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Abstract

This dissertation develops connections between algorithmic randomness and computable analysis.
In the first part, it is shown that computable randomness can be defined robustly on all computable

probability spaces, and that computable randomness is preserved by a.e. computable isomorphisms between
spaces. Further applications are also given.

In the second part, a number of almost-everywhere convergence theorems are looked at using computable
analysis and algorithmic randomness. These include various martingale convergence theorems and almost-
everywhere differentiability theorems. General conditions are given for when the rate of convergence is
computable and for when convergence takes place on the Schnorr random points. Examples are provided to
show that these almost-everywhere convergence theorems characterize Schnorr randomness.
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Introduction

Algorithmic randomness is a branch of computability theory which is concerned with the properties of
objects which behave randomly with respect to computable statistical tests. While there are many notions of
“computable statistical test”, and therefore many notions of randomness, the majority of the papers written
on algorithmic randomness have focused on infinite binary sequences 2N under the coin-flipping (or Lebesgue)
probability measure λ. For example the recent monographs of Downey and Hirschfelt [3] and Nies [9] almost
entirely focus on (2N, λ).

However, a number of researchers have started to look at randomness on other spaces and other measures.
This includes work by Levin [8] on Martin-Löf randomness for other probability measures, as well as the
work by Fouché [4] on Martin-Löf random Brownian motion. Hoyrup and Rojas [7] have done much to give
a robust theory of Martin-Löf randomness on other spaces.

Parallel to this, a number of researchers have taken an interest in the computability of measure theory
and probability. This goes back to the constructive works of Šanin [11] and Bishop [1]. More recently, it was
discovered that many almost-everywhere theorems in analysis characterize the most common randomness
notions [12, 6, 10, 5, 2]. This is an exciting new direction connecting computable analysis and algorithmic
randomness.

This dissertation contributes to this direction. It is made up of two chapters. Each can be read indepen-
dently of the other.

The first chapter, “Computable randomness and betting for computable probability spaces”, gives a defi-
nition of computable randomness on other computable probability spaces. Unlike other common randomness
notions, it is not completely obvious how to define computable randomness on other spaces. I give a number
of examples showing that my definition is the correct one.

The second chapter, “Algorithmic randomness, martingales and differentiability”, gives new results in
the computability of a.e. convergence results. In particular, I show that under certain conditions, most
a.e. convergence theorems characterize Schnorr randomness. I also develop a general theory of measurable
functions and Schnorr randomness which I hope will be of use to other researchers.
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COMPUTABLE RANDOMNESS AND BETTING FOR COMPUTABLE PROBABILITY
SPACES

Abstract. Unlike Martin-Löf randomness and Schnorr randomness, computable randomness has not been
defined, except for a few ad hoc cases, outside of Cantor space. This paper offers such a definition (actually,
many equivalent definitions), and further, provides a general method for abstracting “bit-wise” definitions
of randomness from Cantor space to arbitrary computable probability spaces. This same method is also
applied to give machine characterizations of computable and Schnorr randomness for computable probability
spaces, extending the previous known results. This paper also addresses “Schnorr’s Critique” that gambling
characterizations of Martin-Löf randomness are not computable enough. The paper contains a new type of
randomness—endomorphism randomness—which the author hopes will shed light on the open question of
whether Kolmogorov-Loveland randomness is equivalent to Martin-Löf randomness. It ends with ideas on
how to extend this work to layerwise-computable structures, non-computable probability spaces, computable
topological spaces, and measures defined by π-systems. It also ends with a possible definition of K-triviality
for computable probability spaces.
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1. Introduction

The subjects of measure theory and probability are filled with a number of theorems stating that some
property holds “almost everywhere” or “almost surely.” Informally, these theorems state that if one starts with
a random point, then the desired result is true. The field of algorithmic randomness has been very successful
in making this notion formal: by restricting oneself to computable tests for non-randomness, one can achieve
a measure-one set of points that behave as desired. The most prominent such notion of randomness is Martin-
Löf randomness. However, Schnorr [35] gave an argument—which is now known as Schnorr’s Critique—that
Martin-Löf randomness does not have a sufficiently computable characterization. He offered two weaker-
but-more-computable alternatives: Schnorr randomness and computable randomness. All three randomness
notions are interesting and robust, and further each has been closely linked to computable analysis (for
example [12, 18, 33, 38]).

Computable randomness, however, is the only one of the three that has not been defined for arbitrary
computable probability spaces. The usual definition is specifically for Cantor space (i.e. the space 2ω of
infinite binary strings), or by analogy, spaces such as 3ω. Namely, a string x ∈ 2ω is said to be computably
random (in the fair-coin measure) if, roughly speaking, one cannot win arbitrarily large amounts of money
using a computable betting strategy to gamble on the bits of x. (See Section 2 for a formal definition.)

2010 Mathematics Subject Classification. 03D32,68Q30.
This work has been partially supported by NSF grant DMS1068829.
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COMPUTABLE RANDOMNESS AND BETTING 4

While it is customary to say a real x ∈ [0, 1] is computably random if its binary expansion is computably
random in 2ω, it was only recently shown [12] that this is the same as saying that, for example, the ternary
expansion of x is computably random in 3ω. In other words, computable randomness is base invariant.

In this paper, I use a method for extending the “bit-wise” definitions of randomness on Cantor space to
arbitrary computable probability spaces. The method is based on previous methods given by Gács [17] and
later Hoyrup and Rojas [22] of dividing a space into cells. However, to successfully extend a randomness
notion (such that the new definition agrees with the former on 2ω), one must show a property similar to
base invariance. I do this for computable randomness.

An outline of the paper is as follows. Section 2 defines computable randomness on 2ω, both for the fair-
coin measure and for other computable probability measures on Cantor space. Unlike previous treatments
(for example Bienvenu and Merkle [6]) I address the important pathological case where the measure may
have null open sets.

Section 3 gives background on computable analysis, computable probability spaces, and algorithmic ran-
domness.

Section 4 presents the concepts of an almost-everywhere decidable set (due to Hoyrup and Rojas [22]) and
an a.e. decidable cell decomposition (which is similar to work of Hoyrup and Rojas [22] and Gács [17]). Recall
that the topology of 2ω is generated by the collection of basic open sets of the form [σ]≺ = {x ∈ 2ω | x � σ}
where x � σ means σ is an initial segment of x. Further, any Borel measure µ of 2ω is determined by the
values µ([σ]≺). The main idea of this paper is that for a computable probability space (X , µ) one can replace
the basic open sets of 2ω (which are decidable) with an indexed family of “almost-everywhere decidable” sets
{Aσ}σ∈2<ω which behave in much that same way. I call each such indexed family a cell decomposition of the
space. This allows one to effortlessly transfer a definition from Cantor space to any computable probability
space.

Section 5 applies this method to computable randomness, giving a variety of equivalent definitions based
on martingales and other tests. More importantly, I show this definition is invariant under the choice of
cell decomposition. Similar to the base-invariance proof of Brattka, Miller and Nies [12, 37], my proof uses
computable analysis. However, their method does not apply here. (Their proof uses differentiability and
the fact that every atomless measure on [0, 1] is naturally equivalent to a measure on 2ω. The situation is
more complicated in the general case. One does not have differentiability, and one must consider absolutely-
continuous measures instead of mere atomless ones.)

Section 6 gives a machine characterization of computable and Schnorr randomness for computable prob-
ability spaces. This combines the machine characterizations of computable randomness and Schnorr ran-
domness (respectively, Mihailović [14, Thereom 7.1.25] and Downey, Griffiths, and LaForte [13]) with the
machine characterization of Martin-Löf randomness on arbitrary computable probability spaces (Gács [16]
and Hoyrup and Rojas [22]).

Section 7 shows a correspondence between cell decompositions of a computable probability space (X , µ)
and isomorphisms from (X , µ) to Cantor space. I also show computable randomness is preserved by iso-
morphisms between computable probability spaces, giving yet another characterization of computable ran-
domness. However, unlike other notions of randomness, computable randomness is not preserved by mere
morphisms (almost-everywhere computable, measure-preserving maps).

Section 8 gives three equivalent methods to extend a randomness notion to all computable probability
measures. It also gives the conditions for when this new randomness notion agrees with the original one.

Section 9 asks how the method of this paper applies to Kolmogorov-Loveland randomness, another no-
tion of randomness defined by gambling. The result is that the natural extension of Kolmogorov-Loveland
randomness to arbitrary computable probability measures is Martin-Löf randomness. However, I do not
answer the important open question as to whether Kolmogorov-Loveland randomness and Martin-Löf ran-
domness are equivalent. Nonetheless, I do believe this answers Schnorr’s Critique, namely that Martin-Löf
randomness does have a natural definition in terms of computable betting strategies.

Section 10 explores a new notion of randomness in between Martin-Löf randomness and Kolmogorov-
Loveland randomness, possibly equal to both. It is called endomorphism randomness.

Last, in Section 11, I suggest ways to generalize the method of this paper to a larger class of isomor-
phisms and cell decompositions. I also suggest methods for extending computable randomness to a larger
class of probability spaces, including non-computable probability spaces, computable topological spaces, and
measures defined by π-systems. Drawing on Section 6, I suggest a possible definition of K-triviality for
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computable probability spaces. Finally, I ask what can be known about the interplay between randomness,
morphisms, and isomorphisms.

2. Computable randomness on 2ω

Before exploring computable randomness on arbitrary computable probability spaces, a useful intermedi-
ate step will be to consider computable probability measures on Cantor space.

We fix notation: 2<ω is the space of finite binary strings; 2ω is the space of infinite binary strings; ε
is the empty string; σ ≺ τ and σ ≺ x mean σ is a proper initial segment of τ ∈ 2<ω or x ∈ 2ω; and
[σ]≺ = {x ∈ 2ω | σ ≺ x} is a basic open set or cylinder set. Also for σ ∈ 2<ω (or x ∈ 2ω), σ(n) is the
nth digit of σ (where σ(0) is the “0th” digit) and σ � n = σ(0) · · ·σ(n− 1).

Typically, a martingale (on the fair-coin probability measure) is defined as a functionM : 2<ω → [0,∞)
such that the following property holds for each σ ∈ 2<ω: M(σ) = 1

2 (M(σ0) + M(σ1)). Such a martingale
can be thought of as a betting strategy on coins flips: the gambler starts with the value M(ε) as her capital
(where ε is the empty string) and bets on fair coin flips. Assuming the string σ represents the sequence of
coin flips she has seen so far,M(σ0) is the resulting capital she has if the next flip comes up tails, andM(σ1)
if heads. A martingale M is said to be computable if the value M(σ) is uniformly computable from each
σ.

A martingale M is said to succeed on a string x ∈ 2ω if lim supn→∞M(x � n) = ∞ (where x � n is
the first n bits of x), i.e. the gambler wins arbitrary large amounts of money using the martingale M while
betting on the sequence x of flips. By Kolmogorov’s theorem (see [14, Theorem 6.3.3]), such a martingale
can only succeed on a measure-zero set of points. A string x ∈ 2ω is said to be computably random (on
the fair-coin probability measure) if there does not exist a computable martingale M which succeeds on x.

Definition 2.1. A finite Borel measure µ on 2ω is a computable measure if the measure µ([σ]≺) of each
basic open set is computable from σ. Further, if µ(2ω) = 1, then we say µ is a computable probability
measure (on 2ω) and (2ω, µ) is a computable probability space (on 2ω).

In this paper, measure always means a finite Borel measure. When convenient, I will drop the brackets
and write µ(σ) instead. By the Carathéodory extension theorem, one may uniquely represent a computable
measure as a computable function µ : 2<ω → [0,∞) such that

µ(σ0) + µ(σ1) = µ(σ)

for all σ ∈ 2<ω. I will use often confuse a computable measure on 2ω with its representation on 2<ω.
The fair-coin probability measure (or the Lebesgue measure on 2ω) is the measure λ on 2ω,

defined by
λ(σ) = 2−|σ|

where |σ| is the length of σ. (The Greek letter λ will always be the fair-coin measure on 2ω, except in a few
examples where it is the Lebesgue measure on [0, 1]d or the uniform measure on 3ω.)

One may easily generalize the definitions of martingale and computable randomness to a computable
probability measure µ. The key idea is that the fairness condition still holds, but is now “weighted” by µ.

Definition 2.2. If µ is a computable probability measure on 2ω, then a martingale M (with respect to
the measure µ) is a partial function M : 2<ω → [0,∞) such that the following two conditions hold:

(1) (Fairness condition) For all σ ∈ 2<ω

M(σ0)µ(σ0) +M(σ1)µ(σ1) = M(σ)µ(σ).

(2) (Impossibility condition) M(σ) is defined when µ(σ) > 0.
We say M is a computable martingale if M(σ) is uniformly computable from σ (assuming µ(σ) > 0).

Definition 2.3. Given a computable probability space (2ω, µ), a martingale M on (2ω, µ) and x ∈ 2ω, we
say M succeeds on x if and only if lim supn→∞M(x � n) = ∞. Further, given x ∈ 2ω, if x is not is any
measure-zero basic open set and there does not exist a computable martingale M on (2ω, µ) which succeeds
on x, then we say x is computably random with respect to the measure µ.

Remark 2.4. The above definitions have been given before by Bienvenu and Merkle [6], and Definition 2.2 is
an instance of the more general concept of martingale in probability theory (see for example Williams [40]).
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The impossibility condition of Definition 2.2 follows from the slogan in probability theory that a measure-
zero (or impossible) event can be ignored. A measure µ such that every open set has measure greater than
zero is called a strictly-positive measure. (Bienvenu and Merkle use the term “nowhere vanishing.”)
Hence, the impossibility condition is not necessary when µ is strictly positive.

If (2ω, µ) is a strictly-positive probability space, then it is an easy folklore result that there is a bijection
between computable martingales M and computable measures ν given by

ν(σ) = M(σ)µ(σ) and M(σ) = ν(σ)/µ(σ).

Even in the case where µ is not strictly positive, the impossibility condition guarantees that these equations
can be used to define a computable measure from a computable martingale and vice-versa (under the con-
ditions that undefined · 0 = 0 and x/0 = undefined for all x). Further, ν is always computable from M .
Indeed, compute ν(σ) by recursion on the length of σ as follows. Since µ(ε) = 1, ν(ε) is computable. To
compute, say, ν(σ0) from ν(σ), use

ν(σ0) =


M(σ0)µ(σ0) if µ(σ0) > 0

ν(σ)−M(σ1)µ(σ1) if µ(σ1) > 0

0 otherwise
.

This is computable, since in the case that µ(σ) = µ(σ0) = µ(σ1) = 0, the bounds 0 ≤ ν(σ0) ≤ ν(σ) “squeeze”
ν(σ0) to 0. Conversely, M can be computed from ν by waiting until µ(σ) > 0, else M(σ) is never defined.

Remark 2.5. It is possible to eliminate the impossibility condition altogether by considering martingales
defined on the extended real numbers, i.e. M : 2<ω → [0,∞]. (Use the usual measure-theoretic convention
that∞·0 = 0.) Consider the martingaleM0 defined byM0(σ) = λ(σ)/µ(σ) where λ is the fair-coin measure.
Since, λ(σ) > 0 for all σ, we have that M0 is computable on the extended real numbers. Notice M0(σ) =∞
if and only if µ(σ) = 0, hence one can “forget” the infinite values to get a computable finite-valued martingale
M1 as in Definition 2.2. For any x ∈ 2ω, if M0 succeeds on x then either µ(x � n) = 0 for some n or M1(x)
succeeds on x. In either case, x is not computably random. Conversely, if x ∈ 2ω is not computably random,
either M0 succeeds on x or there is some finite-valued martingale M as in Definition 2 which succeeds on
x. In the later case, N = M + M0 is a martingale computable on the extended real numbers which also
succeeds on x. However, this paper will only use the finite-valued martingales as in Definition 2.2.

I leave as an open question whether computable randomness can be defined on non-strictly positive
measures without the impossibility condition and without infinite values.

Question 2.6. Let µ be a computable probability measure on 2ω, and assume x is not computably random on
µ. Is there necessary a computable martingaleM : 2<ω → [0,∞) with respect to µ which is total, finite-valued
and succeeds on x?

See Downey and Hirschfelt [14, Section 7.1] and Nies [32, Chapter 7] for more information on computable
randomness for (2ω, λ).

3. Computable probability spaces and algorithmic randomness

In this section I give some background on computable analysis, computable probability spaces, and algo-
rithmic randomness.

3.1. Computable analysis and computable probability spaces. Here I present computable Polish
spaces and computable probability spaces. For a more detailed exposition of the same material see Hoyrup
and Rojas [22]. This paper assumes some familiarity with basic computability theory and computable
analysis, as in Pour El and Richards [34], Weihrauch [39], or Brattka et al. [11].

Definition 3.1. A computable Polish space (or computable metric space) is a triple (X, d, S) such
that

(1) X is a complete metric space with metric d : X ×X → [0,∞).
(2) S = {ai}i∈N is a countable dense subset of X (the simple points of X ).
(3) The distance d(ai, aj) is computable uniformly from i and j.

A point x ∈ X is said to be computable if there is a computable Cauchy-name h ∈ Nω for x, i.e. h is a
computable sequence of natural numbers such that d(ah(k), x) ≤ 2−k for all k.
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The basic open balls are sets of the form B(a, r) = {x ∈ X | d(x, a) < r} where a ∈ S and r > 0
is rational. The Σ0

1 sets (effectively open sets) are computable unions of basic open balls; Π0
1 sets

(effectively closed sets) are the complements of Σ0
1 sets; Σ0

2 sets are computable unions of Π0
1 sets; and

Π0
2 sets are computable intersections of Σ0

1 sets. A function f : X → R is computable (-ly continuous)
if for each Σ0

1 set U in R, the set f−1(U) is Σ0
1 in X (uniformly in U), or equivalently, there is an algorithm

which sends every Cauchy-name of x to a Cauchy-name of f(x). A function f : X → [0,∞] is lower
semicomputable if it is the supremum of a computable sequence of computable functions fn : X → [0,∞).

A real x is said to be lower (upper) semicomputable if {q ∈ Q | q < x} (respectively {q ∈ Q | q > x})
is a c.e. set.

Definition 3.2. If X = (X, d, S) is a computable Polish space, then a Borel measure µ is a computable
measure on X if the value µ(X) is computable, and for each Σ0

1 set U , the value µ(U) is lower semicom-
putable uniformly from the code for U . A computable probability space is a pair (X , µ) where X is a
computable Polish space, µ is a computable measure on X , and µ(X ) = 1.

While this definition of computable probability space may seem ad hoc, it turns out to be equivalent
to a number of other definitions. In particular, the computable probability measures on X are exactly the
computable points in the space of probability measures under the Prokhorov metric. Also, a probability
space is computable precisely if the integral operator is a computable operator on computable functions
f : X → [0, 1]. See Hoyrup and Rojas [22] and Schröder [36] for details.

I will often confuse a metric space or a probability space with its set of points, e.g. writing x ∈ X or
x ∈ (X , µ) to mean that x ∈ X where X = (X, d, S).

3.2. Algorithmic randomness. In this section I give background on algorithmic randomness. Namely, I
present three types of tests for Martin-Löf and Schnorr randomness. In Section 5, I will generalize these tests
to computable randomness, building off the work of Merkle, Mihailović and Slaman [28] (which is similar to
that of Downey, Griffiths and LaForte [13]). I also present Kurtz randomness.

Throughout this section, let (X , µ) be a computable probability space.

Definition 3.3. A Martin-Löf test (with respect to (X , µ)) is a computable sequence of Σ0
1 sets (Un)

such that µ(Un) ≤ 2−n for all n. A Schnorr test is a Martin-Löf test such that µ(Un) is also uniformly
computable from n. We say x is covered by the test (Un) if x ∈

⋂
n Un.

Definition 3.4. We say x ∈ X is Martin-Löf random (with respect to (X , µ)) if there is no Martin-Löf
test which covers x. We say x is Schnorr random if there is no Schnorr test which covers x. We say x is
Kurtz random (or weak random) if x is not in any null Π0

1 set (or equivalently a null Σ0
2 set).

It is easy to see that for all computable probability spaces

Martin-Löf → Schnorr → Kurtz

It is also well-known (see [14, 32]) on (2ω, λ) that

(3.1) Martin-Löf → Computable → Schnorr → Kurtz

In the next section, after defining computable randomness for computable probability spaces, I will show
(3.1) holds for all computable probability spaces.

In analysis it is common to adopt the slogan “anything that happens on a measure-zero set is negligible.” In
this paper it will be useful to adopt the slogan “anything that happens on a measure-zero Σ0

2 set is negligible,”
or in other words, “we do not care about points that are not Kurtz random.” (The reason for this choice
will become apparent and is due to the close relationship between Kurtz randomness and a.e. computability.
Section 7 contains more discussion.)

Next, I mention two other useful tests.

Definition 3.5. A Vitali test (or Solovay test) is a sequence of Σ0
1 sets (Un) such that

∑
n µ(Un) <∞.

We say x is Vitali covered by (Un) if x ∈ Un for infinitely many n. An integral test is a lower
semicomputable function g : X → [0,∞] such that

´
g dµ <∞.

Theorem 3.6. For x ∈ X , the following are equivalent.
(1) x is Martin-Löf random (respectively Schnorr random).
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(2) x is not Vitali covered by any Vitali test (respectively any Vitali test (Un) such that
∑
n µ(Un) is

computable).
(3) g(x) <∞ for all integral tests g (respectively for all integral tests g such that

´
g dµ is computable).

Remark 3.7. The term Vitali test was coined recently by Nies. For a history of the tests for Schnorr
and Martin-Löf randomness see Downey and Hirschfelt [14]. The integral test characterization for Schnorr
randomness is due to Miyabe [30] and was also independently communicated to me by Hoyrup and Rojas.

I will give Vitali and integral test characterizations of computable randomness in Section 5.
There are also martingale characterizations of Martin-Löf and Schnorr randomness for 2ω, but they will

not be needed.

4. Almost-everywhere decidable cell decompositions

The main thesis of this paper is that “bit-wise” definitions of randomness for 2ω, such as computable
randomness, can be extended to arbitrary computable probability spaces by replacing the basic open sets
[σ]≺ on 2ω with an indexed family {Aσ}σ∈2<ω of a.e. decidable sets. This is the thesis of Hoyrup and Rojas
[22]. My method is based off of theirs, although the presentation and definitions differ on a few key points.

Recall that a set A ⊆ X is decidable if both A and its complement X rA are Σ0
1 sets (equivalently A is

both Σ0
1 and Π0

1). The intuitive idea is that from the code for any x ∈ X , one may effectively decide if x is in
A or its complement. On 2ω, the cylinder sets [σ]≺ are decidable. Unfortunately, a space such as X = [0, 1]
has no non-trivial clopen sets, and therefore no non-trivial decidable sets. However, using the idea that null
measure sets can be ignored, we can use “almost-everywhere decidable sets” instead.

Definition 4.1 (Hoyrup and Rojas [22]). Let (X , µ) be a computable probability space. A pair U, V ⊆ X
is a µ-a.e. decidable pair if

(1) U and V are both Σ0
1 sets,

(2) U ∩ V = ∅, and
(3) µ(U ∪ V ) = 1.

A set A is a µ-a.e. decidable set if there is a µ-a.e. decidable pair U, V such that U ⊆ A ⊆ X r V . The
code for the µ-a.e. decidable set A is the pair of codes for the Σ0

1 sets U and V .

Hoyrup and Rojas [22] also required that U∪V be dense for technical reasons. We will relax this condition,
working under the principle that one can safely ignore null open sets. They also use the terminology “almost
decidable set”.

Definition 4.1 is an effectivization of µ-continuity set, i.e. a set with µ-null boundary. Notice, the set
X r (U ∪ V ) includes the topological boundary, but since we do not require U ∪ V to be dense, it may also
include null open sets.

Not every Σ0
1 set is a.e. decidable; for example, take a dense open set with measure less than one. However,

any basic open ball B(a, r) is a.e. decidable provided that {x | d(a, x) = r} has null measure. (Again, if we
require the boundary to be nowhere dense, the situation is more subtle. See the discussion in Hoyrup and
Rojas [22].) Further, the closed ball B(a, r) is also a.e. decidable with the same code. Any two a.e. decidable
sets with the same code will be considered the same for our purposes. Hence, I will occasionally say x ∈ A
(respectively x /∈ A), when I mean x ∈ U (respectively x /∈ V ) for the corresponding a.e. decidable pair
(U, V ).

Also notice that if A and B are a.e. decidable, then the Boolean operations X rA,A ∩B and A ∪B are
a.e. decidable with codes computable from the codes for A and B.

Definition 4.2 (Inspired by Hoyrup and Rojas [22]). Let (X , µ) be a computable probability space, and let
A = (Ai) be a uniformly computable sequence of a.e. decidable sets. Let B be the closure of A under finite
Boolean combinations. We say A is an (a.e. decidable) generator of (X , µ) if given a Σ0

1 set U ⊆ X
one can find (effectively from the code of U) a c.e. family {Bj} of sets in B (where {Bj} is possibly finite or
empty) such that U =

∑
j Bj a.e.

Notice each generator generates the Borel sigma-algebra of X up to a µ-null set. Hoyrup and Rojas [22]
show that not only does such a generator A exist for each (X , µ), but it can be taken to be a basis of the
topology, hence they call A a “basis of almost decidable sets”. I will not require that A is a basis.
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Theorem 4.3 (Hoyrup and Rojas [22]). Let (X , µ) be a computable probability space. There exists an
a.e. decidable generator A of (X , µ). Further, A is computable from (X , µ).

The main idea of the proof for Theorem 4.3 is to start with the collection of basic open balls centered at
simple points with rational radii. While, these may not have null boundary, a basic diagonalization argument
(similar to the proof of the Baire category theory, see [10]) can be used to calculate a set of radii approaching
zero for each simple point such that the resulting ball is a.e. decidable. Similar arguments have been given
by Bosserhoff [9] and Gács [17]. The technique is related to Bishop’s theory of profiles [8, Section 6.4] and
to “derandomization” arguments (see Freer and Roy [15] for example).

From a generator we can decompose X into a.e. decidable cells. This is the indexed family {Aσ}σ∈2<ω

mentioned in the introduction.

Definition 4.4. Let A = (Ai) be an a.e. decidable generator of (X , µ). Recall each Ai is coded by an
a.e. decidable pair (Ui, Vi) where Ui ⊆ Ai ⊆ X r Vi. For σ ∈ 2ω of length s define [σ]A = A

σ(0)
0 ∩ Aσ(1)1 ∩

· · · ∩Aσ(s−1)s−1 where for each i, A0
i = Ui and A1

i = Vi. When possible, define x �A n as the unique σ of length
n such that x ∈ [σ]A. Also when possible, define the A-name of x as the string nameA(x) = limn→∞ x �A n.
A point without an A-name will be called an unrepresented point. Each [σ]A will be called a cell, and
the collection of {[σ]A}σ∈2<ω well be called an (a.e. decidable) cell decomposition of (X , µ).

The choice of notation allows one to quickly translate between Cantor space and the space (X , µ). Gács
[17] and others refer to the cell [x �A n]A as the n-cell of x and writes it as Γn(x).

Remark 4.5. There are two types of “bad points”, unrepresented points and points x ∈ [σ]A where µ([σ]A) =
0. The set of “bad points” is a null Σ0

2 set, so each “bad point” is not even Kurtz random! One may also go
further, and for each generator A compute another A′ such that [σ]A = [σ]A′ a.e., but µ([σ]A) = 0 if and
only if [σ]A′ = ∅. Then all the “bad points” would be unrepresented points.

Example 4.6. Consider a computable measure µ on 2ω. Let Ai = {x ∈ 2ω | x(i) = 1} where x(i) is the ith
bit of x. Then A = (Ai) is a generator of (2ω, µ). Further [σ]A = [σ]≺, x �A n = x � n, and nameA(x) = x.
Call A the natural generator of (2ω, µ), and {[σ]≺}σ∈2<ω the natural cell decomposition.

In this next proposition, recall that a set S ⊆ 2<ω is prefix-free if there is no pair τ, σ ∈ S such that
τ ≺ σ.

Proposition 4.7. Let (X , µ) be a computable probability space with generator A and {[σ]A}σ∈2<ω the corre-
sponding cell decomposition. Then for each Σ0

1 set U ⊆ X there is a c.e. set {σi} (computable from U) such
that U =

⋃
i[σi]A a.e. Further, {σi} can be assumed to be prefix-free and such that µ([σi]A) > 0 for all i.

Proof. Straight-forward from Definition 4.1. �

It is clear that a generator A is computable from its cell decomposition {[σ]A}σ∈2<ω , namely let

Ai =
⋃

{σ : σ(i)=1}

[σ]A.

Hence we will often confuse a generator and its cell decomposition writing both as A. Further, this next
proposition gives the criterion for when an indexed family {Aσ}σ∈2<ω forms an a.e. decidable cell decompo-
sition.

Proposition 4.8. Let (X , µ) be a computable probability space. Let A = {Aσ}σ∈2<ω be a computably indexed
family of Σ0

1 sets such that
(1) for all σ ∈ 2ω, Aσ0 ∩Aσ1 = ∅ and Aσ0 ∪Aσ1 = Aσ a.e.
(2) µ(Aε) = 1, and
(3) for each Σ0

1 set U ⊆ X there is a c.e. set {σi} (computable from U) such that U =
⋃
i[σi]A a.e.

Then A is an a.e. decidable cell decomposition where [σ]A = Aσ a.e. for all σ ∈ 2<ω.

Proof. Straight-forward from Definition 4.1 and Definition 4.4. �

Each computable probability space (X , µ) is uniquely represented by a cell decomposition A and the
values µ([σ]A).
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The main difference between the method here and that of Gács [17] and Hoyrup and Rojas [22] is that they
pick a canonical cell decomposition for each (X , µ). Also they assume every point x ∈ X is in some cell, and
that no two points have the sameA-name. I, instead, work with all cell decompositions simultaneously and do
not require as strong of properties. This will allow me to give a correspondence between cell decompositions
and isomorphisms in Section 7.

5. Computable randomness on computable probability spaces

In this section I define computable randomness on a computable probability space. As a first step, I have
already done this for spaces (2ω, µ). The second step will be to define computable randomness with respect
to a particular cell decomposition of the space. Finally, the last step is Theorem 5.7, where I will show the
definition is invariant under the choice of cell decomposition.

There are two characterizations of computable randomness on (2ω, λ) that use Martin-Löf tests. The first
was due to Downey, Griffiths, and LaForte [13]. However, I will use another due to Merkle, Mihailović, and
Slaman [28].

Definition 5.1 (Merkle et al. [28]). On (2ω, λ) a Martin-Löf test (Un) is called a bounded Martin-Löf
test if there is a computable measure ν : 2<ω → [0,∞) such that for all n ∈ N and σ ∈ 2<ω

µ(Un ∩ [σ]≺) ≤ 2−nν(σ).

We say that the test (Un) is bounded by the measure ν.

Theorem 5.2 (Merkle et al. [28]). On (2ω, λ), a string x ∈ 2ω is computably random if and only if x is not
covered by any bounded Martin-Löf test.

The next theorem and definition give five equivalent tests for computable randomness (with respect to
a cell decomposition A). (I also give a machine characterization of computable randomness in Section 6.)
The integral test and Vitali cover test are new for computable randomness, although they are implicit in the
proof of Theorem 5.2.

Theorem 5.3. Let A be a cell decomposition of the computable probability space (X , µ). If x ∈ X is neither
an unrepresented point nor in a null cell, then the following are equivalent.

(1) (Martingale test) There is a computable martingale M : 2<ω → [0,∞) satisfying

M(σ0)µ([σ0]A) +M(σ1)µ([σ1]A) = M(σ)µ([σ]A)

M(σ) is defined ↔ µ([σ]A) > 0

for all σ ∈ 2<ω such that lim supn→∞M(x �A n) =∞.
(2) (Martingale test with savings property, see for example [14, Proposition 2.3.8]) There is a computable

martingale N : 2<ω → [0,∞) satisfying the conditions of (1) and a partial-computable “savings
function” f : 2<ω → [0,∞) satisfying

f(σ) ≤ N(σ) ≤ f(σ) + 1

σ � τ → f(σ) ≤ f(τ)

f(σ) is defined ↔ µ([σ]A) > 0

for all σ, τ ∈ 2<ω such that limn→∞N(x �A n) =∞.
(3) (Integral test) There is a computable measure ν : 2<ω → [0,∞) and a lower semicomputable function

g : X → [0,∞] satisfying ˆ
[σ]A

g dµ ≤ ν(σ)

for all σ ∈ 2<ω such that g(x) =∞.
(4) (Bounded Martin-Löf test) There is a computable measure ν : 2<ω → [0,∞) and a Martin-Löf test

(Un) satisfying
µ(Un ∩ [σ]A) ≤ 2−nν(σ).

for all n ∈ N and σ ∈ 2<ω such that (Un) covers x.



COMPUTABLE RANDOMNESS AND BETTING 11

(5) (Vitali cover test) There is a computable measure ν : 2<ω → [0,∞) and a Vitali cover (Vn) satisfying∑
n

µ(Vn ∩ [σ]A) ≤ ν(σ)

for all n ∈ N and σ ∈ 2<ω such that (Vn) Vitali covers x.
For (3) through (5), the measure ν may be assumed to be a probability measure and satisfy the following

absolute-continuity condition,

(5.1) ν(σ) ≤
ˆ
[σ]A

h dµ

for some integrable function h.
Further, each test is uniformly computable from any other.

Definition 5.4. Let A be a cell decomposition of the space (X , µ). Say x ∈ X is computably random
(with respect to A) if x is neither an unrepresented point nor in a null cell, and x does not satisfy any of the
equivalent conditions (1–5) of Theorem 5.3.

Before proving the theorem, here is a technical lemma. It will be needed for the savings property in (2).

Lemma 5.5 (Technical lemma). Let (an) be a sequence of positive real numbers. Define (bn) and (cn)
recursively as follows: b0 = a0, c0 = b0 − 1,

bn+1 = cn +
an+1

an
(bn − cn)

and cn+1 = max(cn, bn+1 − 1). If lim supn an =∞, then limn bn =∞.

Proof. Let (ni) be indices such that cni
= bni

− 1 listed in order. By induction on n ∈ [ni, ni+1− 1] we have
cn = bni − 1 and

bn+1 = bni
+
an+1

ani

− 1.

Since lim supn an =∞, there exists some m > ni such bm−1 ≥ bni −1 = cni . The first such m is ni+1. This
is also the first m such that am ≥ ani

. Therefore (ni) is a infinite series, ani+1
≥ ani

, limi ani
=∞, and

bni+1
= bni

+
ani+1

ani

− 1.

We have that cni ≥ log(ani) (natural logarithm) by the identity x− 1 ≥ log(x) and by induction:

cni+1
= bni+1

− 1 = (bni
− 1) +

(
ani+1

ani

− 1

)
≥ log(ani) + log

(
ani+1

ani

)
= log(ani+1) + 1.

Hence limi cni
≥ limi log(ani

) =∞, and since cn is nondecreasing, limn bn ≥ limn cn =∞. �

Proof of Theorem 5.3. (1) implies (2): The idea is to bet with the martingale M as usual, except at each
stage set some of the winnings aside into a savings account f(σ) and bet only with the remaining capital.
Formally, define N and f recursively as follows. (One may assume M(σ) > 0 for all σ by adding 1 to M(σ).)
Start with N(ε) = M(ε) and f(ε) = N(ε)− 1. At σ, for i = 0, 1 let

N(σi) = f(σ) +
M(σi)

M(σ)
(N(σ)− f(σ))

and f(σi) = max(f(σ), N(σi)− 1). By the technical lemma above, limnN(x �A n) =∞.
(2) implies (3): Let ν(σ) = N(σ)µ([σ]A) and g(x) = sups→∞ f(x �A s). Then

´
[σ]A

g dµ ≤ ν(σ) ≤´
[σ]A

(g + 1) dµ, which also shows ν satisfies the absolute-continuity condition of formula (5.1). If N(ε) is
scaled to be 1, then ν is a probability measure.

(3) implies (1): Let M(σ) = ν(σ)/µ([σ]A). Then M(x �A k) ≥
´
[x�Ak]A

g dµ

µ([x�Ak]A) , which converges to ∞.
(3) implies (4): Let Un = {x | g(x) > 2n}. By Markov’s inequality, µ(Un ∩ [σ]A) ≤

´
[σ]A

g dµ ≤ ν(σ).
(4) implies (5): Let Vn = Un.
(5) implies (3): Let g =

∑
n 1Vn

. �
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In this next proposition, I show the standard randomness implications (as in formula (3.1)) still hold.

Proposition 5.6. Let (X , µ) be a computable probability space. If x ∈ X is Martin-Löf random, then x
is computably random (with respect to every cell decomposition A). If x ∈ X is computably random (with
respect to a cell decomposition A), then x is Schnorr random, and hence Kurtz random.

Proof. The statement on Martin-Löf randomness follows from the bounded Martin-Löf test (Theorem 5.3 (4)).
For the last statement, assume x is not Schnorr random. If x is an unrepresented point or in a null cell,

then x is not computably random by Definition 5.4. Else, there is some Vitali cover (Vn) where
∑
n µ(Vn)

is computable and (Vn) Vitali-covers x. Define ν : 2<ω → [0,∞) as ν(σ) =
∑
n µ(Vn ∩ [σ]A). Then clearly,

µ(Vn ∩ [σ]A) ≤ ν(σ) for all n and σ. By the Vitali cover test (Theorem 5.3 (5)), it is enough to show that ν
is a computable measure. It is straightforward to verify that ν(σ0)+ν(σ1) = ν(σ). As for the computability
of ν; notice ν(σ) is lower semicomputable for each σ since µ is a computable probability measure (see
Definition 3.2). Then since ν(ε) =

∑
n µ(Vn) is computable, ν is a computable measure. �

Theorem 5.7. The definition for computable randomness does not depend on the choice of cell decomposi-
tion.

Proof. Before giving the details, here is the main idea. It suffices to convert a test with respect to one
cell decomposition A to another test which covers the same points, but is with respect to a different cell
decomposition B. In order to do this, take a bounding measure ν with respect to A (which is really a measure
on 2ω) and transfer it to an actual measure π on X . Then transfer π back to a bounding measure κ with
respect to B. In order to guarantee that this will work, we will assume ν satisfies the absolute-continuity
condition of formula 5.1, which ensures that π exists and is absolutely continuous with respect to µ.

Now I give the details. Assume x ∈ X is not computably random with respect to the cell decomposition
A of the space. Let B be another cell decomposition. If x is an unrepresented point or in a null cell, then x
is not a Kurtz random point of (X , µ), and by Proposition 5.6, x is not computably random with respect to
B.

So assume x is neither an unrepresented point nor in a null cell. By condition (4) of Theorem 5.3 there
is some Martin-Löf test (Un) bounded by a probability measure ν such that (Un) covers x. Further, ν can
be assumed to satisfy the absolute-continuity condition in formula (5.1).

Claim. There is a computable probability measure π on X defined by π([σ]A) = ν(σ) which is absolutely
continuous with respect to µ, i.e. every µ-null set is a π-null set.

Proof of claim. This is basically the Carathéodory extension theorem. The collection {[σ]A}σ∈2<ω is essen-
tially a semi-ring. A semi-ring contains ∅, is closed under intersections, and for each A,B in the semi-ring,
there are pairwise disjoint sets C1, . . . , Cn in the semi-ring such that Ar B = C1 ∪ . . . ∪ Cn. To make this
collection a semi-ring which generates the Borel sigma-algebra, add every µ-null set and every set which is
µ-a.e. equal to [σ]A for some σ.

Define π([σ]A) = ν(σ) and π(∅) = 0 and similarly for the µ-a.e. equivalent sets. (This is well defined since
if [σ]A = [τ ]A µ-a.e. then by the absolute continuity condition, ν(σ) = ν(τ), and similarly if µ([σ]A) = 0,
then ν(σ) = 0.) Now, it is enough to show π is a pre-measure, specifically that it satisfies countable additivity.
Assume for some pairwise disjoint family {Ai} and some B, both in the semi-ring, that B =

⋃
iAi. If B is

µ-null, then each Ai is as well. By the definition of π on µ-null sets, we have π(B) = 0 =
∑
i π(Ai). If B

is not µ-null, then B = [τ ]A µ-a.e. for some τ and each Ai of positive µ-measure is µ-a.e. equal to [σi]A for
some σi � τ . For each k, let Ck = [τ ]≺r

⋃k−1
i=0 [σi]

≺, which is a finite union of basic open sets in 2ω. Let Dk

be the same union as Ck but replacing each [σ]≺ with [σ]A. Then by the absolute continuity condition,

π(B)−
k−1∑
i=0

π(Ai) = ν(τ)−
k−1∑
i=0

ν(σi) = ν(Ck) =

ˆ
Dk

h dµ

Since [τ ]A =
⋃
i[σi]A µ-a.e., the right-hand-side goes to zero as k → ∞. So π is a pre-measure and may be

extended to a measure by the Carathéodory extension theorem.
Similarly by approximation, π satisfies π(A) ≤

´
A
h dµ for all Borel sets A and hence is absolutely

continuous with respect to µ.
To see π is a computable probability measure on X , take a Σ0

1 set U . By Proposition 4.7, there is a c.e.,
prefix-free set {σi} of finite strings such that U =

⋃
i[σi]A µ-a.e. (and so π-a.e. by absolute continuity). As
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this union is disjoint, π(U) =
∑
i π([σi]A) =

∑
i ν(σi) µ-a.e. and so π(U) is lower-semicomputable. Since

π(X ) = 1, π is a computable probability measure. This proves the claim. �

Let π be as in the claim. Since π is absolutely continuous with respect to µ, any a.e. decidable set of µ is
an a.e. decidable set of π. In particular, the measures π([τ ]B) are computable from τ . Now transfer π back
to a measure κ : 2<ω → [0,∞) using κ(σ) = π([σ]B). This is a computable probability measure since π([σ]B)
is computable.

Last, we show the Martin-Löf test (Un) is bounded by κ with respect to the cell decomposition B. To see
this, fix τ ∈ 2<ω and take the c.e., prefix-free set {σi} of finite strings such that [τ ]B =

⋃
i[σi]A µ-a.e. (and

so π-a.e.). Then κ(τ) =
∑
i ν(σi), and for each n,

µ(Un ∩ [τ ]B) =
∑
i

µ(Un ∩ [σj ]A) ≤
∑
i

2−nν(σi) = 2−nκ(τ). �

Theorem 5.3 is just a sample of the many equivalent definitions for computable randomness. I conjecture
that the other known characterizations of computable randomness, see for example Downey and Hirschfelt
[14, Section 7.1], can be extended to arbitrary computable Polish spaces using the techniques above. As
well, other test characterizations for Martin-Löf randomness can be extended to computable randomness
by “bounding the test” with a computable measure or martingale. (See Section 6 for an example using
machines.) Further, the proof of Theorem 5.7 shows that the bounding measure ν can be assumed to be a
measure on X , instead of 2ω, under the additional condition that A is a cell decomposition for both (X , µ)
and (X , ν). Similarly, we could modify the martingale test to assume M is a martingale on (X , µ) (in the
sense of probability theory) with an appropriate filtration.

Actually, the above ideas can be used to show any L1-bounded a.e. computable martingale (in the sense of
probability theory) converges on computable randoms if the filtration converges to the Borel sigma-algebra
(or even a “computable” sigma-algebra) and the L1-bound is computable. This can be extended to (the
Schnorr layerwise-computable representatives of) L1-computable martingales as well. The proof is beyond
the scope of this paper and will be published separately.

In Section 11, I give ideas on how computable randomness can be defined on an even broader class of
spaces, and also on non-computable probability spaces. I end this section by showing that Definition 5.4 is
consistent with the usual definitions of computable randomness on 2ω, Σω, and [0, 1].

Example 5.8. Consider a computable probability measure µ on 2ω. It is easy to see that computable
randomness in the sense of Definition 5.4 with respect to the natural cell decomposition is equivalent to
computable randomness on 2ω as defined in Definition 2.3. Since Definition 5.4 is invariant under the choice
of cell decomposition (Theorem 5.7), the two definitions agree on (2ω, µ).

Example 5.9. Consider a computable probability measure µ on Σω where Σ = {a0, . . . , ak−1} is a finite
alphabet. It is natural to define a martingale M : Σω → [0,∞) as one satisfying the fairness condition

M(σa0)µ(σa0) + · · ·+M(σak−1)µ(σak−1) = M(σ)µ(σ)

for all σ ∈ Σ<ω (along with the impossibility condition from Definition 2.2). A little thought reveals that
by systematically grouping and upgrouping cylinder sets M can be turned into a binary martingale which
succeeds on the same points. For example, given a martingale M on 3ω, one may first split [σ]≺ into [σ0]≺

and Aσ = [σ1]≺ ∪ [σ2]≺. Define,

M(Aσ) =
M(σ1)µ(σ1) +M(σ2)µ(σ2)

µ ([σ1]≺ ∪ [σ2]≺)

and notice the fairness condition is still satisfied,

M(σ0)µ(σ0) +M(Aσ)µ(Aσ) = M(σ)µ(σ).

In the next step, one may split Aσ into [σ1]≺ and [σ2]≺ to give

M(σ1)µ(σ1) +M(σ2)µ(σ2) = M(Aσ)µ(Aσ).

This grouping and ungrouping of cylinder sets forms a (binary) cell decomposition A on (3ω, µ). If M was
first given the savings property, this new martingale succeeds on the same points. It follows that x ∈ 3ω is
computably random in the natural sense if and only if it is computably random as in Definition 5.4.
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Example 5.10. Let ([0, 1], λ) be the space [0, 1] with the Lebesgue measure. Let Ai = {x ∈ [0, 1] |
the ith binary digit of x is 1}. Then A = (Ai) is a generator of ([0, 1], λ) and [σ]A = [0.σ, 0.σ+ 2−|σ|) a.e. A
little thought reveals that x ∈ ([0, 1], λ) is computably random (in the sense of Definition 5.4) if and only if
the binary expansion of x is computably random in (2ω, λ) with the fair-coin measure. This is the standard
definition of computable randomness on ([0, 1], λ). Further, using a base b other than binary gives a different
generator, for example let Abi+j = {x ∈ [0, 1] | the ith b-ary digit of x is j} where 0 ≤ j < b. Yet, the
computably random points remain the same. Hence computable randomness on ([0, 1], λ) is base invariant
[12, 37] . (The proof of Theorem 5.7 has similarities to the proof of Brattka, Miller and Nies [12], but as
mentioned in the introduction, there are also key differences.) Also see Example 7.11.

More examples are given at the end of Section 7.

6. Machine characterizations of computable and Schnorr randomness

In this section I give machine characterizations of computable and Schnorr randomness for computable
probability spaces. This has already been done for Martin-Löf randomness.

Recall the following definition and fact.

Definition 6.1. A machineM is a partial-computable functionM : 2<ω → 2<ω. A machine is prefix-free
if domM is prefix-free. The prefix-free Kolmogorov complexity of σ relative to a machine M is

KM (σ) = inf
{
|τ |
∣∣ τ ∈ 2<ω and M(τ) = σ

}
.

(There is a non-prefix-free version of complexity as well.)

Theorem 6.2 (Schnorr (see [14, Theorem 6.2.3])). A string x ∈ (2ω, λ) is Martin-Löf random if and only
if for all prefix-free machines M ,

(6.1) lim sup
n→∞

(n−KM (x � n)) <∞.

Schnorr’s theorem has been extended to both Schnorr and computable randomness.

Definition 6.3. For a machine M define the semimeasure measM : 2<ω → [0,∞) as

measM (σ) =
∑

τ∈domM
M(τ)�σ

2−|τ |.

A machineM is a computable-measure machine if measM (ε) is computable. A machineM is a bounded
machine if there is some computable-measure ν such that measM (σ) ≤ ν(σ) for all σ ∈ 2<ω.

Downey, Griffiths, and LaForte [13] showed that x ∈ (2ω, λ) is Schnorr random precisely if formula (6.1)
holds for all prefix-free, computable-measure machines. Mihailović (see [14, Thereom 7.1.25]) showed that
x ∈ (2ω, λ) is computably random precisely if formula (6.1) holds for all prefix-free, bounded machines.

Schnorr’s theorem was extended to all computable probability measures on Cantor space by Gács [16].
Namely, replace formula (6.1) with

lim sup
n→∞

(
− log2 µ([x � n]≺)−KM (x � n)

)
<∞.

If µ([x � n]) = 0 for any n then we say this inequality is false. Hoyrup and Rojas [22] extended this to
any computable probability space. Here, I do the same for Schnorr and computable randomness (I include
Martin-Löf randomness for completeness).

Theorem 6.4. Let (X , µ) be a computable probability space and x ∈ X .
(1) x ∈ X is Martin-Löf random precisely if

(6.2) lim sup
n→∞

(− log2 µ([x �A n]A)−KM (x �A n)) <∞.

holds for all prefix-free machines M . (Again, we say formula (6.2) is false if µ([x � n]) = 0 for any
n.)

(2) x ∈ X is computably random precisely if formula (6.2) holds for all prefix-free, computable-measure
machines M .

(3) x ∈ X is Schnorr random precisely if formula (6.2) holds for all prefix-free, bounded machines M .
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Further, (1) through (3) hold even if M is not assumed to be prefix-free, but only that measM (ε) ≤ 1.

Proof. Slightly modify the proofs of Theorems 6.2.3, 7.1.25, and 7.1.15 in Downey and Hirschfelt [14],
respectively. �

7. Computable randomness and isomorphisms

In this section I give another piece of evidence that the definition of computable randomness in this paper
is robust, namely that the computably random points are preserved under isomorphisms between computable
probability spaces. I also show a one-to-one correspondence between cell decompositions of a computable
measure space and isomorphisms from that space to the Cantor space.

Definition 7.1. Let (X , µ) and (Y, ν) be computable probability spaces.
(1) A partial map T : X → Y is said to be partial computable if there is a partial-computable function

F : Nω → Nω which given a Cauchy-name for x ∈ X returns the Cauchy-name for T (x), and further,
the domain of T is maximal for this h, i.e. x ∈ dom(T ) if and only if for all a, b ∈ Nω which are
Cauchy-names for x, then a, b ∈ dom(F ) and both F (a) and F (b) are Cauchy-names for the same
point in Y.

(2) A partial map T : (X , µ) → Y is said to be a.e. computable if it is partial computable with a
measure-one domain.

(3) (Hoyrup and Rojas [22]) A partial map T : (X , µ) → (Y, ν) is said to be an (a.e. computable)
morphism if it is a.e. computable and measure preserving, i.e. µ(T−1(A)) = ν(A) for all measurable
A ⊆ Y .

(4) (Hoyrup and Rojas [22]) A pair of partial maps T : (X , µ)→ (Y, ν) and S : (Y, ν)→ (X , µ) are said
to be an (a.e. computable) isomorphism if both maps are (a.e. computable) morphisms such that
(S ◦ T )(x) = x for µ-a.e. x ∈ X and (T ◦ S)(y) = y for ν-a.e. y ∈ Y. We also say T : (X , µ)→ (Y, ν)
is an isomorphism if such an S exists.

Note that this definition of isomorphism differs slightly from that of Hoyrup and Rojas [22]. They require
that the domain must also be dense.

The definition of partial-computable map above basically says that the domain of T is determined by
its algorithm and not some artificial restriction on the domain. This next proposition shows that this is
equivalent to saying that the domain is Π0

2.

Proposition 7.2. A partial map T : X → Y is partial computable if and only if the domain of T is a Π0
2 set

and T is computable on its domain.

Proof. The proof of the first direction is straightforward. (For example, given F : Nω → Nω, then dom(F )
is Π0

2 in Nω [39, Theorem 2.2.4]. Also, the set of X -Cauchy-names is Π0
1 and the set of pairs (a, b) such that

a ≈X b (i.e. a and b are Cauchy-names for the same point in X ) and h(a) 6≈Y h(b) is ∆0
2.)

For the other direction, let D be the Π0
2 domain. Then D =

⋂
n Un where (Un) is a computable sequence

of Σ0
1 sets. Let F : Nω → Nω be the partial-computable map from Cauchy-names to Cauchy-names that

computes T . Modify F (a) to return an nth approximation only if a “looks like” a Cauchy-name for some
x ∈ Un. �

This next corollary says a.e. computable maps are defined on Kurtz randoms. Further, Kurtz randomness
can be characterized by a.e. computable maps, and a.e. computable maps are determined by their values on
Kurtz randoms. (For a different characterization of Kurtz randomness using a.e. computable funcitons, see
Hertling and Yongge [19].)

Corollary 7.3. Let (X , µ) be a computable measure space and Y a computable Polish space. For x ∈ X , x
is Kurtz random if and only if it is in the domain of every a.e. computable map T : (X , µ) → Y. Further,
two a.e. computable maps are a.e. equal if and only if they agree on Kurtz randoms.

Proof. For the first part, if x is Kurtz random, it avoids all null Σ0
2 sets, and by Proposition 7.2 is in the

domain of every a.e. computable map. Conversely, x is not Kurtz random, it is in some null Σ0
2 set A. But

the partial map T : (X , µ) → Y with domain X r A and T (x) = 1 for x ∈ X r A is a.e. computable by
Proposition 7.2.

For the second part, let T, S : (X , µ)→ Y be a.e. computable maps that are a.e. equal. The set {x ∈ X |
T (x) 6= S(x)} is a null Σ0

2 set in X . Conversely, if T (x) = S(x) for all Kurtz randoms x, then T = S a.e. �
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Remark 7.4 (Preimages of Σ0
1 sets). The preimage of a Σ0

1 set under an computable map is still Σ0
1. Unfor-

tunately, the preimage of a Σ0
1 set under an partial computable map is not always Σ0

1. However, it is equal to
the intersection of a Σ0

1 set and the domain of the map. (We leave the details to the reader.) As an abuse of
notation, if T : X → Y is a partial-computable map and V ⊆ Y is Σ0

1, we will define T−1(V ) to be a Σ0
1 set

U ⊆ X such that for all x ∈ X , x ∈ U ∩ dom(T )⇔ T (x) ∈ V . (We leave it to the reader to verify that such
a U can be computed uniformly from the codes for T and V .) Also, if T : (X , µ)→ (Y, ν) is a morphism, it
is easy to see that µ(U) = ν(V ). We can similarly define the preimage of a Π0

1,Σ
0
2,Π

0
2 set to remain in the

same point class. Last, if B ⊆ Y is a.e. decidable with a.e. decidable pair (V0, V1), then define T−1(B) to be
the a.e. decidable set A given by the pair (T−1(V0), T−1(V1)).

This next proposition shows that for many common notions of randomness are preserved by morphisms,
and the set of randoms is preserved under isomorphisms.

Proposition 7.5. If T : (X , µ) → (Y, ν) is a morphism and x ∈ X is Martin-Löf random, then T (x) is
Martin-Löf random. The same is true of Kurtz and Schnorr randomness. Hence, if T is an isomorphism,
then x is Martin-Löf (respectively Kurtz, Schnorr) random if and only if T (x) is.

Proof. Assume T (x) is not Martin-Löf random in (Y, ν). Then there is a Martin-Löf test (Un) in (Y, ν)
which covers T (x). Let Vn = T−1(Un) for each n. By Remark 7.4 (Vn) is a Martin-Löf test in (X , µ) which
covers x. Hence x is not Martin-Löf random in (X , µ).

Kurtz and Schnorr randomness follow similarly, namely the inverse image of a test is still a test. �

(Bienvenu and Porter have pointed out to me the following partial converse to Proposition 7.5, which was
first proved by Shen—see [7]. If T : (X , µ) → (Y, ν) is a morphism and y is Martin-Löf random for (Y, ν),
then there is some x that is Martin-Löf random for (X , µ) such that T (x) = y.)

In Corollary 9.7, we will see that computable randomness is not preserved by morphisms. However, just
looking at the previous proof gives a clue. There is another criterion to the tests for computable randomness
besides complexity and measure, namely the cell decompositions of the space. The “inverse image” of cell
decomposition may not be a cell decomposition.

However, if T is an isomorphism the situation is much better. Indeed, these next three propositions show
a correspondence between isomorphisms and cell decompositions. We say two cell decompositions A and B
of a computable probability space (X , µ) are almost-everywhere equal if [σ]A = [σ]B a.e. for all σ ∈ 2<ω.
Recall, two isomorphisms are almost-everywhere equal if they are pointwise a.e. equal.

Proposition 7.6 (Isomorphisms to cell decompositions). If T : (X , µ) → (Y, ν) is an isomorphism and B
is a cell decomposition of (Y, ν), then there is an a.e. unique cell decomposition A (which we will notate as
T−1(B)) such that nameA(x) = nameB(T (x)) for µ-a.e. x. This cell decomposition A is given by [σ]A =
T−1([σ]B). In particular, every isomorphism T : (X , µ) → (2ω, ν) induces a cell decomposition A such that
nameA(x) = T (x) for µ-a.e. x.

Proof. We will show [σ]A = T−1([σ]B) defines a cell decomposition A. By Remark 7.4, T−1([σ]B) is Σ0
1

uniformly from σ. Clearly, µ([ε]A) = 1, [σ0]A ∩ [σ1]A = ∅, and [σ0]A ∪ [σ1]A = [σ]A µ-a.e. Finally, take a
Σ0

1 set U ⊆ X . By Proposition 4.8, it is enough to show there is some c.e. set {σi} such that U =
⋃
i[σi]A

µ-a.e. Let S be the inverse isomorphism to T . Then define V = S−1(U). By Remark 7.4, V is Σ0
1 in Y and

T−1(V ) = U µ-a.e. By Proposition 4.7 there is some c.e. set {σi} such that V =
⋃
i[σi]B ν-a.e. and therefore

U = T−1(V ) =
⋃
i T
−1([σi]B) =

⋃
i[σi]A µ-a.e. Therefore, [σ]A = T−1([σ]B) defines a cell decomposition A.

For µ-a.e. x, x ∈ dom(T )∩dom(nameA). Then for all n, x ∈ [x �A n]A = T−1([x �A n]B). By Remark 7.4,
T (x) ∈ [x �A n]B. Therefore nameB(T (x)) = nameA(x).

For Y = 2ω, let B be the natural cell decomposition of (2ω, ν), then [σ]B = [σ]≺ for all σ ∈ 2<ω. Therefore
for µ-a.e. x, nameA(x) = nameB(T (x)) = T (x).

To show the cell decomposition A is unique, assume A′ is another cell decomposition such that for µ-a.e.
x, the A-name and A′-name of x are both the B name of T (x). Then [σ]A = [σ]A′ µ-a.e. for all σ ∈ 2<ω. �

Proposition 7.7 (Cell decompositions to isomorphisms). Let (X , µ) be a computable probability space with
cell decomposition A. There is a unique computable probability space (2ω, µA) such that nameA : (X , µ) →
(2ω, µA) is an isomorphism. Namely, µA(σ) = µ([σ]A).
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Proof. If such a measure µA exists, it must be unique. Indeed, since nameA is then measure-preserving, µA
must satisfy µA(σ) = µ(name−1A ([σ]≺)) = µ([σ]A), which uniquely defines µA.

It remains to show the map nameA : (X , µ) → (2ω, µA) which maps x to its A-name is an isomorphism.
Clearly, µA is a computable measure since µ([σ]A) is computable. The map nameA which takes x to its
A-name is measure preserving for cylinder sets and therefore for all sets by approximation. The map from
x to x �A n is a.e. computable. Indeed, wait for x to show up in one of the sets [σ]A where |σ| = n. Hence
the map from x to its A-name is also a.e. computable. So nameA is a morphism. (As an extra verification,
clearly dom(nameA) is a Π0

2 measure-one set.)
The inverse of nameA will be the map S from (a measure-one set of) A-names y ∈ 2ω to points x ∈ X

such that nameA(x) = y. The algorithm for S will be similar to the algorithm given by the proof of the Baire
category theorem (see [10]). Pick y ∈ 2ω. We compute S(y) by a back-and-forth argument. Assume τ ≺ y.
Recall, [τ ]A is Σ0

1. We can enumerate a sequence of pairs (ai, ki) where each ai is a simple point of X and
each ki > |τ | such that [τ ]A =

⋃
iB(ai, 2

−ki). Further, by Proposition 4.7, we have that for each i, there is a
c.e. set {σij} such that B(ai, 2

−ki) =
⋃
j [σ

i
j ]A µ-a.e. (We may assume |σij | > |τ | for all i, j.) Given y, compute

the Cauchy-name of S(y) as follows. Start with τ1 = y � 1. Then search for σij ≺ y. If we find one, let
b1 = ai be the first approximation. Now continue with τ2 = σij , and so on. This gives a Cauchy-name (bn).
The algorithm will fail if at some stage it cannot find any σij ≺ y. But then y ∈ [τ ]≺r

⋃
i

⋃
j [σ

j
i ]
≺, which by

the definition of µA, is a µA-measure-zero set since [τ ]A =
⋃
i

⋃
j [σ

j
i ]A µ-a.e. Hence S is a.e. computable.

By the back-and-forth algorithm, nameA(S(y)) = y for all y ∈ dom(S). To show S(nameA(x)) = x
a.e., assume x ∈ dom(nameA). Consider the back-and-forth sequence created by the algorithm: [τn]A ⊇
B(bn, 2

−kn) ⊇ [τn+1]A ⊇ . . .. For all n, we have τn ≺ nameA(x), then x ∈ [τn]A for all n. So x = limn→∞ bn =
S(nameA(x)). Since S−1([σ]A) = S−1(name−1A ([σ]≺)) = [σ]≺ µA-a.e., S is a measure-preserving map, and
hence a morphism. Therefore, nameA is an isomorphism. �

These last two propositions show that there is a one-to-one correspondence between cell decompositions A
of a space (X , µ) and isomorphisms of the form T : (X , µ)→ (2ω, ν). This next proposition shows a further
one-to-one correspondence between isomorphisms T : (X , µ)→ (Y, ν) and S : (2ω, µA)→ (2ω, νB).

Proposition 7.8 (Pairs of cell decompositions to isomorphisms). Let (X , µ) and (Y, ν) be computable prob-
ability spaces with cell decompositions A and B. Let µA be as in Proposition 7.7, and similarly for νB. Then
for every isomorphism T : (X , µ) → (Y, ν) there is an a.e. unique isomorphism S : (2ω, µA) → (2ω, νB) and
vice versa, such that S maps nameA(x) to nameB(T (x)) for µ-a.e. x ∈ X . In other words the following
diagram commutes for µ-a.e. x ∈ X .

(X , µ) (2ω, µA)

(Y, ν) (2ω, νB)

nameA

T S

nameB

Further we have the following.
(1) If (X , µ) equals (Y, ν), then T is the identity isomorphism precisely when S is the isomorphism which

maps nameA(x) to nameB(x).
(2) Conversely, S is the identity isomorphism (and hence µA equals νB) precisely when A = T−1(B) (as

in Proposition 7.6).

Proof. Given T , let S = name−1A ◦ T ◦ nameB, and similarly to get T from S. Then the diagram clearly
commutes. A.e. uniqueness follows since the maps are isomorphisms.

If A = T−1(B) is induced by T , then by Proposition 7.6, nameA(x) = nameB(T (x)) which makes S the
identity map. But since S is an isomorphism, µA and νB must be the same measure.

The rest follows from “diagram chasing”. �

Now we can show computable randomness is preserved by isomorphisms.

Theorem 7.9. Isomorphisms preserve computable randomness. Namely, given an isomorphism T : (X , µ)→
(Y, ν), then x ∈ X is computably random if and only if T (x) is.
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Proof. Assume T (x) is not computably random. Fix an isomorphism T : (X , µ) → (Y, ν). Let B be a cell
decomposition of (Y, ν). Take a bounded Martin-Löf test (Un) on (Y, ν) with bounding measure κ with
respect to B which covers T (x). By Proposition 7.6 there is a cell decomposition A = T−1(B) on (X , µ) such
that [σ]A = T−1([σ]B) for all σ ∈ 2<ω. Define Vn = T−1(Un). Then (Vn) is a bounded Martin-Löf test on
(X , µ) bounded by the same measure κ with respect to A. Indeed,

µ(Vn ∩ [σ]A) = ν(Un ∩ [σ]B) ≤ 2−nκ(σ).

Also, (Vn) covers x, hence x is not computably random. �

Using Theorem 7.9, we can explore computable randomness on various spaces.

Example 7.10 (Computably random vectors). Let ([0, 1]d, λ) be the cube [0, 1]d with the Lebesgue measure.
The following is a natural isomorphism from ([0, 1]d, λ) to (2ω, λ). First, represent (x1, . . . , xd) ∈ [0, 1]d by
the binary sequence of each component; then interleave the binary sequences. By Theorem 7.9, (x1, . . . , xd)
is computably random if and only if the sequence of interleaved binary sequences is computably random.
(This definition of computable randomness on [0, 1]d was proposed by Brattka, Miller and Nies [12].)

Example 7.11 (Base invariance). Let λ3 be the uniform measure on 3ω. Consider the natural isomorphism
T2,3 : (2ω, λ) → (3ω, λ3) which identifies the binary and ternary expansions of a real. This is an a.e. com-
putable isomorphism, so x ∈ [0, 1] is computably random if and only if T2,3(x) is computably random. We
say a randomness notion (defined on (bω, λb) for all b ≥ 2, see Example 5.9) is base invariant if this
property holds for all base pairs b1, b2.

Example 7.12 (Computably random closed set). Consider the space F(2ω) of closed sets of 2ω. This space
has a topology called the Fell topology. The subspace F(2ω)r {∅} can naturally be identified with trees on
{0, 1} with no dead branches. Barmpalias et al. [3] gave a natural construction of these trees from ternary
strings in 3ω. Axon [2] showed the corresponding map T : 3ω → F(2ω) r {∅} is a homeomorphism between
3ω and the Fell topology restricted to F(2ω)r {∅}. Hence F(2ω)r {∅} can be represented as a computable
Polish space, and the probability measure on F(2ω)r{∅} induced by T can be represented as a computable
probability measure. Since T is an a.e. computable isomorphism, the computably random closed sets of this
space are then the ones whose corresponding trees are constructed from computably random ternary strings
in 3ω.

Example 7.13 (Computably random structures). The last example can be extended to a number of random
structures—infinite random graphs, Markov processes, random walks, random matrices, Galton-Watson
processes, etc. The main idea is as follows. Assume (Ω, P ) is a computable probability space (the sample
space), X is the space of structures, and T : (Ω, P )→ X is an a.e. computable map (a random structure). This
induces a measure µ on X (the distribution of T ). If, moreover, T is an a.e. computable isomorphism between
(Ω, P ) and (X , µ), then the computably random structures of (X , µ) are exactly the objects constructed from
computably random points in (Ω, P ).

In this next theorem, an atom (or point-mass) is a point with positive measure. An atomless proba-
bility space is one without atoms.

Theorem 7.14 (Hoyrup and Rojas [22]). If (X , µ) is an atomless computable probability space, then there
is a isomorphism T : (X , µ)→ (2ω, λ). Further, T is computable from (X , µ).

Corollary 7.15. If (X , µ) is an atomless computable probability space, then x ∈ X is computably random if
and only if T (x) is computably random for any (and all) isomorphisms T : (X , µ)→ (2ω, λ).

Proof. Follows from Theorems 7.9 and 7.14. �

Example 7.16 (Computably random Brownian motion). Consider the space C([0, 1]) of continuous func-
tions from [0, 1] to R endowed with the Wiener probability measureW (i.e. the measure of Brownian motion).
The space C([0, 1]) with the uniform norm is a computable Polish space (where the simple points are the
rational piecewise linear functions). The measure W is an atomless computable probability measure. Let
T : (2ω, λ)→ (C([0, 1]),W ) be the isomorphism from Theorem 7.9. (Kjos-Hanssen and Nerode [24] construct
a similar map ϕ directly for Brownian motion.) By Corollary 7.15, the computably random Brownian mo-
tions (i.e. the computably random points of (C([0, 1]),W )) are exactly the forward image of the computable
random sequences under the map T .
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Corollary 7.17. Given a measure (X , µ) with cell decomposition A, x ∈ X is computably random if and
only if nameA(x) is computably random in (2ω, µA) where µA(σ) = µ([σ]A).

Proof. Use Proposition 7.7 and Theorem 7.9. �

8. Generalizing randomness to computable probability spaces

In this section, I explain the general method of this paper which generalizes a randomness notion from
(2ω, λ) to an arbitrary computable measure space.

Imagine we have an arbitrary randomness notion called X-randomness defined on (2ω, λ). (Here X is
a place-holder for a name like “Schnorr” or “computable”; it has no relation to being random relative to
an oracle.) The definition of X-random should either explicitly or implicitly assume we are working in the
fair-coin measure. The method can be reduced to three steps.

Step 1: Generalize X-randomness to computable probability measures on 2ω. This is self-explanatory,
although not always trivial.

Step 2: Generalize X-randomness to computable probability spaces. There are three equivalent
ways to do this for a computable probability space (X , µ).

(1) Replace all instances of [σ]≺ with [σ]A, x � n with x �A n, etc. in the definition of X-random from
Step 1. Call this X∗-random with respect to A. Then define x ∈ X to be X∗-random on (X , µ) if
it is X∗-random with respect to all cell decompositions A (ignoring unrepresented points of A and
points in null cells —which are not even Kurtz random). (Compare with Definition 5.4.)

(2) Define x ∈ X to be X∗-random on (X , µ) if for each cell decomposition A, nameA(x) is X-random on
(2ω, µA), where µA is given by µA(σ) = µ([σ]A). (Compare with Corollary 7.17.)

(3) Define x ∈ X to be X∗-random on (X , µ) if for all isomorphisms T : (X , µ) → (2ω, ν) we have that
T (x) is X-random on (2ω, ν). (Compare with Theorem 7.9.)

The description of (1) is a bit vague, but when done correctly it is the most useful definition. The definition
given by (1) should be equivalent to that given by (2) because (1) is essentially about A-names. To see that
(2) and (3) give the same definition, use Propositions 7.6 and 7.7, which show that isomorphisms to 2ω are
maps to A-names and vice versa.

Step 3: Verify that the new definition is consistent with the original. It may be that on (2ω, λ)
the class of X∗-random points is strictly smaller that the class of the original X-random points. There are
three equivalent techniques to show that X∗-randomness on 2ω is equivalent to X-randomness. The three
techniques are related to the three definitions from Step 2.

(1) Show the definition of X∗-randomness is invariant under the choice of cell decomposition. (Compare
with Theorem 5.7.)

(2) Show that for every two cell decompositions A and B, the A-name of x is X-random on (2ω, µA) if
and only if the B-name is X-random on (2ω, µB). (Compare with Corollary 7.17.)

(3) Show that X-randomness is invariant under all isomorphisms from (2ω, µ) to (2ω, ν). (Compare with
Theorem 7.9.)

Again, these three approaches are equivalent. Assuming the definition is stated correctly, (1) and (2) say
the same thing.

To see that (3) implies (2), assume X-randomness is invariant under isomorphisms on 2ω. Consider two
cell decompositions A and B of the same space (X , µ). By Proposition 7.8 (1), there is an isomorphism
S : (2ω, µA)→ (2ω, µB) which maps A-names to B-names, i.e. this diagram commutes.

(X , µ) (2ω, µA)

(2ω, µB)

nameA

nameB
S

Since S preserves X-randomness, nameA(x) is X-random on (2ω, µA) if and only if and only if nameB(x) is
X-random on (2ω, µB).
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To see that (2) implies (3), assume that (2) holds. Consider an isomorphism S : (2ω, µ) → (2ω, ν).
Let (X , κ) be any space isomorphic to (2ω, µ). Then (X , κ) is also isomorphic to (2ω, ν). So there are
isomorphisms T1 and T2 such that this diagram commutes.

(X , κ) (2ω, µ)

(2ω, ν)

T1

T2
S

By Proposition 7.6 there are two cell decompositions A and B on (X , κ) such that T1 = nameA and (2ω, µ) =
(2ω, κA). The same holds for B and ν. Then we have this commutative diagram.

(X , κ) (2ω, κA)

(2ω, κB)

nameA

nameB
S

Consider any X-random y ∈ (2ω, κA). It is the A-name of some x ∈ (X , κ), in other words y = nameA(x).
By (2), we also have that nameB(x) is X-random. So S preserves X-randomness.

Notice that Step 3 implies that some randomness notions cannot be generalized without making the set of
randoms smaller. This is because they are not invariant under isomorphisms between computable probability
measures on 2ω. Yet, even when the X∗-randoms are a proper subclass of the X-randoms, the X∗ randoms
are an interesting class of randomness. In particular we have the following.

Proposition 8.1. X∗-randomness is invariant under isomorphisms.

In some sense the X∗-randoms are the largest such subclass of the X-randoms. (One must be careful how
to say this, since X-randomness is only defined on measures (2ω, µ).)

Proof. Let T : (X , µ) → (Y, ν) be an isomorphism and let x ∈ (X , µ) be X∗-random. Let B be a arbitrary
cell decomposition of (Y, ν). Since B is arbitrary, it is enough to show that nameB(T (x)) is X-random in
(2ω, νB). By Proposition 7.6 and Proposition 7.8 (2) we have a cell decomposition A on (X , µ) such that
(2ω, µA) = (2ω, νB) and the following diagram commutes.

(X , µ) (2ω, µA)

(Y, ν) (2ω, νB)

nameA

T

nameB

Since x ∈ (X , µ) is X∗-random, nameA(x) is X-random in (2ω, µA) = (2ω, νB). Since the diagram commutes,
nameB(T (x)) is also X-random in (2ω, νB). Since B is arbitrary, x is X-random. �

In the case that (X , µ) is an atomless computable probability measure, we could instead define x ∈ X to
be XF-random if T (x) is random for all isomorphisms T : (X , µ) → (2ω, λ). We can then skip Step 1, and
in Step 3 it is enough to check that X-randomness is invariant under automorphisms of (2ω, λ). Similarly,
XF-randomness would be invariant under isomorphisms.

9. Betting strategies and Kolmogorov-Loveland randomness

In the next two sections I consider how the method of Section 8 can be applied to Kolmogorov-Loveland
randomness, which is also defined through a betting strategy on the bits of the string.

Call a betting strategy on bits nonmonotonic if the gambler can decide at each stage which coin flip to
bet on. For example, maybe the gambler first bets on the 5th bit. If it is 0, then he bets on the 3rd bit; if it is
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1, he bets on the 8th bit. (Here, and throughout this paper we still assume the gambler cannot bet more than
what is in his capital, i.e. he cannot take on debt.) A string x ∈ 2ω is Kolmogorov-Loveland random
or nonmonotonically random (in (2ω, λ)) if there is no computable nonmonotonic betting strategy on
the bits of the string which succeeds on x.

Indeed, this gives a lot more freedom to the gambler and leads to a strictly stronger notion than computable
randomness. While it is easy to show that every Martin-Löf random is Kolmogorov-Loveland random, the
converse is a difficult open question.

Question 9.1. Is Kolmogorov-Loveland randomness the same as Martin-Löf randomness?

On one hand, there are a number of results that show Kolmogorov-Loveland randomness is very similar
to Martin-Löf randomness. On the other hand, it is not even known if Kolmogorov-Loveland randomness is
base invariant, and it is commonly thought that Kolmogorov-Loveland randomness is strictly weaker than
Martin-Löf randomness. For the most recent results on Kolmogorov-Loveland randomness see [14, Section
7.5], [32, Section 7.6], and [5, 23, 29].

In this section I will ask what type of randomness one gets by applying the method of Section 8 to
Kolmogorov-Loveland randomness. The result is Martin-Löf randomness. However, this does not prove that
Kolmogorov-Loveland randomness is the same as Martin-Löf randomness, since I leave as an open question
whether Kolmogorov-Loveland randomness (naturally extended to all computable probability measures on
2ω) is invariant under isomorphisms. The presentation of this section follows the three-step method of
Section 8.

9.1. Step 1: Generalize to other computable probability measures µ on 2ω. Kolmogorov-Loveland
randomness can be naturally extended to computable probability measures on 2ω. Namely, bet as usual, but
adjust the payoffs to be fair. For example, if the gambler wagers 1 unit of money to bet that x(4) = 1 (i.e.
the 4th bit is 1) after seeing that x(2) = 1 and x(6) = 0, then if he wins, the fair payoff is

µ (x(4) = 0 | x(2) = 1, x(6) = 0)

µ (x(4) = 1 | x(2) = 1, x(6) = 0)
.

where µ(A | B) = µ(A ∩B)/µ(B) represents the conditional probability of A given B. If the gambler loses,
he loses his unit of money.

(Note, we could also allow the gambler to bet on a bit he has already seen. Indeed, he will not win
any money. This would, however, introduce “partial randomness” since the gambler could delay betting on
a new bit. Nonetheless, Merkle [27] showed that partial Kolmogorov-Loveland randomness is the same as
Kolmogorov-Loveland randomness.)

As with computable randomness, we must address division by zero. The gambler is not allowed to bet on
a bit if it has probability zero of occurring (conditioned on the information already known). Instead we just
declare the elements of such null cylinder sets to be not random.

9.2. Step 2: Generalize Kolmogorov-Loveland randomness to computable probability measures.
Pick a computable probability measure (X , µ) with generator A = (An). Following the second step of the
method in Section 8, the gambler bets on the bits of the A-name of x. A little thought reveals that what the
gambler is doing when she bets that the nth bit of the A-name is 1 is betting that x ∈ An. For any generator
A, if we add more a.e. decidable sets to A, it is still a generator. Further, since we are not necessary betting
on all the sets in A, we do not even need to assume A is anything more than a collection of a.e. decidable
sets. (This is the key difference between computable randomness.)

Hence, we may think of the betting strategy as follows. The gambler chooses some a.e. decidable set A
and bets that x ∈ A (or x has property A). (Again, the gambler must know that µ(A) > 0 before betting
on it.) Then if she wins, she gets a fair payout, and if she loses, she loses her bet. Call such a strategy a
computable betting strategy. Call the resulting randomness betting randomness. (A more formal
definition is given in Remark 9.4.)

I argue that betting randomness is the most general randomness notion that can be described by a finitary
fair-game betting scenario with a “computable betting strategy.” Indeed, consider these three basic properties
of such a game:



COMPUTABLE RANDOMNESS AND BETTING 22

(1) The gambler must be able determine (almost surely) some property of x that she is betting on, and
this determination must be made with only the information about x that she has gained during the
game.

(2) A bookmaker must be able to determine (almost surely) if this property holds of x or not.
(3) If the gambler wins, the bookmaker must be able to determine (almost surely) the fair payoff amount.

The only way to satisfy (2) is if the property is a.e. decidable. Then (3) follows since a.e. decidable sets have
finite descriptions and their measures are computable. To satisfy (1), the gambler must be able to compute
the a.e. decidable set only knowing the results of her previous bets. This is exactly the computable betting
strategy defined above.1

Now recall Schnorr’s Critique that Martin-Löf randomness does not have a “computable-enough” defini-
tion. The definition Schnorr had in mind was a betting scenario. In particular, Schnorr gave a martingale
characterization of Martin-Löf randomness that is the same as that of computable randomness, except
the martingales are only lower semicomputable [35] (see also [14, 32]). If Martin-Löf randomness equals
Kolmogorov-Loveland randomness, then some believe that this will give a negative answer to Schnorr’s Cri-
tique; namely, we will have found a computable betting strategy that describes Martin-Löf randomness.
While, there is some debate as to what Schnorr meant by his critique (and whether he still agrees with it),
we think the following is a worthwhile question.

Can Martin-Löf randomness be characterized using a finitary fair-game betting scenario with
a “computable betting strategy”?

The answer turns out to be yes. As this next theorem shows, betting randomness is equivalent to Martin-
Löf randomness. Hitchcock and Lutz [21] defined a generalization of martingales (as in the type used to
define computable randomness on 2ω) called martingale processes. In the terminology of this paper, a
martingale process is basically a computable betting strategy on 2ω with the fair-coin measure which
bets on decidable sets (i.e. finite unions of basic open sets). Merkle, Mihailović and Slaman [28] showed that
Martin-Löf randomness is equivalent to the randomness characterized by martingale processes. The proof of
this next theorem is basically the Merkle et al. proof.2

Theorem 9.2. Betting randomness and Martin-Löf randomness are the same.

Proof. Fix a computable probability space (X , µ). To show Martin-Löf randomness implies betting ran-
domness, we use a standard argument which was employed by Hitchcock and Lutz [21] for martingale
processes. Assume x ∈ X is not betting random. Namely, there is some computable betting strategy B
which succeeds on x. Without loss of generality, the starting capital of B may be assumed to be 1. Let
Un = {x ∈ X | B wins at least 2n on x}. Each Un is uniformly Σ0

1 in n, and by a standard result in mar-
tingale theory µ(Un) ≤ C2−n where C = 1 is the starting capital.3 Hence (Un) is a Martin-Löf test which
covers x, and x is not Martin-Löf random.

For the converse, the argument is basically the Merkle, Mihailović and Slaman [28] proof for martingale
processes.

First, let use prove a fact. Assume a gambler starts with a capital of 1 and U ⊂ X is some Σ0
1 set such

that µ(U) ≤ 1/2. Then there is a computable way that the gambler can bet on an unknown x ∈ X such
that he doubles his capital (to 2) if x ∈ U (actually, some Σ0

1 set a.e. equal to U). The strategy is as follows.
Choose a cell decomposition A of (X , µ). Since U is Σ0

1, by Proposition 4.7 there is a c.e., prefix-free set
{σi} of finite strings such that U =

⋃
i[σi]A a.e. We may assume µ([σi]A) > 0 for all i. To start, the gambler

bets on the set [σ0]A with a wager such that if he wins, his capital is 2. If he wins, he is done. If he loses,
then he bets on the set [σ1]A, and so on. Since the set {σi} may be finite, the gambler may not have a set to

1In the three properties we did not consider the possibility of betting on a collection of three or more pair-wise disjoint events
simultaneously. This is not an issue since one may break up the betting and bet on each event individually (see Example 5.9).
There is also a more general possibility of having a computable or a.e. computable wager function over the space X . This can be
made formal using the martingales in probability theory, but it turns out that it does not change the randomness characterized
by such a strategy. By an unpublished result of Ed Dean [personal communication], any L1-bounded layerwise-computable
martingale converges on Martin-Löf randomness (which, as we will see, is equivalent to betting randomness).

2Downey and Hirschfelt [14, footnote on p. 269] also remark that the Merkle et al. result gives a possible answer to Schnorr’s
critique.

3This follows from Kolmogorov’s inequality (proved by Ville, see [14, Theorem 6.3.3 and Lemma 6.3.15 (ii)]) which is a
straight-forward application of Doob’s submartingale inequality (see for example [40, Section 16.4]).
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bet on at certain stages. This is not an issue, since he may just bet on the whole space. This is functionally
equivalent to not betting at all since he wins no money.

The only difficulty now is showing that his capital remains nonnegative. Merkle et al. leave this an exercise
for the reader; I give an intuitive argument. It is well-known in probability theory that in a betting strategy
one can combine bets for the same effect. (Formally, this is the martingale stopping theorem—see [40].)
Hence instead of separately betting on [σ0]A, . . . , [σk]A the gambler will have the same capital as if he just
bet on the union [σ0]A ∪ . . . ∪ [σk]A. In the later case, the proper wager would be.

µ([σ0]A ∪ . . . ∪ [σk]A)

µ(X r ([σ0]A ∪ . . . ∪ [σk]A))
≤ 1,

The inequality follows from

µ([σ0]A ∪ . . . ∪ [σk]A) ≤ 1/2 ≤ µ(X r ([σ0]A ∪ . . . ∪ [σk]A)).

Hence the gambler never wagers (and so loses) more than his starting capital of 1.
Now, assume z ∈ X is not Martin-Löf random. Let (Uk) be a Martin-Löf test which covers z. We

may assume (Un) is decreasing. The betting strategy will be as follows which bets on some x ∈ X . Since
µ(U1) < 1/2 we can start with the computable betting strategy above which will reach a capital of 2 if
x ∈ U1. (Recall, we are not actually betting on U1, but the a.e. equal set

⋃
i[σi]A. This is not an issue, since

the difference is a null Σ0
2 set. If x is in the difference, then x is not computably random, and so not betting

random.)
Now, if the capital of 2 is never reached then x /∈ U1 and x is random. However, if the capital of 2 is

reached (in a finite number of steps) then we know that x ∈ [σ]A for some σ = σi (and no other). Further,
by the assumptions in the above construction, µ([σ]A) > 2−k for some k. Then we can repeat the first step,
but now we bet that x ∈ Uk+1 and attempt to double our capital to 4. Since µ(Uk+1 | [σ]A) ≤ 1/2, the
capital will remain positive.

Continuing this strategy for capitals of 8, 16, 32, . . . we have a computable betting strategy. If this strategy
succeeds on x, then x ∈ Uk for infinitely many k. Hence x is covered by (Uk) and is not Martin-Löf
random. �

Remark 9.3. Since there is a universal Martin-Löf test (Uk), there is a universal computable betting strategy.
(The null Σ0

2 set of exceptions can be handled by being more careful. Choose A to be basis for the topology,
and combine the null cells [σ]A with non-null cells [τ ]A.) However, note that this universal strategy is very
different from that of Kolmogorov-Loveland randomness. This is the motivation for the next section.

It is also possible to characterize Martin-Löf randomness by computable randomness. First I give a more
formal definition of computable betting strategy.

Remark 9.4. Represent a computable betting strategy as follows. There is a computably indexed family
of a.e. decidable sets {Aσ}σ∈2<ω . These represent the sets being bet on after the wins/loses characterized
by σ ∈ 2<ω. From this, we have a computably indexed family {Bσ}σ∈2<ω defined recursively by Bε = X ,
Bσ1 = Bσ ∩ Aσ and Bσ0 = Bσ ∩ (X r Aσ). This represents the known information after the wins/loses
characterized by σ ∈ 2<ω. It is easy to see that Bσ0∩Bσ1 = ∅ and Bσ0∪Bσ1 = Bσ a.e. Then a computable
betting strategy can be represented as a partial computable martingale M : 2<ω → [0,∞) such that

M(σ0)µ(Bσ0) +M(σ1)µ(Bσ1) = M(σ)µ(Bσ)

and M(σ) is defined if and only if µ(Bσ0) > 0. Again, M(σ) represents the capital after a state of σ
wins/losses. Say the strategy succeeds on x if there is some strictly-increasing chain σ0 ≺ σ1 ≺ σ2 ≺ . . .
from 2<ω such that lim supn→∞M(σn) =∞ and x ∈ Bσn for all n. Then x ∈ X is betting random if there
does not exists some {Aσ}σ∈2<ω and M as above which succeed on x.

Lemma 9.5. Fix a computable probability space (X , µ). For each computable betting strategy there is a
computable probability measure ν on 2ω, a morphism T : (X , µ) → (2ω, ν), and a computable martingale M
on (2ω, ν) such that if this betting strategy succeeds on x, then the martingale M succeeds on T (x). Hence
T (x) is not computably random on (2ω, ν).

Proof. Fix a computable betting strategy. Let M : 2<ω → [0,∞) and {Bσ}σ∈2<ω be the as in Remark 9.4.
Then define (2ω, ν) by ν(σ) = µ(Bσ). Also, let T (x) map x to the y ∈ 2ω such that x ∈ By�n for all n. Then
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T is a morphism, M also represents a martingale on (2ω, ν), and if the betting strategy succeeds on x then
M succeeds on T (x). �

We now have the following characterizations of Martin-Löf randomness.

Corollary 9.6. For a computable probability space (X , µ), the following are equivalent for x ∈ X .
(1) x is Martin-Löf random.
(2) No computable betting strategy succeeds on x (i.e. x is betting random).
(3) For all isomorphisms T : (X , µ) → (2ω, ν), T (x) is “Kolmogorov-Loveland random” on (2ω, ν) (i.e.

the randomness from Section 9.1).
(4) For all morphisms T : (X , µ)→ (2ω, ν), T (x) is computably random on (2ω, ν).

Proof. The equivalence of (1) and (2) is Theorem 9.2. (1) implies both (3) and (4) since morphisms preserve
Martin-Löf randomness (Proposition 7.5).

(4) implies (2): Use Lemma 9.5. Assume x is not betting random. Then there is some morphism T such
that T (x) is not computable random.

(3) implies (2): Recall that the definition of betting randomness came from applying the method of
Section 8 to Kolmogorov-Loveland randomness. By method (3) of Step 2 in Section 8, x is betting random
if and only if (3) holds. (An alternate proof would be to modify Lemma 9.5.) �

Corollary 9.7. Computable randomness is not preserved under morphisms. (See comments after Proposi-
tion 7.5.)

Proof. It is well-known that there is an x ∈ 2ω which is computably random on (2ω, λ) but not Martin-Löf
random (see [14, 32]). Then by Corollary 9.6, there is some morphism T such that T (x) is not computably
random. �

Corollary 9.7 was also proved by Bienvenu and Porter [7].

9.3. Step 3: Is the new definition consistent with the former? To show that Martin-Löf randomness
equals Kolmogorov-Loveland randomness, we would need to show that “Kolmogorov-Loveland randomness”
for all computable probability measures on Cantor space (as in Section 9.1) is preserved by isomorphisms.
However, it is not even known if Kolmogorov-Loveland randomness on (2ω, λ) is base invariant (see Exam-
ples 5.10 and 7.11), so I leave this as an open question.

Question 9.8. Is Kolmogorov-Loveland randomness, as in Section 9.1, preserved under isomorphisms?

10. Endomorphism randomness

The generalization of Kolmogorov-Loveland randomness given in the last section was, in some respects,
not very satisfying. In particular, the definition of Kolmogorov-Loveland randomness on (2ω, λ) assumes
each event being bet on is independent of all the previous events, and further has conditional probability
1/2. Therefore, at the “end” of the gambling session, regardless of how much the gambler has won or lost,
he knows what x is up to a measure-zero set (where x is the string being bet on). This is in contrast to the
universal betting strategy given in the proof of Theorem 9.2 (see Remark 9.3), which only narrows x down
to a positive measure set when x is Martin-Löf random.

In this section, I now give a new type of randomness which behaves more like Kolmogorov-Loveland
randomness. This randomness notion can be defined using both morphisms and betting strategies.

Definition 10.1. Let (X , µ) be a computable probability space. An endomorphism on (X , µ) is a morphism
from (X , µ) to itself. Say x ∈ X is endomorphism random if for all endomorphisms T : (X , µ) → (X , µ),
we have that T (x) is computably random.

Notice the above definition is the same as that given in Corollary 9.6 (4), except that “morphism” is
replaced with “endomorphism”.

If the space is atomless, we have an alternate characterization.

Proposition 10.2. Let (X , µ) be a computable probability space with no atoms. Then x ∈ X is endomor-
phism random if and only if for all morphisms T : (X , µ)→ (2ω, λ), T (x) is computably random.
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Proof. Use that there is an isomorphism from (X , µ) to (2ω, λ) (Theorem 7.14) and that isomorphisms
preserve computable randomness (Theorem 7.9). �

Also, we can define endomorphism randomness using computable betting strategies as in the previous
section.

Definition 10.3. Let (X , µ) be an atomless computable probability space. Consider a computable betting
strategy B. Let {Aσ}σ∈2<ω , {Bσ}σ∈2<ω be as in Remark 9.4. Call the betting strategy B balanced if it only
bets on events with conditional probability 1

2 , conditioned on Bσ (the information known by the gambler at
after the wins/loses given by σ). In other words, µ(Aσ | Bσ) = 1/2. Call the betting strategy B exhaustive
if µ(Bσn)→ 0 for any strictly increasing chain σ0 ≺ σ1 ≺ . . .. In other words the measure of the information
known about x approaches 0.

Theorem 10.4. Let (X , µ) be an atomless computable probability space and x ∈ X . The following are
equivalent.

(1) x is endomorphism random.
(2) There does not exist a balanced computable betting strategy which succeeds on x.
(3) There does not exist an exhaustive computable betting strategy which succeeds on x.

Proof. (3) implies (2) since balanced betting strategies are exhaustive. For (2) implies (1), assume x is
not endomorphism random. Then there is some morphism T : (X , µ) → (2ω, λ) such that T (x) is not
computably random. Hence there is a computable martingale M which succeeds on T (x). We can also
assume this martingale is rational valued, so it is clear what bit is being bet on. This martingale on (2ω, λ)
can be pulled back to a computable betting strategy on (X , µ) (use the proof of Lemma 9.5, except in
reverse). This betting strategy is balanced since M is a balanced “dyadic” martingale.

For (1) implies (3), assume there is some computable, exhaustive betting strategy which succeeds on x.
Then from this strategy we can construct a morphism S : (X , µ) → ([0, 1], λ) recursively as follows. Each
Bσ will be mapped to an open interval (a, b) of length µ(Bσ). First, map S(Bε) = (0, 1). For the recursion
step, assume S(Bσ) = (a, b) of length µ(Bσ). Set S(Bσ0) = (a, a + µ(Bσ0)) and S(Bσ1) = (a + µ(Bσ0), b).
This function S is well-defined and computable since the betting strategy is exhaustive. Also, S is clearly
measure-preserving, so it is a morphism. Then using the usual isomorphism from ([0, 1], λ) to (2ω, λ), we
can assume S is a morphism to (2ω, λ). Moreover, the set of images S(Bσ) describes a cell decomposition A
of (2ω, λ), and the betting strategy can be pushed forward to give a martingale on (2ω, λ) with respect to A
(similar to the proof of Lemma 9.5). �

Now we can relate endomorphism randomness to Kolmogorov-Loveland randomness.

Corollary 10.5. On (2ω, λ), endomorphism randoms are Kolmogorov-Loveland randoms.

Proof. Every nonmonotonic, computable betting strategy on bits is a balanced betting strategy. Hence every
Kolmogorov-Loveland random is endomorphism random. �

Corollary 10.6. Let (X , µ) be a computable probability space with no atoms. Then x ∈ X is endomorphism
random if and only if for all morphisms T : (X , µ)→ (2ω, λ), T (x) is Kolmogorov-Loveland random.

Proof. If x is endomorphism random on (2ω, λ), then so is T (x). By Corollary 10.5, T (x) is Kolmogorov-
Loveland random. If T (x) is Kolmogorov-Loveland random for all morphisms T : (X , µ) → (2ω, λ), then
T (x) is computably random for all such T . Therefore, x is endomorphism random. �

Corollary 10.7. Computable randomness is not preserved by endomorphisms.

Proof. It is well-known that there exists a computable random x ∈ (2ω, λ) which is not Kolmogorov-Loveland
random (see [14, 32]). Then x is not endomorphism random, and is not preserved by some endomorphism. �

Also, clearly each betting random (i.e. each Martin-Löf random) is an endomorphism random.
I will add one more randomness notion. Say x ∈ 2ω is automorphism random (on (2ω, λ)) if for all

automorphisms T : (2ω, λ) → (2ω, λ), T (x) is Kolmogorov-Loveland random. It is clear that on (2ω, λ) we
have.

(10.1) Martin-Löf → Endomorphism
→ Automorphism → Kolmogorov-Loveland
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We now have a more refined version of Question 9.1.

Question 10.8. Do any of the implications in formula (10.1) reverse?4

11. Further directions

Throughout this paper I was working with a.e. computable objects: a.e. decidable sets, a.e. decidable cell
decompositions, a.e. computable morphisms, and Kurtz randomness—which as I showed, can be defined by
a.e. computability. Recall a.e. decidable sets are only sets of µ-continuity, and a.e. computable morphisms
are only a.e. continuous maps.

The “next level” is to consider the computable Polish spaces of measurable sets and measurable maps.
The a.e. decidable sets and a.e. computable maps are dense in these spaces. Hence, in the definitions, one
may replace a.e. decidable sets, a.e. decidable cell decompositions, a.e. computable morphisms, and Kurtz
randomness with effectively measurable sets, decompositions into effectively measurable cells, effectively
measurable measure-preserving maps, and Schnorr randomness. (This is closely related to the work of
Pathak, Simpson and Rojas [33]; Miyabe [30]; Hoyrup and Rojas [personal communication]; and the author
on “Schnorr layerwise-computability” and convergence for Schnorr randomness.) Indeed, the results of this
paper remain true, even with those changes. However, some proofs change and I will give the results in a
later paper.

An even more general extension would be to ignore the metric space structure all together. Any standard
probability space space can be described uniquely by the measures of an intersection-closed class of sets, or a
π-system, which generates the sigma-algebra of the measure. From this, one can obtain a cell decomposition.
In the case of a computable probability space (Definition 3.2), each a.e. decidable generator closed under
intersections is a π-system. The definition of computable randomness on such a general space would be the
analog of the definition in this paper.

In particular, this would allow one to define computable randomness on effective topological spaces with
measure [20]. In this case the π-system is the topological basis. This also allows one to define Schnorr,
Martin-Löf, and weak-2 randomness as well, namely replace, say, Σ0

1 sets in the definition with effective
unions of sets in the π-system. This agrees with most definitions of, say, Martin-Löf randomness in the
literature.5

Using π-systems also allows one to define “abstract” measure spaces without points. The computable
randoms then become “abstract points” given by generic ultrafilters on the Boolean algebra of measurable
sets a la Solovay forcing.

Another possible generalization is to non-computable probability spaces (on computable Polish spaces).
This has been done by Levin [25] and extended by others (see [17, 4]) for Martin-Löf randomness in a
natural way using uniform tests which are total computable functions from measures to tests. Possibly a
similar approach would work for computable randomness. For example, on 2ω, a uniform test for computable
randomness would be a total computable map µ 7→ ν where ν is the bounding measure for µ. This map
is enough to define a uniform martingale test for each µ given by ν(σ)/µ(σ). (I showed in Section 2 that
this martingale is uniformly computable.) Uniform tests for Schnorr and computable randomness have been
used by Miyabe [31].

Also, what other applications for a.e. decidable sets are there in effective probability theory? The method
of Section 8 basically allows one to treat every computable probability space as the Cantor space. It is already
known that the indicator functions of a.e. decidable sets can be used to define L1-computable functions [30].

However, when it comes to defining classes of points, the method of Section 8 is specifically for defining
random points since such a definition must be a subclass of the Kurtz randoms. Under certain circumstances,
however, one may be able to use related methods to generalize other definitions. For example, is the following
a generalization of K-triviality to arbitrary computable probability spaces? Let K = KM where M is a

4Recently, and independently of my work, Tomislav Petrovic has claimed that there are two balanced betting strategies on
(2ω , λ) such that if a real x is not Martin-Löf random, then at least one of the two strategies succeeds on x. In particular,
Petrovic’s result, which is in preparation, would imply that endomorphism randomness equals Martin-Löf randomness. Further,
via the proof of Theorem 10.4, this result would extend to every atomless computable probability space.

5There are some authors [2, 20] that define Martin-Löf randomness via open covers, even for non-regular topological spaces.
This will not necessarily produce a measure-one set of random points, where as my method will. All these methods agree for
spaces with an effective regularity condition.
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universal prefix-free machine. Recall, a string x ∈ 2ω is K-trivial (on (2ω, λ)) if there is some b such that

∀n K(x � n) ≤ K(n) + b

where K(n) = K(0n) and 0n is the string of 0’s of length n. Taking a clue from Section 6, call a point
x ∈ (X , µ) K-trivial if there is some cell decomposition A and some b such that for all n,

K(x �A n) < K(− logµ([x �A n]A)) + b.

(Here we assume K(∞) =∞.) Does the A-name or Cauchy-name of x satisfy the other nice degree theoretic
properties of K-triviality, such as being low-for-(X , µ)-random? (Here I say a Turing degree d is low-for-
(X , µ)-random if when used as an oracle, d does not change the class of Martin-Löf randoms in (X , µ). Say
a point x ∈ (X , µ) is low-for-(X , µ)-random if its Turing degree is.)

If it is a robust definition, how does it relate to the definition of Melnikov and Nies [26] generalizing K-
triviality to computable Polish spaces (as opposed to probability spaces)? I conjecture that their definition
is equivalent to being low-for-(X , µ)-random on every computable probability measure µ of X .

Last, isomorphisms and morphisms offer a useful tool to classify randomness notions. One may ask what
randomness notions (defined for all computable probability measures on 2ω) are invariant under morphisms
or isomorphisms? By Proposition 7.5, Martin-Löf, Schnorr, and Kurtz randomness are invariant under
morphisms. (This can easily be extended to n-randomness, weak n-randomness, and difference randomness.
See [14, 32] for definitions.) However, by Proposition 9.6 (4), there is no randomness notion between Martin-
Löf randomness and computable randomness that is invariant under morphisms. Is there such a randomness
notion between Schnorr randomness and Martin-Löf randomness? Further, by Theorem 7.9 computable
randomness is invariant under isomorphisms. André Nies pointed out to me that this is not true of partial
computable randomness since it it not invariant under permutations [5]. In general what can be said of full-
measure, isomorphism-invariant sets of a computable probability space (X , µ)? The notions of randomness
connected to computable analysis will most likely be the ones that are invariant under isomorphisms.6
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ALGORITHMIC RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY

Abstract. In this paper, a number of almost-everywhere convergence theorems are looked at using com-
putable analysis and algorithmic randomness. These include various martingale convergence theorems and
almost-everywhere differentiability theorems. General conditions are given for when the rate of convergence
is computable and for when convergence takes place on the Schnorr random points. Examples are provided
to show that these almost-everywhere convergence theorems characterize Schnorr randomness.

Contents

1. Introduction 30
1.1. Summary of results 31
1.2. A comment on the martingale results 33
1.3. A comment on measurable functions in computable analysis 34
1.4. Outline of the paper 34
1.5. Acknowledgments 35
2. Background 35
2.1. Notation 35
2.2. Computable analysis 35
2.3. Schnorr randomness 36
3. Functions and convergence in measure theory 36
3.1. Integrable functions, measurable functions, and measurable sets 37
3.2. Effective modes of convergence 39
3.3. Convergence on Schnorr randoms 40
3.4. Properties of effectively measurable functions 41
4. Differentiability 43
4.1. The dyadic Lebesgue differentiation theorem 43
4.2. The Lebesgue differentiation theorem 45
4.3. Corollaries to the Lebesgue differentiation theorem 47
5. Martingales in computable analysis 49
5.1. Conditional expectation 49
5.2. L1-computable martingales 50
6. The Lévy 0-1 law and uniformly integrable martingales 51
6.1. Some martingale convergence theorems 51
7. More martingale convergence results 53
7.1. Martingale convergence results 53
8. Submartingales and supermartingales 56
9. More differentiability results 57
9.1. Signed measures and Radon-Nikodym derivatives 57
9.2. Functions of bounded variation 60
10. The ergodic theorem 61
11. Backwards martingales and their applications 62
12. Characterizing Schnorr randomness 66
12.1. Monotone convergence, the Lebesgue differentiation theorem, absolutely continuous functions

and measures, and uniformly integrable martingales 66
12.2. Singular martingales, functions of bounded variation, and measures 67
12.3. Backwards martingales, the strong law of large numbers, de Finetti’s theorem, and the ergodic

theorem 69
12.4. Convergence of test functions to 0 70
Appendix A. Proofs from Section 3. 70

29



RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY 30

A.1. Useful facts 70
A.2. Integrable functions, measurable functions, and measurable sets 71
A.3. Effective modes of convergence 71
A.4. Convergence on Schnorr randomness 73
A.5. Properties of effectively measurable functions 75
References 79

1. Introduction

The subjects of analysis and probability contain many convergence theorems of the following form.

A.E. Convergence Theorem. If a sequence of functions (fn)n∈N satisfies some property P , then (fn)
converges to some integrable function f almost everywhere as n → ∞. (Alternatively, (fr)r>0 converges to
f as r → 0.)

Consider the following closely related examples.

Example 1.1. (Lebesgue differentiation theorem) If g : [0, 1]→ R is integrable, then 1
2r

´ x+r

x−r g(y) dy → g(x)
for almost every x as r → 0.

Example 1.2. (Lebesgue’s theorem) If f : [0, 1]→ R is a function of bounded variation function, then f is
differentiable almost everywhere. (In this case, fr(x) = g(x+r)−g(x−r)

2r .)

Example 1.3. (Doob’s martingale convergence theorem) If (Mn) is a martingale and ‖Mn‖L1 < ∞, then
Mn converges almost everywhere to an integrable function.

Example 1.4. (Ergodic theorem) If g is integrable, and T is a measure preserving transformation, then
1
n

∑
k<n g(T k(x)) converges almost everywhere. If T is ergodic, then 1

n

∑
k<n g(T k(x)) →

´
g(x) dx for

almost every x as n→∞.

For all the above theorems, it is natural to ask the following computability questions:

Question 1. Is the rate of convergence effective (in the parameters of the theorem)?

It is well known what it means for a sequence of functions to converge effectively in normed spaces like L1

and L2. A similar characterization can be given for almost everywhere convergence: a sequence of functions
(fn) converges to f with a effective rate of almost everywhere convergence if given ε > 0 and δ > 0, we can
compute some m ∈ N such that |fn(x)− f(x)| < ε for all n ≥ m and all x except on a set of size less than δ.

Some a.e. convergence theorems have effective rates of convergence. For example, Avigad, Gerhardy, and
Towsner [2] showed that the rate of almost everywhere convergence in the ergodic theorem is computable
from T and g when T is ergodic. I will show a similar result for the Lebesgue differentiation theorem.

However, not all the theorems have computable rates of convergence. This is the case for Lebesgue’s
theorem, Doob’s martingale convergence theorem, and the ergodic theorem (in the nonergodic setting).
However, when certain additional conditions are assumed, one can then compute a rate of convergence.

Question 2. If the rate of convergence is not effective, what are additional conditions that guarantee an
effective rate of convergence.

For example, Avigad et al. [2] showed that the rate of convergence in the ergodic theorem is computable
from g, T and the limit g∗. (Note, it is not trivial to compute the rate of convergence from the limit of a
series. For example, it is easy to construct a computable sequence of constant functions which converge to 0,
but do not do so effectively.) In the L2-case, Avigad et al. [2] showed the rate of convergence is computable
from g, T , and the L2-norm of g.

In this paper I will give similar results for Lebesgue’s theorem, Doob’s martingale convergence theorem,
and others. All the results follow the pattern in this observation.1

1It is important to note that Observation 1 is not itself a theorem or metatheorem. Indeed, there are (contrived) cases where
it fails to hold—let fn be some computable sequence of constant functions converging to zero with a noncomputable rate of
convergence.
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Observation 1. For most a.e. convergence theorems, a rate of almost everywhere convergence is computable
from the sequence (fn), the limit f , and the bounds infn ‖fn‖L1 , supn ‖fn‖L1 .

In many cases, such as in the ergodic theorem, infn ‖fn‖L1 and supn ‖fn‖L1 are computable from the
sequence (fn) and the limit f , and therefore they are not explicitly needed. In other cases, such as the
Lebesgue differentiation theorem, all three extra conditions are naturally computable from the parameters
of the theorem (which is why the rate of convergence in the Lebesgue differentiation theorem is computable
without additional assumptions). Further, if we work in L2 instead of L1, we do not need the limit f , just
its L2-norm ‖f‖L2 .

Question 3. At which points does the sequence converge (under various computability conditions)?

For example, if we consider the Lebesgue differentiation theorem, we can ask at which x does 1
2r

´ x+r

x−r f(y) dy

converge for all f computable in the L1-norm. Notice the set of such x is measure one, since there are only
countably-many f computable in the L1-norm.

This question was first asked by Pathak [39] using the tools of algorithmic randomness. Algorithmic
randomness classifies measure-one sets of points that behave randomly with respect to “computable tests”.
Pathak showed that convergence happens on all Martin-Löf random x. She left it as an open question whether
this could be strengthened to a larger class of points. In this paper, I will show that it can be strengthened
to Schnorr randomness, and that this is the best possible. In other words, the Lebesgue differentiation
theorem characterizes Schnorr randomness. This same result was independently and concurrently discovered
by Pathak, Rojas, and Simpson [40].

Similar investigations have been made into randomness and the ergodic theorem [50, 37, 25, 21, 16, 3, 17],
randomness and Lebesgue’s theorem [10, 8, 18], and randomness and martingale convergence [47]. In this
paper, I expand on these results, specifically looking at Schnorr randomness. Indeed, I ask this converse to
Question 3.

Question 4. Which conditions guarantee convergence on Schnorr randoms?

It turns out the answers to Questions 1 and 2 provide an answer, when using this informal observation—
which will be made formal in Lemma 3.19.

Observation 2. Effective a.e. convergence implies convergence on Schnorr randoms.

This will allow us to “kill two birds with one stone”, by focusing on questions in computable analysis
(Questions 1 and 2), we can answer questions in algorithmic randomness (Questions 3 and 4) for free.
However, to show that one cannot strengthen Schnorr randomness to a larger class of random points, we
will need an example for each theorem showing that if x is not Schnorr random, then there are computable
parameters for which convergence does not happen on x. I provide a number of such examples.

1.1. Summary of results. The results of this paper are diverse and the paper is organized by the tools and
lemmas needed to prove the theorems. Table 1 is a summary of all the known convergence theorems which
characterize Schnorr randomness. The first column is a short description of the convergence theorem. The
second column is a reference to the result showing that the sequence in question converges on all Schnorr
randoms. The third column is a reference to the result showing that if a point is not Schnorr random,
then there exists such a sequence which fails to converge on that point. If a cell is blank, that direction is
subsumed by a stronger result in another row. A “?” means this direction is still an open question (and so
that row may not really be a characterization of Schnorr randomness). Some of the results are due to others,
or were independently discovered. I provide footnotes in these cases.

Table 1: Characterizations of Schnorr randomness by a.e. convergence
theorems. (See Section 1.1 for an explanation of this table.)

Convergence of martingales: Mn →M∞

(Mn) is L1-comp.; M∞ is L1-comp.; supn ‖Mn‖L1 is computable Thm. 7.11
(Mn) is uniformly integrable, L1-comp.; M∞ is L1-computable Lem. 6.5
(Mn) is nonnegative, singular (M∞ = 0), L1-computable Lem. 7.4
(Mn) is nonnegative, singular (M∞ = 0), computable Thm. 12.9
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(Mn) is L2-computable; supn ‖Mn‖L2 = ‖M∞‖L2 is computable Cor. 6.8
(Mn) is nonneg., unif. int., dyadic, computable; ‖M∞‖L2 is computable Thm. 12.7

Convergence of super/submartingales: Mn →M∞

(Mn) is L1-comp., super/submart.; limn ‖Mn‖L1 is comp.; M∞ is L1-comp. ?2

(Mn) is nonnegative, L1-comp., supermart.; M∞ is L1-comp. Thm. 8.1
(Mn) is nonnegative, L1-comp., supermart.; M∞ = 0 Lem. 7.4 Thm. 12.9
(Mn) is nonneg., L1-comp., submart.; M∞ is L1-comp.; supn ‖Mn‖L1 is comp. Thm. 8.5 Thm. 12.6

Convergence of reverse martingales: M−n →M−∞

(M−n) is L1-computable; M−∞ is L1-computable Thm. 11.2
(M−n) is L2-computable; ‖M−∞‖L2 is L2-computable Thm. 11.2
(M−n) is bounded, a.e. computable; M∞ is computable constant Cor. 12.17

Lebesgue differentiation theorem:
´
B(x,r)

f(y) dy/λ(B(x, r))→ f(x)

f is L1-computable Thm. 4.10, [40]3 Thm. 12.3
f is L2-computable
f is bounded, L1-computable [40, 18]

Lebesgue density theorem: λ(A ∩B(x, r))/λ(B(x, r))→ 1A(x)

A is effectively measurable Cor. 4.15 [40, 18]4

A is effectively closed; λ(A) is computable Cor. 4.15 ?

Differentiability of functions f (with derivative Df and total variation V (f))

f is comp. on dense set, bounded var.; Df is L1-comp.; V (f) is comp. Thm. 9.19
f is comp., bounded variation; Df is L1-comp.; V (f) is comp. Cor. 9.20
f is absolutely continuous; Df is L1-comp. Cor. 4.17, [18]5

f is computable, absolutely continuous; ‖Df‖L2 is computable Cor. 6.9
f is increasing, effectively absolutely continuous, comp.; ‖Df‖L2 is comp. Cor. 12.56

f is increasing, Lipschitz, effectively absolutely continuous [18]
f is computable, increasing, singular (Df = 0 a.e.) Cor. 12.15
f is comp. on dense set, increasing, singular, only contains jumps Cor. 12.12

ν(B(x, r))/λ(B(x, r)→ dν
dλ

(x) for signed measures ν

ν is computable; dν
dλ

is L1-comp.; ‖ν‖TV is comp. Thm. 9.12
ν is absolutely continuous, computable, positive; dν

dλ
is L1-comp. Cor. 4.20 Cor. 12.4

ν is continuous, singular ( dν
dλ

= 0 a.e.), computable, positive Cor. 12.14
ν is atomic, singular ( dν

dλ
= 0 a.e.), computable, positive Cor. 12.11

Ergodic theorem: 1
n

∑
k<n f ◦ T

n → f∗

f is L1-comp.; T is effectively measurable; f∗ is L1-comp. Thm. 10.27

f is L2-comp.; T is effectively measurable; ‖f∗‖L2 is comp. Thm. 10.2
f is a.e. comp.; T is a.e. comp., ergodic [21]

Monotone convergence thm: Convergence of (fn) increasing

(fn) is L1-comp.; ‖fn‖L1 is computable Prop. 8.2
(fn) is L2-comp.; ‖fn‖L2 is computable Prop. 8.2

2See Problem 8.6.
3This was independently discovered by this author and by Pathak, Rojas, and Simpson [40].
4While neither paper makes this explicit, the example function f they each give for the Lebesgue differentiation theorem is

0, 1 valued and therefore the indicator function of some effectively measurable set A.
5This result is a direct corollary of the effective Lebesgue differentiation theorem (Thm. 4.10, [40]) that was noticed by this

author and Freer, Kjos-Hanssen, Nies, and Stephan [18].
6This also follows from the Lipschitz result of Freer, Kjos-Hanssen, Nies, and Stephan [18] in the next line.
7Theorem 10.2 is a summary of the results from [2, 21, 22, 40] with a few gaps filled in.
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(fn) is computable; ‖fn‖L2 is computable Thm. 12.28

ϕn → f for test functions, dyadic averages, trigonometric polynomials

ϕn is fast Cauchy sequence of test functions in L1 (or in measure) Prop. 3.18, [40]9

ϕn is fast Cauchy sequence of test functions converging to 0 in L2 Thm. 12.18
f (n) are dyadic averages; f is L1-computable Prop. 4.6 Thm. 12.6
σn(f) are trig. polynomials (from Fejér kernel); f is L1(T→ C)-comp. Cor. 4.22 ?

SLLN, de Finetti’s thm: Convergence of 1
n

∑
k<nXk for integrable random variables (Xn)

(Xn) is L1-comp., exchangeable (de Finetti’s theorem) Cor. 11.10
(Xn) is L1-computable, i.i.d. (strong law of large numbers) Cor. 11.6 Cor. 12.17

1.2. A comment on the martingale results. A significant portion of this paper concerns martingales.
Informally, martingales are formalizations of gambling strategies—a martingale (Mn) is a sequence of random
variables representing the capital of a gambling strategy at time n. They are widely used in probability theory
and analysis, as well as in algorithmic randomness. In algorithmic randomness, martingales can be used to
characterizes a number of randomness notions, including Schnorr randomness, computable randomness, and
Martin-Löf randomness (see [12, 38]). However, there is a difference between how martingales are treated in
algorithmic randomness and how they are used in probability theory and analysis.

For one, in algorithmic randomness, the martingales are (usually) gambling strategies on coin flips. Such
martingales, which I will call dyadic martingales, are a specific instance of the more general martingales used
in probability theory. By considering, this larger class of martingales, we can ask new questions that could
not be asked of dyadic martingales.

Another difference is that algorithmic randomness is more concerned with success than convergence. We
say that a martingale (Mn) succeeds on x if lim supnMn(x) = ∞, that is the strategy Mn wins arbitrar-
ily large amounts of money on x. Of the three most common randomness notions—Schnorr randomness,
computable randomness, and Martin-Löf randomness—only computable randomness has a well-known char-
acterization in terms of martingale convergence instead of martingale success.10

For example, consider the following three characterization of Schnorr randomness. The characterization
in (2) is the classical martingale characterization of Schnorr randomness and (3) and (4) are new character-
izations which follow from results in this paper (Theorem 7.11, Corollary 6.8, and Theorem12.6). (Note, in
(3) and (4) we could replace convergence with success and the characterization would still hold.)

Example 1.5. Recall, a computable dyadic martingale is a computable function M : 2<ω → R such that
1
2M(σ0) + 1

2M(σ1) = M(σ). Use the notation Mn(x) = M(x � n). The following are equivalent.
(1) x ∈ 2N is Schnorr random (on the fair-coin measure).
(2) (Classical) For all nonnegative computable dyadic martingales (Mn) and all computable unbounded

functions h : N→ N, we have that Mn(x) ≤ h(n) for all but finitely-many n.
(3) (New) For all nonnegative, computable dyadic martingales (Mn) such that limnMn is L1-computable,

we have that Mn(x) converges.
(4) (New) For all nonnegative, computable dyadic martingales (Mn) such that supn ‖Mn‖L2 is com-

putable, we have that Mn(x) converges.

However, the results in this paper go far beyond giving a new dyadic martingale characterization of Schnorr
randomness. Not only does algorithmic randomness provide us with new tools to study computable analysis;
computable analysis also provides us new tools to study algorithmic randomness. Martingales are one such

8This is closely related to the Schnorr integral tests of Miyabe [34].
9This is also a theorem of Pathak, Rojas, and Simpson [40] where the test functions are rational polynomials and convergence

is in L1.
10There are not-widely-known published results, which when combined, give a martingale-convergence characterization of

Martin-Löf randomness. Takahashi [47] showed that Doob’s upcrossing inequality implies that computable martingales (that
is, martingales in the more general sense of probability theory where (Mn) is a computable sequence of computable functions)
converge on Martin-Löf randoms. Edward Dean [personal communication], independently, showed that layerwise-computable
martingales converge on Martin-Löf randoms. Merkle, Mihaloviç, and Slaman [33] gave an example of a computable martingale
(in the more general sense of probability theory) which only converges on Martin-Löf randoms.



RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY 34

tool. This paper makes significant use of martingales to prove results. One particular type of martingale not
previously used in algorithmic randomness is the backwards martingale. To demonstrate their usefulness
in algorithmic randomness, I use backwards martingales to prove a new variation of Kučera’s theorem in
Corollary 11.4: for every Schnorr random x ∈ 2N and for every closed set C of positive computable measure,
C contains some y which equals x, except that finitely many bits are permuted.

1.3. A comment on measurable functions in computable analysis. There is an inherent challenge
when working with measurable functions in a computable setting. Measurable functions are not continuous
and therefore it is difficult to describe them as maps in a computable manner. Moreover, a single function
is best thought of as an equivalence class (under a.e. equivalence). It is challenging to talk about the value
f(x) when f is an equivalence class (an important issue when asking about which points an a.e. convergence
theorem holds!).

Some authors have taken the easy approach and restricted their attention to computable functions or
a.e. computable functions. However, in this paper, I will try to express the theorems in full generality. In
order to do this, I will need a clear theory of effectively measurable functions. The space of measurable
functions (modulo a.e. equivalence) is naturally described as a computable metric space under a suitable
metric which characterizes convergence in measure. The class of effectively measurable functions includes
the real-valued functions computable in the L1-norm as well as other functions (which may not even be
integrable or real-valued).

In order to talk about the valuation of functions, each effectively measurable function f will have a
representative f̃ . This representative is well-defined (and well-behaved) on Schnorr random points. This
representative approach is adapted from Pathak [39] (and is also used in Pathak, Rojas, and Simpson [40]).
The same ideas are implicit in the reverse mathematics of the dominated convergence theorem [58, 1].

Other computable approaches to measurable sets and functions include [43, 4, 31, 20, 56, 55, 15, 24,
34]. These approaches are essentially the same as either the metric space approach or the representative
approach used in this paper. The biggest difference is that some representative approaches—e.g. layerwise
computability [24]—only define f on the Martin-Löf random points. However, it is possible to uniquely
extend each such f to the Schnorr random points.

My hope is that Section 3 (on effectively measurable functions) not only serves the needs of this paper,
but is of use to other researchers in the field.

1.4. Outline of the paper. In Section 2, I give background on computable analysis and Schnorr random-
ness.

In Section 3, I present a theory of measurable functions, integrable functions, and measurable sets. This
also includes the important Lemma 3.19 that effective a.e. convergence implies convergence on Schnorr
randoms. Most of the proofs have been moved to Appendix A.

In Section 4, I prove an effective version of the Lebesgue differentiation theorem and discuss many of its
corollaries. The proof relies on Kolmogorov’s inequality for dyadic martingales.

In Section 5, I give a computable presentation of martingale theory, which will be needed for most of the
rest of this paper.

In Section 6, I prove an effective version of the Lévy 0-1 law, which is a simpler version of Doob’s martingale
convergence theorem and an analog to the Lebesgue differentiation theorem.

In Section 7, I prove an effective version of the martingale convergence theorem. I also give another
version for square integrable martingales.

In Section 8, I prove an effective version of the submartingale and supermartingale convergence theorems.
I also give another version for square integrable martingales.

In Section 9, I return to differentiability, using effective martingale convergence to prove more differentia-
bility results that extend the Lebesgue differentiation theorem and Lebesgue’s theorem.

In Section 10, I survey some results in ergodic theory, filling in gaps in the published literature.
In Section 11, I discuss backwards martingales and some of their applications, including a variation of

Kučera’s theorem, the strong law of large numbers, and de Finetti’s theorem. I also, compare them with
ergodic averages.

I intend to follow up this paper with a sequel, exploring martingale convergence and differentiability when
the limit is not computable. Such cases characterize computable randomness, Martin-Löf randomness, and
weak-2 randomness.
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2. Background

In this section I give the necessary background in computable analysis, effective measure theory, effective
probability theory, and Schnorr randomness.

2.1. Notation. Let 2<ω be the space of finite binary strings, 2N be the space of infinite binary strings,
∅string be the empty string, σ ≺ τ and σ ≺ x mean σ is a proper initial segment of τ ∈ 2<ω or x ∈ 2N,
[σ] = {x ∈ 2N | σ ≺ x}. Also for σ ∈ 2<ω (or x ∈ 2N), let σ(n) be the nth digit of σ (where σ(0) is the “0th”
digit) and σ � n = σ(0) · · ·σ(n− 1). A set of strings {σ0, σ1, . . .} is prefix free if the no string in the set is a
prefix of another (equivalently, the collection {[σ0], [σ1], . . .} is pair-wise disjoint).

2.2. Computable analysis. Here I present some basics of computable analysis. For additional information
on the basics see Pour El and Richards [41], Weihrauch [52], or Brattka et al. [7]. I assume the reader has
some familiarity with basic computability theory on N, 2N, and NN as in [46]. It would also help to have
some familiarity with the theory of computation on the reals.

Definition 2.1. Fix an enumeration of the rationals Q = {qi}i∈N (such that addition and multiplication
are computable). A real x ∈ R is computable if there is a computable function h : N→ N such that for all
m > n, we have |qh(m) − qh(n)| ≤ 2−n and x = limn→∞ qh(n).

This can be generalized to an arbitrary complete metric space.

Definition 2.2. A computable (Polish) metric space is a triple X = (X, d, S) such that
(1) X is a complete metric space with metric d : X ×X → [0,∞).
(2) S = {ai}i∈N is a countable dense subset of X (the simple points of X) .
(3) The distance d(ai, aj) is computable uniformly from i and j.

A point x ∈ X is said to be computable if there is a computable function h : N → N such that for all
m > n, we have d(ah(m), ah(n)) ≤ 2−n and x = limn→∞ ah(n). The sequence (ah(m)) is the Cauchy-name
for x.

Example 2.3. For the differentiability results, I will be using two spaces. The first is the unit cube [0, 1]d

with the usual Euclidean distance. The second is the unit torus Td := (R/Z)d, which will be identified
as the half open unit cube [0, 1)d with the Euclidean metric that wraps around each edge, i.e. given x =
(x1, . . . , xd), y = (y1, . . . , yd) ∈ [0, 1)d,

d(x, y) =

(
d∑
i=1

(
min {|xi − yi|, 1− |xi − yi|}

)2
)1/2

.

The simple points of Td and [0, 1]d are taken to be vectors with rational components. A little thought reveals
that a vector x ∈ [0, 1]d (or x ∈ Td) is computable if and only if each coordinate is a computable real.

On a computable metric space X = (X,S, d), the basic open balls are sets of the form B(a, r) = {x ∈
X | d(x, a) < r} where a ∈ S and r > 0 is rational. The Σ0

1 sets (effectively open sets) are computable
unions of basic open balls; Π0

1 sets (effectively closed sets) are the complements of Σ0
1 sets. A function

f : X → R is computable (or effectively continuous) if for each Σ0
1 set U in R, the set f−1(U) is

Σ0
1 in X (uniformly in U), or equivalently, there is an algorithm which sends every Cauchy-name of x to a

Cauchy-name of f(x) (see [52]). A function f : X→ [0,∞] is lower semicomputable if it is the supremum
of a computable sequence of computable functions fn : X→ [0,∞).

A real x is said to be lower (upper) semicomputable if it is the supremum (resp. infimum) of a
computable sequence of rationals.

Definition 2.4. If X = (X, d, S) is a computable metric space, then a Borel measure µ is a computable
measure on X if

´
g dµ is computable uniformly from g for all computable g : X → [0, 1]. A computable

probability space is a pair (X, µ) where X is a computable metric space, µ is a computable measure on
X, and µ(X) = 1.
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There are a number of other equivalent definitions of computable measure, including the following char-
acterization.

Proposition 2.5 ([45, 26]). A measure µ on a computable metric space X = (X, d, S) is computable if and
only if the value µ(X) is computable, and for each effectively open set U ⊆ X, the measure µ(U) is lower
semicomputable uniformly from U .

Moreover, the computable probability measures on X are exactly the computable points in the space of
probability measures under the Prokhorov metric.

I will often blur the distinction between a metric space—or a probability space—with its set of points,
e.g. writing x ∈ X or x ∈ (X, µ) to mean that x ∈ X where X = (X, d, S).

Example 2.6. The manifolds [0, 1]d and Td can be endowed with the Lebesgue measure λ. (The Lebesgue
measure on Td is just the Lebesgue measure on [0, 1)d.) Both are computable probability measures, and
further (Td, λ) is translation-invariant. Similarly, on 2N let λ be the fair-coin measure, i.e. the measure
such that λ([σ]) = 2−|σ|.

Definition 2.7. Let X = (X,S, d) be a computable metric space.

(1) (X,+, ·) is a computable (topological) vector space if X is a vector space and with computable
vector addition + and scalar multiplication · operations.

(2) (X, ‖·‖ ,+, ·) is a computable Banach space if (X,+, ·) is a computable vector space and the
metric d comes from a computable norm ‖·‖.

(3) (X, ‖·‖ , 〈〉,+, ·, ) is a computable Hilbert space if (X, ‖·‖+, ·) is a computable Banach space with
computable inner product 〈·, ·〉.

(4) (X,∧,∨) is a computable (topological) lattice if X is a lattice with computable meet ∧ and
join ∨ operations.

(5) (X,∧,∨,¬,⊥,>) is a computable (topological) Boolean algebra if X is a Boolean algebra
with computable meet ∧, join ∨, and complement ¬ operations and computable bottom ⊥ and top
> elements.

Remark 2.8. There are a number of natural Banach spaces that are not computable, for example the space
of signed Borel measures on [0, 1]. This is because they have no countable dense subset. However, we may
still represent these spaces using a weaker topology as will be done in Section 9.1.

2.3. Schnorr randomness.

Definition 2.9. Let (X, µ) be a computable probability space. A Schnorr test (Un) is a computable
sequence of effectively open sets Un such that µ(Un) ≤ 2−n for all n and µ(Un) is uniformly computable in
n. For any x ∈ X, say x is covered by (Un) if x ∈

⋂
n Un. Say x ∈ X is Schnorr random if x is not

covered by any Schnorr test.

Remark 2.10. We may assume a Schnorr test (Un) is decreasing by taking an intersection. Similarly, we may
also replace 2−n by any computable sequence that decreases to 0 by taking a subsequence (see [12, 38]).

Example 2.11. Let y1, . . . , yd ∈ [0, 1] (resp. T). For each 1 ≤ i ≤ d, let xi be some binary expansion
of yi. It is easy to see that (y1, . . . , yd) is Schnorr random on ([0, 1]d, λ) (resp. on (Td, λ)) if and only if
x1 ⊕ · · · ⊕ xn ∈ 2N is Schnorr random on (2N, λ). (Recall, x1 ⊕ x2 is the join operation on 2N defined by
(x1 ⊕ x2)(2n) := x1(n) and (x1 ⊕ x2)(2n+ 1) := x2(n).)

3. Functions and convergence in measure theory

This section provides background on measurable functions and convergence. It is quite important to the
results in this paper. (For example, the frequently used Lemma 3.19 is the only fact the reader will need to
know about Schnorr randomness in Sections 4 through 11.)

As mentioned in the introduction, there is a need for two approaches to working with measurable functions
(and sets).11

11A third approach may come to mind: use Borel measurable functions and sets, ignoring a.e. equivalence. The difficulty
with this approach is that even effectively open sets may not have a computable measure. The situation becomes more complex
as one moves up the Borel hierarchy.
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(1) Use equivalence classes of almost-everywhere equivalent objects.
(2) Use specific functions and sets that are defined and unique up to some specific measure-one set

(which will turn out to be the set of Schnorr random points).
Table 2 compares the two approaches (in the setting of L1-computable functions).

Equivalence classes Specific functions

f an L1-limit of fast Cauchy sequences f̃ a pointwise limit of fast Cauchy sequences
f unique a.e. f̃ unique on Schnorr randoms
f computable in the L1-norm f̃ “computable” on Schnorr randoms

Table 2. The two approaches to the computability of L1 functions.

Besides giving definitions and basic facts, the main result of this section is Lemma 3.19, that a.e. con-
vergence implies convergence on Schnorr randoms. (This fact has been hinted at in some of the work on
convergence for Schnorr randoms, including Pathak, Rojas, and Simpson [40]. It was also known to Hoyrup
and Rojas [personal communication] independently of this author.)

3.1. Integrable functions, measurable functions, and measurable sets. Let us start with real-valued
functions on the space (2N, λ).

Proposition 3.1. On (2N, λ) the following hold.
(1) (Functions) Consider the following spaces (of a.e. equivalence classes [f ]∼) of Borel measurable

functions. Let the test functions T be those of the form

(3.1) ϕ =

k−1∑
i=0

ci1[σi] (σ0, . . . , σk−1 ∈ 2<ω; c0, . . . , ck−1 ∈ Q).

Also consider the lattice given by

f ∧ g = min(f, g) and f ∨ g = max(f, g).

(a) The measurable functions L0(2N, λ) with the metric12

dmeas(f, g) =

ˆ
min{|f − g|, 1} dλ

form a computable metric space, a computable vector space, and a computable lattice

(L0(2N, λ), T , dmeas,+, ·,min,max).

(b) The integrable functions L1(2N, λ) with norm

‖f‖L1 =

ˆ
|f | dλ

form a computable Banach space and a computable lattice

(L1(2N, λ), T , ‖·‖L1 ,+, ·,min,max).

(c) The square integrable functions L2(2N, λ) with inner product and norm

〈f, g〉 =

ˆ
f, g dλ, ‖f‖L2 =

(ˆ
|f |2 dλ

)1/2

form a computable Hilbert space and a computable lattice

(L2(2N, λ), T , ‖·‖L2 , 〈〉L2 ,+, ·,min,max).

12As we shall see, this metric characterizes convergence in measure. It is equivalent to the Ky-Fan metric dKF(f, g) :=
inf {ε > 0 |µ({x | |f − g| ≥ ε) ≤ ε}. (Indeed, (L0(2N, λ), T , dKF,+, ·,min,max) is also a computable metric space, a computable
vector space, and a computable lattice with the same computable points as (L0(2N, λ), T , dmeas).)
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(2) (Set spaces) Consider the following space (of a.e. equivalence classes [A]∼) of Borel measurable sets.
Let the test sets T be those of the form

C =

k−1⋃
i=0

[σi] (prefix-free σ0, . . . , σk−1 ∈ 2<ω).

(d) The measurable sets B(2N, λ) with metric

d(A,B) = λ(A4B)

form a computable metric space and a computable Boolean algebra

(B(2N, λ), T , d,∪,∩, ·c,∅, 2N).

Proof. straightforward. �

Definition 3.2. The computable points of each of the above spaces are, respectively, called the effec-
tively measurable functions (L0

comp), the L1-computable functions (L1
comp), the L2-computable

functions (L2
comp), and the effectively measurable sets.

We may also consider measurable functions taking values in other computable metric spaces Y = (Y, S, dY).

Proposition 3.3. Let Y = (Y, S, dY) be a computable metric space. The space of measurable functions from
(2N, λ) to Y = (Y, S, dY) is a computable metric space under the metric

dmeas(f, g) =

ˆ
min{dY, 1} dλ

and test functions of the form

ϕ(x) = ci1[σi] when x ∈ [σi] (prefix-free σ0, . . . , σk−1 ∈ 2<ω; c0, . . . , ck−1 ∈ S).

The computable points in this space are called effectively measurable functions.

Proof. straightforward. �

Remark 3.4. The space of measurable sets and the space of 0, 1-valued measurable functions (Proposition 3.3
with Y = {0, 1}) are the same space. (More specifically, the map A 7→ 1A is a bijective isometry where test
sets are mapped to test functions.)

The above definitions extend to any computable probability space (X, µ). The only thing that changes is
the choice of test functions. This requires a technical lemma.

Lemma 3.5 (Bosserhoff [6], Hoyrup and Rojas [26]). For any computable metric space X = (X,S, d) with
computable probability measure µ, there is a computable sequence of pairs {(ai, ri)}i∈N (ai ∈ S, ri ∈ R)
representing a family of balls Basis(X, µ) = {B(ai, ri)}i∈N.

(1) Each B(ai, ri) has a µ-null boundary. (Hence µ (B(ai, ri)) is computable uniformly from i.)
(2) Basis(X, µ) is an effective basis of X, i.e. for every effectively open set U , there is a computable se-

quence (ik) of indices computable uniformly from (each name for) U such that U =
⋃∞
k=0B(aik , rik).

Since the choice of basis is not unique, let Basis(X, µ) denote a fixed choice of basis for each space (X, µ).

Definition 3.6. Say that C ⊆ X is a cell of Basis(X, µ) if C = A1 ∩ . . . ∩ A` ∩ Bc1 ∩ . . . ∩ Bck for
A1, . . . A`, B1, . . . , Bk ∈ Basis(X, µ). (Notice, using the enumeration of Basis(X, µ) that each cell is coded
by some σ ∈ 2<ω.)

Proposition 3.7. The measure of each cell of Basis(X, µ) is computable from its code σ.

Proof. See Appendix A.2. �

Definition 3.8. On (X, µ), the spaces of real-valued functions L0(X, µ), L1(X, µ), L2(X, µ) as well as the
space of measurable sets and the space of Y-valued measurable functions are defined as before, except that
cylinder sets [σi] are replaced with cells Ci of Basis(X, µ). Replace the requirement that {σ0, . . . , σk−1} is
prefix-free with the requirement that {C0, . . . , Ck−1} is pairwise-disjoint.

Remark 3.9. For the real-valued computable metric spaces L0, L1, L2, a number of other test functions have
been used in the literature. The resulting computable metric spaces are equivalent.
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(1) On (X, µ): functions as in Definition 3.8 (for any choice of Basis(X, µ)).
(2) On (X, µ): any computable family A = {ϕn}n∈N of bounded computable functions, such that

ϕn : X → R is computable uniformly in n, there is a bound Cn uniformly computable in n such
that ‖ϕn(x)‖∞ ≤ Cn for all n, and {ϕn} is dense in L1(X, µ).

(3) On (X, µ): the set E of bounded computable Lipschitz functions in [20, Section 2].
(4) On effectively compact (X, µ): any computable family A = {ϕn}n∈N of computable functions which

is dense in C(X).
(5) On effectively compact (X, µ): the “polynomials” in [57, 59] closed under pointwise multiplication

and addition. (This family is dense in C(X) by the Stone-Weierstrass theorem).
(6) On (2N, λ): the test functions in equation (3.1).
(7) On ([0, 1]d, λ): polynomials with rational coefficients.
(8) On ([0, 1]d, λ), (Td, λ): dyadic functions of the form

ϕ =

k−1∑
i=0

ci1Di (ci ∈ Q, Di is a dyadic set)

where the dyadic sets are those of the form[
i1
2n
,
i1 + 1

2n

)
× · · · ×

[
id
2n
,
id + 1

2n

)
.

3.2. Effective modes of convergence. In measure theoretic probability, there are various modes of con-
vergence for measurable functions. I have already mentioned convergence in the L1-, L2-norms and the
metric dmeas.

Definition 3.10. Let (fi) be a sequence of measurable Y-valued functions and f a measurable Y-valued
function.

(1) The sequence fi converges to f almost uniformly if there is a rate of almost-uniform con-
vergence n(ε1, ε2) such that for all ε1, ε2 > 0,

µ

({
x

∣∣∣∣∣ sup
i≥n(ε1,ε2)

dY(fi(x), f(x)) > ε1

})
≤ ε2.

(2) The sequence fi converges to f in measure if there is a rate of convergence in measure
n(ε1, ε2) such that for all ε1, ε2 > 0,

∀i ≥ n(ε1, ε2) µ ({x | dY(fi(x), f(x)) > ε1}) ≤ ε2.

These definition can be extended to continuously-indexed sequences (i.e. functions (fr)r>0 with r → 0)
in the usual manner.

Fact 3.11. Convergence in measure is the same as convergence in the metric dmeas.

Proof. I give an effective version in Proposition 3.15. (For a similar proof with the Ky-Fan metric, see
[13].) �

Fact 3.12 (Egorov’s theorem, see [13]). On a probability space, almost uniform convergence and almost
everywhere convergence are the same (assuming (fn) is a discretely-indexed sequence of measurable functions
taking values in a complete separable metric space).

Fact 3.13 (Modes of convergence, see [13]). On a probability space, the following implications (and their
transitive closures) hold between the modes of convergence. (Note, L2 and L1 only apply to real-valued
functions. The dotted arrow represents convergence on some subsequence.)

measure
(dmeas)

L1

L2 almost
uniform

almost
everywhere

Egorov
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The goal of this section is to give the effective analog of the above chart.

Definition 3.14. Let (fi) and f be uniformly effectively measurable. Then fi → f effectively almost
uniformly, effectively in measure, or effectively in dmeas if the respective rate of convergence is
computable.

Further if real-valued (fi) and f are uniformly L1-computable (resp. L2-computable), then fi → f ef-
fectively in the L1-norm (resp. effectively in the L2-norm) if the corresponding rate of convergence
is computable.

Proposition 3.15 (Modes of effective convergence). On a computable probability space (X, µ), the following
implications are effective—in that a rate of convergence for the latter is computable from the former. (L1

and L2 only apply to real-valued functions.)

eff. dmeas
eff. conv in
measure

eff. L1

eff. L2 eff. almost
uniform Schnorr

(2)

(1)

(1) The dotted arrow represents that if fi → f with a geometric rate of convergence in the metric dmeas,
e.g. ∀j ≥ i dmeas(fj , f) ≤ 2−i, then fi → f effectively almost uniformly.

(2) For the arrow going to “Schnorr”, see Lemma 3.19 below.

Proof. See Appendix A.3. �

Rather than use the term “effectively almost uniformly”, we will use the more common term effectively
almost everywhere (or effectively a.e.). This is justified by Egorov’s theorem (Fact 3.12).

The following limit properties are also useful.

Proposition 3.16. Let (fn) and f be uniformly effectively measurable real-valued functions.
(1) If fn → f effectively a.e.. and gn → g effectively a.e.., then fn + gn → f + g effectively a.e..
(2) If f jn → f j effectively a.e.. (j ∈ {0, . . . , k − 1}), and g is computable with a uniform modulus of

continuity, then g(f0
n, . . . , f

k−1
n )→ g(f0, . . . , fk−1) effectively a.e..

(3) (Squeeze theorem) Assume fn ≤ gn ≤ hn a.e. and that fn → g effectively a.e.. and hn → g effectively
a.e.., then gn → g effectively a.e.

Further, in all cases the rates of convergence for the latter are computable from the former (in (2) use the
modulus of continuity for g). Indeed, we do not need to assume the functions are effectively measurable, just
that the rates of convergence are computable. The same results hold for continuous convergence, e.g. fr → f
as r → 0.

3.3. Convergence on Schnorr randoms. Now we define representatives for each (equivalence class of an)
effectively measurable function. The proofs are in Appendix A.4.

Recall that Cauchy-names are computable sequences of test functions with a geometric rate of convergence.

Definition 3.17. Let f : (X, µ)→ Y be effectively measurable with Cauchy-name (ϕn) in the metric dmeas.
Define

f̃(x) =

{
limn→∞ ϕn(x) if the limit exists
undefined otherwise

.

If A is an effectively measurable set (and therefore 1A : (X, µ)→ {0, 1} is effectively measurable), then define
Ã as

x ∈ Ã ⇔ 1̃A(x) = 1.

These definitions are justified as follows. Similar versions of this proposition are in Pathak [39] (L1-
computable functions and Martin-Löf randomness) and Pathak, Rojas, and Simpson [40] (L1-computable
functions and Schnorr randomness).
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Proposition 3.18. Suppose f : (X, µ)→ Y is effectively measurable with Cauchy-name (ϕn) (in the metric
dmeas, L1-norm, or L2-norm).

(1) (Existence) The limit limn→∞ ϕn(x) exists on all Schnorr randoms x.
(2) (Uniqueness) Given another Cauchy-name (ψn) for f ,

lim
n→∞

ϕn(x) = lim
n→∞

ψn(x) (on Schnorr random x).

In Theorem 12.19, I show that Schnorr randomness is the best possible for the previous theorem.
This next lemma is quite useful and for much of the paper is the only fact about Schnorr randomness

needed.

Lemma 3.19 (Convergence Lemma). Suppose that (fk) and f are uniformly effectively measurable. If

fk → f (effectively a.e.)

then
f̃k(x) −→ f̃(x) (for all Schnorr random x).

3.4. Properties of effectively measurable functions. The proofs are in Appendix A.5.

Proposition 3.20. The following implications hold for real-valued functions (and all the computations are
uniform).

(1) f ∈ L2
comp ⇒ f ∈ L1

comp ⇒ f ∈ L0
comp. (The converses do not hold in general.)

(2) If 0 ≤ f ≤ 1, then f ∈ L2
comp ⇔ f ∈ L1

comp ⇔ f ∈ L0
comp.

(3) f ∈ L1
comp ⇔ (f ∈ L0

comp and ‖f‖L1 is computable).
(4) f ∈ L2

comp ⇔ (f ∈ L0
comp and ‖f‖L2 is computable).

(5) If f ∈ L1
comp then

´
f dµ is computable.

(6) If B is effectively measurable, then µ(B) is computable.
(7) If 0 ≤ g ≤ 1, g ∈ L1

comp, and f ∈ L1
comp, then g · f ∈ L1

comp.

Proposition 3.21 (Effective Lusin’s theorem). Given an effectively measurable f : (X, µ) → Y, and some
rational ε ≥ 0, there are an effectively closed set K of computable measure µ(K) ≥ 1− ε and a computable
function g : K → Y such that g = f̃ � K on Schnorr randoms. (Further, g and K are computable uniformly
from ε and any name for f .) Moreover, if Y = R, then g : K → Y can be extended (uniformly from its name)
to a total computable function g : X→ Y such that g = f̃ � K on Schnorr randoms.

Proposition 3.22 (Effective inner/outer regularity). Given A ⊆ (X, µ) effectively measurable, and some
rational ε > 0, there are an effectively open set U and an effectively closed set C both of computable measure
such that C ⊆ Ã ⊆ U for Schnorr randoms, and such that µ(U) − µ(C) ≤ ε. (The sets U,C and their
measures µ(U), µ(C) are uniformly computable from ε and any name for A.)

This next result is the converse to the effective Lusin’s theorem and shows that the representative func-
tions of this paper are the same as the Schnorr layerwise computable functions of Miyabe [34], which are
an extension of the layerwise computable functions of Hoyrup and Rojas [24]. Miyabe [34], proved the
corresponding result for L1-computable functions.

Proposition 3.23 (Schnorr layerwise computability). Consider a (pointwise-defined) measurable function
f : X → Y that is Schnorr layerwise computable, that is, there is a computable sequence (Cn) of
effectively closed sets of computable measure µ(Cn) ≤ 2−n, such that f � Cn is computable on Cn uniformly
in n. Then there is an effectively measurable g : (X, µ)→ Y such that g̃ = f on Schnorr randoms.

In this next proposition, an almost-everywhere computable function f : (X, µ) → Y is a partial
computable function whose domain is measure one. (Here I mean “domain” to mean the points x for which the
underlying computation computes a name for f(x) from a name for x. To avoid ambiguity, I could alternately
define an almost-everywhere computable function as a function f : A ⊆ X → Y which is computable on a
measure-one Π0

2 set A. See [42] for more discussion.)

Proposition 3.24 (Examples of effectively measurable functions and sets). All of these functions f : X→ Y
and sets A ⊆ X are effectively measurable, and f̃ = f and Ã = A on Schnorr randoms.

(1) Test functions and test sets as in Propositions 3.1 and 3.3 and in Definition 3.8.
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(2) Computable functions and decidable sets (i.e., computable 0,1-valued functions).
(3) Almost-everywhere computable functions f : (X, µ)→ Y and almost-everywhere decidable sets (i.e., al-

most everywhere computable 0,1-valued functions).
(4) Nonnegative lower semicomputable functions f : X → R with a computable integral, effectively open

sets U ⊆ X of computable measure, and effectively closed sets C ⊆ X of computable measure.

Recall that for a measurable function f : (X, µ)→ Y, the push-forward measure of µ along f (denoted
µ∗f) is the measure on Y defined by

´
ϕdµ∗f =

´
ϕ ◦ f dµ for bounded computable ϕ.

Proposition 3.25 (Push-forward measures). If f : (X, µ) → Y is effectively measurable, then the push-
forward measure (Y, µ∗f) is a computable probability space (uniformly from (X, µ), Y, and f).

Proposition 3.26 (Preservation of Schnorr randomness). If f : (X, µ)→ Y is effectively measurable and x
is Schnorr random, then f̃(x) is Schnorr random on (Y, µ∗f).

Proposition 3.27 (Composition and tuples).
(1) (Composition) Given f : (X, µ) → Y and g : (Y, µ∗f) → Z effectively measurable, the composition

g ◦ f is effectively measurable (uniformly from f and g) and

f̃ ◦ g = f̃ ◦ g̃ (on Schnorr randoms).

(2) (Tuples) Given fn : (X, µ)→ Yn effectively measurable (uniformly in n), the tuples

(f0, . . . , fk−1) : (X, µ)→ Y0 × · · · × Yk−1

and
(fn)n∈N : (X, µ)→

∏
n∈N

Yn

are effectively measurable (uniformly from (fn)) and

˜(f0, . . . , fk−1) = (f̃0, . . . , f̃k−1) and (̃fi)i∈N = (f̃i)i∈N (on Schnorr randoms).

These two combinations, along with the results about computable functions in Proposition 3.24, can be
used to prove a number of useful facts.

Proposition 3.28 (Combinations of measurable functions).
(1) (Computable pointwise operations). All computable pointwise operations, including vector, lattice,

and Boolean algebra operations preserve effective measurability. Moreover, given f, g : (X, µ) → R
and A,B ⊆ (X, µ) effectively measurable, we have

f̃ + g = f̃ + g̃, ãf = af̃ , f̃ · g = f̃ · g̃

˜min(f, g) = min(f̃ , g̃), ˜max(f, g) = max(f̃ , g̃), |̃f | =
∣∣∣f̃ ∣∣∣

Ã ∪B = Ã ∪ B̃, Ã ∩B = Ã ∩ B̃, Ãc = Ãc, X̃ = X, ∅̃ = ∅
on Schnorr randoms, and

f ≤ g a.e. ⇔ f̃ ≤ g̃ (on Schnorr randoms)

A ⊆ B a.e. ⇔ Ã ⊆ B̃ (on Schnorr randoms).

(2) (Inverse image) Given f : (X, µ) → Y and B ⊆ (Y, µ∗f) effectively measurable then f−1(B) is
effectively measurable and ˜f−1(B) = f̃−1(B̃) on Schnorr randoms.

(3) (Rotations) Given f : (Td, λ) → R effectively measurable, and a computable vector t ∈ Td, then
h(x) := f(x− t) is effectively measurable and h̃(x) = f̃(x− t) on Schnorr randoms.

(4) (Indicator functions) Given A ⊆ (X, µ), A is effectively measurable if and only if 1A : (X, µ)→ R is
effectively measurable (equivalently, L1-computable by Proposition 3.20 (2)) and x ∈ Ã if and only
if 1̃A(x) = 1 on Schnorr randoms. (Notice the codomain of 1A is R here rather than {0, 1} as in
Definition 3.17.)

Proposition 3.29. The following implications hold for real-valued functions (and all the computations are
uniform).
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(1) If f ∈ L1
comp and A is effectively measurable, then

´
A
f dµ is computable.

(2) If X is effectively compact (see [36])—as is [0, 1]d, Td, and 2N—and g : X→ R is computable, then g
is L1-computable (since it has computable bounds).

(3) If f : (X, µ)→ Y is effectively measurable and g ∈ L1
comp(Y, µ∗f) (resp. L2

comp(Y, µ∗f)), then g ◦ f ∈
L1

comp(X, µ) (resp. L2
comp(X, µ)).

Proposition 3.30. Given a measurable map f : (X, µ)→ Y, the following are equivalent.

(1) f is effectively measurable.
(2) The push-forward measure (Y, µ∗f) is computable and one (or all) of the following “pull-back” maps

are computable:
(a) (L1 functions) g ∈ L1(Y, µ∗f) 7→ g ◦ f ∈ L1(Y, µ∗f).
(b) (L2 functions) g ∈ L2(Y, µ∗f) 7→ g ◦ f ∈ L2(Y, µ∗f).
(c) (Measurable sets) B ⊆ (Y, µ∗f) 7→ f−1(B) ⊆ (X, µ).

4. Differentiability

In this section I present effective versions of the Lebesgue differentiation theorem and its corollaries.

4.1. The dyadic Lebesgue differentiation theorem. Before considering the full Lebesgue differentiation
theorem, let us consider the simpler dyadic version on the fair-coin measure (2N, λ). This will contain most
of the work for the version on [0, 1].

Fact 4.1 (Dyadic Lebesgue differentiation theorem). Given f ∈ L1(2N, λ),
´

[x�k]
|f − f(x)| dλ
λ([x � k])

−−−−→
k→∞

0 (λ-a.e. x ∈ 2N).

In particular ´
[x�k]

f dλ

λ([x � k])
−−−−→
k→∞

f(x) (λ-a.e. x ∈ 2N).

As a helpful notation, I will write

f (k)(x) :=

´
[x�k]

f dλ

λ([x � k])
.

Notice f (k) ∈ L1(2N, λ) and that f (k) is constant on each cylinder set [σ] where σ ∈ 2k
′
(k′ ≥ k). Further,

we can use f (k) to approximate f in the L1-norm as follows.

Fact 4.2 (Lebesgue approximation theorem). Given f ∈ L1(2N, λ),

f (k) L1

−−−−→
k→∞

f.

As we will see, Facts 4.1 and 4.2 are both instances of the more general Lévy 0-1 law (Fact 6.2).

Proposition 4.3 (Effective Lebesgue approximation theorem). Suppose we are given f ∈ L1
comp(2N, λ).

Then

f (k) L1

−−−−→
k→∞

f (effectively).

Proof. We compute the rate of convergence k(ε). Pick a rational ε > 0. Let ϕ be a simple function
approximating f such that ‖f − ϕ‖L1 ≤ ε/2. By the definition of simple function, there is some k′ such that
ϕ is constant on all cylinder sets [σ] where σ ∈ 2k (k ≥ k′). In particular, ϕ(k) = ϕ (k ≥ k′). Let k(ε) = k′.
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Then for k ≥ k(ε), ∥∥∥f − f (k)
∥∥∥
L1
≤ ‖f − ϕ‖L1 +

∥∥∥ϕ(k) − f (k)
∥∥∥
L1

= ‖f − ϕ‖L1 +
∑
σ∈2k

∣∣∣∣∣
´

[σ]
ϕ− f dλ
λ([σ])

∣∣∣∣∣
≤ ‖f − ϕ‖L1 +

∑
σ∈2k

´
[σ]
|ϕ− f | dλ
λ([σ])

= 2 ‖f − ϕ‖L1 ≤ ε. �

Recall the following dyadic version of Kolmogorov’s inequality.

Fact 4.4 (Dyadic Kolmogorov’s inequality, see [12]). Let M : 2<ω → [0,∞) be a nonnegative dyadic mar-
tingale on the (2N, λ), that is 1

2M(σ0) + 1
2M(σ1) = M(σ) for all σ ∈ 2<ω. Then for all ε > 0

λ

({
x ∈ 2N

∣∣∣∣ sup
k≥0

M(x � k) ≥ ε
})
≤ M(∅string)

ε
.

As a special case we have the following.

Lemma 4.5. Given nonnegative f ∈ L1(2N, λ),

λ

({
x ∈ 2N

∣∣∣∣ sup
k≥0

f (k)(x) ≥ ε
})
≤
‖f‖L1

ε
.

Proof. Let M(σ) =
´

[σ]
f dλ/λ([σ]). This is a nonnegative dyadic martingale since f is nonnegative. Apply

Kolmogorov’s inequality noting that f (k)(x) = M(x � k) and ‖f‖L1 =
´
f dλ = M(∅string).

Now we have the effective version of Proposition 4.1. �

Proposition 4.6 (Effective dyadic Lebesgue differentiation theorem). Given f ∈ L1
comp(2N, λ), let

gk(x) := |f − f(x)|(k)(x) =

´
[x�k]
|f(y)− f(x)| dλ(y)

λ([x � k])
.

Then gk → 0 a.e. as k → ∞ with an effective rate k(δ, ε) of a.e. convergence. Hence f (k) → f effectively
a.e. as k →∞.

Further, ´
[x�k]
|f(y)− f̃(x)| dλ(y)

λ([x � k])
−−−−→
k→∞

0 (on Schnorr random x).

Hence, f (k)(x)→ f̃(x) on Schnorr randoms x as k →∞.

Proof. Pick δ > 0 and ε > 0. By Proposition 4.3, from f we can effectively find some k′ ∈ N such that∥∥∥f − f (k′)
∥∥∥
L1
≤ δε

4 . Let k(δ, ε) = k′. Then for any k ≥ k′ and all x ∈ 2N we have

0 ≤ gk(x) =

´
[x�k]
|f(y)− f(x)| dλ(y)

λ([x � k])

≤

´
[x�k]

∣∣∣f(y)− f (k′)(y)
∣∣∣ dλ(y)

λ([x � k])
+

´
[x�k]

∣∣∣f (k′)(y)− f (k′)(x)
∣∣∣ dλ(y)

λ([x � k])

+

´
[x�k]

∣∣∣f (k′)(x)− f(x)
∣∣∣ dλ(y)

λ([x � k])

(4.1)

=
∣∣∣f − f (k′)

∣∣∣(k)

(x) + 0 +
∣∣∣f (k′)(x)− f(x)

∣∣∣ .
To bound the last line, use Lemma 4.5 for the first term,
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λ

({
x

∣∣∣∣ sup
k≥k′

∣∣∣f − f (k′)
∣∣∣(k)

(x) ≥ ε

2

})
≤

2
∥∥∥f − f (k′)

∥∥∥
L1

ε
,

and use Markov’s inequality (Fact A.2) for the last term,

λ

({
x

∣∣∣∣ sup
k≥k′

|f (k′)(x)− f(x)| ≥ ε

2

})
≤

2
∥∥∥f − f (k′)

∥∥∥
L1

ε
.

Putting them together (see Fact A.1), we have

λ

({
x

∣∣∣∣ sup
k≥k′

gk(x) ≥ ε
})
≤ 4

∥∥∥f − f (k′)
∥∥∥
L1

ε
≤ δ.

Since gk ≥ 0, this shows that gk(x)→ 0 effectively a.e.
To show convergence on Schnorr randoms, we substitute f(x) with f̃(x) in inequality (4.1). Then we have

for all Schnorr randoms x,

0 ≤
∣∣∣f − f̃(x)

∣∣∣(k)

(x) ≤
∣∣∣f − f (k′)

∣∣∣(k)

(x) +
∣∣∣f (k′)(x)− f̃(x)

∣∣∣ .
(The other instances of f act as equivalence classes and do not require the tilde). Let hk =

∣∣∣f − f (k′)
∣∣∣(k)

(x)+∣∣∣f (k′)(x)− f(x)
∣∣∣. Since we showed hk → 0 effectively a.e., we have that h̃k(x) → 0 on Schnorr randoms x

by Lemma 3.19. By the results in Section 3.4 we have that h̃k(x) =
∣∣∣f − f (k′)

∣∣∣(k)

(x) +
∣∣∣f (k′)(x)− f̃(x)

∣∣∣ for
Schnorr randoms. (For example, for any f and k we have f̃ (k) = f (k) since f (k) is a computable function.)

Hence both
∣∣∣f − f̃(x)

∣∣∣(k)

(x)→ 0 and f (k)(x)→ f̃(x) on Schnorr randoms x as k →∞. �

4.2. The Lebesgue differentiation theorem. Now I wish to prove an effective version of the Lebesgue
differentiation theorem. To simplify the geometry I will use the unit torus Td (identified with [0, 1)d) and the
Lebesgue measure λ. The argument for [0, 1]d is similar. First, recall the Lebesgue differentiation theorem.
Here Arf(x) is the average of f over the ball B(x, r),

Arf(x) =

´
B(x,r)

f(y) dy

λ(B(x, r))
.

Fact 4.7 (Lebesgue differentiation theorem, see [49]). Given an integrable function f on (Td, λ),

(4.2) Ar|f − f(x)| (x) =

´
B(x,r)

|f(y)− f(x)| dy
λ(B(x, r))

−−−→
r→0

0 (λ-a.e. x ∈ Td).

In particular,
Arf(x) −−−→

r→0
f(x) (λ-a.e. x ∈ Td).

The points x for which the limit (4.2) holds are the Lebesgue points of f .
If, instead of averaging over balls, we averaged over dyadic sets, the Lebesgue differentiation theorem

would be the dyadic Lebesgue differentiation theorem of Fact 4.1. However, the full Lebesgue differentiation
theorem is a geometric theorem. The theorem concerns the simultaneous convergence of overlapping balls
(or cubes). Moreover, if the balls or cubes were replaced by, say, ellipses or rectangles of arbitrary aspect
ratio, the theorem would not hold. The main idea behind any proof of the Lebesgue differentiation theorem
is to restrict one’s attention to a disjoint set of cubes (or balls). The classical proof does this through Vitali’s
covering lemma (see [49]). Here I use an alternate method of Morayne and Solecki [35], which uses martingale
theory and a useful geometric lemma.

If t = (t1, . . . , td) ∈ Td and Q ⊆ Td, define t+Q = {t+ x | x ∈ Q}, i.e. Q rotated in each ith coordinate
by ti. Let Bk denote the set of dyadic cubes of measure

(
2−k

)d. Define Btk = {t+Q | Q ∈ Bk}, i.e. translate
the dyadic cubes by the vector t ∈ Td. Let Itk(x) be the unique element of Btk that contains x. The next fact
and lemma show that it is enough to consider convergence along dyadic cubes and finitely many shifts.
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Fact 4.8 (Morayne and Solecki [35, Lemma 2]). Let x ∈ Td. Consider a cube Q = x + (−δ, δ)d such that
0 < δ < 2−k/3. Then Q ⊆

⋃
t∈{− 1

3 ,0,
1
3}d I

t
k(x).

Proof sketch. The main idea is that any interval of length 2δ where δ < 2−k/3 must either be contained in
a dyadic interval of length 2−k, or in a dyadic interval shifted by 2−k/3 in either direction as this picture
shows.

2−k 2δ
2−k

3

Then notice a dyadic interval of length 2−k shifted by 2−k/3 is also a (different) dyadic interval of length
2−k shifted by 1/3. �

Lemma 4.9. Let x ∈ Td and f ∈ L1(Td, λ) (such that f is pointwise defined at x). Then the following are
equivalent.

(1) Ar|f − f(x)| (x) −−−→
r→0

0 (i.e., x is a Lebesgue point of f).

(2) 1
λ(Qδ(x))

´
Qδ(x)

|f(y)− f(x)| dy −−−→
δ→0

0 for Qδ(x) = x+ (−δ, δ)d.
(3) 1

λ(Qi)

´
Qi
|f(y)− f(x)| dy −−−→

i→∞
0 for any sequence of cubes Q0 ⊇ Q1 ⊇ . . . where

⋂
iQi = {x} (the

sequence need not be computable).
(4) 1

λ(Itk(x))

´
Itk(x)

|f(y)− f(x)| dy −−−−→
k→∞

0 for all t ∈ {− 1
3 , 0,

1
3}
d.

(1) through (4) also hold when Td is replaced by [0, 1]d.

Proof. We will show (4) implies (2) implies (1). The other equivalences are standard results that follow
similarly. Their proofs are left to the reader.

For (2) implies (1), pick r > 0 and let δ = r. Then λ(B(x, r)) = λ(Qδ)/C for some constant C depending
only on the dimension d, and

(4.3) Ar|f − f(x)| (x) =

´
B(x,r)

|f(y)− f(x)| dy
λ(B(x, r))

≤ C ·
´
Qδ
|f(y)− f(x)| dy
λ(Qδ)

.

For (2) implies (1), pick δ > 0 and let k be such that 2−k/3 > δ ≥ 2−k−1/3. Then λ(Qδ(x)) ≥ λ(Itk(x))/3d

for all t ∈ {− 1
3 , 0,

1
3}
d. Therefore, by Lemma 4.8,

(4.4)

´
Qδ(x)

|f(y)− f(x)| dy
λ(Qδ(x))

≤

∑
t∈{− 1

3 ,0,
1
3}d

´
Itk
|f(y)− f(x)| dy

λ(Qδ(x))

≤
∑

t∈{− 1
3 ,0,

1
3}d

´
Itk(x)

|f(y)− f(x)| dy
λ (Itk(x)) /3d

= 3d ·
∑

t∈{− 1
3 ,0,

1
3}d

´
Itk(x)

|f(y)− f(x)| dy
λ (Itk(x))

. �

Theorem 4.10 (Effective Lebesgue differentiation theorem). Given f ∈ L1
comp(Td, λ),

Ar|f − f(x)| (x) =

´
B(x,r)

|f(y)− f(x)| dy
λ(B(x, r))

−−−→
r→0

0 (λ-a.e. x ∈ Td)

with an effective rate of a.e. convergence r(δ, ε). Hence Arf −−−→
r→0

f effectively a.e.
Further,

Ar|f − f̃(x)| (x) −−−→
r→0

0 (on Schnorr random x).

Hence, all Schnorr randoms are Lebesgue points of f̃ and Arf(x) −−−→
r→0

f̃(x) on Schnorr randoms x. These

statements also hold when Td is replaced by [0, 1]d.
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Proof. Combining inequalities (4.3) and (4.4) in the proof of Lemma 4.9 we have for 2−k/3 > r ≥ 2−(k+1)/3
that

0 ≤ Ar|f − f(x)| (x) ≤ C ·
∑

t∈{− 1
3 ,0,

1
3}d

´
Itk(x)

|f(y)− f(x)| dy
λ (Itk(x))

for some constant C depending only on the dimension of d. Using Proposition 4.6, with f(y − t) in place of
f(y), we have that ´

Itk(x)
|f(y)− f(x)| dy
λ (Itk(x))

−−−−→
k→∞

0

with an effective rate of a.e. convergence for each t ∈ {− 1
3 , 0,

1
3}
d. Hence, by the squeeze theorem (Proposi-

tion 3.16 (3))— Ar|f−f(x)| (x) −−−→
r→0

0 with an effective rate of a.e. convergence. The result for Schnorr ran-

domness follows by a similar argument. (Note that if h(y) := f(y−t) for a computable t, then h̃(y) = f̃(y−t)
by Proposition 3.28)

For [0, 1]d, just use the same argument (as for Td), but also adjust for the error near the boundary (which
is straightforward, although somewhat tedious). �

Remark 4.11. Setting aside computational concerns, this proof of the Lebesgue differentiation theorem is very
similar to the standard proof. The key differences are that this proof uses Lemma 4.9 to handle the geometric
concerns while the standard proof uses the Vitali covering lemma, and we use Kolmogorov’s inequality to
show convergence, while the standard proof uses the Hardy-Littlewood maximal lemma. The effective proof
of Pathak et al. [40] indeed follows the usual proof. For another method to handle the geometry see Brattka
et al. [8].

4.3. Corollaries to the Lebesgue differentiation theorem. From the effective Lebesgue differentiation
theorem (Theorem 4.10), we have the following corollaries. Note that all of these have “dyadic” versions on
2N as well.

Let A be a measurable set on and x ∈ [0, 1]d. We say x is a point of density of A if
λ (A ∩B(x, r))

λ (B(x, r))
−−−→
r→0

1.

Then we have the following well-known corollary to the Lebesgue differentiation theorem.

Fact 4.12 (Lebesgue density theorem). Let A be a measurable set. Almost every x ∈ A is a point of density.

Corollary 4.13 (Effective Lebesgue density theorem). Let A be an effectively measurable set in [0, 1]d.
Every Schnorr random in Ã is a point of density.

Proof. Assume x is in Ã and is Schnorr random. By Definition 3.17, 1̃A(x) = 1. The rest follows from the
Lebesgue differentiation theorem (Theorem 4.10) applied to 1A. �

For the next application of the Lebesgue density theorem, if A,B are subsets of R then denote A+B :=
{x+ y | x ∈ A, y ∈ B}, and similarly for A−B.

Fact 4.14 (Steinhaus, see [48]). Let A and B be measurable subsets of R with positive Lebesgue measure and
let x and y be points of density of A and B, respectively. Then A+B contains an open neighborhood around
x+ y. Therefore, if A has positive Lebesgue measure, then A−A contains an open neighborhood around 0.

Corollary 4.15. Let A,B ⊆ [0, 1]d be effectively measurable with positive measure. If x ∈ Ã and y ∈ B̃ are
Schnorr randoms, then there is an open neighborhood in Ã+ B̃ around x+ y.

Proof. By the effective Lebesgue density theorem (Corollary 4.15), x and y are points of density. Apply
Steinhaus’ theorem (Fact 4.14). �

A function h : [0, 1]→ R is said to be absolutely continuous if it is of the form F (x) =
´ x

0
f(y) dy+F (0)

for some integrable function f . It is clear that absolute continuity implies continuity. We have yet another
corollary to the Lebesgue differentiation theorem.

Fact 4.16 (Lebesgue, see [49]). An absolutely continuous function F is differentiable a.e. with derivative
d
dxF = f a.e.
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We say F is effectively absolutely continuous if the derivative f is L1-computable. (This is
equivalent to being a computable point in the Banach space (AC[0, 1], ‖·‖AC) where ‖F‖AC = |f(0)|+‖f‖BV .
See [18].) If F is effectively absolutely continuous, then it is computable (by the computability of integration).
However, not every computable and absolutely continuous function is effectively absolutely continuous. This
follows from this next corollary combined with the example of Brattka, Miller, and Nies [8] of a computable
absolutely continuous function which is only differentiable on Martin-Löf randoms (which are a proper subset
of the Schnorr randoms).

Corollary 4.17. Assume z ∈ [0, 1] is Schnorr random and F is effectively absolutely continuous, hence
F (x) =

´ x
0
f(y) dy + F (0) for all x for some L1-computable f . Then F is differentiable at z with derivative

d
dxF |x=z = f̃(z).

Proof. It suffices to show
F (z + ti)− F (z)

ti
=

´ z+ti
z

f(y) dy

ti
−−−→
i→∞

f̃(z)

for any decreasing sequence ti → 0+ (and the same for any increasing sequence ti → 0−). Letting Qi = [z, ti],
this becomes ´

Qi
f(y) dy

λ(Qi)
−−−→
i→∞

f̃(z),

which follows from the stronger result ´
Qi
|f(y)− f̃(z)| dy

λ(Qi)
−−−→
i→∞

0.

By item (3) in Lemma 4.9, this is equivalent to z being a Lebesgue point of f̃—which z is by the effective
Lebesgue differentiation theorem (Theorem 4.10). �

Variations of Corollary 4.17 are given in Corollary 6.9, Theorem 9.19, and Corollary 9.20. Further, in
Section 12, I will give an example showing that Corollary 4.17 characterizes Schnorr randomness.

Related to absolutely continuous functions is the following theorem about Radon-Nikodym derivatives.

Fact 4.18 (Radon-Nikodym, see [49]). Let µ be a probability measure on [0, 1]d. If µ is absolutely continuous
with respect to λ (i.e. λ(A) = 0 implies µ(A) = 0 for all Borel-measurable A), then there is a λ-a.e.
unique integrable function dµ

dλ , called the Radon-Nikodym derivative or density, such that for all Borel-
measurable sets A,

µ(A) =

ˆ
A

dν

dλ
(x) dx.

Fact 4.19 (See [49]). Let µ be a probability measure on [0, 1]d that is absolutely continuous with respect to
λ. Then

µ(B(x, r))

λ(B(x, r))
−−−→
r→0

dµ

dλ
(x) (λ-a.e. x).

Given a computable measure µ, absolutely continuous with respect to λ, say that µ is computably
normable relative to λ if and only if dµ

dλ ∈ L1
comp(λ). (See [28, 27] for an equivalent characterization of

computably normable using norms.)

Corollary 4.20. Let µ be a computable probability measure on [0, 1]d that is absolutely continuous with
respect to λ, and computably normable relative to λ. Then

µ(B(x, r))

λ(B(x, r))
−−−→
r→0

d̃µ

dλ
(x) (on λ-Schnorr random x).

Proof. Since µ is computably normable relative to λ, we have dµ
dλ ∈ L

1
comp(λ). So then

µ(B(x, r))

λ(B(x, r))
=

´
B(x,r)

dµ
dλ (x) dx

λ(B(x, r))
−−−→
r→0

d̃µ

dλ
(x)

on Schnorr randoms x by the effective Lebesgue differentiation theorem (Theorem 4.10). �
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An extension of Corollary 4.20 to signed measures is given in Theorem 9.12. In Section 12, I will give an
example showing that Corollary 4.20 characterizes Schnorr randomness.

I end this section with an application to effective harmonic analysis. Rescale T to be [0, 2π) and here i
will denote

√
−1. Let f ∈ L1(T → C) be a complex-valued integrable function on T. Let {f̂(j)}j∈Z be the

complex-valued Fourier coefficients of f , that is

f̂(j) =
1

2π

ˆ π

−π
f(t) · e−ijtdt.

Then f can be approximated by the following complex-valued trigonometric polynomials σn(f) (arising from
the Fejér kernel)

σn(f)(x) =
1

n+ 1

n∑
k=0

k∑
j=−k

f̂(j)eijx.

We have the following theorem of Lebesgue. (Note the definition of Lebesgue point naturally extends to
complex-valued functions.)

Fact 4.21 (Lebesgue, see [30]). If x ∈ T is a Lebesgue point of f , then σn(f)(x)→ f(x) as n→∞.

To given an effective version, note that f is computable in L1(T → C) (with a suitable choice of test
functions) if and only if both its real and imaginary parts are computable in L1(T→ R). It is worth noting
that f̂(j) is computable in C uniformly from f and j (use the facts in Proposition 3.20 and that e−ijt is
bounded and computable), and that σn(f) is a computable complex-valued function uniformly in f and n.

Corollary 4.22. If f ∈ L1
comp(T→ C) and x is Schnorr random, then σn(f)(x)→ f̃(x) as n→∞.

Proof. By the effective Lebesgue differentiation theorem (Theorem 4.10) x is a Lebesgue point of both the
real and imaginary parts of f . Therefore x is also a Lebesgue point of f . The rest of the corollary follows
from Fact 4.21. �

5. Martingales in computable analysis

The remainder of this paper is devoted to the effective convergence properties of martingales and appli-
cations thereof. This section develops the theory of martingales in computable analysis.

So far, we have only used dyadic martingales on 2N, i.e. functions M : 2<ω → R that satisfy 1
2M(σ0) +

1
2M(σ1) = M(σ). As motivation, one may represent a dyadic martingale as a sequence of functions,Mn(x) =

M(x � n) for x ∈ 2N. This alternate notation is the common one used in probability theory and it allows
for a much more general class of martingales. We will define what it means for a martingale in this more
general sense to be computable.

Throughout this section, fix an arbitrary computable probability space (X, µ).

5.1. Conditional expectation. An important concept in probability theory is that of conditional expec-
tation. Recall that a σ-algebra is a collection of sets closed under complement, countable intersection and
countable union. The collection B of Borel sets is a σ-algebra. We will only consider sub-σ-algebras of B, and
we will only consider them up to µ-a.e. equivalence. (Two σ-algebras F ,G are µ-a.e. equivalent if every
A ∈ F is µ-a.e. equivalent to some B ∈ G, and vice versa. For example, a σ-algebra with only measure 0 and
measure 1 sets is equivalent to the trivial σ-algebra {∅,X}.) Hence every σ-algebra should be understood
as a collection of equivalence classes of measurable sets.

An important type of σ-algebra is one generated by a finite partition P = {Q0, . . . , Qk−1} of X (i.e.⋃k−1
i=0 Qi = X µ-a.e.). Given such a finite partition P, and given f ∈ L1(X, µ), the conditional expecta-

tion E[f | P] ∈ L1(X, µ) is defined by

E[f | P] :=

k−1∑
i=0

´
Qi
f dx

µ (Qi)
· 1Qi .

We may leave E[f | P](x) undefined when x ∈ Qi and µ(Qi) = 0, as we only wish to define E[f | P] as an
a.e. equivalence class. Notice that E[f | P] is a step function constant on each Qi, and so I will sometimes
abuse notation and write E[f | P](Qi) := 1

µ(Qi)

´
Qi
f dµ where convenient. Below, and throughout the paper,

Ẽ[f | P](x) will mean g̃ where g = E [f | P].
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Proposition 5.1. Let P = {Q0, . . . , Qk−1} be a finite partition of X into effectively measurable sets, and
let f be an L1-computable function. Then the following hold.

(1) E[f | P] is L1-computable uniformly from (the names for) f and P.
(2) The value E [f | P] (Qi) is computable from f and Qi.
(3) Ẽ[f | P](x) = E [f | P] (Qi) assuming x ∈ Q̃i and x is Schnorr random.

Proof. Items (1) and (2) are straightforward. For (3), assume x is Schnorr random and x ∈ Q̃i. Then,
µ(Qi) > 0. By Definition 3.17, 1̃Qi(x) = 1. Moreover, 1̃Qj (x) = 0 for j 6= i (since, by Proposition 3.28,
Q̃i ∩ Q̃j = Q̃i ∩Qj = ∅̃ = ∅). Then, by Proposition 3.28, we have

Ẽ[f | P] (x) =

k−1∑
j=0

´
Qj
f dx

µ (Qj)
· 1̃Qj (x) =

´
Qi
f dx

µ (Qi)
= E [f | P] (Qi). �

The definition of conditional expectation can be extended to any σ-algebra. The condition expectation
E[f | F ] is the a.e. unique function E[f | F ] ∈ L1(X, µ) such that

´
A
E[f | F ](x) dµ(x) =

´
A
f dµ for all

measurable A ∈ F . (Alternately, E[f | F ] can be defined directly using the Radon-Nikodym derivative.) If
F is the σ-algebra generated by a partition P, then E[f | F ] = E[f | P] µ-a.e. The following facts about
conditional expectation will be used quite often (sometimes without reference).

Fact 5.2 (See [14, 54]). Assume f, g, fn ∈ L1(X, µ), and F , F1, F2 are σ-algebras.
(1) E [f | F ] is F-measurable.
(2)
´
E [f | F ] (x) dx =

´
f(x) dx.

(3) If f is F-measurable, then E [f | F ] = f a.e.
(4) (Tower property) If F1 ⊆ F2 (as σ-algebras), then E [E [f | F2] | F1] = E [f | F1] a.e.
(5) If

´
|g(x)f(x)| dx <∞ and g is F-measurable, then E [gf | F ] = g · E [f | F ] a.e.

(6) (Linearity) E [af + g | F ] = aE [f | F ] + E [g | F ] a.e.
(7) If f ≤ g a.e., then E [f | F ] ≤ E [g | F ] a.e.
(8) (Conditional Jensen’s inequality) |E [f | F ] | ≤ E [|f | | F ] a.e. (or replace | · | with any convex func-

tion).
(9) If F1 ⊆ F2 (as σ-algebras), then ‖E [f | F1]‖L1 ≤ ‖E [f | F2]‖L1 ≤ ‖f‖L1 (also for the L2-norm).
(10) (Conditional Fatou’s lemma) E[lim supn→∞ fn | F ] ≥ lim supn→∞ E[fn | F ] if there is some g ∈ L1

such that fn ≥ g for all n.

5.2. L1-computable martingales. A filtration (Fk) is a chain of σ-algebras F0 ⊆ F1 ⊆ . . .. We say a
filtration (Fk) converges to the σ-algebra F∞, written Fk ↑ F∞, when F∞ = σ (

⋃
k Fk). One example of

a filtration is a chain of increasingly fine partitions. The only filtration we will use by name is the filtration
generated by the chain of partitions (Bk) where, on 2N, Bk = {[τ ] | |τ | = k}, and on Td or [0, 1]d, Bk is the
set of dyadic cubes with side length 2−k. It is clear that Bk ↑ B, where B is the Borel σ-algebra.

A martingale adapted to a filtration (Fk) is a sequence of integrable functions (Mk) such that Mk is
Fk-measurable and

(5.1) E [Mk+1 | Fk] = Mk a.e.

Assuming the filtration (Fk) is given by a sequence of partitions (Pk), then Mk is constant on all Q ∈ Pk.
We then may write M(Q) for Mk(x) where x ∈ Q .

Example 5.3. Every dyadic martingale M : 2ω → R is equivalent to a martingale (Mk) on (2N, λ) with
respect to the filtration (Bk), and vice versa, under the translation Mk(x) = M(x � k). It is easy to see
condition (5.1) is equivalent to

M(σ0)µ(σ0) +M(σ1)µ(σ1) = M(σ)µ(σ).

In algorithmic randomness, it is customary to assume the martingales are non-negative. We do not make
that assumption here.

Martingales are useful for their well-behaved convergence properties. Also, they have a natural interpre-
tation in terms of gambling. In general, Fk is the information known to the gambler at time k, and Mk is
the capital of the gambler at time k following a betting strategy given by M .
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It is not necessary to refer to a specific filtration when talking about martingales. Any martingale (Mk)
is also a martingale with respect to the filtration (Fk) where

Fk = σ(M0, . . . ,Mk) = σ

(
k⋃
i=0

{
M−1
i (A) | A ∈ B

})
i.e. the minimal σ-algebra with respect to whichM0, . . . ,Mk are measurable. (In the definition of σ(M0, . . . ,Mk),
it is sufficient to replace B with any countable generator of B.) Hence (Mk) is a martingale (with respect
to some filtration) if and only if E[Mk+1 | M0, . . . ,Mk] = Mk (where E[Mk+1 | M0, . . . ,Mk] is defined as
E[Mk+1 | σ(M0, . . . ,Mk)]).

We say a martingale (Mk) is an L1-computable martingale if (Mk) is a computable sequence of
L1-computable functions.

Last, we mention the general form of Kolmogorov’s inequality (compared with Fact 4.4) which extends
Markov’s inequality (Fact A.2). We will use it quite often.

Fact 5.4 (Kolmogorov’s inequality, see [54]). For a martingale (Mk), and n,m ∈ N,

µ

({
x ∈ X

∣∣∣∣ max
k∈[n,m]

|Mk(x)| ≥ ε
})
≤
‖Mm‖L1

ε
.

6. The Lévy 0-1 law and uniformly integrable martingales

6.1. Some martingale convergence theorems. Assume in this section that (X, µ) is a computable prob-
ability space. Consider the following class of martingales.

Example 6.1. If f ∈ L1(X, µ) and (Fk) is a filtration, then E [f | Fk] is a martingale on (Fk) by Fact 5.2
(4). In the case that X = 2N,Td, [0, 1]d, then the sequence f (k) from the Section 4.1 is equal to E [f | Bk].

Fact 6.2 (Lévy 0-1 law, see [14, 54]). Given a filtration (Fk) such that Fk ↑ F∞ and f ∈ L1, then

E [f | Fk] −−−−→
k→∞

E [f | F∞] (L1 and a.e.).

Therefore, if f is F∞-measurable, then E [f | F∞] = f a.e. and

E [f | Fk] −−−−→
k→∞

f (L1 and a.e.).

In this section I give an effective version of the Lévy 0-1 law.

Theorem 6.3 (Effective Lévy 0-1 law). Let (Fk) be any filtration with limit F∞. Assume f ∈ L1
comp,

E[f | Fk] is L1-computable uniformly in k, and E[f | F∞] ∈ L1
comp. Then

E [f | Fk] −−−−→
k→∞

E [f | F∞] (effectively L1 and effectively a.e.).

Hence, by Lemma 3.19,

Ẽ [f | Fk] (z) −−−−→
k→∞

Ẽ [f | F∞] (z) (on Schnorr random z).

To prove this theorem, we will rely on the following characterization of martingales which converge in
the L1-norm. A martingale (Mk) is called uniformly-integrable if it satisfies either of the following
equivalent conditions.

Fact 6.4 (see [14]). If (Mk) is a martingale on the filtration (Fk) the following are equivalent.
(1) (Mk) converges in the L1-norm.
(2) There exists f ∈ L1 such that Mk = E [f | Fk] a.e. for all k.
(3) The sequence of functions (Mk) is uniformly integrable, i.e.

sup
k

ˆ
{
x∈X

∣∣ |Mk(x)|>C
} |Mk| dµ −−−−→

C→∞
0.

(Condition 3 is will not be used in this paper.) By the Lévy 0-1 law, every uniformly-integrable martingale
has a limit. By Fact 6.4, the effective Lévy 0-1 law (Theorem 6.3) follows from the next lemma.
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Lemma 6.5. Assume (Mk) is a uniformly-integrable, L1-computable martingale with limit M∞ ∈ L1
comp.

Then
Mk −−−−→

k→∞
M∞ (effectively L1and effectively a.e.).

Hence, by Lemma 3.19, M̃k(z) −−−−→
k→∞

M̃∞(z) for Schnorr randoms z.

Proof. Since we know that, Mk
L1

−−−−→
k→∞

M∞ and since M∞,Mk are uniformly L1-computable, we can find

a subsequence
(
Mkj

)
such that for all j ≥ i we have

∥∥Mkj −Mki

∥∥
L1 ≤ 2−i. The subsequence converges

effectively in L1 and a.e. (Proposition 3.15).
First, we show convergence in the L1-norm. Fix i. Notice that Nk := (Mk −Mki) is a martingale for

k ≥ ki. (This is easy to verify using conditional expectation facts (Facts 5.2) and the fact that Mki is
Fki-measurable.) The L1-norm of the martingale (Nk) is nondecreasing (Facts 5.2) and hence for any j ≥ i,

(6.1) max
k∈[ki,kj ]

‖Mk −Mki‖L1 ≤
∥∥Mkj −Mki

∥∥
L1 ≤ 2−i.

Since i and j are arbitrary, this shows (Mn) is effectively Cauchy in the L1-norm.
To show effective a.e. convergence, again fix i and use Kolmogorov’s inequality (Fact 5.4) on the martingale

Nk := (Mk −Mki) to get

µ

({
x

∣∣∣∣ max
k∈[kj ,ki]

|Mk(x)−Mki(x)| ≥ 2−i/2
})
≤
∥∥Mkj −Mki

∥∥
L1

2−i/2
≤ 2−i/2.(6.2)

Since i and j are arbitrary, this shows (Mn) is effectively a.e. Cauchy. �

Remark 6.6. Notice in the case that X = 2N,Td, [0, 1]d and Mk = f (k) (as in Section 4.1), then Lemma
6.5 follows from the effective Lebesgue approximation theorem (Proposition 4.3) (L1 convergence) and the
effective dyadic Lebesgue differentiation theorem (Proposition 4.6) (a.e. convergence).

If the martingale is L2-computable and L2-bounded, i.e. supk ‖Mk‖L2 <∞, then it is sufficient to know
the L2-bound instead of the limit. (This is not true of the L1 case.)

Fact 6.7 (See [14]). Assume (Mk) is an L2-bounded martingale. Then (Mk) is uniformly-integrable, has a
limit M∞ in the L2-norm (and L1-norm), and supk ‖Mk‖L2 = ‖M∞‖L2 .

Corollary 6.8. Assume (Mk) is an L2-computable martingale with limit M∞ and with computable L2-bound
b = supk ‖Mk‖L2 = ‖M∞‖L2 . Then

Mk −−−−→
k→∞

M∞ (eff. L2, eff. L1, eff. a.e.).

Therefore, M∞ is L2- and L1-computable (uniformly from (Mk) and b), and M̃k(z) −−−−→
k→∞

M̃∞(z) for
Schnorr randoms z.

Proof. The space of L2-functions is a Hilbert space and the conditional expectation f 7→ E[f | F ] is a
projection onto the space of F-measurable functions [14]. Therefore, by the Pythagorean theorem, for k ≥ j,

‖Mk −Mj‖2L2 = ‖Mk‖2L2 − ‖Mj‖2L2 ≤ b2 − ‖Mj‖2L2 .

Since the L2-bound b is finite and computable, this implies effective convergence in the L2-norm and hence
in the L1-norm as well. Hence the limit is L1- and L2-computable (uniformly from (Mk) and b). Since (Mk)
converges in L1, the martingale is uniformly-integrable (Fact 6.4). The rest follows from Lemma 6.5. �

This gives the following variation of Corollary 4.17.

Corollary 6.9. Let F : [0, 1]→ R be a computable function which is also absolutely-continuous with deriva-
tive f = d

dxF . Assume that ‖f‖L2 is computable. Then f is L2-computable (uniformly from F and ‖f‖L2),
F is effectively absolutely continuous, and F is differentiable on Schnorr randoms.
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Proof. For any non-dyadic real x ∈ [0, 1], let x � n denote the binary expansion of x truncated at the nth
bit and let 0.x � n denote the corresponding dyadic rational. Then

d

dx
F (x) = lim

n→∞
F (2−n + 0.x � n)− F (0.x � n)

2−n
.

The term under the limit is an L2-computable martingale as follows. If f is the derivative of F , then

F (2−n + 0.(x � n))− F (0.(x � n))

2−n
=

´
[x�n]

f dλ

2−n
= f (n)(x)

where f (n)(x) is the martingale defined in Section 4.1 (see Example 6.1). Each f (n) is L2-computable from

F and n since it is a test function. We know f (n) L1

−−−−→
n→∞

f (Fact 4.2). Since ‖f‖L2 is computable, by

Corollary 6.8, the derivative f is L2-computable and F is effectively absolutely continuous. The rest follows
by Corollary 4.17. �

In Section 12, I will give examples showing that the theorems of this section characterize Schnorr ran-
domness.

7. More martingale convergence results

7.1. Martingale convergence results. A martingale (Mk) is said to be L1-bounded if supk ‖Mk‖L1 <∞.
The Lévy 0-1 Law above is a special case of the following theorem.

Fact 7.1 (Doob’s martingale convergence theorem, see [14, 54]). If (Mk) is an L1-bounded martingale, then
Mk converges pointwise a.e. and in measure to an integrable function.

Example 7.2. If a martingale is uniformly-integrable or nonnegative then it is L1-bounded. Indeed, given
a uniformly-integrable martingale (Mk), there is some f ∈ L1 such that Mk = E[f | Fk] (Fact 6.4) and
‖E[f | Fk]‖L1 ≤ ‖f‖L1 (Facts 5.2). For a nonnegative martingale (Mk), we have (using Facts 5.2) that

‖Mk‖L1 =

ˆ
Mk dµ =

ˆ
E[Mk | F0] dµ =

ˆ
M0 dµ = ‖M0‖L1 .

While martingale convergence in general is not effective, it can be under certain circumstances. We have
already seen the case when the martingale is uniformly-integrable.

Unlike uniform integrability, being merely L1-bounded only implies pointwise convergence, not conver-
gence in the L1-norm.

Example 7.3. Consider a doubling strategy, whereby the gambler bets all his capital on at each stage until
he loses. The limit of his capital is almost-surely zero, but the martingale is nonnegative, so the L1-norm
stays constant and does not converge in the L1-norm.

Now I consider the case when (Mk) is a nonnegative singular supermartingale. A supermartingale
(Mk) is an adapted process, i.e. Mk is Fk-measurable such that E[Mk+1 | Fk] ≤ Mk for all k. (A sub-
martingale (Mk) is the same except E[Mk+1 | Fk] ≥ Mk.) Notice, every martingale is a supermartingale
(and submartingale). A supermartingale (Mk) is singular if Mk(x) −−−−→

k→∞
0 a.e.

Lemma 7.4. Let M be a nonnegative L1-computable singular supermartingale. Then Mk −−−−→
k→∞

0 effectively

a.e., and hence (by Lemma 3.19) M̃k(z) −−−−→
k→∞

0 for all Schnorr randoms z.

Proof. By Fact 7.1, Mk −−−−→
k→∞

0 in measure. Hence we can effectively find a subsequence (ki) such that

(Mki) converges rapidly the metric dmeas (Fact 3.11), namely

dmeas(Mki , 0) = ‖min {|Mki |, 1}‖L1 < 2−(i+1).

Fix i. Since Mki is nonnegative, it follows by Markov’s inequality (Fact A.2) that

(7.1) µ

(
{x | 0 ≤Mki(x) < 1}︸ ︷︷ ︸

=:Ci

)
≤ 1− 2−(i+1).
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The set Ci in σ(Mki), and hence Ci ∈ Fki for any filtration (Fk) to which (Mk) is adapted. For k > ki
let Nk := 1CiMk. The following calculation shows that (Nk)k≥ki is still a supermartingale adapted to (Fk):

E [1CiMk+1 | Fk] = 1CjE [Mk+1 | Fk] ≤ 1CjMk a.e.

(Intuitively what makes Nk a supermartingale is that on Ci, the process (Nk) behaves as the supermartingale
(Mk), and on the complement of Ci, the process (Nk) is the constant zero supermartingale.) The L1-norms
of nonnegative supermartingales decrease, and therefore for all k ≥ kj ,

‖1CiMk‖L1 ≤ ‖1CiMki‖L1 ≤ ‖min(Mki , 1)‖L1 ≤ 2−(i+1).

Kolmogorov’s inequality (Fact 5.4) also holds for nonnegative supermartingales, and therefore for j > i

µ

({
x

∣∣∣∣ max
k∈[ki,kj ]

1Ci(x)Mk(x) ≥ 2−(i+1)/2

})
≤ 2−(i+1)

2−(i+1)/2
≤ 2−(i+1)/2.

Call this set Ai. Then

µ

({
x

∣∣∣∣ max
k∈[ki,kj ]

Mk(x) ≥ 2−(i+1)/2

})
≤ µ(Ai) + (1− µ(Ci)) ≤ 2−i/2.

As i and j are arbitrary, Mk → 0 effectively a.e. �

Our goal, however, is to show any martingale converges effectively a.e. if the L1-bound and the limit are
known. To prove this, I will use two complimentary martingale decompositions. In this next decomposition,
M+
k denotes the nonnegative part of the martingale decomposition, whereas [Mk]+ will mean max(Mk, 0)—

and similarly for M−k and [Mk]−. (Whereas (M+
k ) is a martingale, ([Mk]+) is only a submartingale.) Also,

for a martingale N = (Nk), denote ‖N‖M1 = supk ‖Nk‖L1 .

Fact 7.5 (Krickeberg Decomposition, see [9, Chapter V, Section 4]). Let (Mk) be an L1-bounded martingale
with respect to the filtration (Fk). Then there are two nonnegative martingales (M+

k ) and (M−k ) such that
such that Mk = M+

k −M
−
k a.e. for all k, and ‖M‖M1 = ‖M+‖M1 + ‖M−‖M1 =

∥∥M+
k

∥∥
L1 +

∥∥M−k ∥∥L1 for
all k. Further, this decomposition is a.e. unique; M+

k = supn E[[Mn]+ | Fk] a.e.; M−k = supn E[[Mn]− | Fk]

a.e.; limk→∞M+
k = [limkMk]+ a.e.; and limk→∞M−k = [limkMk]− a.e.

Fact 7.6 (Uniformly Integrable/Singular Decomposition, see [9, Chapter V, Section 4]). Let (Mk) be an
L1-bounded martingale with respect to the filtration (Fk) and let M∞ = limnMn. Then there is a uniformly-
integrable martingale (Mui

k ) and a singular martingale (Ms
k) such that Mk = Ms

k + Mui
k a.e. for all k.

Further, this decomposition is a.e. unique; Mui
k = E[M∞ | Fk] a.e.; Ms

k = E[Mk −M∞ | Fk] a.e.; and
‖Mk‖M1 = ‖Ms

k‖M1 +
∥∥Mui

k

∥∥
M1 .

Remark 7.7. To make the decompositions computable, we need the filtration to be computable. The filtration
(Fk) can be represented by the sequence of operators f 7→ E[f | Fk] from L1 to L1. Say that (Fk) is
computable if f 7→ E[f | Fk] is a computable operator from L1 to L1 uniformly in k. If (Pk) is a computable
chain of computable partitions, where Pk+1 is a refinement of Pk, then the corresponding filtration is
computable. Assuming the filtration (Fk) is computable, the above decompositions are computable using
the L1-bound ‖M‖M1 and the limit M∞, respectively, as follows.

Proposition 7.8 (Effective Krickeberg decomposition). Let (Mk) be an L1-computable martingale with
respect to a computable filtration (Fk). Then the Krickeberg decomposition (M+

k ), (M−k ) is computable from
(Mk), (Fk), and the L1-bound ‖M‖M1 . Further, the limits limk→∞M+

k = [M∞]+ and limk→∞M−k = [M∞]−

are L1-computable from the limit M∞.

Proof. We wish to compute M+
k = supn E[[Mn]+ | Fk] and M−k = supn E[[Mn]− | Fk]. Note that E[[Mn]+ |

Fk] is L1-computable from n, k, and (Fk), since the filtration is computable. To show each supremum is
L1-computable, fix ε > 0 and k. Then choose n > k such that∥∥E[[Mn]+ | Fk]

∥∥
L1 +

∥∥E[[Mn]− | Fk]
∥∥
L1 > ‖M‖M1 − ε
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Since M+
k ≥ E[[Mn]+ | Fk] and M−k ≥ E[[Mn]− | Fk] for all n, we have∥∥M+

k − E[[Mn]+ | Fk]
∥∥
L1 +

∥∥M−k − E[[Mn]− | Fk]
∥∥
L1

= ‖M+
k ‖L1 + ‖M−k ‖L1 −

(∥∥E[[Mn]+ | Fk]
∥∥
L1 +

∥∥E[[Mn]− | Fk]
∥∥
L1

)
≤ ‖M‖M1 −

∥∥E[[Mn]+ | Fk] + E[[Mn]− | Fk]
∥∥
L1 ≤ ε.

Hence M+
k and M−k are L1-computable uniformly in k.

To compute the limits, just use that fact that [M∞]+ and [M∞]− are L1-computable from M∞. �

Proposition 7.9 (Effective Uniformly Integrable/Singular Decomposition). Let (Mk) be an L1-computable
martingale with respect to a computable filtration (Fk). Then the decomposition (Mui

k ), (Ms
k) is computable

from (Mk), (Fk), and the limit M∞. Further, the L1-bound ‖Ms‖M1 = ‖M‖M1 −
∥∥Mui

∥∥
M1 = ‖M‖M1 −

‖M∞‖L1 is computable from ‖M‖M1 .

Proof. Since the filtration is computable, Mui
k = E[M∞ | Fk] is computable in the L1-norm uniformly from

M∞, k, and (Fk). Then Ms
k = Mk−Mui

k is computable in the L1-norm. To compute ‖Ms‖M1 just use that∥∥Mui
∥∥
M1 = ‖M∞‖L1 is computable. �

In the martingale convergence results so far, there have been no computability requirements on the
filtration (Fk). We can continue to work without specifying the computability of the filtration. The trick is
to approximate M by a different martingale whose filtration is given by a chain of partitions.

Proposition 7.10. Let M be an L1-computable martingale (resp. supermartingale, submartingale). There
is a computable martingale (resp. supermartingale, submartingale) N adapted to a computable chain of
computable partitions (Pk) such that for all k, Pk ⊆ σ(M0, . . . ,Mk) and ‖Nk −Mk‖L1 ≤ 2−k. If M is
nonnegative, then so is N . Further, if M is a martingale or nonnegative submartingale, then supn ‖Mn‖L1 =
supn ‖Nn‖L1 .

Proof. The main idea is to take each σ-algebra in the canonical filtration Fk = σ(M0, . . . ,Mk) and approx-
imate it with a finite sub-σ-algebra, i.e. a partition Pk ⊆ Fk.

For each k, let Tk : (X, µ) → Rk+1 be the map Tk = (M0, . . . ,Mk). Recall that σ(M0, . . . ,Mk) =
σ(Tk) = σ({T−1

k (B) | B ∈ C}) where σ(C) is generates the Borel sigma algebra on the push forward
measure space (Rk+1, µ∗Tk). Recall that µ∗Tk is computable (Proposition 3.25) and therefore we can take
C = Basis(Rk+1, µ∗Tk) as in Lemma 3.5. Let {Bki }i be a computable enumeration of Basis(Rk+1, µ∗Tk).
Then by Proposition 3.20, {T−1

k (Bki )}i,k is a computable double sequence of effectively measurable sets which
generates σ(M0, . . . ,Mk). That is, if Qki = {T−1

k (Bk0 ), . . . , T−1
k (Bki−1)}, then σ(Qki ) ↑

i→∞
σ(M0, . . . ,Mk).

By the Lévy 0-1 law (Fact 6.2), E[Mk | Qki ]
L1

−−−→
i→∞

Mk. Since each E[Mk | Qki ] is L1-computable from i

and k, find some ik such that
∥∥E[Mk | Qkik ]−Mk

∥∥
L1 ≤ 2−k. Define Pk = Qkik and Nk = E[Mk | Pk].

IfM is a supermartingale, then N is as well. Indeed, by two applications of the tower property (Facts 5.2),

E[Nk+1 | Pk] = E[E[Mk+1 | Pk+1] | Pk] (definition of Nk+1)
= E[Mk+1 | Pk] (tower property)
= E[E[Mk+1 | σ(M0, . . . ,Mk)] | Pk] (tower property)
≤ E[Mk | Pk] (M is a supermartingale)
= Nk (definition of Nk).

If M is a martingale, or submartingale, the same argument works.
In general, ‖Nk‖L1 = ‖E[Mk | Pk]‖L1 ≤ ‖Mk‖L1 which is just a property of conditional expectation

(Facts 5.2). Moreover, |‖Mk‖L1 − ‖Nk‖L1 | ≤ ‖Mk−Nk‖L1 . If M is a martingale or nonnegative submartin-
gale, then ‖Mk‖k is increasing and hence supn ‖Nk‖k = supn ‖Mk‖k. �

Theorem 7.11. LetM be an L1-computable martingale with computable L1-bound ‖M‖M1 and L1-computable
limit M∞. Then Mk −−−−→

k→∞
M∞ effectively a.e., and hence, by Lemma 3.19, M̃k(z) −−−−→

k→∞
M̃∞(z) for all

Schnorr randoms z.
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Proof. Let N be as in Proposition 7.10. Since ‖Nk −Mk‖L1 ≤ 2−k for all k, (Nk −Mk) −−−−→
k→∞

0 effectively
a.e. It follows that Mk −−−−→

k→∞
M∞ effectively a.e. if and only if Nk −−−−→

k→∞
M∞ effectively a.e.

Since N is a martingale with respect to a computable sequence of partitions, N is effectively decomposable
(Proposition 7.9) into a uniformly integrable part Nui and a singular part Ns. We know Nui

k −−−−→
k→∞

M∞

converges effectively a.e. by the effective Lévy 0-1 law (Theorem 6.3).
Since ‖M‖M1 is computable, then so is ‖Ns‖M1 . Therefore, Ns can be effectively decomposed (Propo-

sition 7.8) into two nonnegative L1-computable singular martingales Ns+ and Ns−. By Lemma 7.4,
Ns+
k −−−−→

k→∞
0 and Ns−

k −−−−→
k→∞

0 effectively a.e.

Putting this all together we have that Nk = Nui
k +Ns+

k −N
s−
k −−−−→

k→∞
M∞ effectively a.e. �

In Section 12, I show that Lemma 9.6 (and hence Theorem 7.11) characterizes Schnorr randomness.

8. Submartingales and supermartingales

Recall from the previous section, a sequence (Xk) of integrable functions is a submartingale (resp.
supermartingale) adapted to a filtration (Fn) if Xk is Fk-measurable for all k, and E[Xk+1 | Fk] ≥ Xk

(resp. E[Xk+1 | Fk] ≤ Xk) for all k.
It can be show that L1-computable, nonnegative submartingales and supermartingales converge effectively

a.e. when their L1-bounds and limits are known. The proofs are different for each.

Theorem 8.1. Let (Xn) be a nonnegative L1-computable supermartingale whose limit X∞ is L1-computable.
Then Xn −−−−→

n→∞
X∞ effectively a.e. and, by Lemma 3.19, X̃n(x) −−−−→

n→∞
X̃∞(x) on Schnorr randoms x.

(Instead assuming Xn is nonnegative, we may assume that Xn ≥ Z for some integrable function Z.)

Proof. As in the proof of Theorem 7.11, we may use Proposition 7.10 to assume, without loss of generality,
that Xn is adapted to a computable filtration. By the fact that (Xn) is a supermartingale, the fact that Xn

is nonnegative (or bounded from below by an integrable function Z), and the conditional Fatou’s theorem
(Facts 5.2), we have

Xn ≥ lim inf
k

E[Xk | Fn] ≥ E[X∞ | Fn].

Then we have a nonnegative, L1-computable supermartingale Yn = Xn − E[X∞ | Fn] which converges to 0
a.e. But Yn converges to 0 effectively a.e. by Lemma 7.4. Also E[X∞ | Fn] converges effectively a.e. by the
effective Lévy 0-1 law. Putting them together completes the proof. �

For the submartingale case, I first use an effective version of the monotone convergence theorem.

Proposition 8.2 (Effective monotone convergence theorem). Assume fn is an nondecreasing sequence of
L1-computable functions. Also assume supn ‖fn‖L1 is finite and computable. Then fn → supn fn effectively
in the L1-norm and effectively a.e. By Lemma 3.19, f̃n → ˜supn fn (or equivalently ˜supn fn = supn f̃n) on
Schnorr randoms.

Proof. Find a subsequence (nk) such that
(
supn ‖fn‖L1

)
− ‖fnk‖L1 ≤ 2−k. Fix k. By monotonicity, ‖fn −

fnk‖L1 ≤ 2−k for all n ≥ nk. Also, by monotonicity, Markov’s inequality, and the monotone convergence
theorem,

µ

({
sup
n
|fn − fnk | > 2−k/2

})
= µ

({(
sup
n
fn

)
− fnk > 2−k/2

})
≤ ‖ supn fn − fnk‖L1

2−k/2

=
sup ‖fn‖L1 − ‖fnk‖L1

2−k/2
≤ 2−k/2.

Since k is arbitrary, this gives effective convergence in L1 and effective a.e. convergence. �

I also use an effective version of Doob’s decomposition theorem.
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Fact 8.3 (Doob decomposition, see [54]). Let (Xn) be a submartingale with respect to (Fn). Then there is a
martingale (Mn) with respect to (Fn) and a predictable process An (i.e. An+1 is Fn measurable) such
that A0 = 0 and Xn = Mn +An. Moreover, this decomposition is a.e. unique; An+1 −An = E[Xn+1 −Xn |
Fn]; and An is nondecreasing.

Proposition 8.4 (Effective Doob Decomposition). If (Xn) is an L1-computable submartingale and (Fn) is
a computable filtration, then the Doob decomposition is effective.

Proof. It is enough that E[Xn+1 −Xn | Fn] is L1-computable from the parameters. �

Theorem 8.5. Let (Xn) be a nonnegative, L1-computable submartingale such that the L1-bound supn ‖Xn‖L1

is computable and the limit X∞ is L1-computable. Then Xn −−−−→
n→∞

X∞ effectively a.e. and X̃n(x) −−−−→
n→∞

X̃∞(x) on Schnorr randoms x.

Proof. With out loss of generality, the filtration (Fn) is one of partitions (Proposition 7.10; the same argu-
ment holds for submartingales). Then decompose Xn = Mn + An as in the effective Doob decomposition
(Proposition 8.4). Notice that 0 ≤ An ≤ Xn using induction on the formula for An, hence both (Mn)
and (An) are nonnegative. Recall, also that ‖Mn‖L1 is nondecreasing in n since (Mn) is a martingale, and
‖An‖L1 is nondecreasing since (An) is nondecreasing. Hence

sup
n
‖Xn‖L1 = sup

n
(‖Mn‖L1 + ‖An‖L1) =

(
sup
n
‖Mn‖L1

)
+

(
sup
n
‖An‖L1

)
Since each term is lower semicomputable and supn ‖Xn‖L1 is computable, both supn ‖Mn‖L1 and supn ‖An‖L1

are computable.
Moreover, let X∞,M∞, A∞ be the limits of (Xn), (Mn), (An), respectively. Clearly, X∞ = M∞ + A∞.

NoticeX∞ is L1-computable by assumption, and A∞ is L1-computable by the effective monotone convergence
theorem (Proposition 8.2). Hence M∞ is L1-computable. Therefore, the convergence of (Mn) and (An)
is effective a.e. using the effective convergence theorem for martingales (Theorem 7.11) and the effective
monotone convergence theorem (Proposition 8.2). Convergence on Schnorr randoms follows similarly. �

In Section 12, I will show these theorems characterize Schnorr randomness.
These theorems are both require a lower bound and are not as general as they could be. We leave the

following open problem.

Problem 8.6. Let (Xn) be a nonnegative, L1-computable submartingale (or supermartingale) such that the
L1-bounds supn ‖Xn‖L1 and infn ‖Xn‖L1 are computable and the limit X∞ is L1-computable. Does (Xn)
converge to Xn effectively a.e.? What if ‖Xn‖L1 is computable? What if the rate of convergence of ‖Xn‖L1

is computable?

9. More differentiability results

In this section we will explore some more differentiability-type results. The results follow from Sections 6
and 7. In some cases, we only sketch the details.

9.1. Signed measures and Radon-Nikodym derivatives. Signed measures are (informally) measures
that may assign positive or negative mass to sets. A signed measure ν has a total variation norm ‖ν‖TV
that represents the sum of both the positive and negative mass. If µ is a positive measure on [0, 1]d (i.e. a
measure that gives nonnegative mass to every set), then ‖µ‖TV = µ([0, 1]d). We will only consider finite
signed measures, i.e. where ‖µ‖TV < ∞. The (finite) signed measures can be characterized by the Riesz
representation theorem as follows. We will use this as our definition of signed measure.

Fact 9.1 (Riesz representation theorem, see [49]). There is a one-to-one correspondence between (finite)
signed measures ν on [0, 1]d and bounded linear functionals T : C([0, 1]d) → R, namely each T is the in-
tegration map f 7→

´
f dν of a signed measure ν. Further, ‖ν‖TV is equal to the operator norm ‖T‖ :=

supf∈C([0,1]) |T (f)|/ ‖f‖∞.
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Definition 9.2. A signed measure ν is said to be computable if the corresponding functional Tν is com-
putable (i.e.

´
f dν is computable uniformly from f).13

Remark 9.3. If Tν is positive (i.e. Tν(f) ≥ 0 when f ≥ 0), then ν is a positive measure and ‖ν‖TV =
Tν(1[0,1]d), which is computable from Tν . A little thought reveals that the positive, computable signed
measures are precisely the computable measures of Definition 2.4. Similarly, the positive, computable signed
measures with norm one are precisely the computable probability measures.

Recall that λ denotes the Lebesgue measure. In this next fact, which extends Fact 4.19, ν-a.e. means
outside a measurable set C such that ν(B) = 0 for all measurable B ⊆ C.

Fact 9.4 (Radon-Nikodym theorem and decomposition, see [49]). Given a signed measure ν on [0, 1]d, there
is a λ-a.e. unique, λ-integrable function f and a ν-a.e. unique, λ-null set D such that for all measurable sets
A,

ν(A) =

ˆ
A

f dλ+ ν(A ∩D).

The function f is the Radon-Nikodym derivative dν/dλ.

Fact 9.5 (See [49]). Let ν be a signed measure on [0, 1]d. Then

ν(B(x, r))

λ(B(x, r))
−−−→
r→0

dν

dλ
(x) (λ-a.e. x).

When ν is a nonnegative absolutely continuous measure, Fact 9.5 is equivalent to Fact 4.19, which is a
version of the Lebesgue differentiation theorem (Fact 4.7). An effective version of Fact 9.5 will be given in
Theorem 9.12, but first consider the “singular” case where dν/dλ = 0.

Lemma 9.6. If µ is a positive measure on [0, 1]d such that dµ/dλ = 0 then

µ(B(x, r))

λ(B(x, r))
−−−→
r→0

0

effectively a.e. and for all λ-Schnorr randoms x.

Proof sketch. Without loss of generality we may work on (Td, λ). By modifying the argument in Lemma 4.9,
it is enough to show on λ-Schnorr randoms x that

µ(Itk(x))

λ(Itk(x))
−−−−→
k→∞

0

for all t ∈ {− 1
3 , 0,

1
3}
d. However, µ(Itk(x)) may not be computable, which happens when the boundary of

the cube Itk(x) has positive mass. To handle this, replace Itk(x) by It+sk (x) (that is the dyadic cube shifted
by t+ s that contains x) for some computable vector s ∈ [0, 1]d, such that µ(It+sk (x)) is computable for all
k ∈ N and all t ∈ {− 1

3 , 0,
1
3}
d. One can show, by a diagonalization argument, that there is such an s.

Fix such an s. It is enough to show that

µ(It+sk (x))

λ(It+sk (x))
−−−−→
k→∞

0.

We have M t
k(x) := µ(It+sk (x))/λ(It+sk (x)) is a nonnegative, singular, L1-computable martingale for each

t ∈ {− 1
3 , 0,

1
3}
d. The statement of the lemma follows from Lemma 7.4. �

To effectivize Fact 9.5 in its full generality, I will use two decompositions, which are analogies to the
martingale decompositions in Section 7.

13In general, the norm ‖ν‖TV is only lower semicomputable, so the space of signed measures is not a computable Banach
space. The representation I am using implicitly uses the weak-∗ topology (or topology of pointwise convergence) on the space
of bounded linear functionals of C([0, 1]). That is the minimal topology for which each Tν is continuous. The unit ball in this
topology is metrizable and one could alternately use this fact to classify the computable signed measures as the computable
points in the corresponding computable metric space.
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Fact 9.7 (Lebesgue decomposition, see [13]). Given a signed measure ν on [0, 1]d, there is a unique
decomposition of ν into two signed measures νac and νs (the absolutely continuous part and the singu-
lar part, respectively) such that ν = νac + νs; νac(A) =

´
A

(dνac/dλ) dλ; and dνs/dλ = 0. Further,
‖ν‖TV = ‖νac‖TV + ‖νs‖TV ; if f and D are as in the Radon-Nikodym theorem (Fact 9.4), then dνac/dλ = f
and for all measurable A,

νas(A) =

ˆ
A

f dλ and νs(A) = ν(A ∩D).

Recall, the notation [f ]+ = max{f, 0} and [f ]− = max{−f, 0}.

Fact 9.8 (Jordan decomposition, see [13]). Given a signed measure ν on [0, 1]d, there is a unique decom-
position of ν into two signed measures ν+ and ν− such that ν = ν+ − ν−, ‖ν‖TV = ‖ν+‖TV + ‖ν−‖TV .
Further dν+/dλ = [dν/dλ]+, dν−/dλ = [dν/dλ]−. .

Denote |ν| = ν+ + ν−. The Jordan decomposition is related to the Hahn Decomposition.

Fact 9.9 (Hahn decomposition, see [13]). Given a signed measure ν on [0, 1]d, there is a unique partition of
[0, 1]d into measurable sets N,P such that ν+(A) = ν(A ∩ P ) and ν− = ν(A ∩N).

Here are effective versions of the Lebesgue and Jordan decompositions.

Proposition 9.10 (Effective Lebesgue decomposition). Let ν be a computable signed measure on [0, 1]d such
that dν/dλ is L1-computable. Then the Lebesgue decomposition νac, νs is computable. Further, ‖νac‖TV and
‖νs‖TV are computable from ‖ν‖TV .

Proof. It is easy to see that νac, defined by νac(A) =
´
A
f dλ, is a computable signed measure where f is the

L1-computable Radon-Nikodym derivative. Then define νs := ν − νac.
Notice ‖νac‖TV = ‖f‖L1 , so ‖νs‖TV = ‖ν‖TV − ‖νac‖TV is computable when ‖ν‖TV is computable. �

Let ν be a computable signed measure on [0, 1]d such that ‖ν‖TV is computable. Then the Lebesgue de-
composition ν+, ν− is computable. Further, if dν/dλ is L1-computable, then the Radon-Nikodym derivatives
dν+/dλ = [dν/dλ]+ and dν−/dλ = [dν/dλ]− are L1-computable. (Further, P and N are effectively measur-
able in the probability measure |ν|/‖ν‖TV .)

Proof. The proof is very similar to Proposition 7.8. Using the total variation of ν, the Riesz representa-
tion, and the fact that computable functions are dense in C([0, 1]d), we can effectively find a computable
function f : [0, 1]d → [−1, 1] such that ‖ν‖TV −

´
f dν ≤ ε for any ε. This function approximates the Hahn

decomposition 1P − 1N . Notice for any computable ϕ : [0, 1]d → [0, 1], we have by nonnegativity,ˆ
ϕdν+ ≥

ˆ
ϕ · [f ]+dν+ ≥

ˆ
ϕ · [f ]+dν+ −

ˆ
ϕ · [f ]+dν− =

ˆ
ϕ · [f ]+ dν

and similarly
´
ϕdν− ≥

´
−ϕ · [f ]−dν. Then we have∣∣∣∣ˆ ϕdν+ −

ˆ
ϕ · [f ]+ dν

∣∣∣∣+

∣∣∣∣ˆ ϕdν− −
ˆ
−ϕ · [f ]− dν

∣∣∣∣
=

ˆ
ϕ · (1− f) dν+ −

ˆ
ϕ · (1 + f) dν+

≤
ˆ

(1− f) dν+ −
ˆ

(1 + f) dν+ (−1 ≤ f ≤ 1)

=

ˆ
d|ν| −

ˆ
f dν ≤ ε.

Hence ν+ and ν− are computable from ‖ν‖TV and ν. Moreover, this shows that 1P − 1N is L1-computable
in |ν|/‖ν‖TV and therefore P and N are effectively measurable.

If dν/dλ is L1-computable, then so are [dν/dλ]+ and [dν/dλ]− (Proposition 3.1). �

Theorem 9.12. If ν is a computable signed measure such that ‖ν‖TV is computable and dν/dλ is L1-
computable, then

ν(B(x, r))

λ(B(x, r))
−−−→
r→0

dν

dλ
(effectively a.e.)



RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY 60

and
ν(B(x, r))

λ(B(x, r))
−−−→
r→0

d̃ν

dλ
(x) (on Schnorr random x).

Proof. By the effective decompositions (Propositions 9.10 and 9.11) decompose ν into ν = ν+
ac+ν−ac+ν+

s +ν−s
(the order of the decompositions does not matter). Then

ν+
s (B(x, r))

λ(B(x, r))
−−−→
r→0

0 and
ν−s (B(x, r))

λ(B(x, r))
−−−→
r→0

0 (λ-a.e.)

and

ν+
ac(B(x, r))

λ(B(x, r))
−−−→
r→0

[
dν

dλ

]+

and
ν−ac(B(x, r))

λ(B(x, r))
−−−→
r→0

[
dν

dλ

]−
(λ-a.e.).

Apply Lemma 9.6 and Corollary 4.20 respectively. �

Remark 9.13. An alternate proof would be to prove the following stronger version of Fact 9.5. Since signed
measures form a vector space, denote a · ν for the signed measure given by scaling ν by a ∈ R. Also by |ν|
we mean the positive measure ν+ + ν−. One can show that∣∣ν − dν

dλ (x) · λ
∣∣ (B(x, r))

λ(B(x, r))
−−−→
r→0

0 (λ-a.e.).

We could decompose this effectively into
∣∣ν − dν

dλ (x) · λ
∣∣ =

∣∣νac − dν
dλ (x) · λ

∣∣ + ν+
s + ν−s . The first term can

be handled by the same proof as the effective Lebesgue differentiation theorem (Theorem 4.10), and the last
terms can be handled using Lemma 9.6.

In Section 12, I give some examples which show the theorems of this section characterize Schnorr ran-
domness.

9.2. Functions of bounded variation. A function f : [0, 1] → R is of bounded variation if there is
some bound b such that for all finite sequences 0 = a0 ≤ a1 ≤ . . . ≤ ak = 1 we have∑

i<k

|f(ai+1)− f(ak)| ≤ b.

The smallest such b is the total variation (norm) of f and is written V (f). We have the following fact.

Fact 9.14 (See [13]). Every function on [0, 1] of bounded variation is differentiable almost-everywhere, and
the derivative is integrable.

Since every absolutely continuous function is of bounded variation, Fact 9.14 implies Fact 4.16.
There are a number of approaches to represent functions of bounded variation and their differentiability

using computable analysis. The simplest approach is to only consider computable functions of bounded
variation [8]. However, not all bounded variation functions are continuous.

The most general approach is to consider functions defined on a computably enumerable, countable, dense
subset of [0, 1]. Then instead of differentiability we will consider pseudo-differentiability. This approach has
been used in both constructive mathematics [5, 10] and computable analysis [32, 8, 29].

Definition 9.15. Let {an}n∈N be a uniformly computable dense sequence of distinct reals in [0, 1] with
a0 = 0 and a1 = 1. Let f : {an}n∈N → R be a function. We say f is computable if f(an) is uniformly
computable from n. Define the total variation of f as follows where the supremum is over finite sequences
an0 < . . . < ank in {an}n∈N.

V (f) = sup
an0

<...<ank

∑
i<k

|f(ai+1)− f(ai)|

Let x ∈ (0, 1). Then define the pseudo-derivative of f at x as

(9.1) Ďf (x) = lim
|b−a|→0

f(b)− f(a)

b− a
where the limit is over all a, b ∈ {an}n∈N such that a < x < b. Say f is pseudo-differentiable at x if the
limit converges.
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Proposition 9.16. All functions f as in Definition 9.15 such that V (f) <∞ are pseudo-differentiable for
a.e. x ∈ (0, 1), and the derivative is an integrable function.

Proof. Just extend f to a total bounded variation function g by setting

g(x) =

{
f(x) x ∈ {an}n∈N
lim
a→x−

f(x) (a ∈ {an}n∈N) otherwise .

(This limit exists since V (f) <∞.) Then apply Fact 9.14. �

Consider these examples of functions of bounded variation.

Example 9.17. Assume g : [0, 1]→ R is a computable (and hence continuous) function of bounded variation.
Assume {an}n∈N is as in Definition 9.15. Let f = g � {an}n∈N (i.e. the restriction of g to {an}n∈N). Then
f : {an}n∈N → R is computable (as in Definition 9.15) and of bounded variation. Moreover, V (f) = V (g)
and the derivative d

dxg is equal to Ďf for all x ∈ (0, 1).
Conversely, assume f : {an}n∈N → R is a computable function of bounded variation with a continuous

extension g and that V (f) is computable. Assume that f can be extended to a continuous function g : [0, 1]→
R (i.e. f = g � {an}n∈N). Then g is a computable function (uniformly computable from V (f) and f). (The
modulus of continuity is computable from the variation. See Lu and Weihrauch [32].)

Remark 9.18. One could also consider L1-computable functions of bounded variation, as well as functions
of the form f(x) = ν([0, x]) for some computable signed measure ν. However, it requires some care to work
with these types of functions and I will not do so here.

Theorem 9.19. Let f : {an}n∈N → R be computable (as in Definition 9.15). Assume V (f) is computable
(and hence finite) and the derivative F := Ďf is L1-computable. Then f is pseudo-differentiable on all
Schnorr randoms. Further

f(b)− f(a)

b− a
−−−−−−→
(b−a)→0

F (a, b ∈ {an}n∈N, a < x < b).

converges effectively a.e., and Ďf (x) = F̃ (x) on Schnorr randoms x.

Proof sketch. Follow the arguments of Section 9.1. Replace the norm ‖ν‖TV with the total variation norm
V (f); positive measures with increasing functions; the Radon-Nikodym derivative with the pseudo-derivative;
absolutely continuous measures with absolutely continuous functions; singular measures with functions of
derivative zero; and the Lebesgue/Jordan decompositions with their corresponding versions for functions of
bounded variation. See [29] for an effective version of the Jordan decomposition for functions of bounded
variation. �

Corollary 9.20. Let g : [0, 1] → R be a computable function of bounded variation. Assume V (g) is com-
putable and the derivative G := d

dxg is L1-computable. Then g is differentiable on all Schnorr randoms.
Further the derivative converges effectively a.e. to G, and d

dxg|x=z = G̃(z) on Schnorr randoms z.

Proof. Use Theorem 9.19 and Example 9.17. �

In Section 12, I give some examples which show the theorems of this section characterize Schnorr ran-
domness.

10. The ergodic theorem

There has been a great deal of interest in the effectivity of the ergodic theorems, both in terms of rates
of convergence and randomness. In this section, I briefly summarize the results for Schnorr randomness.

Fact 10.1 (See [51]). Let (X, µ, T ) be a measure-preserving system. Define Anf = 1
n

∑
i<n f ◦T . Let Inv(T )

be the σ-algebra of T -invariant sets. Then Anf → f∗ := E[f | Inv(T )] a.e. and in the L1-norm. If f is L2,
then convergence is in the L2-norm as well. If Inv(T ) is trivial (E[f | Inv(T )] =

´
f dµ for all f), then

the system is said to be ergodic and Anf → f∗ =
´
f dµ.

This next theorem is a combination of results from a number of authors. I use techniques from this paper
to fill in a few gaps not explicitly in the literature.
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Theorem 10.2. Let (X, µ, T ) be a measure preserving system where (X, µ) is a computable probability space
and T : (X, µ)→ (X, µ) is an effectively measurable measure-preserving map.

(1) If f is L1-computable and the limit f∗ is L1-computable, then Anf → f∗ both effectively in L1 and
effectively a.e. Hence Ãnf(z) → f̃∗(z) on Schnorr randoms z. In particular, the system is ergodic
or if E[ · | Inv(T )] is a computable operator on L1 → L1, then f∗ is L1-computable and the results
in the preceding sentence hold.

(2) If f is L2-computable and ‖f∗‖L2 is computable, then f∗ is L2-computable and Anf → f∗ effectively
in the L2-norm, the L1-norm, and effectively a.e. Hence Ãnf(z) → f̃∗(z) on Schnorr randoms z.
In particular, if the system is ergodic or if E[ · | Inv(T )] is a computable operator on L2 → L2, then
‖f∗‖L2 is computable and the results in the preceding sentence hold.

(Hoyrup [23] mentions that E[ · | Inv(T )] is a computable operator on L1 → L1 if and only if the ergodic
decomposition x 7→ µx is effectively measurable (layerwise computable). The same is true of L2.)

Proof. The first sentence of (1) follows from Avigad, Gerhardy, Towsner [2] and Galatolo, Hoyrup, Rojas
[22] in the case that the system is ergodic.15 The Galatolo et al. proof also holds in the non-ergodic case by
replacing

´
fdµ with the L1-computable limit f∗ [personal communication with Hoyrup and Rojas]. The

first sentence of (2) follows from Avigad, Gerhardy, Towsner [2].
The part about Schnorr randomness follows from Lemma 3.19 (see also [21, 40]). �

A Martin-Löf random version of this next corollary can be found in Bienvenu, Day, Hoyrup, Mezhirov,
and Shen [3]. The proof is the same. It is a generalization of Kučera’s theorem.

Corollary 10.3. Assume T is an effectively measurable, ergodic, measure preserving action on (X, µ) and
A is an effectively measurable set. Then for all Schnorr randoms x, there are infinitely-many k such that
T̃ k(x) ∈ Ã.

Proof. By Theorem 10.2, 1
n

∑
k<n 1Ã(T̃ k(x)) → µ(A) > 0. Hence, there are infinitely many k such that

T̃ k(x) ∈ Ã. �

Corollary 10.4 (Kučera’s theorem for Schnorr randomness). If C ⊆ 2N is a closed set of positive measure
and x ∈ 2N is Schnorr random, then some tail of x is in C.

Proof. In the previous result, let T be the left shift map (T (0x) = T (1x) = x) and let A = C. �

11. Backwards martingales and their applications

In this section, I discuss backwards martingales. Unlike “forward martingales” and ergodic averages,
backwards martingales have not before been used before in algorithmic randomness. However, like forward
martingales and ergodic averages, they are a powerful tool.

The definition of martingale can be extended to any linearly ordered (or partially ordered) index set I.
Namely, (Fi)i∈I is a filtration if Fi ⊆ Fj for any i ≤ j, and (Mi)i∈I is a martingale adapted to (Fi)i∈I
if each Mi is Fi-measurable and E [Mj | Fi] = Mi for any i ≤ j. If the index set I is the nonpositive
integers, then we say M is a backwards (or reverse) martingale, often written (M−k) to denote that
the martingale is backwards. As opposed to “forward martingales”, backwards martingales always converge
a.e. and in the L1-norm.

Fact 11.1 (See [14]). Let (M−k) be a backwards martingale adapted to the filtration (F−k) and let F−∞ =⋂
k F−k. Then M−k →M−∞ = E[M−0 | F−∞] both in L1 and a.e.

We have the following analog of Theorem 6.5 and Corollary 6.8.

Theorem 11.2. Fix a computable probability space (X, µ).
(1) If (M−k) is an L1-computable backwards martingale, and the limit M−∞ is L1-computable, then

M−k → M−∞ converges effectively in the L1-norm and effectively a.e. Hence, M̃−k(z) → M̃−∞(z)
on Schnorr randoms z.

15For Avigad et al. the measure preserving map T is “computable” if the corresponding operator f 7→ f ◦ T is a computable
from L2 to L2. By Proposition 3.30, this is the same as effectively measurable.

While the Galatolo et al. result is for a.e. computable T , the proof works for effectively measurable T by the fact that if f
is L1- or L2-computable, then so is f ◦ T (uniformly from f and T ) (Proposition 3.29).
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(2) If (M−k) is an L2-computable backwards martingale, and ‖M−∞‖L2 = infk ‖M−k‖L2 is computable,
then M−k → M−∞ converges effectively in the L2-norm and effectively a.e. Hence, M−∞ is L2-
computable, and M̃−k(z)→ M̃−∞(z) on Schnorr randoms z.

Proof. In the L1 case, the proof is basically the same as that of Lemma 6.5. Since the limit is known, there
is an effectively convergent subsequence. Further, since the inequalities (6.1) and (6.2) only apply to finite
intervals of indices, they remain true for backwards martingales.

In the L2-case the argument resembles Corollary 6.8. For any k ∈ N, M−∞ = E[M−k | F−∞]. By the
Pythagorean theorem,

‖M−k −M−∞‖L2 = ‖M−k‖L2 − ‖M−∞‖L2 .

So M−k →M−∞ effectively in L2. The rest follows from the L1-case. �

Remark 11.3. Theorem 11.2 is analogous to both the effective ergodic theorem (Theorem 10.2) and the
effective Lévy 0-1 law (Theorem 6.3), as seen in Table 3. Note that all three theorems can be viewed as
taking place on structured probability spaces. The ergodic theorems takes place in a measure preserving
system (X, µ, T ) with T effectively measurable, and the martingale theorems take place in a filtered
probability space (X, µ, (Fn)), where (Fn) is a computable filtration (Remark 7.7). In such a computable
system, a.e. convergence is computable when f 7→ E[f | G] is a computable operator for the limit σ-algebra
G.

Ergodic averages Backwards martingales Lévy 0-1 law

Space (X, µ, T ) (X, µ, (F−n)) (X, µ, (Fn))
Averages 1

n

∑
k<n f ◦ T k E[f | F−n] E[f | Fn]

Limit E[f | Inv(T )] E[f | F−∞] E[f | F∞]
Limit σ-algebra Inv(T ) F−∞ F∞
“Nicest” system ergodic system F−∞ is trivial F∞ is Borel σ-alg.

Table 3. Comparison of three convergence theorems.

Backwards martingales are quite useful. I will give three applications. The first application is a variation
of Kučera’s theorem for Schnorr randomness (Corollary 10.4). However, this version does not follow directly
from the ergodic theoretic Corollary 10.3.

Corollary 11.4. On (2N, λ), assume A is effectively measurable and λ(A) > 0. Then for all Schnorr random
x ∈ 2N, there is some Schnorr random y ∈ Ã such that y is a permutation of finitely-many bits of x. In
particular, if A is an effectively closed set of computable positive measure, then y ∈ A.

Proof. Let F−n be the sigma-algebra of sets invariant under permutations of the first n bits. Notice that
F−0 ⊇ F−1 ⊇ . . . and that E[1A | F−n] = 1

n!

∑
T 1A ◦ T where T : 2N → 2N ranges over permutations of bits

which permute only the first n bits. Hence E[1A | F−n] is an L1-computable backwards martingale. Further,
F−∞ =

⋂
n F−n is trivial (i.e. all sets in F−n are measure one or measure zero). Let x be Schnorr random.

By Theorem 11.2,
1

n!

∑
T

1Ã(T (x)) = Ẽ[1A | F−n](x) −−−−→
n→∞

Ẽ[1A | F−∞](x) = λ(A) > 0.

Therefore, 1
n!

∑
T 1Ã(T (x)) > 0 for some n, and, moreover, T (x) ∈ Ã for some T which permutes the first n

bits. �

Before giving the next two examples, recall the probabilistic mindset. For the remainder of this section
we fix a computable probability space (Ω,P) as our sample space. We are not concerned with what this
space is. A measurable function X : (Ω,P)→ R is called a random variable. Recall its distribution (or
push-forward probability measure) PX is a probability measure on R defined by

(11.1)
ˆ
ϕdPX = E[ϕ(X)]
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for any bounded continuous ϕ : R→ R. (This equation then extends to all ϕ ∈ L1(R,PX).) Given a sequence
of random variables X = (Xi)i∈N, the joint distribution of X is the probability measure PX on RN given by
the equation ˆ

ϕdPX = E[ϕ(X0, . . . , Xd−1)]

for any bounded continuous ϕ : RN → R depending only on the first d coordinates.. In other words, one may
just think of (Ω,P) as (RN,PX). Then Xi just becomes the ith coordinate of RN.16 A sequence X = (Xi) is
independent and identically distributed (i.i.d.) if the joint distribution PX is the product measure
µN := µ⊗ µ⊗ · · · where µ = PX0

. Equivalently, for all bounded continuous functions ϕ : Rd → R,

(11.2) E[ϕ(X0, . . . , Xd−1)] =

ˆ
ϕ dµd.

Fact 11.5 (Strong law of large numbers, see [14]). Let (Xi) be a sequence of i.i.d. integrable random variables
with partial sums Sk =

∑k−1
i=0 Xi. Then Sk/k → E[X0] a.e. (and in the L1-norm).

Corollary 11.6 (Effective strong law of large numbers). Let (Xi) be sequence of i.i.d. L1-computable random
variables with partial sums Sk =

∑k−1
i=0 Xi. Then Sk/k → E[X0] effectively a.e. and effectively in the L1-

norm. Hence, S̃k(ω)/k → E[X0] on Schnorr randoms ω.

Proof. It is known thatM−k := Sk/k is a backwards martingale adapted to the filtration F−k = σ(Sk, Sk+1, . . .) =
σ(Sk, Xk+1, Xk+2, . . .) [14, Example 5.61]. (F−k is the σ-algebra of sets invariant under permutingX0, . . . , Xk−1.)
Clearly (M−k) is L1-computable. By the strong law of large numbers, we know (M−k) converges to E[X0],
and the expectation is a computable real number. Hence by Theorem 11.2 Sk/k → E[X0] effectively in the
L1-norm and effectively a.e. Hence, by Lemma 3.19, S̃k/k → E[X0] on Schnorr randoms. �

Remark 11.7. Taking (Ω, P ) = (2N, λ) and Xi(x) = x(i), the previous corollary implies that all Schnorr
randoms z have an equal density of 1s and 0s—a fact which is well known. In Section 12, I use an extension
of this fact to show that the strong law of large numbers characterizes Schnorr randomness. Corollary 11.6
could also be proved using the effective ergodic theorem (Theorem 10.2). Indeed, this is another similarity
between backwards martingales and ergodic averages.

Now, I consider de Finetti’s theorem. A sequence of random variables X = (Xi) is exchangeable if the
joint distribution of (X0, . . . , Xd−1) is the same as that of (Xσ(0), . . . , Xσ(d−1)) for any permutation σ. In
other words, the joint distribution PX is unchanged by permuting coordinates. De Finetti’s theorem says
that every exchangeable sequence is a convex combination of i.i.d. sequences.

Fact 11.8 (de Finetti’s theorem, see [14, 19]). Every exchangeable sequence of random variables X = (Xi) is
i.i.d. conditioned on some random measure µ. That is there is a (Ω,P)-measurable random map µ : ω 7→ µω
where µω is a probability measure on R, such that for any bounded continuous function ϕ : Rd → R,

(11.3) E [ϕ(X0, . . . , Xd−1) | µ] (ω) =

ˆ
ϕdµdω (P-a.e. ω)

where E[ · | µ] is conditioning on the least σ-algebra for which the map ω 7→ µω is measurable. This random
measure ω 7→ µω, called the directing measure, is P-a.s. unique.

Moreover, the following a.e. convergence theorems hold. For every f ∈ L1(Rd,PX0),

(11.4)
1

k

k−1∑
i=0

f(Xi(ω))→ E [f(X0) | µ] (ω) (P-a.e.ω)

This can be extended to all f ∈ L1(Rd,PX0,...,Xd−1
) as follows.

(11.5) Ak(f) =
1

k!/(k − d)!

∑
σ

f(Xσ(0), . . . , Xσ(d−1))→ E [f(X0, . . . , Xd−1) | µ] (ω) (P-a.e.ω)

where the average is over all k!
(k−`)! many injections σ : {0, . . . , d− 1} → {0, . . . , k − 1}.

16This intuition also holds in computable probability. A probability measure µ on RN is computable if and only if there is
a sequence X = (Xi) of uniformly effectively measurable (even a.e. computable) random variables on (2N, λ) such that µ = PX
[45, 26].
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First, note the connection with the strong law of large numbers. If X = (Xi) is i.i.d., then ω 7→ µω is
constant. Therefore, the strong law of large numbers follows from equation (11.4) using f(x) = x. Second,
note the similarity between equations (11.5) and the ergodic theorem.

Theorem 11.9 (Computable de Finetti’s theorem (Freer, Roy [19])). If X = (Xi) is a sequence of exchange-
able random variables with computable distribution PX , then the distribution Pµ of the directing measure µ
is computable from PX and vice versa.

We now can show this effective a.e. convergence theorem.

Corollary 11.10. Let X = (Xi) be a uniformly computable sequence of effectively measurable, exchangeable
random variables with directing measure µ. Then for all f ∈ L1

comp(Rd,PX0,...,Xd−1
),

Ak(f)→ E [f(X0, . . . , Xd−1) | µ]

both effectively a.e. and effectively in L1. Hence, for all Schnorr random ω,

Ãk(f̃)(ω)→ Ẽ [f(X0, . . . , Xd−1) | µ] (ω)

where
Ãk(f) :=

1

k!/(k − d)!

∑
σ

f(X̃σ(0), . . . , X̃σ(d−1)).

Proof. Since X = (Xi) is uniformly effectively measurable, the distribution PX is computable (Propo-
sitions 3.25 and 3.27). Then by Theorem 11.9, the distribution Pµ is also computable. Also, for any
f ∈ L1(Rd,PX0,...,Xd−1

), we have M−k = Ak(f) is a backwards martingale [14, Chapter 5].
Let ϕ : Rd → R be a bounded computable function. Then M−k = Ak(ϕ) is an L2-computable backwards

martingale. By Theorem 11.2, it is enough to compute the (square of the) L2-norm of the limit

‖E [ϕ(X0, . . . , Xd−1) | µ]‖2L2(Ω,P )

eq. (11.3)
=

ˆ (ˆ
ϕdµω

)2

dP (ω)

eq. (11.1)
=

ˆ (ˆ
ϕdν

)2

dPµ(ν).

This last integral is computable since ν 7→
(´
ϕdν

)2 is a computable map.
Hence we have proved the result for bounded computable ϕ : Rd → R. For f ∈ L1

comp(Rd, PX0,...,Xd−1
),

take some ϕ which approximates f in the L1-norm, then

‖E [ϕ(X0, . . . , Xd−1) | µ]− E [f(X0, . . . , Xd−1) | µ]‖L1(Ω,P )

= ‖E [(ϕ− f)(X0, . . . , Xd−1) | µ]‖L1(Ω,P )

≤ ‖(ϕ− f)(X0, . . . , Xd−1)‖L1(Ω,P )

= ‖ϕ− f‖L1(Rd,PX0,...,Xd−1
).

Since the last term is uniformly computable, we can compute the limit E [f(X0, . . . , Xd−1) | µ] in the L1-
norm. By Theorem 11.2, this completes the proof.

�

Example 11.11 (Pólya’s urn). Consider an urn with one black ball and one red ball. At each stage k we
take a ball from the urn, then return that ball to the urn along with another ball of the same color. Let Xk

be the color of the kth ball drawn (0 for red, 1 for black). It turns out the sequence of random variables
(Xk) is exchangeable. Let Sk =

∑k−1
i=0 Xi. By de Finetti’s theorem the average Sk/k converges a.s., meaning

that the ratio of red balls to black balls approaches a limit a.s. Now suppose, Pólya’s Urn is modeled on a
computer such that the random variables (Xk) are a.e. computable with respect to a uniformly distributed
random real x ∈ [0, 1]. Then if x is Schnorr random, the simulation of Pólya’s urn is guaranteed to converge
to a fixed ratio of red and black balls.

Remark 11.12. There are other computable aspects of the ergodic theorem that could be explored for de
Finetti’s theorem. For one, the map ω 7→ µω is a form of ergodic decomposition. Hoyrup [23] has a number
of results about the computability of the ergodic decomposition. In particular, I suspect that the the map
x 7→ µx is effectively measurable. I also suspect Schnorr random points ω satisfy the following “typicalness”
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property (similar to [21]) for de Finetti’s theorem: for all bounded continuous (not necessarily computable)
functions ϕ : Rd → [0, 1], we have

lim
k→∞

Ãk(ϕ)(ω) =

ˆ
ϕdµ̃dω.

Pursuing this, however, would take me too far afield.

12. Characterizing Schnorr randomness

In this section, I show that most of the effective a.e. convergence theorems in this paper are optimal in
that Schnorr randomness cannot be strengthened to another form of randomness. In other words, combined
with the effective a.e. convergence theorems in this paper, these examples characterize Schnorr randomness.
See Table 1 in the introduction for how to match these examples to the corresponding a.e. convergence
theorem(s).

12.1. Monotone convergence, the Lebesgue differentiation theorem, absolutely continuous func-
tions and measures, and uniformly integrable martingales.

Example 12.1. Fix (X, µ) and let (Un) be a Schnorr test. Consider the following function f . By Re-
mark 2.10, we may assume (Un) is decreasing, and also assume µ(Un) ≤ 2−2n by taking a subsequence. Let
f =

∑
n 1Un . The following calculation shows that f ∈ L2

comp .∥∥∥∥∥f −
m−1∑
n=0

1Un

∥∥∥∥∥
L2

=

∥∥∥∥∥
∞∑
n=m

1Un

∥∥∥∥∥
L2

≤
∞∑
n=m

‖1Un‖L2 =

∞∑
n=m

µ(Un)1/2

≤
∞∑
n=m

2−n = 2−m+1

Clearly, f(x) =∞ if x is covered by (Un).
This example is similar to the Schnorr integral tests of Miyabe [34]. This example will allow me to

characterize Schnorr randomness using the monotone convergence theorem, the Lebesgue differentiation
theorem, differentiation of absolutely continuous functions, differentiation of absolutely continuous measures,
and convergence of uniformly integrable martingales.

Theorem 12.2 (Example of monotone convergence). Let (Un) be a Schnorr test on (X, µ). There is an
increasing sequence of bounded computable functions (fn) such that supn ‖fn‖L2 = ∞ and supn fn(x) = ∞
for all x covered by (Un).

Proof. Let f =
∑
n 1Un be as in Example 12.1. Define gn =

∑
k<n 1Un . We can find a computable fn ≤ gn

such that ‖gn − fn‖L2 ≤ 2−n and supn fn = supn gn = f . Namely, by effective inner regularity (Proposition
3.22) find a closed set Cn ⊆ Un of computable measure such that µ(Uk − Ck) ≤ 2−(k+1). Then, using the
effective Tietze extension theorem [53] we can find a computable function hk ≤ 1Uk such that hk = 0 on U ck
and hk = 1 on Ck. Then fn =

∑
k<n hn is as desired. �

Theorem 12.3 (Example of Lebesgue differentiation theorem). For any Schnorr test (Ui) on ([0, 1]d, λ),
there is an f ∈ L2

comp([0, 1]d, λ) such that 1
λ(B(x,r))

´
B(x,r)

f dλ → ∞ for all x covered by (Ui). (This holds
as well for Td and for the dyadic version on 2N.)

Proof. Take the L2-computable f from Example 12.1. Let x be covered by (Ui). Then for each k, there
is some rk such that B(x, rk) ⊆ Uk. Since (Uk) is decreasing, f(y) ≥ k for all y ∈ B(x, rk). Hence,

1
λ(B(x,r))

´
B(x,r)

f dλ ≥ k. Hence lim supr→0
1

λ(B(x,r))

´
B(x,r)

f dλ =∞. �

Theorem 12.4 (Example of absolutely continuous measure). Let (Un) be a Schnorr test on ([0, 1]d, λ). There
is an absolutely continuous, positive measure µ with L2-computable derivative dµ

dλ such that µ(B(z,r))
λ(B(z,r)) −−−→r→0

∞
for all z covered by (Un).

Proof. Take the L2-computable f from Example 12.1. let µ be defined by µ(A) =
´
A
f dλ. The rest of the

proof is the same as the previous one. �
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Theorem 12.5 (Example of absolutely continuous function). Let (Un) be a Schnorr test on ([0, 1], λ).
There is an increasing, absolutely continuous, computable function F with L2-computable derivative such
that d

dxF |x=z =∞ for all z covered by (Un).

Proof. Take the L2-computable f from Example 12.1. Let F (x) =
´ x

0
f(t) dt. Then F is computable,

increasing, and absolutely continuous. By the same argument as in Theorem 12.3, d
dxF |x=z = ∞ for all z

covered by (Un). �

Theorem 12.6 (Example of a dyadic uniformly integrable martingale). Let (Un) be a Schnorr test on (2N, λ).
There is a nonnegative, computable, dyadic, uniformly integrable, martingale (Mk) with limit M∞ ∈ L2

comp
(and hence in L1

comp) such that Mk(x)→∞ on all x covered by (Un).

Proof. Take the L2-computable f from Example 12.1. Then let Mk = f (k) = E[f | Bk] as in Example 6.1.
This is a computable, dyadic martingale with limit M∞ = f . If x is covered by (Un) then Mk(x) → ∞ by
the same argument as Theorem 12.3. �

In this next theorem, x ∈ (X, µ) is Kurtz random if it is not in any Σ0
2 null set. Every Kurtz random is

Schnorr random. All a.e. computable functions f are defined on Kurtz randoms, since the the domain of f
is a measure one Π0

2 set. Further, no Kurtz randoms are on the boundary of a ball in Basis(X, µ), since the
set of boundaries is a Σ0

2 null set. Therefore for each decomposition of X into finitely many cells, a Kurtz
random x is in the interior of one of the cells. See Rute [42], for more discussion.

Theorem 12.7 (Example of a uniformly integrable martingale). Fix (X, µ). Let (Un) be a Schnorr test. From
(Un) we can construct an a.e. computable, uniformly integrable, L2-computable (and hence L1-computable)
martingale (Mk) with limitM∞ ∈ L2

comp (and hence in L1
comp) such thatMk(x) diverges for all Kurtz random

x covered by Un. (Since Mk is a.e. computable, it is well-defined on Kurtz randoms.)

Proof. The idea is the same as the previous proof, except that one needs a “canonical filtration” for the space
(X, µ). Recall the collection Basis(X, µ) from Lemma 3.5 which has an enumeration {Bi}. Let Pk be the
partition generated by {B0, . . . , Bk}. This generates a filtration σ(Pk) of X such that σ(Pk) ↑ B(X) (the
Borel σ-algebra).

Now let f be as in Example 12.1. Let Mk = E[f | Pk] although we will define it in an a.e. computable
manner as follows. To compute Mk(x), just find the atom Q ∈ Pk that x is in, and then computing

1
µ(Q)

´
Q
f dµ. This can be done for almost every x, namely all x in the interior of some Q ∈ Pk with positive

measure (all Kurtz randoms x have this property).
If x is Kurtz random and covered by (Un), then take the intersection of the first N many sets Un

that contain x. There is a ball B(x, r) in the intersection (since we are assuming the Un are decreasing).
Since Basis(X, µ) is an effective basis, there is a computable sequence of sets {Qi} from

⋃
k Pk such that

B(x, r) =
⋃
iQi µ-a.e. If x is Kurtz random, then x ∈ Q for some Q = Qi ∈ Pk for some k. Then we have

for all ` ≥ k,
M`(x) = E[f | P`](x) ≥ E[N · 1Q | P`](x) = N · 1Q(x) = N.

Hence Mk(x) −−−−→
k→∞

∞. �

12.2. Singular martingales, functions of bounded variation, and measures. Consider these two
examples of nonnegative, dyadic, singular martingales (the limit is zero) corresponding to a Schnorr test
(Un). The main idea is to bet when it looks like x is in another Un, and then to “bet away” the money back
down to zero. One puts all its mass (bets all its money) on a countable set of points. The other puts its
mass on a measure-zero set, without atoms.

Example 12.8 (Singular “atomic” martingale). Let (Un) be a Schnorr test on (2N, λ). Assume (Un) is
decreasing, and assume µ(Un) ≤ 2−n. Effectively partition Un =

⋃
m[σnm] (that is, a prefix-free representation

of Un). Let (σi)i be a reordering of (σnm)n,m. If x is covered by (Un) then x ∈ [σi] for infinitely-many i.
For each i, create a martingale as follows. For each i, let ai be the “midpoint” of [σi] (that is ai = σi100...).

Let bi = λ(σi)/
√
λ(Un) for the n such that σi ⊆ Un. Then define a computable dyadic martingale M (i) as

the one that puts all its money on the point ai and has starting capital bi. That is, for each τ ∈ 2<ω, define

M (i)(τ) =

{
bi/λ(τ) if ai ∈ [τ ]

0 otherwise
.
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It is easy to verify each M (i) is a computable, nonnegative, singular, dyadic martingale. Define M =∑
iM

(i). This is also a nonnegative, singular, dyadic martingale, and M is finite and computable since∑
i bi =

∑
n λ(Un)/

√
λ(Un) ≤

∑
n 2−n/2 and

∑
i bi is computable. If x is covered by (Un) then for every

n we have some i such that x ∈ σi ⊆ Un and M(σi) ≥ M (i)(σi) = bi/λ(σi) = 1/
√
λ(Un) ≥ 2n/2. Hence

lim supkMk(x) =∞.

This first example allows us to characterize Schnorr randomness by singular martingales, atomic measures,
and bounded variation functions consisting only of jumps.

Theorem 12.9 (Example of singular martingale). Let (Un) be a Schnorr test. There is a nonnegative,
computable, singular, dyadic martingale (Mk) such that lim supkMk(x) =∞ for all x covered by Un.

Proof. Use the martingale in Example 12.8 (or in Example 12.13 below). �

On ([0, 1]d, λ) redefine Ik(x) to be the open dyadic set containing x (in the absolutely continuous case,
it did not much matter if Ik(x) was open or half-open). Define Ik(x) as the corresponding closed set.

Lemma 12.10. Let µ be a computable positive measure on 2N. There is a corresponding computable positive
measure ν on [0, 1]d such that ν(Ik(x)) ≤ µ(x � dk) ≤ ν(Ik(x)) for all vectors x with no dyadic rational
coordinates.

Proof. Let T : 2N → [0, 1]d be the (usual) computable map T (x) = (y0, . . . , yd−1) where yi = 0.x(i)x(d +
i)x(2d + 1) . . .. in particular, T−1(Ik(x)) $ [x � dk] $ T−1(Ik(x)). That is, the first d bits of x correspond
to the first bit of each coordinate in (x1, . . . , xd). Define ν as the push-forward measure of µ along T , hence
ν(Ik(x)) ≤ µ(x � dk) ≤ ν(Ik(x)). By Proposition 3.25, ν is computable. �

Theorem 12.11 (Example of atomic, singular measure). Let (Un) be a Schnorr test on ([0, 1]d, λ). There
is an atomic, singular positive measure ν such that lim supr

ν(B(z,r))
λ(B(z,r)) =∞ for all z covered by (Un).

Proof. Let (Vn) be a test on (2N, λ) which covers the points in 2N corresponding to the points that (Un)
covers in 2N. (Partition each Un into closed dyadic sets and replace each with the corresponding basic open
set [σ].)

Let µ be the computable positive measure on 2N associated with the martingaleM in Example 12.8. That
is, µ(σ) = M(σ)λ(σ). Notice that µ is atomic. Let ν be the computable positive measure on [0, 1]d as in
Lemma 12.10; ν is still atomic. Without loss of generality, we assume in Example 12.8 that lim supkMdk(x) =
∞ for the x covered by Un. (Just require the σi to be of length dk for some k.) Then by Lemma 12.10, for all
x covered by (Un). We have lim supk ν(Ik(x))/λ(Ik(x)) ≥ lim supkMk(x) = ∞. By an geometric argument
similar to the proof of Lemma 4.9, we have lim supr→0

ν(B(z,r))
λ(B(z,r)) =∞. �

Theorem 12.12 (Example of bounded variation function with jumps). Let (Un) be a Schnorr test on
([0, 1], λ). There is a nondecreasing function F and a computable sequence of pairs of reals (ai, bi) such that
F (x) =

∑
ai≤x bi (F only consists of jumps), V (F ) =

∑
i bi is computable, and d

dxF |x=z does not exist for
all z covered by (Un).

Proof. Let ai, bi be from Example 12.8 (except ai is now the corresponding real in [0, 1]). Let ν be the
measure from the previous example. Notice that each ai is an atom of ν with weight bi. Hence, F (x) =∑
ai≤x bi = ν([0, x]). By the previous proof, the derivative of F does not exist at z covered by (Un). �

Now for the second example martingale.

Example 12.13 (Singular “continuous” martingale). Define σi and bi the same as in Example 12.8. But
now, we want to put the mass on a set of points in [σ]. Define N (i) as follows. If |τ | ≤ |σ| then bet all the
money on σ.

N (i)(τ) =

{
bi/λ(τ) if τ � σ
0 otherwise

.
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If τ is incomparable with σ then N (i)(τ) = 0. If τ � σ, then bet that the even bits are all 1s, ignoring the
odd bits. That is,

N (i)(τ0) =

{
0 |τ | is even
N (i)(τ) |τ | is odd

N (i)(τ1) =

{
2 ·N (i)(τ) |τ | is even
N (i)(τ) |τ | is odd

.

This nonnegative dyadic martingale will almost surely converge to 0 and is therefore singular. Define M =∑
iM

(i). As before, M is computable. If x is covered by (Un), by the same argument as in Example 12.8,
we have lim supkMk(x) =∞.

Theorem 12.14. Let (Un) be a Schnorr test on ([0, 1]d, λ). There is a continuous, singular, positive measure
µ such that lim supr→0

µ(B(z,r))
λ(B(z,r)) =∞ for all z covered by (Un).

Proof. Follow the proof of Theorem 12.11, except use Example 12.13 to get a continuous measure. �

Theorem 12.15. Let (Un) be a Schnorr test on ([0, 1], λ). There is a continuous, nondecreasing function
F with zero derivative almost surely such that d

dxF |x=z does not exist for all z covered by (Un).

Proof. Let F (x) = ν([0, x]) where ν is the measure in Theorem 12.14. Therefore, the derivative of F does
not exist for all z covered by (Un). �

12.3. Backwards martingales, the strong law of large numbers, de Finetti’s theorem, and the
ergodic theorem. Schnorr proved the following fact (which has been extended by Gács, Hoyrup, and
Rojas), that shows each non-Schnorr random can fail to satisfy the law of large numbers.

Proposition 12.16 (Schnorr [44, Theorem 12.1]; Gács, Hoyrup, Rojas [21]). If (Un) is a Schnorr test, then
there is an a.e. computable measure preserving transformation ϕ : 2N → 2N such that for all x not covered by
(Un), if y = ϕ(x), then lim supk

1
k

∑
i<k y(i) ≥ 2

3 .

This fact will allow us to use the strong law of large numbers, de Finetti’s theorem, backwards martingale
convergence, and the ergodic theorem to characterize Schnorr randomness on (2N, λ).

Corollary 12.17. If (Un) is a Schnorr test on (2N, λ), then the following hold.

(1) There is a computable i.i.d. sequence of i.i.d. 0, 1-valued random variables (Xi) such that 1
k

∑
i<kXi(x)

diverges for all x covered by (Un).
(2) There is a computable exchangeable sequence of a.e. computable random variables (Xi) and a bounded

computable ψ : R→ R, such that 1
k

∑
i<k ψ(Xi(x)) diverges for all x covered by (Un).

(3) There is a bounded a.e. computable backwards martingale (M−k) with a constant, computable limit
M−∞ such that M−k(x) diverges for all x covered by (Un).

(4) (Gács, Hoyrup, Rojas [21]) There is a bounded a.e. computable function f : 2N → R and an a.e. com-
putable, ergodic, measure preserving T : 2N → 2N such that 1

k

∑
i<k f(Tn(x)) diverges for all x covered

by (Un).

Proof. Take ϕ as in Proposition 12.16. Slightly modify ϕ so that 1
k

∑
i<k ϕ(n)(i) diverges on all x covered

by (Un). (Just swap the 0s and 1s whenever 1
k

∑
i<k ϕ(n)(i) > 6

5 or < 4
5 .)

For (1) and (2), let Xn(x) be the nth bit of ϕ(x). This sequence is i.i.d. (and therefore exchangeable).
For (2), also let ψ be the identity map.

For (3), let M−k = 1
k

∑
j<kXk from (1). Recall from Corollary 11.6, this is a backwards martingale with

limit 1
2 .

For (4), Gács, Hoyrup, and Rojas [21] showed that ϕ can be constructed to have an a.e. computable
inverse. Set T = ϕ ◦ σ ◦ ϕ−1 where σ is the left shift map, and set f to be the first bit of ϕ(x). Then
1
n

∑
k<n f(Tn(x)) is equal to 1

k

∑
j<kXk which diverges. �



RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY 70

12.4. Convergence of test functions to 0.

Theorem 12.18. Let (Un) be a Schnorr test in (2N, λ). There is a computable sequence (ϕn) of dyadic test
functions, such that ‖ϕn‖L2 < 2−n but lim supn ϕn(x) =∞ on all x covered by (Un).

Proof. By Remark 2.10, we may assume that λ(Un) ≤ 2−(2n+2). We may also computably break up (Un)
into a disjoint union of dyadic intervals Un =

⋃
m[σnm]. (For each n, the set {σnm} be infinite or finite—it is

enough to know it is computably enumerable uniformly in n.) Then∑
n,m

(
1/
√
λ(Un)

)
· λ(σnm) =

∑
n

(
1/
√
λ(Un)

)
· λ(Un) ≤ 1,

and the sum is computable. Renumber {σi}i = {σn,m}n,m using a computable pairing function. Ef-
fectively partition the double sequence (σi)i into finite sequences (σi(k), σi(k)+1, . . . , σi(k+1)−1) such that∑i(k)−1
j=σ(k)

(
1/
√
λ(Un)

)
· λ(σi) ≤ 2−k where i codes the pair (n,m) (break up the [σi] into smaller intervals if

needed).
Let ϕk =

∑i(k)−1
j=σ(k)(1/

√
λ(Un)) · 1[σi]. By the pigeonhole principle, if x is covered by (Un) then for each

n, ϕk(x) > n for infinitely many k. �

Theorem 12.19. Let (Un) be a Schnorr test on (X, µ). There is a computable sequence (ϕn) of test functions,
such that ‖ϕn‖L2 < 2−n but lim supn ϕn(x) =∞ on all Kurtz random x covered by (Un).

Proof. The proof is the same as the previous one. Just replace dyadic intervals [σ] with finite Boolean
combinations of Basis(X, µ) from Lemma 3.5. (Also, make the sets slightly larger to cover their measure-
zero boundaries.) �

Theorem 12.20. Let (Un) be a Schnorr test on (X, µ). There is a computable sequence (fk) of computable
functions such that ‖fk‖L2 < 2−k but lim supk fk(x) =∞ on all x covered by (Un).

Proof. Take the test functions (ϕk) from the previous two theorems. Approximate them with computable
functions fk as follows. For each [σ] in ϕk (or the corresponding finite Boolean combination B of basis
elements), find a computable function hσ such that on hσ = 1 on [σ] and ‖hσ − 1σ‖L2 is sufficiently small.
This can be done by defining hσ = 1 on [σ] (or in the other case, on the closure B which has the same
measure), using effective outer regularity (Proposition 3.22) to find an open set V ⊇ [σ] of similar measure,
defining hσ = 0 on V c and then using the effective Tietze extension theorem [53] to extend this to a
computable function. �

Theorem 12.21. Let (Un) be a Schnorr test on ([0, 1]d, λ). There is a computable sequence (pk) of rational
polynomials such that ‖pk‖L2 < 2−k but lim supk pk(x) =∞ on all x covered by (Un).

Proof. Take the computable functions (fn) in the last theorem. Effectively approximate (fn) by polynomials
using the effective Weierstrass approximation theorem [41]. Since they are close in the uniform norm, they
are close in the L2-norm. �

Appendix A. Proofs from Section 3.

A.1. Useful facts. The following set of calculations are straightforward, but useful.

Fact A.1. If f ≤ g (a.e.), then
µ{f > ε} ≤ µ{g > ε}.

Also
µ{f1 + f2 > ε1 + ε2} ≤ µ{f1 > ε1}+ µ{f2 > ε2}.

and

µ

{∑
i

fi >
∑
i

εi

}
≤
∑
i

µ{fi > εi}.

Also, recall Markov’s inequality and a useful variation for the metric dmeas.
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Fact A.2 (Markov’s inequality, see [48]). Assume f is an integrable function and ε > 0. Then

µ{x | |f | ≥ ε} ≤
‖f‖L1

ε
.

Also given Y-valued measurable functions f and g and 0 < ε ≤ 1,

µ{x | dY(f, g) ≥ ε} = µ{x | min{dY(f, g), 1} ≥ ε} ≤ dmeas(f, g)

ε
.

A.2. Integrable functions, measurable functions, and measurable sets.

Restatement of Proposition 3.7. The measure of each cell of Basis(X, µ) is computable from its code σ.

Proof. Given a cell C = A1∩. . .∩A`∩Bc1∩. . .∩Bck (where A1, . . . A`, B1, . . . , Bk ∈ Basis(X, µ), that is balls of
null boundary), then C is in between the effectively open and effectively closed sets A1∩. . .∩A`∩B1

c∩. . .∩Bk
c

and A1 ∩ . . . ∩ A` ∩ Bc1 ∩ . . . ∩ Bck which have the same measure. Since the measure of effectively open sets
is lower semicomputable and closed sets is upper semicomputable (Proposition 2.5), the measure of C is
computable (uniformly from its code σ). �

Proposition A.3. Let A be a set formed by combining elements of Basis(X, µ) using finitely-many connec-
tives Boolean connectives ∪,∩,c as well as the closure operator. Then µ(A) is computable from (the code for)
A.

Proof. A finite Boolean combination can be decomposed into a finite union of pairwise disjoint cells (basically
disjunctive normal form). Since the boundaries of the cells have measure zero, the closure operator does not
effect the measure. �

A.3. Effective modes of convergence.

Restatement of Proposition 3.15 (Modes of effective convergence). On a computable probability
space (X, µ), the following implications are effective—in that a rate of convergence for the latter is computable
from the former. (L1 and L2 only apply to real-valued functions.)

eff. dmeas
eff. conv in
measure

eff. L1

eff. L2 eff. almost
uniform Schnorr

(2)

(1)

(1) The dotted arrow represents that if fi → f with a geometric rate of convergence in the metric dmeas,
e.g. ∀j ≥ i dmeas(fj , f) ≤ 2−i, then fi → f effectively almost uniformly.

(2) For the arrow going to “Schnorr”, see Lemma 3.19.

Proof. (L2 → L1 → dmeas): Use that dmeas(fi, f) ≤ ‖fi − f‖L1 ≤ ‖fi − f‖L2 .
(dmeas → measure): Assume n(ε) is a rate of convergence in the metric dmeas. I claim m(ε1, ε2) = n(ε1ε2)

is a rate of convergence in measure (assuming 0 < ε < 1). Indeed, for i ≥ n(ε1ε2), dmeas(fi, f) ≤ ε1ε2 and
by Markov’s inequality (Fact A.2),

µ {dY(fi, f) > ε1} ≤
dmeas(fi, f)

ε1
≤ ε1ε2

ε1
= ε2.

(Measure → dmeas): Let m(ε1, ε2) be a rate of convergence in measure. I claim that n(ε) = m(ε/2, ε/2)
is a rate of convergence in the metric dmeas. Indeed, for i ≥ m(ε/2, ε/2) we have that

dmeas(fi, f) =

ˆ
min{dY(fi, f), 1} dµ ≤ µ {dY(fi, f) > ε/2}+ ε/2 ≤ ε/2 + ε/2.

(Almost uniform → measure): A rate of effective almost uniform convergence n(ε1, ε2) is also a rate of
convergence in measure since if i ≥ n(ε1, ε2),

µ {dY(fi, f) > ε1} ≤ µ

{
sup

i≥n(ε1,ε2)

dY(fi, f) > ε1

}
.
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(1): Assume ∀j ≥ i dmeas(fj , f) ≤ 2−i. Based on this rate of convergence in the metric dmeas, the
rate of convergence in measure is n(ε1, ε2) ≥ − log2(ε1ε2). I claim n(ε1, ε2) = − log2

(
ε1ε2

(2+
√

2)2

)
is a rate

of almost uniform converge. Indeed, if n = − log2

(
ε1ε2

(2+
√

2)2

)
, by Facts A.1 and A.2 and the fact that∑

i≥0 2−i/2 = 2 +
√

2 we have

µ

{
sup
i≥n

dY(fi, f) > ε1

}
≤ µ

∑
i≥n

dY(fi, f) > ε1


≤
∑
i≥0

µ

{
dY(fi+n, f) >

2−i/2

2 +
√

2
· ε1

}

≤
∑
i≥0

dmeas(fi+n, f)
2−i/2

2+
√

2
· ε1

≤
∑
i≥0

2−(i+n)

2−i/2

2+
√

2
· ε1

=
(2 +

√
2)

2nε1

∑
i≥0

2−i/2 =
(2 +

√
2)2

2nε1
= ε2. �

Restatement of Proposition 3.16. Let (fn) and f be uniformly effectively measurable real-valued func-
tions.

(1) If fn → f effectively a.e.. and gn → g effectively a.e.., then fn + gn → f + g effectively a.e..
(2) If f jn → f j effectively a.e.. (j ∈ {0, . . . , k − 1}), and g is computable with a uniform modulus of

continuity, then g(f0
n, . . . , f

k−1
n )→ g(f0, . . . , fk−1) effectively a.e..

(3) (Squeeze theorem) Assume fn ≤ gn ≤ hn a.e. and that fn → g effectively a.e.. and hn → g effectively
a.e.., then gn → g effectively a.e.

Further, in all cases the rates of convergence for the latter are computable from the former (in (2) use the
modulus of continuity for g). Indeed, we do not need to assume the functions are effectively measurable, just
that the rates of convergence are computable. The same results hold for continuous convergence, e.g. fr → f
as r → 0.

Proof. (1): Assume fi → f and gi → g with rates n(ε1, ε2) and n′(ε1, ε2), respectively, of a.e.. convergence.
I claim m(ε1, ε2) = max

{
n( ε12 ,

ε2
2 ), n′( ε12 ,

ε2
2 )
}
is a rate of almost uniform convergence for fi + gi → f + g.

Indeed, if m = m(ε1, ε2) then

µ

{
sup
i≥m
|(fi + gi)− (f + g)| > ε1

}
≤ µ

{(
sup
i≥m
|fi − f |

)
+

(
sup
i≥m
|gi − g|

)
> ε1

}
≤ µ

{
sup
i≥m
|fi − f | >

ε1

2

}
+ µ

{
sup
i≥m
|gi − g| >

ε1

2

}
≤ ε2

2
+
ε2

2
= ε2.

(2): Assume f ji → f j with a rate of a.e. convergence nj(ε1, ε2). Also assume g : Rk → R is a continuous
function with a computable modulus of continuity δ(ε), that is for all x0, . . . , xk−1, y0, . . . , yk−1 ∈ R.

k−1∑
j=0

|xj − yj | ≤ δ(ε) → |g(x1, . . . , xj)− g(y1, . . . , yk)| ≤ ε.
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Fix ε1, ε2 > 0. Let m = maxj<k nj(
δ(ε1)
k , ε2k ). Then

µ

{
sup
i≥m

∣∣g(f0
i , . . . , f

k−1
i )− g(f0, . . . , fk−1)

∣∣ > ε1

}

≤ µ

∑
j<k

sup
i≥m
|f ji − f

j | > δ(ε1)


≤
∑
j<k

µ

{
sup
i≥m
|f jn − f | >

δ(ε1)

k

}
≤
∑
j<k

ε2

k
= ε2.

(3): Assume fn ≤ gn ≤ hn a.e. and fi → g and hi → g with computable rates of a.e.. convergence. Let
a rate of a.e.. convergence for fi → g be n(ε1, ε2). By part (2), a rate of a.e.. convergence n′(ε1, ε2) for
(hi − fi) → 0 is computable. We claim that gi → g with a rate of m(ε1, ε2) = max

{
n( ε12 ,

ε2
2 ), n′( ε12 ,

ε2
2 )
}
.

Indeed, for n = n(ε1, ε2), we have

µ

{
sup
i≥m
|gi − g| > ε1

}
≤ µ

{
sup
i≥m

(|fi − g|+ (hi − fi)) > ε1

}
≤ µ

{
sup
i≥m
|fi − g| >

ε1

2

}
+ µ

{
sup
i≥m

(hi − fi) >
ε1

2

}
≤ ε2

2
+
ε2

2
= ε2.

As for continuous convergence, the proofs are the same. �

A.4. Convergence on Schnorr randomness.

Remark A.4. A Solovay test for Schnorr randomness (Un) is a computable sequence of effectively
open sets Un such that the sum

∑
n µ(Un) is finite and computable. (This follows when µ(Un) is computable

uniformly from n and µ(Un) ≤ 2−n or any other sequence with a finite sum.) If x ∈ Un for infinitely-many n,
then say n is Solovay covered by (Un). Then x is Schnorr random if and only if it is not Solovay-covered
by any Solovay test for Schnorr randomness [11, 21]. (This is an effective version of the Borel-Cantelli
lemma.)

Lemma A.5. Suppose (ϕn) is a computable sequence of test functions which converge effectively a.e. to
f : (X, µ)→ Y.

(1) (Existence) The limit limn→∞ ϕn(x) exists on all Schnorr randoms x.
(2) (Uniqueness) Given another sequence of test functions (ψn) converging effectively a.e. to f ,

lim
n→∞

ϕn(x) = lim
n→∞

ψn(x) (on Schnorr random x).

Proof. First we show existence by showing that ϕn(x) is Cauchy for Schnorr randoms x. The main idea
is to break up the indices into finite intervals. Since the rate of effectively a.e. convergence is computable,
effectively choose nk so that

µ

{
sup
n≥nk

dY(ϕn, ϕnk) > 2−(k+1)

}
≤ 2−(k+1).

Our Solovay test for Schnorr randomness is

Uk =

{
x

∣∣∣∣ max
n∈[nk,nk+1]

dY(ϕn(x), ϕnk(x)) > 2−(k+1)

}
.

Each set is effectively open uniformly in k. (As a technicality, let x only range over the interiors of the cells
in ϕn. This guarantees that Uk is effectively open. It is also sufficient for our purposes since the boundary
of each cell is a measure zero effectively closed set and therefore cannot contain Schnorr randoms.) This is
a Solovay test since µ(Uk) is computable and by our choice of nk,

µ(Uk) ≤ µ
{

sup
n≥nk

dY(ϕn, ϕnk) > 2−(k+1)

}
≤ 2−(k+1).
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Now, let x be Schnorr random (and hence is not on the boundary of any cell). We have that x is in
at most finitely many Uk. Hence for some k0 large enough, for all k ≥ k0 and all n ∈ [nk, nk+1] we have
dY(ϕn(x), ϕnk(x)) ≤ 2−(k+1). It follows that for all k ≥ k0 and for all n ≥ nk that

dY(ϕn(x), ϕnk(x)) ≤
∑
j≥k

2−(j+1) ≤ 2−k.

Hence ϕn(x) is Cauchy.
For uniqueness, take (ϕn) and (ψn) and interleave them, ϕ0, ψ0, ϕ1, ψ1, . . .. It is easy to see this sequence

still has an effectively rate of a.e. convergence. Hence it converges on Schnorr randoms and each subsequence
must converge to the same value. �

Restatement of Proposition 3.18. Suppose f : (X, µ) → Y is effectively measurable with Cauchy-name
(ϕn) (in the metric dmeas, L1-norm, or L2-norm).

(1) (Existence) The limit limn→∞ ϕn(x) exists on all Schnorr randoms x.
(2) (Uniqueness) Given another Cauchy-name (ψn) for f ,

lim
n→∞

ϕn(x) = lim
n→∞

ψn(x) (on Schnorr random x).

Proof. A Cauchy-name has an effective rate of a.e. convergence by Proposition 3.15 and the rest follows from
Lemma A.5. �

Restatement of Lemma 3.19 (Convergence Lemma). Suppose that (fk) and f are uniformly effectively
measurable. If

fk → f (effectively a.e.)
then

f̃k(x) −→ f̃(x) (for all Schnorr random x).

Proof. First, I will approximate (fk) with a sequence of test functions (ψk) which converges effectively a.e.
to f , and then show that (f̃k) is close to (ψk) on Schnorr randoms.

For each k, let (ϕkn)n∈N be a Cauchy-name for fk. Since a rate of a.e. convergence of (ϕkn)n∈N is computable
from k, effectively choose (nk,i)k,i∈N so that

µ

{
sup
n≥nk,i

dY(ϕkn, ϕ
k
nk,i

) > 2−(k+i+1)

}
≤ 2−(k+i+1).

Consider the sequence ψk = ϕknk,0 . I will show that ψk −−−−→
k→∞

f effectively a.e. as follows . Choose ε and δ.

Since fk → f effectively a.e., we can effectively choose k′ such that

µ

{
sup
k≥k′

dY(fk, f) >
ε

2

}
≤ δ

2
.

Let k(ε, δ) = max{−2 log2 ε,−2 log2 δ, k
′}. Then

∑
k≥k(ε,δ) 2−(k+1) = 2−k(ε,δ) ≤ min{ε/2, δ/2}

µ

{
sup

k≥k(ε,δ)

dY(ϕknk,0 , f) > ε

}
≤

∑
k≥k(ε,δ)

µ
{
dY(ϕknk,0 , fk) > 2−(k+1)

}
+ µ

{
sup
k≥k′

dY(fk, f) >
ε

2

}

≤
∑

k≥k(ε,δ)

2−(k+1) +
δ

2
≤ δ.

Hence, ψk(x)→ f̃(x) on Schnorr randoms.
To show convergence of f̃k, consider the Solovay test

Uk,i =

{
x

∣∣∣∣ max
n∈[nk,i,nk,i+1]

dY(ϕn(x), ϕnk,i(x)) > 2−(k+i+1)

}
.

(Again, as in Lemma A.5, use the convention that x only ranges over the interiors of the cells.) This is a
Solovay test since each µ(Uk,i) is computable from k, i and since∑

k

∑
i

µ(Uk,i) ≤
∑
k

∑
i

2−(k+i+1) = 2.
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Now, let x be Schnorr random (and hence not on the boundary of any cell). We have that x is in at most
finitely many Uk,i. Hence for some k0 large enough, for all k ≥ k0, for all i ≥ 0, and for all n ∈ [nk,i, nk,i+1]

we have dY(ϕkn(x), ϕknk,i(x)) ≤ 2−(k+i+1). It follows that for all k ≥ k0 and for all n ≥ nk,0 that

dY(ϕkn(x), ψk(x)) = dY(ϕkn(x), ϕknk,0(x)) ≤
∑
i≥0

2−(k+i+1) ≤ 2−k.

Hence dY(f̃k(x), ψk(x)) ≤ 2−k. Therefore, limk f̃k(x) = limk ψk(x) = f̃(x). �

A.5. Properties of effectively measurable functions.

Restatement of Proposition 3.20. The following implications hold for real-valued functions (and all the
computations are uniform).

(1) f ∈ L2
comp ⇒ f ∈ L1

comp ⇒ f ∈ L0
comp. (The converses do not hold in general.)

(2) If 0 ≤ f ≤ 1, then f ∈ L2
comp ⇔ f ∈ L1

comp ⇔ f ∈ L0
comp.

(3) f ∈ L1
comp ⇔ (f ∈ L0

comp and ‖f‖L1 is computable).
(4) f ∈ L2

comp ⇔ (f ∈ L0
comp and ‖f‖L2 is computable).

(5) If f ∈ L1
comp then

´
f dµ is computable.

(6) If B is effectively measurable, then µ(B) is computable.
(7) If 0 ≤ g ≤ 1, g ∈ L1

comp, and f ∈ L1
comp, then g · f ∈ L1

comp.

Proof. (1): Use that ‖f − ϕ‖L2 ≥ ‖f − ϕ‖L1 ≥ dmeas(f, ϕ).
(2): In this case, ‖f − ϕ‖2L2 ≤ ‖f − ϕ‖L1 = dmeas(f, ϕ) ≤ ‖f − ϕ‖L2 .
(3): Given f effectively measurable, break up max{f, 0} =

∑
n∈N fn where fn = min{max{f, n}, n+1}−n

and similarly for min{−f, 0}. By (2), fn is L1-computable from n. Use ‖f‖L1 to approximate f in L1 with
finite sums of (fn).

(4): Same as (4).
(5): Use

´
f dµ = ‖max{f, 0}‖L1 + ‖min{f, 0}‖L1 and that L1 is a computable lattice.

(6): Use µ(B) = µ(B4∅) = d(B,∅) and that ∅ is effectively measurable.
(7): Use that g ∈ L1

comp by (2) and

‖g · f − ψ · ϕ‖L1 ≤ ‖g · (f − ϕ)‖L1 + ‖(g − ψ) · ϕ‖L1

≤ ‖f − ϕ‖L1 + ‖g − ψ‖L1 · ‖ϕ‖∞.
Approximate f with a test function ϕ and then approximate g with ψ. �

Restatement of Proposition 3.21 (Effective Lusin’s theorem). Given an effectively measurable
f : (X, µ) → Y, and some rational ε ≥ 0, there is an effectively closed set K of computable measure
µ(K) ≥ 1 − ε and a computable function g : K → Y such that g = f̃ � K on Schnorr randoms. (Fur-
ther, g and K are computable uniformly from ε and any name for f .) Moreover, if Y = R, then g : K → Y
can be extended (uniformly from its name) to a total computable function g : X→ Y such that g = f̃ � K on
Schnorr randoms.

Proof. Let (ϕn) be the Cauchy-name for f in the metric dmeas. Let (Uk) be the Solovay test for Schnorr
randomness from Lemma A.5, that is

Uk = {x | max
n∈[nk,nk+1]

dY(ϕn(x), ϕnk(x)) > 2−k}

for some computable sequence (nk). Again, we ignore the boundaries of the cells corresponding to ϕn for
n ∈ [nk, nk+1]. Recall, µ(Uk) is computable from k and µ(Uk) ≤ 2−k. To handle the boundaries, we can
find an effectively open set Vk of computable measure µ(Vk) ≤ 2−k such that Vk covers the boundaries of
the cells corresponding to ϕn for n ∈ [nk, nk+1].

Let

K =

 ⋃
k≥2−log2 ε

Uk ∪ Vk

c

.

Then
1− µ(K) ≤

∑
k≥2−log2 ε

µ(Uk ∪ Vk) ≤
∑

k≥2−log2 ε

2 · 2−k ≤ ε
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and µ(K) is computable (the measure of every finite union is computable, and the measure of the remaining
tail can be made arbitrarily small).

As in the proof of Lemma A.5, it follows that for all x ∈ K and all k ≥ 2− log2 ε, that x ∈ Uk and is not
on the boundaries of the relevant cells. Therefore

dY(ϕn(x), ϕnk(x)) ≤
∑
j≥k

2−(j+1) ≤ 2−k.

Use this to compute the value of g(x) := limn ϕn(x) for x ∈ K. If x is Schnorr random this is equal to f̃(x).
If Y = R, then by the effective Tietze extension theorem [53], we can extend g to a total computable

function. �

Restatement of Proposition 3.22 (Effective inner/outer regularity). Given A ⊆ (X, µ) effectively
measurable, and some rational ε > 0, there is an effectively open set U and an effectively closed set C both
of computable measure such that C ⊆ Ã ⊆ U for Schnorr randoms such that µ(U) − µ(C) ≤ ε. (The sets
U,C and their measures µ(U), µ(C) are uniformly computable from ε and any name for A.)

Proof. From the effective Lusin’s theorem (Proposition 3.21), we can choose an effectively closed K of
computable measure µ(K) ≥ 1 − ε and a computable function g : K → {0, 1} such that 1̃A � C = g on
Schnorr randoms. Then let C = {x ∈ K | g(x) = 1} and U = X r {x ∈ K | g(x) = 0}. These are effectively
closed and open. Then C ⊆ Ã ⊆ U for Schnorr randoms since , and µ(U)− µ(C) = 1− µ(K) ≤ ε.

The measures µ(C) and µ(U) are computable as follows. From a name for g, we can enumerate a sequence
of balls {B0

i } and {B1
j } from Basis(X, µ) such that if x ∈ B0

i and x ∈ K then f(x) = 0 and similarly for B1
i .

Notice
⋃
iB

0
i ∪

⋃
j B

1
j covers K.

Let V = Kc and enumerate a sequence of balls {Ai} from Basis(X, µ) such that V =
⋃
iAi and hence

X =
⋃
iB

0
i ∪

⋃
j B

1
j ∪

⋃
k Ak. Find a finite subsequence of these balls such that

µ(B0
1 ∪ . . . ∪B0

` ∪B1
1 ∪ . . . ∪B1

n ∪A1 ∪ . . . ∪Am) ≈ 1.

Then µ(C) ≈ µ((B1
1 ∪ . . .∪B1

n)r (A1 ∪ . . .∪Am)) and µ(U) ≈ 1−µ((B0
1 ∪ . . .∪B0

` )r (A1 ∪ . . .∪Am)). �

Restatement of Proposition 3.23 (Schnorr layerwise computability). Consider a (pointwise-defined)
measurable function f : X → Y that is Schnorr layerwise computable, that is, there is a computable
sequence (Cn) of effectively closed sets of computable measure µ(Cn) ≤ 2−n, such that f � Cn is computable
on Cn uniformly in n. Then there is an effectively measurable g : (X, µ) → Y such that g̃ = f on Schnorr
randoms.

Proof. Fix ε > 0. Choose Cn such that µ(Cn) ≥ 1−ε. From a name for f � Cn, we can enumerate a sequence
of balls {Bi}i from Basis(X, µ) and values ci for which if x ∈ Bi and x ∈ Cn then dY(f(x), ci) ≤ ε. Note
that {Bi}i covers Cn, so we can compute a subsequence B0, . . . , Bk−1 such that µ(B0, . . . , Bk−1) ≥ 1− 2ε.

Let ϕ be the test function made from all cells of B0, . . . , Bk−1 (except the cell Bc0 ∪ . . . ∪ Bck−1). Use
the approximations ci to determine the value of ϕ on each cell. Then dY(ϕ(x), f(x)) ≤ ε unless x /∈ Cn or
x /∈ B0 ∪ . . . ∪Bk−1. Therefore,

dmeas(ϕ, f) ≤ ε+ (1− µ(Cn)) + (1− µ(B0 ∪ . . . ∪Bk−1)) ≤ 4ε.

Hence, f is almost-everywhere equal to an effectively measurable function g with Cauchy name ϕ. More-
over, ϕn(x) → f(x) for all x in all but finitely-many Cn. This is true of all Schnorr randoms x, since (Ccn)
forms a Solovay test for Schnorr randomness. �

Restatement of Proposition 3.24 (Examples of effectively measurable functions and sets). All
of these functions f : X → Y and sets A ⊆ X are effectively measurable, and f̃ = f and Ã = A on Schnorr
randoms.

(1) Test functions and test sets as in Propositions 3.1 and 3.3 and in Definition 3.8.
(2) Computable functions and decidable sets (i.e., computable 0,1-valued functions).
(3) Almost-everywhere computable functions f : (X, µ)→ Y and almost-everywhere decidable sets (i.e., al-

most everywhere computable 0,1-valued functions).
(4) Nonnegative lower semicomputable functions f : X → R with a computable integral, effectively open

sets U ⊆ X of computable measure, and effectively closed sets C ⊆ X of computable measure.
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Proof. (1): This is obvious from the definition of effectively measurable and of f̃ .
(2): See (3).
(3): We will show that almost-everywhere computable functions are Schnorr layerwise computable. From

a name for f from n, we can enumerate a sequence of balls {Bni }i from Basis(X, µ) and values cni for which
if x ∈ Bni then dY(f(x), ci) ≤ 2−n. Moreover, µ(

⋃
iB

n
i ) = 1. Choose ε. For each n, find a subsequence

(Bn0 , . . . , B
n
k(n)−1) such that µ(Bn0 ∪ . . . ∪Bnk(n)−1) ≥ 1− ε/2n. Then let Cε =

⋂
n(B

n

0 ∪ . . . ∪B
n

k(n)−1).
I will show that Cε is an effectively closed set of computable measure µ(Cε) ≥ 1 − 2ε such that f is

computable on Cε. It is clearly effectively closed. It has computable measure since µ(
⋂
n≤m(B

n

0 ∪ . . . ∪
B
n

k(n)−1)) is computable and

µ(Cε)− µ

( ⋂
m>n

(B
n

0 ∪ . . . ∪B
n

k(n)−1)

)
≤
∑
m>n

(
1− µ(B

n

0 ∪ . . . ∪B
n

k(n)−1)
)
≤
∑
m>n

ε/2n = ε/2m.

Similarly, 1−µ(Cε) ≤
∑
n(1−µ(B

n

0 ∪ . . .∪B
n

k(n)−1)) ≤
∑
n ε/2

n ≤ 2ε. Finally, f is computable on Cε since
for any n and x in Cε we can wait until x ∈ Bni for some i, and we know that f(x) is within 2−n of cni .

(4): Let f = sup gn where (gn) is a computable sequence of computable functions. Then ‖f − gn‖L1 =´
f−gn dµ and from monotonicity we can compute an effective rate of a.e. convergence of gn to f . Therefore f

is effectively measurable and f̃ = limn g̃n = limn gn = f . For effectively open U of computable measure, just
use f = 1U which is lower semi computable. The same for effectively closed C of computable measure. �

Restatement of Proposition 3.25 (Push-forward measures). Iff : (X, µ) → Y is effectively measur-
able, then the push-forward measure (Y, µ∗f) is a computable probability space (uniformly from (X, µ), Y,
and f).

Proof. It is enough to compute
´
ϕdµ∗f =

´
ϕ◦f dµ uniformly from a computable function ϕ : Y→ [0, 1]. By

the effective Lusin’s theorem (Proposition 3.21) f̃ is Schnorr layerwise computable. Since ϕ is a computable
function, we have that ϕ ◦ f̃ is Schnorr layerwise (since from the definition of Schnorr layerwise computable,
the composition of a computable function with a Schnorr layerwise computable function is still Schnorr
layerwise computable). By Proposition 3.23, ϕ ◦ f is effectively measurable. Since ϕ ◦ f is effectively
measurable and bounded, the integral

´
ϕ ◦ f dµ is computable (Proposition 3.20). �

Restatement of Proposition 3.26 (Preservation of Schnorr randomness). If f : (X, µ) → Y is
effectively measurable and x is Schnorr random, then f̃(x) is Schnorr random on (Y, µ∗f).

Proof. Assume not. Let (Un) be a (Y, µ∗f)-Schnorr test which covers f̃(x). Let g =
∑
n 1Un . Then g is a

lower semicomputable function and hence g = supn ϕn for a computable sequence of computable functions.
We can also assume that 0 ≤ ϕn ≤ n. By the same argument as in the previous proof, ϕn ◦ f is effectively
measurable uniformly in n and ϕ̃n ◦ f = ϕn ◦ f̃ on (X, µ)-Schnorr randoms x.

Moreover, we can show that ϕn◦f → g◦f effectively in measure since dmeas(ϕn◦f, g◦f) = dmeas(ϕn, g) ≤
‖g − ϕn‖L1 which is computable since

´
g dµ∗f =

∑
n µ∗f(Un) is computable and

´
ϕn dµ∗f is computable

since ϕn is computable and bounded. Restricting to a subsequence (nk) we have that ϕnk ◦ f → g ◦ f
converges effectively a.e. By Lemma 3.19, (ϕnk ◦ f̃)(x) must converge (to something in R) since x is Schnorr
random. However, limk(ϕnk ◦ f̃)(x) =∞ /∈ R. �

Restatement of Proposition 3.27 (Composition and tuples).
(1) (Composition) Given f : (X, µ) → Y and g : (Y, µ∗f) → Z effectively measurable, the composition

g ◦ f is effectively measurable (uniformly from f and g) and

f̃ ◦ g = f̃ ◦ g̃ (on Schnorr randoms).

(2) (Tuples) Given fn : (X, µ)→ Yn effectively measurable (uniformly in n), the tuples

(f0, . . . , fk−1) : (X, µ)→ Y0 × · · · × Yk−1

and
(fn)n∈N : (X, µ)→

∏
n∈N

Yn
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are effectively measurable (uniformly from (fn)) and

˜(f0, . . . , fk−1) = (f̃0, . . . , f̃k−1) and (̃fi)i∈N = (f̃i)i∈N (on Schnorr randoms).

Proof. (1): Consider f and g with Cauchy-names, (ϕn) and (ψn). First we show that ψn ◦ f is effectively
measurable uniformly in f and ψn. Fix ε > 0. We can effectively choose some small ε′ > 0 such that all but
a small µ-measure of x are more than ε′ from the boundary of the cells which make up ψn. Then choose
ϕm such that µ{dY(ϕm, f) > ε′} < ε. Outside of this bad set, we have the ϕm(x) and f(x) are in the same
cell of ψn(x), and hence ψn ◦ ϕm − ψn ◦ f = 0. Hence dmeas(ϕm, f) ≤ ε. Therefore, ψn ◦ ϕm −−−−→

m→∞
ψn ◦ f

effectively a.e. and therefore ψn ◦ f is effectively measurable uniformly from f and ψn. (This required that
ψn ◦ϕm is a test function. To ensure this, one may need to slightly modify ϕm to avoid hitting the boundary
of the cells in ψn.) By Lemma 3.19, ψ̃n ◦ f = limm ψn ◦ ϕm = ψn ◦ f̃ on Schnorr randoms.

Next, we show that g ◦ f is effectively measurable uniformly in f and g. This is straightforward since
dmeas(g ◦ f, ψn ◦ f) = dmeas(g, ψn). Moreover, by Lemma 3.19, g̃ ◦ f = limn ψ̃n ◦ f = limn ψn ◦ f̃ = g̃ ◦ f̃ on
Schnorr randoms x (since f̃(x) is Schnorr random).

(2): I just do the infinite case. Let Y =
∏
n∈N Yn with metric dY =

∑
n∈N 2−(n+1) min {dYn , 1}. For

each n, let (ϕjn)j∈N be the Cauchy-name for fn in the metric dmeas. Then approximate f = (fn)n∈N with
ψk = (ϕ2k+n+2

n )n∈N. Then

dmeas(f, ψk) =

ˆ
dY(f, ψk) dµ =

∑
n∈N

2−(n+1)

ˆ
min

{
dYn(fn, ϕ

2k+n+2

n ), 1
}
dµ ≤ 2−k.

Therefore f is effectively measurable and (̃fi)i∈N = limj→∞(ϕji )i∈N = (f̃i)i∈N. �

Restatement of Proposition 3.28 (Combinations of measurable functions).
(1) (Computable pointwise operations). All computable pointwise operations, including vector, lattice,

and Boolean algebra operations preserve effective measurability. Moreover, given f, g : (X, µ) → R
and A,B ⊆ (X, µ) effectively measurable, we have

f̃ + g = f̃ + g̃, ãf = af̃ , f̃ · g = f̃ · g̃

˜min(f, g) = min(f̃ , g̃), ˜max(f, g) = max(f̃ , g̃), |̃f | =
∣∣∣f̃ ∣∣∣

Ã ∪B = Ã ∪ B̃, Ã ∩B = Ã ∩ B̃, Ãc = Ãc, X̃ = X, ∅̃ = ∅
on Schnorr randoms, and

f ≤ g a.e. ⇔ f̃ ≤ g̃ (on Schnorr randoms)

A ⊆ B a.e. ⇔ Ã ⊆ B̃ (on Schnorr randoms).

(2) (Inverse image) Given f : (X, µ) → Y and B ⊆ (Y, µ∗f) effectively measurable then f−1(B) is
effectively measurable and ˜f−1(B) = f̃−1(B̃) on Schnorr randoms.

(3) (Rotations) Given f : (Td, λ) → R effectively measurable, and a computable vector t ∈ Td, then
h(x) := f(x− t) is effectively measurable and h̃(x) = f̃(x− t) on Schnorr randoms.

(4) (Indicator functions) Given A ⊆ (X, µ), A is effectively measurable if and only if 1A : (X, µ)→ R is
effectively measurable (equivalently, L1-computable by Proposition 3.20 (2)) and x ∈ Ã if and only
if 1̃A(x) = 1 on Schnorr randoms. (Notice the codomain of 1A is R here rather than {0, 1} as in
Definition 3.17.)

Proof. (1): This is a direct application of Propositions 3.24 and 3.27. Also if f ≤ g a.e., then g − f =

max{g − f, 0} a.e., and g̃ − f̃ = g̃ − f = ˜max{g − f, 0} = max{g̃ − f̃ , 0} ≥ 0 on Schnorr randoms. Similarly
for A ⊆ B.

(2): Use that 1f−1(B) = 1B ◦ f . The rest follows from Proposition 3.27.
(3): Let g(x) := x− t. Then g is computable and measure preserving, that is λ∗g = λ. Hence, h = f ◦ g,

and h̃ = f̃ ◦ g by Propositions 3.24 and 3.27.
(4): Consider the computable inclusion map i : {0, 1} → R. We have (1A : (X, µ)→ R) = i◦(1A : (X, µ)→

{0, 1}). By Proposition 3.27, if A is effectively measurable then 1A : (X, µ)→ R is. For the other direction,



RANDOMNESS, MARTINGALES AND DIFFERENTIABILITY 79

if 1A : (X, µ)→ R is effectively measurable, then consider the partial computable map g : R→ {0, 1} which
sends 0 7→ 0 and 1 7→ 1. This maps is almost-everywhere computable on (R, µ∗1A) (which only has mass on
0 and 1). Now, (1A : (X, µ)→ {0, 1}) = g ◦ (1A : (X, µ)→ R). The rest follows from Proposition 3.27. �

Restatement of Proposition 3.29. The following implications hold for real-valued functions (and all the
computations are uniform).

(1) If f ∈ L1
comp and A is effectively measurable, then

´
A
f dµ is computable.

(2) If X is effectively compact (see [36])—as is [0, 1]d, Td, and 2N—and g : X→ R is computable, then g
is L1-computable (since it has computable bounds).

(3) If f : (X, µ)→ Y is effectively measurable and g ∈ L1
comp(Y, µ∗f) (resp. L2

comp(Y, µ∗f)), then g ◦ f ∈
L1

comp(X, µ) (resp. L2
comp(X, µ)).

Proof. (1): By Proposition 3.28 (4), 1A ∈ L1
comp. Then use 3.20 (7).

(2): By Proposition 3.24, g is effectively measurable. Since X is effectively compact, maxx∈X g(x) and
minx∈X g(x) are computable from g [36]. Now apply Proposition 3.20 (2).

(3): By Proposition 3.27 g ◦ f ∈ L0
comp, and moreover ‖g ◦ f‖L1(Y,µ∗f) = ‖g‖L1(X,µ) (similarly for L2).

Apply Proposition 3.20 (3). �

Restatement of Proposition 3.30. Given a measurable map f : (X, µ)→ Y, the following are equivalent.
(1) f is effectively measurable.
(2) The push-forward measure (Y, µ∗f) is computable and one (or all) of the following “pull-back” maps

are computable:
(a) (L1 functions) g ∈ L1(Y, µ∗f) 7→ g ◦ f ∈ L1(Y, µ∗f).
(b) (L2 functions) g ∈ L2(Y, µ∗f) 7→ g ◦ f ∈ L2(Y, µ∗f).
(c) (Measurable sets) B ⊆ (Y, µ∗f) 7→ f−1(B) ⊆ (X, µ).

Proof. (1) ⇒ (2) follows from Propositions 3.25, 3.27, 3.28, and 3.29.
For the other direction, assume (2)(a) or (2)(b). Then B 7→ 1B 7→ 1B ◦ f 7→ f−1(B) is a chain of

computable operators (using Proposition 3.28 4), and therefore (2)(c) holds.
For (2)(c)⇒ (1), fix ε > 0. Since (Y, µ∗f) is computable, effectively choose finitely many ballsB0, . . . , Bk−1

of radius at most ε/2 from Basis(Y, µ∗f) such that µ∗f(B0∪· · ·∪Bk−1) ≥ 1−ε/2. Let C0, . . . , C2k−1 be the
cells formed by combining the elements of B0, . . . , Bk−1. Let C0 denote the cell Bc0 ∩ · · · ∩Bck−1 which is the
only cell without a diameter bounded by ε/2. For i ≥ 1, effectively choose a point yi inside the cell Ci (by
choosing the center of the lowest indexed ball Bj for which Ci ⊆ Bj). Let Ai = f−1(Ci). By assumption,
these are effectively measurable. Define ϕ : (X, µ)→ Y as the effectively measurable function which has value
yi on Ai for i ≥ 1 and 0 otherwise. Notice on Ai (1 ≤ i ≤ 2k − 1), that ϕ and f both take values in Ci.

dmeas(f, ϕ) =

ˆ
max {dY(f, ϕ), 1} dµ

≤ 1 · µ(A0) +

2k−1∑
i=1

ˆ
Ai

dY(f, ϕ) dµ

≤ ε

2
+
ε

2
·
k−1∑
i=1

µ(Ai) ≤ ε.

Hence f is effectively measurable. �
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