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Abstract

In this thesis, we tackle two problems. In the first problem, we study

fluctuations of a system of diffusions interacting through the ranks when

the number of diffusions goes to infinity. It is known that the empirical cu-

mulative distribution function of such diffusions converges to a non-random

limiting cumulative distribution function which satisfies the porous medium

PDE. We show that the fluctuations of the empirical cumulative distribution

function around its limit are governed by a suitable SPDE.

In the second problem, we introduce common noise that has a rank pre-

serving structure into systems of diffusions interacting through the ranks

and study the behaviour of such diffusion processes as the number of diffu-

sions goes to infinity. We show that the limiting distribution function is no

longer deterministic and furthermore, it satisfies a suitable SPDE.
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1
Introduction

Consider the following systems of interacting diffusion processes (“particles”)
on the real line whose dynamics are given by the SDEs

dX
(n,γ)
i (t) = b

(
Fρ(n,γ)(t)

(
X

(n,γ)
i (t)

))
dt+ σ

(
Fρ(n,γ)(t)

(
X

(n,γ)
i (t)

))
dB

(n)
i (t)

+ γ
(
t, ρ(n,γ)(t)

)
dW (t), i = 1, 2, . . . , n.

(1.0.1)

Here b, σ are functions from [0, 1] to R, (0,∞), respectively, γ is a function
from [0,∞) × M1(R) to R, where M1(R) is the space of probability mea-
sures on R equipped with the Lévy metric (inducing the topology of weak
convergence), ρ(n,γ)(t) := 1

n

∑n
i=1 δX(n,γ)

i (t)
is the empirical measure of the

particle system at time t, Fρ(n,γ)(t) is the cumulative distribution function of
ρ(n,γ)(t), and W, B

(n)
1 , B

(n)
2 , . . . , B

(n)
n are independent standard Brownian

motions. In the absence of the common noise W , the SDEs in (1.0.1) reduce
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to the following system of SDEs

dX
(n)
i (t) = b

(
Fρ(n)(t)

(
X

(n)
i (t)

))
dt+ σ

(
Fρ(n)(t)

(
X

(n)
i (t)

))
dB

(n)
i (t),

i = 1, 2, . . . , n.

(1.0.2)

Here ρ(n)(t) := 1
n

∑n
i=1 δX(n)

i (t)
is the empirical measure of the particle system

at time t, Fρ(n)(t) is the cumulative distribution function of ρ(n)(t). We
observe that the drift and diffusion coefficients of a process X

(n)
i take the

values b
(
k
n

)
and σ

(
k
n

)
whenever the rank (from the left) of X

(n)
i (t) within(

X
(n)
1 (t), X

(n)
2 (t), . . . , X

(n)
n (t)

)
is k. Since the drift and diffusion coefficients

of each particle in (1.0.2) depends on its rank, these SDEs are also called
as rank-based SDEs. Moreover, these SDEs can be identified with rank-
based models in stochastic portfolio theory introduced by Fernholz and
Karatzas (see [FK, Section 13]).

The weak existence for rank-based SDEs in (1.0.2) follows from a general
result in [SV, Exercise 12.4.3]) and weak uniqueness was established in [BP].
We remark that the questions about weak existence and weak uniqueness
for the particle system in (1.0.1) will be addressed in chapter 5.

We are interested in the behaviour of the SDEs in (1.0.1) and the rank-
based SDEs in (1.0.2) as the the number of particles goes to infinity. The lim-
iting behaviour of the rank-based SDEs was first studied in [S], wherein the
hydrodynamic limit of the particle system was derived under some restrictive
assumptions (see [S, Theorem 1.2]). These restrictive assumptions were lifted
and the result was generalised in [JR, Proposition 2.1] under suitable regular-
ity conditions. To be precise, let C([0,∞),M1(R)) be the space of continuous
functions from [0,∞) to M1(R) endowed with the topology of locally uniform
convergence. Given that the initial positions X

(n)
1 (0), X

(n)
2 (0), . . . , X

(n)
n (0)

are i.i.d. according to a probability measure λ with a finite first moment
and that b and σ in (1.0.2) are continuous, the functions t 7→ ρ(n)(t), n ∈ N
converge in probability in C([0,∞),M1(R)) to a deterministic limit t 7→ ρ(t)

and the associated cumulative distribution functions R(t, ·) := Fρ(t)(·), t ≥ 0

satisfy the following porous medium equation in a weak sense (see 2.2.1 for
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the definition)

Rt = −B(R)x +Σ(R)xx, R(0, ·) = Fλ(·), (1.0.3)

where B(r) :=
∫ r
0 b(a) da and Σ(r) :=

∫ r
0

1
2 σ(a)

2 da.
We will show in chapter 2 that R is the law of the SDE (1.1.1), consequently,
it is well defined for all t ≥ 0 and x ∈ R. Furthermore, proposition 2.3.2
in chapter 2 reveals that the porous medium PDE in (1.0.3) has a classical
solution on compact time intervals.

Finally, a large deviations result was obtained for the rank-based SDEs in
[DSVZ, Theorem 1.4] under appropriate assumptions.

1.1 Problems and Intuition

In this thesis, we are concerned with the rate of convergence of Fρ(n)(t)(·)
to R(t, ·) and the fluctuations of the particle system (1.0.2). Next, we are
interested in the hydrodynamic limit of the particle system in (1.0.1). To
be more specific, we would like to characterize the limit of the the empirical
cumulative distribution functions Fρ(n,γ)(t)(·).

Before we explain the approaches taken to tackle these problems, we will
state the assumptions that we will be making for the remainder of the thesis.

Assumption 1.1.1. (a) There exist η > 0 and λ ∈ M1(R) such that λ has a
bounded density and finite moments up to order (2+η) and the initial po-
sitions X

(n)
1 (0), X

(n)
2 (0), . . . , X

(n)
n (0), X

(n,γ)
1 (0), X

(n,γ)
2 (0), . . . , X

(n,γ)
n (0)

are i.i.d. according to λ for all n ∈ N.

(b) The functions b and σ in (1.0.1) and in (1.0.2) are differentiable with
locally Hölder continuous derivatives of the order β. Furthermore,
mina∈[0,1] σ

2(a) > 0.

(c) The function γ is bounded and satisfies |γ(t, µ) − γ(t, ν)| ≤ CW1(µ, ν)

∀ t in [0,∞), where W1 is the 1 Wasserstein distance (see 2.1.8 for its
definition), µ and ν are probability measures on the real line with finite
first moment and C is a contant.
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The key to answering the question about the rate of convergence of
Fρ(n)(t)(·) to R(t, ·) is to analyze the following independent diffusion pro-
cesses (“particles”)

dX̄
(n)
i (t) = b

(
R(t, X̄

(n)
i (t))

)
dt+ σ

(
R(t, X̄

(n)
i (t))

)
dB

(n)
i (t),

X̄
(n)
i (0) = X

(n)
i (0), i = 1, 2, . . . , n,

(1.1.1)

where B
(n)
1 , B

(n)
2 , . . . , B

(n)
n are the standard Brownian motions from (1.0.2).

We refer to the discussion following Proposition 2.3.1 in chapter 2 for the
existence of a unique strong solution of (1.1.1) and to show that the law of
X̄

(n)
i (t) is R(t, ·). We denote ρ̄(n)(t) := 1

n

∑n
i=1 δX̄(n)

i (t)
, t ≥ 0 for the path of

empirical measures associated with the i.i.d. particles X̄(n)
1 , X̄

(n)
2 , . . . , X̄

(n)
n .

As the number of particles becomes large, we would expect X
(n)
i (t) to be

close to X̄
(n)
i (t) ∀ i = 1, 2, . . . , n. Consequently, we would also expect the

measures ρ(n)(t) and ρ̄(n)(t) to be close in some sense. The main idea behind
the proof of estimating the rate of convergence is to estimate the distance
between the probability measures ρ(n)(t) and ρ̄(n)(t). We call this distance
estimate, the propagation of chaos estimate. Next, we appeal to known
results to obtain the rate of convergence of Fρ̄(n)(t)(·) to R(t, ·). Finally, we
combine both these estimates to obtain the rate of convergence of Fρ(n)(t)(·)
to R(t, ·).

To study the fluctuations of the particle system in (1.0.2), we introduce
the space Mfin(R) of finite signed measures on R and the space C0(R) of
continuous functions vanishing at infinity. We note that the space Mfin(R)
can be viewed as the dual of C0(R) and we endow it with the associated weak-
∗ topology. Similarly, we define the spaces Mfin([0, t]×R) for t > 0 and equip
each of them with the respective weak-∗ topology. The fluctuations of the
particle system (1.0.2) are studied via the Mfin(R)-valued processes

t 7→ Gn(t)(dx) :=
√
n (Fρ(n)(t)(x)−R(t, x)) dx, n ∈ N (1.1.2)

indexed by t ∈ [0,∞), as well as the processes

t 7→ Hn(t)(ds,dx) :=
√
n (Fρ(n)(s)(x)−R(s, x)) dx ds, n ∈ N (1.1.3)
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taking values in Mfin([0, t] × R), t > 0, respectively. We show that the
Mfin(R)-valued processes Gn, and the Mfin([0, t] × R)-valued processes Hn,
n ∈ N converge in the finite-dimensional distribution sense to t 7→ G(t, x) dx

and t 7→ G(s, x)1[0,t]×R(s, x) dsdx, respectively and also jointly. Further-
more, the process G(t, x) satisfies a suitable SPDE. The main idea behind
the proof is to apply Ito’s formula to the entity

∫
R γ(t, x)Gn(t)(dx) for some

smooth function γ(t, x), and then proceed to the limit.

Next, to characterize the limit of the the empirical cumulative distribution
functions Fρ(n,γ)(t)(·), we make a simple yet clever observation that reduces
the particles in (1.0.1) to the rank-based SDEs in (1.0.2). We then charac-
terise the limiting distribution in terms of the solution of the porous medium
equation R(t, ·).

1.2 Outline of the Thesis

The rest of the thesis is structured as follows. In chapter 2 we will introduce
the notion of generalised solutions and prove that the deterministic limit of
Fρ(n)(t) satisfies the porous medium equation in a weak sense. Furthermore,
we will address the issue of uniqueness and regularity of solutions of the
porous medium equation. Then, we will elucidate the connection between
the porous medium equation and the diffusion process in (1.1.1) and prove
that the transition density of the diffusion process in (1.1.1) admits lower
and upper gaussian bounds. Most of the results in chapter 2 are taken from
[JR] and [Gi] and have been included in the thesis for completeness. The
main contributions of this thesis are contained in chapters 3, 4 and 5. In
chapter 3 we will prove the propagation of chaos estimate 3.2.1 by reducing
it to the estimate of [BL, Theorem 4.8] on the expected Wasserstein distance
between the empirical measure of an i.i.d. sample from the uniform distri-
bution and the uniform distribution itself. Theorem 3.2.1 is then used along
with Dvoretzky-Kiefer-Wolfowitz inequality in the form of [Mas, Corollary
1] to prove the other propagation of chaos estimate 3.3.1. In chapter 4 we
will use Theorem 3.2.1 to establish the tightness of the finite-dimensional
distributions of the processes Gn, n ∈ N and Hn, n ∈ N and then proceed to
the proof of the central limit theorem 4.0.1 by identifying the limit points
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of the finite-dimensional distributions of Gn, n ∈ N and Hn, n ∈ N. Most of
the results in chapters 3 and 4 are taken from the paper [KoS]. In chapter
5, we will derive the hydrodynamic limit of the particle system in (1.0.1) by
reducing it to the rank-based SDEs in (1.0.2). The results in this chapter
are based on the paper [Ko].
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2
Porous Medium Equation

We recall that ρ(n)(t) = 1
n

∑n
i=1 δX(n)

i (t)
is the empirical measure of the par-

ticle system (1.0.2) and Fρ(n)(t) is the cumulative distribution function of
ρ(n)(t). We also note that M1(R) is the space of probability measures on
R. This chapter is mainly devoted to prove that the limit of the empirical
cumulative distribution function Fρ(n)(t) satisfies the porous medium equa-
tion 1.0.3. We will also address the properties of the solution of the porous
medium equation. We first prove a tightness result that establishes exis-
tence of subsequential limits for the distributions of the random mappings
t 7→ ρ(n)(t) in C([0,∞),M1(R)) and then show that the limit of Fρ(n)(t)

satisfies the porous medium equation in a weak sense. Next, we address
uniqueness and regularity of the solutions to the porous medium equation.
Lastly, we reveal the connection between the porous medium equation and
the SDE (1.1.1) and show that the transition density of the SDE in (1.1.1)
admits gaussian lower and upper bounds.
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2.1 Tightness of the Empirical Distributions

In this section, we will prove the existence of limit points for the sequence
of the empirical distribution functions Fρ(n)(t). We will show this by proving
an appropriate tightness result, but first, we will prove an elementary that
shows that if the particles at time 0 have a finite pth moment, then the
particles have a finite pth moment at all times. We remark that the estimate
also proves that the family of random variables

(∣∣X(n)
1 (s)

∣∣2)
n≥1

in (1.0.2)
is uniformly integrable. This moment estimate will be used in subsequent
lemmata.

Lemma 2.1.1. Suppose the Assumption 1.1.1 holds, then we have the fol-
lowing moment estimate for the rank-based particles in (1.0.2)

E
[

sup
0≤ s≤ t

∣∣X(n)
i (s)

∣∣(2+η)
]
≤ C0 + C1 t

2+η
2 + C2 t

2+η , i = 1, 2, . . . , n,

(2.1.1)
where C0 is a constant that depends on

∫
R |x|2+η λ(dx), C1 and C2 are

constants that depend on the L∞ norm of σ and b respectively.

Proof. Integrating equation (1.0.2), we get

X
(n)
i (s) = X

(n)
i (0) +

∫ s

0
b
(
Fρ(n)(u)

(
X

(n)
i (u)

))
du

+

∫ s

0
σ
(
Fρ(n)(u)

(
X

(n)
i (u)

))
dW

(n)
i (u), i = 1, 2, . . . , n.

(2.1.2)

Taking absolute value, applying triangular inequality and raising both sides
to the power of (2 + η), we obtain

∣∣X(n)
i (s)

∣∣2+η ≤ C

(∣∣X(n)
i (0)

∣∣2+η
+
[ ∫ s

0

∣∣b(Fρ(n)(u)

(
X

(n)
i (u)

))∣∣ du]2+η

+
∣∣∣ ∫ s

0
σ
(
Fρ(n)(u)

(
X

(n)
i (u)

))
dW

(n)
i (u)

∣∣∣2+η
)
,

(2.1.3)

where C is a constant. Next, we take supremum in time on the right hand
side followed up taking supremum on the left hand side and then take expec-
tation and apply Burkholder-Davis-Gundy inequality (see e.g. [KS, Chapter
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3, Theorem 3.28]) to the stochastic integral to obtain

E
[

sup
0≤ s≤ t

∣∣X(n)
i (s)

∣∣2+η
]
≤ C

{∫
R
|x|2+ηλ(dx)

+ E
[ ∫ t

0

∣∣b(Fρ(n)(u)

(
X

(n)
i (u)

))∣∣du]2+η

+ E
[ ∫ t

0
σ2

(
Fρ(n)(u)

(
X

(n)
i (u)

))
du

] 2+η
2

}
.

(2.1.4)

Since b and σ are continuous function defined on the compact set [0, 1], it
follows that they are bounded. The result then follows trivially.

We are now ready to prove the main tightness result and to this end let
ρ(n) = 1

n

∑n
i=1 δX(n)

i

. We combine the arguments in [JR, Proposition 2.1]
and [JR, Lemma 2.3] to obtain the following tightness result.

Lemma 2.1.2. Under Assumption 1.1.1, the sequence (πn)n≥1 of the dis-
tributions of the random mappings t 7→ ρ(n)(t) in C([0,∞),M1(R)) is tight.

Proof. Noting that X
(n)
i is an element of C([0,∞),R) ∀ i = 1, 2, . . . , n, we

infer that ρ(n) is an element of M1

(
C([0,∞),R)

)
, where M1

(
C([0,∞),R)

)
is the space of probability measures on C([0,∞),R). Let π̃n denote the dis-
tribution of ρ(n). Since the mapping M1

(
C([0,∞),R)

)
→ C([0,∞),M1(R))

is continuous, proving a stronger result that the sequence π̃n is tight im-
plies that the sequence πn is tight. We begin by noting that the distri-
bution of

(
X

(n)
1 , X

(n)
2 , · · · , X(n)

n

)
in C

(
[0,∞),Rn

)
is symmetric. In view of

[Sz2, Proposition 2.2, Pg 177], π̃n is tight if and only if the sequence of
distributions of the variables X

(n)
1 ∈ C

(
[0,∞),R

)
is tight. A computation

similar to the one in lemma 2.1.1 reveals that E
[
X

(n)
1 (r) − X

(n)
1 (s)

]4 ≤
C(t)|r − s|2 ∀ 0 ≤ s, r ≤ t, where C(t) is a non random function of t.
Noting that E|X(n)

1 (0)| =
∫
R |x|λ (dx) < ∞, we appeal to [KS, Problem

4.11, Pg 64] and conclude that the sequence of distributions of the variables
X

(n)
1 ∈ C

(
[0,∞),R

)
is tight. This finishes the proof of the lemma.

The tightness result establishes the existence of converging subsequences
for πn and π̃n. We remark that we will use the same index n for the converg-
ing subsequences. Let ρ be a variable in M1

(
C([0,∞),R)

)
whose distribution

9



is the limit point π̃∞ of the convergent subsequence π̃n. In view of the Sko-
rokhod representation theorem in the form of [Du, Theorem 3.5.1], we can
assume that the sequence of random variables ρ(n) and ρ are defined on the
same probability space with ρ(n)

a.s.−→ ρ in M1

(
C([0,∞),R)

)
. Since the map-

ping M1

(
C([0,∞),R)

)
→ C([0,∞),M1(R)) is continuous, we also have the

almost sure convergence ρ(n) → ρ in C([0,∞),M1(R)).

In the next lemma, we show that the limit points of the empirical measures
ρ(n) have 2 moments. We will be needing this lemma to strengthen the almost
sure convergence of ρ(n) to ρ in the sense of Wasserstein distance. This is
taken from [JR, Lemma 2.4].

Lemma 2.1.3. Under Assumption 1.1.1, E
[

sup
0≤ s≤ t

∫
R |x|2 ρ(s)(dx)

]
< ∞.

Proof. For all M ≥ 0, the function fM : µ → sup
0≤ s≤ t

∫
R
(
|x|2 ∧M

)
µs(dx) is

continuous and bounded on C([0,∞),M1(R)). For a fixed n, we have

E
(
fM (ρ(n))

)
≤

n∑
i=1

E
[

sup
0≤ s≤ t

|X(n)
i (s)|2

]
n

≤ K(t), (2.1.5)

where the last inequality is a consequence of lemma 2.1.1. Note that K(t) is a
deterministic function of t independent of M and n. As a consequence of the
discussion following lemma 2.1.2, we have E

(
fM (ρ)

)
= lim

n→∞
E
(
fM (ρ(n))

)
≤

K(t). We then apply Fatou’s lemma to obtain

E
(
lim inf
M→∞

fM (ρ)
)
≤ lim inf

M→∞
E
(
fM (ρ)

)
≤ K(t). (2.1.6)

An elementary inequality coupled with montone convergence theorem yields

E
(

sup
0≤ s≤ t

lim inf
M→∞

∫
R

(
|x|2 ∧M

)
ρ(s)(dx)

)
≤ E

(
lim inf
M→∞

fM (ρ)
)

≤ K(t),

E
(

sup
0≤ s≤ t

∫
R
|x|2ρ(s)(dx)

)
≤ K(t).

(2.1.7)

and this completes the proof of the lemma.
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Before we state the next lemma, we will give a brief description of Wasser-
stein distance.

2.1.1 Wasserstein distance

Wasserstein distance is one of the many metrics that is used to measure the
distance between probability measures. It’s defined as follows

Wp(µ, ν) = inf
(Y1,Y2)

E
[
|Y1 − Y2|p

]1/p
, (2.1.8)

where the infimum is taken over all random vectors (Y1, Y2) such that Y1 is
distributed according to µ and Y2 according to ν. We are interested in the
probability measures on R and in this case there are equivalent represen-
tations of the formula 2.1.8 which we will summarize below (see e.g. [BL,
Section 2.3]). For p ≥ 1 consider two probability measures µ, ν on R having
finite moments up to order p. Let Fµ, Fν be their cumulative distribution
functions and qµ, qν be their quantile functions. Then, we have

Proposition 2.1.4.

W1(µ, ν) =

∫
R

∣∣Fµ(x)− Fν(x)
∣∣ dx, (2.1.9)

Wp(µ, ν) =

(∫ 1

0

∣∣qµ(a)− qν(a)
∣∣p da)1/p

, p ≥ 1. (2.1.10)

The next lemma strengthens the convergence of the measures ρ(n)(t) in the
sense of Wasserstein distance and this lemma is taken from [JR, Corollary
2.16].

Lemma 2.1.5. Let Assumption 1.1.1 be satisfied, then we have the following
convergences lim

n→∞
E
[
W 2

2

(
ρ(n)(s), ρ(s)

)]
= 0 and

lim
n→∞

t∫
0

E
[
W 2

2

(
ρ(n)(s), ρ(s)

)]
ds = 0 ∀ s and t in [0,∞) respectively.

Proof. We will first prove the first convergence and to this end, let M ≥ 0

and X
(n)
(1) (s) ≤ X

(n)
(2) (s) ≤ · · · ≤ X

(n)
(n) (s) be the order statistics of the vec-

tor
(
X

(n)
1 (s), X

(n)
2 (s), . . . , X

(n)
n (s)

)
. Using the representation in proposition

11



2.1.4 we have

W 2
2

(
ρ(n)(s), ρ(s)

)
=

n∑
i=1

i
n∫

i−1
n

(∣∣X(n)
(i) (s)− F−1

ρ(s)(u)
∣∣2 −M

)+
du

+
n∑

i=1

i
n∫

i−1
n

(∣∣X(n)
(i) (s)− F−1

ρ(s)(u)
∣∣2 ∧M

)
du

≤
n∑

i=1

i
n∫

i−1
n

∣∣X(n)
(i) (s)− F−1

ρ(s)(u)
∣∣2I(∣∣X(n)

(i) (s)− F−1
ρ(s)(u)

∣∣2 ≥ M
)
du

+

1∫
0

(∣∣F−1
ρ(n)(s)

(u)− F−1
ρ(s)(u)

∣∣2 ∧M
)
du,

(2.1.11)

where I is the indicator function. The function
µ ∈ M1(R) →

1∫
0

∣∣F−1
µ (u)−F−1

ρ(s)(u)
∣∣2 ∧M du is continuous and bounded. As

a consequence of the lemma 2.1.2 and the discussion following it, we get

lim
n→∞

E
[ 1∫

0

(∣∣F−1
ρ(n)(s)

(u)− F−1
ρ(s)(u)

∣∣2 ∧M
)
du

]
= 0. (2.1.12)

Next, for all x, y in R, we have the following inequality

|x− y|pI
(
|x− y|p ≥ M

)
≤ |x− y|pI

(
|x| ≥ |y| ∨M1/p/2

)
+ |x− y|pI

(
|y| ≥ |x| ∨M1/p/2

)
≤ 2p|x|pI

(
|x|p ≥ M/2p

)
+ 2p|y|pI

(
|y|p ≥ M/2p

)
.

(2.1.13)

Applying this inequality to the term

12



n∑
i=1

i
n∫

i−1
n

∣∣X(n)
(i) (s)− F−1

ρ(s)(u)
∣∣2I(∣∣X(n)

(i) (s)− F−1
ρ(s)(u)

∣∣2 ≥ M
)
du, we obtain

n∑
i=1

i
n∫

i−1
n

∣∣X(n)
(i) (s)− F−1

ρ(s)(u)
∣∣2I(∣∣X(n)

(i) (s)− F−1
ρ(s)(u)

∣∣2 ≥ M
)
du

≤ 22

n

n∑
i=1

∣∣X(n)
(i) (s)

∣∣2I(∣∣X(n)
(i) (s)

∣∣2 ≥ M/22
)

+22
1∫

0

∣∣F−1
ρ(s)(u)

∣∣2I(∣∣F−1
ρ(s)(u)

∣∣2 ≥ M/22
)
du

=
22

n

n∑
i=1

∣∣X(n)
i (s)

∣∣2I(∣∣X(n)
i (s)

∣∣2 ≥ M/22
)

+22
1∫

0

∣∣F−1
ρ(s)(u)

∣∣2I(∣∣F−1
ρ(s)(u)

∣∣2 ≥ M/22
)
du.

(2.1.14)

Next, we note that the random variables X
(n)
1 (s), X

(n)
2 (s), . . . , X

(n)
n (s) are

exchangeable. Furthermore, the moment estimate in lemma 2.1.1 reveals
that the family of random variables

(∣∣X(n)
1 (s)

∣∣2)
n≥1

is uniformly integrable

and lemma 2.1.3 implies that E
[ 1∫
0

∣∣F−1
ρ(s)(u)

∣∣2 du] < ∞. Combining all these

observations gives

sup
n≥1

E
[ n∑

i=1

i
n∫

i−1
n

∣∣X(n)
(i) (s)−F−1

ρ(s)(u)
∣∣2I(∣∣X(n)

(i) (s)−F−1
ρ(s)(u)

∣∣2 ≥ M
)
du

]
M→∞−→ 0

(2.1.15)
which yields lim

n→∞
E
[
W 2

2

(
ρ(n)(s), ρ(s)

)]
= 0.

We now turn our attention to the second convergence

lim
n→∞

t∫
0

E
[
W 2

2

(
ρ(n)(s), ρ(s)

)]
ds = 0. In view of the first convergence that we

just proved and the dominated convergence theorem, it suffices to show that
sup
0≤s≤t

E
[
W 2

2

(
ρ(n)(s), ρ(s)

)]
< C(t), where C(t) is a constant depending on t.

13



To this end, we begin by making the observation

W 2
2

(
ρ(n)(s), ρ(s)

)
≤ 2

n∑
i=1

∣∣X(n)
i (s)

∣∣2
n

+ 2

∫
R
|x|2ρ(s) (dx). (2.1.16)

Taking supremum on the right-hand side followed by taking expectation and
using the moment estimates in lemmas 2.1.1 and 2.1.3 and then taking the
supremum on the left-hand side gives the desired result.

2.2 Derivation of the Porous Medium Equation

In this section, we will show that the cumulative distribution function Fρ(t)

satisfies the porous medium equation 1.0.3 in the sense defined below.

Definition 2.2.1. A bounded continuous nonnegative function R with
R(0, ·) = Fλ(·) is called a generalized solution of the problem (1.0.3) if the
following holds∫ ∞

−∞
h(t, x)R(t, x) dx −

∫ ∞

−∞
h(0, x)R(0, x) dx =∫ t

0

∫ ∞

−∞

(
hs(s, x)R(s, x) + hx(s, x)B

(
R(s, x)

)
+ hxx(s, x)Σ

(
R(s, x)

))
dx ds

(2.2.1)

for all functions h ∈ C1,2
c

(
[0,∞)× R

)
, the space of functions on [0,∞)× R

which are continuously differentiable in s, twice continuously differentiable
in x and compactly supported.

The main proposition in this section is as follows

Proposition 2.2.2. Suppose that the Assumption 1.1.1 holds. Then Fρ(t)

satisfies the PDE (1.0.3) in the sense of definition 2.2.1.

Proof. The proof relies on a suitable prelimit version of its statement. For
every fixed n ∈ N, let Bn and Σn be functions that are defined at finitely
many points on [0, 1] with k = 0, 1, . . . , n and

Bn(k/n) =
1

n

k∑
j=1

b(j/n), Σn(k/n) =
1

2n

k∑
j=1

σ(j/n)2 . (2.2.2)
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Let H(s, x) =
∫ x
−∞ h(s, y) dy, where the function h ∈ C1,2

c

(
[0,∞)× R

)
. We

apply Ito’s formula to the function H to obtain∫
R
H(t, x) ρ(n)(t)(dx) =

∫
R
H(0, x) ρ(n)(0)(dx)

+ (1/n)
n∑

i=1

∫ t

0
h
(
s,X

(n)
i (s)

)
σ
(
Fρ(n)(s)(X

(n)
i (s))

)
dB

(n)
i (s)

+

∫ t

0

∫
R

(
Hs(s, x) + h(s, x) b

(
Fρ(n)(s)(x)

)
+ hx(s, x)

σ2
(
Fρ(n)(s)(x)

)
2

)
ρ(n)(s)(dx) ds.

(2.2.3)

Next, we use integration by parts to obtain each of the following equalities∫
R
H(t, x) ρ(n)(t)(dx)−

∫
R
H(0, x) ρ(n)(0)(dx)

−
∫ t

0

∫
R
Hs(s, x) ρ

(n)(s)(dx) ds = −
∫
R
h(t, x)Fρ(n)(t)(x) dx

+

∫
R
h(0, x)Fρ(n)(0)(x) dx+

∫ t

0

∫
R
hs(s, x)Fρ(n)(s)(x) dx ds,∫

R
h(s, x) b

(
Fρ(n)(s)(x)

)
ρ(n)(s)(dx) = −

∫
R
hx(s, x)Bn

(
Fρ(n)(s)(x)

)
dx,∫

R
hx(s, x)

σ2
(
Fρ(n)(s)(x)

)
2

ρ(n)(s)(dx) = −
∫
R
hxx(s, x)Σn

(
Fρ(n)(s)(x)

)
dx.

(2.2.4)
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In view of the above equalities, we express (2.2.3) equivalently as follows∫
R
h(t, x)Fρ(n)(t)(x) dx−

∫
R
h(0, x)Fρ(n)(0)(x) dx

=

∫ t

0

∫
R

(
hs(s, x)Fρ(n)(s)(x) + hx(s, x)B

(
Fρ(n)(s)(x)

)
+ hxx(s, x)Σ

(
Fρ(n)(s)(x)

))
dx ds

−
∫ t

0

∫
R
hx(s, x)

(
B
(
Fρ(n)(s)(x)

)
−Bn

(
Fρ(n)(s)(x)

))
dx ds

−
∫ t

0

∫
R
hxx(s, x)

(
Σ
(
Fρ(n)(s)(x)

)
− Σn

(
Fρ(n)(s)(x)

))
dx ds

− (1/n)

n∑
i=1

∫ t

0
h
(
s,X

(n)
i (s)

)
σ
(
Fρ(n)(s)(X

(n)
i (s))

)
dB

(n)
i (s).

(2.2.5)

We note that sup
s∈ [0,t], x∈R

∣∣∣B(
Fρ(n)(s)(x)

)
− Bn

(
Fρ(n)(s)(x)

)∣∣∣ is O( 1n) and con-

sequently
∫ t
0

∫
R hx(s, x)

(
B
(
Fρ(n)(s)(x)

)
− Bn

(
Fρ(n)(s)(x)

))
dx ds

a.s.−→ 0 as

n → ∞. A similar argument reveals that
∫ t
0

∫
R hxx(s, x)

(
Σ
(
Fρ(n)(s)(x)

)
−

Σn

(
Fρ(n)(s)(x)

))
dx ds

a.s.−→ 0 as n → ∞. Next, the quadratic variation of
the martingale term is (1/n)

∫ t
0

∫
R h2(x)σ2

(
Fρ(n)(s)(x)

)
ρ(n)(s)(dx) ds

a.s.−→ 0

as n → ∞.

Next, we define the bounded continuous function G : M1

(
C([0,∞),R)

)
→

R as follows

G(µ) =

∫
R
h(t, x)Fµt(x) dx−

∫
R
h(0, x)Fµ0(x) dx

−
∫ t

0

∫ ∞

−∞

(
hs(s, x)Fµs(x) + hx(s, x)B

(
Fµs(x)

)
+ hxx(s, x)Σ

(
Fµs(x)

))
dx ds,

(2.2.6)

where Fµs is the cumulative distribution function of the probability measure
µs on R and h is the smooth test function that we defined earlier. The
discussion following lemma 2.1.2 implies that E

(
G2(ρ(n))

) n→∞−→ E
(
G2(ρ)

)
and our aforementioned arguments using the prelimit version reveal that
lim
n→∞

E
(
G2(ρ(n))

)
= 0. Combining these two arguments finishes the proof of
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the proposition.

2.3 Uniqueness and Regularity of Solutions

The aim of this section is to address uniqueness and the regularity properties
of the solutions of the cauchy problem (1.0.3) in the sense of definition 2.2.1.
We remark that these results and the results in the next section will be used
extensively in chapters 3, 4 and 5.

In view of Assumption 1.1.1 we can combine [Gi, Theorems 4 and 7] to
obtain the following proposition.

Proposition 2.3.1. Let Assumption 1.1.1 be satisfied. Then, the Cauchy
problem (1.0.3) admits a unique generalized solution R. Moreover, its dis-
tributional derivative Rx can be represented by a bounded function on any
strip of the form [0, t]× R.

The next proposition taken from [JR, Lemma 2.7] gives us the conditions
to obtain classical regularity of the generalized solution and to this end let
C1,2
b

(
[0, t],R

)
denote the set of C1,2

(
[0, t],R

)
functions that are bounded to-

gether with their derivatives and let H l
(
R) denote the Hölder space, defined

as in [LSU, Pg. 7].

Proposition 2.3.2. Let Assumption 1.1.1 be satisfied and let Fλ(·) be in the
Hölder space H l

(
R), with l = 3+ β, where β is the Hölder exponent defined

in the Assumption 1.1.1. Then for all finite t > 0, R ∈ C1,2
b

(
[0, t],R

)
. In

particular, it is a classical solution.

2.4 Porous Medium Equation and the associated diffusion
process

In this section, we will discuss the connection between the SDE (1.1.1) and
the porous medium equation (1.0.3). Consider the following SDE

dX̄(t) = b
(
R(t, X̄(t))

)
dt+ σ

(
R(t, X̄(t))

)
dB(t) (2.4.1)

satisfied by each of the processes X̄
(n)
i . Assumption 1.1.1 and Proposition

2.3.1 guarantee that the functions x 7→ b
(
R(t, x)

)
and x 7→ σ

(
R(t, x)

)
are
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Lipschitz with uniformly bounded Lipschitz constants on every compact in-
terval of t’s. Consequently, there exists a unique strong solution of (2.4.1)
for the initial condition λ of Assumption 1.1.1 or any deterministic initial
condition (see e.g. [KS, Chapter 5, Theorems 2.5 and 2.9]). In addition, X̄ is
the unique solution of the martingale problem associated with the operators
b(R(t, ·)) d

dx +
σ(R(t,·))2

2
d2

dx2 , t ≥ 0 and therefore a strong Markov process (see
[SV, Theorems 7.2.1 and 6.2.2]). For the initial condition λ, Assumption
1.1.1 allows us to apply [JR, Corollary 2.13] to identify the one-dimensional
distributions of the solution to the nonlinear martingale problem therein
with ρ(t), t ≥ 0, so that the solution itself is given by the law L(X̄) of X̄
and therefore

L(X̄(t)) = ρ(t), t ≥ 0. (2.4.2)

We now aim to apply the results of [Ar] to conclude that under Assumption
1.1.1 the transition density of X̄ exists and satisfies Gaussian lower and upper
bounds. To identify the transition density of X̄ with the weak fundamental
solution of a parabolic PDE as in [Ar, Theorem 5] we fix a T > 0 and
consider the Cauchy problem

ut + b(R)ux +
σ(R)2

2
uxx = f, u(T, ·) = 0, (2.4.3)

where f ∈ L2([0, T ] × R) ∩ L∞([0, T ] × R). We note that b(R) and σ(R)2

2

are bounded and that x 7→ σ(R(t,x))2

2 are Lipschitz with uniformly bounded
Lipschitz constants for t ∈ [0, T ]. Hence, according to [Kr2, Theorem 2.1 and
Remark 2.2] there exists a unique solution u of (2.4.3) with u, ut, ux, uxx ∈
L2([0, T ]× R) and it is given by

u(t, x) = −E
[ ∫ T

t
f(r, X̄(r)) dr

∣∣∣∣ X̄(t) = x

]
, (t, x) ∈ [0, T ]× R. (2.4.4)

In particular, u ∈ L∞([0, T ] × R), so that with g(t, x) := −f(T − t, x),
S(t, x) := R(T − t, x), (t, x) ∈ [0, T ] × R the function v(t, x) := u(T − t, x),
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(t, x) ∈ [0, T ]× R is a weak solution of

vt −
(
b(S)− σ(S)σ′(S)Sx

)
vx −

(
σ(S)2

2
vx

)
x

= g, v(0, ·) = 0 (2.4.5)

in the sense of [Ar, Theorem 5(ii)]. The latter theorem is applicable, since
b(S)−σ(S)σ′(S)Sx and σ(S)2

2 are bounded on [0, T ]×R and σ(S)2

2 is bounded
away from 0 on [0, T ]×R by Assumption 1.1.1 and Proposition 2.3.1. Com-
paring the conclusion of [Ar, Theorem 5(ii)] with (2.4.4) we obtain the exis-
tence of the transition density p(t, x; r, z) of X̄ and recognize p(T − r, x;T −
t, z) as the weak fundamental solution corresponding to the PDE in (2.4.5).
Thus, [Ar, Theorem 10(ii)] yields the following result.

Proposition 2.4.1. Let Assumption 1.1.1 be satisfied. Then, the process X̄

has a transition density p such that

C−1(r − t)−1/2 e−C(z−x)2/(r−t) ≤ p(t, x; r, z) ≤ C(r − t)−1/2 e−C−1(z−x)2/(r−t)

∀T > 0 , 0 ≤ t < r ≤ T, x, z ∈ R.
(2.4.6)

with C ∈ (1,∞) possibly depending on T . In particular, if X̄(0) is distributed
according to λ, then

∀T > 0 : sup
0≤t≤T

E
[
|X̄(t)|2+η

]
< ∞. (2.4.7)
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3
Propagation of Chaos

In chapter 1, we relied on intuition and claimed that the particle X
(n)
i (t) in

(1.0.2) should be close to X̄
(n)
i (t) in (1.1.1) ∀ i = 1, 2, . . . , n. Furthermore,

we also asserted that the measures ρ(n)(t) and ρ̄(n)(t) should also be close,
where ρ̄(n)(t) is the empirical measure of the particle system (1.1.1). In this
chapter we will prove propagation of chaos estimates that tell us precisely
the sense in which the particles and the measures are close.

3.1 Preliminary Estimates

We will be needing an estimate of the expected Wasserstein distance between
the empirical measure of an i.i.d. sample from the uniform distribution and
the uniform distribution itself. These are taken from [BL, Theorem 4.8].

Proposition 3.1.1. Let U1, U2, . . . be i.i.d. according to the uniform dis-
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tribution υ on [0, 1]. Then, there exists a constant C < ∞ such that

E
[
Wp

(
1

n

n∑
i=1

δUi , υ

)p]1/p
≤ C p1/2 n−1/2, p ≥ 1, n ∈ N. (3.1.1)

Next, we recall the Functional Central Limit Theorem for empirical cumu-
lative distribution functions from [dGM, Theorem 2.1] (see also [BL, Corol-
lary 3.9 and the discussion of the functional J1 on p. 25]). This result gives
rise to the initial condition in (4.0.1).

Proposition 3.1.2. Let Assumption 1.1.1(a) be satisfied. Then, the se-
quence Gn(0, ·) in 1.1.2, n ∈ N converges in law weakly in L1(R) (and
therefore in Mfin(R)) to β(Fλ(·)), where β is a standard Brownian bridge.

We remark that we denote
√
n (Fρ(n)(t)(·) − R(t, ·)) with Gn(t, ·) and we

would like to warn the reader to note the difference between the function
Gn(t, ·) and the measure Gn(t)(dx) defined in 1.1.2.

3.2 Propagation of chaos estimate 1

We are now ready to prove the main theorem in this chapter and this theorem
provides an estimate of the distance between the measures ρ(n)(t) and ρ̄(n)(t).

Theorem 3.2.1. Suppose that Assumption 1.1.1 holds. Then, for all p > 0

and T > 0 there exists a constant C = C(p, T ) < ∞ such that

∀n ∈ N, 1 ≤ i ≤ n : E
[

sup
0≤t≤T

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p] ≤ C n−p/2. (3.2.1)

In particular, when p ≥ 1 one has

∀n ∈ N : E
[

sup
0≤t≤T

Wp

(
ρ(n)(t), ρ̄(n)(t)

)p] ≤ C n−p/2. (3.2.2)

Proof of Theorem 3.2.1. Step 1. Fix any p ≥ 2 and T > 0. We aim
to employ Proposition 3.1.1 and to do so we are going to estimate the left-
hand side of (3.2.1) by a quantity involving the left-hand side of (3.1.1).
To this end, we first observe that the pairs (X

(n)
i , X̄

(n)
i ), i = 1, 2, . . . , n

21



have the same distribution (due to the weak uniqueness for (1.0.2) and the
strong uniqueness for (1.1.1)) and therefore the left-hand side of (3.2.1) can
be rewritten in the symmetrized form

1

n

n∑
i=1

E
[

sup
0≤t≤T

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p]. (3.2.3)

Next, we use the SDEs (1.0.2) and (1.1.1) satisfied by X
(n)
i and X̄

(n)
i , the

elementary inequality

(r1 + r2)
p ≤ 2p−1(rp1 + rp2), r1, r2 ≥ 0, (3.2.4)

the Burkholder-Davis-Gundy inequality (see e.g. [KS, Chapter 3, Theorem
3.28]) and the Lipschitz property of b and σ to find for all t ∈ [0, T ] and
i = 1, 2, . . . , n:

E
[

sup
0≤s≤t

∣∣X(n)
i (s)− X̄

(n)
i (s)|p

]
≤

C E
[(∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣ ds)p]
+C E

[(∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣2 ds)p/2]
,

(3.2.5)

where C < ∞ depends only on p and the Lipschitz constants of b and σ.
Applying Jensen’s inequality to each of the summands on the right-hand
side of (3.2.5) we obtain the further upper bound

C E
[ ∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣p ds], (3.2.6)

where C < ∞ can be chosen in terms of T , p and the Lipschitz constants of
b and σ.

22



Another application of (3.2.4) gives

C E
[ ∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣p ds]
≤ C E

[ ∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s,X

(n)
i (s))

∣∣p ds]
+ C E

[ ∫ t

0

∣∣R(s,X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣p ds],
(3.2.7)

where C < ∞ is still a function of T , p and the Lipschitz constants of b and
σ only. Now, we take the average of the first summands on the right-hand
side of (3.2.7) over i = 1, 2, . . . , n and get

C

n

n∑
i=1

E
[ ∫ t

0

∣∣Fρ(n)(s)(X
(n)
i (s))−R(s,X

(n)
i (s))

∣∣p ds]

= C

∫ t

0
E
[
1

n

n∑
k=1

∣∣Fρ(n)(s)(X
(n)
(k) (s))−R(s,X

(n)
(k) (s))

∣∣p]ds, (3.2.8)

where X
(n)
(1) (s) ≤ X

(n)
(2) (s) ≤ · · · ≤ X

(n)
(n) (s) are the order statistics of the

vector
(
X

(n)
1 (s), X

(n)
2 (s), . . . , X

(n)
n (s)

)
.

At this point, [Kr1, Theorem on p. 439] for the function
y 7→

∑
1≤i<j≤n 1{yi=yj} on Rn reveals that with probability one it holds

Fρ(n)(s)(X
(n)
(k) (s)) =

k
n , k = 1, 2, . . . , n for Lebesgue a.e. s ∈ [0, T ]. This and

(3.2.4) allow to estimate the end result of (3.2.8) from above by

C

∫ t

0
E
[
1

n

n∑
k=1

∣∣∣∣kn −R(s, X̄
(n)
(k) (s))

∣∣∣∣p]

+ E
[
1

n

n∑
k=1

∣∣R(s, X̄
(n)
(k) (s))−R(s,X

(n)
(k) (s))

∣∣p]ds, (3.2.9)

where X̄
(n)
(1) (s) ≤ X̄

(n)
(2) (s) ≤ · · · ≤ X̄

(n)
(n) (s) are the order statistics of the

vector
(
X̄

(n)
1 (s), X̄

(n)
2 (s), . . . , X̄

(n)
n (s)

)
and C < ∞ depends on T , p and the

Lipschitz constants of b and σ only.

Step 2. Relying on the representation (2.1.10) we readily identify the quan-
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tity E
[
1
n

∑n
k=1

∣∣ k
n −R(s, X̄

(n)
(k) (s))

∣∣p] in (3.2.9) as

E
[
Wp

(
1

n

n∑
k=1

δk/n,
1

n

n∑
k=1

δ
R(s,X̄

(n)
(k)

(s))

)p]
. (3.2.10)

The observation (2.4.2) reveals R(s, X̄
(n)
(1) (s)) ≤ R(s, X̄

(n)
(2) (s)) ≤ · · · ≤

R(s, X̄
(n)
(n) (s)) as the order statistics of an i.i.d. sample from the uniform

distribution on [0, 1]. This, the triangle inequality for Wp and (3.2.4) imply
that the expectation in (3.2.10) is bounded above by

2p−1Wp

(
1

n

n∑
k=1

δk/n, υ

)p

+ 2p−1 E
[
Wp

(
υ,

1

n

n∑
i=1

δUi

)p]
(3.2.11)

in the notation of Proposition 3.1.1. Using the representation (2.1.10) for the
first expectation in (3.2.11) and Proposition 3.1.1 for the second expectation
in (3.2.11) we end up with the upper bound

2p−1 n−p + 2p−1Cp pp/2 n−p/2, (3.2.12)

where C is the constant in Proposition 3.1.1.

Step 3. Putting the estimates (3.2.5), (3.2.7), (3.2.9) and (3.2.12) together
we arrive at the inequality

1

n

n∑
i=1

E
[

sup
0≤s≤t

∣∣X(n)
i (s)− X̄

(n)
i (s)

∣∣p]
≤ C

∫ t

0

(
n−p + n−p/2 + E

[
1

n

n∑
k=1

∣∣R(s,X
(n)
(k) (s))−R(s, X̄

(n)
(k) (s))

∣∣p]

+ E
[
1

n

n∑
i=1

∣∣R(s,X
(n)
i (s))−R(s, X̄

(n)
i (s))

∣∣p])ds

(3.2.13)

for all t ∈ [0, T ], where C < ∞ is a function of T , p and the Lipschitz
constants of b and σ. Moreover, the functions x 7→ R(s, x) are Lipschitz with
uniformly bounded Lipschitz constants as s varies in [0, T ] by Proposition
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2.3.1 and

1

n

n∑
k=1

∣∣X(n)
(k) (s)− X̄

(n)
(k) (s)

∣∣p = Wp

(
ρ(n)(s), ρ̄(n)(s)

)p
≤ 1

n

n∑
i=1

∣∣X(n)
i (s)− X̄

(n)
i (s)

∣∣p (3.2.14)

by the representation (2.1.10) and the definition of Wp in (2.1.8), so that for
all t ∈ [0, T ]:

1

n

n∑
i=1

E
[

sup
0≤s≤t

∣∣X(n)
i (s)− X̄

(n)
i (s)

∣∣p] ≤ C
(
n−p + n−p/2

)
t

+C

∫ t

0

1

n

n∑
i=1

E
[

sup
0≤r≤s

∣∣X(n)
i (r)− X̄

(n)
i (r)

∣∣p] ds, (3.2.15)

where C < ∞ depends on T , p, the Lipschitz constants of b and σ and
the supremum of Rx on [0, T ] × R only. The desired estimate (3.2.1) is
a consequence of (3.2.15) due to the representation (3.2.3) and Gronwall’s
lemma.

Step 4. For p ∈ (0, 2), we choose a p′ ∈ [2,∞) and deduce (3.2.1) for p from
(3.2.1) for p′ by means of the inequality

1

n

n∑
i=1

E
[

sup
0≤t≤T

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p]
≤

(
1

n

n∑
i=1

E
[

sup
0≤t≤T

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p′])p/p′

.

(3.2.16)

Finally, we obtain (3.2.2) from (3.2.1) via the chain of estimates

E
[

sup
0≤t≤T

Wp

(
ρ(n)(t), ρ̄(n)(t)

)]p
≤ E

[
sup

0≤t≤T
Wp

(
ρ(n)(t), ρ̄(n)(t)

)p]
≤ E

[
sup

0≤t≤T

1

n

n∑
i=1

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p]

≤ 1

n

n∑
i=1

E
[

sup
0≤t≤T

∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣p]
(3.2.17)
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valid for all p ≥ 1. �

The following corollary settles the question of rate of convergence of
Fρ(n)(t)(·) to R(t, ·).

Corollary 3.2.2. Suppose the Assumption 1.1.1 holds. There exists a con-
stant C(t) depending on t such that, E

[
W1

(
ρ(n)(t), ρ(t)

)]
≤ C(t)√

n
holds for

all t ≥ 0.

Proof. Thanks to the triangular inequality, we have

E
[
W1

(
ρ(n)(t), ρ(t)

)]
< E

[
W1

(
ρ(n)(t), ρ̄(n)(t)

)]
+ E

[
W1

(
ρ̄(n)(t), ρ(t)

)]
(3.2.18)

Let C be a constant depending on t. (3.2.2) immediately gives
E
[
W1

(
ρ(n)(t), ρ̄(n)(t)

)]
≤ C√

n
. In view of [BL, Theorem 3.2 and the dis-

cussion of the functional J1 on p. 25], (2.4.7) and (2.4.2), we obtain
E
[
W1

(
ρ̄(n)(t), ρ(t)

)]
≤ C√

n
. Combining these two estimates finishes the

proof.

3.3 Propagation of chaos estimate 2

The first propogation of chaos estimate tells us that
∣∣X(n)

i (t)− X̄
(n)
i (t)

∣∣ is of
the order O

(
1√
n

)
. We set out to show that

X
(n)
i (t) = X̄

(n)
i (t) + Z

(n)
i (t) + o

(
1√
n

)
, where the process Z

(n)
i (t) depends on

the processes X̄
(n)
i (t), ∀ i = 1, 2, . . . , n. This approach was used in [Sz1,

Theorem 2.3] and would allow us to characterize the fluctuations in terms of
the processes X̄

(n)
i (t) and Z

(n)
i (t). This endeavour was unsuccessful because

of the non smooth interaction between the particles in (1.0.2). However, we
were able to prove the following estimate in this direction.

Theorem 3.3.1. Under the Assumption 1.1.1 and the stronger assumption
in proposition 2.3.2, the following holds for all positive p, T

np/2−1
n∑

i=1

E
[∣∣∣Fρ̄n(t)

(
X

(n)
i (t)

)
− Fρ̄n(t)

(
X̄

(n)
i (t)

)
−Rx

(
t, X̄

(n)
i (t)

)(
X

(n)
i (t)− X̄

(n)
i (t)

)∣∣∣p] n→∞−→ 0

(3.3.1)
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uniformly in t ∈ [0, T ].

Proof of Theorem 3.3.1. Step 1. We first fix an i ∈ {1, 2, . . . , n} and
consider the expectation in (3.3.1) for that i. Clearly, for any K ∈ (0,∞),
it can decomposed into the expectations over the events{

X̄
(n)
i (t) ≤ X

(n)
i (t) ≤ X̄

(n)
i (t) +

K

n1/2

}
{
X̄

(n)
i (t)− K

n1/2
≤ X

(n)
i (t) < X̄

(n)
i (t)

}
and

{∣∣X(n)
i (t)− X̄

(n)
i (t)

∣∣ > K

n1/2

}
.

(3.3.2)

The expectation over the first event can be bounded above further by

E
[

sup
X̄

(n)
i (t)≤x≤X̄

(n)
i (t)+ K

n1/2

∣∣∣Fρ̄n(t)(x)− Fρ̄n(t)

(
X̄

(n)
i (t)

)
−Rx

(
t, X̄

(n)
i (t)

)(
x− X̄

(n)
i (t)

)∣∣∣p]. (3.3.3)

Moreover, in view of (3.2.4), we can estimate the random variable inside the
expectation in (3.3.3) conditional on

X̄
(n)
i (t) = x̄ and

∣∣∣∣{1 ≤ j ≤ n : x̄ < X̄
(n)
j (t) ≤ x̄+

K

n1/2

}∣∣∣∣ = m (3.3.4)

for some x̄ ∈ R and m ∈ N by

Cmp

np
sup

x̄≤x≤x̄+ K

n1/2

∣∣∣∣ nm(
Fρ̄n(t)(x)− Fρ̄n(t)(x̄)

)
− R(t, x)−R(t, x̄)

R(t, x̄+K/n1/2)−R(t, x̄)

∣∣∣∣p
+ C sup

x̄≤x≤x̄+ K

n1/2

∣∣∣∣mn R(t, x)−R(t, x̄)

R(t, x̄+K/n1/2)−R(t, x̄)
−Rx(t, x̄)(x− x̄)

∣∣∣∣p,
(3.3.5)

where C = 2p−1 is the constant in (3.2.4).

Thanks to the independence of X̄(n)
1 (t), X̄

(n)
2 (t), . . . , X̄

(n)
n (t) we can now

apply the Dvoretzky-Kiefer-Wolfowitz inequality in the form of [Mas, Corol-
lary 1] to conclude that the conditional expectation of the first summand in

27



(3.3.5) given the events in (3.3.4) is at most Cmp/2

np , where C < ∞ is a con-
stant depending only on p. In addition, we use (3.2.4) to bound the second
term in (3.3.5) from above by

C sup
x̄≤x≤x̄+ K

n1/2

∣∣∣∣mn R(t, x)−R(t, x̄)(
R(t, x̄+K/n1/2)−R(t, x̄)

) − n− 1

n

(
R(t, x)−R(t, x̄)

)∣∣∣∣p
+ C sup

x̄≤x≤x̄+ K

n1/2

∣∣∣∣n− 1

n

(
R(t, x)−R(t, x̄)

)
−Rx(t, x̄)(x− x̄)

∣∣∣∣p
=

C

np

∣∣∣m− (n− 1)
(
R(t, x̄+K/n1/2)−R(t, x̄)

)∣∣∣p
+ C sup

x̄≤x≤x̄+ K

n1/2

∣∣∣∣n− 1

n

(
R(t, x)−R(t, x̄)

)
−Rx(t, x̄)(x− x̄)

∣∣∣∣p,
(3.3.6)

where the constant C < ∞ depends only on p.

At this point, we consider the conditional expectation of the random vari-
able inside the expectation in (3.3.3) given X̄

(n)
i (t) = x̄. Writing Y for a bi-

nomial random variable with parameters (n−1) and R(t, x̄+K/n1/2)−R(t, x̄)

we conclude from the above that the contribution of the first summand in
(3.3.6) is at most C

np E[Y p/2]. Moreover, we claim

C

np
E[Y p/2] = o(n−p/2), (3.3.7)

where the right-hand side can be chosen to depend only on n, p, the supre-
mum norm ∥Rx(t, ·)∥∞, and K. Indeed, for p ≥ 2, we can view Y as a sum of
(n− 1) i.i.d. Bernoulli random variables with parameter R(t, x̄+K/n1/2)−
R(t, x̄) and then use Jensen’s inequality to bound E[Y p/2] by the (n− 1)p/2

multiple of the p/2-th moment of such a Bernoulli random variable. The lat-
ter can be further dominated by the p/2-th moment of a Bernoulli random
variable with parameter ∥Rx(t, ·)∥∞K/n1/2, which is o(1), so that (3.3.7) for
p ≥ 2 follows. To obtain (3.3.7) for p ∈ (0, 2) it suffices to combine (3.3.7)
for some p′ ≥ 2 with Jensen’s inequality.

In addition, the contribution of the first summand on the right-hand side
of (3.3.6) to the conditional expectation given X̄

(n)
i (t) = x̄ can be bounded
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above by

C

np
E
[∣∣∣Y − (n− 1)

(
R(t, x̄+K/n1/2)−R(t, x̄)

)∣∣∣p], (3.3.8)

where Y is a binomial random variable as before. We claim that the expres-
sion in (3.3.8) can be estimated by a function of n, p, ∥Rx(t, ·)∥∞, and K of
order o(n−p/2). It suffices to consider even integer p’s, since for other p’s we
can combine the estimate for an even integer p′ > p with Jensen’s inequality
to obtain the estimate for p. For an even integer p, we write

Y − (n− 1)
(
R(t, x̄+K/n1/2)−R(t, x̄)

)
as a sum of i.i.d. centered (by their mean) Bernoulli random variables with
parameter R(t, x̄ +K/n1/2) − R(t, x̄). Raising this sum to power p, taking
the expectation, dropping the terms equal to zero, and collecting equal terms
we end up with a degree p/2 polynomial of (n− 1) with leading coefficient

1

(p/2)!

p!

2p/2

((
R(t, x̄+K/n1/2)−R(t, x̄)

)(
1−R(t, x̄+K/n1/2)+R(t, x̄)

))p/2
.

(3.3.9)
In view of the inequality

R(t, x̄+K/n1/2)−R(t, x) ≤ ∥Rx(t, ·)∥∞K/n1/2, (3.3.10)

the latter polynomial is, in fact, of order o(np/2), which gives the desired
estimate on the expression in (3.3.8).

Next, we apply the Mean Value Theorem to the term R(t, x)−R(t, x̄)−
Rx(t, x̄)(x − x̄) to find that the second summand on the right-hand side of
(3.3.6) is of the order

C

np
, (3.3.11)

where the constant C < ∞ depends only on p and ∥Rxx(t, ·)∥∞.

Putting together all the obtained estimates (noting that they do not de-
pend on x̄) and using exactly the same arguments for the expectation over
the second event in (3.3.2) we find that the limit superior as n → ∞ of the
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expression in (3.3.1) equals to

lim sup
n→∞

np/2−1
n∑

i=1

E
[∣∣∣Fρ̄n(t)(X

(n)
i (t))−Fρ̄n(t)(X̄

(n)
i (t))

−Rx(t, X̄
(n)
i (t))(X

(n)
i (t)−X̄

(n)
i (t))

∣∣∣p1{|X(n)
i (t)−X̄

(n)
i (t)|> K

n1/2

}]. (3.3.12)

Step 2. To control the limit superior in (3.3.12) we use (3.2.4) to bound the
expectation in (3.3.12) for a fixed i ∈ {1, 2, . . . , n} from above by

C E
[∣∣∣Fρ̄n(t)(X

(n)
i (t))−R(t,X

(n)
i (t))−Fρ̄n(t)(X̄

(n)
i (t))+R(t, X̄

(n)
i (t))

∣∣∣p1
A

(n)
i,K

]
+ C E

[∣∣∣R(t,X
(n)
i (t))−R(t, X̄

(n)
i (t))

−Rx(t, X̄
(n)
i (t))(X

(n)
i (t)− X̄

(n)
i (t))

∣∣∣p 1
A

(n)
i,K

]
,

(3.3.13)

where A
(n)
i,K := {|X(n)

i (t) − X̄
(n)
i (t)| > K/n1/2} and C = 2p−1 is the con-

stant in (3.2.4). With the help of the Cauchy-Schwarz inequality the first
summand in (3.3.13) can be estimated further by

C E
[
sup
x∈R

∣∣Fρ̄n(t)(x)−R(t, x)
∣∣2p]1/2 P(A(n)

i,K

)1/2
, (3.3.14)

where C = 22p−1. In view of the Dvoretzky-Kiefer-Wolfowitz inequal-
ity in the form of [Mas, Corollary 1], the latter estimate is at most
Cn−p/2 P(A(n)

i,K)1/2, where the constant C < ∞ depends only on p. In
addition, the second summand in (3.3.13) can be bounded above by
C E

[
|X(n)

i (t) − X̄
(n)
i (t)|p 1

A
(n)
i,K

]
, where C < ∞ depends only on p and

∥Rx(t, ·)∥∞. The latter bound is at most
C E

[
|X(n)

i (t)− X̄
(n)
i (t)|2p

]1/2 P(A(n)
i,K)1/2 by the Cauchy-Schwarz inequality.

Summing over i we conclude that the limit superior in (3.3.12) is less or
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equal to

lim sup
n→∞

Cn−1
n∑

i=1

P(A(n)
i,K)1/2

+ lim sup
n→∞

Cnp/2−1
n∑

i=1

E
[
|X(n)

i (t)− X̄
(n)
i (t)|2p

]1/2P(A(n)
i,K)1/2.

(3.3.15)

Next, we apply Jensen’s inequality to the first sum and the Cauchy-Schwarz
inequality to the second sum and then estimate P(A(n)

i,K) using Markov’s
inequality to obtain the further upper bound

lim sup
n→∞

C

K

(
1

n

n∑
i=1

E
[
|X(n)

i (t)− X̄
(n)
i (t)|2

]
n

)1/2

+ lim sup
n→∞

Cnp/2

K

{(
1

n

n∑
i=1

E
[
|X(n)

i (t)− X̄
(n)
i (t)|2p

])1/2

(
1

n

n∑
i=1

E
[
|X(n)

i (t)− X̄
(n)
i (t)|2

]
n

)1/2
}
.

(3.3.16)

At this point, the estimate (3.2.1) of Theorem 3.2.1 reveals that the latter
upper bound is not larger than C

K , with a constant C < ∞ depending only
on p, ∥Rx(t, ·)∥∞, and T . Noting that R has classical regularity owing to
proposition 2.3.2, we pass to the limit K ↑ ∞ keeping in mind that all the
constants appearing in the present proof can be chosen to not depend on
t ∈ [0, T ]. �
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4
Central Limit Theorem

In this chapter, we will study the fluctuations of the particle system (1.0.2).
We begin by proving a tightness result that guarantees the existence of
subsequential limits. We will then derive the limit and prove its uniqueness.
The main theorem in this chapter, which is also the main result of this thesis
is as follows :

Theorem 4.0.1. Suppose that Assumption 1.1.1 holds and consider the mild
solution G of the SPDE

Gt = −
(
b(R)G

)
x
+

(
σ(R)2

2
G

)
xx

+ σ(R)R1/2
x Ẇ , G(0, ·) = β(Fλ(·)),

(4.0.1)
where R is the unique generalized solution to the Cauchy problem (1.0.3), Ẇ
is a space-time white noise and β is a standard Brownian bridge independent
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of Ẇ . More specifically, let G be the random field defined by

G(t, x) =

∫
R
β(Fλ(y)) p(0, y; t, x) dy

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 p(s, y; t, x) dW (s, y), (t, x) ∈ [0,∞)× R,

(4.0.2)

where p denotes the transition density of the solution to the martingale
problem associated with the operators b(R(t, ·)) d

dx + σ(R(t,·))2
2

d2

dx2 , t ≥ 0 and
the double integral should be understood in the Itô sense.

Then, one has the following convergences:

(a) The Mfin(R)-valued processes Gn, n ∈ N 1.1.2 tend in the finite-
dimensional distribution sense to t 7→ G(t, x) dx.

(b) The processes Hn, n ∈ N 1.1.3 taking values in Mfin([0, t] × R),
t > 0 converge in the finite-dimensional distribution sense to t 7→
G(s, x)1[0,t]×R(s, x) dsdx, also jointly with the processes in (a).

4.1 Existence of subsequential limits

The main result of this section is the next proposition establishing the ex-
istence of subsequential limits for the finite-dimensional distributions of the
fluctuation processes Gn, n ∈ N and Hn, n ∈ N. It serves as a key ingredient
in the proof of Theorem 4.0.1.

Proposition 4.1.1. Suppose that Assumption 1.1.1 is satisfied. Then, for
all m ∈ N and 0 < t1 < · · · < tm every subsequence of

(
Gn(0), Gn(t1), . . . , Gn(tm),Hn(t1),Hn(t2), . . . , Hn(tm)

)
, n ∈ N (4.1.1)

has a further subsequence which converges in law in

Mfin(R)m+1 ×Mfin([0, t1]× R)×Mfin([0, t2]× R)× · · · ×Mfin([0, tm]× R).

Proof. By Prokhorov’s Theorem in the form of [FGH, Corollary on p.
119] it suffices to show that the laws of the random vectors in (4.1.1) form
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a uniformly tight sequence. Moreover, since products of compact sets are
compact, we only need to prove that for all s ≥ 0 and t > 0 the laws
associated with the sequences Gn(s), n ∈ N and Hn(t), n ∈ N are uniformly
tight. In view of the Banach-Alaoglu Theorem (see e.g. [La, Chapter 12,
Theorem 3]), this is the case for any fixed s ≥ 0 and t > 0 if for all ϵ > 0

there exists a Cϵ < ∞ such that

∀n ∈ N : P
(
∥Gn(s)∥TV > Cϵ

)
< ϵ and P

(
∥Hn(t)∥TV > Cϵ

)
< ϵ,

(4.1.2)
where ∥ · ∥TV stands for the total variation norm.

By the definitions of Gn(s), n ∈ N and Hn(t), n ∈ N in (1.1.2) and (1.1.3)
the two inequalities of (4.1.2) can be rewritten as

P
(√

n

∫
R

∣∣Fρ(n)(s)(x)−R(s, x)
∣∣ dx > Cϵ

)
< ϵ, (4.1.3)

P
(√

n

∫ t

0

∫
R

∣∣Fρ(n)(r)(x)−R(r, x)
∣∣ dx dr > Cϵ

)
< ϵ. (4.1.4)

The representation (2.1.9) allows to rewrite these further as

P
(√

nW1(ρ
(n)(s), ρ(s)) > Cϵ

)
< ϵ

P
(√

n

∫ t

0
W1(ρ

(n)(r), ρ(r)) dr > Cϵ

)
< ϵ.

(4.1.5)

Applying Markov’s inequality, the triangle inequality for W1 and Fubini’s
Theorem we bound the two probabilities in (4.1.5) from above by

√
n

Cϵ
E
[
W1(ρ

(n)(s), ρ̄(n)(s))
]
+

√
n

Cϵ
E
[
W1(ρ̄

(n)(s), ρ(s))
]
, (4.1.6)

√
n

Cϵ

∫ t

0

(
E
[
W1(ρ

(n)(r), ρ̄(n)(r))
]
+ E

[
W1(ρ̄

(n)(r), ρ(r))
])

dr,(4.1.7)

respectively. In view of (3.2.2), [BL, Theorem 3.2 and the discussion of
the functional J1 on p. 25], (2.4.7) and (2.4.2), we can make the estimates
(4.1.6), (4.1.7) smaller than ϵ for all n ∈ N by choosing a large enough
Cϵ < ∞. �
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4.2 Identification of subsequential limits

In this section we identify the subsequential limits of Proposition 4.1.1 and
complete the proof of Theorem 4.0.1. The next proposition is the first step
towards such an identification.

Proposition 4.2.1. Suppose that Assumption 1.1.1 holds and let

(
G∞(0), G∞(t1), . . . , G∞(tm),H∞(t1),H∞(t2), . . . , H∞(tm)

)
(4.2.1)

be a limit point in law of the sequence in (4.1.1). Then, with the notation of
Theorem 4.0.1 and

(Asγ)(s, x) :=γs(s, x) + γx(s, x) b(R(s, x))

+ γxx(s, x)
σ(R(s, x))2

2
, (s, x) ∈ [0, t]× R,

(4.2.2)

the joint distribution of∫
R
γ(tℓ, x)G∞(tℓ)(dx)−

∫
R
γ(0, x)G∞(0)(dx)

−
∫ tℓ

0

∫
R
(Asγ)(s, x)H∞(tℓ)(ds,dx),

∫
R
γ(0, x)G∞(0)(dx),

(4.2.3)

as ℓ and γ vary over {1, 2, . . . ,m} and the space of functions on [0, tℓ] × R
which are continuously differentiable in s, twice continuously differentiable
in x and compactly supported, coincides with that of∫ tℓ

0

∫
R
γ(s, x)σ(R(s, x))Rx(s, x)

1/2 dW (s, x),

∫
R
γ(0, x)β(Fλ(x)) dx.

(4.2.4)

The proof of Proposition 4.2.1 relies on a suitable prelimit version of its
statement. For every fixed n ∈ N let Bn, Σn be the piecewise constant
functions on [0, 1] with jumps at 1

n ,
2
n , . . . , 1 and

Bn(k/n) =
1

n

k∑
j=1

b(j/n), Σn(k/n) =
1

n

k∑
j=1

σ(j/n)2

2
, k = 0, 1, . . . , n.

(4.2.5)
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Lemma 4.2.2. Suppose that Assumption 1.1.1 is satisfied. Then, for any
n ∈ N, t > 0 and function γ on [0, t]×R which is continuously differentiable
in s, twice continuously differentiable in x and compactly supported it holds∫

R
γ(t, x)Gn(t)(dx)−

∫
R
γ(0, x)Gn(0)(dx)

−
∫ t

0

∫
R

∫ 1

0

(
γs(s, x) + γx(s, x) b(aFρ(n)(s)(x) + (1− a)R(s, x))

+ γxx(s, x)
σ(aFρ(n)(s)(x) + (1− a)R(s, x))2

2

)
da Hn(t)(ds,dx)

= − 1√
n

n∑
i=1

∫ t

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s)

+
√
n

∫ t

0

∫
R

(
γx(s, x) (Bn −B)(Fρ(n)(s)(x))

+ γxx(s, x) (Σn − Σ)(Fρ(n)(s)(x))
)
dx ds.

(4.2.6)

Proof of Lemma 4.2.2. Fixing n, t and γ as described we observe that Def-
inition 2.2.1 of a generalized solution to the Cauchy problem (1.0.3) implies

∫
R
γ(t, x)R(t, x) dx−

∫
R
γ(0, x)R(0, x) dx

=

∫ t

0

∫
R
γs(s, x)R(s, x) + γx(s, x)B(R(s, x)) + γxx(s, x)Σ(R(s, x)) dx ds.

(4.2.7)

To find a version of the identity (4.2.7) with Fρ(n)(·)(·) in place of R(·, ·) we
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apply Itô’s formula for Γ(s, x) := −
∫∞
x γ(s, y) dy and obtain∫

R
Γ(t, x) ρ(n)(t)(dx)−

∫
R
Γ(0, x) ρ(n)(0)(dx)

=
1

n

n∑
i=1

∫ t

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s)

+

∫ t

0

∫
R

(
Γs(s, x)+Γx(s, x)b(Fρ(n)(s)(x))

+Γxx(s, x)
σ(Fρ(n)(s)(x))

2

2

)
ρ(n)(s)(dx) ds.

(4.2.8)

Next, we use summation by parts (note that limx→∞ Γ(s, x) = 0 and
limx→∞ Γs(s, x) = 0 for all s ∈ [0, t] by the compact support assumption on
γ) to compute ∫

R
Γ(s, x)ρ(n)(s)(dx)=−

∫
R
γ(s, x)Fρ(n)(s)(x) dx, (4.2.9)∫

R
Γs(s, x)ρ

(n)(s)(dx)=−
∫
R
γs(s, x)Fρ(n)(s)(x) dx, (4.2.10)∫

R
Γx(s, x)b(Fρ(n)(s)(x))ρ

(n)(s)(dx)

=−
∫
R
γx(s, x)Bn(Fρ(n)(s)(x)) dx,

(4.2.11)

∫
R
Γxx(s, x)

σ(Fρ(n)(s)(x))
2

2
ρ(n)(s)(dx)

=−
∫
R
γxx(s, x)Σn(Fρ(n)(s)(x)) dx,

(4.2.12)

where Bn, Σn are defined according to (4.2.5). Inserting the identities
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(4.2.9)-(4.2.12) into (4.2.8) we arrive at∫
R
γ(t, x)Fρ(n)(t)(x) dx−

∫
R
γ(0, x)Fρ(n)(0)(x) dx

= − 1

n

n∑
i=1

∫ t

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s)

+

∫ t

0

∫
R

(
γs(s, x)Fρ(n)(s)(x)+γx(s, x)Bn(Fρ(n)(s)(x))

+γxx(s, x)Σn(Fρ(n)(s)(x))
)
dx ds.

(4.2.13)

At this point, we take the difference between the equations (4.2.13) and
(4.2.7), multiply the resulting equation by

√
n, use the Fundamental Theo-

rem of Calculus in the forms

Bn(Fρ(n)(s)(x))−B(R(s, x)) = Bn(Fρ(n)(s)(x))−B(Fρ(n)(s)(x))

+

∫ 1

0
b(aFρ(n)(s)(x) + (1− a)R(s, x)) (Fρ(n)(s)(x)−R(s, x)) da,

(4.2.14)

Σn(Fρ(n)(s)(x))− Σ(R(s, x)) = Σn(Fρ(n)(s)(x))− Σ(Fρ(n)(s)(x))

+

∫ 1

0

σ(aFρ(n)(s)(x) + (1− a)R(s, x))2

2
(Fρ(n)(s)(x)−R(s, x)) da

(4.2.15)

and rearrange terms to end up with (4.2.6). �

We are now ready to give the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Step 1. By definition the random variables
in (4.2.3) are the limits in law of∫

R
γ(tℓ, x)Gn(tℓ)(dx)−

∫
R
γ(0, x)Gn(0)(dx)

−
∫ tℓ

0

∫
R
(Asγ)(s, x)Hn(tℓ)(ds,dx),

∫
R
γ(0, x)Gn(0)(dx)

(4.2.16)

along a suitable sequence of n ∈ N.

To proceed we note that the convergence ρ(n) → ρ in probability in
C([0,∞),M1(R)) and the regularity result of Proposition 2.3.1 imply the
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convergences in probability

sup
(s,x)∈[0,tℓ]×R

∣∣Fρ(n)(s)(x)−R(s, x)
∣∣ → 0, ℓ = 1, 2, . . . , m. (4.2.17)

To this end, we apply the Skorokhod Representation Theorem in the form
of [Du, Theorem 3.5.1] to the sequence ρ(n), n ∈ N, and use Prokhorov’s
Theorem for the compact set {ρ(s), s ∈ [0, tℓ]} to find for every fixed ϵ > 0

some −∞ < x < x < ∞ such that max
(
R(s, x), 1−R(s, x)

)
≤ ϵ, s ∈ [0, tℓ].

Moreover, by the regularity result of Proposition 2.3.1 the ϵ-modulus of
continuity θ = θ(ϵ) > 0 of the function R on [0, tℓ] × [x, x] is well-defined.
In addition, for every n ∈ N large enough the Lévy distance between ρ(n)(s)

and ρ(s) is less than θ for all s ∈ [0, tℓ]. Finally, choosing points x = x1 <

x2 < · · · < xJ = x at most θ apart, with a suitable J ∈ N, we have with the
conventions x0 := −∞, xJ+1 := ∞,

sup
(s,x)∈[0,tℓ]×R

∣∣Fρ(n)(s)(x)−R(s, x)
∣∣

≤ sup
s∈[0,tℓ]

max
1≤j≤J+1

max
(∣∣Fρ(n)(s)(xj)−R(s, xj−1)

∣∣,∣∣Fρ(n)(s)(xj−1)−R(s, xj)
∣∣)

≤ θ + sup
s∈[0,tℓ]

max
1≤j≤J+1

max
(∣∣R(s, xj − θ)−R(s, xj−1)

∣∣,∣∣R(s, xj + θ)−R(s, xj−1)
∣∣, ∣∣R(s, xj−1 − θ)−R(s, xj)

∣∣,∣∣R(s, xj−1 + θ)−R(s, xj)
∣∣).

The latter bound is at most θ+2ϵ, and (4.2.17) follows from the arbitrariness
of ϵ > 0.

The convergences of (4.2.17) in conjunction with the Lipschitz property
of b, σ2

2 (cf. Assumption 1.1.1(b)) show that the limit in law of the random
variables in (4.2.16) along a sequence of n ∈ N is the same as the limit in
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law of∫
R
γ(tℓ, x)Gn(tℓ)(dx)−

∫
R
γ(0, x)Gn(0)(dx)

−
∫ tℓ

0

∫
R

∫ 1

0

(
γs(s, x) + γx(s, x) b(aFρ(n)(s)(x) + (1− a)R(s, x))

+ γxx(s, x)
σ(aFρ(n)(s)(x) + (1− a)R(s, x))2

2

)
daHn(tℓ)(ds,dx),∫

R
γ(0, x)Gn(0)(dx)

along the same sequence of n ∈ N.

Next, we apply Lemma 4.2.2 and find that the latter limit in law must be
equal to the limit in law of

− 1√
n

n∑
i=1

∫ tℓ

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s)

+
√
n

∫ tℓ

0

∫
R

(
γx(s, x)(Bn −B)(Fρ(n)(s)(x))

+ γxx(s, x)(Σn − Σ)(Fρ(n)(s)(x))
)
dx ds,∫

R
γ(0, x)Gn(0)(dx)

along the same sequence of n ∈ N. Moreover, since the functions b and
σ2

2 are Lipschitz by Assumption 1.1.1(b), the suprema sup[0,1] |Bn −B| and
sup[0,1] |Σn − Σ| can be bounded above by Cn−1 with a constant C < ∞
depending only on the Lipschitz constants of b and σ2

2 . Consequently, it
suffices to study the limit in law of

− 1√
n

n∑
i=1

∫ tℓ

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s),∫

R
γ(0, x)Gn(0)(dx)

(4.2.18)

along the same sequence of n ∈ N as before.
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Step 2. Consider the sequences of continuous martingales∫
R
γ(0, x)Gn(0)(dx)

− 1√
n

n∑
i=1

∫ t

0
γ(s,X

(n)
i (s))σ(Fρ(n)(s)(X

(n)
i (s))) dB

(n)
i (s), t ∈ [0, tℓ]

(4.2.19)

indexed by n ∈ N, where ℓ and γ vary over {1, 2, . . . ,m} and a countable
dense subset Cℓ of the space of functions on [0, tℓ]×R which are continuously
differentiable in s, twice continuously differentiable in x and compactly sup-
ported. One easily verifies the tightness of each such sequence via the tight-
ness criterion of [Bi, Theorem 7.3] by recalling Proposition 3.1.2, writing each
of the martingales as a time-changed standard Brownian motion with the
same initial value (cf. [KS, Chapter 3, Problem 4.7]) and using the assumed
boundedness of γ and σ. In particular, every sequence of n ∈ N admits a
subsequence along which the continuous martingales of (4.2.19) converge to
the respective limiting processes Mγ for all γ ∈ Cℓ, ℓ ∈ {1, 2, . . . ,m}.

Now, letting Γ(s, x) := −
∫∞
x γ(s, y) dy as before, integrating by parts,

recalling Assumption 1.1.1(a), applying the inequality (3.2.4) with p = 2

and using the Itô isometry we arrive at the estimate

2
(
E
[
Γ(0, X

(n)
1 (0))2

]
− E

[
Γ(0, X

(n)
1 (0))

]2)
+ 2E

[ ∫ t

0

∫
R
γ(s, x)2 σ(Fρ(n)(s)(x))

2 ρ(n)(s)(dx) ds

] (4.2.20)

on the second moment of the random variable in (4.2.19) with the same value
of t. The latter quantities tend to

2
(
E
[
Γ(0, X

(1)
1 (0))2

]
− E

[
Γ(0, X

(1)
1 (0))

]2)
+ 2E

[ ∫ t

0

∫
R
γ(s, x)2 σ(R(s, x))2 ρ(s)(dx) ds

] (4.2.21)

in the limit n → ∞, as can be seen by applying the Skorokhod Representa-
tion Theorem in the form of [Du, Theorem 3.5.1] to the sequence ρ(n), n ∈ N,
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using the almost sure weak convergences

σ(Fρ(n)(s)(x))
2 ρ(n)(s)(dx)=2 dΣn(Fρ(n)(s)(·))→2 dΣ(R(s, ·))

2 dΣ(R(s, ·))=σ(R(s, x))2 ρ(s)(dx), s ∈ [0, t]
(4.2.22)

and appealing to the Dominated Convergence Theorem (recall that γ and
σ are bounded by assumption). In particular, the one-dimensional distribu-
tions of the continuous martingales in (4.2.19) are uniformly integrable as
n varies, so that the limiting processes Mγ must be themselves continuous
martingales for all γ ∈ Cℓ, ℓ ∈ {1, 2, . . . ,m}.

Finally, for any γ ∈ Cℓ, γ̃ ∈ Cℓ̃ another application of the Skorokhod
Representation Theorem to the sequence ρ(n), n ∈ N, the convergences in
(4.2.22) and the Dominated Convergence Theorem show that the quadratic
covariation process on [0,min(tℓ, tℓ̃)] between the continuous martingales of
(4.2.19) associated with γ, γ̃ converges in law to∫ t

0

∫
R
γ(s, x) γ̃(s, x)σ(R(s, x))2 ρ(s)(dx) ds, t ∈ [0,min(tℓ, tℓ̃)] (4.2.23)

in the limit n → ∞. Moreover, another uniform integrability argument
relying on integration by parts, Assumption 1.1.1(a), the inequality (3.2.4)
with p = 4, the Burkholder-Davis-Gundy inequality (see e.g. [KS, Chapter
3, Theorem 3.28]) and the boundedness of γ and σ allows us to identify the
process in (4.2.23) as the quadratic covariation process between Mγ and M γ̃ .
This and Proposition 3.1.2 lead to the conclusion that the probability space
supporting Mγ , γ ∈ Cℓ, ℓ ∈ {1, 2, . . . ,m} admits an orthogonal martingale
measure dM(s, x) on [0, tm]×R in the sense of [Wa, definitions on pp. 287–
288] with the quadratic variation measure

d⟨M⟩(s, x) = σ(R(s, x))2 ρ(s)(dx) ds on [0, tm]× R (4.2.24)

and a reparametrized Brownian bridge β(Fλ(·)) independent of dM(s, x)
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satisfying

Mγ(t) =

∫
R
γ(0, x)β(Fλ(x)) dx+

∫ t

0

∫
R
γ(s, x) dM(s, x), t ∈ [0, tℓ]

(4.2.25)
for all γ ∈ Cℓ, ℓ ∈ {1, 2, . . . ,m}. It remains to use the positivity of σ

throughout [0, 1] and the existence of a positive density Rx(s, ·) of ρ(s) for
s > 0 (cf. (2.4.2) and the lower bound of (2.4.6)) in order to define the white
noise

dW (s, x) := σ(R(s, x))−1Rx(s, x)
−1/2 dM(s, x) on [0, tm]× R, (4.2.26)

ending up with the identification

Mγ(t)=

∫
R
γ(0, x)β(Fλ(x)) dx

+

∫ t

0

∫
R
γ(s, x)σ(R(s, x))Rx(s, x)

1/2 dW (s, x), t ∈ [0, tℓ]

(4.2.27)

for all γ ∈ Cℓ, ℓ ∈ {1, 2, . . . ,m}. The statement of the proposition for such
ℓ and γ readily follows. To obtain the statement for arbitrary ℓ and γ it
suffices to pick a sequence of functions from Cℓ converging to γ, use the
statement for the latter and pass to the limit. �

We proceed to an analogue of Proposition 4.2.1 for the mild solution G

from (4.0.2).

Proposition 4.2.3. Suppose that Assumption 1.1.1 holds. Then, for any
t > 0 the measures G(t, x) dx on R and G(s, x)1[0,t]×R(s, x) dsdx on [0, t]×R,
defined in terms of the mild solution G from (4.0.2), are finite almost surely
and for every function on [0, t]×R which is continuously differentiable in s,
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twice continuously differentiable in x and compactly supported one has∫
R
γ(t, x)G(t, x) dx−

∫
R
γ(0, x)G(0, x) dx

−
∫ t

0

∫
R
(Asγ)(s, x)G(s, x) dx ds

=

∫ t

0

∫
R
γ(s, x)σ(R(s, x))Rx(s, x)

1/2 dW (s, x).

(4.2.28)

Proof. Step 1. We fix a t > 0 and aim to verify in this first step that

E
[ ∫

R
|G(t, x)|dx

]
< ∞ and E

[ ∫ t

0

∫
R
|G(s, x)|dx ds

]
< ∞. (4.2.29)

To this end, we insert the right-hand side of (4.0.2) into the first expectation
and bound the result using the triangle inequality, Fubini’s Theorem and
Jensen’s inequality by

E
[ ∫

R

∣∣β(Fλ(y))
∣∣dy]

+

∫
R

(∫ t

0

∫
R
σ(R(s, y))2Rx(s, y) p(s, y; t, x)

2 dy ds

)1/2

dx.

(4.2.30)

Fubini’s Theorem and the scaling property of Gaussian distributions reveals
further that the first summand in (4.2.30) is the product of the first absolute
moment of the standard Gaussian distribution and

∫
R
√
Fλ(y)(1− Fλ(y)) dy.

The latter integral is finite due to Assumption 1.1.1(a) and [BL, discussion
of the functional J1 on p. 25].

To estimate the second summand in (4.2.30) we combine the boundedness
of σ (cf. Assumption 1.1.1(b)), the inequality p(s, y; t, x) ≤ C(t− s)−1/2 (cf.
(2.4.6)) and the identity∫

R
Rx(s, y) p(s, y; t, x) dy = Rx(t, x) (4.2.31)

(due to the Markov property of the diffusion X̄, see the discussion following
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(2.4.1)) to arrive at the upper bound

C

∫
R

(∫ t

0

1

2
(t− s)−1/2Rx(t, x) ds

)1/2

dx = C t1/4
∫
R
Rx(t, x)

1/2 dx,

(4.2.32)
where C < ∞ depends only on sup[0,1] σ and the constant in (2.4.6). At this
point, Jensen’s inequality with respect to the Cauchy distribution∫

R
Rx(t, x)

1/2 dx=π

∫
R
Rx(t, x)

1/2(1+x2)
1

π(1+x2)
dx

≤π1/2

(∫
R
Rx(t, x)(1+x2) dx

)1/2 (4.2.33)

and the estimate (2.4.7) imply that the first expectation in (4.2.29) is finite.
Moreover, in view of Fubini’s Theorem and since the just obtained estimate
is uniformly bounded on every compact interval of t’s, the second expectation
in (4.2.29) is also finite.

Step 2. To derive the identity (4.2.28) we fix a function γ as described and
deduce from the definition of G in (4.0.2) that∫

R
γ(t, x)G(t, x) dx =

∫
R
γ(t, x)

∫
R
G(0, y) p(0, y; t, x) dy dx

+

∫
R
γ(t, x)

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 p(s, y; t, x) dW (s, y) dx.

(4.2.34)

Moreover, the boundedness of γ and σ and the estimates∫
R

∫
R
|G(0, y)| p(0, y; t, x) dy dx =

∫
R
|G(0, y)| dy < ∞,(4.2.35)∫

R

∫ t

0

∫
R
Rx(s, y) p(s, y; t, x)

2 dy dsdx

≤ C

∫
R

∫ t

0
(t− s)−1/2Rx(t, x) dsdx < ∞

(4.2.36)

(see Step 1 for more details) allow us to use the classical and the stochastic
Fubini’s Theorems (see [Wa, Theorem 2.6] and note that the dominating
measure therein is δỹ(dy) dỹ ds in our case) and to rewrite the right-hand
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side of (4.2.34) as∫
R
G(0, y)

∫
R
γ(t, x) p(0, y; t, x) dx dy

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2

∫
R
γ(t, x) p(s, y; t, x) dx dW (s, y).

(4.2.37)

Next, we employ Itô’s formula and Fubini’s Theorem to find∫
R
γ(t, x) p(s, y; t, x) dx = E

[
γ(t, X̄(t))

∣∣X̄(s) = y
]

= γ(s, y) + E
[ ∫ t

s
(Arγ)(r, X̄(r)) dr

∣∣∣∣X̄(s) = y

]
= γ(s, y) +

∫ t

s

∫
R
(Arγ)(r, x) p(s, y; r, x) dx dr.

Applying this observation to the expression in (4.2.37) we get∫
R
G(0, y) γ(0, y) dy +

∫
R
G(0, y)

∫ t

0

∫
R
(Arγ)(r, x) p(0, y; r, x) dx dr dy

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 γ(s, y) dW (s, y)

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2

∫ t

s

∫
R
(Arγ)(r, x) p(s, y; r, x) dx dr dW (s, y).

(4.2.38)

At this point, thanks to the boundedness of (Arγ) and σ (cf. Assumption
1.1.1(b)) and the estimates∫

R
|G(0, y)|

∫ t

0

∫
R
p(0, y; r, x) dx dr dy

=

∫
R
|G(0, y)| t dy < ∞,∫ t

0

∫
R

∫ r

0

∫
R
Rx(s, y) p(s, y; r, x)

2 dy dsdx dr

≤ C

∫ t

0

∫
R

∫ r

0
(r − s)−1/2Rx(r, x) dsdx dr < ∞

(4.2.39)

the classical and the stochastic Fubini’s Theorems are applicable to the
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second and fourth summands in (4.2.38), so that the overall expression in
(4.2.38) equals to∫

R
γ(0, y)G(0, y) dy +

∫ t

0

∫
R
(Arγ)(r, x)

∫
R
G(0, y) p(0, y; r, x) dy dx dr

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 γ(s, y) dW (s, y)

+

∫ t

0

∫
R
(Arγ)(r, x)

∫ r

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 p(s, y; r, x) dW (s, y) dx dr

=

∫
R
γ(0, y)G(0, y) dy +

∫ t

0

∫
R
(Arγ)(r, x)G(r, x) dx dr

+

∫ t

0

∫
R
γ(s, y)σ(R(s, y))Rx(s, y)

1/2 dW (s, y).

(4.2.40)

This finishes the proof of the proposition. �

We can now identify the subsequential limits of Proposition 4.1.1.

Proposition 4.2.4. Suppose that Assumption 1.1.1 is satisfied. Then, any
subsequential limit in law of the sequence in (4.1.1) has the same distribution
as (

G(0, x) dx, G(t1, x) dx, . . . , G(tm, x) dx,

G(s, x)1[0,t1]×R(s, x) dsdx, G(s, x)1[0,t2]×R(s, x) dsdx, . . . ,

G(s, x)1[0,tm]×R(s, x) dsdx
)
,

(4.2.41)

where G is the mild solution from (4.0.2).

Proof. Step 1. We consider a probability space that supports a limit point
in law

(
G∞(0), G∞(t1), . . . , G∞(tm),H∞(t1),H∞(t2), . . . , H∞(tm)

)
(4.2.42)

of the sequence in (4.1.1) and aim to couple it with a mild solution of the
SPDE (4.0.1).

To this end, for each ℓ ∈ {1, 2, . . . ,m} we pick a countable dense subset Cℓ
of the space of functions on [0, tℓ]×R which are continuously differentiable in
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s, twice continuously differentiable in x and compactly supported. We note
that the random variables of (4.2.3) with ℓ and γ varying over {1, 2, . . . ,m}
and Cℓ are defined on the underlying probability space. Moreover, by Propo-
sition 4.2.1 their joint distribution must be that of the random variables in
(4.2.4). Hence, by [Ka, Theorem 5.3] we can define on an enlargement of
the underlying probability space a countable collection of continuous pro-
cesses whose conditional distribution given the random variables in (4.2.3)
with ℓ and γ varying over {1, 2, . . . ,m} and Cℓ is the same as the conditional
distribution of the continuous processes∫ t

0

∫
R
γ(s, x)σ(R(s, x))Rx(s, x)

1/2 dW (s, x),

t ∈ [0, tℓ], γ ∈ Cℓ, ℓ = 1, 2, . . . , m

(4.2.43)

given∫ tℓ

0

∫
R
γ(s, x)σ(R(s, x))Rx(s, x)

1/2 dW (s, x), γ ∈ Cℓ, ℓ = 1, 2, . . . , m,∫
R
γ(0, x)β(Fλ(x)) dx, γ ∈ Cℓ, ℓ = 1, 2, . . . , m.

(4.2.44)

It follows that the enlarged probability space supports an orthogonal mar-
tingale measure dM(s, x) on [0, tm] × R in the sense of [Wa, definitions on
pp. 287–288] with the quadratic variation measure

d⟨M⟩(s, x) = σ(R(s, x))2Rx(s, x) dx ds on [0, tm]× R (4.2.45)

and we can define a white noise dW (s, x) on [0, tm]×R as in (4.2.26). Finally,
we let G be the mild solution of the SPDE (4.0.1) on [0, tm]× R given by

G(t, x) =

∫
R
p(0, y; t, x)G∞(0)(dy)

+

∫ t

0

∫
R
σ(R(s, y))Rx(s, y)

1/2 p(s, y; t, x) dW (s, y), (t, x) ∈ [0, tm]× R.

(4.2.46)
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In particular, Proposition 4.2.3 and our coupling construction ensure that∫
R
γ(tℓ, x)G(tℓ, x) dx−

∫ tℓ

0

∫
R
(Asγ)(s, x)G(s, x) dx ds

=

∫
R
γ(tℓ, x)G∞(tℓ)(dx)−

∫ tℓ

0

∫
R
(Asγ)(s, x)H∞(tℓ)(ds,dx),

γ ∈ Cℓ, ℓ = 1, 2, . . . , m,

(4.2.47)

with the notation of (4.2.2).

Step 2. We fix an ℓ ∈ {1, 2, . . . ,m} and a continuous function g : [0, tℓ] ×
R → R with compact support and consider the backward Cauchy problem

Asu = g, u(tℓ, ·) = 0 (4.2.48)

on [0, tℓ]×R. As explained in the paragraph following (2.4.3), the conditions
of [Kr2, Theorem 2.1] apply to the equation (4.2.48) and guarantee the
existence of a solution u with u, ut, ux, uxx ∈ L2([0, tℓ]× R). We claim that
(4.2.47) implies∫

R
u(tℓ, x)G(tℓ, x) dx−

∫ tℓ

0

∫
R
(Asu)(s, x)G(s, x) dx ds

=

∫
R
u(tℓ, x)G∞(tℓ)(dx)−

∫ tℓ

0

∫
R
(Asu)(s, x)H∞(tℓ)(ds,dx).

(4.2.49)

Since the first integrals on both sides of (4.2.49) vanish due to the termi-
nal condition in (4.2.48) and g = Asu can be chosen arbitrarily from a
countable dense subset of C0([0, tℓ]× R), it would follow from (4.2.49) that
G(s, x)1[0,tℓ]×R dsdx = H∞(tℓ)(ds,dx) for all ℓ ∈ {1, 2, . . . ,m} and then
from (4.2.47) that G(tℓ, x) dx = G∞(tℓ)(dx) for all ℓ ∈ {1, 2, . . . ,m}, finish-
ing the proof of the proposition.

To obtain (4.2.49) from (4.2.47) it suffices to show that one can pick
functions γ(κ), κ ∈ N in Cℓ with

γ(κ)(tℓ, ·) → u(tℓ, ·) and Asγ
(κ) → Asu = g uniformly as κ → ∞.

(4.2.50)
To this end, we recall the solution X̄ of the SDE (2.4.1) and observe that
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the time-homogeneous Markov process (s, X̄(s)), s ∈ [0, tℓ] is the unique
weak solution of the associated SDE, hence also of the local martingale
problem for the operator As (see e.g. [Ka, Theorem 18.7]). The latter
has bounded continuous coefficients, so that (s, X̄(s)), s ∈ [0, tℓ] is a Feller
process and its generator is the unique extension of As from the space of
infinitely differentiable functions with compact support in [0, tℓ] × R to an
appropriate domain within the space of continuous functions on [0, tℓ] × R
vanishing at infinity (see e.g. [Ka, Theorem 18.11]).

Next, we employ the stochastic representation

u(s, x) = −
∫ t

s
E
[
g(r, X̄(r))

∣∣X̄(s) = x
]
dr, (s, x) ∈ [0, tℓ]× R (4.2.51)

of the solution to (4.2.48) (cf. the explanation preceding (2.4.4)). Together
with the Feller property of the process (s, X̄(s)), s ∈ [0, t] and the Dominated
Convergence Theorem it shows that u is continuous. Moreover, since g has
compact support and the diffusion X̄ has bounded coefficients, u vanishes
at infinity. Finally, the representation (4.2.51) reveals that the process

u(s, X̄(s))− u(0, X̄(0))−
∫ s

0
g(r, X̄(r)) dr, s ∈ [0, t] (4.2.52)

is a martingale, so that by the converse of Dynkin’s formula (see e.g. [RY,
Chapter VII, Proposition 1.7]) u belongs to the domain of As with Asu = g.
In particular, u admits an approximation as described in (4.2.50). �

We conclude the section with the proof of Theorem 4.0.1.

Proof of Theorem 4.0.1. By Proposition 4.1.1 every subsequence of the
sequence in (4.1.1) has a further subsequence which converges in law. More-
over, by Proposition 4.2.4 the limit of the latter must have the distribution of
the random vector in (4.2.41). Consequently, the whole sequence in (4.1.1)
converges in law to the random vector in (4.2.41), which is precisely the
content of Theorem 4.0.1. �
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5
Limit of rank-based models with common

noise

In this chapter, we study the hydrodynamic limit of the particle system in
(1.0.1). We recall that ρ(n,γ)(t) = 1

n

∑n
i=1 δX(n,γ)

i (t)
is the empirical measure

of the particle system (1.0.1) and Fρ(n,γ)(t) is the cumulative distribution
function of ρ(n,γ)(t). In the presence of the common noise W , the limit
of the empirical cumulative distribution functions Fρ(n,γ)(t) is no longer
deterministic. We show that the limit of Fρ(n,γ)(t)(·) can be characterized
using the solution of the porous medium equation (1.0.3) and furthermore,
the limit is a strong solution of a suitable SPDE. We will also address the
issues of existence and uniqueness for the SDEs in (1.0.1).

We are now ready to state the main result of this chapter and to this
end let ρ(n,γ) = 1

n

∑n
i=1 δX(n,γ)

i

, π̃n,γ denote the distributions of ρ(n,γ) in
M1

(
C([0,∞),R)

)
and T > 0 be a constant.
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Theorem 5.0.1. Suppose that Assumption 1.1.1 holds, then the sequence
π̃n,γ is tight and for any accumulation point π̃∞,γ and random variable ρ(γ)

distributed according π̃∞,γ, it holds that Fρ(γ)(t)(·) is the unique solution of

the equation Fρ(γ)(t)(·) = R
(
t, · −

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)
, t ≥ 0. Moreover

under the stronger assumption in proposition 2.3.2, it is a strong solution of
the following SPDE in [0, T ]× R

dG =
(
−B(G)x +Σ(G)xx +

1

2
Gxxγ

2(t, Gx(dx)
)
dt − γ

(
t, Gx(dx)

)
GxdW (t),

G(0, ·) = Fλ(·).
(5.0.1)

5.1 Preliminaries

We will prove the theorem 5.0.1 as a sequence of lemmata. The following
moment estimate will be used in the subsequent lemmas and is analogous to
lemma 2.1.1.

Lemma 5.1.1. Suppose the Assumption 1.1.1 holds, then we have the fol-
lowing moment estimate

E
[

sup
0≤ s≤ t

∣∣X(n,γ)
i (s)

∣∣(2+η)] ≤ C0 + C1 t
2+η
2 + C2 t

2+η , i = 1, 2, . . . , n,

(5.1.1)
where C0 is a constant that depends on

∫
R |x|2+η λ(dx), C1 is a constant that

depends on the L∞ norms of σ and γ and C2 is a constant that depends on
the L∞ norm of b.

Proof. Noting that the functions b, σ and γ are bounded, we apply
Burkholder-Davis-Gundy inequality and repeat the arguments in lemma
2.1.1 to finish the proof.

The next lemma establishes tightness of the distributions of ρ(n,γ).

Lemma 5.1.2. Under Assumption 1.1.1, the sequence π̃n,γ of the distribu-
tions of ρ(n,γ) in M1

(
C([0,∞),R)

)
is tight.
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Proof. Noting that the random variables
(
X

(n,γ)
1 , X

(n,γ)
2 , · · · , X(n,γ)

n

)
are ex-

changeable, we apply [Sz2, Proposition 2.2, Pg 177] and repeat the argu-
ments in lemma 2.1.2 to conclude that the sequence π̃n,γ is tight.

The tightness result establishes the existence of converging subsequences
for πn,γ . We remark that we will use the same index n for the converging
subsequences. Let ρ(γ) be a variable in M1

(
C([0,∞),R)

)
whose distribution

is the limit point π̃∞,γ of the convergent subsequence π̃n,γ . In view of the
Skorokhod representation theorem in the form of [Du, Theorem 3.5.1], we
can assume that the sequence of random variables ρ(n,γ) and ρ(γ) are defined
on the same probability space with ρ(n,γ)

a.s.−→ ρ(γ).

We state without proof the following lemmas that are analogous to lemma
2.1.3 and lemma 2.1.5, respectively.

Lemma 5.1.3. Under Assumption 1.1.1, E
[

sup
0≤ s≤ t

∫
R |x|2 ρ(γ)s (dx)

]
< ∞.

Lemma 5.1.4. Let Assumption 1.1.1 be satisfied, then we have the following
convergences lim

n→∞
E
[
W 2

2

(
ρ(n,γ)(s), ρ(γ)(s)

)]
= 0 and

lim
n→∞

t∫
0

E
[
W 2

2

(
ρ(n,γ)(s), ρ(γ)(s)

)]
ds = 0 ∀ s and t in [0,∞) respectively.

5.2 Proof of Theorem 5.0.1

Step 1. Lemma 5.1.2 proves the first part of the claim. In this step, we
will characterize the limit of Fρ(n,γ)(t). The standard approach to derive
the limit is to adapt the arguments in proposition 2.2.2; however, proposi-
tion 2.3.1 or proposition [JR, Proposition 2.2] cannot be extended to prove
uniqueness of limits. We take a different and a much simpler route to de-
rive the limit and to prove uniqueness of limits. The main idea is to reduce
the particle system in (1.0.1) to the classical rank-based system in (1.0.2).

We first make the substitution Y n
i (t) = X

(n,γ)
i (t) −

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

and let µ(n)(t) := 1
n

∑n
i=1 δY (n)

i (t)
be the empirical measure of the particles(

Y
(n)
1 (t), Y

(n)
2 (t), . . . , Y

(n)
n (t)

)
at time t and Fµ(n)(t) be the cumulative distri-
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bution function of µ(n)(t). Next, we make the following simple observations:

Fρ(n,γ)(t)(x) =

n∑
i=1

I
(
X

(n,γ)
i (t) ≤ x

)
n

=

n∑
i=1

I
(
Y

(n)
i (t) ≤ x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)
n

(5.2.1)

Fρ(n,γ)(t)(x) = Fµ(n)(t)

(
x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)
. (5.2.2)

Fρ(n,γ)(t)

(
X

(n,γ)
i (t)

)
= Fµ(n)(t)

(
X

(n,γ)
i (t)−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)
Fρ(n,γ)(t)

(
X

(n,γ)
i (t)

)
= Fµ(n)(t)

(
Y

(n)
i (t)

)
.

(5.2.3)

Using the aforementioned observations, we reduce the particle system in
(1.0.1) to the classical rank-based particle system

dY
(n)
i (t) = b

(
Fµ(n)(t)

(
Y

(n)
i (t)

))
dt+ σ

(
Fµ(n)(t)

(
Y

(n)
i (t)

))
dB

(n)
i (t),

i = 1, 2, . . . , n.
(5.2.4)

Thanks to [JR, Proposition 2.1], we obtain the convergence µ(n) → µ

in probability in C([0,∞),M1(R)), where R(t, ·) = Fµ(t)(·). Furthermore,
(4.2.17) implies that

sup
t∈[0,T ]

sup
x∈R

∣∣Fµ(n)(t)(x)−R(t, x)
∣∣ P−→ 0. (5.2.5)

We claim that

sup
t∈[0,T ]

sup
x∈R

∣∣∣Fρ(n,γ)(t)(x)−R
(
t, x−

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)∣∣∣ P−→ 0. (5.2.6)
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Thanks to (5.2.2), it suffices to show that

sup
t∈[0,T ]

sup
x∈R

∣∣∣Fµ(n)(t)

(
x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)

−R
(
t, x−

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)∣∣∣ P−→ 0.

(5.2.7)

We apply the triangle inequality to obtain

sup
t∈[0,T ]

sup
x∈R

∣∣∣Fµ(n)(t)

(
x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)
−

R
(
t, x−

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)∣∣∣
≤ sup

t∈[0,T ]
sup
x∈R

∣∣∣∣Fµ(n)(t)

(
x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)

−R
(
t, x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)∣∣∣∣
+ sup

t∈[0,T ]
sup
x∈R

∣∣∣R(
t, x−

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

)

−R
(
t, x−

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)∣∣∣
≤ sup

t∈[0,T ]
sup
x∈R

∣∣Fµ(n)(t)(x)−R(t, x)
∣∣

+ sup
t∈[0,T ]

sup
x∈R

Rx(t, x) sup
t∈[0,T ]

∣∣∣∣
t∫

0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

−
t∫

0

γ
(
s, ρ(γ)(s)

)
dW (s)

∣∣∣∣,
where the last expression in the above chain of inequalities is a consequence
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of the mean value theorem.
Thanks to (5.2.5), sup

t∈[0,T ]
sup
x∈R

∣∣Fµ(n)(t)(x) − R(t, x)
∣∣ P−→ 0 and sup

t∈[0,T ]
sup
x∈R

Rx

is bounded. In view of the regularity result in proposition 2.3.1, it remains

to show that sup
t∈[0,T ]

∣∣∣ t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s) −

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

∣∣∣ goes to

0 in probability. Thanks to Burkholder-Davis-Gundy inequality (see e.g.
[KS, Chapter 3, Theorem 3.28]) and assumption 1.1.1, it suffices to show

that
T∫
0

E
[
W 2

1 (ρ
(n,γ)(s), ρ(γ)(s))

]
ds

n→∞−→ 0. Combining the basic inequality

W1 ≤ W2 with lemma 2.1.5 finishes the proof of the claim (5.2.6).

The tightness result in lemma 2.1.1 and the discussion following it im-
ply for fixed t, almost surely, at all continuity points x of Fρ(γ)(t)(x),
Fρ(n,γ)(t)(x) → Fρ(γ)(t)(x). Since, Fρ(γ)(t)(·) is right-continuous with only
finitely many discontinuities and R is continuous in the spatial variable x,
the convergence in (5.2.6) implies that ∀ t ∈ [0, T ], x ∈ R

Fρ(γ)(t)(x) = R
(
t, x−

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

)
. (5.2.8)

Since T > 0 is arbitrary, we can find a set of full probability measure on
which (5.2.8) holds for all t ≥ 0 and x ∈ R. The stronger assumption in
proposition 2.3.2 yields classical regularity for R, which allows us to apply
Ito’s formula in (5.2.8). This yields the SPDE (5.0.1).

Step 2.
We now turn our attention to proving uniqueness of limits. To this end, let

F
ρ
(γ)
1 (t)

(x) and F
ρ
(γ)
2 (t)

(x) be two distribution functions that satisfy (5.2.8).
Then, we have

∣∣F
ρ
(γ)
1 (t)

(x)− F
ρ
(γ)
2 (t)

(x)
∣∣ =∣∣∣R(

t, x−
t∫

0

γ
(
s, ρ

(γ)
1 (s)

)
dW (s)

)

−R
(
t, x−

t∫
0

γ
(
s, ρ

(γ)
2 (s)

)
dW (s)

)∣∣∣.
(5.2.9)
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Integrating both sides and using the regularity result in proposition 2.3.1,
we obtain

∫
R

∣∣F
ρ
(γ)
1 (t)

(x)− F
ρ
(γ)
2 (t)

(x)
∣∣dx ≤

∣∣∣ t∫
0

(
γ
(
s, ρ

(γ)
1 (s)

)
− γ

(
s, ρ

(γ)
2 (s)

))
dW (s)

∣∣∣.
(5.2.10)

Next, we use the representation in proposition 2.1.4, square both sides and
then take expectation to obtain

E
[
W 2

1 (ρ
(γ)
1 (t), ρ

(γ)
2 (t)

]
≤ E

t∫
0

(
γ
(
s, ρ

(γ)
1 (s)

)
− γ

(
s, ρ

(γ)
2 (s)

))2
ds

≤ C

t∫
0

E
[
W 2

1 (ρ
(γ)
1 (s), ρ

(γ)
2 (s)

]
ds.

(5.2.11)

Gronwall’s lemma implies F
ρ
(γ)
1 (t)

(x) = F
ρ
(γ)
2 (t)

(x) a.s. completing the
proof of the theorem. �

5.3 Existence and Uniqueness

In this section, we will establish weak existence and weak uniqueness for the
SDEs in (1.0.1).

5.3.1 Sketch of the proof of weak existence

We go back to the substitution Y n
i (t) = X

(n,γ)
i (t) −

t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s)

and recall that the particles Y n
i (t), i = 1, . . . , n, satisfy (1.0.2). Since the

SDEs governing the particles Y n
i (t), i = 1, . . . , n, have a weak unique solu-

tion, we first construct a weak solution for the particles Y n
i (t), i = 1, . . . , n.

Then, we use an appropriate enlargement of the probability space and the
filtration that support the common brownian motion W to construct a weak
solution for the particles in (1.0.1). We will use the classical approximation
technique to construct the weak solution and to this end, we define the ap-
proximation scheme ignoring the dependence on n for notational convenience
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X
(k,γ)
i (t) = Yi(t) +

t∫
0

γ
(
s, ρ(k−1,γ)(s)

)
dW (s), k = 1, 2, . . . (5.3.1)

where X
(0,γ)
i (t) = Yi(t) and ρ(k,γ)(t) is the empirical measure of the particles

X
(k,γ)
i (t), i = 1, . . . , n. In view of (5.3.1), assumption 1.1.1, the inequality

W1 ≤ W2 and another elementary inequality on Wasserstein distances, we
get the following chain of inequalities

n∑
i=1

E
[(

X
(k+1,γ)
i (t)−X

(k,γ)
i (t)

)2]
n

≤
t∫

0

E
[(

γ
(
s, ρ(k,γ)(s)

)
− γ

(
s, ρ(k−1,γ)(s)

))2]
ds

≤ C

t∫
0

E
[
W 2

1

(
ρ(k,γ)(s), ρ(k−1,γ)(s)

)]
ds

≤ C

t∫
0

E
[
W 2

2

(
ρ(k,γ)(s), ρ(k−1,γ)(s)

)]
ds

≤ C

t∫
0

n∑
i=1

E
[(

X
(k,γ)
i (s)−X

(k−1,γ)
i (s)

)2]
n

ds.

(5.3.2)

Combining all the above inequalities, we obtain

E
[∣∣∣∣∣∣X(k+1,γ)(t)−X(k,γ)(t)

∣∣∣∣∣∣2
2

]
≤ C

t∫
0

E
[∣∣∣∣∣∣X(k,γ)(s)−X(k−1,γ)(s)

∣∣∣∣∣∣2
2

]
ds,

(5.3.3)
where X(k,γ) =

(
X

(k,γ)
1 , X

(k,γ)
2 , · · · , X(k,γ)

n

)
. A simple induction argument

reveals that E
[∣∣∣∣∣∣X(k+1,γ)(t) − X(k,γ)(t)

∣∣∣∣∣∣2
2

]
≤ C tk+1

(k+1)! . Clearly X(k,γ)(t) is

Cauchy. We let its L2 limit be X(γ)(t), where X(γ) =
(
X

(γ)
1 , X

(γ)
2 , · · · , X(γ)

n

)
.

58



It’s easy to check that

sup
0≤s≤t

nE
[
W 2

2

(
ρ(k,γ)(s), ρ(γ)(s)

)]
≤ sup

0≤s≤t
E
[∣∣∣∣∣∣X(k,γ)(s)−X(γ)(s)

∣∣∣∣∣∣2
2

]
≤ C

tk

k!

k→∞−→ 0,

(5.3.4)

where ρ(γ)(t) is the empirical measure of the particles X
(γ)
i (t), i = 1, . . . , n.

Taking the L2 limit in (5.3.1), we obtain

X
(γ)
i (t) = Yi(t) + lim

k→∞

t∫
0

γ
(
s, ρ(k,γ)(s)

)
dW (s), i = 1, 2, . . . , n. (5.3.5)

It remains to show that lim
k→∞

t∫
0

γ
(
s, ρ(k,γ)(s)

)
dW (s) =

t∫
0

γ
(
s, ρ(γ)(s)

)
dW (s)

in L2. Thanks to assumption 1.1.1, the basic inequality W1 ≤ W2 and
(5.3.4), the following chain of inequalities gives the desired result.

lim
k→∞

t∫
0

E
[(

γ
(
s, ρ(k,γ)(s)

)
− γ

(
s, ρ(γ)(s)

))2]
ds

≤ C lim
k→∞

t∫
0

E
[
W 2

1

(
ρ(k,γ)(s), ρ(γ)(s)

)]
ds

≤ lim
k→∞

t∫
0

E
[
W 2

2

(
ρ(k,γ)(s), ρ(γ)(s)

)]
ds = 0.

(5.3.6)

5.3.2 Sketch of the proof of weak uniqueness

In the previous section, we adapted the classical construction of strong so-
lutions to establish weak existence for (1.0.1). Intuitively speaking, condi-
tioned on the classical rank-based particles Y n

i (t), i = 1, . . . , n and given
any common brownian motion, we were able to construct the solution for
the SDEs in (1.0.1). We also note that the solution to the limiting SPDE
that we obtained in (5.0.1) is adapted to the filtration generated by the
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common brownian motion. Consequently, we prove the following version of
weak uniqueness. Let

(
X(n,γ),W,B

(n)
1 , B

(n)
2 , . . . , B

(n)
n ), (Ω,F ,P), {Ft} and(

X̃(n,γ), W, B̃
(n)
1 , B̃

(n)
2 , . . . , B̃

(n)
n ), (Ω̃, F̃ , P̃), {F̃t} be two weak solutions of

(1.0.1). Then the two processes X(n,γ) =
(
X

(n,γ)
1 , X

(n,γ)
2 , · · · , X(n,γ)

n

)
and

X̃(n,γ) =
(
X̃

(n,γ)
1 , X̃

(n,γ)
2 , · · · , X̃(n,γ)

n

)
have the same law.

Let the corresponding classical rank-based particles for the two weak solu-
tions be Y n(t) =

(
Y n
1 (t), Y n

2 (t), · · · , Y n
n

)
and Ỹ n(t) =

(
Ỹ n
1 (t), Ỹ n

2 (t), · · · , Ỹ n
n

)
.

Since the classical rank-based particles have a weak solution which is unique
in distribution, to show that the processes X(n,γ)(t) , X̃(n,γ)(t) have the
same law it suffices to show that the distrubtion of X(n,γ)(t) conditioned
on Y n(t) equals the distribution of X̃(n,γ)(t) conditioned on Ỹ n(t). We
will show this by proving a stronger statement : Given the classical rank-
based particles Y n

i (t), i = 1, . . . , n, then any process X(n,γ)(t) satisfying

Y n(t) = X(n,γ)(t)−
t∫
0

γ
(
s, ρ(n,γ)(s)

)
dW (s) is unique in the strong sense.

We will ignore the dependence on n for notational simplicity and let
X(1,γ)(t) and X(2,γ)(t) be two processes that satisfy

Y (t) = X(1,γ)(t)−
t∫

0

γ
(
s, ρ(1,γ)(s)

)
dW (s)

Y (t) = X(2,γ)(t)−
t∫

0

γ
(
s, ρ(2,γ)(s)

)
dW (s),

(5.3.7)

where X(1,γ) =
(
X

(1,γ)
1 , X

(1,γ)
2 , · · · , X(1,γ)

n

)
,

X(2,γ) =
(
X

(2,γ)
1 , X

(2,γ)
2 , · · · , X(2,γ)

n

)
and ρ(1,γ) and ρ(2,γ) are the correspond-

ing empirical measures respectively. In view of (5.3.7), assumption 1.1.1 and
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a few basic inequalities on Wasserstein distances, we have the following

n∑
i=1

E
[(

X
(1,γ)
i (t)−X

(2,γ)
i (t)

)2]
n

=

t∫
0

E
[(

γ
(
s, ρ(1,γ)(s)

)
− γ

(
s, ρ(2,γ)(s)

))2]

≤ C

t∫
0

E
[
W 2

1

(
ρ(1,γ)(s), ρ(2,γ)(s)

)]
ds

≤ C

t∫
0

E
[
W 2

2

(
ρ(1,γ)(s), ρ(2,γ)(s)

)]
ds

≤ C

t∫
0

n∑
i=1

E
[(

X
(1,γ)
i (s)−X

(2,γ)
i (s)

)2]
n

ds.

(5.3.8)

Gronwall’s lemma gives uniqueness in the strong sense and thereby fin-
ishing the proof of weak uniqueness.
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