Toward Adaptation and Reuse of Advanced
Robotic Algorithms

Christopher R. Baker

CMU-RI-TR-11-09

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

04/2011

Thesis Committee:
John Dolan, Chair
David Wettergreen
Jonathan Aldrich, Institute for Software Research
Issa A.D. Nesnas, Jet Propulsion Laboratory, California Institute of Technology

(©2011 BY CHRISTOPHER R. BAKER. ALL RIGHTS RESERVED.

This research was supported through the General Motors/Carnegie Mellon
University Autonomous Driving Collaborative Research Laboratory.

Abstract

As robotic systems become larger and more complex, it is increasingly important to compose
them from reusable software components that can be easily deployed in novel systems. To
date, efforts in this area have focused on device abstractions and messaging frameworks
that promote the rapid and interoperable development of various perception, mapping and
planning algorithms. These frameworks typically promote reusability through the definition
of message interfaces that are sufficiently generic to cover all supported robot configurations.
However, migrating beyond these supported configurations can be highly problematic, as
generic data interfaces cannot fully capture the variability of robotic systems.

Specifically, there will always be pecularities of individual robots that must be explic-
itly coupled to the algorithms that govern their actions, and no single message or device
abstraction can express all possible information that a robot might provide. The critical
insight underlying this work is that while the information that contributes to a given algo-
rithm may change from one robot to the next, the overall structure of the algorithm will
remain largely undisturbed. The difference is made in comparatively small details, such as
varying individual weights or thresholds that influence the results of, but do not otherwise
interfere with, the algorithm’s “main” calculations.

This work proposes that exposing a few such points of variation in a given robotic algo-
rithm will allow the modular treatment of a wide array of platform-specific capabilities. A
corresponding design methodology is proposed for separating these platform-specific “sup-
plemental effects” from a reusable, platform-independent “core algorithm”. This method-
ology is evaluated through case studies of two distinct software systems, the first drawn
from the realm of autonomous urban driving, and the second from the domain of planetary
exploration. The central contributions of this work are:

e A nomenclature and corresponding guidelines for discriminating between platform-
independent “primary” data and platform-specific “supplemental” data;

e Quantified costs and benefits for two technical solutions to isolating the corresponding
core algorithms from their supplemental effects;

e A classification of typical segments of advanced robotic algorithms that can be affected
by platform-specific data;

e A set of principles for structuring such algorithms to simplify the accommodation of
future supplemental effects.

Contents

Contents

List of Figures

List of Tables

Listings
1 Introduction
2 The Problem: Reuse Means Adaptation

2.1 Example: What Constitutes a Point?
2.2 Compelling Adaptation
2.3 Units of Adaptation
2.4 Implications of Adaptation
2.5 Requirements for Adaptation oL

Related Work
3.1 Reuse and Extension in Robotic Software
3.2 Software Engineering o L

Technical Approach

4.1 Primary vs. Supplemental Data in Existing Systems
4.2 Object-Oriented Technique: Delegation
4.3 Aspect-Oriented Technique: XPI
4.4 Experimental Outline

Application to Autonomous Driving Behaviors

5.1 Autonomous Driving Behaviors in the Urban Challenge
5.2 Trafic Estimator
5.3 Precedence Estimator L
5.4 Merge Planner
5.5 Discussion

Results: Concern Diffusion
6.1 Introduction: Concerns and Diffusion
6.2 Traffic Estimator

iii

vi

-

© © g ot

10

11
14

19
19
23
26
27

29
29
33
43
49
99

CONTENTS

i
6.3 Precedence Estimator 70
6.4 Merge Planner 74
6.5 Summary L e 7
7 Results: Net Option Value 79
7.1 Introduction: The Net Option Value of a Modular System 79
7.2 Precedents for Parameter Selection 85
7.3 Experiments in Parameter Estimation 88
7.4 Discussion e 100
8 Extension to Novel Input Data 103
8.1 Introduction: Novel Supplements for Autonomous Driving 103
8.2 Moving Obstacles from V2V Data 105
8.3 V2V Effects on Autonomous Driving Algorithms 111
8.4 Discussion e e 125
9 Complementary Case Study: CLARAty 127
9.1 CLARAty: Review 128
9.2 Morphin Terrain Analysis L 132
9.3 Data Flow and Dependencies in Morphin 134
9.4 Alternate Designs for Morphin L. 145
9.5 Summary L e 155
10 Summary and Conclusions 157
10.1 Primary Contributions 157
10.2 Supplemental Contributions 160
10.3 Future Work 161
A Designing Core Algorithms to Consider Supplemental Effects 165
A.1 Original Merge Planner: Review 165
A.2 Insulation from External Data Types 167
A.3 Ephemeral Data Aggregators 167
A.4 Augmentation of Internal Data Representations 169
AL Summary 170
B Aspect-Oriented Programming 173
C Concern Listing 177
C.1 Traffic Estimator 177
C.2 Precedence Estimator 178
C.3 Merge Planner 179
D Design Structure Matrices 181
E The Unified Modeling Language (UML) 187
E.1 UML Basics e e e e e 187

E.2 Class Contents and Inheritance 188

E.3 Inter-class Dependencies Lo oL
E.4 Aggregation
E.5 Nested Typing« o
E.6 Templates L
E.7 Aspect-Oriented Notation

Bibliography

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

4.4

5.1
5.2
9.3
5.4
9.5
5.6
2.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Reusability via generic data representations
Semantic Mismatch between generic data representations.
Run-time adaptation to sensor-specificdata

Set-theoretic determination of primary vs. supplemental data
Example intersection yield scenario.
Object-Oriented delegation of the yield relevance test to encapsulate supplemen-
tal effects according to the Decorator [21] pattern. Problems typically associated
with long inheritance chains are mitigated using Mixin Layers[51], as shown in
Listing 4.2. L
Aspect-Oriented exposure of adaptability through a Crosscutting Programming
Interface (XPI), and binding supplemental effects as “after” advice through the
XPL .

Behavioral Executive Architecture
The full MovingQObstacle representation.
Traffic Estimator Observer-Subject Diagram
The trouble with abstract “confidence” values.
Spectral Tradeoffs: Context-Free vs. Context-Specific Reasoning
OO redesign of the Traffic Estimator
AO redesign of the Traffic Estimator
Precedence Estimator Observer-Subject Diagram
OO redesign of the Precedence Estimator
AO redesign of the Precedence Estimator
Merge Planner Observer-Subject Diagram
Original Merge Planner with Intermediate Types
Moving Obstacle Data path through Merge Planner
OO redesign of the Merge Planner: intermediate type extensions
OO redesign of the Merge Planner: delegate interface classes
OO redesign of the Merge Planner: standard supplemental effects

iv LIST OF FIGURES
5.17 OO redesign of the Merge Planner: derived-supplemental data effects 57
5.18 AO redesign of the Merge Planner 58
6.1 Traffic Estimator: Concern Diffusion over Components 66
6.2 Traffic Estimator: Concern Diffusion over Operations. 67
6.3 Traffic Estimator: Concern Diffusion over Lines of Code 68
6.4 Precedence Estimator: Concern Diffusion over Components 70
6.5 Precedence Estimator: Concern Diffusion over Operations 71
6.6 Precedence Estimator: Concern Diffusion over Lines of Code 72
6.7 Merge Planner: Concern Diffusion over Components 74
6.8 Merge Planner: Concern Diffusion over Operations 75
6.9 Merge Planner: Concern Diffusion over Lines of Code 76
6.10 Average Diffusion Results oL 77
7.1 NOV Model: Q(k) vs. R(k) 82
7.2 Example DSM: DE Traffic Estimator 83
7.3 NOV results: Baseline 89
7.4 FEffects of Aggregation on NOV Calculations 91
7.5 NOV results: varying baseline technical potential for Traffic Estimator. 92
7.6 NOV results: varying baseline technical potential for all components. 93
7.7 NOV results: varying supplemental volatility for Traffic Estimator 95
7.8 NOV results: varying supplemental volatility for all components 96
7.9 NOV results: introducing LOC into complexity estimate for the Traffic Estimator 97
7.10 NOV results: introducing LOC into the complexity estimate for all components. 98
7.11 NOYV results: comparison of baseline to final results. 99
8.1 DSRC BasicSafetyMessage ¢ o v v v v vt 105
8.2 Converting a BasicSafetyMessage into a MovingObstacle 107
8.3 Starting XPI’s as generated in Chapter 5. 115
8.4 Traffic Estimator augmentation for CX.2 117
8.5 Precedence Estimator augmentation for CX.2 117
8.6 Alternate Design for Core Merge Planner 119
8.7 Merge Planner augmentation for CX.2 0oL 119
8.8 Traffic Estimator augmentation for CX.3 121
8.9 Traffic Estimator augmentation for CX.3 122
8.10 Adding the “whole” lead vehicle as a Subject 123
8.11 Distance Keeper augmentation for CX.4 123
8.12 Lane Selector augmentation for CX.5 124
9.1 The Coupled-Layer Architecture for Robot Autonomy 129
9.2 The duality of data and capability representations 130
9.3 Simplified Data-Flow View of the Morphin Algorithm 133
9.4 Detailed Data-Flow View of the Morphin Algorithm 134
9.5 Morphin Details: Stereo Imagery to Point Clouds 135
9.6 Morphin Details: Point Clouds to Plane-Fitting Representations 138
9.7 Morphin Details: Converting Plane-Fitting data to local “traversability” data. 140
9.8 Morphin Details: Converting local “traversability” data into “goodness” 142

9.9 Morphin Details: Binding “goodness” to individual planner cost functions. . . 144

9.10 Morphin: Pre-emptive refactoring oL, 146
9.11 Templates for alternate Morphin Point_Source variations. 148
9.12 Templates for alternate Point representations in Morphin. 149
9.13 Morphin adaptability interface using Object-Oriented delegation. 151
9.14 Morphin supplemental effects using Object-Oriented delegation. 153
9.15 Morphin adaptability interface using a Crosscutting Programming Interface (XPI)154
9.16 Morphin supplemental effects applied using AO introduction. 155
10.1 Future Work: applying “supplemental effects” in a model-based environment. . 162
A.1 Original Merge Planner design, reproduced from Chapter 5 for reference. . . . 166
A.2 Eliminating premature “break-out” of the MovingObstacle representation. . . 168
A.3 Eliminating the ephemeral usage of the BossStateType representation. 169
A.4 Final Design for Core Merge Planner 170
D.1 DSM for Traffic Estimator, Direct Encoding Implementation 181
D.2 DSM for Traffic Estimator, Object-Oriented Implementation 181
D.3 DSM for Traffic Estimator, Aspect-Oriented Implementation 182
D.4 DSM for Precedence Estimator, Direct Encoding Implementation 182
D.5 DSM for Precedence Estimator, Object-Oriented Implementation 183
D.6 DSM for Precedence Estimator, Aspect-Oriented Implementation 183
D.7 DSM for Merge Planner, Direct Encoding Implementation 184
D.8 DSM for Merge Planner, Object-Oriented Implementation 185
D.9 DSM for Merge Planner, Aspect-Oriented Implementation 186
E.1 UML Example: Basics of objects and commentary 187
E.2 UML Example: Detailed class contents, inheritance and polymorphism 188
E.3 UML Example: Dependencies oo 189
E.4 UML Example: Aggregation. 190
E.5 UML Example: Nesting o 191
E.6 UML Example: Templates o 192
E.7 UML Example: Aspects e 193

List of Tables

5.1 References to supplemental data in the Behavioral Executive. 32
5.2 Traflic Estimator: Basic Software Metrics 42
5.3 Precedence Estimator: Basic Software Metrics 49

5.4 Merge Planner: Basic Software Metrics 58

7.1

8.1
8.2

C.1
C.2
C.3

Q(k): The expected maximum of k& draws from a normal distribution, assuming

negative draws are assigned a value of zero. 81
Raw results from the implementation of Requirement CX.1 114
Concern diffusion results for Requirement CX.1 115
Traffic Estimator: Concern Listing for Diffusion Metrics 177
Precedence Estimator: Concern Listing for Diffusion Metrics 178
Merge Planner: Concern Listing for Diffusion Metrics 179

Listings

4.1 Direct encoding of supplemental effects in the original Precedence Estimator. 24
4.2 Pseudo-code showing object-oriented delegation of the “yield relevance” test. 25
4.3 Application of supplemental yield-relevance effects through an XPI. See Ap-

pendix B for an extended presentation of AO syntax and concepts. 27
5.1 Pseudo-code for supplemental effects in Traffic Estimator speed estimation. 37
6.1 Pseudo-code for supplemental effects in Traffic Estimator speed estimation. 63
8.1 Example turn-signal enumeration for incorporation into the MovingObstacle
Representation o 109
9.1 Instantiation of the “plain” Morphin algorithm according to the design in
Figure 9.13« . oL 152
B.1 Target class for AspectC++ example, 173
B.2 Target class for AspectC++ example, with direct introduction of mutual
exclusiono 174
B.3 Implementation of mutual exclusion using AO techniques 175
E.1 CH+ syntax for Figure E.1 o 187
E.2 CH++ syntax for Figure E.2 o oo 188
E.3 CH+ syntax for Figure E.3 o oo 189
E4 CH+ syntax for Figure E.4 o oo 190
E.5 CH+ syntax for Figure E5 L 191
E.6 CH+ syntax for Figure E.6 L. 192

E.7 AspectC++ syntax for Figure E.7, see Appendix B for functionality 193

Chapter 1

Introduction

Robotic software systems are notoriously complicated, costly to develop, and difficult to
reuse, in whole or in part, from one robot to the next. Many of these issues arise from the
nature of complex software systems, especially the difficulty of subdividing a large system
into a collection of smaller components, and managing issues such as synchronization and
messaging between those components. Research and practical efforts in these areas have
yielded a number of excellent robotic application frameworks and associated toolkits, such as
CARMEN(37], Player/Stage[11], CLARAty[38] and the emerging ROS[46]. These generally
focus on reuse in terms of a component’s expected input and output data such that, as long
as all of its specified inputs are available, that component can be reused in any number of
applications generated using the same framework.

Unfortunately, these conditions, of using the same framework and providing ezactly the
same data, are often more constraining than openly admitted by proponents of component-
based robotics. The consequences of violating these conditions are that some components
must be invasively modified, i.e., their source code must be acquired, understood, and
altered to accommodate the details of a new robotic platform. These consequences are
widely recognized as undesirable and “to be avoided when possible”, but there is otherwise
little direct discussion of how, precisely, to avoid such modifications, or what to do when
they simply cannot be avoided. This leaves developers with very little guidance as how
to structure or modify existing components for use on other robots, resulting in ad-hoc
adaptations that are difficult, error-prone, and can leave the adapted component in a much
worse state for the “next” modification®.

Analysis of the “lessons learned”, or “difficulties encountered”, in the development and
application of component-based architectures can provide critical insights into the specific
challenges of incorporating existing robotic software components into novel systems. For in-
stance, the MARIE[12] framework successfully demonstrated the integration of components
from several of the aforementioned toolkits, but their approach relies on the assumption
that the data provided by one component are semantically identical to the data expected
by any consuming components. This is not always, or even often, the case, as alluded to by
one particular “difficulty encountered” by the authors of MARIE: that components often
contain “hidden assumptions” about the robots they were originally written for. The result-

!This phenomenon is often described as an accumulating “calcification” or “brittleness”[13] of those
components relative to further alterations of the surrounding system.

2 CHAPTER 1. INTRODUCTION

ing conflicts could only be rectified through significant modification of those components’
inner workings, which were “tedious and error-prone”, and required detailed understanding
of the differences between the original and target platforms.

This difficulty is consistent with discussion surrounding CLARAty[39], which notes that
even within the fairly narrow realm of planetary (Mars) rovers, variations in sensor selec-
tion and placement, mobility and actuation capabilities, power and communication archi-
tectures, and even mission context can have ripple effects through many of the software
components that operate any given robot. These ripple effects make it difficult to isolate
common functionality in reusable components, especially when attempting to define the
interfaces between them, for which “neither the union of all possible capabilities, nor their
intersection” were satisfactory.

Whereas these and other previous efforts focus on isolating platform variability behind
increasingly generic data representations, this work instead embraces the idea that for
some robotic software components, no single input specification can encompass the entire
range of data that are available and relevant to the embodied algorithms. That is, there
is always the possibility that migrating to the “next” robot will add, remove or alter the
meaning of individual data provided to such algorithms, requiring introduction, excision,
or modification of the corresponding effects of those data.

The critical insight underlying this work is that while the information that contributes
to a given algorithm may change from one robot to the next, the overall structure of the
algorithm will remain largely undisturbed. The difference is made in comparatively small
details of the algorithm, such as varying individual weights or thresholds, that influence the
results of, but do not otherwise interfere with, the algorithm’s “main” calculations.

Thesis Statement

This work proposes that:

For many robotic algorithms, there is an important distinction to
be made between the primary data that drive the core implemen-
tation of the algorithm and the supplemental data that enhance the
core algorithm to exploit platform-specific details. Through the use
of modern software design techniques, it is possible to isolate such
platform-specific supplemental effects from the platform-independent
core algorithm, yielding an artifact that is both more reusable across
and more adaptable to a wide variety of robotic systems.

For the purposes of this thesis, a “point of variation” can be thought of as a small
segment of source code for a given robotic algorithm that has to be modified to accom-
modate platform-specific capabilities. These can be as simple as isolated if-then-else logic
expressions, and are often deeply embedded, and thus difficult to locate and understand, in
typical “reusable” robotic software components. “Exposing” these points of variation refers
to the rearrangement of the structure of an algorithm to highlight the ways that it may
be influenced by platform-specific capabilities, such that future developers can easily locate
and understand how the algorithm may be adapted to suit their specific needs. The “mod-
ular treatment” of these adaptations refers to keeping individual robot-specific variations of
an algorithm in separate classes, objects, etc., from the generic, reusable implementation of

that algorithm. This allows dependencies on individual platform-specific capabilities to be
introduced or removed by adding or excluding the corresponding classes, instead of having
to make surgical alterations to the otherwise “reusable” parts of an algorithm.

The ultimate goal of this work is to equip future developers with tools and insights
that will help them design and implement advanced robotic software components that can
be easily adapted to the details of novel systems in this manner. Taking this “developer’s
perspective”, the critical questions answered by this thesis are:

1. Without knowing about all future robots in advance, how can I discriminate between
“platform-specific” and “platform-independent” capabilities?

2. What constitutes a “likely point of variation”, and how do I identify them in my own
algorithms?

3. Is the “modular treatment” of individual platform-specific variations technically fea-
sible?

4. What are the tradeoffs that I should be aware of when considering this approach in
my own systems?

The answers to these questions mark the primary contributions of this thesis, which
explores the issue of platform-specific variations of otherwise generic algorithms through
two case studies of existing software components. This begins in Chapter 2 with a break-
down of the most basic types of algorithmic adaptation that are compelled by changes
in platform-specific capabilities. This leads to an initial set of guidelines for discriminat-
ing between platform-independent and platform-specific capabilities, described in terms of
the “primary” data that contribute to the platform-independent “core algorithm”, and the
“supplemental” data that merely enhance, or “supplement”, the core algorithm to exploit
platform-specific capabilities. A corresponding methodology, described as a set of detailed
design requirements, is proposed for the “modular treatment” of these supplemental effects
relative to a stable, reusable core algorithm.

Related work in the robotics and software engineering communities is reviewed in Chap-
ter 3, which leads to the identification of two detailed technical approaches that satisfy
these requirements, described in Chapter 4. These techniques are applied to existing soft-
ware for autonomous driving in Chapter 5, and the resulting artifacts are subjected to two
established software analysis techniques in Chapters 6 and 7, informing the questions of
“technical feasibility” and “design tradeoffs” listed above. Several candidate extensions
of the autonomous driving components to novel input data are discussed in Chapter 8,
which identifies several “likely points of variation” that can be expected in other robotic
algorithms.

The second case study, presented in Chapter 9, reinforces the applicability of these ideas
by looking into the complementary domain of planetary exploration. Similar problems of
platform-specific adaptation are readily identified in a set of software components from
CLARAty[39], and alternate designs are proposed that would enhance their adaptability in
the same manner as for the more detailed case study on autonomous urban driving. The
critical contributions of this work are then summarized in Chapter 10, which includes an-
swers to each of the above questions, allowing practitioners to make well-informed decisions

4 CHAPTER 1. INTRODUCTION

as to where, when and how they may apply the insights from this thesis to enhance the
adaptability, and thus the reusability, of their own robotic algorithms.

Chapter 2

The Problem: Reuse Means
Adaptation

One of the fundamental difficulties in reusing advanced robotic algorithms is the adap-
tation of those algorithms to make use of the specific set of data available on the target
platform. This chapter examines the nature of this problem and distills the most basic
units of change that compel this kind of adaptation, deriving a set of requirements for the
modular treatment of this phenomenon.

2.1 Example: What Constitutes a Point?

Consider the common example of a “point cloud”, as used by a wide variety of mapping,
localization, terrain analysis, and other advanced robotic algorithms, and which may be de-
rived using one or more of LADAR, stereo vision, or other perception techniques. Classical
approaches promote reusability through highly generic input representations, as typified by
the Cartesian coordinates in the Point class in Figure 2.1. As long as the contents of this
class are representative of the information that a given robot can provide, then components
such as the TerrainAnalysis class can be deployed on that robot without modification.
The trouble with robots, as alluded to in Chapter 1, is that while this representation
covers the minimum data that are necessary to describe an individual point, it also ex-
cludes any additional data that a robot might provide about that point that could influence
the TerrainAnalysis algorithm. For example, some LADAR scanners and stereo vision
techniques can provide uncertainty information in addition to the standard Cartesian coor-
dinates of a point. Accommodating this new information would require introduction of an

Point TerrainAnalysis

ObstacleMap

A
v

+AddNewPoints (pts:Point[])
+ComputeObstacleMap()

+x,v,z: float

Figure 2.1: Reusability through generic data representations. The TerrainAnalysis class
uses the minimal Point representation to generate an ObstacleMap. Notation: UML[48]

6 CHAPTER 2. THE PROBLEM: REUSE MEANS ADAPTATION

“error” member into the input Point representation, and extension of the TerrainAnalysis
class to incorporate “error” in its internal calculations.

While this may seem trivial for any one such datum, subsequent robots may not be
able to provide such “error” information, but may provide other data instead, such as
temperature readings from stereoscopic thermal imagers, or an indication of the presence
of vegetation through more sophisticated analysis techniques[8]. These data could also be
relevant to the TerrainAnalysis algorithm, but they are not semantically compatible with
“error” data, yielding the semantic mismatch shown in Figure 2.2.

ProvidedPoint ExpectedPoint
TerrianAnalysis
+x,y,z: float — +x,y,z: float <
+temperature: float +error: float T
L]
Must disable "error"
Nowhere to put Cannot populate effects and introduce
"temperature" "error" datum "temperature" effects

Figure 2.2: Semantic mismatch between an input representation that expects points anno-
tated with error information, and a platform that provides temperature readings instead.

This mismatch can only be addressed by further modification of the TerrainAnalysis
algorithm, such as to introduce mission-specific policies for whether or not “hot” surfaces
or blocks of “vegetation” may constitute an obstacle. Moreover, these data do not generally
have safe “default” values, so these policies would have to be selectively enabled according
to the detailed capabilities of each specific robot. Especially when considering the pos-
sibility of interaction among these effects, such as for systems that provide both “error”
and “vegetation” information, this can lead to a cumbersomely large set of conditionally-
active effects that would significantly degrade the understandability and adaptability of the
TerrainAnalysis component. This phenomenon is often described as an an accumulating
“calcification” or “brittleness”[13] of robotic software with respect to this type of adapta-
tion, and it is particularly common in prototype robotics, wherein individual sensors or
perception algorithms are continually introduced or enhanced. In attempting to deal with
this problem in a general way, typical approaches tend toward one of two extremes:

1. Attempt to accommodate all possibly-relevant input data directly within one “mono-
lithic” component, or

2. Subdivide the component into modules that are small enough to permit the accom-
modation of any conceivable change through the substitution of modules or the rear-
rangement of their dependencies.

The “monolithic” approach emphasizes reuse of large software components at the cost
of an ever-growing collection of dependencies on platform-specific data, the breaking of
module opacity when adapting to novel inputs, and a high risk of semantic conflicts as
described above. This pattern is quite common in robotic software developed using proce-
dural or object-oriented languages, where the perceived “harmlessness” of “just one more

2.2. COMPELLING ADAPTATION 7

configuration parameter” or “just one more input flag” leads to exactly the kind of brit-
tleness described above. A common symptom of this is large blocks of commented-out or
conditionally-compiled! code that is retained in case it can be used on the “next” system.

At the other end of the spectrum, a component can be subdivided into functional mod-
ules that are small enough that any conceivable adaptation can be implemented via the
introduction of new modules and the rearrangement of the dependencies between them. In
the limit, this hyper-modular approach leads to modules that are so small that the dif-
ficulties of re-use shift from the modification of the modules to the specification of their
interactions. That is, the alteration of the component’s configuration becomes at least as
complicated and error-prone as directly editing the source code of the monolithic represen-
tation, leading to the same kind of “brittleness” with respect to further adaptation.

This pattern is commonly encountered in so-called “model-based” environments wherein
all development is done through box-and-line visualization, where the boxes represent math-
ematical functions and the lines represent primitive data types, such as integers or floating-
point numbers. While powerful in many respects, this representation is often criticized for
its ability to take relatively simple mathematical models and spread them out over several
pages of such boxes, each representing trivial mathematical operators such as addition, mul-
tiplication, etc., which are interconnected by a dizzying array of lines that represent various
intermediate results. While this allows the modular accommodation of arbitrary input data
without editing “source code”, this comes at the cost of a set of interdependencies that is
just as difficult to understand and adapt.

In either case, the implicit need to treat all possibly relevant input data leads to an
over-generalized artifact (or collection of artifacts) that is extremely brittle with respect
to further adaptation or reuse. While no practical system is likely to exist exclusively at
either extreme, any attempt to build generically reusable robotic software components must
somehow reconcile these opposing trends. The strengths and weaknesses of each extreme,
combined with the unbounded span of possibly-relevant data, suggest that robotic algo-
rithms cannot be fully generalized against any one set of input data, and that the interface
that describes the data that an algorithm uses “as-is” must be complemented with an in-
terface that describes the ways that an algorithm can be easily modified to accommodate
more, less or different data in the future. Such an interface allows the algorithm to be more
easily adapted to, and thus more easily reused across, many robotic platforms without the
problems of accumulating “brittleness” described above.

2.2 Compelling Adaptation

This accumulating “brittleness” was particularly apparent during the development of the
autonomous driving software discussed in Chapter 5, and it was one of the primary mo-
tivators of this work. However, the problems of adaptation to varying input data are not
unique to prototype robotics, nor do they require explicit “porting” from one platform to
another as in the example above.

In a more rigorous production environment, such as the aerospace or automotive indus-
tries, similar difficulties may also be encountered in the use of the Product Line[6] approach
to maintain autonomous and semi-autonomous driving algorithms across a collection of re-

'Such as by #ifdef MY ROBOT ... #endif in C/C++.

8 CHAPTER 2. THE PROBLEM: REUSE MEANS ADAPTATION

lated, but distinct vehicles. In this case, the goal of sharing components across the entire
line can be thwarted by the differences in sensing and actuation capabilities that sepa-
rate one class of from another, such as a compact sedan vs. a luxury SUV. For example,
some platforms in a product line may detect traffic using RADAR, where others might use
computer vision techniques instead. For an advanced algorithm, such as a highway merge
planner, to be reusable on all such platforms, it must be implemented in terms of the com-
monality between these techniques, such as providing basic position or range information
about candidate obstacles. For optimum performance on any one system, however, the
algorithm must also be adaptable to the specific strengths of each sensing technique, such
as exploiting higher confidence in velocity measurements from RADAR, or the ability to
detect geometry and turn signals with computer vision.

RADAR+Vision RADAR-Only

ViSiOQfOV Detection Detection

Vision-Only RADA:/R FOV

Detection

Figure 2.3: Differences in sensor ranges and coverage patterns can compel run-time adap-
tation to sensor-specific data.

In the case of multi-modal perception techniques, such as the use of both RADAR
and machine vision on one platform, the design-time problem of accommodating platform
variability becomes a problem of run-time adaptation to sensor-specific data. As illustrated
in Figure 2.3, differences in sensor range and coverage patterns can cause obstacles to be
detected by any combination of sensors, requiring algorithms to selectively enable individual
sensor-specific effects according to the contributors to the detection of any one vehicle. In
a sense, this compels a type of runtime adaptation in autonomous driving algorithms to
exploit specific capabilities when available and otherwise degrade to the “best possible”
functionality when not.

Taken one at a time, these issues can typically be reduced to the introduction and in-
spection of a single status flag, such as “using a vision sensor”, and triggering one of two sets
of functionality depending on the result. In isolation, this may seem like a trivial problem,
but the number of such effects that can accumulate in trying to support multiple platforms,
or even multiple sensing modalities on a single platform, can lead to a cumbersomely large
set of these “simple” flags to maintain. This is compounded by the possibility of interaction
among multiple effects, such as deriving special cases for “using a vision sensor”, but also
“using a RADAR sensor”, that leads directly to the “brittleness” at the focus of this thesis.

2.3. UNITS OF ADAPTATION 9

2.3 Units of Adaptation

Regardless of the specific impetus, the need for adaptation arises because a new set of data
is available that is different from some previous set of data that was expected by a given
component. More specifically, the new set of data may have one or more:

1. Additional data to be incorporated to enhance performance, safety, etc.;

2. Absent data that can no longer be derived by the system, requiring deactivation or
excision of any associated effects;

3. Altered data, whose precise semantics “drift” as a result of progressive enhancements
to the surrounding system, requiring frequent updates to the corresponding effects.

Any technique that attempts to treat the effects of these changes in a modular way must
be able to treat them on an individual basis, as the changes may come one at a time, such
as during the active development of a single robotic system. Even if several changes occur
all at once, such as when migrating a component to a completely new system, it is sufficient
to model the consequent adaptations as a discrete sequence of changes for individually
additional, absent or altered data. Thus, it is possible to analyze the implications of each
type of change in isolation, and take the union of the requirements they impose as the set
of requirements for any design technique to effectively treat this problem.

2.4 Implications of Adaptation

First and foremost, the adaptation of a given component to additional data implies that
the component can already function effectively without those data. That is, the new data
are capable of, or perhaps are specifically meant to, supplement the existing algorithm
to enhance performance or yield more accurate results. A modular treatment requires
the corresponding supplemental effects to be bound to the algorithm through a dedicated
adaptation interface that minimizes invasive modifications to the original component. Re-
latedly, the use of this adaptation interface should not require intimate knowledge of the
component’s inner workings, as the effort to understand the context and consequences of
an adaptation is the primary cost to be reduced by avoiding such direct modifications.

Conversely, the adaptation of a given component in the face of absent data begins with
the assumption that the component can function effectively without those data, but that its
behavior will somehow be degraded as the effects of the absent data are removed. That is,
the absent data are also supplemental to the algorithm, as described above. The corollary
to this is that there is some set of primary data that are necessary to enable baseline or core
functionality, and that all other possibly-relevant data can be treated as supplemental. A
modular treatment requires the effects of the absent data to be completely and separately
encapsulated such that those effects, along with any corresponding compile-, link- or load-
time dependencies on the supplemental data in question, can be easily removed by excluding
the appropriate module(s). As with the treatment of additional data, this exclusion should
require minimal, if any, invasive modifications to the core component.

Lastly, the adaptation of a given component relative to altered data implies that the data
can actually have several specific meanings. This generally excludes data that can be taken

10 CHAPTER 2. THE PROBLEM: REUSE MEANS ADAPTATION

entirely at face value, such as locations, sizes, or anything else that represents a concrete
measurement in real units, leaving data that have much deeper semantics, such as inferred
error measurements, or enumerations that represent some abstract state of the environment,
such as the inference of driver intent through observed behavior. These typically represent
some of the most subtle facets of the confluence of sensors, algorithms and application
domain that are unique to a given platform, and their specific meanings are the most likely
to evolve as the platform evolves. The alteration of the semantics of such data implies that
the effects of that data must be revisited and synchronized with the new meaning. The
modular treatment of this synchronization requires that the effects of the altered data be
co-located and able to be examined and modified in isolation without direct modification or
significant knowledge of the rest of the component under adaptation. This can also require
the introduction of completely new effects, such as with additional data, and the excision
of invalid effects, as with absent data, further reinforcing the implications of both.

2.5 Requirements for Adaptation

Distilling the above yields the following requirements for any design that attempts to sepa-
rate the reusable elements of a given core algorithm from the individual supplemental effects
that would bind that core algorithm to any one robotic platform. In order for the resulting
software artifact to be easily adaptable to present and future platform-specific supplemental
data, a candidate design must:

AR.1 Differentiate the primary data that enables an algorithm's baseline function-
ality from supplemental data that merely enhances that algorithm to exploit
platform- and/or context-specific information.

AR.2 Identify a unit of encapsulation for the treatment of the core algorithm as a
strict function of the primary data.

AR.3 Provide a dedicated interface that allows the behavior of the core algorithm
to be adapted to a wide variety of possible supplemental effects with minimal
modification to its implementation and without knowledge of its inner workings.

AR.4 Provide a unit of encapsulation that allows the effects of arbitrary supplemental
data to be bound to the aforementioned interface such that those effects can
be introduced, removed, and updated by means of modular augmentation,
exclusion and substitution.

These requirements represent the core methodology proposed by this thesis, which is
aimed at enhancing the adaptability of advanced robotic software relative to additional,
absent, or altered data, as discussed above. Many detailed design techniques can be used
to fulfill these requirements, with the most appropriate one depending on details such as
programming language, team organization, and individual developer experience. To put
these details in an appropriate context, and to frame the selection of the specific techniques
that will be used later in this work, the next chapter reviews existing approaches to reusing
robotic software and examines related work from the software engineering community that
addresses similar issues of adaptation and reuse.

Chapter 3

Related Work

The topic of designing reusable and adaptable software components has been of great in-
terest to both the robotics and software engineering communities for some time, and the
resulting space of techniques for adapting software to new environments is known to be vast
and various[29]. Rather than presenting a dense and disorienting attempt at an exhaustive
survey of the field, this chapter focuses on work that specifically relates to or otherwise
motivates the problem of adaptation to changes in the data provided to robotic algorithms.
Section 3.1 begins with a discussion of the state of reusable robotic software, focusing on
several commonly-encountered examples that typify the broader scope of techniques cur-
rently in use in the robotics community. Thereafter, Section 3.2 summarizes the traditional
notions of adaptation and reuse in more general software engineering, and presents the
emergent techniques of Aspect-Oriented Programming and Crosscutting Programming In-
terfaces.

3.1 Reuse and Extension in Robotic Software

The promotion of reuse and adaptation in robotics has, to date, taken one of four basic
forms: specifications, application frameworks, domain-specific languages, and “behavior-
based” architectures. Many examples of each exist; a few are described here in terms
of what they aim to provide, and how they relate to the reusability of robotic software
components.

Specifications

One of the most direct methods of promoting reusability in robotics is to develop stan-
dards and specifications for reusable components. One such emergent example is the Joint
Architecture for Unmanned Systems (JAUS)[27]. JAUS specifies the bit-level message def-
initions, interface protocols and expected behaviors of several functional robotic modules
in a service-oriented architecture. System components such as mobility platforms, position
sensors and manipulator arms are modeled as software services, each providing an interface
to the associated hardware device according to the JAUS specification for that class of
device.

12 CHAPTER 3. RELATED WORK

While this is an excellent step for promoting reuse and interoperability among robotic
hardware components, JAUS currently falls short in specifying higher-order system elements
that would couple the functionality of these devices to perform complex tasks. Moreover, in
attempting to define generic messages that can fully capture the various components that
can comprise a JAUS-compliant system, the specification implicitly places the burden of
interpretation on either a human operator!, or on an otherwise custom client application
that binds specific sensor data to specific device actions to accomplish some specific mission.
The reusability of such “custom clients” of JAUS and similar standards-compliant hardware
interfaces is the focus of this thesis, as these client applications must somehow accommodate
a wide variety of sensors, actuators, and modeling techniques.

Frameworks and Toolkits

At least within the robotics research community, and to a significant extent in robotic indus-
try, application frameworks and their associated “toolkits” of components are the dominant
means of reusing advanced robotic software components. As discussed in Chapter 1, these
frameworks provide important support for rapid prototyping of new technologies, but they
often constrain developers to a narrow set of supported devices, and reuse of components
outside of these supported platforms presents significant and ongoing challenges. These are
alluded to in anecdotal “lessons learned” in the application of component-based architec-
tures to robotic systems, which point to the difficulty balancing generality and specificity
in robotic software, especially in architectural case studies or summary presentations of
individual frameworks or toolkits.

CARMEN](37] and Player[11] are two popular examples of these toolkits, providing com-
ponents for robot control, localization, mapping and navigation, along with simulation and
visualization capabilities. Reuse of the software provided with these toolkits is straight-
forward as long as the test platforms are very similar to those supported by the toolkit,
but their deployment on platforms with novel sensors, and interoperation with components
from other toolkits remain challenging problems. For instance, many of the mapping and
localization algorithms in CARMEN depend on the use of a narrow class of planar laser
scanners, such as the Sick LMS-120, to function correctly. While this implicit need to pro-
cure a specific laser is generally accepted in the research domain, it is a classic example
of how comparatively abstract software components can depend on relatively “low-level”
platform details.

The dependency on precise data representation and semantics is further highlighted
by the MARIE project[12], whose goal is to allow components from multiple toolkits to
interoperate on a single system. MARIE introduces a “Mediator Interoperability Layer”
(MIL) that converts the message data between a given component’s native representation
and a highly generic intermediate format. The generation of the so-called Communication
Adapters (CA’s), that perform the conversion to and from this generic data representation
is acknowledged as a critical and difficult activity that depends heavily on the level of
“mismatch” between the data that is provided and the data that is expected. This is
described both in terms of “architectural mismatch”[23], which refers to conflicts between,
for example, polling- vs. notification-based data delivery methods, and also in terms of

!The original JAUS specification was focused heavily on teleoperation of small mobile platforms and
manipulator arms.

3.1. REUSE AND EXTENSION IN ROBOTIC SOFTWARE 13

“semantic mismatch”, which refers to the difficulty of achieving an accurate translation
between “similar”, but not “identical” inputs, as highlighted by the differences between
ExpectedPoint and ProvidedPoint in 2.2.

This difficulty of effectively representing variations on similar data is also explored in
the work surrounding CLARAty[38], the goal of which is to provide a reusable software
framework and collection of reusable tools for NASA’s planetary rover program. A dis-
cussion of the challenges[39] faced in developing this framework lends tremendous insight
into the barriers to reuse and adaptation that are imposed by the nature of evolving and
heterogeneous robotic platforms. In particular, many of the challenges encountered during
the development and use of CLARAty “stem[med] from the variability of robotic mecha-
nisms, sensor configurations, and hardware control architectures”[39]. When attempting to
determine an effective abstraction for a given class of devices, such as motor controllers,
neither the union of all possible capabilities, nor their intersection were deemed satisfactory.
The former would lead to over-generalized interfaces that are cumbersome to use, and the
latter over-simplifies the interface, lacking the ability to represent any special properties
of the underlying platform which may be critical to the effective operation of the robot.
The difficulty and importance of achieving a balance between these extremes is highlighted,
which is consistent with the problem of adaptation to changes in input data that is explored
by this thesis. This similarity led directly to the inclusion of CLARAty components in a
complementary case study, presented in Chapter 9, which demonstrates the applicability of
the proposed methodology beyond the scope of autonomous urban driving.

Behavioral Abstractions and Domain-Specific Languages

Beyond specifications and frameworks, there has also been a great deal of work in the
robotics community that examines design techniques related to reactive behaviors, task
description and mission execution. These typically provide interesting insight into and
important support for some specific requirements of robotic systems, but generally represent
matters that are orthogonal to the types of algorithms studied in this thesis.

For example, the Task Description Language[50] provides a set of C+-+ language ex-
tensions for task decomposition, synchronization and monitoring that reduces the difficulty
of decomposing robotic tasks into a collection of individual sub-tasks. TDL has been used
effectively on several systems, including within the CLARAty system mentioned above[17].
Its fundamental goal is to provide representation and support for breaking tasks into recur-
sively smaller tasks, where the algorithms that perform the tasks, such as waypoint-based
navigation algorithms, are viewed as external dependencies. Similarly, finite-state-machine
representations of robot behavioral systems[2], while popular and very useful for modeling
the behavior of complex systems, do not directly consider the algorithms that trigger the
transitions between various states. For instance, the transition in an autonomous vehicle
from an abstract state “Waiting at an Intersection” to another abstract state “Driving Down
a Road” must be governed by some software component that reasons about the available
data to determine whether it is the robot’s turn at the intersection. Such algorithms are
clearly subject to the types of adaptation as laid out in Chapter 2, and are thus within the
scope of this thesis, as opposed to any particular arrangements of states and transitions,
which are orthogonal to the issues explored in this work.

One notable exception to this orthogonality is Brooks’ subsumption architecture[9],

14 CHAPTER 3. RELATED WORK

which allows the alteration of the behavior of a component by introducing new modules that
can conditionally suppress, or replace the output, of an existing module. This mechanism
mirrors some of the representational power of the software engineering techniques discussed
in the next section, but is focused on adapting the data flow between individual modules
in a pipe-and-filter decomposition. One key criticism of this approach is that it leads to a
hyper-modular decomposition if applied vigorously as the primary means of modularization,
leading to a complex tangle of interdependencies that are as intractable as a monolithic
encoding in a single module.

3.2 Software Engineering

Looking beyond the scope of robotics, the wider software engineering community has been
concerned with the reuse and adaptation of software from its earliest beginnings. In a
sense, nearly all research in software engineering touches on the desire for reusable software
components, and many useful techniques have been developed that address many of the
challenges of reusing software across multiple systems.

In particular, the idea of complementing a component’s “traditional” functional interface
with a dedicated configuration or adaptation interface can be traced at least as far back
as 1996, with the introduction of Open Implementations[31]. This work, which is viewed
as a precursor to the Aspect-Oriented methodology described in Section 3.2, recognizes the
problem that:

It is impossible to hide all implementation issues behind a module interface.
Some of these issues are crucial implementation-strategy decisions that will in-
evitably bias the performance of the resulting implementation. Module imple-
mentations must somehow be opened up to allow clients control over these issues
as well.[31]

These “implementation-strategy decisions” reference the many tradeoffs that must of-
ten be made between code size, execution speed, memory consumption, and other such
“non-functional requirements” [6] of a software system. In order to realize a given software
module, developers must assume an application context and choose among such tradeoffs
according to an expected usage pattern. Thereafter, those choices would be hidden behind
the module’s functional interface, leaving clients of that interface with little recourse if their
application conflicts with the original developers’ assumptions.

As an example, the developer of a windowing system that provides functionality for
drawing text, capturing mouse input, etc., may make such non-functional tradeoffs assuming
a typical application will have relatively few windows, perhaps favoring execution speed over
memory consumption. If a client of the windowing interface were to instead attempt to
create thousands of small windows, such as for a spreadsheet application, then the memory
performance of the windowing system may be completely unacceptable.

To address these and similar issues, the authors of Open Implementations propose a kind
of “complementary” interface that provides clients with a degree of control over issues that
are otherwise hidden by a module’s “traditional” interface. In the case of the windowing
example above, the authors suggest the use of preprocessor (i.e., #pragma) directives, to
allow clients to select between memory- and speed-optimized “back ends” to the same

3.2. SOFTWARE ENGINEERING 15

functional API. Although this does not directly consider the effects of novel input data,
which are the focus of this thesis, the underlying problem of having to alter otherwise
“hidden” functionality in order to fully (or even successfully) integrate a component into a
larger system, resonates with the issues outlined in Chapter 2, and is a recurring theme in
other areas of research into software design.

Encapsulation and Data Hiding

The principles and virtues of encapsulation and data hiding that came to be known as
Object-Oriented (OO) design are well-recognized by the software engineering community[43].
This methodology promotes adaptation and reuse by identifying decisions or requirements
that are likely to change and “encapsulating” the affected parts of a software system behind
an abstract functional interface. In so doing, implementation details that are tied to volatile
system requirements, such as the selection of alternate algorithms or data representations,
can be varied without affecting clients of the abstract interface. Common patterns of OO
decomposition, such as those presented in [21], have gained mainstream acceptance within
the robotics community, and they are the principal method of adaptation and reuse in most
of the frameworks and toolkits discussed above. These techniques have been used to great
effect in many large-scale robotic systems, including the Tartan Racing software system[58],
and more specifically within its Behavioral Executive subsystem[4], which is the focus of the
experimental work discussed in Chapter 5. As such, a typical Object-Oriented approach
that might be used separate a core algorithm from its supplemental effects is included in
the experimental approach laid out in Chapter 4.

However, the widespread exploitation of the strengths of Object-Oriented techniques
has been accompanied by an accumulating understanding of its limitations, particularly in
the treatment of certain secondary design concerns that are conceptually coherent, such as
transaction logging or the enforcement of access permissions, but must otherwise permeate
an object-oriented decomposition of a system. Such crosscutting concerns are difficult to
encapsulate in an object-oriented manner because their implementation must intrinsically
be scattered across many methods of a single object, and often across many objects in a
given software system. This has strong parallels to the possible effects of adding, removing
or altering data as described in Chapter 2, which can be similarly scattered across the im-
plementation of one or more algorithms in a robotic system. Aspect-Oriented methodology,
discussed in the next section, provides a means of collecting various and otherwise disparate
effects into a single unit of encapsulation, an aspect, providing interesting possibilities for
binding supplemental effects to a given core algorithm.

Aspect-Oriented Programming

Aspect-Oriented Programming[33] provides a means of coherently and modularly describing
a software concern that must otherwise, by necessity, be scattered across and tangled with
many elements of a complex software system. It introduces the notion of separating a
system into:

1. A dominant decomposition that uses traditional techniques to compartmentalize and
subdivide the system’s core functionality free of scattering or tangling concerns;

16 CHAPTER 3. RELATED WORK

2. A collection of aspects of the system that describe those crosscutting concerns relative
to the structure and execution of the dominant decomposition.

These two are combined to form a complete system by an aspect weaver, which is
analogous to a traditional compiler for procedural or object-oriented languages. While the
functionality of the aspect weaver can be seen as a source-code transformation tool, it is
important to note that the AO model is based on the interception of execution points in the
underlying system, which are, by their nature, a runtime phenomenon. These execution
points, called join-points, are described in terms of the implementation of the dominant
decomposition by specifying class names and method and member signatures in so-called
pointcut declarations.

Most mature aspect languages and compilers, such as AspectJ[32], Hyper/J[42], and
AspectC++[19] support wild-card characters in the declaration of a pointcut, allowing the
specification of large sets of join-points in a compact form. For example, the pointcut
“calls("void MyClass::Set%(int)")” specifies all calls to methods of MyClass that
begin with the letters “Set” and take a single integer as a parameter. A subsequent advice
declaration then specifies functionality to introduce at each matching join-point, which can
either extend or override the functionality of the underlying system as the developer sees
fit.

Within the domain of complex software systems, it has been shown [22] that the use
of aspect-oriented techniques can dramatically increase the conceptual coherency of many
crosscutting concerns in otherwise common object-oriented design patterns[21], especially
promoting such desirable qualities as reusability, maintainability and adaptability. As an
example, Appendix B demonstrates the use of AO techniques on a simple C++ class to
encapsulate the crosscutting concern of maintaining thread-safe access to that class.

Crosscutting Programming Interfaces

There are, however, two possible drawbacks to the application of aspect-oriented techniques
to a software system:

1. In specifying pointcuts relative to specific class, method, and variable names, aspects
acquire a brittle dependency on the implementation details of the underlying system.

2. In being able to override arbitrary functionality in the underlying system, it is difficult
to make guarantees about performance, correctness, etc. of an aspect-woven system.

The former phenomenon is often called dependency reversion, as the underlying sys-
tem is no longer subject to the scattering and tangling of crosscutting concerns, but, in
exchange, the aspects that implement those concerns are highly dependent on the detailed
implementation of the underlying system. This is widely recognized as one of the most
significant challenges faced by an aspect-oriented developer, especially while the “underly-
ing” system is still under active development. Subtle alterations to the method, member
and class names can break the binding of crosscutting concerns to the underlying system,
yielding erroneous, and typically mysterious, results.

The second problem, of the invasive power of aspects, and the corresponding vulnerabil-
ity of underlying components, has been explored in many contexts in the AO community,

3.2. SOFTWARE ENGINEERING 17

particularly in attempting to classify aspects according to how drastically they affect the
underlying system[28]. These recognize that the aspect-oriented techniques may allow too
much freedom of interaction with the underlying system, and that some means of pol-
icy checking and enforcement may be necessary to be able to make broad guarantees of
performance, correctness, etc.

Researchers have recently proposed the use of “Open Modules”[1], and later “Cross-
cutting Programming Interfaces” (XPI’s)[24] to address this necessity. While the former
is slightly more focused on the theoretical formulation, and the latter on the practical
implementation, they each describe the need to:

1. Isolate aspects of a given “core” component from having to delve into, and become
directly dependent on, the details of the component’s implementation to find appro-
priate method and member names for the application of advice.

2. Provide the maintainers of the “core” component with some flexibility in renaming and
refactoring elements in the component without interfering with potentially numerous
and unknown aspects that depend on those details.

3. Allow some way to limit the scope of aspect-oriented modifications in order to be able
to make, or at least construct, significant guarantees about the module’s functionality
and performance under the influent of aspects.

In both cases, the proposed solution is to complement the core module’s functional in-
terface with a set of named pointcuts that represent the ways that an aspect is allowed
to modify the core module’s behavior.aOpen Implementations’RESOLVED: extended the
prose immediately hereafter to fold the idea of Open Implementations back in. JA:This
might be connected more strongly to Open Implementations. In many ways, these can be
seen as more general, and more powerful, variations on the theme of “Open Implemen-
tations”, discussed above, in that they allow the underlying behavior of an algorithm to
be modified through a non-standard interface. The critical benefits, which parallel the
benefits gained from traditional OO encapsulation, are that the source-level details of the
core module are hidden from from client aspects, and that client aspects are restricted to
augmenting a core component only as permitted by its crosscutting interface. These prop-
erties are highly desirable when considering the primary vs. supplemental treatment of
robotic algorithms outlined by this thesis, so the second detailed design technique outlined
in Chapter 4 uses an XPI to encode the “likely points of variability” in a given algorithm,
applying individual supplemental effects using AO advice directives.

Supplemental Effects and Aspect Classification

Beyond issues intrinsic to AO methodology, it is also important to consider that the effects
of supplemental data are highly algorithm-specific and are thus not fully “crosscutting”
in the traditional sense of the term. While this work will show that there are several
common categories of supplemental effects in robotic systems, it is important to note that
each individual supplemental effect represents a unique combination of data semantics and
application context that will not be broadly applicable to multiple components, or even
to multiple places in a single component. In addition, these effects are explicitly meant

18 CHAPTER 3. RELATED WORK

to alter the functionality of the core algorithm to include additional information and yield
improved results, which is contrary to typical examples from the AO literature. These
focus either on adding benign side-effects, such as the canonical example of debug tracing,
or else temporarily suspending or diverting existing functionality while leaving it otherwise
unchanged, such as in other common examples of maintaining thread-safety or certain
authentication and security concerns.

Recent work on aspect analysis and classification[28] labels these more typical examples
as spectative and requlative aspects, respectively, and identifies two additional categories of
invasive aspects that alter the computational flow (and results) of the underlying algorithm.
The first such category, of weakly invasive aspects, is defined as modifications whereby state
transitions in the aspect-augmented system “...begin [and end] in states that already existed
in the state graph of the underlying system (perhaps for different inputs from those in the
augmented system).”[28]

As an example, the authors suggest an aspect that imposes a discount policy for prices in
a transaction system, where the ultimate system outputs would be the same as if prices were
set lower to begin with. In terms of the simplified example from Figure 2.1, an augmented
TerrainAnalysis class would still produce the ObstacleMap output, but with different
specific values depending on the nature of the augmentation. This, along with the broader
category of weakly invasive aspects, resonates very strongly with issues of adaptability in
robotic systems, where the special capabilities of a given robot are often used to enhance an
algorithm’s performance in ways that remain hidden behind its output specification. This
is especially true of layered or “hybrid” control architectures such as in [36, 58], wherein
each layer embodies a complex reasoning algorithm that could be enhanced by any number
of robot-specific capabilities. As long as these enhancements remain weakly invasive, they
would make good candidates for supplemental treatment as described in Chapter 2.

Discriminating between these and more strongly invasive enhancements remains an open
challenge that is highly analogous to the problem of deciding where to draw the algorithm-
specific division between core and supplemental effects as specified in Requirement AR.1.
Ultimately, the designer’s intuition must be applied to determine the line between the two,
and the primary goal of the experimental work discussed in the following chapters is to
inform future designers of the costs, benefits, and pitfalls of the primary vs. supplemental
methodology at the heart of this thesis, enabling them to make effective decisions as to
when and how to apply it to their own problems.

Chapter 4

Technical Approach

This chapter presents the technical approaches that will be applied in this thesis to the
discrimination of primary vs. supplemental data, and the isolation of the corresponding core
algorithms from their supplemental effects. Section 4.1 begins with the division between
primary and supplemental data, focusing on descriptive rules that can be applied to an
existing software system, where more prescriptive guidelines for use when designing new
systems are among the central contributions presented in Chapter 10. After describing the
basic criteria for identifying supplemental data and effects, two detailed software design
patterns, one Object-Oriented and one Aspect-Oriented, are presented in Sections 4.2 and
4.3, respectively. Section 4.4 outlines the experimental application and analysis of these
two design techniques in the context of existing software for autonomous driving behaviors,
along with a complementary case study that evaluates these techniques in the domain of
planetary exploration.

4.1 Primary vs. Supplemental Data in Existing Systems

As highlighted by Requirement AR.1, identifying an appropriate division between primary
and supplemental data is critically important to the successful application of the methodol-
ogy proposed in this thesis. Too much emphasis on primary data migrates the design toward
a “monolithic” representation, with the corresponding problems of “black box” adaptability
discussed in previous chapters. Conversely, too small a set of primary data may reduce the
core algorithm to the point of uselessness in isolation, forcing the treatment of practically all
data as supplemental and yielding an equally undesirable “hyper-modular” design. While
this stresses the importance of an appropriate division between the two, it also highlights
one of the strengths of the proposed methodology: that moving individual data “back and
forth” across the line between primary and supplemental allows an incremental exploration
of the space between monolithic and hyper-modular designs.

Whether a given datum should be treated as primary or supplemental is highly depen-
dent on the algorithm in question and the degree of adaptability sought by the designer.
Drawing on the point-cloud example in Chapter 2, an indication of whether or not a point
is “vegetative” is clearly supplemental to the generation of an obstacle map. That is, a
valid obstacle map can be generated in the absence of “vegetation” data, but the presence
of such data can be used to enhance, or supplement the obstacle map to, for instance, cause

20 CHAPTER 4. TECHNICAL APPROACH

the robot to avoid areas of “dense vegetation”, if possible. However, this could easily be
primary for other algorithms in the same system, such as for selecting navigation goals that
seek out areas of dense (or any) vegetation for scientific analysis.

The inherent subjectivity of these matters makes it difficult, if not impossible, to derive
a single, objective classification scheme for primary vs. supplemental data. Still, it is
possible to provide softer “guidelines”, rooted in specific examples, to inform the judgment
of future designers in classifying a given datum according to:

1. The intrinsic nature of the datum in question, such as whether it can be taken at face
value, whether it has a meaningful “default” value, and how likely it is to be available
on other robots.

2. The nature of the effect that the datum has on a given algorithm, such as whether it
induces isolated, minor behavioral changes, or instead compels a fundamental shift in
the approach to the problem.

The first category, of intrinsic properties of candidate supplemental data, is discussed
here in detail, and these guidelines will be used to seed the experimental work at the core
of this thesis. One main goal of this experimental work is to provide insights into the
latter category, the types of effects that supplemental data can have on robotic algorithms,
which are among the critical contributions of this thesis. As such, the second category
is discussed only briefly here, with more in-depth recommendations discussed throughout
refactoring and analysis in Chapters 5-9, and summarized in the concluding Chapter 10.

The Nature of the Data

When trying to determine whether a given datum should be treated as primary or supple-
mental for a given algorithm, the most straightforward question to ask is whether will be
available on the “next” robot or on a “typical” robot in “similar” application domain. If
so, then the datum is a strong candidate for primary treatment, as it is not particularly
likely to induce the types of adaptation described in Chapter 2. Otherwise, it is a strong
candidate for supplemental treatment, as it will be much more likely to compel those types
of adaptation.

In terms of existing algorithms that are already deployed on multiple platforms, or
when designing algorithms to be shared across a particular Product Line[6], a simple set-
theoretic view, as shown in Figure 4.1, can be used to describe the set of data that can, but
not necessarily should, be treated as primary data.

At first glance, it may seem counter-intuitive that the set of primary data might deviate
from the intersection of known-platform capabilities, but there are two critical factors that
a designer must consider that lead to the consideration the intersection as more of a “soft
upper bound” than a direct description of the set of primary data. First and foremost, there
is an important duality to this problem in that while the intersection of current platform
capabilities can certainly be used to describe a set of primary data, the set of primary data
for a given algorithm will also prescribe the set of supported platforms for that algorithm.
That is, any data within the current intersection that a designer can frame as supplemental
will effectively increase the scope of possible future platforms that will be supported by that
algorithm. The critical tradeoff to this is the expected difficulty of treating the excluded

4.1. PRIMARY VS. SUPPLEMENTAL DATA IN EXISTING SYSTEMS 21

Primary € Intersection

Figure 4.1: Set-theoretic determination of primary vs. supplemental data: the set of pri-
mary data is bounded by the common capabilities of all known platforms.

data as supplemental, which depends on the nature of their effects on the algorithm in
question and is discussed further in Section 4.1.

The potential difficulty of separating out supplemental effects raises the second critical
factor that must be considered by a designer when identifying an algorithm’s primary data.
Namely, the intersection of known-platform capabilities may be too restrictive to allow for
the development of single shared core algorithm!. It is also possible that some subset of
capabilities outside the present intersection may compel a substantially different approach
to the problem at hand. In either case, the designer may choose to designate data outside of
the current intersection as primary, effectively reducing the set of platforms to be supported
by the original algorithm and requiring the development of an independent solution for the
de-scoped systems. The tradeoffs are once again tied to nature of a datum’s effect on a
given algorithm, except that in this case the “benefit” is less about supporting multiple
platforms than it is about simply acknowledging that no one core algorithm can effectively
support all desired platforms. While undesirable, this is a choice often faced by designers
in trying to factor out common components: whether or not the underlying functionality is
“common enough” to warrant extraction and sharing, or whether there would be too much
overhead (code size, efficiency issues, etc.) to make it worthwhile..

An interesting confluence of these two themes occurs frequently during the development
of research prototype robots, where many data that are expected be available later in
a project may not be available in the “current” version of the system, and the viable
capabilities of the “final” system are not known a priori. In this case, treating initially-
unavailable data as supplemental would support early system testing, and would also provide
a certain amount of risk mitigation by building degraded modes of operation into the
core algorithm. However, these benefits must be weighed against the expected costs of

The limit of this case is the empty intersection, where there is no “common denominator” among
platforms to exploit for a shared core algorithm.

22 CHAPTER 4. TECHNICAL APPROACH

maintaining separate supplemental effects, especially given the possibility of unknown future
capabilities that may compel fundamentally different approaches to the problem. In either
case, a central goal of this thesis is to inform the designer’s judgment as to the nature of
“typical” supplemental effects so as to help him identify when and how an algorithm’s set
of primary data would deviate from the pure intersection of known or expected platform
capabilities.

Beyond simple set theory, it is also important to consider the semantic depth of a given
datum, or how strongly its meaning is open to (or requires) interpretation. If it can be taken
at face value, such as a measurement in real units, then it is a strong candidate for primary
treatment, as alternate representations are typically limited to unit or coordinate-frame
conversions. Moreover, such data are more likely to have meaningful notions of “default”
or “nominal” values, so adapting a component to their absence may be a simple matter
of assigning these “default” values. For an example from the autonomous driving software
discussed in Chapter 5, when the “complete” geometry of a vehicle could not be detected,
the system assumed a “default” size of 3m by 5m, and fitted the detected facets of the
obstacle to this “nominal” geometry. This proved to be a safe assumption in all contexts,
so even though the actual size of a detected vehicle could not be modeled accurately at all
times, the size data remained semantically stable, and did not compel any of the types of
adaptation laid out in Chapter 2.

It is important to note, however, that there are more subtle semantics bound to this
data than simply the length and width of the detected vehicle. That is, the idea of fitting
that geometry to the “visible facets” embeds an assumption about sensing and modeling
techniques, and the “default” geometry embeds an assumption from a particular applica-
tion context, such as “typical” suburban traffic, that may be invalid in another application,
such as at a construction site. Although these particular assumptions are fairly weak, and
their violation would no likely lead to critical failures, other data may embed more signifi-
cant assumptions about application context that point more strongly toward supplemental
treatment.

The Nature of the Effect

To discriminate primary vs. supplemental for such a datum with more significant semantic
depth, a developer must also consider the nature of that datum’s effect on the algorithm
in question. As discussed at the end of Section 3.2, this issue is highly analogous to the
discrimination of weakly vs. strongly invasive aspects, which remains an open and inter-
esting challenge. That is, data with weakly invasive effects, especially those that remain
hidden behind the algorithm’s existing output specification, will be better candidates for
supplemental treatment than data that have a more strongly invasive effect on the core
algorithm.

As with the issue of “volatility” discussed above, identifying the “degree” of invasion
is ultimately left to the judgement of the designer, and one of the goals of this thesis is
to inform that judgement through a catalog and categorization of supplemental effects in
existing software components. Understanding how platform-specific data affected these
components will help future designers identify and forecast similar issues in their own sys-
tems. When coupled with knowledge of the tradeoffs to expect among multiple technical
approaches to the problem, as provided by the alternate designs and analytical techniques

4.2. OBJECT-ORIENTED TECHNIQUE: DELEGATION 23

discussed below, this will allow future designers to make informed decisions as to when and
how to apply the proposed primary vs. supplemental methodology to their own software
design problems.

4.2 Object-Oriented Technique: Delegation

With a distinction between primary and supplemental data in mind, it is now necessary
to identify candidate design techniques that satisfy Requirements AR.2 through AR.4
from Chapter 2. As a running example for discussion of these detailed design techniques,
consider the following problem of determining whether or not it is “safe” to merge into
moving traffic at a T-intersection, such as shown in Figure 4.2.

Overlap Area Dcrashpoint Yield-Into Polygon

Dcrashpoint Overlap Area

Yield-Across Polygon

Figure 4.2: Example intersection yield scenario.

This problem, which will be revisited in more detail in Section 5.3, consists of:

1. Identifying, from a large set of candidate “moving obstacles”, those that are “relevant”
to the yield calculations;

2. Determining, for each such “relevant” obstacle, the estimated distance and time to
the “crash point” for the pending intersection maneuver;

3. Comparing those estimated “crash times” to the expected time necessary to complete
the maneuver in order to determine whether there is “enough room” to proceed.

One of the particular uses of supplemental data in this algorithm was to cull probable
“false positives” from the set of candidate obstacles. This was accomplished, in addition
to testing for geometric overlap with the occupancy polygons illustrated in Figure 4.2, by
requiring that a candidate obstacle:

e Be “observed-moving”, which implied historical motion consistent with “typical” Ur-
ban Challenge traffic (see effect PE.S.3 in Ch. 5, p. 44, for more details), and

24 CHAPTER 4. TECHNICAL APPROACH

e Have at least one strong “lane association”, which meant that its historical motion
was also consistent with travel along an actual road lane, as opposed to more erratic
or off-road driving behavior (see effect PE.S.1 in Ch. 5, p. 44).

void PrecedenceEstimator::computeYields () {
// set up yield calculation (7150 lines of code):
// determine where traffic may come from
// iterate over list of moving obstacles
// test each for relevance...
if (obstacleInYieldZone (obst) && // core concern
obst->isObservedMoving && // supplemental effect
lobst->laneAssocations.empty()) // supplemental effect
{
// main body of yield calculation: ~200 lines of code
}
// cleanup and set appropriate outputs: “50 linmes of code

3

Listing 4.1: Direct encoding of supplemental effects in the original Precedence Estimator.

As shown in Listing 4.1, these “extra” conditions were originally embedded in a large,
complex method, which made them difficult to identify, understand, and update during
ongoing development. These, and other such directly-encoded effects, led directly to the
“calcification” of the autonomous driving components discussed in the next chapter, as
seemingly small updates to include “just one more” status flag, or to tweak “just one more”
default calculation became increasingly difficult to analyze, implement, and verify.

PrecedenceEstimator

YieldRelevanceDelegate Call out to specialized

#yieldRelevanceDelegate

+computeYields () | +check(obst:MovingObstacle) fen=wua-d delegate class instead
#obstacleInYieldZone() of using supplemental
0 1 4 data in direct tests

ObservedMovingEffects

+check(obst:MovingObstacle) |
4 “*-{ Each supplemental
1 | effect encapsulated
LaneAssociationEffects [---~""" in a separate class

+check(obst:MovingObstacle)

Figure 4.3: Object-Oriented delegation of the yield relevance test to encapsulate supple-
mental effects according to the Decorator [21] pattern. Problems typically associated with
long inheritance chains are mitigated using Mixin Layers[51], as shown in Listing 4.2.

To address these issues, and to provide a degree of flexibility on par with the Aspect-
Oriented design presented in Section 4.3, the OO approach evaluated in this thesis delegates
the decision of “yield relevance” to a small Decorator[21] class that may be specialized to
introduce various supplemental effects. The UML diagram in Figure 4.3 shows a simplified
view of how the individual effects of the “isMoving”, “isObservedMoving” and “laneAsso-
ciations” supplemental data may be isolated according to this pattern.

4.2. OBJECT-ORIENTED TECHNIQUE: DELEGATION 25

One common criticism of the pure Decorator pattern is that long inheritance chains make
it difficult to extract or rearrange the precedence of individual effects. To mitigate this issue,
the classic Decorator pattern has been enhanced by the use of Mixin Layers [51], as shown
in the pseudo-code in Listing 4.2. To a certain extent, this may also have been addressed
through the use of an alternate OO design pattern, such as Chain of Command[21], and
while this and other patterns are perfectly valid approaches to the problem, the fundamental
mechanism of delegation to external classes remains the same, and informal experiments
indicate that there would be no significant difference in the metric results presented in
Chapters 6 and 7.

// default case for YieldRelevance is "true'
class YieldRelevanceDelegate {
virtual bool check(MovingObstacle obst) {
return true;
3
s
// each supplemental datum gets <ts own class
// inheritance chaining s dome using template trickery of Mizins
template <class PARENT> class ObservedMovingEffects: public PARENT {
virtual bool check(MovingObstacle obst) {
return obst.isObservedMoving && PARENT::check(obst);
X
3
// and for Lane Associations
template <class PARENT> class LaneAssociationEffects: public PARENT {
virtual bool check(MovingObstacle obst) {
return !obst.laneAssociations.empty () && PARENT::check(obst);
b
s
// composition of yieldRelevanceDelegate from Mizin components:
class PrecedenceEstimator {
/S
LaneAssociationEffects < ObservedMovingEffects <
YieldRelevanceDelegate > > yieldRelevanceDelegate_;
s
// call out to delegate class instead of using supplemental data
void PrecedenceEstimator::computeYields () {
V/ARTE
if (obstacleInYieldZone (obst) &&
yieldRelevanceDelegate_.check(obst)) {
// main body of yield calculation...

}
}

Listing 4.2: Pseudo-code showing object-oriented delegation of the “yield relevance” test.

In this alternate design, the core Precedence Estimator algorithm remains embedded in
the PrecedenceEstimator class. This class no longer contains the direct dependencies on
the supplemental “observed-moving” or “lane associations” data from Listing 4.1, fulfilling
Requirement AR.2. Supplemental effects are bound to the core algorithm by extending

26 CHAPTER 4. TECHNICAL APPROACH

the YieldRelevanceDelegate class instead of directly modifying the computeYields()
method, which satisfies Requirement AR.3, both in terms of eliminating “invasive mod-
ification” and by eliminating the need to understand the “inner workings” of the core
PrecedenceEstimator implementation. Lastly, the effects of each supplemental datum are
encapsulated in individual classes, and those effects can be removed by simply excluding
the corresponding class from the inheritance chain for YieldRelevanceDelegate, satisfying
Requirement AR..4.

4.3 Aspect-Oriented Technique: XPI

XPI_PrecedenceEstimator Supplemental effects can augment
P +yieldRelevanceTest: pointcut |===7 PrecedenceEstimator through the
V A "yieldRelevanceTest" pointcut
PrecedenceEstimator U U U
1 1
+yieldRelevanceDelegate <<aspect>> <<aspect>>
+computeYields() R P
#obstacleInyieldZone() ObservedMovingEffects LaneAssociationEffects
+<<after>> XPI::yieldRelevanceTest() +<<after>> XPI::yieldRelevanceTest()

el
-

Each supplemental effect encapsulated in a separate
aspect, but no explicit ordering as in the 00 design

Figure 4.4: Aspect-Oriented exposure of adaptability through a Crosscutting Programming
Interface (XPI), and binding supplemental effects as “after” advice through the XPI

Following discussion in the previous chapter, the second design technique uses a Cross-
cutting Programming Interface[24] (XPI) to expose an algorithm’s “likely points of vari-
ability”, allowing individual supplemental effects to be bound to the core algorithm using
AO “advice” directives, as illustrated in Figure 4.4 and Listing 4.3.

The most notable differences in the AO design for encapsulating supplemental effects
are that the core algorithm does not need to call out to an explicit delegation interface, and
the individual supplemental effects only depend on the XPI, instead of each other. These
lead to a much more concise description of individual supplemental effects, imposing less
“overhead” for introducing or removing those effects as compared to the OO design, which
are drawn out in the analytical results presented in Chapters 6 and 7.

In terms of the requirements laid out in Chapter 2, the core algorithm remains within the
PrecedenceEstimator class, which is free of direct dependencies on supplemental data as
with the OO design above, satisfying Requirement AR.2. Requirement AR.3 is addressed
by XPI_PrecedenceEstimator, which exposes the “points of variability” in the core algo-
rithm as named “pointcuts”, such as yieldRelevanceTest. Lastly, the effects of individual
supplemental data are implemented in separate aspects that can be introduced or removed
even more easily than their OO counterparts, fulfilling Requirement AR.4.

One critical drawback to this approach is that, at the time of this writing, AO tech-
niques in general are relatively new, so developers are less likely to be familiar with the
corresponding tools and methodologies. Also, relative to the particular experiment out-
lined in the following section, the requisite AspectC++[20] weaver is less mature and less
well-supported than its more Java-centric counterparts[10]. Still, both of these issues are

4.4. EXPERIMENTAL OUTLINE 27

void PrecedenceEstimator::computeYields () {
// set up as before, but no extra calls in relevance test
if (obstacleInYieldZone (obst)) {
// main body of yield calculation...
}
}
// XPI ezposes adaptability in core algorithm
aspect XPI_PrecedenceEstimator {
// exzpose the in-yield-zone method for A0 advice <introduction
pointcut yieldRelevanceTest (obst) =
execution ("obstacleInYieldZone") && args(MovingObstacle obst);
}
// each supplemental datum gets an aspect
aspect ObservedMovingEffects {
// augment yield relevance test to require obst->isObservedMoving
advice XPI_PrecedenceEstimator::yieldRelevanceTest (obst) : after ()
{
// tjp (The Join Point) allows manipulation of the return wvalue
*(tjp->result()) &= obst.isObservedMoving;
}
}
// but there is no exzplicit composition as in 00 design
aspect LaneAssociationEffects {
// augment yield relevance test
advice XPI_PrecedenceEstimator::yieldRelevanceTest (obst) : after ()
{
*(tjp->result()) &= !obst.laneAssociations.empty();
}
3

Listing 4.3: Application of supplemental yield-relevance effects through an XPI. See Ap-
pendix B for an extended presentation of AO syntax and concepts.

likely to erode over time as AO tools and techniques become more mainstream, and, in the
context of this thesis, AO techniques are certainly worth investigating as an alternative to
the now-classic OO techniques outlined above.

4.4 Experimental Outline

The two detailed design techniques described above have been experimentally applied to
existing software for autonomous driving behaviors in order to evaluate the proposed pri-
mary vs. supplemental methodology. Chapter 5 reviews the overall software system, then
presents the detailed refactoring process and results for each of three distinct components.
This process yielded a total of nine artifacts for analysis: the original implementation, plus
an AO and OO design for each such component.

One of the difficulties in evaluating the relative merits of different software designs is that
software engineering is focused on achieving various qualities in a given software system,
which are intrinsically difficult to quantify for concrete comparison. Thus, such comparisons

28 CHAPTER 4. TECHNICAL APPROACH

are often highly anecdotal, conveying the personal experiences of a given author and the
various difficulties he may or may not have faced in trying to develop or maintain the
software in question. While it is possible to convey (and glean) tremendous insights from
this kind of discussion, it is still important to provide a concrete foundation for comparison
in terms of measurable properties of the software. Even though such metrics do not directly
convey pure qualities, such as the adaptability, of a software system, an appropriate selection
of them, combined with careful discussion of their relative values for each candidate design,
can provide compelling evidence of the merits of each technique.

As the detailed design techniques discussed above include Aspect-Oriented methodology,
this work focuses on evaluation techniques that have been shown to effectively display the
relative merits of AO and OO designs for the same system. Of these, two[34, 22] stand
out in particular as providing compelling evidence for the benefits and tradeoffs to be had
between AO and OO techniques. The principal metrics from these two studies have been
applied to the original and refactored artifacts described above, including both source-level
“Concern Diffusion” metrics[35], presented in Chapter 6, and design-level “Net Option
Value” analysis[5, 55], presented in Chapter 7.

To further explore the methodology proposed in this thesis, candidate extensions to novel
input data, drawn from “vehicle-to-vehicle” communications standards[15], are discussed
in Chapter 8. Several candidate adaptations are closely analyzed in terms of how well the
refactored designs accommodate the necessary changes, yielding additional insights into the
identification of “likely points of variability” in advance that will accommodate many future
supplemental effects.

Thereafter, the lessons garnered throughout the refactoring and analysis of autonomous
driving software are extended into the domain of planetary (Mars) exploration in Chapter
9. In particular, candidate supplemental data are identified in the CLARAty[38] implemen-
tation of Morphin[59], and alternate designs are proposed in accordance with the techniques
described in Sections 4.2 and 4.3. The ready identification of candidate supplemental data,
and the discussion of the corresponding designs together support the applicability of the
proposed methodology beyond the scope of autonomous automobiles. Insights gleaned from
both case studies are then aggregated into guidelines for how to apply the proposed primary
vs. supplemental methodology to novel systems and other problem domains in Chapter 10.

Chapter 5

Application to Autonomous
Driving Behaviors

This chapter describes the refactoring of existing software from the Behavioral Executive
subsystem of Boss, Tartan Racing’s winning entry to the 2007 DARPA Urban Challenge.
Section 5.1 begins with a brief description of this subsystem, concentrating on the moving
obstacle representation and its three dependant components, which together form the focus
of this experimental analysis. Supplemental data in the moving obstacle representation
are identified, followed by a detailed analysis in Sections 5.2, 5.3 and 5.4 of the algorithm
embodied in each component, including discussion of the overall algorithm, identification
of supplemental effects therein, and presentation of each of the AO- and OO-refactored
designs. The overall refactoring process, including discussion of issues common to all three
components, is summarized in Section 5.5 before proceeding to the analytical results pre-
sented Chapters 6 and 7.

5.1 Autonomous Driving Behaviors in the Urban Challenge

The Urban Challenge[16] was an autonomous vehicle competition sponsored by the US
Defense Advanced Research Projects Agency (DARPA) in 2007. Contestant robots were
required to autonomously execute a series of navigation missions in a simplified urban
environment consisting of roads, intersections, and parking lots while obeying road rules
and interacting safely and correctly with other traffic. In contrast to the two preceding
Grand Challenges[25, 26], which focused on rough-terrain navigation, the urban competition
required the development of a system capable of complex traffic behaviors such as waiting
for precedence at an intersection or passing a slow-moving vehicle on a multi-lane road.
These behaviors were managed by a software subsystem called the Behavioral Fxecutive
in Boss, Tartan Racing’s winning entry in the Urban Challenge. Within the Tartan Racing
software system[58], the Behavioral Executive was responsible for generating a sequence of
incremental goals for execution by the underlying motion planner, and for the modulation
of those goals to conform to the Urban Challenge rules for vehicle interaction. Typical goals
included driving to the end of the current lane or maneuvering to a particular parking spot,
and their issuance was predicated on conditions such as precedence at an intersection or
the detection of certain anomalous situations. In the case of driving along a road, periodic

30 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

Data out to System

___ 1
Lane Driving T Intersection HandlingT

| H .
| 1 1
| 1 1
! Vehicle Driver X TransitionManager | |
: 1 1
| 1 1
1 1 1
1 1 1
1 1 1
1 Distance Keeper Merge Planner ' Precedence Estimator '
: 1 1
1 1 1
1 1 1
S S S NS S S
. :

1

! Traffic Estimator Lane Selector |44+ Goal Selector

1

1

1

Observer

Data Flow ! T Goal Selection

Legend

Data in from System

Figure 5.1: Abstract data flow view of the Behavioral Executive, showing dominant elements
and data paths, grouped by functional context. Shaded Observers became particularly
dependent on the system’s representation of moving obstacles.

lane tracking and speed government commands were published to enact behaviors such as
safety gap maintenance, passing maneuvers and queueing in stop-and-go traffic.

As presented in [3, 4], the Behavioral Executive made significant use of standard object-
oriented design patterns, such as the Adapter, Strategy, Factory, and Observer[21] pat-
terns in order to remain adaptable to the evolving needs of the competition develop-
ment. In essence, the Behavioral Executive was decomposed into a collection of indepen-
dent classes, called Observers that communicate through modifications to and subsequent
change-notifications from a collection of persistent, intermediate data elements called Sub-
jects. Each Observer fulfilled a specific responsibility within the subsystem, such as goal
selection or distance keeping, and new functionality could be easily introduced by adding,
replacing or extending individual Observers. The principal functionality of the Behavioral
Executive was implemented in nine Observers, which can be grouped into three functional
contexts as shown in Fig. 5.1.

While there were, in fact, many more functional elements and more convoluted data
paths than illustrated, they generally belong to auxiliary functionality, such as diagnostic
state reporting, and are omitted for clarity. Those that remain represent the three most
abstract responsibilities of the Behavioral Executive:

e The selection of incremental goals along the path from the robot’s current location to
the next checkpoint (Goal Selection);

e The conditional transmission of those incremental goals according to whether it is the
robot’s turn at an intersection (Intersection Handling);

5.1. AUTONOMOUS DRIVING BEHAVIORS IN THE URBAN CHALLENGE 31

e The continuous management of various behaviors such as distance keeping and passing
maneuvers on multi-lane roads (Lane Driving).

Each of the Observers that comprise the Behavioral Executive encapsulates an algorithm
that reasons about the data available from the robot’s perception subsystem in order to
govern the actions of the robot. While the results of the competition certainly underscore the
effectiveness of the Behavioral Executive as-implemented, the design nevertheless showed
several weaknesses over the course of the development. In particular, the decomposition into
individual Observers, while allowing the wholesale substitution of alternate functionality,
did not in itself treat the problem of adaptability to changes in input data. This became
more problematic as the development proceeded, as many algorithms came to depend very
heavily on the specific content and semantics of the data available from the perception
subsystem, especially the representation of other traffic, the so-called MovingObstacle class,
shown in Figure 5.2.

MovingObstacle

+pose: Pose2D

+poseSTD: DifferentialPose2D
+velocity: Vector2D
+velocitySTD: Vector2D

:3{Primary Data |

LaneAssociation | .

+lanelID: WorldID +length: double
+probOccupancy: double +width: double
+isMoving: bool [Z2:i:z39 Supplemental DataBI
+isObservedMoving: bool PP
1 +isPredicted: bool ‘

.
w7 |tlaneAssociations: list<laneAssociation>

Figure 5.2: UML representation of the MovingObstacle class, which preserves semantic
content but is otherwise simplified from the as-implemented version.

It is important to recognize that this MovingObstacle representation is somewhat sim-
plified from the actual class signature used for the Urban Challenge. For instance, the “true”
version guarded access to the member data listed in Figure 5.2 behind traditional accessor
and mutator methods, such as GetObservedMovingFlag() and SetObservedMovingFlag().
Rather than inflate the representation in this manner, these and similar data are represented
by public members such as isObservedMoving for clarity and brevity. The “true” version
also included tertiary functionality, such as prediction of future poses, along with support
for serialization®, time-stamping, visualization, and debugging, all of which were unused
by the Behavioral Executive. These are also excluded from the simplified MovingObstacle
representation, leaving only the raw data that is relevant to this discussion.

The complete set of detectable traffic was provided as a list of MovingObstacle instances
that was used by exactly three Observers, the Traffic Estimator, Precedence Estimator, and
Merge Planner, which are highlighted as gray boxes in Figure 5.1. In the original designs
for these components, little or no effort was put into isolating the effects of individual
data, and the team relied instead on intimate familiarity with the associated source code
to implement changes on an as-needed basis. Subsequently, the accumulating dependence
on the presence and precise meaning of several volatile properties of the MovingObstacle
representation made these components particularly brittle relative to ongoing changes in
the perception subsystem and/or the underlying platform. Of the member data listed in

!Serialization is a software engineering term for “conversion to a network-transportable format”.

32 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

Figure 5.2, only the first three: pose, velocity, and size, were semantically stable throughout
the development, and, according to guidelines presented in Chapter 4, these will be treated
as primary data. The other four will be treated as supplemental data, as they were incre-
mentally introduced as the perception system became more capable, and their semantics
were frequently revised as underlying sensors and modeling techniques were substituted or
enhanced:

e Is Moving, which indicates that the obstacle is currently believed to be in motion,
in an abstract sense beyond simply having an instantaneously nonzero velocity;

e Is Observed Moving, which indicates that the obstacle’s historical motion has been
consistent with the perception subsystem’s model of an actual automobile?;

e Is Predicted, which indicates that the obstacle’s position, velocity and even existence
are based entirely on extrapolation from historical observations, and are not supported
by any immediate observations;

e Lane Associations, which provides a probabilistic list of road lanes that the obstacle
could plausibly be tracking, given its observed motion and behavior over time.

Note that none of these directly implies “this is really a car”, but they instead provide
extra information that should be interpreted according to the current context to determine
whether the obstacle is worth considering, and how to subsequently treat it, further rein-
forcing their supplemental treatment. The extent of their effects can be roughly estimated
by counting references in the source code, either directly to the corresponding fields of the
MovingObstacle class, or else indirectly through some intermediate or cached result, as
summarized in Table 5.1.

Obstacle Property | Direct References | Indirect References
Is Moving 2 357
Is Observed Moving 8 373
Is Predicted 1 1
Lane Associations 5 0
Total 16 38

Table 5.1: Supplemental moving obstacle data references in the original implementation of
the Tartan Racing Behavioral Executive.

The 16 direct and 38 indirect references to these data are scattered across three behav-
ioral components mentioned above:

e Traffic Estimator, which is responsible for identifying, of all candidate vehicles in
perception range, the one most likely to be “in front” of the host vehicle in the current
lane;

2Note that an “Observed Moving” obstacle can be temporarily stopped, and so does not require that
the obstacle be instantaneously “Moving” as well.

3There are 35 references to an intermediate result that depends on both “Is Moving” and “Is Observed
Moving” which would otherwise be double-counted in the total

5.2. TRAFFIC ESTIMATOR 33

e Precedence Estimator, which is responsible for determining the precedence order-
ing at intersections, waiting for the intersection to be free of vehicles, and yielding to
any cross traffic before proceeding through the intersection;

e Merge Planner, which is active when a lane-change is commanded and is responsible
for identifying, synchronizing with, and merging into openings between vehicles in the
target lane.

The complexity of these components, and the nature of the supplemental effects therein,
make them good candidates for testing the effectiveness of the proposed techniques. As
such, these components are the focus of the experimental work at the core of this thesis,
and they have been refactored according to the OO and AO design techniques described
in Sections 4.2 and 4.3. The remainder of this chapter reviews the algorithm embodied in
each component, including a detailed discussion of the supplemental effects found therein,
and presents the refactored designs that separate those effects from their associated core
algorithms. Raw counts of files, classes, and lines of code for each refactored artifact are
presented and discussed as precursors to the more advanced metrics in Chapters 6 and 7.

5.2 Traffic Estimator

The Traffic Estimator is responsible for identifying, among all candidate obstacles, the
leading vehicle (if any) in front of Boss, and providing a conservative estimate of both
the distance to that vehicle and how fast it is travelling along the road. This component
made use of several data, as illustrated in Figure 5.3, including the list of candidate moving
obstacles, the estimated position and speed of the host platform and the known geometry
and connectivity of the road network. The latter two are ignored for the purposes of this
case study, which focuses on the contents of the MovingObstacle representation, especially
on the effects of the supplemental data listed above.

Legengm_ﬁes Distance Keeper
-Observer !
—_— xv V\
ety - ‘

(Lead Vehiclé Dist) (Lead~\;ehicle Speed)

Traffic Estimator
PS4 yy)

~
~~.
. ' Sea
-
~~
~
==

-]

(Road Model“) (Moving Ol;stacle Set) (Vehicle Pose)

Figure 5.3: Traffic Estimator collaboration diagram, showing critical input and output
Subjects according to the Observer[21] pattern.

All four supplemental moving obstacle data had some effect on the Traffic Estimator’s
algorithms, and the relative simplicity of their influence provided a good starting point
for working out the implementation details of each design. In the language of software
requirements, these supplemental data had the following effects:

34 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

TE.S.1 Regardless of the instantaneous velocity of the lead vehicle, it shall be treated
as though it is stopped at its current location unless its isMoving property is
set to true.

TE.S.2 Regardless of the instantaneous velocity of the lead vehicle, it shall be treated
as though it is stopped at its current location unless its isObservedMoving
property is set to true.

TE.S.3 Regardless of the instantaneous velocity of the lead vehicle, it shall only
be considered as having negative (oncoming) speed if the associated
MovingQObstacle instance backed by current sensor observations, as indicated
by its isPredicted property being set to true.

TE.S.4 Regardless of the instantaneous velocity of the lead vehicle, it shall only be
considered as having negative (oncoming) speed if it is strongly associated with
a single lane, as enumerated by its laneAssociations property. Whether this
effect is active shall be load-time configurable.

TE.S.5 Instead of the default geometric checks for whether an obstacle is in Boss's
current lane of travel, the Traffic Estimator shall check its laneAssociations
list against a minimum threshold to determine occupancy of a given lane. This
threshold shall be load-time configurable.

The first four effects are all interrelated in that they alter the estimation of the lead
vehicle’s speed to be more conservative in dubious or critical situations. In a sense, they
specify the conditions under which the velocity information should be “trusted”, and what
constitutes a “safe” alternative speed when the velocity information cannot be “trusted”.
In this case, “mistrust” leads unilaterally to an estimated speed of zero, which in turn leads
to more conservative behavior in the consumers of the “Lead Vehicle Speed” output, such
as the Distance Keeper.

The first two effects, TE.S.1 and TE.S.2 bind “trust” to the ideas of directly-measured
velocity (i.e., via RADAR) and plausible historical motion, respectively. If either of these
conditions is not met, then it is deemed “safer” to treat the obstacle in question as though it
is stopped at its present location, regardless of its reported velocity. The latter two effects,
TE.S.3 and TE.S.4, require the obstacle to be backed by recent sensor readings and to
be travelling in a single, unambiguous lane before “trusting” a negative lane speed. In this
case, negative speed implies “oncoming” traffic to the Distance Keeper, which could, in turn,
trigger a risky off-road “evasive maneuver” to avoid an impending head-on collision. In this
case, the isPredicted and laneAssociations data are applied as additional safeguards
to be as sure as possible that the evasive maneuver is warranted.

One common approach to dealing with variations in such platform-specific contributors
to the idea of “trust” in sensor data is to hide them all behind a more abstract notion
of “confidence” or “certainty”, such as shown in Figure 5.4. In this hypothetical case,
the four supplemental moving obstacle data listed above are combined into a single scalar
sensorConfidence value* that is meant to be shared by all consuming algorithms.

“Such abstract “confidence” values are often unit scalars (i.e., limited to the span [0, 1]), and are often
expressed as “accuracies” or “variances” that are simply “fudged” to express data such as isObservedMoving.

5.2. TRAFFIC ESTIMATOR 35

: : Funneling down to one "confidence"
ISMOVIng measure simplifies the interface
for the Traffic Estimator

Traffic Estimator)

isObservedMoving |

SensorConfidence 27 (Precedence Estimator]
isPredicted _
laneAssociations 7
... but may not be correct |- ___<__"__ Merge Planner
for other components.

Figure 5.4: The trouble with abstract “confidence” values: a single abstract value may not
be sufficiently expressive to allow the full range of desired effects in consuming algorithms.

The principal issue with this single sensorConfidence value is that, while it may eas-
ily be engineered to express the requirements for the Traffic Estimator listed above, it is
difficult to guarantee that the particular algorithm for converting isObservedMoving, etc.
into a scalar “confidence” value will simultaneously satisfy related, but not identical re-
quirements in other components. For example, requirement PE.S.3 for the Precedence Es-
timator directly couples the isObservedMoving property to a particularly context-specific
notion of a “busy” intersection, which would likely be expressed as a threshold on the
sensorConfidence value. In order to not “accidentally” trip such thresholds as a func-
tion of other, irrelevant supplemental data, knowledge of each downstream threshold would
have to be embedded in the algorithm that generates the sensorConfidence value. From
a software design perspective, this would have two particularly undesirable effects:

1. The producing algorithm would be strongly coupled to its various consumers, which
limits the reusability each individual component;

2. Through the shared “knowledge” of such thresholds, underlying properties such as
isObservedMoving, etc. are still implicitly expressed in the abstract sensorConfidence
value, which erodes the original benefits of “hiding” such values behind a more ab-
stract representation.

To further compound the issue, supplemental data can have other effects beyond the
scope of an abstract “confidence” measurement.. For instance, TE.S.5 describes the re-
placement of a small segment of geometric reasoning in the core Traffic Estimator algorithm
with a direct dependency on the laneAssociations supplemental datum. In this case,
there is no analogue to a “confidence” value that will enable this functionality, which fur-
ther underscores one of the fundamental premises of this thesis: that no single input data
representation can sufficiently cover the broad applicability of context- and platform-specific
data.

The critical issue at hand is that the determination of “trust”, “confidence”, etc., in the
information provided by a robot’s perception system is a function of both the data provided
by the robot’s constituent sensors and the specific algorithmic contexts in which those data
are to be interpreted. The designer’s role in this matter is to choose whether to place the
“interpretation” of platform-specific sensor data:

36 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

1. Close to the sensors, such as by using the abstract sensorConfidence value dis-
cussed above,

2. Close to the consuming algorithms, such as by forwarding all potentially-relevant
sensor data to all consuming algorithms, or

3. Somewhere in-between, such as by keeping some context-free interpretation “close
to the sensors”, and leaving any remaining context-specific interpretation to be done
“close to the algorithms”.

The “middle ground” described by #3 above implies a spectrum of tradeoffs that a
designer must consider when determining where to place the various “interpretive” stages
of a robotic software system. As illustrated in Figure 5.5, keeping all sensor data interpre-
tation “close to the sensors” maximizes the stability of the interface to other components
in the system at the cost of limited expressivity and the potential for “hidden” couplings to
consuming algorithms. At the other end of the spectrum, keeping all interpretation “close
to the consuming algorithms” maximizes flexibility in specifying the detailed and unique
effects of each sensor datum on each algorithm, but it also maximizes the volatility of the
interface between the perception system and advanced reasoning algorithms, the latter of
which will be more sensitive to changes in the underlying platform.

Stable Volatile
Interface Interface

Supplemental Data |

Limited Maximum
Expressivity Expressivity

[Sensors]
[swyiriob|y)

Figure 5.5: The critical tradeoffs a designer must make when choosing to keep interpretation
“close to the sensors” vs. “close to the consuming algorithms”.

This thesis focuses on exploring this “middle ground”, which is where the results of
a system’s context-free interpretation of sensor data (isMoving,isObservedMoving, etc.)
are folded into context-specific reasoning process (autonomous driving behaviors). In so
doing, the overarching goals of this thesis are to contribute nomenclature, candidate designs,
and analytical results thereof in order to guide future designers in reasoning about similar
tradeoffs in their own systems.

Redesign Experiments

The original version of the Traffic Estimator was encapsulated in a single class, and it
encoded the five effects listed above in-line with the main algorithm, with no specific treat-
ment given to the types of adaptability laid out in Chapter 2. The first four effects are all

5.2. TRAFFIC ESTIMATOR 37

one- or two-line introductions within nested logic statements surrounding the estimation
of the lead vehicle speed, which are summarized in Listing 5.1. Note that this is simpli-
fied pseudo-code: the original implementation was roughly twice as large, and the logic
therein was somewhat more convoluted, as the “core” algorithm for speed estimation in-
cluded additional geometric checks as to whether or not “small” or “negative” speeds were
permissible. The extra logic wrapped around this otherwise simple method is an example
of the “calcification” mentioned earlier, as the adaptation of this algorithm requires the
developer to absorb and understand the entire logic structure before inserting new effects
or updating or removing existing effects. The alternate designs, presented below, instead
isolate the individual effects in separate classes, allowing them to be added, removed or
updated separately.

double TrafficEstimator::estimateObstacleSpeed(MovingObstacle &mo)

{
double laneSpeed_mps; // computed result for this method

// verify that we "trust" the wvelocity wector
if (mo.isMoving && // **%x TE.S.1
mo .isObservedMoving) // **x TE.S.2
{
// do the "normal" lane speed calculation
// mote: this is the "core" algorithm for speed estimation
laneSpeed_mps = projectVelocityVectorOntoLaneHeading () ;
if (laneSpeed_mps < 0.0)

{
// verify that mnegative/oncoming wvelocity is allowed
if (mo.isPredicted || // ***x TE.S.3
(oncomingRequiresStrictLaneAssociation_ && // *** TE.S./
mo.laneAssociations.size() != 1) // **x TE.S./
)
{
// oncoming not allowed: force to zero to be safe
laneSpeed_mps = 0.0;
}
}
} else {

// mot trusted: force to zero to be safe
laneSpeed_mps = 0.0;
}

return laneSpeed_mps;

}

Listing 5.1: Pseudo-code for supplemental effects in Traffic Estimator speed estimation.

The last requirement, TE.S.5, supplanted geometry-based determination of lane oc-
cupancy with direct usage of the laneAssociations datum. From a certain perspective,
this datum might be expected from any reasonably capable autonomous driving perception
system, making its supplemental treatment somewhat debatable. Indeed, if it were specified

38 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

at the beginning of the development process and made available right away, it may have
been treated as a primary datum instead. Neither of these were the case, however, as the
laneAssociations listing was not part of the original conception of the MovingQObstacle
representation, nor was it introduced until very late in the development process. These
forced the development and use of more generic, geometry-only functionality, which was
eventually supplanted when the laneAssociations listing was introduced as an additional
datum. In fact, the underlying functionality had been completely removed from the Traf-
fic Estimator, and it was necessary to delve into the history of the software repository to
recover the original geometry-based algorithm. Without access to this version history, port-
ing the Traffic Estimator to a system that lacked the laneAssociations datum would be
highly problematic, as the core algorithm would be suddenly incomplete.

To avoid this particular difficulty, the OO and AO designs instead leave the baseline
geometric algorithm in place, encoding the suppression of that underlying functionality as
part of the declaration of the laneAssociations supplemental effects.

Object-Oriented Design

The OO redesign, shown in Figure 5.6 of the Traffic Estimator followed the pattern de-
scribed in the previous chapter without deviation, with the single exception of the creation
of a GenericDelegate class to provide some simple support for configuration and initial-
ization. All delegate interface classes in all subsequent OO designs inherit from this class,
so this dependency is only shown in this first diagram. For additional clarity and brevity,
explicit dependencies on MovingObstacle data are omitted in this and all subsequent UML
diagrams, relying instead on appropriate naming of supplemental delegates to infer data
dependencies. For example, the class O0TE_ILT LaneAssociationEffects class applies
the laneAssociations supplemental datum through the InLaneTestDelegate interface in
order to fulfill TE.S.5.

This brings another minor issue into the foreground: the application of such small effects
in such specific contexts poses curious challenges to the appropriate naming of supplemental
effect classes. More specifically, a well-named supplemental delegate should describe the
class that embodies the core algorithm, the application context of the supplemental effect,
and the supplemental data that contribute to the effect. Given nontrivial names for each
of these, supplemental delegates would have names that easily exceed 50 characters, which
is untenable. Instead, abbreviations are used for the first two, such as in the class from the
previous example, O0TE_ILT LaneAssociationEffects, which stands for:

e OOTE Object-Oriented [OO]TrafficEstimator;
e ILT InLaneTest[Delegate];

e LaneAssociationEffects Application of the laneAssociations supplemental da-
tum.

This naming scheme is reasonably concise, unambiguous, and, given appropriate context
in each diagram, easy to resolve by following inheritance or dependency paths as necessary.
Thus, this scheme has been adopted for all class names in all subsequent diagrams, both
for the OO and AO designs.

5.2. TRAFFIC ESTIMATOR 39

Core Algorithm: GenericDelegate

For each obstacle: .
Is it in my lane? |
Is it the closest so far? 1

1
1

— =>{+initializeDelegate(owner:0bserver &)
=>l+configureDelegate(cs:ConfigSection)

T

Project its velocity onto the Lane.

B OOTrafficEstimator 1

pS +initialize() - -

. |+configure(cs:ConfigSection) - - -
. +notify()
#identifyVehiclesOnMotionPlan()
P I] #obstacleIsWithinLane()
#computeProjectedObstacleVelocity() fr = = = = = = =] = = = = = = - —— — - - -

1
1 1
1 1
1
: InLaneTestDelegate ObstacleVelocityProjectionDelegate 1
! +initializeDelegate (owner:Observer &) #leadVehiclePessimism_stds_: double :
! +configureDelegate(cs:ConfigSection) #minOnComingHeadinaConsistency deg : double I
' =|+obstacleIswithinLane(mo:MovingObstacle, +initializeDelegate(owner:Observer &) |

lane:RoadLane) +configureDelegate(cs:ConfigSection)
B +computeProjectedObstacleVelocity(mo:MovingObstacle, <—I
e projectedPose:Pose2D)

Core lane occupancybl 4
e

algorithm lives her OOTE_OVP_LaneAssociationEffects

#oncomingRequiresStronglaneAssociation : bool

+initializeDelegate(owner:0Observer &)
OOTE_ILT_LaneAssociationEffects +configureDelegate(cs:ConfigSection)
+computeProjectedObstacleVelocity(mo:MovingObstacle,
#minLaneOccupancyProbability : double projectedPose: Pose2D)
+initializeDelegate(owner:0Observer &)
+configureDelegate(cs:ConfigSection) 4
+obstacleIsWithinLane(mo:MovingObstacle,
ane:Roadlane) OOTE_OVP_IsPredictedEffects
g
.
. +initializeDelegate(owner:0Observer &)
.) +configureDelegate(cs:ConfigSection)
LaneAssociations effect |LI +computeProjectedObstacleVelocity(mo:MovingObstacle,
overrides core algorithm here projectedPose:Pose2D)

7

| OOTE_OVP_ObservedMovingEffects
OOTE OVP MovingEffects +initializeDelegate(owner:0Observer &)
— — +configureDelegate(cs:ConfigSection)
+initializeDelegate(owner:Observer &) +computeProjectedObstacleVelocity(mo:MovingObstacle,

projectedPose: Pose2D)

+configureDelegate(cs:ConfigSection)

+computeProjectedObstacleVelocity(mo:MovingObstacle,
projectedPose:Pose2D)

Figure 5.6: Object-Oriented redesign of the Traffic Estimator, isolating supplemental effects
in separate delegate classes. The & symbol represents nested typing, see Appendix E.5.

Following this scheme, it is easy to see that the other four requirements, TE.S.1
through TE.S.4, are each encapsulated in a separate class, yielding a chain of special-
ization against the ObstacleVelocityProjectionDelegate interface. Each class in this
chain overrides the computeProjectedObstacle Velocity() method as is necessary for each ef-
fect. The order of specialization controls the order of priority, with the bottom-most class,
OO0TE_OVP MovingEffects having the highest priority. The depth of this inheritance tree,
combined with the fact that each delegate must explicitly call up to its parent, leads to a
collection of dependencies and an explicit ordering of operations that are one of the more
significant weaknesses of the OO design. Even though a technique similar to the idea of
“mixins” from [51] has been used to limit the number of explicit dependencies, there must

40 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

always be at least one component that “knows” about all of the supplemental delegates in
order to compose them into the runtime instance used by the OOTrafficEstimator.

For effects such as TE.S.1 through TE.S.4, which all have the same “conservative” ef-
fect of overriding the speed estimate to zero, no strict ordering is necessary, which leaves the
OO design with “unnecessary” interdependencies. One of the principal differences between
this design and the AO design presented in the next section is that the AO design will allow
these effects to remain “oblivious” to each other, yielding a somewhat less constrained and
more concise implementation of the same functionality.

Aspect-Oriented Design

AOTrafficEstimator <<~ - — <<aspect>>
— ! XPI_AOTrafficEstimator
+initialize() 1 -
+configure() < =y T = TJ+targetClass: pointcut
+notify() = = = Tl+configuration: pointcut

#identifyVehiclesOnMotionPlan() | = = = = o .

. 1 +inLaneTest: pointcut
#obstaclelsWithinLane () < - -- “ltprojectedVelocityCalculation: pointcut
#computeProjectedObstacleVelocity() |« = = |

<<aspect>>

AOTE_MovingEffects

+<<around>> XPI::projectedVelocityCalculation() .

<<aspect>> S

AOTE_ObservedMovingEffects ["~~~ -~~~ 7

| Effects only
| | depend on the
| | XPI, with no
| | knowledge of
Jl each other

+<<around>> XPI::projectedVelocityCalculation()

<<aspect>>

AOTE_IsPredictedEffects

+<<after>> XPI::projectedVelocityCalculation()

<<aspect>>
AOTE_LaneAssociationsEffects

+<<after>> XPI::projectedVelocityCalculation() f-.__ AO can encapsulate

+<<around>> XPI::inLaneTest() F===-eilzal multiple effects

+<<after>> XPI::configuration() . inal t
+<<slice>> XPI::targetClass(): ConfigParams N 1n a single aspec
‘\
57 .
y
y
Py p— \‘ Supplemental configuration
ConfigParams e | parameters are "sliced" into
9 “=q the target, and configured
+minLaneOccupancyProb_: double using "after" advice, all
+oncomingRequiresStrongAssociation : bool through the XPI

Figure 5.7: Aspect-Oriented redesign of the Traffic Estimator, isolating supplemental effects
in separate aspects through a crosscutting programming interface. The “slice” stereotype
on the ConfigParams class represents the inter-type declaration mechanism in AspectC++,
see Appendix E.7.

As with the OO version, the AO redesign of the Traffic Estimator, shown in Figure
5.7 followed the pattern established in the previous chapter without deviation. A cross-
cutting programming interface, XPI_AOTrafficEstimator exposes named pointcuts in the
AOTrafficEstimator implementation to allow variation of the core algorithm. Many of

5.2. TRAFFIC ESTIMATOR 41

these pointcuts have direct analogues in delegates in the OO design, such as the configu-
ration pointcut, which is analogous to GenericDelegate: :configureDelegate(), and the
inLaneTest pointcut, which is analogous to the role of the InLaneTestDelegate interface
from Figure 5.6. These similarities are largely due to the fact that these two designs are
trying to solve the same problem.

The AO design differs, however, in that these pointcuts are accessible to any aspect in
the system, without the need to create individual classes for each individual effect. This
can be seen in the AOTE_LaneAssociationsEffects aspect, which applies advice to both:

e XPI::projectedVelocityCalculation, in fulfillment of TE.S.4, and

e XPI::inLaneTest, in fulfillment of TE.S.5.

This allows the effects of any one datum to be grouped within a single source-level
construct, making it very easy to review the collected effects thereof, should the mean-
ing of the datum be altered. When combined with the advantage of “obliviousness” dis-
cussed above, this also reduces the extraction of the effects of an absent datum to be
a simple act of modular exclusion. In this case, simply deleting the file that contains
AOTE LaneAssociationsEffects, then re-weaving the system, will yield an AOTrafficEstimator
that is independent of the laneAssociations supplemental datum.

This contrasts with the OO design, wherein the explicit composition of supplemental
effects, discussed above, induces some overhead beyond simply deleting the file to perform
a similar extraction. This additional overhead shows up as additional “scattering” of the
supplemental effects in the Concern Diffusion metrics presented in the next chapter.

The AO design is not without its faults, however, which are highlighted by the many
method-level dependencies of the XPI on the core implementation. Beyond the fragility
of these dependencies, as discussed in Section 3.2, it was necessary to refactor the core
algorithm in several specific ways in order to allow AO adwvice introductions. Specifically,
each point in the core algorithm where supplemental effects might be applied had to be
factored out as a separate method, such as the obstaclels WithinLane() method in Figure 5.7,
in order to allow AQO interception of the corresponding functionality. While such method-
level refactoring might provide some benefit to the understandability of the core algorithm,
it can also lead to the introduction of many trivial functions, as was the case for the
Precedence Estimator, discussed in Section 5.3.

From a certain perspective, this may make the OO design somewhat more attractive
from a designer’s perspective, as it does not require any specific structure in the core
algorithm and simply “calls out” to the specialized delegates at the appropriate points.
Moreover, the AO mechanism of advice introduction may be unfamiliar to many develop-
ers, as AO techniques are still relatively “new” and are not yet broadly taught in typical
Computer Science or Computer Engineering programs.

Thus, the question of which technique is ultimately “better” depends on the require-
ments of the system, the goals of the designer and the skills of the development team, which
are difficult to quantify in the general case. Nevertheless, there are interesting and mea-
surable differences, even in highly simplistic metrics, that shed some light on the relative
merits of these two techniques.

42 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

Basic Metrics

Once the refactored versions of the Traffic Estimator were complete, a handful of very basic
metrics were applied to get a first impression of the relative sizes and complexities of each
version. These metrics, the results for which are presented in Table 5.2, are:

e File Count (Files), which is simply the number of files that comprise a given version
of the artifact;

e Vocabulary Size (VS), which is a count of the number of classes and/or aspects
that comprise the artifact;

e Source Lines of Code (SLOC), which is a count of the functional (that is: exclud-
ing comments and blank lines/whitespace) lines of code in the artifact, as determined
by the open-source sloccount|[61] tool.

Technique Files | VS | SLOC
Direct Encoding (DE) 2 1 580
Aspect Oriented (AO) 7 6 657
Object Oriented (OO) | 11° | 85 | 833

Table 5.2: Traffic Estimator: Basic Software Metrics

As is expected, both the AO and OO approaches span many more files and class-
es/aspects than the directly-encoded version. This is partly the point of the new approaches:
to pull the supplemental effects out of the core implementation and isolate them in separate
units of encapsulation. However, more is not necessarily better, and other analyses, such as
the Concern Diffusion metrics discussed in the next chapter, can provide additional insight
along these lines. In terms of lines of code, it is commonly understood that modularity
usually comes at the expense of brevity (and sometimes efficiency), so it is not surprising
to see a marked increase in the amount of code necessary to implement the AO and OO
versions as opposed to the DE version. In this case, however, it is noteworthy that the OO
approach required a few more files and classes, and significantly more source code, to do its
job than the AO approach. This disparity can be traced to two primary causes:

1. It was necessary to define generic utility classes and several additional intermediary
classes to allow individual optional effects to be bound to the core OO implementation,
where the AO concept of a pointcut was a much more natural fit to the problem:;

2. There is generally more overhead involved in declaring and implementing a subclass
for the OO implementation than there is in the corresponding advice declaration in
the AO implementation.

While these basic results may somewhat favor the AO over the OO technique, none of
them points to any tangible benefit over the simple, direct encoding of the effects within
the core algorithm. Still, an overhead of 15-30% in size is not prohibitive, and it remains
relatively stable through the other two modules.

59 files and 1 class in the Object-Oriented version are support components that were generated for this
first refactoring, but will be shared among other refactored components

5.3. PRECEDENCE ESTIMATOR 43

5.3 Precedence Estimator

The second behavioral component to be refactored was the Precedence Estimator, which
was responsible for monitoring the upcoming intersection for:

e The precedence ordering among vehicles stopped at the various stop lines that
comprise the intersection;

e Whether the intersection is clear of other traffic, which was a prerequisite for
proceeding through the intersection, per the Urban Challenge rules[16];

e Whether Boss must yield to any traffic that has right-of-way, such as when merging
into traffic at a T-intersection.

As with the Traffic Estimator, the role of the Precedence Estimator was defined in terms
of two comparatively simple output Subjects, HavePrecedence and IntersectionlsClear, that
were used by the downstream Transition Manager to gate the transmission of goals to the
motion planning subsystem. This arrangement of Subjects, including the full range of input
data that was used by the Precedence Estimator, is shown in Figure 5.8.

Lege”godiﬁes Transition Manager
.. Notifies |
(Have Precedence) (Intersection Is Clear)
Precedence Estimator
(Intersection Goal)— ------ d L. 4 yy -

.

~ .
~
~
- 1 ~eo
' ~a

~e.

(Road Mode‘l—j (Moving Ol;stacle Set) (Vehicle Pose)

Figure 5.8: Precedence Estimator collaboration diagram, showing critical input and output
Subjects according to the Observer[21] pattern.

The algorithms behind the output Subjects in Figure 5.8 are much more complex than
those in the Traffic Estimator, due in large part to the complexity of the rules governing
intersections and the application of various timeouts to resolve deadlocks and other aber-
rant situations. In particular, the Urban Challenge rules[16] specified that if there is no
activity at an intersection for ten seconds, then the robot should proceed through the inter-
section regardless of estimated precedence or clearance. While the ten-second timeout was
easy enough to implement, the estimation of intersection “quiescence” was a more delicate
process that included becoming incrementally more aggressive about culling irrelevant ob-
stacles, while simultaneously guaranteeing that Boss would not charge into an “obviously”
busy intersection.

The Precedence Estimator, whose algorithms are more thoroughly described in [3],
solves the intersection handling problem by deriving a collection of “occupancy zones”: one
for each place that a vehicle would have to wait for precedence, one for each lane where
traffic passes through the intersection without stopping, and one for the bounding box

44 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

of the intersection itself. These are updated when the “Intersection Goal” in Figure 5.8
changes, and they provide a geometric description of where all relevant traffic might be for
the upcoming intersection.

As with the Traffic Estimator, updates to the list of moving obstacles lead to an iteration
over each such obstacle, testing it for relevance to each context, and, if relevant, incorpo-
rating it into the associated calculations for precedence, yields and clearance. Baseline
relevance is determined in terms of the primary data in the MovingObstacle representa-
tion, namely the pose and size of the candidate, which is used to derive a bounding polygon
that is tested for overlap with the various occupancy zones mentioned above. The associ-
ated calculations, such as computing the estimated time of arrival (ETA) for traffic in yield
lanes, also depends only on primary data, including pose, size and the velocity vector.

In terms of supplemental data, two properties, isObservedMoving and laneAssociations,
have effects in the Precedence Estimator. However, the complexity of the effects and their
interaction with the core algorithms posed new and interesting challenges while refactoring
according to the proposed techniques. In particular, as Boss was limited to traffic detection
via LASER and RADAR sensors, it was prone to spuriously identifying roadside debris
and vegetation® as candidate vehicles, especially within the comparatively unstructured
confines of an intersection. Discrimination between these false positives and “true”, or at
least “worth treating as true”, traffic fell to the supplemental data mentioned above, whose
effects, again rephrased as functional requirements are:

PE.S.1 A moving obstacle must be associated with at least one lane, as indicated
by its laneAssociations listing, in order to be considered as a candidate
for precedence among stop-lines, occupancy of the intersection, or as moving
traffic for yield computations. This will reduce the impact of false-positives
caused by vegetation or roadside debris.

PE.S.2 Once the timeout for overriding intersection clearance has expired, a given
obstacle must have its isObservedMoving property set to true in order to be
considered as a candidate for any computations in the Precedence Estimator.
This will reduce the impact of false-positives caused by vegetation or roadside
debris, both in the intersection and at stop-lines, that may be otherwise blocking
the forward progress of the robot.

PE.S.3 A given obstacle must have its isObservedMoving property set to true to be
considered for yield computations. This will cause the robot to more aggres-
sively cull candidate obstacles, reducing the impact of false positives without
causing the robot to completely ignore highly-probable traffic in or approaching
the intersection. This effect shall be run-time configurable (e.g. enabled/dis-
abled through the TROCS[58] utility) to allow in-situ performance evaluation.

PE.S.4 The intersection override timeout shall be disabled whenever there are any
obstacles in the intersection with their isObservedMoving properties set to
true. This will prevent Boss from charging blindly into an otherwise busy
intersection, but will still cull probable false positives caused by vegetation or
other perception artifacts within the intersection.

SA common and sufficiently frustrating phenomenon that these were dubbed “veggie-cars” by the team.

5.3. PRECEDENCE ESTIMATOR 45

It was immediately clear that these require more than two comparatively simple points
of variation, as was the case with the Traffic Estimator, and that the effects would be more
coupled to the inner workings of the core algorithm. For instance, PE.S.2 depends on the
state of the “intersection override” timer, which is otherwise internal to the Precedence
Estimator. In addition, PE.S.3 introduces the first instance of run-time configurability as
part of a supplemental effect, requiring any implementation thereof to “know” a great deal
more about the overall system, such as the specific usage of the Observer pattern to allow
interactive modification of Subjects. Lastly, the implementation of PE.S.4 requires more
extensive knowledge of the overall flow of the Precedence Estimator’s algorithm in order to
cache the notion of “observed moving vehicles are in the intersection” and bind that to the
idea of whether or not the intersection is “quiescent” at some other point in the algorithm.
These issues are further compounded by the presence of an additional requirement that,
while it depends only on primary data, interacts curiously with the first three supplemental
effects:

PE.C.1 Under no circumstance shall a candidate obstacle whose speed exceeds a certain
threshold be ignored for any purposes within the Precedence Estimator. The
value of this “maximum ignorable” speed shall be load-time configurable.

Because this otherwise core requirement must be able to override any and all supple-
mental effects, it represented a bizarre inversion of design goals. In this case, the best
course of action was to introduce this core effect as though it were supplemental, using
the same interfaces (delegation or XPI) and enforcing an order of application that ensures
that it always has priority over all others. In other words, the requirement for a “maxi-
mum ignorable” speed acknowledges the probable existence of supplemental effects based
on other data and preempts their functionality, so it is only natural that the most effective
approach masquerades as an supplemental effect. This introduces another gray area in the
segmentation of robotic algorithms into core and supplemental effects that is left to the
developer’s intuition, but it also demonstrates a strength of the proposed approach in that
it easily accommodates such functionality.

Redesign Experiments

As with the Traffic Estimator, the Precedence Estimator was originally implemented in a
single class that made no specific effort to isolate the supplemental effects listed above. In
contrast, however, the exposition of variability in the core algorithm was more delicate,
leading to new and interesting patterns in each of the OO and AO designs.

Object-Oriented Design

The application of the five effects listed above spanned six distinct points in the core Prece-
dence Estimation algorithm. Rather than exposing them each in individual delegates, as
was done for the Traffic Estimator, these points of variability were grouped into three
delegation interfaces:

e ObstacleUpdateProcessDelegate, which exposes the critical stages in the overall
processing of updated obstacle lists, specifically the beginning thereof, as obstacleSe-

46 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

A

OOPE_LaneAssociationEffects

Core Algorithm: OOPrecedenceEstimator For each delegate:
For each obstacle: initialize) }--- if(!initializeDelegate(this))
Check and apply to exit occupancy . +configure(cs:ConfigSection) } return false;
Check and apply to intersection occupancy | . |+notify() N
i i “~J#updateo i .

gk and o yield calcutation Sl | For each setesae:

p P | configureDelegate(cs);
R
1
' I
: Ob leUpdatePr- Deleg Inter: ionQui Del ob leClassifi 9
1 FinitializeDelegate() FinitializeDelegate() FinitializeDelegate()
1 +configureDelegate(cs:ConfigSection) +configureDelegate(cs:ConfigSection) +configureDelegate(cs:ConfigSection)
1 +obstacleSetUpdated() +intersectionIsQuiescent(): bool +obstacleRelevantForIntersection(mo:MovingObstacle &): bool
1 +obstacleOccupiesIntersection(mo:MovingObstacle) +obstacleRelevantForExit(mo:MovingObstacle &): bool
1 +obstacleRelevantForyield(mo:MovingObstacle &): bool
1
. T L)
1 - - -
| OOPE_ObservedMovingEffects::OUPDelegate OOPE_ObservedMovingEffects::IQDelegate | [OOPE_ObservedMovingEffects::0CDelegate
! [initializeDelegate() +initializeDelegate() +initializeDelegate()
! |+configurebetegate(cs: configsection) +configureDelegate(cs:ConfigSection) +configureDelegate(cs:ConfigSection)
! +obstacleSetUpdated() +intersectionIsQuiescent(): bool +obstacleRelevantForIntersection(mo:MovingObstacle &): bool
! |+obstacleoccupiesIntersection(mo:MovingObstacle) +obstacleRelevantForExit (mo:MovingObstacle &): bool
: +obstacleRelevantForYield(mo:MovingObstacle &): bool
1
1
1
1
1
1
1
1

OOPE_ObservedMovingEffects . . #requireLaneAssociation : bool
) - Individual ObservedMoving delegates are +initializeDelegate()
+ignoreNonObservedMovingVehicles_: BoolSubject * coordinated through this shared back-end t g .
+observedMovingVehiclesInIntersection_: bool - +configureDelegate(cs:ConfigSection)
+parent : 00PrecedenceEstimator * to cache state from one delegate for +obstacleRelevantForIntersection(mo:MovingObstacle &): bool
— — +requireObservedMovingForRelevance(): bool application in another +obstacleRelevantForExit(mo:MovingObstacle &): bool
+get(): OOPE_ObservedMovingEffects & +obstacleRelevantForYield(mo:MovingObstacle &): bool

A

OOPE_MaxIgnorableSpeedEffect

gives it the highest priority +configureDelegate(cs:ConfigSection)
+obstacleRelevantForIntersection(mo:MovingObstacle &): bool
+obstacleRelevantForExit(mo:MovingObstacle &): bool
+obstacleRelevantForYield(mo:MovingObstacle &): bool

#maxIgnorableSpeed mps
Singleton Access for each sub»delsgatebl MaxIgnorableSpeed at the bottomBI +initializeDelegate()

Figure 5.9: Object-Oriented redesign of the Precedence Estimator, isolating supplemental
effects in separate delegate classes.

tUpdated(), and the point at which a vehicle is identified as occupying the intersection,
as obstacleOccupiesIntersection()?, pursuant to PE.S.4.

e IntersectionQuiescenceTestDelegate, which also supports PE.S.4, exposes the
test for whether the intersection is “not busy”, which in turn activates the override
timeout mentioned above.

e ObstacleClassificationDelegate, which reflects the similarity between the tests
underlying PE.S.1, PE.S.2, PE.S.3, and PE.C.1 by collecting the relevance tests
for exits, yield lanes, and the intersection itself into a single delegation interface.

This grouping allowed for a reduction in the number of different delegate classes to
be managed, but at the cost of possible priority conflicts between the various relevance
tests. As with the Traffic Estimator’s speed estimation delegate, however, the effects on
the relevance tests were largely the same, i.e. the candidate obstacle would be considered
“irrelevant” for one reason or another, so the order was not important. The exception
to this is the implementation of PE.C.1, which required that the corresponding delegate,
O0PE_MaxIgnorableSpeedEffect, be placed at the bottom of the inheritance chain. This
imposed no special costs on the design, however, as the priority ordering already had to

"For increased generality, as will be discussed relative to the change experiments in Chapter 8, it would
have been worthwhile to also expose the points where obstacles occupy exits and yield lanes, but this initial
refactoring focused on the minimal changes necessary so as not to overly bias any metric results.

5.3. PRECEDENCE ESTIMATOR 47

be explicitly composed, as discussed above. In this way, the application of PE.S.1 and
PE.C.1 was straightforward.

The implementation of the other effects, however, required some mechanism for sharing
state between multiple delegate classes, which was achieved with a Singleton[21] container
class, 0OPE_ObservedMovingEffects, which:

1. Coordinates the shared state between the two delegates that implement PE.S.4, the
nested OUPDelegate and IQDelegate, and

2. Manages the run-time configurability and internal timeout dependencies on behalf of
the nested OCDelegate.

The extra dependencies introduced to handle effects that span multiple delegates lead
to a more complicated design, negatively impacting some of the more advanced metrics
discussed in Chapters 6 and 7. This reflects one of the limitations of OO methodology
in this context: that the flexibility of having many separate delegation interfaces must be
weighed against the problem of dealing with effects that span multiple such interfaces. The
AO design, due to the nature of aspects, need not make such a tradeoff, which once again
yields a more concise design.

Aspect-Oriented Design

The AO redesign of the Precedence Estimator, shown in Figure 5.10, follows the same
patterns of benefit and drawback as the Traffic Estimator. That is, the description of core
algorithmic variability in XPI_AOPrecedenceEstimator is more concise and flexible than
the OO counterparts, but at the cost of requiring several trivial methods to be factored
out of the core implementation, such as obstacleIsRelevantForIntersections(). The “core”
implementation of this is method is to simply return true, and special comments are put in
place to convey “this is specifically meant for AO advice introduction”.

In addition, the effects of individual supplemental data are easily and concisely described
in separate aspects as around or after advice against pointcuts in the XPI, with none of the
extra dependencies necessary to bridge points of variability in the OO design. This again
points toward a more natural fit of AO techniques to the problem of supplemental effect
introduction.

There are, however, two critical differences between this AO design and that of the
AOTrafficEstimator. First, in order to place itself at a higher priority than other effects,
AOPE MaxIgnorableSpeedEffect must “know” about all other aspects that affect the “rel-
evance” pointcuts in the XPI. This “knowing” erodes the benefits of “obliviousness”, and,
in the limit, can lead back to the explicit listing of aspect precedence for all join points,
as is the default case with the composition of OO delegates discussed above. Still, this
approximation of one of the drawbacks to the OO design is a worst-case scenario, as the
AO mechanism is much more flexible, allowing for the full span of complete, to partial
orderings between aspects.

Second, in order to accommodate runtime configurability for PE.S.3, and to inter-
act correctly with the intersection timeout for PE.S.4, AOPE ObservedMovingEffects
must look “past” or “around” the XPI to acquire direct dependency on the

48 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

- = =2 AOPrecedenceEstimator <---- -| <<aspect>>
+configure(cs:ConfigSection) < - - - 1 ! XPI_AOPrecedenceEstlmator
+1n1‘F1allze() <-- | J-=-=--4 +targetClass: pointcut
+n0tlf¥(? b === == +configuration: pointcut
+overridingClearance(): bool e - === = 1 +initialization: pointcut
#updateOccupancies () .) < - - - === === +obstacleUpdateNotification: pointcut

#updateIntersectionOccupancy(mo:MovingObstacle &): void R +intersectionOccupied: pointcut

#readyAtIntersection(): bool)) < - - = =-=====4 +intersectionQuiescentTest: pointcut

#obstacleRelevantForIntersection(mo:MovingObstacle &): bool |« = = = = = = = = = - +intersectionRelevanceTest: pointcut

#obstacleRelevantForExit(mo:MovingObstacle &): bool <€ = = = = = = = - = +exitRelevanceTest: pointcut

#obstacleRelevantForYield(mo:MovingObstacle &): bool <€ = = = = = - = = = +yieldRelevanceTest: pointcut

+combinedRelevanceTests: pointcut

MaxIgnorableSpeed ~<aspectos A
must "know" about | | . _ . . ke e e m - !
the others to apply AOPE_MaxlgnorableSpeedEffect

"order" advice

+<<slice>> XPI::targetClass(): {double maxIgnorableSpeed_mps_;}
.. +<<after>> XPI::configuration()
*~. |#<<around>> XPI::combinedRelevanceTests()

I
1
I
I
I
I
]
I
I
I
I
I
1
I
I
I
I
]
I
I
1 = = ="M+<<order>> XPI::combinedRelevanceTests()
I
I
1
I
I
I
I
]
I
I
I
I
I
1
I
I
I
I
]

<<aspect>>
il AOPE_LaneAssociationsEffects

+<<after>> XPI::configuration()
+<<around>> XPI::combinedRelevanceTests()

<<aspect>>

1

1

1

1

1

1 +<<slice>> XPI::targetClass(): {bool requireLaneAssociation_;}
1

1

1

1

1

- > AOPE_ObservedMovingEffects

+<<slice>> XPI::targetClass(): {bool observedMovingVehiclesInIntersection_;}
ObservedMovingEffects +<<before>> XPI::obstacleUpdateNotification()

must "know" more about +<<after>> XPI::intersectionOccupied()

AOPrecedenceEstimator +<<around>> XPI::intersectionQuiescenceTest()

for PE.S.2 and PE.S.3 \ [+<<around>> XPI::combinedRelevanceTests()

\|+<<slice>> XPI::targetClass(): {BoolSubject *ignoreNonObservedMovingObstacles;}
______________ +<<after>> XPI::initialization()

+<<around>> XPI::yieldRelevanceTest()

Figure 5.10: Aspect-Oriented redesign of the Precedence Estimator, isolating supplemental
effects in separate aspects through a crosscutting programming interface.

AOPrecedenceEstimator implementation. While such dependencies are clearly undesir-
able, the OO design exhibited the same problem, which points toward some amount of
underlying complexity that cannot be “designed away”. This may, in turn, indicate that
some restructuring of the core algorithm, such to introduce a more generic mechanism for
run-time configurability®, and perhaps to refactor the specific structure and usage of the
intersectionIsQuiescent() method, may be warranted in order to better accommodate sup-
plemental effects. However, as with the identification of “likely” points of variability beyond
those necessary to express existing supplemental effects, such modifications were beyond
the scope of the initial, minimalist refactoring. The issues of identifying likely points of
variation a priori and of structuring core algorithms to accommodate supplemental effects
are discussed in Chapter 8, where several candidate extensions to novel input data are
considered for these three software components.

8 As-built, the behavioral subsystem relied on individual Subjects that were mutated by a dedicated
Observer called the “Diagnostic Interface”[4] to provide run-time configurability. This meant that supple-
mental effects that required run-time configurability had to “kmow” about the specific usage of the Observer
pattern, along with their core algorithm’s place therein, in order to implement runtime configurability. The
presence somewhat more generic way to register for change-notifications for configuration variables would
reduce the complexity of both the AO and OO designs for the Precedence Estimator.

5.4. MERGE PLANNER 49

Basic Metrics

The same basic metrics applied to the Traffic Estimator were applied to the Precedence
Estimator, with the results summarized in Table 5.3:

Technique Files | VS | SLOC
Direct Encoding (DE) 2 1 1593
Aspect Oriented (AO) 7 6 1782
Object Oriented (O0) | 11° | 10° | 2055

Table 5.3: Precedence Estimator: Basic Software Metrics

For these basic metrics, the results are strikingly similar in terms of file count and
vocabulary size to those for the Traffic Estimator. In terms of relative sizes, this is also
the case for source lines of code, with the AO implementation roughly 15% larger than
the DE implementation, and the OO implementation 15% larger, in turn, than the AO
implementation. While this clearly depends on the complexity of the core algorithm and
the number and complexity of optional effects, this may still provide a useful rule-of-thumb
for gauging the relative initial development costs for each design variant.

5.4 Merge Planner

The final component to be refactored was the Merge Planner, which was responsible for
identifying, synchronizing with, and ultimately merging into gaps between traffic in an
adjacent lane. This target, or “intended” lane is determined by a separate component, the
Lane Selector, in a separation of responsibilities analogous to the meta-tactical and tactical
levels in the simulated highway lane-planning work described in [36]. This relationship is
illustrated in Figure 5.11, showing the Lane Selector’s responsibility of determining both the
“current” and “intended” travel lanes, and the Merge Planner’s following role of determining
which of those two lanes to “command”, along with how fast the robot should be travelling
in order to synchronize with the best merge gap.

The role of the Merge Planner is much more complicated and dynamic than those of the
Traffic Estimator, which focuses on single-lane travel, and the Precedence Estimator, which
performs its work while the vehicle is stopped, awaiting the appropriate time to proceed
through an intersection. The Merge Planner, in contrast, must consider moving traffic in
two separate lanes and perform its reasoning while the robot is in motion, with the ultimate
output triggering potentially dangerous lane changes between two other vehicles. As such,
the Merge Planner is by far the largest component considered in this study, being nearly
twice as large (in lines of code) as the Precedence Estimator.

The development of the Merge Planner also differed from the other two components in
three critical ways:

1. Where the first two components were developed by the author of this thesis, the Merge
Planner was instead developed by another person, with different training, experience

99 files and 1 class in the Object-Oriented version are the support components that were initially created
for the Traffic Estimator.

50 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

Legend (Merge Speed) (Commanded Lane)

Merge Planner |q---....... Vehicle Pose
v ’ V. ¥

..
~
.
~aa
~.a

)
-
-
e
-
-

~

(Movmg Obstacle Set) (Current Lane) Qtended Lane) (Road Model)
N

Lane Selector

Figure 5.11: Merge Planner collaboration diagram, showing critical input and output Sub-
jects according to the Observer[21] pattern.

and programming style;

2. The Merge Planner was one of the last significant functional elements to be completed
for the Urban Challenge, which meant that its development was under much more
intense time pressure and was not revisited or refined as were the first two components,
leaving it in a more prototypical state;

3. Relatedly, the perception capabilities of the robot were more reliable and mature,
meaning that it was not subject to as many instances of additional or altered data as
the previous two.

Despite these differences, the Merge Planner’s algorithm was subject to several supple-
mental effects, many of which are familiar from the previous two components, plus a few
others that represent a unique and interesting twist on the supplemental theme:

MP.S.1 Instead of the default geometric checks for whether an obstacle is in Boss's
current lane of travel, the Merge Planner shall check the laneAssociations
list for the maximally-probable lane, and use that as the obstacle’s lane of
travel.

MP.S.2 Distant obstacles with dubious historical motion, as indicated by the
isObservedMoving property being set to false, shall be excluded from merge
calculations as probable RADAR false positives by imposing a shorter culling
range than the default. This alternate range shall be configurable, with a
default set to 39m, corresponding to the effective range of high-fidelity laser
scanners on Boss.

MP.S.3 Regardless of the instantaneous velocity of a candidate obstacle, it shall be
treated as though it is stopped at its current location unless its isMoving
property is set to true

MP.S.4 Regardless of the instantaneous velocity of a candidate obstacle, it shall
be treated as though it is stopped at its current location unless its
isObservedMoving property is set to true

5.4. MERGE PLANNER 51

MP.S.5 When merging in front of an obstacle with dubious instantaneous motion, as
indicated by the isMoving property being set to false, that obstacle shall not be
afforded the minimum safety gap of one vehicle-length, reflecting the likelihood
that the obstacle is either a stalled vehicle or a non-vehicle road blockage.

MP.S.6 When merging in front of an obstacle with dubious historical motion, as in-
dicated by the isObservedMoving property being set to false, that obstacle
shall not be afforded the minimum safety gap of one vehicle-length, reflecting
the likelihood that the obstacle is either a stalled vehicle or a non-vehicle road
blockage.

MP.S.7 Regardless of the instantaneous velocity of a candidate obstacle, it shall not
be considered to be “oncoming” traffic unless its isMoving property is set to
true

MP.S.8 Regardless of the instantaneous velocity of a candidate obstacle, it shall not be
considered to be “oncoming” traffic unless its isObservedMoving property is
set to true

The first two effects were familiar from the previously discussed components, where
MP.S.1 suppresses underlying geometric calculations similar to TE.S.5, and MP.S.2 im-
poses an alternate threshold similar to PE.C.1. The remaining effects, MP.S.3 through
MP.S.8, brought a new challenge to this work. The careful reader will note that these
are paired such that isMoving and isObservedMoving have identical effects in three dif-
ferent places in the Merge Planner’s algorithm. To place these in the proper context, it is
necessary to discuss the original implementation in somewhat more detail.

Due to a confluence of complexity and stylistic issues outlined above, the Merge Planner
adopted a “batch processing” approach, where the input data was passed through several
stages of computation in a pattern not unlike the pipe-and-filter paradigm[49] commonly
used in image processing, large-scale simulation, and the Unix shell environment. At each
stage of computation, the data is “transformed” from one type to the next, with the number
of intermediate types dependant on the number of processing stages. The Merge Planner
made use of three such stages, whose intermediate data types were declared as internal, or
“nested” utility classes, and are shown in Figure 5.12

Tracing the path of MovingObstacle data through the Merge Planner yields an impor-
tant view of the processing that takes place therein, especially exposing critical details to
the application of MP.S.3 through MP.S.8 above. The three places where these six effects
are applied are found at three different stages of the processing pipeline shown in Figure
5.13.

The application of these effects at places where the raw Moving0Obstacle contents were
not available meant that the values of isMoving and isObservedMoving had to be cached
and propagated through each of the three intermediate types shown in Figure 5.12. Rather
than deal with them separately, their composed value,(isMoving && isObservedMoving),
was cached and propagated through these types, yielding the three sets of identical require-
ments above. The introduction, management, and application of this derived-supplemental
data imposed several additional requirements, the first three of which pertain to augmen-
tation of the intermediate types to be able to hold the necessary data:

52 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

MergePlanner

+configure(cs:ConfigSection)
+initialize()

+notify()
#computeMergeCommand ()
#findMergeFeasibility()

S5

VelocityType

ObstacleStateType

BossStateType

+velocity: Vector2D
+isMoving: bool

isMoving &&
isObservedMoving

cached from MovingObstacle::

+distanceFront_m: double
+distanceBack_m: double
+velocityFront_mps: double
+velocityBack_mps: double
+isMoving: bool
+isMovingFront: bool
+isMovingBack: bool

+... and various computed results

+operator <(other:0ST &): bool

+distanceFront_m: double
+distanceBack_m: double
+velocity_mps: double
+isMovingFront: bool
+isMovingBack: bool
+frontMergeFeasible: bool
+backMergeFeasible: bool
+... and other computed results

Figure 5.12: Original design for the Merge Planner, showing intermediate obstacle types
used in the merge feasibility calculations.

Break out MovingObstacle
Contents into relevant
geometric information

<

s
1 .
-~

velocity: VelocityType

| —— .,' I

Recombine into "ObstacleStateType",
which is the internal workhorse

mo:MovingObstacle

frontPose: Pose2D

obstacle: ObstacleStateType

mergeObstacle: BossStateType

.

Figure 5.13:

rearPose: Pose2D

.
.

.

N
Eventually convert to "BossStateType"

for final merge feasibility calculations

Data flow diagram for the Merge Planner, showing propagation of

MovingObstacle data through the three intermediate types in Figure 5.12.

MP.D.1 The intermediate VelocityType class shall be augmented with a boolean
member, isMoving, pursuant to the application of effects MP.S.3 through

MP.S.8.

MP.D.2 The intermediate ObstacleStateType class shall be augmented with three

boolean members: isMoving, isMovingBack, and isMovingFront, pursuant
to the application of effects MP.S.5 through MP.S.8.

MP.D.3 The intermediate BossStateType class shall be augmented with two boolean
members: isMovingBack, and isMovingFront, pursuant to the application
of effects MP.S.7 and MP.S.8.

The next six requirements have to do with preserving semantics when deriving new

obstacle instances from the contents of existing instances:

MP.D.4 When populating a VelocityType

instance from the contents of a

MovingObstacle instance, the value of VelocityType: :isMoving shall be
set to true if the MovingObstacle: :velocity vector is nonzero.

5.4. MERGE PLANNER 93

MP.D.5 When populating a VelocityType instance from the contents of a
MovingObstacle instance, the value of VelocityType: :isMoving shall only
be true if the corresponding value of MovingObstacle: : isMoving is also true

MP.D.6 When populating a VelocityType instance from the contents of a
MovingObstacle instance, the value of VelocityType: :isMoving shall only
be true if the corresponding value of MovingObstacle: :isObservedMoving
is also true.

MP.D.7 When populating an ObstacleStateType instance from the contents of a
VelocityType instance, the value of VelocityType::isMoving shall be
propagated to all three of the isMoving{Front,Back} properties introduced
in MP.D.2.

MP.D.8 When combining two ObstacleStateType instances to form a single, larger
merge obstacle, the isMovingFront value shall be retained from the “front”
obstacle, the isMovingBack value shall be retained from the “rear” obstacle,
and the isMoving property of the resulting instance shall be the bitwise-or of
isMoving properties of the two contributing instances.

MP.D.9 When populating a BossStateType instance from the contents of
an ObstacleStateType instance, the values of isMovingFront and

isMovingBack shall be propagated to the homonymous members introduced
in MP.D.3.

The last three derived-supplemental effects represent the actual application of the ordi-
nal requirements, MP.S.3 through MP.S.8, via the cached intermediate values for isMoving,
isMovingFront, and isMovingBack:

MP.D.10 When populating a VelocityType instance from the contents of a
MovingObstacle instance, the values of VelocityType::velocity and
VelocityType: :velocity_STD shall be overridden to zero if the value of
the corresponding VelocityType: : isMoving field, introduced in MP.D.1, is
false. This fulfills MP.S.3 and MP.S.4.

MP.D.11 When considering a merge maneuver in front of an aggregated merge obstacle,
that obstacle shall not be afforded the minimum safety gap of one vehicle-

length unless the corresponding value of ObstacleStateType: :isMoving is
true. This fulfills MP.S.5 and MP.S.6.

MP.D.12 Regardless of the reported velocity of an aggregated merge obstacle, it shall
not be considered to be “oncoming” traffic unless the corresponding value of
BossStateType: : isMovingFront is true. This fulfills MP.S.7 and MP.S.8.

Given time to revisit the core Merge Planner’s design, it seems likely that the three-stage
processing pipeline in Figure 5.13 would be reduced to a single stage, wherein the input
MovingObstacle representation would be used to populate a single internal representation

54 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

of a “merge obstacle”, similar to the intermediate ObstacleStateType. This representation
was the most expressive of the merging problem, as it supported the combination of obstacles
that were “too close” to merge between, and included a facility (the less-than operator)
for sorting the obstacles in ascending order along a given lane. Nevertheless, the goal of
the redesign experiments in this section is to leave the original implementation as close
as possible to its as-written state, focusing on the minimal changes necessary to expose
points of variability and extract supplemental effects according to the proposed AO and
OO techniques.

Moreover, even though the Merge Planner’s algorithm might be simplified to elimi-
nate the need for many of the secondary requirements listed above, the issue of translation
through intermediate data types is common in advanced robotic software. As will be dis-
cussed in Chapter 9, regarding CLARAty, there will be circumstances where a multi-stage
processing pipeline is the best approach, and supplemental data introduced at the beginning
may have to be explicitly propagated through all intermediate stages to have meaningful
effects at the distal end. As such, the Merge Planner’s core design was left as-is, in order
to understand the implications of long-pipe processing, and as an excellent case study for
designing around supplemental effects in other components with similar structures.

Redesign Experiments

The critical challenge for both alternate designs for the Merge Planner was to introduce
new fields in internal structures and manage the propagation. Otherwise, the application
of the actual supplemental effects, MP.S.X listed above, was straightforward and followed
the same patterns established for the other two components.

Object-Oriented Design

Given the complexity of the Merge Planner, and the number of effects listed above, it
is necessary to split the presentation of the OO design into several separate parts. To
begin, Figure 5.14 shows the accommodation of derived-supplemental data introduction via
mechanism similar to the idea of “mixins” from [51]. Here, a generic member is added to
each intermediate structure, called “extension”, whose type is determined by composing
one or more specific extension classes, such as ObstacleStateIsMovingExtension.

As various derived-supplemental data are introduced, the type definition (“typedef”)
for each extension is updated to include the new information as necessary. This was chosen
instead of direct use of templates to avoid having to parameterize the 00MergePlanner
class declaration against an extension type for each of its internal structures. Supplemental
delegates, such as those shown in Figures 5.16 and 5.17, would then access the derived-
supplemental data through the appropriate extension member.

In addition to handling intermediate type extensions, the variability in the Merge Plan-
ner is exposed through four delegate interface classes, shown in Figure 5.15. Four of them,
corresponding to the places where effects MP.S.1 through MP.S.8 are to be applied, are
comparatively simple and follow a familiar pattern from the work on the previous two com-
ponents. The fifth, IntermediateObstacleTypeDelegate, is the largest delegation gener-
ated for this work, and it corresponds to the introduction, translation, and maintenance of
the various intermediate “isMoving” data introduced in Figure 5.14.

5.4. MERGE PLANNER 95

l<<typedef>>

I ; ;
IVeloc1tyTypeE><ten51un -I<<typedefs>

|0bstacleStateExtension

OOMergePlanner
Rather than templating the NullTypeExtension is used

entire 0OMergePlanner against +configure(cs:ConfigSection) when there are no explicit [___

the internal type extensions, [+1n?ia};ze() extensions to the internal '

Lo H +notify types. '

individual typedefs are used : #computeMergeCommand () yp :

as pseudo-templates : #findMergeFeasibility() :

: H

' '

' '

' '

'

' '

' '

' '

VelocityType H ObstacleStateType BossStateType .

' '

+velocity: Vector2D H +distanceFront_m: double +distanceFront_m: double E
H

|~ T Tlzextension: VelocityTypeExtension| +distanceBack_m: double +distanceBack_m: double '
'

1 ' +velocityFront_mps: double +velocity_mps: double !
'

1 ' +velocityBack_mps: double +frontMergeFeasible: bool !
'

| + 1T T T|+extension: ObstacleStateExtension +backMergeFeasible: bool '
'

1 ' |+... and various computed results | ~ T|+extension: BossStateExtension !
'

| v +operator <(other:0ST &): bool +... and other computed results !
'

D! H

vl '

' '

‘- '

'

'

<<typedef>>

; yp i -
BossStateExtension NullTypeExtension

=1 BossStatelsMovingExtension

1
1
I ' I
1
-

—>>|VelocityTypelsMovingExtension > ObstacleStatelsMovingExtension

+isMoving: bool +isMoving: bool +isMovingFront: bool
+isMovingFront: bool |+isMovingBack: bool |

|+isMovingBack: bool

Figure 5.14: Object-Oriented redesign of the Merge Planner, enabling introduction of
derived-supplemental data into intermediate types via a pseudo-template method.

OOMergePlanner

+configure(cs:ConfigSection)
+initialize()

+notify() . i
Core geometric algorithm lives here #compu\lt/eMergeCOmmand() Note: delegate depends on internal typeml
X X X T
as in OOTrafficEstimator #findMergeFeasibility() ’
“‘ ;
\“ ',’
. .
ObstacleTravelLaneDelegate NegativeVelocityTestDelegate
+computeObstacleTravellane(mo:MovingObstacle): LaneID +obstacleHasNegativeVelocity(obstacle:0ObstacleStateType): bool

IntermediateObstacleTypeDelegate

ObstacleCullingRangeDelegate

#nominalCullingRange m +canvertMav1ngObstacleToVelaatyType(M MovingObstacle,
+getMaximumRangeForObstacle(mo:MovingObstacle): double ut:VelocityType)
+convertRoadBlockageTaVelucltyType{1n RaadBlack?g
Velocity ype)
+cunvertVeloaryTypeToobstaclestateType(1n Veloc.lt{
t:0bstac eStateType)
. . +convertObstacleStateTypeToBossStateType(in:0bstacleStateType,
VehicleGapRequirementTestDelegate P P (gut;BosssfateTypegp
+comb1‘neAdjacent0bsracles(leader:DbstacleSratequ_e
+obstacleRequiresMinimumVehicleGap(ob:BossStateType): bool follower:0ObstacleStateType)
' '
' '
' '
L L
Note: delegate depends on internal typeﬁ These are all pure call hooks: no core algorithmﬁ

Figure 5.15: Object-Oriented redesign of the Merge Planner, showing exposition of vari-
ability in the core algorithm through four delegate classes.

With these delegation interfaces in place, two of the original effects, shown in Figure 5.16,
were straightforward to implement, again following established patterns from the Traffic and
Precedence Estimators. In fact, the similarity between MP.S.1 and TE.S.5 allowed the
implementation of the latter to be used as a template, which was particularly useful because

56 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

OOMergePlanner

+configure(cs:ConfigSection)
+initialize()

+notify()
#computeMergeCommand ()
#findMergeFeasibility()

ObstacleTravelLaneDelegate ObstacleCullingRangeDelegate
+computeObstacleTravellLane (mo:MovingObstacle): LaneID #nominalCullingRange m
? +getMaximumRangeForObstacle(mo:MovingObstacle): double
OOMP_OTL_LaneAssociationEffects OOMP_OCR_ObservedMovingEffects
+computeObstacleTravellLane (mo:MovingObstacle): LaneID |#stillobstacleCullingRange m
+getMaximumRangeForObstacle(mo:MovingObstacle): double

Figure 5.16: Object-Oriented redesign of the Merge Planner, showing the straightforward
application of MP.S.1 and MP.S.2.

there was no underlying or “original” implementation for the geometry-only determination
of lane occupancy, anywhere in the version history. In this case, the laneAssociations
datum was already present when the Merge Planner was first developed, so there was never
any need for a geometry-only algorithm. If such software were to be used on another system
that did not provide the laneAssociations datum, there would be no alternative than to
develop replacement functionality “from scratch”, which is one among the many difficulties
engineers face that would be relieved by the methodology proposed in this thesis.

Last, but certainly not least, Figure 5.17 captures the derived-supplemental require-
ments, MP.D.1 through MP.D.12. As mentioned above, with the intermediate “is-
Moving” properties in place, the application of the actual effects followed the straight-
forward and familiar pattern first seen in 5.6. In this case, the management and propaga-
tion of the intermediate “isMoving” properties was given the highest priority, by placing
OOMP_IntermediateMovingDelegate at the bottom of the inheritance chain. This ensured
that effects that depend on those intermediate data, such as the embodiment of MP.D.5
in OOMP_IMD MovingEffects, would be seeded with the “correct” initial value.

Aspect-Oriented Design

As with the other components, much of the underlying complexity of the Merge Plan-
ner and its supplemental effects are reflected in the AO design as well as the OO design,
but the AO design still manages to be cleaner and more concise. This is especially true
of the intermediate type introductions, MP.D.1 through MP.D.3, where the AO notion
of “class slices” is an exceedingly natural fit. To support this, XPI_AOMergePlanner ex-
poses the intermediate types as class pointcuts, such as intermediate BossState Type, and
AOMP_IntermediateMovingEffects applies <<slice>> advice to introduce extra data, such
in the nested BossStateSlice.

The management of these intermediate types does not need to interfere with core func-
tionality, so it is implemented as <<after>> advice against the various translation and
combination pointcuts in the XPI. This is possible because the propagation of these data
through the intermediate types are not invasive aspects as discussed in Section 3.2, but are
merely spectative in that they add “harmless” side effects to the core algorithm. Only when

5.4. MERGE PLANNER o7

OOMergePlanner
Effects of intermediate isMoving +configure(cs:ConfigSection) Contributions of MovingObstacle::
1= extensions are applied just like *”‘?iattze() isMoving and isObservedMoving to [====-%
H +notify . s . '
: other supplemental delegates. #computeMergeCommand () VelocityType::isMoving go here E
H #findMergeFeasibility() '
H '
' H
: :
H N : . '
' NegativeVelocityTestDelegate IntermediateObstacleTypeDelegate '
H 1}
'
.
\ |+obstacleHasNegativeVelocity(obstacle:ObstacleStateType): bool +convertMav1ng0bstacleToVelac1tyType(1n MovingObstacle, '
] ut:VelocityType) H
'
' +convertRuadBluckageToVelocltyType(1n RoadBlock?g H
' Velocity ype) '
H N - +convertVelac1tyTypeTaObstaclestateType(.m Veloc.lr{ pe, H
' OOMP_NVT_IntermediateMovingEffects bstacleStateType) |
H +convert0bstacleStateTypeToBossStateType(1n ObstacleStateType, H
1- 4 +obstacleHasNegativeVelocity(obstacle:ObstacleStateType): bool out:BossStateType) '
' +combineAdjacentObstacles(leader:0bstacleStateType, H
! follower:0ObstacleStateType) H
H '
'
' . .
' VehicleGapRequirementTestDelegate H
'
H R .
H +obstacleRequiresMinimumVehicleGap(ob:BossStateType): bool OOMP—IMD—ObservedMovngffeCts E
'
' +convertMovngbstacleToVelomtyType(m MovingObstacle, |====-n
H ut:VelocityType) '
: :
'
' OOMP_VGRT_IntermediateMovingEffects :
H '
'
\- - -|+obstacleRequiresMinimumvehicleGap(ob:BossStateType) : bool OOMP_IMD_MovingEffects '
'
+convertMov1ngObstacleToVelocltyType(ln MovingObstacle, f===-= H
ut:VelocityType)

i

OOMP_IntermediateMovingDelegate

+convertMovingObstacleToVelocityType(in:MovingObstacle,
out:VelocityType)
+canvertRoadBlockageToVelocityType(in:RoadBlock?ge,
out:VelocityType)
+convertVelac1tyTypeTaObstacleStateType(.m VelocityType,
ut:0bstac estateType)
+convert0bstacleStateTypeToBassStateType(1n ObstacleStateType,
out:BossStateType)
+comb1neAd]acentobstacles(leader ObstacleStateType,
follower:ObstacleStateType)

Maintenance of intermediate
"isMoving" semantics across
type manipulation and other
operations goes here

mn

Figure 5.17: Object-Oriented redesign of the Merge Planner, showing the application of
derived-supplemental effects MP.D.1 through MP.D.12

the effects of the data are applied at the distal end are they once again invasive, and, to
the author’s knowledge, this usage of spectative aspects in support of more invasive aspects
at “downstream” points in the algorithm has not yet been explored, making this example
a noteworthy curiosity contributed by this work.

Otherwise, the only interesting feature of the AO design is that, in order to fulfill
MP.D.5 and MP.D.6, AOMP MovingEffects and AOMP_ObservedMovingEffects have an
implicit dependency on the introduction of VelocityTypeSlice onto the intermediate Vel-
ocity Type join-point in the XPI. That is, if the type signature of VelocityTypeSlice were
to change, or if AOMP_IntermediateMovingEffects were to be excluded from the weave,
then those two aspects would not function correctly. As with similar “conservation of com-
plexity” discussion regarding the Precedence Estimator, this problem is also present in the
OO design, and there is no reasonable way to “design around” it

Basic Metrics

In terms of the basic metrics applied to the other two components, the results for the Merge
Planner, shown in Table 5.4, are consistent with the previous two.

o8

CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

XPI must expose many, many

pointcuts in AOMergePlanner,
including intermediate types
for slicing other operations

<<aspect>>
XPI_AOMergePlanner

T|+configuration: pointcut
TJ+initialization:

+targetClass: pointcut

pointcut
+obstacleLaneDetermination: pointcut
+obstacleCullingRangeDetermination: pointcut
+transcriptionFromMovingObstacleToVelocityType: pointcut
+transcriptionFromRoadBlockageToVelocityType: pointcut
+transcriptionFromVelocityTypeToObstacleStateType: pointcut
+transcriptionFromObstacleStateTypeToBossStateType: pointcut
+adjacentObstacleCombination: pointcut
+negativeVelocityTest: pointcut
+vehicleGapRequirementTest: pointcut
+intermediateObstacleVelocityType: pointcut
+intermediateObstacleStateType: pointcut
+intermediateBossStateType: pointcut

A

<<aspect>>
AOMP_LaneAssociationsEffects

+<<after>> XPI::configuration()
+<<around>> XPI::obstacleLaneDetermination()

+isMoving: bool
+isMovingFront:
+isMovingBack:

bool
bool

AOMergePlanner <-----=---=-=-=--=-=-- |
+configure(cs:ConfigSection) € - - = — — === === :
+initialize() € - - e === 2 ! \
+notify() [|
#computeMergeCommand () 1! h
#findMergeFeasibility() 1! h
+getObstacleTravellLane(mo:MovingObstacle): LaneID € - === === = = = = por ! ,
+getObstacleCullingDistance(mo:MovingObstacle): double - === == == Lot ! \
+buildVelocityTypeFromObstacle(mo:MovingObstacle): VelocityType |a&€ = = = = = = = = = ol ! L
+buildVelocityTypeFromObstacle(rb:RoadBlockage): VelocityType € = = = = = = = - ! Lt !
+computeMergeObstacleVelocity(out:ObstacleStateType, s = = = = = = ! Voo
in:VelocityType, ! I -—-
fror)\tBumperPose:PnseZD, Lot | [
[
+buildBossStateFromObstacleState(out:BossState, - - - - - !
in:0ObstacleStateType) ;T T
+combineAdjacentObstacles (leader:ObstacleStateType, e === ! === ===
follower:0bstacleStateType) | & | | o ;o e e e e m = =
+obstacleHasNegativeVelocity(obstacle:ObstacleStateType): bool | <Gl O
+obstacleRequiresMinimumVehicleGap(obstacle:BossStateType): bool J&C= = | — - o - 0 0 o - o o = =
VelocityType I e e e e e e e e e e e e === A
+velocity: Vector2D : \TTTsTrT s s rmmm T rmr T
1
'
[<<aspect>>
ObstacleStateType 1 L] AOMP_IntermediateMovingEffects
- I
+distancefront_m: double LI +<<after>> XPI::configuration()
+distanceBack_m: double .
ke {-=-111 +<<around>> XPI::obstaclelaneDetermination()
+velocityFront_mps: double .
- 1 +<<slice>> intermediateObstacleVelocityType(): VelocityTypeSlice
+velocityBack_mps: double
= 1 +<<slice>> ::intermediateObstacleStateType(): ObstacleStateSlice
+... and various computed results P
operator <(other:0ST &): bool 1 +<<slice>> intermediateBossStateType(): BossStateSlice
1 +<<after>> transcriptionFromMovingObstacleToVelocityType()
1 +<<after>> ::transcriptionFromRoadBlockageToVelocityType()
1 +<<after>> transcriptionFromVelocityTypeToObstacleStateType()
BossStateType — I +<<after>> transcriptionFromObstacleStateTypeToBossStateType()
+distanceFront m: double 1 '+<<after>> adjacentObstacleCombination()
" - 1 J/|#<<around>> XPI::negativeVelocityTest()
+distanceBack_m: double h X
< - - - = 1 |#<<around>> XPI::vehicleGapRequirementTest()
+velocity_mps: double .
+frontMergeFeasible: bool ; i [S]
+backMergeFeasible: bool <<slice>>
+... and other computed results ObstacleStateSlice

Management of intermediate type
introductions is somewhat more
straightforward with "slices",

<<slice>>

BossStateSlice

<<aspect>>

AOMP_ObservedMovingEffects

but is still large and cumbersome.

+isMovingFront: bool
+isMovingBack:

bool

<<slice>>

VelocityTypeSlice

+<<after>> XPI::configuration()
+<<slice>> XP
+<<after>> XPI:
+<<around>> XPI::obstacleCullingRangeDetermination()

— — — +<<before>> transcriptionFromMovingObstacleToVelocityType()

argetClass(): {double stillObstacleCullDistance;}
:configuration()

<<aspect>>

AOMP_MovingEffects

+isMoving:

bool

+<<after>> XPI::configuration()
+<<before>> XPI::transcriptionFromMovingObstacleToVelocityType()

Figure 5.18: Aspect-Oriented redesign of the Merge Planner, isolating supplemental effects
in separate aspects through a crosscutting programming interface.

Technique

Files

VS | SLOC

Direct Encoding (DE) 2
Aspect Oriented (AO) 7
Object Oriented (OO)

1710

6 2965
11 3323
2310 | 3537

Table 5.4: Merge Planner: Basic Software Metrics

These basic metrics for the Merge Planner show a marked increase in files, classes, and
lines of code for both AO vs. DE, and OO vs. AO. The degree of the jump from the OO
to AO designs is somewhat more pronounced, due in large part to the extra overhead of
intermediate type introductions in the OO technique that were more straightforward in the
AO technique. Otherwise, the AO design imposes an overhead close to 10%, and the OO
design closer to 20%, which are in line with previous results.

109 files and 1 class in the Object-Oriented version are the support components that were initially created

for the Traffic Estimator.

5.5. DISCUSSION 99

5.5 Discussion

There are several recurring themes in the supplemental effects described in this chapter that
offer useful insights into how the primary vs. supplemental methodology may be applied
to other systems. For the most part, these effects represent a binding of a particular
supplemental datum to “what it means” in a particular context, such as MP.S.2, which
can be paraphrased as:

In the context of the Merge Planner, (isObservedMoving = true) means that
the obstacle can be farther away and still be relevant to merge calculations.

Although each effect is unique to the algorithm to which it is applied, many of them
share certain similarities that can guide the identification of supplemental effects in other
systems. That is, the majority of the effects listed above interact with the core algorithm
in one of three distinct ways:

e Logical contributions to some context-specific relevance test, such as whether an ob-
stacle is “worth considering” for yield calculations (PE.S.2),

e Logical contributions to the determination of how, or whether, to incorporate primary
data, such as how much to “trust” the velocity data (TE.S.2), in each application
context,

e Substitution of alternate thresholds or offsets, which can be related to “trust” of the
primary data, but can also pertain to more complicated facets of the core algorithm,
such as the determination of obstacle culling range in MP.S.2.

Beyond describing existing supplemental effects, these categories also allude to the pre-
scriptive identification of points of variability in a core algorithm that would be valuable to
expose for future adaptation. To a certain extent, these are intrinsically algorithm-specific,
and will be difficult to identify a priori in the general case. This is discussed in great detail
relative to the change experiments in Chapter 8, so it will be sufficient for now to focus on
two categories of “support” supplemental effects that pervade the examples in this chapter.

The first such “support” effect is the introduction of load- or run-time configurability,
such as the parameterization of a supplemental effect by allowing alternate thresholds or off-
sets to be specified in a configuration file. To support this, the adaptability interface should
permit extensions of the initialization and configuration methods of the core component,
and should allow additional member data to be introduced to hold configured parameters
in a way that is accessible to the rest of the supplemental effects.

The second “support” effect discussed in this chapter is the introduction and manage-
ment of derived-supplemental data across intermediate data types, such as the MP.D.X
effects above. Most notably, this requires a mechanism for introducing additional data into,
or associating such data with, intermediate data types that may be affected by supplemen-
tal data. All critical stages in the processing of these intermediate types must be exposed
for adaptation, including translation from one type to the next and any operations that
derive a new instance from the contents of two or more existing instances. It follows that
care should be taken to keep such intermediate types, and the processing path they take
through the core algorithm, as simple as possible, thus minimizing the amount of effort

60 CHAPTER 5. APPLICATION TO AUTONOMOUS DRIVING BEHAVIORS

required to propagate supplemental data to the places in the algorithm where they are to
be applied.

Together, these provide a certain amount of guidance as to how to write adaptable
robotic software, and they imply a baseline adaptability interface that is necessary to en-
able the comparatively simple “support” effects. Relatedly, seeking out these elements in
an existing algorithm: tracing the path of input data through intermediate data types, and
watching for special-case configuration parameters along the way, is an excellent starting
point for identifying pre-existing supplemental effects, along with candidate places where
future effects may be applied. This particular theme is explored more thoroughly in the
complementary case study in Chapter 9, where the extension of a generic terrain analysis
algorithm to accommodate supplemental data from thermal cameras or vegetation detec-
tion algorithms also requires augmentation of several intermediate data types to carry the
supplemental data to the appropriate application points in the processing pipeline. The
derivation and application policies for these derived-supplemental data also create similar
opportunities to introduce configurable parameters such as would describe “too hot” to
traverse, or “too vegetative” to leave uninspected.

As to the overall merit of the primary vs. supplemental methodology, and the effec-
tiveness of the AO and OO approaches thereto, the basic metrics presented to this point,
while relatively easy to measure, focus only on the costs associated with each technique.
While these costs do not appear to be prohibitive, and consistently favor the AO design
over the OO design, they are not enough in isolation to determine which approach is “bet-
ter”, or whether the overall methodology actually enhances adaptability. To gain a better
understanding of the benefits provided by these techniques, two advanced analysis tech-
niques have been applied to each design of the Traffic Estimator, Precedence Estimator,
and Merge Planner, discussed above. The following chapter presents the results from the
first such technique, called “concern diffusion analysis”, which quantifies how well the sup-
plemental effects are isolated from the core algorithm, where better isolation typically yields
software that is easier to understand and adapt.

Chapter 6

Results: Concern Diffusion

The first set of advanced metrics that have been applied to the refactored urban driving
software is drawn from a case study|[22] that compares AO implementations of 23 standard
design patterns[21] to their stereotypical OO counterparts. To compare the two techniques,
this study uses a collection of source code analysis metrics that were shown to be effective
quality indicators, both for measuring the intrinsic structure of the artifacts, and for pre-
dicting their ability to cope with an assortment of changes that were applied to each pattern.
Three of these measurements, the so-called “concern diffusion” metrics, were particularly
effective at highlighting differences between the AO and OO designs.

This chapter presents the results of applying these “concern diffusion” metrics to the
components discussed in Chapter 5, beginning in Section 6.1 with a discussion of “software
concerns” and the three measured types of “diffusion” thereof. The results of applying
these metrics to each implementation of the Traffic Estimator, Precedence Estimator and
Merge Planner are presented in Sections 6.2, 6.3 and 6.4, respectively. These results are
summarized in Section 6.5 before proceeding to Net Option Value analysis in Chapter 7.

6.1 Introduction: Concerns and Diffusion

In the language of software analysis, a “concern” is a conceptually coherent issue that must
be resolved as part of developing a software system. The most straightforward concerns
take the form of functional software requirements, such as the specification of supplemental
effects laid out in the previous chapter. Concerns can also pertain to “non-functional” de-
sign and infrastructural issues in a software system, such as message-passing, configuration
management, and logging. More abstractly, qualities such as “modularity”, “adaptability”,
and “understandability” are also concerns for a software system, as efforts to enhance such
qualities will also affect the structure and usage of the resulting artifact.

The commonality is that all software concerns have some measurable presence in the
final implementation of the system, which can consist of source code, compiled executables,
configuration files, documentation, etc. It follows that all elements of these artifacts, at
all granularities of programs, classes, functions and lines of code, can be traced to one or
more concerns for the system. The “diffusion” of any one concern is the degree to which
it is scattered across the various elements that comprise a given system, and the degree to
which the concern is tangled with other concerns in the implementation of those elements.

62 CHAPTER 6. RESULTS: CONCERN DIFFUSION

The critical implication is that the more a concern is “diffused”, the more difficult it will
be to understand for the purposes of adaptation and reuse.

Concerns can also be thought of hierarchically, with a single top-level concern on the
order of “the system shall do the right thing”, that is recursively decomposed and elab-
orated upon to the level of detailed functional, non-functional and design requirements.
This hierarchical nature has important consequences for the measurement of “diffusion” as
discussed above, as the degree of perceived diffusion will depend on the granularity of the
concerns that are being measured. At the top of the hierarchy, the aggregated “do the right
thing” concern will be scattered across the whole system, but will not be tangled at all, as
there are no other concerns to tangle with.

The goal of a modular design is to provide a strong mapping between implementation
artifacts (classes, methods and lines of code) and the increasingly fine-grained concerns,
simultaneously reducing the perception of scattering as the finest granularity of concerns
come into focus while also minimizing the tangling of these fine-grained concerns with each
other. As discussed in Section 3.2, some “crosscutting” concerns are more difficult than
others to isolate and encapsulate, and one of the critical insights in this thesis is that the
effects of so-called supplemental data might be framed in a similar way, and may benefit
from treatment using AO and related techniques.

The “concern diffusion” metrics presented in this chapter provide a quantification of this
benefit by directly measuring the amount of scattering and tangling of individual concerns
in a software system. The performance of these metrics begins with the enumeration of
all the concerns of interest in the artifacts to be tested, followed by a labeling! of those
artifacts as pertaining to one or more concerns.

In order to accommodate the issues of concern granularity discussed above, the concerns
for these artifacts, listed in their entirety in Appendix C, have been specified in a hierarchical
fashion, with results computed for each of the three levels of granularity (coarse, intermedi-
ate, and fine) therein. At the highest level, there are three “coarse-grained” concerns that
describe:

e The implementation of the core algorithm, denoted by the prefix C;
e The exposure of adaptability, or variability (denoted V) in the core algorithm;
e The implementation of any supplemental effects (denoted E).

Core (C) and supplemental effect (E) concerns will be present in all three designs, as
they represent functionality present in the original implementation that must be preserved
in any alternate design. The variability (V) concerns, on the other hand, map directly to
the “extra” code that must be written to accommodate the methodology proposed in this
thesis, and are thus only present in the AO and OO designs. Each of these three top-level
concerns are broken down at an intermediate level of granularity into:

e Individual stages in the core algorithm, denoted numerically as C.N, e.g. “C.0:
infrastructure, configuration and initialization”, which is common to all components;

'Even in the presence of industrial strength tools and procedures, this can be a tedious manual process.
In this case, of more prototypical development, it required the hand-labeling of nearly 25,000 lines of code.

00 O Uik WK

6.1. INTRODUCTION: CONCERNS AND DIFFUSION 63

e Individual adaptation interfaces, also denoted numerically as V.N, e.g. “V.0: con-
figurability for supplemental effects”, which is common to all AO and OO designs;

e The aggregated effects of individual supplemental data, also denoted numerically as
E.N, e.g. “E.1: isMoving effects”.

Lastly, the finest level of granularity, which only applies to supplemental effects, maps
directly individual requirements listed in Chapter 5. These are denoted numerically as
E.N.M, e.g. “E.1.1: Require isObservedMoving in yield calculations (PE.S.3)”.

Generally speaking, coarse-grained concerns provide a better overall view, but can also
smooth out interesting features in each design. Conversely, the finer-grained concerns can
expose these smaller features, but can also be highly sensitive to otherwise irrelevant imple-
mentation details. As an example, consider the pseudo-code in Listing 6.1, which extends
the example in Listing 5.1 to include labels for core and supplemental effects.

double TrafficEstimator::estimateObstacleSpeed/(
MovingObstacle &mo) {
double laneSpeed_mps; // computed result for this method

// verify that we "trust" the wvelocity wvector
if (mo.isMoving &&
odlg mo .isObservedMoving)

{

[

// do the "normal" lane speed calculation

// mote: this is the "core" algorithm for speed estimation
laneSpeed_mps = projectVelocityVectorOntoLaneHeading () ;

if (laneSpeed_mps < 0.0)

{

: // verify that mnegative/oncoming wvelocity is allowed

.1 if (mo.isPredicted ||
(oncomingRequiresStrictLaneAssociation_ &&

.1 mo.laneAssociations.size() != 1)

)

// oncoming not allowed: force to zero to be safe
laneSpeed_mps = 0.0;
3
}
} else {
// mot trusted: force to zero to be safe
laneSpeed_mps = 0.0;
}

return laneSpeed_mps;

}

oo oo NoNoNoNoNoNoNo NN NN NN NONONO N NN N NGO NGOG
R R R R R PR R R ERERPRRRERENDNORER R R R RODR R R
[SN

Listing 6.1: Pseudo-code for supplemental effects in Traffic Estimator speed estimation.

64 CHAPTER 6. RESULTS: CONCERN DIFFUSION

Given these labels, three diffusion metrics are computed for each concern by counting;:

1. The number of components, in this case classes or aspects, that contribute to the
concern, called Concern Diffusion over Components (CDC);

2. The number of operations, in this case methods or advice directives, that contribute
to the concern, called Concern Diffusion over Operations (CDO);

3. The number of times that the concern switches back-and-forth, or tangles, with others
at the source level, called Concern Diffusion over Lines of Code (CDLOC).

Relative to the contents of Listing 6.1, this implementation would incur one point of
CDC for each of the five concerns listed(C.1, E.[1-4].1), and for each of their parent
concerns(C,E,E.[1-4]), for their presence in the TrafficEstimator class. These would
similarly incur one point of CDO for their presence in the estimateObstacleSpeed method.
Lastly, their CDLOC scores would be computed as follows:

e C, C.1: 4, for switching “out” at lines (6,15), and “back in” at (8,18)
e E: 4, as the complement to C above

e E.1, E.1.1: 2, for “in” at 6 and “out” at 7

E.2, E.2.1: 2, for “in” at 7 and “out” at 8
e E.3 E.3.1: 2, for “in” at 15 and “out” at 16
e E.4 E.4.1: 2, for “in” at 16 and “out” at 18

It is important to note that the hierarchical grouping of concerns does not necessarily
mean that the CDLOC measurement for a coarse-grained concern is a simple summation of
the results from its constituent sub-concerns. In fact, this is rarely the case, as shown above,
as the aggregated “E” concern shows less diffusion (4) than the sum of its constituents (8).
This is because the aggregation represents a “bigger picture” look at the diffusion problem,
which “smooths over” some concern switches that are only visible at finer granularities.

There is some amount of judgement involved in assigning concerns to some blocks of
code, such as the “else” clause at lines 24-27. From a certain perspective, these may be
seen as pertaining to both E.1.1 and E.2.1, which would incur additional diffusion over
lines of code. In this case, however, it is possible to interpret these as the “core” algorithm
explicitly including the test for “trust”, and the supplemental effects contributing more to
the test than the result. Still, there is some ambiguity here, and, as with many other facets
of software development and analysis, consistency is more critical than absolute correctness.
For this case study, any such ambiguities are resolved by favoring a labeling that results in
lower diffusion scores for all designs, yielding consistent, conservative results for each design
of each component.

To support analysis at all levels of granularity, the source code has been labeled at the
finest level of granularity, and the measurement process has been instrumented to accom-
modate the naming scheme described above. The results are presented in the following
sections as grouped bar graphs to allow side-by-side comparison of the relative scores for

6.1. INTRODUCTION: CONCERNS AND DIFFUSION 65

each design technique over each specific concern. The bars are colored red for Aspect-
Oriented (AO), blue for Object-Oriented (OO), and green for Direct Encoding (DE). The
DE design shows negative bars for all “variability” (V) concerns as a visual representation
that they are irrelevant to that technique. That is, the direct encoding does not attempt
to expose points of variability, so those concerns never show up in the hand-labeling of the
corresponding source code.

66 CHAPTER 6. RESULTS: CONCERN DIFFUSION

6.2 Traffic Estimator

Concern Diffusion over Components

10 T T T T T T T T T
AO mmmm
DE o
00 mmmm
8 1
2
& 6 -
c
o
Q
£
o
&)
S 4t 1
@
e]
£
>3
=
2 r 1
© 0 7 R e '6‘L LO L/ éqbé\ @/é\(@é@é@&@eé\v ?é}

Concern ID

Figure 6.1: Traffic Estimator: Concern Diffusion over Components. See Table C.1 for the
full listing of the illustrated concerns.

Figure 6.1 illustrates the CDC scores for the three implementations of the Traffic Es-
timator. The results are largely consistent with the more simplistic metrics discussed in
the previous chapter, i.e., the AO design generally outperforms the OO design, but the
diffusion values for each concern reveal several important differences between each of the
three designs.

First of all, it is noteworthy that all concerns in the DE implementation, except for
the variability concerns as mentioned above, are “diffused” over exactly one component,
the original Traffic Estimator class. The AO and OO implementations both show some
additional diffusion over components, but a certain amount of this is expected: the point
of these two designs is to separate the core and supplemental concerns into individual
modules so they can be treated in isolation. However, whereas the AO implementation
keeps a one-to-one mapping between the finest-grained concerns and the components that
implement them, the OO implementation diffuses some elements of the core algorithm and
at least some parts of every supplemental effect over two or three components, reflecting the

6.2. TRAFFIC ESTIMATOR 67

additional overhead necessary to declare, implement and bind supplemental effects within
the limitations of object-oriented methodology.

These limitations are even more pronounced in the center of the graph, which depicts
the number of components that take part in exposing the points of variation in the core
algorithm. The large disparity between the AO and OO implementations here reflects the
more natural way that AO methodology can insert and extend functionality in the core
algorithm, by declaring all points of variability in an entirely separate component, the XPI,
which is discussed in Section 4.3. The OO implementation, on the other hand, requires
separate delegate class declarations per point of variability, and methods on those classes
must be invoked at the appropriate places along the core implementation in order to allow
the core functionality to be extended or overridden.

Concern Diffusion over Operations

2 5 T T T T T T T T T

| .||.\I..\|_L,|u A, I“hll

(&) O e Q. Q O O L b // <<\ <\\ 6\ <\\ 6\ <° 6\ <° <‘\ 6\
O 7 R R R @Y ¥
Concern ID T e < e

Number of Operations

Figure 6.2: Traffic Estimator: Concern Diffusion over Operations. See Table C.1 for the
full listing of the illustrated concerns.

The CDO scores for the three Traffic Estimators, shown in Figure 6.2, are largely consis-
tent with the CDC scores, but show more significant variation in the values per individual
concern. As with the CDC scores, concerns are generally diffused over more operations in
the AO and OO implementations, but this is once again an expected result. The effects on

68 CHAPTER 6. RESULTS: CONCERN DIFFUSION

the individual core concerns are minimal, with the increases in the aggregated core concern
caused by some basic refactoring of the core algorithm into several additional methods to
create the necessary join-points for the AO design, and to provide the option to override the
core functionality for the OO design. This highlights the fact that the proposed techniques
for applying supplemental effects require some consideration in the design and implementa-
tion of the core algorithm. The expected benefit of this additional work is that subsequent
variations on the core algorithm become more straightforward to introduce, update and/or
remove as the need arises.

The variability concerns show almost identical, if more pronounced, disparity between
the AO and OO designs, again reflecting the need to explicitly call out to the delegate classes
at many and various points in the core algorithm for the OO implementation, whereas the
AOQ design can exert similar changes from outside the core implementation. The supplemen-
tal effect concerns are similarly amplified, with the AO design concentrating the optional
effects in one to three operations where the OO design consistently requires five or more,
again reflecting the additional overhead involved in binding these effects using OO method-

ology.

Concern Diffusion Over Lines of Code

35 T T T T T T T T T

Juﬂ\l..lui mum

O OOO,OQOGO Od‘b /(0 é} é‘oé‘ <<‘ 6‘ 6‘@6“3@&6‘&@?6‘7@?
Concern ID & < < R

Number of Concern Switches

(&)
T

Figure 6.3: Traffic Estimator: Concern Diffusion over Lines of Code. See Table C.1 for the
full listing of the illustrated concerns.

6.2. TRAFFIC ESTIMATOR 69

Lastly, the CDLOC scores in Figure 6.3 show the most pronounced differences between
each of the three techniques. The core concerns again show the most variation, but overall
both the AO and OO designs demonstrate significantly reduced source-level diffusion over
the original implementation. The two exceptions to this are:

e C.0 (Infrastructure interfaces, configuration, initialization), wherein the OO imple-
mentation shows a marked increase in diffusion over lines of code due to the need to
introduce call hooks for each delegate into the configuration and initialization methods
of the OO Traffic Estimator. This reflects the chief drawback? approach as compared
the AO approach, that the core algorithm must be explicitly instrumented with calls
into the delegate classes for them to be able to extend or replace the core functionality.

e C.1 (Determine forward path of the vehicle), which records a slight increase for both
the AO and OO solutions. This increase is due to the introduction of extra methods
during the initial refactoring step as discussed relative to the CDO results. While
curious, this is not generally a limitation of the proposed approaches; rather, it reflects
suboptimal functional decomposition in the original implementation.

Otherwise, and consistent with previous discussion, the AO solution shows significantly
less diffusion than its OO counterpart, with the single exception of concern C.4 (estimate in-
lane speed of lead vehicle), which concentrates the declaration and configuration of pertinent
variables in an external class, relieving the 00TrafficEstimator class of some tangling
between core sub-concerns. This is an interesting result in that it points to a possible
benefit to treating some sub-parts of the core algorithm by the same means that allow the
introduction of supplemental effects.

The variability concerns are once again consistent with, but more pronounced than, the
other diffusion metrics, as the individual calls out to delegate classes inject lines of code
in several places in the OO implementation, where the AO implementation does not, and
thus remains separate. The supplemental effect concerns also generally show improvement
for both the AO and OO implementations, with the AO implementation all but eliminating
diffusion of individual supplemental effects, which is again consistent with earlier results.

The most significant result is indicated by the aggregate C, V, and E, concerns, which
have flat lines where the red (AO) bars might be, indicating zero diffusion among core,
variability and extended effect concerns. In other words, the AO implementation manages
to completely disentangle the three broadest categories of concerns that typify the method-
ology proposed in this thesis. While not as profound, the OO implementation also makes
considerable improvements when viewed in this way, reducing the source-level diffusion
of core and supplemental effects by an average of 40%, further reinforcing the potential
benefits of the primary vs. supplemental methodology.

Whether explicit calls out to delegate classes is truly a “drawback” of the OO approach is ultimately a
function of the skills of the development team. If the team is not comfortable with the subtleties of implicit
invocation as in the AO approach, then the more explicit nature of “calling out” may provide useful guidance
as to what is “going on” in the source code. Such extra calls will still “clutter” the source code, however,
making it generally more difficult to understand the purpose of the core algorithm, which is the focus of this
measurement technique.

70 CHAPTER 6. RESULTS: CONCERN DIFFUSION

6.3 Precedence Estimator

Concern Diffusion Over Components

10 T T T T T I\A\ LI
—
DE mmm
00 mmm
8_ i
4}
@
S 67 1
Q.
IS
[e]
O
S
@ 4 | .
Q0
£
3
z
| J JJJ |

0)0, Q0050 CaCaCal bbby byl L6 @0@,@,@,&?@@7

Concern ID

Figure 6.4: Precedence Estimator: Concern Diffusion over Components. See Table C.2 for
the full listing of the illustrated concerns.

Figure 6.4 illustrates the CDC scores for the three implementations of the Precedence
Estimator, which are highly consistent with the results from the Traffic Estimator. That
is, there is some small but expected increase in diffusion over components for both the AO
and OO designs, due to breaking up the original single-class implementation into several
sub-modules.

The most important difference is that the core concerns are diffused over exactly one
component in all three implementations, where the 00TrafficEstimator instead exhibited
an increase in this type of diffusion. In this case, the supplemental effects in the Precedence
Estimator did not require parts of the core algorithm to be completely masked, as was the
case for the Traffic Estimator, so none of the core algorithm had to be migrated into delegate
interface classes. Instead, the delegation interfaces for the Precedence Estimator were lim-
ited to simple hooks, such as in the ObstacleUpdateProcessDelegate, or else had trivial
base cases of “return true” to be overridden by supplemental effects, such as for the obstacle
candidacy tests in ObstacleClassificationDelegate. The simplicity of these interfaces,
meant that the core algorithm remained entirely within the 00PrecedenceEstimator, which

6.3. PRECEDENCE ESTIMATOR 71

yields the apparent reduction in diffusion over components. This did not, however, have
the same effect on diffusion over operations or lines of code, as discussed below.

Concern Diffusion Over Operations

45 T T T T T T T 1T 1
AO mmm
DE mm
40 r 00 mm -
35 + e
o 30 - .
c
K<}
5 25 |
o
@]
© 20t .
(]
o]
S
= 15 - e
10 + e
| I II u HJl |
N I JUINN f

C G0, 00050, CaCeCl Ly, by byb L6 @0@,@,@,@,@ &

Concern ID s <

Figure 6.5: Precedence Estimator: Concern Diffusion over Operations. See Table C.2 for
the full listing of the illustrated concerns.

The CDO scores for the three Precedence Estimators, shown in Figure 6.5, again show
similar general trends to those of the Traffic Estimator, exhibiting small, but expected,
increases in diffusion due to necessary method-level refactoring. The diffusion of the fine-
grained concerns remains reasonably small, with the AO implementation showing signifi-
cantly less diffusion in the majority of cases. The one notable exception is E.1.1, which, in
the OO version, is combined in a single method of 0OMP_ObservedMovingEffects that also
implements E.1.3. These two concerns are instead maintained as separate advice directives
in the AO implementation, yielding a slight increase in the AO diffusion over operations for
the aggregated E.1 concern.

72 CHAPTER 6. RESULTS: CONCERN DIFFUSION

Concern Diffusion Over Lines of Code

70 T T T T T T T T T T

60 |

”‘Mlh hliuu

o OOO)C;DO&O OO\OG‘O)P L P P P P 6\ 6\06\,6\,6\,@,6\ 6\

Concern ID ° e <

Number of Concern Switches

Figure 6.6: Precedence Estimator: Concern Diffusion over Lines of Code. See Table C.2 for
the full listing of the illustrated concerns.

Lastly, the CDLOC scores in Figure 6.6 also follow the trends seen in the Traffic Es-
timator, with both the AO and OO designs generally demonstrating reduced source-level
diffusion over the original implementation. The AO implementation is also generally less
diffused than the OO implementation, and it demonstrates zero source-level diffusion among
aggregated concerns.

The single notable exception to this norm is E.1.3, which shows a significant increase
in source-level diffusion for the OO design. In the original implementation, this effect was
implemented by two adjacent lines of code, nested deep within a complex branching logic
structure. While difficult to identify and extract, this yielded a CDLOC score for the base-
line implementation of only 2. In contrast, the matching score for the OO implementation
included two counts associated with the generic OO overhead, plus four counts associated
with sharing a method with the implementation of E.1.1, discussed above, yielding a total
score of 6.

This can be seen as a trade-off for keeping two effects of the same datum
(isObservedMoving) on the same point of adaptability (yield relevance test) in a single
place. On one hand, the individual effects remain somewhat tangled at the source level,
but, on the other hand, they are more coherent at the method level. Which is “better” is a

6.3. PRECEDENCE ESTIMATOR 73

decision to be made by the designer, and can depend on how closely related the effects are,
how volatile they are expected to be, and will also include a degree of personal preference.
In this case, the effects were very closely related, and the personal preference was to avoid
the excessive levels of delegate specialization, so they were kept in the same method.

Otherwise, the only anomaly in Figure 6.6 is the slight increase in the diffusion of
concern C.3 for both the AO and OO implementations, which are caused by the addition of
several refactored methods each core class to make it easier (or simply possible) to introduce
supplemental effects. As with similar results for the Traffic Estimator, this does not indicate
a particular weakness of the proposed AO or OO approaches, but rather reflects a certain
sensitivity of the CDLOC metric to implementation details that are already accounted for
by the CDO results.

74 CHAPTER 6. RESULTS: CONCERN DIFFUSION

6.4 Merge Planner

Concern Diffusion Over Components

18I 1T T 71 T T T T T T T T T T T T
AO mmm
DE mm
16 | OO0 mmm
14 -
~212— :
[0}]
c
8
E10— .
o
(@]
© 8t J
o
Q0
§ 6| l
pd
4 | i
o L1 II AEer

Concern ID

Figure 6.7: Merge Planner: Concern Diffusion over Components. See Table C.3 for the full
listing of the illustrated concerns.

Figure 6.7 illustrates the CDC scores for the three implementations of the Merge Plan-
ner, with the most notable difference being the magnitude of the results, which convey
a scattering of the aggregate core, variability, and supplemental effect concerns over an
average of 5-6, but as many as 18, individual classes.

This is mostly due to intermediate types used in the core algorithm, which, beyond the
three discussed in Chapter 5, include several others that were not affected by supplemental
data. For the OO design, this creates a combinatoric explosion of extra classes that must
be defined to allow and perform intermediate type extensions, which, when combined with
the previously-discussed overhead of declaring delegate classes, yields the exceedingly large
values for the aggregated variability and supplemental effect concerns.

Otherwise, the results are consistent with, if somewhat more pronounced than, the
previous two components, with “expected” scattering of the core concern as a side effect of
delegation, and the AO approach being much more consistent about keeping a 1:1 mapping
from fine-grained supplemental effects to the components that implement them.

6.4. MERGE PLANNER 75

Concern Diffusion Over Operations

80 T T T T T T T T T T T T T T T T

AO

DE mm
70 + OO0 mm
60 - .
50 + e
40 r 4

30 -

Number of Operations

20 +

1: lHH IIII 1 JJ HHHH444+JJ‘JIJJ

Concern ID

Figure 6.8: Merge Planner: Concern Diffusion over Operations. See Table C.3 for the full
listing of the illustrated concerns.

The pattern of amplification in diffusion over components is repeated in CDO scores
for the three Merge Planners, shown in Figure 6.8, with the results approaching diffusion
over 80 operations for the many points of variation that must be exposed to allow the
introduction and management of all the intermediate data types in the OO design. The
analogous content for the AO design is all collected neatly into member data declarations
in the XPI, which are counted as a single “operation” that is no different from declaring
a collection of utility variables at the top of a method. Even if these declarations were
counted as individual operations, there would be only 15 of them, one for each member of
XPI_AOMergePlanner in Figure 5.18, which is still markedly less than 80.

Again the results are otherwise consistent with the previous components, where there
is an expected increase in core diffusion over operations as a result of refactoring to create
join-points, and the AO approach performs consistently better at keeping supplemental
effects in comparatively few operations. The single anomaly is E.0.0, which shows a slight
increase in diffusion for AO vs. the OO design. Upon closer inspection, this actually
reflects a limitation of the AspectC++ weaver’s support of the slice directive, which has
trouble dealing with the “implicit” constructors of simple types. The workaround was to
“fake” the initialization of the intermediate “isMoving” flags using advice applied to the

76 CHAPTER 6. RESULTS: CONCERN DIFFUSION

“configuration” join-point, which scattered the implementation of E.0.0 across 6 advice
directives instead of 3. The OO equivalent was able to declare the initializers in an “inline”
constructors, which limited the concern to fewer operations.

From one perspective, this might be seen as a “trivial” issue that should be ignored for
the AO implementation, pending resolution of this “bug” in the AspectC++ weaver. It is,
however, representative of the risks associated with adopting new technologies, so it is left
in place as an important issue to consider when selecting between these techniques.

Concern Diffusion Over Lines of Code

90 T T T T T T T T T T T T T T T T T
AO mmmm
DE mmmm
80 OO0 mmm
70 .
60 .
50 t+ .

Number of Concern Switches

|“| ‘||| 1l ||m.,mm,,

Concern ID

Figure 6.9: Merge Planner: Concern Diffusion over Lines of Code. See Table C.3 for the
full listing of the illustrated concerns.

Lastly, the CDLOC scores in Figure 6.9 further reinforces the theme of consistent, but
more pronounced, differences between the AO and OO designs, especially in the “vari-
ability” concerns, which are all co-located in the XPI for the AO design, but are instead
vigorously sprinkled throughout the OO version, yielding a score of well over 80 concern
switches over the whole artifact. This is a direct quantification of the critical difference
between the two approaches: that “calls out” must be introduced in-line for the OO de-
sign, where the “reaching in” for the AO technique can be specified in a separate, coherent
location.

6.5. SUMMARY 77

The similarity of these numbers to the CDO results is interesting in that it implies
that the OO design replaced, almost in a 1:1 fashion, single-line, direct usage of various
supplemental members with this “calling out” to delegate instances, in a way that the
change in “conceptual load” when reading through the source is almost a zero-sum game.
The “obliviousness” of the AO approach extracts this load from the core algorithm, making
it “easier” to understand by itself, at the expense that the developer must “know” that some
of the core algorithm may be subject to AO introduction. Whether this is truly “better”, or
even fundamentally “different” remains in open debate[52], but, at least in terms of being
able to organize the software by the influence of individual data, these results point toward
a more “natural” fit of AO techniques to the problem.

Still, as evidenced by the slight (~ 10%) reduction in diffusion of the aggregate core and
supplemental effect concerns, the OO approach manages to yield some measurable benefit
in terms of tangling concerns, which further underscores the validity of the overall primary
vs. supplemental methodology.

6.5 Summary

The critical goal of the analysis in this chapter is to determine the extent to which the
various concerns in each of the three behavioral modules in this case study are diffused over
components, operations and lines of code. The relative merits of each proposed OO and
AO approaches are compared to the original, direct encoding through detailed discussion
of trends and exceptions within each module, highlighting both similarities and critical
differences as compared to other modules.

As the central focus of this thesis is the extraction of supplemental effects from a set
of core algorithms, a natural question to ask at this point might be: “How much diffusion
does a typical supplemental effect compel in each design?” To answer this question, Figure
6.10 presents the average diffusion results for the coarse-grained “supplemental effects”
concerns® for each of the three candidate designs.

Average CDC per Supplemental Effect Average CDO per Supplemental Effect Average CDLOC per Supplemental Effect

Average Diffusion
S
Tr T rrrrr-r-r-r

| PO P PO TP P P P I |
Average Diffusion

Average Diffusion
O = N W A LN © O

AO DE 00 AO DE 00 AO DE 00
Candidate Design Technique Candidate Design Technique Candidate Design Technique

(a) Diffusion over Components (b) Diffusion over Operations (c) Diffusion over Lines of Code

Figure 6.10: Average Diffusion per Supplemental Effect.

3That is, the “E” columns from each preceding figure in this chapter, normalized by the total number
of supplemental effects enumerated in Chapter 5.

78 CHAPTER 6. RESULTS: CONCERN DIFFUSION

The results for Concern Diffusion over Components (Figure 6.10a) highlights two im-
portant points from this chapter. First, it shows that both the AO and OO technique
“diffuse” the supplemental effects over more components than the original, direct encoding
of the algorithms, which is an expected result of refactoring functionality from one class
into severs. However, the second important observation to make is that where the AO
technique allowed supplemental effects to be grouped into a small number of aspects?, the
OO technique instead required closer to two class definitions per supplemental effect. This
is primarily caused by the difficulty, especially in the Merge Planner, of introducing mem-
ber data into existing data classes using strictly OO techniques, where the AO inter-type
declaration mechanisms were a much more natural fit.

To a certain extent, this pattern is reflected in Figure 6.10b, but in this case both
versions show more significant increases in diffusion over operations. This was primarily due
to refactoring otherwise simple logic statements in the core algorithm into dedicated method
calls to allow interception by AO advice directives or redirection to OO delegates. While
the AO design still showed less diffusion than the OO design, the key insight to be drawn
from this is that, regardless of the specific technique for applying supplemental effects, the
overall methodology requires significant design consideration and incurs nontrivial overhead
in the detailed implementation.

The most compelling results are presented in Figure 6.10c, which shows that, at least at
the coarsest granularity, the AO design completely eliminated diffusion of the supplemental
effects in all three three behavioral modules in this case study. In contrast, the OO de-
sign only slightly decreases diffusion on average, and its large standard deviation indicates
somewhat erratic results, with some cases that improve diffusion, and others that may not.
Still, this is promising in that, even within the limitations of established languages and
techniques, the proposed primary vs. supplemental methodology can yield software that
is more coherently arranged around the influence of individual data. In turn, this limits
the amount of software that must be understood in order to correctly perform the types of
adaptation laid out in Chapter 2.

This enhancement to source-level understandability is certainly a benefit of the method-
ology proposed in this thesis, and, all else held equal, the AO and OO designs would be
clearly preferable to the original implementation. There are, however, other facets of this
problem, such as whether the additional diffusion over components and operations imposes
a larger cost to the development process than can be offset by the benefits of encapsulating
the supplemental effects in separate modules. In pursuit of an answer to this question of
relative costs and benefits, the next chapter presents an analysis technique that binds issues
of software design to economic theory in order to derive a “value” for each design in terms
of how well it can accommodate future adaptation.

10.6 components per effect means an average of 1.7 effects per component.

Chapter 7

Results: Net Option Value

This chapter complements the source-level “concern diffusion” results, which are promising
in terms of separation of core and supplemental concerns, with a more abstract analysis
of how well each design would accommodate adding, removing or substituting individual
functional modules, especially those pertaining to supplemental effects. Section 7.1 begins
with a thorough introduction to this “Net Option Value” analysis technique, which is based
on a highly parameterized model of the economic “value” provided by a given design. The
estimation of the parameters of this model is a critical and somewhat subjective process, so
Section 7.2 reviews precedents in the literature for deriving these parameters from measur-
able properties of a software artifact. Variations on these parameter estimation techniques
are explored in Section 7.3 before arriving at the final results for this chapter, which are
summarized in Section 7.4.

7.1 Introduction: The Net Option Value of a Modular
System

Net Option Value (NOV) is an analytical model introduced by Baldwin and Clark[5] that
attempts to measure the relative merits, or “values”, of alternate designs for a given system.
The value that a design provides is modeled in terms of so-called “real options”, which
is related to economic theories wherein an informed actor would invest resources “now”
in order to have the opportunity to evaluate and select the “best” among an unknown
set of options that will present themselves “in the future”. Baldwin and Clark tie this
idea to techmnological systems by recognizing that the act of subdividing a system into
separate modules (an investment “now”) creates a set of options for experimenting with
the implementation of each individual module, the “best” of which may be selected and
integrated into the final system “in the future”.

Clearly, some designs will support this process better than others, and Baldwin and
Clark’s model attempts to account for the salient differences that contribute to alternate
designs being better or worse than one another. They propose that the overall value of a
design is the summation of the value provided by each individual module in that design,
and that the value of an individual module can be modeled in terms of:

e The costs incurred to develop and test new candidate implementations of the module;

80 CHAPTER 7. RESULTS: NET OPTION VALUE

e The expected benefits that may be gained by selecting the best such candidate;
e The costs incurred to integrate the new version into the rest of the system.

The nuances of their formulations are critical to understanding the model, so they are
presented here in some detail. The benefits model is presented first, followed by the cost
models, before presenting the overall NOV model at the end of this section.

Benefits

To model the expected benefits, Baldwin and Clark assume that the benefit expected from
from a single (re)design experiment on a single module can be modeled by a normal dis-
tribution whose mean is the value of the “current” implementation, which is normalized to
zero, and whose variance is determined by two intrinsic properties of the module:

1. The complezity, n, of the module, which supposes that modules that fill larger, more
complex roles will generally have more “room for improvement”, and

2. The technical potential, o, of the module, which is tied to the idea that, independent
of complexity, two modules may contribute different amounts of end-user value within
a given design, such as user interface modules vs. hidden utility modules.

The Canonical Module

The benefit of generating multiple candidate replacements is modeled as the expected max-
imum value of the corresponding number of draws from the aforementioned normal dis-
tribution. Positive draws are treated normally, and negative draws are assigned a value
of zero, as there is always the option of keeping the “original” module if an experimental
version turns out worse. This is the most confusing aspect of the formulation, which is
often misinterpreted to mean that only the positive half of the distribution is considered.
This is mathematically distinct from considering the whole distribution, but assigning the
left half a value of zero for the purposes of computing an expected value. To address this
confusion, the derivation of this function, which is denoted Q(k), is presented in Equation
7.1. A closed-form solution to the integral(s) in this equation is not feasible, and a lookup
table, derived by numerical integration and reproduced in Table 7.1, is used instead.

1 o2
let N(z) = e” 2z (standard normal dist.)

\/ﬂ)
let Z(i) = p(N(z)<i)= /_ N(z)da

def Q(k) = FE{max(0,k draws from N(x))}

= / max{0,z} N (x)p(k-1 other samples < z)dz

_ /OOO :nN(m)Z(x)k_1<kﬁl>dx

= /OO N (z)Z(z) L kdz (7.1)
0

7.1. INTRODUCTION: THE NET OPTION VALUE OF A MODULAR SYSTEM 81

k 0 1 2 3 4) 6 7 8 9 10
Q(k) | 0.00 | 0.40 | 0.68 | 0.89 | 1.05 | 1.17 | 1.27 | 1.35 | 1.42 | 1.49 | 1.54

Table 7.1: Q(k): The expected maximum of k draws from a normal distribution, assuming
negative draws are assigned a value of zero.

One possible point of contention about this representation is that it assumes a pre-
existing module whose “value” can be treated as the mean or nominal value to be had from
any other version of that module. The rationale is that the realization of the system requires
at least one implementation of each module, so the costs associated with the generation and
integration of that initial version can be treated as fixed or otherwise sunk costs relative
to future adaptation. Yet, it is often the case, especially in more industrial settings, that a
firm would consider soliciting multiple versions of a given module without already having
this “baseline implementation” in hand. This slightly alters the derivation of Q(k), and it
is worthwhile to investigate how much the assumed existence of a baseline implementation
affects the benefits model. Holding the other modeling assumptions fixed, namely that:

1. There will be k independent design experiments,
2. Whose ultimate values will be still normally distributed,
3. Around some nominal value that can still be normalized to zero,

The new formulation of Q(k), denoted here as R(k), changes in subtle but important ways:

def R(k) = E{max(k draws from N(z))}

o0
= / xN(z)p(k-1 other samples < z)dx

—00

= /Oo N (2)Z(z) L kdz (7.2)

—00

The primary difference between R(k) and Q(k) is the extension of the lower bound of
the integral from zero to —oo. Intuitively, it is expected that R(k) will have lower initial
values, but will eventually “catch up” to Q(k), as the ultimate result of the maz operator
will be the same after the first non-negative sample. To illustrate this, Figure 7.1 plots
both Q(k) and R(k) for k € [0, 20].

As shown in Figure 7.1, R(k) does, in fact, catch up very quickly to Q(k), reaching a
very small margin at kK = 4, and being largely indistinguishable for k£ > 5. This is reassuring
in that the assumption of a baseline implementation does not bias the result as much as it
provides a “head start”, and that initial lead is consumed in comparatively few samples.
Moreover, most modules’ NOV curves typically peak at k& > 3, further diminishing the
potential difference between assuming a baseline of zero and no baseline at all.

From the perspective of the work at hand, there is expected to be a pre-existing im-
plementation of a given component that must, for one reason or another, be adapted to
accommodate certain platform-specific details. This adds credence to presumption of a
baseline implementation for these experiments, but the preceding discussion shows that the
formulation does not lose generality if these issues are to be considered at design time, and

82 CHAPTER 7. RESULTS: NET OPTION VALUE

1.8 | e
16 N .]
14 % *]
1.2 u "]

08 F -
0.6 | 1
04 Q(K): max(0,k trials) —+—]
0.2 | R(K): malx(k trials) 7
0 5 10 15 20
Number of Samples (k)
Figure 7.1: Expected maximum value of k draws from a normal distribution, assuming both
a minimum value of 0 (Q(k)) and no minimum value (R(k))

Expected Max Value
=
T
|

they may even be used to help inform the allocation of research and development funding
for a design that is “still on the drawing board”.

Not All Modules Created Equal

As with many other analyses based on the normal distribution, the standard deviation can
be applied after the fact, by simply scaling the outcome of the computation. That is:

Q(k)|(o = s) = s(Q(K)|(c = 1)) (7.3)

In the NOV model, the standard deviation represents how much a given module might
be improved to yield higher value, where higher standard deviations have higher such po-
tential. The complexity of an individual module, 7;, makes a square-root contribution to
the standard deviation of that module, and, as the total system complexity is typically
normalized to one, this nicely encodes the idea that, all else held equall, “more modules
is generally better”. Mathematically, consider the example of a two-module system with
nonzero complexities A, B that add to 1:

A+B=1{4,B}>0

0<{A,B}<1

VA> A VB> B

VA+VB>A+B

VA+VB>1 (7.4)

A

This is summarized in economic terms as “a portfolio of options is generally better
than an option on a portfolio”,[5] which is highly intuitive, economically sound?, and thus
universally accepted as part of the model. The complexity term is then multiplied by the

L«All else equal” implies that there are few inter-modular dependencies generated by the subdivision,
and all sub-modules have an equal potential to contribute to end-user value.

2The model even captures the idea of “diminishing returns”, where the costs associated with maintaining
a large portfolio of small options outweighs the benefits of a smaller portfolio of larger options. This is
accomplished by subtracting a linear cost function (see Equation 7.6) from the cost curve in Figure 7.1.

7.1. INTRODUCTION: THE NET OPTION VALUE OF A MODULAR SYSTEM 83

technical potential, o;, of the module, and the overall benefit of k experiments on a given
module ¢ is given as:

Bi(k) = o Q(k) (7.5)

The difficulty of selecting and justifying the parameters in this equation is recognized
as the single greatest challenge for applying the NOV model to a set of candidate designs[5,
34, 55]. Although concrete advice for doing so remains somewhat sparse, there are several
simplifying assumptions and other historical precedents that are commonly used to simplify
the problem, as reviewed in Section 7.2.

Costs

Along with the benefits, the NOV model also accounts for the various development and
testing costs associated with modular experimentation. The vast majority of such costs are
tied in [5] to the complexity of a module, where more complexity generally incurs more cost.
In the general case, the per-experiment cost for a given module ¢ is modeled as a module-
specific function of complexity, denoted C;j(n;). The cost model ignores any learning that
takes place across multiple experiments, so the cost to perform k& experiments is simply:

Ci(m)k (7.6)

The final element of the NOV calculation for a given module is called the “visibility
cost”, and it accounts for the effort of integrating that module into the surrounding system.
This cost is determined by a system’s Design Structure Matrix, which denotes dependencies
as X’s in a grid representation of the “design parameters”? (DP’s) of a system, as shown in
the example DSM in Figure 7.2.

DE Traffic Estimator

Estimate Lane Speed

Select Closest Bumper

Identify Vehicles On Forward Path
Determine Forward Path
Configuration and Initialization
Class Definition

Pose

Velocity

Size

Is Moving | 10

Is Observed Moving | 11

Is Predicted | 12

Lane Associations | 13

Core Alg.

ol [
el kel LIS
ol

OO0 DO W N |-

altallallislilEallsl bs

Params

Env.

X XX

Figure 7.2: DSM for original Traffic Estimator, listing various “design parameters” on the
left side, and showing notation for dependencies(X’s) and modular clusters(bold boxes).

3In the most abstract sense, a “design parameter” is something that must be addressed in order to
realize a system, which is closely related to the concept of a “concern” from Chapter 6. To avoid confusion
with the input parameters to the NOV model, “design parameters” will be referred to as “DP’s” hereafter.

84 CHAPTER 7. RESULTS: NET OPTION VALUE

For each module j that depends on, or “sees” module ¢, which implies an “X” in row ¢,
column j of the DSM, an integration cost proportional to the complexity of the dependant
module j is incurred. The coefficient is simply denoted c;, yielding the mathematical
representation of visibility cost:

Z = Z Cjnj (7.7)

J sees ¢

It is worth noting that the visibility cost described by Equation 7.7 is not a function
of the number of experiments (k), as were the previous two components of the NOV cal-
culation. Instead, it is a fixed function of the inter-module dependencies described in the
system DSM. This captures three important aspects of typical system development:

1. Many (k) individual design experiments may occur within an individual module before
it is integrated into the rest of the system (once);

2. The principal costs associated with integrating the “new” module into the rest of the
system are in updating and (re)validating its dependant modules;

3. These costs may be large enough to overcome the “benefit” derived from improving
the module in the first place, such as for “highly visible” modules.

Putting it All Together

The benefit and cost models are combined into a single model for the net value of k;
experiments on a given module as:

1

Vi(ki) = on? Q(ki) — Ci(mi)ki — Z; (7.8)

The Net Option Value for that module is then the maximization of V;(k;), or:
1
]\TOVz = Hkax {0@771-2@(]%) — C,(m)kz — ZZ‘} (79)
Finally, the Net Option Value for the whole system is taken to be the sum over all modules:

NOV = Z { max (Uz‘m‘%Q(ki) = Ci(ni)ki — Zz)} (7.10)

This is the most generic form of the NOV calculation, and it is meant to accommodate
arbitrary benefit and cost models that can be tailored to suit any system. The major
drawback to this generic form is that it requires the specification of three scalar parameters
(04, mi, and ¢;) and one cost function (Cj(n;)) for each module in each design of a given
system. This is widely recognized as the greatest challenge in applying NOV to novel
systems[5, 34, 55], and there are several common approaches, presented in the following
section, that are typically employed to simplify the problem.

7.2. PRECEDENTS FOR PARAMETER SELECTION 85

7.2 Precedents for Parameter Selection

Complexity

The first and most common simplification of the NOV parameter estimation problem is
to allocate complexity according to the number of DP’s that comprise each module. For
a design that consists of N such DP’s, a complexity of n = % is assigned to each DP,
which ensures that the overall system complexity is normalized to one as discussed above.
Modules are defined as a group of one or more of these DP’s, and for a module ¢ that

embodies M; DP’s, complexity is simply:

ni = W

This is often criticized as an overly-simplistic assumption, as no two DP’s are likely
to impose identical amounts of complexity in a “real” system. When analyzing existing
systems, results from analysis metrics such as source code size might be used to distribute
complexity more effectively, but such metrics are not available at design time for new
systems, obviating their usefulness in the general case. Moreover, the sensitivity of the
NOV calculation to variations in complexity distribution is not well understood, so the
simplified derivation of complexity in Equation 7.11 holds as the de facto standard.

For the behavioral components under investigation, it is not clear that allocating the
complexity purely by DP count will fully capture the differences between modules that
implement core algorithms and supplemental effects, so the sensitivity experiments pre-
sented in Section 7.3 include a comparison of NOV results using this simple computation
of complexity to results attained by allocating complexity according to the number of lines
of code per-module, leveraging the hand-labeled source code used to compute the “concern
diffusion” metrics discussed Chapter 6.

(7.11)

Costs

As with the complexity model, Baldwin and Clark make some simplifying assumptions
regarding experimental and visibility costs in their example analyses. First, they concede
that the cost of an experiment on a given module can theoretically be an arbitrary and
unique function of that module’s complexity, but they assume for their analysis that cost
is simply proportional to complexity, or:

Ci(m:) = cimi (7.12)

Moreover, they assume that the ratio of cost to complexity, ¢;, is simply 1, arguing that
variations in proportionality can be represented by alternate allocations of complexity. This
further simplifies the cost function to the identity function:

Ci(ni) = ni (7.13)

These, combined with the “break even” assumption, discussed below, are once again
highly simplistic, but Baldwin and Clark point out that these are still effective modeling
assumptions and that more complicated cost functions will not only require additional
justification, but they are also unlikely to impact the relative values of each module. That is,

86 CHAPTER 7. RESULTS: NET OPTION VALUE

NOV is already a relative valuation metric, so more complicated estimations of experimental
costs are not likely necessary. This rationale is largely accepted by the design community
and this simplified form of experimental cost is used in many other NOV analyses.

The scale factor from Equation 7.7, ¢;, is also typically omitted for similar reasons,
simplifying the visibility cost for module ¢ to:

Zi= Y (7.14)
J sees @

This is once again simplistic, but it also goes uncontested in the design community, as
it is consistent with preceding assumptions and eliminates an additional set of parameters
that must be derived and justified per-module. Collecting these assumptions into Equation
7.10 yields the simplified version of the NOV calculation that will be used to generate all
NOV results hereafter:

NOV = Z { max (Umi%Q(k‘i) — kin; — Z ‘Uj)} (7.15)
i j sees i
This simplified NOV formulation is now a function of only:
1. Module complexity, n;, whose typical derivations are described above,
2. The expected value of k experiments, Q(k),
3. The inter-module dependencies described in the DSM, and lastly

4. Technical potential, o;, whose derivation is discussed below.

Technical Potential

The final simplification proposed by Baldwin and Clark is the so-called “break-even” as-
sumption, which provides a baseline against which all candidate designs may be judged by
assuming that:

e A single experiment (k= 1)
e on an unmodularized system (n; = 1,71 = 0)
e breaks even (NOV =0)

When applied to Equation 7.15, these assumptions yield a specific value for the technical
potential of this theoretical monolithic design, which is used as the maximum technical
potential for any module in any alternate design.

1

ot Q) —1lm —Z1= 0
1
— o (19)(04)—1—0= 0
S o= 2.5 (7.16)

It is tempting, but inaccurate, to think that specifying o1 = 2.5 means that the unmod-
ularized design has the potential to be 2.5 times “better” than it “currently” is. The value

7.2. PRECEDENTS FOR PARAMETER SELECTION 87

of 2.5 merely scales the expected benefits model from Equation 7.5 so that the theoretical
base case of implementing the entire system as one giant module yields a mathematically-
convenient Net Option Value of zero. This way, any other design that yields zero NOV
can be thought of as being “no better than” simply clumping everything into one module,
and positive results indicate an improvement over this imaginary baseline. Moreover, this
rationale provides a certain reconciliation of the “units of value” in the benefit and cost
models, whose relationship to each other is otherwise unclear. The use of 2.5 as the maxi-
mum technical potential for any module in an alternate design is thus widely accepted by
the design community.

Opinions diverge, however, as to how to determine where the technical potential of
individual modules lies between 0 and 2.5. Baldwin and Clark’s examples are based on
historical data from IBM, so they represent a mixture of omniscient hindsight with a certain
amount of rational judgement, such as pointing out that a better-performing CPU has
“much greater” technical potential than an improved case material for a computer system.
While compelling in their own right, these do not provide a great deal of guidance as to
how to allocate technical potential for other systems.

One interesting solution comes from work on extending the standard DSM model to
account for external factors that are not under the control of the designer. These so-called
Environment Parameters[55] (EP’s) allow the specification and analysis of dependencies on
higher-level design decisions or end-user requirements. One example from their work points
out that the implementation of an alphabetization algorithm depends on the language
and corresponding character encoding used in the system, but that these parameters are
typically beyond the control of the designer.

The key insight is that many changes to a software system are driven by changes in such
external requirements, so the value provided by a design, at least in terms of adaptation
and maintenance, might be linked to how well it accommodates changes to its environment
parameters. These modify the NOV formulation by scaling the technical potential of each
module according to the fraction of EP’s that affect it:

No. EP’s that affect module i

;= 2.5
i Total number of EP’s

(7.17)

Even with this model in-hand, some amount of judgement was applied to further reduce
or eliminate the technical potential for modules that “obviously” had less or no potential,
which still leaves room for fuzzy subjectivity in the selection of this parameter. Relative
to the behavioral components under investigation, algorithmic dependencies on platform-
specific data could easily be modeled along these lines, as the data that a robot provides
is not generally under the direct control of component designers, and changes to that data
are expected to compel adaptation, as discussed in Chapter 2. In Figure 7.2 above, there
are seven such EP’s, listed at the bottom of the DSM and collected under the abbreviated
heading “Env. Parameters”. The X’s to the right of these EP’s capture how the individual
data in the Moving Obstacle representation influence the various stages of the original
Traffic Estimator’s algorithm, allowing the application of Equation 7.17 to estimate the
technical potential of each module in the design.

In more recent work on NOV modeling of aspect-oriented designs[35, 34], several varia-
tions on this estimate of technical potential were attempted in order to accommodate more
finely-grained design models. In particular, these models had many more EP’s than in

88 CHAPTER 7. RESULTS: NET OPTION VALUE

previous work, along with relatively sparse dependencies that led to artificially low values
for technical potential. They proposed an alternate form of Equation 7.17 that accounts
for these issues by introduce an explicit bias and scale factor for “end-user visibility”, p;:

No. EP’s that affect module i
Total No. of EP’s

o= (1+)X pi (7.18)

This equation was scaled to have a maximum value of 2.5, possibly via ensuring p; €
[0,1.25], to yield the first set of values they tested. Ultimately, however, they chose to use
a technical potential of 2.5 for most modules, setting the rest to zero based on their own
judgement, demonstrating that this maxed-out estimation of technical potential yielded
NOV results that had higher contrast while retaining consistent ordering between alternate
designs as compared with other, more complicated techniques.

All of these studies point out that additional sensitivity analysis is necessary, and that
alternate parameter estimation techniques may yield substantially different and/or more
compelling results. As such, several variations on the above estimation techniques are
evaluated in the following section in order to understand how they affect the NOV results,
including how well each technique differentiates the strengths and limitations of each design.

7.3 Experiments in Parameter Estimation

The primary inputs to the parameter estimation experiments are the DSM’s for each imple-
mentation of the urban driving components discussed in Chapter 5. These DSM’s, which
are presented in Appendix D for reference, were determined in advance of these parame-
ter experiments and remained fixed throughout the process. For the original components,
the DP’s represent significant stages of the core algorithm, and are analogous to the fine-
grained core “concerns” listed in Appendix C. The AO and OO versions extend these DP’s
to account for the exposure of points of variation and the separate encoding of individual
supplemental effects. The Moving Obstacle representation is broken out into 7 distinct
EP’s, one for each of the data listed in Figure 5.2, allowing the fine-grained dependencies
on those data to be represented and analyzed.

The Straightforward Approach

The assumptions from [55] were used as a starting point, with each DP treated as a sepa-
rate module. That is, complexity was evenly distributed across DP’s as in Equation 7.11,
experimental and visibility costs were assigned according to Equation 7.15, and technical
potential was determined entirely according to environment visibility as in Equation 7.17.
Figure 7.3 shows the NOV results under these assumptions, highlighting both the positive-
only summation, which is the “true” NOV calculation, and the summation of all values,
positive or negative, which is useful for understanding the overall effects of the different
parameter estimation techniques.

The first thing to be noticed in Figure 7.3 is that the original, directly encoded versions
of each component have significantly higher, or at least significantly less negative, value
than the corresponding AO and OO implementations, regardless of whether all modules
(green bars) or only positive modules (red bars) are counted. While it is certainly possible

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 89

[Positive-Only (True NOV) Sum of all Modules = |

Traffic Estimator ~ Precedence Estimator Merge Planner

0.5

of oo I_---_I [

¢>
)}
T
|

Net Option Value

'
—_
)}
T
|

2+ g8

DETE OOTE AOTE DEPE OOPE AOPE DEMP OOMP AOMP
Component and Implementation

Figure 7.3: NOV results using assumptions and parameter estimation from [55]. The colored
zeros along the X-axis help discriminate between designs that have zero NOV, such as OOTE
and AOTE, and those that have very small, but still nonzero results, such AOMP, whose
nearly-invisible bar represents a result of 0.01.

that these designs are, in fact, worse than the originals, this phenomenon is highly coun-
terintuitive, as the dependency structures for these designs does not seem to warrant such
poor performance.

Upon closer inspection, no AO or OO design has more than two modules that yield
positive results, and in most cases, there is not even an initial positive slope to the NOV
curve, as the benefits are completely overwhelmed by experimental costs. There are several
possible causes for this phenomenon, all of which are tied either to underestimation of
technical potential, or misallocation of complexity amongst the modules in the system.

Treating the DP’s as individual modules, while valid from a certain perspective, may
yield artificially small complexity values, possibly depressing the benefits model for some
modules and boosting the experimental costs for others. This might be mitigated by a
combination of aggregating the DP’s along class or aspect boundaries, and/or allocating
complexity according to a more concrete metric, such as source code size, both of which are
explored below.

It is also worth noting that there are seven EP’s in this study, where there were only three
in the original work[55]. The environment dependencies in this study are also significantly
less dense, which leads to diminished technical potentials, on the order of 0.4 — 0.8, for the
majority of modules, instead of 1.5 — 2.5 from previous work. Such small values of technical
potential are likely the primary cause of the strongly negative overall results (green bars) in
Figure 7.3. This effect may be mitigated by using an alternate model of technical potential,
such as a variation of Equation 7.18, or weighting the EP’s by volatility, as was suggested

90 CHAPTER 7. RESULTS: NET OPTION VALUE

but not pursued in [55].

To a certain extent, previous work has explored coarse differences between some param-
eter estimation techniques[34, 35], but fine-grained sensitivity analysis seems to be absent
from the literature. To help fill this void, and to aid in justifying the results for this particu-
lar study, the following section explores each of the variations discussed above and analyzes
their impact on the NOV results before arriving at a final parameter estimation policy for
this work.

Alternate Parameter Estimation Techniques

The four proposed variations on parameter selection yield sixteen possible combinations to
examine in order to fully understand their combined effects on the NOV results. Rather than
explore this space entirely, each variation will be applied incrementally, and the sensitivity
of the NOV results at each stage will be taken as a fair proxy of the individual effects on
the NOV formulation. Using the NOV results in Figure 7.3 as a starting point, alternate
parameter estimation techniques will be applied in the the following order:

—_

. Aggregating DP’s into modules at class and aspect boundaries,

2. Introducing a minimum technical potential that is complemented by EP dependencies,

w

. Weighting EP’s according to expected volatility, and
4. Allocating complexity by source code size instead of by DP count.

Justifications for each variation are discussed along with the ramifications of its appli-
cation, both in terms of the impact on the NOV results, and in terms of the specific design
issues that are highlighted in the process. The policy for applying each variation will be
selected before proceeding to the next, and that policy will hold through the final results
presented in Section 7.4.

Aggregation

As mentioned above, one of the key differences between this and earlier work is the rela-
tively fine granularity of DP’s and their dependencies, which, with each DP treated as a
separate module, could adversely affect the estimation of experimental and visibility costs.
Aggregating the DP’s along class or aspect boundaries, denoted by bold boxes in the DSM’s
in Appendix D, may help address this problem, the results of which are illustrated in Figure
74.

The results from Figure 7.3 are represented by the same colors (red and green) in Figure
7.4, and the blue and violet bars indicate the corresponding effects of aggregation, which
differ from the previous results in three significant ways. First, the NOV results for the
DE implementations under aggregation are all zero, as illustrated by the lack of blue and
violet bars in the DE columns. This is an expected result of the “break-even” assumption
discussed above, as the DE implementations are all concentrated in single classes. While
this may not give fair treatment to the original versions, it will be accepted for now and
revisited at the end of this section.

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 91

Individual Pos-Only Aggregated Pos-Only
Individual Total =201 Aggregated Total EE—
Traffic Estimator Precedence Estimator Merge Planner

'
—
I

1
[\
I

1
W
I

DT

Net Option Value

A
T
I

I
W
I
|

!
(o)}

DETE OOTE AOTE DEPE OOPE AOPE DEMP OOMP AOMP
Component and Implementation

Figure 7.4: Effects of Aggregation on NOV Calculations

Second, for the absolute totals (violet bars), the ordering between the two proposed
techniques is preserved (i.e. AO > OO), but the contrast between them is significantly
increased. This is largely due to the clumping of the core algorithms into larger modules
with correspondingly higher complexity. For the OO versions, this imposes higher visibility
costs on the delegate interface classes, where the AO versions are not subjected to the
same penalty. This is consistent with the “obliviousness” property of aspects, discussed in
Chapter 3, which supports the aggregation of DP’s into larger modules for this study.

Lastly, the complete lack of positive results for the aggregated variants (i.e. no violet
bars at all) indicates that the act of aggregation eliminated the few positive values that
contributed to the AO and OO implementations in Figure 7.3. As discussed above, these
results were already counterintuitive and are more likely due to an underestimation of
technical potential than a misallocation of complexity, so aggregation will be retained for
further analysis.

Base Technical Potential

As discussed above, Equation 7.17 likely underestimates technical potential for individual
modules as a function of the sparse EP dependencies in this study. This was the experience
in [34] that compelled the introduction of Equation 7.18, which essentially adds 1.0 to the
technical potential for all modules. While this may seem arbitrary at first glance, it is con-
sistent with the idea that the EP’s included in a given DSM may not be a complete picture
of the external factors that influence a software system. For example, the EP’s in this case
study are limited to the current Moving Obstacle representation, but many other external
factors, such as variations in the competition rules or deployment environment, would also

92 CHAPTER 7. RESULTS: NET OPTION VALUE

affect these software components. It is also possible that EP’s alone, even if enumerated in
their entirety, cannot account for all sources of value for a module, and the extent of their
impact is too extreme as described by Equation 7.17. To explore this possibility, a baseline
technical potential, o9 will be assigned to all modules, and the complement (up to 2.5) will
be filled in by EP dependencies according to:

(7.19)

No. EP’s that affect module i)

- 2.5 — (
oi =00+ (o) Total No. of EP’s

Note that for og = 1.25, the implication is that the EP’s account for roughly half
of the technical potential of a given module, with the remainder tied to unrepresented
EP’s or simply intrinsic to the module’s role in the system. This makes a certain amount
of intuitive sense and may be more easily justified as a modeling assumption than a more
arbitrary division such as 60/40 or 83/17. However, without an understanding of the effects
of different such proportions on the overall NOV results, little can be claimed beyond this
intuitive appeal.

The space between the extremes of purely EP-based estimation and simply setting
everything to 2.5 can be investigated by varying o¢ € [0,2.5]. The effects of doing so for
the Traffic Estimator designs are shown in Figure 7.5.

All Modules
i:’) 1% C T T T T 3
§ 1 F =
= 5 -
) 0 0 T g]
=3 % DE —+— 3
o 00 E
— AOQ ——]
> 25 ' L ! ! :
0 0.5 1 1.5 2 25
Base Technical Potential (0,)
. Positive Only
= 25 T T T T i
s 2 ;
E 1.5
I 1
C o5
] L ! |
0 T } 1 1
Z 0 0.5 1 1.5 2 25

Base Technical Potential (0,)

Figure 7.5: Effects of varying op on Traffic Estimator NOV Calculations

The flat red line for the DE version verifies that Equation 7.19 does not violate the
“break-even” assumption for any reasonable value of oyg. The most interesting trend is
that the OO experiences more substantial gains in NOV, overtaking the AO design near
oo = 1.75 and finishing with a margin of 0.25 at o9 = 2.5. This is partially caused by a

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 93

phenomenon known to the Aspect-Oriented community as “dependency inversion”[41]. In
the OO design, the core algorithm is invisible to the rest of the system, so any contribution
it might make to the NOV results is unhindered by visibility costs. In the AO design,
however, the core algorithm is highly visible to the associated crosscutting interface, which
offsets its ability to contribute positive value.

This is a valid phenomenon to expose in the overall results, and it starts to contribute
positive option value for the OO design near gg = 1.0 and ultimately contributes 0.26 to
the NOV results for the OO design at oy = 2.5. The rest of the gains over the AO design
are due to the fact that the supplemental effects are implemented across five classes in the
OO design, one for each effect, where the AO version concentrates them in four aspects, one
for each datum. As og approaches 2.5, the “more modules is better” phenomenon begins to
dominate, ultimately yielding a disparity on the order of 0.5 in favor of the OO design. This
accounts for almost the entire margin gained over the AO design for oy > 1.5 and suggests
values of ¢ larger than 1.5 may obscure important design features in this case study.

When combined with the minimum value that demonstrates the “dependency inver-
sion” phenomenon, this implies a fairly narrow range of viable values for the base technical
potential, centered on ogp = 1.25. As mentioned above, this value has a certain intuitive
appeal, but it would be worthwhile to look at the relative effects on the other two compo-
nents before adopting a specific value. Given the monotonic trends in Figure 7.5, it will be
sufficient to evaluate the results for og € 0,1.25, 2.5 to determine whether the way that OO
overtakes AO for the Traffic Estimator is an exception or a rule.

[0q = 0 o 0,=125 =3 0p= 2.5 m |

25 Traffic Estimator ~ Precedence Estimator Merge Planner

ER Y [R [[
st B B R A
0 000 ol o/W o000 of[B o 000 o/ M

DETE OOTE AOTE DEPE OOPE AOPE DEMP OOMP AOMP
Component and Implementation

Net Option Value

o

Figure 7.6: Effects of varying g9 on NOV results for all behavioral components, using
aggregation.

The results of varying og for all three components are illustrated in Figure 7.6. As
to consistency with previous results, all DE implementations have zero NOV, once again

94 CHAPTER 7. RESULTS: NET OPTION VALUE

demonstrating maintenance of the “break-even” assumption. There are no positive NOV
contributors for any component for oy = 0, which reflects the results in Figure 7.4. Lastly,
NOV monotonically increases in all cases for larger values of oy, which is consistent with
the monotonic trends in Figure 7.5.

Curiously, as g goes from 1.25 to 2.5, neither the Precedence Estimator, nor the Merge
Planner exhibits the same relative gains in the OO design as in the Traffic Estimator. Close
inspection of the results for these components shows that both the “dependency inversion”
and “more modules is better” phenomena are present in these two components, which begs
explanation of their apparent absence in the overall results.

The nil net effect on the NOV results for the Merge Planner and Precedence Estimator
is primarily accounted for by the XPI’s in the AO designs for these components, which
contribute counterintuitively large option values for oy = 2.5. These effectively balance
the dubious gains in the OO designs, but offsetting one set of questionable results with
another is not a valid approach. Instead, a value of oy = 1.25, which exposes interesting
differences in the designs without exhibiting undesirable side-effects, will be adopted for
further analysis.

Weighting Environment Parameters by Volatility

To this point, the estimation of technical potential has treated all EP’s equally, which is
consistent with previous work in NOV analysis, but is somewhat inconsistent with their use
in this case study. As suggested in Chapter 2, some data on a robot will be more likely
to trigger adaptation than others, and, intuitively speaking, dependency on more volatile
data should yield higher technical potential for a given module. This can be represented
by extending Equation 7.19 to weigh each EP differently, denoted by 7., and normalizing
by the total weight, Viotal, to maintain the “break-even” assumption:

o, =00+ (2.5 — ao)(Z e) (7.20)

VYtotal

7 sees e

In practice, 7. can be unique per EP, which introduces several additional parameters to
be estimated in the NOV formulation. However, these parameters represent an expectation
of future change, or volatility, that can be more easily tied to external information than
the other parameters to the NOV calculation. In the automotive industry, for example,
the variations between different vehicle models may be known or even specified in advance,
which would allow very concrete estimations of EP volatility. In this particular case study,
the EP weights could be tied to known robot-specific details, such as the usage of particular
sensors or traffic modeling techniques. Such advanced methods for estimating data volatil-
ity, and how they might feed back into the classification of primary vs. supplemental data,
are under ongoing investigation.

For the purposes of this sensitivity analysis, a simple binary classification will be pre-
sumed: volatile and non-volatile data, which will be mapped to supplemental and primary
data, respectively. Each type of data will be assigned a single weight, denoted v,,; and Ysupp,
and the overall weight will be normalized to one to preserve the “break-even” assumption
from Section 7.2. Assuming that neither weight will be reduced to zero, the independent
variable is the ratio of the two, which will be denoted o = Ysypp/Vpri- Larger values of «
will thus weigh supplemental data more heavily, thus assigning more “volatility” to modules

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 95

All Modules
E0.%__...,...,...,...,...,...,...,..._
S 02 f E
o 04 -
o -06F -
=S 08 | -
o 1F DE —]
O a2F 00 3
o -l4r , . _AO —x— H
Z -16 PR — — — — T N A R T T '

0 1 2 3 4 5 6 7 8
Supplemental to Primary Weight Ratio (o)

Positive Only
g VT T T
= 06 3
> 05 _—W 3
g o04Ff .
2 03]
8 02 88]
5 01 2 | | | | | | A0 | g
Z O 11 11 1 1 1 11 11 11 11 11

0 1 2 3 4 5 6 7 8

Supplemental to Primarv Weight Ratio (o)

Figure 7.7: Effects of varying o on Traffic Estimator NOV results, using aggregation and
oo = 1.25.

that depend on those data. in Equation 7.20, and the effects of varying this ratio on the
NOV results for the Traffic Estimator designs are shown in Figure 7.7.

Once again, the results for the DE implementation are all zero, demonstrating preserva-
tion of the break-even assumption across all values of o € [0.25,8.0]. The ordering between
the AO and OO designs is also preserved across the same span, so the net effect may simply
be an adjustment of the contrast between AO and OO implementations.

In both the AO or OO designs, the modules that depend on supplemental data experi-
ence an intuitive increase in NOV, and the core algorithms, which depend only on primary
data, experience a corresponding decrease. The overall effects almost cancel each other out,
as indicated by the nearly horizontal results in Figure 7.7(top).

For the “true” NOV summation in Figure 7.7(bottom), the contrast between the AO and
OO designs is significantly enhanced up to and including o = 2.0, but largely parallel growth
thereafter indicates that values beyond this will not significantly impact the final results.
As such, Figure 7.8 evaluates the NOV results for all three components for o € {1.0,2.0}.

The effects on the other two components, shown in Figure 7.8, are largely consistent with
those for the Traffic Estimator, namely that the AO designs experience a substantial boost
in NOV for a = 2.0, where the OO designs do not. The most notable demonstration of this
is the Precedence Estimator, whose OO design significantly lost option value in this context.
For a = 1.0, the core algorithm of the Precedence Estimator contributed a small amount of
positive option value, per the “dependency inversion” phenomenon discussed above. This
contribution was significantly reduced for e = 2.0, and the corresponding gains in the two
supplemental effect classes, which are depressed by visibility to the delegate interfaces, were

96 CHAPTER 7. RESULTS: NET OPTION VALUE

[a=10 =2 a=2.0 |

0.6 Traffic Estimator Precedence Estimator ~ Merge Planner

oS

03 B

Net Option Value

02 A

011 -

OOTE AOTE OOPE AOPE OOMP AOMP
Component and Implementation

Figure 7.8: Effects of varying Supplemental to Primary Weight Ratio on NOV results for
OO and AO implementations of all behavioral components.

not enough to compensate. To a certain extent, this represents an enhancement of the NOV
formulation’s ability to model the value of the “obliviousness” property of aspects, which
is the flip-side of “dependency inversion” and encourages the use of o = 2.0 in further
analyses. Moreover, a ratio near 2:1 is intuitively appealing in that supplemental data can
be seen as at least twice as likely to trigger adaptation as primary data in this context.

Still, the visibility costs in the OO design warrant closer inspection, as the delegate
interfaces that impose those costs are, in reality, quite small and concise. In the above case of
the Precedence Estimator, these modules were assigned 22% of the total system complexity
when, in fact, they accounted for less than 9% of the source code for the OO implementation.
The following section explores the significance of this disparity by incorporating source code
size into to the determination of module complexity.

Weighting Complexity by Lines of Code

The final variation explored in this chapter is an alternate allocation of complexity according
to the source code size instead of simply by DP count as in Equation 7.11. As discussed
above, the DP’s were selected to represent either single classes or a small collections of
methods, so it was straightforward to count the lines of code that contributed to each. A
weighted sum will be used to explore the sensitivity of the results, with the weight given to
the LOC measurement denoted [in:

i = 5(Légi;l) +(1-0) (%) (7.21)

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 97

M; and N are the count of DP’s in module ¢ and in the whole design, respectively, from
Equation 7.11. The results of varying § from 0 to 1 for the Traffic Estimator designs are
presented in Figure 7.9.

All Modules

Q
k= 77T]
< S
S 05¢ 5
= 0%]
S 05 .
2. 1L DE —]
o r 00 1
e LOF AQ —%—]
2) [R R R P

0 0.2 0.4 0.6 0.8 1

LOC Weight in Complexity Calculation ([3)

" Positive Only
2 0.6 T v T T T Ty *—u—x_.__
S 05F =
> .]
= 0.4 C T
g 03} bE .
o o 3
g 02¢ 00]
s OlrF AO —x%—]
2 0 AT R ST R A I

0 0.2 0.4 0.6 0.8 1

LOC Weight in Complexity Calculation ([3)

Figure 7.9: Effects increasing the weight, 3, given to LOC in the complexity model for
Traffic Estimator NOV Calculations, using aggregation, og = 1.25, and a = 2.0.

The overall effect of introducing the LOC measure is to concentrate the estimated
complexity into the core algorithm, which represents 71% of the source in the OO design
and 84% for the AO design. As shown in Figure 7.9(top), this causes a significant increase
in overall NOV for the AO design, but has a slight negative impact on the OO design. This
is an enhancement of the “obliviousness” effect discussed above, where the OO delegate
interfaces are visible to the core algorithm, whose increased complexity imposes a higher
visibility cost, depressing the overall NOV results.

Curiously, this effect is absent in the “true” NOV calculation, which indicates that the
“losses” in the OO design were primarily in modules that already had little or no value.
Instead, the results for both the AO and OO designs are somewhat increased by the LOC
allocation of complexity, with the OO design experiencing much higher gains and narrowing
the gap to the AO design by roughly 75%. This is also caused by the concentration of
complexity in the core algorithm, but where it increases the visibility costs imposed on the
delegate interfaces discussed above, it also reduces the visibility costs that these interfaces
impose on their client modules, which encode the supplemental effects. In a sense, this
restores a certain amount of equability to the NOV model’s treatment of “obliviousness”,
in that the costs associated with “non-obliviousness” are reduced to more reasonable levels.
This alone encourages at least a partial contribution of LOC to the overall complexity
metric.

98 CHAPTER 7. RESULTS: NET OPTION VALUE

The last, and perhaps most noteworthy, effect of LOC-based complexity estimation
is that the NOV results for the AO design are, if only subtly, non-monotonic in Figure
7.9(bottom). That is, they reach a local maximum near § = 0.8 and fall slightly again
as # — 1.0. Closer inspection shows this to be a sensitivity of the first two elements of
the NOV formulation to very small values of complexity. In this case, the slight shift in
complexity as § — 1.0 caused the NOV curves for the AO “supplemental effect” modules
to crest for larger values of k£ but also at a slightly lower option value than for § = 0.8.

This effect, which can be thought of as a trivialization of the contribution of these
modules, is also present in the OO design, but it is countered by the reductions in visibility
cost discussed above. While this suggests that using LOC as the absolute measure of
complexity will yield inaccurate results, there are still interesting issues that may be had by
partial application, such as for § = 0.5. To evaluate the effects on the other components,
Figure 7.10 plots the NOV results for all three components for 3 € 0.0,0.5,1.0.

[B=00 e (=05 E=a (=10

0.6 Traffic Estimator Precedence Estimator ~ Merge Planner

Net Option Value

OOTE AOTE OOPE AOPE OOMP AOMP
Component and Implementation

Figure 7.10: Effects of using lines-of-code (LOC) to allocate complexity for all behavioral
components, using aggregation, g = 1.25, and a = 2.0.

For all three components in Figure 7.10, the NOV of the OO design improves somewhat
relative to the AO design for § = 0.5, and much more drastically for § = 1.0, which is largely
consistent with the detailed discussion of the Traffic Estimator’s results. The exception to
this is the substantial reduction in NOV for the AO design of the Merge Planner, both for
B8 = 0.5 and g = 1.0. This is an exacerbation of the “trivializing” effect discussed above,
induced by the sheer magnitude of the Merge Planner’s core algorithm, which accounts
for 94% of the source code in the AO implementation. Even in the OO design, this effect
overtakes the reduction in visibility cost as 3 — 1.0, as indicated by the slight drop in the
“OOMP?” results in Figure 7.10.

This issue might be resolved by selecting alternate values for 3, but it seems more likely

7.3. EXPERIMENTS IN PARAMETER ESTIMATION 99

that the use of LOC as a complexity measure may controvert one of the original simplifying
assumptions in Section 7.2, where the arbitrary cost function Cj(;) is replaced with simple
proportionality. In this case, setting § = 1 in Equation 7.21 amounts to assuming that
costs are directly proportional?* to code size.

For the purposes of this analysis, the issues discussed above will be alleviated by adopting
a value of 8 = 0.5, effectively taking the average of the DP- and LOC-based complexity
estimates. As a possible path of future research, it would be worth investigating the relative
impact of other, more industrial-strength measurements of complexity, either to be used
directly in the NOV formulation, or else to help identify the appropriate granularity of DP’s
that will allow the simplifying assumptions from Section 7.2 to more accurately model the
expected costs of experimentation and integration.

Final Results

At this point, it is informative to collect all of the enhancements and compare the final
results to the initial results, as illustrated in Figure 7.11:

| Original I Final (Ind) 2 Final (Agg) N |
25 Traffic Estimator ~ Precedence Estimator Merge Planner
2 1
) -
= : : s :
=] ; :]
g : : 3 ;
> 15 F | | | L]
g | Mo | |
.© | | | b
N H | | 1
o) | N BB
©) 1+ : s : -
+= b : : :
o) | | | s
Z | .
oSt m Im L
0 0.0 0 I

DETE OOTE AOTE DEPE OOPE AOPE DEMP OOMP AOMP
Component and Implementation

Figure 7.11: Comparison of initial NOV results (red) to final results, both under aggregation
(blue) and with each DP treated an individual module (green), otherwise using o9 = 1.25,
a = 2.0, and g =0.5.

It is worth noting that the final results (blue bars) are all on the same order of magnitude
as the original results (red bars), with values ranging roughly between 0.0 and 0.5. This
indicates that the alternate parameter estimation techniques do not arbitrarily inflate the

4While the correctness of “direct proportionality” is certainly debatable, source code size, in being one
of the few directly measurable properties of a software component, is a widely used and accepted proxy for
development costs.

100 CHAPTER 7. RESULTS: NET OPTION VALUE

NOV results, lending credence to their being more accurate models of the costs, benefits,
and overall value of these designs.

Second, wherever there was an ordering between the AO and OO designs to begin with,
that ordering is preserved, with the contrast somewhat enhanced in the final results. This
is true both when the AO design exceeds the OO design, as in the Precedence Estimator,
and vice-versa, as in the Merge Planner, indicating that the parameter estimates do not
unfairly favor one of those approaches over another.

However, the same cannot be said as easily for the DE implementations, as the combined
effects of the new parameter estimates are all hidden behind the “break even” assumption
from Section 7.2. This holds the NOV for the DE versions at zero for all experiments
after the introduction of aggregation at the beginning of this section. The green bars in
Figure 7.11 help clarify this matter by removing aggregation, but retaining the other three
enhancements discussed above.

These results are both highly internally consistent, in that all implementations experi-
ence a significant boost in NOV, and also consistent with the results that include aggrega-
tion, as the NOV ordering between designs remains fixed whether the DP’s are aggregated
into larger modules or not. Both the AO and OO designs yield higher NOV than the origi-
nal implementation, and the better of the AO and OO designs is retained as before, if only
by a narrow margin. This consistency across granularity is reassuring of the validity of the
final results, and suggests another interesting path of research into parameter estimation
techniques that preserve, or at least predictably affect, NOV results across many levels of
granularity.

7.4 Discussion

The simplified NOV formulation used in previous work yielded results that suggested that
the proposed methodology of separating supplemental effects from core algorithms was not
particularly valuable. However, close analysis of the validity of the underlying assumptions,
and consequent application of alternate parameter estimation techniques yielded results
that instead favor the proposed AO and OO approaches over the original, monolithic im-
plementation.

In order to avoid the perception that the parameters have simply been manipulated
to yield the desired results, each incremental variation in parameter estimation was tied
to previous work, or at least previous suggestions, in the NOV literature. Where possible,
these variations were framed as weighted averages against the original parameter estimation
techniques, the corresponding sensitivity of the NOV results was analyzed, and the under-
lying causes were discussed as part of justifying their application to the final formulation.
This sensitivity analysis is, to the authors’ knowledge, a novel contribution to the field,
providing useful insights into the nature and behavior of the NOV model and suggesting
several possible paths of future research. These include further variations on parameter es-
timation techniques , such as incorporating a more accurate models of volatility or end-user
value, and also a better understanding of the impact of granularity on the overall NOV
results.

As to the original design problem of separating robotic algorithms according to de-
pendencies on primary vs. supplemental data, the final results from Figure 7.11, backed

7.4. DISCUSSION 101

by the preceding sensitivity analysis and discussion, indicate that the overall methodol-
ogy can provide significant value in the context of robotic software. Whether AO or OO
techniques are specifically better-suited to this task is somewhat less clear, but it seems
both likely and intuitive that some platform-specific enhancements will lend themselves
more naturally to one implementation technique or another. Ultimately, both techniques
add substantial value to the design of these components, encouraging future designers to
explore the modular treatment of primary and supplemental effects according to the most
effective implementation strategy for their system.

As partial validation of these results, the next chapter discusses the extension of the
refactored urban driving artifacts to accommodate additional data. This data, drawn from
work on vehicle-to-vehicle (V2V) communications standards, can have significant effects on
almost any autonomous driving algorithm, and the implications for the components in this
case study yield interesting insights into the value of the proposed primary vs. supplemental
methodology.

Chapter 8

Extension to Novel Input Data

The work detailed to this point focuses on identifying, refactoring, and analyzing existing
supplemental effects in autonomous driving software. The results of this work indicate that
those existing effects are well encapsulated by the AO and OO design techniques, and that
the corresponding artifacts are more adaptable than the original, direct encoding relative
to alteration or absence of individual supplemental data.

The remaining problem, of a design’s ability to accommodate additional data through
modular augmentation, is the focus of this chapter, beginning in Section 8.1 with the
identification of a problem domain that can yield data and candidate effects well beyond
the scope of the existing contents of the MovingObstacle representation. Section 8.2 then
draws several examples from this domain and suggests several compelling effects that may
be applied to the autonomous driving components discussed in Chapter 5. These effects are
elaborated upon to yield detailed functional requirements, which are discussed along with
the associated adaptations they would compel for each design of each component in Section
8.3. The critical results of this chapter are summarized in Section 8.4 before proceeding to
the complementary case study in Chapter 9.

8.1 Introduction: Novel Supplements for Autonomous
Driving

As discussed in Chapter 2, there are many and various reasons why additional data may
be made available, such as adding new sensors to an existing platform, incorporating new
perception algorithms on an otherwise unchanged platform, or simply porting software
components to a completely different platform. It follows that, as opposed to contriving
possible additional data out of “thin air”, it would be more compelling to identify a specific
change in the surrounding system, and derive candidate additional data and supplemental
effects from the consequences of that change.

One particularly interesting possibility arises from a common criticism of the Urban
Challenge software system: that the sensing and computing resources that were used on
Boss are too costly to consider for inclusion in consumer automobiles. That is, the cost
constraints of consumer automobiles restrict both the suite of sensors that may be used, and
the computing resources available to process the resulting data, to the point that the purely
sensor-based techniques employed for the Urban Challenge are not feasible in a production

104 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

setting.

As a complement to these limited sensing and computing resources, the automotive
industry has proposed the use of explicit communications, both from vehicle to vehicle
(V2V) and between vehicles and the surrounding infrastructure! (V2I/12V). Such commu-
nications were expressly forbidden by the Urban Challenge rules, so the incorporation of
such V2V information is both a logical and compelling change that may occur as part of
ongoing research with Boss, or in the transition of algorithms deployed on Boss into a more
production-relevant setting.

Most importantly, the Society for Automotive Engineers (SAE), in conjunction with the
National Highway Traffic Safety Administration (NHTSA), are working on a nationwide
standard, analogous to JAUS[27] for military robots, for the content and semantics of
V2V and 12V messages. This standard, the “Dedicated Short Range Communications
(DSRC) Message Set Dictionary”[15], is a testament to the insight and experience of its
contributors, as it covers a very wide variety of vehicle capabilities and traffic situations to
an exquisite level of detail. Message specifications include vehicle status messages, warnings
for impending collisions, notifications of approaching emergency vehicles, identification of
work zones, and many other traffic-related information that could influence any number of
autonomous driving algorithms. These messages are organized into:

e Messages (or message sets), which are the top-level elements that are actually trans-
mitted between vehicles and/or the surrounding infrastructure. These are analogous
to message classes, such as the MovingObstacle representation, in the Tartan Racing
system.

e Data Frames, which are smaller groups of closely-related data. These are analogous
to compound types, such as poses, waypoints, etc., in previous discussion.

e Data Elements, which are semantically-bound primitive types, such as integers and
enumerated types that represent lengths, speeds, status bits, etc.

There is a partial compositional ordering between these three elements, in that Data
Frames are comprised of Data Elements, and Messages can contain both Data Frames
and Data Elements. This is consistent with message compositions in the Tartan Rac-
ing system, so it would be reasonable to model hypothetical V2V introductions as addi-
tional member data in various messages used in the existing system. In particular, the
MSG_BasicSafetyMessage definition, which must be transmitted in some form by all V2V-
capable vehicles, includes many data that are already present in the MovingObstacle rep-
resentation, such as position and velocity of the transmitting vehicle, that could be used
to augment (or supplant) existing sensing and modeling techniques currently employed on
Boss.

The qualification “in some form” alludes to the fact that there is some basic form of
the safety message that must be supported by all vehicles, but there are also many so-
called “optional” data that may be appended to this basic message to convey additional
information, such as acceleration, turn signal state, or even driver identification, as desired.

LA common example of 12V communications would be a traffic signal reporting its state to nearby
vehicles, relieving those vehicles of the need to identify the traffic signal state using machine vision or other
techniques.

8.2. MOVING OBSTACLES FROM V2V DATA 105

These “optional” data provide a very rich set of candidates for supplemental treatment,
as their availability may actually vary from one vehicle to the next, or even one message
to the next, as an exacerbated form of the “run-time” adaptations discussed in Chapter 2.
Several such examples of “optional” data, along with the “required” data in the basic safety
message, are discussed in the next section, focusing on how they may be incorporated into
the MovingObstacle representation, along with a high-level discussion of the autonomous
behaviors they could enable. This is followed by a more detailed presentation and analysis
of several candidate supplemental effects in Section 8.3.

8.2 Moving Obstacles from V2V Data

The Basic Safety Message

The Basic Safety Message (BSM) is expected to be transmitted? by all V2V-capable vehicles,
so it is reasonable to expect the contents of this message to be readily available for a subset
of the surrounding traffic. Although this and other messages are specified in [15] at the level
of individual byte arrays and bit fields, for the purposes of this discussion, an analogous
UML representation, shown in Figure 8.1, will be used instead.

BasicSafetyMessage OPTIONAL data may or
BSMBlob is always +msgID: byte may not be included.
included, provides f-==""7 +blobl: BSMBlob 77T Depends on capabilities,
location, size, +eventStatus: EventStatus (OPTIONAL) "desired" verbosity
speed, and heading +vehicleStatus: VehicleStatus (OPTTIONAL and available bandwidth
1 0..1 0..1
BSMBIob <<bit field>> VehicleStatus
EventStatus
+msgCount: byte +lights: ExteriorLights (OPTIONAL)
+id: int +hoodOpen: bool +wipers: WiperStatus (OPTIONAL)
+secMark: timeStamp +hazardFlashers: bool +roadFriction: CoeffOfFriction (OPTIONAL)
+pos_latitude: degrees +airBagDeployed: bool +airTemperature: Kelvin (OPTIONAL)
+pos_longitude: degrees +lightsChanged: bool +steeringAngle: degrees (OPTIONAL)
+pos_elevation: meters +emergencyVehicle: bool +wheelAngle: degrees (OPTIONAL)
+pos_accuracy: covariance_matrix +... ~10 others +weather: WeatherReport (OPTIONAL)
+motion_speed: meters/second v +detectedObstacles: ObstacleList (OPTIONAL)
+motion_heading: degrees +... 20 others (A1l OPTIONAL)
+motion_accelerations: X,Y,Z,Yaw Many OPTIONAL data may be - =
+brakes: BrakeSystemStatus relevant to autonomous [.-==""
+s%ze7width: meters driving algorithms
alze longlli nelfors = runtime adapatation!

Figure 8.1: UML representation of the DSRC Basic Safety Message

As of January 2009, the Basic Safety Message, represented by the BasicSafetyMessage
class in Figure 8.1, consisted of:

e A message ID, which is the standard first byte of any DSRC message;

e An efficiently-packed “binary blob” of basic status data, represented by the BSMBlob
class;

’In fact, the BSM is often referred to as a “heartbeat” message, and is expected to be transmitted
periodically, as often as every 10ms.

106 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

e An “optional” bit-mask of critical event flags, represented by the EventFlags class;

e An “optional” verbose vehicle status structure, represented by the VehicleStatus
class;

e An “optional” body of custom or vendor-specific data, called the “local” basic safety
message, and excluded from Figure 8.1 for clarity.

The only data that must be transmitted as part of a BSM is the so-called BSMBlob,
where all other members in all other classes depicted in Figure 8.1 are “optional”. That is,
their inclusion is at the discretion of the transmitting vehicle. Even still, the basic vehicle
status “blob” contains a great deal of useful geometric information about the transmit-
ting vehicle, including position, heading, speed, acceleration, and size information that are
clearly relevant to a wide variety of autonomous driving algorithms. In fact, as discussed
in more detail below, the contents of the “blob” are sufficient to populate the primary data
in the Moving0Obstacle representation, suggesting a strong similarity between the primary
vs. supplemental methodology proposed by this thesis, and the decision as to “required”
vs. “optional” data in the DSRC specification.

The first “optional” datum is the EventFlags bit-mask, which conveys a variety
of boolean states of the transmitting vehicle, ranging from mere curiosities, such as
hoodOpen or wiperStatusChanged, to more critical issues such as airBagDeployed or
emergencyVehicle. There are more than a dozen such status bits, many of which could
be relevant to the autonomous driving algorithms discussed in this work. For example,
the indication of hazardFlashers might be used to cull an “irrelevant” vehicle from an
intersection or to trigger more aggressive passing maneuvers around disabled vehicles.

The second “optional” datum is the verbose VehicleStatus, which is, in turn, com-
posed entirely of “optional” data fields, ranging from straightforward information about
steering angle and external indicator state to more esoteric data about perceived road fric-
tion, air temperature, or weather reports. There are nearly thirty such “optional” data
in the VehicleStatus structure, some of which even supersede the contents of the “bi-
nary blob” by providing more accurate measurements of velocity, position, etc., along with
more extensive representations of error or uncertainty thereof. Only a subset of these “op-
tional” data are presented in Figure 8.1, focusing in particular on those that would be
most relevant to the autonomous driving algorithms under investigation. Among these, the
ExteriorLights data, which includes representations for brake, hazard, and turn signals,
could be used to implement a wide variety of cooperative or social driving behaviors, such
as opening up a merge gap for a signalling vehicle in an adjacent lane, or disallowing passing
maneuvers on the same side as an actively-signalled turn.

Integration into the MovingObstacle Representation

Figure 8.2 highlights the fact that the contents of the Basic Safety Message could easily
influence the derivation of every member of the existing MovingObstacle representation.
In fact, as mentioned above, the primary data may be completely populated via unit and/or
coordinate-frame conversion of the contents of the basic status “blob”:

e MovingObstacle: :pose may be derived from BSMBlob: :pos_{latitude,longitude},
along with BSMBlob: :motion_heading;

8.2. MOVING OBSTACLES FROM V2V DATA 107

BSMBlob can directly
populate most primary
data in MovingObstacle

BSMBlob : MovingObstacle
+pos_latitude: degrees +pose: Pose2D
+pos_longitude: degrees +poseSTD: DifferentialPose2D
+pos_elevation: meters +velocity: Vector2D
+pos_accuracy: covariance_matrix +velocitySTD: Vector2D
+motion_heading: degrees +length: double
+motion_speed: meters/second +width: double
+size_length: meters ___—‘+isMoving: bool
+size_width: meters " +isObservedMoving: bool
+motion_accelerations: X,Y,Z,Yaw | ==<.__] . -=="7+isPredicted: bool
+brakes: BrakeSystemStatus Supplemental MovingObstacle +laneAssociations: list<lLaneAssociation>

data may be indirectly

Seo influenced by V2V-ness

VehicleStatus Nowhere to put acceleration, <<bit field>>
+lights: ExteriorLights (OPTIONAL) brakes, or elevation data EventStatus
+wipers: WiperStatus (OPTIONAL) [=======-+ from BSMBlob or anything from fka.._.._.
+steeringAngle: degrees (OPTIONAL) the OPTIONAL data payloads +hoodOpen: bool
+weather: WeatherReport (OPTIONAL) = Semantic Mismatch! +hazardFlashers: bool
o o

Figure 8.2: Populating a MovingObstacle from the contents of a condensed representation
of the DSRC BasicSafetyMessage

e MovingQObstacle::velocity may be derived from the contents of
BSMBlob: :motion {heading, speed};

e MovingObstacle::length,width, may be derived from the homonymous data in
BSMBlob: :size_{length,width};

When these data are populated in this manner, it is likely that they may be “trusted”
more than the same data derived from sensors such as RADAR or vision. It follows that the
“V2V-ness” of an obstacle will affect the derivation of the supplemental MovingObstacle
data as well, such as:

e IsMoving may be simplified to a threshold on BSMBlob: :motion_speed;

e IsObservedMoving may follow IsMoving more closely given the “extra trust” placed
in V2V data, although the historical motion of a vehicle may still be checked for
consistency with “nominal” traffic behavior.

e LaneAssociations, like IsObservedMoving, may be more responsive given the more
accurate geometric information, and may also be enhanced by professed accuracies
(per BSMBlob: : pos_accuracy).

e IsPredicted would typically be false, or could be tied to some “staleness” threshold
relative to the last receipt of a V2V message from that particular vehicle. There may
also be alternate occlusion or failure models for the V2V signal that may be hidden
behind this flag.

While these suggest the possibility of alterations to the semantics of these existing
supplemental data, it is not clear that the semantic shift will be sufficient to warrant

108 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

modification of the existing supplemental effects. It is more likely, however, that some of
these supplemental data would be excised in a transition to a production setting, especially
the IsPredicted and IsObservedMoving flags, which are closely bound to Boss- and Urban
Challenge-specific assumptions about occlusion and traffic behavior, respectively.

In any case, these effects are already encapsulated by the AO and OO designs presented
in Chapter 5, and the analysis in Chapters 6 and 7 indicates that the absence or alteration
of data are well handled by the proposed methodology. The focus of this chapter is the
accommodation of additional data, and there are many candidates for additional treatment
highlighted in Figure 8.2. That is, there are several data in the BSMBlob representation,
along with a wide variety of other “optional” data, as discussed above, that have no means
of expression in the existing MovingObstacle class.

A complete evaluation of all such “optional” data, even restricted to one or two candidate
effects per datum, would be intractable in the scope of this thesis. Instead, this work
will explore a wide variety of candidate effects, based on comparatively few data from
the BSM representation, that are specifically selected to exercise the adaptation interfaces
generated as part of the refactoring experiments in Chapter 5. Of all the V2V data above, a
reasonably compelling set of example supplemental effects can be derived by incorporating
two comparatively simple members into the MovingQObstacle class.

e A boolean indication of whether or not a given obstacle is backed by V2V messages,
which, as mentioned above, would convey a certain sense of “extra trust” that can be
placed in the primary data.

e An enumeration of external signal state, which, at a minimum, could be derived from
the BrakingState member of BSMBlob, but may also incorporate optional data such
as the hazardFlashers event state or may be directly derived from the “optional”
ExteriorLights member of VehicleStatus. Regardless of the specific source, the
external signal state can be used to infer the “intent” of a given vehicle and enact
various social or cooperative behaviors, such as creating merge windows or restricting
passing maneuvers, as discussed above.

HasV2V

A simple boolean indication that a Moving Obstacle is backed by V2V data, such as
MovingObstacle: :hasV2V, would imply the receipt of at least the minimal content of
MSG_BasicSafetyMessage, which in turn implies the aforementioned “extra trust” in the
primary pose, size and velocity data. This hasV2V flag could influence autonomous driving
algorithms in much the same way, and in many of the same places, as the original isMoving
and isObservedMoving states, including:

e The determination of whether or not a candidate obstacle is a “false positive”, or
whether it is otherwise relevant to a given situation;

e The determination of various thresholds, such as maximum range at which an obstacle
may be included in merge or yield calculations, or how far away the obstacle can be
from the centerline and still be “in” a given lane.

8.2. MOVING OBSTACLES FROM V2V DATA 109

This can also affect “higher-level” policies, especially by reducing the degree of “conser-
vativeness” applied in various driving algorithms, such as:

e The estimation of the distance to the lead vehicle, which may assume a “slightly
closer” obstacle in uncertain situations;

e The estimation of “worst-case” distances and velocities for distance-keeping, merge
or yield calculations when faced with similar ambiguities;

e The determination of the desired distance-keeping gap, which is currently tuned for
ultra-conservative behavior, but may be reduced if the lead vehicle “hasV2V” to yield
a sort of convoy behavior;

The “V2V-ness” of an obstacle may also affect more algorithm-specific policies, such
as the Merge Planner’s determination (MP.D.11) of whether or not an obstacle should
be granted a “courtesy gap” when considering a front-merge. This is one way that the
methodology proposed by this thesis enhances the adaptability of robotic algorithms: by
providing a coherent and explicit enumeration of such algorithm-specific policies through
a dedicated interface that allows them to be “tweaked” according to novel inputs. That
way, a developer who is considering candidate effects of some additional data may begin by
perusing the existing adaptation interface, instead of delving directly into the underlying
source code, and considering how the new data might influence each exposed point of
adaptability. There is always the possibility, however, that the existing adaptation interface
is not sufficiently expressive to capture the desired effects of some novel input data, the
ramifications of which are discussed in detail in Section 8.3, especially relative to advanced
cooperative behaviors that might be enabled by turn-signal status information.

TurnSignalState

The second supplemental datum that will be introduced into the MovingQObstacle class is
a representation of the obstacle’s turn signals, such as shown in Listing 8.1.

enum MovingObstacle::TurnSignalState {

Unknown = -1, // accommodates absent and/or minimal V2V
InActive = 0, // conveys both "known" and "inactive
BrakeLights = 0x01, // vehicle ts braking

LeftTurnSignal = 0x02, // left turn

RightTurnSignal = 0x04, // right turn

HazardSignal = 0x06 // (LeftTurnSignal | RightTurnSignal)
// ... rToom for others, if desired

¥

Listing 8.1: Example turn-signal enumeration for incorporation into the MovingObstacle
Representation

The turn signal state is arranged as an enumerated bit-field to represent the possibility
of combined states, such as “braking” and “left-turn”, and also that certain combinations
are not valid, such as signalling right- and left-turns simultaneously, which is illogical and

110 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

otherwise indistinguishable from the “hazard-flasher” state3. This is consistent with how the
optional ExteriorLights data are represented in [15], except that the TurnSignalState
enumeration listed above excludes information about high beams, fog lights, etc., that are
less relevant to autonomous driving algorithms.

Even restricted to the four signals enumerated in Listing 8.1, there is a great deal that
can be inferred about “driver intent” that could be incorporated into a wide variety of
algorithms, such as:

e Increasing the distance-keeping gap for active turn signals in order to accommodate
the typical reduction of velocity that precedes an “upcoming” turn, or

e Using the HazardSignal state to influence various thresholds, timeouts and/or ex-
plicit policies for ignoring and/or passing stopped traffic.

Turn-signal data could also be used to generate completely new policies, including co-
operative driving behaviors such as creating a merge gap for a vehicle in a neighboring lane,
or disallowing passing maneuvers around turning traffic, as discussed above. In the current
implementation, many of these behaviors are implemented outside of the three components
discussed so far, especially the “Lane Selector” and “Distance Keeper” classes shown in
Figure 5.1. Forwarding the supplemental TurnSignalState to these components to enable
such alternate policies requires higher-level architectural changes, along with refactoring
and generation of adaptation interfaces for these two additional components. Candidate
designs for these additional components and the associated architectural changes are dis-
cussed toward the end of Section 8.3.

A Note About Acceleration Data

To this point, the acceleration data included in the BSMBlob representation in Figure 8.1
has been largely ignored as a candidate for supplemental treatment, even though the most
basic V2V messaging would make it available as additional data. This requires a certain
amount of explanation, as acceleration could easily influence many detailed calculations in
any number of autonomous driving algorithms.

From a practical standpoint, virtually none of these calculations were exposed in the
adaptation interfaces derived in Chapter 5, so, no matter what specific effects are desired,
the inclusion of acceleration data would entail significant work in the core implementation
of the Traffic Estimator, Precedence Estimator, Merge Planner, and possibly other compo-
nents. While it would be possible to expose the necessary calculations through augmented
adaptation interfaces, the application of acceleration data would have to completely sup-
plant the underlying calculation, as was done for the LaneAssociations list for TE.S.4
and MP.S.1. In this case, however, the “new” functionality would largely be a replication
of the “underlying” functionality, with acceleration (and time?) terms interleaved at the
appropriate places. Such replication is well recognized as an artifact of poor design choices,
as it forces two mostly-identical segments of code to be manually synchronized. This makes
acceleration data a poor candidate for supplemental treatment.

3Not to mention the fact that it is not generally possible to simultaneously signal both a right- and
left-turn using standard vehicle controls.

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 111

From another perspective, acceleration data also fits many of the intrinsic criteria for
primary data discussed in Chapter 2. That is, acceleration data is measured in real units
(G’s, or m/s?), does not require any significant “interpretation”, and can thus be taken
at “face value” by consuming algorithms. Moreover, there was a system-wide mandate
to assume zero acceleration in all Tartan Racing software components, which provides a
meaningful “default” value, which was the final condition for data that may, if not should
be treated as primary data.

For these reasons, the methodology proposed by this thesis would suggest primary treat-
ment for the acceleration data, and specify the default value of zero when that data is
unavailable*. Interestingly, the context-specific usefulness or validity of the acceleration
values could be determined according to related supplemental data, as was done for veloc-
ity data using isMoving and isObservedMoving, but in this case using the hasV2V flag,
discussed above. Still, acceleration would itself be counted among the primary data in the
Moving0Obstacle representation, and will not be further pursued in this discussion, which
will focus on the candidate effects of hasV2V and TurnSignalState, described above.

These effects are described as formal functional requirements in the next section, which
also presents the corresponding implications for each design of the Traffic Estimator, Prece-
dence Estimator and Merge Planner. Particular emphasis is placed on how well the adapta-
tion interfaces generated in Chapter 5 accommodate the necessary changes, what extensions
to those interfaces would have to be performed, and what might be done to make them more
generally expressive for future adaptations, which are the principal results of this chapter.

8.3 V2V Effects on Autonomous Driving Algorithms

HasV2V: False-Positive Culling

The most direct application of the proposed hasV2V flag is to ensure that obstacles sup-
ported by V2V transmissions are treated as cars, and not ignored, for instance, as an
arbitrary road blockage or roadside vegetation:

CX.1 Candidate obstacles supported by V2V signals, as indicated by
MovingObstacle: :hasV2V, shall never be ignored as an intrinsic false-
positive in any behavioral context.

In many ways, this usage of hasV2V reflects an “ultimate trust” in the existence of the
obstacle, where other supplemental data, such as “moving” or “observed-moving” could
only convey “degrees” or “facets” of trust in specific instances. It is thus likely that the
adaptations implied by CX.1 will be well handled by the existing adaptation interfaces.

However, the question of situational “relevance” is not exactly the same as the idea
of “is definitely a car”, so the implementation of this requirement will not necessarily be
a blanket override of all related supplemental effects. This is the source of “intrinsic” in
the requirement phrasing, as an obstacle that is “definitely a car” may also be “definitely
too far away to matter”. It follows that careful analysis of the existing XPI/Delegation
interfaces is necessary to be sure that only and exactly the appropriate effects are applied.

“Interestingly, this was actually the case for an early incarnation of the MovingObstacle representation,
but the difficulty of providing a meaningful approximation of acceleration caused it to be stricken from scope
early in the development process.

112 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

Applicability Via Existing Adaptation Interfaces

As a review, the adaptability interfaces for the TrafficEstimator class, represented by the
delegate interfaces in Figure 5.6 and by the XPI in Figure 5.7, allow enhancements to be
applied to:

1. Whether an obstacle is “in” a given lane of travel, such as overridden by TE.S.4 to
use the laneAssociations datum instead of the more generic geometric tests. While
hasV2V may affect the determination of whether a vehicle is “in” a lane, that effect
would likely take the form of an alternate threshold and is addressed by CX.3 (p.120),
rather than an “intrinsic” relevance test.

2. The conservative estimation of an obstacle’s travel speed, such as augmented by
TE.S.1 through TE.S.4. Again, hasV2V will affect this determination, such as
through CX.2 (p.116), but this point of variation is not in itself a “false-positive”
culling step.

Moving on to the adaptability interfaces for PrecedenceEstimator class, shown in
Figures 5.9 and 5.10, supplemental data may affect:

1. Relevance tests for each of the intersection clearance, exit waypoint precedence and
cross-traffic yield algorithms. These are definitely relevant to CX.1, and the corre-
sponding effects of the hasV2V flag will be similar to the “max ignorable speed” effect,
PE.C.1.

2. Various stages of the somewhat convoluted “obstacle update process”, such as used
by PE.S.4 to convey that an intersection is not “quiescent” when it is occupied by
observed-moving obstacles. The hasV2V datum might make a similar contribution
here, but the idea of “quiescence” is more about whether an intersection is “busy”
than simply having (possibly stalled) vehicles in it. It follows that something using
turnSignalState, similar to CX.5 may be more appropriate in this context. In any
case, nothing in the “obstacle update process” constitutes an intrinsic relevance test,
so these points of variability are not directly relevant to CX.1.

Lastly, the adaptability interfaces in Figures 5.15 and 5.18 for the MergePlanner allow
augmentation of:

1. The identification of which lane an obstacle is in, analogous to item 1 for the
TrafficEstimator above and thus irrelevant to CX.1;

2. The determination of an obstacle’s “culling range”, which is also related to item 1 for
the TrafficEstimator, and is handled by CX.3;

3. The augmentation and management of the various intermediate obstacle types, such
as was necessary to forward the intermediate “isMoving” state through the processing
pipeline for MP.D.1 through MP.D.9. It is possible that these types would have
to be similarly augmented with an analogue for hasV2V, but only if hasV2V affects
downstream points of variability in a way that is not already covered by the existing
intermediate “isMoving” state, including;:

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 113

a) The conservative estimate of obstacle velocity, i.e., whether it is permitted to
have nonzero velocity;

b) Relatedly, the determination of whether an obstacle is specifically permitted to
have “oncoming” velocity;

¢) The determination of whether an obstacle requires the minimum vehicle-length
“courtesy” gap for a front-merge.

These last three points of variability could all be influenced by hasV2V, but they do not
amount to “intrinsic false-positive” tests, and are instead covered by other requirements,
such as CX.2 below.

Together, this review of the existing adaptability interfaces yields the somewhat dubious
conclusion that, although CX.1 is a very broadly-scoped requirement, it is only applicable
to the PrecedenceEstimator, and to comparatively few points of variability therein. This
highlights the central issue explored in this chapter by raising the question of whether or
not the adaptability interfaces actually expose all such relevance tests for augmentation. In
the limit, this can only be verified by scrutinizing the source code for the underlying algo-
rithms, which would partially defeat the original purpose of exposing dedicated adaptability
interfaces.

For the purposes of this case study, however, a thorough exploration of the underlying
implementation is both necessary, in order to apply CX.1 to the original, “direct encod-
ing” of each component, and also informative, as it suggests several “common” points of
variability that could be identified in other algorithms as well. Exposing these in the cor-
responding adaptability interfaces would enhance their usefulness by reducing the chance
that such broad effects as CX.1 would compel similar expeditions into the implementation
of any given core algorithm.

Looking Beyond the Existing Adaptation Interfaces

The core TrafficEstimator algorithm is localized in a single method, which iterates over
the list of candidate obstacles, tests them for occupancy in Boss’s lane of travel, and com-
putes conservative estimates of their rear bumper positions and lane travel speeds for down-
stream use by the DistanceKeeper. The “relevance” of an obstacle is determined entirely
according to its identified lane of travel, which is already covered by the existing adaptation
interfaces. Thus, no additional work would have to be done in the TrafficEstimator to
satisfy CX.1.

Similarly, the core algorithm for the PrecedenceEstimator iterates over the list of
candidate obstacles and explicitly tests each one for relevance to the clearance, precedence,
and yield contexts before triggering the appropriate calculations. These tests cover all three
contexts treated by the PrecedenceEstimator that are relevant to moving obstacles, and
their representation in the existing adaptation interfaces implies no additional work would
be necessary to fulfill CX.1 through these interfaces.

Lastly, careful analysis of the core MergePlanner algorithm does not reveal any “culling”
or “relevance” tests beyond the initial “maximum range” determination, as augmented by
MP.S.2 to allow observed-moving obstacles to be included in merge calculations at longer
ranges. As this will be covered by CX.3, there is also no work to be done for CX.1 in the
MergePlanner.

114 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

While the critical implication of all of this is that the existing adaptation interfaces are
sufficient to express CX.1, the above discussion also suggests that many robotic algorithms
will have an initial stage of processing that filters candidate inputs against a set of rules
for whether or not they are “valid” or “relevant” in their specific context. In order for
their adaptability interfaces to be “trustworthy”, they should include a way to augment
these rules, whether they take the form of explicit validity tests or more implicit measures
of “sufficiently close”, or both. Even if the base case, embedded in the core algorithm, is
simply an unconditional “yes”, the effort to expose those tests for adaptability could pay
significant dividends when accommodating future supplemental data.

Detailed Implementation Results and Discussion

As the existing adaptation interfaces were sufficient to express CX.1, their implementation
in the AO and OO designs was a straightforward process. The implementation of this
requirement in the DE version was also relatively easy, but only because of the detailed
exploration that took place to verify that there were no “latent” relevance tests that were
not exposed for adaptation. The raw results of this work are summarized in Table 8.1
in terms of software elements (classes, functions, and lines of code) that were added or
modified in each design of the PrecedenceEstimator.

Design: | DE | AO | OO

New Lines of Code 18 | 52
Modified Classes
New Classes
Modified Operations
New Operations
Modified Files

New Files

O = OO N
e i e i
== o = =] =

Table 8.1: Raw results from the implementation of Requirement CX.1

These results are consistent with the “raw” metric results presented in Chapter 5, in that
the AO and OO designs entail significantly more raw source code than the DE approach.
They also introduce new classes, and methods therein, where the DE approach remains
concentrated in the original PrecedenceEstimator class. While this might suggest that the
two-line modification of the original, directly-encoded version may be the “best” approach,
it is important to remember that those two lines are embedded in a 250-line method of
2000-line class, where the 18 and 52 lines of the AO and OO versions, respectively, are
isolated in dedicated modules, making them easier to identify and understand. This is
reflected, to a certain extent in the Concern Diffusion results for CX.1, shown in Table 8.2.

These are again consistent with previous results, presented in Chapter 6, especially
for the “maximum ignorable speed” effect, which, as mentioned above, is very similar to
the proposed effect of the hasV2V flag. That is, the AO and OO approaches experience
slight, but expected increases in diffusion over components and operations, but there are
corresponding reductions in diffusion over lines of code that are beneficial to the under-
standability of the corresponding artifacts.

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 115

Design: | DE | OO | AO
Diffusion Over Components (CDC) | 1 2 2
Diffusion Over Operations (CDO) | 1 2 2
Diffusion Over Lines of Code (CDLOC) | 4 3 2

Table 8.2: Concern diffusion results for Requirement CX.1

The similarity to the “maximum ignorable speed” effect also means that there is no
significant difference in “net option value” for the modules that implement CX.1 in the
AO and OO designs, and that the overall NOV results for each of the three will be largely
unaffected. This suggests that the results presented in previous chapters are a reasonably
accurate quantification of how well each design can accommodate novel supplemental data,
so long as the corresponding effects can be expressed using the existing adaptation interfaces.

If, on the other hand, a proposed supplemental effect cannot be expressed using exist-
ing interfaces, there may be wildly varying degrees of refactoring necessary in each core
algorithm to expose new points of variability. It is not clear that such changes can be eas-
ily captured as gradients in the previous metrics, and they would require more significant
analysis on par with the contents of the previous three chapters, the repetition of which
would be an intractable in the scope of this thesis.

Moreover, the results of such additional analysis would not address the underlying ques-
tion of whether or not the resulting adaptation interfaces are sufficiently expressive, which
was the original purpose of proposing novel input data in this chapter. As such, further
detailed implementation and source-level analysis of the remaining supplemental effects in
this chapter will be foregone, in favor of focusing on the issue of whether or not the existing
adaptation interfaces are sufficiently expressive, and what changes would be necessary if
they are not.

<<aspect>>

XPI_AOTrafficEstimator

<<aspect>>

XPI_AOMergePlanner

+targetClass: pointcut
+configuration: pointcut +targetClass: pointcut

+inLaneTest: pointcut +configuration: pointcut

tprojectedVelocityCalculation: pointcut +initialization: pointcut

+obstacleLaneDetermination: pointcut
+obstacleCullingRangeDetermination: pointcut
+transcriptionFromMovingObstacleToVelocityType: pointcut

<<aspect>>

XPI_AOPrecedenceEstimator

+targetClass: pointcut
+configuration: pointcut
+initialization: pointcut
+obstacleUpdateNotification: pointcut
+intersectionOccupied: pointcut

+transcriptionFromRoadBlockageToVelocityType: pointcut
+transcriptionFromVelocityTypeToObstacleStateType: pointcut
+transcriptionFromObstacleStateTypeToBossStateType: pointcut
+adjacentObstacleCombination: pointcut
+negativeVelocityTest: pointcut

+vehicleGapRequirementTest: pointcut
+intermediateObstacleVelocityType: pointcut

+intersectionQuiescentTest: pointcut
+intersectionRelevanceTest: pointcut
+exitRelevanceTest: pointcut
+yieldRelevanceTest: pointcut
+combinedRelevanceTests: pointcut

+intermediateObstacleStateType: pointcut
+intermediateBossStateType: pointcut

Figure 8.3: Adaptation interfaces for the three behavioral components from Chapter 5.

For reference, the XPI’s for each of the three behavioral components refactored in Chap-
ter 5 are reproduced in Figure 8.3. These are analogous to, but more concise than, the
corresponding OO delegation interfaces, and will be augmented through the discussion of

116 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

the six other supplemental effects below. The end result will be a catalogue of “high-value”
points of variability in the Urban Challenge software system, which will be distilled into
more generic categories at the end of this section. This categorization will guide the iden-
tification of similar points of variability in other advanced robotic algorithms in order to
ensure that their adaptation interfaces can express a wide variety of future supplemental
effects.

HasV2V: Increased Geometric Accuracy

The second candidate supplemental effect evaluated in this chapter is also very broadly
scoped, and reflects the same “enhanced” trust that may be placed in the contents of a
MovingObstacle instance that is backed by V2V, especially in purely proprioceptive data
such as wheel speed, curvature, etc.:

CX.2 Context-specific conservative estimation of the position, velocity, and heading
of a V2V-supported obstacle shall either be eliminated entirely or restricted to
a single standard deviation as reported by MovingQObstacle: :poseSTD, etc.,
reflecting increased trust in the presence and state of the corresponding vehicle.

Traffic Estimator

The existing adaptation interface for the Traffic Estimator includes the ability to override
the estimation of the obstacle’s speed, via projectedVelocityCalculation, and CX.2
could easily applied here in the style of existing “moving” and “observed-moving” effects.
However, there is no representation of any conservative estimation of the position of that
obstacle along the lane, even though there is a reasonable expectation that the Traffic
Estimator is making such a conservative estimate at some point in its core algorithm.

This suggests that the adaptation interface may be incomplete, and close inspection of
the core algorithm reveals that the Traffic Estimator does, in fact, include a conservative
estimation of the position of the “rear bumper” of a given moving obstacle. This is currently
accomplished by projecting the obstacle’s center position backwards along Boss’s lane of
travel by a hard-coded fraction of the estimated “length” of that obstacle. This projection
could easily be parameterized to include a degree of “pessimism” to be applied to the
obstacle’s estimated position, and the determination of that parameter could be exposed
for supplemental adaptation according to CX.2.

A similar “pessimism” parameter already exists for speed estimation, and should be
included in the adaptation interface as well. Interestingly, this parameter is load-time con-
figurable for the Traffic Estimator as “leadVehicleSpeedPessimism_STDs”, which suggests
that perusal of similar configuration parameters may help identify likely points of variability
in other systems.

Rearranging the core algorithm to expose these points of variability would entail a simi-
lar amount of work as was done to expose the projectedVelocityCalculation pointcut in
Figure 8.3, and would yield similar results in terms of raw code size, diffusion, and option
value. Thereafter, the extended adaptation interface for the Traffic Estimator would be
sufficient to express CX.2, along with any other supplemental datum that would affect the
degree of “pessimism”, as shown in Figure 8.4.

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 117

<<aspect>>
TrafficEstimator XPI_TrafficEstimator

+identifyVehiclesOnMotionPlan()
#obstacleIsWithinLane()
#computeProjectedObstacleVelocity()
#getSpeedPessimism(mo:MovingObstacle)
#getPositionPessimism(mo:MovingObstacle)

+targetClass: pointcut

+inLaneTest: pointcut

+projectedVelocityCalculation: pointcut

~|+speedPessimismPolicy: pointcut
J+bumperPessimismPolicy: pointcut

T L.

: A

H .- 1

<<aspect>>

TE_HasV2VEffects

New methods for determining
"pessimism" for an obstacle

are exposed through the XPI +<<around>> XPI::speedPessimismPolicy()
to express HasV2V effects +<<around>> XPI::positionPessimismPolicy()

Figure 8.4: Modifications to the Traffic Estimator and its XPI to express CX.2

Precedence Estimator

The existing adaptation interface for the Precedence Estimator does not include any way
to express candidate effects of CX.2, which, from a perspective, is consistent with the
fact that obstacles are explicitly tested for relevance in each of the precedence, clearance,
and yield contexts before proceeding with the corresponding calculations. Even still, the
amount of geometry involved in these calculations suggests that there may be “conservative”
estimation of an obstacle’s position and/or speed that are not yet exposed for adaptation.
Close inspection reveals that there is, in fact, a single conservative estimation of ob-
stacle velocity that would be affected by CX.2. This occurs as part of the calculation of
the obstacles “estimated time of arrival”, which is compared to the expected transit time
through the intersection to determine whether Boss must “yield” to that obstacle. Within
that calculation, there is a “conservative” estimate of the obstacle’s lane speed that is nearly
identical to the speed estimation that occurs in the Traffic Estimator. In fact, it even lends
itself to a similar representation as an adaptable “speed pessimism” policy, as shown in 8.5,
but the critical difference is that for yield calculations, “pessimism” means “faster”, instead
of “slower”. This highlights the issue of context-specificity of supplemental effects that is
one of the principal challenges to robotic software reuse that is addressed by this thesis.

<<aspect>>

PrecedenceEstimator XPI_PrecedenceEstimator

+updateOccupancies() < - = = = -
#obstacleRelevantfor. .. () <- - - - - +combinedRelevanceTests: pointcut
#getSpeedPessimism(mo:MovingObstacle) |«C= = 4

+...
[- -

_JtspeedPessimismPolicy

A

1

Similar "pessimism" method and <<aspect>>
introduction as in Traffic Estimator, PE_HasV2VEffects

except the "pessimism" means "faster"
for yield traffic. +<<around>> XPI::speedPessimismPolicy/()

+targetClass: pointcut

Ly

Figure 8.5: Modifications to the Precedence Estimator and its XPI to express CX.2

118 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

Merge Planner

The Merge Planner’s adaptation interface includes the “negative velocity test”, which is
clearly relevant to CX.2, except that this test depends on the contents of an intermediate
obstacle type, and not the root MovingObstacle representation. This means that hasV2v
is not readily available at the corresponding stage of processing, and some effort will be
required to forward this datum through the Merge Planner’s processing pipeline.

An expedient solution might be to simply incorporate hasV2V into the determination
of the intermediate “isMoving” states, but the semantics of these data are not necessarily
compatible with the idea of a V2V-backed obstacle. That is, there are other effects of the
intermediate “isMoving” states, such as when converting the contents of a MovingObstacle
to the intermediate VelocityType representation, or for the “courtesy gap” test, that may
be adversely affected by simply “blending in” hasV2V.

This suggests that hasV2V would have to be introduced alongside the intermediate
Moving” states in order to ensure the semantic integrity of the corresponding supplemental
effects. Given the length of the Merge Planner’s processing pipeline, as discussed relative
to Figure 5.13, this means there is a great deal of “extra” work necessary to propagate
the hasV2V datum to the point where it can (otherwise easily) affect the “negative veloc-
ity test”. This would also be necessary for many other supplemental data, such as the
TurnSignalState datum discussed in Section 8.2, so a more significant evaluation of the
Merge Planner’s core algorithm is warranted to determine whether any of this “extra” work
can be eliminated.

Careful inspection of the Merge Planner’s derivation and usage of these intermediate
types exposes several issues that will be echoed in the CLARAty case study in Chapter 9,
and, in this author’s experience, represent recurring themes in advanced robotic software.
The resolution of these issues has significant implications beyond the context of the Merge
Planner, and a full discussion here would distract from the immediate focus on candidate
effects of V2V data. Instead, only the highlights, including the alternate design of the core
Merge Planner shown in Figure 8.6, are presented here. The detailed observations and
justifications that lead to this design, along with their generalization into guidelines for
designing future algorithms to better accommodate supplemental effects, are compiled in
Appendix A.

The highlights of this “streamlined” design of the Merge Planner are:

LLiS_

e The intermediate VelocityType and BossStateType have been eliminated, along
with the corresponding need to represent and propagate any supplemental data therein;

e The intermediate ObstacleStateType has been renamed to MergeObstacle, reflect-
ing the central role that this representation plays in the core merge planning algorithm;

e The “negative velocity test” has been identified as redundant with part of the deriva-
tion of the original intermediate VelocityType. These have been combined into a
more general “conservative” estimation of obstacle velocity, consistent with the Traf-
fic and Precedence Estimators.

e The MergeObstacle has been augmented to keep track of the foremost and rearmost
MovingObstacle instance instead of only the foremost and rearmost “isMoving” state.

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 119

Dedicating a method to MergePlanner Dedicating methods to
conversion of external +computeMergeCommand () conservative” estimates
Moving Obstacles to - --J#buildMergeObstacle(mo:MovingObstacle) assists in application of
internal Merge Obstacles #estimateObstaclePosition(mo:MovingObstacle) f-=""1 supplemental effects

#estimateObstacleSpeed(mo:MovingObstacle)
#computeMergeFeasibility()
#selectBestMergeGap()

69 One intermediate type,

instead of three,
simplifies propagation
of supplemental data

elucidates algorithm flow

MergeObstacle

MovingObstacle

+pose: Pose2D +distanceFront_m: double

+velocity: Vector2D +distanceBack_m: double

+length: double Mowelocityﬁont_mps: double MergeObstacle keeps track

+width: double +velocityBack_mps: double of foremost and rearmost

+isMoving: bool *+... various merge parameters | MovingObstacle, which

+isObservedMoving: bool +frontM0: MovingObstacler |7 __..--4 "automatically" propagates

v, . etc +rearM0: MovingObstacle* =T y" propag
+operator <(other:0ST &): bool supplemental data.

Figure 8.6: Alternate design for the core Merge Planner implementation that simplifies the
accommodation of supplemental effects. See Appendix A for details.

The critical benefit of this design, aside from its apparent simplicity, is that all supple-
mental data in the MovingObstacle representation are “automatically” available to down-
stream policies through the frontM0 and rearM0 members of the augmented MergeObstacle
representation. Thus, all of the additional effort put into introducing, deriving, and prop-
agating the intermediate “isMoving” states, or other such supplemental data, is no longer
necessary.

This simplifies the the fulfillment of CX.2 to the level of effort required for the Traf-
fic and Precedence Estimators above. Namely, the estimation of an obstacle’s speed and
position along a lane would be subject to the same idea of “pessimism” discussed above.
The application of CX.2 would require exposing those values for adaptation, as shown in
Figure 8.7.

. s <<aspect>>
Simplified Merge XPI_MergePlanner
Planner also MergePlanner -
simplifies XPI +targetClass: pointcut
+computeMergeCommand() +configuration: pointcut
#buildMergeObstacle(mo:MovingObstacle) +initialization: pointcut
#computeMergeFeasibility() +obstacleLaneDetermination: pointcut
#selectBestMergeGap()) +adjacentObstacleCombination: pointcut
K #obstacleRequiresCourtesyGap(mo:MovingObstacle) | — = —l+vehicleGapRequirementTest: pointcut
B i . ;
S #getMax1mRele\./ar.1tRange(mojMov1ngObstaCle) << — — —|+obstacleCullingRangeDetermination: pointcut
ROR #getSpeedPessimism(mo:MovingObstacle) <l - — —|+speedPessimismPolicy
, e s X -
,',":"/ #getPositionPessimism(mo:MovingObstacle) < — — +positionPessimismPolicy
P A
1
Dedicated methods for A0 MergeObstacle <<aspect>>
supplemental effects can 9 MP_HasV2VEffects
direcly use MovingObstacle | __ +... various merge parameters
through frontMO and rearMO .__: +frontM0: MovingObstacle* +<<around>> XPI::speedPessimismPolicy()
+rearM0: MovingObstacle* +<<around>> XPI::positionPessimismPolicy()

Figure 8.7: Modifications to the Merge Planner and its XPI to express CX.2

120 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

HasV2V: Relaxed Geometric Constraints

The last broadly-scoped effect of the hasV2V flag introduces alternate, configurable thresh-
olds as the third way that the increased confidence associated with V2V signals may impact
the inclusion policies for autonomous driving algorithms.

CX.3 Geometric constraints, such as maximum allowable distances, shall be aug-
mented to substitute alternate thresholds for V2V-supported obstacles. These
shall be load-time configurable, with default values that relax the associated
constraints by 20%, i.e., to increase the chance that a V2V-supported obstacle
will be identified as a valid candidate for further computation.

For all three components, the introduction and maintenance of additional configuration
parameters is straightforward using both OO and AO designs, such as was done for TE.S.5.
This reinforces the idea that many supplemental effects may include secondary concerns,
such as load time configurability, that should be included in an algorithm’s adaptation
interface. In fact, the degrees of “pessimism” discussed for CX.2 could also be framed in
this manner, as an alternate and context-specific “gain” on the standard deviation to be
used for V2V-backed obstacles. These extra “knobs” enable developers to more finely tune
an algorithm as they come to understand the impact of various supplemental data, or to
keep up with their semantics as they as they are incrementally altered over the course of a
project.

Traffic Estimator

As to the specific effects of CX.3 on the Traffic Estimator, the clearest candidate in the
existing XPI is the “in-lane” test, but it is not presently exposed in a way that allows
adjustment of any thresholds therein. Close inspection reveals that, at least before the
introduction of the laneAssociations datum, there were two such thresholds, one on
position and one on heading, that would be relevant to this requirement®. Exposing these
thresholds to apply CX.3 extends the adaptation interface for the TrafficEstimator as
shown in Figure 8.8.

Interestingly, the fact that the laneAssociations datum is used to completely override
the default geometric tests (per TE.S.5) implies that the direct effects of CX.3 will only
be active if the laneAssociations datum is removed from the system. This is quite
likely as part of future development, as this datum was tied both to the Urban Challenge
representation of road lanes, and to the perceptions system’s specific models of “nominal”
behavior for Urban Challenge Traffic.

Precedence Estimator

As with the application of CX.2 above, there is nothing in the existing adaptation interfaces
for the Precedence Estimator that suggests relevance thresholds that would be affected
by CX.3. However, given the Precedence Estimator’s usage of geometric overlap with
“occupancy zones”, explained in more detail in [3], there are no explicit “thresholds” to be

5Tn fact, these thresholds were modulated in a manner similar to CX.3, using the “observed-moving”
property, at a much earlier stage of development.

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 121

<<aspect>>

TrafficEstimator XPI_TrafficEstimator

+identifyVehiclesOnMotionPlan()
#obstacleIsWithinLane()
#computeProjectedObstacleVelocity()
#getSpeedPessimism(mo:MovingObstacle)
#getPositionPessimism(mo:MovingObstacle) +bumperPessimismPolicy: pointcut
#getMaxDistanceToCenterline(mo:MovingObstacle)

+centerlineThresholdPolicy: pointcut
#getMaxHeadingDeviation(mo:MovingObstacle) - - - = S+headingThresholdPolicy: pointcut

' .
: A
' P 1
\ -
[.- <<aspect>>

TE_HasV2VEffects

+targetClass: pointcut

+inLaneTest: pointcut
+projectedVelocityCalculation: pointcut
+speedPessimismPolicy: pointcut

New methods and advice for

thresholds in addition to |.oooccean--- +<<around>> XPI::speedPessimismPolicy()
those for "pessimism" to +<<around>> XPI::positionPessimismPolicy()
express HasV2Vv effects +<<around>> XPI::centerlineThresholdPolicy()
+<<around>> XPI::headingThresholdPolicy()

Figure 8.8: Modifications to the Traffic Estimator and its XPI to express CX.3

modulated, suggesting that CX.3 is simply not relevant to the Precedence Estimator. The
only way a non-expert could be sure of this, however, would be through careful analysis of
the core algorithm, which highlights a different facet of “trustworthiness” of an adaptation
interface. That is, in addition to exposing points of variation that do exist, there should also
be documentation in or near the adaptation interface describing common points of variation,
such as inclusion thresholds, that definitely do not exist. This would allow future developers
to have a certain “confidence” in the coverage of the adaptation interface, allowing them
to avoid unnecessary spelunking in the details of the core algorithm.

Merge Planner

For the Merge Planner, the existing adaptation interface already exposes the determination
of “culling range” that could be used to express CX.3 in much the same way as was done
for MP.S.2. Otherwise, the “in-lane” test includes thresholds that would be modulated
by CX.3, at least in the absence of the laneAssociations datum, in the same manner as
discussed for the Traffic Estimator above. Together, these are sufficient to express CX.3,

and the corresponding extensions to the Merge Planner’s XPI, and the application of these
effects, are shown in Figure 8.9.

122 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

<<aspect>>
XPI_MergePlanner
MergePlanner

+targetClass: pointcut
+computeMergeCommand () +configuration: pointcut
#buildMergeObstacle(mo:MovingObstacle) +initialization: pointcut
#computeMergeFeasibility() +obstacleLaneDetermination: pointcut
#selectBestMeljgeGap()) +adjacentObstacleCombination: pointcut
#obstacleRequiresCourtesyGap(mo:MovingObstacle) | = — = = = +vehicleGapRequirementTest: pointcut
#getMaximRelevantRange (mo:MovingObstacle) <---- - +obstacleCullingRangeDetermination: pointcut
#getSpeedPessimism(mo:MovingObstacle) < - - — — +speedPessimismPolicy
#getPositionPessimism(mo:MovingObstacle) < - - — = - +positionPessimismPolicy
#getMaxDistanceToCenterline(mo:MovingObstacle) | = = = = = +centerlineThresholdPolicy: pointcut
#getMaxHeadingDeviation(mo:MovingObstacle) < - — = = +headingThresholdPolicy: pointcut

? \‘ L. /:\

MergeObstacle <<aspect>>
MP_HasV2VEffects
+... various merge parameters
+frontM0: MovingObstacle* New methods and +<<around>> XPI::speedPessimismPolicy()
+rearM0: MovingObstacle* advice, same as """ "|+<<around>> XPI::positionPessimismPolicy()
Traffic Estimator +<<around>> XPI::centerlineThresholdPolicy()
+<<around>> XPI::headingThresholdPolicy()

Figure 8.9: Modifications to the Merge Planner and its XPI to express CX.3

TurnSignalState: Increased Headway

Where the hasV2V flag would have several broadly-scoped effects, the effects of the TurnSignalState
enumeration discussed in Section 8.2 would be much more algorithm-specific, as they in-

volve reacting to the “perceived intent” of candidate obstacles. The first such effect captures

the increased caution that most reasonable drivers practice when a leading vehicle displays

nearly any active signal:

CX.4 Obstacles that display active brake lights, turn signals or hazard flashers shall
be afforded a larger distance keeping gap to reflect the plausible interruption
of smooth forward motion. The degree to which the gap will be increased shall
be configurable, with a default value of 20% over the nominal dynamic gap, or
headway.

This effect is unique to the distance keeping problem, which is implemented as a col-
laboration between the Traffic Estimator, which estimates lead vehicle distance and speed,
and the Distance Keeper, which uses that information to issue speed regulation commands
to the motion planning subsystem. Given this collaboration, there are two distinct ways
that CX.4 may be expressed in this system.

First, turn signal information could be used to affect the “pessimistic” estimation of
the lead vehicle’s position, such as was done for CX.2, but in this case to “imagine” the
vehicle’s rear bumper to be 20% “closer”. This would cause the Distance Keeper to track
at a 20% farther distance, which would technically fulfill CX.4. The drawback to the
expediency of approach is that it slightly alters the semantics of the “lead vehicle distance”
output, which may have unexpected effects in other consumers of that datum.

The second approach is to directly affect the determination of the appropriate tracking
gap for the lead vehicle. While this is obviously the “more correct” solution, this would
entail the derivation of a completely new set of adaptation interfaces for the Distance
Keeper, which has not yet been addressed in this work. Moreover, this would require the

8.3. V2V EFFECTS ON AUTONOMOUS DRIVING ALGORITHMS 123

TurnSignalState datum for the “lead vehicle” would have to be forwarded as in intermedi-
ate result from the Traffic Estimator so that the Distance Keeper could include turn signal
data in its calculations®.

This resonates with the issues of intermediate data representations discussed for the
Merge Planner above. Following that thread, it would be worthwhile to forgo the piecemeal
propagation of supplemental data and simply forward the entire MovingObstacle instance
corresponding to the identified “lead vehicle” as in intermediate result from the Traffic
Estimator. This would make supplemental data therein “automatically” available to other

observers, including the Distance Keeper, as shown in Figure 8.10:

Legend .
Observer Modifies "whole" Lead Vehicle
| Distance Keeper | exposed to support
Notifies supplemental effects
s > PPL. 4 A .
P [D .
(Lead Vehicle Dist) (Lead Vehicle Speed) (Lead Vehicle)
T N \{iwtance of}
| Traffic Estimator | MovingObstacle
PS4 yy) |

(Road Model——) (Moving Ol;stacle Set) (Vehicle Pose)

Figure 8.10: Observer collaboration diagram showing augmentation of the Traffic Estima-
tor’s outputs to include the ”whole” lead vehicle for use by the Distance Keeper.

Given this extension of the Traffic Estimator’s outputs, an appropriate adaptation in-
terface may be generated for the Distance Keeper in order to fulfill CX.4, such as shown
in Figure 8.11.

<<aspect>>
- XPI_DistanceKeeper
DistanceKeeper <- -
- ~ T T+targetClass: pointcut
+computeDesiredSpeed ()

+configuration: pointcut
#getDynamicGap(mo:MovingObstacle) = = = = -

Ve 5 +dynamicGapPolicy: pointcut
#getMinimumGap(mo:MovingObstacle) &= = = ~.7|+minimumGapPolicy: pointcut
T .

' .

- A

'

G 1
<<aspect>>

DK_TurnSignalEffects

New methods and advice for
gap selection according to

the.contents of the "lead" +<<around>> XPI::dynamicGapPolicy()
MovingObstacle +<<around>> XPI::minimumGapPolicy()

Figure 8.11: Modifications to the Distance Keeper to include an XPI to express CX.4

Interestingly, the dynamic tracking gap is already a load-time configurable parameter
in the Distance Keeper, so exposing that value as a point of variability would be relatively
straightforward, as was the case for the Merge Planners “obstacle culling range”, MP.S.2.
This reinforce the idea that many useful points of variation in an existing algorithm may
already be exposed as manually-tunable parameters, and inspecting the Distance Keeper

51n fact, there was a short time during active development where the “isPredicted” flag was forwarded
to the distance keeper for similar reasons.

124 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

for such parameters reveals two configurable “minimum gap” values that specify how far
behind a stalled vehicle Boss will come to a stop. These could also be affected by turn-signal
or other supplemental data, such as to stop “farther away” from the lead vehicle to allow
for easier circumvention maneuvers, so they have been included in the XPI in Figure 8.11
as well.

TurnSignalState: Aggressive Circumvention for Hazard Flashers

Relatedly, the final candidate additional effect discussed in this chapter captures the specific
semantics of “hazard” flashers to influence the amount of time to wait before initiating a
circumvention maneuver around a stopped vehicle:

CX.5 Stopped obstacles that display active hazard flashers shall be circumvented
more quickly. This (smaller) alternate circumvention timeout shall be config-
urable, with a default value of half of the nominal circumvention delay.

While lane-change maneuvers are actually performed by the Merge Planner, the policies
for triggering these maneuvers are isolated in a separate component, the Lane Selector. As
with CX.4 above, this would require the generation of an adaptation interface for this class
as well, along with somehow propagating the TurnSignalState associated with the lead
vehicle to the Lane Selector. This further supports the propagation of the “whole” lead
vehicle as a separate Subject, as shown in Figure 8.10 above, and doing so would allow a
similarly straightforward adaptation interface to be added for the Lane Selector, as shown
in Figure 8.12.

<<aspect>>
XPI_LaneSelector
LaneSelector <- -1 -
= = = =|+targetClass: pointcut
+selectDesiredlane() +configuration: pointcut
#getStaticCircumventionTimeout (mo:MovingObstacle) |«= = = = = +staticCircumventionTimeout: pointcut
#getDynamicCircumventionTimeout (mo:MovingObstacle) |«= = = = = +dynamicCircumventionTimeout: pointcut
#canPassOnLeft(mo:MovingObstacle): bool <= = = = = o +leftPassPolicy: pointcut
#canPassOnRight (mo:MovingObstacle): bool <~ - - = =.7|+rightPassPolicy: pointcut
[.-
A

L. 1
L. 1
.- <<aspect>>

LS_TurnSignalEffects

1y
[y

New methods and advice for

modulating passing, or = focieccecaa--
"circumvention" policies

with supplemental data

+<<slice>> XPI::targetClass(): {double hazardCircTimeout_s;}
+<<after>> XPI::configuration()
+<<around>> XPI::staticCircumventionTimeout ()

Figure 8.12: Modifications to the Lane Selector to include an XPI to express CX.5

Once again, the “circumvention” timeout is already a configurable parameter, and a
cursory inspection of other such parameters reveals other candidate points of variation
where turn signal and other supplemental data may be applied. These include similar
thresholds and timeouts for initiating “dynamic” circumvention maneuvers on multi-lane
roads, along with policies for whether or not such maneuvers are allowable, that have also
been exposed in the XPI in Figure 8.12. These could be used, for instance, to more readily
pass a slow-moving, but not stopped, vehicle with active hazard flashers, or to capture the

8.4. DISCUSSION 125

social convention that it is “rude” to pass a vehicle on the same side as its active turn
signal.

8.4 Discussion

The five supplemental effects explored above are not intended to be an exhaustive list of
how V2V data might influence autonomous driving behaviors, but rather to provide an
array of effects, expressible both within and beyond the original adaptation interfaces from
Chapter 5, to begin to piece together some more general guidelines for identifying likely
points of variation in robotic algorithms.

First, the more broadly-scoped effects of the proposed hasV2V datum suggest three
general categories of supplemental effects that pertain to discriminating among a large pool
of candidate obstacles, including;:

1. False-positive culling or, conversely, context-relevance tests,
2. Context-specific “conservative” estimation of otherwise primary data, and

3. Thresholds, timeouts, or “gains” that affect more complicated policies for including,
excluding or otherwise incorporating individual candidates in subsequent calculations.

Many of these effects arise from an underlying issue of imperfect perception that is
shared by all robotic systems, so it follows that many other advanced robotic algorithms
will contain similar policies. Whether for abstract obstacle representations or for more prim-
itive data, such as individual points in a “cloud”, this suggests that other algorithms will
include context-specific notions of “confidence” that fit one or more of the three categories
enumerated above. It is also realistic to assume that many platform-specific capabilities
will inform these confidence policies, and that exposing them as part of an algorithm’s
adaptation interface would allow the modular accommodation of a wide variety of such
supplemental data.

For more algorithm-specific effects, such as the modulation of the “circumvention time-
out” in CX.5, no such categorization is possible, but the discussion above provides two
important guidelines for identifying likely points of variability in existing algorithms:

1. Even though they may be highly algorithm-specific, supplemental effects typically
modify algorithms in the same way as they do for “confidence” policies, such as
augmenting or substituting different thresholds or gains relative to specific properties
of a candidate obstacle;

2. At least in existing software, such thresholds are often exposed as load- or run-time
configurable parameters, reflecting specific ways that an algorithm might be “influ-
enced” to yield different results.

Together, these provide an excellent starting point for identifying more esoteric points of
variability in other algorithms. When merged with the more common “confidence” policies
discussed above, and through the consideration of even a few likely candidate effects, a
highly expressive adaptation interface may be derived for a wide variety of robotic software
components.

126 CHAPTER 8. EXTENSION TO NOVEL INPUT DATA

In the limit, however, the “best” adaptation interface can only be determined by some
combination of prescience and luck that are beyond the reach of even the most experienced
designers, and there is always the corresponding risk that the core algorithm will have
to be understood and modified to accommodate a future supplemental effect. A minor
consequence of this risk is that, in addition to exposing the points of variation that do exist,
it is important that an adaptation also document common points of variation, such as the
“confidence” policies enumerated above, that definitely do not exist in a given algorithm.
This can save future developers from fruitless exploration of a core algorithm on the chance
that such a point of variability might be present.

The critical implication of this risk, however, is that the structure of the core algorithm
cannot simply be ignored, and is as important a design consideration as the specific contents
of the adaptation interface or the detailed techniques for exposing adaptability and binding
supplemental effects. Structuring a core algorithm with supplemental effects in mind, such
as presented for the Merge Planner in Appendix A, will both simplify the contents of
the adaptation interface and can also mitigate the risk of having to bypass that interface
by having “prepared” the underlying algorithm for the types of adaptation necessary to
accommodate platform-specific details.

This advice for structuring the core algorithm, along with the guidelines for identifying
“likely” points of variation, will be revisited in the next chapter, which moves beyond the
context of urban driving to evaluate the proposed primary vs. supplemental methodology
as it might be applied to software for planetary (Mars) rovers.

Chapter 9

Complementary Case Study:
CLARAty

While the work detailed in previous chapters demonstrates the effectiveness of the proposed
primary vs. supplemental methodology in the context of autonomous urban driving, it is
important to consider its applicability to other robotic problem domains as well. In the ideal
case, dozens of additional software systems would be subjected to the same redesign, analysis
and augmentation experiments described to this point, but the amount of effort required
to do so would be intractable in the scope of this thesis. As a more feasible alternative,
a small collection of software components from a substantially different robotic problem
domain will be analyzed for candidate separations of primary from supplemental data, and
the viability of separating the corresponding core algorithms and supplemental effects will
be explored at the design level, without delving into the detailed work of refactoring and
source analysis as before.

Looking beyond the domain of urban driving, the Coupled Layer Architecture for Robot
Autonomy (CLARAty)[38] stands out as one of the most substantial and rigorous attempts
to date at providing a wide array of reusable software for a related, but still heterogeneous,
class of planetary rovers. Even within this comparatively narrow scope, accommodating
the variability in sensors, actuators and mission context has been recognized as one of
the key challenges in ongoing development. As such, an investigation of the components
within CLARAty should provide a compelling foundation for the general applicability of
the methodology proposed by this thesis.

This investigation begins with a review of CLARAty in Section 9.1, including its over-
all philosophy and design objectives, along with the corresponding design decisions and
several important implementation details. Section 9.2 focuses on the modules surrounding
the Morphin[59] terrain analysis component, which has already been deployed on multiple
systems, and is expected to be deployed on future platforms, that compel the types of
adaptation described in Chapter 2. Section 9.3 discusses the existing treatment of primary
and supplemental data within the Morphin components and proposes several candidate
supplemental effects that may be applied to the algorithm. A rough design consistent with
each of the AO and OO approaches described in Chapter 4 is proposed and discussed in
Section 9.4, focusing on parallels with the more extensive refactoring done on autonomous
driving algorithms in the preceding chapters. Section 9.5 then closes this chapter with more

128 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

general discussion of the impact that the proposed primary vs. supplemental methodology
might have on future work in CLARAty.

9.1 CLARAty: Review

CLARAty was developed with the goal of providing a common infrastructure and an abun-
dance of reusable algorithms that could be shared across various prototype and flight-model
Mars rovers. The authors of CLARAty identify the critical challenge in doing so to be the
sheer variability of both hardware and software components that comprise robotic systems.
Even within the comparatively narrow domain of planetary rovers, they note that neither
the intersection of all possible rover capabilities, nor their union, will typically yield a single
satisfactory interface[39]. That is, the intersection of all capabilities would leave a compo-
nent too restricted to use effectively, and the union, even in the unlikely case that it could
be determined a priori, would yield an intractably large and cumbersome artifact.

Finding an appropriate balance between these extremes, which is strongly analogous
to the discrimination of primary and supplemental data discussed in Chapter 2, was the
principal design challenge for CLARAty. As with many other complex systems, the result-
ing design includes layering and abstractive hierarchies, with the dominant decomposition
dividing the system into two distinct layers:

e The decision layer, which manages mission goals by planning amongst hierarchical
objectives, selecting waypoints for the robot to follow or more fine-grained actions to
take, monitoring progress, and reacting to unforeseen circumstances;

e The functional layer, which exposes interfaces to the underlying hardware, along with
a collection of data processing and navigation algorithms, that are used by the decision
layer to manage and execute the mission.

Each of these layers has its own abstractive hierarchy, illustrated in Figure 9.1, and they
are “coupled” beyond the typical sense of top- and bottom- interfaces in traditional layered
systems[49]. Specifically, the decision layer, while encouraged to use the most abstract
functional-layer interfaces possible, is also permitted to “punch through” those functional
abstractions as necessary to implement mission- or platform-specific behaviors.

For example, the decision layer typically interfaces to the functional layer at the level
of specifying waypoints to the navigation system, but it may also interface directly to the
locomotion system to issue lower-level velocity/curvature commands, or even to specific
motors to issue fine-grained commands to individual joints or wheels. The trade-off is that
the farther down the hierarchy the decision layer goes, the more it must “know” about
the underlying platform, and thus the less portable it will be across platforms. In a sense,
this is highly analogous to the distinction between primary and supplemental data, except
that it is less about the data provided by, and more about actuation capabilities of, the
underlying platform.

The functional layer makes extensive use of OO design patterns[21] to provide the de-
cision layer the option of using either abstract, vehicle-independent class interfaces, or else
drilling down through the inheritance hierarchy to access a more capable, but also more
platform-specific, class interface. Communication between the decision and functional lay-
ers is typically achieved via message passing in a cooperating-processes paradigm[49], but

9.1. CLARATY: REVIEW 129

Decision .

Layer Explore Site

O peclarative Activity
. "o, < Class Abstraction
Functional . -,

- ., Swappable Algorithm ¢
Resourey e and o o, Robot Adaptation
locsl plahe during ejaborstion. Layer ., v
Functiona! Level sccess State vajues and regource

through method cafls at usage diring exacufion. K
i . o Locomotor Stereovision ",
level Ufnb'e"':t:‘;mﬂ:ﬂ’; & ModeD Pose Estimator ‘e,
o > Motor — Camera
(R Motor {394 Can)

.. Rocky 8

e ATRVE | Rodgy 7o

vimmoam \

(a) Figure 1 reproduced from [59] (b) Figure 1 reproduced from [39]

Figure 9.1: The Coupled-Layer Architecture for Robot Autonomy, as depicted in recent
publications.

communication within the functional layer is typically via direct method invocation on ob-
ject instances in a shared memory space. The latter reflects both the need to accommodate
the comparatively limited computational resources in a space-worthy planetary rover, and
to retain the benefits of strong type-checking in mission-critical software components. Thus,
the basic unit of reuse in CLARAty is a single class or a small collection of related classes,
which form the reusable “components” that will be the focus of this case study.

The majority of such reusable components reside in the functional layer, with the de-
cision layer viewed as a client of the interfaces exposed therein. Some elements of the
decision layer are also reusable, such as the overall framework and planning engine, along
with mission-level planning components that make use of the most generic interfaces in the
functional layer. The remainder of the decision layer typically uses highly robot-specific
interfaces to accomplish highly mission-specific goals (science payloads, etc.), yielding soft-
ware artifacts that are inherently non-reusable. As with many other facets of software
engineering, there is a middle ground between these extremes, especially in the monitoring
of platform-specific feedback during the execution of otherwise generic goals. These are typ-
ically implemented as individual constraints to planning and execution engines that already
exploit known-good domain-specific languages, such as the Task Description Language[50],
to effectively encapsulate these concerns.

Parallels between the methodology proposed in this thesis and the various platform-
specific constraints and clauses in the decision layer may be worth exploring as part of
a future research effort, but for now this work will remain focused on functional layer
components, as they are more readily available and more directly focused on reuse between
platforms. In particular, the goals of this complementary case study are to:

1. Identify parallels between the OO capability abstractions and the idea of primary and
supplemental data (or functionality);

130 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

2. Identify any direct treatment of primary vs. supplemental data in existing compo-
nents;

3. Propose plausible adaptations of the components to alternate data, coupled with
discussion of the ways that existing designs would either promote or impede those
adaptations.

4. Propose and discuss alternate designs in the style of the refactoring experiments dis-
cussed in Chapter 5 that may provide a better treatment of these adaptations.

Two Sides of the Same Coin

BasicMotorStatus MotorController

+position |eaao.. R TRy iti

P loci 7 Basic status represents +get—p°‘°‘lt}°"()

tvelocity . o +get_velocity()
generic capabilities

T Supplemental data impliesbl T

TorqueMotorStatus | ---- 1 specialized capabilities -{TorqueController

+torgue +get_torque()

Figure 9.2: The duality of data and capability representations.

There is a very strong duality between the concept of supplemental data proposed
by this thesis, and the issues of platform-specific capabilities as dealt with in CLARAty.
That is, a given supplemental datum can imply the presence of a corresponding specialized
capability, and vice-versa, to the extent that they might be seen as data- and function-
centric views of the same underlying issue. These even lend themselves to the same kind of
hierarchical representation, such as shown in Figure 9.2. Here, the generic capabilities and
primary data each reside in top-level classes, BasicMotorStatus and MotorController.
Specializations of the MotorController class can then encode specific capabilities, such as
the presence of a torque sensor, that are analogous to the torque supplemental datum in
the TorqueMotorStatus class.

It is important to note that the specialization of MotorController to TorqueController
on the right of Figure 9.2 is a simplification of the actual patterns used in CLARAty[40],
which emphasize the use of the Bridge[21] pattern to allow parallel specialization of the
functional interface and the underlying implementation. The critical benefit in this case
is that the functional interface may be specialized with logic to control a joint on an arm,
such as by incorporating the idea of joint limits, without constraining the interface to the
underlying hardware, which may be separately specialized to handle, for instance, a family
of related motor controller boards. In either case, the duality of capability and message
specification discussed above remains true, reflecting the critical decisions a designer must
make when determining the contents of both the generic and specialized classes.

In such cases, both the functionality- and data-centric approaches suffer from similar
drawbacks at the extremes of over-generalization and over-simplification. For instance, a
functional interface that exposes too many capabilities can become too unwieldy to be
practically useful, and may cause client applications to make invalid assumptions about the

9.1. CLARATY: REVIEW 131

detailed nature of those capabilities in order to use them effectively. Similarly, a top-level
data representation with too many primary data may have fields that cannot be populated
on some systems, or, perhaps worse, that can only be populated with similar, but not
identical, information that may conflict with assumptions in algorithms that depend on
those data, leading to subtly-erroneous results.

There are also similar difficulties at the other end of the spectrum, where an oversim-
plified functional interface may be too restricted to perform any useful work. This forces
client applications to immediately seek more specialized interfaces, defeating the original
purpose of declaring the generic one. In parallel, an overly restricted set of primary data
may force all meaningful functionality into supplemental effects, degrading the associated
core algorithm to the point of uselessness.

There is also parallelism in the ambiguities in between, where functional interfaces can
emulate one another, such as using a position-based motor controller to emulate velocity-
based control and vice-versa, so long as detailed performance and timing characteristics
are not critical to the client. This is highly related to the idea of unit- or coordinate-
frame conversions discussed in Chapter 2 which, so long as the data are “close enough” to
one another, algorithms that consume the data can remain indifferent to the underlying
representation.

The key difference between data and capabilities is in the directionality of access and
invocation. That is, data are typically provided to dependent algorithms, where capabili-
ties are typically sought out by client applications. The duality discussed above certainly
remains, but this slight difference has critical implications for software adaptation and reuse.

In terms of capability abstractions, a generic capability interface can inherently be reused
by all clients that only require generic functionality, and any elements that require more
specific capabilities must, in a sense, “know” about those capabilities before seeking them
out. As an example from CLARAty, a decision-layer element that performs some robot-
specific manipulation task must “already know” about a specific arm or wheel configuration
of that robot before seeking it out in the functional layer hierarchy. Thus, there are no
“extra” dependencies incurred from the perspective of the functional layer, as they are all
collected in the inherently robot- or mission-specific element of the decision layer. In terms
of providing a means of incrementally “seeking out” the desired granularity of functionality,
the mixture of hierarchical abstraction and polymorphism employed in CLARAty is an
excellent approach to the problem of exposing both platform-independent and platform-
specific capabilities.

For components that collaborate within the functional layer, such as a stereo vision
component that provides obstacle data to a navigation algorithm, CLARAty focuses on a
more data-centric approach, emphasizing the use of generic representations of intermediate
data products, such as the ubiquitous “point cloud” of obstacle data, to promote interop-
erability between components. As such, these interfaces are susceptible to the changes in
data availability and semantics discussed in Chapter 2, and the consequences of changing
the data provided to these algorithms less directly addressed by the principles underlying
CLARAty.

For example, the principal operating mode of the CLARAty decision layer is to specify
a series of waypoints for the robot to traverse as part of achieving some broader science
objective. The decision layer monitors the overall progress of the robot, but leaves issues
of terrain analysis, path planning and collision avoidance to functional layer components

132 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

hidden behind a generic Navigator interface, such as shown in Figure 9.1b. In contrast to
pure capability abstractions such as motor control or locomotion interfaces, this Navigator
interface composes several advanced robotic algorithms that perform a significant amount
of autonomous reasoning, using sensory data, such as from the Stereovision component in
Figure 9.1b, to detect obstacles and plan and execute safe trajectories. Due to variations in
obstacle data sources, such as might be caused by substituting a LADAR point cloud source
for the Stereovision component in Figure 9.1b, some of these navigation components must
be adapted to platform-specific capabilities as they are ported from one robot to the next.

The design of CLARAty accommodates the necessary modifications at a high level
through the Bridge[21] pattern discussed above, such as by aggregating a Morphin imple-
mentation within the Navigator component in Figure 9.1b. If faced with an alternate or
incompatible “point cloud” representation, a different navigation algorithm could be substi-
tuted for the Morphin implementation without affecting other components in a CLARAty-
based system.

However, the adaptability of such individual algorithm implementations is a lower-level
issue that is not directly addressed by the CLAR Aty design. That is, while the design of the
functional layer can certainly accommodate multiple variations of the Morphin algorithm,
there are no design guidelines or other mechanisms in place for maximizing the adaptability
of the Morphin implementation.

Part of enabling this kind of adaptability is to make use of flexible intermediate data
representations, and, to a certain extent, CLARAty uses a variety of template classes that
can accommodate many different data types. While some of these will indirectly support
the design tasks described in Section 9.4, there is little, if any, usage of templates or other
techniques to provide flexibility in input and intermediate data representations for detailed
algorithm implementations, which provides fertile ground for applying the methodology
proposed in this thesis.

9.2 Morphin Terrain Analysis

Morphin[59] is an algorithm for analyzing the navigability of a patch of terrain given geo-
metric data about the terrain, along with some knowledge of the mobility capability of the
robot that is to navigate the terrain. The ultimate output of the Morphin' algorithm is a
local grid representation of the “goodness” of the surrounding terrain, which is then used
as the basis of cost functions for various path planners such as D-Star[53], as summarized
in Figure 9.3.

In its most generic form, as is used by CLARAty, Morphin takes geometric terrain
data in the form of so-called “point clouds”, which are unordered sets of individual three-
dimensional (3D) points, each representing a sensor “hit” on a solid object in the real
world. These points are passed through several sub-algorithms, such as plane fitting and
navigability estimation, to ultimately yield a scalar “goodness” value, where 0 is “bad” and
1 is “good” for a given robot to occupy a given cell.

These point clouds can be the direct output of a sensor, such as a LASER scanner,
or else can be derived by processing the outputs of other sensors, such as a stereoscopic
camera assembly. As the least-common-denominator of these sensing modalities, the 3D-

"Morphin is an enhanced, or “power”, version of the “RANGER”[30] algorithm for terrain analysis.

9.2. MORPHIN TERRAIN ANALYSIS 133

Stereo

Cameras \
Morphin

Point Cloud Data

. Local Terrain "Goodness" L9ca|/G|Oba|
Terrain - Action Planners

/ Analysis (D*, etc)
LIDAR

Figure 9.3: Simplified Data-Flow View of the Morphin Algorithm

point representation is sufficiently generic to allow Morphin to be deployed on a wide variety
of robotic platforms. For example, Morphin has been deployed on at least three CLARAty
robots: Rocky 8, ROAMS, and Fido, by simply converting the outputs of the specific stereo
camera assemblies on each robot into the generic point cloud representation expected by
the algorithm.

While this speaks strongly to the benefits of generic data representations, the focus on
generality comes at the cost of discarding any platform-specific information that may also be
relevant to the algorithm. That is, at least conceptually, there is much more about terrain
than just its geometry that could influence whether or not it is “good” for traversal by a
robot, but exactly what will depend on what the robot can detect, and what terrain or terrain
features it is expected to encounter. For instance, the existing Morphin implementation also
supports the association of error or uncertainty information with incoming points, but this
functionality is not connected through the generic CLARAty interface.

As discussed in [39], this is due to the difficulties of correctly converting one type of
error measurement to another?, and of determining a correct “default” value when no error
information is available at all. That is, the inconsistency in the presence or type of error
information that can be provided by the various laser scanners and stereo camera assemblies
on each individual robot makes it difficult to define consistent semantics for an uncertainty
value associated with a given point.

From the perspective of the methodology proposed by this thesis, the issues surrounding
the treatment of uncertainty information are highly consistent with the issues of adapta-
tion to additional data as outlined in Chapter 2. Moreover, the treatment of this uncer-
tainty information is directly encoded in the existing Morphin implementation, and it is
conditionally-active, guarded by ad-hoc internal state flags, in a way that is very similar to
several supplemental effects identified in autonomous driving software in Chapter 5. That
this existing functionality is so readily identifiable indicates that the problems targeted by
this thesis, of adaptation to supplemental data, are common and under-treated phenomena
in advanced robotic software.

Looking beyond this single already-existing example of uncertainty information, it is
also easy to imagine other data that a robot might provide that could also influence the

2Consider the simple example of position errors in polar coordinates, whose “curved” nature can only
be approximated by analogous error values in a Cartesian coordinate frame. While seemingly pedantic, the
distinction might be critical to subtle assumptions embedded in an algorithm, and can accordingly lead to
subtly-erroneous results.

134 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

“goodness” results of the Morphin algorithm, but are not accommodated by either the
generic point-cloud interface, or the existing Morphin implementation. For instance, in
a stereo vision configuration, all information about luminance, texture, etc., is currently
thrown away at the conversion to a point cloud, but these values could conceivably make
nontrivial contributions to the “goodness” computation. As a fairly direct example, the
underlying cameras may be thermal imagers with the pixel values that correspond to some
temperature of the scene. Depending on the mission context, it may be desirable to ei-
ther seek or avoid various hot or cold spots in the terrain, which can be represented by
modulating the “goodness” result of the Morphin algorithm according to an appropriate
policy.

Similarly, additional texture analysis or image understanding algorithms might be used
that could associate “rockiness”, “sandiness”, etc. with a given point, which could also
be used to influence the “goodness” calculation according to mission context and goals.
Looking beyond the scope of Mars rovers, algorithms for vegetation detection, or identi-
fication of generic “features of interest”, such as trees, people, or automobiles, could also
introduce data that can also be influence in the “goodness” calculation. None of these data
are supported by the existing CLARAty interface, and all of them would require invasive
modification to the Morphin implementation.

When combined with the ad-hoc nature of the existing treatment of uncertainty data,
these examples further reinforce the broad applicability of the methodology proposed by this
thesis, as no one input specification can possibly represent all data that could possibly be
relevant to the Morphin algorithm. It follows that some explicit treatment of adaptability
to supplemental data is required, and several designs consistent with the methodology
proposed in Chapter 2 are presented in Section 9.4. Before looking at these possibilities,
however, it is necessary to dig deeper into the details of the existing Morphin implementation
in order to understand the stages that the point cloud data go through on their way to
the “goodness” result, and how the error information is (and other information may be)
incorporated into the corresponding calculations to influence the results.

9.3 Data Flow and Dependencies in Morphin

Expanding on the simplified data flow in Figure 9.3, the processing pipeline in Morphin
consists of four critical transformations from raw sensor (stereo camera) data to the ulti-
mate output of a local “goodness” grid. These four steps, plus a fifth stage that converts
“goodness” to planner-specific “cost” functions, are summarized in Figure 9.4.

Robot-Specific
Size/Kinematic
Parameters

Cost for Search Algorithms
Platform Geometry *

Stereoscopic Traversability "Goodness" Search Cost
Conversion Computation Computation Conversion
Image Data
Grid-Cell
Point Cloud Plane Fitting grid-cell planarity grid-cell traversability Terrain "goodness"

Figure 9.4: Detailed Data-Flow View of the Morphin Algorithm

9.3. DATA FLOW AND DEPENDENCIES IN MORPHIN 135

Each of the conversions presented in Figure 9.4 represents a semantic interpretation
where some input data are combined with platform details and mission context to yield
output data that have new, and typically more abstract, semantics. Consistent with the
work on the Merge Planner in Chapter 5, these stages of the core Morphin algorithm can
easily be affected by changes in the content or semantics of their input data, and should
include some explicit treatment of adaptability according to the methodology proposed in
this thesis.

In support of the alternate designs presented in Section 9.4, this section explores the
details of the existing Morphin implementation, focusing on the specific artifacts (classes,
methods, etc.) that collaborate to perform each stage of interpretation in Figure 9.4. Exist-
ing treatment of the supplemental “uncertainty” data discussed above will be highlighted,
along with the more general strengths and limitations of the current design, especially at
treating the kinds of adaptation discussed in Chapter 2.

Stereoscopic Point Clouds

The first stage of interpretation is the conversion of raw sensor data, in this case stereo
camera images, into the generic “point cloud” representation expected by the Morphin im-
plementation. Beyond the Point and Point_Cloud representations, there are five significant
classes involved in this processing stage, and their relationships are presented in Figure 9.5.

Morphin_Traversability_Analyzer Point type is

Point_Cloud_Source : by

Platform-specific oot point cloud D) <1# point_src 51mp1l1fled ft?r
bindings live here get_point_ « +update() . clarity/brevity
~ 4 |

) \

1y

| {R8,RS,FD,etc.}_Point_Cloud_Source

.
’

NN Point_Cloud | g 1 * Point

-image sources g +x,v,z: double
+get_point_cloud()

Figure 9.5: Collaboration diagram for conversion of camera images to point clouds for
Morphin. Notation: UML

The Morphin Traversability_Analyzer (MTA) is the central element in this and sev-
eral subsequent conversion stages. That is, the primary purpose of the MTA is to coordinate
several subsidiary classes in the Morphin implementation in order to produce new output
values when new input data are available. This largely consists of a sequence of method
invocations on those subsidiary classes, passing intermediate results from one to another
until the processing sequence is complete. There is some deviation from this, such as will
be discussed for later processing stages below, but the role of the MTA as a coordination,
or Mediator[21], class holds true enough for this discussion.

The MTA aggregates a Point_Cloud_Source, which provides a polling interface to get
point cloud data from the underlying platform. This interface, get_point_cloud() is invoked
as part of the update() method of the MTA, which passes the resulting Point_Cloud to
downstream consumers as necessary.

The abstract Point_Cloud_Source class is specialized per-platform, where the three
platforms implied by {R8,RS,FD} in Figure 9.5 are:

e R8 The Rocky8 prototype Mars rover;

136 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

¢ RS A ROAMS-simulated rover;
e FD The Fido prototype Mars rover.

There are several other robots that have similar bindings to the Morphin algorithm,
such as discussed in [40], but the source code for these additional platforms is not as
readily available as for the three platforms listed above. While access to more examples
would certainly be useful, these three are both similar and diverse enough to suffice for
this discussion. In terms of their similarities, the overall algorithm in each of the three
specializations of Point_Cloud_Source is roughly the same:

1. Acquire one or more stereoscopic image pairs;
2. Perform stereo disparity calculation for each image pair;
3. Convert disparity information into the Point_Cloud representation;

4. If necessary, fuse two or more Point_Cloud instances, one for each stereo pair on the
robot, into one coherent point cloud to return as the result of the get_point_cloud()
method invocation.

The details of each platform are well hidden behind this generic interface, isolating
clients from issues such as the intrinsic and extrinsic parameters for each camera, along with
the “knowledge” of which cameras comprise a stereo pair. These also allow variations in the
exact method of acquiring images, such as interfacing directly to a frame grabber vs. reading
intermediate image files from disk, to be hidden from consumers of Point_Cloud data.
Lastly, these specializations of Point_Cloud_Source also encapsulate the configuration and
specific usage of different stereo processing algorithms, which must be tuned to available
computing resources and camera-specific details of resolution, color depth, expected scene
geometry, etc.

In terms of generating purely geometric point-cloud data, this is a highly effective de-
sign, as it completely and elegantly encapsulates the derivation of the primary geometric
data for the Morphin algorithm. The drawback to this design is that there is no means of
propagating any supplemental data that might yield valuable enhancements to the terrain
analysis results. For example, if two thermal imagers were to be used in a stereo arrange-
ment, there would be additional data available about the temperature of each point that
cannot be represented via the existing Point_Cloud_Source interface without forcing all
possible platforms to also provide some kind of thermal information as well.

More concretely, several of the downstream processing stages, such as the aggregation
of Point_Cloud data into a plane-fitting representation, include the ability to incorporate
uncertainty data, or at least one specific type of “error” information, as mentioned above.
However, this functionality is not connected through the Point_Cloud_Source interface,
largely due to the difficulty of guaranteeing a semantically-consistent estimate of “error”
across multiple platforms[39]. While this exclusion allows the Morphin algorithm to be
used as-is on many platforms, this comes at the expense of degraded performance, as the
incorporation of uncertainty information would yield more accurate results.

Beyond error or thermal information, and especially beyond the context of Mars Rovers,
there are many other possible data that could be used to supplement the Morphin algorithm,
but are not accommodated by the existing interface, such as:

9.3. DATA FLOW AND DEPENDENCIES IN MORPHIN 137

e Results from simple texture analysis to determine whether some terrain is “rocky” vs.
“sandy”;

e Results from vegetation detection algorithms, such as [8], or other science instrumen-
tation that suggests terrain that should or should not be driven over.

e Advanced image-understanding algorithms to identify traffic, pedestrians, or other
“elements of interest”, as discussed above.

Many of these data might be incorporated into the overall navigation algorithm by
bypassing the Morphin algorithm entirely and building a parallel “goodness” map that
would be fused with the output of Morphin to generate the map ultimately used by the
path planning algorithms. While this would certainly be a valid approach in some cases,
there are several caveats that must be considered:

1. There would have to be some knowledge shared between the Morphin implementation
and this “new” map generator as to the scale and semantics of the “goodness” values
such that they may be easily combined (e.g., by a “min” or “max” operator) at the
output stage;

2. Much of the innards of the Morphin algorithm, including the generation of the base
“goodness” map and the binning of individual points into that map, would have to
be replicated in the “new” map generator;

3. A parallel, independent map generator would not have access to the internal details
of the Morphin algorithm, and would thus not be able to modulate useful parameters
such as “maximum allowable pitch” according to, for example, whether terrain is
“sandy” or “rocky”.

If any of these caveats are deemed unacceptable, then the only alternative is to extend
the Point representation and augment the Morphin implementation accordingly. Insofar as
the elements in Figure 9.5 are concerned, the critical problem is that, one way or another,
some additional information would have to be associated with the primary geometric data
on a per-Point basis. This can be accomplished in many different ways, ranging from
specialization of the Point class to maintaining a separate mapping of Point instances to
their supplemental data.

However, for the remainder of this discussion, the much simpler (if certainly more inva-
sive!) mechanism of extending the Point class to include additional member data will be
used, which is consistent with the simplification of the MovingObstacle representation in
Chapter 5. For example, the existing treatment of uncertainty information in the Morphin
algorithm can be accommodated by extending the Point class to include an additional
double-precision member, simply called “error”, which would then be connected to the ex-
isting functionality in the next stage of processing. Following the effects of this “error” field
through subsequent stages of processing will help to identify critical junctures where other
augmentations of the Point class might have similar effects.

138 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

Grid-Cell Plane Estimation

The next stage of processing in the Morphin algorithm converts the raw Point_Cloud data
into a grid of ground-plane estimates, including height, pitch, roll and a so-called “residual”,
which can be thought of as the “lumpiness” of a given cell. As shown in Figure 9.6,
the Morphin Traversability Analyzer (MTA) remains in control of this stage, using the
contents of the Point_Cloud to populate a Plane Fit _Map through its add_image points()
method.

Morphin_Traversability_Analyzer Plane_Fit_Map
obstacle map g +cells "
+update() »-{+add_image_points() f = = = = = > Point_Cloud

a v

|add_point(pt.x,pt.y,pt.z)

*

. . Plane_Fit_Moments
add_point_variance(x,y,z,square(error)) —_—

+various_plane_fit_data:double

N +usingPtsWithErrors: bool = false
same as add_point, but scaled by +add_point(x,y,z) Point
1.0/variance, also side-effect of +add_point(pt:Point) _
usingPtsWithErrors = true +add_point(x,y,z,error) +x,v,z: double
+add_point_variance(x,y,z,variance)

*

Figure 9.6: Collaboration diagram for conversion of point clouds to plane-fitting estimates
for Morphin. Notation: UML

The add_image_points() method iterates over the contents of the Point_Cloud, using
the X and Y coordinates of individual points to bin them into the appropriate grid cells.
The points are added to individual cells through the add_point (pt:Point) method, which
“breaks open” the Point representation and forwards its contents to the more verbose
variant: add_point(x,y,z:double). This method performs the actual work of adding a
single point to the intermediate “plane fitting moments” that are later used to extract the
fitted plane, using a derivative of the classic plane-fitting algorithm in [45].

While this level of indirection is somewhat unnecessary, it is a fairly common way of
accommodating multiple variations of otherwise semantically-identical data. In addition to
“breaking open” an external data type, this type of indirection is also used to implement
simple unit- or coordinate-frame transformations such as discussed relative to primary data
in Chapter 2.

Beyond this treatment of the primary geometric data, there are two variations of
add_point in the Plane Fit Moments class that are not used by the CLARAty implemen-
tation of Morphin. These variations represent an optional, or supplemental, incorporation
of error information into the plane estimation algorithm:

1. The overloaded method,add_point (x,y,z,error:double), which squares “error” and
forwards to:

2. The dedicated method, add_point_variance(x,y,z,variance:double)

The differences between these and the geometry-only versions of add_point are small,
but significant. These can be summarized as:

9.3. DATA FLOW AND DEPENDENCIES IN MORPHIN 139

1. Scale the point’s contribution to the plane fitting data by 1.0/variance, thereby as-
signing higher weight to points with lower variance.

2. Set the member variable usingPtsWithErrors to true, which triggers downstream
functionality discussed below.

These are highly consistent with the supplemental effects identified for urban driving soft-
ware in Chapter 5, which underscores a broader applicability for the primary vs. supple-
mental methodology proposed by this thesis. Moreover, this is typical of how supplemental
data are often treated in existing systems: by introducing variations of a baseline method
and setting additional triggers for downstream processing.

The trouble with this approach is that, while effective for a single or small collection
of supplemental data, this can lead quickly to a combinatoric explosion of input methods
and possibly-active downstream effects that is simply impossible to manage. For example,
adding thermal information, as discussed above, would require:

1. Some cached indication, analogous to usingPtsWithErrors in Figure 9.6, of whether
or not temperature information has been injected;

2. An extension of the Plane_Fit_Moments class to include some aggregation of tempera-
ture data, such as average and /or maximum temperatures of the points that contribute
to a plane, as temperature is likely to be relevant to downstream computation than
to the geometry of plane fitting.

3. A new method on the order of add point_temperature(x,y,z,temp:double), for
points with just temperature information, and

4. A method such as add_point_temperature variance(x,y,z,temp,variance), for
points that have both temperature and error information.

The methodology proposed in this thesis would, instead of this ad hoc treatment, iden-
tify the incorporation of individual points into the plane-fitting representation as a critical
point of variability in the Morphin implementation, to be exposed as part of the Morphin
“adaptability interface”, such as presented in Section 9.4 . The policies for incorporating er-
ror, temperature, or other platform-specific supplemental data into the Plane_Fit_Moments
representation could then be encapsulated in separate classes or aspects according to the
design patterns presented in Chapter 4. This would allow results from those supplemental
data to be propagated to the next stage of processing without introducing any direct depen-
dencies in the core Morphin implementation, which would remain reusable on any platform
that can populate the primary Cartesian Point representation. This also enhances the un-
derstandability of the core Morphin implementation by freeing it from extraneous, inactive,
or otherwise confusing functionality, such as the add_point_variance() method in Figure
9.6, which obfuscates the process of incorporating a Point into a Plane.

Traversability Estimation

Morphin Traversability_Analyzer continues its controlling role by propagating the plane-
fitting results to the Morphin class, which, despite its simple and seemingly all-encompassing

140 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

name, is only one among many subsidiary classes in the overall Morphin implementation.
This class uses the plane-fitting representation to derive a set of “traversability” parame-
ters, which are then forwarded to the ultimate “goodness” calculation. The classes that
participate in the estimation of a grid cell’s “traversability” are shown in Figure 9.7.

Morphin_Traversability_Analyzer

'

#_stereo_converter
|, - update() calls compute_goodness_map(), j

~®¥|# obstacle map . iq s
‘+update() | | which calls compute_cell_traversability()

Morphin

Plane_Fit_Map < — - - - - -

+compute_goodness_map()

1 === #compute_cell_traversability() o = = = = = = = = = = = = = = = 1
0 | ! ! 1
1 : ! !
1 | V !
* 1 -—-=- f !
| Robot_Region V
Plane_Fit_Moments < - - : CSpace_Traversability
+usingPtsWithErrors: bool = false V +numPts
+operators +,-,+=,-=,=(other:PFM&) +distribution
+get_num_points() Plane compute_cell_traversability: +residual
+get_plane() < = = = = - -A,B,C: double aggregation/convolution of +patchResidual
+compute_residual() <€ = = = = o +residual —{ robot region over the Plane +roll
+compute_quality() << = = = = +quality Fit Map to yield contents of +pitch
+compute_height_variance() +compute_pitch_roll() CSpace_Traversability +height
+get_height() +stepHeight

Figure 9.7: Collaboration diagram for conversion of plane-fitting estimates to a local
“traversability” representation for Morphin. Notation: UML

The estimation of the traversability occurs within the compute_goodness map () method
of the Morphin class, but is analyzed separately from the actual “goodness” calculation
because of the use of an intermediate type, CSpace_Traversability. The ultimate “good-
ness” results depend exclusively on the contents of this intermediate type, as the algorithm
in compute_goodness map() can be summarized as, for each cell in the grid:

1. Perform a configuration-space expansion by aggregating all plane-fitting cells within
the robot’s “region”, or bounding box, into a single macro-plane.

2. Cache the properties of that macro-plane in a CSpace_Traversability instance.

3. Compute the output “goodness” cell using the contents of that CSpace_Traversability
instance, which is discarded before proceeding to the next cell.

The contents of this intermediate data type mostly pertain to the geometric properties
of the macro-plane discussed above, including the estimated roll, pitch, and height, as made
directly available through the Plane representation. Beyond these basic geometric prop-
erties, the CSpace_Traversability representation also includes the residual of the plane-
fitting process, which is the XWQ error measurement, roughly analogous to the “lumpiness”
of the aggregated plane. There is also a representation of how well the plane is covered
by sensor data, both in terms of the number of points that contribute to the estimated
ground plane, along with how well they are distributed over the plane, as opposed to being
clustered in a corner and leaving the rest ill-defined. Lastly, the CSpace_Traversability
class captures the worst-case “residual” of the individual sub-planes, along with the height
difference between the highest and lowest sub-planes.

9.3. DATA FLOW AND DEPENDENCIES IN MORPHIN 141

This representation provides reasonable coverage of what would make a region of terrain
“good” or “bad” for traversal. Each of the properties of the CSpace_Traversability repre-
sentation would be subtly affected by adding error information to the plane estimation pro-
cess, but those effects would be transparent to the goodness calculation. That is, the effects
of introducing error information into the Point representation can be thought of as being
“contained within” or “hidden behind” behind the contents of the CSpace_Traversability
without “losing” any of the semantics of the “error” data.

The exception to this is that the quality member of the Plane representation is absent
from all calculations that contribute to members of the CSpace_Traversability class.
Close inspection reveals this member to be computed only if usingPtsWithErrors has
been set, so the introduction of this quality member might be viewed as a supplemental
effect that is very similar to the introduction of the intermediate “isMoving” states for the
Merge Planner (see, e.g., MP.D.1).

In terms of semantics, “quality” in this case seems to be a complex function that models
how well the “lumpiness” of the fitted plane can be “explained” by the error estimates pro-
vided with the point data. Even though it is not currently incorporated into the calculation
of the CSpace_Traversability contents, such information could easily be relevant to the
subsequent “goodness” calculation, perhaps triggering more conservative estimates thereof
in the case of particularly ambiguous fits.

Still, this is at least partially redundant with the existing “residual” information, which,
when combined with the lack of any other means of propagating the “quality” result through
the CSpace_Traversability representation, seems a likely explanation of its exclusion from
further calculations. As with the population of the Plane Fit Moments class above, the
methodology proposed in this thesis would identify the augmentation and population of
the CSpace_Traversability representation as critical points of variability in the Morphin
implementation. Including these in the AO or OO adaptability interfaces would allow the
effects of error, thermal, or other supplemental data to be propagated to the final stage:
the “goodness” calculation.

Goodness Estimation

As mentioned above, the “goodness” calculation follows immediately after the population of
the CSpace_Traversability class in the compute_goodness_ map() method of the Morphin
class. As such, the collaboration diagram in Figure 9.8 only introduces one new class, the
Goodness_Cell representation, which is used to hold the final results.

This is the final stage of the Morphin algorithm, where the highly abstract concept of
“goodness” is extracted from the largely geometric information about roll, pitch, height, and
the “residual”, or lumpiness, of the terrain. Interestingly, “goodness” is actually calculated
as the complement of the “badness” of a given cell, which is the worst case of three different
“hazard” calculations, which are restricted to the range [0, 1], corresponding to a smooth
range from “safe” to “hazardous”.

The first two hazards are straightforward “roll” and “pitch” hazards, wherein the corre-
sponding fields of the CSpace_Traversability are scaled according to some minimum and
maximum values. Angles under the minimum are assigned a hazard of 0, and angles above
the maximum are assigned a hazard of 1, with angles between linearly interpolated. The min
and max values are configurable, and are presumably tuned to the specific characteristics

142 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

Morphin_Traversability_Analyzer update() calls compute goodness_map(),
stereo converter o>—- | which calls compute_traversability_goodness()
+update() | — |

Morphin

+compute_goodness_map()
e e - - -] #compute_traversability_goodness() = = = = = = = = = -
#compute_certainty() - - =
#compute_traversability()

A

1

1

1

T I
CSpace_Traversability 1 goodness is minimum of:
+numPts <- - | - roll hazard
1
1
1
|

+distribution - pitch hazard

I_ |

+residual l<<— - - 1 - traverse hazard (lumpiness) I \I/

. —— 1
+patchR§51dua1 E_ - 1) Goodness Cell
+stepHeight 1 | —
+roll <----9 T —>+certainty
+pitch <---- l===—d +goodness
+height el iy +height

Figure 9.8: Collaboration diagram for conversion of local “traversability” to “goodness” for
Morphin. Notation: UML

of the robot and expected terrain.

The third hazard that contributes to the goodness estimate, the so-called “traverse
hazard”, is a similar function of the members of CSpace_Traversability that encode
“lumpiness”: the residual, patchResidual, and stepHeight members. These are similarly
scaled against configurable thresholds into the range of [0,1], and the overall “goodness”
result computed as (1 — max(roll_hazard, pitch_hazard, traverse_hazard)).

The thresholds used for calculating the individual hazards are very similar to the con-
figurable thresholds for relevance tests in the urban driving software discussed in Chapter
5, and this is one significant way that supplemental data may be used to affect the over-
all results. For example, the identification of “sandy” terrain may be used to adjust the
baseline thresholds, or simply substitute alternate thresholds for the maximum acceptable
pitch or roll angles, according to an increased risk of sliding off course as opposed to more
firm terrain.

Relatedly, this would be an effective place to apply the “quality” measure that is avail-
able after the plane-fitting stage when incoming points are annotated with error information.
If this “quality” measure were propagated through the CSpace_Traversability representa-
tion, it could be used to bias the traverse hazard, or even the simpler roll and pitch hazards,
to represent an increased risk in an areas of low quality or high uncertainty. Similarly, the
individual hazards estimates might be adjusted to avoid areas with “a lot” of vegetation,
either because the vegetation adds some uncertainty as to the “true” nature of the terrain,
or, from a more scientific standpoint, it may be undesirable to drive over vegetation that
may be investigated at a later time.

Beyond the modulation of individual hazards, the “worst case hazard” reasoning frame-
work could be extended to allow for completely new hazards derived from supplemental

9.3. DATA FLOW AND DEPENDENCIES IN MORPHIN 143

data, such as adding a “melt hazard”, which would be relevant for a volcano-exploring
robot, wherein thermal information, once propagated and/or aggregated through the three
preceding stages described in this section, could be used at this final stage to convey “this
terrain is too hot to risk driving over”.

In addition to the principal “goodness” output, there are also “certainty” and “height”
members of the Goodness_Cell representation that may be affected by supplemental data
as well. The “certainty” member is currently a strict function of the number of points that
contribute to the cell, but could also conceivably be affected by, “quality”, “vegetation”
or other supplemental data described above. The “height” member is simply forwarded
from the homonymous member of the CSpace_Traversability class. Cursory investiga-
tion shows that this member is used in visualizations of the Morphin results, suggesting
that regarding temperature, vegetation, etc., might also be worth introducing into the
Goodness_Cell representation for similar purposes.

In the current design, however, there is no explicit accommodation of supplemental data
or effects, and each of the above modifications can only be accomplished by invasive modi-
fication of the Morphin class. In contrast, the methodology proposed by this thesis would
instead expose an adaptability interface that includes the individual hazard calculations,
along with their aggregation according to the “worst case” rule, as high-value points of
variability that could be influenced by supplemental data. The various effects described
above could then be encapsulated in separate classes or aspects, allowing the supplemental
data to influence the final “goodness” results without introducing direct dependencies at
any stage of the core Morphin algorithm.

Cost Conversion

While the Goodness_Cell representation can be thought of as the ultimate output of the
Morphin algorithm, there remains one additional step to convert this representation into
something usable by the search, planning, and visualization algorithms that consume it.
To understand how the goodness results are propagated to these other components, it
is necessary to broaden the scope of the collaboration diagrams to include the top-level
Navigator class, which coordinates the entire waypoint-based navigation process.

As shown in Figure 9.9, the Navigator class aggregates a Traversability_Analyzer
and an Action_Selector, and manages their interactions in a sense-plan-act cycle as part of
the nav_loop() method. The actual connection between Morphin and the action selection
algorithm occurs through dedicated “function objects”, as they are called in [59], which
provide the Action Selector with abstract interfaces for querying the expected costs of
candidate local and global actions.

These function objects are very similar to the OO design for encapsulating supple-
mental effects presented in Chapter 4, in that the derivation of cost is delegated ac-
cording to the Template Method and Strategy patterns[21] to individual classes such as
DStar_Global_Cost. These classes are dedicated to the task of converting some underlying
representation, such as “goodness”, traversability, etc., into the concept of “cost” expected
by the consuming algorithm.

While these comparatively small classes can be easily adapted to changes in content or
semantics of the underlying representation, the encapsulation of cost-calculation policies is
not complete. For instance, there is a cost calculation embedded in the Goodness Map repre-

144 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

Navigator
——_>t#nav_loop() &>
#_trav_analyzer #_action_selector
1 1
Traversability_Analyzer_Base Action_Selector <> I I
+update() #_local_cost N "
qlobal cost Global_Cost_Function Local_Cost_Function
+get_cost() +get_cost()
? +is_obstacle()
Trav_Analyzer<Goodness_Map> Goodness_Callback DStar_Global_Cost T
= >#notify callbacks - — —>»|+process_data() +get_cost() Goodness_Local_Cost
1 +add_sensor_data()
| A +get_cost()
1 N . 1 — = — +is_obstacle()
1 Morphin_Traversability_Analyzer DStar_Goodness_Callback I 1 . = J#cett_cost()
1 1 T
- = +update() +process_data() = ===00 === == ! 1 : 1
+get_goodness_map() T 1 |
{ v 1 1
[1
Goodness_Cell 1 .
Goodness_Ma
—"ap oL *l+certainty <---=--=-=--=-- 1 1
+get_worst_case() +goodness <-----------= !
A +height !
1

Figure 9.9: Collaboration diagram for propagation of Morphin “goodness” to consuming
planners via cost functors. Notation: UML

sentation, as part of its get_worst_case () method, that is redundant with the functionality
embedded in the DStar_Global_Cost functor, reflecting a less-than-ideal separation of the
D-Star cost “concern”. Close inspection of the implementation, however, indicates that this
may have been the original intent, but the typical constraints of time and budget may have
prevented it from achieving parity with the ideal design.

Nevertheless, similar less-than-ideal divisions of responsibility are present among many
of the classes discussed in this section, ranging from stereo conversion all the way to the
traversability representation, that would make adaptation even more difficult than otherwise
implied in this discussion. In this particular case, it is unlikely that a supplemental effect
would have to be propagated through the Goodness_Cell representation, as the “goodness”
representation is both simple and powerful enough to accommodate the vast majority of
terrain features that a robot might be able to detect or discern.

Still, as was the case with the urban driving software discussed in Chapter 5, a certain
amount of refactoring would be necessary in order to allow a clean, concise exposure of
adaptability in the Morphin sub-algorithms. These issues are highlighted as part of the
high-level discussion in the next section, which applies the AO and OO design techniques
proposed in Chapter 4 to the components discussed above, drawing parallels to the more
detailed work done on urban driving software in order to highlight the relative strengths of
each approach and the applicability of the overall methodology proposed by this thesis.

9.4. ALTERNATE DESIGNS FOR MORPHIN 145

9.4 Alternate Designs for Morphin

For the urban driving software that was refactored in Chapter 5, the existing structure
was preserved to the greatest extent possible in order to avoid any sense of “gaming” the
metrics presented through Chapter 7. However, a significant result of these analyses, and
of the candidate augmentations to include V2V data discussed in Chapter 8, is that the
difficulty of accommodating supplemental data and effects depends a great deal on the
detailed structure of the core algorithm.

In applying these techniques to other software components, such as the Morphin imple-
mentation discussed above, there is no reason to be so tightly constrained by the existing
structure. In fact, some designs that would otherwise be considered “good practice”, such
as the Merge Planner’s insulative use of intermediate data types, discussed in Section 5.4,
can adversely affect the adaptability of an algorithm to supplemental data. It follows that
an initial refactoring, independent of any particular approach for encapsulating supplemen-
tal effects, would be a valuable first step to enhancing the adaptability of the Morphin
algorithm. This process should focus on:

e Removing any pre-existing supplemental effects (and setting them aside for later re-
integration),

e Reducing or eliminating the usage of intermediate data types that would have to be
augmented to accommodate supplemental data,

e Ensuring a good (one to one) mapping between individual processing stages and the
methods that perform them, and

e Streamlining the path of input data into the system, particularly avoiding unnecessary
levels of indirection or prematurely “breaking out” the contents of an input represen-
tation, such as the MovingObstacle or Point classes, that may later be augmented
to include supplemental data.

Figure 9.10 shows one of the many ways these guidelines may be applied to Morphin
design, wherein critical changes for each class are:

e The Morphin Traversability Analyzer class (MTA) no longer owns or manipulates
a Plane Fit Map. The process of binning points from a cloud into the plane-fitting
representation is now hidden behind the Morphin class. This has the joint benefits of
consolidating the core algorithm in the Morphin class and leaving the MTA class much
more narrowly focused on the job of binding the Morphin algorithm to the role of
“traversability analyzer” in CLARAty. Relatedly, the instance of the Morphin class
aggregated by the MTA has been renamed to morphin_impl to more accurately reflect
that the actual implementation of the Morphin algorithm is embodied therein.

e The Morphin class absorbs the responsibility of binning points into plane-fitting cells,
exposing the corresponding add_points method as the one and only conduit for input
data. The homonymous method in the original Plane Fit _Map class has been stripped
out, relieving that class of an explicit dependency on the Point_Cloud representation.
Instead, the add_points method of the Morphin class iterates over the individual

146 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

. . AN
. Morphin_Traversability_Analyzer .
Point_Cloud_Source 1 LALLS LS y update:
<t# point_src Get Point Cloud
+get_point_cloud(cloud:Point_Cloud &) # morphin impl _-=-=1 -> Push to Morphin
+update() - Get Goodness Map
0 -> Push to Callbacks
{R8,RS,FD}_Point_Cloud_Source 1
-image sources Morphin AN
+get_point_cloud(cloud:Point_Cloud &) add_points:
T I- — =+add_points(cloud:const Point_Cloud &) ~«<.] For each point in cloud:
1 . +get_goodness_map(): const Goodness_Map & pmap.get_cell(x,y)
V 1 #compute_gootliness_map() cell.add_point(point)
N #get_cells_within_cspace()
Point_Cloud € - - = === - ! #compute_aggregated_cspace_plane()
#compute_goodness ()
S
0 1 ' \‘ compute_goodness directly
. *{ uses Plane_Fit_Moments and
E |1 Plane, bypassing the old
Point Plane_Fit_Map Goodness_Map CSpace_Traversability type
+x,v.z: double +get_cell(x,y:double) +get_cell(x,y:double) :
'
A 'R 'R :
1
. * * Plane
1 Plane_Fit_Moments Goodness_Cell _A.B.C: double
: +plane fitting data: double +certainty +get_pitch()
----- +add_point(pt:Point) +goodness +99t—r°m)
+operators +,-,+=,-=,=() +height +get_height()
+get_num_points() A
+get_plane() =000 e e e e m e - === -

+get_residual()

Figure 9.10: Suggested redesign of the Morphin algorithm as a precursor to the application
of advanced approaches for encapsulating supplemental effects.

points in the cloud, using the X and Y coordinates of each point to look up the
appropriate plane-fitting cell, and adding that point to that cell. Thereafter, it invokes
the compute_goodness map method, which in turn invokes the series of subsidiary
methods that have been introduced for each stage of processing discussed above.

e The Plane Fit Map class, in losing its add_points method, is reduced to a generic
grid map of Plane Fit Moments instances. This grid-map functionality is derived
from an external Grid Map template, also used by the Goodness Map class, which is
omitted from Figure 9.10 for clarity. Relatedly, the get_worst_case() method of the
Goodness_Map class has also been removed, as it was only used by, and thus be cleanly
transplanted to, the Goodness_Local_Cost class from Figure 9.9. This relieves the
Goodness Map class of any “cost conversion” policy and aligns the design more cleanly
with the apparent intent of the cost functors.

e The Plane Fit Moments class has been stripped of its usingPtsWithErrors mem-
ber, along with the “error” and “variance” derivatives of add_point, as part of
removing the supplemental effects of “error” data discussed above. Relatedly, the
compute_quality and compute_height_variance methods have also been removed,
as they were triggered by the usingPtsWithErrors member. The explicit overload,
add_point (x,y,z:double), has also been removed, focusing the plane fitting repre-
sentation on a single add_point method that depends on the external Point data
type. This streamlines the path that the Point representation takes on its way into

9.4. ALTERNATE DESIGNS FOR MORPHIN 147

the Morphin algorithm, ensuring that any supplemental data introduced into the
Point representation will be available at this stage of processing.

e Lastly, the quality member of the Plane class has been omitted, as it was popu-
lated by the compute_quality member of Plane Fit Moments, and the intermedi-
ate CSpace_Traversability representation has been eliminated, as it was only used
ephemerally to collate results that are now directly available through accessors in the
Plane and/or Plane Fit Moments classes.

This alternate design preserves both the overall role and the detailed functionality ex-
pected by other CLARAty components. That is, the effects of “error” information were not
active in the original implementation, so their excision does not affect the output “goodness”
results. The rest of the changes are hidden behind the Morphin_Traversability_Analyzer
interface, so this alternate design could be implemented and substituted for the current Mor-
phin implementation in CLARAty without any ramifications to other software components.

Even without the application of more advanced design techniques, such as the AO and
OO designs presented in Chapter 4, the enhanced coherency of this design would make
it more adaptable to variation in the input Point representation than the original design
for the Morphin algorithm. For example, the collection of all Morphin “policy” within
the Morphin class, and the subdivision of critical processing stages into separate methods
therein, does a better job of highlighting the trajectory of Point data through the algorithm
than the previous design, which sprinkled those policies across several more generic methods
of several more disparate classes. This makes it easier to locate and understand places where
supplemental effects might be introduced, updated or removed, regardless of the detailed
approach to their implementation.

With this alternate design as a fresh starting point, it is now possible to start discussing
AO and OO adaptability interfaces. Before doing so, however, it is necessary to address
the means by which alternate Point representations might be maintained and introduced
for each of the individual robots supported by CLARAty.

Flexible Input Representation

The loosely-coupled nature of the urban driving software discussed in previous chapters
allowed the details of having a flexible MovingObstacle representation to be largely ignored
as an “external” concern. That is, the issues of introducing and populating supplemental
data in the MovingObstacle class were taken for granted in favor of focusing on their effects
on the software components under investigation.

In contrast, the Morphin implementation is much more tightly-coupled, partially due
to the overall focus on class-level component integration in CLARAty, but also because
the Morphin algorithm is particularly data-intensive. That is, the Morphin algorithm may
be required to efficiently process many thousands of points in a single “cloud”, where the
urban driving algorithms were not expected to deal with more than 50 moving obstacles
in any given situation. This precludes the use of a polymorphic Point representation,
as the associated increases in memory and access time would yield unacceptable overall
performance. It follows that the flexible accommodation of alternate input data types is a
much more important design consideration for Morphin, which cannot be simply ignored
as before.

148 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

In support of this tighter coupling, CLARAty already makes significant use of templates
and other generic programming techniques to allow high-level classes, such as the Navigator
class in Figure 9.9, to be easily composed of platform-specific implementations of generic
functional interfaces, such as the Morphin specialization of the Traversability_Analyzer
interface. Following this trend, it is possible to adjust the design presented in Figure 9.10 to
align the input specification behind a more generic (templated) representation of a “point”.

y POINT:XYZPoint|

Templating against Morphin_Traversability Analyzerf--... Templating against
CONTAINER eliminates # point src: Point Cloud Source<POINT> POINT allows efficient
explicit Point_Cloud +update() usage of alternate
type, allows use of point representations
std::set, list, etc. -

\‘ l'l

\‘ .

K y POINT:XYZPoint,
R Point_Cloud_Source

+<<template>> <CONTAINER> get_point_cloud(cloud:CONTAINER<POINT>): bool

<<bind>>
| POINT->Point
<<XYZPoint>> The original Point
Plain_Point_Cloud_Source Point class can be used

______ ___> e ===

+x,y,z: double

<<bind>>
| POINT->R8_Point

to instantiate a
"vanilla" Morphin

+get_point_cloud(...)

R8_Point_Cloud_Source R8_Point
_______ L - - >
+get_point_cloud(...) +error: double
R Platform-specific
<<bind>> s point representations
POINT->FD_Point S i
— —oXYZPointos . carl1 eJ..ther gxtend an
N FD Point | .--] existing Point or else
FD_Point Cloud Source| _ redefine X,Y,Z using
+get_point_cloud() +temperature_K: float compatible types to
- - +x,v,z: float satisfy XYZPoint

Figure 9.11: Template-based accommodation of alternate point representations for Morphin
“point sources”

The alternate design in Figure 9.11 replaces the specific dependency on the Point class
with a more generic dependency on the XYZPoint stereotype®. This stereotype, which repre-
sents the primary data for the Morphin algorithm, can be satisfied either by inheriting from
a “basic” point representation, such as with R8_Point, or else by direct declaration, such
with FD_Point in Figure 9.11. The add_points() method of the Morphin class, along with
the add_point () method of the Plane Fit Moments class would be similarly templated,
fully decoupling the Morphin algorithm from any specific “point” representation, as shown
in Figure 9.12.

This usage of templates is a variation on theme of “mixins” used to introduce supple-
mental data into the intermediate data types for the OO redesign of the Merge Planner

3In template programming, a “stereotype”’ can be thought of as specifying what “must” be provided
in order use the template. In this case, the “XYZPoint” stereotype specifies that the templated “POINT”
class can only be satisfied by types that include public, scalar (int, float, double, etc.) members named “x”,

()

y”, and “z”.

9.4. ALTERNATE DESIGNS FOR MORPHIN 149

POINT:XYZPoint,

Templated Morphin Morphin_Traversability_Analyzer
implementation is # morphin impl: Morphin<POINT> <>
made concrete by +update()
binding to POINT .l
9 Sl <<bind>> A --------- '
POINT -> Point 1) POINT:XYZPoint,
<<XYZP-01nt>> Morphin
Vanilla_Morphin_Traversability_Analyzer| | _ _ | Point
— — — + plane map: Plane Fit Map<POINT>
+x,y,z: double +add_points(cloud:const CONTAINER<POINT>&)
<<bind>> 0
POINT -> R8_Point 1 ; POINT:XYZPoint,
- . i Plane Fit Map ~ [777~
R8_Morphin_Traversability_Analyzer| | _ _ R8_Point — 7P
+error: double + cells: Plane Fit Moments<POINT>
+get_cell(x,y:double)

(&
<<bind>>
POINT -> FD_Point <<XYZPoint>> * -P-()I-N‘T";(Y-ZI;o-in-t'
. y 1
- . FD_Point . il el
FD_Morphin_Traversability_Analyzer | - - Plane_Fit_Moments
+temperature_K: float +plane fitting data: double
+x, v, z: float +add_point (pt:POINT)

Figure 9.12: Template-based accommodation of alternate point representations for the
Morphin Algorithm

in Section 5.4. In fact, Figure 5.14 highlights the usage of type definitions (“typedefs”) as
pseudo-templates, where the alternative was to template the 00MergePlanner class against
type extensions for each of three intermediate data types.

In a sense, these variations on the Point data types can be thought of as “intermedi-
ate” in the broader scope of the Traversability_Analyzer role, highlighting the issues of
recursion and granularity of design discussed in previous chapters. From this perspective,
it makes sense that the OO technique described in Chapter 4 would be directly applicable
here, given the existing usage of OO design techniques in CLARAty.

It follows that the proposed AO approach that would be similarly applicable, such
as by “slicing” supplemental data into the Point class, but doing so would have effects
beyond the the Morphin implementation, such as to include effects on the stereo vision
or other algorithms that process raw sensor data to yield (augmented) point cloud data.
While certainly a valid and interesting application of this methodology, this would move the
discussion well beyond scope of the Morphin algorithm, and is thus not pursued further here.
Still, this suggests a broader applicability of the primary vs. supplemental methodology
across many levels of the CLARAty hierarchy that could be the basis for interesting future
work.

The remainder of this discussion focuses on the Morphin class and its subsidiary classes,
and the application of the AO and OO techniques proposed in Chapter 4 in order to expose
adaptability interfaces and bind supplemental effects to the Morphin algorithm.

Adaptability Interfaces

As highlighted in Chapter 8, relative to introducing novel input data to existing software,
the contents of an effective adaptation interface must consider the effects of both existing
and possible future supplemental data. In the limit, this requires a degree of prescience that

150 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

can only be attained through copious amounts of experience and luck in order to determine
the “best” such interface. In practice, however, a reasonably good adaptation interface can
be derived by combining existing supplemental effects with a few likely candidates for future
adaptation, such as the temperature, vegetation, or feature-of-interest examples discussed
above.

In this case, “error” information is the only pre-existing supplemental datum, and its
effects, which are discussed in more detail in Section 9.3 can be summarized as:

ERR.1 Modify the plane-fitting algorithm by associating a unique weight to each point,
2

computed as 1.0/error?.
ERR.2 Extend the Plane Fit Moments class to include new members and methods
for representing and manipulating error data when aggregated into a plane.

ERR.3 Extend the output interface of the Plane _Fit_Moments to expose a new derived
result, “quality” for use by downstream processing.

ERR.4 Incorporate the “quality” value into the “goodness” computation. This is
ill-specified because the corresponding functionality was not present in the
CLARAty implementation of Morphin, presumably excised due to irrelevance.

Taking a more general viewpoint, the first three effects provide reasonable coverage
of what might happen to supplemental data as a “point” is incorporated into a “plane”.
That is, an adaptability interface for the plane-fitting process could cover a broad range of
supplemental data by specifying:

PF.V.1 The computation of the weight assigned to a given point shall be extensible to
allow application of supplemental data.

PF.V.2 There shall be a means to introduce new member data in the Plane Fit_Moments
class to hold additional configuration values and/or for aggregated results of
supplemental data.

PF.V.3 The methods that allow plane data to be combined and separated, such as the
addition and subtraction operators in Figure 9.7, shall be extensible so as to
allow preservation of semantics for aggregated data such as introduced through
PF.V.2.

PF.V.4 There shall be a means of extending the output interface of the Plane Fit Moments
class to provide a means of propagating novel results, such as based aggregated
data mentioned in PF.V.2, to downstream consumers.

The fourth effect of the error datum, ERR.4, although ill-specified, can be merged
with the discussion above to yield a similar adaptability requirements the conversion of
plane-fitting data into the actual “goodness” representation.

GC.V.1 The computation of the pitch and roll hazards shall be extensible such that al-
ternate thresholds for maxim allowable angles may be substituted as a function
of intermediate results made available through PF.V.4.

9.4. ALTERNATE DESIGNS FOR MORPHIN 151

GC.V.2 The computation of the each of the pitch, roll and traversal hazards shall
be extensible such that the overall outputs may be scaled as a function of
intermediate results made available through PF.V.4.

GC.V.3 The determination of the maximum hazard value shall be extensible to include
additional hazards as may be necessary to represent thermal, radiation, or other
non-geometric hazards to the platform or mission.

When combined with the plane-fitting adaptability interface prescribed by PF.V.1
through PF.V.4 above, these will allow a wide variety of supplemental data to have valid
and meaningful effects on the ultimate “goodness” of an individual cell. Following the
detailed design techniques presented in Chapter 4, two such adaptability interfaces are
discussed below in Figures 9.13 and 9.15.

OO Design

Template Morphin against
internal delegate types L POINT:XYZPoint ~ ~ ! |mmmmmmmmm-—————-

1 . N
~., 1EGP:Extended_Goodness_Policy, EPF: Ex:e_mj_eci_fl_arle:F_lt_tEr"
1 EPF:Extended_Plane_Fitter

Goodness_PoIicy_DeIeg-a-te- -

Morphin +compute_goodness (epf:const EPF &)

#compute_roll_hazard(epf)

+_plane_fit_map: Grid_Map<EPF>
+ _goodness delegate: EGP

+add_points(cloud:const CONTAINER<POINT>&)

#compute_pitch_hazard(epf)
#compute_traverse_hazard(epf)
#compute_max_hazard(epf)

0 #get_max_roll(epf)
#get_max_pitch(epf)

B | - 3
Plane_Fit_Map <<stereotype>> [P " h
— Extended_Goodness_Policy . Deu,’gate goodness
— — . policy to nested

01 .
.
.
A .
0y .
s .
'\ .

strategy class

POINT:XYZPoint,

Delegate Stereotypes:
Morphin template expects
derivatives of the base
GPD and PFM classes

PIane_Fit_Momen-t§ -

+plane fitting data: double
+add_point(pt:POINT)

+get_weight(pt:POINT)

’

! ~
! ~
, T
,
. o
X <<stereotype>> Specialize PFM

Extended_Plane_Fitter dlrectly t(-) atter
_ — plane-fitting step

+get_weight (pt:POINT)

Figure 9.13: Morphin adaptability interface using Object-Oriented delegation.

Rather than generate a separate plane-fitting delegate class, PF.V.1 through PF.V.4
are fulfilled by directly specializing the Plane Fit Moments class. Other than extending
this class to include a polymorphic get_weight () method, specifically supporting PF.V.1,
the PFM class remains unchanged, as it already does an excellent job of encapsulating the
policy for dealing with the primary point data.

The rest of the design in Figure 9.13 follows those presented in Chapter 5, specifically by
delegating the algorithm for calculating the “goodness” of a Plane Fit_Cell into a nested
strategy class, Goodness _Policy Delegate. This class exposes polymorphic methods for

152 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

the various thresholds and hazard calculations described by GC.V.1 through GC.V.3
above. It is also templated against the Extended Plane Fitter stereotype, discussed below,
in order to explicitly accommodate alternate plane-fitting representations

Instead of the previously discussed usage of pseudo templates for the delegate classes,
the OO design in Figure 9.13 follows in the footsteps of the “XYZPoint” stereotype from
Figure 9.11 and explicitly templates the Morphin class against two additional stereotypes:

e Extended_Plane_Fitter, which is expected to be inherited from Plane_Fit_Moments;
e Extended Goodness_Policy, similarly inherited from Goodness Policy Delegate.

The corresponding template type-names, EPF and GPD, are used directly in the declara-
tion of member data in the Morphin class, automatically incorporating the extended types
into any realization of the Morphin algorithm.

As an example, the original, or “plain” Morphin algorithm can be instantiated as :

// A plain Point class that satisfies XYZPoint
class Point { double x,y,z; 1};

/* Morphin ts templated against three types:

* - The "point" representation

* - The plane-fitting delegate, and

* - The "goodness" delegate.

* The original, or "plain" wversion may be had as:
*/

typedef Morphin<Point,
Plane_Fit_Moments <Point>,
Goodness_Policy_Delegate<Plane_Fit_Moments <Point> >
> PlainMorphin;

Listing 9.1: Instantiation of the “plain” Morphin algorithm according to the design in
Figure 9.13

The explicit usage of templates can be somewhat cumbersome, as shown by the nesting
of type declarations in Listing 9.1. However, this is not fundamentally different from the
previous usage of “typedefs”, and the overall adaptability interface is used in much the
same way as for the OO designs presented in Chapter 5.

Figure 9.14 shows an example binding of error and temperature supplemental effects, dis-
cussed above, to the OO adaptability interface. This example assumes a volcano-exploring
robot, perhaps a descendant of the original “Dante”[60] , that is outfitted with an array
of sensors that can provide error and temperature information to supplement the Morphin
algorithm beyond the primary Cartesian point data. This data is encoded in the platform-
specific DantePoint class, which adds “error” and “temperature” members to the default
“XYZPoint” stereotype.

The effects of the “error” data, which are analogous to ERR.1 through ERR.4 above,
are implemented across two classes, EPF_Error_Effects and EGP_Error_Effects. The first
of these overrides the get_weight method of Plane Fit Moments to implement ERR.1,
and introduces a compute_quality() method to fulfill ERR.2 and ERR.3. This method

9.4. ALTERNATE DESIGNS FOR MORPHIN 153

POINT:XYZPoint, EPF:Extended_Plane_Fitter!

- = - Plane_Fit Moments |~~~ Goodness_Policy Deleg-a-té Tttt)
Dante, a volcano 1 —_— — —
exploration robot, 1 +plane fitting data: doublel] [*<~ —_ _ —+compute_goodness (epf: const EPF &)
can provide error ! +add_point(pt:POINT) #compute_roll_hazard(epf)
and temperature as : *get_welght (pt:POINT) #..0
supplemental data e 4 P mmmmm e m
. i y POINT:XYZPoint+Errort EPF:EPF+Errort
1
1

e mm i mm - e S
DantePoint ; EPF_Error_Effects EGP_Error_Effects
+x,y,z: double << - ! +get_weight (pt:POINT) |« — — — #compute_roll_hazard(epf)
+error: double <- - +compute_quality() ! #compute_pitch_hazard(epf)
+temperature: double << - - .. | = — = #compute_traverse_hazard(epf)
b -
A

Error Effects:
- Override weight
- Apply quality to hazards

) POINT:XYZPoint+Temp,

= = = 1 EPF_Temp_Effects = :-EI;F:T-enTp:
+avg_temp: double EGP_Temp_Effects
+max_temp: double < - -1
+add_point(pt:POINT) L — — — J#get_max_hazard()
+operators +,-,=() #compute_thermal_hazard(epf)

S
<<bind>> =

POINT->DantePoint

<<bind>>
EPF->Dante_EPF

Temperature Effects:
- add avg,max temp

<<Extended_Plane_Fitter>> <<Extended_Goodness_Policy>>
- add thermal hazard
Dante_EPF Dante_EGP
A ..\.. T /I\
F o= ———m === - ..'52 ___________ -:,.:L __________
1 - -
| Realization: bind Dante Point, 1 POINT: :
I EPF and EGP to generic Morphin :Eg'; 1
\ - T .
----- Dante_Morphin <<bind>> - > Morphin
POINT->Dante_Point, EGP->Dante_EGP,EPF->Dante_EPF

Figure 9.14: Morphin supplemental effects using Object-Oriented delegation.

is then used in EGP_Error_Effects to affect the outputs of the roll, pitch, and traverse
hazards in fulfillment of ERR.4.

There are similar extension classes for the “temperature” data, the first of which,
EPF _Temp _Effects, augments the add_point method of Plane Fit Moments to include a
calculation of average and maximum temperature as points are added to a plane. The sec-
ond class, EGP_Temp_Effects, then uses these values to calculate a thermal hazard, such as
to avoid terrain that is “too hot” for the robot to traverse, and augments get_max_hazard ()
to include this in the determination of the “worst” hazard.

Other effects discussed above, such as for vegetation detection or other supplemental
data, may be introduced in a similar manner. Although the more explicit use of templates
causes this design to appear more convoluted, the overall dependency structure is the same
as the OO designs in Chapter 5. That is, the effects of each supplemental datum are isolated
in individual classes that specialize base functionality, and these classes are explicitly com-
posed to form the final delegates. In a broad sense, it follows that similar tradeoffs of source
code size for improvements in “concern diffusion” and “option value” can be expected, and,
accordingly, that this design will enhance the overall adaptability of the Morphin algorithm.

154 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

Morphin << - -

1 <<aspect>>
+ plane fit map: Grid Map< Plane Fit Moments<POINT> > 1 -
+add_points(c10ud:const_EONTAINER<POINT>&) 1 XPI_Morphln
#compute_goodness (pfm:Plane_Fit_Moments<POINT> &) = = = "+targetClass: pointcut
#get_max_hazard(pfm) <- - - - - +maxHazardSelection: pointcut
#compute_rgll_hazard(pfm) <------ +rollHazardCalculation: pointcut << -
#compute_pitch_hazard(pfm) <- - - - - +pitchHazardCalculation: pointcut << 4
#compute_traverse_hazard(pfm) <------ +traverseHazardCalculation: pointcut [4
#get_max_roll(pfm) <-- - +allHazardCalculations: pointcut - =1
#get_max_pitch(pfm) <<~ =1 = = -|+naxRollAccess: pointcut

P [

. “|+maxPitchAccess: pointcut

[+intermediatePlaneFitter: pointcut
"""" +addPointToPlane: pointcut
F===" +pointWeightDetermination: pointcut
“|+planeAddition: pointcut
“|+planeSubtraction: pointcut
“|tplaneAssignment: pointcut

.

Many of the same
methods that were
created for 00

1
delegate classes
. |* e T TLS T T
.] POINT:)(YZPolntI

K Plane_Fit Moments |<- - = - - - - - !

Plane_Fit_Map

+ | Many dependencies

+plane fitting data: double 1 .
on core Morphin

*|+add_point (pt:POINT) < = = = = - - = - - [Pt ° :
+get_weight (pt:POINT) < = = — = = - == - ' implementation
+operators +.-.=() < = = - L.

Figure 9.15: Morphin adaptability interface using a Crosscutting Programming Interface
(XPI)

AQO Design

The analogous AO design, shown in Figure 9.15, leaves the class and template arrangement
from Figure 9.10 untouched, and adds an XPI in the same style as the AO designs in Chapter
5. As was the case for those designs, a certain amount of method-level refactoring in the
Morphin and Plane Fit Moments classes would be necessary to expose valid join points for
AOQ introduction. These methods are basically the same as those that were delegated to the
Goodness_Policy Delegate class in the OO design above, except that they remain within
the Morphin class, yielding a somewhat more coherent design.

Otherwise, the contents of the XPI are determined in accordance to the variability
requirements discussed above, including exposing the intermediatePlaneFitter pointcut
to allow augmentation of the contents of the Plane Fit _Moments class. Also, as was done
for the various relevance tests in the Precedence Estimator in Section 5.3, an aggregated
pointcut, allHazardCalculations, is declared in order to allow broad effects to be applied
more concisely. For example, a policy of increasing all hazard values by some small amount,
such as to represent a poor-quality terrain estimate, may be applied to all three hazard
calculations simultaneously through this pointcut.

This usage of allHazardCalculations is illustrated in Figure 9.16, alongside the other
effects of the “error” and “temperature” supplemental data discussed for the OO design
above. Herein, the usage of around() and after() advice, along with the introduction of
slice classes is nearly identical to the AO designs in Chapter 5. Most importantly, the
supplemental effects are more coherently grouped by supplemental datum than in the OO
design, accommodating the absence or alteration of a given supplemental datum via the
substitution or exclusion of a single aspect.

The tradeoffs for this smaller, more concise representation are the brittle dependencies
from XPI Morphin to the underlying Morphin class in Figure 9.15, along with the overall

9.5. SUMMARY 155

- N PRy g <<aspect>>
DantePoint Morphin << | XPI_Morphin
+x,y,z: double + plane fit map: Grid Map< Plane Fit Moments<POINT> > 1
+error: double +add_points(cloud:const CONTAINER<POINT>&) ~ T T+targetClass: pointcut
[+temperature: double | #compute_goodness (pfm:Plane_Fit_Moments<POINT> &) +intermediatePlaneFitter: pointcut
A #...() +...: pointcut
)
. lr A
1 _JMust still bind DantePoint |
Dante_Morphin ssbind>> """ I may cause trouble w/AspectC++!B| |
= POINT->Dante_Point L}
|
P o= = e e o e o o e o e e e e e e e e e e e e e e e e e e - ——— -
1 1
<<aspect>> <<aspect>>
Morphin_Error_Effects Morphin_Temperature_Effects
+<<slice>> XPI::intermediatePlaneFitter(): PlaneSlice +<<slice>> XPI::intermediatePlaneFitter(): PlaneSlice
+<<around>> XPI::pointWeightDetermination() +<<after>> XPI::addPointToPlane()
+<<around>> XPI::all_hazards() +<<around>> XPI::get_max_hazard()
~ +<<after>> XPI::planeAddition()
"\. +<<after>> XPI::planeSubtraction()
\\ +<<after>> XPI::planeAssignment()
@
Supplemental Effects are <<slice>>
<<slice>> concise and co-located in PlaneSlice
PlaneFitSlice single aspects as before
+max_temperature
+get_quality(): double [+avg temperature |

Figure 9.16: Morphin supplemental effects applied using AO introduction.

dependency on prototypical AO technology. The latter issue is hinted at in Figure 9.16,
in that the specific usage of templates in CLARAty, such as binding the DantePoint rep-
resentation to the Morphin class, may not be supported by the AspectC++ compiler at
this time. That is, the AspectC++ compiler is currently unable to weave advice into pure
template classes[57], limiting the technical feasibility of the AO design presented above.
Still, this compiler remains under active development, and these issues are likely to be
resolved in future releases. At that point, a more thorough analysis of the interplay be-
tween template-based and aspect-based adaptations would be an interesting path of further
investigation.

9.5 Summary

This chapter has presented a design-level case study in applying the primary vs. supple-
mental methodology proposed by this thesis to the Morphin terrain analysis algorithm as
implemented in the Coupled Layer Architecture for Robot Autonomy. Following the in-
sights gleaned in the more detailed work already done on autonomous driving behaviors,
several alternate designs for Morphin have been proposed to enhance the adaptability of the
corresponding software artifacts relative to additional, altered, or absent data as outlined
in Chapter 2.

These designs begin with a simple refactoring of the Morphin algorithm, independent
of more advanced AO or OO design techniques, that increases the adaptability of the
existing implementation by realigning its structure to emphasize the path that input data
take on the way to the generation of the ultimate “goodness” output. An extraneous
intermediate result, the CSpace_Traversability representation, was eliminated, along with

156 CHAPTER 9. COMPLEMENTARY CASE STUDY: CLARATY

the corresponding stage in the Morphin processing pipeline, reducing the amount of work
that would be necessary to propagate supplemental data in the Point representation to
where it may have the most effective influence on the “goodness” results.

Following this initial redesign, the AO and OO techniques presented in Chapter 4 were
applied, yielding adaptability interfaces and encapsulation of supplemental effects similar
to those presented for the autonomous driving software in Chapter 5. These similarities
imply tradeoffs of raw code size for reductions in “diffusion” and enhancements to “option
value” similar to those presented in Chapters 6 and 7, suggesting similar gains in the ability
to accommodate future adaptations as discussed in Chapter 8.

Although these results favor the AO approach over the OO approach, the former may
have technical issues, and the latter is highly consistent with existing patterns already
deployed in CLARAty. Combined with the fact that earlier results show that both AO
and OO approaches will reduce diffusion and add value to existing designs, this leaves the
determination of the “best” technique to the judgement of the designer.

Beyond the detailed designs, the most interesting result was the identification of an
existing supplemental “error” datum in the original Morphin implementation. The similar-
ity of the effects of “error” data the Morphin algorithm to those identified in autonomous
driving software supports the claim that the issues of adaptability outlined in Chapter 2
are common and under-treated phenomena in advanced robotic software. When combined
with the straightforward generation of an adaptability interface, and the ease with which
other effects, such as for temperature data, might be added through that interface, this
complementary case study supports the broad applicability of the methodology proposed
by this thesis.

Chapter 10

Summary and Conclusions

This thesis explores the idea that, in order to enhance the reusability of advanced robotic
software, it is necessary to directly address the adaptability of that software to suit the
specific needs and capabilities of individual robotic systems. Rather than focusing on in-
creasingly generic or otherwise all-encompassing data representations, as is the norm for
the robotics community, this work instead embraces the idea that the sheer variability in
robotic systems cannot be captured by a single data representation. The consequences of
this, namely that an algorithm must be adapted to some combination of additional, absent,
and altered input data as it is “ported” from one platform to the next, are pursued as
first-class design concerns, yielding significant insights into the nature of platform-specific
effects on otherwise generic algorithms, and how those effects might be treated in a modular
manner, as novel contributions to the field.

10.1 Primary Contributions

The critical insight offered by this work is that many, if not most, variations in platform-
specific capabilities can be framed as subtle enhancements, or supplements to the default,
or core functionality of a given robotic algorithm. Although each such enhancement will be
a unique binding of platform-specific capabilities to algorithm-specific context, the overall
influence on a given algorithm will be largely restricted to the modification of a few specific
parameters, policies, or other points of variability.

To enhance reusability across a wide variety of robotic platforms, this thesis proposes
a novel distinction between the primary data that a robot must provide to enable the
core functionality of an algorithm, and the supplemental data that a robot may provide to
enhance that algorithm in platform- and mission-specific ways. A corresponding method-
ology is also introduced whereby the primary data comprise the traditional input interface
for a stable, reusable implementation of the core algorithm, which is complemented by
a dedicated adaptation interface that allows the external application of platform-specific
supplemental effects.

This methodology is evaluated in a detailed case study on existing software for au-
tonomous driving behaviors, focusing on refactoring three distinct components according
to each of two advanced software design techniques that allow the modular treatment of
supplemental effects as described above. The resulting artifacts were analyzed using two

158 CHAPTER 10. SUMMARY AND CONCLUSIONS

established metrics that capture critical issues in software adaptability: how difficult it is
to understand a given piece of software (“Concern Diffusion”), and how well the design
of that software accommodates changes by modular substitution, as opposed to invasive
modification (“Net Option Value”).

The combined results of these analyses show that both traditional Object-Oriented
(00), and more modern Aspect-Oriented (AO), techniques can be used to enhance the
adaptability of robotic software to changes in the content or semantics of platform-specific
supplemental data. Of these, the AO techniques appear to more naturally suit the challenges
of separating supplemental effects from a given core algorithm, but the tradeoff for using
them is that the technology underlying AO methodology is still largely prototypical, and
may introduce an unacceptable level of risk to a project.

In addition to these advanced design techniques, the work in this thesis also uncovered
several recurring patterns in the design of core robotic algorithms that can make it more
difficult to accommodate platform-specific data. These issues, which are explored in greater
detail in Appendix A, can be summarized as three simple, if somewhat counter-intuitive,
guidelines that can be followed, even in the absence of more advanced AO or OO techniques,
to increase the adaptability of an algorithm to platform-specific data:

1. Propagate input data types as deeply as possible. If presented with an ab-
stract input data type, such as the Point or MovingObstacle classes discussed in
this thesis, it is better to pass that external representation as deeply as possible into
your algorithm than to go to great lengths for the simple sake of “insulation” from
that external type. Whether prematurely “breaking out” the external type into its
constituent elements, such as for the explicit add_point(x,y,z) variations, or else
“translating” it into some ephemeral internal representation, these “insulating” bar-
riers create extra work to propagate any additional platform-specific data that may
present itself in the future. Instead, keep the core algorithm “close” to the original
input representation, which will “automatically” propagate that additional data to
the points where it can have the most meaningful effects.

2. Account for the possibility of future supplemental data in internal data
types. Where internal representations make more sense, such as for collecting indi-
vidual candidate obstacles into an aggregated MergeObstacle, or adding individual
Points to a plane-fitting cell, keep in mind that the input obstacles, points, etc.,
may be augmented with supplemental data in the future, and be sure to provide a
mechanism for “keeping track” of that data. This can be accomplished either by
maintaining references to the original inputs, as done for the foremost and rearmost
MovingObstacle instances in Section A.4, or else by providing a way to extend the
aggregated type to include additional data of its own, such as for the average and
maximum temperature values discussed in Section 9.4.

3. Use small, well-named functions for critical data interpretation. Allow
the concepts of “supplemental effects” and “likely points of variability” to guide the
method-level decomposition of the core algorithm by pulling platform-specific inter-
pretations out into small, separate functions, instead of leaving them deeply embedded
in larger ones. Following #1 above, and the enumeration of common points of vari-
ability below, try to frame those small methods as questions about a candidate point,

10.1. PRIMARY CONTRIBUTIONS 159

obstacle, etc., instead of simple accessors for some internal (configurable) parameter.
For example, small methods such as:

double MyAlgo: :getMaximumThresholdFor (const MovingObstacle &mo)

. will be much easier to identify and understand than two or three lines of logic em-
bedded in a 200-line method, and it will also “automatically” make any supplemental
moving obstacle data available at that point of reasoning, in case some future addi-
tional data are relevant to the “maximum threshold” policy. As an added benefit, this
will poise the algorithm for more advanced treatment of supplemental effects, such as
the OO or AO techniques described in this thesis, should they prove worthwhile at a
later time.

Beyond these issues of detailed design and analysis, several candidate augmentations
of the urban driving components to include vehicle-to-vehicle communications data were
explored in order to test the expressiveness of their adaptation interfaces, gleaning several
useful insights into likely points of variability that may be identified in other algorithms.
Many of these focus on issues of “confidence” in the primary data, including:

1. Whether a given candidate point, obstacle, etc., should be included in further com-
putation, such as simply ignoring vehicles for yield calculations if they do not have a
“strong lane association” (PE.S.1);

2. How a given candidate is to be included in further calculation, such as by modulating
the degree of “trust” in an obstacle’s velocity measurement.

These issues of “confidence” in products of a robot’s perception system are clearly
relevant to a wide range of robotic algorithms, as, except under the idealism of “perfect
perception”, all robots are bound by imperfect sensors that only provide a partial view
of the surrounding environment. In order to operate effectively on any one robot, many
algorithms require a certain “knowledge” of the underlying sensors and modeling techniques
that can only be informed by including platform-specific data, such as the RADAR-backed
“isMoving” state for candidate moving obstacles, which suggests a broad applicability of
the methodology presented in this thesis. This is supported by the complementary case
study in Chapter 9, which readily identified similar issues in terrain analysis software for
planetary rovers.

In both autonomous driving and planetary exploration, there were also several algorithm-
specific points of variability, such as whether a candidate obstacle requires a “courtesy gap”
in highway merge calculations, or the various contributors to the “goodness” of a patch
of terrain, that will rely more heavily on the judgement and experience of the designer
to identify for inclusion in an adaptation interface. Still, these fall under a more general
category of answering “How should this candidate {obstacle, point, pixel, etc.} be treated
differently?” that are often exposed as configurable gains, thresholds or other parameters
in existing systems, which provides an excellent starting point for identifying such esoteric
points of variability in other robotic algorithms.

The duality to this is that these categories of “likely” points of variability also inform
the distinction between primary vs. supplemental data, beyond the issues of “intersection

160 CHAPTER 10. SUMMARY AND CONCLUSIONS

vs. union” and “semantic depth” discussed in Chapter 2. That is, if a datum’s influence
on a given algorithm can be isolated to one or more typical points of variability, including:

1. Intrinsic “relevance” tests, such as the use of the “observed-moving” flag to help
identify “relevant” traffic at an intersection;

2. Context-specific parameter substitution, such as adjusting the degree of “pes-
simism” to apply to an obstacle’s estimated position or speed, substituting an alter-
nate threshold for “observed-moving” vehicles, or determining the weight to assign to
an individual point in a “cloud”;

3. Replacement of expensive “default” functionality with an analogue that is
more efficient, but also possibly more brittle, such as bypassing expensive geometric
“in-lane” tests with a simple lookup in the “lane associations” supplemental datum.

. then it is at least possible to treat that datum as supplemental, regardless of whether
or not it is “expected” to be available on other robots. That is, considering candidate
data in terms of their effects on a given algorithm will provide a lower bound on the set of
supplemental data, which can be combined with the upper bound on primary data provided
by the “intersection” of all platform capabilities to yield a comparatively narrow band of
candidates that are left to the designer’s judgement to classify as to whether they warrant
primary or supplemental treatment.

This thesis informs that judgement through the detailed analysis and discussion of
specific examples in existing systems, allowing designers to come to their own conclusions
as to whether the future benefits of treating an individual datum as supplemental will
outweigh the expected costs of doing so.

10.2 Supplemental Contributions

Beyond exploring and demonstrating the primary contributions of this thesis, the detailed
case study of autonomous driving software also generated two supplemental contributions
to the software engineering community.

Detailed Case Study: Adaptability “In the Small”

Even though small-scale adaptation is a (or even the) recurring challenge for software prac-
titioners, the difficulty of gleaning general results through analysis of inherently subjective
problems means that issues of adaptability “in the small” are only sporadically covered
by the software engineering community. To this fledgling pool, this thesis contributes a
detailed case study of such small-scale adaptations in the largely untouched context of ad-
vanced robotic software, including a better understanding of the applicability of “concern
diffusion” metrics, and the “Net Option Value” model to small-scale issues of software de-
sign and adaptability. In particular, the sensitivity analysis of the NOV model in Chapter
7 is more detailed than any similar analysis in identified published works, and it includes
novel insights and suggests future paths of research that are being considered for submission
to one or more software design venues.

10.3. FUTURE WORK 161

Detailed Case Study: “Weakly Invasive Aspects”

To the Aspect-Oriented software community in particular, this thesis contributes a catalog
of aspect-oriented refactorings that will help inform ongoing research into both the general
applicability of aspect-oriented techniques and specific efforts to classify aspects according
to the nature of their effect on a system. In the latter case, the concept of a “supplemental
effect” described in this thesis resonates with issues of “weakly” vs. “strongly” invasive
aspects[28]. The categories of supplemental effects described above, and the implied “points
of variation” they correspond to, could inform the identification of “weakly invasive” aspects
in other problem domains, and is also being considered for submission to an appropriate
venue.

10.3 Future Work

Effort Models for Small-Scale Software Modification

As hinted at in the discussion of “supplemental” contributions above, the diffusion and NOV
models employed in this thesis only provide a partial picture of software “adaptability”, and
more research is clearly warranted into the development of “cost” or “effort” models for such
small-scale modifications. That is, existing effort models, such as COCOMOI[7] are largely
based on corporation-level source code and financial data, providing predictive models that
convert KSLOC (thousands of source lines of code) into coarse units of effort, such as
“person-months”. These models explicitly regress past the types of detailed modifications
addressed in this thesis, making their applicability to such small-scale efforts unclear. The
inherently subjective issues at this level of detail, such as a programmer’s familiarity with
the algorithm, specific programming style, and overall development and domain experience,
pose significant barriers to generalized small-scale effort models that will be difficult to
overcome, but would nevertheless be a valuable path of future research.

Connections to Graphical and Model-Based Programming Environments

There is a growing trend toward more graphical, or “model-based” development environ-
ments that focus on describing the flow of data between functional modules, as opposed to
“traditional” programming at the level of “source-code”, as was the case for the compo-
nents examined in this thesis. While many of the more tedious “source-level” problems of
message passing and synchronization disappear at this “higher” level, the problem of hav-
ing to “break open” existing functional modules in order to incorporate platform-specific
data remains. That is, the “policies” that are typically affected by supplemental data can
be thought of as “micro-models” for obstacle thresholds, culling policies, etc., that require
the same types of surgical modification as for the more “traditional” source-code-based
approaches evaluated in this thesis.

Adjunct to the work on autonomous driving components discussed above, initial inroads
have been made as to how supplemental effects may be applied to such graphical models,
and a simple example, based on the issue of introducing a “has V2V” flag into a Distance
Keeping algorithm (similar to CX.4) is shown in Figure 10.1:

162 CHAPTER 10. SUMMARY AND CONCLUSIONS

Generic Distance Keeper Direct Encoding: Brittle Dependency on V2V

Lead Vehicle Distance—y|) Desired) :
Distance Keeper Speed Lead Vehicle Distance—» V2V-Augmented
Lead Vehicle Speed—y] Distance Keeper

Lead Vehicle "Has v2v'—y| (not useful w/o V2V)

Desired
Speed

Lead Vehicle Speed—y|

Lead Vehicle "Has V2V"'—s. 7?? Nowhere to put V2V Data

Proposed Methodology: Expose Variability ...and Bind External Supplemental Effects

Lead Vehicle Distance—y| . Desired
Lead Vehicle Speed—s] Distance Keeper Speed

J

Expose intermediate "Desired Gap"
1/0 pair, self-connected by default

Lead Vehicle Distance—y . Desired
Lead Vehicle Speed—s] Distance Keeper Speed

& T Adjust "Desired Gap" in
V2V Gap external module: easily
Policy removed/disabled in the

absence of V2V data.
Still self-connected at "bottom"
to allow further augmentation

Figure 10.1: Example application of supplemental "V2V” effects using a graphical, model-
based development environment, such as Simulink™.

Lead Vehicle "Has V2V"'—s|

'
'
I
I
'
|
'
'
'
'
I
I
'
|
1

B
'
'
'
'
'
'
I
'
'
'
'
'
'
I
I
'
|
'
'
'
'
'

Here, a simple “Distance Keeper” functional module takes the lead-vehicle distance and
speed as inputs and computes a desired speed that will maintain a safe following distance.
When presented with a new datum, such as whether the lead vehicle “Has V2V”, the
Distance Keeper must be “opened up” to include a new “input pin” for the V2V data and
to embed the associated effects. The resulting component (Figure 10.1, top-right) is then
strongly bound to the V2V input, and must be maintained separately from the more generic
version of the Distance Keeper.

To avoid this “opening up” for further additional data, the methodology proposed by this
thesis could be applied by exposing an otherwise “internal” data connection in the Distance
Keeper, representing the “desired gap” for the lead vehicle, so that it may be augmented
according to some external policy (Figure 10.1, bottom-left). This would then be used by
a dedicated “V2V Effects” module to adjust the desired gap as necessary, leaving the more
generic functionality in the core Distance Keeper module untouched (Figure 10.1, bottom-
right). In this manner, many such detailed policies can be exposed for augmentation by
supplemental data, and the guidelines listed above for identifying “likely” points of variation
are directly applicable to help determine which “internal” data connections to expose.

It is important to remember, however, that this is only a simplistic example, and the
detailed consequences of applying this or other similar techniques to large-scale software
models are not immediately clear. As such, application and detailed analysis of these
techniques in the context of larger, more complex models, ideally to a set of related models
that have been adapted to multiple platforms from a common root, would make an excellent
path of future research.

Beyond Autonomous Driving (and Planetary Roving)

Although the results in this thesis support a broad applicability of the proposed primary vs.
supplemental methodology, it is important to continue to identify and catalog supplemental
effects in other systems in order to broaden our understanding of typical platform-specific
variations of otherwise generic algorithms. This will further assist future designers in iden-

10.3. FUTURE WORK 163

tifying when, where, and how to apply the techniques described in this thesis to make it
easier for other developers to rapidly adapt advanced robotic algorithms to the detailed
capabilities of new robotic systems.

Appendix A

Designing Core Algorithms to
Consider Supplemental Effects

This appendix explores recurring themes in advanced robotic software that, while useful and
intuitive from the perspective of “insulating” algorithms from external data representations,
can also increase the difficulty of introducing supplemental effects, even given a dedicated
“adaptation interface” as proposed by this thesis. These issues were first identified in the
usage of intermediate data types for the Merge Planner in Chapter 5, then as a “higher-
level” architectural issue regarding supplemental “lead vehicle” data in Chapter 8, and
lastly in the CLARAty implementation of Morphin in Chapter 9. In each instance, the
need to propagate supplemental data to “downstream” consumers compelled a significant
rearrangement of the corresponding core algorithms to better support the application of
supplemental effects.

The detailed refactoring of the original Merge Planner design, presented below, exposes
each of these issues in turn and proposes incremental design changes that preserve function-
ality and efficiency, while also eliminating key barriers to the incorporation of supplemental
data. The insights underlying each incremental change are then distilled into more general
guidelines for designing other algorithms to better accommodate supplemental data, which,
even in the absence of the more advanced design techniques discussed in this thesis, will
enhance the adaptability of those algorithms by making them more understandable and re-
ducing the amount of “extra” work that must be done to propagate platform-specific data
to the places where they can have meaningful effects.

A.1 Original Merge Planner: Review

The original Merge Planner design is repeated in Figure A.1 for reference, highlighting
both the declaration and usage of the three intermediate data types as part of the Merge
Planner’s processing pipeline. This form of “batch” or “staged” processing is common in
robotic (and many other types of) software, as it helps break down large calculations into
more manageable pieces that are “insulated” from one another by a stable intermediate
data representation.

While this pattern enhances understandability and reusability relative to a fixed input
specification, the decomposition of an algorithm in this manner also explicitly creates a

APPENDIX A. DESIGNING CORE ALGORITHMS TO CONSIDER
SUPPLEMENTAL EFFECTS

166

MergePlanner

+configure(cs:ConfigSection)
+initialize()

+notify()
#computeMergeCommand ()
#findMergeFeasibility()

S5

VelocityType

+velocity: Vector2D
+isMoving: bool

ObstacleStateType

BossStateType

+distanceF

+velocityF

isMoving &&
isObservedMoving

cached from MovingObstacle::

+isMoving:
+isMovingF

+distanceBack_m: double

+velocityBack_mps: double

+isMovingBack: bool

+... and various computed results
+operator <(other:0ST &): bool

ront_m: double

ront_mps: double

ront: bool

+distanceFront_m: double
+distanceBack_m: double
+velocity_mps: double
+isMovingFront: bool

bool +isMovingBack: bool
+frontMergeFeasible: bool
+backMergeFeasible: bool

+... and other computed results

(a) Class Collaboration

Break out MovingObstacle
Contents into relevant
geometric information

<

| ———— IO

velocity: VelocityType

—

mo:MovingObstacle

Recombine into "ObstacleStateType",
which is the internal workhorse

frontPose: Pose2D

> obstacle: ObstacleStateType

—

rearPose: Pose2D

(b) Data Flow

mergeObstacle: BossStateType

.
.
.

.

Eventually convert to "BossStateType"
for final merge feasibility calculations

Figure A.1: Original Merge Planner design, reproduced from Chapter 5 for reference.

sequence of “barriers” to the inclusion of supplemental data as described by this thesis.
That is, if a novel input datum is presented at the first stage of the processing pipeline, it
will often be necessary to augment each intermediate data representation to include that
datum, and to extend each stage of processing to include rules for propagating that new
datum to each subsequent stage. As discussed in the main body of this thesis, this leads
to a great deal of “extra” work to be performed in order to make any given supplemental
datum available at the appropriate stage of processing.

Interestingly, this echoes an observation that was made early in the development of
advanced robotic architectures[54], which pointed out that the then-modern trend toward
layered planning architectures meant either:

1. Sacrificing everything unique and interesting about a platform for the sake of gener-

ality, or

2. Enduring a great deal of “extra work” to punch through the layers of abstraction to
propagate platform-specific details all the way to the “highest-level” planners.

Their proposed solution, which was counter to the prevailing intuition at the time, was
to collapse the layers into as few as possible and focus on specifying detailed “constraints” to
an otherwise highly generic “planning engine”. This is highly analogous to, if more narrowly

A.2. INSULATION FROM EXTERNAL DATA TYPES 167

scoped than, the issue of core algorithm and supplemental effects explored by this thesis,
and, at least from a certain perspective, their solution is applicable to this context as well.
That is, collapsing long processing pipelines and focusing, somewhat counter-intuitively, on
propagating external data types as deeply as possible will reduce the amount of “extra”
work necessary to apply supplemental effects to a given core algorithm.

A.2 Insulation from External Data Types

The first stage of the Merge Planners processing pipeline in Figure A.1b represents an initial
“breaking-out” of the contents of the MovingObstacle representation in to its constituent
elements. This reflect the conventional wisdom that it is valuable to insulate an algorithm
from abstract external representations by focusing on the most elemental forms of the
algorithms input data. In terms of generality, this is indeed a valuable first step, as it
makes the data handled by the algorithm more explicit, and provides an easy means of
adapting to syntactic changes in external class, method and member names, which often
require tedious modifications, but otherwise have no real effect on the actual semantics
of the input data'. From the perspective of accommodating novel inputs, however, this
requires supplemental data to be “broken out” as well, which can lead to a combinatoric
explosion of input methods, such as for the variations of add_point () in Morphin, or else
will require augmentation of intermediate types, as was the case for Merge Planner.

In the case of the Merge Planner, the initial breaking out of the external MovingQObstacle
representation is immediately followed by recomposing those individual elementals, includ-
ing the intermediate VelocityType representation, into the internal ObstacleStateType
representation, discussed in Section A.4 below. Thereafter, the corresponding instances of
VelocityType and all other “broken out” data are destroyed, and have no further influence
on the Merge Planner’s core algorithm.

Moreover, there is a one-to-one mapping from MovingObstacle instances to the recom-
bined ObstacleStateType instances, suggesting that the intermediate VelocityType can
be eliminated by populating the ObstacleStateType directly from the MovingObstacle
representation. Figure A.2 shows the corresponding removal of the nested VelocityType
class, the introduction of a dedicated buildObstacleStateType method, and the elimina-
tion of the “break-out” stage of the original processing pipeline.

A.3 Ephemeral Data Aggregators

As a complement to the issue of “breaking out” an input representation, there is also a
recurring tendency to translate and/or collect intermediate results into temporary data
structures that satisfy the requirements of some “downstream” stage of processing®. These
are immediately destroyed, have no other use in the system, and are barriers to the propa-
gation of supplemental data, suggesting that they too should be considered for elimination.

LConsider, for example, the proliferation of geometric utility libraries, containing class representations for
Vectors, Points, Polygons, etc, that all have the same underlying meaning, but whose specific representation,
such as “pt.x” vs. “pt.x()” vs. “pt[0]”, differs. These impose tedious, and usually inefficient, translations
from one representation to another just to “glue” two otherwise compatible components together.

2Tronically, these are often “broken out” again before being consumed within that next stage.

APPENDIX A. DESIGNING CORE ALGORITHMS TO CONSIDER
168 SUPPLEMENTAL EFFECTS

MergePlanner

+configure(cs:ConfigSection)
+initialize()

+notify()
#computeMergeCommand ()
Explicit method for building #findMergeFeasibility()
an ObstacleStateType from the | ---+buildObstacleState(mo:MovingObstacle)
contents of a MovingObstacle Ea
I
ObstacleStateType BossStateType
+distanceFront_m: double +distanceFront_m: double
+distanceBack_m: double +distanceBack_m: double
Intermediate VelocityType +velocityFront_mps: double +velocity_mps: double
no longer necessary +velocityBack_mps: double +isMovingFront: bool
+isMoving: bool +isMovingBack: bool
+isMovingFront: bool +frontMergeFeasible: bool
+isMovingBack: bool +backMergeFeasible: bool
+... and various computed results +... and other computed results
+operator <(other:0ST &): bool

(a) Class Collaboration

Directly populate the internal
ObstacleStateType from MovingObstacles

.
| — | . I

.

mo:MovingObstacle obstacle: ObstacleStateType mergeObstacle: BossStateType
‘5

.

Eventually convert to "BossStateType"
for final merge feasibility calculations

(b) Data Flow

Figure A.2: Eliminating premature “break-out” of the MovingObstacle representation.

Not all such translations can be eliminated, such as when converting data represen-
tations to make use of proprietary or otherwise “black-box” software components, but in
some cases, these conversions are performed for the sake of expediency or efficiency, and can
be eliminated by reworking “downstream” stages to make more direct use of “upstream”
results. This was the case for the intermediate CSpace_Traversability representation, dis-
cussed in Chapter 9, which was used to cache several “expensive” plane-fitting calculations
for use by the downstream “goodness” calculation. Closer inspection revealed that it would
be possible, if somewhat labor-intensive, to bypass this intermediate result and rework the
“goodness” calculation to make more direct use of the plane-fitting functionality, caching
“expensive” results for itself (or not) as necessary.

In the case of the Merge Planner, the usage of the intermediate BossStateType is a more
mundane matter of time-constrained development than computational efficiency. That is,
the BossStateType was an earlier form of the ObstacleStateType representation, and there
was simply not enough time to properly refactor all of the “older” elements of the Merge
Planner to use the “newer” obstacle representation. As with the CSpace_Traversability
representation, there would be nontrivial effort involved, but such effort would pay divi-
dends in future adaptability by further reducing the number of “barriers” that would have
to be perforated by supplemental data. Doing this simplifies the Merge Planner implemen-
tation to a single intermediate representation, directly populated by the contents of the
MovingObstacle representation, as shown in Figure A.3.

A.4. AUGMENTATION OF INTERNAL DATA REPRESENTATIONS 169

ObstacleStateType

MergePlanner +distanceFront_m: double
+distanceBack_m: double
+velocityFront_mps: double
+velocityBack_mps: double
+isMoving: bool
+isMovingFront: bool
+isMovingBack: bool

P E and various computed results
< |+operator <(other:0ST &): bool

+configure(cs:ConfigSection)
+initialize()

+notify()

#computeMergeCommand ()
#findMergeFeasibility()
+buildObstacleState(mo:MovingObstacle)

57

Intermediate BossStateType

was only used ephemerally,

and can be eliminated as well,
leaving only one intermediate type

Figure A.3: Eliminating the ephemeral usage of the BossStateType representation.

A.4 Augmentation of Internal Data Representations

In some cases, however, there are critical stages of processing in an algorithm, such as the
fitting of individual points to a plane in the Morphin algorithm, whose solution intrinsically
requires an intermediate data representation. This is the case for the Merge Planner’s
intermediate ObstacleStateType, which includes functionality for sorting obstacles in order
along a given lane, combining adjacent obstacles that are “too close” to merge between,
and caching derived “merge parameters”, all of which are unique and critical to the merge-
planning problem.

This class, which might be more aptly-named MergeObstacle, is the workhorse of the
Merge Planner’s core algorithm, and its usage greatly simplifies downstream policies for
determining which merge opportunities are “feasible”, and to eventually identify the one
that is the “best”. As with the Plane Fit Moments class in the Morphin algorithm, there
is no way to extract this class from the merge planning algorithm, so it remains as a barrier
for propagation of supplemental data to the downstream “merge feasibility” calculations.

This barrier may be overcome by allowing augmentation of this intermediate type, such
as following the OO or AO designs presented in Chapter 4, and the results presented in
this thesis show that this is an effective approach to take. However, a more straightforward
solution would be to simply augment the MergeObstacle representation to keep track of
its constituent MovingObstacle instances.

This was not an option for the the Plane_Fit_Moments representation due to possibility
of having to keep track of thousands of individual Point instances in a system that was
expected to be significantly resource-constrained. For the Merge Planner, however, there are
no such resource constraints, and there are expected to be relatively few (i.e., less than 10)
MovingObstacle instances to keep track of, so incorporating them into the MergeObstacle
representation may be a viable alternative.

Upon closer inspection, especially of the semantics and usage of the isMovingFront and
isMovingBack data, reveals that it would only be necessary to keep track of the foremost
and rearmost obstacles in this manner. Moreover, the policy for keeping track of them could
be embedded in the core algorithm, eliminating the need to augment the “adjacent obstacle
combination” policy as before, and thus “automatically” propagating any supplemental
data in the MovingObstacle representation to the downstream “merge feasibility” policies.

APPENDIX A. DESIGNING CORE ALGORITHMS TO CONSIDER
170 SUPPLEMENTAL EFFECTS

Doing so further simplifies the Merge Planner’s algorithm to exclude the explicit caching
of the intermediate “isMoving” states, replacing them with more useful references to the
foremost (frontM0) and rearmost (rearM0) MovingObstacle instances that contribute to
a given MergeObstacle?, as shown in Figure A 4.

MergePlanner i i
Dedicating a method to ?edlcatlnglmefhodi‘tot
conversion of external +computeMergeCommand () conservative estimates
Moving Obstacles to - == -|#buildMergeObstacle(mo:MovingObstacle) assists in application of
. i iti : ingObstacle) p==""] supplemental effects
internal Merge Obstacles #est}mateObstaclePos1t10n(mo.Mov1ngObstac1e) T pp
. . #estimateObstacleSpeed(mo:MovingObstacle) -

elucidates algorithm flow s

#computeMergeFeasibility()

#selectBestMergeGap()

69 One intermediate type,

instead of three,
simplifies propagation
of supplemental data

MovingObstacle MergeObstacle

+distanceFront_m: double

+pose: Pose2D ;
+distanceBack_m: double

+velocity: Vector2D X
+length: double Mo+velom:tyﬁont_mps: double MergeObstacle keeps track
+width: double +velocityBack_mps: double of foremost and rearmost
+... various merge parameters MovingObstacle, which

+frontM0: MovingObstacle* |7 " .- " N .
+rearM0: MovingObstacle* |77 automatically” propagates

+operator <(other:0ST &): bool supplemental data.

+isMoving: bool
+isObservedMoving: bool
+...etc

Figure A.4: Renaming ObstacleStateType to MergeObstacle and incorporating con-
stituent MovingObstacle instances to “automatically” propagate supplemental data
therein.

The critical benefit of this final simplification is that all supplemental data in the
MovingObstacle representation are “automatically” available to downstream policies through
the frontM0 and rearM0 members of MergeObstacle. Thus, all of the additional effort
put into introducing, deriving, and propagating the intermediate “isMoving” states, or any
other such supplemental data, is no longer necessary.

A.5 Summary

By avoiding unnecessary “insulative” translations, and focusing instead on propagating ex-
ternal data representations as deeply into an algorithm as possible, the lessons embedded
in the above discussion can be applied to many other advanced robotic algorithms to make
them more readily adaptable to platform-specific data. Even if the more advanced tech-
niques described in this thesis are not warranted, or possible, during the initial development
of an algorithm, following a few simple guidelines can reduce the amount of “extra” work
necessary to incorporate novel input data into a that algorithm:

1. Avoid unnecessary and/or premature “breaking out” of external data representations
into their constituent elements: if those external representations are later augmented
to include additional data, then a separate channel for that data must be created in
order to propagate its contents to downstream consumers.

3These would initially be set by computeMergeObstacle to point to the same MovingObstacle
instance, but would eventually come to reference different MovingObstacle instances through the
combineAdjacentObstacles method.

A.5. SUMMARY 171

2. Avoid the use of “ephemeral” data types for the sake of reusing “older” or “legacy”
code as-is: updating that older code? to make more direct use of newer or otherwise
upstream data types will pay dividends in future adaptability.

3. In general, avoid long processing pipelines: the closer the output results of an al-
gorithm are to its input data representation, the less work will have to be done to
augment intermediate stages to propagate future supplemental data. There is clearly
a tradeoff to be made here, between the benefits of pipelined processing and the diffi-
culty of adapting individual stages to novel data, which is at least partially informed
by this thesis and would certainly be a valuable topic of future research.

4. Where intermediate data representations make sense or cannot otherwise be avoided,
keep a list (if resources limitations permit) of the input data that contribute to a
given instance of that representation: this will “automatically” propagate any future
supplements to that input representation to the next stage of processing.

5. Where resources do not permit such a list, carefully document the fact that that
intermediate representation may have to be extended, along with the critical trans-
formations thereof that would have to be augmented to include policies for future
supplemental data: these will be valuable guides for future development, and may be
used to seed more advanced adaptation interfaces at a later date.

4This is obviously not possible for “black box” legacy components, or for other imported components
that cannot (for technical and/or political reasons) be modified to better accommodate a particular platform.
This highlights one of the critical issues with “black box” software reuse: that it is often desirable to tune a
reused software component in ways that are not accessible through the otherwise opaque interface. In such
cases, the mechanisms for translating to and from the “legacy” interface should be thoroughly encapsulated
and the limitations thereof should be clearly documented so that downstream developers (and upstream
managers!) can easily identify the constraints imposed by the legacy components.

Appendix B

Aspect-Oriented Programming

A canonical example from the Aspect-Oriented Programming (AOP) literature[33] is the
implementation of thread safety in an otherwise straightforward class. As a concrete exam-
ple, consider a simple class for adding two numbers, such as shown in Listing B.1:

class Adder {
public:

// mutator for the z_ member
void setX(int x) {
X_ = x;

3

// mutator for the y_ member
void setY(int y) {

y- = Vs
}

// accessor for the sum of z_ and y_
int getSum () {
return x_ + y_;

}

private:
int x_,y_;

};

Listing B.1: Target class for AspectC++ example

This class is concise, easy to understand, and completely focused on the core “concerns”
of storing two integers and presenting their sum. Additional functionality is required,
however, to guarantee safe access to these members from multiple threads. In the language
of software requirements, this thread-safety “concern” may be specified as:

Every method that interacts with the internal state of a given class shall lock a
class-specific mutex at the beginning and release it at the end.

174 APPENDIX B. ASPECT-ORIENTED PROGRAMMING

The implementation of the thread-safety concern using classical techniques requires a
mutex object (of type MutexType in these examples) to be added to the Adder class, and
two identical lines of code be added to each method in Listing B.1. This scatters the
implementation of thread safety through each method and tangles the core functionality of
each method with the thread-safety concern as highlighted by comments in Listing B.2:

class Adder {
public:

// mutator for the xz_ member
void setX(int x) A

myMutex_.lock (); // thread safety concern
X_ = X;
myMutex_.release(); // thread safety concern

}

// mutator for the y_ member
void setY(int y) {

myMutex_.lock (); // thread safety comncern
y- = ¥
myMutex_.release(); // thread safety concern

}

// accessor for the sum of z_ and Yy_
int getSum () {

myMutex_.lock (); // thread safety concern
int ret = x_ + y_;
myMutex_.release(); // thread safety concern
return ret;
}
private:
MutexType myMutex_; // thread safety concern

int x_,y_;

};

Listing B.2: Target class for AspectC++ example, with direct introduction of mutual
exclusion

The AO community refers to thread-safety and similar concerns as “crosscutting con-
cerns”, as their implementation “cuts across” the dominant source structure of class and
method declarations. This makes the Adder class more difficult to understand by “pol-
luting” the core functionality with the thread-safety concern, and conversely makes the
thread-safety concern harder to maintain, as it is spread across the entire Adder class defi-
nition.

175

In contrast, AOP allows the use of point-cuts that may be specified using wild-card
characters, advice directives and the join-point model' to encapsulate such “crosscutting”
concerns separately from the core functionality. That is, the AO implementation of the
thread-safety concern leaves the Adder class definition in Listing B.1 untouched and imple-
ments the thread-safety concern in a separate module, called an aspect, as shown in Listing
B.3.

aspect MutualExclusion {
public:
// "slice" the mutex into the target class
advice "Adder" : slice class {
MutexType myMutex_;
};

// describe the join points
pointcut accessors() =
execution ("), Adder::get(...)");

pointcut mutators () =
execution("y Adder::set(...)");

// do this around each join-point

advice accessors() || mutators() : around() {
// lock the mutexz for the class
tjp->that () ->myMutex_.lock ();
// ezecute the original code
tjp->proceed ();
// release the mutex for the class
tjp->that () ->myMutex_.release ();

Listing B.3: Implementation of mutual exclusion using AO techniques

Using the appropriate aspect weaver,?, the advice in the MutualExclusion aspect is
then triggered at all matching join points in the underlying system, which in this case are
all methods that match “% Adder::get%(...)” or “% Adder::get%(...)”. These declarations
use the wild-card character “%” and the ellipsis “...” argument to concisely describe broad
groups of methods in the Adder class. Encoding thread safety as an aspect promotes the
resultant system’s:

e Reusability: Thread safety may be added to or removed from this or any other class
without interfering with the existing functionality;

!The join-point model is a collection of information about the join-point that is programmatically ac-
cessible. For AspectC++, every advice directive implicitly contains a variable “tjp” that provides access to
this information.

2In this case, the syntax is that of AspectC++, available at http://www.aspectc.org

176 APPENDIX B. ASPECT-ORIENTED PROGRAMMING

e Modifiability: The specific implementation of thread safety (i.e. MutexType) may be
altered in exactly one module and re-woven as necessary instead of having to change
it in every method of the class;

e Understandability: The actual methods of the Adder class are oblivious [18] to the
presence of a thread safety concern and thus remain focused solely on their specific
functionalities. Conversely, the MutualExclusion aspect is oblivious to the actual
contents of Adder and only deals with the issue of thread safety.

These are all highly desirable features of a “good” modular decomposition, making AO
techniques highly attractive for encapsulating these and similar “crosscutting concerns”.

Appendix C

Concern Listing

C.1 Traffic Estimator

Concern | Description

C Core algorithm: estimate lead vehicle distance and speed

C.0 Infrastructure, configuration and initialization

C.1 Determine forward path

C.2 Identify vehicles along forward path

C.3 Estimate bumper-bumper distance

C4 Estimate in-lane speed

C.5 Estimate closest road blockage

A% Exposing and binding algorithmic variability

V.0 Configuration and initialization

V.1 Obstacle “in lane” test

V.2 Obstacle speed estimation

E Supplemental effects

E.1 Aggregated effects: MovingObstacle: :isMoving

E.1.2 Require isMoving for nonzero speed (TE.S.1)

E.2 Aggregated effects: MovingObstacle: :isObservedMoving
E.2.2 Require isObservedMoving for nonzero speed (TE.S.2)

E.3 Aggregated effects: MovingObstacle: :isPredicted

E.3.2 Require !isPredicted for negative/oncoming speed (TE.S.3)
E.4 Aggregated effects: MovingObstacle: :laneAssociations
E.4.2 Require (laneAssociations.size() == 1) for negative speed (TE.S.4)
E.4.1 Replace geometric in-lane test with laneAssociations (TE.S.5)

Table C.1: Traffic Estimator: Concern Listing for Diffusion Metrics

178

APPENDIX C. CONCERN LISTING

C.2 Precedence Estimator

Concern | Description

C Core algorithm: estimate precedence and clearance at intersections

C.0 Infrastructure, configuration and initialization

C.1 Compute intersection occupancy zones

C.2 Test obstacles for occupancy in these zones

C.3 Use order of first occupancy to determine precedence ordering

C4 Use intersection occupancy to determine intersection clearance

C.5 Calculate yield windows

C.6 Maintain override timeouts for precedence, clearance and gridlock

C.7 Determine boss occupancy of zones

\% Exposing and binding algorithmic variability

V.0 Configuration and initialization

V.1 Critical stages in obstacle set update procedure

V.2 Intersection quiescence test

V.3 Intersection obstacle relevance test

V.4 Exit waypoint obstacle relevance test

V.5 Yield lane obstacle relevance test

E Supplemental effects

E.O MaxIgnorableSpeed Requirement (PE.C.1)

E.1 Aggregated effects: MovingObstacle: :isObservedMoving

E.1.1 Require isObservedMoving for yield relevance (PE.S.3)

E.1.2 Obstacles in intersection with isObservedMoving resets intersection override
timeout (PE.S.4)

E.1.3 Require isObservedMoving for all relevance after intersection override time-
out has expired (PE.S.2)

E.2 Aggregated effects: MovingObstacle: :laneAssociations

E.2.1 Require non-empty laneAssociations for all relevance (PE.S.1)

Table C.2: Precedence Estimator: Concern Listing for Diffusion Metrics

C.3. MERGE PLANNER 179

C.3 Merge Planner

Concern | Description

C Core algorithm: identify, synchronize with and merge into the optimum slot

C.0 Infrastructure, configuration and initialization

C.1 Identify obstacles relevant to the current merge scenario

C.2 Translate relevant obstacles into internal data types

C.3 Combine adjacent /overlapping obstacles to account for perception artifacts

C4 Compute necessary spacing and time-to-merge for each remaining obstacle

C.5 Select "best” feasible merge slot based on time-to-merge and distance to goal

C.6 Synchronize with and merge into ”best” merge slot

C.7 Maintain a time-delayed, persistent list of obstacles to account for transient
perception errors

\% Exposing and binding algorithmic variability

V.0 Configuration and initialization

V.1 Intermediate obstacle types: extensibility

V.2 Intermediate obstacle types: translation

V.2.1 MovingObstacle — VelocityType

V.2.2 VelocityType — ObstacleStateType

V.2.3 ObstacleStateType — BossStateType

V.3 Adjacent obstacle combination (as ObstacleStateType)

V.4 Obstacle speed estimation (as VelocityType)

V.5 Obstacle forward gap requirement (as ObstacleStateType)

V.6 Obstacle oncoming state determination (as BossStateType)

V.7 Obstacle culling distance determination

V.8 Obstacle travel lane determination

E Supplemental effects

E.0 Intermediate “isMoving” states

E.0.0 Introduction and initialization (MP.D.1,MP.D.2,MP.D.3)

E.0.1 Propagation rules through various types (MP.D.4,MP.D.7 MP.D.9)

E.0.2 Combination rule when adjacent obstacles are condensed (MP.D.8)

E.0.3 Require BossStateType: : isMovingFront for “oncoming” traffic (MP.D.12)

E.04 Require ObstacleStateType: : isMoving for courtesy gap (MP.D.11)

E.0.5 Require VelocityType: :isMoving for nonzero obstacle speed (MP.D.10)

E.1l Aggregated effects: MovingObstacle: :isMoving

E.1.1 Require isMoving for VelocityType: :isMoving (MP.D.5)

E.2 Aggregated effects: MovingObstacle: :isObservedMoving

E.1.1 Require isObservedMoving for VelocityType: :isMoving (MP.D.6)

E.2.2 Require vehicles with (isObservedMoving == false) to be closer (config-
urable) to the host before consideration in merge calculations (MP.S.2)

E.3 Aggregated effects: MovingObstacle: :laneAssociations

E.3.1 Use laneAssociations to determine obstacle travel lane (MP.S.1)

Table C.3: Merge Planner: Concern Listing for Diffusion Metrics

Appendix D

Design Structure Matrices

DE Traffic Estimator
||| < in|o©
Estimate Lane Speed 1
) Select Closest Bumper 21X
<—C Identify Vehicles On Forward Path 3 X
L Determine Forward Path 4 X
8 Configuration and Initialization 5
Class Definition 6 XXX [X|X
Pose 7 XXX XX
é Velocity 8|X
g Size| 9] [X[X
a Is Moving | 10|X
S Is Observed Moving | 11 |X
4 Is Predicted | 12[X
Lane Associations | 13 |X| |X| |X|X

Figure D.1: DSM for Traffic Estimator, Direct Encoding Implementation

OO Traffic Estimator lelon|whololelonlaS]ZY 0=

Speed_-MovingEffect 1 X
" Speed_ObservedMovingEffect 2 X
m Speed_IsPredictedEffect 3 X
“ Speed_LaneAssociationEffect 4 X

InLane_LaneAssociationEffect 5 X
» SpeedCalculationDelegate 6 | X|X|X|X X
— InLaneTestDelegate 7 X X
A GenericDelegate 8| X |X|X|X|X|X|X X X
Estimate Lane Speed 9
o0 Select Closest Bumper | 10 X
< Identify Vehicles On Forward Path | 11 X
2 Determine Forward Path | 12 X
Q - > PR -
O Configuration and Initialization | 13
Class Definition | 14 X[X[X|X|X
Pose| 15 XXX |X|X
g Velocity | 16 X
§ Size| 17 X|X
M Is Moving | 18|X
N Is Observed Moving | 19 X
& Is Predicted | 20 X
Lane Associations| 21 XX

Figure D.2: DSM for Traffic Estimator, Object-Oriented Implementation

182 APPENDIX D. DESIGN STRUCTURE MATRICES

AO Traffic Estimator o |a|m|<
M| FH OO~ 0[O | |||
AOTE_MovingEffects 1
2 AOTE_ObservedMovingEffects 2
5]) AOTE_IsPredicted Effects 3
AOTE_LaneAssociationEffects 4
Lane Speed Calculation 5 XX |X|X
Y In Lane Test 6 X
< Target Configuration 7 X
Target Slice Class 8 X
Estimate Lane Speed 9 X
oD Select Closest Bumper | 10 X
< Identify Vehicles On Forward Path | 11 X X
g Determine Forward Path| 12 X
(3 Configuration and Initialization | 13 X
Class Definition | 14 XXX X [X|X
Pose| 15 XXX | X|X
2 Velocity | 16 X
£ Size| 17 X|X
A Is Moving | 18|X
S Is Observed Moving | 19 X
& Is Predicted | 20 X
Lane Associations| 21 X

Figure D.3: DSM for Traffic Estimator, Aspect-Oriented Implementation

DE Precedence Estimator
||| <o |o ||| o
Maintain Override Timeouts 1 X X
Calculate Yield Window 21X
. Determine Intersection Clearance 31X
%D Determine Precedence Ordering 41X
° Boss Occupancy 5|X X
5 Moving Obstacle Occupancy 6 XX
© Build Occupancy Zones 7 X X|X
Configuration and Initialization 8
Class Definition IIX X[X[X[XX IX|X
Pose| 10|X|X X| XX
g Velocity | 11[X|X
£ Size| 12] [X X
a, Is Moving | 13
S Is Observed Moving | 14 |X|X X X|X
4 Is Predicted | 15
Lane Associations| 16 X X XX

Figure D.4: DSM for Precedence Estimator, Direct Encoding Implementation

183

OO Precedence Estimator lalos<hslole]olaS]TY R 2]e| 5|2
Classification_LaneAssociationEffect 1 X
" Classification_ObservedMovingEffect 2 X
m| UpdateProcess_ObservedMovingEffect 3 X
« Quiescence_ObservedMovingEffect 4 X
ObservedMoving_SharedState 5 X|X
ObstacleClassificationDelegate 6| X|X X X
n ObstacleUpdateProcessDelegate 7 X X
5 IntersectionQuiescenceTestDelegate 8 X X X
GenericDelegate 9| X|X|X|X|X|X|X|X
Maintain Override Timeouts | 10 X X
Calculate Yield Window | 11 X
. Determine Intersection Clearnance | 12 X
%ﬂ Determine Precedence Ordering | 13 X
° Boss Occupancy | 14 X X
3 Moving Obstacle Occupancy | 15 XX
© Build Occupancy Zones | 16 X XX
Configuration and Initialization | 17
Class Definition | 18 XX | XIX|X[X|X|X
Pose| 19 XX X XX
g Velocity | 20 X|X
g Size| 21 X X
o Is Moving | 22
N Is Observed Moving | 23 X|X|X|X
;g Is Predicted | 24
Lane Associations| 25|X

Figure D.5: DSM for Precedence Estimator, Object-Oriented Implementation

AO Precedence Estimator lalo|whslolelola 22 1821221C 5222
" AOPE_MaxIgnorableSpeedEffect 1
) AOPE _LaneAssociationEffects 2|X
“ AOPE_ObserveMovingEffects 31X
Obstacle Update Notification 4 X
Obstacle Occupies Intersection 5 X
Intersection Quiescence Test 6 X
— Combined Relevance Tests 7 X[XX
& Intersection Obstacle Relevance Test 8 X
Stopline Obstacle Relevance Test 9 X
Yield Lane Obstacle Relevance Test | 10 X X
Target Configuration| 11 |X|X|X
Target Slice Class| 12 |X|X|X
Maintain Override Timeouts| 13 X X X
= Calculate Yield Window | 14 X
é Determine Intersection Clearance| 15 X X
'g Determine Precedence Ordering | 16 X
o0 Boss Occupancy | 17 X X
i Moving Obstacle Occupancy | 18 X|X XXX XX
3 Build Occupancy Zones | 19 X XX
O Configuration and Initialization | 20 X
Class Definition | 21 XXX X[X[X[XXX
Pose | 22 X|X X XX
g Velocity | 23 X|X
% Size| 24 X X
o, Is Moving | 25
5 Is Observed Moving | 26 X
& Is Predicted | 27
Lane Associations| 28 X

Figure D.6: DSM for Precedence Estimator, Aspect-Oriented Implementation

184 APPENDIX D. DESIGN STRUCTURE MATRICES

DE Merge Planner el e e P Y S P e e e
Synchronize and Merge 1
Identify Optimal Merge Gap 21X
Compute Feasible Merge Gaps 3 X
Combine Adjacent Obstacles 4 X
g Translate To Boss State 5
= Translate to Obstacle State 6
'g Translate to Velocity Type 7
20 Persistent List of Relevant Obstacles 8
f Identify Relevant Obstacles 9 X
3 Determine Current Merge Scenario| 10 X
O Intermediate Boss State Type| 11 X|X|X
Intermediate Obstacle State Type| 12 X|X
Intermediate Obstacle Velocity Type | 13 X|X
Configuration and Initialization | 14
Class Definition | 15X [X|X X[XX X
Pose| 16 XX |X XX
E Velocity | 17 X X
§ Size| 18 X X X
a, Is Moving | 19 X XXX
5 Is Observed Moving | 20 X| X X[X[|X[|X|X
;S Is Predicted | 21
Lane Associations | 22 X

Figure D.7: DSM for Merge Planner, Direct Encoding Implementation

185

OO Merge Planner

OTL_LaneAssociationEffects

OCR-ObservedMovingEffects

IMD_ObservedMovingEffects

IMD_MovingEffects

IntermediateMovingDelegate.h

NVT_IntermediateMovingEffects

VGRT_IntermediateMovingEffects

Velocity TypeExtension

Supplemental Effects

ObstacleStateExtension

BossStateExtension

ObstacleTravelLaneDelegate

ObstacleCullingRangeDelegate

IntermediateObstacleTypeDelegate

NegativeVelocityTestDelegate

VehicleGapRequirementDelegate

Velocity TypeExtension

ObstacleStateExtension

Delegate Interfaces

BossStateExtension

GenericDelegate

Synchronize and Merge

Identify Optimal Merge Gap

Compute Feasible Merge Gaps

Combine Adjacent Obstacles

Translate To Boss State

Translate to Obstacle State

Translate to Velocity Type

Persistent List of Relevant Obstacles

Identify Relevant Vehicles

Determine Current Merge Scenario

Core Algorithm

Intermediate Boss State Type

Intermediate Obstacle State Type

Intermediate Obstacle Velocity Type

Configuration and Initialization

Class Definition

Pose

Velocity

Size

Is Moving

Is Observed Moving

Env. Params

Is Predicted

Lane Associations

10
11
12
13
14
15
16
17
18
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

oo | o k| w| |
fallallal

falladlal

falls

faltallal

ks
el L

BB
Figure D.8: DSM for Merge Planner, Object-Oriented Implementation

AO Merge Planner

AOMP _LaneAssociationEffects

AOMP _MovingEffects

SE’s

AOMP_ObservedMovingEffects

AOMP _IntermediateMovingStates

Obstacle Lane Determination

Culling Range Determination

Translation: ”Obstacle” to ” Boss”

Translation: ”Velocity” to ” Obstacle”

Translation: Mvng Obst to ” Velocity”

Translation: Road Block to ” Velocity”

Adjacent Obstacle Combination

Negative Velocity Test

Vehicle Gap Requirement test

Intermediate Boss State Slice

Intermediate Obstacle Slice

Intermediate Velocity Slice

Crosscutting Interface (XPI)

Configuration and Initialization

Target Class Slice

Synchronize and Merge

Identify Optimal Merge Gap

Compute Feasible Merge Gaps

Combine Adjacent Obstacles

Translate To Boss State

APPENDIX D. DESIGN STRUCTURE MATRICES

Translate to Obstacle State

Translate to Velocity Type

Persistent List of Relevant Obstacles

Identify Relevant Vehicles

Core Algorithm

Determine Current Merge Scenario

Intermediate Boss State Type

Intermediate Obstacle State Type

Intermediate Obstacle Velocity Type

Configuration and Initialization

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
27
28
29
30
31
32
33

K] 4

0| U | W[N[

e e Ll
B~ W= OO

n

—
[}

I I N N I T P e ey
R~ S|S0 ||k [B|N|=|S|o|w|~|o
falls

XK KA P 4 4

Class Definition | 33 X X
Pose | 34 X X|X
Velocity | 35 X
Size | 36 X

Is Moving

Is Observed Moving

Env. Params

Is Predicted

Lane Associations

186

Figure D.9: DSM for Merge Planner, Aspect-Oriented Implementation

w|w
©| 0o

'
[S)

Appendix E

The Unified Modeling Language
(UML)

This appendix provides reference diagrams that clarify the usage of UML[48] in this thesis,
which is based in large part on the first chapter of [44]. In particular, some diagrams make
use of obscure UML notations, such as the “nested” class relationship in Figure E.5, or
otherwise deviate from standard UML, such as to represent aspects[56]. In general, the
diagrams take dependency relationships much more precisely than normal, especially when
describing method-level dependencies that are necessary for fine-grained analysis.

Example figures are populated with several notes to elucidate the meaning of various
symbols, often negating the need for accompanying explanatory prose beyond the caption.
Example C++ or AspectC++ syntax is provided in accompanying listings to further eluci-
date the meaning of the diagrams, and each figure-listing pair is placed on a separate page,
beginning on page 188, to ensure maximum clarity.

E.1 UML Basics

1
I am a comment MyClass m .
----- ylnstance : MyClass myArray : MyClass[16
about MyClass | yArray : My [16]

Figure E.1: Example UML diagram, introducing the “note” or “comment” box (“I am
a comment”) and the most basic representation of classes (named boxes with multiple
compartments) and “objects” which are instances of a given class.

 E—

// I am a comment about MyClass

class MyClass {}; // declare a class

MyClass mylInstance; // declare an instance of MyClass
MyClass myArray[16]; // devlare an array of MyClass-es

Listing E.1: C+4++ syntax for Figure E.1

188 APPENDIX E. THE UNIFIED MODELING LANGUAGE (UML)

E.2 Class Contents and Inheritance

Class name on togxr"' BaseClass L
- J I am a note pertaining
;publlcrezaerb | .-"7] to specific class elements
protectedMember .
Th -~ ~"|-privateMember ,/
en member data +publicMethod () K
#protectedMethod () ’
_.==|-privateMethod() Italics: Polymorphic Methods
Th thod declarati +publicPolymorphicMethod() ---21Bold Italics: Pure Virtual
€n method declarations #protectedPureVirtualMethod() |-~ (must implement in child)
Zf :
I
'
________ 1
Read as: InheritedClass |~~~ N N
"specializes" BaseClass InheritedClass ':' Non-italics: overrides same
1 4 1
+otherMember ;e method in parent,.but no
. | further polymorphism allowed

+publicPolymorphicMethod() .
#protectedPureVirtualMethod()

Figure E.2: Example UML diagram, introducing the standard arrangement of class names,
members and methods, and the notation for inheritance, or specialization, which is the

open-ended arrow from InheritedClass to BaseClass

class BaseClass {
public:

bool publicMember;

void publicMethod ();

virtual void publicPolymorphicMethod () ;
protected:

bool protectedMember;

void protectedMethod ();

virtual void protectedPureVirtualMethod() = O0;

private:
bool privateMember;
void privateMethod ();

};
class InheritedClass : public BaseClass {
public:
bool otherMember;
// override parent functionality: children can also override
virtual void publicPolymorphicMethod ();
protected:
// override parent functionality: no further polymorphism
void protectedPureVirtualMethod () ;
+;

Listing E.2: C++ syntax for Figure E.2

E.3. INTER-CLASS DEPENDENCIES

E.3 Inter-class Dependencies

Beta = fF------ 1 _] class-level dependency, read as:
[t " "
+doSomethingWithAlpha(aa:Alpha &) V - Beta depends on Alpha
Alpha
+doSomething()
— = = >|+doSomethingStatic()
p ! Method-level dependency,
amma REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED "Gamma: :doSomethingElse depends
+doSomethingElse() |k — — — J on Alpha::doSomethingStatic()"

Figure E.3: Example UML diagram, demonstrating both class-level and element-level de-
pendencies. Note that this is not a common usage of UML, but is necessary to demonstrate

the calling patterns amongst interrelated methods.

class Alpha {

public:

void doSomething () ;

static void doSomethingStatic () ;
s

class Beta {
void doSomethingWithAlpha (Alpha &aa) {
// poke Alpha
aa.doSomething () ;
// and do other stuff
}
}s

class Gamma {
void doSomethingElse () {
// do Gamma stuff
// ... which includes a static stide effect in Alpha
Alpha::doSomethingStatic ();
}
s

Listing E.3: C++4 syntax for Figure E.3

190 APPENDIX E. THE UNIFIED MODELING LANGUAGE (UML)

E.4 Aggregation

Open Diamond: a Joint 2 Linkage
has/requires Linkages /' +theta,z,alpha,x: double
Joint L e Multiplicity: one Joint
+from_,to_: Linkage * <:;:1 - has/requires two Linkage:D1

+motor : Motor *

-
~.a
~
~
~a
~

No markings implies 1:1E1

~
~
~~

AY
Solid Diamond: a Joint * Mot
A
"contains" a motor, or a otor
Motor "is part of" a Joint +moveTo(theta:double): void

Figure E.4: Example UML diagram, demonstrating different degrees of aggregation between
classes: has (undecorated) vs. requires/owns (open diamond) vs. contains/composes (solid
diamond). Note that these are highly interrelated, with semantic overlap between.

class Linkage {
double theta, z, alpha, a;
Fe

class Motor {
void moveTo (double theta);
e

class Joint {
// aggregated classes are typically created elsewhere,
// and passed to the contatiner at construction
Joint (Linkage *from, Linkage *to):
from_ (from), to_ (to) {

motor_ = new Motor(); // composed instances are created...
}
“Joint () {

delete motor_; // ... and destroyed with their contatiners
}

Linkage *from_, *to_;
Motor *motor_;

Listing E.4: C++ syntax for Figure E.4

E.5. NESTED TYPING 191

E.5 Nested Typing

Circle-with-crosshair OuterClass Nested types are typically
Indicates nested class |_______ used within the outer class
declarations | TTTTUe to generate and/or hold

intermediate results

r
—'_
-
—" 4
-
-
-

Q
- s
-
-
-

InnerClass2 InnerClassl

+otherAttribute: double +someAttribute: bool

Figure E.5: Example UML diagram, demonstrating nested type declarations.

class QOuterClass

{
public:
class InnerClassli
{
bool someAttribute;
};
class InnerClass?2
{
double otherAttribute;
};
};

Listing E.5: C+4++ syntax for Figure E.5

192 APPENDIX E. THE UNIFIED MODELING LANGUAGE (UML)

E.6 Templates

<<stereotype>>

<<XYZPoint>> indicates XYZPoint <<stereotype>> indicates Dashed box in
fulfillment of the F-~1a type requirement, as upper right lists
named stereotype +x,v,z: scalar opposed to a "real" class templated types

:" A _____ - "’

' = m = m ==

; 1 y POINT:XYZPoint,

N CloudEater :
<<XYZPoint>> <<XYZPoint>>
DoublePoint +eat(pt:const POINT &): double ExtraPoint

+<<template>> eat_cloud(cloud:const CONTAINER<POINT> &): double

+X,y,z: scalar ? +X,y,z: int

+name: string

<<bind>> <<bind>>

+hasFlavor: bool

1 POINT->DoublePoint POINT->ExtraPoint
1=~ .y .-t A
1 <<typedef>> <<bind>> indicates N
" | poublePointCloudEater realization using ExtraPointCloudEater [-
denoted types

Figure E.6: Example UML diagram, demonstrating template class notation.

// POINT must satisfy the XYZPoint stereotype by having
// public scalar member data named "z", "y", and "z"
template <class POINT> class CloudEater {
public:
// referencing "z", "y" and "z" creates the XYZPoint stereotype
double eat(const POINT &pt) { return (pt.x + pt.y) * pt.z; 1}

// anonymous template eater for a generic CONTAINER of points
// CONTAINER must support forward tteration, such as std::1list
template <class CONTAINER>
double eat_cloud(const CONTAINER<POINT> &cloud) {
double sum = 0.0;
for (CONTAINER<POINT>::const_iterator ii = cloud.begin();
ii !'= cloud.end(); ++ii) { sum += eat (xii); }
return sum;
}
};
// declare a point-class of doubles
class DoublePoint { public: double x,y,z; }
// bind via typedef
typedef CloudEater <DoublePoint> DoublePointCloudEater;

// structs, other scalar types for z,y,z, and arbitrary exztras ok
struct ExtraPoint { int X,yY,2Z; string name; bool hasFlavor; T;
// bind via inheritance

class ExtraPointCloudEater : public CloudEater <ExtraPoint> {};

Listing E.6: C++ syntax for Figure E.6

E.7. ASPECT-ORIENTED NOTATION 193

E.7 Aspect-Oriented Notation

"targetClass" pointcut depends on aspects are indicated by Advice directive to
the "Adder" class name the <<aspect>> stereotype "slice" MutexSlice
v = . into XPI::targetClass
. Ptae Seel
\“ . . ~. .. :
s <<aspect>> <<aspect>> :'
A
*\ XPI_Adder Adder_MutualExclusion K
A} L
< - O
Adder < = — — [+targetClass: pointcut +<<slice>> XPI_Adder::targetClass(): MutexSlice
— Th17|+accessors: pointcut e : i
TsetX(): void | - 1 ; +<<around>> XPI_Adder::accessors(): execution()
+setY(): void | =1 ! 69 p
+getsum(): int € =1 ! \
: .
L}
'
: <<slice>> "around" advice to
. ., . MutexSlice wrap execution of
accg:%ors Eozntcut d?peZSZ on XPI::accessors with
specific method names in er. +myMutex : MutexType mutex functionality

Figure E.7: Example UML diagram, showing aspect-oriented notation from [56], which are
consistent with the representation of fine-grained dependencies shown in Figure E.3

class Adder {}; // declaration as in Listing 4.1

aspect XPI_Adder {
pointcut targetClass() = "Adder";
pointcut accessors() = "% Adder::set’(...)" ||
"% Adder::get%(...)";

¥

aspect Adder_MutualExclusion {
slice class MutexSlice {

MutexType myMutex_;

s

// slice in the mutez
advice XPI_Adder::targetClass() : slice MutexSlice;

advice execution(XPI_Adder::accessors())
around () {
// do mutual ezcluston as in Listing 4.3
}
Jrg

Listing E.7: AspectC++ syntax for Figure E.7, see Appendix B for functionality

Bibliography

[10]

[11]

Jonathan Aldrich. Open Modules: Modular Reasoning about Advice, chapter 7, pages
144-168. Springer Berlin/Heidelberg, 2005.

Ronald C. Arkin. Behavior-Based Robotics (Intelligent Robotics and Autonomous
Agents). MIT Press, 1998.

Christopher R. Baker and John M. Dolan. Traffic Interaction in the Urban Chal-
lenge: Putting Boss on its Best Behavior. In IEEE/RSJ International Conference on
Intelligent RObots and Systems, pages 1752-1758, 2008.

Christopher R. Baker and John M. Dolan. Street smarts for boss: Behavioral subsystem
engineering for the urban challenge. IEEE/RAS Robotics and Automation Magazine
Special Issue on Software Engineering in Robotics, 16(1):78-87, 2009.

Carliss Y. Baldwin and Kim B. Clark. Design Rules Vol. I, The Power of Modularity.
MIT Press, Cambridge, MA, 2000.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

Barry Boehm, A. Winsor Brown, Ray Madachy, and Ye Yang. A software product
line life cycle cost estimation model. Empirical Software Engineering, International
Symposium on, 0:156-164, 2004.

David Bradley, Ranjith Unnikrishnan, and J. Andrew (Drew) Bagnell. Vegetation
detection for driving in complex environments. In IEEFE International Conference on
Robotics and Automation, April 2007.

Rodney A Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14-23, March 1986.

Siobhan Clarke and Robert J. Walker. Separating crosscutting concerns across the
lifecycle: From composition patterns to aspectj and hyper/j. Technical report, UCD,
2001.

Toby H.J. Collet, Bruce A. MacDonald, and Brian P. Gerkey. Player 2.0: Toward a
practical robot programming framework. In Proceedings of the Australasian Conference
on Robotics and Automation (ACRA), Sydney, Australia, 2005.

196

BIBLIOGRAPHY

[12]

[16]

[17]

[18]

[21]

22]

23]

Carle Cote, Yannick Brosseau, Dominic Letourneau, Clement Raievsky, and Francois
Michaud. Robotic software integration using MARIE. International Journal of Ad-
vanced Robotic Systems, 3:55-60, 2006.

Anthony Cowley, Luiz Chaimowicz, and Camillo J. Taylor. Design minimalism in
robotics programming. International Journal of Advanced Robotic Systems, 3(1):31—
36, November 2008.

Kris De Volder, Maurice Glandrup, Siobhdn Clarke, and Robert Filman, editors.
Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOPSLA
2001), October 2001.

Dedicated Short Range Communications Technical Committee. Dedicated short range
communications (dsrc) message set dictionary. Standards Document J2735, Society of
Automotive Engineers, SAE World Headquarters, 400 Commonwealth Drive, Warren-
dale, PA 15096-0001, USA, 2009.

Defense Advanced Research Projects Agency (DARPA). Urban challenge website, July
2007. http://www.darpa.mil/grandchallenge.

Tara Estlin, Richard Volpe, Issa A.D. Nesnas, Darren Mutz, Forest Fisher, Barbara
Engelhardt, and Steve Chien. Decision-making in a robotic architecture for autonomy.

In 6th Internation Symposium on Artificial Intelligence, Robotics, and Automation in
Space (i-SAIRAS), Montreal Canada, June 2001.

R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Peri Tarr, Lodewijk Bergmans, Martin Griss, and Harold Ossher,
editors, Workshop on Advanced Separation of Concerns (OOPSLA 2000), October
2000.

Andreas Gal, Wolfgang Schrioder-Preikschat, and Olaf Spinczyk. AspectC++: Lan-
guage proposal and prototype implementation. In De Volder et al. [14].

Andreas Gal, Wolfgang Schroeder-Preikschat, and Olaf Spinczyk. Aspectc++: Lan-
guage proposal and prototype implementation. In OOPSLA 2001 Workshop on Ad-
vanced Separation of Concerns in Object-Oriented Systems, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

Alessandro F. Garcia, Claudio Sant’Anna, Eduardo Figueiredo, Uirda Kulesza, Carlos
José Pereira de Lucena, and Arndt von Staa. Modularizing design patterns with as-
pects: A quantitative study. In Transactions on Aspect-Oriented Software Development
I [47], pages 36-74.

David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEFE Software, 12(6):17-26, 1995.

197

[24]

[25]

[26]

[27]

[29]

[30]

[31]

32]

[34]

[35]

William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit Tewari,
Yuanfang Cai, and Hridesh Rajan. Modular software design with crosscutting inter-
faces. IEEE Softw., 23(1):51-60, 2006.

Karl Tagnemma and Martin Buehler, editors. Special Issue on the DARPA Grand
Challenge, Part 1, volume 23. Wiley, 2006.

Karl Tagnemma and Martin Buehler, editors. Special Issue on the DARPA Grand
Challenge, Part 2, volume 23. Wiley, 2006.

JAUS. Joint architecture for unmanned systems reference architecture, version 3.2.
Technical report, JAUS Working Group, August 13, 2004.

Shmuel Katz. Aspect categories and classes of temporal properties. In Transactions
on Aspect-Oriented Software Development I [47], pages 106—-134.

Stephen Kell. A survey of practical software adaptation techniques. Journal of Uni-
versal Computer Science, 14(13):2110-2157, 2008.

Alonzo 1. Kelly. RANGER - An Intelligent Predictive Controller for Unmanned Ground
Vehicles. PhD thesis, The Robotics Institute, Carnegie Mellon University, 1994.

G. Kiczales. Beyond the black box: Open implementation. IEEE Software, 13(1):8-11,
January 1996.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS 2072, pages
327-353, Berlin, June 2001. Springer-Verlag.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the Furopean Conference
on Object-Oriented Programming, 1997.

Cristina Videira Lopes and Sushil Bajracharya. Assessing aspect modularizations using
design structure matrix and net option value. In Transactions on Aspect-Oriented
Software Development I [47], pages 1-35.

Cristina Videira Lopes and Sushil Krishna Bajracharya. An analysis of modularity in
aspect oriented design. In AOSD ’05: Proceedings of the 4th international conference
on Aspect-oriented software development, pages 15-26, New York, NY, USA, 2005.
ACM. General Chair-Mezini, Mira and Program Chair-Tarr, Peri.

Jun Miura, Motokuni Ito, and Yoshiaki Shira. A three-level control architecture for
autonomous vehicle driving in a dynamic and uncertain traffic environment. In I7TS,
pages 706-711, Boston, MA, 1997.

Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives on standard-
ization in mobile robot programming: The Carnegie Mellon Navigation (CARMEN)
Toolkit. In Proceedings of the International Conference on Intelligent Robots and Sys-
tems, 2003.

198

BIBLIOGRAPHY

[38]

Issa Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, Tara Estlin, and Won Soo
Kim. CLARAty: An architecture for reusable robotic software. In Proceedings of SPIE,
2003.

Issa A. Nesnas, Reid Simmons, Daniel Gaines, Clayton Kunz, Antonio Diaz-Calderon,
Tara Estlin, Richard Madison, John Guineau, Michael McHenry, I hsiang Shu, and
David Apfelbaum. CLARAty: Challenges and steps toward reusable robotic software.
International Journal of Advanced Robotic Systems, 3(1):023-030, 2006.

Issa A. D. Nesnas. The claraty project: Coping with hardware and software hetero-
geneity. Software Engineering for Experimental Robotics, 30:31-70, April 2007.

Martin E. Nordberg III. Aspect-oriented dependency inversion. In De Volder et al.
[14].

Harold Ossher and Peri Tarr. Hyper/J: Multi-dimensional separation of concerns for
Java. In Proc. 23rd Int’l Conf. on Software Engineering, pages 729-730. IEEE Com-
puter Society, 2001.

D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
mun. ACM, 15(12):1053-1058, 1972.

Dan Pilone and Neil Pitman. UML 2.0 In a Nutshell: A Desktop Quick Reference.
O’Reilly Media, 2005.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes In C. Cambridge University Press, second edition, 1999.

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. In Proceedings of the Open-Source Software workshop at the International
Conference on Robotics and Automation (ICRA), 2009.

Awais Rashid and Mehmet Aksit, editors. Transactions on Aspect-Oriented Software
Development I, volume 3880 of Lecture Notes in Computer Science. Springer, 2006.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
reference manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

Reid Simmons and D. Apfelbaum. A task description language for robot control. In
Proceedings Conference on Intelligent Robotics and Systems, October 1998.

Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented implementa-
tion technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):215-255, 2002.

Friedrich Steimann. The paradoxical success of aspect-oriented programming. In Pro-
ceedings of the 2006 OOPSLA Conference, New York, NY, USA, 2006. ACM.

199

[53]

[54]

[55]

[59]

[60]

[61]

Anthony Stentz. Optimal and efficient path planning for part-known environments. In
IEEE International Conference on Robotics and Automation (ICRA), 1994.

Anthony (Tony) Stentz and Chuck Thorpe. Against complex architectures. In Pro-
ceedings of the 6th International Symposium on Unmanned Untethered Submersible
Technology, pages 308 — 311, June 1989.

Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. The structure
and value of modularity in software design. In ESEC/FSE-9: Proceedings of the 8th
European software engineering conference held jointly with 9th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 99-108, New York,
NY, USA, 2001. ACM.

Junichi Suzuki and Yoshikazu Yamamoto. Extending uml with aspects: Aspect support
in the design phase. In 3rd Aspect Oriented Workshop at ECOOP, 1999.

Matthias Urban and Olaf Spinczyk. Aspectc++ compiler manual. Online, August
2010.

Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, M. N.
Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele Gittleman,
Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski, Alonzo Kelly,
Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian Pilnick,
Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod
Snider, Anthony Stentz, William ”"Red” Whittaker, Ziv Wolkowicki, and Jason Ziglar.
Autonomous Driving in Urban Environments: Boss and the DARPA Urban Challenge.
Journal of Field Robotics, 25(8):425-466, 2008.

Christopher Urmson, Reid Simmons, and Issa Nesnas. A generic framework for robotic
navigation. In IEEE Aerospace Conference 2003, March 2003.

David Wettergreen, Chuck Thorpe, and William (Red) L. Whittaker. Exploring mount
erebus by walking robot. Robotics and Autonomous Systems, 1993.

David A. Wheeler. sloccount: a tool for counting lines of code in multiple languages,
July 2009. http://www.dwheeler.com/sloccount.

