vol. 42, no. 6, pp. 1080–1092, Jun. 2009.

[68] H. Fatakdawala, J. Xu, A. Basavanhally, G. Bhanot, S. Ganesan, M. Feldman, J. E. Tomaszewski,
and A. Madabhushi, “Expectation-maximization-driven geodesic active contour with overlap resolu-
tion (EMaGACOR): application to lymphocyte segmentation on breast cancer histopathology.” IEEE
Trans. Biomed. Eng., vol. 57, no. 7, pp. 1676–1689, Jul. 2010.

[69] J. Han, T. Breckon, D. Randell, and G. Landini, “The application of support vector machine classi-
fication to detect cell nuclei for automated microscopy,” Mach. Vis. Appl., vol. 23, no. 1, pp. 15–24,
Jun. 2012.

[70] E. D. Gelasca, B. Obara, D. Fedorov, K. Kvilekval, and B. S. Manjunath, “A biosegmentation bench-
mark for evaluation of bioimage analysis methods,” BMC Bioinformatics, vol. 10, p. 368, Nov. 2009.

[71] M. Sühling, M. Arigovindan, P. Hunziker, and M. Unser, “Multiresolution moment filters: Theory
and applications,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 484–495, Apr. 2004.

[72] K. Belkacem-Boussaid, M. Pennell, G. Lozanski, A. Shana’ah, and M. Gurcan, “Computer-aided
classification of centroblast cells in follicular lymphoma.” Anal. Quant. Cytol. Histol., vol. 32, no. 5,
pp. 254–260, Oct. 2010.

[73] L. Roux, D. Racoceanu, N. Loménie, M. Kulikova, H. Irshad, J. Klossa, F. Capron, C. Genestie,
G. Le Naour, and M. N. Gurcan, “Mitosis detection in breast cancer histological images An ICPR
2012 contest.” J. Pathol. Inform., vol. 4, p. 8, May 2013.
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segmentation for quantitative characterization of mitochondrial morphology,” in Proc. IEEE Int. Conf.
Image Process., Orlando, FL, Sep. 2012, pp. 2033–2036.

[102] D. B. Chklovskii, S. Vitaladevuni, and L. K. Scheffer, “Semi-automated reconstruction of neural
circuits using electron microscopy,” Curr. Opin. Neurobiol., vol. 20, no. 5, pp. 667–675, Oct. 2010.

[103] J. Nascimento and J. Marques, “Robust shape tracking with multiple models in ultrasound images,”
IEEE Trans. Image Process., vol. 17, no. 3, pp. 392–406, 2008.

[104] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vis.,
vol. 1, no. 4, pp. 321–331, 1988.

[105] R. Malladi, J. A. Sethian, and B. Vemuri, “Shape modeling with front propagation: A level set
approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 2, pp. 158–175, Feb. 1995.

[106] A. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recogn.,
vol. 24, pp. 1167–1186, 1991.

[107] H. Derin and W. S. Cole, “Segmentation of textured images using Gibbs random fields,” Computer
Vis. Graph. Image Process., vol. 35, no. 1, pp. 72–98, Jul. 1986.

[108] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion
simulations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[109] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
no. 6, pp. 641–647, 1994.

[110] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, May 2002.

[111] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image segmentation using
Expectation-Maximization and its application to image querying,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, pp. 1026–1038, 1999.

[112] D. E. Ilea and P. F. Whelan, “CTex—An adaptive unsupervised segmentation algorithm based on
color-texture coherence,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1926–1939, Oct. 2008.



BIBLIOGRAPHY 89

[113] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, “Use of active shape models for locating structures
in medical images,” Image Vis. Comput., vol. 12, no. 6, pp. 355–365, Jul. 1994.

[114] J. A. Ozolek and C. A. Castro, Teratomas Derived from Embryonic Stem Cells as Models for
Embryonic Development, Disease, and Tumorigenesis. InTech, 2011, ch. 13.

[115] M. L. Massar, R. Bhagavatula, M. C. Fickus, and J. Kovačević, “Local histograms and image occlusion
models,” Appl. Comput. Harmon. Anal., vol. 34, no. 3, pp. 469–487, May 2013.

[116] A. B. Lee, D. Mumford, and J. Huang, “Occlusion models for natural images: A statistical study of a
scale-invariant dead leaves model,” Int. J. Comput. Vis., vol. 41, pp. 35–59, 2001.

[117] O. Michailovich, Y. Rathi, and A. Tannenbaum, “Image segmentation using active contours driven
by the bhattacharyya gradient flow,” IEEE Trans. Image Process., vol. 16, no. 11, pp. 2787–2801,
Nov. 2007.

[118] R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations,” Bull.
Am. Math. Soc., vol. 49, no. 1, pp. 1–24, Jan. 1943.

[119] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable
splitting and constrained optimization,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2345–2356,
Sep. 2010.

[120] M. L. Fisher, “An applications oriented guide to lagrangian relaxation,” Interfaces, vol. 15, no. 2, pp.
10–21, Mar. 1985.

[121] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,”
Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999.

[122] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and
applications for approximate nonnegative matrix factorization,” Comput. Stat. Data Anal., vol. 52,
no. 1, pp. 155–173, Sep. 2007.

[123] P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE
Signal Process. Mag., sp. iss. Molec. Cellular Bioimaging, vol. 23, no. 3, pp. 32–45, May 2006.

[124] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor model with optimal
utilization of error estimates of data values,” Environmetrics, vol. 5, no. 2, pp. 111–126, Jun. 1994.

[125] L. I. Rudin, Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica
D, no. 1–4, pp. 259–268, Nov. 1992.

[126] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogn. Lett., vol. 31, no. 8, pp.
651–666, Jun. 2010.

[127] M. T. McCann, D. G. Mixon, M. Fickus, C. A. Castro, J. A. Ozolek, and J. Kovačević.
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