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ABSTRACT

This thesis explores mathematical optimization techniques to address the computer-
aided molecular and mixture design problems (CAMD/CAMxD). In particular, we lever-
age the power of mixed-integer linear programs (MILPs) to quickly and efficiently design
over the massive chemical search space. These MILPs, when coupled with state-of-
the-art derivative-free optimization (DFO) methods, make for an efficient optimization
strategy when designing mixtures of molecules or when considering a single molecule
design problem that involves difficult thermodynamics or process models.
In the first chapter, we provide a very general overview of the field of CAMD as

addressed from the perspective of mathematical optimization. We discuss many relevant
quantitative structure-property relationships (QSPRs) and provide constraints typically
used in CAMD/CAMxD optimization problems.
The second chapter introduces our DFO-based molecular/mixture design algorithm

and describes how this approach enables a much greater molecular diversity to be consid-
ered in the search space as compared to traditional methods. Additionally, this chapter
looks at a few case studies relevant to crystallization solvents and provides a detailed
comparison of 27 different DFO algorithms for solving these problems.
The third chapter introduces COSMO-RS/-SAC as alternatives to UNIFAC as the

method used to capture mixture thermodynamics for a variety of CAMD/CAMxD prob-
lems. To fully incorporate COSMO-RS/-SAC into CAMD, we introduce group contri-
bution (GC) methods for estimating a few necessary parameters for COSMO-based
methods. We demonstrate the utility of COSMO-RS/-SAC in a few case studies for
which UNIFAC-like methods are insufficient.

In the fourth chapter, we investigate reaction solvent design using COSMO-based
methods. COSMO-RS is particularly suitable for these problems as they allow for
modeling of many relevant species in chemical reactions (transition states, charges, etc.)
directly at the quantum level. This information can be immediately passed to the
CAMD problem. We investigate a number of solvent design problems for a few difficult
reactions.
We summarize the work and provide a few future directions in the final chapter. Over-

all, this thesis serves to push the field of CAMD forward by introducing new methods
to more efficiently explore the massive chemical search space and to enable a few new
classes of problems which were previously untenable.
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“I think I did pretty well, considering I started

out with nothing but a bunch of blank paper...”

— Steve Martin, on writing

Dead Men Don’t Wear Plaid (1982)
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1
INTRODUCTION

1.1 introduction

The application of chemistry to manipulate the natural world has its earliest examples

in metalworking and pottery (Partington 1970), with some pottery artifacts as old as

20,000 years Wu et al. (2012). Chemical products have since played an important

role in history and left an indelible mark on the way we live and work. Early history

included basic incendiary fuels, perfumes, and soap as some of the first widespread uses

of chemicals. The modern age has witnessed an unprecedented expansion of chemical

products, including pesticides, fuels for transportation and electricity, pharmaceuticals,

plastics, and a broad array of industrial and consumer products. True to these historical

trends, few things are as pervasive as chemical products in 21st century life, and there

are an ever-increasing number of new chemical applications which require specialized

compounds.

The process of determining new and suitable chemicals for a certain application can

be generally termed chemical product design (Cussler & Moggridge 2011). Chemical

product design has long been a laborious, trial-and-error procedure, limited often by

a fixed amount of chemical, time, and financial resources. Design efforts are often

high-throughput and tend to focus on a small class of compounds or structural ana-

logues of known chemicals. Accordingly, the so-called “design space”—the set of unique

molecular structures considered—is often quite small for these product design problems,

especially considering the massive design space of all possible chemical structures. It

is then clear that to keep pace with the growing demand for new chemical products
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1.1 introduction

and to adequately explore the full chemical design space, other approaches must be con-

sidered. Fortunately, the availability and efficiency of computational resources makes

these design problems more tenable than ever before. Noteworthy among computational

approaches is the field of computer-aided molecular design (CAMD), which leverages

the simplicity of semi-empirical quantitative structure-property relationships (QSPRs)

in conjunction with fast and efficient numerical optimization algorithms.

CAMD has its roots in the 1980’s, although the general use of computers in chem-

istry pre-dates this by a few decades. Stated formally, the CAMD problem concerns

designing an optimal molecular structure(s) for a certain application. CAMD com-

bines molecular modeling techniques, thermodynamics, and numerical optimization to

design good or optimal molecular structures, many of them often completely novel. Ad-

vances in chemical modeling in the last few decades have greatly benefited CAMD, and

practitioners are now capable of relating chemical structures to properties at several

levels of accuracy (molecular mechanics, semi-empirical, ab initio). Though CAMD

often uses semi-empirical modeling techniques for their simplicity and efficiency, new

approaches incorporating more accurate methods are emerging. Modern combinatorial

optimization techniques are also essential for CAMD, enabling the optimization over

staggeringly large design spaces which would otherwise be inaccessible (using enumera-

tion algorithms, for example).

Overall, this introductory chapter provides a description of popular QSPRs used in

CAMD, the CAMD problem itself, and several solution approaches to its various forms.

We begin in Section 1.2 by detailing three popular classes of QSPRs which are often used

in CAMD: (1) group contribution methods; (2) topological indices; and (3) signature

descriptors. Next, in Section 1.3, we present the CAMD problem from a mathematical

programming perspective, discussing various classes of the single-molecule design prob-

lem as well as CAMD problems considering mixtures of molecules and those involving

the simultaneous design of a chemical product and the process it is a part of. In this

section, several other important design considerations are presented, including a few im-

portant constraints to ensure practical solutions as well as the chemical feasibility of the

designed structures. In Section 1.4, various solution techniques for the CAMD problem

are discussed, including mathematical optimization strategies, decomposition methods,

and heuristic approaches. Finally, in Section 1.5, a diverse though non-exhaustive re-
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1.2 popular types of qsprs in camd

view of applications of CAMD problems is provided. The interested reader can find a

more thorough overview of CAMD in Austin et al. (2016b).

1.2 popular types of qsprs in camd

The CAMD problem attempts to choose optimal (or simply good) molecules for some

purpose from the space of theoretically possible chemical structures. At first glance, the

CAMD problem must consider a very abstract chemical design space of atoms, bonds,

aromaticity, structural isomers, electronic effects, etc. Though many of these features

are certainly what gives molecules their specific properties and chemical functionality,

they are difficult to build into any type of optimization scheme. This is primarily

because there is no immediate relationship between an arbitrary chemical structure

and its performance or suitability regarding a specific application. In order to “rank”

different structures and choose an optimal one, we must have some efficient way to

quantify the properties and performance of each structure.

A second issue is the sheer size of the chemical search space. At the time of writing this

chapter, the CAS registry (American Chemical Society 2017) reports over 115 million

unique organic and inorganic structures. This number only represents compounds which

have been synthesized and cataloged, and it is already far too large for every structure

to be considered in any type of trial-and-error design scheme. This number is also only

a fraction of the theoretically possible chemical space, which some estimates indicate

may contain more than 1060 unique molecules for small, drug-like structures (Bohacek

et al. 1996). Even with very efficient ways to estimate the performance of a certain

structure, screening these structures using an enumeration strategy is far beyond current

computational capacity. For this reason, we also need to relate the chemical space to

a space that can be utilized for combinatorial optimization, allowing us to design over

the massive search space far more efficiently.

CAMD practitioners have relied on semi-empirical quantitative structure property re-

lationships (QSPRs) to address both of these issues. First, many semi-empirical methods

delineate a clear connection between the abstract chemical space and the more practi-

cal space of quantitative properties. These methods are also often simple and can be

applied to estimate properties very efficiently. Second, many of these methods break
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1.2 popular types of qsprs in camd

Figure 1.1: Propanol represented by its groups

OH
=   CH3

=   CH2

=   OHn-propanol

molecular structure into sub-molecular collections of atoms and bonds. These molecular

sub-structures are assumed to dictate a molecule’s properties. Using these types of rep-

resentations of the molecular space, combinatorial optimization can be directly applied

to these design problems.

1.2.1 Group-contribution methods

The most commonly used QSPRs in CAMD are group contribution (GC) methods.

These work under the assumption that a molecule’s properties can be predicted by the

number of occurrences of various molecular sub-structures called “groups.” For example,

we may think to represent the simple molecule propanol as a combination of the groups

−CH3, −CH2−, and −OH. In this case, the dashes (−) represent bonds to other groups.

In its group representation, propanol would no longer be thought of as the connected

alcohol molecule, but rather as some collection of its constituent groups. The group

representation of propanol is shown in Fig. 1.1.

Being QSPRs, group contribution methods translate the group representation of a

molecular structure into an estimate for some property P . To do this, group contribution

methods define a vector n that represents the number of occurrences of each of the

groups. Assuming we only have the three groups shown above, propanol’s n vector would

be n = [1, 2, 1], where the entries in this vector represent the number of occurrences

of the groups −CH3, −CH2−, and −OH, respectively. Each of these groups g would

also be associated with a coefficient cg which quantifies its affect or “contribution” to a

particular property P . Properties are calculated as follows:

P =
∑
g

cgng (1.1)
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Figure 1.2: Example usage of group contribution methods

Original structure Group representation Number of occurrences

O

F

O

F

Estimating properties
Group

composition
vector

n =[0, . . . , 1, . . . , 2, . . . ,
4, . . . , 1, . . . , 1, . . .]

Coefficient vector
(example)

c =[. . . , 3.2, . . . ,−2.4, . . . ,
0.6, . . . , 1.2, . . . , 2.3, . . .]

Property
estimate

P =
∑

g

cgng

= 3.2(1)− 2.4(2) + 0.6(4) + 1.2(1) + 2.3(1)

F 1

C 2

C
H

4

O
1

1

The vector of coefficients c comes from regression over a large dataset of the property P

of different molecules. To regress these parameters, the identity of all of the groups must

be specified a priori. Returning to our example, one can easily imagine different sets of

groups being used to describe propanol. For example, the groups −CH3, −CH2−, and

−CH2OH also completely account for the atoms in propanol, and these may provide

a better fit for the regression problem. For this reason, different group contribution

methods to estimate different properties usually do not have completely consistent sets of

groups, although there is typically a large amount of similarity. Finally, we note that the

vector n is generally much bigger as many group contribution methods contain 50-100

groups. Many group contribution methods make the additional assumption that groups

cannot overlap, which means that n is typically a sparse vector. A pictorial example

of the usage of group contribution methods is given in Fig. 1.2. In this example, we

apply a hypothetical GC method to a hypothetical molecule. We show how a molecular

structure is decomposed into its constituent groups and provide a count of each of these

groups. These counts constitute the elements of the vector n. The n vector is paired

with a hypothetical c vector, and an example property is calculated.
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One of the earliest examples of GC methods is from Benson & Buss (1958), who are

considered to be the originators of so-called “group increment theory.” Group increment

theory, or Benson group increment theory (BGIT), is analogous to GC methods, but

these terms may be more common in the physical chemistry literature. In the original

1958 paper (Benson & Buss 1958), Benson and Buss proposed a simple group additivity

scheme for the prediction of bond dissociation energies. Benson et al. (1969) extended

this work to account for a greater diversity of groups and to estimate heat capacities.

Additional work from Cohen and Benson includes estimating heats of formation with

group increment theory (Cohen & Benson 1993). A large number of additional efforts

have used Benson-like increments to estimate the same thermophysical properties, a

very small sample of which are provided here: Domalski & Hearing (1988); Jalowka &

Daubert (1986); Roganov et al. (2005).

Another very popular GC method was devised by Joback & Reid (1987). This method

extended the group increment idea to model many different properties with the same set

of groups. The Joback and Reid model also included functional transformations for the

original group increment summations. These altered the group contribution definition

to the following:

P = f

(∑
g

cgng

)
(1.2)

where f represents some function of the inner product of the vectors c and n. These func-

tions f appear in many group contribution methods and are important when predicted

properties are not simple linear functions of the number of groups in a structure.

Perhaps the most widely-used GCmethod in CAMD is that of Marrero and Gani (Mar-

rero & Gani 2001; 2002). This method, like the method of Constantinou & Gani (1994)

that predated it, provides another extension to the general form of GC methods in that

it introduces multiple levels of groups to better capture proximity effects, meaning the

effect of two or more groups which are close to one another in a molecular structure. As

many GC methods are limited to groups of just a few atoms and bonds, many cannot

differentiate between structures with different connectivity. The Marrero-Gani method,

called the GC+ method, uses as a first-order approximation a normal group contribu-

tion method, where the groups belong to a set of primary groups F . An additional set

6



1.2 popular types of qsprs in camd

of groups S contains slightly larger sub-structures. Finally, a set of groups T accounts

for large groups and overarching molecular structural features. Unlike groups in the

set F , groups in the sets S and T are allowed to overlap with each other. Using the

hierarchical depiction of molecules with the GC+ method, a much clearer picture of a

molecule is provided. The general form of the GC+ estimates is shown below:

P = f

∑
g∈F

cgng +
∑
g∈S

cgng +
∑
g∈T

cgng

 (1.3)

Group contribution methods have also often incorporated interaction terms (Nan-

noolal et al. 2004; 2007; 2008; 2009; Klincewicz & Reid 1984; Platts et al. 2000). These

are ways to include additional terms to account for the simultaneous presence of two

(same or different) groups in a particular structure. For example, in predicting toxicity,

one group in a molecule may lead to a simple metabolic pathway and therefore make

many structures containing that group non-toxic. If that structure were also to have

another group which is normally quite toxic, a GC method without interaction terms

may not predict toxicity well. This would be because both groups would have an ad-

ditive effect, meaning that there would be one highly non-toxic contribution and one

highly toxic contribution. As a result, the molecule may be predicted to have an average

toxicity when, in reality, the presence of the non-toxic group should outweigh the toxic

group. Introducing an interaction term for these two groups accounts for the situation

of their co-occurrence. In this example, this interaction term would likely remove what-

ever toxicity value was predicted by the toxic group. For more discussion of interaction

terms in predicting toxicity, readers are referred to Martin & Young (2001). Interaction

terms generally take the form

Ig,g′ = fI (ng,ng′) (1.4)

where fI usually represents multiplication, but can also represent other functions. Group

contribution methods can also include some idea of structural features (Nannoolal et al.

2004; 2007; 2008; 2009; Marrero & Gani 2001; 2002). These account for larger effects,

typically at the molecule scale, such as aromatic ring substitution, cis/trans isomerism,

aliphatic chain lengths, etc. These can typically be implemented as large groups but
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sometimes require special considerations. Table 1.1 provides several properties typically

used in CAMD problems and a few GC methods to estimate them.

Strengths of GC methods. GC methods are useful in that they are very intuitive

to use. They represent a chemical structure in terms of its functional components, very

analogously to how chemists compare and analyze structures. GC methods are also able

to easily represent a large and diverse chemical space as the groups can be combined in

many different ways to produce a large variety of different structures. This is especially

useful from a CAMD perspective. Finally, GC methods are easily translated into the

mathematical formulations of CAMD problems as the inclusion and count of the groups

(the vector n) are easily represented in the context of mathematical optimization.

Weaknesses of GC methods. There are a few shortcomings of modern GC meth-

ods. One is that many GC methods are unable to distinguish isomers from one another.

As isomers can have very different properties, this represents a gap in the predictive

power of GC methods. We note that some GC methods such as the GC+ methods are

able to distinguish many isomers due to the inclusion of large groups. A second issue

with GC methods is the lack of consistency in groups used to predict various properties.

Though this has no major effect estimating these properties for a given structure, it

becomes problematic for mathematical formulations of the CAMD problem. Finally,

GC methods require specifying the set of groups prior to regressing the GC coefficients.

Though many GC methods are quite accurate, there is no guarantee that the set of

groups used best captures the property they model. Using different groups can some-

times drastically alter the predictive power of a GC model.

1.2.2 Topological indices

Chemical graph theory (Bonchev 1991) is a field which became very influential in the

1970’s and has since been used to produce a large number of QSPRs. The basic idea

of chemical graph theory is that the atoms and bonds which constitute a molecule

can be thought of as nodes and edges in a graph. In general, we use G = (V ,E) to

define a graph G, its vertices v ∈ V and its edges e ∈ E. Using this depiction of

molecular structures, various properties of that graph, referred to here as topological

indices, can be used as descriptors in QSPR models. More specifically, this means that

8
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Table 1.1: Sample of available GC methods for predicting various properties of pure compounds

Property GC methods

Aqueous solubility Marrero & Gani (2002), Klopman & Zhu
(2001)

Boiling point
Joback & Reid (1987), Stein & Brown
(1994), Nannoolal et al. (2004), Marrero &
Gani (2001)

Bond dissociation energy Benson & Buss (1958)

Critical pressure
Jalowka & Daubert (1986), Joback & Reid
(1987), Klincewicz & Reid (1984), Nannoolal
et al. (2007), Marrero & Gani (2001)

Critical temperature
Jalowka & Daubert (1986), Joback & Reid
(1987), Klincewicz & Reid (1984), Nannoolal
et al. (2007), Marrero & Gani (2001)

Critical volume Klincewicz & Reid (1984), Nannoolal et al.
(2007), Marrero & Gani (2001)

Enthalpy of formation

Cohen & Benson (1993), Benson
(1999), Domalski & Hearing (1988), Roganov
et al. (2005), Joback & Reid (1987), Marrero &
Gani (2001)

Enthalpy of fusion Joback & Reid (1987), Marrero & Gani (2001)

Enthalpy of vaporization
Roganov et al. (2005), Joback & Reid
(1987), Marrero & Gani (2001), Ceriani et al.
(2009)

LC50 Martin & Young (2001) (fathead minnow)
Melting point Joback & Reid (1987), Marrero & Gani (2001)

Gibbs energy of formation

Cohen & Benson (1993), Benson
(1999), Domalski & Hearing (1988), Roganov
et al. (2005), Joback & Reid (1987), Marrero &
Gani (2001)

Heat capacity

Benson et al. (1969), Benson (1999), Domalski
& Hearing (1988), Joback & Reid
(1987), Kolská et al. (2008), Ceriani et al.
(2009)

Octanol/water partition
coefficient

Marrero & Gani (2002), Platts et al.
(2000), Klopman et al. (1994)

Vapor pressure Nannoolal et al. (2008)

Viscosity
Joback & Reid (1987), Sastri & Rao
(1992), Ceriani et al. (2007), Cao et al.
(1993), Nannoolal et al. (2009)
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various topological indices are paired with regression coefficients and used to estimate

properties in a similar way to GC methods.

Topological indices (TIs) can take many forms. They are defined as some function of

the nodes and edges in a chemical graph, and one can easily see that there are a large

number of possible functions even just considering standard molecular graph properties

like degree counts for nodes, connectivity, atomic types, etc. One of the first topological

indices used in chemical graph theory is the Wiener index (Wiener 1947). The Wiener

index attempts to describe the total distance between all atoms in the graph, as given

by d(v, v′), the graph theoretic distance between vertices v and v′. The Wiener index

W (G) is defined as:

W (G) = 1/2
∑
v,v′

d(v, v′) (1.5)

While the Wiener index describes a graph in terms of its distances, another important

consideration is how a graph is connected. To address this, an important class of topo-

logical indices called connectivity indices (CIs) was developed. Connectivity indices are

widely used in CAMD and have been shown to be useful in QSPR applications (Estrada

& Rodríguez 1999). The first connectivity indices were developed by Randić (Randic

1975), who used these indices to account for the degree of branching in alkanes and to

model enthalpy of fusion and vapor pressure. Randić defined an edge index to be:

CIE(v, v′) = 1√
δvδv′

(1.6)

where v and v′ are two connected vertices in the chemical graph. This means that the

atoms which correspond to v and v′ are connected by a chemical bond. Furthermore, δv
and δv′ are the degrees of nodes v and v′. In the study of Randić, these degrees signified

the number of σ bonds a particular atom had to non-Hydrogen atoms (i.e., the number

of atomic neighbors in the hydrogen-suppressed graph), but they are sometimes defined

differently for other connectivity indices. The connectivity index of the entire molecule

(graph) was then given by

1χ =
∑

{v,v′}∈E
CIE(v, v′) =

∑
{v,v′}∈E

1√
δvδv′

(1.7)
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Figure 1.3: Randić edge indices for a simple alkane
Structure Calculating CIE(v, v′)

1

3

4

5

6

7
2

e1

e2

Atom Number (v) 1 2 3 4 5 6 7
δv 1 3 1 4 1 1 1

CIE for two edges

CIE(e1) = CIE(1, 2) = 1√
1× 3

= 0.577

CIE(e2) = CIE(4, 6) = 1√
4× 1

= 0.500

where E is the edge set of the graph. A calculation for the edge connectivity indices for

a simple alkane is shown in Fig. 1.3.
1χ is the so-called first-order Randić connectivity index. An even simpler “connectiv-

ity index” exists which does not account for bonding at all. This is called the zeroth-

order connectivity index, and is given below:

0χ =
∑
v∈V

1√
δv

(1.8)

Kier et al. (1975), Hall et al. (1975), and Murray et al. (1975) were the first to apply

these connectivity indices as descriptors in QSPR models. These models are typically

linear in the descriptors, but many variations exist. An important step forward came

from Kier et al. (1976) who introduced higher-order connectivity indices. In general,

these are defined for an index of order i as:

iχ =
∑

{v1,v2,...}∈V i
C

1√∏
v
δv

(1.9)

where V i
C is the set of all sets of i connected vertices. Kier & Hall (1976) developed

additional connectivity indices to account for heteroatoms. These modified connectivity

indices distinguished atoms by their valence electrons, leading to a new value for vertex
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degree, δV, where the superscript indicates that valence is considered. For second period

elements, Kier & Hall (1976) define δVv for a vertex v as

δVv = ZV
v − hv (1.10)

where ZV
v indicates the number of valence electrons for atom/vertex v and hv is the

number of hydrogens attached to v. For atoms in the third period and beyond, the main

difference from this perspective is the number of core electrons. These are accounted

for in the following:

δVv =
ZV
v − hv

Zv −ZV
v − 1 (1.11)

where Zv is the atomic number of atom v. These modified δV values define analogous

connectivity indices iχV.

The connectivity index χ can be thought to primarily capture vertex adjacency and

the local neighborhoods of every atom in a molecule. As such, it represents how atoms

are connected and perhaps not the ensemble molecular structure and shape. Another

topological index often used in CAMD that aims to address this is the so-called shape

index, κ. The shape index accounts for features of the entire molecular structure as

functions of the underlying graph architecture and counts of graph substructures. The

main parameter in the calculation of κ is the number of paths in the chemical graph

of a certain length. We define iP to be the number of paths of length i in a particular

chemical graph.

Like other topological indices, the shape index maps this information onto a single

value. There are three often used iκ values which are defined as:

1κ =
2(1Pmax)(1Pmin)

(1P )2 (1.12)

2κ =
2(2Pmax)(2Pmin)

(2P )2 (1.13)

3κ =
4(3Pmax)(3Pmin)

(3P )2 (1.14)
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Figure 1.4: Getting iP and calculating iκ for an example molecule
Number of atoms Paths of length 1 Paths of length 2 Paths of length 3

0P : 6 1P : 5 2P : 6 3P : 4

Calculating κ values
1κ =

2(1Pmax)(
1Pmin)

(1P )2
2κ =

2(2Pmax)(
2Pmin)

(2P )2
3κ =

4(3Pmax)(
3Pmin)

(3P )2

=
2(30)(5)

52 = 12 =
2(10)(4)

62 = 2.22 =
4(4)(3)

42 = 3

Other structures 0P 1P 2P 3P Other structures 0P 1P 2P 3P

6 6 6 6 6 5 7 3

6 5 4 3 6 7 11 13

with iPmax and iPmin representing the maximum and minimum possible number of paths

of length i for a hypothetical molecule with an equivalent number of atoms. iPmax and
iPmin can be easily derived from graph theoretic arguments. The formal expressions for

these can be found in Hall & Kier (2007).

In Table 1.2, we list a few references for QSPR models using topological indices. There

are many, many examples of such models, and we note that this table is not meant to

be exhaustive. For a more complete list of available topological-indices-based QSPRs,

the reader is directed to the book of Devillers & Balaban (2000).

Table 1.2 provides some idea of the diversity of applications of QSPR development

with topological indices. We note that this table is inclined towards properties common

in CAMD problems, so the properties listed may be more relevant to chemical engi-

neering applications. However, we provide a few examples of the many applications of

topological indices to modeling biological, environmental, and pharamacological prop-

erties. There have been many efforts to build models related to pharmaceutical proper-

ties (Basak 1987; Estrada & Uriarte 2001), so only a small subset is listed here. One

additional interesting application of connectivity indices (Gani et al. 2005) is in the pre-
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Table 1.2: Sample of available TI-based methods for predicting various properties of pure com-
pounds

Property TI method
Anti-inflammatory activity Gupta et al. (2002), Bajaj et al. (2005)
Aqueous diffusion coefficient Schramke et al. (1999)
Aqueous solubility Hall et al. (1975), Katritzky et al. (1998)
Biodegradability Boethling (1986)
Blood-brain barrier partition
coefficients Rose et al. (2002)

Boiling point Hall et al. (1975), Hosoya (1971), Hall & Story
(1996), Galvez et al. (1994)

Critical temperature Hall & Story (1996)

Density Kier et al. (1976), Estrada (1995), Katritzky
& Gordeeva (1993)

Enthalpy of formation Mercader et al. (2000)
Enthalpy of fusion Gharagheizi et al. (2012)
Enthalpy of vaporization Galvez et al. (1994)
Flash point Patel et al. (2009)
Heat capacity Yao et al. (2003)
LC50(fathead minnow) Hall et al. (1989a;b), Basak et al. (1984)
Melting point Katritzky & Gordeeva (1993)
Nonspecific local anesthetic
activity

Kier et al. (1975), Katritzky & Gordeeva
(1993)

Octanol/water partition
coefficient Murray et al. (1975)

π-electron energy (C-C
bonds) Hosoya et al. (1975)

Refractive index Katritzky & Gordeeva (1993)
Vapor pressure Katritzky et al. (1998)
Viscosity Kauffman & Jurs (2001)
Water-air partition coefficient Katritzky et al. (1998)
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diction of coefficients for group contribution methods where the group is missing (the

group is not in the descriptor space).

Strengths of TIs. One of the main advantages of TIs is that they can discriminate

between very similar structures, often in cases where GC methods cannot (e.g., isomers).

This provides a more holistic picture of the molecule and can be very useful for certain

design problems. For example, this may have potential applications for CAMD in areas

where a structural feature of the to-be-designed compound is fixed a priori. Furthermore,

since many TIs are a function of the entire graph, TIs reflect the entire nature of the

molecular structure. This can have advantages over GC methods, which assume that

each group provides a contribution independently of other groups in the structure (this is

offset somewhat by GC interaction functions). Finally, TIs have been extensively applied

to modeling pharmacological properties. The quality and volume of this literature means

that TIs are very suitable to many pharmaceutically relevant CAMD problems.

Weaknesses of TIs. Though topological indices have been widely applied to QSPR,

there are only limited examples in CAMD. Topological indices are usually not as gener-

ally applicable as GC methods, meaning that TI-based QSPRs are often restricted to a

certain class of chemicals. For design purposes, this is problematic as it means that TI-

based design problems can only consider that particular subset of the chemical search

space. Furthermore, TIs represent graph-theoretic properties of the chemical graph,

and many of these properties are not always readily understandable from a chemical

perspective (although Randic & Zupan (2001) have offered some interpretations of sev-

eral TIs). Finally, TIs are more difficult to incorporate into CAMD than GC methods.

Such CAMD problems can sometimes face combinatorial difficulties and have only been

demonstrated thus far on small design problems. We further discuss TI-based CAMD

in Austin et al. (2016b).

1.2.3 Signature descriptors

In a broad sense, GC methods capture the important subsets of atoms in a molecule

while TIs rely on some function of the chemical graph. One QSPR method which has

been shown to capture aspects of both GC- and TI-based methods is signature de-

scriptors (SD). Signature descriptors are far younger than the other methods discussed,
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originating in 2002 from Visco et al. (2002) and 2003 Faulon et al. (2003). Like TIs,

they conceive of chemical structures as the chemical graph. Rather than ascribe various

values to a complete molecular graph, SDs retain all of the structural and connectivity

information for every atom in a molecule.

Analogously to TIs, SDs define the chemical graph to be G = (V ,E). Standard SD

methods also incorporate node coloring for every node v via a coloring function cG(v)

and the colors of each node Cv. This change is reflected in the slightly altered definition

of the chemical graph as G = (V ,E,C, cG). These node colorings are intended to

distinguish between different atoms as well as different types of the same atom. For

example, it may be beneficial for the model to differentiate between an oxygen with

two single bonds and an oxygen with a double bond. Additionally, one may want to

distinguish hydrogens by what atom they are attached to, aromatic carbons from non-

aromatic ones, atoms attached to aromatic rings, and many other chemical features. We

note that the colorings of the nodes are one of the only subjective parts of SD models,

and different coloring schemes can have significant effects on the performance of the

models.

One important class of signature descriptors is known as atomic signatures. Given a

certain atom in a chemical graph, its atomic signature represents all of the atoms that

are within a certain distance, or height, from it. Varying the value of this distance gives

rise to different atomic signatures. In the simplest case, with this distance set to 0, the

atomic signature of an atom is simply that atom, colored in keeping with the coloring

definition. More formally, for an atom (vertex) v, its atomic signature of height 0, 0α

is given by:

0α(v) = cG(v) (1.15)

Of course, these atomic signatures of height 0 are not a robust set of descriptors. Consid-

ering higher values for height provides a more detailed picture of an atom’s environment.

In general, for a height of i, the atomic signature of height i ≥ 1 for a vertex v is defined

as:

iα(v) = GS(V
i,Ei,Ci, cG) (1.16)
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where GS defines a subgraph of G that contains all vertices and bonds such that the

distance between v and any vertex in GS is at most i. Thus, an atomic signature of

height one for a hypothetical atom v defines v and every atom bonded to v as well as

all connecting edges. A height two atomic signature defines v, every atom bonded to

v, and every atom bonded to those atoms bonded to v along with all necessary edges.

Increasing the height of an atomic signature can thus be thought to add a layer of

connected atoms. In graph-theoretic terms, increasing the i value is equivalent to adding

a layer to a breadth-first-search. A pictorial explanation is provided in Fig. 1.5. In this

example, we assume that all atoms are colored by aromaticity and sp hybridization and

that hydrogens are colored by the atom they are attached to.

The atomic signatures can be thought of as a descriptor space for a molecular struc-

ture. A property, P , of a molecule can be estimated by all of its atomic signatures of

up to a particular height. This QSPR has a familiar form:

P =
∑
i

∑
d∈Di

cd
iαG(d) (1.17)

where d is the index of the set of all atomic signatures and Di is the set of atomic SDs of

height i. cd is a regression coefficient accounting for the “contribution” of each atomic

signature to a certain property. iαG(d) represents the number of occurrences of atomic

signature d. Using the atomic signatures, signatures of the entire molecule can also be

generated.

A major advantage of signature descriptors is that they can be manipulated via simple

functions to represent groups from GC methods as well as various TIs. This means

that the large amount of QSPRs derived from GC methods and TI-based methods are

accessible using SDs. For this reason, we do not provide a table of QSPRs using SDs

because they can be—and often are—used to calculate properties via GC- and TI-based

methods. A few example of converting SDs to groups and TIs are given in Faulon et al.

(2003).

Strengths of SDs. One of the main advantages of signature descriptors is that

they have a small inherent bias as compared to GC methods and TIs. The only bias

introduced in these descriptors is the choice of an atomic coloring scheme, or the choice

of what defines a different type of the same atom. Furthermore, the inclusion of every
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atomic signature in SD-based QSPRs means there are no theoretical restrictions on the

descriptor space defined for a molecular structure. There are also a variety of more

modern signature descriptors capable of distinguishing stereoisomers. In the case of

stereoisomers, certain SDs have far greater discriminative power than GC methods or

TIs, which typically cannot differentiate stereoisomers. Furthermore, the equivalence of

SDs to many TIs and groups for GC methods means that SDs can be used directly with

these TI and GC QSPR models. This makes a large library of QSPR models accessible

to SDs.

Weaknesses of SDs. Many QSPRs using SDs use all of the available atomic signa-

tures of up to a certain height. This can quickly become an issue with the predictive

power of SDs as models without sufficient training data may be overfit. A second con-

cern with SDs is that the coloring scheme of the descriptors must be specified before

the descriptors are used for QSPRs and CAMD problems. It is likely that some coloring

schemes provide better results than others, and the best coloring scheme may not always

be easy to determine. Finally, atomic signature descriptors always discriminate between

identical atoms in different structural environments. This may again lead to issues of

overfitting or not capturing the “true” chemical behavior of the system as sometimes it

is better to model identical atoms with a general descriptor which is independent of the

atom’s environment (although this can be captured to some degree with SDs of lower

heights).

1.3 camd as an optimization problem

The various types of structure-property relationships discussed above can quickly and

often accurately estimate properties from a structure. The application of QSPR tech-

niques in this direction—predicting properties from structures—defines what is known

as the “forward problem,” and is what QSPR techniques are generally intended for.

CAMD can broadly be thought to consider the “reverse problem,” or the problem of

predicting structures from properties. At first glance, there is no immediately obvious

way of relating properties to a specific molecular structure. One issue is that there are so

many structures to consider. A reasonable approach to the CAMD problem should be

able to consider a large diversity of structures without running into significant computa-
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Figure 1.5: Atomic signature descriptors for a carbon atom in an example molecule
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tional difficulties. Another issue involves structural feasiblity. Solutions to the CAMD

problem must also be sensible molecular structures, meaning CAMD should produce

structures that do not violate any inherent laws of chemical bonding. A final issue

involves consistency. All of the QSPRs discussed (though non-overlapping GC methods

are an exception) require that if certain features are present, so must be other features.

For example, it would be unreasonable to design a structure that has four paths of

length three but no paths of length two. In the case of GC methods or SDs, an example

erroneous solution would contain one occurrence of the carboxylic acid (-C(=O)OH)

group/signature and no occurrences of the carbonyl (-C(=O)-) group/signature. Note

that this example assumes that overlap is allowed between these groups/signatures (al-

though this is generally the case with signatures).

Mathematical optimization is the key to addressing all of these issues. Before intro-

ducing the problem in a general optimization formulation, we define a few important

sets and variables. First, we assume that we have a vector of properties p and a property
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value pk for each property k. The vector n encapsulates relevant structural information

of the designed molecules and is dependent on the type of QSPR chosen. In the case of

GC methods, the value nd would represent the number of occurrences of each group d.

For TIs, the n vector may represent the number of topological features d (edges, paths

of certain lengths, etc.) from which TIs would be calculated. For SDs, this n vector

usually represents counts of various atomic signature descriptors d. The function f then

transforms this structural information into a property estimate using the appropriate

QSPR relationship. In general, the CAMD can then be expressed:

min
n

C(n, p) (1.18)

s.t. p = f(n) (1.19)

h1(p,n) ≤ 0 (1.20)

h2(p,n) = 0 (1.21)

s1(n) ≤ 0 (1.22)

s2(n) = 0 (1.23)

pLk ≤ pk ≤ pUk ∀k (1.24)

nLd ≤ nd ≤ nUd ∀d (1.25)

In the above, Eq. (1.19) involves QSPR functions f which estimate a vector of prop-

erties p from attributes such as group counts, graph topological features, or atomic

signatures. Eqs. (1.20) and (1.21) define general functions, h1 and h2, representing

inequality and equality constraints on property values, desired structural features, pro-

cess conditions, and a variety of other possibilities. For example, the presence of certain

groups or structural features may necessitate changing a chemical process to accommo-

date these structures. These constraints can also eliminate certain groups/topological

features/signatures from the solution space or require that they appear a certain num-

ber of times. The functions h1 and h2 can also account for design considerations such

as system thermodynamics, cost, and a variety of system-specific interactions between

n and p. Eqs. (1.22) and (1.23) define inequality and equality constraints which ensure

structural feasibility. More specifically, the functions s1 and s2 determine if the vector

n is consistent with a molecular structure which can actually exist. These constraints
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prevent erroneous structures from being considered, eliminating compounds that vio-

late atomic valences, are disjoint, have an incorrect number of aromatic atoms, etc.

Eqs. 1.24 and (1.25) set bounds on property values and n, respectively. Each property

k is bounded below by pLk and above by pUk . Similarly, nLk and nUk define lower and

upper bounds for nk. Finally, Eq. (1.18) is a general objective function for the CAMD

problem. The function C(n, p) can define a number of possible functions. These func-

tions somehow quantify the performance of a specific molecule based on its properties

p and perhaps its descriptors n.

1.3.1 Classes of the CAMD problem

1.3.1.1 Single molecule design

The single molecule design problem is the problem of determining a single, optimal

structure for a particular purpose. For these problems, the structure of the compound

is the only design consideration, meaning that the variables represented by n above are

the only degrees of freedom in the problem. Furthermore, it is assumed that there exists

some ranking criteria with which to determine which structures are better than others.

To make this section as general as possible, we assume that the ranking criteria can either

be applied during the optimization procedure as the objective function or afterwards,

evaluating the performance of each of a pool of candidate molecules. Though many

classifications of these single molecule design problems are possible, we suggest three

basic forms: (1) determining all feasible structures; (2) using an objective function

which directly quantifies a molecule’s performance; and (3) designing a structure with

properties as close as possible to certain property targets.

The feasibility problem.

We begin by describing the case where there is no objective function used in the

optimization problem. More formally, this is equivalent to solving the above CAMD

formulation with the objective function equal to a constant. The solutions to this prob-

lem represent all molecules which satisfy the functions h1 and h2, are chemically sound

structures, and do not violate the property or descriptor constraints. This is a useful

type of problem to solve in CAMD when the performance function C is not accessible
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Figure 1.6: Pictorial representation of the problem of finding all feasible molecules
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or reliable. It may be the case that C requires a complex simulation or experimental

work. The performance function may also be inaccurate or the designer may not know

exactly which properties to optimize. In these cases, these CAMD problems leverage

the power of optimization to reduce the large number of possible compounds to a more

manageable number. This smaller pool of compounds can then be investigated using

high-order models or experiments.

Feasibility problems are sometimes difficult to distinguish from other types of prob-

lems. In many cases, a feasibility problem is solved at one of the beginning stages of

the problem, and all of the feasible structures are then evaluated based on some rank-

ing criteria. For these types of problems, there is no clear line between a feasibility

problem and a problem with an objective function. Usually, the molecules designed by

these problems are ultimately ranked, so many “feasibility problems” actually have an

implicit objective function. A second complication is that many CAMD methodologies

are designed to solve both feasibility problems and problems with objectives. We provide

a few examples of feasibility problems here for GC methods (Joback 1989), TIs (Kier

& Hall 1993; Kier et al. 1993), and SDs (Churchwell et al. 2004). We leave a more

detailed discussion for the applications section of this chapter. A graphical example of

the feasibility problem is given in Fig. 1.6.

Exact relationship between structures and performance

In many cases, it is possible to model a molecule’s performance directly as a function

of its structure and properties. This is the most natural and common form of the

CAMD objective because the performance function used to rank molecular structures is

what is minimized or maximized. Using the exact performance function as the objective
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1.3 camd as an optimization problem

Figure 1.7: Pictorial representation of the problem of finding an optimal molecule
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C(n, p) guarantees that the solution to the CAMD problem is the optimal molecule for

the application, at least as judged by the provided performance function. We also note

that if the function C(n, p) or any of the constraints is non-convex, the optimal molecule

may only represent a local optimum. Using a global optimization algorithm will provide

the best molecule for these non-convex problems.

An exact representation of the objective has inspired many numerical optimization

strategies to solving the CAMD problem. Numerical optimization strategies are par-

ticularly advantageous in these cases because there is an exact algebraic relationship

between the descriptor space n and the performance function C. This enables the use

of modern, state-of-the-art optimization techniques. Several of these will be discussed

in an upcoming section.

There are many examples in the CAMD literature which fall into this category. Again,

we will postpone the discussion of these topics until later sections of this document. We

provide a small (and non-exhaustive) selection of relevant references in the meanwhile

to offer some insight to the interested reader: Odele & Macchietto (1993); Sinha et al.

(1999); Sahinidis et al. (2003)(GC), Camarda & Maranas (1999); Siddhaye et al. (2000)

(TIs), and Chemmangattuvalappil et al. (2010) (SDs). A graphical example of this type

of CAMD problem is provided in Fig. 1.7.

Minimizing distance to property targets

Another class of single molecule design problems concerns finding a molecule with

properties as close as possible to target values. These types of formulations have been
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1.3 camd as an optimization problem

Figure 1.8: Pictorial representation of the problem of finding a feasible molecule with predicted
properties as close as possible to target values
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used extensively in CAMD, often to design alternatives to molecules being used in

practice. These molecules may need to be substituted for reasons of environmental

friendliness, cost, or availability. Many other types of problems can be addressed when

the ideal properties of a molecule are known. However, if these ideal properties do not

represent a structure that is physically realistic, these approaches face some difficulty.

In general, these types of problems define the objective to be:

C(p) =
∑
k

wk‖pTk − pk‖2 (1.26)

where pTk represents a vector of property targets for each property k and wk is a weight

for the distance from the estimated property value to its corresponding property target.

The second norm shown above is the most common distance function in CAMD, but

many other distance functions are possible.

We present a few demonstrative examples of CAMD with property target objective

functions. Matsuda et al. (2007) used groups to design ionic liquids based on conductiv-

ity and viscosity targets. Siddhaye et al. (2004) addressed this problem with topological

indices to design pharmaceutical products. Brown et al. (2006) used signature descrip-

tors to design polymers with specific properties. A graphical example of this type of

CAMD problem is given in Fig. 1.8.
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1.3.1.2 Mixture design

Real-world applications often demand a product with specifically tailored properties.

This sometimes necessitates utilizing a mixture of compounds as no single compound

possesses all of the necessary properties. Using CAMD techniques to simultaneously

design two or more compounds for use in a blend/mixture is referred to as the mixture

design problem. We note here that we alter a definition given in Austin et al. (2016)

for consistency with the prevailing definition of mixture design in the literature. All

applications classified under mixture design in this section can be assumed to design

two or more structures simultaneously. Though we designed two or more structures

simultaneously in Austin et al. (2016), we denoted the mixture design problem to be

the problem of designing one or more structures to be used in a multi-component system.

While the single-molecule design is difficult in many cases, the mixture design problem

is much harder. The difficulties come from several sources: (1) the descriptor variables

must now represent the descriptors of every unknown component in the mixture; (2)

mixture properties must be calculated and included in the problem; (3) non-ideal mix-

ture behavior must be considered in the form of thermodynamic relationships, activity

coefficient models, or equations of state; (4) the design of mixtures also requires a de-

termination of the amount of each component, so mole fractions must be considered.

We provide a pictorial representation of the mixture design problem in Fig. 1.9. In this

problem, we define the variable xi to represent the mole fraction of unknown compo-

nent i. Furthermore, qj will represent the mixture property j. The formulation of the

mixture design problem is similar to the single-molecule design problem. The objective

function is altered to now include mixture properties:

min
n,x

C(n, p, q) (1.27)
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Figure 1.9: Pictorial representation of the mixture design problem
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A few additional constraints are also necessary:

q = g(x,n, p) (1.28)∑
i

xi = 1 (1.29)

h1(p, q,n) ≤ 0 (1.30)

h2(p, q,n) = 0 (1.31)

qLj ≤ qj ≤ qUj (1.32)

In the above, Eqs. (1.30) and (1.31) represent modified constraints from the previous

formulation to include the mixture property variables q. Eq. (1.28) represents simple

mixing functions or complex thermodynamic relationships which relate individual com-

ponent property variables p, descriptor variables n, and mole fractions x to the mixture

property variables q. In many cases, some of these q values represent activity coeffi-

cients. Eq. (1.29) ensures that mole fractions sum to 1. Finally, Eq. (1.32) places upper

(qUj ) and lower (qLj ) bounds on mixture properties. We provide a few mixture design

citations (Gani & Fredenslund 1993; Conte et al. 2011a; Buxton et al. 1999) and leave

the rest for the applications section.

1.3.1.3 Integrated process and product design

Though many CAMD endeavors design products with the ultimate goal of being in-

corporated into an industrial process, few have explicitly considered the relationship
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between a particular structure and a process. This is especially important as process

performance is typically very sensitive to the molecule(s) chosen. These problems are

especially challenging from an optimization point of view because there is no easily dis-

cernible algebraic relationship between the descriptor variables n and process variables.

This problem also requires the introduction of process variables µw, with w defining the

index over the process variables. To present the formulation for integrated process and

product design, we modify the single-molecule design problem for simplicity.

First, the objective function now reflects process variables:

min
n,µ

C(n, p,µ) (1.33)

A few additional constraints then account for the inclusion of process variables:

h1(p,µ,n) ≤ 0 (1.34)

h2(p,µ,n) = 0 (1.35)

µLw ≤ µw ≤ µUw (1.36)

In the above, Eqs. (1.34) and (1.35) represent modified constraints from the previous

formulation to include the process variables µ. Eq. (1.36) is introduced to place up-

per (µUw) and lower (µLw) bounds on process variables. There is a similar formulation

defined for process/product design problems which also consider mixtures. Again, we

provide a small selection of references (Eden et al. 2004; Papadopoulos & Linke 2005;

Karunanithi et al. 2005) and leave the remaining discussion for the applications section.

One approach to the process design problem is illustrated in Fig. 1.10.

1.3.2 Common design features in the form of constraints

These constraints define any process criteria, design necessities, thermodynamic condi-

tions, and any other features which may be important for a particular design problem.

As these constraints reflect the diversity of applications of CAMD, we cannot go into

detail about all of them here. Rather, we present a summary of design features and

conditions which occur most commonly in CAMD.
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Figure 1.10: A decomposition approach to the integrated product/process design problem
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A very common design feature in CAMD limits the number of groups which can occur

in the solution. For example, constraints of this variety can place a limit on the number

of molecular descriptors d:

nd ≤ nUd (1.37)

or a limit on the total number of descriptors:

∑
d

nd ≤ NU (1.38)

where NU represents the maximum number of structural features (groups, atoms, de-

scriptors, topological features, etc.) in the designed molecule. Many design problems

also set a lower bound on this summation, NL, which is typically equal to 2. This en-

sures that more than one descriptor must appear in the solution. Finally, some design

problems seek solutions which are analogues within a given family of chemical structures.

In this case, it may be necessary to include the descriptor variables corresponding to

this structural family:

nFd ≤ nd ∀d ∈ DFIX (1.39)

where DFIX defines the set of descriptors which must occur in the solution and nFd

represents the number of descriptors d which must occur for the structural family to be
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produced. This constraint is typically part of Eq. (1.25), where other descriptors may

have lower bounds for other reasons.

Properties are also bounded similarly in equation (1.24). These constraints ensure

that no process conditions, environmental regulations, toxicity thresholds, etc. are

violated with the designed structures.

Mixture design problems or single component design problems involving mixtures

typically have a number of common constraints. Most notably, these problems often

require some idea of the activities of the chemical species in the mixture and thus

necessitate incorporating an activity coefficient model. There are three such models

often used in CAMD:

1. UNIFAC. UNIFAC (Fredenslund et al. 1975) is a group contribution variant of

the UNIQUAC equation (Abrams & Prausnitz 1975) and has been used extensively

in CAMD. UNIFAC is simple, accurate, and easy to incorporate into CAMD

problems due to its use of groups. The original UNIFAC may lack accuracy

outside of standard temperature and pressure ranges, but many extensions and

re-parameterizations exist to address these cases.

2. SAFT. SAFT (Chapman et al. 1989) is an accurate equation of state that is

applicable in many temperature and pressure domains. It is gaining popularity in

CAMD and several group contribution methods (Tihic et al. 2007; Lymperiadis

et al. 2007; 2008; Peng et al. 2009; Papaioannou et al. 2014) have already been

developed to estimate the SAFT parameters necessary for its use.

3. COSMO-RS and -SAC COSMO-RS (Klamt 1995; Klamt et al. 1998) and

COSMO-SAC (Lin & Sandler 2002) are two post-processing methods for the

COSMO solvation model (Klamt & Schüürmann 1993). Unlike other approaches,

these COSMO-based models use electronic surface charge distributions that are

calculated at the quantum chemistry level. These methods are now more amenable

to CAMD due to the development of various group contribution methods (Mu et al.

2007; 2009; Austin et al. 2016a).
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1.3.3 Forms of the structural feasibility constraints for GC methods

The constraints defined above in Eqs. (1.22) and (1.23) ensure that the structural descrip-

tors chosen with the variables nd are consistent with all other structural features such

that they can be assembled to create a chemically feasible molecule. As this document

primarily concerns GC methods, we will only describe those herein. For a discussion

of structural feasibility for other classes of QSPRs, we direct the reader to Austin et al.

(2016b).

If using GC methods to solve CAMD problems, the variable nd typically represents

the number of occurrences of the group d in the solution. Many structural constraints in

CAMD also consider the valence of each group, Φd, which is simply the number of bonds

a group requires to satisfy its valence electron requirements. For example, the group

−CH1(Cl)− requires 2 external bonds (ΦCH1(Cl) = 2) as two of carbon’s four required

bonds are accounted for by hydrogen and chlorine atoms. One of the most widely-used

rules for structural feasibility using valences comes from Odele & Macchietto (1993):

∑
d

(Φd − 2)nd = 2m (1.40)

where m is defined by:

m =



−1, if compound is acyclic

0, if compound is monocyclic

1, if compound is bicyclic

(1.41)

These constraints alone, while appropriate for most molecules, still allow for certain sets

of groups which cannot be joined to form feasible molecules. For example, a solution

of 1 > CH0 < (ΦCH0 = 4) group and 2 -Br (ΦBr = 1) groups is feasible for the above

constraints with m = 0. To address these situations, Odele and Macchietto also define

a constraint to ensure that there are enough groups to meet the valence requirements

30



1.3 camd as an optimization problem

of every group. This means that to include a group in the solution with a valence

requirement of 4, there must also be at least 4 additional groups. This is captured in

∑
d

nd ≥ nd′(Φd′ − 1) + 2 ∀d′ (1.42)

where d′ is also an index over descriptors. These constraints can be generalized with

integer variables Narom
R and Nali

R , which represent the number of aromatic rings and the

number of aliphatic rings, respectively. Furthermore, we introduce Gali and Garom to

be the sets of groups which have any open valences which are aliphatic and aromatic,

respectively. We define these valence counts to be Φali for aliphatics and Φarom for aro-

matics. Note that the same group can appear in both sets. We also define the parameter

Aarom
d to represent the number of aromatic atoms in a group d and the parameter ρd to

represent the number of available aliphatic attachment points for every aromatic atom

in group d. Below we provide a slightly more general formulation considering aromatic

rings:

∑
d∈Gali

(2−Φali
d )nd = 2− 2Nali

R

+2
∑

d∈Garom

ρdnd − 2Narom
R (1.43)

∑
d∈Garom

(2−Φarom
d )nd = 0 (1.44)

∑
d∈Garom

Aarom
d = 6Narom

R (1.45)

∑
d∈Gali

nd ≥ nd′(Φali
d′ − 1) + 2 ∀d′ (1.46)

∑
d∈Garom

nd ≥ nd′(Φarom
d′ − 1) + 2 ∀d′ (1.47)

We note that in this example, the aromatic rings are assumed to be benzylic and not

attached to another aromatic ring (biphenyls and fused aromatics). An example of

these basic structural constraints for GC methods are given in Fig. 1.11. A few simple

extensions allow these constraints to account for all aromatic rings. These modified

Odele-Macchietto constraints work in cases where all groups are bonded to each other

with only single or aromatic bonds. More complex connectivity constraints, account-
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Figure 1.11: An example of structural constraints for GC methods, considering an acyclic,
aliphatic molecule
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ing for cases where groups may be double or triple bonded to one another are given

in Sahinidis et al. (2003).

1.4 techniques for solving the molecular design problem

1.4.1 Generate-and-test methods

Many QSPRs, especially those often used in CAMD, are simple functions which require

little computational effort to evaluate. Methods such as those discussed above are able

to provide property estimates for millions of structures in a matter of minutes. For this

reason, many CAMD approaches have applied QSPR models in the “forward” direction,

generating a large number of candidate structures and then evaluating every property

of interest for every molecule. This approach — known as “generate-and-test” — has its

merits in that it can often optimize over a pool of molecules without solving a potentially

difficult optimization problem. This is especially advantageous if the pool of potential

molecules has been reduced to a practical number, either by considering a small problem

or by one of many knowledge-based reduction procedures (Conte et al. 2011b; Harper
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& Gani 2000; Harper et al. 1999). Of course, problems with a large design space are

not solved efficiently with this approach. In these cases, optimization methods have a

distinct advantage over generate-and-test procedures.

Generate-and-test algorithms are fairly intuitive. The primary requirements are con-

sideration of every possible structure and low redundancy. To that effect, several

generate-and-test algorithms exist for groups (Harper et al. 1999; Joback 1989), topo-

logical indices (Kier et al. 1993; Hall et al. 1993), and signature descriptors (Faulon et al.

2003).

1.4.2 Decomposition methods

Many CAMD problems are characterized by a large combinatorial space of potential de-

scriptors, challenging non-linearities in the thermodynamics of process models, and/or

high sensitivity of the objective to process and descriptor variables. As a result, many

CAMD problems are too difficult to be addressed directly as optimization problems

and must instead be solved as a series of optimization subproblems. Typically, these

subproblems successively apply increasingly difficult constraints from the original prob-

lem, reducing the feasible set of molecules upon the solution of each subproblem. This

step-wise reduction in problem space makes many CAMD problems significantly easier.

Alternatively, many decomposition approaches approximate a set of constraints with a

lower-bounding surrogate (in the case of minimization), devise a subproblem to generate

feasible points, and then iterate between these subproblems until the upper and lower

bounds on the objective function are sufficiently close. Decomposition techniques can

be broadly divided into the three categories of CAMD problems to which they are most

often applied. These are discussed below.

1.4.2.1 Decomposition in single molecule design

The most common technique in single molecule design involves systematically reducing

the space of feasible molecules by applying increasingly stringent constraints. For exam-

ple, referring to the molecular design formulation shown in the previous section, some

techniques (e.g. Harper et al. (1999)) first apply the structural feasibility constraints,
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Eqs. (1.23) and (1.22), resulting in a set of all structurally feasible n vectors. This

set of n vectors represents a significantly smaller feasible region than that of the entire

space defined by the descriptors. These n vectors can be assembled into feasible struc-

tures, and this set of structures can be evaluated one-by-one based on the remaining

constraints and objective function or used in another optimization problem.

This approach works best if the number of feasible structures is reduced to a rea-

sonably small number before difficult constraints are evaluated or the remaining opti-

mization subproblem is solved. For this reason, decomposition methods have seen the

most success in cases where there are few possible descriptors, the constraints are very

tight, or the problem involves minimizing a distance to property targets. In cases where

many n vectors are possible, decomposition methods should be paired with optimization

methods rather than generate-and-test methods.

1.4.2.2 Decomposition in mixture design

One of the more challenging problems in CAMD, the mixture design problem benefits

from decomposition. Early work from Gani & Fredenslund (1993) proposed a decompo-

sition algorithm based on the prior work of Klein et al. (1992) to decouple the mixture

design problem into several single-component molecular design problems. Each of these

solutions could then be investigated as a potential mixture component. Many other

approaches have followed suit (Karunanithi et al. 2005; Conte et al. 2011b; Austin et al.

2016), relying on the efficiency of single-molecule CAMD techniques to quickly solve

single-molecule subproblems and optimization techniques to optimize over the space of

the mole fractions.

1.4.2.3 Decomposition in integrated product/process design

Integrated product/process design problems are also often decomposed. A popular

method relies on optimizing the process variables while allowing for any possible prop-

erties of the products. This is a relaxation of the original problem and represents a lower

bound (in the case of minimization) on the objective. Solving this problem is far easier

and generates a set of ideal properties for an optimal molecule to have. Using these

ideal properties as targets, a molecular design problem can be solved to determine the

molecule that is closest in properties to these ideal values. Finally, the process design
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problem can be updated with actual property values of the closest structure and then

re-optimized. This technique always produces a feasible value of the objective, though it

may not always find the globally optimal structure(s) and process variable values. This

two-stage approach has been used by Eden et al. (2004) and Bardow et al. (2010). The

latter reference has used this approach throughout the literature, referring to it as the

continuous molecular targeting approach (CoMT-CAMD).

Other approaches optimize first in the space of the molecular structures before inves-

tigating process performance. Papadopoulos & Linke (2005) designed molecules based

on a multi-objective optimization problem, determining the best potential structures

based on a number of criteria. This resulted in a Pareto-optimal set of structures, each

of which could be tested in the context of the process design problem. Approaches sim-

ilar in nature (Karunanithi et al. 2005; Austin et al. 2016) have also optimized in the

space of structures and evaluated each structure/mixture as an input to process design

problems.

Other approaches solve the problem iteratively. For example, Buxton et al. (1999)

proposed iteratively solving two subproblems: one to identify process conditions and

the other to determine molecular structures. A new approach from Gopinath et al.

(2016) uses the outer approximation algorithm (Duran & Grossmann 1986) to treat the

product/process design problems as two subproblems. In this approach, one subprob-

lem solved the process problem for a fixed molecule and the other determined another

candidate molecule. Approaches such as these two discussed work by generating upper

and lower bounds on the objective by solving the subproblems. When the lower and

upper bounds are within a certain tolerance, the algorithms terminate.

1.4.3 Mathematical optimization methods

In some cases, CAMD problems can be addressed straightforwardly with optimization

techniques. In others, optimization approaches become tenable with a slight alteration

to the formulation or by exploiting the problem structure. To reiterate an earlier state-

ment, optimization approaches are best suited to problems with many possible descrip-

tors or challenging non-linearities or non-convexities in molecular, mixture, or process

models. In cases where there are few possible descriptors, the design space can often
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be enumerated efficiently using generate-and-test methods. Before discussing a few rel-

evant techniques, we note that there is a large degree of overlap between the categories

of decomposition methods and mathematical optimization methods. Both techniques,

however, merit an independent discussion as both play a critical role in the solution of

CAMD problems.

Many techniques in single-molecule design are able to first solve feasibility optimiza-

tion problems based on property and structural feasibility constraints. This also qualifies

as a decomposition method as the objective function is evaluated afterwards or structure

ranking is presumed to be done by expert analysis. Odele & Macchietto (1993) intro-

duced a general optimization formulation for solving molecular design problems. The

problem discussed in their paper, the single molecule design problem, can be addressed

very efficiently with optimization techniques, even if the descriptor space is large.

Duvedi & Achenie (1996) applied outer-approximation (Duran & Grossmann 1986) to

the formulation given by Odele and Macchieto with a few slight alterations. A variant of

this approach was also used by Churi & Achenie (1996), who considered connectivity of

the structures. In both cases, the problem was formulated as a mixed-integer nonlinear

program (MINLP), which was solved with an outer approximation algorithm. Though

efficient for many types of problems, the outer approximation algorithms used in these

cases are not guaranteed to find globally optimal solutions if the problem is non-convex.

Sinha et al. (1999) and Sahinidis et al. (2003) applied the branch-and-bound algo-

rithm to these problems. This required deriving underestimators (linear in many cases)

of the constraints and objective function. Solving the problem with underestimators re-

sulted in a lower bound on the objective (in the case of minimization). This approach al-

lowed optimization strategies to quickly disregard areas of the search space which would

not lead to optimal solutions. Furthermore, upon convergence, the branch-and-bound

algorithm guarantees a globally optimal solution, at least to within a user-specified

tolerance.

The problem of designing molecules to match property targets is far easier. This

problem can be solved in the mixed-integer quadratic program (MIQP) shown above or

as a mixed-integer linear program (MILP), where some transformations of the QSPR
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functions must be done before optimization Sahinidis et al. (2003). This MILP has an

altered objective function

min
n,x

∑
k

wk(d
+
k + d−k ) (1.48)

where d+k and d−k are the positive and negative deviations between the target property

values and the estimated values. Both d+k and d−k are modeled as positive continuous

variables. They require one additional constraint to calculate:

d+k − d
−
k = pTk − pk ∀k (1.49)

Samudra & Sahinidis (2013b) used this observation to decompose the molecular de-

sign problem into three basic steps: (1) identification of optimal sets of groups, n; (2)

structure generation; and (3) application of higher-order models to feasible structures.

Zhang et al. (2015) extended step (1) of this methodology to account for higher-order

groups by introducing variables to account for the connectivity. Maranas (1996) pro-

posed linearization of difficult property models to allow for the efficient use of MILP

techniques. Camarda & Maranas (1999) convexified non-linear terms in their CAMD

formulation, simplifying the location of globally optimal structures.

1.4.4 Heuristics

Though mathematical programming approaches are very useful, there are many CAMD

problems which are too high-dimensional or non-linear to be practically considered by

mathematical optimization approaches. Problems of this type may attempt to design

very large, structurally diverse molecules, necessitating a large search space with many

possible combinations of descriptors. Alternatively, these problems may involve a com-

plex process design component, which may require a difficult simulation for each feasible

structure. Perhaps the thermodynamic functions and mole fractions optimization must

be decoupled from the molecular design problem, meaning that each feasible structure

must be investigated in a difficult mole fractions optimization subproblem.
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Heuristic approaches to complex optimization problems typically apply high-level

selection strategies to generate a series of trial points, evaluating the objective for each

trial point and determining a new trial point based on the value of the objective as well as

the history of function evaluations. These algorithms terminate either by converging to

a point of optimality or by exceeding some user-defined limit (time, iterations, etc.). In

the context of CAMD problems, most heuristic optimization approaches have optimized

in the space of molecular structures. Practically speaking, this involves generating a

molecular structure based on certain design specifications (descriptors, property targets,

etc.). Each structure is fixed as an input to the entire CAMD problem, and the objective

value is determined. A new structure (or series of structures) is chosen for evaluation

based on the relationship between structures/descriptors/properties and the objective

value.

We note that one of the most important considerations for using heuristics for CAMD

problems is the translation of molecular structures into a particular encoding. In simple

cases, the encoding can represent the number of descriptors used in the molecules. In

other cases, the descriptors may be translated into a binary string or assigned a value

that is a function of the descriptors.

1.4.4.1 Genetic algorithms

Genetic algorithms (GAs) are a class of heuristic algorithms roughly based around the

idea of natural selection. More specifically, GAs evaluate the performance of each mem-

ber of a certain pool of solutions called a “generation.” The members of the generation

are then combined, taking some features from certain members—or “parents”—and

some from another. The likelihood of being chosen for this “reproduction” process is

based on each solution’s rank, with preference given to better solutions. In their applica-

tion to CAMD problems, GAs typically work in the space of molecular structures. Each

structure in a generation is evaluated, features from the best-performing molecules are

passed on to the next generation, and the process continues until convergence is achieved.

Venkatasubramanian et al. (1995) introduced GAs to CAMD problems. They en-

coded molecular structures as a string of their substituent groups and applied genetic

operations to the parent strings. Dyk & Nieuwoudt (2000) proposed an encoding based

on the UNIFAC (Fredenslund et al. 1975) groups. Xu & Diwekar (2005) developed a
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GC-based GA which encoded structures based on various group identities. Herring &

Eden (2015) applied GAs in conjunction with signature descriptors to design structures

based on property targets. Zhou et al. (2016) applied GAs to solvent design problems

for a two-phase reactions and to process design problems for gas absorption (Zhou et al.

2016). Scheffczyk et al. (2016) also applied GAs to liquid-liquid extraction problems

based on COSMO-RS thermodynamics.

1.4.4.2 Tabu search

Tabu search (TS) algorithms also work by first proposing a pool of initial solutions.

These solutions are altered by one of many operations to produce slightly altered solu-

tions. This process is repeated so long as the altered molecules do not appear in a tabu

list, i.e., a list of solutions forbidden from consideration based on various factors. These

factors can include: frequency of occurrence (to ensure the same solutions are not always

visited), infeasibility or low-objective values (to allow the algorithm to determine good

solutions), and many others. Using this tabu list, the TS algorithm maintains some

“memory” of previous solutions, which can offer some advantages in CAMD problems.

Naturally, the analogue of TS in CAMD problems maintains a solution set of molecular

structures and alters these provided they are not on the tabu list of forbidden structures.

One important feature of TS algorithms is that the tabu list is often dynamic, meaning

once tabu-forbidden solutions may be acceptable during a later generation.

Tabu search has only recently been applied to CAMD problems. For example, Chavali

et al. (2004) and Lin et al. (2005) applied TS to the design of transition metal catalysts.

Another example comes from McLeese et al. (2010a), who considered ionic liquid design.

1.4.4.3 Other methods

Several other heuristics have been applied to CAMD problems. For example, Gebres-

lassie & Diwekar (2015) solved liquid-liquid extraction problems with a modified ant

colony optimization (ACO) algorithm. Like other heuristics, ACO works by proposing

a pool of solutions (molecules). These solutions are assigned a certain weight, and good

solutions attract other solutions in their direction, meaning that bad solutions become

more like good solutions in properties, descriptors, or otherwise. Similarly, bad solutions

discourage other solutions from becoming similar to them.

39



1.5 literature review of camd applications

Simulated annealing is another heuristic to produce solutions for the CAMD prob-

lem. It works by altering a given solution by randomizing the descriptors that define

its encoding. If the new solution is better than the previous, it is accepted and be-

comes the current solution. If the new solution is worse but still within the bounds

of an error function, it is also accepted. As the algorithm proceeds, the error function

becomes more and more stringent, meaning that worse solutions are less likely to be

accepted. Examples of this algorithm in CAMD come from Ourique & Telles (1998)

and Marcoulaki & Kokossis (1998).

1.5 literature review of camd applications

1.5.1 Single molecule design

To begin, we mention a few approaches for single molecule design which qualify as

solving the “feasibility problem.” As discussed earlier, it is sometimes difficult to make

the distinction between this category of problems—feasibility problems—and those that

have some ranking criteria. The simple reason for this is that many methodologies are

designed to do both. Nonetheless, this type of application is presented here to underscore

its importance. A few noteworthy examples come from Joback (1989), who describes

techniques to solve the feasibility problem using groups, and Kier and co-workers (Kier

& Hall 1993; Kier et al. 1993;?), who solved this problem using topological indices, and

Churchwell et al. (2004), who described techniques to solve these types of problems with

signature descriptors. All of these studies, though not directly applying optimization,

use many techniques to reduce the massive size of the chemical search space. Many

techniques described in subsequent sections can solve these feasibility problems with

optimization approaches. These methods typically have an explicit objective function

and thus fit better into a different category.

The next category of applications concerns problems with explicit objective functions.

The many objective functions of this category reflect the diversity of the CAMD field as

a whole. Some of the first contributions in CAMD came from Gani & Brignole (1983)

and Brignole et al. (1986) who designed extraction solvents based on solvent power and

selectivity. Though Gani and Brignole did not use optimization in this approach, they
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significantly reduced the number of feasible molecular structures based on arguments

such as limiting groups, placing restrictions on various properties, and investigating

solubility curves. In this way, they narrowed the massive chemical design space to a

few possible molecules which could all be considered directly by solving the “forward

problem.” A similar approach was used by Macchietto et al. (1990) and Joback (1989).

Early efforts at optimization in the CAMD problem come from Gani et al. (1991)

and Knight & McRae (1991). Odele & Macchietto (1993) introduced a general numeri-

cal optimization to the CAMD problem, formulating several solvent design problems as

optimization problems over the space of groups. Since then, many CAMD efforts have

focused on the design of solvents. For example, Harper et al. (1999) proposed a multi-

level approach to design separations solvents, reducing the number of feasible molecules

in each of several sub-problems. Sinha et al. (1999) applied global optimization tech-

niques to the design of a blanket wash solvent. Karunanithi et al. (2005) developed a

decomposition algorithm to address difficult optimization problems, applying it to the

design of liquid-liquid extraction solvents and crystallization solvents Karunanithi et al.

(2006). Subsequent investigations of this problem came from Samudra & Sahinidis

(2013b) and Austin et al. (2016).

Many efforts in CAMD have been applied towards industrial processes. One of the

most popular application areas is in designing solvents for liquid-liquid extraction. Gani

et al. (1991) proposed the design of a solvent for the separation of water and acetic acid.

Harper et al. (1999) and Harper & Gani (2000) sought to find a replacement for toluene

in the separation of phenol and water. A few other examples include: Marcoulaki &

Kokossis (1998), Xu & Diwekar (2005), Scheffczyk et al. (2016), and Gebreslassie &

Diwekar (2015).

Extractive distillation is also another important industrial process which is often

studied using CAMD. Many approaches investigated focused on separations in general

and have also been applied to liquid-liquid extraction. Two of those such studies are

Harper et al. (1999) and Gani et al. (1991). Dyk & Nieuwoudt (2000) applied simulated

annealing to the design of a solvent separation of five binary pairs of common industrial

compounds.

Another emerging area of study in CAMD is the design of solvents to optimize reaction

properties. Wang & Achenie (2002) made one of the first efforts to solve this problem,
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designing solvents to promote ethanol fermentation and subsequent extraction. Gani

et al. (2005) proposed a rules-based strategy for the selection of solvents for several

common reactions and a pharmaceutical example. Folić et al. (Folić et al. 2007; Folic

et al. 2008) designed novel solvents to maximize the reaction rate constant of an SN2

reaction. They applied GC methods to estimate the parameters of the solvatochromic

equation of Abraham et al. (Abraham et al. 1987) and then used this equation to

predict rate constants. Struebing et al. (2013a) investigated the same type of reactions,

now using quantum chemical calculations for their solvents and the solvatochromic

equation as a surrogate model. Zhou et al. (2015) used COSMO-RS (Klamt 1995)

thermodynamics in conjunction with CAMD techniques to design solvents to maximize

reaction selectivity (Zhou et al. 2015). Austin et al. (2016a) designed solvents to

maximize a reaction rate using COSMO-RS thermodynamics and projecting the original

problem onto a lower-dimensional space.

Ionic liquid design is another application area for this subset of CAMD problems. For

example, Karunanithi & Mehrkesh (2013) used decomposition techniques to design ionic

liquids for electrical conductivity, heat transfer, liquid-liquid separations, and solubility.

McLeese et al. (2010b) designed ionic liquids using a tabu search algorithm, which they

also showed produced a globally optimal solution for their test problem. Matsuda et al.

(2007) designed ionic liquids based on conductivity and viscosity targets. These case

studies used a small number of possible groups and could thus be alternatively addressed

via exhaustive enumeration.

A number of approaches have also investigated pharmaceutical applications of CAMD.

We note here that a good review exists on the topic of pharmaceutical solvents al-

ready (Harini et al. 2013). Chemmangattuvalappil et al. (2010) investigated a drug

modification problem using molecular signatures. Their approach, discussed above, re-

quired a fairly large number of linear constraints to ensure a consistent set of descriptors.

They applied this approach to the alteration of alkyl substituents on a fungicidal com-

pound. Siddhaye et al. (2004) designed pharmaceutical products, focusing on molecules

likely to be the active pharmaceutical ingredient (API). Leveraging the power of con-

nectivity indices, they were able to design a few pharmaceutically relevant case studies,

including producing a penicillin derivative with specified properties. Churchwell et al.
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(2004) used signature descriptors to design peptide inhibitors to leukocyte functional

antigen-1 (LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1).

Many CAMD efforts have also been focused on the design of alternative refrigerants.

For example, Gani et al. (1991) designed refrigerants based on a few important prop-

erties. Joback (1989) first considered the problem of finding a replacement refrigerant

for Freon-12. Duvedi & Achenie (1996; 1997) and Churi & Achenie (1996) looked at

this same problem, focusing on heat capacity and heat of vaporization as the properties

to optimize. Marcoulaki & Kokossis (1998) also designed a replacement for Freon-12

using a simulated annealing approach. Sahinidis et al. (2003) investigated the same

replacement problem using a global optimization approach with modified structural con-

straints and an improved CAMD formulation. Samudra & Sahinidis (2013a) designed

heat transfer fluids for refrigeration systems.

Polymer design has been investigated extensively using CAMD techniques. Many

of these approaches focused on designing a polymer with certain physical properties.

Venkatasubramanian et al. (Venkatasubramanian et al. 1994; 1995) applied genetic

algorithms to the problem, designing polymers to approximate target values in vari-

ous property categories like glass transition temperature, bulk modulus, heat capacity,

density, and others. Maranas (1996) approaches the problem in a similar way, min-

imizing distances to target values. Unlike Venkatasubramanian et al., Maranas used

a mixed-integer linear program (MILP) formulation and mathematical optimization

techniques to solve the problem. Camarda & Maranas (1999) addressed the design

problem using topological indices and a mathematical optimization formulation. Eslick

et al. (2009) also used topological indices but designed molecules with a tabu search

algorithm rather than a mathematical optimization approach. Brown et al. (2006) con-

sidered the problem with signature descriptors. Pavurala & Achenie (2013) used an

outer-approximation approach to design polymers to aid in oral drug delivery.

This section presents a selection of main applications of single-molecule design prob-

lems. For a more comprehensive list, see Table 1.3.
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1.5.2 Mixture design

The mixture design problem is a difficult variant of the single-molecule design problem.

As a result, there are far fewer examples of applications considering a mixed product.

Though we divide by application in this section, we emphasize that many of these

techniques are generalizable. Many of the references given here can likely be altered to

design a mixed product for an arbitrary application.

Klein et al. (1992) and Gani & Fredenslund (1993) first considered the mixture design

problem, solving a few example problems involving solubilities and compounds which

form azeotropes. Vaidyanathan & El-Halwagi (1996) designed blends of polymers, re-

lying on simple mixing rules for algebraic simplicity. Vaidyanathan and El-Halwagi also

designed single polymers. Duvedi & Achenie (1997) developed an MINLP formulation

for mixture design, using an equation of state to estimate some mixture properties and

relative simple mixing rules to estimate others. They applied the methodology to the

design of refrigerant blends.

Buxton et al. (1999) proposed a decomposition technique to solve mixture design

problems. They produced solvent blends which would reduce the environmental impact

of an industrial process. Sinha et al. (2003) solved mixture selection problems as an

MINLP, choosing the best combination of solvents from a given list. This approach

was able to select an optimal single solvent and mixture of solvents for use as cleaning

agents in the lithographic printing industry.

Karunanithi et al. (2006) used a decomposition technique to first reduce the mix-

ture design problem to the set of all feasible individual components. Each possible

mixture was then used to evaluate the objective function. This approach was used

for the design of a crystallization solvent and anti-solvent. Conte et al. (2011a) pro-

posed a task-based decomposition algorithm, which was applied to the design of paint

solvents blends and insect repellent solvent blends. Austin et al. (2016) addressed

the mixture design problem in the reduced-order space of each individual component’s

properties, employing derivative-free optimization (DFO) methods to optimize over the

lower-dimensional space. This was applied to reproduce the crystallization solvent de-

sign problems of Karunanithi et al. (2006). Another approach comes from Jonuzaj et
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al. (Jonuzaj et al. 2016; Jonuzaj & Adjiman 2017) who used Generalized Disjunctive

Programming (GDP) (Balas 1979) to select mixtures of solvents from a fixed list.

1.5.3 Integrated process and product design

Though many CAMD endeavors design products with the ultimate goal of being in-

corporated into an industrial process, few have explicitly considered the relationship

between a particular structure and a process. This can be problematic as many recent

efforts have observed some sensitivity between product descriptor variables and process

variables. To overcome this issue, various approaches have considered the product and

process design problems simultaneously.

Eden et al. (2004) solved an integrated process and product design problem to best

recover volatile organic compounds (VOCs) from an industrial process, identifying opti-

mal property targets for solvents in a reduced-order space given by clustering methods.

Hostrup et al. (1999) proposed a general framework for integrated process and product

design that was focused on separations. This method relied on reduction of the feasible

solution space via thermodynamic arguments and case-specific considerations. Then,

molecules were designed based on proximity to property targets for a certain process

architecture.

Kim & Diwekar (2002b) solved liquid-liquid extraction process problems, considering

the process performance and designing suitable structures using a heuristic optimiza-

tion strategy for the generation of solvent structures. Papadopoulos & Linke (2005)

developed a methodology for considering integrated problems which relied on decom-

posing the problems into product and process subproblems. Unlike other approaches,

Papadopoulos and Linke solved multi-objective optimization problems, determining the

Pareto optimal front for solvent properties likely to be related to process performance.

Using these Pareto-optimal structures, they could solve the process problems for a

much smaller set of possible molecules. They applied this methodology to extractive

fermentation (Papadopoulos & Linke 2005) and liquid-liquid extraction and gas absorp-

tion (Papadopoulos & Linke 2006b;a).

Karunanithi et al. (2005) proposed a decomposition methodology to solve difficult

process design problems. This methodology first filtered out a large number of possible
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molecular structures based on property bounds. It then applied a few stages of more

complicated constraints to the remaining molecules, further reducing the pool of feasible

structures. Finally, the process model was applied to each of the molecules which

were feasible for all of the constraints. This methodology was applied to the design

of a liquid-liquid extraction process (Karunanithi et al. 2005) and to the design of

crystallization solvents (Karunanithi et al. 2006). Bommareddy et al. (2010) addressed

the product/process design problem first in the space of the process, finding ranges of

properties for the molecules to be designed. These ranges then represented what was

most suitable for a particular process and therefore defined a much smaller search space

for the molecular design subproblem.

Bardow et al. (2010) proposed the CoMT-CAMD approach to first identify target

solvent properties and then select an optimal solvent based on proximity to these ideal

solvent properties. This was applied in conjunction to a variant of the SAFT equation

of state to design a carbon capture and storage process. Stavrou et al. (2014) used the

same approach to consider carbon capture problems. Pereira et al. (2011a) also used

SAFT to optimize a process to separate carbon dioxide and methane at high pressures.

Papadopoulos et al. (2010) designed fluids for an organic Rankine cycle, considering

fluids which fell on the Pareto front of optimal properties for the process. Lampe

et al. considered the same problem for fluid selection (Lampe et al. 2014) and fluid

design (Lampe et al. 2015). A summary of the references, categorized by application, is

provided in Table 1.3.
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Table 1.3: Summary of CAMD applications and the methodologies used in each case
Application References
Antigen inhibition
activity Churchwell et al. (2004) sd,d,o

Biodiesel additives Hada et al. (2014) gc,d,gt

CO2 capture
Gani et al. (1991) gc,d,gt,m, Bardow et al. (2010) sel,d,p, Pereira et al.
(2011a) gc,o,p, Stavrou et al. (2014) sel,d,o,p, Burger et al. (2015) gc,o,p, Lampe et al.
(2015) gc,d,o,p, Gopinath et al. (2016) gc,d,o,p

Crystallization
solvents

Karunanithi et al. (2006) gc,d,gt,p,m, Samudra & Sahinidis (2013b) gc,d,o, Austin et al.
(2016)gc,d,o,p,m

Extractive
distillation

Harper et al. (1999) gc,d,gt, Gani et al. (1991) gc,d,gt, Papadopoulos & Linke
(2006a) gc,d,h,p, Dyk & Nieuwoudt (2000) gc,d,h

Extractive
fermentation Wang & Achenie (2002) gc,d,o, Papadopoulos & Linke (2005) gc,d,h,p

Gas absorption Odele & Macchietto (1993) gc,d,o, Buxton et al. (1999) gc,d,o,m,p, Papadopoulos & Linke
(2006b;a) gc,d,h,p, Bommareddy et al. (2010) gc,d,gt,p, Zhou et al. (2016) gc,d,h,p

HIV-1 protease
inhibition activity Visco et al. (2002) sd,d,o

Ionic liquids design Matsuda et al. (2007) gc,gt, McLeese et al. (2010b) ti,h, Karunanithi & Mehrkesh
(2013) gc,d,h

Liquid-liquid
extraction

Gani & Brignole (1983) gc,d,gt, Brignole et al. (1986) gc,d,gt, Odele & Macchietto
(1993) gc,d,o, Marcoulaki & Kokossis (1998) gc,d,h, Harper et al. (1999) gc,d,gt, Harper &
Gani (2000) gc,d,gt, Gani et al. (1991) gc,d,gt, Karunanithi et al. (2005) gc,d,gt,p, Austin
et al. (2016a) gc,d,o,p,m, Ourique & Telles (1998) gc,h, Kim & Diwekar (2002a) gc,d,h,p,
Papadopoulos & Linke (2006b) gc,d,h,p, Xu & Diwekar (2005) gc,d,h, Scheffczyk et al.
(2016) d,o, Gebreslassie & Diwekar (2015) gc,h

Organic Rankine
cycle fluids

Papadopoulos et al. (2010) gc,d,h,p, Lampe et al. (2014) sel,d,p, Lampe et al.
(2015) gc,d,o,p

Pharmaceutical
products Siddhaye et al. (2004) ti,o

Polymer design
Venkatasubramanian et al. (1994; 1995) gc,h, Maranas (1996) gc,o, Vaidyanathan &
El-Halwagi (1996) gc,o,m, Camarda & Maranas (1999) ti,o, Brown et al. (2006) sd,o,
Eslick et al. (2009) ti,h, Pavurala & Achenie (2013) gc,d,o, Zhang et al. (2015) gc,o

Reactions solvents
Wang & Achenie (2002) gc,d,o, Gani et al. (2005) sel,d, Folić et al. (2007); Folic et al.
(2008) gc,o, Struebing et al. (2013a) gc,d,o, Zhou et al. (2015) gc,o, Austin et al.
(2016a)gc,d,o,m, Zhou et al. (2016) gc,d,h

Refrigerant design
Joback (1989) gc,d,gt, Gani et al. (1991) gc,d,gt, Churi & Achenie (1996) gc,d,o, Duvedi &
Achenie (1996; 1997) gc,d,o, Marcoulaki & Kokossis (1998) gc,d,h, Sahinidis et al.
(2003) gc,o, Ourique & Telles (1998) gc,h, Samudra & Sahinidis (2013a) gc,d,o

Separations
(general) Hostrup et al. (1999) gc,sel,d,o,gt,p

Solvents for
consumer products
and industry

Pistikopoulos & Stefanis (1998) gc,o, Buxton et al. (1999) gc,d,o,m,p, Conte et al.
(2011a) gc,d,gt,m, Sinha et al. (1999) gc,o, Sinha et al. (2003) sel,o, Weis & Visco
(2010) sd,o

Soybean oil products Camarda & Sunderesan (2005) ti,o

Structural
modifications to a
fungicide

Raman & Maranas (1998) ti,o, Chemmangattuvalappil et al. (2010) sd,o

Transition metal
catalyst design Chavali et al. (2004) ti,h, Lin et al. (2005) ti,h

VOC recovery Eden et al. (2004) gc,d,gt,p

gc Group contribution methods are the main QSPR method used
ti Topological indices are the main QSPR method used sd Signature descriptors are the main QSPR method used
sel Compounds are selected from a fixed list rather than designed d Decomposition methods used
gt Generate-and-test procedure used o Numerical optimization used h Heuristical optimization used
m Mixture design considered p Process design considered
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1.6 conclusions

The advent of the computational age has drastically impacted the design of chemical

products and novel molecules, altering a once intuition-based, trial-and-error practice

into a rapid and efficient search through millions of possible structures. The availability

and accuracy of QSPRs combined with efficient mathematical programming techniques

has extended this capability even further, enabling chemical product designers to inves-

tigate a previously unimaginable diversity of chemical structures.

This section has provided background on the QSPRs which often serve as the under-

pinning of CAMD problems. Each of three methods (group contribution, topological

indices, and signature descriptors) was discussed in detail, and relevant constraints for

optimization problems were provided for the case of GC methods. The CAMD problem

was also addressed from the vantage point of mathematical optimization. Various for-

mulations were discussed for a few broad classes of the CAMD problem (single-molecule

design, mixture design, integrated product/process design). Solution techniques were

discussed to aid in the solution of the often difficult CAMD problem. Finally, we pro-

vided a summary of the many design endeavors and applications of the CAMD problem.

The increasing availability of computational resources, efficient optimization algo-

rithms, and accurate QSPRs bodes well for the future of CAMD. CAMD has a proven

history of determining improved solutions for many well-known industrial processes as

well as designing new products for consumers and optimizing high-impact chemical pro-

cesses. More recently, there have been a growing number of more advanced modeling

and design efforts, concerning ideas such as integrating quantum chemistry techniques,

designing transition metal catalysts, and determining optimal structures of pharmaceu-

tical compounds. The potential applications of CAMD are numerous, and the field

48



1.6 conclusions

is poised to play an integral role in the development of the chemical and biochemical

technologies of the not-so-distant future.
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2
MIXTURE DES IGN US ING DERIVATIVE -FREE OPTIMIZAT ION

IN THE SPACE OF IND IV IDUAL COMPONENT PROPERTIES

2.1 introduction

In this chapter, we address the mixture design problem via a decomposition approach.

The mixture design problem poses a number of challenges for mathematical optimiza-

tion, chief among which is perhaps the even larger combinatorial design space of the

multiple chemical compounds to be designed. A secondary complication is the difficulty

of incorporating mixture property models (equations of state, activity coefficient models,

etc.) into the design problems. These complications can be effectively overcome using

our approach.

As discussed in the introduction, traditional methods of product design are largely

experimental, meaning that most new candidate products must first be synthesized and

then tested. This traditional, Edisonian search space for new products is often very

small as it represents a costly design and validation process that is limited by a fixed

amount of time and resources. Furthermore, many industrial product design endeavors

focus on a particular type of molecule or a structural analogue of a known compound,
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which significantly attenuates the chemical search space. Clearly, new chemical product

design approaches are necessary to probe a growing library of known structures as

well as design novel compounds to fit a particular task. With the increasing need for

new chemical products, product design has found applications in wide-ranging fields

including new fuel design (Sundaram et al. 2001), solvents for optimal separations or

optimal solvation (Odele & Macchietto 1993; Brignole et al. 1986; Mitrofanov et al. 1995;

Karunanithi et al. 2006; Struebing et al. 2013b), cosmetics (Mitrofanov et al. 1995), food

and industrial additives (Conte et al. 2012; 2011b), pharmaceuticals (Harini et al. 2013;

III et al. 2013), microelectronics Warrier et al. (2012), refrigerants and heat transfer

fluids (Duvedi & Achenie 1997; Sahinidis et al. 2003; Samudra & Sahinidis 2009; 2013a),

solvents for carbon capture (Nuchitprasittichai & Cremaschi 2013; Pereira et al. 2011b;

Buxton et al. 1999), and a wide variety of materials (Ashbya et al. 2004).

Computer-aided mixture design (CAMxD) can be formally defined as the problem of

determining an optimal mixture of compounds whose mixture properties fall within spec-

ified ranges. We note that in this chapter, we consider a mixture design problem to be a

problem of designing ≥ 1 molecule to function in a mixture of ≥ 2 components. In these

problems, the molecular compounds are assembled from scratch, meaning that solutions

of CAMxD can consist of one or many structures that have never before been synthesized.

Due to the complexity of these problems, CAMxD leverages a large body of prior work in

the area of computer-aided molecular design (CAMD), which addresses the same prob-

lem but only for the design of a single structure. Early work from Gani & Fredenslund

(1993) proposed a decomposition algorithm based on the prior work of Klein et al.

(1992) to decouple the mixture design problem into several single-component molecu-

lar design problems. This decomposition allowed for many existing methodologies and

prediction methods to be applied directly to the mixture design problem, although ap-

plying optimization techniques to these problems would sometimes necessitate empirical
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correlations and simplified thermodynamic models. Other approaches (Vaidyanathan

& El-Halwagi 1996; Buxton et al. 1999; Duvedi & Achenie 1997; Sinha et al. 1999) ap-

plied mathematical optimization techniques directly to mixture design problems, but

challenging non-linearities and non-convexities limited these problems to a reasonably

small molecular search space or dictated the use of simplified models. Venkatasubrama-

nian et al. (1994) sought to deal with the large search space in these types of problems

using genetic algorithms. These stochastic search algorithms do provide a way to ex-

plore a large search space, but they assume no algebraic form of the function and, as a

result, are often outperformed by many competing techniques (Rios & Sahinidis 2013).

Conte et al. (2012; 2011b) successfully exploited a similar decomposition methodology

to handle formulations and solvents. This method relied on generating a large number

of candidate molecules or blends and then systematically reducing the pool of feasible

molecules. While a very useful methodology for many types of problems, this approach

can also be limited to small design spaces in that insufficient reduction of the solution

pool leads to a large number of complicated subproblems. Karunanithi et al. (2005)

also developed decomposition algorithms to translate the mixture design problem into

a series of molecular design problems. Their approach required enumerating all feasible

molecular structures, regardless of how these might perform in the mixture design prob-

lem. Each combination of these structures was tested for compatibility and the objective

was evaluated for all feasible combinations. This approach can lead to the over-design of

molecular components and the resultant limitation to optimization over a small subset

of the feasible mixture design space. Furthermore, many of these approaches calcu-

lated mixture thermodynamic properties using the UNIFAC method (Fredenslund et al.

1975).

Mathematical optimization approaches to the solution of the CAMxD problem have

limitations in the diversity of structures they can consider as well as in the complexity
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of mixture thermodynamics involved. To consider more general problems, the existing

literature for solving CAMxD problems has focused primarily on enumeration-based

algorithms, meaning the CAMxD problem is solved by exhaustively tabulating every

possible structure for every possible mixture component. However, this exhaustive

enumeration often leads to an unnecessarily costly search through the molecular de-

sign space and also limits many mixture design algorithms to a few specific classes

of molecules. To address a truly open-ended mixture design problem, a methodology

would have to efficiently explore a large part of the chemical search space and deter-

mine one or many points of optimality. The primary contribution of this work is the

development of a novel general-purpose methodology for mixture design that achieves

this goal. The main idea is to address mixture design in the space of pure component

properties. Viewed this way, mixture design is naturally decomposed to pure product

design and mixture fraction subproblems. Pure component design can be addressed

via highly efficient software recently developed for this class of problems (Samudra &

Sahinidis 2013b), and the mixture fraction subproblem can be solved with traditional

algebraic optimization techniques. What makes our approach particularly suitable to

this decomposition is the incorporation of optimization algorithms that are capable of

optimizing in the absence of an algebraic expression of the objective function. In ad-

dition to demonstrating the usefulness of the proposed approach for mixture design,

another contribution of the paper is in terms of presenting results from testing 27 dif-

ferent derivative-free optimization (DFO) algorithms on the proposed mixture design

formulation. These results provide insights into which DFO algorithms are best suited

for typical mixture design applications.

In the next section, we introduce various concepts and tools which will be used as

building blocks in our mixture design methodology. In the section that follows, we

propose a new decomposition algorithm which can be generally applied to mixture
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2.2 building blocks

design problems. Then, we compare 27 different DFO algorithms as applied to two

illustrative examples and two problems drawn from the CAMD literature. Finally, we

provide comparisons among various classes of DFO solvers and draw conclusions from

this work.

2.2 building blocks

2.2.1 AMODEO Methodology for Molecular Design

As previously mentioned, our mixture design methodology decomposes mixture design

in a way that requires the solution of several pure component design problems. This

decomposition is advantageous as it allows us to capitalize on recently developed method-

ologies for CAMD that are highly efficient. Addressing the then shortcoming of CAMD

to systematically design structures over a large molecular search space, Samudra &

Sahinidis (2013b) proposed an optimization and decomposition approach, implemented

in the software AMODEO. AMODEO uses the group contribution (GC) method devel-

oped by Marrero and Gani (Marrero & Gani 2001; 2002) as its primary tool for evalu-

ating properties from structures. The basic form of this group contribution method is

as follows:

pk = f

(∑
i∈F

cki ni +
∑
i∈S

cki ni +
∑
i∈T

cki ni

)
(2.1)

Here, F is the set of first-order groups, S is the set of second-order groups, and T is

the set of third-order groups. These groups are further detailed in Marrero & Gani

(2001). cki is a coefficient fitted to the number of occurrences of each group (ni) for the

estimation of the k-th property in a vector of thermophysical properties p. AMODEO’s

55
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speed in its search of the entire chemical space is enabled by a few key elements in its

approach: (1) An optimization formulation exploits the linearity of a set of property

prediction models, which allows for quick estimates over a large pool of molecules; (2)

The molecular compositions (a raw summation of various molecular sub-groups) are

first calculated as an optimization problem, which greatly reduces the dimension of

the overall problem from a high-dimensional problem in chemical structure space to

a lower-dimensional problem in group composition space to an even lower-dimensional

problem in the space of selected groups; (3) Deterministic solution algorithms are used

to guarantee optima rather than relying on stochastic algorithms or enumeration of the

solutions. To be more specific, AMODEO divides the CAMD problem into two main

steps: (1) composition design and (2) structure generation. The composition design

phase is solved with an MILP, an abbreviated version of which is shown below:

min
n

0 (2.2)

s.t. κk ≤
∑
i∈F

cki ni ≤ πk ∀k ∈ K (2.3)

n ∈ S (2.4)
...

Here, we solve a feasibility problem to determine which combinations of first-order

groups fall within the specified property ranges [pLk , pUk ] for each property k in a set

of all properties of interest, K. In other words, we design for every possible set of

groups such that these groups satisfy property bounds and structural feasibility. In

addition, the traditional group contribution formulation is truncated after the first-order

groups and then inverted to yield upper and lower bounds for each
∑
i∈F c

k
i ni. These

upper and lower bounds are πk = maxpk∈[pL
k

,pU
k
] f
−1
k (pk) and κk = minpk∈[pL

k
,pU

k
] f
−1
k (pk),
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respectively. It should be noted that πk and κk can be calculated directly as the functions

fk are always monotonic in the models we use.

In the above model, equation (2.2) indicates a feasibility problem. Equation (2.3)

represents the inverted group contribution equation used to determine which vectors

of group occurrences, n, fall into the specified property ranges. Finally, equation (2.4)

abbreviates a number of valence constraints (Odele & Macchietto 1993; Sahinidis et al.

2003) and simply requires that all groups in a solution can assemble into feasible struc-

tures.

The composition design phase relies on a relaxation of pL and pU to account for error

in the coarser first-order estimates as discussed in Samudra & Sahinidis (2013b). The

necessary relaxation is often small as the first-order groups alone nearly always provide

estimates within 10% of the full Marrero-Gani model. Once a number of compositions

have been determined, each must be assembled into a molecular structure. This is done

by solving for entries in an adjacency matrix, solved as an MILP shown in abbreviated

form below:

min
y

0

s.t.
∑
j′∈J
j′ 6=j

yjj′ = vj ∀j ∈ J (2.5)

yj′j = yjj′ ∀j, j′ ∈ J (2.6)

yjj′ ≤ 1 ∀j, j′ ∈ J \ J0, j′ 6= j (2.7)

yjj′ ≤ vj − 1 ∀j ∈ J \ J0, j′ ∈ J (2.8)
...
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2.2 building blocks

In this formulation, each composition is represented as a set of nodes in a graph whose

arcs are unknown. Each node j corresponds to group j which has a valence vj , which

is the node’s required degree for the molecule to be chemically feasible. yjj′ is a binary

variable equal to 1 if group j is connected to group j′, i.e., if there exists an arc between

nodes j and j′. J is the set of nodes determined from the composition design phase

and J0 represents the set of nodes with a valence of 1. Since we aim to find all feasible

structures for a set of nodes, we solve a feasibility problem as indicated by the objective.

Equation (2.5) ensures that every node has its valence requirements satisfied. Equa-

tion (2.6) enforces symmetry in the adjacency matrix. Equation (2.7) means that each

pair of nodes can have at most one connection. Finally, Equation (2.8) prevents some

simple disconnected subgraphs from being solutions. Beyond these more basic equa-

tions, the AMODEO formulation also incorporates efficient constraints for enforcing

completely connected graphs, uniqueness cuts to ensure each molecule is only designed

once, and redundancy cuts to account for multiple occurrences of the same group. A pic-

torial representation of the AMODEO approach is provided in Figure 2.1. In short, the

algorithm transforms the specified search region into a composition of molecular frag-

ments that are finally assembled into molecular structures for which property estimates

are further refined. For more information, see Samudra & Sahinidis (2013b).

2.2.2 Derivative-free optimization

Our approach to mixture design will involve optimization on top of product design

subproblems which can be solved with existing CAMD methodology. While this decom-

position facilitates the use of highly efficient molecular design software, optimization on

top of AMODEO-like approaches must be done in the absence of derivatives or even

an algebraic objective function. This is because AMODEO applies a highly complex
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Figure 2.1: AMODEO framework for molecular design

sequence of operations, many of which involve the solution of optimization subproblems

themselves. For this reason, we will make use of derivative-free optimization (DFO)

algorithms. DFO defines a group of algorithms which seek to optimize a function for

which no derivative information is available, a function or derivative evaluation which

may be computationally expensive, or a function which is not available in algebraic

form. Often, the function in question is assumed to be deterministic. DFO algorithms

evaluate one or several points in the space of the independent variables, interpret the

results based on a wide variety of approaches, and choose one or more new points to

evaluate or terminate because some convergence criterion was reached or a time limit
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2.2 building blocks

was exceeded. There are a number of DFO algorithms, and they can broadly be divided

into a few categories:

1. Local vs. global. Local algorithms aim to determine a point of local optimality.

These algorithms often search in a small area around a current trial solution,

attempting to find an improving direction. Global algorithms, on the other hand,

attempt to search the entire feasible space for a point of global optimality. These

algorithms typically require more function evaluations than local search, as they

try to check objective values in many areas of the feasible region.

2. Deterministic vs. stochastic. When run multiple times from the same starting

point, deterministic algorithms will repeatedly evaluate the same set of points

and arrive at the same solution. Stochastic algorithms incorporate some element

of randomness, often in the form of probabilities of taking a new solution over a

previous one. Deterministic algorithms assume a fixed set of operations will lead

to good solutions, while stochastic algorithms rely on an often large number of

trial points to ensure a good solution.

3. Model-based vs. direct. Model-based algorithms try to fit some functional form

to objective values collected over the space of the independent variables. These

models can be quite simple and computed from a few points, or they can be very

complicated and require the evaluation of many trial points. Direct algorithms

assume no underlying model form and simply evaluate the objective function based

on some pattern. These patterns are often very straightforward: evaluating the

objective at all centroids of the hypercubes surrounding a current trial point, or

dividing the entire feasible region into sections and evaluating the objective in a

point of each section.
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2.2 building blocks

In our approach, the mixture design problems can be posed with few independent

variables, which many DFO algorithms have been shown to be efficient at solving (Rios &

Sahinidis 2013). For our study, we will consider 27 DFO solvers, summarized in Table 2.1.

These solvers apply a variety of algorithms, including spatial search (Hooke & Jeeves

1961; Nelder & Mead 1965; Audet & Dennis Jr. 2006), trust region methods (Powell

2002; Conn et al. 1997), surrogate model building (Booker et al. 1999; Huyer & Neumaier

2008), genetic algorithms (Holland 1975), and hit-and-run methods (Boneh & Golan

1979; Smith 1984). For more information, see Rios & Sahinidis (2013). While Rios &

Sahinidis (2013) provides a comparison of these algorithms on over 500 test problems,

all these problems are algebraic. The literature currently lacks systematic comparisons

of these algorithms on true black-box problems. We aim to fill part of this gap in the

computational results section of this study.
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2.3 mixture design using derivative-free optimization

2.3 mixture design using derivative-free optimization

With the tools of AMODEO and DFO briefly described, we are now in a position to

present our DFO/AMODEO-driven mixture design algorithm. We begin by stating

the mixture design problem and presenting a general formulation for it. We consider

the problem of designing a K-component mixture. Some of the components may be

predetermined but at least one is unknown and its structure and mole fraction in the

mixture must be determined in a way that optimizes a function of mixture properties.

In addition, it may be necessary to enforce constraints on various pure component and

mixture properties.

The indices i, j, and k will, respectively, denote components in the mixture (i =

1, . . . ,K), pure component properties (j = 1, . . . ,C), and mixture properties of inter-

est (k = 1, . . . ,N). For component i, xi will denote its mole fraction in the mixture.

Let pij denote the value of property j for pure component i. We will assume that we

can estimate all these properties via some family of functions f from their correspond-

ing chemical structures, which are determined by specifying a vector n of molecular

descriptors. Component structures must satisfy molecular bonding and connectivity

constraints, denoted here by requiring that n ∈ S. The mixture itself possesses prop-

erties, qk, k = 1, . . . ,N , that are functions of the pure component properties and mole

fractions, i.e., qk = gk(x, p), k = 1, . . . ,N . The mixture design problem is to determine
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2.3 mixture design using derivative-free optimization

the components and their mole fractions so that a certain performance criterion C(q)

is optimized. We can therefore formulate this problem as follows:

(CAMxD) min
n,x

C(q) (2.9)

s.t. q = g(x, p) (2.10)

p = f(n) (2.11)

h(x, p, q) ≤ 0 (2.12)

l(x, p, q) = 0 (2.13)∑
i

xi = 1 (2.14)

pL ≤ p ≤ pU (2.15)

qL ≤ q ≤ qU (2.16)

n ∈ S (2.17)

The problem involves a combinatorial aspect (variables n) to determine the molecular

structure of each component as well as a continuous part (variables x, p, and q) involv-

ing mole fractions and properties. In (2.9), some function C of mixture properties q is

minimized over the continuous variables, x, and discrete variables, n, of the problem.

Equation (2.10) transforms individual component properties and mole fractions into

mixture properties. Equation (2.11) encompasses the functions which estimate individ-

ual component values from each molecule’s constitutive subgroups (Marrero & Gani

2001; 2002). Constraints (2.12) and (2.13) are inequality and equality constraints im-

posed on mixture and component properties. Constraint (2.14) simply requires all mole

fractions to sum to 1. Constraints (2.15) and (2.16) represent the bounds placed on

individual component and mixture properties. Finally, constraint (2.17) requires that
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2.3 mixture design using derivative-free optimization

the designed compositions must assemble somehow into a chemically feasible structure,

as given by a class of valence balance constraints (Odele & Macchietto 1993; Sahinidis

et al. 2003).

Molecular property prediction can be approached through GC methods. Molecular

and mixture properties are nonlinear functions of molecular structure and mole frac-

tions (Joback & Stephanopoulos 1990; 1995; Odele & Macchietto 1993; Marrero & Gani

2001). As a result, model (CAMxD) can be viewed as a mixed-integer nonlinear opti-

mization formulation (MINLP).

Approached from an MINLP point of view, CAMxD is a challenging problem to solve

given its extremely large size and non-linearity. Even models for pure molecular struc-

ture design result in very difficult MINLPs that have required the use of decomposition

techniques to solve them. To wit, Samudra & Sahinidis (2013b) has demonstrated that

decomposition techniques can reduce the time required to solve CAMD problems to

< 1% of the time required to solve the monolithic MINLP, and even more so if many

groups are considered. In its simplest form (K = 1), CAMxD reduces to pure compo-

nent design. Therefore, CAMxD can be expected to be much harder, in general, than

the pure component design problem of Samudra & Sahinidis (2013b). To address this

challenge, we project CAMxD onto the space of pure component properties, thus facili-

tating a natural decomposition scheme that can capitalize on existing molecular design

methodology. In the space of pure component properties, we no longer need to model

molecular structures explicitly, but we still must determine feasible values for variables

in the CAMxD problem. Because the objective function of the problem is an implicit

function of x and n, we must relate the individual component property space to feasible

values for structures (n) and then use these to determine optimal mole fractions (x).

More formally, the optimization of CAMxD can be approached as follows:
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2.3 mixture design using derivative-free optimization

1. Given a candidate property vector pT , find n with corresponding f(n) that is as

close to pT as possible; this is a CAMD problem.

2. Use f(n) to find optimal mole fractions and solve the continuous part of the

problem; we will show how to address this problem via algebraic optimization.

3. Interpret the objective value and choose a new p if necessary; we address this

problem via DFO.

The algorithm is shown pictorially in Figure 2.2. Note the decomposition of the

CAMxD problem into two stages. Once pT has been specified, Step 1 relies on executing

a highly complex process that involves the solution of several optimization problems.

Therefore, computation of C(q) in Step 3 is no longer an explicit function of pT after

projection. For this reason, we will utilize DFO algorithms.

Our algorithm employs a decomposition strategy similar to those mentioned from

the literature, but designs compositions successively without having to enumerate every

possible structure for every component. More specifically, the algorithm exploits DFO

as a tool to probe pure component property space, so every iteration either produces a

set of molecules which does satisfy some specified mixture criteria or determines that

no molecules in the search region are compatible. This means that we can search over

small property ranges for each component and consider every type of molecule while

avoiding the computational burden of enumerating every possible structure for every

component.

As a DFO algorithm guides the search through molecular property space, Step 1 of the

above algorithm calls for the design of molecules for a given property. In our implemen-

tation, this problem is solved using the molecular design methodology AMODEO (Samu-

dra & Sahinidis 2013b) to find molecules in a small neighborhood in the vicinity of the

DFO trial point in property space. AMODEO is highly efficient for this task, thus mak-
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ing it possible for the overall approach to design optimal mixtures while considering a

much larger search space than previously possible. One change in the AMODEO for-

mulation is introduced in order to make the approach more amenable to mixture design.

Since we aim to design structures with properties as close as possible to the DFO trial

point, we alter the Phase 1 problem to minimize the distance between first-order group

estimates and the DFO point, pT :

minn
∑
k

wk

[
d+k + d−k
πk − κk

]
(2.18)

s.t. d+k − d
−
k =

∑
i∈F

cki ni − f−1
k (pkT ) ∀k ∈ K (2.19)

κk ≤
∑
i∈F

cki ni ≤ πk ∀k ∈ K (2.20)

n ∈ S (2.21)
...

In this modified formulation, we introduce two positive continuous variables, d+k and

d−k , to account for positive and negative deviations of the transformed property esti-

mate from the transformed DFO target point,f−1
k (pkT ), for each property k. These

positive and negative deviations are captured in the new constraint Equation (2.19).

d+k and d−k are scaled by the transformed property ranges and minimized in the objec-

tive, Equation (2.18). Also, we introduce a weighting parameter, wk, to give preference

to minimizing certain properties over others. For our problems, wk will always take a

value of 1 or 0, depending on whether a property is incorporated into our property search

space. This alteration of the composition design stage of AMODEO is well-suited to

our algorithm as it aids in selecting molecular structures closest to the DFO trial point.

Furthermore, we can specify a maximum number of compositions (Cmax) to design in
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2.3 mixture design using derivative-free optimization

Phase 1. With the reformulated Phase 1 problem and a reasonable value for Cmax, the

modified composition design stage can glean accurate information about the neighbor-

hood of the DFO trial point while avoiding the cumbersome design of every structure

within the property bounds.

The algorithm begins with the DFO solver providing a trial point. The trial point

signifies relevant property values for each component in the mixture. We choose pure

component properties which are expected to exhibit some relationship with the objective

function value. For example, the trial point pT = (335, 1.2, 5, 421, 1.0, 2) may represent

a two-component mixture with three trial property values for each component, say

melting point, viscosity, and number of oxygens in the structure. The property values

are then each transformed as follows:

pL = pT − τ (PU − PL)

pU = pT + τ (PU − PL)

τ ∈ (0, 1]

where pT is the value of the property generated by the DFO solver, pL and pU are

the lower and upper bounds, respectively, of the property ranges we will use in the

CAMD problem, PL and PU are the lower and upper bounds for the property in the

entire search space, and τ is a multiplier that tells us how much of the feasible property

range to check. With these property bounds, AMODEO generates a small number of

structures for each component, based on minimizing the distance of each structure’s

transformed first-order property estimates to f−1(pT ).

After solving the molecular design problem for each component, we select the com-

pounds whose calculated properties (now using the full Marrero-Gani model (Marrero

& Gani 2001; 2002)) are closest to the trial point by summation of percent error. These
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2.3 mixture design using derivative-free optimization

selected structures can be solutions of the molecular design problem or can come from a

list of all previously found, feasible solutions. In Step 2, the estimated property values

of the molecular structures are converted into parameters for an optimization prob-

lem. The optimization problem is typically nonconvex and solved with the global solver

BARON (Tawarmalani & Sahinidis 2004) to determine the mole fractions of each com-

ponent in the mixture, and the objective function value is reported to the DFO solver.

If the overall problem is infeasible or if no structures are found in the area around the

trial point, a large objective function value is reported to the DFO solver. Then, in Step

3, the DFO algorithm uses the previously collected information to assess termination

criteria and possibly provide a new trial point.

DFO solvers often perform better if given a good starting point. Occasionally, the

CAMxD formulation lends itself to a pre-screening stage designed to produce a promising

starting point. This is done by solving (CAMxD) while disregarding the equation p =

f(n) and discarding the combinatorial part of the problem. This means that we solve

the continuous part of the problem to determine the ideal pure component properties for

every component, regardless of whether a molecular structure exists for those property

values. Given these ideal pure component properties, we solve a CAMD problem for each

component to determine feasible structures closest in property space to this ideal point.

This pre-screening stage can sometimes provide a good trial point for DFO solvers, but

depending on the nature of the problem, this can also lead to highly unrealistic property

targets for which no molecular structures exist in the surrounding area. In the context

of our mixture design algorithm, this pre-screening stage can only be performed if every

pure component property in the problem can be estimated by Marrero-Gani groups.

Otherwise, the ideal property values may represent properties that are not present in

our design space. If the continuous part of the problem relies on more complex property

models, we can provide DFO with a set of known molecular structures as a starting
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point. For example, in attempting to find an alternative to a certain material in an

industrial process, we can supply a starting point that represents the properties of that

material in our design space. For these starting point procedures, we both introduce

a property vector starting point for DFO as well as add the corresponding molecular

structures to our list of feasible solutions. In some cases, a DFO solver which ignores

a given starting point can still exhibit an improved solution with these starting point

procedures due to the presence of additional molecular structures in the list of feasible

solutions. We will investigate these starting point generation procedures in the following

sections.

Finally, we note that there are guarantees of global optimality for some of the DFO

algorithms we investigate. These are often dependent on certain problem conditions and

are discussed in more detail in Conn et al. (2009). In all of the following case studies,

we report CPU times with a 2.84 GHz processor.

2.4 illustrative examples

We will first motivate and provide background to the approach with illustrative examples.

For the purposes of these examples, we will first assume that the objective function of

the mixture design problem is some algebraic expression a(q) of the mixture properties.
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Further, we do not consider any additional constraints involving mixture and component

properties:

(CAMxD) min a(q) (2.22)

s.t. q = g(x, p) (2.23)

p = f(n) (2.24)∑
i

xi = 1 (2.25)

pL ≤ p ≤ pU (2.26)

qL ≤ p ≤ qU (2.27)

The function g now represents a set of mixing rules used to estimate mixture properties

from pure component properties and mole fractions. Below are two examples of mixing

rules we will use for this purpose:

• Boiling Point: Tmix
b =

∑
j xjT

j
b (linear mixing rule).

• Kinematic Viscosity: ηmix = exp
(∑

j ln(ηj) xj
)
(nonlinear mixing rule).

2.4.0.1 First illustrative example

An example was done to demonstrate the concept on the following problem:

Given three mixture components (THF, acetone, and cyclohexane), design a

fourth component to maximize the ratio of the mixture’s kinematic viscosity

to its boiling point. Each existing component must make up at least 20 mol

% of the mixture.

Here, the DFO trial points will be two-dimensional and will represent the kinematic

viscosity and boiling point of the fourth component in pure component property space.
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We design molecules which are aliphatic and have no rings. We include structures with

up to ten carbons, two oxygens, and two nitrogens. Since the molecule we design should

be part of a liquid mixture, we will make sure it is a liquid at operating temperature (300

K) by bounding the fourth component’s melting and boiling points. We further assume

that we do not want to work with a compound that is too viscous, so we add a constraint

to ensure the viscosity of this compound does not exceed 2.4 cP. We impose a 10 minute

time limit on each DFO solver, which is strict given the large molecular search space. It

should be noted that the limits we impose on the molecular structures are much more

constraining than our algorithm requires. This is only done so that a comparison to a

decomposition and enumeration approach is possible. The specifications of the problem

are outlined in Table 2.2.

For the sake of comparison, we followed the enumeration procedure of Karunanithi

et al. (2005) to solve this problem to global optimality. Specifically, we designed ev-

ery structure (∼ 120, 000 molecules) in the given feasible region using AMODEO and

evaluated the objective for each of those molecules. This process took over 2 days of

computer time and produced the same optimal solution as was found by many DFO

solvers in 10 minutes. In both cases, we solve the continuous part of the problem with

BARON (Tawarmalani & Sahinidis 2004) to global optimality. It should be noted that

a few structures exist that do have values close to the theoretical optimum and do

produce objective values of approximately 0.002996 with a theoretical optimal η4 and

T 4
b of—quite unsurprisingly—2.4 cP and 300 K. However, these structures usually did

not have appropriate groups available for the predicted properties or, in a few cases,

produced estimates widely deviant from reality. As such, these solutions were removed

from consideration. The best structure found had an objective value of 0.00276, and is

shown in Table 2.3.
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Table 2.2: Summary of important values for illustrative examples 1 and 2
Parameter Value/Range Additional Information
Time limit 600 s Maximum allowable time for the algorithm

Iteration limit 300 Maximum number of steps the algorithm can perform
DFO inputs η4, T 4

b Viscosity and boiling point of component 4
τ 10% Property bounds relaxation around DFO trial point

Cmax 10 Maximum number of compositions determined
during each iteration

η4 [0 cP, 2.4 cP] Range for kinematic viscosity of component 4
T 4
b [300 K, 600 K] Range for boiling point of component 4

T 4
m [0 K, 290 K] Range for melting point component 4

Carbons 10 Maximum number of carbons in the designed
component

Oxygens 2 Maximum number of oxygens in the designed
component

Nitrogens 2 Maximum number of nitrogens in the designed
component

Double bonds 2 Maximum number of double bonds in the designed
component

Enumeration Time > 2 days Time to solve the problem with enumeration

Each DFO algorithm was tested with five different randomly generated starting points.

For each run, we calculated the % error between the objective function value of the opti-

mal solution and that returned by the DFO solver. The results are shown in Figure 2.3

for 27 different DFO algorithms and compare average percent error over five runs with

random starting points, best percent error over the five runs, and percent error of a

single run from a favorable starting point (denoted by SP in this and subsequent fig-

ures). The starting point was generated by removing the p = f(n) constraint as well
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Table 2.3: Optimal structure for illustrative example 1

Optimal structure Properties

OH

propargyl alcohol

Objective value: 0.00276
Molar mass: 42.04 g/mol
Melting point: 237.79 K
Boiling point: 326.09 K
Viscosity: 1.88 cP

as all discrete variables n. This means that the objective was optimized over the feasi-

ble property space of component 4, regardless of whether a molecular structure existed

for the optimal properties. An optimization problem was then solved to determine the

closest feasible structure to the ideal properties. The resultant starting point structure

was suboptimal but very near to the properties of the globally optimal solution. With

this favorable starting point, almost every DFO solver was able to find the global op-

timum. The success of many solvers when given a starting point suggests that this

methodology is greatly benefited by a good initial value, and that the approach can also

be successfully applied to refine known solutions.

We also consider how much of the feasible molecular space was probed by each DFO

solver. These numbers provide some idea of the efficiency of the DFO approach to

mixture design. In this example, the solvers never explored more than ∼ 60% of the

projected property space. A value of 60% does not necessarily indicate that every

structure within that 60% of feasible space was designed. Due to the limit placed on

the number of feasible compositions (Cmax) to design at each step, the algorithm actually

designs a much smaller number of structures than theoretically feasible. For the first

illustrative example, the algorithm typically designed about 0.5% of possible solutions,
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Figure 2.3: Comparison of DFO solvers for illustrative example 1
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depending on the DFO method used, and only a small number of these solutions were

evaluated for their objective value. We observe a clear positive correlation between

DFO codes that find better solutions and codes that explore more of the feasible space.

Only five DFO codes do not find the best solution from any of the five starting points,

although they obtain solutions within less than a 5% error.

2.4.0.2 Second illustrative example

A highly non-convex problem is now addressed to demonstrate the potential of the

algorithm in more challenging applications. This example retains the constraints of the

previous problem but substitutes the previous objective with a much more difficult one.
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The objective in this case could represent some value metric for the final properties of

some formulated product. It is shown below.

min 0.05(Tmix
b − 335)2(−200(ηmix − 1.1)2 + 2100(ηmix − 1.7)2 − 2000ηmix)

− 8300000 exp(−120(ηmix − 0.57)2 − 0.0005(Tmix
b − 335)2)

− 8100000 exp(−120(ηmix − 0.8)2 − 0.0005(Tmix
b − 350)2)

The results from applying the 27 different DFO algorithms to this problem are summa-

rized in Figure 2.4. Many solvers found the best solution obtained by the enumeration

procedure, shown in Table 2.4. The results of both examples indicate that many solvers

can successfully be applied to these types of problems. The second example exhibited

slightly worse performance in general, but we would expect an improvement with re-

laxing our stringent iteration (300) and time (600 s) limits. As shown in Figure 2.4,

providing the algorithms with a good starting point led to the globally optimal solu-

tion in every DFO solver instance. Note again that the starting point structure was

sub-optimal. This demonstrates that even harder, highly non-linear problems can be

addressed successfully by all DFO solvers if given a good starting feasible solution. Only

seven DFO codes do not find the best solution from any of the five starting points, al-

though they obtain solutions within less than a 2% error.

The solvers explored at most ∼ 60% of the theoretically feasible property space.

However, every solver in this example designed and tested on the order of hundreds of

molecules. This is a clear efficiency improvement when contrasted with the ∼ 120, 000

structures designed for the enumeration procedure.
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Figure 2.4: Comparison of DFO solvers for illustrative example 2

2.5 case studies

2.5.1 Case study 1: Cooling crystallization for ibuprofen

We consider the problem posed in Karunanithi et al. (2006) for the design of an optimal

solvent for purification via cooling crystallization. The process proceeds by dissolving a

Table 2.4: Optimal structure for illustrative example 2

Optimal solvent Properties

NH

NH2

methylhydrazinemethylhydrazine

Objective value: 8.313
Molar mass: 46.07 g/mol
Melting point: 257.95 K
Boiling point: 323.72 K
Viscosity: 1.01 cP
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solid compound of interest in a solvent at a high temperature (at which it should be very

soluble) and then letting the solution cool until it reaches a certain lower temperature

at which the solute is much less soluble. The solute crystallizes out of solution, leaving

many impurities behind in the liquid phase. Our approach begins by specifying five

independent variables: the three Hansen solubility parameters (δh, δp, δd), the octanol-

water partition coefficient (Kow), and aqueous solubility (Cw, given in mg/L). These

properties were chosen because they are most closely related with solubility, the focus of

this problem. The mixture design optimization formulation for cooling crystallization

is as follows:

(CAMxD-CC) max 100
1−X1

(1−X1/X2) (2.28)

s.t. ln(x1j) =
∆HIbu

fus

RT Ibu
m

(
1− T Ibu

m

Tempj

)
− ln(γ1j) ∀j

(2.29)

γ1j = UNIFAC(n,x1, Tempj) ∀j (2.30)

δh ≥ 8, Tf ≥ 323, − log(LC50) ≤ 3.3

Tm ≤ 270, Tb ≥ 340, µ ≤ 1

 (2.31)

Xj =
M1x1j
2∑
i=1

xijMi

∀j (2.32)

260 ≤ Tempj ≤ 320 ∀j (2.33)∑
i

xij = 1 ∀j (2.34)

n ∈ S (2.35)
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In this formulation, the index j denotes the process at high and low temperatures for

j = 1 and j = 2, respectively. The index i denotes ibuprofen (i = 1) and the solvent

to be designed (i = 2). Xj represents the weight fraction solubilities of ibuprofen at

temperature j. The Xj ’s are calculated using the molar masses Mi of each component.

The xij variables are the mole fractions of each component i at each process condition

j. ∆HIbu
fus and T Ibu

m are the enthalpy of fusion and melting point of ibuprofen, respec-

tively. Tempj is the temperature of the solution for process condition j, R is the gas

constant, and γij is the activity coefficient of component i at temperature Tempj . Tm
and Tb represent the solvent’s melting and boiling points, respectively. These are so

constrained to ensure the designed solvent remains a liquid at all possible temperatures

for this process. Tf is the flash point of the designed solvent, and it is constrained to

be above 323 K for safety reasons. All of the variables and parameters representing

temperature are given in degrees Kelvin. µ is the solvent’s viscosity. This is constrained

to be 1 cP at maximum to ensure its ease of use in the process. δh is the Hansen

solubility parameter for hydrogen bonding. In keeping with Karunanithi et al. (2006),

this is so constrained because Gordon & Amin (1984) report that a δh ≥ 8 is char-

acteristic of good solvents for the cooling crystallization of ibuprofen. Solvents with

this property produce crystals with larger particle size, drop in bulk volume, excellent

manufacturability, and various other favorable properties. LC50 is a measure of toxic-

ity and is estimated with the Martin-Young model (Martin & Young 2001), which is

a group contribution method designed to estimate a chemical’s 96-h LC50 for the fat-

head minnow (Pimephales promelas). This is constrained to be below a threshold of

3.3 in keeping with the original constraints of Karunanithi et al. (2006). The activity

coefficients are calculated in (2.30) using the UNIFAC group contribution method (Fre-

denslund et al. 1975) with some additional parameters (Hansen et al. 1991; Wittig et al.

2003; Balslev & Abildskov 2002). Equation (2.29) represents a solid-liquid equilibrium
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Table 2.5: Optimal structure for case study 1

Optimal solvent Properties

O O O

O

methanediyl diacetate

Percent recovery: 97.94%
Molar mass: 132.11 g/mol
Melting point: 225.54 K
Boiling point: 429.08 K
Flash point: 362.66 K
− log(LC50): 3.29
Viscosity: 0.97 cP

condition (Gmehling et al. 1978) and is used for predicting the solubility of ibuprofen

in a solvent. In (2.28), we optimize percent recovery for this process. A percent recov-

ery of 100% would indicate that all of the ibuprofen put in to the process at the high

temperature was recovered at the low temperature. As in Karunanithi et al. (2006), we

constrain these process temperatures to a practical range in (2.33). Constraints (2.31)

represent individual component requirements and are satisfied in the AMODEO phase

of the algorithm, along with structural feasibility constraints (2.35) for molecular de-

sign. Our algorithm’s decomposition of the problem allows us to address the remaining

constraints as an NLP, which is solved with BARON (Tawarmalani & Sahinidis 2004)

to global optimality.

Unlike the Karunanithi et al. (2006) formulation, we do not place any constraints

on the Hildebrand solubility parameter. This is done because we are already working

in the space of the Hansen solubility parameters, an alternative way to quantify solvent

properties. Moreover, the Hildebrand solubility parameter cannot capture hydrogen

bonding and polarizability effects, both of which play an important role in this par-
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ticular solvation problem. In Table 2.6, we summarize the important parameters and

constraints used in this case study.

In Figure 2.5, we compare the results for this problem using the 27 DFO solvers. All

solvers are able to find the globally optimal solution from one of the five random starting

points. The optimal solvent for this problem as given by enumeration is shown in Ta-

ble 2.5. Using our implementation of UNIFAC, this solvent provides a percent recovery

of 97.94%. The current industrial standard for this process is n-hexane, which pro-

vides a percent recovery of 98.33% according to our UNIFAC implementation. However,

n-hexane is not feasible in the above formulation because it violates the hydrogen bond-

ing solubility parameter constraint (δH ≥ 8). Our optimal solvent, on the other hand,

satisfies the hydrogen bonding parameter criteria specified by Gordon & Amin (1984),

meaning a lower percent recovery in our case may still provide a preferable solvent to

the industrial standard. If the solubility constraint is eliminated from the formulation,

we obtain n-hexane as a solution. This observation validates the design potential of our

approach. Furthermore, our approach finds a better solution than previously reported

in the literature for this problem. Karunanithi et al. report a solvent that has a per-

cent recovery of 89.93% (Karunanithi et al. 2007), while our designed solvent provides

a higher percent recovery of 97.94%, very similar to that of the industrial standard.

Finally, we also tested the performance of each DFO solver when given a good starting

point. This starting point was determined by searching the space of the five pure

component property variables in the problem and then calculating the closest feasible

structure to the industrial standard for this process, n-hexane. The closest feasible

structure was non-optimal but led all but seven tested solvers to the globally optimal

solution.
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Table 2.6: Summary of important values for case study 1
Parameter Value/Range Additional Information

Time limit 600 s Maximum allowable time for the
algorithm

Iteration limit 1000 Maximum number of steps the
algorithm can perform

DFO inputs δh, δp, δd, logKow, logCw Solubility parameters of component
2

τ 20% Property bounds relaxation around
DFO trial point

Cmax 30 Maximum number of compositions
determined during each iteration

δh [8, 14] Range for the hydrogen bonding
solubility parameter

δp [4, 14] Range for the polarizability
solubility parameter

δd [11, 18] Range for the dispersion solubility
parameter

logKow [−1, 2] Range for the octanol-water
partion coefficient

logCw [2, 7] Range for the aqueous solubility
coefficient

Carbons 10 Maximum number of carbons in
the designed component

Oxygens 4 Maximum number of oxygens in
the designed component

Enumeration time 3890 s Time to solve the problem with
enumeration
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Figure 2.5: Comparison of DFO solvers for case study 1
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2.5.2 Case study 2: Drowning out crystallization

Cooling crystallization may not always be a feasible purification method. For example,

temperature-sensitive compounds may decompose or react at higher temperatures, and

some compounds may not demonstrate an appreciable change in solubility over a practi-

cal temperature range. For these reasons and others, pharmaceutical purification must

often turn to drowning out crystallization for purification. Drowning out crystallization

works by simply taking a solute/solvent mixture and adding an anti-solvent which re-
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duces the solubility of the solute in the resulting mixture. The objective function in this

case is slightly altered in the following formulation:

(CAMxD-DOC) max 100
1−X1

(
1− X1

X2

(
1 + Mas

MT

))
s.t. ln(x1j) =

∆HIbu
fus

RT Ibu
m

(
1− T Ibu

m

298 K

)
− ln(γ1j) ∀j

1
x2j

+
δ ln(γ2j)

δx2j
≥ 0 ∀j (2.36)

γij = UNIFAC(n,xij , 298K) ∀j

δh ≥ 8, µ ≤ 1 for i = 2

Tf ≥ 323, − log(LC50) ≤ 3.3 for i ∈ {2, 3}

Tm ≤ 270, Tb ≥ 340 for i ∈ {2, 3}


(2.37)

Xj =
M1x1j
3∑
i=1

xijMi

∀j

x31 = 0 (2.38)∑
i

xij = 1 ∀j

n ∈ S

There are three components in this problem, as indicated by index i: ibuprofen (i = 1),

solvent (i = 2) and anti-solvent (i = 3). The index j represents the two situations: (1)

the solvation of ibuprofen in just the solvent and (2) the presence of a ternary mixture

of all three components. Mas and MT represent the mass of the anti-solvent and total

mass of the ternary mixture, respectively. Constraint (2.36) ensures that the solvent and
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anti-solvent are miscible, as given by Bernard et al. (1967). Constraint (2.38) guarantees

that there is no anti-solvent in situation 1. We apply constraint (2.37) to the individual

component properties of both solvent and anti-solvent in keeping with Karunanithi et al.

(2006) that first posed this problem.

We address this problem in the space of six pure component property variables: the

three Hansen solubility parameters (δd, δp, and δh) for both the solvent and anti-solvent.

We removed Kow and Cw from the design space because this problem is ultimately one

of solvent/anti-solvent interactions, which were assumed to be more related to the sol-

ubility parameters. We compare the 27 DFO algorithms in Figure 2.6 given the prob-

lem conditions in Table 2.7. As shown, many of the algorithms can find the global

optimum. Other solvers terminate in local minima due to the sparsity of feasible struc-

tures which provide good % recoveries for this design problem. Nonetheless, seventeen

DFO solvers are able to find the global optimum from at least one of five different

random starting points. The optimal solvent/antisolvent shown in Table 2.8 provide

a recovery of 91.33%. Among other considerations, this pair likely works by reducing

hydrogen bonding potential of ibuprofen with its original solvent upon the addition of

the antisolvent. Again, our consideration of a larger molecular search space produces a

better solution than previously reported. Specifically, the enumeration-based approach

of Karunanithi et al. produces an optimal pair of molecules with a reported percent

recovery of 69% (Karunanithi et al. 2006). We can also generate a favorable starting

point based on finding the closest feasible solvent and anti-solvent from methanol and

water, respectively. These structures are identified as a favorable solvent pair for this

process in Filippa & Gasull (2013). Again, providing each DFO solver with a good

starting point improves the results for many solvers, although not to the extent previ-

ously observed. In this case, the starting points were not close to the properties of the

optimal structures in the projected space.
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Figure 2.6: Comparison of DFO solvers for case study 2
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2.5.3 Extended case studies 1 and 2: Considering a larger feasible region

In the two case studies, we looked at problems for which an enumeration approach was

viable, although it often proved very time consuming. This was done to determine a

global optimum for each problem so the DFO solvers could be accurately benchmarked.

To demonstrate the full potential of the algorithm, we now re-examine case studies

1 and 2 in a much larger molecular search space. This large search space is enabled

both by our DFO-decomposition approach to mixture design and our decomposition

and optimization approach to molecular design. As shown in Table 2.9, this problem

considers a large part of the molecular search space and is prohibitively large for a

straightforward decomposition and enumeration approach.

We use the TOMLAB/CGO algorithm on each of these two larger problems, as it

was able to solve every problem considered in the illustrative examples and prior case

studies to global optimality. We provide no starting point to the solver. For the cool-
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Table 2.7: Summary of important values for case study 2
Parameter Value/Range Additional Information
Time limit 3600 s Maximum allowable time for the algorithm

Iteration limit 1000 Maximum number of steps the algorithm can perform
DFO inputs δh, δp, δd Solubility parameters of components 2 and 3

τ 20% Property bounds relaxation around DFO trial point

Cmax 30 Maximum number of compositions determined
during each iteration

δh [8,30] Range for the hydrogen bonding solubility parameter
δp [0,20] Range for the polarizability solubility parameter
δd [0,20] Range for the dispersion solubility parameter

Carbons 10 Maximum number of carbons in the designed
components

Oxygens 3 Maximum number of oxygens in the designed
components

Enumeration time > 6 days Time to solve the problem with enumeration

ing crystallization problem, our methodology with a larger feasible region was able to

find a molecule which provides a 99.45% recovery, better than the current industrial

standard of n-hexane, which provides only a 98.33% recovery. This structure is shown

in Table 2.10. Furthermore, our designed solvent satisfies toxicity, viscosity, flash point,

melting point, and boiling point constraints as well as the hydrogen bonding solubility

parameter constraint given by Gordon & Amin (1984).

In the case of drowning out crystallization, our consideration of a larger molecular

search space yields a solution with a 97.00% recovery, shown in Table 2.11. This outper-

forms the solvent pair given by Filippa & Gasull (2013), which only provides a 96.52%

recovery. The identification of these two solutions by our algorithm speaks well to
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Table 2.8: Optimal structures for case study 2

Optimal solvent Properties

O
OH

1-Isobutoxy-2-propanol

Molar mass: 120.15 g/mol
Melting point: 157 K
Boiling point: 430.68 K
Flash point: 323.048 K
− log(LC50): 1.59
Viscosity: 0.86 cP

Optimal antisolvent Properties

OH OH

methanediol

Molar mass: 48.04 g/mol
Melting point: 259.93 K
Boiling point: 393.04 K
− log(LC50): -0.443
Viscosity: 16.84 cP

Percent recovery: 91.33%

its use in a general mixture design context. Clearly, considering a larger part of the

molecular search space has great potential to provide better solutions. Such a large

feasible region is no longer intractable and can be efficiently searched through with our

DFO/AMODEO-driven approach.

2.6 discussion

While many solvers were able to find the global optimum in every problem, some insight

can be gleaned regarding which solvers can best be applied to these types of problems.
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Table 2.9: Summary of important values for extended case studies 1 and 2
Parameter Value/Range Additional information

Time limit N/A s Maximum allowable time for the
algorithm

Iteration limit 2000 Maximum number of steps the algorithm
can perform

DFO inputs δh, δp, δd Solubility parameters of components 1
and 2

τ 20% Property bounds relaxation around DFO
trial point

Cmax 100 Maximum number of compositions
determined during each iteration

δh [0,40] Range for the hydrogen bonding
solubility parameter

δp [0,30] Range for the polarizability solubility
parameter

δd [0,30] Range for the dispersion solubility
parameter

logKow [-4,4] Range for the octanol-water partion
coefficient

logCw [0,9] Range for the aqueous solubility
coefficient

Aliphatic chain carbons 15 Maximum number in the designed
components

Aliphatic ring carbons 10 Maximum number in the designed
components

Aromatic carbons 6 Maximum number in the designed
components

Oxygens 5 Maximum number of carbons in the
designed components

Chlorines 1 Maximum number of chlorine atoms in
the designed components

Bromines 1 Maximum number of bromine atoms in
the designed components

Double bonds 1 Maximum number of aliphatic double
bonds in the compounds
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Table 2.10: Optimal structure for cooling crystallization in extended case study 1

Optimal Solvent Properties

O O O
Cl

)-2-chloroethenyl]oxy}methyl[2-chloroethenyl]oxymethyl formate

Percent recovery: 99.45%
Molar mass: 136.53 g/mol
Melting point: 248.30 K
Boiling point: 433.32 K
Flash point: 333.30 K
− log(LC50): 2.93
Viscosity: 0.99 cP

To that end, we will perform a brief analysis on each solver’s performance on all the

problems. We will use z-scores to quantify a solver’s performance on each problem. A

z-score is defined as z = (x− µ)/σ, where x is a data value, µ is the average of the

whole range of data, and σ is its standard deviation. Thus, a z-score provides some idea

of how much above or below the average a certain piece of data is when scaled by the

standard deviation. We calculate z-scores based on average % error from the optimal

solution using 5 randomly-generated starting points and report the average over the four

problems considered in Figure 2.7. In our case, a lower % error indicates a better solu-

tion, so the best z-score will be the most negative. In Figure 2.7, it is shown that the

algorithms TOMLAB/CGO, TOMLAB/GLB, TOMLAB/GLC, and TOMLAB/RBF

outperform all the other solvers on these test problems. All of these solvers were able

to find the globally optimal solution for all of the test problems considered. On the

other end of the spectrum, many solvers with low scores are local and likely terminated

in local minima or did not explore a large enough percentage of the feasible property

space to find feasible structures. Most of the algorithms on top in the comparison
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Table 2.11: Optimal structures for drowning out crystallization in extended case study 2

Optimal Solvent Properties

O

O O

E/Z)-1-methoxybut-2-en-1-yl
1-methoxybut-2-en-1-yl formate

Molar mass: 130.14 g/mol
Melting point: 220.42 K
Boiling point: 436.09 K
Flash point: 326.28 K
− log(LC50): 3.28
Viscosity: 0.66 cP

Optimal Antisolvent Properties

O O O

Cl

O O

[chloro(formyloxy)methoxy]methyl formate

Molar mass: 168.53 g/mol
Melting point: 262.72 K
Boiling point: 477.71 K
Flash point: 374.50 K
− log(LC50): 2.54
Viscosity: 3.37 cP

Percent recovery: 97.00%

could find the optimal solution from every randomly generated starting point in many

of the cases. However, the algorithms DAKOTA/EA and ASA did not find the opti-

mal solution in any of the examples for any randomly generated starting point. These

stochastic solvers, though usually able to provide good solutions, cannot reliably pro-

duce globally optimal solutions. Figure 2.8 shows the same comparison of z-scores when

considering the best solution from the five randomly-generated starting points. Now,

the algorithms TOMLAB/GLCC, TOMLAB/RBF, TOMLAB/GLC, TOMLAB/GLB,

TOMLAB/CGO, SID-PSM, DFO, and NOMAD are able to solve all problems to global

optimality with at least one of the five randomly generated starting points. Of note
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in this figure is the improved performance of a few stochastic solvers (GLOBAL, ASA,

DAKOTA/EA). When given different starting points and more opportunities to solve

the same problem, stochastic solvers can produce good solutions. Furthermore, a few lo-

cal solvers (TOMLAB/GLCC, DFO, NOMAD, SID-PSM, HOPSPACK, IMFIL) showed

improved performance. These solvers were likely given at least one starting point

in a good region of property space. Figure 2.9 provides the same comparison when

each solver is provided with a favorable starting point, as determined from one of the

two starting point generation procedures outlined above. Again, many solvers (TOM-

LAB/RBF, TOMLAB/GLC, TOMLAB/GLB, TOMLAB/CGO, SID-PSM, SNOBFIT,

HOPSPACK, MCS, TOMLAB/MSNLP, DAKOTA/DIR) were able to solve every prob-

lem to global optimality. A few model-based solvers (MCS, SNOBFIT) showed improved

performance when utilized in conjunction with our initialization strategy. Furthermore,

the local solvers TOMLAB/MSNLP, IMFIL, HOPSPACK, and SID-PSM demonstrated

good performance at refining these favorable starting points.

In Figure 2.10, we compare the z-scores of each of the categories of DFO solvers

we discussed in Section 2.2. In this case, we include z-scores for the average of five

runs with randomly generated starting points, the best of those five runs, and the

result after a starting point was generated based on methods discussed above. In the

comparison of average of five runs, it is clear that the global solvers far outperform

local solvers. This is expected as three of the four problems considered were highly non-

convex. Next, model-based algorithms perform better than direct ones in general. This

observation supports our assumption that the problem could be effectively considered in

property space. The variables specified as inputs to DFO should have some bearing on

the objective values, and model-based algorithms are able to deduce some relationship

with each problem’s variables and objective. Furthermore, deterministic algorithms

perform better than stochastic ones on average. This is likely due to the fact that many
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Figure 2.7: z-scores for the average objective value with randomly-generated starting points
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deterministic solvers search the feasible region in a methodical way. Stochastic solvers

can often miss a potentially good area of the search space due to the random nature of

these algorithms.

The comparison of the best value returned of the five runs illustrates a smaller but

still significant performance gap between global and local solvers. In this case, global

solvers are still ahead, but to a lesser extent. This is likely due to the fact that some

of the randomly generated starting points placed local solvers in a favorable area of

the feasible space. Stochastic solvers also improve marginally in comparison to deter-

ministic ones. This is likely due to the fact that some of these starting points provide

reasonable starting points and fewer stochastic solvers terminate due to lack of feasible
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Figure 2.8: z-scores for the best objective value with randomly-generated starting points
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solutions. Finally, model-based algorithms demonstrate improved performance as com-

pared to direct ones. This can be explained by the fact that model-based algorithms can

conceivably glean more information from a favorable starting point. The final compari-

son is between z-scores when a good starting point is generated based on one of the two

methods discussed above. Here, local solvers show even more improvement, likely be-

cause these starting points are close to the global optimum in many cases. Deterministic

algorithms, when provided a good starting point, do much better than their stochastic

counterparts. Again, stochastic algorithms are still largely dependent on chance, and

deterministic algorithms can use a good starting point for a more methodical search.

Finally, model-based algorithms gain even more ground over direct ones in this com-
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Figure 2.9: z-scores for the objective value with a good starting point
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parison. This results from model-based algorithms attempting to deduce a relationship

between the variables and the objective, a process greatly benefited if in the region

around the global optimum.

Finally, in Figure 2.11, we remove all local solvers from consideration. The same

trends are observed here, with model-based solvers outperforming direct ones and de-

terministic solvers outperforming stochastic ones.
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Figure 2.10: z-scores by solver category

2.7 conclusions

A new, general-purpose methodology was developed to solve mixture design problems.

In our approach, the large CAMxD MINLP is first projected onto the low-dimensional

component property space. This projection leads to a natural way to decompose the

mixture design problem into molecular design and mole fraction optimization problems.

The search through component property space was performed with derivative-free op-

timization algorithms, and our computational results demonstrate that a portfolio of

DFO algorithms is efficient at solving mixture design problems. Of note were global

DFO algorithms and also those which work via some surrogate model building. The

global algorithms search a larger area and have more stringent convergence criteria

than local algorithms and, as a result, find better solutions. The good performance of

model-building algorithms is consistent with our assumption that some underlying rela-
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Figure 2.11: z-scores by solver category considering only global solvers

tionship should exist between the pure component properties and design objectives. One

key advantage of our mixture design algorithm is that it is able to consider a very large

molecular search space. The importance of such a large search space is underscored by

the fact that our algorithm found better solutions to two problems from the literature

than previously reported. This lends credence to the utility of the proposed approach

in solving otherwise intractable CAMxD MINLPs. Finally, the reliable performance of

DFO algorithms on these problems suggests that the projection onto pure component

property space captures much of the relevant problem information and is a promising

strategy for the solution of CAMxD problems in general.
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3
MIXTURE DES IGN BASED ON COSMO-RS AND -SAC

THERMODYNAMICS

3.1 introduction

One distinguishing feature of CAMxD problems is that they simultaneously consider

many different types of compounds and must be able to predict relevant mixture (typi-

cally solution-phase) properties. Given the complex nature of many mixture properties,

it is often necessary to incorporate mixture thermodynamics equations directly into

CAMxD problems. To this end, a very large number of CAMxD approaches have ap-

plied the UNIFAC (Fredenslund et al. 1975) method to calculating solubilities, phase

equilibrium, partition coefficients, and various other properties. For example, early

work from Gani & Brignole (1983) proposed the use of the UNIFAC method as a way

to calculate activity coefficients in the design of an extraction solvent. Odele & Macchi-

etto (1993) also applied UNIFAC to calculate mixture thermodynamics in a few solvent

design problems. Many other approaches facilitated the use of UNIFAC in the context

of molecular and mixture design, including multi-stage optimization strategies (Naser

& Fournier 1991) and decomposition approaches (Gani & Fredenslund 1993; Klein et al.
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1992; Conte et al. 2012; 2011b). Furthermore, the applications have been numerous,

ranging from integrated design of compounds and processes (Papadopoulos & Linke

2006c) to calculating phase equilibria in designing crystallization solvents (Karunanithi

et al. 2006) to designing solvents and solvent blends to reduce the environmental impact

of industrial processes (Buxton et al. 1999; Pistikopoulos & Stefanis 1998). The solution

strategies to UNIFAC-based molecular and mixture design are sometimes heuristical.

For example, Ourique & Telles (1998) used simulated annealing to reduce the com-

plexity of the problem so as to best apply UNIFAC. Other approaches (Benavides et al.

2015; Dyk & Nieuwoudt 2000) have also combined heuristic optimization techniques

with UNIFAC to reduce the difficulty of searching through a large feasible region. This

list of works is by no means exhaustive and is only intended to provide some idea of the

diversity of applications of UNIFAC in the CAMxD literature.

More recently, there has been growing interest in using the SAFT equation of state (Chap-

man et al. 1989) to solve CAMD/CAMxD problems. For example, Pereira et al. (2011b)

addressed the design of separations solvents using SAFT. Lampe et al. (2014) used

SAFT to solve fluid selection and process optimization problems to design an organic

Rankine cycle, and Lampe et al. (2015) utilized group contribution methods to better

incorporate CAMD methodologies into these problems. SAFT is quickly becoming a

useable model in a CAMD/CAMxD context due to the development of group contri-

bution methods like SAFT-γ (Lymperiadis et al. 2007), application to the prediction

of mixture properties (Papaioannou et al. 2011), and the use of the group contribution

models in various design problems (Burger et al. 2015).

UNIFAC and SAFT-γ are natural choices for CAMD/CAMxD as they use group

contribution methods, and groups often represent the design space of these problems.

Furthermore, both of these methods have been demonstrated to be accurate and useful

in a molecular and mixture design context. However, one significant issue with both
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is that they rely on binary interaction parameters for every pair of groups in solution.

Estimating these parameters requires large data sets of thermodynamic properties, and

such data sets often lack enough chemical diversity to make robust parameter estimates

for many types of molecular structures. Consequently, many of these binary interaction

parameters are simply not available. In this way, the design space of any CAMxD prob-

lem using UNIFAC or SAFT-γ is inherently limited to the chemical space represented

by the available binary interaction parameters. An alternative way of estimating the

thermodynamics of mixtures is through using one of several post-processing methods for

the COSMO solvation model (Klamt & Schüürmann 1993), a relative of continuum sol-

vation models used in quantum chemistry calculations. COSMO-RS (Klamt 1995) and

COSMO-SAC (Lin & Sandler 2002) are two of these post-processing methods that are

continuing to gain popularity. What distinguishes COSMO-RS and -SAC and makes

them particularly attractive in a CAMxD context is that they do not involve binary

interaction parameters. Using only molecular volumes and composition-independent

charge density distributions called sigma profiles, COSMO-RS and -SAC are able to

make accurate mixture thermodynamics estimates. In a CAMxD context, COSMO-

based thermodynamics enable a much larger search space in that we are free to consider

any molecular species so long as we can estimate its sigma profile and molecular volume.

A COSMO-based mixture design approach incorporates accurate ab initio quantum

chemical information for any species that is fixed in the mixture (i.e., not in the design

space). This means that this COSMO-based approach can be applied to thermody-

namics calculations for non-standard species like transition states, radicals, and ionic

liquids. Other methods cannot capture the complexities present in these systems as

they are often parameterized for neutral, ground state structures. This ability to incor-

porate quantum chemical information greatly expands the classes of problems that can

be addressed by CAMxD.
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In this chapter, we propose the use of group contribution methods to estimate sigma

profiles and molecular volumes. This enables the use of numerous established mixture

and molecular design strategies. Furthermore, we solve the CAMxD problem by (1)

decomposition into constituent molecular design and mole fraction problems and (2)

projection of the design variables on a lower-dimensional space, namely that of the sigma

moments (analogous to statistical moments of the sigma profiles) of each compound in

solution. We probe the search space defined by the sigma moments with derivative-free

optimization algorithms, which enable an efficient search through our design variables

without the computational burden of calculating mixture thermodynamics for a large

number of solutions.

In the next section, we provide an introduction to the COSMO solvation model and

the COSMO-RS and COSMO-SAC post-processing steps. Furthermore, we provide

more detail for sigma profiles and sigma moments. In Sec. 3.3, we discuss our group

contribution models for estimating sigma profiles, sigma moments, and molecular vol-

umes. Then, in Sec. 3.4, we integrate COSMO-based thermodynamics into the CAMxD

problem. In Sec. 3.5, we investigate two case studies: a separation solvent design

problem and a reaction rates optimization problem. Finally, in Sec. 3.6, we provide a

summary of the work and draw conclusions about COSMO-based thermodynamics as

applied to mixture design problems.

3.2 an overview of cosmo and cosmo-based thermodynamics

3.2.1 Sigma profiles and sigma moments

The COSMO solvation model (Klamt & Schüürmann 1993) is a variant of quantum

chemistry continuum solvation models. While a standard quantum chemistry calcula-
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3.2 an overview of cosmo and cosmo-based thermodynamics

tion provides molecular geometries and energies in the gas phase, COSMO—like other

continuum solvation models—describes a molecule in the solution phase with an ap-

proximate representation of its surroundings as a continuum. In the specific case of

COSMO, the continuum is assumed to be an ideal conducting medium, meaning it has

a dielectric constant of infinity (ε = ∞). In performing a COSMO calculation, a large

number of point charges are first placed on the surface of the molecule. The molecule

is embedded in an ideal conductor, and the energies of the point charges on the surface

are calculated accordingly. The result of a COSMO calculation describes a discretized

surface of a molecule i, where each point charge m has a three-dimensional coordinate,

a surface area Aim, a screening charge density (charge/area) σim, and a few other prop-

erties. To simplify the thermodynamics, this three-dimensional charge distribution is

projected onto a two-dimensional probability distribution function called a sigma profile,

Pi. For consistency with later parts of this study, we deviate slightly from the definition

of Klamt (1995) and define a sigma profile for a molecule i as:

Pi(σ̂) =
∑

m,σim∈H(σ̂)

Aim

where σ̂ is a discrete set of σ values used to approximate the sigma profile. H(σ̂)

represents a subset of the point charges, m, and can be defined as

H(σ̂) = [σ̂− ∆/2, σ̂+ ∆/2)

with ∆ representing a certain margin around the discrete values σ̂. Naturally, the

distance between two of these neighboring σ̂ values should be equal to ∆. Represented

this way, a sigma profile is essentially a histogram that plots surface area according

to the σ̂ value that every point charge is closest to. In other terms, a sigma profile
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Figure 3.1: Example sigma profiles
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represents the probability of finding a certain screening charge density on the molecular

surface. The sigma profiles of a few common structures are given in Fig. 3.1 and come

from the Virginia Tech sigma profile database (Mullins & Oldland 2007). The sigma

profile of the mixture PS is simply a linear combination of the sigma profiles of the

individual components, weighted by their mole fraction and normalized by their total

surface areas:

PS(σ) =

∑
i
Pixi∑

i
Aixi

where Ai is the total surface area of molecule i. Therefore, the sigma profile of a solution

of only one compound is simply that compound’s sigma profile normalized to unity, or

the sigma profile divided by the total surface area.

While sigma profiles accurately capture detailed, high-dimensional information about

the surface charges on a structure, a more general, low-dimensional view of a molecule’s

behavior in an ideal conductor is often advantageous. One well-studied way to consoli-
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date the information in a sigma profile into lower-dimensional descriptors is via the use

of sigma moments. The n-th sigma moment Mn for n ∈ {0, 1, 2, 3} of a sigma profile P

is given by:

Mn =
∑
σ̂

P (σ̂)σ̂n

Some of these sigma moments represent physical properties of a structure. The 0-th

sigma moment, M0, is equal to the total surface area of a molecule. M1 is the total

COSMO polarization charge on the surface of the molecule. M2 is highly correlated with

the total COSMO polarization energy, meaning it represents the capacity of a solute

molecule to interact with a polarizable continuum. Finally, M3 does not express any

easily-understandable physical property, but according to Klamt (2005) it “represents

a kind of skewness in the σ-profile.” Furthermore, Klamt defines two hydrogen bonding

sigma moments, called the acceptor, Macc, and donor, Mdon, moments. These are given

by:

Macc/don =
∑
σ̂

P (σ̂)fhbacc/don(σ̂)

with

fhbacc/don(σ̂) =


0 if ± σ̂ < σ′hb

±σ̂− σ′hb if ± σ̂ ≥ σ′hb

where σ′hb defines a hydrogen bonding cutoff value.

Sigma moments are useful in a modeling and design context for a few reasons. First,

this lower-dimensional space aids in the development of quantitative structure property
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relationships (QSPRs) to calculate properties not directly available from COSMO-RS

and COSMO-SAC calculations (Klamt 2005). The development of QSPRs from sigma

moments will not be used in this study but is nonetheless worthwhile to mention as a po-

tential application for COSMO-based CAMD and CAMxD problems. More importantly,

sigma moments are particularly useful in our approach to mixture design problems as

the low-dimensional space defined by the sigma moments enables the efficient use of

derivative-free optimization (DFO) algorithms. From previous studies (Rios & Sahini-

dis 2013; Austin et al. 2016), we know that DFO algorithms are reliable at solving

problems with a small number of degrees of freedom. This approach will be discussed

in more detail in a later section.

3.2.2 COSMO-RS and COSMO-SAC

The energy of a COSMO calculation represents the total energy of the molecule in

an ideal conductor. The liquid phase is considered to be a closely-packed group of

molecular structures, while neighboring molecules in an ideal conductor can exhibit

surface charges in close contact that are not balanced. Clearly, this is not the situation

in a real solvent. In order to calculate the energy of the molecule in an arbitrary solvent,

the surface charges must be adjusted to account for the removal of the ideal conductor.

This is done with one of a few COSMO post-processing steps, one of which is known

as COSMO-RS (Klamt 1995). Given two surface charge densities of segments in close

contact, σ̂ and σ̂′, the electrostatic energy of interaction per unit area—or “misfit”

energy—in a real solvent is expressed as the following:

Emisfit(σ̂, σ̂′) = aeff
α′

2 (σ̂+ σ̂′)2 (3.1)
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where aeff represents the area of contact and α′ is constant. Both are adjustable param-

eters. COSMO-RS also predicts the interaction energy of two surfaces due to hydrogen

bonding as follows:

EHB(σ̂, σ̂′) = aeffcHB min(0, σ̂donor + σHB)max(0, σ̂acceptor − σHB) (3.2)

where σHB is the hydrogen bonding cutoff radius beyond which segments with surface

charges σ̂ > σHB or −σ̂ > σHB are assumed to participate in hydrogen bonding. cHB
is an adjustable parameter accounting for the energy of a hydrogen bond. We can now

calculate the sigma potential, or the chemical potential of a surface segment of screening

charge density σ̂ in some solvent S. This is given by the following:

µS(σ̂) = −RT ln
(∑

σ̂′

PS(σ̂
′) exp

(
µS(σ̂′)−Emisfit(σ̂, σ̂′)−EHB(σ̂, σ̂′)

RT

))
(3.3)

With all this information, we can finally calculate the chemical potential of a molecule

i in some solvent environment S. This expression provides the chemical potential as

defined from the reference state of the ideally screened molecule i:

µi =
∑
σ̂

Pi(σ̂)µS(σ̂) + µCi

where µCi is the combinatorial contribution to the chemical potential. This is essentially

an entropic term to account for size and shape differences among molecules in the

solution. There are a number of empirical estimates for this term, and those used in

this document will be discussed in the appropriate sections. For more information on

the COSMO-RS method, see Klamt (1995); Klamt et al. (1998); Eckert & Klamt (2002).

For a complete review of the COSMO-RS method and discussion of implementations

and applications, readers are directed to Klamt (2005).
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3.2 an overview of cosmo and cosmo-based thermodynamics

Another post-processing method for COSMO, COSMO-SAC (Lin & Sandler 2002),

applies a very similar approach. COSMO-SAC defines a term called the segment ex-

change energy, ∆W , which is analogous to the sum of COSMO-RS’s misfit energy and

hydrogen bonding energy:

∆W (σ̂, σ̂′) = α′

2 (σ̂+ σ̂′)2 + chb min(0, σ̂donor + σhb)max(0, σ̂acceptor − σhb)

(3.4)

COSMO-SAC then calculates the activity coefficient of some surface segment σ̂ in the

some solution S:

ln ΓS(σ̂) = − ln
(∑

σ̂′

PS(σ
′)ΓS(σ̂′) exp

(−∆W (σ̂, σ̂′)
RT

))
(3.5)

Note again that these expressions have been adapted slightly from those given in the

original papers.

Finally, COSMO-SAC defines a restoring free energy term, ∆G∗resi/S , to calculate the

energy change in moving one of the mixture components i from the ideal conductor to

some solvent environment S. This again bears a strong resemblance to the COSMO-RS

calculation of the property:

∆G∗resi/S
RT

= Xnum
i

(∑
σ̂

Pi(σ̂) ln ΓS(σ̂)

)
(3.6)

where Xnum
i represents the total number of surface segments for molecule i. Note

that there is also a combinatorial term (not shown) involved in this model. For more

discussion of the COSMO-SAC method as well as a series of modifications to the model,

readers are directed to Wang et al. (2007); Hsieh et al. (2010); Xiong et al. (2014).
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3.3 group contribution method for calculating sigma profiles

3.3 group contribution method for calculating sigma profiles

Disregarding the combinatorial term, the sigma profile of each mixture component is

all that is required to make mixture thermodynamics calculations with COSMO-RS

and COSMO-SAC. Though highly-accurate, these calculations are time-consuming and

not suitable for the solution of CAMxD problems. For this reason, we propose the

use of group contribution methods to estimate sigma profiles. To derive these group

contribution methods, we use Virginia Tech’s sigma profile database (Mullins & Oldland

2007), the only free, publicly available database of its kind. The profiles contained in

this database are calculated with parameters based on the COSMO-SAC model.

We follow the example of Mu et al. (2007) and discretize the σ values along the

profile. Now, a sigma profile contains 51 discretized intervals s = [1, . . . , 51], each

∆=0.001 e/Å2 wide. The corresponding σ̂ values will go from -0.025 e/Å2 for s=1 to

+0.025 e/Å2 for s=51. Now, a sigma profile is represented as the total area of segments

whose surface charge density is within ∆/2 of −0.026 + 0.001s e/Å2.

Given the above discretization, we now estimate a sigma profile Pi with the following

group contribution formulation

Pi =
∑
g

cgng (3.7)

where ng defines the number of occurrences of group g and cg is a vector of dimension

|s| that quantifies how much each group contributes to each interval s of the sigma

profile. The coefficients were obtained by fitting our group contribution method to

all the non-ionic compounds contained in the VT sigma profile database. We list the

average deviation of the group contribution method by σ̂ interval in Fig. 3.2. We list the

correlation coefficient, r2, for each interval in Fig. 3.3. As shown, the group contribution
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3.3 group contribution method for calculating sigma profiles

method is fairly good at predicting the sigma profiles, exhibiting an r2 > 0.7 for most

of the intervals.

Furthermore, we can estimate the sigma moments with another group contribution

method. These sigma moments can be estimated very accurately with group contribu-

tion (GC) methods. Using a different set of groups, the regression produces an r2 > 0.9

for five of the six moments. These r2 values are shown in Fig. 3.4.

Finally, the volumes of the COSMO cavity for each molecule were fit to a final group

contribution method. Volumes are needed to calculate the combinatorial contribution

to chemical potential. As volumes are an additive property, group contribution meth-

ods were able to predict these quite well, exhibiting an r2 > 0.999. In Fig. 3.5, we

plot the GC-estimated values for COSMO volumes against those taken from the VT

database (Mullins & Oldland 2007). As seen in this figure, the proposed GC technique

estimate this data set nearly perfectly. Finally, we again note that the groups to esti-

mate sigma profiles, sigma moments, and molecular volumes are different. These sets

will be denoted as GP , GM , and GV , respectively, and the corresponding group contri-

bution methods will be denoted as fP , fM , and fV . The groups and their coefficients

for volumes and sigma moments are provided at Austin & Sahinidis (2016).

As shown, the information captured in the σ moments and molecular volumes can be

estimated accurately with group contribution methods. The sigma profile estimation, on

the other hand, is not as reliable. We emphasize that the need to estimate sigma profiles

with group contribution methods is the main shortcoming of such a COSMO-based

approach to mixture design. For many types of molecules, this is very accurate, but

there are some classes of structures for which group contribution methods have proven

inadequate to estimate sigma profiles (Mu et al. 2007). Overall, COSMO-based mixture

design has the advantages of no binary interaction parameters and easy integration

with quantum chemistry calculations. These advantages come at the occasional price of
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3.3 group contribution method for calculating sigma profiles

Figure 3.2: Average deviation by interval
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Figure 3.3: Correlation coefficient by interval
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accuracy. However, the development of non-standard group contribution methods for

sigma profile estimation would alleviate this issue to some degree. Such methods may

involve non-linear terms, interaction parameters, and inclusion of non-group descriptors,

for example. Finally, it should be noted that, like any group contribution method, the

proposed method for sigma profile estimation would benefit from a larger and more

diverse training set.
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3.4 the cosmo mixture design problem

Figure 3.4: Correlation coefficient by moment
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3.4 the cosmo mixture design problem

We will first remind readers of the general form of the mixture design problem and

then present a COSMO-based approach. The goal of the problem is to design some

K-component mixture such that the mixture properties q optimize some function C(q).

Some of the components may be predetermined but at least one is assumed to be

unknown. This problem requires determination of the molecular structures of every

unknown component as well as optimization over mole fractions for every species in the

mixture. Finally, there may be constraints on component and mixture properties.

The indices i, j, and k will, respectively, denote components in the mixture (i =

1, . . . ,K), pure component properties (j = 1, . . . ,C), and mixture properties of interest

(k = 1, . . . ,N). For component i, xi will denote its mole fraction in the mixture. Let

pij denote the value of property j for pure component i. These p’s can be estimated

by a family of functions f(n), where n is a vector of occurrences of various molecular

subgroups. In the majority of CAMxD problems, these f ’s are group contribution

methods. Furthermore, this vector n must capture molecular subgroup information for
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3.4 the cosmo mixture design problem

Figure 3.5: GC-estimated volume vs. database volume from VT’s sigma profile
database (Mullins & Oldland 2007)
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every unknown component of the mixture, meaning that n will be indexed over the set

of unknown components. There are also properties of the mixture, qk, k = 1, . . . ,N ,

that are functions of the pure component properties and mole fractions, i.e., qk =

gk(x, p), k = 1, . . . ,N . The mixture design problem is to determine the components
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3.4 the cosmo mixture design problem

and their mole fractions so that a certain performance criterion C(q) is optimized. We

can therefore formulate this problem as follows:

(CAMxD) minn,x C(q) (3.8)

s.t. q = g(x, p) (3.9)

p = f(n) (3.10)

h(x, p, q) ≤ 0 (3.11)

l(x, p, q) = 0 (3.12)∑
i

xi = 1 (3.13)

pL ≤ p ≤ pU (3.14)

qL ≤ q ≤ qU (3.15)

n ∈ S (3.16)

First, equation (3.8) optimizes some function C of mixture properties. Equation (3.10)

represents group contribution methods used to estimate pure component properties from

each unknown component’s n vector. Constraints (3.11) and (3.12) are equality and

inequality constraints imposed on mixture and component properties. Constraint (3.13)

simply requires all mole fractions to sum to 1. Constraints (3.14) and (3.15) represent

the bounds placed on individual component and mixture properties. Constraint (3.16)

represents a number of group valence constraints (Odele & Macchietto 1993; Sahinidis

et al. 2003) used to ensure the chosen n vector contains groups that will assemble into

a chemically feasible structure. Finally, equation (3.9) is a number of functions—here

collectively identified as g—used to transform individual component properties and mole

fractions into mixture properties. These functions are key in enabling the use of single

molecule design methodologies in mixture design.
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3.4 the cosmo mixture design problem

The choice of these g functions has important consequences for how a mixture design

problem is solved and what design space it can effectively consider. Using the COSMO-

RS and -SAC methods for the g functions, we obtain a modified CAMxD formulation.

First, we replace eq. (3.9) with the following:

q = COSMO-RS/-SAC(x,P ,V ) (3.17)

Now, we calculate mixture thermodynamics using the COSMO-RS and -SAC methods.

COSMO-RS and -SAC are functions of the mole fractions x, sigma profiles P , and cavity

volumes V of every species in solution. Though technically subsumed in eq. (3.10) in

the previous formulation, we note the addition of our group contribution estimation

methods for P and V to the formulation for clarity:

P = fP (n) (3.18)

V = fV (n) (3.19)

where P and V are estimated by the group contribution methods fP and fV discussed

above.

In the above formulation, we are optimizing over the design space of both discrete

variables n and continuous variables x. Given that there are a number of unknown

components we are designing for, the discrete space, which is defined in terms of the n

variables, can be quite large. Additionally, optimizing over the mole fractions, x, is typi-

cally challenging as the mixture thermodynamics models introduce many non-linearities

and non-convexities. These features make CAMxD a challenging MINLP that cannot

easily be solved using both an appreciable number of possible groups and appropri-

ately complex thermodynamic models. To address this difficulty, in Austin et al. (2016)

(discussed in Chapter 2) we introduced a strategy whereby we projected the CAMxD
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3.4 the cosmo mixture design problem

problem onto the space of the properties of the individual components in the mixture,

p. This projection facilitates a natural decomposition of the CAMxD problem, enabling

efficient single-molecule design methodologies to be used with a more straightforward

mole fractions optimization problem. In the specific case of our COSMO-based mixture

design problems, we will adopt a similar strategy and project our problem onto the space

of the sigma moments of each unknown mixture component. The objective of the prob-

lem is now an implicit function of x and n, meaning algebraic optimization techniques

can no longer be directly applied. Furthermore, the design space is significantly lower

dimensional. Due to these features, derivative-free optimization (DFO) algorithms can

be effectively applied to optimize over the space of the component properties as many

DFO algorithms have been shown to be highly efficient at solving problems with few

degrees of freedom (Rios & Sahinidis 2013). Our optimization strategy follows the ap-

proach outlined in Chapter 2 but optimizes over the space of sigma moments, M . This

DFO-based strategy is detailed below:

1. Given a candidate property vector MT , find n with corresponding fM (n) that is

as close to MT as possible; this is a single molecule design problem done for each

unknown component in the mixture.

2. Use group contribution methods, fP (n) and fV (n), to generate sigma profiles and

molecular volumes for each compound in solution. Fix the values of n in the

original CAMxD problem and solve the continuous part of the problem.

3. Interpret the objective value and choose new MT ’s if necessary; we address this

problem via DFO.

We begin by specifying a sigma moments target MT for each unknown species in solu-

tion. In a hypothetical mixture design problem where two components are unknown, a

possible sigma moments vector for the first component may be M1
T = [M1

1 ,M1
2 ,M1

don],
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3.4 the cosmo mixture design problem

representing the first, second, and hydrogen bond donor moments, respectively. A sim-

ilar sigma moments vector M2
T would also exist for the second component. Because

these sigma moments are molecular properties, we can exploit efficient optimization

techniques for single-molecule design to quickly determine a molecular structure with

sigma moments closest to the target values. For each of these components, we design

a molecular structure using the AMODEO methodology (Samudra & Sahinidis 2013b).

The AMODEO approach optimizes over the space of groups in our sigma moments group

contribution method, minimizing the distance between MT and the group contribution

estimates. The optimum of the problem, n∗i , represents the number of occurrences of

each group in component i. Furthermore, we only consider solutions that fall within a

certain range [ML
k ,MU

k ] as given for each sigma moment, k, in the design space. This

range is determined by:

ML
k =Mk − τ (Mall

k
U −Mall

k
L
) (3.20)

MU
k =Mk + τ (Mall

k
U −Mall

k
L
) (3.21)

τ ∈ (0, 1] (3.22)

where τ represents a multiplier to quantify a fraction of the entire feasible range of

a specific moment. In short, ML
k and MU

k define lower and upper bounds around a

particular property target point M . Mall
k
L and Mall

k
U define lower and upper bounds

over the entire sigma moments design space. The molecular design formulation for
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3.4 the cosmo mixture design problem

determining molecular structures from moments is shown below. We note that this

formulation is almost identical to the formulation discussed in Eqs. (2.18)—(2.20).

min
n

∑
k

[
d+k + d−k
MU
k −ML

k

]
(3.23)

s.t. d+k − d
−
k =

∑
g∈GM

ckgng −Mk ∀k (3.24)

ML
k ≤

∑
g∈GM

ckgng ≤MU
k ∀k (3.25)

n ∈ S

In the above, d+k and d−k are positive continuous variables that quantify positive and

negative differences between group contribution estimates and target values for each

sigma moment k. In Eq. (3.23), we minimize the sum of these differences normalized

by the target sigma moments value. Eq. (3.24) calculates these differences. Eq. (3.25)

ensures that the groups selected produce an estimate that falls within our specified

property bounds for each sigma moment.

After this problem is optimized, the optimal groups are connected to produce actual

molecular structures. This is achieved either by an enumeration procedure or by a graph

theory optimization approach in AMODEO. More information on the graph theory

approach can be found in Samudra & Sahinidis (2013b). Once we have molecular

structures for each unknown component of the mixture, we apply group contribution

methods to quickly generate sigma profiles and COSMO volumes for each of these

components. Now the original CAMxD problem can be solved, fixing the molecular

compositions, ni, of each unknown component. The CAMxD problem thus reduces to

an NLP, which is solved over the mole fractions in solution. Note that this NLP does

not produce a globally optimal solution to the CAMxD problem. It only provides an
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3.4 the cosmo mixture design problem

optimal solution in the mole fractions space for a set of compounds corresponding to a

certain σ moments vector.

We utilize derivative-free optimization (DFO) algorithms as an optimization strategy

in the lower-dimensional projected space of σ moments. DFO algorithms in this case

supply a particular target value MT for each component in solution. This value is used

to determine molecular structures and optimize some mixture objective function in the

process described above. The objective value is reported back to the DFO solver and it

either supplies a new target pointMT or determines that convergence has been achieved.

If any of the component design subproblems or mole fractions problem is infeasible, a

large value is reported back to the DFO solver. This algorithm is summarized in Fig. 3.6.

Again, we emphasize the similarity between this algorithm and the one detailed in

Fig. 2.2.

Like many examples in the literature, this approach solves the mixture design problem

by decomposing it into single molecule design and mole fractions optimization subprob-

lems. However, many of these approaches require designing every possible molecular

structure for every component. While this can be done fairly efficiently, the mole frac-

tions problem presents far more difficulty. With these approaches, every combination

of possible molecular structures must be evaluated for optimal mole fractions. Because

the thermodynamics of these mixture design problems often lead to non-trivial mole

fractions problems, only a limited number of these feasible combinations can be prac-

tically considered. In the above algorithm, however, every iteration either produces an

objective function value corresponding to some region of component property space or

determines that no molecular structures exist in that area that are feasible for the mix-

ture design problem. This feature enables a much more efficient and thorough search

through the feasible design space.
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3.5 case studies

We next apply this algorithm to two case studies. For these case studies, we use the

TOMLAB/CGO solver (Holmström et al. 2007) as the DFO algorithm, and we use a

2.84 GHz processor.

3.5 case studies

3.5.1 Liquid-liquid extraction solvent

In a liquid-liquid extraction, two liquid components, A and B, are separated by the

addition of a third component called an extractant, identified here as C. Assuming the

intent is to produce pure B, a good extractant should solvate A much more favorably

than B solvates A. Additionally, liquid-liquid extractions should produce two distinct

liquid phases, so it is desirable that C is only partially miscible or completely immiscible

in B. As an industrial process, we assume that a feed of A+B and a feed of C are mixed

together in a single-stage extraction unit. One of the liquid phases that is produced is

called the extract and should contain mostly A and C. The other phase is called the

raffinate and should contain mostly B.

We investigate the problem originally posed by Seader & Henley (1998) and studied

in a mixture design context using UNIFAC by Karunanithi et al. (2005). The problem

involves recovering acetic acid from a mixture of acetic acid and water. We assume one

feed to the extraction unit contains 8 wt % acetic acid in water and flows into the unit at

13500 kg/h. Another feed containing the extractant feed has a flow rate of 16300 kg/h.

The extract and raffinate phases are removed with flow rates FE and FR, respectively.

The mixture design problem determines the optimal extractant and optimal flow rates

for the extract and raffinate phases. The optimal extractant in this case should lead

to the least amount of acetic acid loss. Furthermore, we have to ensure mass balances
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Figure 3.6: A pictorial representation of the COSMO-based mixture design algorithm
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and liquid-liquid equilibrium constraints as well as constrain solvent properties to be

favorable for this process. As approached with our mixture design algorithm, a candidate

structure is generated at each iteration and then a subproblem must be solved to quantify

the process performance of the candidate structure. This is done by optimizing over the

mole fractions and process conditions. The formulation of the subproblem is presented

below.

min
x,FR,FE

XR
AFR (3.26)

s.t. P = f(n) (3.27)

V = f(n) (3.28)

γ = COSMO− SAC(P ,V ,x) (3.29)

γEi x
E
i − γRi xRi = 0 ∀i (3.30)

XE
i FE +XR

i FR = XF
i FF ∀i (3.31)∑

i

xRi = 1 (3.32)

∑
i

xEi = 1 (3.33)

m =
γ∞A,B
γ∞A,B

MWA

MWB
≥ 0.49 (3.34)

SL =
1

γ∞C,B
≤ 0.0038 (3.35)

β =
γ∞B,C
γ∞A,C

≥ 11 (3.36)

SP =
1

γ∞A,C
≥ 0.778 (3.37)

In the above formulation, we optimize over the mole fractions of each component i and

the flow rates of the two phases FR and FE . Because there are two liquid phases in this
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extraction process, we further index the mole fractions over two phases. xRi indicates

mole fractions in the raffinate phase and xEi indicates mole fractions in the extract phase.

The capital X’s represent mass fractions. MWi is the molar weight of molecule i. Values

m, SL, β, and SP represent the distribution coefficient, solvent loss, selectivity, and

solvent power and are constrained in keeping with Karunanithi et al. (2005). γ∞i,i′ is the

infinite dilution activity coefficient of compound i in a solution of compound i′. The

objective, Eq. (3.26), minimizes the mass of acetic acid lost to the raffinate phase, again

in keeping with Karunanithi et al. (2005). Eq. (3.29) uses the information from the

sigma profiles, mole fractions, and molecular volumes to calculate activity coefficients

γRi and γEi for each component in each of the phases. These activity coefficients are

calculated with the COSMO-SAC parameters and combinatorial term that are given

in Mullins et al. (2006). The liquid-liquid phase equilibrium condition is captured in

Eq. (3.30) and Eq. (3.31). Eqs. (3.32) and (3.33) ensure that all mole fractions add

to one in both phases. Eqs. (3.34), (3.35), (3.36), and (3.37) place constraints on the

properties of the system to ensure favorable characteristics for extraction. The resulting

problem is a nonlinear and nonconvex optimization problem that is solved for a fixed

input of species C. This problem is solved with BARON (Tawarmalani & Sahinidis

2004) in each iteration of the algorithm.

It is also important to note that the sigma profiles of acetic acid and water, PA and

PB, come directly from the Virginia Tech sigma profile database. This means that

the profiles of these two species reflect full quantum chemical accuracy. The same is

true of the molecular volumes, which are also taken directly from the database. The

sigma profile and molecular volume of the extractant, PC and VC , are the only prop-

erties estimated with our group contribution methods. We advocate the approach of

including as many quantum-chemistry-calculated sigma profiles as possible in solving

COSMO-based mixture design problems. In general, doing so provides the mixture de-
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Table 3.1: Summary of important values for the liquid-liquid extraction solvent case study
Parameter Value/Range Additional Information

Time limit 30 min Maximum allowable time for the
algorithm

Iteration limit 2000 Maximum number of iterations the
algorithm can perform

DFO inputs M0, M1, M2, M3, Macc,
Mdon,

Lower-dimensional design space for
the solvent

τ 20% Property bounds relaxation around
DFO trial point

Cmax 10 Maximum number of compositions
determined during each iteration

Carbons 12 Maximum number of carbons in
the designed component

Triple bonds 1 Maximum number of triple bonds
in the designed component

Double bonds 2 Maximum number of double bonds
in the designed component

Non-carbons 3 Maximum number of non-carbons
in the designed component

sign problem with the maximum amount of accurate information, relying on the group

contribution estimates of sigma profiles only for molecules in the design space of the

problem.

In their analysis of this problem, Karunanithi et al. (2005) employ the UNIFAC

method and report 2-hexanone as the optimal solvent for this process. They also indi-

cate that this is the industrial standard used for this separation. Using the problem spec-

ification from above and taking the sigma profile and molecular volume of 2-hexanone

directly from the Virginia Tech Database (Mullins & Oldland 2007), the optimal objec-
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tive value is found to be 202.27 kg/h. The search space for this problem is defined by

the six σ-moments discussed above. We set bounds on the moments based on slightly

widening the range of values observed in the VT sigma profile database. Furthermore,

we constrain the chemical structure of the designed compound to have fewer than twelve

carbons, no more than three non-carbons, and up to one triple bond and two aliphatic

double bonds. We also account for aromatic structures. The relevant problem data is

summarized in Table 3.1. We note that these constraints on the design space are far

more stringent than they need to be. We reduce our search to this region for the pur-

poses of producing solutions which can be practically considered as synthetically viable

alternatives to this process.

The solution of our COSMO-based mixture design problem resulted in several promis-

ing molecules, a small subset of which is shown in Table 3.2. Using our group contribu-

tion methods to estimate sigma profiles and molecular volumes, 1-ethoxy-4-methoxybutan-

2-ol, the first entry in the table and best compound found, was determined to have

an optimal objective value of 137.70 kg/h. This is a better solution than the indus-

trial standard and solution found by Karunanithi et al. (2005) by roughly 40%. The

second molecule we report, 2-ethoxy-4-methoxybutan-1-ol, is another solution to the

problem similar in structure to the optimal molecule. Interestingly, both of these struc-

tures represent part of this problem space for which UNIFAC would have a missing

interaction parameter, specifically that between the UNIFAC main groups -COOH and

-OCCOH (Dortmund Data Bank Software and Separation Technology GmbH 2014).

The fact that the Karunanithi et al. study did not discover our optimal structure is

likely the result of this missing interaction parameter. For the sake of completeness, we

acknowledge that this structure has an alternative UNIFAC representation using sim-

ply the ether and alcohol main groups. Such a representation would have allowed for

our optimal molecule to be in the feasible region defined by Karunanithi et al. In this

125



3.5 case studies

Table 3.2: Representative structures for the liquid-liquid extraction case study

Solvents Properties

O
O

OH

Objective value: 137.70
xRA: 0.0101
xEA: 0.0264
FR: 4619.96 kg/h
FE : 25180.04 kg/h

O O

OH
Objective value: 289.78
xRA: 0.0107
xEA: 0.0354
FR: 8732.22 kg/h
FE : 21067.78 kg/h

N

Objective value: 774.11
xRA: 0.0183
xEA: 0.0246
FR: 13888.94 kg/h
FE : 15911.06 kg/h

case, the sub-optimality of this structure in their approach would likely result from the

alternative UNIFAC representation not accounting for the full behavior of the molecule.

The different results may also be due to differences between UNIFAC and COSMO-SAC,

but the effect is not likely to be so significant.

Coincidentally, a molecule appears in the VT sigma profile database which is very

similar to these first two designed structures. This is 2,2-ethoxyethoxyethanol, and it

contains two ethers and an alcohol, like both of the first listed structures. Using the

sigma profile and molecular volume from the database, we solve the subproblem above
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and obtain an objective value of 120.43 kg/h, again better than the objective value of

the industrial standard. It is noteworthy that this molecule also contains the -OCCOH

UNIFAC group and thus could not be considered in a UNIFAC-based design problem.

We also include a third structure in the list to convey an idea of the molecular di-

versity explored in the algorithm. The third molecule, N -methylpyrrole, is not a good

solvent for this process, but it again represents part of the design space that could not

be explored with UNIFAC. Despite its poor performance in this design problem, its

inclusion in the design space could be more significant given a different objective and

altered process conditions.

Finally, we note that the algorithm also generated a large number of ketones similar

to and including 2-hexanone, all with similar objective values to the industrial standard.

This observation illustrates that this COSMO-based approach can reproduce results

obtained with UNIFAC. However, this case study primarily underscores the potential

of a COSMO-based mixture design approach to determine solutions that are simply not

part of the search space in other methods. In this example, some of these solutions are

better than those attainable by using a more constrained search space.

3.5.2 Reaction rates optimization solvent

The reaction medium plays a critical role in determining the success of a particular

reaction, the rate at which it proceeds, and whether any undesirable side-products are

formed. Furthermore, there is limited customization in solvent choice as many reactions

are performed in one of a handful of common laboratory solvents or in a simple blend of

these solvents. For this reason, designing a solvent to optimize some function of reaction

rates has considerable application potential in liquid-phase chemistry.

127



3.5 case studies

Because a rigorous modeling of reaction rates involves some knowledge of transition

states, this class of solvent design problems cannot be approached using methods like

UNIFAC. UNIFAC, though powerful in its own domain, is parameterized for neutral,

ground state molecules and poorly predicts the electronic complexities of transition

states. COSMO-based methods, on the other hand, are particularly suitable for this

application as the transition states of relevant reaction pathways can be modeled accu-

rately using quantum chemistry techniques. In addition, COSMO-RS and -SAC directly

calculate chemical potential, which trivially yields the free energy of solvation of a molec-

ular species.

In this case study, we design a solvent to maximize the reaction rate of a particular

Menschutkin reaction. The Menschutkin reaction is the reaction of a tertiary amine with

an alkylhalide to form a quaternary ammonium salt. In our example, the Menschutkin

reaction we investigate is the reaction of tripropylamine with methyl iodide. This re-

action is shown in Fig. 3.7. The Menschutkin reaction provides a particularly valuable

case study for solvent design as its reaction rate is known to be sensitive to the choice

of solvent (Lassau & Jungers 1968). In addition, the specific Menschutkin reaction we

investigate proceeds via a simple SN2 pathway, so the calculation of the reaction rates

is straightforward. Referring to transition state theory (TST), we calculate the reaction

rate constants as a function of the energy differences between the reactants (A and B)

and the transition state (AB‡). Specifically, we use the following equation.

k = κ
kBT

h
exp

(
−

∆G‡gas + ∆GAB
‡

solv − ∆GAsolv − ∆GBsolv
RT

)
(3.38)

In the above, k is the reaction rate constant, kB is Boltzmann’s constant, h is Planck’s

constant, and T is the temperature. ∆G‡gas represents the free energy of activation

in the gas phase. ∆GAB
‡

solv , ∆GAsolv, and ∆GBsolv represent the free energy of solvation
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Figure 3.7: The Menschutkin reaction between tripropylamine and methyl iodide

N CH3I N
CH3

I

N I+ +

A B AB

for the transition state, tripropylamine, and methyl iodide, respectively. Finally, κ is a

proportionality constant to account for the fact that not every vibration of the transition

state leads to the products. In this case study, we set κ to 1.

To estimate reaction rates, we first optimize the gas phase geometries of A, B, and

TS on Gaussian09 (Frisch & et al. 2009) using the B3LYP functional (Becke 1993;

Stephens et al. 1994) and a 6-311g(d,p) basis set. For iodine, we use the parameters

from Glukhovstev et al. (1995). Using these energies, we can calculate ∆G‡gas. Next, we

perform a single point calculation on the optimized geometries using COSMO (Barone

& Cossi 1998) in Gaussian. This calculation provides energies in the conductor phase

as well as sigma profiles for each of the species. Finally, we estimate the sigma profiles

and molecular volumes of the designed solvent molecules using the group contribution

method of Mu et al. (2007). This method is chosen rather than ours because we have

observed sensitivity in the COSMO-based thermodynamics calculations to the choice

of quantum mechanics software, calculation method for sigma profiles, basis sets, and

functionals. As we were only able to calculate sigma profiles with Gaussian software,

we opted for a method that estimated sigma profiles calculated on Gaussian software.
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We are consistent with Mu et al. (2007) and calculate the sigma profiles of A, B, and

AB‡ on Gaussian with a B3LYP functional using a 6-311g(d,p) basis set.

Using the COSMO-RS model with the parameters and combinatorial term taken

from Klamt & Eckert (2000; 2003), we estimate ∆GAB
‡

solv , ∆GAsolv, and ∆GBsolv. To test

the accuracy of this approach, we compare our estimates to the reaction rate data for this

specific reaction in 59 different solvents as given in Folic et al. (2008); Lassau & Jungers

(1968). We compare deviation of estimated log(k) (base 10) from experimental log(k)

in Fig. 3.8. As shown, only 1 of the 59 estimated values differs by more than one log

deviation (one order of magnitude) from experimental values. These one-log-deviation

lines are shown in red. This is a very promising result as full quantum calculations

for every species in solution typically only estimate reaction rates to within about one

order of magnitude of accuracy. Furthermore, we note that several of the structures in

the dataset cannot be fully described using the group contribution method of Mu et al.

(2007). It is likely that a large part of the error would be resolved if there were more

groups available in this method.

Another measure of accuracy for our estimates is given by average absolute percent

error (AAPE), defined as:

AAPE =
1
N

N∑
i=1

| log(k)esti − log(k)expi |
| log(k)expi |

× 100% (3.39)

where i represents a single solvent molecule in our data set ofN = 59 molecules, log(k)esti
is our estimated reaction rate, and log(k)expi is the experimental reaction rate taken

from Lassau & Jungers (1968). In the regression-based approach of Folic et al. (2008),

the authors report an AAPE of 18.77% for this data set. For the sake of comparison,

our approach, using a group contribution method to estimate the sigma profiles of the

solvents, produces an AAPE of 12.50% on the same 59 data points. Furthermore, in the
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study of Folic et al. (2008), the authors used some data points to build their regression

model. Our model, on the other hand, only contained one adjustable parameter to

account for differences in standard states. This comparison suggests that COSMO-

based methodologies are capable of increased accuracy over traditional CAMD/CAMxD

techniques.

To solve this reaction rates optimization problem, we calculate the free energies in

solution of each species with the process described above. We optimize in the space of

the sigma moments of the unknown solvent molecule, estimating the sigma profile at

each feasible iteration using a group contribution method. The important parameters

used in this problem are summarized in Table 3.3. Furthermore, we remove sulfoxides,

amines, and carboxylic acids from consideration to ensure the solvent is inert with

respect to the reactants. We additionally remove any groups that could lead to protic

solvents as these would tend to stabilize the nucleophile. The result of this optimization

yields several different types of molecules, a representative list of the highest-performing

ones given in Fig. 3.4. The first entry in the list, 3-nitro-2-(nitromethyl)propanenitrile,

has the highest predicted reaction rate of all molecules considered. It is a relatively

small molecule containing two nitro groups and a cyanide group. Its predicted reaction

rate is 0.45 log(k), with k in units of mol/s.

Another significant advantage of COSMO-based mixture design is the ability to easily

integrate full quantum chemistry calculations for designed structures and thus predict

properties using structures which are all optimized at the quantum chemistry level.

Specifically, we use Gaussian09 (Frisch & et al. 2009) to optimize the geometry of the first

solvent molecule in the table and then perform a single point COSMO calculation, again

using the B3LYP functional at the 6-311g(d,p) level of theory. Processing the result of

the COSMO calculation yields a sigma profile which is accurate to the quantum level.

Using this sigma profile, the predicted reaction rate constant for the first solvent becomes
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4.11 log(k), nearly six orders of magnitude improvement over the best solvent given in

the dataset (Lassau & Jungers 1968), which had a value of −1.74 log(k). Though this

appears to be a significantly better solvent, the estimate of 4.11 log(k) for this structure

is likely high. This may be the result of many COSMO surface segments on the nitro

groups having very high or very low σ values. In the post-processing COSMO-RS

step, some of these segments with extreme σ values are perhaps erroneously considered

to participate in H-bonding, which has a large impact on the solvation free energy.

Removing H-bonding from the COSMO-RS calculation, we obtain a different value for

the reaction rate constant of 0.49 log(k), much closer to our GC estimate. We also note

that since there is likely to be some H-bonding in this system, 0.49 log(k) may be a

low estimate. Future work will consider only allowing certain segments to participate

in H-bonding.

The second solvent, 4-nitro-3-(nitromethyl)but-1-yne, represents another di-nitro com-

pound, although this compound contains a carbon-carbon triple bond and no longer has

a cyanide group. It has a slightly lower predicted reaction rate of −0.11 log(k). Inter-

estingly, this molecule is a di-nitro compound with unsaturated carbon-carbon bonds,

defining features of the optimal structure determined by Folic et al. (2008). We also

calculate the sigma profile of this structure using Gaussian. This yields a reaction rate

constant of 2.88 log(k), representing over four orders of magnitude improvement to the

best reported solvent from Lassau & Jungers (1968). As the same issue with H-bonding

may exist, we also report a reaction rate constant of −0.32 log(k) for the same system

but without H-bonding. The discrepancy between our estimated reaction rate and the

Gaussian-calculated reaction rate is likely due to the inability of the group contribution

method to capture the chemical complexities of these structures. In this case, the opti-

mal structure has three very polar groups in close proximity, and the group contribution

method treats all of their effects additively. Furthermore, we are not aware of the data
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Table 3.3: Summary of important values for the reaction rates solvent case study
Parameter Value/Range Additional Information

Time limit 2 hours Maximum allowable time for the
algorithm

Iteration limit 2000 Maximum number of iterations the
algorithm can perform

DFO inputs M0, M1, M2, M3, Macc, Mdon
Sigma moments of the solvent to be

designed

δ 20% Property bounds relaxation around DFO
trial point

Cmax 10 Maximum number of compositions
determined during each iteration

Carbons 15 Maximum number of carbons in the
designed component

Non-carbons 7 Maximum number of non-carbons in the
designed component

Triple bonds 2 Maximum number of triple bonds in the
designed component

Double bonds 2 Maximum number of double bonds in the
designed component

set used by Mu et al. (2007) to create this group contribution method. If the data set

contained no di-nitro compounds like the structures shown above, it would be unlikely

to predict the sigma profiles of these compounds well. As mentioned, much of the error

may also result from an overestimation of the degree of H-bonding in these systems.
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Table 3.4: Representative structures for the reaction rates solvent case study

Solvents Properties

N

N+N+
O

O-

O

-O

Molar mass: 159.10 g/mol
Rate constant (GC-COSMO): 0.45 log(k)
Rate constant (QM-COSMO): 4.11 log(k)
Rate constant (QM/no H-bonding): 0.49 log(k)

O
N+

O-N+
O

-O

Molar mass: 158.11 g/mol
Rate constant (GC-COSMO): −0.11 log(k)
Rate constant (QM-COSMO): 2.88 log(k)
Rate constant (QM/no H-bonding): −0.32 log(k)

3.5.3 Reaction rates optimization with mixed solvent

Finally, we extend the previous case study to investigate binary solvent systems which

maximize the reaction rate of the Menschutkin reaction given in Fig. 3.7. To do this, we

perform the same optimization algorithm as before but we now consider 12 inputs to our

DFO algorithm. These 12 inputs represent two molecular structures, with each structure

being defined by the same 6-dimensional vector of σ moments as used above. Upon each

iteration of the algorithm, the generated structures are tested for every possible pair

of solvents. Cmax is a parameter to determine the number of structures designed for

each component per iteration, and the number of tested pairs is usually kept small

using this parameter. Determining the ratio of the solvents to minimize the activation

barrier for a given system is best addressed as a simulation in the mole fraction space.
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Figure 3.8: GC-estimated reaction rate vs. experimental reaction rate
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Optimization approaches to this problem are possible, but simply scanning through the

range of possible mole fraction values proved highly efficient.

We maintain the same parameters for this optimization as discussed in Table 3.3.

The mixture design problem in this case can still be solved efficiently with our algo-

rithm. The computational complexity of increasing the number of designed components

is somewhat hard to quantify and is highly dependent on the DFO algorithm chosen. Of

course, the number of independent variables in the lower-dimensional σ moments space

scales linearly with the number of components. For many problems, it has been shown

that DFO algorithms are very efficient at determining good and often globally optimal

solutions for input-space dimensions up to twenty (Rios & Sahinidis 2013). It is also

clear from our analysis of σ moments that all six are often not necessary to capture a
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solvent’s properties with regards to a certain process or chemical objective. Using this

observation, we can reduce the dimension of the search space by limiting the number of

σ moments included in the design space. For example, recall that the first σ moment

represents the total charge of a molecule. Most molecules are very unlikely to deviate

much from a value of 0 for this particular σ moment. It is therefore possible to exclude

the first moment from many design problems. As with most mixture design algorithms,

there is a limit to the number of components our algorithm can simultaneously de-

sign. However, we are free to change the inputs to accommodate more components by

reducing the dimension of the σ moments space specific to each component.

Nonetheless, optimizing for a binary mixture proved possible using our algorithm.

Reaction rates optimization may not be the most practical application of binary solvent

design as practitioners are unlikely to synthesize two novel compounds simply to improve

a reaction rate. As such, we consider this case study merely as a demonstration of the

algorithm and do not account for solvent miscibility. Interestingly, we discovered no

composite solvent which outperformed the single component optimum. Our algorithm

again found the optimal single component structure and reported it in a ratio of 100:0

with another solvent. This result is perhaps not so surprising. Given the large degree of

charge separation in the transition state of the Menschutkin reaction, the rate constant

will increase with solvent polarity. Since our single-component optimum, 3-nitro-2-

(nitromethyl)propanenitrile, represents one of the most polar (aprotic) species in our

feasible region, it is unlikely that a solvent pair would evince higher polarity.

Several other high-performing binary mixtures were identified, a small sample of which

is shown in Table 3.5. We note that these molecules contain many of the structural

motifs present in the best single-component molecules. For example, prominent sub-

structures include nitro groups, cyanides, and unsaturated carbon-carbon bonds. The

first solvent pair in the table has a predicted rate constant of -0.05 log(k). Optimizing
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these structures at the quantum chemistry level and subsequently calculating sigma

profiles and fixing the mole fraction ratio to 79:21, we obtain a reaction rate constant

of 3.64 log(k). Again, we postulate that this may be unrealistically high due to over-

emphasizing the H-bonding of the nitro group, so we report a value without considering

H-bonding of -0.34 log(k). A similar result is shown for the second solvent pair reported

in the table. The second solution is reported to provide an idea of other structures ex-

plored by the algorithm.

Though designing a solvent pair did not provide a better solution, there are many

more suitable applications for multi-component mixture design. In fact, there are many

reaction rates optimization problems that would likely have better multi-solvent solu-

tions than single-solvent solutions. These will be investigated in a subsequent publica-

tion. We primarily demonstrate in this case study that optimization of multi-component

mixtures can be efficiently approached using our mixture design algorithm

3.6 conclusions

The UNIFAC and SAFT-γ methods for calculating mixture thermodynamics in computer-

aided molecular and mixture design problems require binary interaction parameters for

every pair of groups in solution, which inherently limits the design space according to

which parameters are available. We circumvented this issue by utilizing COSMO-RS

and COSMO-SAC methodologies, both of which are capable of accurately calculating

mixture thermodynamics without the need for binary interaction parameters. We il-

lustrated that COSMO-based methods can consider chemical systems which cannot be

approached with other techniques. By virtue of involving quantum theory, our COSMO-

based approach can consider structures with non-standard electronics, deriving the full

benefit of quantum chemical accuracy. For example, using quantum chemistry tech-
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Table 3.5: Representative structures for the reaction rates solvent case study with mixtures

Solvents Properties

N

N+N+
O

O-

O

-O

–

Ratio (entry 1:entry 2): 100:–
Rate constant (GC-COSMO): 0.45 log(k)
Rate constant (QM-COSMO): 4.11 log(k)
Rate constant (QM/no H-bonding): 0.49 log(k)

O O
N+
O

O-

N

N O

O Ratio (entry 1:entry 2): 79:21
Rate constant (GC-COSMO): −0.05 log(k)
Rate constant (QM-COSMO): 3.64 log(k)
Rate constant (QM/no H-bonding): −0.34 log(k)

N

N+

N+
O

-O

O

O-
O O O O

N
Ratio (entry 1:entry 2): 56:44
Rate constant (GC-COSMO): −0.10 log(k)
Rate constant (QM-COSMO): 0.94 log(k)
Rate constant (QM/no H-bonding): −0.91 log(k)

niques, we modeled the transition state of a reaction and incorporated the complex

electronics of this structure directly into a mixture design problem. To best integrate

these COSMO methodologies into a CAMxD framework, we developed group contribu-

tion methods to estimate sigma profiles, sigma moments, and molecular volumes. The

mixture design MINLP was projected onto the space of the sigma moments of each un-

known component of the mixture, and derivative-free optimization was used to efficiently

optimize over the lower-dimensional projected space.
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We demonstrated this COSMO-based mixture design framework on two solvent de-

sign problems. Our liquid-liquid extraction solvent design problem resulted in a better

solution than the current industrial standard. This solution could only be found by

COSMO-based methods as a UNIFAC approach would lack the necessary interaction

parameters to make an estimate. Finally, we applied this methodology to a problem

that cannot be rigorously approached with UNIFAC and SAFT-γ. We designed a sol-

vent to maximize the reaction rate of a Menschutkin reaction that exhibited a predicted

reaction rate increase by nearly six orders of magnitude as compared to the best solvent

reported in the experimental study. Removing potentially erroneous H-bonding from

the problem, we still obtain a result over two orders of magnitude higher. Finally, we

apply the algorithm to design binary mixtures of solvents and discover many solutions

better than the best solvent from the experimental study.

Our results suggest that the projection of mixture design onto the lower-dimensional

space of the sigma moments results in an effective search space in which to consider

CAMxD problems. As the proposed COSMO-based approach can be easily integrated

with full-fledged quantum chemistry calculations, it can address a much broader array

of problems than previously possible in CAMD and CAMxD.
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4
REACTION SOLVENT DES IGN

4.1 introduction

In liquid-phase chemistry, the solvent plays a critical role in determining the success

of a particular reaction. Altering the solvent can accelerate or diminish a reaction

rate, control chemo- or regioselectivity, and influence the formation of any undesirable

side-products (Reichardt & Welton 2011). As a result, solvent design/selection can be

one of the most crucial considerations in the wider context of reaction design. The

importance of the solvent for reaction design is further underscored by its accessibility:

solvent choice and mixed solvent mole fraction ratios are not as tightly constrained as

are temperatures, pressures, catalysts, reactant structure modifications, and other such

variables in reaction design. Despite its impact on reactions, solvent selection is often

empirical or based on somewhat rudimentary properties (H-bond donor/acceptor abili-

ties, dielectric constant, solubility parameters, etc.). High-throughput solvent screening

is problematic as it can face severe combinatorial difficulties even in the case of binary

or ternary solvent mixtures. For these reasons, the solvent selection/design problem for

reactions chemistry stands to benefit greatly from leveraging combinatorial optimiza-
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tion approaches in conjunction with more sophisticated thermodynamic and quantum

chemical models.

The general solvent design problem is well-studied in the fields of computer-aided

molecular design (CAMD) and computer-aided mixture design (CAMxD). As modeling

a solvent typically requires some idea of its interaction with its solutes, mixture ther-

modynamics models often have to be utilized in solving these problems. In the history

of CAMD/CAMxD, a very popular choice to calculate interactions with the solvent has

been the UNIFAC group contribution method (Fredenslund et al. 1975). There has been

significant work in incorporating UNIFAC into solvent design problems. A small sam-

ple of some of these studies demonstrates their diversity: extraction solvents (Odele &

Macchietto 1993; Pretel et al. 1994), low-environmental-impact solvents (Pistikopoulos

& Stefanis 1998; Buxton et al. 1999), crystallization solvents (Karunanithi et al. 2006),

and solvents for various consumer products (Conte et al. 2011b). More recent work has

focused on solving CAMD/CAMxD problems with the SAFT equation of state (Chap-

man et al. 1989). Again, applications are numerous, but many have focused on carbon

capture solvents (Pereira et al. 2011b; Burger et al. 2015) and fluid design in an organic

Rankine cycle (Lampe et al. 2015).

The more specific problem of solvent design for reactions has also been investigated

using CAMD techniques, though there are limited examples of such studies. For ex-

ample, Gani et al. (2005) proposed a rules-based solvent selection/design strategy for

reactions based on assigning solvents certain values—so-called “R-indices”—which cap-

tured their suitability for a certain reaction in a reduced-dimension space. This method

was very successful in optimizing the solvent for a few common reactions as well as for

a more complicated problem from the pharmaceutical industry. However, solving prob-

lems with this strategy requires somewhat extensive information about specific reaction

properties and reaction/solvent relationships. Furthermore, this methodology suggests
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no straightforward extension to mixed solvents without relying on oversimplifying mix-

ing rules.

A few other approaches have been developed. For example, Folić, Adjiman, and

Pistikopoulos (Folić et al. 2007; Folic et al. 2008) designed solvents to maximize the

reaction rate of a Menschutkin reaction. Their approach relied on fitting a few ex-

perimental data points to the solvatochromic equation (Abraham et al. 1987), a linear

solvation free energy relationship, and then solving a CAMD problem with the resultant

model. Additional work from Struebing et al. (2013a) proposed an iterative algorithm

for reaction solvent design, using DFT and implicit solvation models to estimate reac-

tion rate constants and the solvatochromic equation as a surrogate model to provide

lower bounds. This method succeeded in designing solvents with a small number of

costly DFT calculations, but the approach is ultimately dependent on the quality of

the surrogate model. A limited number of other approaches have integrated quantum

chemical calculations with CAMD problems (Stanescu & Achenie 2006).

COSMO-RS (Klamt 1995; Klamt et al. 1998) and COSMO-SAC (Lin & Sandler 2002)

are two alternatives for calculating mixture thermodynamics that have some advantages

over UNIFAC and SAFT. For example, these COSMO-based methods require no binary

interaction parameters, which can place significant limitations on the chemical search

space in UNIFAC and SAFT-based group contribution methods like SAFT-γ (Lympe-

riadis et al. 2007). Furthermore, these COSMO methods are post-processing steps to

full-fledged DFT calculations, meaning the use of these methods reflects the accuracy

of quantum chemical calculations and can be applied to arbitrary systems. Only very

recent work in the CAMD community has focused on integrating these COSMO-based

methods into reaction solvent design problems. For example, Zhou et al. (2015) pro-

posed fitting a group contribution method to sections of σ-profiles, building a reduced-

order model from this information, and then choosing groups to optimize reaction se-
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lectivity. This approach is successful in relating a reduced-dimension σ-profile space

to reaction properties but does not use full-order COSMO-RS thermodynamics. This

means that, for any solvent design problem, a considerable amount of reaction-specific

experimental data is required. Furthermore, reactive species are not considered at the

quantum chemistry level, limiting the level of detail this approach can consider. Similar

approaches have been applied to screening solvents (Zhou et al. 2014).

The purpose of this work is to build upon previously developed COSMO-based molec-

ular/mixture design methodology (Austin et al. 2016a) (discussed in Chapter 3) and to

investigate the utility of COSMO-based CAMD for reaction solvent design. In par-

ticular, we aim to make our design methodology amenable to design pure and mixed

solvents for several industrially relevant reactive systems. Primarily, we focus on three

new additions to the previous methodology: (1) altering the group contribution method

to estimate hydrogen-bonding and non-hydrogen-bonding sigma profiles; (2) explicit,

ab initio modeling of strong solute/solvent interactions such as H-bonding or coordi-

nate bonding and incorporating this information directly into the design problems; and

(3) solving mixture design problems limited to common laboratory and industrial sol-

vents. Extensions (1) and (2) lead to considerable improvement in the accuracy of

our predictions. Extension (3) re-frames the mixed solvent design problem in a more

practical search space, meaning solutions to this problem can be readily implemented

without the need to synthesize new compounds. We first apply this methodology to

design a solvent to maximize the reaction rate of a Menschutkin reaction, a simple SN2

reaction. We next consider two systems which are significantly more complicated than

systems explored previously in the reaction solvent design literature. The first of these

more complicated design problems is optimizing the chemoselectivity of a lithiation reac-

tion. The final design problem involves controlling chemoselectivity in an intramolecular

nucleophilic aromatic substitution (SNAr) reaction to produce substituted xanthones.
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Our approach is distinguished from others in the literature because we include quantum-

mechanics-derived σ-profiles directly into the CAMD problem for every reactive species.

This allows us to consider complicated reaction phenomena at the quantum mechanics

level of accuracy. Additionally, our approach requires very few parameters, making it

very generalizable.

In the next section, we provide a brief discussion of some of the advantages of using

COSMO-RS in the context of reaction solvent design. In Sec. 4.3, we detail three changes

to our existing COSMO-based mixture design methodology. Then, in Sec. 4.4, we apply

the methodology to the three case studies discussed above. Finally, in Sec. 4.5, we

provide a few conclusions about the work and discuss the suitability of COSMO-based

mixture design for arbitrary industrial reaction design problems.

4.2 the utility of cosmo-rs for camxd

COSMO-RS is especially useful in a CAMD/CAMxD context. One major advantage is

that COSMO-based models are able to calculate chemical potentials (and, trivially, free

energies of solvation) without binary interaction parameters. These binary interaction

parameters are necessary in models like UNIFAC and SAFT-γ and must be present

for every pair of groups in a system in order for these methods to calculate chemical

potentials. Due to the limited availability of thermodynamic data for many types of

compounds, many of these interaction parameters simply do not exist. This can have

significant consequences for CAMD/CAMxD problems using UNIFAC or SAFT-γ as

the chemical search space is inherently limited to the portion of the chemical design

space for which every binary interaction parameter is available.

Furthermore, COSMO-RS allows for easy integration of quantum chemistry calcula-

tions into CAMD/CAMxD problems. This greatly expands the envelope of possible
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molecular design problems as many previously inaccessible systems can now be con-

sidered at a high level of accuracy. For example, we are now able to consider species

with complex electronics such as transition states, ionic liquids, radicals, and zwitteri-

ons. This methodology can also be extended to organo-metallic chemistry and perhaps

general reaction design using transition metal catalysts. One qualification to this claim

is that we can only use quantum-accurate σ-profiles for the species in the mixture that

are fixed. The σ-profiles and cavity volumes of molecules in our design space must be

estimated using lower-order models, which in our case are group contribution meth-

ods. For example, in designing an optimal solvent for the simple hypothetical reaction

A+ B → C, we can model species A, B, and C as well as the transition state using

ab initio methods. Though we do have to rely on lower-order methods, most solvent

design problems are not intended to produce solutions with complex electronics or other

features which would require a quantum chemical treatment.

4.3 extensions to the existing framework

4.3.1 Splitting the σ-profile into H-bonding and non-H-bonding profiles

Hydrogen-bonding is one of the strongest intermolecular interactions, and it is given

an appropriately large weight in COSMO-RS thermodynamics. However, the classical

COSMO-RS (Klamt 1995; Klamt et al. 1998; Klamt & Eckert 2000; Eckert & Klamt

2002) assumes two interacting surface segments (or σ̂ values in our case) will always

participate in hydrogen-bonding if they are beyond a certain threshold σ value, σ′hb.

While this assumption may simplify some of the thermodynamics, it can also result in

attributing an erroneously large or small interaction energy to certain surface elements.

For example, it is unlikely that iodomethane participates in H-bonding as a result of
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iodine’s insufficient electronegativity, but it is assumed to accept H-bonds in the classical

COSMO-RS view. The reason for this is due simply to a disproportionate allocation of

electrons in the carbon-iodine bond, giving iodomethane’s σ-profile non-zero areas for

σ values beyond the H-bonding threshold.

For this study, we use the group contribution method of Mu et al. (2007) to predict

σ-profiles and COSMO cavity volumes. We opt for this method in lieu of creating our

own for compatibility and data accessibility reasons outlined previously (Austin et al.

2016a). In this group contribution method, the authors already distinguish between H-

bonding and non-H-bonding parts of the σ-profile. Rather than determine H-bonding

using σ cutoff values, Mu et al. (2007) appeal to the traditional definition: only highly

electronegative atoms (N, O, and F) and any H’s attached to these atoms can participate

in H-bonding. This gives rise to two σ-profiles, where groups containing an N, O, F or an

H attached to one of these atoms contribute accordingly to an H-bonding σ-profile, and

all other groups contribute to a non-H-bonding σ-profile. For example, 1-propanol is

a short molecule containing an aliphatic chain and a hydroxyl functional group. Using

this definition of H-bonding, all of the groups from the aliphatic chain contribute to

the non-H-bonding σ-profile. Since both atoms of the hydroxyl group qualify for the

H-bonding definition, these contribute to the H-bonding σ-profile. A more detailed

picture of this for 1-propanol is given in Fig. 4.1.

The division into two σ-profiles changes the procedure to calculate chemical potentials

slightly. First, we define the two new mixture σ-profiles corresponding to the H-bonding
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Figure 4.1: The total, H-bonding, and non-H-bonding σ-profiles of 1-propanol
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(PHBS (σ̂)) case and the non-H-bonding (PNHBS (σ̂)) case. These follow simply from the

definitions above:

PHBS (σ̂) =

∑
i
PHBi (σ̂)xi∑
i
Aixi

PNHBS (σ̂) =

∑
i
PNHBi (σ̂)xi∑
i
Aixi

where PHBi (σ̂) represents the H-bonding profile and PNHBi (σ̂) represents the non-H-

bonding profile for a compound i. Note here that the total area of the H-bonding
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profile and the non-H-bonding profile together is equal to 1. These two profiles lead to

two different σ potentials, µHBS (σ̂) for H-bonding and µNHBS (σ̂) for non-H-bonding:

µHBS (σ̂) =−RT ln
∑
σ̂′

PNHBS (σ̂′) exp
(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)

RT

)

+ PHBS (σ̂′) exp
(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)−EHB(σ̂, σ̂′)

RT

)

µNHBS (σ̂) =−RT ln
∑
σ̂′

(PHBS (σ̂′) + PNHBS (σ̂′)) exp
(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)

RT

) (4.1)

Finally, we can calculate the chemical potential of a molecule i in the solution S:

µi =
∑
σ̂

{
PHBi (σ̂)µHBS (σ̂) + PNHBi (σ̂)µNHBS (σ̂)

}
+ µCi

Note that if the species i is unable to form H-bonds, it will have PHBi (σ̂) = 0 for

every σ̂ value. This means it will only interact with the solvent’s non-H-bonding profile.

Conversely, if compound i has the capability to form H-bonds, it will interact with the

solvent’s H-bonding profile. This interaction will be weighted by the respective surface

areas of the H-bonding and non-H-bonding profiles of all species.

4.3.2 Explicit treatment of strong intermolecular forces

For many systems, important reaction characteristics (reaction rate, selectivity, purity,

conversion, etc.) are dictated by the presence of strong intra- or intermolecular forces.

These can include: H-bonding, coordinate bonding, ionic bonding, ion-dipole interac-

tions, and steric effects. For this reason, we advocate including as much system-specific

information in the quantum chemistry calculations as possible. For example, a certain
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class of solvents may have a strong interaction (say, H-bonding) with one of the re-

actants, a transition state, or a short-lived intermediate. Since we know H-bonding

geometry can vary widely with the system (Desiraju & Steiner 2001; Steiner 1998; Tay-

lor & Kennard 1984; H. Guo & Karplus 1994), it is advantageous to model H-bonding

explicitly at the quantum chemistry level. This is also possible as reaction design prob-

lems, at least in these examples, necessitate modeling all relevant reactive species at the

quantum chemistry level. These structures can be examined for H-bonding potential

and re-optimized with an explicit H-bond with a solvent molecule.

However, our algorithm designs a very large number of possible solvent molecules,

meaning we cannot practically consider every designed structure at the quantum level.

This necessitates modeling only a representative structure at a high level. To continue

with the H-bonding example, if we wish to include alcohols in our design space, we may

want our representative structure to be a methanol molecule explicitly H-bonded to

any important reactive species. Doing so allows us to capture the particular geometry

of any alcohol-donated H-bonds present in the system. Finally, the H-bonding and

non-H-bonding σ-profiles of our representative structure only capture the H-bonding

of methanol and not all solvent characteristics for other potential alcohol solvents (e.g.

bifunctional alcohols) in our design space. To account for this, we modify these σ-profiles

for every alcohol solvent in the design space, adding the group contribution estimates

of all atoms not present in the representative structure.

In general, we optimize the geometries and obtain the quantum-level σ-profiles for

every reaction-relevant species in solution. We next investigate these species and de-

termine if there are any potential strong interactions with any type of solvent we are

considering. If so, we model a representative system which captures that interaction for

every possible pair of reactive species and solvent class. We optimize the geometries of

these representative systems and again obtain the quantum-level σ-profiles. In consider-
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ing a particular type of solvent in the design problem that falls into one of these classes,

we update the corresponding pre-computed σ-profile, using the modified GC method of

Mu et al. (2007) to account for all atoms not in the representative structure.

A simple example of this is given in Fig. 4.2. In this example, we assume there is

some strong interaction between groups X1 and X2. X2 may be a strong proton donor

like a carboxylic acid, and X1 may be the reactive part of a nucleophile which can act as

a H-bond acceptor. This interaction would be important to model as the nucleophilicity

of X1 would be strongly influenced by its H-bond formation in solution. This will, in

turn, affect the reaction rate. In this case, we can imagine approximating this interaction

with a simple representative system of the nucleophile of interest H-bonded to X1−CH3.

This simple system now represents a large number of solvents, and many of these may

be examined at each iteration of our high-throughput algorithm. In the example in the

figure, one such solvent may be 2− (3− aminophenyl)−X2, an aniline derivative shown

in Fig. 4.2. We first optimize the geometry and obtain the quantum-level σ-profiles

from the representative system. Then, we add to those σ-profiles, using the aromatic

carbons to contribute to the non-H-bonding profile and the amine to contribute to the

H-bonding profile.

For completeness, we note that COSMO-RS does account for H-bonding, but it does

so using the statistical thermodynamics that underlie the method rather than a more

detailed depiction of two specific interacting atoms. This is done for clear reasons—

COSMO-RS is intended to be and is a very general method. However, in these reaction

design problems, we are often afforded specific information about important reactive

species and, as a result, can determine exact geometries of important interactions. Fur-

thermore, there are a number of systems for which COSMO-RS has yet to be param-

eterized (e.g. organometallics). Modeling all of the important interactions for these

systems at the quantum level means we can still reasonably consider these problems
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Figure 4.2: GC updates to the σ-profiles of an example system
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using COSMO-RS as solvation has been addressed with explicit representative systems.

Overall, this approach is advantageous as it minimizes our reliance on GC methods,

allowing us to incorporate much accurate information directly into CAMD/CAMxD

problems.

4.3.3 Mixture design with common solvents

Though we have investigated the mixture design problem for reaction optimization in

the past (Austin et al. 2016a), the solutions to this problem may not always be the most

practical. There are two primary reasons for this. First, optimizing for mixed solvent

systems requires using a GC method for every unknown component in the solvent blend.
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Though GC methods can be trusted in many domains, their errors have the potential

to compound when applied in multiple parts of a problem. More specifically, the GC-

predicted σ-profiles for each component of the solvent blend may each be close to their

respective QM-predicted profiles, but the two σ-profiles of the mixture may deviate

more significantly. The second reason for the impracticality of mixed solvent design

concerns the likelihood that these compounds will even be synthesized. Assuming even

a considerable improvement in reaction performance in a designed multi-component

solvent system, the time and expense of synthesizing each component of this mixed

solvent can easily outweigh whatever reaction/process advantages it provides.

It is then perhaps more practical to consider the problem of selecting a mixed solvent

system from a list of common laboratory and industrial solvents. Solving this problem

in favor of the design problem has several advantages. First, solutions can be readily

implemented. The assumption is that the solutions will draw from a set of common

solvents, so the mixture components should all be easily accessible. Second, unlike the

design problem, there is no cost associated with making these solvent blends. This has

the advantage in industry of improving the performance without driving up the cost.

Finally, considering these problems with COSMO-RS, we are in position to optimize

the geometries of all of the solvent structures at the quantum level a priori and then

obtain highly accurate σ-profiles for every solvent we wish to consider. This approach is

particularly amenable with COSMO-RS as the σ-profiles of a mixed solvent are simply

a linear combination of the respective H-bonding and non-H-bonding σ-profiles of the

components and normalized by the average surface area. This means we only have to

perform one quantum chemistry calculation for every solvent to be considered. These

calculations only need to be done once, and the resultant σ-profiles can be used in any

number of subsequent design problems.
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Table 4.1: Common industrial and laboratory solvents used for mixture design/selection prob-
lems

Entry Solvent name Entry Solvent name
1 acetic acid 15 DMSO
2 acetone 16 ethanol
3 benzene 17 ethyl acetate
4 carbon tetrachloride 18 formamide
5 2,2,2-trifluoroethanol 19 isopropanol
6 chloroform 20 acetonitrile
7 cyclohexane 21 methanol
8 dichloromethane 22 n-hexane
9 diethyl ether 23 nitromethane
10 diglyme 24 pyradine
11 dimethyl ether 25 THF
12 dioxane 26 toluene
13 DMF 27 trichloroethylene
14 DMPU 28 water

Though high-throughput screening approaches are possible for this problem in indus-

try, designing multi-component solvent systems can quickly face combinatorial issues.

Given 100 possible solvents, there are over 4 million combinations of up to 4 components.

This number also doesn’t capture a more difficult aspect of mixture design: determining

mole fractions. Mole fractions, of course, represent a continuous space, so the number

of possible solvent systems is actually infinite. In the following case studies, we will

consider designing 4-component mixtures from the set of solvents given in Table 4.1.

There are 28 solvents listed here, making for over 23,000 possible combinations of up to

size 4.
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For the solvent selection problem, there is no need to incorporate groups as we already

have quantum-level H-bonding and non-H-bonding σ-profiles and COSMO cavity vol-

umes for every potential solvent. The removal of groups from the design space greatly

reduces the dimensionality of the overall mixture design problem and means that this

problem can be directly approached with numerical optimization techniques. This prob-

lem calls for one to make two main determinations: (1) the identities of the solvents

making up the optimal mixture and (2) their mole fractions. The choice whether to

include a particular solvent in the optimal mixture can be captured with a binary vari-

able, and the COSMO-RS will serve to calculate the thermodynamics of the system.
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These features make this problem a mixed-integer nonlinear program (MINLP). The

optimization formulation is given below:

min pT1 µ
HB
S + pT2 µ

NHB
S + pT3 µ

C (4.2)

s.t. µHBS (σ̂) = −RT ln
∑
σ̂′

{
PNHBS (σ̂′) exp

(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)

RT

)

+PHBS (σ̂′) exp
(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)−EHB(σ̂, σ̂′)

RT

)}
∀σ̂ (4.3)

µNHBS (σ̂) = −RT ln
∑
σ̂′

{

(PHBS (σ̂′) + PNHBS (σ̂′)) exp
(
µHBS (σ̂′)−Emisfit(σ̂, σ̂′)

RT

)}
∀σ̂ (4.4)

PHBS (σ̂) =

∑
i
PHBi (σ̂)xi∑
i
Aixi

∀σ̂ (4.5)

PNHBS (σ̂) =

∑
i
PNHBi (σ̂)xi∑
i
Aixi

∀σ̂ (4.6)

∑
i

yi ≤ K (4.7)

xi ≤ yi ∀i (4.8)∑
i

xi = 1 (4.9)

By ≤ 0 (4.10)

In this model, the set i = {1, . . . , I} represents an index over the possible solvents.

For our problems, these solvents come from Table 4.1, so I = 28. The binary vari-

able yi is equal to 1 if solvent i is chosen to be in the mixture and is equal to 0 if

not. The positive continuous variable xi represents the mole fraction in solution of
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solvent i. Parameter vectors p1 and p2 represent problem-specific σ-profile information

for the reactants, transition states, and important intermediates that affect the reaction

objective in (4.2). Parameter vector p3 is again problem-specific and simply ensures

the combinatorial terms are added and subtracted correctly. Though used in our mix-

ture design problems, the calculation of the combinatorial terms for each solute are

not included in this general formulation as there are several that have been used with

COSMO-RS (Eckert & Klamt 2002; Eberhart & Kennedy 1995; Klamt & Eckert 2000;

Klamt 2005). Eqs. (4.3) and (4.4) calculate the σ potential for every σ̂ value. These

potentials are functions of PHBS and PNHBS , which are shown in Eqs. (4.5) and (4.6) for

clarity but, in our true formulation, are incorporated directly into Eqs. (4.3) and (4.4),

respectively. Constraint (4.7) limits our solvent blends to contain at most K compo-

nents, where for the following case studies K = 4. Constraint (4.8) ensures that, if

a solvent is not chosen, it must have a mole fraction equal to 0. Eq. (4.9) constrains

all mole fractions to sum to 1. Finally, (4.10) defines a number of integer cuts which

prohibit immiscible solvents combinations from being a solution. These cuts can also be

used to remove single or mixed solvents for any other reason (toxicity, cost, availability,

etc.). We solve this model using BARON (Sahinidis et al. 2003). All of the default

options are used with the exception of turning on deltaterm and setting deltat to 50.

4.4 case studies

For the case studies in this paper, we use the TOMLAB/CGO solver (Holmström et al.

2007) as the DFO algorithm, and we perform all runs on a 2.84 GHz processor. Fur-

thermore, the melting and boiling points of all designed solvents are estimated with

the Marrero-Gani GC method (Marrero & Gani 2001) and an extension for missing
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Figure 4.3: The Menschutkin reaction between trimethylamine and p-nitrobenzyl chloride
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groups (Gani et al. 2005). These are constrained in each of the case studies to ensure

that each designed solvent is a liquid at the reaction temperature.

4.4.1 Reaction rates optimization solvent

The Menschutkin reaction defines a class of reactions in which a tertiary amine reacts

with an alkylhalide to form a quaternary ammonium salt. This reaction is a popular

choice (Folić et al. 2007; Folic et al. 2008; Austin et al. 2016a) for reaction solvent design

problems in CAMD largely due to its simplicity. It proceeds via an SN2 mechanism and

has no competitive pathways. Its transition state has a large degree of charge separation,

meaning that the solvent has a dramatic and predictable effect on the reaction rate.

This solvent design problem will focus on maximizing the reaction rate of a Men-

schutkin reaction. The particular Menschutkin reaction used here is the reaction be-

tween trimethylamine and p-nitrobenzyl chloride, which is shown in Fig. 4.3. We begin

by optimizing the geometries of species 1, 2, and TS1 with Gaussian09 (Frisch & et al.

2009) using the B3LYP functional (Becke 1993; Stephens et al. 1994) and a 6-311g(d,p)

basis set. We perform a subsequent COSMO calculation on each of these structures

and then obtain their σ-profiles. We retain a few energy values from these calculations.
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First, ∆G‡COSMO represents the Gibbs energy differences between the transition state

and compounds 1 and 2 in the COSMO phase. We additionally assume that vibrational

energy differences between the transition state and compounds 1 and 2 are constant in

different solvents. For every solvent we investigate, we also calculate a ∆G1
RS, ∆G2

RS,

and ∆GTS1
RS . These represent the Gibbs energy of transfer from the COSMO phase to a

particular solvent. These values are calculated with the COSMO-RS model, parameters,

combinatorial term taken from Klamt & Eckert (2000; 2003).

Additionally, we consider H-bonding with the amine nucleophile explicitly at the

quantum level. H-bond donating solvents are known to reduce the nucleophilicity of

certain reactants, so modeling the effect will serve to increase the accuracy of reaction

rate constant predictions. To account for these H-bonding effects, we model the amine

nucleophile participating in a H-bond with methanol, which will serve as a representative

alcohol. Using the methods detailed above, we update the sigma profile of the methanol-

amine system using the GC method of Mu et al. (2007) to account for any atoms not

present in methanol. This updated sigma profile is then used when the solvent is an

alcohol. The geometries of all of the relevant species for this reaction are given in

Fig. 4.2.

Referring to transition state theory (TST), we calculate the reaction rate constants

as a function of Gibbs energy terms. Specifically, we use the following equation:

k = κ
kBT

h
exp

(
−∆G‡COSMO + (∆GTS1

RS − ∆G1
RS − ∆G2

RS)

RT

)
(4.11)

In the above, k is the reaction rate constant, kB is Boltzmann’s constant, h is Planck’s

constant, T is the temperature, R is the gas constant, and κ is a proportionality constant

to account for the fact that not every vibration of the transition state leads to the

products. In this case study, we set κ to 1.

159



4.4 case studies

Table 4.2: Optimized geometries of the reactants, explicit H-bonding between the nucleophile
and the amine, and the transition state used in the reaction rates solvent optimization
problem.

Trimethylamine H-bonding between a
representative alcohol solvent and trimethylamine

p-nitrobenzyl chloride Transition state for the SN 2 reaction

Next, we benchmark our approach against experimental reaction rate data for this

particular Menschutkin reaction taken from Abraham (1971). For each of the 16 sol-

vents in the data, we estimate the σ-profiles of that solvent using the modified GC

method of Mu et al. (2007). We then calculate all of the relevant ∆G terms using the

COSMO-RS methodology described above. Note that two of the original 18 solvents

were removed from the comparison because the group contribution method could not

completely describe them. We compare the experimental and GC-estimated reaction

rates for this system in Fig. 4.4. The dashed line in the center signifies the equality
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Figure 4.4: GC-estimated reaction rate vs. experimental reaction rate
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line between estimated and experimental values for the reaction rate constant k, given

here in units of mol/s. The solid red lines on either side represent one log(k) (base 10)

deviation from the experimental values. As shown, none of the solvents falls outside of

the one-log-deviation lines. In fact, the largest error for this data is a deviation of 0.39

log units, or about 2.5 mol/s. This is a very small error given the complex nature of

estimating reaction rates. In the plot shown, we obtain a coefficient of determination R2

of 0.96. Again, we investigate the accuracy of our model in terms of AAPE (Eq. (3.39))

for our data set of N = 16 molecules from Abraham (1971). Our previous study of

a different Menschutkin reaction had an AAPE of 12.50% Austin et al. (2016a) on 59

data points. For the purposes of comparing our modified solvent design methodology,

the AAPE for this set of compounds was 5.52%. We note that this comparison is done

for two different reactions, so it should not be thought to represent exact, quantitative
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differences between the two methods. This should only provide some idea of the scale

of improvement observed.

To solve this reaction rates optimization problem, we follow the algorithm described

above, optimizing in the reduced-dimension space of 5 of the 6 σ moments. Additional

optimization parameters for this problem are given in Table 4.3. We calculate the

reaction rate constant, k, using COSMO-RS and the TST approach discussed. We

additionally remove sulfoxides, amines, and carboxylic acids from the solvent search

space to remove potentially reactive solvents. We found a large variety of structures

for this problem. A representative list of several of the highest-performing structures

is given in Table 4.4. The first entry in the list has the highest predicted reaction

rate of all of the structures found as solutions. Its predicted reaction rate constant of

−0.54 log(k) is higher than the best-performing solvent in the experimental data by

over an order of magnitude. This compound is highly polar and aprotic, making it a

very likely candidate for increasing the rate of an SN2 reaction. The second is a di-nitro

compound with unsaturated C-C bonds, a type of compound which has been predicted

as a high-performing solvent for the Menschutkin reaction in previous studies (Folić

et al. 2007; Folic et al. 2008; Austin et al. 2016a). This particular di-nitro compound,

representative of a large number which were found, was predicted to have a reaction rate

constant of −0.88 log(k). The third entry represents a family of furans with nitroalkyl

groups. These were also high-performers, attaining a predicted reaction rate constant

of −1.03 log(k) in the case of the third entry in the table.

Solvent design using this algorithm has one additional advantage. For any molecule

determined to be a good solvent, we can optimize the geometry of that molecule at the

quantum level, perform a single point calculation using the COSMO solvation model,

and extract a quantum level σ-profile for that molecule. This σ-profile can then be used

to estimate reaction properties with the σ-profiles of the reactive species (also already
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at the quantum level). In this way, the solvent design process can be completed with

an estimate that is accurate to the full level of COSMO-RS.

We report reaction rate estimates using the QM σ-profiles in Table 4.4. Unfortu-

nately, estimating the reaction rates using the full COSMO-RS does not appear to agree

well with the GC-estimates. We have encountered difficulties with nitro groups using

COSMO-RS before. Surface charges on nitro groups, containing all H-bond-capable

elements, are assigned to the H-bonding profile in our COSMO post-processing step.

This is perhaps erroneous as nitro groups are unlikely to participate in H-bonding to

such an extent. To remove this effect, we also report reaction rates estimates where

we have removed the H-bonding term from the COSMO-RS model. Doing this, we

observe a much better agreement with the GC-estimated reaction rates. Interestingly,

nitro groups in the GC method of Mu et al. (2007) contribute only partially to the

H-bonding profile. This is a more physically-realistic representation and is likely why

we observe such good agreement with GC-estimated reaction rates and QM-estimated

reaction rates without H-bonding.

Finally, we consider the mixture design problem from the perspective of obtaining

practical, easily-implementable solutions. We optimize to find optimal mixtures of up

to 4 components, determining both which set of common solvents constitute an optimal

solution as well as the mole fraction for each component. This means that all solutions

are some combination of the solvents given previously in Table 4.1. The top 10 solutions

for this problem are listed in Table 4.5. Pure nitromethane was the best solvent found.

This result is not surprising: nitromethane is the most polar, aprotic compound on

the list, and polarity should dictate the reaction rate in a reaction with high charge

separation in its transition state like the Menschutkin reaction. However, nitromethane

may not be a desired solvent for cost or toxicity reasons. Looking at the second solution,

a mixture of chloroform and DMSO, we observe a higher reaction rate constant using
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Table 4.3: Summary of important values for the reaction rates solvent case study
Parameter Value/Range Additional Information

Time limit 2 hours Maximum allowable time for the
algorithm

Iteration limit 2000 Maximum number of iterations the
algorithm can perform

DFO inputs M0, M2, M3, Macc, Mdon
Sigma moments of the solvent to be

designed

δ 20% Property bounds relaxation around DFO
trial point

Cmax 10 Maximum number of compositions
determined during each iteration

Carbons 15 Maximum number of carbons in the
designed component

Non-carbons 7 Maximum number of non-carbons in the
designed component

Triple bonds 2 Maximum number of triple bonds in the
designed component

Double bonds 2 Maximum number of double bonds in the
designed component

mixed solvents than chloroform or DMSO alone. This solution is also better than every

other experimental solvent from Abraham (1971) other than nitromethane.

4.4.2 Solvent-controlled selectivity of a lithiation reaction

Lithiation and the lithium-halogen exchange are two powerful and versatile classes of

reactions in modern synthetic chemistry (Wakefield 2013). They are especially useful

reactions for syntheses encountered in the pharmaceutical industry due to their C-C
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Table 4.4: Representative structures for the reaction rates solvent case study

Solvents Properties

N+
-O

O
O

N

Rate constant (GC-COSMO): −0.54 log(k)
Rate constant (QM-COSMO): 3.39 log(k)
Rate constant (QM/no H-bonding): −0.46 log(k)

N+

O

-O
N+
O

O-

Rate constant (GC-COSMO): −0.88 log(k)
Rate constant (QM-COSMO): 0.69 log(k)
Rate constant (QM/no H-bonding): −0.92 log(k)

-O
N+
O O Rate constant (GC-COSMO): −1.03 log(k)

Rate constant (QM-COSMO): −1.99 log(k)
Rate constant (QM/no H-bonding): −2.46 log(k)

bond formation and ability to control a reaction’s chemoselectivity and regioselectivity.

To illustrate that our COSMO-based molecular/mixture design methodology can be

applied to more difficult and synthetically-relevant chemical systems, we choose a lithi-

ation reaction to model as our second case study. In particular, we attempt to optimize

a reaction solvent to provide maximum selectivity for one product versus the other and

a second solvent to promote the reverse selectivity.

The particular reaction we investigate for this case study comes from Coe et al. (2004).

This is a lithiation of 1-chloro-3-fluorobenzene which leads to a solvent-dependent ratio

of two products. Coe et al. (2004) suggest that this reaction begins by a lithium

substitution at the 2 position (ortho to both fluorine and chlorine). This lithiated

species then forms a benzyne, shedding either lithium fluoride or lithium chloride as a

salt. The benzyne, now containing a single chlorine or fluorine substitution, is a highly
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Table 4.5: Top solvent blends using common solvents for the reaction rates solvent case study

Solution rank Solvents Mole fractions
Estimated

reaction rate
(log(k))

1 nitromethane 1.000 −1.578

2 chloroform
DMSO

0.093
0.907

−2.099

3 dichloromethane
DMSO

0.048
0.952

−2.112

4 DMSO 1.000 −2.115
5 acetonitrile 1.000 −2.480

6 DMF
pyridine

0.445
0.555

−3.199

7 pyridine 1.000 −3.216

8 dichloromethane
DMF

0.137
0.863

−3.219

9 DMF 1.000 −3.223
10 dichloromethane 1.000 −3.354

reactive species which undergoes a Diels-Alder reaction with 1,1-cyclopropylcyclopenta-

di-ene. The Diels-Alder adduct of this reaction is afforded in a ratio of chlorinated and

fluorinated products. The reaction is shown in Fig. 4.5. As shown in the figure, we

model this reaction as an equilibrium involving species 5, 6, 7, and 8. We note that

the main assumption in the subsequent modeling of this reaction is that the reaction’s

selectivity is a function of the equilibrium between reactive intermediates rather than

the kinetics of lithium halide salt formation and benzyne reacting with the diene species.
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Figure 4.5: A solvent-controlled chemoselective lithiation reaction which likely proceeds via a
benzyne intermediate
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We make this assumption in accordance with observations from Coe et al. (2004) in

their prior investigation of a reaction involving magnesium halide formation. Though

the equilibrium assumption may be erroneous, we found that it fit the experimental

data of Coe et al. reasonably well, and we did not see it as our place in this paper to

postulate alternative mechanisms.

Coe et al. provide some insight into the effects on selectivity of different solvents

in this reaction, writing “We suspect that solvent association with intermediates and

the departing lithium halide greatly impacts the reaction course.” Their statement is

in keeping with the popular belief that the chemistry of lithiations and lithium-halogen

exchanges are dictated by coordinating effects of the solvent. Though this belief is

grounded in ample evidence, other studies (Jedlicka et al. 1997) have found that other

properties of the solvent also have some effect. For this solvent design problem, we

choose to model solvent coordination explicitly at the quantum level and leave it to

COSMO-RS to predict all other solvent effects on the reaction.
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To model this reaction, we first optimize the geometries of the benzyne intermediates

(7 and 8) and generate their σ profiles. It is assumed that the benzyne intermediates

have consistent geometries in all solvents. The geometries of the lithium salts, however,

are very likely solvent-dependent. We account for the affect of coordination on LiCl

and LiF by explicitly modeling coordinate bonds with lithium atoms, using dimethyl

ether as a representative solvent. Furthermore, since there is one aromatic solvent

in the dataset of Coe et al. (2004), we include an explicit representation of cation-

pi interactions, using benzene as a representative solvent. These σ profiles of these

representative solvent systems are updated based on the procedure described above.

In all, we consider 8 geometries/coordination complexes for both LiCl and LiF: (1)

the linear, uncoordinated lithium halide; (2) the dimeric, uncoordinated lithium halide;

(3) the 2-coordinated lithium halide monomer; (4) the 3-coordinated lithium halide

monomer; (5) the 2-coordinated lithium halide dimer; (6) the 4-coordinated lithium

halide dimer; (7) the 5-coordinated lithium halide dimer; (8) the lithium halide dimer

coordinated with an aromatic ring. These structures, along with the chlorinated benzyne

are shown in Fig. 4.6.

We note also that the electronic properties of the reactive intermediates necessitated

slightly altering the basis set used. All geometries were again optimized using the B3LYP

functional, but in this case study we used the 6-311+g(d,p) basis set. We include diffuse

functions in this case to account for the electronegativity of fluorine and the partially

ionic character of organolithium bonds.

The data set of Coe et al. (2004) contains selectivity data for the lithiation reaction

shown above in seven different solvents. To estimate selectivity, we first obtain the free

energies for each of the lithium salt species in the COSMO conductor phase. These free

energies are then updated using COSMO-RS to reflect the Gibbs energy in each species

in different solvents. Note again that we then generate the σ profiles of each solvent
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Figure 4.6: Optimized geometries of various forms of LiCl considered in the lithiation selectivity
case study. Note that in the problem there are analogous structures for LiF and the
fluorinated benzyne.

Uncoordinated LiCl monomer Uncoordinated LiCl dimer 2-coordinated LiCl monomer

3-coordinated LiCl monomer 2-coordinated LiCl dimer 4-coordinated LiCl dimer

5-coordinated LiCl dimer Aromatic-cation interactions with
LiCl dimer

Chlorinated benzyne
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using the GC method of Mu et al. (2007) and use the quantum chemical σ profiles

of the benzynes and lithium salts, updating the representative solvents to reflect the

actual solvents used. Finally, the lowest energy coordination complex of each lithium

salt is taken. These will be denoted G∗LiCl and G∗LiF for lithium chloride and lithium

fluoride, respectively. The selectivity can be estimated as a ratio of the free energies:

S =
Amount of 9
Amount of 10 = exp (− [(GCl-benzyne +G∗LiF)− (GF-benzyne +G∗LiCl)]) (4.12)

where GF-benzyne and GCl-benzyne represent the free energies in solution of the fluorinated

and chlorinated benzynes, respectively. We disallow some coordination complexes for

certain solvents. Most obviously, we disallow dimethyl ether-complexed salts for solvents

which contain no oxygen atoms. We also disallow the aromatic-cation interactions for

solvents without an aromatic ring. We incorporate steric effects into the problem by

disallowing certain types of solvents to be highly coordinated with lithium. For example,

sterically-hindered solvents which contain only one oxygen atom are considered unable

to produce the 5-coordinated dimers, the 4-coordinated dimers, and the 3-coordinated

monomers. We validate our model on the seven solvents provided by Coe et al. (2004).

In Fig. 4.7, we plot the experimental selectivity and the GC-estimated selectivity. Both

of these are plotted as the logarithm of the ratio of products 9 to 10. The green lines

in the figure represent 10% error in predicted amount of the products (if the ratio of

products is experimentally 70:30, the green lines at this point will indicate predicted

values of 80:20 and 60:40). As shown, Fig. 4.7 suggests that our model agrees well with

the experimental data, attaining an R2 of 0.98.

Next, we apply this model to design solvents to optimize the selectivity of this reaction.

First, we design a solvent to maximize the ratio of 9 to 10. Since the trend in the data

set suggests more coordinating solvents increase this ratio, we suspect the solution to
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Figure 4.7: GC-estimated selectivity vs. experimental selectivity
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contain a number of oxygen atoms. Furthermore, we consider all solvents with only

one oxygen to be too sterically hindered to produce the 5-coordinated dimers, the 4-

coordinated dimers, and the 3-coordinated monomers. Solvents without any oxygens

cannot form any of these coordinated species, and solvents with two or more oxygens

are assumed to be able to form all of them. We note that this is an assumption made

for simplicity as classifying steric effects into different regimes is a difficult problem.

A few representative solvents for maximizing the ratio of the fluorinated product to

the chlorinated product (9 to 10) are shown in Fig. 4.8. The best solvent found by

our algorithm is shown on top. This is a diether with a double bond and two triple

bonds with a predicted ratio of 9:10 of 98.2:1.8. This selectivity is higher than both

the experimental and estimated selectivity reported for the best solvent in the data set

of Coe et al. (2004). Furthermore, this structure is likely to be a strong coordinating
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Figure 4.8: Representative structures for the lithiation selectivity case study

Solvents Properties

O
O Predicted ratio 9/10 (GC-COSMO): 98.2/1.8

Predicted ratio 9/10 (QM-COSMO): 97.3/2.7

O
O

Predicted ratio 9/10 (GC-COSMO): 98.0/2.0
Predicted ratio 9/10 (QM-COSMO): 97.5/2.5

O
O Predicted ratio 9/10 (GC-COSMO): 97.2/2.8

Predicted ratio 9/10 (QM-COSMO): 97.4/2.6

solvent with lithium due to the presence of two oxygens to donate electrons as well as an

adjacent double bond for donating electron density via cation-pi interactions (although

the cation-pi interaction was not modeled with an explicit solvent as we had no explicit

solvent with oxygens and a pi bond). The other two structures shown in Fig. 4.8 would

likely behave in a similar way. We again report the estimates from the QM-derived

σ-profiles for each of the representative solvents. These demonstrate good agreement.

We also optimize selectivity in the opposite direction, maximizing the ratio of the

chlorinated product to the fluorinated product (10:9). A representative list of results

of this solvent design problem are shown in Table 4.6. As shown, no oxygen-containing

solvents appear in this list as they participate coordination complexes and lead to ad-

ditional fluorinated product. The first solvent shown is a diene and has the highest

predicted selectivity of 10:9 at 3.0:97.0. However, the selectivity of this solvent is likely
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not as high as it is predicted to be. The accuracy of the prediction is subject to question

because we do not include a representative solvent model of this system using an explicit

alkene representative solvent with cation-pi interactions. We do not do this because the

Coe et al. (2004) data set contains no alkene solvents, so we have no experimental data

to which we could compare the estimated selectivity values. However, the other two

solvents in Table 4.6 are alkane structures. Both demonstrate structural motifs found

in the solution pool of high-performing solvents. Specifically, many solutions contained

rings and/or a high degree of branching. These two features lead to more compact

solvent structures and may have some effect on the selectivity of this reaction. We also

note that many solutions were found—including the three shown in Table 4.6—which

had a predicted selectivity higher than the predicted selectivity for any solvent in the

experimental data set. In the experimental data set, the solvent n-hexane had an ex-

perimental selectivity of 3.0:90.0 (10:9) but a predicted selectivity of 5.8:94.2. The

selectivity of the solvents in Table 4.6—also alkanes like n-hexane—may be similarly

underpredicted.

Finally, we note that we do not consider mixture design for this case study. Due to the

complex nature of coordination in mixed solvents, it would be challenging to correctly

predict the lithium halide coordination complexes for arbitrary solvent systems. With-

out confidence in the correct complexes, the accuracy of our mixture design predictions

would be questionable.

4.4.3 Optimizing the selectivity of an intramolecular SNAr reaction

Nucleophilic aromatic substitution (SNAr) is a well-known and useful reaction to al-

ter the substituents on aromatic rings (Bunnett & Zahler 1951). This reaction can

be applied to fairly diverse syntheses as it works for many types of arenes and het-
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Table 4.6: Representative structures for the lithiation selectivity case study

Solvents Properties

Predicted ratio 10/9 (GC-COSMO): 97.0/3.0
Predicted ratio 10/9 (QM-COSMO): 96.8/3.2

Predicted ratio 10/9 (GC-COSMO): 96.3/3.7
Predicted ratio 10/9 (QM-COSMO): 84.9/15.1

Predicted ratio 10/9 (GC-COSMO): 96.0/4.0
Predicted ratio 10/9 (QM-COSMO): 95.0/5.0

eroarenes. SNAr is typically considered to proceed via a substitution-elimination mech-

anism, although other mechanisms also exist (Bunnett 1958). Overall, the reaction

replaces an electron-withdrawing leaving group attached to an aromatic carbon with

another substituent. The first step in the substitution-elimination mechanism involves

a strong, usually negatively-charged nucleophile attacking the electrophilic aromatic

carbon. This carbon—now tetravalent—becomes sp3 hybridized, destroying the ring’s

aromaticity, and electron-withdrawing groups ortho- and/or para- to the sp3 carbon

stabilize the negative charge. This charge-stabilized intermediate species is known as a

Meisenheimer complex. Finally, the leaving group on the sp3 carbon dissociates from

the ring, restoring aromaticity.

Although SNAr reactions are often straightforward and lead to only one product,

in some cases there are multiple suitable aromatic carbons for a nucleophilic attack.

One such case comes from the study of Hintermann et al. (2008), who proposed a
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synthetic route towards substituted xanthones, an important class of bioactive natural

products. In their study, the authors investigated an intramolecular SNAr reaction using

a reactant with two possible sites for nucleophilic attack. Interestingly, they reported

that the selectivity of this attack was highly solvent-dependent. As this SNAr reaction

involves competitive pathways and a rate-determining step that is solvent-dependent,

we thought it would demonstrate the ability of our solvent design method to capture

more complex chemistry. Again, we address two solvent design problems to maximize

the selectivity in both directions.

The specific reaction of Hintermann et al. (2008) uses a benzophenone as the reactant.

The benzophenone has an alcohol group on one of its rings. This alcohol is deproto-

nated and the resultant alkoxide anion becomes nucleophilic. This attacks either of two

positions on the neighboring aromatic ring, displacing either a chloride anion or an iso-

propoxide anion as a leaving group. The authors propose the usual addition-elimination

mechanism for this reaction. However, in modeling the reaction at the quantum level,

we did not locate the Meisenheimer complex for the case with the chloride leaving

group. This resulted in a concerted SNAr mechanism for the chloride case, a variant

of the usual SNAr mechanism which has been observed in the literature (Neumann

et al. 2016). Other than this alteration, we modeled the reaction exactly as proposed

by Hintermann et al. (2008). The reaction mechanism is shown in Fig. 4.9.

Again, we used the 6-311+g(d,p) basis set in order to capture the anionic species. The

optimized geometries of the relevant reactive species are shown in Fig. 4.10. We estimate

the selectivity of this reaction as a ratio of relevant rates of reaction. As pointed out by

Hintermann et al. (2008), the solvent likely controls which of the two transition states

is rate-determining in this addition-elimination mechanism. Since we found only one
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Figure 4.9: A solvent-controlled chemoselective nucleophilic aromatic substitution (SNAr) reac-
tion
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transition state for the chloride leaving group case, estimating its reaction rate constant,

kCl, is a simple matter of applying TST:

kCl = κ
kBT

h
exp

(
−G

TS2 −G13

RT

)
(4.13)

where now GTS2 −G13 represents the Gibbs energy difference in the solvent phase for

species TS2 and 13. GTS2 and G13 are the sum of the free energies in the COSMO

phase and the updates to Gibbs energy given by COSMO-RS. To calculate the reaction

rate constant for the isopropoxide leaving group case, koipr, we apply TST using the

higher of the two transition state energies:

koipr =


κkBT

h exp
(
−GTS3−G13

RT

)
, if GTS3 ≥ GTS4

κkBT
h exp

(
−GTS4−G13

RT

)
, if GTS3 < GTS4

(4.14)

where the G terms are defined similarly to the previous case. Finally, we can calculate

the selectivity, S, as:

S =
Amount of 16
Amount of 14 =

koipr
kCl

(4.15)

To validate our approach, we again compare our estimated selectivity to the experi-

mental selectivity given for 5 solvents in Hintermann et al. (2008). This comparison

is shown in Fig. 4.11. Again, the solid green lines in this graph represent a absolute

deviation of 10% in either product. As shown, selectivity is predicted well, reflecting a

correct determination of the rate determining step as well as the solvent properties in

general. The R2 for this parity plot is 0.97.
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Figure 4.10: Optimized geometries of various forms of LiCl considered in the lithiation selectivity
case study. Note that in the problem there are analogous structures for LiF and
the fluorinated benzyne.

Transition state for chloride leaving group First transition state for isopropoxide leaving group

Meisenheimer complex for isopropoxide leaving group Second transition state for isopropoxide leaving group

Next, we apply our algorithm to the design of a solvent to maximize the ratio of 14 to

16. A few solvents which represent the structural motifs in high-performing solutions are

given in Table 4.7. The first entry in this table returned the highest objective value for

this problem. It is a highly polar and aprotic compound, similar to the best-performing

solvents for this selectivity from the experimental solvents. Interestingly, it also appears

as a representative solvent in the reaction rates optimization case study. Entry 1 on the

table, along with all of the other entries, has an estimated selectivity higher than the

estimated selectivity of any of the 5 solvents in the experimental data set. Finally, the

last solvent on the list represents a large number of alkanes found in this optimization.
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Figure 4.11: GC-estimated selectivity vs. experimental selectivity

1.50.5−0.5−1.5

1.5

0.5

−0.5

−1.5

Estimated Selectivity (log(16/14))

Ex
pe

rim
en
ta
lS

el
ec
tiv

ity
(lo

g(
16

/1
4)

)

As shown, this solvent predicts a selectivity of 91.5:8.5. This corresponds well to the

selectivity of alkane solvents in Hintermann et al. (2008).

Next, we consider the inverse problem, determining solvents to maximize the ratio

of 16 to 14. We provide representative solvents for this study in Table 4.8. All of the

solvents on the list are polar and protic, much like the top solvents in the experimental

data. Furthermore, many solutions were found with higher predicted selectivity than

any of the solvents given in the experimental data set. Three such solvents are given

in Table 4.8. There were many aprotic molecules found in this solvent design problem,

and these often demonstrated comparably high selectivity to proton-donating species.

This observation is in keeping with the transition states suggested by Hintermann et al.

(2008), where solvent polarity alone accounts for the difference in selectivity (given a

particular rate-determining step). However, we postulate that proton-transfer to the
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Table 4.7: Representative structures for maximizing the ratio of 14/16 in the SNAr selectivity
case study

Solvents Properties

N+

O

-O
N+
O

O-

Predicted ratio 14/16 (GC-COSMO): 95.0/5.0
Predicted ratio 14/16 (QM-COSMO): 18.7/81.3
Predicted ratio 14/16 (QM-COSMO/no H-bonding): 94.6/5.4

F

N
O

H

Predicted ratio 14/16 (GC-COSMO): 95.0/5.0
Predicted ratio 14/16 (QM-COSMO): 92.9/7.1
Predicted ratio 14/16 (QM-COSMO/no H-bonding): 93.1/6.9

-O
N+
O

N

O Predicted ratio 14/16 (GC-COSMO): 94.2/5.8
Predicted ratio 14/16 (QM-COSMO): 11.9/88.1
Predicted ratio 14/16 (QM-COSMO/no H-bonding): 93.5/6.5

Predicted ratio 14/16 (GC-COSMO): 91.5/8.5
Predicted ratio 14/16 (QM-COSMO): 92.2/7.8
Predicted ratio 14/16 (QM-COSMO/no H-bonding): 92.2/7.8
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Table 4.8: Representative structures for maximizing the ratio of 16/14 in the SNAr selectivity
case study

Solvents Properties

OH

N

Predicted ratio 16/14 (GC-COSMO): 91.8/8.2
Predicted ratio 16/14 (QM-COSMO): 95.6/4.4
Predicted ratio 16/14 (QM-COSMO/no H-bonding): 95.6/4.4

NH2

F Predicted ratio 16/14 (GC-COSMO): 90.6/9.4
Predicted ratio 16/14 (QM-COSMO): 95.8/4.2
Predicted ratio 16/14 (QM-COSMO/no H-bonding): 95.8/4.2

H2N

H2N Predicted ratio 16/14 (GC-COSMO): 89.9/10.1
Predicted ratio 16/14 (QM-COSMO): 95.7/4.3
Predicted ratio 16/14 (QM-COSMO/no H-bonding): 95.7/4.3

isopropoxide leaving group may have a pronounced effect on the kinetics. This effect

was not modeled in our problem as we attempted to keep our reaction mechanism as

close to the Hintermann et al. (2008) study as possible. Again, we did not see it as our

place in this paper to pursue an alternative mechanism, especially given the paucity of

experimental data. However, this underscores the importance of modeling the correct

mechanism. Had we included proton transfer as a mechanistic step (or simply modeled

the equilibrium), many aprotic solvents may have been disfavored in the solution pool.

Additionally, we may have found solvents with low-pKa protons as high-performing

solutions.
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Next, we perform a mixture design problem to maximize both selectivity ratios at

50◦ C. We begin with the ratio of 14/16. Again, we consider a mixture of up to four of

a fixed set of common laboratory and industrial solvents. The top ten solutions to this

mixture design problem are given in Table 4.9. Interestingly, all of the solvents selected

are pure, single-component solvents. This makes sense as this selectivity is usually

favored if TS4 is the rate-determining step. All of the solvents listed here are polar,

aprotic species, which would tend to stabilize TS3. We note that we do not observe a

large range of selectivity. However, polar, aprotic solvents demonstrated fairly extreme

selectivity in the experimental data set, so this small range of selectivity is perhaps

not surprising. It is possible that scaling the energies or using different COSMO-RS

parameters would lead to a wider range of selectivities. We did not pursue this as it

would be difficult to justify one set of parameters over another with such limited data.

Our last mixture design problem will determine a solvent to maximize the ratio of

16/14 at 100◦ C. The results are shown in Table 4.10. There were many solutions

found with a selectivity of 96/4. In an effort to communicate more diverse solutions,

we only list the top 5 mixtures as the first 5 entries of Table 4.10. We note that these

solutions always contain cyclohexane and isopropanol. There may be some merit to this

mixture for this particular problem. Pure cyclohexane, a non-polar solvent, is a very

poor solvent for maximizing this ratio, having a predicted selectivity of 20.7/79.3. In

this case, TS4 is the predicted rate-limiting step for cyclohexane. However, cyclohexane

is predicted to stabilize TS3 over TS2. This means that, if the rate-determining step

is shifted to TS3, cyclohexane would prefer the desired selectivity. Adding isopropanol,

a polar, protic solvent, to the mixture seems to have this effect. Isopropanol stabilizes

TS4 and leads to high selectivity. The first five mixtures listed in Table 4.10 all have a

very high predicted selectivity, higher than any solvent in the experimental data set.
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Table 4.9: Top solvent blends using common solvents for maximizing the ratio of 14/16 at 50◦
C in the SNAr selectivity case study

Solution rank Solvents Mole fractions Estimated ratio of 14 to 16
1 acetonitrile 1.000 95.4/4.6
2 dioxane 1.000 94.5/5.5
3 DMSO 1.000 94.3/3.7
4 acetone 1.000 94.1/5.9
5 DMF 1.000 94.1/5.9
6 diglyme 1.000 94.0/6.0
7 ethyl acetate 1.000 94.0/6.0
8 dimethyl ether 1.000 93.9/6.1
9 DMPU 1.000 93.8/6.2
10 pyridine 1.000 92.9/7.1

The next five entries represent the solution to the problem with increasingly stringent

conditions for the solvent mixture. For the first restriction, we consider solvent mixtures

without cyclohexane or n-hexane (entry 6). Again, we observe a solution of non-polar

solvents combined with a polar, protic solvent. These diverse solvents, combined in

the right ratio, are predicted to promote isopropoxide leaving over chloride leaving.

The remaining solvent mixtures in Table 4.10 demonstrate the same trend, even with

placing increasingly strict limitations on the design space. We note again that all of

these solutions are dependent on modeling the correct mechanism and modeling every

potential rate-determining step.
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Table 4.10: Top solvent blends using common solvents for maximizing the ratio of 16/14 at 100◦
C in the SNAr selectivity case study

Solution rank Solvents Mole fractions Estimated ratio of
16/14

Solvent
restrictions

1
cyclohexane
n-hexane

isopropanol

0.758
0.222
0.020

96.1/3.9 -

2
cyclohexane
isopropanol
diethyl ether

0.958
0.022
0.020

96.1/3.9 -

3
cyclohexane
isopropanol

dimethyl ether

0.958
0.022
0.020

96.1/3.9 -

4
cyclohexane
isopropanol
dioxane

0.956
0.024
0.020

96.0/4.0 -

5
cyclohexane
isopropanol
diglyme

0.956
0.024
0.020

96.0/4.0 -

-
diethyl ether

carbon tetrachloride
2,2,2-trifluoroethanol

0.844
0.136
0.020

95.6/4.4 no cyclohexane or
n-hexane

-

carbon tetrachloride
DMPU

2,2,2-trifluoroethanol
ethanol

0.645
0.315
0.020
0.020

95.4/4.6 no ethers

-

toluene
ethyl acetate
methanol
benzene

0.854
0.106
0.020
0.020

94.9/5.1
no

chlorine-containing
solvents

-

DMPU
2,2,2-trifluoroethanol

DMF
DMSO

0.880
0.080
0.020
0.020

94.9/5.1 no aromatics

-
ethyl acetate

2,2,2-trifluoroethanol
nitromethane

0.959
0.021
0.020

94.5/5.5 no DMPU, DMF, or
DMSO
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4.5 conclusions

In this chapter, we provided three additions to our previously-developed (Austin et al.

2016a) COSMO-based mixture design algorithm. First, we divided σ profiles into sepa-

rate H-bonding and non-H-bonding profiles. Next, we introduced a method to include

explicitly-modeled intermolecular interactions between solute and solvent in molecu-

lar/mixture design problems. Finally, we re-framed the mixture design problem as a

mixture selection problem with a list of common laboratory and industrial solvents.

These three additions serve to increase the accuracy of our predictions, allow for more

complex species to be considered, and restrict the mixture design problem to producing

practical, readily-implementable solutions.

Directly incorporating quantum mechanics calculations into our design problems, we

applied our algorithm to three solvent design problems: (1) maximizing the reaction rate

of a Menschutkin reaction; (2) maximizing the selectivity of a lithiation reaction; and

(3) maximizing the selectivity of an intramolecular nucleophilic aromatic substitution

reaction. The second case study modeled multiple coordination complexes of lithium

salts and choose appropriate species based on energy. Using this approach, we observed

a very good agreement with experimental data and were able to find improved solvents

which performed better than any solvents in the experimental data. The third case

study modeled a reaction with multiple competitive pathways and two possible rate-

determining steps. Insofar as we observed good agreement with experimental data, our

approach chose the appropriate rate determining step. We were also able to design

single-component and mixed solvents which had higher predicted selectivities than any

solvent in the experimental data.

To our knowledge, the complexity of the systems considered in case studies two and

three is unprecedented in CAMD-based reactions solvent design. The successful mod-
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eling of such complex systems using COSMO-based methods lends credence to the

incorporation of quantum mechanics calculations in CAMD. Using these techniques,

arbitrary chemical systems can be considered at the level of quantum mechanical accu-

racy, making possible a wide diversity of solvent design problems which were previously

untenable.
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5.1 conclusions and contributions made

This work has detailed methods to overcome several limitations in CAMD and expanded

the range of problems which can be addressed using CAMD techniques. We first pro-

posed a projection and decomposition technique to solve mixture design problems as well

as difficult single-molecule design problems (e.g. a molecular design problem as part of

a larger process optimization). This technique requires identifying a lower-dimensional

space of individual component properties for every component in the to-be-designed

mixture. This lower-dimensional property space serves as the search space for the op-

timization problem and is expected to have some relevance to the higher-dimensional

objective. We note here that the selection of the particular variables in this lower-

dimensional property space represents one of the most critical decisions to be made

when applying the algorithm. The search through this low-dimensional space is then

done using a combination of Derivative-Free Optimization (DFO) techniques to guide

the search and efficient MILP optimization problems to relate the projected variables

to the space of chemical structures.
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We have applied this algorithm throughout this document and have found better

solutions than previously reported for all of the case studies we considered. This success

was largely the result of our algorithm’s ability to efficiently optimize over an extensive

region of the chemical design space. Other approaches—typically being limited to a

design space with 10-20 groups—have been unable to consider such a large search space

and as a result have not been able to find solutions of the quality we report. The high-

performing solutions we have obtained confirm the utility of our decomposition-and-

projection approach to mixture design. Furthermore, these results demonstrate that

the lower-dimensional projected property spaces do contain meaningful information for

addressing these complex problems.

Apart from the issue of search space, many mixture design problems also face diffi-

culties in incorporating accurate mixture thermodynamics models. These models are

necessary considerations for a straightforward reason: without a very accurate picture

of the behavior of designed components in a mixture, very little information can be

gleaned from these design problems. UNIFAC (Fredenslund et al. 1975) has been ap-

plied extensively as the mixture thermodynamics model used in these problems. How-

ever, UNIFAC requires binary interaction parameters for every pair of groups which

occur in the mixture in order to make in estimate for activity coefficients. These binary

interaction parameters are difficult to estimate for many groups, meaning that many

binary interaction parameters simply do not exist. The lack of certain binary interac-

tion parameters can have severe consequences for mixture design problems: problems

using UNIFAC are inherently limited to a design space defined by the available binary

interaction parameters.

To address this challenge, we have incorporated COSMO-RS- and -SAC-based ther-

modynamics into mixture design problems. These methods do not require binary in-

teraction parameters and are not restricted to certain design spaces as a result. Using
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these methods as the thermodynamics underpinning of mixture design problems, we

can estimate relevant mixture properties for any mixture so long as we can estimate

σ-profiles and molecular volumes for every individual component of the mixture. We

discovered that σ-profiles and molecular volumes can be accurately estimated using

group contribution methods, and this allowed for the complete incorporation of these

COSMO-based methods into our mixture design framework. Applying COSMO-based

thermodynamics in a few case studies, we obtained better solutions than had previously

been reported. In many cases, the solutions generated using COSMO-based thermo-

dynamics were simply unattainable with UNIFAC-based methods as they would have

lacked a necessary binary interaction parameter.

Finally, because COSMO-RS and -SAC are methods which are based on quantum

chemistry calculations, molecular and mixture design problems using COSMO methods

are able to address a much wider set of problems and applications. The simple reason

for this is that σ-profiles are typically derived from a molecular structure after a full-

fledged geometry optimization at the quantum level. Because the σ-profiles are used

for every component in a mixture design problem, we are free to include quantum-level

information about any molecular species in molecular/mixture design problems. We

note for clarity that quantum-level information is typically only included for species

which are fixed in the design problem. The σ-profiles of molecules in the design space

are estimated using accurate lower-order methods. Nonetheless, this accessibility of QM

information about molecular structures means that a much larger variety of chemical

species (e.g., transition states, ionic liquids, radicals, etc.) can now be considered di-

rectly in CAMD problems. This extends CAMD applications to many new domains,

and we have demonstrated the utility of this approach for one of these new domains:

reaction solvent design.
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In summary, this work encompasses a new technique to overcome the difficulty of

optimizing over the massive chemical design space. We have demonstrated that this

algorithm can find superior solutions and is very well-suited to the mixture design

problem. Furthermore, we have demonstrated a way to directly incorporate quantum-

level information into molecular and mixture design problems. These contributions have

allowed for much larger problems to be considered and have greatly expanded the range

of problems which are tenable using CAMD.

5.2 future work

5.2.1 Determining lower-dimensional search spaces using principal components analy-

sis

In its current incarnation, our DFO-based mixture design algorithm uses a space of pure

component properties as its projected search space. As discussed, this search space is

novel in CAMD and has provided a meaningful variable space with which to capture the

behavior of many CAMD problems. One possible extension to the current framework

would be to use functions of some of these properties (or σ moments, group occurrences,

etc.) as descriptors. Though many design problems can be modeled effectively using our

current approach, there may be some problems in which individual component proper-

ties may not be the descriptors with the most information. Using principal component

analysis (PCA) would allow us to consider a large number of descriptors at once and

at the same time keep the dimensionality of the search space for DFO solvers small.

Furthermore, using this technique would remove the subjectivity associated with select-

ing the descriptors for a given problem. One potential complication is the need for a

large dataset of molecules and corresponding objective function values. For many prob-
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lems, this could be generated without too much difficulty. PCA may not be well-suited

for problems requiring difficult simulations or other computationally expensive steps.

Partial least squares (PLS) could be similarly applied to these problems.

5.2.2 Extension to integrated product/process design

One of the main challenges of solving integrated process/product design problems is

that the process variables and objective are often very sensitive to the choice of de-

signed molecule(s). Additionally, even when the product design variables are fixed (i.e.,

a particular molecule(s) is selected), the resultant process design problem can still be

very difficult to solve. Our mixture design algorithm—originally conceived to solve

difficult mole fractions subproblems—would be well-suited to the task of exploring a

large molecular search space even while solving difficult process optimization subprob-

lems. The efficiency and available design space of our DFO-based algorithm would

likely result in better solutions to many of these product/process design problems. The

applications are numerous: CO2 capture, organic Rankine cycle design, crystallization

solvent/process design, etc. Again, we would expect the projected design space to be

properties of the designed component or some reduced-dimensionality space resulting

from PCA/PLS.

5.2.3 Modeling more complex reactions in reaction solvent design problems

The reactions provided as case studies in this document are relatively simple compared

to some reactions used in laboratories/industry. The solvent design algorithm could be

extended to more complex case studies including polymerization reaction solvents or
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reactions relevant to the pharmaceutical industry. An interesting case study may also

be to design a mixed solvent for optimizing battery performance.

5.2.4 Designing custom ionic liquids

Ionic liquids are becoming increasingly common in industrial applications. Requiring

both a cation and an anion, ionic liquids are by nature mixtures of multiple components.

For this reason, the same combinatorial difficulties which exist in typical mixture de-

sign problems also make these ionic liquids design problems difficult. Fortunately, our

mixture design algorithm is able to efficiently explore a large space of multiple chemical

components. Additionally, COSMO-based methods have been applied extensively for

modeling ionic liquids. These considerations make ionic liquids design a natural evo-

lution of our current implementation. There are many applications in gas purification,

nuclear waste treatment, battery solvents, and biological reactions solvents. Further-

more, ionic liquids have potential to be fully reusable solvents, and a hypothetical de-

sign problem considering reusability could also optimize some industrial process while

simultaneously determining the optimal ionic liquid.

5.2.5 Small molecule design for the pharmaceutical industry

Pharmaceutical drug design represents a unique opportunity for CAMD. The pharma-

ceutical design space is massive and many drug compounds are complex structures,

requiring many steps to synthesize. We have discussed algorithms which are capable of

exploring large design spaces with efficiency, meaning that the size of the pharmaceuti-

cal design space should not be too daunting. Additionally, pharmaceutical companies
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are distinguished from commodity chemical companies in that they often invest a large

amount of financial resources in the development of a certain product. This means that

solutions determined by CAMD approaches are less likely to be discounted on the basis

of expense and/or complexity and that solutions to these CAMD problems have the

potential to be implemented on the industrial scale. A natural extension of the work

described in this document would be to propose a low-dimensional design space related

to some pharmaceutical property (bioactivity, toxicity, enzyme binding affinity, etc.) or

a function of these properties. As the molecules are successively designed, each can be

outsourced to a subproblem whereby these properties can be estimated. These subprob-

lems can be difficult (i.e., quantum chemistry calculations, binding energy calculations,

etc.), but the use of DFO may have a significant impact on the number of iterations

required for this design procedure. A DFO-based design procedure could effectively

explore the large search space and converge on a good solution which could have been

difficult to find without such an optimization procedure.

5.2.6 Custom group contribution methods for modeling

The applicability of CAMD is limited by the quality of QSPR models used to estimate

properties. Traditionally, many group contribution methods have been made using a

fairly consistent set of groups as descriptors (the UNIFAC groups). More accurate

models could be obtained if the descriptor space were customized for every property

of interest. Making these models requires optimizing over the parameter space as well

as a discrete space of all possible molecular groups. Though this particular problem is

not directly related to anything discussed in this document, it is of general applicability

to CAMD and would improve the quality of all of the solutions obtained using the
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algorithms discussed as well as the efficiency and reliability of the DFO-based search

procedure. This group optimization problem is currently under investigation.
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Kolská, Z., Kukal, J., Zábranskỳ, M., & RuzËĞicËĞka, V. (2008). Estimation of the
heat capacity of organic liquids as a function of temperature by a three-level group
contribution method. Industrial & Engineering Chemistry Research, 47, 2075–2085.

208



bibliography

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence
properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on
Optimization, 9, 112–147.

Lampe, M., Stavrou, M., BuÌĹcker, H. M., Gross, J., & Bardow, A. (2014). Simultaneous
optimization of working fluid and process for organic Rankine cycles using PC-SAFT.
Industrial & Engineering Chemistry Research, 53, 8821–8830.

Lampe, M., Stavrou, M., Schilling, J., Sauer, E., Gross, J., & Bardow, A. (2015).
Computer-aided molecular design in the continuous-molecular targeting framework
using group-contribution PC-SAFT. Computers & Chemical Engineering, 81, 278–
287.

Lassau, C. & Jungers, J. (1968). L’influence du solvant sur la réaction chimique. La
quaternation des amines tertiaires par l’iodure de méthyle. Bulletin de la Société
Chimique de France, 7, 2678–2685.

Le Digabel, S. (2009). NOMAD user guide version 3.3. Technical report, Les Cahiers du
GERAD.

Lin, B., Chavali, S., Camarda, K., & Miller, D. C. (2005). Computer-aided molecular
design using tabu search. Computers & Chemical Engineering, 29, 337–347.

Lin, S.-T. & Sandler, S. I. (2002). A priori phase equilibrium prediction from a segment
contribution solvation model. Industrial & Engineering Chemistry Research, 41, 899–
913.

Lymperiadis, A., Adjiman, C. S., Galindo, A., & Jackson, G. (2007). A group contribu-
tion method for associating chain molecules based on the statistical associating fluid
theory (SAFT-γ). The Journal of Chemical Physics, 127, 234903.

Lymperiadis, A., Adjiman, C. S., Jackson, G., & Galindo, A. (2008). A generalisation of
the saft-group contribution method for groups comprising multiple spherical segments.
Fluid Phase Equilibria, 274, 85–104.

Macchietto, S., Odele, O., & Omatsone, O. (1990). Design on optimal solvents for
liquid-liquid extraction and gas absorption processes. Chemical Engineering Research
and Design, 68, 429–433.

209



bibliography

Maranas, C. D. (1996). Optimal computer-aided molecular design: A polymer design
case study. Industrial & Engineering Chemistry Research, 35, 3403–3414.

Marcoulaki, E. C. & Kokossis, A. C. (1998). Molecular design synthesis using stochastic
optimisation as a tool for scoping and screening. Computers & Chemical Engineering,
22, S11–S18.

Marrero, J. & Gani, R. (2001). Group-contribution based estimation of pure component
properties. Fluid Phase Equilibria, 183–184, 183–208.

Marrero, J. & Gani, R. (2002). Group-contribution based estimation of octanol/wa-
ter partition coefficient and aqueous stability. Industrial & Engineering Chemistry
Research, 41, 6623–6633.

Martin, T. M. & Young, D. M. (2001). Prediction of the acute toxicity (96-h LC50)
of organic compounds to the fathead minnow (Pimephales promelas) using a group
contribution method. Chemical Research in Toxicology, 14, 1378–1385.

Matsuda, H., Yamamoto, H., Kurihara, K., & Tochigi, K. (2007). Computer-aided
reverse design for ionic liquids by QSPR using descriptors of group contribution type
for ionic conductivities and viscosities. Fluid Phase Equilibria, 261, 434–443.

McLeese, S. E., Eslick, J. C., Hoffmann, N. J., Scurto, A. M., & Camarda, K. V. (2010a).
Design of ionic liquids via computational molecular design. Computers & Chemical
Engineering, 34, 1476–1480.

McLeese, S. E., Eslick, J. C., Hoffmann, N. J., Scurto, A. M., & Camarda, K. V. (2010b).
Design of ionic liquids via computational molecular design. Computers & Chemical
Engineering, 34, 1476–1480.

Mercader, A., Castro, E. A., & Toropov, A. A. (2000). QSPR modeling of the enthalpy
of formation from elements by means of correlation weighting of local invariants of
atomic orbital molecular graphs. Chemical Physics Letters, 330, 612–623.

Mitrofanov, I., Sansonetti, S., Abildskov, J., Sin, G., & Gani, R. (1995). The solvent
selection framework: Solvents for organic synthesis, separation processes, and ionic-
liquids solvents. Proceedings of the 22nd European Symposium on Computer Aided
Process Engineering June, 2012 London, 257–311.

210



bibliography

Mu, T., Rarey, J., & Gmehling, J. (2007). Group contribution prediction of surface
charge density profiles for COSMO-RS(Ol). AIChE Journal, 53, 3231–3240.

Mu, T., Rarey, J., & Gmehling, J. (2009). Group contribution prediction of surface
charge density distribution of molecules for COSMO-SAC. AIChE Journal, 55, 3298–
3300.

Mullins, E. & Oldland, R. (2007). Sigma Profile Database. Available at http://www.
design.che.vt.edu/VT-Databases.html.

Mullins, E., Oldland, R., Liu, Y. A., Wang, S., Sandler, S. I., Chen, C.-C., Zwolak, M., &
Seavey, K. C. (2006). Sigma-profile database for using COSMO-based thermodynamic
methods. Industrial & Engineering Chemistry Research, 45, 4389–4415.

Murray, W. J., Hall, L. H., & Kier, L. B. (1975). Molecular connectivity III: Relationship
to partition coefficients. Journal of Pharmaceutical Sciences, 64, 1978–1981.

Nannoolal, Y., Rarey, J., & Ramjugernath, D. (2007). Estimation of pure component
properties: Part 2. Estimation of critical property data by group contribution. Fluid
Phase Equilibria, 252, 1–27.

Nannoolal, Y., Rarey, J., & Ramjugernath, D. (2008). Estimation of pure component
properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic com-
pounds via group contributions and group interactions. Fluid Phase Equilibria, 269,
117–133.

Nannoolal, Y., Rarey, J., & Ramjugernath, D. (2009). Estimation of pure component
properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte or-
ganic compounds via group contributions and group interactions. Fluid Phase Equi-
libria, 281, 97–119.

Nannoolal, Y., Rarey, J., Ramjugernath, D., & Cordes, W. (2004). Estimation of
pure component properties: Part 1. Estimation of the normal boiling point of non-
electrolyte organic compounds via group contributions and group interactions. Fluid
Phase Equilibria, 226, 45–63.

Naser, S. F. & Fournier, R. L. (1991). A system for the design of an optimum liquid-
liquid extractant molecule. Computers & Chemical Engineering, 15, 397–414.

211

http://www.design.che.vt.edu/VT-Databases.html
http://www.design.che.vt.edu/VT-Databases.html


bibliography

Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. Com-
puter Journal, 7, 308–313.

Neumaier, A. (2011). MCS: Global Optimization by Multilevel Coordinate Search.
http://www.mat.univie.ac.at/~neum/software/mcs/.

Neumann, C. N., Hooker, J. M., & Ritter, T. (2016). Concerted nucleophilic aromatic
substitution with 19f- and 18f-.

Nuchitprasittichai, A. & Cremaschi, S. (2013). Optimization of CO2 capture process
with aqueous amines–A comparison of two simulation-optimization approaches. In-
dustrial & Engineering Chemistry Research, 93, 247–263.

Odele, O. & Macchietto, S. (1993). Computer aided molecular design: A novel method
for optimal solvent selection. Fluid Phase Equilibria, 82, 47–54.

Ourique, J. E. & Telles, A. S. (1998). Computer-aided molecular design with simulated
annealing and molecular graphs. Computers & Chemical Engineering, 22, S615–S618.

Papadopoulos, A. I. & Linke, P. (2005). A unified framework for integrated process and
molecular design. Chemical Engineering Research and Design, 83, 674–678.

Papadopoulos, A. I. & Linke, P. (2006a). Efficient integration of optimal solvent and
process design using molecular clustering. Chemical Engineering Science, 61, 6316–
6336.

Papadopoulos, A. I. & Linke, P. (2006b). Multiobjective molecular design for integrated
process-solvent systems synthesis. AIChE Journal, 52, 1057–1070.

Papadopoulos, A. I. & Linke, P. (2006c). Multiobjective molecular design for integrated
process-solvent systems synthesis. AIChE Journal, 52, 1057–1070.

Papadopoulos, A. I., Stijepovic, M., & Linke, P. (2010). On the systematic design
and selection of optimal working fluids for organic Rankine cycles. Applied Thermal
Engineering, 30, 760 –769.

Papaioannou, V., Adjiman, C. S., Jackson, G., & Galindo, A. (2011). Simultaneous
prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous
mixtures with the SAFT-γ group contribution approach. Fluid Phase Equilibria,
306, 82–96. 20 years of the SAFT equation of state–Recent advances and challenges
Symposium.

212

http://www.mat.univie.ac.at/~neum/software/mcs/


bibliography

Papaioannou, V., Lafitte, T., Avendaño, C., Adjiman, C. S., Jackson, G., Müller, E. A.,
& Galindo, A. (2014). Group contribution methodology based on the statistical
associating fluid theory for heteronuclear molecules formed from Mie segments. The
Journal of chemical physics, 140, 054107.

Partington, J. R. (1970). A history of chemistry.

Patel, S. J., Ng, D., & Mannan, M. S. (2009). QSPR flash point prediction of solvents us-
ing topological indices for application in computer aided molecular design. Industrial
& Engineering Chemistry Research, 48, 7378–7387.

Pavurala, N. & Achenie, L. E. K. (2013). A mechanistic approach for modeling oral
drug delivery. Computers & Chemical Engineering, 57, 196–206.

Peng, Y., Goff, K. D., dos Ramos, M. C., & McCabe, C. (2009). Developing a predictive
group-contribution-based SAFT-VR equation of state. Fluid Phase Equilibria, 277,
131–144.

Pereira, F., Keskes, E., Galindo, A., Jackson, G., & Adjiman, C. (2011a). Integrated sol-
vent and process design using a SAFT-VR thermodynamic description: High-pressure
separation of carbon dioxide and methane. Computers & Chemical Engineering, 35,
474–491.

Pereira, F. E., Keskes, E., Galindo, A., Jackson, G., & Adjiman, C. S. (2011b). In-
tegrated solvent and process design using a SAFT-VR thermodynamic description:
High-pressure separation of carbon dioxide and methane. Computers & Chemical
Engineering, 35, 474–491.

Pintér, J. D., Holmström, K., Göran, A. O., & Edvall, M. M. (2006). User’s Guide for
TOMLAB/LGO. Tomlab Optimization. http://tomopt.com.

Pistikopoulos, E. N. & Stefanis, S. K. (1998). Optimal solvent design for environmental
impact minimization. Computers & Chemical Engineering, 22, 717–733.

Plantenga, T. D. (2009). HOPSPACK 2.0 User Manual. Technical Report SAND2009-
6265, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.

Platts, J. A., Abraham, M. H., Butina, D., & Hersey, A. (2000). Estimation of molec-
ular linear free energy relationship descriptors by a group contribution approach. 2.
Prediction of partition coefficients. Journal of Chemical Information and Computer
Sciences, 40, 71–80.

213

http://tomopt.com


bibliography

Powell, M. J. D. (2002). UOBYQA: unconstrained optimization by quadratic approxi-
mation. Mathematical Programming, 92, 555–582.

Powell, M. J. D. (2006). The NEWUOA software for unconstrained optimization without
derivatives. In G. Di Pillo and M. Roma (eds.), Large-Scale Nonlinear Optimization,
Springer, New York, NY, 255–297.

Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimiza-
tion without derivatives. Technical report, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge.

Pretel, E. J., López, P. A., Bottini, S. B., & Brignole, E. A. (1994). Computer-aided
molecular design of solvents for separation processes. AIChE Journal, 40, 1349–1360.

Raman, V. S. & Maranas, C. D. (1998). Optimization in product design with properties
correlated with topological indices. Computers & Chemical Engineering, 22, 747–763.

Randic, M. (1975). Characterization of molecular branching. Journal of the American
Chemical Society, 97, 6609–6615.

Randic, M. & Zupan, J. (2001). On interpretation of well-known topological indices.
Journal of Chemical Information and Computer Sciences, 41, 550–560.

Reichardt, C. & Welton, T. (2011). Solvents and solvent effects in organic chemistry.
John Wiley & Sons.

Rios, L. M. & Sahinidis, N. V. (2013). Derivative-free optimization: A review of algo-
rithms and comparison of software implementations. Journal of Global Optimization,
56, 1247–1293.

Roganov, G. N., Pisarev, P. N., Emel’yanenko, V. N., & Verevkin, S. P. (2005). Measure-
ment and prediction of thermochemical properties. Improved Benson-type increments
for the estimation of enthalpies of vaporization and standard enthalpies of formation
of aliphatic alcohols. Journal of Chemical & Engineering Data, 50, 1114–1124.

Rose, K., Hall, L. H., & Kier, L. B. (2002). Modeling blood-brain barrier partitioning
using the electrotopological state. Journal of Chemical Information and Computer
Sciences, 42, 651–666.

Sahinidis, N. V., Tawarmalani, M., & Yu, M. (2003). Design of alternative refrigerants
via global optimization. AIChE Journal, 49, 1761–1775.

214



bibliography

Samudra, A. & Sahinidis, N. V. (2009). Design of secondary refrigerants: A combined
optimization-enumeration approach. In M. M. El-Halwagi and A. A. Linninger (eds.),
Proceedings of the Seventh International Conference on the Foundations of Computer-
Aided Process Design, CRC Press, 879–886.

Samudra, A. & Sahinidis, N. V. (2013a). Design of heat transfer media components for
retail food refrigeration. Industrial & Engineering Chemistry Research, 52, 8518–8526.

Samudra, A. & Sahinidis, N. V. (2013b). Optimization-based framework for computer-
aided molecular design. AIChE Journal, 59, 3686–3701.

Sandia National Laboratories (2011). The Coliny Project.
https://software.sandia.gov/trac/acro/wiki/Overview/Projects.

Sastri, S. R. S. & Rao, K. K. (1992). A new group contribution method for predicting
viscosity of organic liquids. The Chemical Engineering Journal, 50, 9–25.

Scheffczyk, J., Fleitmann, L., Schwarz, A., Lampe, M., Bardow, A., & Leonhard, K.
(2016). Cosmo-camd: A framework for optimization-based computer-aided molecular
design using cosmo-rs. Chemical Engineering Science.

Scheinberg, K. (2003). Manual for Fortran Software Package DFO v2.0.

Schramke, J. A., Murphy, S. F., Doucette, W. J., & Hintze, W. D. (1999). Prediction
of aqueous diffusion coefficients for organic compounds at 25 C. Chemosphere, 38,
2381–2406.

Seader, J. & Henley, E. (1998). Separation process principles. New York: Wiley.

Siddhaye, S., Camarda, K., Southard, M., & Topp, E. (2004). Pharmaceutical product
design using combinatorial optimization. Computers & Chemical Engineering, 28,
425–434.

Siddhaye, S., Camarda, K. V., Topp, E., & Southard, M. (2000). Design of novel
pharmaceutical products via combinatorial optimization. Computers & Chemical
Engineering, 24, 701–704.

Sinha, M., Achenie, L. E. K., & Gani, R. (2003). Blanket wash solvent blend design
using interval analysis. Industrial & Engineering Chemistry Research, 42, 516–527.

215

https://software.sandia.gov/trac/acro/wiki/Overview/Projects


bibliography

Sinha, M., Achenie, L. E. K., & Ostrovsky, G. M. (1999). Environmentally benign
solvent design by global optimization. Computers & Chemical Engineering, 23, 1381–
1394.

Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions. Operations Research, 32, 1296–1308.

Stanescu, I. & Achenie, L. E. K. (2006). A theoretical study of solvent effects on Kolbe–
Schmitt reaction kinetics. Chemical Engineering Science, 61, 6199–6212.

Stavrou, M., Lampe, M., Bardow, A., & Gross, J. (2014). Continuous molecular
targeting–computer-aided molecular design (CoMT–CAMD) for simultaneous process
and solvent design for CO2 capture. Industrial & Engineering Chemistry Research,
53, 18029–18041.

Stein, S. E. & Brown, R. L. (1994). Estimation of normal boiling points from group
contributions. Journal of Chemical Information and Computer Sciences, 34, 581–587.

Steiner, T. (1998). Hydrogen-bond distances to halide ions in organic and organometallic
crystal structures: Up-to-date database study. Acta Crystallographica Section B:
Structural Science, 54, 456–463.

Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio
calculation of vibrational absorption and circular dichroism spectra using density
functional force fields. The Journal of Physical Chemistry, 98, 11623–11627.

Struebing, H., Ganase, Z., Karamertzanis, P. G., Siougkrou, E., Haycock, P., Piccione,
P. M., Armstrong, A., Galindo, A., & Adjiman, C. S. (2013a). Computer-aided
molecular design of solvents for accelerated reaction kinetics. Nature Chemistry, 5,
952–957.

Struebing, H., Ganase, Z., Karamertzanis, P. G., Siougkrou, E., Haycock, P., Piccione,
P. M., Armstrong, A., Galindo, A., & Adjiman, C. S. (2013b). Computer-aided
molecular design of solvents for accelerated reaction kinetics. Nature Chemistry, 5,
952–957.

Sundaram, A., Ghosh, P., Caruthers, J. M., & Venkatasubramanian, V. (2001). Design
of fuel additives using neural networks and evolutionary algorithms. AIChE Journal,
47, 1387–1406.

216



bibliography

Tawarmalani, M. & Sahinidis, N. V. (2004). Global optimization of mixed-integer non-
linear programs: A theoretical and computational study. Mathematical Programming,
99, 563–591.

Taylor, R. & Kennard, O. (1984). Hydrogen-bond geometry in organic crystals. Accounts
of chemical research, 17, 320–326.

Tihic, A., Kontogeorgis, G. M., von Solms, N., Michelsen, M. L., & Constantinou,
L. (2007). A predictive group-contribution simplified PC-SAFT equation of state:
Application to polymer systems. Industrial & Engineering Chemistry Research, 47,
5092–5101.

Vaidyanathan, R. & El-Halwagi, M. (1996). Computer-aided synthesis of polymers
and blends with target properties. Industrial & Engineering Chemistry Research, 35,
627–634.

Vaz, A. I. F. (2011). PSwarm Home Page.
http://www.norg.uminho.pt/aivaz/pswarm/.

Venkatasubramanian, V., Chan, K., & Caruthers, J. M. (1994). Computer-aided molecu-
lar design using genetic algorithms. Computers & Chemical Engineering, 18, 833–844.

Venkatasubramanian, V., Chan, K., & Caruthers, J. M. (1995). Evolutionary design of
molecules with desired properties using the genetic algorithm. Journal of Chemical
Information and Computer Sciences, 35, 188–195.

Visco, D. P., Pophale, R. S., Rintoul, M. D., & Faulon, J.-L. (2002). Developing a
methodology for an inverse quantitative structure-activity relationship using the sig-
nature molecular descriptor. Journal of Molecular Graphics and Modelling, 20, 429–
438.

Wakefield, B. J. (2013). The chemistry of organolithium compounds. Elsevier.

Wang, S., Sandler, S. I., & Chen, C.-C. (2007). Refinement of COSMO-SAC and the
applications. Industrial & Engineering Chemistry Research, 46, 7275–7288.

Wang, Y. & Achenie, L. E. K. (2002). Computer aided solvent design for extractive
fermentation. Fluid Phase Equilibria, 201, 1–18.

217

http://www.norg.uminho.pt/aivaz/pswarm/


bibliography

Warrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection
and evaluation of organosilicon coolants for direct immersion cooling of electronic
systems. Industrial & Engineering Chemistry Research, 51, 10517–10523.

Weis, D. C. & Visco, D. P. (2010). Computer-aided molecular design using the Signa-
ture molecular descriptor: Application to solvent selection. Computers & Chemical
Engineering, 34, 1018–1029.

Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the
American Chemical Society, 69, 17–20.

Wittig, R., Lohmann, J., & Gmehling, J. (2003). VaporâĹŠLiquid equilibria by UNIFAC
group contribution. 6. revision and extension. Industrial & Engineering Chemistry
Research, 42, 183–188.

Wu, X., Zhang, C., Goldberg, P., Cohen, D., Pan, Y., Arpin, T., & Bar-Yosef, O.
(2012). Early pottery at 20,000 years ago in Xianrendong Cave, China. Science, 336,
1696–1700.

Xiong, R., Sandler, S. I., & Burnett, R. I. (2014). An improvement to COSMO-SAC for
predicting thermodynamic properties. Industrial & Engineering Chemistry Research,
53, 8265–8278.

Xu, W. & Diwekar, U. M. (2005). Improved genetic algorithms for deterministic opti-
mization and optimization under uncertainty. part ii. solvent selection under uncer-
tainty. Industrial & Engineering Chemistry Research, 44, 7138–7146.

Yao, X., Fan, B., Doucet, J. P., Panaye, A., Liu, M., Zhang, R., Zhang, X., & Hu,
Z. (2003). Quantitative structure property relationship models for the prediction of
liquid heat capacity. QSAR & Combinatorial Science, 22, 29–48.

Zhang, L., Cignitti, S., & Gani, R. (2015). Generic mathematical programming for-
mulation and solution for computer-aided molecular design. Computers & Chemical
Engineering, 78, 79–84.

Zhou, T., Lyu, Z., Qi, Z., & Sundmacher, K. (2015). Robust design of optimal sol-
vents for chemical reactions–A combined experimental and computational strategy.
Chemical Engineering Science, 137, 613–625.

218



bibliography

Zhou, T., Qi, Z., & Sundmacher, K. (2014). Model-based method for the screening of
solvents for chemical reactions. Chemical Engineering Science, 115, 177–185.

Zhou, T., Wang, J., McBride, K., & Sundmacher, K. (2016). Optimal design of solvents
for extractive reaction processes. AIChE Journal.

Zhou, T., Zhou, Y., & Sundmacher, K. (2016). A hybrid stochastic–deterministic opti-
mization approach for integrated solvent and process design. Chemical Engineering
Science.

219


	Abstract
	Acknowledgments
	Contents
	list of figures and illustrations
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Popular types of QSPRs in CAMD
	1.2.1 Group-contribution methods
	1.2.2 Topological indices
	1.2.3 Signature descriptors

	1.3 CAMD as an optimization problem
	1.3.1 Classes of the CAMD problem
	1.3.2 Common design features in the form of constraints
	1.3.3 Forms of the structural feasibility constraints for GC methods

	1.4 Techniques for solving the molecular design problem
	1.4.1 Generate-and-test methods
	1.4.2 Decomposition methods
	1.4.3 Mathematical optimization methods
	1.4.4 Heuristics

	1.5 Literature review of CAMD applications
	1.5.1 Single molecule design
	1.5.2 Mixture design
	1.5.3 Integrated process and product design

	1.6 Conclusions

	2 Mixture Design Using Derivative-Free Optimization in the Space of Individual Component Properties
	2.1 Introduction
	2.2 Building Blocks
	2.2.1 AMODEO Methodology for Molecular Design
	2.2.2 Derivative-free optimization

	2.3 Mixture design using derivative-free optimization
	2.4 Illustrative Examples
	2.5 Case Studies
	2.5.1 Case study 1: Cooling crystallization for ibuprofen
	2.5.2 Case study 2: Drowning out crystallization
	2.5.3 Extended case studies 1 and 2: Considering a larger feasible region

	2.6 Discussion
	2.7 Conclusions

	3 Mixture Design based on COSMO-RS and -SAC Thermodynamics
	3.1 Introduction
	3.2 An overview of COSMO and COSMO-based thermodynamics
	3.2.1 Sigma profiles and sigma moments
	3.2.2 COSMO-RS and COSMO-SAC

	3.3 Group contribution method for calculating sigma profiles
	3.4 The COSMO mixture design problem
	3.5 Case studies
	3.5.1 Liquid-liquid extraction solvent
	3.5.2 Reaction rates optimization solvent
	3.5.3 Reaction rates optimization with mixed solvent

	3.6 Conclusions

	4 Reaction solvent design
	4.1 Introduction
	4.2 The utility of COSMO-RS for CAMxD
	4.3 Extensions to the existing framework
	4.3.1 Splitting the -profile into H-bonding and non-H-bonding profiles
	4.3.2 Explicit treatment of strong intermolecular forces
	4.3.3 Mixture design with common solvents

	4.4 Case studies
	4.4.1 Reaction rates optimization solvent
	4.4.2 Solvent-controlled selectivity of a lithiation reaction
	4.4.3 Optimizing the selectivity of an intramolecular SNAr reaction

	4.5 Conclusions

	5 Conclusions and Future Work
	5.1 Conclusions and contributions made
	5.2 Future work
	5.2.1 Determining lower-dimensional search spaces using principal components analysis
	5.2.2 Extension to integrated product/process design
	5.2.3 Modeling more complex reactions in reaction solvent design problems
	5.2.4 Designing custom ionic liquids
	5.2.5 Small molecule design for the pharmaceutical industry
	5.2.6 Custom group contribution methods for modeling


	Bibliography

