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Abstract

Two-photon calcium imaging (TPCI) is a functional neuroimaging technique that si-

multaneously reveals the function of small populations of cells as well as the structure

of surrounding brain tissue. These unique properties cause TPCI to be increasingly

popular for experimental basic neuroscience. Unfortunately, methodological develop-

ment for data processing has not kept pace with experimental needs. I address this

lack by developing and testing new methodology for several key tasks.

Specifically, I address two primary analysis steps which are nearly universally re-

quired in early data processing: region of interest segmentation and motion correction.

For each task I organize the sparse existing literature, clearly define the requirements

of the problem, propose a solution, and evaluate it on experimental data. I develop

MaSCS, an automated adaptable multi-class segmentation system that improves with

use. I carefully define and describe the impact of motion artifacts on imaging data,

and quantify the effects of standard and innovative motion correction approaches. Fi-

nally, I apply my work on segmentation and motion correction to explore one scientific

target, namely discovering correlation-based cell clustering. I show that estimating

such correlation-based clustering remains an open question, as it is highly sensitive

to motion artifacts, even after motion correction techniques are applied.

The contributions of this work include the organization of existing resources,

methodological advances in segmentation, motion correction and clustering, and the

development of prototype analysis software.
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1
Overview

Two-photon calcium imaging (TPCI) is a quickly growing experimental field, but un-

fortunately the development of analysis methodology and tools has not kept pace with

experimental interest. In this dissertation I present improvements to basic processing

tasks faced in the analysis of TPCI data. The analysis that I discuss is often consid-

ered pre-processing; its development is not the focus of experimental labs. Neverthe-

less, appropriate and clearly described early data processing is crucial to producing

reliable, comparable, and reproducible scientific results.

Because of the dearth of resources currently available to experimenters entering

the field, many experimental labs develop their own algorithms and code for univer-

sal processing tasks. The details of the resulting processing pipelines are often only

sparsely documented in the methods sections of papers, and the code is not always

made available. This makes it very difficult to compare new methodology against ex-

isting techniques. Experimentalists without a computational focus have few resources

available to aid in data processing. Computational scientists who wish to make con-

tributions to the field may not be able to determine what advances would be most

useful. With this in mind, the goal of this dissertation is to assist in the development

of a standard and easily accessible analysis toolkit for TPCI research.

2



Chapter 1. Overview 3

1.1 Context of this work

With increasing experimental interest in TPCI, the development of dedicated data

analysis tools is becoming a necessity. There are innumerable analysis challenges

that an experimenter using TPCI might face. Some tasks are arguably inherent to

the imaging modality whereas others are specific to the scientific questions being

asked. Improvements to the first may have a broad impact on the field, whereas

improvements to the second may allow for specific innovation and discovery. I focus

on two analysis tasks which are faced by the majority of experimenters and one which

is more specific to particular scientific questions.

The first task I address is automation of region of interest segmentation. In the

current literature, this is frequently accomplished through tedious manual annota-

tion. I propose the MaSCS framework, an automated system based on supervised

multi-class classification. MaSCS is more efficient than manual systems, and more

flexible than existing automated systems. It allows for customization, improves its

performance with use, and encourages consistent reporting and evaluation metrics.

The second task I address is motion correction. Motion is unavoidable in in vivo

imaging, and while most experimenters perform at least some form of correction, there

is very little work examining the necessity or impact of these techniques. My work

advances this area by examining the impact of both standard and original motion

correction approaches on several aspects of data.

Finally, I combine the tools I develop for segmentation and motion correction to

consider the task of clustering cells based on the correlation of their calcium fluo-

rescence traces. This is an unexplored area in the literature, but is important in

experimental paradigms that are not conducive to spike train analysis. I show that

with currently available methodology, these clusters are heavily corrupted by motion

artifacts. Correlation-based clustering remains an open area of research.
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The tasks of region of interest segmentation and motion correction are already

acknowledged by the experimental community to be part of any typical analysis.

However, the exact structure and components of an analysis pipeline are not estab-

lished. I believe that segmentation and motion correction must be early steps in any

such pipeline. Nevertheless, it is worth noting some of the related tasks and context

that I do not develop in this work.

Many experimenters wish to focus on neural activity in the form of spike trains.

TPCI measures the calcium transients associated with spikes, from which spike trains

can be inferred. The process of performing this inference is one of the best studied

analysis task for TPCI (Hill et al., 2010; Vogelstein et al., 2010, 2009; Yaksi and

Friedrich, 2006; Smetters et al., 1999). I chose not to focus on this task partly because

the existing literature provides some information and tools already. In addition, this

problem can be best addressed with joint TPCI and electrophysiology experiments,

which were not available for this work.

There are a number of more specialized analysis tasks that I do not address here.

For instance, TPCI provides a unique opportunity to study properties of the neural

vasculature. This requires quantification of properties of blood vessels and blood flow

(Drew et al., 2011). The estimation of these quantities is relatively unstudied. As

another example, TPCI can record properties of cells that are not electrically active,

such as glial cells. There is increasing interest in the role that glial cells may play

in neural processing. Answering this question with TPCI requires quantifying and

identifying the signatures of glial calcium activity. This is less studied than the spike

detection problem for neurons. Though these are important analysis tasks without a

clear solution, I leave their development to future work.

On the data collection side of TPCI, there are many researchers working to im-

prove the speed, quality and flexibility of data collection. This work can take the form

developing microscopes and scanning techniques (Katona et al., 2012; Ranganathan
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and Koester, 2010; Mittmann et al., 2011), fluorescent dye innovation (Lütcke et al.,

2010), or improvement of surgical protocols. Improvements to the data collection

process are critical, and will certainly impact the types and extent of post-collection

analysis required. However, for this work I restrict my attention to a particular com-

mon data collection framework, described in section 2.5.

Finally, though developments to individual data collection and analysis tasks is im-

portant and a logical place to start, it will become increasingly important to formally

consider the design of analysis pipelines. For instance, though most experimental

TPCI papers report some form of motion correction and region of interest segmen-

tation, the ordering of these tasks is inconsistent. It is unclear which preprocessing

steps are necessary for particular types of subsequent analysis. The number of exper-

imenters using TPCI is growing, and we are rapidly discovering the large collection of

scientific questions made accessible by the technology. To take full advantage of this

experimental effort, it is critical that we also develop a statistically solid set of analysis

tools, and research how to choose and combine them effectively and intelligently.

1.2 Contributions of this work

The main contributions of this work are three-fold, listed below.

Goal: Develop statistically motivated methodology for important tasks in the TPCI

analysis pipeline.

Contribution: I have researched analysis methodology for three tasks: region of in-

terest segmentation (chapter 3), motion correction (chapter 4), and correlation-based

cell clustering (chapter 5). The description of this work constitutes the bulk of this

document.
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Goal: Create easily used tools for experimenters who wish to apply the methodol-

ogy I have developed.

Contribution: All of the processing that I discuss can be accomplished using the R

package RCI available at https://github.com/dancingwoods/RCI. The package is fully

documented, but is a prototype rather than production ready software.

Goal: Organize and make easily accessible the tools that already exist for TPCI data

analysis.

Contribution: This document itself provides a more comprehensive overview of the

existing work on TPCI analysis than was previously available. I have also founded

an online wiki, CaliCode.org, to serve as an introduction to the existing knowledge

and tools relating to the analysis of TPCI data. The site provides an overview of

analysis tasks encountered by experimenters, basic tutorials and links to more details

in papers and books, an index of currently available relevant software toolkits, an

annotated bibliography of papers that address analysis issues, and more.

1.3 Organization of this document

The remainder of this document is organized as follows. Chapter 2 provides an

introduction to the basics of two-photon calcium imaging. Chapters 3 through 5

discuss my work on segmentation, motion correction, and clustering. Each chapter

contains a literature review, presents and evaluates my methodology, and discusses

future work. Finally, chapter 6 discusses the resources that I have created for the

community and summarizes my work.



2
Two-photon calcium imaging

In vivo neuroimaging methodology is the focus of a great deal of research for the simple

reason that the functioning brain is inherently difficult to measure. A diverse variety

of imaging technologies allow measurement of various indicators of neural activity

at different temporal and spatial scales. Two-photon calcium imaging (TPCI), an

increasingly popular technique, uniquely fills the need to image the activity of small

populations of neurons along with their spatial layout and physiological context.

In general, TPCI uses a two-photon laser scanning microscope to image tissue

containing a calcium responsive functional indicator as well as (typically) a static

structural dye. In combination, these dyes reveal the location, size, shape, and activity

of neurons, astrocytes and blood vessels. From this experimenters can deduce neural

spike trains (Yaksi and Friedrich, 2006; Vogelstein et al., 2009), calcium transients in

astrocytes (Nimmerjahn et al., 2004; Lohr and Deitmer, 2010; Reeves et al., 2011),

properties of local blood flow (Drew et al., 2011), and connectivity of the local neural

network (Mishchencko et al., 2011). Though invasive, TPCI gives more comprehensive

measurements of cortical function than other recording techniques with similar spatial

scale (such as array electrophysiology) and is therefore ideal for studying integrative

questions in basic neuroscience.

This chapter introduces the engineering and biology behind TPCI. This treatment

7
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is intended to be an overview to aid in understanding the work presented in this

dissertation. The interested reader is referred to the cited references for further detail

and a more comprehensive view of the experimental field.

2.1 Two-photon Excitation Microscopy

Fluorescence microscopy, very generally, has two essential steps: illuminate the sample

to excite a fluorophore then collect the emitted fluorescence. There are several general

techniques for fluorescence imaging including wide-field, confocal and two-photon

microscopy (TPM). TPM is the most complex technologically (and therefore the

newest) but has significant advantages in that it can image deep tissue in vivo with

limited photo-damage. This section introduces TPM as compared to these earlier

fluorescence microscopy techniques.

Wide-field fluorescence microscopy involves illuminating the entire sample with a

light source such as a mercury vapor lamp. The microscope objective collects reflected

light as well as emitted fluorescence. A filter can isolate emitted fluorescence based on

wavelength. However, since the sample is illuminated uniformly, emitted fluorescence

from outside the focal plane is mixed with the desired signal. In combination with

light scattering in tissue, this results in significant background fluorescence and spatial

blurring.

Confocal microscopy solves several of these issues. In confocal microscopy, the

excitation light (typically from a laser) is focused at a point in the tissue to be im-

aged. Emitted fluorescence photons must pass through a pinhole detector, restricting

detected fluorescence to that originating at the focal point. The focal point is scanned

through the tissue to create an image. A significant limitation of confocal fluorescence

microscopy derives from the tendency of biological tissue to scatter light. Only a frac-

tion of the excitation photons reach the focal point, and many of the emitted photons
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Ti:Sapphire Laser

Dichroic mirror

Objective

Dichroic mirrors

Photo-multiplier
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Figure 2.1: Schematic of the Prairie Ultima two-photon laser scan-
ning microscope. A Ti:Sapphire pulsed laser delivers the excitation light.
Galvanometric scanning mirrors control the raster scanning pattern. An
objective focuses the laser at the desired depth in the sample. Emitted
fluorescence is collected through the objective. A dichroic mirror directs
the fluorescence wavelengths to an emission cube composed of one or
more dichroic mirrors. The cube further separates emission by wave-
length, allowing for the collection of fluorescence from two fluorophores.
Photo-multiplier tubes measure the emitted fluorescence.
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are scattered and therefore rejected by the pinhole detector. This loss of signal must

be countered by increasing the power of the excitation laser, which increases the like-

lihood of photobleaching and damage to the tissue. In addition, photobleaching is

accelerated by the fact that excitation occurs throughout the light cone even though

only fluorescence from the focal point is accepted by the detector.

Both wide-field and confocal microscopy generate fluorescence through the in-

teraction of a single photon with a fluorescent molecule. In contrast, two-photon

microscopy generates fluorescence by the near simultaneous absorption of two longer-

wavelength photons. Such simultaneous absorption events can only occur in an envi-

ronment with extremely highly concentrated photons. In TPM this required intensity

is generated by a focused, femtosecond pulsed laser. The intensity of the laser drops

off quadratically with distance from the focal point meaning that simultaneous ab-

sorption events occur exclusively in a small volume around this point. This restricts

photodamage to only this area. Additionally, since only fluorophores in the focal vol-

ume are excited, the source of all emitted photons is known thus removing the need

for a pinhole detector. Any emitted photon reaching the detector is signal, meaning

TPM suffers much less signal loss due to scattering than confocal microscopy. In ad-

dition, the longer wavelength excitation used in TPM is less susceptible to scattering

in tissue than that used in confocal microscopy. This allows greater penetration of

tissue and increases the feasible imaging depth.

Imaging more than a single point with TPM requires scanning the laser through

the sample. Typically this is done with galvonometric mirrors. Two mirrors control

scanning in the X and Y dimensions within a fixed Z plane. An image is scanned

in a simple raster pattern. Sampling rate depends on the size of the area being

scanned, the number of pixels, and the speed with which the mirrors travel, accelerate

and decelerate. The speed of the mirrors and the desired pixel size determine the

amount of time the laser is focused within a pixel (dwell time), impacting the noise
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level. For images large enough to show networks of neurons (one to two hundred

microns on a side, with pixels several microns on a side), the scanning time in this set

up is dominated by mirror acceleration and deceleration as well as flyback, putting

severe limits on temporal resolution. With the equipment available for the work

done in this dissertation, frame rates for such imaging are around 8 Hz. Increasing

temporal resolution requires reducing the image size, reducing the number of pixels,

changing the physical method by which the laser is scanned, and/or changing the

raster scanning pattern.

2.2 Calcium Sensitive Fluorescent Dyes

There are many fluorescent dyes used in the biological sciences. Each is different in its

specifics, but they all work on the same principle. The fluorescent protein or molecule

(fluorophore) is exposed to energy in the form of photons, causing electrons in the

fluorophore to be excited. These electrons subsequently fall back to a lower energy

state, releasing photons of a somewhat longer wavelength than those which caused

the excitation. These emitted photons can be collected by a detector, providing a

measurement of fluorescence. This measurement corresponds to different properties

of the imaged tissue depending on the properties of the fluorophore used.

Fluorophores can be targeted to fluoresce in specific environments. An example of

this is calcium-sensitive fluorescent dye. The fluorophore is combined with a calcium

indicator which reconfigures the fluorophore in the presence of calcium. This results

in fluorescence properties that change according to calcium levels (Johnson, 1998;

Verkhratsky and Petersen, 2010). A common indicator used for this purpose is the

calcium buffer BAPTA, developed in the 1980s by Roger Tsien and colleagues (Tsien,

1980). Oregon Green BAPTA (OGB), as used in the data for this research, is a green

fluorescent dye based on the BAPTA calcium indicator.
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As discussed in the next section, a primary quantity of interest in neuronal calcium

imaging is calcium levels inside cells. Detecting this requires directing the calcium sen-

sitive dye into cells. This can be accomplished in a number of ways. Historically, the

first approach was loading individual neurons with dye using microelectrodes. This

restricted imaging experiments to focusing on small numbers of cells (Stosiek et al.,

2003). Subsequently, bolus-loading techniques were developed by which dyes could

be injected locally to mark larger populations of neurons simultaneously. Most fluo-

rescent dyes do not permeate cell membranes. In a standard bolus-loading technique

the dye is bonded to an acetoxymethyl (AM) ester. This deactivates the fluorescence

and causes the dye to become cell permeant. The AM form of the dye diffuses across

cellular membranes whereupon esterases cleave the AM group. After this, the dye

is again fluorescent and unable to cross the cell membrane (Takahashi et al., 1999).

Stosiek et al. (2003) first demonstrated the bulk-loading of calcium dyes to image cell

populations in vivo. Since then it has become a very common technique (Eichhoff

et al., 2010).

Recently, some research has focused on developing genetically encoded fluorescent

calcium indicators. These can be expressed in transgenic organisms or introduced

neonatally or by viral transduction. However, genetically encoded calcium dyes are

still under active development. Compared to synthetic dyes injected into the brain,

they stain cells less densely with lower fluorescent response (Garaschuk and Griesbeck,

2010).

The data used in this research were collected using OGB injected using the bolus-

loading technique. This method stains most or all of the cells in the vicinity of the

injection. However, because the dye is distributed by diffusion from the injection site

the staining is not spatially uniform. In addition, the OGB dye fluoresces once it

crosses any cell membrane. Neurons, astrocytes and neuropil (the background tissue

composed of dendrites, axons and other cellular processes) are all stained by the
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dye (though some research suggests that astrocytes are preferentially marked at the

extreme edges of the dye extent (Eichhoff et al., 2010)). To attain some differentiation

between types of cells, a red fluorescent dye (SR-101) was injected along with the

OGB. This dye has been shown to preferentially mark astrocytes (Nimmerjahn et al.,

2004), allowing them to be differentiated from neurons.

2.3 Calcium in the Brain

Calcium (Ca2+) is ubiquitous in signaling pathways in a wide variety of cell types

throughout normal and pathological development. I will focus here on a particular

domain of Ca2+ signaling: that occurring in neurons and astrocytes in the brain.

Specifically I will describe calcium currents that are thought to drive the signals

recorded by calcium imaging on the local network scale. For a more comprehensive

presentation of the many roles of Ca2+ see, for instance, Berridge et al. (2000) and

Dolphin (2006).

Neurons, specifically those of the mammalian cortex, express four or five different

types of calcium channels, distributed unevenly around the soma, dendrites and axon

terminals (Bean, 2007; Catterall, 2011). These channels include several varieties that

are voltage-gated. During an action potential these channels open, allowing a strong

electrochemical gradient to drive Ca2+ into the cell. Voltage gated calcium channels

open near the peak of an action potential, resulting in a strong calcium current

during the falling phase of the spike. The coupling of increased calcium levels to the

opening of calcium-activated potassium channels helps sharpen the temporal profile

of the action potential by inducing a strong influx of potassium which drives the

cell’s membrane potential back toward resting state. This calcium current during the

falling phase of action potentials likely occurs in nearly every type of neuron (Bean,

2007). The universality of calcium currents during spiking activity allows for the use
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of calcium sensitive dyes to infer neural activity or even neural spike trains.

Though the shape of calcium currents can be variable, especially on small scales at

axon terminals, joint fluorescence imaging and electrophysiology experiments have es-

tablished a stereotypical shape for the spike-induced calcium fluorescence time course

averaged over the soma of a cell (for a review see Kerr and Denk (2008)). It is

worth noting that at finer resolutions not all locations within the cell soma respond

uniformly to a spike (Ranganathan and Koester, 2010). Complex calcium dynamics

within cellular compartments unavoidably impact fluorescence signals.

At the spatial resolution typical of population imaging with two-photon microscopy,

the somatic calcium response is easiest to resolve. However, complex calcium dynam-

ics in cellular processes also contribute to the signal as fluorescence from the neuropil.

The axons and dendrites that compose the neuropil are typically too small to be in-

dividually resolved in calcium imaging aimed at measuring network function. They

appear as minimally differentiated background. The neuropil background shows a

fluorescence response to stimulation. This is unsurprising given the importance of

calcium signaling in synapses. In axon terminals calcium plays a crucial role in the

regulation and release of neurotransmitters. As such, processes regulated by calcium

are important in synaptic functioning, plasticity and learning (Berridge et al., 2000).

Experiments reported by Kerr et al. (2005) suggest that the calcium signal recorded

from the neuropil derives primarily from these axonal calcium transients, suggesting

that neuropil fluorescence is a measure of local neuronal output.

Calcium signaling in the brain is not restricted to neurons. Glial cells, which are

not electrically excitable, have historically been thought to be primarily structural

support cells not involved in processing. Recently increased focus has been placed on

potential functional roles for glial cells, particularly as mediated by calcium (Ding,

2012; Reeves et al., 2011; Lohr and Deitmer, 2010; Kerr et al., 2005; Nimmerjahn et al.,

2004). The temporal profile of calcium currents in glial cells differs substantially from
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that in neurons. Nimmerjahn et al. (2004) found oscillatory calcium responses in

astrocytes in vivo that have slow (10 second) onsets and plateaus lasting for tens

of seconds. They also observed transmission of calcium activity between astrocytes,

which appeared as spatial waves of calcium activation. Both these oscillatory and

wave-like behaviors have been observed in vitro by other experimenters (Lohr and

Deitmer, 2010). As with neurons, the calcium signal in astrocytes is not uniform

throughout the cell. The calcium response profile differs between the soma and the

cellular processes (Reeves et al., 2011). Again, the spatial scale of population calcium

imaging does not allow cellular processes to be resolved. However, calcium transients

from the processes of astrocytes may well contribute to the neuropil fluorescence.

2.4 Advantages of two-photon calcium imaging

Two-photon calcium imaging is one of many neuroimaging techniques, but it has some

unique advantages. For instance, though TPCI typically measures from a similar field

of view as a multi-electrode Utah array, it has much more spatial detail such as the

precise location of active neurons and the inactive cells and structures surrounding

them. The advantages of TPCI can most clearly be seen by recognizing the range of

the things it measures:

1. (in)activity in tens to hundreds of neurons simultaneously.

2. spatial layout of neurons, astrocytes, blood vessels, etc.

3. properties of blood vessels such as volume or velocity of blood.

4. calcium activity in astrocytes.

This variety of measurements allows in turn for experimental leverage on a variety

of neuroscientific areas of interest. By combining measurements enumerated above,

TPCI allows for the investigation of:
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1+2 changing clustering of neurons over time.

1+3 neurovascular coupling, the basis of the fMRI BOLD response.

3+4 role of astrocytes in vascular regulation.

2+4 spatial calcium waves in astrocytes, and the role of astrocytes in neural function.

These are questions that may not be easily addressed by other imaging method-

ologies, making TPCI an exciting addition to the neuroimaging arsenal for basic

neuroscience.

2.5 Data specifics

Throughout this dissertation I use “two-photon calcium imaging” without further

modification. Though the problems and solutions I address are, I hope, applicable

to a broad range of experimental set-ups and paradigms, the data that I use in my

analyses are from one particular experimental lab. The details of this data, described

here, may influence whether the specifics of my processing techniques are directly

applicable to data from other sources.

The data are recordings from the somatosensory cortex of rats. The rats were

imaged under anesthesia while attached to a mechanical respirator. Each experiment

consists of continuous recording for several minutes. Some experiments are resting

state recordings in which the animal received no experimental stimulation. In other

experiments the animal received periodic electric stimulation to the forepaw strong

enough to evoke significant neural activity in the region of somatosensory cortex being

imaged.

The animals were prepared for imaging with a craniotomy exposing the somatosen-

sory cortex. Sulforhodamine 101 (SR101) and Oregon Green Bapta 1 (OGB1) dyes

were injected into the cortical tissue, after which a coverslip was placed over the
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craniotomy.

Two-photon recordings were collected using the Prarie Ultima two-photon laser

scanning microscope. This microscope used a 900nm pulsed laser to excite the sample.

Galvonometric mirrors directed the excitation beam in a raster pattern through the

objective, typically covering an area approximately 240 microns on a side with 1.88

micron diameter pixels (128 × 128 pixels per frame). The frame scanning rate was

approximately 8Hz.

The emitted fluorescence was separated by dichroic mirrors and two wavelength

bands corresponding to the two fluorescent dyes were measured using photo-multiplier

tubes. The first channel (hereafter referred to as the ‘structural channel’) measured

the fluorescence from the SR101 dye with wavelengths of 607± 22.5nm. The second

channel (hereafter the ‘functional channel’) measured fluorescence from the OGB1

dye with wavelengths between 525± 35nm.

The structural channel measures from the SR101 dye, which stains astrocytes but

not neurons. SR101 is not a functional dye, which means that its fluorescence does

not change in response to neural activity. Rather than providing information about

neuron function, the structural channel provides a way of differentiating neurons

from astrocytes. Due to properties of the dye, the structural channel in this data is

significantly less noisy than the functional channel.

The functional channel, measuring from OGB1, provides a measure of calcium lev-

els in the brain over time. Since OGB1 is a calcium sensitive dye, these measurements

indicate the level of calcium within cells. As discussed before, this is related to firing

in neurons and to less well understood activity in astrocytes. Though the functional

channel is noisier than the structural channel, it provides the key information about

the activity of the brain over time.
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3
Automated segmentation of regions of interest

Two-photon calcium imaging reports measurements of the brain in a regular grid

over the field of view, which gives a very informative but complex dataset. To inform

neuroscientific findings, these data must be transformed from the pixel coordinate

system into one that centers on features of neuroscientific interest. For instance,

an experimenter is unlikely to be interested directly in the intensity time series of

a particular image pixel. Instead, he may be interested in the mean fluorescence

time courses of the neurons in the field of view. The particular regions of interest

(neurons, astrocytes, blood vessels, etc.) will vary based on the scientific question

and experimental parameters, but the task of inferring properties of neuroscientific

features from pixel intensities is extremely common and important.

Formally, the problem of region of interest (ROI) segmentation for TPCI can be

posed as follows. Given four-dimensional data of the form Dchannel,time,x,y, identify

the number of regions of interest. For each of these N regions, identify a mask Mn,

a class label Ln, and a time series Snt. The mask M specifies a set of (typically

contiguous) pixels which sample from the ROI. The label L specifies the type or

class of ROI (neuron, astrocyte, etc.). The time series St gives the temporal activity

associated with the ROI.

Typically, ROIs are defined by binary masks, and the activity trace St is the

19
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simple spatial mean of the calcium channel over the identified region. The problem

of mapping from pixels to neuroscientific features can then be reduced to an image

segmentation problem. Image segmentation is ubiquitous in many areas of science,

but there are several characteristics that make this instance unusual. Four important

properties of TPCI ROI segmentation are the following:

1. Dimensionality. TPC imaging experiments generally measure from two chan-

nels, and for each channel we have images taken over time. Ideally, we want

to integrate information from both channels and time into our segmentation

procedure.

2. Messy background. The background of TPC images (that is, the part of the field

of view that is not within a region of interest) is spatially and temporally quite

complex. The background, depending on which features are being segmented,

can contain sub-resolution cellular processes, blood vessels, un- or barely stained

regions, and poorly resolved cells. This background obviously has a great deal

of spatial structure. Due to calcium dynamics in cellular processes, it also

shows temporal fluorescence changes in the functional channel. The spatial and

temporal complexity of the background makes simple pixel-wise testing against

a theoretical background distribution impractical.

3. Uneven intensity. Due to uneven dye distribution and surface vessels obstructing

fluorescence, the overall magnitude of fluorescence can vary greatly between

regions of an image. This means that any segmentation procedure depending

on intensity values must be locally adaptive.

4. Multi-class. TPC images record neurons, astrocytes, and blood vessels. Any or

all of these might be regions of interest for a neuroscientific study. A segmen-

tation procedure should be able to separate regions of one type (e.g. neurons)

from regions of another (e.g. astrocytes).
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3.1 Existing work on segmentation

There is a small but growing literature directly addressing the problem of automated

segmentation in TPC imaging. Existing approaches can be grouped into three main

categories: those using matrix factorization, those using one or (typically) more image

processing techniques, and those using data features to build statistical models such

as regressions or classifiers. In this section I will review existing work in these three

classes of approaches. I will highlight the strengths and weaknesses of each approach,

and then discuss the general problem of evaluating performance. Finally, I will con-

clude the section by proposing a set of characteristics that a desirable segmentation

system should possess. In section 3.2, I will propose a segmentation system of the

classifier type that has these characteristics.

3.1.1 Matrix factorization approaches

As highlighted previously, calcium imaging measures the temporal activity of cells as

well as their location. Neurons exhibit a distinctive calcium transient when active.

Some glial cells may display calcium transients as well. Several groups have exploited

the temporal sparsity of these transients along with the spatial sparsity of cells to

segment data using matrix factorization approaches.

To my knowledge, this general approach was first proposed for TPCI by Mukamel

et al. (2009). The authors use principle components analyses (PCA) for initial di-

mensionality reduction and noise removal. They follow this with spatio-temporal in-

dependent components analysis (ICA), selecting components to optimize a weighted

linear combination of spatial and temporal skewness. They select the components

with the highest skewness as the candidate cells. The resulting components have a

spatial filter (a non-binary mask) as well as an activity trace.

There are several details of the Mukamel at al. approach worth noting. Firstly,



Chapter 3. ROI segmentation 22

when the activity of several cells is highly correlated, these cells may be included in the

same ICA component. For this reason, the authors use a simple image segmentation

procedure (thresholding, followed by separation of spatially separated components)

on the component’s spatial filter to divide the cells. Secondly, the output of the

segmentation procedure requires manual filtering to select which ICA components

should be retained. The authors state that the components corresponding to real

cells have the highest skewness and so the selection is easy. Nevertheless, this plus

other parameters of the procedure, such as the number of PCA components to retain

in the initial step, must be chosen manually for each experiment.

Recently, Diego et al. (2013) have proposed a related matrix factorization method

using dictionary learning (sparse structured PCA) for cell segmentation in confocal

calcium imaging. In this approach, the Npixels ×Ntime data matrix is approximated

by DUT where D is a Npixels ×K matrix giving the spatial components and U is a

Ntime×K matrix giving the temporal components. D and U are found by minimizing

the Frobenius norm of the difference between the original data and DUT with sparsity

constraints on the spatial components (dictionary elements) and temporal coefficients.

Like Mukamel et al., Diego et al. run the output of their procedure through image

processing techniques (such as a watershed algorithm) to split multiple cells assigned

to the same component or combine cells split into multiple components.

The Mukamel and Diego approaches to segmentation share many of the same

characteristics and thus also share many of the same strengths and weaknesses. One

strength emphasized by Mukamel et al. is that these approaches can perform some

signal separation of the actual activity trace of a cell from noise from nearby cells

or neuropil. This is in contrast to ROI segmentation using simple averaging over

binary masks. Another advantage of these approaches is that they use the temporal

information and variance structure of the dataset to produce their segmentation. This

information is not easily visible to a human annotator, who will typically use just the
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temporally averaged fluorescence values. In some sense, these approaches may be

accessing the ‘true’ structure of the data in a more reliable fashion than the human.

However, these approaches also suffer from several drawbacks. Though they ex-

ploit the temporal structure of the data, they do not incorporate information from

multiple channels. Though we do not expect the structural channel to have temporal

information about the activity of cells, it does provide cleaner spatial information as

well as a means of separating neurons from astrocytes. It is possible that informa-

tion from the structural channel could be incorporated into these approaches, but a

method for doing so is not immediately obvious. Neither paper referenced here men-

tions a multi-channel analysis. Mukamel et al. find regions of interest corresponding

to active neurons as well as glial cells with calcium transients, but these types of cells

were differentiated manually based on their activity profiles.

A second weakness of the matrix factorization approaches is the flip side of one of

their advantages. They use the temporal dimension of the data, but since they exploit

the temporal sparseness of active cells to create components they typically will not

find any regions of interest that are not temporally active. Such ROIs could include

inactive neurons, astrocytes without calcium transients, and blood vessels. Active

cells are likely to be more interesting to experimenters, but losing access to these

other features diminishes one of the main strengths of TPCI: the ability to observe

and quantify the structural network surrounding active cells.

Finally, both matrix factorization approaches described above use significant post-

processing or manual cleaning in order to create components that correspond to single

cells.
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3.1.2 Image processing approaches

Anecdotally, most experimental labs currently use semi-manual segmentation proce-

dures in which a variety of image processing techniques are interactively applied to

the temporally averaged fluorescence images to identify cells. For instance, the ex-

perimenter might highlight a region of the image containing a cell to initiate a local

thresholding procedure which selects the boundary for the cell. The set of image

processing techniques that could be used for this purpose is vast: thresholding, peak

finding, and spatial filtering are just three.

There has been some recent work attempting to use image processing techniques

within completely automated segmentation systems. Tomek et al. (2013) describe the

first software toolkit publicly released to perform this task. Their algorithm, named

SeNeCA (Search for Neural Cells Accelerated), uses several types of smoothing, locally

adaptive thresholding, a watershed algorithm, and constraints on cell size to produce

a segmentation. This system is fully automatic, though with 6 tuning parameters

(such as amount of smoothing and size limits for cells) which must be set manually.

The SeNeCA algorithm represents a much-needed step of the community toward

explicitly defined, automated cell segmentation. However, it has several weaknesses.

Like the matrix factorization approaches, SeNeCA does not explicitly incorporate

information from multiple channels or segment multiple classes of objects. Presum-

ably the algorithm could be easily extended to do so by incorporating explicit expert

knowledge (find cells in both channels, check whether a cell is found in both and

if so it is an astrocyte). However, this would make an already somewhat complex

procedure more convoluted and would require the explicit specification of rules to

differentiate cell types.

Another weakness of SeNeCA is the need to manually set tuning parameters in

order to achieve good performance. When evaluating the algorithm, Tomek et al.
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chose tuning parameters by optimizing performance on annotated data before testing

on unannotated (but very similar) data. The reported performance is therefore more

accurately interpreted as an upper threshold on performance, which might decrease

substantially on new data.

Finally, the SeNeCA system does not incorporate information from the temporal

dimension of the experiment into its segmentation. This is, in fact, quite intentional

since SeNeCA is meant to function on individual images (single time points) rather

than the entire video at once. Tomek et al. argue that single-frame segmentation is

important to allow experiments that require real-time segmentation (such as optoge-

netic stimulation), but it is unclear why previously recorded information should not

be incorporated into segmentation of later frames recorded from the same location.

In fact, Tomek et al. themselves mention a version of such integration in the form

of removing cells which are deemed to be unreliable due to only appearing in the

segmentation of a few frames. Nevertheless, the integration of information over time

could be developed farther.

3.1.3 Feature-based approaches

The image processing approaches mentioned above nominally have access to a wide

variety of features of the data through chaining several processing techniques together

and combining their results using rules derived from expert knowledge. Such systems

are intuitively appealing since they mimic the logic of a human annotator. However,

they are also restricted in that they cannot learn from data, access features or pat-

terns not noticed by human annotators, or easily adapt to new data with different

characteristics. What I refer to as feature-based approaches also use features derived

from the data, but incorporate them into formal statistical prediction frameworks

such as linear regression or supervised classifiers.
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Miri et al. (2011) propose a segmentation system based on linear regression of

pixel time courses against behavioral experimental correlates. In their experiment,

they aimed to detect cells that were responsive to eye movement. They therefore

used the expected calcium responses of cells responsive to eye position (p) and eye

velocity (v) as predictors. By linearly regressing each pixel against the predictors

and examining normalized Z scores, they identified pixels which were significantly

associated with p or v. They declared these pixels to belong to cells, and then used

manual or semi-manual techniques based on simple image processing to group them

into individual cells.

Though Miri et al. successfully used this regression approach for their experiments

in zebra fish, it is not generally applicable since we will not usually have access to

experimental covariates that we know to predict activity in the cells we are looking

for. In addition, like the matrix factorization approaches, this approach can only

identify active cells (in fact, only active cells with a particular tuning).

Valmianski et al. (2010) propose a more general feature-based system based on a

pair of statistical classifiers used in sequence. The first classifier works on the pixel

level, predicting the probability that a pixel measures from a cell based on features

such as mean intensity, temporal variance, local correlation, and local covariance. The

output of this classifier is thresholded at several levels, and divided into connected

components which are the input to the second classifier. This second classifier pre-

dicts whether each connected component is an actual cell or a false positive based on

features describing its shape, size, and the threshold level at which it was created.

The thresholded output of this second classifier gives the segmented cells. The Ro-

bustBoost algorithm is used to create both classifiers, using training data provided

by a human annotator.

This classification approach has several desirable characteristics, and is in fact the

method I extend in this dissertation. The first classifier uses temporal characteristics
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of the data such as variance and correlation structure, while the second classifier

considers features describing morphological constraints. This is a richer feature set

than most of the image processing approaches mentioned above. In addition, the

relationship between the features and the classification is learned from data.

Nevertheless, the method has some drawbacks. Firstly, the pixel-level classifier

requires pixel-level annotated data which can be difficult and tedious to obtain. Valmi-

anski et al. use very rough training data, for which the annotator only has to identify

a few regions of pixels that are definitely part of cells and some that are definitely

not. This makes acquiring training data easier, but necessarily provides very little in-

formation about border cases. Valmianski et al. partially get around this problem by

considering a range of thresholds on the first classifier to create input for the second

classifier. However, I claim that the pixel-level classifier is actually unnecessary and

that it can be combined with the mask-level classifier to create a more unified system

(see section 3.2).

A potential advantage of classifier-based systems is that is is easy to extend stan-

dard classifiers to identify more than two classes. Valmianski et al. only discuss one

type of region of interest (cells) making theirs a two-class classifier (cells, not cells).

However, the classifier-based system that I propose can segment an arbitrary number

of classes.

3.1.4 Evaluation of segmentations

A pressing concern in the development of segmentation algorithms is creating a good

method for evaluating them. Each paper published on automated TPCI segmentation

evaluates its method differently on different data, making performance comparisons

between methods extremely difficult.

The fundamental problem with evaluation is that the ground truth is inaccessible.
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This leaves us with two clear options: we can create simulated data where the truth

is known, or we can compare our systems to human annotators rather than ground

truth.

Mukamel et al. (2009), Diego et al. (2013) and Tomek et al. (2013) all create

artificial datasets to evaluate their segmentation systems. These artificial datasets

typically model soma as spherical bodies placed into an imaging field. Often the cells

are given an activity time course, either simulated using a spiking process and known

calcium transient shape or taken from a ‘known’ cell in real data. The background

region is often populated with static distractor shapes representing blood vessels and

cellular processes. Some simulations include blurring to represent the point spread

function of the microscope, and all add gaussian or poisson noise to simulate shot

noise.

All of the existing data simulations are limited to one channel, ignoring the struc-

tural channel. Since none of the existing segmentation methods use information from

the structural channel, this is unsurprising.

Simulated data is very appealing for evaluation since results can be compared to

known truth. However, the validity of these simulated datasets in predicting perfor-

mance on real data is unclear. By necessity, many assumptions are made about the

structure of the data and noise. Due to the complexity of TPCI data, it is unclear how

to test these assumptions or compare the artificial data to real data in a meaningful

way.

Even if we assume that we know ground truth, there are many ways of quantifying

the quality of a segmentation. Mukamel et al. (2009) evaluate their algorithm by

looking at the fidelity of extracted time courses, defined as the correlation coefficient

between the extracted time course and the true time course. They use this metric

to demonstrate that their method reduces the contamination of cellular signals by

neuropil, but they do not discuss the performance of their algorithm in terms of



Chapter 3. ROI segmentation 29

spatial filters (whether cells are found at all, if their spatial filters are accurate).

Diego et al. (2013) evaluate their algorithm according to whether it separates cells

with correlated activity. This metric allows a direct comparison against the Mukamel

et al. approach (which performs relatively poorly in this regard), but does not provide

any assessment of the discovery rate of cells or the quality of the spatial or temporal

mask characteristics.

In contrast, Tomek et al. (2013) use only spatial characteristics to evaluate their

segmentation since they only consider single frames. They break down errors into

four categories: split, merged, spurious, and missing. Split cells are those which are

erroneously assigned multiple masks. Merged cells are groups of cells that are jointly

assigned a single mask. Spurious cells are false positives, and missing cells are false

negatives. Though this is in some ways a richer evaluation of performance than those

described above, it still does not asses the quality of the shape of a mask (does a

mask accurately identify the boundary of a cell?).

In addition to simulation results, most papers on TPCI segmentation report results

on real data as well. Here, the only way to evaluate performance in more than an

anecdotal way is to compare against a segmentation created by a human annotator.

Valmianski et al. (2010) and Tomek et al. (2013) report results in this way, though in

both cases there is no attempt to evaluate the reliability of the reference segmentation.

To my knowledge, no study of inter-rater reliability has been performed for TPCI

segmentation.

Valmianski et al. (2010) evaluate their classification-based segmentation system

by using 5-fold cross validation on their labeled data. They report errors simply as

false positives or false negatives, separately reporting performance from their two

classifiers. As such, cells that were not generated as candidates by the first classifier

may not be reported as errors at all (remember that the training data for the first

classifier was very incomplete). In addition, there is no evaluation of the quality of
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the mask shapes or boundaries.

Because of the variety of ways in which performance of these existing segmentation

algorithms is quantified and reported, it is difficult to compare them in a meaningful

way. Nevertheless, in an attempt to define the sort of performance that is considered

state of the art in this field, table 3.1 summarizes the reported performance of existing

TPCI ROI segmentation methods. As far as can be determined, the performance of

my proposed system (see section 3.3) has comparable performance to these.

3.1.5 Characteristics of a desirable segmentation system

This section has summarized the existing work in ROI segmentation for TPCI. This

current work has strengths and weaknesses which should be kept in mind when de-

veloping new approaches. Here I list what I believe to be important characteristics

of future segmentation systems.

1. Uses as much of the available information as possible. Some existing approaches

use temporal information as well as spatial structure. As of yet, no segmentation

systems use information from both imaging channels.

2. Segments a variety of ROIs. Many existing techniques are limited to segmenting

active cells. None explicitly or automatically differentiate between types of cells.

3. Uses data to learn. Matrix factorization approaches find structure in the cur-

rent data, but can’t learn from past data. Expert-designed systems of image

processing techniques use human knowledge but can’t improve or learn without

manual modification of the system. Classifier approaches are able to learn as

the amount of training data grows.

In addition, though not a feature of the segmentation systems themselves, future

systems should be subjected to rigorous and standardized evaluation procedures. To
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make progress in this area, it is imperative that the community clearly define the goals

of segmentation and systematically evaluate how well both manual and automated

procedures meet those targets.

3.2 MaSCS: Mask-space supervised classification for segmenta-

tion

In this section I propose a framework for segmenting TPC images that meets the three

criteria defined above, while being flexible and customizable enough to be useful to ex-

perimenters. This framework is called MaSCS: Mask-space Supervised Classification

for Segmentation.

Since TPC images are pixelated, the obvious unit of inference when doing segmen-

tation is the pixel. However, individual pixels carry very limited information without

considering their spatial context. Inferring whether an isolated pixel is part of an ROI

is only possibly with unusually detailed knowledge about its expected time course as

in the regression approach of Miri et al. (2011). For this reason, even the pixel-level

classifier in Valmianski et al. (2010) in fact uses primarily functions of a pixel and it’s

5 to 21 surrounding neighbors. Though the pixel is the smallest spatial unit of data

easily accessible, we simply lack enough information to do inference on this scale.

In contrast, we have a great deal of information and knowledge relevant to evaluat-

ing whether a group of pixels is a likely region of interest. The ROIs are the scientific

target of the experiment, and as such we can describe them. For instance, we know

the plausible range for the size of a neuron’s soma, and know its approximate shape.

We can reasonably expect the calcium dynamics within different parts of a cell’s soma

to be correlated with each other.

Rather than using the pixel as a unit of inference simply because it is the exper-

imental unit of measurement, the MaSCS method focuses on candidate ROI masks
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as the fundamental unit. Unconstrained by computational constraints, this method

would consider the space of all contiguous reasonably-sized groups of pixels and then

select a minuscule fraction of these as an appropriate segmentation. Clearly this is

impractical as the set of such candidate masks is enormous even for reasonably small

images.

Fortunately, as known from previous work on this problem (and by the many

experimental labs who have cobbled together their own semi-automated segmentation

procedure) there are innumerable ways of generating a smaller set of candidate masks

that is likely to be a superset of the correct ones. These methods include peak-finding,

thresholding, spatial filtering, and all of the matrix factorization and feature-based

approaches described in the previous section. It is entirely unclear which of these

methods is the best, or even if one is universally superior to the others. Perhaps each

is uniquely appropriate for a particular set of imaging conditions or characteristics of

the target ROI.

MaSCS takes the output of one or more of these mask-generating procedures as

input. Crucially, the user need not manually tune parameters of the mask-generating

procedure. The goal is simply to generate a superset of the correct masks without

more regard for spurious masks (false positives) than is demanded by computational

concerns. This can generally be accomplished by using a range of reasonable param-

eters.

Once the set of candidate masks is generated, MaSCS uses supervised classifi-

cation, subject to constraints on ROI overlap, to create a segmentation. Though

training data is required, the annotator need only make rough judgements, limiting

tedium as much as possible. In addition, as the system is used, additional training

data is created allowing the system to continue to learn and improve.

Figure 3.1 presents the algorithmic flow of MaSCS in graphical form. The following

sections describe each stage in detail. It is worth emphasizing that MaSCS is a general
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Figure 3.1: Schematic of the segmentation process. Grey boxes describe
the states of stored data and processing output. Blue boxes describe the
processing steps which transform the data from one state to the next. The
green box indicates user input. Sections 3.2.1 through 3.2.4 describes each
of the elements of this schematic in greater detail.

framework for performing segmentation. The specifics of the mask generators, feature

space, and classifier are not integral to the approach. However, for the purpose

of demonstration, I have chosen particular techniques for these steps to create a

prototype MaSCS system. Section 3.3 discusses the evaluation and performance of

this system on real data.

In theory, the MaSCS procedure could be used to find any type of ROI. This

implementation finds two classes of cell somata – neurons and astrocytes. These are

likely to be the most commonly relevant ROIs in TPC imaging. Finding two classes of

ROIs demonstrates the multi-class ability of the MaSCS procedure while maintaining

a simple prototype system.
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3.2.1 Mask generation

The MaSCS system takes as input a set of candidate ROI masks assumed to be

over-complete. One of the strengths of this method is that it can work with and

improve upon whatever mask generating technique a research lab currently uses.

Nevertheless, I have developed two straightforward techniques adapted from image

processing that work well for generating masks. These two techniques, Laplacian-of-

Gaussian blob finding and thresholding of locally equalized images, are what I use in

the implementation of MaSCS presented here.

Both of the techniques I present here for finding candidate masks work on the

time-averaged data. The time dimension of the data is used for selecting masks later

in the procedure, but it could still be reasonable to include mask generators that

aren’t blind to temporal dynamics (such as the matrix factorization procedures).

Laplacian-of-Gaussian blob detector

Laplacian-of-Gaussian (LoG) blob detection is a well-known peak-finding technique in

the image processing literature (Lindeberg, 1998). This technique finds regions where

the estimated second derivative of a smoothed image is negative - bright blobs in a

greyscale image. Generally, a range of degrees of smoothing is used to detect blobs

at multiple scales. Much of the image processing research on blob detection focuses

on automatically selecting the appropriate scale for a particular image feature. Since

I want to integrate additional information into making that choice, I do not try to

make these scale-space decisions in the mask generation step, instead finding blobs

at a range of scales.

Consider an image. In this case, the image will be the time-averaged data from a

single TPCI channel c?. Represent our (channel-x-y-time) fluorescence imaging data
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(a) Smoothed image (low) (b) Smoothed image (high)

(c) Laplacian image (low) (d) Laplacian image (high)

(e) Candidate ROIs (low) (f) Candidate ROIs (high)

Figure 3.2: Demonstration of the LoG mask generating procedure. Ex-
amples are chosen for two points in scale space (relatively low smooth-
ing, and relatively high smoothing). (a) and (b) show the original image
smoothed at the two levels. (c) and (d) show the result of convolving
with the Laplacian kernel. (e) and (f) show the set of generated masks
for each level. Each mask is plotted in a different color, with white pixels
indicating the local maxima used to separate masks.
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as Dc,x,y,t, and let

D̄c?,x,y =
1
T

T∑
t=1

Dc?,x,y,t (3.1)

be this mean image. Chose a range of smoothing scales s1, ..., sN . For each scale,

create a Gaussian kernel with that scale

g(x, y, s) =
1

2πs
e−(x2+y2)/(2s). (3.2)

Let

D′c?,x,y,s = D̄c?,x,y ∗ g(x, y, s) (3.3)

be the smoothed image created by convolving D̄c?,x,y with this kernel.

Next convolve each smoothed image with a 3-by-3 kernel KL which approximates

the Laplacian operator

KL =


0 1 0

1 −4 1

0 1 0

 ≈ L(x, y) =
δ2I

δx2
+
δ2I

δy2
. (3.4)

Select the pixels of the resulting image with negative values as described by the

binary image

D01
c?,x,y,s = Indicator

[
(D′c?,x,y,s ∗KL) < 0

]
. (3.5)

The last task is to divide the identified pixels in D01 into individual ROI masks.

Call the region of D01 with value 1 the identified region. Assume that in the smoothed

images, each candidate ROI can be associated with a local maximum in intensity.

Restricting attention to the identified region, find all the local maxima and give each

of these a unique identifier. Finally, assign each identified pixel in D01 to one of the

local maxima by hill climbing on the identified region of the smoothed image. That

is, for each identified pixel, move to its highest identified neighbor and repeat until
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there exists no higher neighbor. If the end-point of this process is one of the labeled

local maxima, assign the original pixel the identifier of that maxima. Some identified

pixels will not be associated with a local maxima, and these are discarded. Note that

restricting the hill-climbing process to the identified region forces candidate ROIs to

be contiguous.

This process will result in a set of candidate ROI masks, one for each unique

identifier created in the last step. For each of these identifiers, generate a candidate

mask Mi which is a binary matrix giving the locations of the pixels assigned that ID.

Mi,x,y = Indicator
[
D01
x,y = i

]
(3.6)

Figure 3.2 shows this process in images for example data.

Thresholding of locally equalized images

Rather than looking for peaks in the intensity landscape as the LoG blob detector

does, a thresholding approach generates candidate cells by finding contiguous regions

with intensity value above some cut-off. As emphasized earlier, the range of values of

TPC images tends to vary greatly spatially. This means that simple thresholding is

ineffective since the appropriate thresholds (and the sensitivity of the output to small

changes in threshold value) are different in different parts of the images. The result

is that it is difficult to capture cells in darker, lower-contrast areas of the images.

Figure 3.4 demonstrates this problem.

To account for the contrast differences across the images, I propose thresholding

a locally equalized version. Specifically, I use sliding window histogram equalization.

Histogram equalization transforms an image to increase contrast by linearizing

the empirical cumulative distribution function (CDF). Though the image pixel val-

ues define a discrete probability mass function, the procedure is motivated by the
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continuous probability integral transform.

Let X be a continuous random variable with a CDF FX . The probability integral

transform states that the random variable

Y = Fx(X) (3.7)

has a uniform distribution. For a discrete-valued image Dx,y, we can approximate

this transformation. Let the empirical CDF function at a value v be

cdf(v) =
∑

p∈pixels
Indicator(p <= v). (3.8)

The histogram equalization function H for a pixel p is

H(p) = round

[
cdf(p)− cdfmin
Nx ·Ny − cdfmin

(Vmax − 1)
]

(3.9)

where cdfmin is the minimum value of the empirical CDF (can be greater than 1 if

there are several pixels with equal values), cdf(p) is the value of the CDF at the value

of pixel p, and Vmax is the maximum desired value for the equalized image.

Figure 3.3 demonstrates the application of histogram equalization on an example

temporally averaged TPC image. When the equalization procedure is applied to

the entire image, the empirical CDF is linearized and the histogram is uniform, as

expected.

Though histogram equalization does increase the contrast of the image, when

applied to the whole image it does not solve the problem of different regions of the

image having very uneven contrast. Thresholding procedures are still not effective.

To locally equalize contrast, I use a sliding window version of the histogram

equalization procedure. For each pixel in the image Dx,y, consider a square window

d(x−r):(x+r),(y−r):(y+r) with radius r around the pixel. Perform histogram equalization
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on this smaller image. Assign the equalized value of the center (original) pixel to that

pixel in the final result.

The result of the sliding window histogram equalization is shown in figure 3.3. The

histogram of pixel values in the image is, of course, not uniform since the equalization

procedure was not applied to the whole image simultaneously. However, the contrast

is increased adaptively across the image such that all regions have similar contrast

levels.

Figure 3.4 contrasts the results of thresholding the original image with that of

thresholding the sliding window histogram equalized image. The equalized image

allows thresholding to find relatively bright features (candidate ROIs) in all regions

of the image simultaneously. One downside of the procedure is that in regions with

very little signal, the equalization procedure amplifies the noise excessively. Given

that the goal of mask generators for the MaSCS procedure is to generate masks

without too much concern about spurious masks, this amplification of the noise is not

of concern. The candidate masks that result from thresholding these noise regions do

not have other characteristics expected of cells and will be discarded by the MaSCS

classifier.

Creating a database of candidate masks

As input to the MaSCS procedure we want an overcomplete set of candidate ROI

masks. With a range of smoothing or thresholding values, the two mask generating

procedures mentioned above can generate large numbers of candidate masks. How-

ever, it is unlikely that one technique will generate the best mask for all cells. For

instance, the LoG blob detector, as a peak-finding method, may be better at sep-

arating closely spaced cells. Thresholding of the equalized image may be better at

finding cells in dim regions of the image. For some cells or regions, a higher smoothing
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(a) Original image (b) Histogram and CDF (original)

(c) Whole-image equalization (d) Histogram and CDF (whole image)

(e) Sliding window equalization (f) Histogram and CDF (sliding window)

Figure 3.3: Examples of histogram equalization. The first column shows
the images while the second column shows the histogram of pixel values
and empirical CDF (unnormalized). (a) and (b) show the original image.
(c) and (d) show the histogram equalized image. (e) and (f) show the
sliding window equalized image.
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(a) Original image (b) Equalized image

(c) High threshold (original) (d) High threshold (equalized)

(e) Low threshold (original) (f) Low threshold (equalized)

Figure 3.4: Example of thresholding as a mask generating procedure.
(b) is the original image. (b) is the sliding window histogram equalized
image (with a window size of 17 by 17 pixels). (c) and (d) show the masks
generated using a relatively high threshold for the original and equalized
images. (e) and (f) show the masks generated using a relatively low
threshold for the original and equalized images. This demonstrates how
spatially unequal contrast in different regions of the original image re-
sults in poor results from thresholding, a problem fixed by sliding window
histogram equalization.
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(a) Structural image (original) (b) Structural image (equalized)

(c) Functional image (original) (d) Functional image (equalized)

Figure 3.5: The structural and functional mean images (as well as their
equalized versions) can both be used for mask generation. Dark regions
in the structural image can be informative about the location of neurons
and can be found by thresholding or peak finding on the inverted image.

parameter may be best, whereas for others a lower smoothing level may be necessary.

In addition to having multiple mask generation techniques, we also have multiple

channels of data. We can apply both mask generators to both channels at a variety of

smoothing levels and thresholds. Because the structural dye does not enter neurons,

neural soma are dark regions in the structural image (see figure 3.5). These dark

regions can be as informative as bright regions, and can be exploited by applying

the previously described mask generating procedures to the inverse of the structural

image. If the MaSCS procedure were being used by a different group, the mask
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generating procedures might be extended or altered. The two that I use here are

simply meant to demonstrate that automatic, unsupervised procedures are capable

of generating a sufficiently complete set of masks. The actual performance of these

procedures is hard to quantify, but is explored later in the results section (3.3).

The process of automatic mask generation can generate a very large number of

masks. To efficiently store and process these masks, I use a SQLite relational database

for each experiment. The masks are stored in the databases as vectors giving the in-

dices of the mask pixels. This sparse representation reduces storage costs significantly

since most masks are quite small relative to the size of the images. It also allows for

faster searching and comparison of masks.

Associated with each mask are its features. These features are discussed in more

detail in the next section, but include information about the source(s) of each unique

mask. A mask may be generated by multiple mask generators and/or at multiple

smoothing levels or thresholds. Each unique mask is only stored in the database

once, but each time it is generated a feature associated with the mask indicates which

generator(s) produced it.

Even with efficient storage of the masks, the task of generating and processing

the masks for storage can be somewhat computationally intensive if many masks are

created. For this demonstration of the MaSCS procedure, the mask generators created

up to 100,000 masks for each experiment, of which up to approximately 20,000 were

unique. Creating and storing this many masks took on the order of 15 minutes with

current code, but this could be significantly optimized. Additionally, as the MaSCS

procedure gives us some information about the quality of mask generators, we could

almost certainly use this information to reduce the number of masks generated in the

future without compromising performance.



Chapter 3. ROI segmentation 45

3.2.2 Feature space

The features that can be used in the MaSCS system are limited only by creativity

and computation. For this implementation of the system I have used features in three

categories: data-based features, shape-based features, and source features.

Data-based features draw information from the data underlying a mask in both

channels. Including features based on the two channels and the time dimension allows

comprehensive use of the available data. These features can include such things as

• mean (over space and time) fluorescence for both channels

• mean fluorescence of the equalized data

• mean pairwise temporal correlation between pixels in the mask

The size and shape of cell somata are well understood and should be able to be

leveraged by the classifier. Shape-based features incorporate this information into the

segmentation algorithm. These features include such things as

• size of the mask

• ratio of the mask size to that of its convex hull

• ratio of the mask size to that of its bounding box

• number of holes (non-mask pixels surrounded in 3 or more cardinal direction by

mask pixels)

Finally, source features indicate which mask generator(s) created the mask and

how often the mask was created by each generator. These features may be helpful

in classification, but more importantly, including them can help us learn about the

quality of the various mask generators.
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3.2.3 Annotation

MaSCS uses a supervised classifier to create the final segmentation from the large set

of candidate masks originally generated. This supervised classifier requires training

data. Since my goal is to automate the human annotator, I want to obtain a large

set of masks that are labeled with their ROI classes (or as spurious masks) by a

human. However, obtaining this training data is nontrivial for two reasons. First, a

human should not be required to examine and annotate tens of thousands of masks

for each experiment. Second, though humans may be able to identify the presence

or absence of a cell, it is very difficult for a human to annotate on the pixel level. A

human will almost certainly not be able to distinguish the exact boundary of cells

with confidence, and so will likely find several masks to be equally acceptable for an

identified cell.

To help with the annotation process, I built a prototype graphical user interface

(GUI) for annotation. Figure 3.6 shows a screen shot of this tool. The user can see

a collection of time-averaged images from the experiment being labeled (for instance,

the original mean images and their equalized version). He then selects a region con-

taining an ROI by highlighting that region with his mouse. A popup window appears

presenting all masks from the mask database that are entirely contained within the

selected region. These masks are sorted by size, allowing the user to quickly find the

range of masks he deems appropriate for the ROI in question. He indicates masks he

wishes to select by clicking on them to cycle through the available list of ROI class

labels. Finally, he may specify that all non-labeled masks within the selected region

should be labeled as spurious. Using this tool, the annotator is unlikely to label all

masks in the database, but is likely to provide labeled masks for each ROI and for

spurious masks that are similar.

For each ROI, the annotator will almost always select multiple masks as appro-
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(a) Main program

(b) Mask labeling window

Figure 3.6: Screenshots from the prototype GUI for providing training
data to the classifier (or correcting an automating segmentation). The
main window,shown in (a), shows the original and equalized images from
both channels. Masks that have already been selected as appropriate for
ROIs are shown in green (neurons) and blue (astrocytes). When the user
selects a region of any of the images, the mask labeling window appears.
This shows the candidate masks that are contained within the selected
region. The user clicks on a particular mask to label it as appropriate for
the ROI. In this example, green masks are those selected as appropriate
for this neuron and red masks have been deemed incorrect.
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priate. This creates an unusual structure in the training data provided to the MaSCS

classifier. Though the data may be seen as standard multi-class labeled data, it more

accurately can be seen as clustered labeled data. For each ROI, the annotator labeled

a cluster of masks of which he believes at least one describes the unknown true shape

of the ROI.

3.2.4 Mask selection by classification

The task of the MaSCS classifier is to select one mask from the mask database for

each ROI in an experiment. In general, this will be an unannotated experiment, but

the classifier may also be used to refine the annotation provided by the human. The

annotation frequently specifies multiple masks for each ROI and the classifier can be

used to select the best one.

The nature of the segmentation problem defines several characteristics that the

MaSCS classifier must have. It must be a multi-class classifier, it must handle very

imbalanced training sets for different classes, and it may not depend strongly on hav-

ing known class-conditional distributions for the predictive features. A classification

framework that fulfills these criteria and is known to have generally good performance

is Random Forests. I therefore use a standard Random Forest (RF) classifier in this

work. However, due the unique structure of the problem the RF classifier is only used

to estimate class probabilities for each mask and the final classification (or segmen-

tation) is done with a custom procedure that considers the clustering of masks and

the need to select just one from each cluster.

The Random Forest, introduced in Breiman (2001) is a randomized ensemble

algorithm built on top of the basic decision tree. A decision tree is a classifier which

partitions the feature space based on a sequence of binary judgements about features.

The tree is built from the root by repeatedly choosing splits which optimize some
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criteria.

Consider a set of labeled data where Xd,f is a matrix with Nd data elements on

the rows and Nf feature values in the columns. Y is a vector of length Nd giving

the class labels for the data. Before growing the decision tree, all data points are

assigned to the root of the tree. As the tree is grown, data points are moved to the

appropriate leaf of the tree. At each step of growing a decision tree we split a leaf of

the existing tree based on a feature. We choose this feature f to give the best split

of the data. ‘Best’ can be defined in a number of ways, but a common criteria is the

Gini impurity measure.

Gini impurity indicates the chance that a randomly chosen datum in a leaf of

the tree would be incorrectly labeled if assigned a label according to the empirical

distribution of class labels in the leaf. Consider a group of data points D, each

assigned one of C class labels. The Gini impurity of this group is

G(D) =
C∑
c=1

Nc(1−Nc) (3.10)

where Nc is the number of data points in the group with label c.

At each step of building the tree, we choose the split resulting in the lowest average

Gini impurity in the resulting leaf nodes. We repeat this process until the data points

in each leaf of the tree all have the same label.

Random Forests use an ensemble of decision trees grown on bootstrap samples of

the data using random subsets of features. The basic outline of the Random Forest

algorithm is as follows. Given Nd data points, each with Nf features, choose a number

of trees Nt and a number of features to consider at each decision point Mf << Nf .

Then, for each tree

1. Create a random training set by drawing a bootstrap sample from the original

data (draw Nd data points randomly with replacement).
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2. At each branching point of the tree, randomly select Mf features and choose

the best split based on those features.

3. Repeat 2 until the tree is fully grown.

Once the ensemble of trees is created, new data is classified by each tree in the

collection. The probability of a new data point belonging to a particular class can be

estimated as the fraction of the trees in the forest which predict that class.

Random Forests have a number of characteristics which make them a good choice

of classifier for the MaSCS system. They are known to avoid overfitting, they make no

distributional assumptions on the features included in the classifier, they are relatively

fast for both training and testing, and they provide a measure of variable importance.

As a model selection technique, these measures of variable importance can be used to

work backwards and learn about the quality and informativeness of mask generators

and data features. Those generators and features that are uninformative can be

reconsidered or removed from the MaSCS procedure for efficiency in the future.

MaSCS as implemented here uses a standard Random Forest classifier (as imple-

mented in the ramdomForest R package) to estimate the class probabilities for each

candidate mask in an experiment. However, it is not sufficient to simply assign the

class label with the highest probability to each mask since this will result in many

masks being chosen for each ROI. To solve this problem, the MaSCS procedure frames

segmentation as a graph problem – a variant on the maximum weight independent

set (MWIS) problem.

Assume that we want only one mask for each ROI, and that a single pixel may

only belong to a single ROI. We want to select the best candidate mask for each ROI

such that no two masks overlap. Consider all candidate masks and the estimated class

probabilities generated by the RF classifier. For each mask, assign a class accordingly.

Discard all masks whose assigned class is noise. With the remaining masks, create



Chapter 3. ROI segmentation 51

a graph. Let G be this graph where each vertex Vi corresponds to mask i and Eij

defines the edge matrix where Eij = 1 if and only if mask i and mask j share at

least one pixel.1 Assign each vertex a weight wi equal to the classifier’s estimated

probability that the mask is in its assigned class.

With a small modification discussed below, the problem of choosing the best non-

overlapping masks can be framed as the well-known maximum weight independent

set (MWIS) problem. Formally, the MWIS problem for the graph G is to find the

binary vector S∗ which indicates the group of non-connected vertices with maximum

total weight

S∗ = argmax
S

wTS

s.t. si ∈ 0, 1 ∀i

STES = 0

(3.11)

The MWIS problem is an NP-hard integer program, but in practice for the MaSCS

procedure the graph G will consist mostly of a collection of disjoint cliques correspond-

ing to the several masks selected by the classifier for each ROI. The MWIS problem

then reduces to selecting the element of each clique with the highest weight. This is

not computationally intensive.

If G is indeed a collection of disjoint cliques, the problem is solved. However,

occasionally closely-spaced ROIs will result in cliques which partially overlap. A

slight modification of the MWIS problem which improves segmentation performance
1As a side note, the most computationally intensive part of the modified MWIS mask selection

procedure is computing the overlap matrix (edge matrix) for the masks. The naive solution, checking
each pixel of two masks against each other, is linear in p, the number of pixels in the image. If we use
the sparse representations of the masks, we need to compare two vectors of indices to see if they share
any elements. The naive solution to this is m ∗n where m and n are the numbers of pixels in the two
masks. If we assume the sparse masks are sorted lists of indices, we can reduce this to m ∗ log(n) by
performing a binary search on the second mask for each index present in the first mask. With this
runtime, it is possible to compute the complete overlap matrix for tens of thousands of candidate
masks in just a few seconds. This same efficient algorithm is also useful in the mask annotation GUI
for efficiently finding the masks contained within a target region.
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is to acknowledge the multi-class nature of the segmentation by considering both the

clique structure and class labels of the vertices in G. At a high level, the goal is to

assign the masks (vertices) into groups which correspond to ROIs and then require

that the segmenter select one mask from each group. The challenge is to define the

groups without a priori knowledge of the ROIs. MaSCS uses the following heuristic.

We assume that all masks that correspond to an ROI will have the same assigned

class and be mutually overlapping (be a clique). We can therefore start by finding all

the maximal cliques in the graph which contain masks of only one class. However, an

ROI may have masks which overlap with some of those in a nearby ROI. When this

happens, there will be at least three maximal cliques in the graph instead of the two

we want (one for each ROI and at least one containing the overlapping masks between

the ROIs). To remove these extraneous cliques, first consider the set of all maximal

cliques in the graph. Assign a group ID to any clique which contains a mask not in any

other clique. We assume that these ID’ed cliques correspond to the ROIs. Each mask

will be in at least one of the ID’ed cliques. If it is in more than one, remove it from

consideration. Such masks, if selected, would preclude the selection of an additional

mask from either of its cliques, violating our assumed correspondence between cliques

and ROIs. After removing these masks, we will be left with a collection of disjoint

cliques, and can easily solve the MWIS problem.

The clique-forming heuristic described here encourages splitting closely spaces

ROIs rather than merging them into one larger ROI. Anecdotally, this is usually the

correct decision. The frequency with which the heuristic is necessary is low enough

that its impact on overall performance is small.
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Figure 3.7: An example segmentation for one experiment creating using
the MaSCS classifier trained on the remaining 19 experiments. The left
images are the functional (top) and structural (bottom) mean images for
reference, the right images have the segmentation superimposed. Blue
regions are classified as astrocytes, green regions as neurons. Several
cells are missed, especially around the edges of the image where the mask
generators do not perform as well. Of the 67 neurons segmented, 27 were
not identified by the annotator. On post-hoc inspection, many of these
are plausible cells missed by the annotator, but some are in fact spurious.
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3.3 Results

Once the MaSCS classifier is trained, it can produce a segmentation for new data.

Figure 3.7 shows an example of such a segmentation. This example is a completely

automated segmentation. However, the MaSCS classifier can also be a part of a semi-

manual segmentation system that improves with use. Starting with the segmentation

produced by MaSCS, an experimenter may manually correct it using the same inter-

face used to create training data. The corrections provided by the annotator can be

used to constrain the MaSCS segmentation (forcing a mask to be selected for each

ROI identified by the experimenter and removing masks marked spurious). In addi-

tion, the corrections provide additional training data that can be used to retrain the

classifier.

In either use case, we need a way to evaluate the performance of the segmenter.

As discussed in section 3.1.4, evaluation is a difficult and non-standardized task. For

this work, I evaluate the performance of the MaSCS system based on 20 representa-

tive TPCI experiments from the data described in 2.5. These 20 experiments are each

from a different region of the somatosensory cortex in 4 rats. The type of stimulation,

number and distribution of cell types, and density of cells varies between the exper-

iments though they all have the same spatial and temporal resolution. I evaluate

performance with reference to a human annotator, since ground truth is unavailable.

For the MaSCS system, there are two places where error could be introduced.

The first is in the mask generation step. If no mask generator creates an appropriate

mask for an ROI, that ROI cannot be segmented. The second is in the mask selection

step. The classifier may not select the same masks as chosen by a human annotator.

Anecdotally, the first type of error is common around the edges of images due

to edge effects of the convolution and local equalization procedures. Away from

the edges, these errors were rare but did occur occasionally. I attempted to assess
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mask generator errors by comparing the segmentation produced by an annotator

independently with that produced using the MaSCS mask annotation system. Since

pixel-wise independent annotation is difficult and tedious, I compared the MaSCS

segmentation to a pseudo-segmentation in which the annotator simply marked each

cell with a dot rather than defining the complete ROI. The annotator performed this

free labeling twice, several weeks apart. Figure 3.8 compares the number of ROIs

labeled in the two free labeling sessions and the mask annotation session, all done

by the same annotator, with each session separated from the others by several weeks

(the mask annotation was done first, followed by the two free labeling sessions).

From this small amount of data, it does not appear that the annotation is severely

limited by missing masks since the annotation does not routinely identify fewer ROIs.

However, there may be some effect of using the annotation GUI instead of free labeling

since the annotation generally finds either more or fewer ROIs than both free labeling

sessions for each experiment. Why this would be the case is unclear.

The second, and more common, form of error in the MaSCS system is error in

mask selection. This can be assessed by comparing the MaSCS output to held-out

annotated training data. Because the annotator generally selects multiple masks per

ROI and the MaSCS segmenter selects just one, the comparison is not trivial. I

evaluate performance using the following categories

• Correct ROIs are those where the segmenter selected one of the masks chosen

by the annotator.

• Marginal ROIs are those where the segmenter selected a mask that was not

selected by the annotator but that overlapped with a chosen mask. That is, the

segmenter identified a correct ROI but may have chosen a poor mask shape.

• Missed ROIs were annotated by the human but had no mask selected by the

segmenter.
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Figure 3.8: Comparison of the number of ROIs found by the same an-
notator in different annotation sessions. The two free labeling sessions
required the annotator to mark each ROI with a dot. The annotation
session used the GUI shown in figure 3.6 to select masks from the auto-
matically generated MaSCS database. From this small amount of data, it
does not appear that the annotation is severely limited by missing masks
since the annotation does not routinely identify fewer ROIs. However,
there may be some effect of using the annotation GUI instead of free
labeling since the annotation generally finds either more or fewer ROIs
than both free labeling sessions for each experiment.
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• New ROIs are selected by the segmenter but not marked by the annotator.

• Mislabeled ROIs are correct or marginal masks selected by the segmenter that

are given the wrong label.

Figure 3.9 shows the performance of the prototype MaSCS system evaluated using

20-fold cross validation on the 20 annotated representative experiments. For each

experiment, the MaSCS classifier was trained on the remaining 19 experiments and

tested on the held-out experiment. The error is reported separately for the two

segmented classes (neurons and astrocytes). The performance is much better for

neurons, which may be due to the fact that there are significantly fewer astrocytes

and therefore less data available for training. Notably, there are very few mislabeled

masks.

By default, the classifier assigns to each mask the class with the highest estimated

probability. To get a more complete idea of how performance scales, we can impose

thresholds on the minimum required estimated probability for a mask to be classified

as an ROI. This allows us to estimate receiver operator characteristic (ROC) curves

that show how the number of false positive (new) masks scales with the number of

true positives (correct and marginal).

Figure 3.9 gives the results summed over all experiments. It is worth noting, how-

ever, that the actual performance varies substantially between experiments, and is,

unsurprisingly, related to the number of ROIs present in the experiment. Figure 3.10

shows the performance for individual experiments. Each experiment was segmented

using a classifier trained on the remaining 19 experiments, and the performance was

evaluated in the same way as described above. This performance is plotted against

the number of ROIs (of both types) annotated in the experiment. This figure shows

that, especially for astrocytes, performance is highly variable between experiments.

Experiments with very few ROIs tend to have the worst performance. This may re-
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(a) Performance with most likely class

(b) ROC curve for neurons (c) ROC curve for astrocytes

Figure 3.9: Performance evaluated against annotated training data us-
ing 20-fold cross validation on 20 different experiments. Across all 20
experiments, there were 521 annotated neurons and 178 annotated as-
trocytes. (a) shows the performance of the default classifier. (b) and
(c) show ROC curves for the classifier estimated by imposing a mini-
mum threshold for a mask to be classified as a cell. As this threshold
increases, fewer masks are selected by the classifier. The ROC curves
show how the number of new cells scales with the number of correct and
marginal cells. The dotted lines indicate the performance of the default
classifier.
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Figure 3.10: Performance for each experiment, evaluated using 20-
fold cross-validation. The plots show performance plotted according to
the number of annotated ROIs in the experiment. Two patterns are no-
ticeable: the percentage of correctly segmented ROIs increases with the
number of ROIs in the image, and the percentage of new/spurious ROIs
(calculated as (number annotated)/(number new)) decreases.

sult from these images having large regions of noise which gets amplified by the mask

finding procedures and not adequately differentiated by the features in the MaSCS

classifier. Fortunately, these are also the easiest and least tedious experiments to

segment or correct by hand.

Finally, one of the advantages of the MaSCS framework is that it can be iteratively

improved as it is used in a lab. When analyzing large quantities of data, experimenters
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may want to use the output from MaSCS without further editing. But for smaller

amounts of data for which better replication of the human annotator is necessary,

experimenters may want to treat the MaSCS segmentation as a time saving starting

point, correcting the resulting segmentation by hand. These corrections can be used

as additional training data. Figure 3.11 demonstrates how performance of the MaSCS

algorithm improves as additional training data is used.

To test whether correcting the segmentation improves performance, I initiated a

classifier using two annotated experiments. I used this classifier to segment another

two experiments, and then corrected these segmentations. I then used this new train-

ing data to create a new classifier, repeating this process to generate 8 classifiers.

Because the impact of individual experiments on a classifier is variable, I repeated

this entire process three times with different random orderings of the experiments.

I evaluated each classifier against the previous training annotations of the experi-

ments not used to train it. Figure 3.11 shows the results of this process. The figure

shows the combined performance of the three iterations, as well as the performance

on individual iterations. This is a preliminary analysis, but does suggest that in-

corporating additional training data created while correcting segmentations improves

the performance of the MaSCS classifier.

Currently, the MaSCS system does not include in its output any notion of con-

fidence in the ROIs that it returns in the segmentation. However, there are several

ways that this confidence could be estimated. One is to look at the estimated prob-

ability of the selected mask as returned by the classifier. Another is to look at how

many candidate masks are identified for each ROI (before the maximum weight in-

dependent set procedure to select a single mask). False positive masks tend to have

lower confidence according to these measures. Figure 3.12 shows a summary of the

confidence analysis. This analysis was done using 20-fold cross-validation (training

on 19 experiments, evaluating the 20th). For each correct, marginal, or false positive
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Figure 3.11: Performance changes as corrections to segmentation are
used as additional training data. The classifier was used to segment two
experiments, those two experiments were corrected, and a new classifier
was generated. This was repeated to create 8 classifiers, each with new
data. This entire process was repeated 3 times using a different order-
ing of the experiments. Performance was evaluated by evaluating each
classifier on the experiments that didn’t contribute training data, with
the previous training segmentation of these experiments being used as
ground truth. The solid lines above show the combined performance over
the three iterations. The dotted lines show performance on each iteration.
Different experiments have varying effects on the quality of the classifier,
but overall, correcting the segmentation improves performance.
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ROI, the number of identified masks and the probability of the selected mask was

recorded. As the boxplots show, the correct ROIs tend to have highest confidence,

and the false positive ROIs tend to have the lowest. The distributions of these con-

fidence metrics overlap significantly, making it impossible to accurately remove false

positives based on confidence. However, incorporating confidence into the output of

the MaSCS procedure could be useful during the manual correction of segmentations

or during later analysis.

3.3.1 Discussion of results

In the previous section, I presented the results of my prototype MaSCS segmenter in

several ways. As discussed in section 3.1.4 there is no established evaluation criteria

that can serve as a common metric to compare this performance to that of existing

segmenters. Nevertheless, it is worth comparing, as far as is possible, the performance

of the MaSCS system with that of the most similar previous systems: the double

classifier system of Valmianski et al. (2010) and the image processing algorithm of

Tomek et al. (2013).

Valmianski et al. (2010) give the ROC curve for their mask-level classifier. For this

second-stage classifier, they report a false positive rate of 20% with 3% of annotated

cells missed. This is better than the MaSCS performance (67% false positives with

5% missed neurons). Valmianski do not discuss the idea of marginally correct masks,

or discuss whether either their classifier or annotator ever selects multiple overlapping

masks for an ROI. Neither do they provide an evaluation of how many cells had no

masks generated for their second stage classifier.

Tomek et al. (2013) report a false positive rate of 48.7% with 5.9% of cells missed.

This is comparable to the the MaSCS performance in terms of false negatives, though

with fewer false positives. However, the Tomek results were reported after tuning
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Figure 3.12: Confidence measures by segmentation quality for ROIs.
The boxplots show the distribution of two confidence measures for cor-
rect, marginal and false positive ROIs, evaluated using 20-fold cross-
validation. The top plot shows the number of identified masks for each
ROI before the selection procedure to select just one. The bottom plot
shows the probability of the chosen mask for each ROI as estimated by
the classifier. The numbers in parenthesis are the number of ROIs in
each category.
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the algorithm’s performance on images from the same experiment as those used for

testing.

Note that there are numerous reasons why these direct comparisons may not

be valid. The evaluations are performed on different data with different annotators

and different evaluation criteria. There is no data or code publicly available for the

Valmianski et al. approach. Though Tomek et al. will be publishing their code, it is

not yet available as of this writing. This makes true direct comparison on the same

data difficult.

When comparing the performance of MaSCS on a single class (neurons) to existing

single-class segmenters it is comparable but does not show an improvement, mostly

because of a higher false positive rate. Nevertheless, the MaSCS system and the work

presented here advances the field of calcium imaging segmentation in several ways.

The MaSCS system is the only existing explicitly multi-class segmenter. The MaSCS

system is also the first segmenter to explicitly incorporate feedback from use in the

lab into improving the system.

Considered on it’s own, the most concerning part of the performance of the MaSCS

system is the very high false positive rate. Of course, some of these false positives may

in fact be true ROIs that were missed by the human annotator, but many of them are

likely spurious. Tomek et al. (2013) argue that false positives are less concerning than

missed ROIs, especially if segmentation algorithms are used for planning scanning

paths which record only from segmented ROIs. However, for path planning as well

as analysis, spurious ROIs introduce noise and are not desirable.

One possible reason for the high false positive rate is the selective labeling cre-

ated by the annotation procedure. The annotator labels ROIs as positive examples,

and labels spurious masks within the same region as negative examples. This leaves

many masks in other regions of the image unlabeled. It would be possible to treat

all unlabeled masks as negative examples for the purpose of training the classifier.
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This does indeed decrease the number of false positives generated by the resulting

MaSCS classifier, but also increases the number of missed ROIs. Such an approach

is also conceptually undesirable as it does not allow the annotator to avoid making a

judgement about unclear ROIs. In fact, an evaluation metric that took into consid-

eration ROIs that the annotator considered possible but not certain would be ideal

for further assessment of the MaSCS procedure.

As shown in figure 3.12, false positives tend to have lower confidence according to

at least two measures. Though these are not sufficient to separate and remove false

positives, they may be useful to assist experimenters in identifying and removing false

positives from segmentations.

3.4 Extensions

The prototype MaSCS system developed here has not been optimized in terms of

selecting mask generators or features. This work should be viewed as a solid base

for expanding research into classification-based segmenters for TPCI rather than as

a finished product. There is a wide open opportunity for developers to create cus-

tomizable software utilizing the MaSCS framework, and there are a lot of extensions

and improvements that can be made.

One important extension would be to use a customized classifier that took into

consideration the structure of the annotated data during training. The human an-

notator identifies sets of acceptable masks for each ROI. Ideally, we would like the

classifier to be able to exploit features and structure not visible to the annotator to

decide which out of these masks is best. The out-of-the-box classifier used in the

prototype system here ignores the structure of the training data and optimizes a

loss function which penalizes a solution which selects some but not all of the masks

chosen by the human annotator. This may impede the classifier’s performance on
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segmentation.

Creating a customized group-aware classifier requires modifying the training pro-

cedure for the classifier. Instead of trying to minimize the mask-wise misclassification

rate, we want to minimize the group-wise misclassification rate. For decision tree

learning, it is not immediately obvious how to do this. Perhaps a splitting criteria

could be developed based on group-wise characteristics, but this is complicated by

the fact that groups of annotated masks will be split among different leaves of the

tree and so computing the best split at a branch will no longer be a local procedure

and will also no longer be independent of decisions on other branches of the tree. It

is possible that decision trees will not be feasible for such a group-aware classifier and

a different classification algorithm should be incorporated into MaSCS instead.

A second extension the the MaSCS system would be to incorporate additional

training data in a more sophisticated manner. Currently, when the system gets addi-

tional training data, the classifier is simply retrained with the larger amount of data.

This is possibly inefficient, and also does not incorporate the additional information

about error patterns that corrected segmentations provide. The corrections provided

by an experimenter are likely to indicate the masks on which the segmenter is making

the most obvious or egregious errors, and perhaps should be weighted more highly

in the retraining. This is similar to the idea behind boosting algorithms, and might

allow for more rapid improvement with additional data.

Finally, the work presented here on evaluation of segmentation algorithms is only

a beginning. To really understand the performance of algorithms meant to replicate

human annotators, we need a better understanding of the behavior and reliability of

these annotators. Currently there is no work assessing inter-rater reliability, which

will be a crucial step toward determining whether automated algorithms are a good

replacement for human annotators in experimental settings.
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Accounting for motion during in vivo imaging

Consider a sequence of two-photon calcium images ft(x, y) taken at some depth z.

We would like for the (x, y, z) coordinates of an image pixel to correspond to some

fixed spatial coordinates in the brain. That is, we would like to be able to assume

that a particular pixel in our image sequence measures from the same location in the

brain at each time. In in-vivo imaging, this assumption is unlikely to hold due to

motion of the animal’s brain during imaging. If we consider (x, y, z) to be coordinates

in microscope or image space, the brain location they measure from at time t will be

a function of the motion. To give an accurate description of the image data in the

presence of motion, we would need to estimate a function gt(x, y, z) which maps a

point (x, y, z) in image space to the location (x′, y′, z′) that it measures from in the

brain. Unfortunately, estimating this three dimensional motion trajectory given only

a sequence of two-dimensional images is very difficult.

The most common simplifying assumption used to make the motion correction

problem tractable is that the out-of-plane z component of motion is negligible and

can be ignored. With the additional assumption that the motion is small enough

or the scanning is fast enough that no motion occurs during the scanning time for a

single image frame, the problem of motion correction becomes one of image alignment.

There is a large literature on image alignment generally, but very little published

67
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about its application to TPC imaging despite its pervasive use in the field. After

reviewing the existing literature on TPCI motion correction (section 4.1) and giving

a concrete description of motion artifacts in real data (section 4.2), I evaluate the

effects of applying rigid body image alignment techniques to TPCI data (section 4.3).

As mentioned above, using rigid body alignment for motion correction requires

making the assumption that there is no motion outside of the imaging plane. In in-vivo

imaging, this assumption does not hold. Though out-of-plane motion generally seems

to be quite small, I show in section 4.4 that its impacts on various data summaries can

be quite dramatic. Most importantly, out-of-plane motion can dramatically corrupt

the correlation structure between cells, making it impossibly to separate functional

clusters of cells from artifactual groupings (explored farther in chapter 5). I introduce

a few techniques for filtering data to remove out-of-plane motion artifacts, but find in

chapter 5 that none of these allow for cellular clustering based on activity rather than

motion artifacts. In section 4.5 I propose some next steps toward creating a unified

approach to modeling motion that might allow for such clustering.

4.1 Existing work on motion correction

Brain motion during in-vivo imaging can be greatly reduced by sophisticated engi-

neering and surgical techniques, but it cannot be completely eliminated. Even motion

of sub-pixel magnitude can create motion artifacts that are visible to the naked eye.

Most experimental TPCI papers mention some form of image alignment to correct

for this. As stated above, image alignment approaches ignore out-of-plane motion,

and most assume that motion does not occur during the collection of a single frame.

Despite the violation of both of these assumptions, rigid body image alignment can

often remove much of the visible motion distortion.

To my knowledge, no literature exists that specifically evaluates commonly used
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rigid body image alignment techniques in the context of TPCI. Many experimental

TPCI papers use the existing ImageJ alignment macro TurboReg (Hira et al., 2013;

Feldt Muldoon et al., 2013; Reeves et al., 2011). Several papers (Drew et al., 2011;

Bonin et al., 2011) use computationally efficient cross-correlation methods developed

in the engineering and optics communities (Takita et al., 2003; Guizar-Sicairos et al.,

2008). The closest to a custom-designed alignment package is probably a toolbox

developed for generic intravital microscopy, the Intravital Microscopy Toolbox (Soulet

et al., 2013). This ImageJ plugin is a compilation of existing image alignment packages

with an additional mechanism for intelligent selection of reference images and removal

of individual images that are highly corrupted by motion. Though Soulet et al. (2013)

have evaluated their tool on some data, it has not been applied to TPCI data.

In section 4.3 I discuss various rigid body image alignment techniques specifically

in the context of TPC imaging and evaluate them on realistically simulated data. I

then extend this analysis real TPCI data.

Two-photon laser scanning microscopes collect the pixels of an image sequentially,

which means that the assumption of no motion during a single image is flawed. When

the magnitude of motion is large enough relative to experimental parameters such

as field of view and frame rate, the distortion within individual frames introduced

by motion becomes significant. This problem has been partially addressed in the

literature on TPCI in awake behaving animals. This literature does not entirely

abandon the idea of image alignment, but performs it on a line-by-line rather than

an image-by-image basis. This relaxes the assumption of no motion during an image

to one of no motion during a line.

Dombeck et al. (2007) and later Chen et al. (2010) propose hidden Markov model

frameworks for estimating the in-plane shifts of individual lines. These models con-

sider both the quality of alignment to a template and the likelihood of transition from

one offset to another in sequential lines (a smoothness constraint). Greenberg and
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Kerr (2009) propose a separate framework that involves aligning lines or sets of lines

to a template through an iterative Newton-Raphson procedure (Lucas and Kanade,

1981). These line-by-line approaches are helpful in allowing image registration when

there is significant motion during the collection of a single image. Since that is not the

case for the data used in this work, I will not discuss line-by-line approaches further.

Despite the relaxed assumptions of the line-by-line approaches, they still do not

address the issue of artifacts due to out-of-plane motion. Even in awake behaving

animals, the magnitude of out-of-plane brain motion is typically quite small (Green-

berg and Kerr, 2009; Dombeck et al., 2007). Nevertheless, even sub-pixel out-of-plane

motion can have a dramatic impact on the fluorescence traces over time (see section

4.3.5). Whether these effects are detrimental to downstream inference is largely un-

known. The only paper I am aware of that attempts to quantify the impact of out-of-

plane motion artifacts on inference is Dombeck et al. (2007). The authors reason that

out-of-plane motion will cause equal numbers of positive-going and negative-going

transients in the fluorescence trace, and then use the observed number of negative-

going transients to estimate the number of positive-going transients that are plausibly

due to motion. They estimate that the percentage of positive-going transients due

to motion decreases as the amplitude threshold for transient detection increases, and

choose a threshold to limit this percentage to < 5%.

The above work addresses out-of-plane motion by arguing that it does not severely

impact downstream inference. This sort of argument is highly dependent on the

goals and implementation of said downstream processing. In recent papers (reviewed

below), some authors have attempted to remove out-of-plane motion artifacts from the

raw data rather than simply assessing their impact on inference. To my knowledge,

all of these approaches involve filtering the data in some way to remove distortions

due to motion (rather than, for instance, attempting to model the motion trajectory

directly). Such filtering is in fact also highly influenced by the choice of downstream
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analysis, since this choice will impact the metric by which the filtering technique is

chosen and evaluated. I discuss this point in greater depth in section 4.4. Here I

briefly summarize the existing out-of-plane motion correction (filtering) approaches.

Following in-plane image alignment using phase-only correlation methods (4.3),

Bonin et al. (2011) attempt to capture the remaining motion artifacts using principle

components analysis (PCA). They manually identify PCA components that appear

(based on unspecified spatial and temporal features) to be dominated by motion

artifacts. They remove these components from the data before further processing.

Malik et al. (2011) take a more unified modeling approach by representing fluores-

cence traces from regions of interest as signal (a harmonic regression model, chosen

because of the particular stimulus used in the experiment) plus correlated noise (an

auto-regressive model). The AR model can capture much of the periodic impact of

brain motion on fluorescence traces, but the signal plus correlated noise modeling

approach relies on being able to formulate a model for the signal. This will not be

possible in some cases, such as during resting state recordings or when the response

properties of neurons are unknown. In section 4.4 I explore a variation of this ap-

proach using AR filtering outside of the context of a signal model.

4.2 Motion artifacts in a representative experiment

Whenever imaging is done in living animals, some amount of motion is unavoidable.

In awake behaving animals, volitional movement can cause significant brain motion

even despite the use of head stabilization devices. In anesthetized animals, volitional

movement is prevented, but the physiological processes that keep the animal alive,

such as respiration and the beating of the heart, still cause small but detectible

motion of the brain tissue. This motion is exacerbated by the craniotomy required

for TPCI, which reduces the pressure on the underlying cortical tissue. Surgical
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techniques (such as leaving a very thin layer of the skull intact or replacing the skull

with a glass coverslip) and good experimental design (such as timing imaging based

on physiological triggers) can reduce but not eliminate motion artifacts (Paukert and

Bergles, 2012).

In this section I describe the manifestation of these motion artifacts in the data

used in this work. I emphasize that artifacts from motion appear in nearly all standard

data summaries. Specifically, I describe the impact of motion on pixel-wise variances,

spectral characteristics of fluorescence traces, and the correlation structure of pixels

and cells.

When examining motion artifacts, we want to separate features of the data that

are due to motion from those that are due to neural activity. The structural dye

used in these (and many other) TPC imaging experiments provides a very convenient

tool for performing this separation. The structural dye, SR101, does not change its

fluorescence properties based on neural activity. Ignoring long-term effects such as

photobleaching, any fluorescence changes in the structural channel are the result of

physical changes to the position or layout of the brain tissue. These changes are

primarily physiologically-driven motion. To a first approximation, we can declare

that any temporal changes in the structural channel are due to motion, and judge

the success of motion correction techniques by the temporal stability of the corrected

version of this channel.

It is worth emphasizing that this is an approximation. There are some structural

changes to the brain that we do not wish to treat as artifacts. For instance, neural

activity results in increased blood flow to a region which in turn causes changes to

the diameters of local blood vessels. These changes are important to the study of

neurovascular coupling. Nevertheless, the structural channel still provides a means to

largely separate motion artifacts from neural activity.

Figures 4.1 through 4.5 explore the effects of motion in an example TPCI ex-
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(a) Structural channel (b) Functional channel

Figure 4.1: Time-averaged images showing the spatial layout of the
cortical region recorded in this experiment.

periment according to the three criteria I mentioned above. I show data from both

channels, though focus on the structural channel for the reason just mentioned. In

this example experiment, there was no stimulus given to the animal. This removes one

source of variation in the data, helping to make the motion artifacts clear. However,

similar artifacts appear in all experiments.

Figure 4.1 shows the time-averaged mean images for both channels for the example

experiment. Since these are time averaged mean intensities, motion artifacts are

not visible in these images, but they are useful as a reference for interpreting other

presentations of the data. We can see that there are several very clear astrocytes

(bright regions in the structural channel, also bright in the functional channel) as

well as a number of neurons (bright regions in the functional channel that are dark

in the structural channel).

The easiest way to observe motion artifacts is to simply watch a video of the data;

motion (especially in-plane motion) is easily detectable by the human eye. However,

motion artifacts also manifest themselves in all of the common static summaries of



Chapter 4. Accounting for motion 74

the data.

One of the most obvious manifestations of motion in data summaries is its impact

on the fluorescence time series. Figure 4.2 demonstrates this in the spatially averaged

fluorescence time series from the structural channel. Without motion, the structural

channel should be invariant over time. However, we can see that the fluorescence

time series is in fact strongly periodic rather than constant. Figure 4.2(b) shows

the multi-taper (Thomson, 1982) estimate of the spectrum of the fluorescence time

series. There is a clear peak at around 0.8Hz, the frequency of the rat’s mechanically

controlled respiration. The rat’s (uncontrolled) heart rate was approximately 5.6Hz,

though it varied over the course of the experiment. This is also apparent in the

spectrum as a wide but short peak at 2.4Hz (aliased due to sampling, and wide

because of the varying rate). If motion were strictly in-plane, we would not expect

to see large changes in mean intensity since in-plane motion would primarily impact

the mean through changes to the image boundary. In contrast, out of plane motion

could strongly affect the mean as many highly fluorescent cells moved in and out of

the imaging plane. In section 4.3.5 I will confirm that this motion-driven variation in

mean fluorescence remains after image alignment that corrects for in-plane motion.

To confirm that the peaks in the fluorescence spectrum are due to heart rate and

respiration I examined the physiological data that was collected during the imaging

experiment. Figure 4.3 shows a portion of the blood pressure recording as well as its

spectrum. The peaks at 0.8Hz (respiration) and 5.6Hz (heart rate) are present in this

data as well. I verified heart rate by examining the ECG data as well. The settings

of the respirator were not recorded.

A second data summary that shows motion artifacts is the pixel-wise variance

of fluorescence over time. We expect the variance of a pixel’s value over time to be

proportional to its mean. We therefore expect pixels recording from cells to have high

variance. We see this in the data, but we also see that pixels on the edges of cells
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(a) Spatially averaged intensity

(b) Spectrum of mean intensity time series

Figure 4.2: Mean fluorescence time series and spectral view of motion
artifacts. (a) shows a 20 second segment of the spatially averaged in-
tensity in the structural channel. Without motion artifacts, we would
expect this to be constant. (b) shows the multi-taper spectrum estimated
from the entire mean intensity time series. The mechanically controlled
respiration rate appears at 0.8Hz (and harmonics). Less obvious in this
data is the aliased heart rate (5.6 Hz aliased to 2.4Hz due to sampling).
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(a) Blood pressure

(b) Spectrum of blood pressure

Figure 4.3: Blood pressure measurements taken during the experiment.
(a) A 10 second portion of the blood pressure record. (b) The spectrum
of the blood pressure measurements, shown up to 8Hz. Heart rate and
respiration appear in this data as they do in the imaging data in figure
4.2.
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(a) Structural channel: pixel-wise variance di-
vided by mean

(b) Functional channel: pixel-wise variance

Figure 4.4: Motion artifacts in variance structure. These images
demonstrate increased variance of intensity over time in pixels on the
boundaries of cells. (a) Data from the structural channel. The variance
scales strongly with pixel mean, so for clarity the image here shows the
variance divided by the mean for each pixel. (b) Data from the functional
channel. These variances scale less strongly with mean, so the greyscale
is most clear when they are shown directly. Both images demonstrate
relatively high variance in pixels on the boundaries of cells, as would
be expected if motion caused the cell to move in and out of the volume
measured by that pixel.

have higher variance than those in the brighter center regions. This excess variance

is a result of motion causing the cell boundaries to move relative to the image pixels.

Figure 4.4 shows this variance effect for both the structural and functional channels.

Finally, motion is also apparent in the correlation structure of the data. Artifacts

in correlation structure can be especially important if later analysis uses correlation to

define functional clusters of cells where the clustering is intended to reflect similarities

in neural activity. Figure 4.5 shows a summary of the pairwise correlations between

image pixels in both channels. We can see that there are two clusters of pixels that

are highly positively correlated within each cluster and highly negatively correlated

between clusters. Both in- and out-of-plane motion contribute to this correlations
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(a) Mean pixel-pixel correlation (structural) (b) Mean pixel-pixel correlation (functional)

Figure 4.5: Motion artifacts in correlation structure. These images
show one summary of the pairwise correlations between pixels in the data.
The intensity of a pixel in the above images is proportional to the mean of
the pairwise correlations of that pixel’s time series with those of all other
pixels. These images show that there are two groups of pixels (very dark
pixels and very light pixels) that are highly positively correlated within
each group but highly negatively correlated between groups. The in-plane
component of motion is clearly visible here as the spatial relationship
between these two groups of pixels: dark regions occur to the lower left
of bright regions. Motion of cells on that axis causes one set of pixels
to dim (the cell moves out of that volume) while another set of pixels
brightens (the cell moves in). Similar images result from looking at the
pairwise correlation of a single pixel in one of the groups with all other
pixels (without averaging).

structure.

To summarize, even small amounts of motion (in this experiment, I estimated the

in-plane motion to be sub-pixel in magnitude, and assume a similar magnitude for the

z component) can cause dramatic artifacts in the data. This must be acknowledged,

and perhaps corrected or counteracted, in later analysis. In the following sections I

propose and evaluate techniques for such correction.
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4.3 Rigid body image alignment

The most ubiquitous procedure used for addressing motion artifacts in TPCI data is

rigid body image alignment. Rigid body alignment attempts to alter each image in an

image sequence to align as closely as possible with a reference image using only rigid

body shifts (vertical and horizontal translation, plus rotation). Using this procedure

to correct TPCI data for motion requires 2 simplifying assumptions.

1. Brain motion is rigid body and only occurs within the imaging plane

2. No motion occurs during the collection of a single image frame

Neither of these assumptions will hold completely for real data. The degree of viola-

tion will depend strongly on experimental set-up. Here I explore the application of

rigid body alignment techniques to data from anesthetized animals where the mag-

nitude of brain motion is small. This approximately satisfies the second assumption

above. I will consider violations of the first assumption in section 4.4.

Though the techniques of rigid body image alignment are not original to this

dissertation, there is currently no published work examining their performance in

this context. In this section I first review some theory relating to rigid body image

alignment. I then describe a simulation study using realistic data, and finally discuss

the results of applying these techniques to real data.

The goal of rigid body image alignment is to transform an input image using only

rigid-body translation and rotation such that the transformed image matches a target

image as closely as possible according to some metric. The process of aligning a pair

of images therefore requires two distinct steps:

1. Estimate the alignment parameters

2. Shift one image according to the parameter estimates
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There is a great deal of literature on both of these steps. I will present here the

details of several approaches, but not all. For more in-depth reviews of image align-

ment in general, see (for instance) Brown (1992) or Zitova (2003). For applications

in other biomedical imaging domains, see part IV of Bankman (2009).

4.3.1 Estimating shift parameters

The first task in aligning two images is to estimate the motion parameters that de-

scribe the transformation that will cause one image to best match the other. Align-

ment techniques are differentiated by the method they use to search the parameter

space and the metric they use to define alignment quality. This metric can be based

on landmarks or features defined either by hand or automatically. In situations where

appropriate landmarks are not available or obvious, full-frame metrics can be used

instead. These full-frame metrics are what I discuss here.

Consider images I(x, y) and J(x, y), and rigid body shifts represented by the

operator T(m,θ) where m is a length-two vector giving translations in x and y and θ

gives a rotation angle in radians. Assume for the moment that we can perform this

shift. If I(x, y) is the reference image, we wish to compare it to the shifted version

of the image to be aligned, JT(m,θ)(x, y). One very common metric used for this

comparison is the cross-correlation (CC) between the two images:

CC(m, θ) =
∑
x

∑
y

I(x, y)JT(m,θ)(x, y). (4.1)

The primary appeal of this metric is that if θ (the rotation parameter) is set to

zero, the CC values can be efficiently computed for all whole-pixel x and y translations

simultaneously using the Fast Fourier Transform (FFT). The Fourier transform of the

cross-correlation matrix CC(mx,my) is equal to the product of the Fourier transform
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of I(x, y) with the complex conjugate of the Fourier transform of J(x, y).

F(CC) = F(I)F∗(J) (4.2)

where F is the Fourier transform and ∗ is the complex conjugate.

Assuming that the two images being compared are in fact circularly shifted ver-

sions of each other, the cross-correlation obtained by this procedure will have its

maximum at the location of the appropriate shift. However, this maximum may be

rather flat, which can make it difficult to locate precisely especially in the presence

of noise. The phase-only correlation (POC) is a response to this problem.

By the Fourier shift theorem, circularly shifted images will differ in the Fourier

domain by a linear phase shift

I(u, v) = J(u, v)e−2πi(umx
X

+
vmy
Y ). (4.3)

We can isolate this phase difference using the normalized cross-power spectrum.

R(u, v) =
IJ∗

|IJ∗|
(4.4)

=
II∗e2πi(

umx
X

+
vmy
Y )

|II∗e2πi(
umx
X

+
vmy
Y )|

(4.5)

=
II∗e2πi(

umx
X

+
vmy
Y )

|II∗|
(4.6)

= e2πi(
umx
X

+
vmy
Y ) (4.7)

Taking the inverse transform of this isolated phase gives a Kronicker delta function

with its peak at (mx,my). This peaky function is the phase-only correlation (POC).

If rotations are being considered in addition to shifts, the computational efficiency

of the Fourier computation of the CC or POC functions is lost. Instead, some iterative

(or exhaustive) search must be performed over the space of possible shift parameters.
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Without the computational advantage of the FFT, other metrics may become more

appealing for comparison of images. Examples of such metrics are correlation

r(m, θ) =

∑
x

∑
y (I(x, y)− Ī)

(
JT(m,θ) − JT(m,θ)

)
σIσJT(m,θ)

, (4.8)

mean squared error

MSE =
1
XY

∑
x

∑
y

(I(x, y)− JT(m,θ)(x, y))2, (4.9)

or mean absolute error

MAE =
1
XY

∑
x

∑
y

∣∣I(x, y)− JT(m,θ)(x, y)
∣∣. (4.10)

The performance of these metrics will depend on properties of the images be-

ing aligned. Section 4.3.4 describes a simulation study to evaluate these metrics on

simulated data with the characteristics of TPC images.

4.3.2 Fourier interpolation for implementing shifts

The final alignment of images, as well as any iterative search procedure for estimating

shift parameters, requires a method to shift an image by a particular translation and

rotation. Unless images are simply translated by whole-pixel amounts and/or rotated

by increments of 90 degrees, shifting images requires interpolation to maintain the

expected pixel grid.

The optimal method for performing this interpolation depends strongly on prop-

erties of the continuous process or spatial structure that underlies the discretized

image. Strong spatial structure might suggest a particular interpolation method, but

in the absence of such structure it is not immediately clear how to make the decision.
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Eddy and Young (2009) suggest that one possible criteria is that the interpolation

procedure is information-conserving.

An image transformation T(m,θ) is information-conserving if for any sequence of

transformations that result in the image being returned to its original location and

orientation, the translated image is identical to the original image (Eddy and Young,

2009). Such a sequence could be a set of rotations that sum to multiples of 2π radians,

or a (m, θ) translation followed by its inverse. Eddy and Young (2009) demonstrate

that Fourier, or trigonometric, interpolation can be information-conserving whereas

a number of other commonly used interpolation techniques are not.

The Fourier shift theorem described in equation 4.3 directly allows for arbitrary

translations of an image in x and y through phase shifts in the Fourier domain. Eddy

et al. (1996) show that arbitrary rotations (as described by a two-by-two rotation

matrix) can be factored into the product of three shearing matrices

 cosθ −sinθ

sinθ cosθ

 =

 1 −tan θ2
0 1


 1 0

sinθ 1


 1 −tan θ2

0 1

 . (4.11)

Since each shear involves only one-dimensional translations, they too can be imple-

mented by a sequence of phase shifts in Fourier space. In this way, Fourier interpola-

tion methods can fully implement arbitrary rigid body transformations. This is the

interpolation method used in this work.

4.3.3 Achieving sub-pixel precision

In practice, biological motion is extremely unlikely to result in whole-pixel shifts

between images in an experiment. Therefore, any practical image alignment procedure

must be able to work at sub-pixel precision.

When performing an iterative optimization procedure over the space of motion
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parameters, sub-pixel precision is limited only by the convergence parameters of the

optimization algorithm. However, when using the FFT-based cross-correlation or

phase-only correlation calculations, sub-pixel precision requires additional work.

The traditional technique to improve the precision of the POC is to up-sample

the Fourier domain representation by embedding the matrix of Fourier coefficients in

a larger matrix of 0’s. Up-sampling by a factor of k before performing the inverse

transform allows identification of the location of the maximum of the POC with a

precision of 1
k pixels. Unfortunately, this approach does not scale well when the

up-sampling factor gets large as the Fourier matrices become prohibitively large.

Efficient approaches to sub-pixel registration using the POC is an active area of

research (Yu and Wang, 2012; Guizar-Sicairos et al., 2008; Nagashima et al., 2006;

Takita et al., 2003; Foroosh et al., 2002). One approach is to use a small up-sampling

factor, find the approximate location of the maximum, and then fit some peaky func-

tion to that area of the POC matrix to refine the estimate. Takita et al. (2003) derive

the functional form of the POC for minute displacements

POC(x, y) =
1
XY

sin[π(x+mx)]
sin
[
π
X (x+mx)

] sin[π(y +my)]
sin
[
π
Y (y +my)

] (4.12)

which can be fit to the computed POC matrix. Alternatively, any smooth peaky

function (such as a parabola or Gaussian) can be used as an approximation.

As shown in the following simulation study, POC techniques do not perform well

in the presence of even small amounts of rotation. Iterative optimization algorithms

perform better, but can be sensitive to initialization values when the motion param-

eters are in the vicinity of 0. Using POC techniques to initialize the translation

parameters before beginning the optimization can significantly improve performance.
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4.3.4 Simulation study

To evaluate the performance of the rigid body image alignment procedures described

above, I performed a simulation study using artificial data. To improve the relevance

of the simulation study, I generated artificial data using real data from the structural

channel (the SR101 non-calcium-sensitive dye) as a starting point. This allowed for

artificial images to have realistic spatial structures and features.

I first constructed a the time-averaged image

G(x,y) =
1
T

T∑
t=1

I(x,y,t). (4.13)

The average image G(x,y) was, of course, much less noisy than any single image on

which alignment would be performed. I simulated realistic noisy images N(x,y) from

G(x,y) by adding noise meant to approximate the observed difference between the

single and averaged images in real data.

I added independent Gaussian noise to each pixel

N(x,y) = G(x,y) +N (0, σ) (4.14)

where the noise variance σ was chosen to be the sample variance of the difference

between pixels in the mean image G and those in the individual images from which it

was computed. This process typically resulted in some pixels with values outside of

the allowable pixel intensity range [0, 4096]. Simply thresholding the values resulted

in a large number of pixels that were exactly 0, an unrealistic situation. Instead, I

replaced any pixel with a value less than 0 with a uniformly generated value between

0 and the mean of G(x,y).

The procedure described above is an approximation of the noise in real data.

Noise introduced by the fluorescence microscopy system is likely Poisson. Additional
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sources of biological noise (such motion, metabolic and chemical processes) are likely

quite complex. However, the procedure described above does result in realistic pixel

intensity distributions in the simulated images as shown in figure 4.6.

Using the process described above, I created two sets of simulated data. Both

sets of data consisted of 100 images. In the clean condition, I generated a single

noisy image. This single image was then shifted according to each of 100 randomly

generated shifts, described below. In the noisy condition, I generated 100 different

noisy images and then shifted each of these images by one of the randomly generated

shifts. Therefore, in the clean condition the images differed only by translation and

rotation. In the noisy condition, the images differed by translation, rotation and

noise.

The motion parameters used for the simulation were 100 sets of translations and

rotations (m, θ)i where the the x and y translations were uniformly randomly gener-

ated between −1.5 and 1.5 pixels, and the rotations ranged uniformly between − π
40

and π
40 radians. I selected these ranges based on exploratory analysis of the real data:

motion in these experiments was small, and this simulation study was intended to

explore alignment performance at the sub-pixel level.

I implemented the shifts in the simulated data using the Fourier interpolation

methods described in section 4.3.2. To reduce the edge effects, I first padded each

image with zeros and tapered the image edges using a Hanning window

w(x) = 0.5
(

1− cos
(

2πx
X − 1

))
. (4.15)

I shifted the padded and tapered image appropriately, and then trimmed the result

back to the original image size. This process violates the assumption of circular shift

implied by the Fourier methods, but is more realistic and avoids unexpected behavior

on edges and corners.
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(a) Time averaged image

(b) Real image

(c) Simulated image

Figure 4.6: Comparison of a real and simulated image. (a) shows the
time-averaged real data. (b) shows a histogram of pixel values and the
corresponding image for a single time point in the real data. (c) shows
the same for a simulated noisy image.
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The goal of the simulation study was to estimate the motion parameters as accu-

rately as possible from the simulated data using a variety of rigid body techniques.

The techniques I explored were

Phase-only correlation with function fitting (POC-F) Up-sample the POC ma-

trix by a factor of 2, then fit the area around the maximum using equation 4.12.

Phase-only correlation with Gaussian fit (POC-G) Up-sample the POC ma-

trix by a factor of 2, then fit a Gaussian to the area around the maximum.

Optimization of MSE (Opt-MSE) Iterative optimization (Nelder-Mead) of the

MSE (equation 4.9), with fixed initialization and with POC-G initialization of

the translation parameters.

Optimization of MAE (Opt-MAE) Iterative optimization (Nelder-Mead) of the

MAE (equation 4.10), with fixed initialization and with POC-G initialization

of the translation parameters.

Clean Data Noisy Data
Trans Rotation Trans Rotation

Mean Med. Mean Med. Mean Med. Mean Med.
POC-G + Opt-MSE 0.38 0.22 4.38 1.71 12.55 6.40 109.57 49.34

Opt-MSE 0.58 0.24 6.08 1.84 12.51 6.50 113.04 48.05
POC-G 1.70 1.07 18.03 9.63

Opt-MAE 17.03 0.28 10.74 2.45 16.58 10.17 135.73 45.91
POC-G + Opt-MAE 0.34 0.22 4.52 1.64 16.50 10.77 134.05 41.13

POC-F 9.20 6.50 27.90 19.53

Table 4.1: Results from the simulation experiment comparing image
alignment techniques. All numbers are percent error in shift parameters
(equation 4.16). Each row gives the results from a particular alignment
technique, with results for translation and rotation parameters for both
the clean data and the noisy data. Both the mean and the median per-
centage errors are given, since some methods are susceptible to occasional
large errors which can skew the mean. Rows are sorted according to me-
dian error on the noisy data (the more realistic case).



Chapter 4. Accounting for motion 89

The results of the study are shown in table 4.1. All images were padded with

zeros and tapered (as described above for data simulation) before being passed to the

alignment algorithms. Each algorithm returned estimated translation (for all meth-

ods) and rotation (for the optimization methods) parameters which I then compared

against the known ground truth shift parameters used to generate the data. I used

percentage error to evaluate performance

% Error =


100 ·

√
(mx−m̂x)2+(my−m̂y)2√

mx2+my2
for translation

100 · |θ−θ̂|θ for rotation
(4.16)

All the methods performed reasonably well on the clean data, though there are

a couple points to note. The POC methods performed slightly worse than the opti-

mization methods at estimating translation parameters. This is to be expected given

that the POC methods are unable to account for rotation. Though the rotations in

this simulated data were very small (less than π
40 radians, which is barely visible to

the human eye) they still impaired the performance of the POC methods. I tested

the POC methods on corresponding simulated data with the same translations but

no rotations, and their performance was comparable to the optimization techniques

(POC-G had a mean error in translation of 0.58%). The POC-F results reported here

are substantially worse than the POC-G. Anecdotally, the POC-F is very sensitive to

the choice of upsampling amount and window size.

Another thing to note from the results on the clean data is that the Opt-MAE

method has a very poor performance evaluated by mean translation error. This is

due to occasional images where the optimization failed and returned the starting

parameters or 0. The mean performance of the Opt-MAE improved greatly when

it was initialized with the POC-G translation estimates, since these outlying cases

were eliminated. Though the Opt-MSE method did not suffer from this problem as
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frequently, initialization with the POC-G estimates improved its performance as well.

Finally, the optimization methods were able to estimate the rotation parameter fairly

well. Again, the mean performance was sometimes distorted by extreme outliers, but

the median performance was between 1.5 and 10% error - which corresponds to errors

of between 0.0008 and 0.008 radians.

The clean data case described above demonstrates that these alignment techniques

are able to perform well at sub-pixel resolutions for this type of data. However, the

noisy data is much more realistic to the application. The performance of the alignment

algorithms differs substantially in the noisy data case.

Table 4.1 is sorted according to mean error in the estimation of translation pa-

rameters in the noisy data case. The best performing algorithms were Opt-MSE,

both with and without initialization with POC-G. Again the POC methods on their

own suffered from not being able to account for even small amounts of rotation. The

Opt-MAE algorithms were more sensitive to the noise in this simulation than the

MSE-based algorithms, and also suffered from more extreme errors. Initialization

with POC estimates aided in the estimation of rotation parameters for both opti-

mization algorithms.

Not shown in table 4.1 are the run times for the various alignment algorithms.

The POC methods were very fast (100 images were aligned in 50-100 milliseconds),

since the only iterative procedure involved is in fitting a function to a small por-

tion of up-sampled POC matrix. The optimization procedures were significantly

slower, taking up to 10 seconds per image. Profiling of the code revealed that this

poor performance was due primarily to the infrastructure of the general Nelder-

Mead optimization package used (R package ‘neldermead’ available at http://cran.r-

project.org/web/packages/neldermead/index.html) rather than to inefficient evalua-

tion of the objective function. A custom-built and streamlined optimization package

would almost certainly reduce the time required significantly, though probably not to
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the level of the POC methods. Writing that code is beyond the scope of the current

work, though the current inefficient implementation is included in the RCI package.

This simulation study suggests that the POC-G+Opt-MSE method is the best

choice for aligning TPC imaging data like that considered here. This is the technique

used for alignment of real data in this work.

4.3.5 Application to data

I used the POC-G+Opt-MSE method described above to register real data. I esti-

mated alignment parameters based on images from the structural channel, and then

used these estimates to shift images from both channels. As a reference image, I se-

lected an arbitrary time-point from near the middle of each experiment. This section

describes and evaluates the results of this procedure. The data shown here are from

the same example experiment used in section 4.2.

Figure 4.7 shows a 10 second segment of the estimated X, Y , and rotation align-

ment parameters for the example experiment. Figure 4.8 shows the spectra of the

motion parameter estimates. As expected, we see respiration and heart rate in these

spectra. As I will demonstrate in this section, some of the artifacts due to motion

are reduced or removed by image alignment, but many remain. I will discuss the

three views of motion that I introduced in section 4.2: mean fluorescence, variance

properties, and correlation structure.

As predicted in section 4.2, the mean fluorescence time series is nearly unaltered

by image alignment. We expect slight alterations due to edge effects and interpola-

tion, and indeed the mean fluorescence time series are not identical (see figure 4.9).

However, they are very similar, and their spectra are indistinguishable. This is un-

surprising.

The effects of image alignment are more apparent on the variance view of motion
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Figure 4.7: Estimated X, Y , and rotation alignment parameters for a
10 second segment of data. Periodic effects are clearly visible, especially
in the X component (which has the highest magnitude).

artifacts. Recall that in the raw data pixels around the edges of cells had higher

variance due to in-plane motion. Figure 4.10 shows the pixel variances after image

alignment. The cell edge effects that I attributed to in-plane motion in the raw data

are reduced. In addition, as shown in 4.10(c), the overall variance is reduced. Image

alignment accounts for at least some of the variation in the data.
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Figure 4.8: Spectrum of estimated alignment parameters. Respiration
and heart rate (plus harmonics) are visible.

The most interesting effect of image alignment appears in the correlation structure.

In the raw data, the correlation structure revealed motion through groups of correlated

pixels adjacent to each other along the primary axis of in-plane motion. In figure 4.5

this was visible dark regions to the lower left of bright regions (resulting in a three-

dimensional effect). After image alignment, motion still induces correlation, but the
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Figure 4.9: Comparison of a 10 second segment of the spatially averaged
fluorescence before and after image alignment. The time series are very
similar, though not identical. Their spectra are indistinguishable (shown
for the raw data in 4.2(b)).

structure of this correlation is more subtle and mimics what we might expect to see if

cells were correlated due to activity rather than motion. Figure 4.11 shows the mean

pair-wise correlations after image alignment. There are still two highly correlated

groups of pixels (bright regions and dark regions) but now these groups indicate

entire cells. It would be easy to conclude that the bright cells and dark cells in the

correlation images correspond to functional groups. However, this conclusion would

be incorrect, as the correlation is actually induced by out-of-plane motion. Section

4.4 demonstrates this, and discusses possible correction techniques.

4.4 Out-of-plane intensity correction

Image alignment is almost always performed in experimental work using TPCI, but

out-of-plane motion is rarely considered. Nevertheless, as demonstrated in the pre-

vious section, motion artifacts in the spectrum, variance and correlation structure of

the data remain after image alignment. The most complete way of addressing this
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(a) Structural channel: pixel-wise variance di-
vided by mean

(b) Functional channel: pixel-wise variance

(c) Structural channel standard deviation before and af-
ter alignment

Figure 4.10: Variance structure after image alignment. (a) Ratio of
variance to mean for the structural channel after image alignment (com-
pare to figure 4.4(a)). (b) Pixel variances of the functional channel after
image alignment (compare to figure 4.4(b)). (c) Comparison of pixel
standard deviations before and after image alignment for the structural
channel. Variance is reduced overall by image alignment, and the bound-
ary effect is reduced but not eliminated.
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(a) Structural channel: mean pairwise correla-
tion

(b) Functional channel: mean pairwise correla-
tion

Figure 4.11: Correlation structure after image alignment. Two groups
of correlated pixels are visible (dark regions and bright regions). These
groups now correspond to two groups of cells, unlike before image align-
ment when correlation structured showed the primary axis of in-plane
motion (causing a 3D effect in the images). The correlation structure
after alignment, as shown here, could easily be mistakenly be interpreted
as functional cell groupings. However, the fact that these groups are
driven primarily by out-of-plane motion, not cellular function.

out-of-plane motion would be to try to estimate and model it, incorporating the es-

timated motion trajectory into any further modeling. This is beyond the scope of

this work, though I discuss some ideas for how to tackle this problem in section 4.5.

A simpler approach to addressing out-of-plane motion is to attempt to remove the

artifacts introduced by the motion from the data by filtering. To differentiate it from

more comprehensive motion modeling, I refer to this filtering approach as intensity

correction. I explore intensity correction in this section.

The definition of success of the intensity correction approach depends very strongly

on the down-stream processing and inference, since this will determine which functions

of the data need to be free from artifacts. We have seen that out-of-plane motion has

a strong impact on the temporal spectrum of the data. It is possible to use frequency-
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based notch filtering to remove some of this, but the physiological drivers of motion

have a complex impact on the spectrum (heart rate and respiration, plus aliasing

and harmonics). An experimenter interested in the spectrum of cellular activity

would probably be best served by simply ignoring the spectral peaks accounted for

by motion and focusing on the remaining patterns in the spectrum. Any signal at

the same frequency as a physiological process would be incredibly difficult to separate

from artifacts regardless of filtering.

A slightly more general variant on notch filtering is to perform some whitening of

the fluorescence trace which doesn’t require the experimenter to specify frequencies

to remove. The motivation of this approach is to attempt to remove all the periodic

components of the trace, assuming that the scientifically interesting cellular activity

will not be periodic over the whole course of the experiment. One way of whitening a

fluorescence trace (an approach motivated by Malik et al. (2011)) is to fit a high-order

auto-regressive (AR) model to the trace, retaining the residuals as the filtered data.

The AR(p) model represents a trace Xt as

Xt = c+
p∑
i=1

ρiXt−i + ε (4.17)

where the ρi are the parameters of the model specifying the dependence of an element

of the time series X on each of the previous p elements. If the order of the model p

is sufficiently high (in this work I used p = 25), the AR model will fit most persistent

periodic components of the data.

I applied AR(25) filtering to the aligned TPCI data pixel-wise. For each pixel, I

took the first difference to remove long-term trends, and then fit an AR(25) model

to that pixel’s time series. I retained the residuals from the AR model. Applied at

the pixel level, this AR filtering effectively flattens the spectrum of individual pixels,

as expected. It is worth noting that when the traces from collections of pixels are
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averaged after filtering, the physiologically driven frequency components reappear -

though the AR filtering is effective, it is not perfect and the remaining power at these

frequency components is clarified by the averaging. It is also possible to apply AR

filtering to the mean traces from cell masks instead of on a pixel basis. This provides

a flatter spectrum for each cell, but I did not find that the choice of pixel or ROI level

filtering impacted later analysis (cell clustering).

Figures 4.12 and 4.13 show the familiar summaries of variance and correlation

structure after pixel-wise AR filtering. The filtering reduces the magnitude of the

variance and the correlation in the structural channel, as we would like. However,

the spatial patterns in variance and correlation are simply damped, not eliminated.

As shown in chapter 5, these spatial patterns, despite the reduced magnitude, still

corrupt correlation-based clustering.

A second filtering approach which removes periodic components but is more flex-

ible than notch filtering is regression on the estimated in-plane motion components.

If the path of brain motion is approximately elliptical, it is reasonable to assume that

the in-plane motion parameters will predict the magnitude of out of plane motion.

If we also assume that out-of-plane motion has a linear effect on intensity of a pixel,

we can use basic linear regression on the estimated in-plane motion parameters to

filter the pixel time-courses. As in the AR filtering, we retain the residuals after fit-

ting the model. Though it is unlikely that the assumption of linearity holds entirely,

the regression approach does reduce the variance and correlation similarly to the AR

approach.

Figures 4.14 and 4.15 show the variance and correlation images for the example

experiment after regression filtering.

The figures presented here show the effect of these intensity correction approaches

on one example experiment. The next chapter argues that the remaining motion ar-

tifacts corrupt correlation-based cell clustering. A more comprehensive methodology
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(a) Structural channel: pixel-wise variance di-
vided by mean

(b) Functional channel: pixel-wise variance

(c) Structural channel standard deviation before and af-
ter AR filtering

Figure 4.12: Motion artifacts in variance structure after AR filtering.
Though the overall variance is reduced in the structural channel (as we
want), the spatial patterns remain.
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(a) Mean pixel-pixel correlation (structural) (b) Mean pixel-pixel correlation (functional)

(c) Mean pixel-pixel correlation (functional)

Figure 4.13: Motion artifacts in correlation structure after AR filter-
ing. The spatial patterns in correlation structure are less pronounced,
and the average pixel-pixel correlation magnitude is reduced. However,
some spatial structure remains, and correlation-based cell clustering is
still corrupted by these artifacts.
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(a) Structural channel: pixel-wise variance di-
vided by mean

(b) Functional channel: pixel-wise variance

(c) Structural channel standard deviation before and af-
ter AR filtering

Figure 4.14: Motion artifacts in variance structure after regression
filtering. This technique also reduces the magnitude of the variance, but
still does not remove the spatial patterns.
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(a) Mean pixel-pixel correlation (structural) (b) Mean pixel-pixel correlation (functional)

(c) Mean pixel-pixel correlation (functional)

Figure 4.15: Motion artifacts in correlation structure after regression
filtering. Regression filtering does not reduce the magnitude of the corre-
lations as much as AR filtering, and the spatial structure remains.
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for evaluating alignment, intensity correction and other motion correction techniques

is still lacking. Such an evaluation methodology must clearly define the metric for

success. This could be removing detectible artifacts from the structural channel ac-

cording to one of the three metrics (time course, variance, correlation) discussed

here. Alternatively, it could be demonstrating that motion artifacts have no impact

on whatever subsequent processing is relevant to a particular lab. What this work

demonstrates is that motion must be addressed rather than ignored.

4.5 Future work on motion correction

The techniques for dealing with motion described in this chapter are simply the

beginning of what is needed for a complete TPCI analysis pipeline. Rigid body

image alignment removes much of the visually obvious motion, but many artifacts

remain in the time course, variance and correlation structure of the data. Intensity

correction techniques which filter the data to account for out-of-plane motion reduce

the magnitude of the artifactual variance and correlation but they do not remove the

spatial patterns which corrupt further analysis such as cell clustering.

Even before moving to a more complete motion modeling framework, several ques-

tions need to be addressed about the current approaches. As mentioned above, a more

thorough and defined metric for evaluation is necessary. In addition, the analysis I

presented focused on removing artifacts, especially from the structural channel. It

will also be important to consider whether these same techniques are removing sig-

nal. Determining whether this occurs may require joint TPCI and electrophysiological

recordings. Having an electrical recording as the ground truth would allow an analysis

of whether motion correction techniques reduced the sensitivity of the TPCI data to

detecting neural spikes.

In the long run, it may be important to model the complete motion trajectory
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rather than try to filter out its effects. Such an approach would treat the data as

a sparse sampling of a three dimensional volume rather than as a dense sampling of

a two-dimensional plane. The remaining question would be how to estimate the z

component of motion. One general approach to performing this estimation is proposed

below.

Assume that motion is periodic and that it doesn’t change in period or magnitude

over moderate periods of time. Collect data at a particular nominal depth for a

short period of time. Change the nominal depth by a very small amount and record

for another short period of time. Repeat this process for a number of depths. In

theory, due to motion, each recording will actually approximate a sequence of images

from a collection of depths surrounding the nominal depth. By aligning the sequences

collected at each of the nominal depths, we should be able to estimate the z component

of motion.

Even if we can estimate the complete motion trajectory, using the resulting model

of motion will require rethinking much of the subsequent processing. Regions of

interest will need to be three dimensional, and estimating the fluorescence trace for

each ROI will require something more complicated than a simple spatial average.

It is currently unclear to what extent we need to incorporate motion modeling

into analysis, but it is clear that the impact of motion on further processing must be

acknowledged and either addressed or shown to have no impact.



5
Correlation-based cell clustering

One question that is frequently of interest to experimenters is functional connectivity.

Do particular groups of cells have correlated activity? Given sufficient temporal reso-

lution to reliably detect spikes, computing correlations based on spike trains might be

the most common approach to this question. There is already significant work looking

at correlation patterns in sets of spike trains recorded using elecrophysiological tech-

niques such as multi-electrode arrays. With data recorded at approximately 8Hz, it

is unclear whether spike trains can be reliably estimated (see section 5.4). Neverthe-

less, even without differentiating individual spikes, we might expect the correlation

of calcium fluorescence traces to provide information about functional connectivity

directly. For non-spiking cells with temporal calcium dynamics, such as astrocytes,

there are few alternatives to such a direct approach.

In this chapter I present a preliminary study of correlation-based cell clustering,

focusing on the impact of motion artifacts on the results. Though it is, of course, pos-

sible to cluster the cells’ fluorescence time courses, I show that these clusters are very

similar to clusters derived from known artifacts. This suggests that such clustering

should not be used to draw scientific conclusions about functional relationships be-

tween cells. Though I cannot entirely remove the artifacts influencing the clustering,

I show that one particular motion correction approach (regression filtering) shows

105



Chapter 5. Correlation-based cell clustering 106

promise in minimizing the similarity of estimated functional clusters to known arti-

factual clusters. This may suggest a direction for future work in finding scientifically

meaningful clusterings in in-vivo TPCI data.

Throughout this chapter I use an example experiment to demonstrate the chal-

lenges and successes of correlation-based clustering. A thorough analysis of many

experiments remains to be done. However, I examined several experiments to ver-

ify that they followed the patterns described in this chapter. From a preliminary

analysis, the chosen experiment appears representative.

5.1 Clustering technique

There are numerous approaches to clustering. Most require that there be some simi-

larity metric defined on the space of items to be clustered. The clustering algorithm

then attempts to find groups of items that are similar within each group and dif-

ferent between groups. This is a vague goal, with the specifics determined by the

particular clustering method. For the exploratory work shown here I used a distance

metric of (1−correlation) and hierarchical clustering with Ward’s minimum variance

agglomeration method. These are reasonably common methodological choices, with

numerous accessible implementations, and it was for this reason that I chose them.

Exploratory testing leads me to believe that the results presented in this chapter are

not sensitive to changes in the distance metric or clustering technique, but a complete

analysis remains to be done.

Bottom-up hierarchical clustering starts by considering each data element as its

own cluster of size one. The algorithm then groups the two most similar existing

cluster into a single larger cluster. This process repeats until all data elements are

joined into a single large cluster. The result of such a hierarchical clustering algorithm

is a dendrogram, or tree, which can be cut at any level to produce a particular number
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of clusters (see figure 5.3 for an example). The determination of which two clusters

to join at each step of the algorithm depends on the measure of cluster similarity

used. These can include single linkage (minimum distance between points in the two

clusters), complete linkage (maximum distance between points in the two clusters),

mean linkage (average distance between pairs of points in the two clusters), and

others. Ward’s minimum variance method Ward (1963) chooses clusters to join to

minimize the total within-cluster variance. I use Ward’s method here. Substituting

single/complete/mean linkage for Ward’s method does change the resulting clustering

somewhat, especially in the fine structure of the dendrogram. However, the main

argument presented in this chapter hinges on clusterings for small k which do not

appear sensitive to the choice of linkage function. In fact, using a partitioning method

such as k-means in place of hierarchical clustering also appears to change little in the

analysis. For future work where changes to the fine structure of a dendrogram or

partition are of interest, a more thorough study of appropriate clustering methodology

will be called for.

The cluster similarity measures discussed above all depend on their being a mea-

sure of distance between data elements. A common distance metric for time series

data is the Euclidean distance

d(x, y) =

√√√√ T∑
t=0

(xt − yt)2. (5.1)

However, it is often useful to normalize the time series first so that differences in

centering and scale do not impact the distance metric. If we normalize the time series

as

x̃t =
xt − x̄√∑

t(xt − x̄)2)/T
(5.2)

then

d(x̃, ỹ)2 = 2T (1− ρxy). (5.3)
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That is, (1− correlation) is proportional to the squared Euclidean distance between

normalized series. Since Ward’s minimum variance method for hierarchical clus-

tering requires a distance matrix proportional to squared Euclidean distance, the

(1− correlation) distance metric is a logical choice here.

There is a huge literature on clustering in general, and on each of the many

clustering methods. It is beyond the scope of this work to provide a thorough review,

but one source that discusses each of the techniques mentioned here (in the context

of genetic microarray data) is Chipman et al. (2003).

5.2 Artifactual clusters

We know from chapter 4 that motion creates a variety of artifacts, including in the

correlation structure. As a result, there is good reason to suspect that clusters com-

puted from this correlation structure may be corrupted by motion. Of course, cellular

activity may also, we hope, impact correlation based clustering. We would like to have

a way of separating artifactual and functional clustering. A method to prove that a

clustering is driven by activity rather than motion would most likely require joint

elecrophysiological recording for confirmation. However, it is possible to demonstrate

convincingly that some clusterings are driven by motion.

As described in chapter 4, a primary driver of motion is respiration, which is

controlled by a respirator and therefore has a consistent frequency. As seen in the

data spectra (e.g. figure 4.2), respiration causes a periodic impact on the intensity of

the calcium trace. As seen in the correlation images (e.g. figure 4.5), motion induces

two groups of cells. If we can identify these two motion-driven clusters of cells, we

can compare them to clusters intended to represent functional relationships. If the

supposed functional clusters are similar to those caused by motion, this is strong

evidence that the functional clusters are corrupted.
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Figure 5.1: The phases of the calcium traces at 0.82 Hz (the frequency
of respiration) show a clearly bimodal distribution. This induces an ar-
tifactual clustering.

To identify motion-driven clusters, I chose to isolate the respiration component of

motion. In the example experiment used here, respiration had a frequency of 0.82Hz.

For each of the 67 ROIs in the example experiment (as returned by the MaSCS

algorithm), I computed the phase of 0.82Hz component of the calcium trace using

the Fourier transform. The distribution of these phases, shown in figure 5.1, is clearly

bimodal. Using circular phase differences as a distance metric, I clustered the ROIs

into two clusters. Arguably, these two clusters are primarily a reflection of motion

artifacts rather than neural activity.

We wish to know whether these phase-based artifactual clusters drive clusters

meant to be functional, and whether any of the motion correction techniques have

an impact. To answer this question, we need a measure of cluster similarity. If

this similarity measure with phase-based clusters is high, we have strong evidence
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that motion is corrupting clustering. If the similarity is low, the clustering may be

indicating functional relationships instead of motion artifacts. One common metric of

cluster similarity is the Hubert and Arabie adjusted Rand index (Hubert and Arabie,

1985), a modification of the Rand index that accounts for chance similarity.

The Rand index measures the similarity of clusterings based on the correspondence

between assignments of pairs of objects. Consider two clusterings C1 and C2, and all

pairs of objects involved in the clusterings. Place each pair into one of four categories:

• (a) objects are in the same class in C1; objects are in the same class in C2

• (b) objects are in different classes in C1; objects are in the same class in C2

• (c) objects are in different classes in C1; objects are in different classes in C2

• (d) objects are in the same class in C1; objects are in different classes in C2

The Rand index is defined as

RI =
a+ d

a+ b+ c+ d
(5.4)

where a, b, c, and d are the number of pairs of that type. If C1 and C2 are identical,

the Rand index will be 1. Though it is possible for the Rand index to be 0, this

will happen rarely in practice. Due to chance agreement between clusterings, the

expected value of the Rand index for a reasonable null situation (for instance, for

two binary clusterings created independently using Bernoulli coin flips) will be some

positive number less than 1.

Several researchers have proposed adjustments to the Rand index such that it has

an expected value of 0 for cases where the agreement between clusterings is due to

chance. The Hubert and Arabie adjusted Rand index takes the form

ARI =
a+ d− nc

a+ b+ c+ d− nc
(5.5)
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where

nc =
n(n2 + 1)− (n+ 1)

∑
n2
i· − (n+ 1)

∑
n2
·j + 2

∑∑
n2
·jn

2
i·

2(n− 1)
,

ni· is the number of items in cluster i in C1, n·j is the number of items in cluster j in

C2, and n is the total number of objects. See Hubert and Arabie (1985) for details.

Milligan and Cooper (1986) showed through simulation studies that, compared

to other common cluster similarity metrics, the Hubert and Arabie adjusted Rand

index had the best performance when comparing clusterings with different numbers of

clusters (for instance, from different levels of a hierarchical clustering). Their primary

metric of improved performance was that the index had an expected value that was

consistently very close to 0 across values of k (number of clusters).

I verified the results in Milligan and Cooper (1986) with a short simulation study

comparing the two-cluster phase-based clustering with simulated clusterings. I cre-

ated each simulated clustering with k clusters with n draws from the discrete uniform

distribution on the integers 1, ..., k. Figure 5.2 shows the empirical distribution of

the adjusted Rand index (ARI) for values of k between 2 and 10. These values are

generally very close to 0, though they show a noticeable positive bias. It is relevant

to the following sections that nearly all of the ARI values from this simulated null

distribution are less than 0.1, and the majority are less than 0.05.

5.3 Calcium trace clustering

An obvious way of clustering the 67 ROIs in the example experiment is to use the

correlation matrix between the 67 time series to compute the distance matrix. Fig-

ure 5.3 shows the results of hierarchical clustering based on this distance matrix. In

the figure, each ROI is labeled with a color corresponding to the cluster member-

ship from the phase-based clustering described in the previous section. Even from

visual inspection, it is clear that the main split of the hierarchical clustering strongly
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Figure 5.2: Empirical null distribution of ARI values for various k.
Each boxplot represents the Hubert and Arabie adjusted Rand index of
the two-cluster phase-based clustering compared to 1000 clusterings cho-
sen independently from the discrete uniform distribution on the integers
1, ..., k. The adjusted Rand index has a positive bias, but is very close to
0 for all values of k.

reflects the phase-based grouping. This indicates that the correlation-based cluster-

ing, intended to indicate functional relationships between cells, is instead primarily

describing motion artifacts.

The same conclusion can be drawn from looking at the adjusted Rand index com-

paring the correlation-based clustering to the phase-based clustering. I will call this

statistic agreement with phase clustering, or APC. Figure 5.4 shows the APC at var-

ious cuts in the hierarchical clustering (various k). For the raw data (shown in figure

5.3), the APC starts at 0.6 for 2 clusters and decreases to 0.2 for 10 clusters. At

all points this is significantly above the values we would expect were the hierarchical

clustering to be unrelated to the phase-based clustering. Figure 5.4 also shows the
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Figure 5.3: Hierarchical clustering of the 67 ROIs in the example ex-
periment based on correlation, computed from the raw data without any
motion correction. The label colors indicate the clusters derived from the
motion-related phase difference. Each ROI is named by a string starting
with N (Neuron) or A (astrocyte) followed by an arbitrary index. It is
clear from visual inspection that the hierarchical correlation-based clus-
tering is consistent with the clustering based on phase. This suggests that
it is corrupted by motion artifacts.

same analysis for data on which various motion correction techniques were applied

(image alignment alone, image alignment followed by AR filtering, and image align-

ment followed by regression filtering). Despite the fact that regression filtering did

not appear to reduce spurious correlations in the structural channel as much as AR

filtering, this analysis shows it to be the only method that reduces the APC. Even

then, the reduction is only for small k and the APC remains above what we would

expect from chance.

In some ways, the results in figure 5.4 are unsurprising. The correlation due

to respiration-driven motion will be consistently present throughout the recording,

whereas functional correlation may come and go. Therefore, the signal we are search-

ing for (functional connectivity) will likely be at its weakest when looking at cor-
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Figure 5.4: Plot of APC against k, the number of clusters, for full-
series clustering.

relations of long series, whereas the noise (artifactual correlation) will likely be at

its strongest. Instead of considering the entire experiment, we can look at short se-

quences of data (perhaps corresponding to stimulation trials, or some other factor

of experimental interest). Figure 5.5 shows the same APC analysis for a short (1.2

second, 10 frame) section of data. This amount of time only allows for approximately

one full respiration cycle, so we would expect the APC to be lower. In fact it is

substantially lower. For most k, the raw data still has an APC outside of the range

of 95% of the null simulation values. However, all of the motion correction techniques

reduce the APC to values indistinguishable from chance.

Figure 5.5 suggests that motion has a smaller influence on correlation-based clus-

tering when considering small segments of data. The obvious follow-up question is

How short is short? Figure 5.6 shows the APC for a fixed k (3 clusters) for various
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Figure 5.5: Plot of APC against k, the number of clusters, for clustering
a short segment of data (about 1.2 seconds). The dotted lines show the
empirical 0.025% and 0.975% percentiles of the null distribution of the
APC

data lengths. This analysis shows that the APC tends to rise quickly with the number

of timepoints used to compute the correlation distance matrix. Again, we see that

the regression filtering approach is the only motion correction technique that has a

noticeable impact on the APC. In fact, it appears that regression filtering keeps the

APC very low for sequences up to 1000 frames (about 2 minutes). It seems that re-

gression filtering is most effective at removing the artifacts captured by this analysis.

Not addressed by this analysis is whether the regression filtering also removes signal.

Reducing the calcium traces to noise would, after all, be effective at reducing the

APC.

Figures 5.5 and 5.6 suggest that correlation-based clustering based on short seg-

ments of data may be free from motion artifacts and that regression filtering reduces
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Figure 5.6: Plot of APC for three clusters against t, the length of the
sequence (in frames) used for clustering. The light lines are the actual
APC values, computed in increments of 5 frames. The dark lines are
smoothed versions of the APC series. Regression filtering is the only
motion correction approach to consistently reduce APC values, even for
moderately long segments of data.

motion artifacts in clustering based on longer segments. Of course, it is possible

that there are artifacts present that are simply not apparent from this analysis. This

analysis also gives no information about whether the clusters found with short data

segments are meaningful or are simply a reflection of noise. The development of

methods to choose an appropriate k and to quantify the significance of clustering for

this data is an open area of research.
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5.4 A note on spike train estimation

Estimating spike trains before computing a distance matrix for clustering may reduce

the impact of motion and reduce artifactual clusters. However, the data for this

work does not support spike train estimation by the easily available methods (the

deconvolution techniques of Vogelstein et al. (2009, 2010) for which code is publicly

available). These methods estimate the probability of a spike in each image frame, but

to extract any spikes from the data used for the preceding exploration of clustering,

the threshold had to be set below 0.5. The resulting spike trains were highly sensitive

to any alteration of the data (image alignment, for instance), suggesting that they

were largely driven by noise.

Despite the failure of out-of-the-box spike train extraction algorithms, it is clear

that there is signal in the data. In experiments with a stimulus, there is a clear

(visible even to the naked eye in video) increase in fluorescence after stimulation.

However, the frame rate for this data is around 8Hz. From previous work, we know

that the calcium transient from a spike has a rise time of 5-50ms and a decay time

of 1-4 seconds (Smetters et al., 1999). Without noise, this would be detectable with

an 8Hz sampling rate, but with noise it may be vital to sample near the peak of

the calcium transient if we want to recover precise spike trains. Most likely, joint

in-vivo electrophysiological and calcium imaging data will be necessary to explore

the feasibility of spike train extraction from this data.

Nevertheless, even with reliable spike train estimation methods, the analysis pre-

sented in this chapter is still relevant. The main conclusion to draw from this work

is that we must be conscious of the possible corrupting and misleading artifacts from

motion, regardless of the processing performed.
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5.5 Conclusions and future work

The main take-away from the work presented here is that even small amounts of

motion can cause dramatic artifacts in correlation-based clustering of fluorescence

traces. It is imperative that experimenters wishing to draw scientific conclusions

from this or similar analyses first demonstrate convincingly that these artifacts have

been mitigated. This may involve estimating spike trains before clustering, clustering

based on short segments of data, improving upon the promising regression filtering

approach, or something different. One of the strengths of TPCI is that it can reveal

the function of populations of cells, so studying clustering and other types of group

structure is interesting and important. This is a prime area for further methodological

development.

One particular area for future work is in identifying and developing appropriate

distance metrics for clustering fluorescence traces. In the work here, I used the com-

mon (1− correlation) distance, but without substantial justification. There may be

distance metrics that are more suited to this task. Estimating spike trains before

calculating correlation distances is one example of a customized metric. By reducing

the data to spike trains, we hope that much of the noise and many of the correlation-

inducing artifacts may be removed. However, estimating spike trains is not always

possible or appropriate. Perhaps there exists a distance metric on the fluorescence

traces which emphasizes the functionally meaningful characteristics without reducing

them to spike trains. Finding such a metric will require both methodological and

experimental study, and is likely to be different for different cell types with different

calcium activity profiles (neurons and astrocytes).

Another pressing area of additional study is the analysis of the clusters that result

from any clustering analysis. This includes statistical concerns such as measures

of cluster separation and compactness, but also neuroscientific questions about the
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scientific significance of groups of cells with correlated calcium dynamics. The study

of functional connectivity is currently widely studied at the brain-wide scale in fMRI,

EEG, and MEG studies. Perhaps there is transferable knowledge that can be applied

toward quantifying and understanding cell groupings at the scale of TPCI.



Part III

Conclusions

120



6
Resources and conclusions

6.1 Resources for the research community

Encouragingly, TPCI analysis methodology is an area receiving increasing focus from

the research community. As a result, the amount of information and number of tools

available are growing. Nevertheless, there is still a lot of open area to develop, and

an increasing amount of coordination required between developers, computational re-

searchers and experimentalists. The body of this dissertation described my research

and development of analysis techniques that I hope will be useful to TPCI experi-

menters. However, taking analysis methodology from the development to the produc-

tion stage requires significant additional work. Though I cannot provide production-

ready software, I have created several tangible resources for the community beyond

this document. These include RCI, the R package with the code used for all the

analysis presented here, as well as CaliCode.org, a website synthesizing the currently

available papers, resources, and tools.

6.1.1 Calicode.org

For an experimental lab, the burden of acquiring the experimental tools, skills and

paradigms for a new imaging modality is severe. For recently developed modalities
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such at TPCI, there is the additional burden of finding or developing data processing

tools. I know from experience that is is very hard to search for analysis examples in

the literature, as the details of what others have done are often not the focus of the

papers (and consequently not in their titles or keywords). The scientific literature is

vitally important for directing research in the TPCI field, but it is not an efficient

index of available resources for data analysis. As a small step toward providing such

an index, I started the wiki CaliCode.org. The main contributions of this site are to

provide an annotated bibliography of papers discussing TPCI data processing, and to

collect links to code and toolkits that are publicly available. My hope is that when

researchers enter the field of calcium imaging, this site will increase the chances of

them finding the resources they need. It is impossible to know for sure how useful the

site has been for this intended audience, but since its beginnings in early 2013, there

have been nearly 200 unique returning visitors to the site.

6.1.2 RCI software package

I believe strongly that data analysis methodological development must be presented

along with the necessary tools to replicate the work. No document on data process-

ing, including this one, can provide the level of algorithmic detail needed to faithfully

reproduce any but the simplest code. For future researchers attempting to compare

their work to that already done, it becomes impossible to differentiate between dif-

ferences due to data, implementation, and algorithm. Unfortunately, as is the case

here, the development of production-ready software is frequently beyond the scope of

initial methodological research. Nevertheless, I have made all the code used in this

work publicly available as the RCI package for the R programming language (available

on Github at https://github.com/dancingwoods/RCI ). The code is fully documented,

providing the implementation details that are lacking from this dissertation document.
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RCI is a prototype version of software that performs the analysis described in this

document. It is not meant for widespread experimental deployment, but rather as a

model for the future software development. Though I chose to use the R language

(in combination with some C code for speed), I would not recommend this choice

for tools meant for deployment to the neuroscientific community. Currently, the

most common environments for TPCI analysis as reported in the literature are the

open source image processing toolkit ImageJ, and the scientific computing language

Matlab. Both of these environments support the development of extensions, which

could easily include modules for TPCI processing.

6.2 Summary

In this dissertation I have presented research on three particular tasks in the analysis

of TPCI data: region of interest segmentation, motion correction, and correlation-

based cell clustering.

In chapter 3, I presented the MaSCS procedure for ROI segmentation. MaSCS

represents a step forward in the field as it provides flexible multi-class, automated

segmentation with performance that is similar to existing techniques but improves

with use. If adopted into common use, the MaSCS framework has sufficient structure

to improve standardization and communication between experimenters, while also

being flexible and adaptable enough to accommodate the eccentricities and specific

needs of particular labs.

Chapter 4 explored motion artifacts and their impact on various data summaries

that may be used for scientific inference. Though image alignment is a widely applied

tool for motion correction in TPCI, prior to this work there were no studies of the

relative effectiveness of the wide variety of alignment techniques available. I expanded

my analysis beyond image alignment to discuss intensity correction approaches de-
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signed to account for out-of-plane motion. The two techniques I developed (AR and

regression filtering) reduced but did not eliminate the effects of motion on the vari-

ance and correlation structure of the data. This work on motion correction is simply

the start of a conversation. Better motion correction techniques are a necessity, but

before they can be developed we must clearly define what it means to remove or

correct for motion. The data summaries I used to quantify motion artifacts are the

beginnings of such a definition.

Finally, in chapter 5 I presented preliminary work on clustering cells based on the

correlation of their fluorescence traces. This is a task that is of interest to exper-

imenters when spike train analysis is not practical (either because of experimental

parameters or because the target of the experiment is non-spiking cells such as astro-

cytes). I find that with the current data and motion correction techniques, it is likely

that the results of clustering algorithms based on correlation distances are highly cor-

rupted by motion artifacts. I show preliminary evidence that regression filtering may

reduce the impact of these artifacts. This work invites future research to describe the

parameters that govern when and if correlation based clustering is a justifiable TPCI

analysis technique.

There remain large numbers of opportunities to improve the analysis of TPCI

data. Each of the three chapters summarized above described relevant future work.

Beyond improvements to these three particular tasks, an interesting area of research is

the creation of a standardized processing pipeline. A standard toolkit for TPCI data

analysis would provide an indexed set of tools for experimenters to use. A processing

pipeline would involve the additional step of justifying particular combinations and

sequences of analysis methodology under common experimental paradigms. Standard

toolkits and pipelines facilitate direct comparison and synthesis of results from dif-

ferent labs. They reduce duplication of effort, and allow researchers to more easily

identify targets for scientific or methodological innovation. Fortunately, many scien-
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tists are starting to work toward these goals. It is my hope that this document may

be useful to those continuing to work on methodological development for TPCI data

analysis.
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