
Towards Automatic Identification and
Delineation of Tissues and

Pathologies in H&E Stained Images

Ramamurthy Bhagavatula

Advisor: Prof. Jelena Kovačević
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Abstract

We propose a framework and methodology for the automated identification and delineation

of tissues and their pathologies in hematoxylin and eosin (H&E) stained images. Histopathol-

ogy is vital to medicine and research as it enables quantitative and qualitative analysis of

tissue samples, stained and visualized via microscopes; the most routine and cost-effective

of these stains is H&E. In clinical diagnostic surgical pathology, the pathologist interprets

H&E-stained tissue slides by determining whether a given sample represents normal or ab-

normal tissue for the given anatomical location. Although pathologists accurately and con-

sistently identify and delineate such tissues and their pathologies, this is a time-consuming

and expensive task; thus the need for automated algorithms for improved throughput and

robustness.

We develop such an algorithm that uses local histograms and occlusion models as a

mathematical framework for pixel-level classification. We also develop an expert-guided

feature set called the histopathology vocabulary that mimics the visual process used by

pathologists. To expand applicability, we achieve simultaneous identification and delineation

by performing pixel-level classification.

Experimental results on both a clinical application (active colitis) and a research one

(tissue development in teratoma tumors) validate the discriminative power of our approach.

We also present comparisons to popular, though general, feature types to demonstrate the

power of our expert-guided feature set. Our framework and methodology demonstrates

great promise towards the creation of a framework and methodology for the automated
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identification and delineation of tissues and their pathologies in H&E-stained images.
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Chapter 1

Introduction

The last time you visited your physician for relief from some ailment, he began by asking

questions about your symptoms and likely causes of your illness. He probably also collected

quantitative data such as your pulse rate and blood pressure. Based on the information

collected, he prescribed some treatment course that was expected to cure your malady.

However, the illness may have persisted in spite of the treatment. You returned to your

physician for additional collection of information and an updated course of treatment. Until

you were cured, you and your physician repeated these steps which represent the major

divisions of medicine, diagnostic and therapeutic medicine (see Figure 1.1).

Diagnostic medicine aims to evaluate the illness that afflicts a given patient. This most

often includes identifying the type of illness, ascertaining its severity, and determining its

cause by utilizing a variety of techniques and tools. Such tools include standard patient

questioning and collection of vital statistics but also include many more advanced methods

such as X-rays, electroencephalography, and magnetic resonance imaging (MRI) to name a

few. Development of new techniques and tools and improvement of existing ones is a major

focus of both research and industry.

Based on the information collected by diagnostic methods, therapeutic medicine’s goal is

to prescribe the most effective course of treatment for the illness. Treatments are generally

1
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Figure 1.1: General medical pathway demonstrating the closed loop nature of diagnosis and
therapy.

deemed effective based on a balance between their overall success rate, cost, and risk. Drugs

are typically considered a much cheaper and less risky option when compared to surgery.

Naturally, prescribing more expensive and riskier treatments occurs only when all other

possible options have been exhausted. However, this decision is always based on the infor-

mation provided by the diagnosis as more severe diagnoses likely demand more immediate

and significant action.

While we have thus far presented information in the context of clinical medicine, med-

ical research has as strong a connection to diagnostic and therapeutic medicine as clinical

medicine. Medical research is of course the source of many of the tools and techniques used

in the clinical domain but many other topics are also addressed. Such topics can be generally

considered basic science questions. For example, understanding and controlling normal and

abnormal development of humans is dependent on not only assessing development but also

on applying a variety of procedures and observing their impact on development.

These two branches of medicine are developed and used hand in hand in every med-

ical scenario. Thus, a meaningful contribution to either of them has the potential to be
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far-reaching. It is in the diagnostic branch where we propose to make a contribution by

developing a tool in the area of histopathology. To aid physicians in making accurate and

reproducible diagnoses, we propose to:

Create a framework and methodology for the automated identification

and delineation of tissues and their pathologies in hematoxylin

and eosin stained images.

1.1 Pathology

Traditionally, the four major components of diagnostic medicine are anatomy, physiology,

pathology, and psychology. Anatomy and physiology refer to the structure and function of the

human body respectively. Pathology focus on understanding what, how, and why anatomy

or physiology may be affected. In the context of medicine, pathology asks how illnesses

manifest themselves by negatively impacting the form and function of the human body.

To complete the description of diagnostic medicine, psychology addresses the thought and

behavior of a patient. We will focus solely on pathology and more specifically histopathology.

At a coarse level, pathology focuses on understanding the causes and development of dis-

eases while observing how cells are affected and in turn how these changes manifest as clinical

symptoms. Generally, there are thought to be two main types of pathology, anatomical and

clinical. Anatomical pathology observes changes in the macroscopic, microscopic, chemical,

and molecular presentation of organs, tissues, and even the entire body. Clinical pathology

utilizes laboratory analysis of bodily fluids such as blood through chemistry, microbiology,

and other means.

Those that pursue education and training in this field are termed pathologists and are

among the most capable diagnosticians in the modern medical system. Pathologists at

large are expected to have a detailed knowledge of general human anatomy, physiology,
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and pathology but many specializations exist. These specializations typically correspond

with specific anatomical or physiological systems. For example, dermapathology focuses on

the diagnosis of diseases of the skin while hemapathology addresses blood-related diseases.

Extensive education and years of experience result in specialists whose diagnostic abilities

are highly valued and often absolutely necessary in the overall course of treatment for many

illnesses.

1.1.1 Histopathology

A specific and extremely useful subfield of anatomical pathology is that of histopathology.

Histopathology by definition is the study of disease through microscopic examination of

tissues and their component parts. It is a vital component in the overall clinical pathway of

many diseases and is an important tool in the research of many medical topics. The overall

procedure involves acquisition of a tissue sample or biopsy, chemical fixation, histological

sectioning and mounting, staining, and visualization/imaging.

Standard Procedure

Acquisition is usually accomplished through surgical means that vary according to the

anatomical region and specific need. For example, in the case of brain, breast, or skin tissue,

a potential acquisition method is to insert a fine needle into the tissue and extract a sample

through aspiration (suction) as shown in Figure 1.2(a). Another example is the endoscopic

biopsy that we will discuss in detail in Section 2.1.2. As one may expect, the wide variety of

acquisition methods will yield many fundamentally different types of samples. Additionally,

the operating surgeon’s abilities and patient’s condition will cause samples acquired with the

same method to present variations ranging from subtle to extreme.

Once the biopsy is acquired, it undergoes the process of chemical fixation. A simple

description of this process is the replacement of all water in the biopsy with a chemical
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(a) Biopsy (b) Chemical fixation (c) Histological sectioning and
mounting

(d) Staining (e) Visualization/Imaging

Figure 1.2: Illustrative examples of steps of histopathology standard procedure: (a) biopsy
(www.wikimedia.com), (b) chemical fixation (www.protocolsonline.com), (c) histological sec-
tioning and mounting (www.leica-microsystems.com), (d) staining (www.bio.mq.edu.au),
and (e) visualization/imaging (www.pathology.washington.edu).

reagent of choice, typically paraffin. Effectively, the paraffin fixation will turn the previously

soft biopsy hard allowing for the next steps in the process. During the acquisition stage,

the tissue will have suffered some damage and may have even effectively died but individual

cells may still be functional. However, after the chemical fixation step, the tissue is in fact

dead and suspended to prevent decay. As a result, a fixed biopsy can be stored indefinitely

for future use but no time-dependent behavior of the tissue can be observed. The final part

of this step is to take the now fixed biopsy and embed it in a block of paraffin as illustrated

in Figure 1.2(b).

At this stage, the fixed biopsy is a three-dimensional object that (in most relevant cases)

will allow for some direct microscopic examination as is, specifically that of its exterior.

However, the interior of the biopsy, which is often very important, cannot be seen at this

stage. Furthermore, the ability of high-quality microscope to provide accurate visualizations



CHAPTER 1. INTRODUCTION 6

is dependent on its ability to optically focus on a very narrow depth of field. Additional

issues related to transmission of light through non-air mediums further confound the direct

microscopic examination of the fixed biopsy. As a result, very thin slices of the biopsy must

be made to yield precise visualization. A tool called a microtome, an example of which is

shown in Figure 1.2(c), is used to slice the paraffin block into serial (consecutive along the

depth of biopsy) slices whose thickness is on the order of a few micrometers which are then

mounted on slides. Naturally, the quality of the microtome and the operating technician’s

ability will affect the quality and consistency of the slices.

The slides created at this point could be observed under a microscope but the features

of interest are not likely to be well defined. Specifically, as a result of the chemical fixation,

the mounted slices lack distinct coloration. While some structure might be observable, much

more information can be obtained by applying specific chemicals called immunohistochem-

ical stains to the slides. Each stain is designed to bind to certain characteristic proteins in

tissues. Since the presence of particular proteins correlates very strongly with specific tissue

components, the tissue structure is made visible by this process. The choice of stain dictates

which structures are highlighted. Furthermore, combinations of stains can be used to effec-

tively color a variety of structures and help differentiate between them. Though the exact

procedure for each individual and combination of stains varies, we present an illustrative

example in Figure 1.2(d). The gold standard or most routinely used stains are those of H&E

that we will discuss in more detail in the next section. As there are many manufacturer’s

of stains, many staining protocols available, and the variation introduced by the technician,

the exact staining amongst a set of samples is likely to vary in many situations.

Once all the previous steps have been completed, that pathologist is now able to observe

the slides under a microscope as shown in Figure 1.2(e). His assessment of the observed

tissues will be guided not only by his knowledge and experience, but also by the situation at

hand. For example, knowing that he is to evaluate the sample for a particular disease allows
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a pathologist to focus his efforts for a much more precise and efficient evaluation. Direct

observation through a microscope is almost always done initially but thanks to the advent

of digital sensors and their integration into microscopes, images can also be taken for future

use. As would be expected, additional source of variation such as a pathologist’s preferences,

microscope optical quality, and the quality of the image sensor influence the resulting image.

Hematoxylin and Eosin

As mentioned before, the choice of stains used dictates the overall presentation of tissues in

a sample. The most popular choice of stains in pathology is the combination of hematoxylin

and eosin (H&E). Hematoxylin binds primarily to those structures containing nucleic acid

such nuclei and ribosomes, coloring them in shades of blue and purple. In contrast, eosin

binds to structures primarily made up of protein such as cytoplasm and red blood cells,

coloring them in shades of red and pink. These complementary chemicals stain the majority

of the structures present in tissue and result in a very informative coloration of a sample.

We present some example images of samples stained with H&E in Figure 1.3.

These stains are permanent and as a result, various institutions around the world are in

possession of immense collections of H&E stained samples representing many sources and

large spans of time. The amount of samples available supports the claim that H&E staining

is of vital importance to the medical system. It would not be unrealistic to claim that the

overwhelming majority of pathology labs throughout the world are capable of performing

H&E staining.

1.1.2 Role in Clinical Medicine

Histopathology, and more specifically, H&E staining is of vital importance to many medical

pathways as a diagnostic tool. For example, in the United States alone, more than 15 million

upper and lower endoscopies are performed each year. During many of these procedures,
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(a) (b)

(c) (d)

Figure 1.3: Example H&E-stained images with particular tissues outlined: (a) bone, (b) fat,
(c) cartilage, and (d) smooth muscle.

biopsies of the GI tract are acquired and subsequently analyzed by pathologists. This par-

ticular screening procedure is vital in the detection of many illnesses such as colon cancer

and inflammations.

Similar procedures exist for many different organ systems and their associated diseases

but the general category of cancer is the most well-known. The term biopsy is most often

linked to the diagnosis of cancer. Specifically, pathologists are able to identify the type and

level of malignancy present in a given biopsy. These diagnoses become the cornerstone upon

which all subsequent action is based. Slight changes in a diagnosis from one pathologist to

another or from sample to sample can have far-reaching consequences. For example, given
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some sort of grading scheme for a specific type of cancer, the assignment of a low grade

might lead to a treatment of just drug therapy. However, a moderate grade might require

more intensive action such as chemotherapy while higher grades may lead to surgery. The

oncologist, a physician who specializes in diagnosis and treatment of cancer, will decide

to prescribe any of these treatments based in part on the pathologist’s assessment. As a

result, accurate diagnosis is critical to prescribing the appropriate course of treatment while

avoiding excessive and potentially harmful alternatives.

Cancer is a relatively extreme family of afflictions that are often diagnosed with histopathol-

ogy, but many less severe and more frequent maladies also benefit from this diagnostic

tool. Infections and inflammations of various organ systems can be identified and evaluated

through histopathology samples. Even some parasitic organisms can be clearly recognized

under H&E staining. Effectively, histopathology offers some information concerning any

disease that manifests itself in an anatomical or physiological manner at a microscopic level.

1.1.3 Role in Medical Research

Medical research in general utilizes most of the same diagnostic tools as clinical medicine

but not with the goal of prescribing treatment for patients. Rather, these tools are used to

provide qualitative and quantitative evaluations of data derived from experiments. For ex-

ample, while the biochemical analysis of blood may reveal much about a patient’s condition,

the same analysis can be used to observe the effects of new drugs being developed. A gen-

eralization (that is not always true) of this concept is that clinical medicine uses diagnostic

tools to asses the condition of a subject prior to treatment while medical research uses them

to observe a subject’s condition after treatment.

Histopathology is one such tool that is capable of providing many insights into a variety

of research applications. One such family of applications that we will discuss in more detail

in Section 2.1.1 is that of stem-cell research. Stem-cells are capable of becoming any cell in
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the human body given the correct environmental conditions and stimuli. They hold great

potential in clinical areas such as tissue regeneration and treatment of cancer. They also

provide a means through which researchers can further our understanding of basic human

development and more specifically the reasons for abnormal development. Much of this

research has direct clinical impact but the potential to answer many basic science questions

is equally significant.

1.1.4 Fundamental Tasks

The importance of histopathology is clear when one looks at its role in both clinical medicine

and medical research. These applications may require very simple contributions from pathol-

ogists or may need very complex action on their part. Among the many different tasks that

may be required by the multitude of possible applications, there are four fundamental tasks

that the most critical to the vast majority of applications: tissue identification, pathology

identification, evaluation, and delineation.

Tissue Identification

As pathology is based on the recognition of changes in tissues as a result of some condition,

the first task must be to identify the tissue so as to provide a context for these changes. In

some situations, the tissue is already identified as a result of prior knowledge, i.e., knowing

that it was acquired from a particular organ or the like. However, in some situations (such as

some research ones), the tissue identity is not provided. In such situations, the pathologist

begins with the identification of the tissue or tissues present in a given sample.

Pathology Identification

Along with evaluation, pathology identification is the most common and most important

fundamental task for a pathologist. While pathology refers to the general diagnostic field
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we are discussing, it also refers to the condition of a given sample and in particular how

it deviates from the normal or healthy condition. Identifying the pathology present in a

sample has obvious importance as the first step in diagnosing a disease in a clinical setting

or understanding the results of some experiment in a research environment. At its coarsest

level, pathology identification is the task of distinguishing between normal/healthy tissue

and abnormal/diseased tissue.

Evaluation

Once the pathology of a tissue has been identified, it is common for that pathology to be

evaluated in terms of progression or other important characteristics. The clinical diagnosis

of a disease will include an evaluation of how advanced the onset of the disease is. As stated

before, this evaluation has direct consequences on the exact treatment that will be prescribed

and the risks associated with it. In a research application attempting to cure some ailment,

determining the efficacy of the drug is done by evaluating how reversed the progression of

the ailment after application of the potential cure. Naturally, the level of success with any

form of the cure will drive or discourage further development of the current design. This task

is also the most subjective as a pathologist’s training, experience, and preferences directly

influence the evaluations they provide possibly resulting in both subtle and gross differences

with other pathologists’ evaluations.

Delineation

This task is a possible combination of the previous three tasks and is mostly relevant in

research applications. Delineation is the process of not only determining which tissues and/or

pathologies are present in a sample/image but also where they are spatially. This is effectively

a segmentation of the image into regions with clear identities. In many clinical applications,

it is not so common to consider more than one tissue or pathology and thus delineation is
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not always required. However, in many research applications, the identities and locations of

tissue and pathologies can be vital to answering the research question of interest.

For example, consider tissue regeneration research where measuring how much the tissue

of interest has grown over time is a critical indicator of progress. In this scenario, the

spatial location and size of the tissue of interest must be measured. It is this task that

we are proposing to automate for a variety of applications through one unified algorithm.

Furthermore, delineation tasks are complicated by the uncertainty in the exact position

of boundaries between regions (tissues/pathologies) of interest. This can be an especially

troublesome point in the design of algorithms attempting to automate this task in some

capacity. Though this is a fundamental task, it is not a simple task due to the complex

challenges associated with it.

1.2 Digital Pathology

The impact of histopathology, and pathology in general, is immense in both clinical medicine

and medical research. As a result, there is a constant and continuing effort to improve

this general area not only by increasing its efficacy through science and technique, but

also by incorporating and developing new and relevant technology. Perhaps the first such

modern technology was the advent of the digital sensor with which pathologists are now able

to take high-resolution images of samples for distribution and storage. While the digital

image provided a more universal and more easily transferred medium for data, other new

technologies focusing on improved throughput and integration have been developed.

The advent of these technologies has begun with what many refer to as the digital pathol-

ogy revolution; the transformation of the standard pathology model into one that seamlessly

integrates modern technology, specifically the modern computing infrastructure and high-

quality automated instruments. While many individual efforts are contributing to this rev-

olution in different ways, they can generally be categorized as contributing to: improved
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digital imaging high-throughput scanning, integration with modern networking, and image

analysis software.

Improved Digital Imaging

Efforts in this area primarily focus on increasing the effective resolution of the acquired

images with respect to the physical dimensions of the samples or in other words, increasing

the number of pixels per unit area. Increasing the resolution of the digital sensor is a

simple solution and is appropriate as the corresponding industry develops more cost-effective

products. Improvements in the optical elements of the imaging system, i.e., the lens of the

microscope, are also pursued but mostly independent of the specific needs of pathologists.

Another concern is the overall field of view acquired by these sensors. Depending on the

required amount of detail, images are often acquired at fairly high magnifications resulting

in images which represent only small portions of the entire sample. In certain applications,

large areas must be imaged at such resolutions for proper evaluations to be made. As one

might take a series of images to represent a panorama, the same must be done in a much

more rigorous fashion in pathology applications. While this could be performed manually by

the pathologist, it would be subject to human error. To address these issues, companies such

as Leica have developed robotic imaging systems capable of precisely imaging these large

areas at high resolution. These products are referred to as whole slide imaging platforms

with an example being shown in Figure 1.4(a).

High-Throughput Scanning

The number of pathology labs around the world results in a vast amount of samples being

generated including those mounted on slides. In the typical workflow, these slides are viewed

and imaged under a microscope. Furthermore, this was previously done in a completely

manual fashion by pathologists and required a significant amount of time and effort. Thanks
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(a) (b)

(c) (d)

Figure 1.4: Examples of four main digital pathology areas from industry: (a) whole slide
imaging (www.leica.com), (b) automated scanner (www.aperio.com), (c) integration with
modern networking (www.omnyx.com), and (d) image analysis software (www.omnyx.com).

to advances in many fields, hardware is available to automate this process such as the example

product shown in Figure 1.4(b). Not only do such products improve the speed at which a

single slide may be imaged but they also increase the number of slides that may be imaged at

one time. While the term high-throughput scanning applies to many different non-pathology

related fields, it is appropriate here as the overall throughput of the system in terms of slides

being imaged is vastly improved in comparison to manual methods.

While the exact design and capabilities of these scanners vary, the vast majority of
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modern products emphasize the ability to image large numbers of slides without human

intervention. This means that technicians who would otherwise be occupied by imaging

individual slides one after another can spend more time on providing high quality slides

through more precise execution of other steps in the standard procedure. Integration of

these machines into existing labs is becoming more and more common resulting in even

more data being generated. This ever-increasing amount of data is a critical argument for

the development of image analysis tools such as the one this thesis presents.

Integration with Modern Networking

As is the case in many fields, collaboration between experts is encouraged to advance the

area. In medicine, these collaborations often come in the form of specialists offering their

opinions on a given case in the hopes that their collective knowledge will yield a better result.

In pathology, such collaboration requires the sharing of data amongst each other; a task for

which modern networking can be of great use.

The main focus of integration of modern networking into the pathology workflow is mak-

ing data easily accessible from any location regardless of where it may physically be stored

as shown in Figure 1.4(c). Effectively this means storing pathology data on a networked

device and providing remote access to designated users. This could be limited to the in-

ternal network of a single hospital or could be as vast as a global repository of information

accessible by all pathologists. By making data available, many pathologists can contribute

their expertise to a problem.

Image Analysis Software

The digital image is fast-becoming the fundamental unit of data in pathology and in turn,

software capable of providing advanced analysis of these images is being developed. Specifi-

cally, researchers are creating automated (independent of human action) algorithms capable
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of performing tasks normally done by pathologists manually. Many computer aided diag-

nostic (CAD) tools aim to detect the presence of particular diseases and assigning levels of

severity. Other algorithms may be more focused on enhancing or modifying the image in a

way that makes others tasks easier. Some software aims to extract information that is not

intuitive or easy for humans such as precise quantitative measurements.

Fundamentally, image analysis software aims to reduce the work load of pathologists

by introducing some level of automation for certain tasks and performing other tasks that

are beyond the capabilities of humans (Figure 1.4(d)). This thesis proposes such a tool to

partially automate a wide variety of simple but very important tasks and in doing so, provide

a platform for other algorithms. In the next section we will expand on this general area and

further motivate its development.

1.3 Benefits of Automated Image Analysis

At its essence, automated image analysis addresses some basic limitations of expert (manual)

analysis. While analysis by trained and experienced pathologists is incredibly accurate and

will be the benchmark for performance for some time to come, it does come at a cost.

The ever increasing demand for high-quality and fast analysis has created a burden on

pathologists that is not sustainable. Furthermore, the increasing amount of collaboration

between pathologists in a variety of tasks has created new challenges that must be addressed.

After careful consideration, we believe the primary limitations to expert analysis to be that

it is time-consuming, difficult to reproduce, inconsistent between experts, and difficult to

extract some quantitative information.

Time

The first limitation is rather intuitive given the ever-increasing amount of data that pathol-

ogists must analysis. For example, it is estimated that as part of colorectal cancer screening
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about 14.2 million endoscopies were performed in the U.S. during 2002 [1]. In reality, not

all of these procedures involve biopsy acquisition and analysis but in order to maximize the

likelihood of detection and evaluation of serious illnesses, they would. In this situation, based

on the assessments of Drs. Castro and Ozolek, about 10 minutes are needed on average to

analyze each such biopsy in sufficient detail. Based on the one estimate of the median annual

income of all U.S. pathologists [2] of $220,000 for about 2,400 hours per year, the cost of

analyzing all such endoscopic biopsies from just pathologist compensation is approximately

$216.9 million/year. Clearly, this simple analysis shows that the financial burden can be

significant and becomes even more meaningful when one starts to consider all the other such

applications, some of which with even larger prevalence and many with greater associated

costs.

Automated image analysis can help to reduce the overall commitment of time in many

ways. In the context of the colorectal cancer screening discussed above, consider the following

hypothetical example. A typical pathology department of a hospital will be staffed by

a combination of a few very experienced pathologists and many relatively inexperienced

ones. Under the standard operating paradigm, endoscopic biopsy samples from colorectal

screenings are evenly distributed amongst all of these pathologists regardless of experience.

As a result of this workflow, some undesirable situations may arise. First, experienced

pathologists will have to spend time identifying and confirming cases where there is clearly

no presence of colorectal cancer, a relatively simple diagnosis to make. Second, the less

experienced pathologists will likely have to address very difficult cases where the exact degree

of colorectal cancer is difficult to assign and may make a mistake in doing so. Lastly, in order

to analyze all assigned samples, the pathologists will be forced to commit an average amount

of time to each sample regardless of difficulty which will likely be less than optimal in terms

of accuracy and efficiency.

If an automated tool capable of assigning perceived levels or confidences of normalcy
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(absence of colorectal cancer) to any given sample was available, the distribution of samples

could be done in a much more efficient manner. One option is that every sample would

be evaluated by this algorithm and samples for which there is overwhelming confidence of

normalcy would be given to the less experienced pathologists. At the same time, those

samples not yielding high confidences of normalcy would be sent to the very experienced

pathologists. As a result of this sort of allocation of samples, the primary role of the less

experienced members of this department would be to confirm the perceived normalcy of

the samples given to them and to correct mistakes made by the automated tool. The more

experienced members would likely have to address a decreased number of cases and could thus

spend more time delivering more accurate diagnoses. The overall result would be reduction

in the overall time required for analysis and an improvement in the accuracy of diagnosis,

especially for more complicated cases.

Reproducibility

This limitation is merely a consequence of the natural variation we as humans demonstrate

in all activities. Regardless of how often we may repeat a given task, minute variations

in our exact performance will occur. The total effect of these variations range from the

entirely inconsequential to those completely dictating the outcome of the activity. The same

considerations are true when a pathologist analyzes a given sample whether it be in a clinical

setting or during some sort of research. For example, in a clinical setting, the exact evaluation

of an identified ailment dictates the course of treatment. Though it will not be common, if a

pathologist assigns different evaluations to multiple samples (whether they be from the same

or different patients) that are in fact of the same severity, the implications may be great.

Along with accuracy, consistency is a desired quality of any diagnosis.

The introduction of automated image analysis to these scenarios can clearly help mitigate

such issues. While some variation might be expected in the analysis provided by such
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tools as a result of their particular design (i.e., some sort of intentional randomness), most

algorithms are expected to deliver reproducible results. When presented the same piece of

input data repeatedly, the same general result is expected each time. The positioning of such

algorithms to help introduce consistency is entirely dependent on the particular workflow

being addressed. One possibility is to place such an algorithm prior to expert analysis so

as to provide a consistent starting point. Alternatively, the algorithm may be positioned

after the expert’s role in order to help correct for the variations that may occur. Ideally,

such tools will function as purely objective evaluators of data that can be relied upon to be

consistent.

Consistency

Differences in opinions between experts is common in any field, the analyses of pathologists

being no exception. As pathology grows in importance and various forms of communications

technology make it easier for pathologists to collaborate, the analysis of data will now depend

on the collective efforts of many experts as opposed to the individual few. In the clinical

domain, the overall accuracy of a diagnosis will be improved by leveraging a greater collective

sum of knowledge and experience. Similarly, in research, more confident conclusions can

be drawn by eliminating biases that may exist in individuals. However, even with such

desirable effects, these majority opinions will sometimes suffer from strong disagreements

that may need to be mediated in some fashion. A stereotypical example is that of the two

highly experienced and well respected pathologists whose individual analyses may come into

conflict due to their personal preferences.

Similar to the previous limitation, automated tools act as objective and reproducible

evaluators of data. When considering the disagreements that may arise between experts,

the automated algorithm can act as a relatively impartial mediator. We say relatively as

the manner in which the algorithm was designed and put into use has an obvious effect on
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the general nature of its results. Still, it may help mitigate strong disagreements between

experts by providing them a common frame of reference for their results and perhaps lead to

an agreement amongst them. Such resolutions may be as simple as the experts agreeing that

the algorithm’s evaluation which exists somewhere between their opinions is more correct

than either individual one. On the other hand, it may lend more credence to one opinion

than the other and thus help convince one party to change their evaluation. Regardless, such

algorithms can in fact act as negotiators in these situations where experience and personal

bias have a dramatic impact on any collaboration.

Extraction of Quantitative Information

This limitation is purely a function of a human’s capacity to precisely quantify various

aspects of images. For example, nobody can be expected to precisely describe the average

color in particular regions of an image let alone the image as a whole. A human may be able

to provide general qualitative assessments such types of colors but not precise measures.

Similarly, when asked for the overall size of a region or how much it neighbors another

particular region, precise and accurate measurements are difficult to give. A more extreme

example is the counting of a particular structure and a quantification of their organization

in some manner. Naturally, this is exactly the type of work that computational algorithms

are well suited for.

The need for such information is greater or lesser depending on the application. For

example, in clinical scenarios where mere detection of an illness is the goal, precise quanti-

tative information may not be required. In the same setting, evaluation of the severity of

the illness may be dependent on a variety of quantitative measures. The vast majority of

research applications will require some form of quantitative assessment to provide evidence

for whatever conclusions they may draw. Equally important as easing the workload and

improving overall effectiveness, the ability to extract quantitative information from data is
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a primary motivation for utilizing automated image analysis algorithms.

1.4 Pathology Image Analysis Related Work

The onset of digital pathology is directly supported by the advancement of technology devel-

oped in the four main areas mentioned previously. Of these four areas, the development of

image analysis tools has been greatly supported both by industry and academia. As a result,

there is already a large amount of existing work done resulting in many novel and useful

image analysis tools. While there are many questions and problems still to be addressed,

some specific sub-areas have received much attention by the research community. Specifi-

cally, we refer to cancer related applications, image retrieval systems, and data normalization

algorithms.

We begin this discussion by commenting on the application specific nature of much exist-

ing work and what it implies for the general area. We will also discuss some existing works

representative of the field at large. Our focus will be on their intended applications and

some of the primary contributions and conclusions they present. While the discussed works

do represent a broad cross-section of published research they do not represent all such work.

Application Specificity

It is natural to expect that when trying to contribute to the solution of a problem, your

contribution is specific to that problem. In the context of developing image analysis tools,

these problems most often are constrained to specific applications. For example, the devel-

opment of a tool to assign a Gleason grade to a prostate cancer sample. The application

in this example is very specific in that it addresses a specific organ and has a specific task

unique to this organ. This type of specificity in goal is very useful in developing effective

tools, but it comes at a price.

Given the immense number of possible applications, all of which are related through
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their use of histopathology, is it wise to develop individual solutions to each problem even

though there may be strong connections between them? It would be naive to claim that

when presented with a new task, all previous knowledge is discarded including solutions

to related tasks, but it is not often that two different applications attempt to leverage the

same solution. As we present some related work, the application-specific algorithms will

not only present their usefulness but also their limitations with respect to cross-application

applicability. Thus, it is our opinion that a more lasting impact could be achieved by trying

to understand the similarities between applications and how a single given algorithm can

leverage them to achieve many different tasks.

Perhaps the most convincing argument for this opinion is the capability of the trained

and experienced pathologist. While not every pathologist is capable of every histopathology

related task, when presented with most image analysis related problems, their ability to

accomplish such tasks is extraordinary. This seems to suggest that while there is clearly

some specialized knowledge relatively unique to any given application, there is a large body

of knowledge common to many applications. In the same way that pathologists do not

discard their existing knowledge and experience every time they are presented with a new

task, we believe an algorithm can be designed to have similar capabilities when addressing

a large body of histopathology related applications. This is a notion that we will discuss in

more detail throughout this thesis.

Cancer Diagnosis

As one of the leading concerns of modern medicine, cancer of all sorts is a popular application

when developing image analysis tools. In 2007, cancer collectively was the 2nd leading cause

of death in the U.S. [3] with heart disease being the leading cause. The American Cancer

Society estimated that in 2010 alone, there was to be an estimated 1.5 million new cases of

cancer in the U.S. alone [4]. As a result of this high onset of cancer in the U.S. in 2010,
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about 570 thousand cancer-related deaths were expected, nearly 1 in every 4 deaths [4].

These statistics emphasize the importance of this family of disease and also the burden

which it places on the medical system and society at large.

The risks and costs associated with cancer treatment encourage aggressive research into

providing more effective tools not only for therapy but also for diagnosis. Faster and cheaper

diagnostics would allow for more people to be screened more often with the expected benefit

of higher likelihood of early detection, considered a key factor in successful treatment of

many cancers. The specialization of pathologists with respect to certain types of cancer

mean that there is limited access to these professionals. Algorithms capable of mimicking

some of the more basic tasks performed by such specialists would increase access to high-

quality treatment. The limited number of experts also places an ever-increasing workload

on them as various factors may lead to increasing prevalence of certain cancers. All of

these reasons and more provide a strong argument for the continuing efforts in developing

algorithms and tools for the diagnosis and treatment of cancer.

The higher incidence of certain types of cancer has led to greater efforts in addressing

tasks related to those types as opposed to others. For example, breast and prostate cancer

are the most common type of new cancer cases in women and men respectively in 2010 [4].

They are also the 2nd leading cause of cancer-related deaths with lung cancer as the leading

source [4]. It is expected that 1 in 8 Caucasian women will develop breast cancer with 1 in

3 Caucasian men developing prostate cancer [5]. From these figures, one can appreciate the

impact of these two specific types of cancer alone. Similar statistics help justify the increased

or diminished attention and effort put forth in developing tools for particular types of cancer.

These tools address the detection of cancer (normal/benign versus cancerous/malignant

tissue), grading of cancer following established medical protocols, and image retrieval for

case cross-referencing.
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Detection of Cancer Algorithms for the detection of cancer are most often automated

ones that aim to reduce the burden of work on pathologists though some take advantage of

human intervention to improve and validate their results. It is an important distinction as

there is a current expectation that no algorithm will ever be the final prescriber of treatment

not only as a result of government regulations but also due to society’s perception of how

medicine should be administered. Regardless, as an actual tool or mere proof of concept,

many works focus on algorithms for cancer detection [6–18]. It should be noted that cancer

detection is merely the recognition of some level of malignancy in a given sample; this

detection is often paired with a grading step depending on the application.

Grading of Cancer Assigning a level of malignancy or grade to a cancerous sample is

nearly as important as detecting the cancer in the first place. Just as you only require a

band-aid for a small cut as opposed to stitches for a large gash, the grade of cancer dictates

how aggressive the required treatment will be. Cancer treatment is the result of a risk-benefit

analysis as while various treatments offer improved chances of eliminating the cancer, they

go hand in hand with higher risks of side-effects. The choice to pursue potentially more

beneficial but riskier options is directly based on the severity of the cancer and the resulting

need to act. Thus, accurate grading of cancer is vital to prescribing the appropriate level of

treatment, one that will not cause more harm than good. Much work has and continues to

be done to aid in this vital task [6–8, 10, 11, 15, 16, 18–20].

For this reason, cancer grading is often standardized by establishing grading protocols

specific to various types of cancer. One of the more well-known examples is the Gleason

grading scale associated with prostate cancer [21]. Such protocols provide a standard with

which pathologists can universally convey their appraisal of the cancer severity. Naturally,

person-to-person variation and inconsistencies in the protocol exist, but it is a much preferred

alternative than the solely personal evaluation that would be done otherwise.

For example, the works of Doyle, Naik, and Madabushi [6–8] address the task of breast
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and prostate cancer detection and grading. More specifically, when addressing prostate

cancer, the standard Gleason grading scale is used. This is in contrast to a less formalized

grading in breast cancer provided by their collaborators. In these works, the authors propose

a series of textural and architectural features to quantify the difference between normal and

cancerous tissue. Furthermore, they use various embedding techniques to automatically learn

an order to these features that accurately reflects cancer severity. These works represent an

incremental evolution of these basic ideas resulting in an effective algorithm for the task of

prostate cancer detection and grading.

The work of Glostos et al. [15] proposes an algorithm for grading astrocytomas (a type of

brain tumor) based on the World Health Organization’s (WHO) grading system for tumors

of the nervous system [22]. The WHO grading system is based on mostly qualitative criteria

such as the morphology and distribution of key types of cells though some qualitative criteria

concerning patient history are also present. In developing their algorithm, the authors guided

some of their design on the criteria proposed by the grading system. Specifically, size and

shape of nuclei along with DNA and chromatin distribution were encoded by using a variety

of morphological and textural features. Automated grading was accomplished by learning

the separation of low and high grade cases in the feature space via a support vector machine

(SVM). As a result, they developed an encouraging algorithm that already fits into the

known scheme of brain tumor treatment.

Image Retrieval As mentioned before, the prevalence of pathology labs around the world

and the advent of digital pathology has led to a massive increase in the amount of data

collected and analyzed. This abundance of information has many uses but one of the more

prominent ones is the possibility to compare data against each other to provide a precedent

for the appropriate treatment. Basically, given that a given condition has been treated in the

past, either successfully or unsuccessfully, should another example of this condition arise, a

physician can reference these past cases for guidance concerning treatment. However, unless
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this vast collection of past cases is very carefully labeled and indexed, the task at hand is to

determine which past case is the most similar to the current case. This is the task of image

retrieval in the case of histopathology related applications.

Image retrieval is a specialized case of the more general task of image matching, a common

task in research concerning search engines for example. Some key considerations in image

retrieval is the possible presence of a priori information. As an example, a pathologist will

most likely know which organ system and perhaps which condition is to be present in a given

sample. Based on this knowledge, the amount of data to be searched is smaller than it would

be otherwise and consequently should make the task easier. Furthermore, visual similarity

is not necessarily sufficient in image retrieval tasks. While performing image matching, it

may be enough to find two an image in the database that looks similar to the reference

image. However, in a specialized image retrieval task, the level of visual similarity might not

accurately represent the desired similarity between to samples. For example, a pathologist

may consider two images that look completely different similar because they present similar

structural and architectural cues as opposed to visual ones.

Such specialized systems are being designed for a variety of purposes [23, 24]. These

systems often leverage the context of the application in order to simplify the problem. This

can be in the form of some specialized meta-information available or application-specific

image descriptors. For example, if the task is to retrieve cancer samples with similar levels

of malignancy, the number of nuclei may be a good descriptor in this context. As a common

theme, many solutions take advantage of the specifics of the application but in doings so can

be limited in their overall applicability or usefulness.

Data Normalization The last major topic we will discuss concerning pathology related

work is that of data normalization. As a result of the sheer number of pathology labs, tech-

niques, technician skill and preference, and data sources, histopathology data will contain

many variations. Some of these variations will be as obvious as physical artifacts and defects
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while others are more subtle such as variations in staining coloration. Ideally, when ana-

lyzing multiple samples of the same tissue subject to the similar conditions, these multiple

presentations will be similar in appearance. However, there can be large variations amongst

these samples for many reasons.

To address these variations, some work has been done to normalize data with respect

to possible sources of change. For example, Mecenko et al. [25]) present a method for stain

normalization based on demixing methods. Specifically, it is assumed that prototypical

stain colors exist in a given sample and that all colors in the sample are merely weighted

linear combinations of these prototype colors. A singular value decomposition (SVD) is

applied to the data, after some pre-processing, to determine these prototypes. Given multiple

images, each with their own prototype colors, normalization amongst them can be achieved

by aligning the colors with each other.

1.5 Our Goal

We have so far explained histopathology and the impact it has as result of its use in a variety

of important applications. In this context, we have also discussed our opinion that while

application specific work is useful, it does not necessarily advance the overall area of image

analysis in the histopathology domain in a meaningful way. As a result of the clear need for

such image analysis algorithms and our desire to make a significant impact on the area as a

whole, we propose to:

Create a framework and methodology for the automated identification and

delineation of tissues and their pathologies in H&E-stained images.
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1.5.1 Motivation

The importance of histopathology to both the clinical and research domains of medicine

provides more than sufficient justification to pursue related research. The development of

tools, specifically image analysis software, can have a great and perhaps immediate impact on

many important areas. By reducing the burden of time and effort on pathologists, the quality

of care can improve through reduced costs, more accurate diagnoses, and faster throughput.

The motivation for this goal stems from the desire to make a more broad contribution

to image analysis tools for histopathology than any one application specific algorithm. As

discussed before, much existing work begins with a specific application in mind and proceeds

to create algorithms within the context of that application. That specificity is useful in that

it limits the scope of the task and can lead to very effective algorithms. However, the re-

iteration of this process for every new application begs the question as to whether or not

there is a more unified solution to more than one of these applications.

The capability of expert pathologists to perform so many tasks in so many different

settings without re-training suggests that they have some level of universally applicable

knowledge. Of course there are situations in which additional education may be required

to achieve a truly expert level of competence but for the most part, it is our observation

that many basic tasks are well within their grasp. Based on this observation we will de-

velop an algorithm capable of mimicking this cross-application capability demonstrated by

pathologists.

1.5.2 Challenges

The very nature of histopathological data presents many challenges in both the clinical and

research domains. Before speaking about domain specific challenges, let us first consider the

variations that arise from the acquisition procedure itself.

Beginning with the process of acquiring the biopsy, e.g., surgery, the exact environmental
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and patient conditions can alter the sample greatly, For example, consider biopsy acquisition

during an endoscopy. In this situation, the sample is acquired by cutting away a small piece

of the inner lining of the GI tract. As the GI tract is essentially a tube, the angle of the cut

made strongly influences the presentation of certain characteristic structures in the tissue.

Figure 1.5 presents some examples of such GI tract biopsy acquisitions. While the surgeon

will take care to be as consistent as possible in this regard, it is very difficult to achieve total

consistency,

(a) (b)

(c) (d)

Figure 1.5: Examples of GI tract biopsy variation due to surgery. Each sample was imaged
at 40X magnification. Take note of how each sample has a unique shape and how the
presentation of some noticeable structures are varied.

The subsequent steps of chemical fixation and histological sectioning are affected by a
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myriad of factors. Environmental conditions can greatly affect the chemical reactions that

occur during chemical fixation. Additionally, manufacturer to manufacturer variations in

the materials can have an impact on this step as well. During histological sectioning, the

quality of the sample, the tools, and the technician can lead to gross defects such as missing

regions of tissue in the resulting slides.

The final steps of staining and imaging result in more subtle and often more difficult to

identify variations. Different staining protocols will lead to different colorations as will the

different manufacturing sources of the stains. After staining, the imaging step is influenced

by the quality of the optics and digital sensor. High-quality optics are expensive and thus

not available in all applications leading to less than optimal image quality. High-resolution

CCD sensors are quite common and thus are not a major concern but inevitably there are

situations in which they are still insufficient.

Given the many sources of variation and artifacts as a result of the acquisition procedure

there are the domain specific challenges to consider. Let us begin with the clinical domain

where the primary sources of variation come from the differences in patients and the com-

plexity of diseases that are considered. Gender, age, past and current health are all factors

in how any tissue will present itself. Age is very intuitive in that as an individual matures,

so do their tissues; immature versus mature tissue can have very different appearances and

pathologies. For example, refer to Figure 1.6 to see the difference between immature and

mature forms of neuroglial tissue (a type of brain tissue).

Given the variation that arises from a patient’s uniqueness, the complexity of the disease

or diseases they suffer from gives rise to even more variation. Many diseases are not acute

in that they only present one type of change or pathology. These diseases also mature and

as a result have a continuum of changes from the less severe at onset to the most severe

towards the end of their progression. For example, consider cancer in general where the

initial malignancy may be relatively small and not very aggressive. However, as the cancer
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(a) (b)

Figure 1.6: Comparison between (a) immature neuroglial tissue and (b) mature neuroglial
tissue. Non-neuroglial tissue is masked out in black. The difference in appearance reflects a
strong change in tissue structure and organization as a result of maturation.

continues to grow, it may become more malignant and aggressive. These changes are often

reflected in the diagnosis as the cancer becomes more severe but as has been stated earlier,

clear degrees of severity are difficult to assign. There are many other factors to consider, but

we will summarize by stating that a disease’s level of progression and overall complexity can

give rise to many types of variation in a given sample. Figure 1.7 summarizes the sources of

variation in the clinical domain.

Sources of variation in the research domain are primarily a function of the research task.

In general, the source of the data being researched is subject to the same concerns as those

in clinical domain. However, in some applications, the environment in which the samples are

acquired is very different than those found in clinical applications. A research application

we will investigate is concerned with the research of teratomas derived from human and

non-human primate embryonic stem (ES) cells. We will go into more detail concerning this

topic in later sections, but for now it will suffice to state that all possible tissues can be found

in these teratomas in any possible configuration. This means examples of the same tissue

will often have very different appearances such as bone shown in Figure 1.8. In the context

of the classification task we are pursuing, we refer to this behavior as intra-class variability.
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Figure 1.7: Pictorial depiction of the sources of variation that are present in the clinical
domain. These sources of variation are also present in the research domain in addition to
the other sources of variation that are discussed.

A complementary type of variation is what we refer to as inter-class similarity or situations

in which different tissues have similar appearances. The reasons for this behavior range from

as simple as tissues being related to each other such as different types of muscle to those

so complex that they are beyond our current understanding. Regardless of the reason for

these situations, they can be troublesome sources of error in almost any task, especially ones

involving the identification of the tissues. Figure 1.9 presents two tissues derived from the

teratoma application whose visual appearances are almost indistinguishable to the untrained

eye.

The natural variation that arises form the organic nature of the data is the primary source

of difficulty as for most applications it cannot be reasonably estimated or predicted given our

current level of comprehension. This view also lends credence to the notion that there are

more basic and fundamental qualities of tissues that are associated with their identity rather
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(a) (b)

(c) (d)

Figure 1.8: Examples of bone tissue (outlined in black) derived from teratomas. While
these are all the same tissue, different environmental conditions along with tissue maturity
and configuration have led to very different presentations.

than any one specific presentation. This is a key notion that we will emphasize throughout

this work.

1.5.3 Guiding Principles

The importance of histopathology related work along with the associated challenges makes

our goal an ambitious and difficult one. In order to accomplish it, we must propose and adhere

to principles that encourage success in an informative way from the very inception of the

algorithm. In other words, an effective algorithm whose reasons for success are understood
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(a) (b)

Figure 1.9: Comparison of examples of (a) myenteric plexus and (b) striated muscle tissue
both imaged at 10X magnification. Not all examples show such strong similarity but this
case underlines the potential difficulty in the task of distinguishing between tissues.

and thus can be further expanded on in later work. This reasoning leads us to pursue our

goal according to the following guiding principles:

• Pixel-level classification. Rather than assigning a single label to the entire image, we

will instead assign a label to each individual pixel based on the features exhibited in

the local neighborhood of that pixel.

• Expert knowledge. The choice of features we use will be based on the actual visual cues

used by pathologists, leading to the development of a histopathology vocabulary (HV):

a set of common terms understood by both pathologists and engineers.

As we develop our overall methodology and framework, we will refer back to these guiding

principles to justify various design choices. They will also help explain various experimental

results and our intuition concerning current and future performance. To clarify the overall

structure of our classification algorithm, we present Figure 1.10 where the primary compu-

tational blocks of our algorithm are shown.
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Figure 1.10: Block diagram of our pixel-level classification algorithm. The structure is
mostly identical to the standard image classification algorithm with the primary contribu-
tions being in the HV feature extraction stage and the additional local refinement stage.

1.6 Contributions of the Thesis

The primary contributions of this thesis are as follow:

• Mathematical framework for local histograms and occlusion models. The development

of a cohesive mathematical framework that is capable of describing a particular fam-

ilies of images including those relevant to histopathology applications. In particular,

the description of complex textures as structured hierarchy of simple textures. This

framework is formulated independent of any given application and as a result we ex-

pect it to have applicability beyond the histopathology applications we focus on in this

thesis.

• Histopathology vocabulary. A methodology for the creation of an intuitive feature set

that minimizes the gap between existing expert domain knowledge (pathologist) and

the design choices (engineer) made in creating features. Not only do these features

prove to be effective and concise, but their particular formulation allows us to imme-

diately understand the reason for their success and how to improve them.

• Pixel-level classification system. An overall methodology and algorithm for the pixel-

level classification of tissues and pathologies in H&E stained images.

• Experimental results. Demonstration of the algorithm’s performance on clinical and

research applications that are very different in scope and goal. The effectiveness of
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the single algorithm on both applications provides support to our design choices and

overall guiding principles.



Chapter 2

Background

We begin with an introduction to two histopathology applications, the first a research task

and the second a clinical one. Following this, we present an introduction to the basics of

most modern classification systems that should prove useful to those relatively new to the

area.

2.1 Histopathology Applications

As stated earlier, many important histopathology applications and corresponding efforts to

automate them exist. Two such applications that we will address in detail in this thesis are

first, research related to teratomas derived from ES cells and second, the detection of an

inflammation of the colon called active colitis. Both applications are based on analysis of

H&E stained images but have many differences in the context of their tasks. By addressing

these two differing applications in our work, we wish to demonstrate a commonality amongst

them and how to take advantage of it.

37
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2.1.1 Research Application: Teratoma Tissue Delineation

ES cells are pluripotent cells in their capacity to differentiate into any cell in the body

and thus form all the basic tissues that may be found. Specifically, they can become cells

of any one of the three primary germ layers of mesoderm, endoderm, and ectoderm from

which all tissues are derived. They are the fundamental cells that represent the origin of

all cells. Furthermore, ES cells have become critical to many exciting areas of biomedical

treatment and research for many reasons including their ability to self-renew and perpetuate

indefinitely. Tissue regeneration and repair, drug development and therapy, and treatment

of developmental and genetic disorders are just a few of the many applications in which ES

cells have potential.

In typical laboratory situations, ES cells are characterized by the proteins they express

and their behavior in culture. However, a key consideration in human and non-human

primates is that cells cannot be considered to be ES cells until they are able to form a

teratoma when injected into immunocompromised mice. Teratomas are tumors that are

strictly defined by histological evidence of tissues derived from each of the three primary

germ layers. Equivalently, a teratoma has no known prior developmental preferences aside

from forming tissues belonging to one of the primary germ layers. This is in contrast to more

typical tumors in people where the tissues found are strongly related to the tissues found

around the anatomical location of tumor.1 Figure 2.1 shows some examples of H&E stained

images of teratomas and their chaotic organization of tissues.

Observation of a teratoma after H&E staining will often reveal masses of many types

of tissue with no apparent organization. Furthermore, normal spatial relationships between

tissues are not likely to be present. For example, one would not expect a mass of bone

embedded in brain tissue but in a teratoma this is possible. From both a research and clinical

1The term teratoma is not solely limited to the context of research with ES cells. Teratomas have been
found naturally in humans and are often congenital conditions (existing from birth). Documented examples
of teratomas tumors in patients have been found to contain a wide variety of structures including basic
tissues such as skin and bone and in more rare cases, complex organs such as eyes and hands.
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(a) (b)

(c) (d)

Figure 2.1: Example H&E stained images of teratomas derived from ES cells. The first
column presents the original image with the second column showing various tissues trans-
parently colored according to: bone is blue, cartilage is cyan, skin is yellow, fat is green, and
gastrointestinal tissue is orange while all other tissues are not highlighted. Note how not all
tissues are present in all images and their particular configurations vary greatly. Continued
in subsequent figures.

standpoint, a teratoma is seemingly unpredictable in both composition and organization.

While this apparent chaos may be seem unattractive, it is the teratoma’s ability to form

tissues free of normal developmental constraints that may allow us to answer important ques-

tions. Most generally, what are the exact stimuli that cause ES cells to develop normally or

abnormally into any given tissue? By understanding these stimuli, we can contribute sig-

nificantly to many areas. Naturally, understanding the mechanisms of development answers
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(e) (f)

(g) (h)

Figure 2.1 continued.

many basic science questions that in turn can greatly aid work in more application oriented

areas. For example, in developing tissue regeneration and repair techniques, determining how

to cause ES cells to differentiate into particular tissues has clear implications. In particular,

understanding how they develop in isolation of normal developmental conditions could lead

to methods for culturing of tissue, dramatically increasing the applicability of the methods.

In the context of H&E stained images of teratomas, quantitative knowledge concern-

ing the organization of its tissues is critical to our understanding of normal and abnormal

development. This quantitative knowledge can only be extracted after tissues have been

identified and delineated. When manually done by pathologists, it is a time-consuming task
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(i) (j)

(k) (l)

Figure 2.1 continued.

but balanced by their very accurate and relatively consistent results. Such research must

analyze vast amounts of data to achieve accurate and useful conclusions. As a result of

the commitment of time and the sheer amount of analysis required, the rate of research is

somewhat handicapped by the manual nature of analysis. If some level of automation could

be introduced, a significant burden of work could be removed from the pathologist and thus

increase the pace this research.

However, the extreme variability in the number and configuration of tissues in any given

teratoma sample makes this a very difficult task to automate. As stated before, the extremely

chaotic nature of the teratoma makes predicting likely configurations of teratomas almost
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impossible at this point. In contrast to cancer detection/grading applications where it can

be assumed that an image contains only one type of tissue such as breast tissue, this task

is a multi-class problem that requires segmentation of any given image into unique regions-

of-interest (ROI). Each segmented ROI should contain only one tissue whose identity can

then be determined. Unlike classification of tissues in normal human systems, teratomas do

not have any known regular organization that can be taken advantage of. For example, in

the GI tract, one does not expect to see brain or lung tissue amongst colon tissue though

this might be the case in some teratoma samples. Without this context, no expectations

can be placed on the exact presentation of any given teratoma sample. As a result of these

considerations, this task can be considered as a rather general classification problem.

The overall goal of this thesis is derived from this application since it represents a general-

ization of many types of H&E stained image analysis problems. Specifically, the requirements

for an algorithm to perform well with teratomas include the ability to distinguish between

many types of tissues and pathologies (mostly related to maturity), to spatially localize

these tissues, and to operate with little or no prior context. This in contrast to other more

targeted applications where only a limited number of tissues and pathologies are considered,

localization may not be necessary, and there is often a strong context that can be used to

simplify the problem. As a result, we will make constant reference to this application in

both development of our algorithm and experimental results.

2.1.2 Clinical Application: Active Colitis Detection

Our second application concerns the diagnosis of active or ulcerative colitis, an inflamma-

tion of the colon portion of the gastrointestinal (GI) tract. A chronic condition, there is no

cure for active colitis though it can be treated with medicine and is often asymptomatic.

Among the symptoms of this disease are mild stomach pains, blood and other fluids in waste

material, and occasional mild fevers. Methods of diagnosis include endoscopic examination,
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X-ray examination, and various types of lab analysis such as blood work. Milder cases of

the condition can be treated with medication though more severe cases can require hospital-

ization and/or surgery to remove portions of the colon. Untreated, persistent active colitis

can lead to increased risks of colon cancer.

The number of people affected by or prevalence of active colitis in the U.S. during 1998 was

reported to be approximately 619 thousand individuals [26]. According to [27], in the U.S.

in 2004 approximately 716 thousand patients were seen by office-based physicians, hospital

outpatient clinics, and emergency departments for active colitis. The same study [27] also

reported that about 2.1 million active colitis treatment prescriptions were made resulting

in a total retail cost of approximately $272 million in the U.S. during 2004. While active

colitis is not nearly the most prevalent digestive disease, its impact is considerable in terms

of people affected and associated expenses.

As is the case with many diseases, early detection is an important factor for successful

treatment of active colitis. Furthermore, accurate diagnosis can ensure that the appropriate

course of treatment is taken. The most definitive method of diagnosis of active colitis is an

visual inspection and biopsy of the colon facilitated by the use of an endoscope. To better

understand the nature of this process, we will briefly discuss some colon anatomy and some

specifics of the endoscopic biopsy process.

As shown in Figure 2.2(a), the colon is the penultimate portion of the GI tract terminating

in the rectum. Its primary function is the formation of solid waste, maintenance of water

balance, and absorption of some vitamins. The colon is effectively a hollow tube whose

thickness is formed by a series of different tissues. As a result, the inner lining of the colon

(from which the biopsy is taken) is a textured surface. Specifically, as shown in Figure 2.2(b),

this texture is the result of the folding of the epithelium of the colon.

The gaps or valleys between the folds of the epithelial layer are very characteristic of the

colon and are called glands of Lieberkühn or crypts whose structure is a key indicator of
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(a) (b)

(c)

Figure 2.2: (a) Anatomical location (www2.niddk.nih.gov) and (b) transverse cross-section
of colon (www.cancerquest.org), and (c) example H&E stained endoscopic biopsy with key
components shown.
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the presence and severity of active colitis. One can consider the crypts to be like irregular

cylinders or cones whose walls are formed by the epithelium. Below this epithelial layer is

a sheet of lamina propia, a type of loose connective tissue. Next is a layer of muscularis

mucosa which is a type of smooth muscle. The final layer relevant to our discussion is the

submucosa which is a dense connective tissue. These layers collectively are the mucosa which

is the source of the majority of endoscopic biopsy sample. Figure 2.2(c) gives an example

of the presentation of these various components in a H&E stained image of an endoscopic

biopsy.

A modern endoscope is effectively a long flexible tube with an illumination source, a

camera, and one or more instrument channels at one end and an eyepiece at the other. The

end having the illumination source and camera is inserted into a natural opening of the body

and guided through the organ of interest which are the rectum and colon respectively in the

case of active colitis. The combination of illumination source, camera, and eyepiece allows a

physician to visually inspect the interior of the colon for any signs of active colitis. Via the

instrument channels, the operator is able to deliver surgical tools (e.g., a forceps and snare)

allowing them to acquire a small biopsy of the colon’s inner lining. Depending on the nature

of the biopsy, different tools and procedures may be used. Figure 2.3 presents an illustrative

example of such a surgical tool and the corresponding acquisition procedure.

As one can tell from Figure 2.3(b), the exact location and orientation of the forceps

relative to the inner lining of the colon is the deciding factor in the exact presentation of

many important structures. As mentioned earlier, the crypts of the colon are such impor-

tant structures and their appearance in H&E stained images can vary greatly based on the

orientation of the acquired sample.

Specifically, imagine cutting a cylinder of some thickness whose ends were closed off along

one direction and then observing it perpendicular to the plane of that cut. If you were to

cut it perpendicular to its length (i.e., transversely) and then observe it, you would see a
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(a) (b)

Figure 2.3: (a) Endoscopic forceps (www.bostonscientific.com) and (b) illustrative example
of biopsy acquisition using forceps (www.hopkins-gi.org).

perfectly circular ring whose thickness was that of the cylinder. Now consider making that

cut along its length (i.e., longitudinally); you would then observe a rectangle whose sides

would be that of the length of the cylinder and its ends. Obviously, these two observations

are completely different as a result of the manner in which the cut was made. Any particular

cut will result in a particular size and shape though they may not necessarily be unique with

respect to other cuts. This basic notion applies to the crypts and their presentation in H&E

stained images as demonstrated in Figure 2.4.

This source of variation in a given image’s appearance can be a major source of difficulty

in designing automated analysis tools. Although a pathologist is not likely to have issues

recognizing the particular orientation of the biopsy and the structure of the crypts, compen-

sating for the variations that may occur is a challenging task. Based on all of these factors

involved in creating a H&E stained image of an endoscopic biopsy, there are some highly

indicative cues that pathologists use to discriminate between a colon free of active colitis

and one suffering from it. The primary indicators are summarized in Table 2.1.

The level of cellularity in the lamina propia is very indicative of the presence and severity

of active colitis. More severe cases of active colitis will present samples where the number

of visible cells is dramatically more than it would be normally. The presented structure
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(a) (b)

Figure 2.4: Characteristic examples of variation in crypt appearance in H&E stained, 200X
magnification images of endoscopic biopsies due to acquisition. Crypt appearance as a result
of primarily (a) longitudinal acquisition and (b) transverse acquisition.

Indicator Normal Active colitis

Degree of cellularity Low High

Crypt structure Elliptical and well defined Distorted and fragmented

Crypt organization Regular Random

Presence of neutrophils None Present

Table 2.1: Key indicators of active colitis and a comparison between them in normal and
active colitis affected cases.

(transverse view) of a crypt is a well defined ellipse if not a near circle. However, the onset

of active colitis will cause this structure to deviate from an ellipse and often become distorted

and fragmented if not completely destroyed. In a similar comparison, the organization of

crypts is fairly regular in normal colons while becoming increasingly random in more and

more severe cases of active colitis. The final key indicator of active colitis is the presence of

neutrophils or white blood cells whose presence is a key indicator of the immune system’s

response. In colons affected by active colitis, neutrophils can be found the crypt structures

though they can sometimes be mistaken for simple blood and vice versa. Figure 2.5 presents

some visual examples of these indicators in the cases of a normal colon and one affected by

active colitis.
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(a) (b)

Figure 2.5: Comparison of key indicators of active colitis in a (a) normal colon biopsy and
(b) active colitis infected colon biopsy.

To summarize our discussion concerning the colon and active colitis, we present a series of

example H&E stained images of endoscopic biopsies imaged under multiple magnifications.

Figure 2.6 presents normal or undiseased colons while Figure 2.7 presents active colitis af-

fected or diseased colons. The multiple magnifications demonstrate the distinctness of each

condition across different scales.

Similarly to our research application concerning teratomas, automated analysis of these

biopsies can greatly improve the overall quality of care in terms of effectiveness and cost.

However, unlike teratomas, such analysis is merely a diagnostic aid as opposed to a complete

replacement of the pathologist in some role. As stated before, in the current regulatory

environment and society’s perception of these technologies, no such analysis can assign the

final diagnosis and as result, the chosen treatment. Still, such technology can increase a

pathologist’s accuracy in detecting and correctly evaluating active colitis while also reducing

their workload. Some possible uses of such tools were discussed in Section 1.3. Our intent

at this time in this application is to utilize our algorithm to perform active colitis detection
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(a) (b)

(c) (d)

Figure 2.6: Example H&E stained images of endoscopic colon biopsies free of active colitis
under different magnifications. Each row is the same sample with the first and second
columns presenting it under 40X and 100X magnifications respectively.

in H&E stained images of colon biopsies as a CAD tool.

Unlike the teratoma research application discussed earlier, this application presents a

very clear context in terms of how to formulate and solve the problem at hand. To begin

with, we are only concerned with images of the colon and differentiating between normal

(undiseased) and diseased cases. Furthermore, we can leverage a well established set of

image features that pathologists use to evaluate for active colitis. This is in well in line with

our guiding principle concerning the design of a HV that reflects both the pathologist’s and

engineer’s knowledge.
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(e) (f)

(g) (h)

Figure 2.6 continued.

2.2 Classification Systems

The term classification has many meanings but in general it refers to the labeling of objects

in a manner that follows some known set of guidelines. For example, the everyday action of

identifying objects we see is a classification task. The labels we assign are merely our names

for various sights such as a person, a car, a building, and so on. Our single guideline in

this task is that the label we assign is correct to the best of our knowledge. The apparent

simplicity of this task in its definition and the ease with which we accomplish it belies its

actual and extreme complexity.
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(a) (b)

(c) (d)

Figure 2.7: Example H&E stained images of endoscopic colon biopsies affected by active
colitis under different magnifications. Each row is the same sample with the first and second
columns presenting it under 40X and 100X magnifications respectively.

Motivation

With the advent of the digital age in terms of highly capable sensors and computing resources,

once manual, i.e., human performed tasks are now being relegated to complex computational

systems. The most common goal of such systems is the complete automation of these tasks

so as to reduce human burden and improve overall efficiency. It is no surprise then that

classification tasks are among such efforts; areas such as robotics, biometrics, automatic

target recognition for military applications, bioinformatics, and financial analysis are just a

few of the many important fields that are pursuing such computational systems. We refer
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(e) (f)

(g) (h)

Figure 2.7 continued.

to such computational systems for the automation of classification tasks as classification

systems.

Among these many different efforts, the automation of classification tasks involving im-

agery of some sort is recognized as an important source of technological innovation. As

humans are visual creatures by design, there are a myriad of visual tasks (from simple to

complex) for which a classification system can be designed. The previous example concern-

ing everyday object recognition is a large and rich area of research that is actively pursued

in both industry and academia. Naturally, in this thesis we are concerned with biomedical

images in the form of H&E stained images for histopathology.
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Design

Given the motivation for creating classification system, their exact designs are strictly depen-

dent on the particular task and application they seek to address. However, the majority of

modern classification systems are derived from a prototype architecture involving two main

components: feature extraction and a classifier. We will discuss each of these components

in turn but first expand on this general architecture.

Figure 2.8(a) presents a simple block diagram of the prototypical classification system.

As can be seen, the input to the system is a piece of data which is an image of some sort

in our discussion. From the image, descriptive features are extracted using some collection

of methods. The goal of feature extraction is to concisely describe a given family of images

in a way that promotes the differences between images of different labels and the similarity

between images of the same label. For example, if the task is simply to determine if a red-

green-blue (RGB) color image is more red than blue, an appropriate feature would be the

ratio between the average value of red and blue channels of the image.

These features are then input into a classifier whose purpose is to provide a label for the

input image based on the features. A variety of basic classifiers exist with many variations of

each available ranging from simple to complex. Using the previous example of determining if

an image is more red than blue and using the hypothetical feature, a simple classifier based

on a threshold could be used. If our goal is merely to say that the image is on average more

red than blue and vice versa, based on the feature, an image could be said to be red if the

ratio is greater than 1 and blue if it less than 1. Based on the features used and the nature

of the data, some classifiers may be more or less effective.

While this basic system organization is fairly common in much previous and existing

work, many variations exist with significant differences. Some systems do not use an explicit

feature extraction stage while others may create specialized classifiers that incorporate fea-

ture extraction. Additional stages of pre- and post-processing of both images and assigned
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(a)

(b)

Figure 2.8: Basic block diagrams of (a) standard classification system and (b) multiresolution
classification system.

labels are common to reduce errors as a result of noise and other factors. Due to the wide

variety of exact designs, our discussion will be fairly general and focus more on items relevant

to the contributions of this thesis.

2.2.1 Feature Extraction

The act of describing something to another is very dependent on the language used to

communicate between each other. In spoken word, the exact language used has many im-

plications as to how exactly something will be described. It is common that some languages

lack clear words to describe certain concepts while others have an abundance of words for

some concepts. Furthermore, words that are supposed to have the same meaning in different

languages may in fact have meaningful subtleties that are lost in translation. As is typi-

cally the case, clear and concise language will transmit the meanings of things much more

effectively than one burdened by unnecessary additions.

These same considerations should be taken into account when designing the feature

extraction stage of a classification system. Effectively, the features represent the language

used to describe the images for the task of classification. Through well-designed features,

we can not only ensure accurate and understandable descriptions of a family of images but



CHAPTER 2. BACKGROUND 55

also reduce the burden of work on subsequent stages of the system. While there is no

distinct image feature research community to speak of, it is a fairly universal concern of

those designing classification systems. As a result, the body of existing work is beyond the

scope of this work and as such we will only touch base on some general concepts.

One primary motivation in using features as opposed to the original image is to represent

data in a more concise manner. Mathematically speaking, this can be considered a form of

dimensionality reduction. Any given image is a particular point in a N -dimensional space

where N is the total number of pixels in the image. Given the ever-increasing nature of image

resolution, N is often very large in most modern image related applications. Furthermore,

the volume which any given set of images occupies in this N -dimensional space is typically

very small if not infinitesimal. Feature extraction attempts to reduce this N -dimensional

space to anM-dimensional space where M << N in order to improve the overall view of the

images with respect to the task at hand. As a simple analogy, consider the way you might

use binoculars to better see an object that is far away; in a similar manner, the features are

zooming in on the characteristics of an image that describe it effectively. However, there

are features which in fact do the opposite by increasing the dimensionality to provide the

images more space to establish themselves with respect to the task at hand. Even with this

consideration in mind, the vast majority of features are dimensionality reducing.

Many image features attempt to describe some intuitive visual quality of the image such

as color [28–30], texture [31–34], and shape [35–37]. These features have been researched and

developed with great success for a variety of reasons including the strong parallels between

them and the manner in which humans perform visual task. Other features may be more

complex in describing organization and architecture of certain characteristic components of

image such as the positions of the eyes, nose, mouth, and ears on a human face.

Other features are less intuitive in that they leverage more mathematically or statistically

oriented descriptions. For example, the Fourier Transform (FT) [38] and other related ideas
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have provided a way to describe signals in turns of their frequency content. Such descriptions

are often very powerful in characterizing the similarities and differences between samples.

Simple statistics such as averages, moments, and histograms are often used to concisely

characterize data. In general such features attempt to learn the underlying distributions that

govern the data and use them to predict the likelihood that an image belongs to a particular

label. A few of the more well known examples of such features include the Viola-Jones object

detector [39], the scale-invariant feature transform [40], and image pyramids [41].

Image features are constantly being created and improved upon based on the knowledge

each new application provides. Some features are designed to be universal or applicable

in any setting while others are specifically designed for a single environment. While it is

generally accepted that no one design will solve all problems, for a given family of related

applications, it is assumed that a certain set of features will be better suited than others.

It is the discovery and design of these features in the context of histopathology applications

involving H&E stained images that this work attempts to accomplish in part.

2.2.2 Classifier Design/Selection

Given a fixed set of features, the next step is to design or select a classifier capable of assigning

the desired labels to the data based on these features. A classifier is often referred to as a

learning algorithm as the goal is to learn a pattern in the data that reflects the specified

labels. As a result of this general idea, the terms machine learning and pattern recognition

are often used interchangeably to describe much of the related work.

Continuing with our language example from the previous section, if the features repre-

sent the vocabulary available to form sentences, the classifier represents the process that

parses these sentences and determines their meaning. Given the words in a language, any

combination of them can be used to form a sentence but only a subset of them that obey

some guidelines are considered proper sentences that have meaning. A classifier’s primary
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role is to determine this meaning though in some situations it must also distinguish between

those cases where there is no meaning.

There are many parallels between research on feature extraction and research on classifier

design. Most important amongst them is the large body of existing and continuing work to

create new classifier designs and to improve on known ones. Another parallel is that some

classifiers are designed independent of the application or problem formulation while others

are the opposite in their specificity. As was the case with feature extraction, there is simply

too much material concerning classifier design to allow us to provide significant detail in this

document. However, there are some general notions that apply to the majority of classifiers

that help one to understand where and when a given classifier may or may not be useful.

Training and Testing

The first such notion are the classifier training and testing phases. As the name implies, the

classifier training phase is when the classifier learns or trains itself to accomplish the specified

task. To facilitate classifier training, some if not all of the available data is designated as the

training set while the rest is labeled as the testing set. As the names imply, the training set is

used to train the classifier while the testing set is used to test its performance. Occasionally,

the data is further divided into a cross-validation set which is still used in the training of

the classifier and more specifically to learn or fine tune its various parameters.

Once the training phase is completed, the classifier is considered to be ready for the

testing phase. Depending on the situation, the trained classifier is typically presented a

never before seen set of data on which it will perform the desired task. In research or

proof of concept situations where the goal is demonstrate the potential effectiveness of the

classification system, the classifier is applied to the testing set. In a product or deployment

situation where the goal is to use the classification system to accomplish the desired task,

the data is typically completely new or recently acquired data. Also, in these types of
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applications, the new data and the classifier’s performance on it can be used to further

tune the classifier. Figure 2.9 presents a simple block diagram demonstrating the differences

between these two scenarios.

(a)

(b)

Figure 2.9: Block diagrams of classifier training and testing phases in (a) research setting
and (b) deployment setting.
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Supervised, Unsupervised, and Semi-Supervised Learning

Another important concept is that of the differences between supervised, unsupervised, and

semi-supervised learning. Simply put, supervised learning refers to situations in which the

labels for the training data are known and provided to the classifier during its training phase.

This is in contrast to unsupervised learning where no labels for the training data are available.

Lastly, semi-supervised learning occurs when some of the training data is labeled while the

rest is not. It is often the specific classification task of interest that dictates which of these

situations apply. For example, if the task is to determine the identity of a person based on an

image of their face, this is a supervised learning situation since we cannot identify a person

without teaching the classifier who any given training image corresponds to. Similarly, if the

task is to group them together based on similar appearances, this is an unsupervised learning

situation since the classifier does not need to know the individual identity of an given image.

Semi-supervised examples typically involve some mixture between these examples where the

goal may be to determine the identities of samples if they belong to known labels and group

them with other unknown labels if they have no such label. Naturally, there are many more

examples and variations of these basic ideas.

Dimensionality Reduction/Augmentation

Most classifiers can be categorized as either dimensionality reducing or augmenting methods.

The motivation behind dimensionality reducing classifiers is the pursuit of an even more

concise description of the images specifically to accomplish the classification task. Most such

methods will attempt to determine some subset of the original features and/or some set of

combination of the features that maximize performance. A common assumption with such

methods is that not all the features are individually useful to the task at hand even if they

were designed to be. In contrast, classifiers that augment the dimensionality assume that

the existing features are insufficient for the task. As a result, these methods enlarge the
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space that the data, as represented by the features, occupies. These new dimensions are

often some combination or transformation of the existing features.

Existing Classifier Designs

Based on all these basic notions and more, a large number of classifiers have been developed

with many variations on each of them. Among some of the more famous and popular ones

are principal component analysis (PCA) [42], linear discriminant analysis (LDA) [43, 44],

SVMs [45], neural networks (NN) [46], nonlinear dimensionality reduction [47], and kernel

density estimation [48]. These methods have been developed from all manners of standpoints

including mathematics, statistics, computer science, and engineering. As a result, some

methods have very strong formulations and statements about expected levels of performance

for a given task while others are purely algorithmic in the pursuit of computational efficiency

and adaptability.

The choice of algorithm for our algorithm is important but not a primary research topic.

Rather, we experiment with existing classifiers to determine the optimal one to use in con-

junction with our methods. However, in later sections there will be some discussion on

classifier designs that may be more appropriate to the family of classification tasks that we

wish to address.

2.3 Classification Problem Types

We’ve discussed the basics of classification systems and specifically those that attempt to

automate tasks typically done manually. These classification problems can be grouped ac-

cording to whether or not a human can accomplish it and if any specialized knowledge is

required. Based on these criteria, we define three types of classification problems: non-expert,

expert, and unknown.
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2.3.1 Non-Expert Classification Problems

Non-expert classification problems are those that a person without any special knowledge can

perform. These problems are often those everyday tasks humans perform subconsciously and

without any sort of formal training. For example, the most universal non-expert classification

problem is everyday object recognition which we now discuss to illustrate aspects of this

problem type.

The human ability to accurately identify everyday objects in spite it’s huge scope and

variation is extraordinary. However, its actual complexity is hidden by how easily humans

accomplish it. In general, there is little understanding about the actual mental process

behind this task. Since humans are not born being able to recognize all objects, there must

be some sort of self-training as we encounter new objects.

In spite of our lack of knowledge about the actual neurological process behind this task,

when asked how one recognizes an object, there are some very common answers. Most

people will cite descriptive qualities such as color, shape, and size as major indicators of

an object’s identity. That identity will be unquestioned at some level, e.g., a human is a

human though their apparent age may vary from observer to observer. The universality of

the descriptive terms and the consistency of object identities implies that, in general, this

task does not require specialized learning. Rather, humans are equipped with the tools and

some intuitive, though unknown, learning process to accurately and consistently recognize

objects. Other examples of non-expert classification problems include facial recognition and

scene identification.

For such problems, a person provides an example of a successful system upon which the

design of an algorithm can be based. While the design does not need to take any cues from

human execution of the task, it would be shortsighted to completely ignore it in light of the

accuracy and speed with which it is manually performed. Since an engineer is more than

likely capable of the task at hand, they can serve as the working example to learn from as
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opposed to requiring input from others. Their knowledge of the task can aid many aspects

of classification systems, but feature design often benefits the most from such an approach.

Continuing with object recognition, if the task is to recognize objects at large, an engineer

can mimic his own process and use basic features such as shape, size, and color. Similarly, if

the task is to recognize a particular category of objects, e.g., cars, then the features might be

the presence of wheels, headlights, doors, and windows. In both of these problems, almost

anyone is more than capable of proposing some reasonable design choices.

However, it is not always the case that people understand how they perform certain tasks.

Some tasks may be so intuitive or subconscious that extracting conscious knowledge of any

form may be very difficult. For example, in recognizing colors, most people will not be able

to give a clear explanation and instead simply state that a color is a color. However, science

provides an alternative understandings of such a fundamental concept (e.g., wavelengths of

light) that would allow for the design of a corresponding classification system.

2.3.2 Expert Classification Problems

Expert classification problems are those that only specially trained individual can manually

perform making them highly non-intuitive to the average person. For some tasks, the non-

intuitive nature is a result of the unique and uncommon modality of the data, e.g., X-ray

or MRI. In other tasks, it arises from the task itself such as determining the presence of a

brain tumor from a computed axial tomography (CAT) scan of a person’s head. In both

cases, specialized knowledge (information that must be learned) about some aspect of task

is needed.

As a general example, biologists and physicians utilize a number of unique data modal-

ities designed to provide very specific information. Such modalities include X-ray, MRI,

CAT, electrocardiography, fluorescence microscopy, DNA sequencing, western blots, and

histopathology; each with a unique form and purpose. If you consider the large variety of
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modalities and the need for specialized knowledge to interpret them, it is clear to see why

various types of biologists and physicians are considered specialists.

Continuing with biology and medicine, the uniqueness of the modalities often lead to

highly specialized professions. Radiologists diagnose and treat illnesses by interpreting many

types of medical imagery including X-ray, MRI, CAT, and ultrasound. A cell biologist is

an expert on fluorescence microscopy and how to use it to understand cell structure and

function. While the pairing of modality to specialist is not necessarily one to one, any given

individual can only be expert in so many modalities and related tasks.

The specialized knowledge needed to perform these task often makes it difficult to auto-

mate them. In contrast to non-expert classification problems, an engineer will not possess

the required knowledge, making him ill-equipped to learn from the existing manual solution

by himself. The fact that specialists are capable of performing these tasks at significant

levels of performance should encourage engineers to leverage their knowledge.

A general analogy is that of learning to play a completely new sport. When you begin,

you must learn basics including the rules, equipment, training, and strategies of the sport.

Given enough time and examples, you could learn all these things through observation though

there is no guarantee you would be proficient. The preferred approach is to learn from an

expert, i.e., a trainer or coach, in order to improve your skills. Not only will these experts

teach you the fundamentals but also teach you about the more complex aspects of the sport.

Similarly, the design of a classification system for expert classification problems can benefit

greatly from the knowledge of experts already capable of accomplishing them.

2.3.3 Unknown Classification Problems

Unknown classification problems are those that people are not capable of and for which the

appropriate knowledge is unknown. Generally, these tasks represent some novel idea such

as a new data modality or a new type of science. For example, given a new data modality,



CHAPTER 2. BACKGROUND 64

one of the first tasks is to learn what it is useful for beyond its original purpose. Given the

data this new modality generates, understanding of patterns in the data may provide insight

about the modality’s applicability. Data mining techniques, more specifically, classification

systems are one way to extract and quantify these patterns, especially when the data is large

and complex.

We wish to emphasize that such unknown classification problems do not provide any

proven manual solutions from which to learn. Without such a reference, it is within reason,

if not without choice, that an engineer propose completely new methods in his design. These

types of problems often represent the limits of human interpretation in a variety of ways such

as intractable amounts of data, overwhelming complexity, and a simple inability to interpret

the data. Of course as work on a particular unknown classification problem progresses, later

works will build upon the successes and failures of earlier ones and eventually change the

problem into one of the other two types.
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Previous Work

Before we proceed, a discussion of our previous work in this area is needed to further justify

our guiding principles. Most of this work was through the efforts of Chebira et al. [49, 50]

utilizing a different algorithm than the one being presented in this thesis. The primary goal

of that work was to make an initial effort into automating some aspect of the teratoma

research detailed in Section 2.1.1. In this section we will explain the basics of the algorithm

developed and also the significance of the results achieved.

3.1 Single-Tissue Classification

Rather than attempt to immediately address the very challenging task of identifying and

delineating tissues in teratomas, Chebira et al. chose to demonstrate the feasibility of au-

tomating it by first developing an algorithm for single-tissue classification in teratomas. If

we were able to achieve reasonable performance with this task, we would have demonstrated

that in the context of teratomas, tissues do present enough discriminative information in

order to identify them. Given success in this task, subsequent efforts to address the more

general task of both identifying and delineating tissues would be better justified.

The fundamental difference between single-tissue and multiple-tissue classification is the

65
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content of a given image. In multiple-tissue classification, an image may contain any number

of tissues in any particular organization. The classification task is the delineation task

discussed in Section 1.1.4 where tissues must not only be identified but also localized or

segmented. This is in contrast to single-tissue classification where the assumption is that

an image only contains one type of tissue and the classification task is to identify that type

for any given image. This assumption is equivalent to assuming that given a multiple-tissue

image, there exists some method (whether manual or automated) to divide the image into

single-tissue regions who can then be classified.

Our primary algorithm for single-tissue classification [49, 50] was originally designed as

general image classification system. It has been used with success in a variety of applica-

tions including high-throughput drosophila embryo screening [51], classification of protein

sub-cellular patterns [50], and biometric fingerprint recognition [52]. As the scope of this al-

gorithm is vast, we will explain it in only moderate detail and refer readers to the referenced

works for additional information.

3.1.1 Multiresolution Classifier

As discussed in Section 2.2 and shown in Figure 2.8(a), the standard classification system

model is primarily a feature extraction stage followed by a classifier stage. This formulation

typically considers the input image as the primary representation of the data. The feature

extraction stage and in part the classifier stage transform the data to aid the classification

task at hand. However, it is our belief that for many families of images, regardless of the

classification task, there is a transformation of the data that is beneficial. In other words,

a transformation of the data that precedes the feature extraction stage; more specifically, a

multiresolution (MR) decomposition.

Figure 2.8(b) presents the overall structure of our MR classifier. As shown, the standard

classification system architecture is joined by a MR decomposition stage and a global decision
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making stage which we will explain in the following sections in moderate detail. We refer

readers to [53] for a detailed explanation of this classification system.

Multiresolution Decomposition

Without going into rigorous theoretical justifications, we proposed to use members of a family

of transformations collectively referred to as MR decompositions in this role. These trans-

formations seek to describe data in terms of a series of subspaces. Each of these subspaces

represents the data in terms of a particular spatial and frequency support/resolution.

For example, the original signal in the Dirac basis [38] representation where each sample

in the signal is a subspace of the smallest spatial support or equivalently the highest spatial

resolution. However, this extreme spatial resolution comes at the cost of the frequency

resolution since none is provided in the Dirac basis. In contrast, the FT results in a signal

where each sample is a subspace that has the highest frequency resolution at the cost of no

spatial resolution. Based on the FT, one can tell what frequencies are present in the data

but not where they are.

These two transforms illustrate an important concept called the uncertainty principle.

This concept states that no single transform is capable of compactly and uniquely repre-

senting the data while simultaneously having the highest possible spatial and frequency

resolutions. Equivalently, increases in one type of resolution, spatial or frequency, will result

in a loss of resolution in the other. As a result, MR analysis transforms are designed to

achieve different balances between these two types of resolutions based on the idea that one

type of resolution may be more important than the other in certain situations.

Furthermore, MR transforms are often iterative or pyramidal. Unlike the FT, many MR

transforms perform a basic set of decompositions on a given signal and the resulting subspaces

multiple times. Based on the nature of the decomposition, each iteration may increase

one type of resolution and correspondingly decrease another resolution. Additionally, many
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transforms seek to provide the ability to reconstruct the signal from the derived subspaces. As

a result of these considerations, most MR analysis transforms begin with low frequency and

high spatial resolutions with subsequent iterative decompositions increasing and decreasing

them respectively.

Transforms such as the short-time Fourier transform (STFT) [38] and the discrete wavelet

transform (DWT) [54] are non-adaptive transforms. Such transforms apply iterative de-

compositions to particular subspaces and their derived subspaces resulting in a structured

pyramidal decomposition. Others such as the wavelet packet [54] are adaptive in that they

choose which subspaces to apply additional decompositions to based on some metric. These

metrics indicate whether or given subspace or the subspaces derived from its decomposition

are more useful to the task at hand. The formulation of these metrics is varied depending

on the application [55, 56].

A final consideration is the redundancy of the decomposition. Many MR decompositions

are non-redundant in that represent the data in as few subspaces as possible. Each subspace

is expected to have minimal overlap with other subspaces in terms of their space-frequency

coverage. In the interest of efficient representation and compression, non-redundant decom-

positions have much use such as in the JPEG2000 image format. We refer to a non-redundant

decomposition as a multiresolution basis (MRB). Its redundant counterpart is the multireso-

lution frame (MRF). Rather than describe the data in as few subspaces as possible, subspaces

in a MRF have overlapping coverage of the space and frequency. In applications such as ro-

bust or error-tolerant coding, such redundancy is useful.

Both MRBs and MRFs are also useful in the context of the MR classifier as they offer

efficiency and redundancy respectively. Chebira [53] presented a rigorous analysis of the

conditions under which each family of transforms was more or less appropriate. As such

justifications are not the focus of this thesis, we refer readers to the referenced work for

detailed explanations and proofs of these concepts.
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In general, MR decompositions yield a series of subspaces that are expected to collec-

tively hold information better suited to the classification task than the original image itself.

Furthermore, the iterative nature of many MR decompositions and the adaptive nature of

others can create configurations of subspaces specific to the task. Therefore we expect the

use of these decompositions to be generally applicable regardless of the specific classification

task.

Feature Extraction and Classifier

The applied MR decomposition yields a series of subspaces each of which represents a partic-

ular portion of the space-frequency space. From each of the subspaces we extract a specified

set of image features expecting that the values extracted from certain subspaces will be more

informative than others. The choice of features is only restricted to those that are computed

over an entire image disregarding image resolution. During the training phase, each training

image is decomposed into these subspaces with features being extracted from each of them.

As a result, we have a set of training feature vectors for each subspace based on the training

data which can be used to train classifiers for each subspace.

The intuition behind training an individual classifier for each subspace is similar to a

voting strategy. Each subspace represents a unique view of the data and given an appro-

priately trained classifier, can make a decision about an image based on the corresponding

subspace of that image. With many subspaces, many subspace specific decisions are made

under the assumption that some are generally more accurate and reliable than others. The

same classifier is trained in each subspace with the specific choice up to the designer.

It is this subspace specific nature of the feature extraction and classifier stages that

reflects the MR aspect of the algorithm. The parallel arrows between the discrete stages in

Figure 2.8(b) represent the subspaces derived from the MR decomposition. At this point in

the algorithm we have derived many subspace specific decisions that must now be resolved



CHAPTER 3. PREVIOUS WORK 70

into one global decision concerning the input image.

Global Decision Making

This stage of the algorithm combines the previously computed subspace specific decisions

into a single global decision for the input image. Many options exist to accomplish this task

including a simple voting scheme where the majority decision is assigned as the final global

one. However, such an approach would ignore the intuition concerning MR decomposition

that certain subspaces contain more useful information than others. To follow this intuition,

two different approaches were developed and experimented with. Both methods are simple

weighted linear combinations of the decisions made by each individual subspace based on

the intuition that more accurate and reliable subspaces will be weighted more heavily. The

difference between them is the manner in which they learn the weights for this combination.

We use a cross-validation set that has not yet been seen by the classifier to determine these

optimal weights.

The first method begins by assigning equal weights to all subspaces and then iteratively

updating them. Each sample from the cross-validation set is sequentially decomposed ac-

cording to our specified MR transform from whose resulting subspace features are extracted

and then evaluated by the subspace specific classifier. Each subspace’s decision is then com-

pared to the available ground truth for that sample. If a subspace’s decision is correct then

we increase its weight by a specified fixed amount. However, should the decision be wrong

then the weight is decreased by similarly specified amount. This process is cyclically repeated

over the cross-validation set until a specified iteration limit is reached.

The second method is simple least squares optimization based on the cross-validation set.

For each sample we know the desired label and in the same fashion as the previous method,

we can compute each subspace specific decision. Ideally, we would like a weighted linear

combination that yields the correct label for each sample in the cross-validation set. Using
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a least squares optimization, we can compute the weights that minimize the error between

the desired labels and those computed from the weighted linear combination of the subspace

specific decisions. Unlike the previous method, this one is not iterative.

Once the weights have been determined, the overall MR classifier has been trained and is

ready for testing. Input test images are first subject to the MR decomposition, then feature

extraction in each subspace, followed by classification in each subspace, and finished by the

GDM by weighted linear combination of the subspace specific decisions. As a result of this

entire process, a single decision for the original input image is made.

3.1.2 Experimental Results

To evaluate the effectiveness of their MR classification system at identification of single-

tissues in H&E stained images, Chebira et al. performed multiple experiments testing differ-

ent feature sets and different MR decompositions. These experiments also served to validate

the authors’ long-standing belief that MR is a powerful tool in many classification task. For

all details of these experiments, we refer readers to [49] though we present a short summary

here.

Dr. John A. Ozolek and Dr. Carlos A. Castro provided the authors with H&E stained

images of teratomas as shown in Section 2.1.1. These multiple tissue images were hand

segmented and labeled by Dr. Ozolek and Dr. Castro allowing the authors to extract

200× 200 pixel single-tissue sub-images to compose the data set. As a result of this labeling

and sub-image extraction, the data set was composed of 270 total images evenly representing

6 tissues: mesenchyme, skin, myenteric plexus, bone, necrotic tissue, and striated muscle.

The MR decompositions experimented with included multiple DWTs utilizing different

Daubechies bases and their frame equivalents. The feature sets used were based on the

classic Haralick texture features [31] while utilizing some nuclei specific features. A NN was

used as the fundamental classifier for each subspace due to its adaptability and the authors’
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past success with it. Both forms of weight learning for GDM were evaluated and compared.

To train the overall system, 40 images of the available 45 for each tissue were randomly

selected. From these 40 images, cross-validation sets were extracted to not only train the

subspace specific NNs but also the weights for the GDM. Once training was completed,

the 5 images sequestered for testing were evaluated by the system and the correctness of

the computed label determined. This division of training and testing was repeated 9 times

with selection being random. The best average accuracy achieved amongst all experimen-

tal conditions was 87.7% through the use of the MR frame decomposition and the least

squares optimization weight learning scheme. This was in comparison to the standard image

classification scheme’s accuracy of 71.7% where no MR decomposition or GDM was used.

3.1.3 Conclusions

The primary conclusion from this work was that single-tissue classification of H&E stained

images of teratomas is possible at a non-trivial level of performance. Additionally, MR de-

composition demonstrated its usefulness by outperforming the standard image classification

model. The derived subspaces do present information that is better suited to the classi-

fication task than the original images’s presentation alone. Lastly, the efficacy of texture

features validated a common belief that texture is very important to the description of this

family of images.

3.2 Issues to Address

Given these previous results on single-tissue classification, the next step is to address the

task of multiple-tissue classification. The simple way forward from this previous work is

to extend the successful single-tissue algorithm to a multiple-tissue scenario. However, the

single-tissue algorithm is only designed to assign a single label to an entire image. Thus,
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in order to apply it to multiple-tissue images, we would need to develop an algorithm to

automate the required segmentation of a multiple-tissue image in to single-tissue regions.

It is here that our motivation for our guiding principle concerning pixel-level classification

comes from. We argue that the very nature of tissues in H&E stained images makes such

a segmentation equivalent to the desired delineation task. This is because an unsupervised

segmentation of the images based on visual similarity will not yield single-tissue regions for

all tissue types. Some tissues are distinguishable based on visual similarity such as color and

texture, but many require higher-order descriptors such as architecture of components and

spatial relationships.

Furthermore, the levels of intra-class variability and inter-class similarity with respect

to visual appearance would result in significant segmentation errors. If one can achieve

a supervised segmentation of the image into single-tissue regions, then the desired task is

already complete. For these reasons, we propose to design a new classification system that

achieves this supervised segmentation and labeling or delineation based on the classification

of individual pixels and their local information.

Our other main issue concerns the feature set used to describe this family of images.

Our overall goal is a system capable of addressing a wide variety of applications using H&E

stained images without reinvention of the system each time. A critical component in the

pursuit of this goal is the design of a core feature set that is generalizable across these

applications. The design of such a feature set must be precise in its descriptions and also

intuitive or any perceived levels of performance would be more difficult to explain.

While the previously used feature set based on texture did perform well, it provided no

real intuition into the discriminative qualities of the image that it was using. This intuition

not only provides justification for the feature design choices that we would make but also

some initial understanding as to why they would or would not work in certain applications.

In order to achieve this goal of a generalizable and intuitive feature set, we leverage the
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expert-knowledge of the pathologist whose training, experience, and clear ability to perform

the tasks of many applications lends credence to the existence of such a feature set. This

approach is summarized by our expert knowledge guiding principle.



Chapter 4

Mathematical Framework

The first contribution of this thesis is a mathematical framework to describe through charac-

terization of their textures, certain families of images, including the family of H&E-stained

images relevant to histopathology applications. While this framework is general enough

to apply to many different types of images, in the scope of this thesis it serves two main

purposes: First, this framework motivates and justifies the use of many of the features we

develop for our algorithm. Second, it provides a unified basis for the implementation of these

features.

The fundamental components of this framework are local histograms and occlusion models.

A local histogram of an image is simply the histogram of the values of the pixels in a fixed

spatial neighborhood of a given pixel. With local histograms we aim to characterize various

types of texture for the purpose of pixel-level classification. Occlusion models both describe

and generate complex textures from simpler ones and thus extend the applicability of local

histograms to more complex families of images. We will discuss these two main concepts in

detail in Sections 4.2 and 4.3, respectively. In the context of our framework, the terms image

and texture will be used interchangeably. Proofs for various theorems and propositions can

be found in Appendix A to improve readability.

75
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4.1 Characterization of Textures

4.1.1 Simple Textures

Pathologists use numerous visual cues when identifying tissues and pathologies (see Chapter 5

for more details). For example, some tissues primarily absorb one stain over the other. Bone’s

preference for eosin results in a strong pink color making the color of a tissue a good indicator

for bone. Similarly, cartilage has a strong preference for hematoxylin resulting in a strong

blue-purple color. However, cartilage often also contains ellipse shaped lumen regions where

no stain is absorbed resulting in an overall appearance of white ellipses on top of blue-purple

background (see Figure 4.1). Naturally, these statements are generalizations with specific

examples of these tissues presenting variations in their exact appearances.

(a) (b)

Figure 4.1: Comparison between local spatial color distribution of (a) bone and (b). On the
left is the original image while on the right is an extracted sub-region of the image. Both
the colors and the general shapes they present are unique enough to discriminate between
the two tissue types.

Common visual qualities such as color, shape, and texture are important to the many

tasks a pathologist performs. All of these cues stem from the manner in which H&E stains

the various tissues and pathologies into their characteristic shades of pink, blue-purple, and

white. The color of a tissue alone can be very indicative of its identity but these colors also

give rise to all other visual cues that are typically considered different from color.

For example, the perceived texture of an image, e.g., smooth versus rough, is a direct

result of different colors and their shades changing over the span of the image. Smooth
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textures are the result of spatially constant, or slowly-changing shades of the same color,

while rough textures are formed by quickly changing, or random colors. Another example

is shape where it is the constancy in the color of a region, or the sharp difference between

regions, which define the boundaries and span of a shape. While this is a very natural and

intuitive concept, color, texture, and shape are often disconnected in their descriptions for

a variety of reasons.

However, we can generally consider all of these visual cues as types of textures formed by

various spatial distributions of colors or the values of the image pixels. Consider a solid pink

image whose most concise description is the color pink itself. Alternatively, since pink is

considered a shade of red, we could describe this same image as a completely smooth texture

of that particular shade of red. Another description could be that it is formed by choosing

pink for all pixels.

To restrict the family of images, we could use many methods beginning with a simple

counting of how many red and blue pixels were in a given image. This description is an

approximation of the image’s distribution, or global histogram of the pixel colors. While this

may be sufficient to describe certain sub-families of this already restricted family, clearly not

all member images can be described in a unique manner. For example, we could group images

based on the percentage of red and blue pixels present and use global histograms to describe

each such group. However, we would not be able to distinguish between one image whose

top and bottom halves were red and blue, respectively, and the other whose left and right

halves where red and blue, respectively. Depending on the application, similar and more

complex distinctions might be required. For this example, we have two extremes for possible

approximations that allow us to uniquely characterize various groups within this family of

images. One is the exact configuration of red and blue pixels for a given image and the other

the global histogram of those same red and blue pixels. Given some set of desired groupings

of the images, an optimal description lies somewhere between these extremes, providing a
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balance between conciseness and the ability to distinguish between the groups. One aspect

of these descriptions that allows us to travel between these extremes is the spatial nature of

the description.

Depending on the image groups we want to characterize, different types of spatial localiza-

tion are possible such as the location of the pixels, shape of the regions, or some combination

of the two. At one extreme there is the maximum amount of spatial localization by deter-

mining each individual pixel’s red or blue value, while at the other extreme of the global

histogram provides no spatial localization as it does not say where in the image the red and

blue pixels occur. This is very similar to the comparison between the STFT (spectrogram)

and the FT where the former provides some temporal/spatial localization of frequencies while

the latter provides no such localization. In fact, we can make a strong comparison between

the nature and relationship of the FT and the STFT to that of a global histogram and the

local histogram described previously. Continuing the analogy, the FT quantifies frequency

over an entire signal, while a global histogram measures the frequency of occurrence for

pixel values across an entire image. The STFT and local histogram introduce spatial local-

ization by computing the same transforms as the FT and global histogram, respectively, in

a spatially-dependent manner. By controlling the degree of spatial localization, we can use

local histograms to effectively characterize different types of spatially dependent behaviors,

i.e., textures.

Based on this motivation for the use of local histograms, we now introduce formalism

that we will use throughout this chapter. We define an image as a function from a finite

abelian group X of pixel locations into a finite abelian group Y of pixel values. Intuitively,

this states that images are of a given spatial resolution defined by X and whose pixel values

are drawn from some finite volume defined by Y . As a result, our images f are members

of the set ℓ(X ,Y) := {f : X → Y}. For example, the 1200× 1600, 8-bit RGB images from

Figure 1.3 have X = Z1200 × Z1600 and Y = Z
3
256, where ZN denotes the cyclic group of
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integers modulo N .

The local histogram of an image f is defined in terms of a weighting function or neighbor-

hood w that dictates the local histogram’s spatial localization. More specifically, w ∈ ℓ(X ,R),

is non-negative, and sums to one. Thus, the local histogram transform of the image f with

respect to a weighting function w, is the function LHwf : X × Y → R,

(LHwf)(x, y) :=
∑

x′∈X

w(x′)δy(f(x+ x′)). (4.1)

where

δy(f(x)) =











1, f(x) = y,

0, f(x) 6= y,
(4.2)

For any fixed x ∈ X (pixel location) and y ∈ Y (pixel value), (LHwf)(x, y) counts the

number of pixels for which f has the value y in the neighborhood of x defined by w.

Comparing bone to cartilage (see Figure 4.1), our intuition is that the color local his-

togram of bone should have peaks in the pink region while the color local histogram of

cartilage will have peaks in the blue and white regions, based on which, it is relatively easy

to distinguish between the two tissues by comparing the number and location of their peaks.

4.1.2 Complex Textures

While local histograms can characterize certain types of textures well, there will be complex

textures that will be difficult to understand through local histograms alone, such as complex

textures that still possess structure. By structure we refer to textures that are not the

result of purely random assignment of pixel values; this is relevant to our applications since

structure is present in the form of various biological components.

Our question now is whether we can use simplex textures and their corresponding local

histograms to characterize complex ones. We propose to use occlusion models for that task.
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In Section 4.3, we study occlusion models in detail; here, we provide some intuition.

Let us revisit our previous example of the family of images created by choosing either

red or blue for each pixel in an image. Suppose that selection of the pixel color was done

according to some independent and identically distributed (i.i.d.) distribution for each pixel,

specifically, a Bernoulli distribution with probability p ∈ [0, 1] that the color red is chosen

and probability (1 − p) that blue is chosen. Now let us compute its local histograms using

some fixed w over their red and blue values. We expect that, on average, for any image, the

values of (LHwf)(x, ·) for any x ∈ X reflect this probability distribution in choosing red or

blue. In other words, for y representing red and blue, (LHwf)(x, y) should on average equal

p and (1− p), respectively.

Now let us change our image formation model to one beginning with two images, a solid

red one f0 and a solid blue one f1. Our final image f is formed by occluding the blue image

with the red image at certain locations; specifically, those locations where a random Bernoulli

trial picks red with probability p. This is equivalent to the previous image formation model

but we now form our image as a function of other images. More generally, the occlusion of

a set of N images {fn}
N−1
n=0 in ℓ(X ,Y) with respect to a given label function ϕ ∈ ℓ(X ,ZN) is

(

occϕ{fn}
N−1
n=0

)

(x) := fϕ(x)(x). (4.3)

That is, at any pixel location x, the label ϕ(x) determines which of the available pixel values

{fn(x)}
N−1
n=0 will appear in the composite image occϕ{fn}

N−1
n=0 at that location.

Note that ϕ is deterministic and results in a specific occlusion, while the occlusion model

Φ is its random variable version. To be precise, fix a set of source images {fn}
N−1
n=0 and

consider the set {occϕ{fn}
N−1
n=0 }ϕ∈ℓ(X ,ZN ) of all possible composite images (4.3) obtained by

letting ϕ be any one of the N |X | elements of ℓ(X ,ZN), where |X | denotes the cardinality of

X .

In our example, Φ is a sequence of i.i.d. Bernoulli trials and, as a result, each ϕ has
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an associated probability of occurrence PΦ(ϕ) ∈ [0, 1]. Thus, our occlusion model Φ has an

associated probability density function PΦ : ℓ(X ,ZN) → [0, 1] such that
∑

ϕ∈ℓ(X ,ZN ) PΦ(ϕ) =

1. It is the role of the associated probability PΦ to assign probabilities to those occlusions ϕ

that will result in images relevant to the application at hand. In our example, of all possible

occlusions ϕ that can be generated by Φ, only a subset will generate images that do not look

like mere red-blue noise. By assigning low probabilities to these noise generating occlusions,

the occlusion model will emphasize desirable occlusions while de-emphasizing undesirable

ones.

Given this method of forming our image, it is clear that the source images fn’s and a

fixed ϕ determine the composite image. In our simple red and blue example, the color local

histograms of f0 and f1 each contain only one peak in the red and blue regions, respectively.

Based on this occlusion model we would expect that the color local histogram of the com-

posite image LHwoccϕ{f0, f1} should be some combination of the local histograms of the

source images. Specifically, given the probability p of choosing red, LHwoccϕ{f0, f1} should

be pLHwf0+(1− p)LHwf1, on average. Our intuition here is that the local histogram of the

composite image is some convex combination of the local histograms of the source images.

This toy example illustrates the basic concept we wish to generalize to more realistic and

relevant families of images and textures. Given a probabilistic occlusion model with which

to form a composite image from a set of source images, what is the relationship between the

local histograms of the source images and that of the composite image on average? This

relationship will be rigorously analyzed so as to determine under what conditions both strong

and weak statements can be made. The strength of such statements in various applications

will support expectations about the usefulness of local histograms in such applications.

In our example, occlusion models can generate images, and, in fact, any image can

be generated through the action of occlusion. If one considers our set of source images

{fn(x)}
N−1
n=0 as being solid-color images of every possible color, any given image is merely
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a particular occlusion drawn from all possible occlusions. Of course, the set of all possible

occlusions will lead to images that are completely random in appearance and do not represent

any real image. Realistic images will correspond to those occlusions where spatial correlations

and an occlusion hierarchy exist at various degrees.

Spatial correlations refers to the situations where a group of pixel locations (those spa-

tially connected to each other) will together take on the pixel values from one particular

source image fn. Such groups of pixels are in fact the shapes, layers, and objects we perceive

in images due to their constant or structured appearance. The spatial distribution, i.e.,

shapes of such groups is important to creating composite images that correspond well to

actual images. For example, consider a source image representing wood’s appearance. The

objects made using this wood are often distinguished through their shape and thus in an

occlusion model such considerations must be made to generate realistic images.

Occlusion hierarchy refers to those situations in which certain source images should only

occlude certain other source images for contextual reasons. A simple example is that of the

human face and its component parts. If we were to create an image of a human face, our

source images could be those of the basic parts of a face. These include the skin-colored face

shape, the mouth, the nose, ears, eyes, and more. Naturally, we would occlude the image

of the colored face shape with the other parts since that is where they belong. However,

when placing the mouth and the nose, we would not want them to occlude each other. If,

additionally, we separated the eyes into just the outline of the eyes and the iris/pupil region,

the iris should only occlude the outline of the eye and no other region. In other words, given

a set of source images that reflect the context of the images we wish to generate, there is

likely an order or hierarchy that helps ensure that the occlusion model based generation of

composite images is realistic within that context.

In this chapter, we present a rigorous explanation and discussion of the relationship

between local histograms and occlusion models. To that end, we will provide theoretical
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justification for both strong and weak statements about the applicability of local histograms

of images that can be characterized by occlusion models. Furthermore, our discussion about

occlusion models will present operations which can be used to generate complex textures and

images from simpler ones while allowing us to relate them to local histograms. Finally, we

present some considerations about computational requirements and efficiency in the context

of our histopathology applications.

4.2 Local Histograms

Local histograms become increasingly time-consuming to compute as the image’s spatial

resolution X and its value resolution Y increase. A simple implementation of (4.1) would

involve sequentially addressing each pixel location and collecting their neighboring pixel

values (as dictated by the specified w). Such a computation would require O(|X |2|Y|)

operations: O(|X |) operations for each x ∈ X and y ∈ Y . Clearly this computation becomes

intractable as the sizes of X and Y become large.

In order to make such a computation feasible, we propose the method detailed in Theo-

rem 1 below which states that (4.1) can be computed using |Y| convolutions over X , which

only requires O(|X ||Y| log |X |) operations if discrete Fourier transforms (DFT) are used. In

particular, we filter the characteristic function of the graph of f , namely 1f : X × Y → R,

1f(x, y) := 1f−1{y}(x) = δy(f(x)) =











1, f(x) = y,

0, f(x) 6= y,
(4.4)

with the reversal of w ∈ ℓ(X ,R), namely w̃(x) := w(−x). Theorem 1(b) also states that (4.1)

can be computed as a single convolution over X × Y as opposed to a series of convolutions.

The tensor product of w ∈ ℓ(X ,R) with the ω ∈ ℓ(Y ,R) is defined as w ⊗ ω ∈ ℓ(X × Y ,R),

(w ⊗ ω)(x, y) := w(x)ω(y).
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Theorem 1. For any w ∈ ℓ(X ,R), ω ∈ ℓ(Y ,R), f ∈ ℓ(X ,Y), x ∈ X , and y ∈ Y:

(a) Local histograms (4.1) can be evaluated as a system of |Y| convolutions over X :

(LHwf)(x, y) = (w̃ ∗ 1f−1{y})(x).

(b) Alternatively, (4.1) may be computed as a single convolution over X × Y: (δ0 ⊗ ω) ∗

LHwf = (w̃ ⊗ ω) ∗ 1f . In particular, taking ω = δ0 gives LHwf = (w̃ ⊗ δ0) ∗ 1f .

Figure 4.2 shows the computation of a simple image’s local histograms using Theo-

rem 1(a). The methods of computation in Theorem 1 are based on basic filtering concepts,

and thus, we might expect that some related signal processing concepts may also apply to

local histograms. Specifically, we look at the effects of spatial translations, constant value

shifts, and value quantizations of the input image on on local histograms. These properties

are summarized below.

Proposition 2. For any w ∈ ℓ(X ,R) and f ∈ ℓ(X ,Y):

(a) The levels of a local histogram transform sum to one: for any x ∈ X ,
∑

y∈Y(LHwf)(x, y) = 1.

(b) Local histograms commute with spatial translation: for any x ∈ X , LHwT
x = T(x,0)LHw.

(c) Adding constants to images shifts their local histograms along Y: for any y ∈ Y,

LHw(f + y) = T(0,y)LHwf .

(d) Quantizing an image will bin its local histograms: for any q ∈ ℓ(Y ,Y ′),

[LHw(q ◦ f)](x, y
′) =

∑

y∈Y
q(y)=y′

(LHwf)(x, y).

With the ability to compute local histograms in reasonably efficient manner, we now

proceed to discuss their relationship to simple probabilistic occlusion models and the textures

that can be generated by them.
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Figure 4.2: Example of a simple image’s local histogram computation using Theorem 1(a).
For clarity purposes, larger values are represented by darker shades. The input image f (far-
left/first column) is an 8 pixel image whose grayscale values range from 0 to 4 or equivalently,
f ∈ ℓ(X ,Y) where X = Z8 ×Z8 and Y = Z5. The characteristic function 1f(x, y) as defined
by (4.4) is a 8 × 8× 5 binary matrix whose cross-sections are 1f(·, y) (second column). For
a given value of y ∈ Y , 1f(·, y) assumes a value of 1 at the locations x for which f(x) = y
which are represented by black pixels in each cross-section. Following Theorem 1(a), each of
these cross-sections is then filtered with the specified real-valued weighting function w (third
column) to yield the corresponding cross-section of the local histogram (LHwf)(·, y) (fourth
column). Collectively these cross-sections form the 8 × 8 × 5 matrix representing f ’s local
histogram (LHwf)(x, y) (far-right/last column). In this simple example, the computation is
done using DFTs and thus results in circular convolution as opposed to linear convolution
the effects of which can be seen in values of the local histogram cross-sections near their
boundaries. However, such issues can be mitigated using many available techniques including
zero-padding and overlap-add/save methods. In this example, w = 3

19
δ0,0 +

2
19
(δ−1,0 + δ1,0 +

δ0,−1 + δ0,1 +
1
19
(δ−2,0 + δ2,0 + δ0,−2 + δ0,2 + δ−1,−1 + δ1,1 + δ−1,1 + δ1,−1).
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4.3 Occlusion Models

In this section we will discuss an image or texture formation model that is capable of creating

families of images well suited to analysis by local histograms. We start with random textures

and incrementally introduce both spatial and contextual structure. Specifically, complex

textures will be generated as functions of simpler ones. As the complexity of the textures

increase, we will rigorously analyze their relationship to local histograms to the point that

they reflect real families of images, specifically those of the textures found in H&E-stained

histopathology images.

4.3.1 Random Textures

We wish to confirm our intuition that if a composite texture is the result of some sufficiently

random occlusion model, then its local histograms are on average equivalent to some convex

combination of the local histograms of the simpler source textures. As stated earlier, given

such a random occlusion model, it would be unrealistic to expect a precise relationship and

we expect there to be some uncertainty in this convex combination. However, in later sections

we will show under what conditions this uncertainty can be reduced and even eliminated to

provide a clear relationship between composite and source images.

To begin, consider a fixed set of N source images {fn}
N−1
n=0 in addition to a random

occlusion model Φ. As described earlier, Φ is the random variable equivalent of the deter-

ministic label function ϕ : X → ZN ; each particular label function ϕ represented by Φ has

an associated probability of occurrence. Thus, Φ is characterized by a proper probability

PΦ : ℓ(X ,ZN) → [0, 1] where
∑

ϕ∈ℓ(X ,ZN ) PΦ(ϕ) = 1.

Consider the expected value, with respect to PΦ, of the characteristic function 1ϕ derived
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from setting f = ϕ in (4.4):

1Φ(x, n) :=
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)1ϕ(x, n) =
∑

ϕ∈ℓ(X ,ZN )
ϕ(x)=n

PΦ(ϕ). (4.5)

Essentially, 1Φ(x, n) is the probability that any label function ϕ randomly generated/selected

by the occlusion model Φ will assign label n to pixel location x. Using this characterization

of the random occlusion Φ, we now present one of the main results of this mathematical

framework:

Theorem 3. For any sequence of images {fn}
N−1
n=0 ∈ ℓ(X ,Y), weighting function w and any

N-image occlusion model Φ, the expected value of the local histogram (4.1) of the composite

image (4.3) with respect to w is:

EΦ(LHwoccΦ{fn}
N−1
n=0 )(x, y) =

N−1
∑

n=0

1Φ(x, n)(LHwfn)(x, y) + ε, (4.6)

where the error term ε is bounded by |ε| ≤
N−1
∑

n=0

∑

x′∈X

w(x′)|1Φ(x+ x′, n)− 1Φ(x, n)|. Moreover,

N−1
∑

n=0

1Φ(x, n) = 1, (4.7)

and so (4.6) states that, on average, the local histograms of the composite image occϕ{fn}
N−1
n=0

can be approximated by convex combinations of local histograms of each individual image fn.

Figure 4.3 presents a simple example of computing the left-hand side of (4.6) explicitly.

Theorem 3 implies that the error term ε in (4.6) will be small when the probability

1Φ(x, n) of assigning label n to x changes little as x varies over regions smaller than the the

support of w. As ε approaches 0, (4.6) provides a increasingly clean relationship between

the local histograms of a composite image and those of its source images. Given a fixed set
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Figure 4.3: A simple example of how to compute the left-hand side of (4.6) explicitly as
a probability-weighted sum. For clarity purposes, larger values are represented by darker
shades. We begin with two 2 × 2, 3-bit source images (far-left/first column), specifically
{fn}

N−1
n=0 in ℓ(X ,Y) where N = 2, X = Z2 × Z2 and Y = Z8. The pixel values of the fn’s

in this example are all distinct such that f0 takes on values {0, 1, 2, 3} while f1 has values
{4, 5, 6, 7}. There are N |X | = 22

2

= 16 distinct ways or label functions ϕ : Z2×Z2 → Z2 with
which to occlude one image with another (second column). Following (4.3), we take values
from f0 in places where ϕ is white (representing a 0 label) and values from f1 where ϕ is
black (representing a 1 label) with each distinct ϕ yielding a composite image occϕ{f0, f1}
(third column). Each of these composites has a local histogram transform (4.1) of size
2×2×8 (fourth column). Based on the probability PΦ(ϕ) of any particular label function ϕ
occurring, the expected value of the local histogram transform of the composite image can
be computed (far-right/last column).
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of source images {fn}
N−1
n=0 and weighting function w, the value of ε is entirely dependent on

1Φ(x, n) and therefore on the occlusion model Φ. Due to this dependence, the conditions un-

der which ε vanishes entirely are conditions on Φ; specifically, we consider a special condition

where Φ is flat.

Flatness means that on average, the probability that Φ chooses label n at a given pixel

location x is equal to the probability of choosing n at any other x′. Formally, Φ is flat if

there exists scalars {λn}
N−1
n=0 such that:

∑

ϕ∈ℓ(X ,ZN )
ϕ(x)=n

PΦ(ϕ) = λn, ∀x ∈ X . (4.8)

Equivalently, Φ is flat if the marginal distributions obtained by fixing any given x ∈ X

are identical. In fact, for any fixed x ∈ X , the summation of (4.8) over all n results in
∑N

n=1 λn = 1. Indeed, at any given pixel location x, the value λn is the probability that any

random label function ϕ from the occlusion model Φ will have label n at that x.

Revisiting our red-blue pixel example in Section 4.1, the values of any given ϕ ∈ ℓ(X ,Z2)

are determined by |X | independent Bernoulli trials. As a result, the probability of any

particular ϕ’s configuration of labels is PΦ(ϕ) = p|ϕ
−1{1}|(1− p)|X |−|ϕ−1{1}|. Substituting this

probability into (4.8), the binomial theorem implies that this occlusion model is flat with

λ0 = p and λ1 = 1 − p. An important distinction is that while this model is flat, it does

not imply that the contributions from each of the source images to the composite image are

equal. In our example, if p > 0.5 then the resulting random composite image occΦ{f0, f1}

from our flat occlusion model Φ will be more red than blue. Rather, it indicates that the

likelihood of a given pixel being red at any given location is equal to the likelihood at any

other location under the occlusion model.

Given these ideas, we present another claim of this mathematical framework: that on

average, composite images generated by flat occlusion models will be convex combinations
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of the source images’ local histograms.s

Theorem 4. If Φ is flat (4.8), then the expected value of the local histograms (4.1) of a

composite image (4.3) is a convex combination of the local histograms of each individual

image:
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)(LHwoccϕ{fn}
N−1
n=0 )(x, y) =

N−1
∑

n=0

λn(LHwfn)(x, y). (4.9)

That is, when Φ is flat, (4.6) simplifies to (4.9). The explicit computation presented

in Figure 4.3 can be simplified to the one shown in Figure 4.4. Flatness is an important

theoretical assumption for analysis of textures by local histograms; we now must show in

what situations flatness is a realistic assumption. Specifically, we discuss which types of

images and textures can be characterized by flat occlusion models.

Figure 4.4: An extension of the example presented in Figure 4.3 where the occlusion model is
flat. Instead of the explicit computation of the expected value of the composite image’s local
histogram (4.6), the flatness of the occlusion model allows us to simplify the computation.
From each of the source images f0 and f1 (far-left/first column) their local histograms
LHwf0 and LHwf1 (second column) can be computed respectively. Based on (4.9), the
expected value of the composite image’s local histogram can be computed from the source
images’ local histograms.
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4.3.2 Flat Occlusion Models

In the previous section we analyzed the relationship between the local histograms of com-

posite images and random occlusion models that generated them. This relationship began

relatively weak in Theorem 3 but with the condition of flatness (4.8) imposed, became much

stronger in Theorem 4. Flat occlusion models are those whose average characteristic function

1Φ(x, n), as defined by (4.5), is constant with respect to pixel location x, but can still vary

with label value n.

We want to show that flatness is a reasonable assumption, or equivalently that certain

families of images and textures can indeed be modeled by flat occlusion models. As our

definition of occlusion (4.3) is one which generates images, we will put forth a variety of

methods with which to construct flat models. We begin with a property of occlusion models

that implies flatness or more specifically, that if an occlusion model Φ is translation-invariant

then it is flat. Formally, given the translation operator Tx : X → X , Txϕ(x′) := ϕ(x′ − x),

a translation-invariant occlusion model obeys:

PΦ(T
xϕ) = PΦ(ϕ), ∀ϕ ∈ ℓ(X ,ZN), x ∈ X . (4.10)

Theorem 5. If Φ is translation-invariant (4.10), then Φ is flat (4.8).

Theorem 5 demonstrates that flatness is not an unrealistic assumption. If we generalize

our red-blue example of Section 4.1 to one that merely picks a number from ZN based on some

random method, ϕ is generated by conducting |X | independent trials. Under this occlusion

model Φ, the probability for any particular occlusion PΦ(ϕ) is completely determined by the

number of trials for which ϕ achieves each given value n. As another example, consider a

fixed ϕ0 and all of its translates, to each of which we can assign identical non-zero probability

1
|X |

and probability 0 to all others. If we apply this occlusion model to a set of source images

{fn}
N−1
n=0 that are constant then the resulting composite images (4.3) are all translations of
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a single image.

In general, given a fixed resolution |X | and a fixed number of source images N , all possible

N |X | occlusions of ℓ(X ,ZN) can be grouped into translation-invariant groups (equivalence

classes). For all the members of each of these equivalence classes one can assign a fixed

probability, provided they all sum to one, and thus make the occlusion model flat according

to Theorem 5. Figure 4.3 shows an example where N = 2 and X = Z2 × Z2 in which we

may partition the 16 possible ϕ’s into 7 such equivalence classes. To make this occlusion

model flat, one would pick any probabilities {pk}
15
k=0 such that p1 = p2 = p3 = p4, p5 = p6,

p7 = p8, p9 = p10, p11 = p12 = p13 = p14.

Translation invariance provides our first method for producing flat occlusion models

Φ from the general occlusion model for a given resolution X and source images {fn}
N−1
n=0 .

Translation-invariant occlusion models may be sufficient for certain families of images/texture

such as some of our histopathology-related tissues, but for others they may not be sufficient

or even appropriate. To widen the applicability of occlusion models, we now discuss methods

of combining known occlusion models to produce more complex and realistic ones.

Expansion

Our next method is based on an observation of the nature of basic components in H&E

stained images of tissues. As can be seen in many of the previous figures, seemingly randomly

distributed blobs of varying colors make up much of a tissue’s appearance. Specifically, these

blobs correspond to distinct and basic biological structures such as cells and nuclei. At any

given stage of development or maturity, these structures in a given tissue are the result of

many cycles of growth and reproduction. As would be expected, the particular role of a

tissue ensures that the distribution of these structures is near uniform, both spatially and in

terms of appearance. In the case of cells, cells prefer to grow and reproduce in empty space,

i.e., they do not overlap. Also, to support a tissue’s main function collectively they assume
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relatively constant size, shape, and appearance.

Given our histopathology application, we want to apply our occlusion models in a way

that emulates the textures of tissues. If these occlusion models were flat, Theorem 4 would

justify our use of local histograms in describing tissues. Such local histograms would rep-

resent a decomposition or demixing of a tissue into contributions from each of these basic

components such as cells and nuclei, the intuition being that individual tissues present suffi-

ciently distinct contributions from each of these components and thus allow us to distinguish

between them based on the local histograms.

Continuing with our biological motivation, we propose a method based on the growth of

these blobs beginning with a randomly chosen location. Given a way to randomly generate

or seed a set of almost uniformly-distributed points, we can expand each of these points into

a blob. One obvious method to create these uniformly-distributed points is to conduct a

Bernoulli trial at each location.

Let ϕ ∈ ℓ(X ,Z2) indicate a set of randomly generated points. For each of the points

x ∈ X for which ϕ(x) = 1, we will replace it with a blob whose shape is indicated by some

ψx ∈ ℓ(X ,Z2). The resulting texture will be the union of all such blobs. Formally, given

any ϕ ∈ ℓ(X ,Z2) and {ψx}x∈X ∈ [ℓ(X ,Z2)]
X , we define the expansion of ϕ by {ψx}x∈X to

be ϕ ⋆ {ψx}x∈X ∈ ℓ(X ,Z2),

(ϕ ⋆ {ψx′}x′∈X )(x) :=











1, x = x′ + x′′, ϕ(x′) = 1, ψx′(x
′′) = 1,

0, else.
(4.11)

An important distinction is that expansion (4.11) is a deterministic operation on label func-

tions in ℓ(X ,Z2). This is in contrast to an occlusion model which is random variable Φ

defined by a probability density function PΦ over ℓ(X ,Z2). Examples of this expansion

operation are shown in Figure 4.5.

In spite of this difference, application of the expansion operation (4.11) on the random
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(a) ϕ (b) Examples of ψx (c) ϕ ⋆ {ψx}x∈X

(d) ϕ′ (e) Examples of ψ′
x

(f) ϕ′ ⋆ {ψ′
x
}x∈X

Figure 4.5: Examples of the expansion operation (4.11). For the sake of clarity, black
indicates a value of 1 while the lighter shade indicates a 0 value. A function ϕ : X → {0, 1}
is presented in (a), and can be chosen, for example, via a sequence of |X | independent coin
flips. Meanwhile, for each x ∈ X , we pick a corresponding function ψx : X → {0, 1}.
Cropped versions of a few examples of such ψx’s are given in (b). The expansion ϕ⋆{ψx}x∈X
of ϕ by {ψx}x∈X is given in (c). Essentially, each point x for which ϕ(x) = 1 is replaced with
the corresponding blob ψx, with the origin of the ψx coordinates being translated to x. In
the second row, (f) shows the expansion of a second set of points ϕ′ (d) by a second set of
blobs {ψ′

x}x∈X (e). These examples notwithstanding, note that (4.11) does not require these
blobs to be disjoint (4.13). We could have, for instance, produced a texture by expanding
the points in (d) by the blobs in (b). Nevertheless, stronger conclusions can be made if such
disjointness is enforced; see Theorem 6.
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variable equivalents Φ and Ψ of the label functions ϕ and {ψx}x∈X does produce a similar

result. Specifically, given two occlusion models Φ and Ψ from X into Z2, we define the

expansion of Φ by Ψ to be the occlusion model Φ ⋆Ψ whose probability density function is

PΦ⋆Ψ : ℓ(X ,Z2) → [0, 1],

PΦ⋆Ψ(σ) :=
∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

ϕ⋆{ψx}x∈X=σ

PΦ(ϕ)
∏

x∈X

PΨ(ψx). (4.12)

We will prove that this is a true probability in Theorem 6. Note that the probability that

Φ⋆Ψ will produce a particular label function σ depends on the ways in which σ can be written

as ϕ⋆{ψx}x∈X and also on the probabilities that Φ and Ψ will produce those involved ϕ’s and

ψx’s, respectively. In other words, many different configurations of seed points and blobs

can result in the same label function though some may be more or less likely due to the

probabilities associated with them. It is this ambiguity in the exact parameters that lead to

the construction of any given label function σ through the expansion of Φ by Ψ that we will

discuss next.

We will show that if Φ is translation-invariant (4.10), then Φ ⋆ Ψ is also translation-

invariant which in turn implies that it is flat by Theorem 5. In the context of our tissue

textures, occlusion models formed by expansion will be flat if the distribution that produces

the seeds of the blobs is translation-invariant. In fact, to achieve flatness of Φ ⋆ Ψ we can

lessen our requirement on Φ from being translation-invariant to only requiring that Φ is flat

provided that Φ and Ψ are effectively disjoint :

If PΦ(ϕ) > 0 and PΨ(ψx) > 0 for all x ∈ X , then ϕ ⋆ {ψx}x∈X =
∑

x∈X
ϕ(x)=1

Txψx. (4.13)

Effective disjointness is the requirement that there is only one way, with nontrivial proba-

bility, in which the x in (4.11) can be written as x = x′ + x′′ where both ϕ(x′) = 1 and
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ψx′(x
′′) = 1. The previously discussed ambiguity of label functions created by expansion is

significantly reduced by (4.13) since the number of ways to construct a given label function

is much smaller.

Theorem 6. If Φ and Ψ are occlusion models from X into Z2, then their expansion Φ ⋆Ψ,

with probability density function (4.12), is as well. Moreover, if Φ is translation-invariant (4.10),

then Φ ⋆ Ψ is translation-invariant. Furthermore, if Φ and Ψ are effectively disjoint (4.13)

and either Φ or Ψ is flat (4.8), then Φ ⋆Ψ is flat.

We have shown a more complex operation of expanding random seeds into blobs that

mimics the development of biological structures. Furthermore, the simple notion that two

distinct structures cannot occupy the same space allows us to effectively disjoin the seeds

and blobs in certain cases. This property in addition to translation invariance and flatness

allows us to use this operation to create flat occlusion models that are complex enough to

model relevant textures. However, expansion may still be insufficient to characterize even

more complex textures of concern and thus we propose another operation to further increase

the applicability of our occlusion models while retaining their link to local histograms.

Overlay

The expansion operator (4.11) allows us to combine two binary occlusion models, Φ and Ψ,

into a new occlusion model Φ ⋆Ψ that generates random label functions according to (4.12).

Furthermore, Theorem 6 states that under certain conditions, these occlusion models are

flat and thus their local histograms can be analyzed according to Theorem 4. Depending on

the nature of Φ and Ψ, the resulting occlusion model from their expansion may correspond

at some level to textures of interest. For example, the texture of Figure 4.5(c) is somewhat

akin to that of cartilage shown in Figure 4.1(a). Stronger similarities require that the real

texture’s shapes and colors be reasonably approximated by a probability distribution which

is not always a valid assumption in all applications. However, our focus is on histopathology
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applications where such assumptions are valid for many textures due to their biological

origins, and thus, provide some theoretical justification for their analysis by local histograms.

A critical shortcoming of the expansion operator is that it can only generate binary oc-

clusion models, those models formed using only two occlusion models. Such models can only

describe textures that are basically formed using two colors, i.e., foreground and background.

To model even more complex textures, we propose our next occlusion model generating oper-

ator that lays one binary occlusion model on top of another in order to generate multi-valued

occlusion models. Specifically, for any ϕ ∈ ℓ(X ,ZNϕ), ψ ∈ ℓ(X ,ZNψ) and σ ∈ ℓ(X ,Z2), we

define the overlay of ϕ over ψ with respect to σ to be ϕ#σψ ∈ ℓ(X ,ZNϕ+Nψ),

(ϕ#σψ)(x) :=











ϕ(x), σ(x) = 0,

ψ(x) +Nϕ, σ(x) = 1.
(4.14)

Effectively, this operation is the result of punching holes in the image of ϕ and laying it on

top of an image of ψ with the locations of the holes given by σ and the values of ψ increased

by a factor of Nϕ to prevent confusion with ϕ. Examples of this overlay operation are shown

in Figure 4.5.

Consecutive overlay operations beginning with simple binary occlusion models can create

very complex textures than can emulate those found in real images. The nature of the overlay

operation allows us to formulate a sort of hierarchy where certain images or layers can only

be laid on top of specific other layers. These hierarchies can reflect the natural spatial

relationships between various components that make up a texture. For example, nuclei are

generally expected only to occur within the boundaries of a cell. If we begin with two binary

images where one represents the cells and the other the nuclei, a careful ordering of the

overlay operation will result in a texture where the nuclei are only found within the cells.

This example if very similar to that shown in Figure 4.6(c) though since cells do not contain

multiple nuclei we would refine our image representing nuclei to better reflect this.
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(a) σ (b) σ′ (c) 0#σσ
′ (d) σ#σ

′0

Figure 4.6: Examples of the overlay operation (4.14). For the sake of clarity, larger values
are represented by darker shades. We present the two {0, 1}-valued label functions σ =
ϕ⋆{ψx}x∈X and σ′ = ϕ′ ⋆{ψ′

x}x∈X of Figure 4.5(c) and (c) again in (a) and (b), respectively.
For simplicity, consider a constant function 0 : X → Z1 that assigns label 0 to every point
in x. The result of overlaying (4.14) 0 over σ′ is shown in (c) where σ-shaped holes are
effectively cut out of 0 and the result is laid over σ′. A different texture can be produced by
instead cutting σ′-shaped holes out from σ and laying the result over the constant function
0 as shown in (d). More applications of the overlay operation on either (c) or (d) will result
in even more complex textures.

Using fixed label functions, the overlay operation produces a deterministic result but,

as was with the expansion operator (4.11), using occlusion models produces a probabilistic

result. Formally, given probability density functions PΦ, PΨ and PΣ on ℓ(X,ZNΦ
), ℓ(X,ZNΨ

)

and ℓ(X,Z2), respectively, we define the overlay of the occlusion model Φ over Ψ with

respect to Σ to be the new occlusion model Φ#ΣΨ whose probability density function is

PΦ#ΣΨ : ℓ(X ,ZNϕ+Nψ) → [0, 1],

PΦ#ΣΨ(υ) :=
∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2)
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ). (4.15)

We will shortly prove that (4.15) is a proper probability density function. Furthermore,

we will also show that the corresponding occlusion model Φ#ΣΨ is flat provided Φ, Ψ and

Σ are flat. As was the case with the expansion operator, the flatness of these occlusion

models means that the local histograms (4.1) of composite images (4.3) produced by such
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an occlusion model will follow Theorem 4.

Theorem 7. If Φ, Ψ and Σ are occlusion models on ℓ(X,ZNΦ
), ℓ(X,ZNΨ

) and ℓ(X,Z2),

respectively, then (4.15) defines a probability density function on ℓ(X ,ZNϕ+Nψ). Moreover,

if Φ, Ψ, and Σ are flat, then Φ#ΣΨ is flat.

The overlay operation allows us to create complex occlusion models by laying simpler

occlusion models on top of each other in a controlled manner. Depending on the texture of in-

terest, particular components represented by certain occlusion models should only be present

where certain other occlusion models are present. In the context of our histopathology ap-

plications, this refers to situations such as nuclei only residing within cells. Furthermore,

we have shown that overlay operation applied to flat occlusion models will result in a more

complex but still flat occlusion model. With this operation we conclude the mathematical

framework’s current form and now compare it to some related works.

4.4 Comparison to Related Works

Neither local histograms nor occlusion are novel concepts by themselves and have been used

in many different ways for image-related applications. The novelty of our mathematical

framework comes from relating the two in a non trivial and rigorous manner that supports a

variety of image-classification tasks. By presenting this strict mathematical analysis, we have

provided some theoretical justification for the use of local histograms for histopathology-

related applications and also put forth the conditions under which they may be applied

to other applications and still benefit from the theory. We now present a discussion of

related works and comment on similarities and differences. As we strive to maintain a

consistent terminology throughout this thesis, some terminology may differ from that found

in referenced works.
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4.4.1 Mathematical Morphology

Mathematical morphology refers to large body of related work that seeks to analyze shapes,

most often in digital images, but often applied to other areas where the properties of geomet-

rical structures is of importance. Pioneered by Matheron and Serra [57–59], mathematical

morphology was initially formulated to aid in analysis of various materials of interest to

material science. This novel practical approach leveraged knowledge from many disciplines

including set theory and integral geometry, providing much of its mathematical foundation

from which many advances would be made.

As work progressed, mathematical morphology was applied to binary images and resulted

in the creation of morphological operations [58–60], such as erosion, dilation, opening, and

closing. The formulation of these operations was done in an axiomatic fashion so as to

eliminate ambiguity about the operations’ intended effects. Though initially created as de-

terministic operations, these operations were generalized to images based on certain random

models.

Additional work further extended mathematical morphology to grayscale images. This

not only widened the applicability of the existing operations but also resulted in new ones

such as the watershed transform [61], a commonly used segmentation algorithm. The in-

creased applicability of mathematical morphology further increased its popularity to the

point at which it is now considered a fundamental method for shape analysis in images.

One relation between mathematical morphology and our work concerning local his-

tograms and occlusion models is that of shape analysis be it explicit or implicit. To describe

shapes, mathematical morphology seeks to explicitly quantify them, while we do that im-

plicitly to understand the identity resulting in the shape. We will not focus on comparing

the vast works of mathematical morphology to our own but rather focus on two very rele-

vant concepts that directly relate to our own. The first is a general concept called Boolean

models [59,62,63] that have a strong resemblance to our expansion (4.11) and overlay (4.14)
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operators. The second is an image formation model called the Dead Leaves Model [59,64,65]

that is based on Boolean model ideas and seeks to understand various properties of natural

images.

4.4.2 Boolean Models

The Boolean model is a popular model of random sets that was originally conceived by

Matheron [62] for material analysis. A common situation in material analysis is that where

germs are embedded in some base substance and then allowed to grow into grains. This

process is often referred to as nucleation and growth in the material science community. The

behavior of this process for a variety of applications is an active area of research and thus

mathematically modeling it is a useful endeavor.

Matheron proposed a model where the spatial locations of the germs are modeled by

a stationary Poisson process and the corresponding grains are modeled by a distribution

of random sets. The random distribution of germs reflects the heterogeneity of the base

substance while the random shapes of the grains reflects the behavior of the nucleation and

growth process. To formally define the model, let Ωλ be a stationary Poisson process in R
d

with rate λ, and {S0,0, S0,1, S0,2, . . .} be a series of i.i.d. random closed sets independent of

Ωλ. From these, the random closed set:

S =
⋃

xi∈Ωλ

(S0,i + xi) (4.16)

is said to be the Boolean model with typical grain S0,0. Since our focus is on images, we

restrict Rd to R
2. The locations of the germs are governed by Ωλ while {S0,0, S0,1, S0,2, . . .}

are the shapes of the grains associated with each of the germs. The typical grain S0,0 is

often the average or most representative grain shape amongst the possible variations. This

definition of the Boolean model is also referred to as a single-phase Boolean model (SPBM)
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since the seeds and their corresponding grains are assumed to all be of the same material or

phase.

It is easy to see that the SPBM formulation is functionally identical to our expansion

operation (4.11) with some minor differences. Both methods are two step processes that first

randomly distribute points in a given space and then grow shapes centered on those points.

In spite of their general equivalence, there are particular similarities and differences that we

now discuss.

The most relevant similarity is that of the stationarity [66] of the Poisson process Ωλ

in (4.16) and the desired translation invariance of Φ as detailed in Theorem 6. Stationarity

of Ωλ means that Ωλ(x
′) and Ωλ(x

′ − x) are equal, i.e., that Ωλ is translation-invariant. It is

clear that while the terminology used in both formulations differs, they are equivalent. Still,

as a result of the context in which the SPBM and the expansion operation were conceived,

there is an important difference between the two.

This difference is the strong, if not absolute, preference of the SPBM (4.16) to use a

Poisson process for the distribution of the seeds while the expansion operator (4.11) has

no such preference. This choice reflects the material science focus of Matheron’s intended

application, the natural behavior of the material processes. Additionally, by restricting the

distribution of the seeds to be a Poisson process, some properties of SPBMs may be more

easily derived and proven. As a result, much of the existing and practical work related to

the SPBM is highly conditional on the use of a Poisson process.

In a very similar manner to our own transition from the expansion operator (4.11) to

the overlay operator (4.14), the SPBM was later extended to the multiple-phase Boolean

model (MPBM) in order to model materials that consist of two or more phases. The basic

formulation of the MPBM is that there are N independent phases, each modeled by a

member of a set of SPBMs {Si}
N
i=1, that are consecutively grown, one on top of another.

Using Ωλi , λi, and {Si,0, Si,1, Si,2, . . .} to define Si according to (4.16), the superposition of
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indexed random closed sets defined by:

S
(

x ∈ {Si \

i−1
⋃

j=1

Sj}
)

= i (4.17)

for i = 1, . . . , N is the MPBM consisting of N phases.

The phase corresponding to i = 1 is considered the top phase while that corresponding

to i = N is the bottom one which means that phase 1 is actually grown last while phase N

is grown first. Thus, any point x in the overall material is considered to belong to phase i if

that phase is visible at that location.

As was with the SPBM and our expansion operator, a strong similarity exists between

the MPBM and the overlay operator. Both methods are ordered superpositions of random

sets. In the case of MPBMs and material analysis, the superposition order reflects the

actual growth process of the material of interest. For our histopathology application, the

order of consecutive overlay operations models the spatial relationships between the different

biological components. Both are functionally very similar but the intuition behind the order

of superposition differs.

In spite of some functional similarity, a major difference between these two formulations

exists. The MPBM (4.17) is merely the ordered superposition of random sets which means

that phases grown later will cover any phases grown earlier. As a result, each phase is inde-

pendent of other phases with no explicit interaction between them, i.e., the configuration of

any given phase does not influence any other phase. In contrast, the overlay operation (4.14)

is the ordered superposition of occlusion models where those laid down later do not necessar-

ily occlude those laid down earlier. The overlay operation allows us to choose which of the

occlusion models laid down prior to a given occlusion model will be occluded. This control

is critical to correctly modeling images in certain applications such as our histopathology

ones.

It would be naive to claim that the MPBM could not be modified to reflect similar rela-
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tionships between phases as exists between occlusion models in the overlay operation. How-

ever, much existing work derived from MPBMs utilizes the straightforward superposition

of phases to simplify and strengthen many conclusions made. Furthermore, our formula-

tion of the overlay operator demonstrates our focus in creating a mathematical framework

that reflects the spatial relationships between different components represented by occlusion

models.

Though a variety of work related to analysis of Boolean models exists, we will not compare

our work to all of them. Rather, we emphasize that our mathematical framework focuses on

local histograms and how they relate to our occlusion models. Our framework was conceived

and developed with the purpose of aiding classification of certain families of textures. The

work derived from mathematical morphology is much more general and thus not necessarily

as powerful in many applications.

As both methodologies are strongly grounded in rigorous mathematical analysis, it is

mostly a difference in language and intended practical application that separates them.

Major differences in basic assumptions such as the strong prefer

4.4.3 Dead Leaves Model

Matheron and Serra’s pioneering work on mathematical morphology allowed for many useful

theories, algorithms, and methods of analysis to be developed for a variety of areas. One

such area is the modeling of natural images, those images seen by the naked eye. As was

discussed in Section 2.2, automation of everyday visual tasks, many of which utilize natural

imagery, is a highly active area of research and development.

The modeling of natural images is a relatively rich area of research though there are many

distinct goals and approaches. In general, such models want to describe natural images in

a way that makes extraction of useful statistics from them easier. These statistics can then

be used for a variety of applications, two of the most popular being noise removal and
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understanding the effect of scale. We will not discuss these topics in detail but instead focus

on one particular model of natural images that is related to our own mathematical framework

and refer readers to [67] for a review of natural image modeling.

This model is the Dead Leaves Model (DLM), a specific version of the MPBM discussed

earlier. Attributed to Matheron [64] and Serra [59], the DLM distinguishes itself from the

basic MPBM by making certain assumptions about grain shapes and their associated dis-

tributions. The DLM assumes that all grains are the same basic shape but their location,

scale, rotation, and appearance are governed by some random distribution. For example,

DLMs commonly use single color circles where the scale (radii) and color of any given circle

is determined by a random distribution. Other forms include ellipses and rectangles with

their shape properties being randomly distributed as well.

Though the DLM has been known for some time in a variety of forms, only relatively

recently have researchers presented a thorough study of statistics of natural images modeled

by a DLM. In particular, Lee et. al [65] have performed a thorough statistical study of natural

images utilizing the DLM. The primary goal of this work was to determine if a simple version

of the DLM could realistically model various useful statistics of natural images. Rather

than attempt to detail all the various experiments and conclusions that were drawn by the

authors, we present only the main conclusions and refer readers to the actual work for more

information.

The primary conclusions reached in this work was that simple DLMs are capable of

modeling a variety of statistics for natural images. These statistics include pixel intensity

difference distributions, scale specific pixel intensity difference covariances, and Haar wavelet

coefficient distributions. Furthermore, the accuracy of these models was far from trivial

and strongly support the observation that natural image statistics are highly non-Gaussian.

From these observations, the authors showed that DLMs have strong practical applicability

in natural image problems. Naturally, our interest in the DLM is how closely it relates
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to our own mathematical framework. In addition to the similarities and differences of our

own framework to the MPBM, an additional and significant difference exists between our

framework and the DLM.

This difference concerns the method of description of the images used in each approach.

In the DLM, images are described through various statistics while in our framework they

are described by local histograms. Though local histograms are still a statistic in the truest

sense, our use of occlusion models to relate those of simpler images to those of more complex

images (Theorems 3 and 4) does not have a parallel in the DLM analysis. Rather, in the DLM

analysis, these statistics are taken to represent the image alone. Though the construction

of images by the DLM is done by the superposition of various independent grains, only the

cumulative nature of the grains is considered. The extension of the statistics used in the

DLM analysis to mimic our own local histogram approach can be done but we have not

encountered such work in the literature.

Additionally, the authors acknowledge areas of improvement for the DLM [65]: “We

have furthermore found evidence that the current version of the dead leaves model can be

further improved by (1) using suitable primitives, (2) adding textures to the primitives,

and (3) taking the hierarchical structure of objects into account.” Our interpretation of

these statements is that our mathematical framework actually accomplishes all of these

extensions. The expansion operator (4.11) addresses the first improvement by placing no

explicit restriction on the primitive or blob used to construct the overall occlusion model.

The second improvement is accomplished through our formulation of occlusion (4.3) since

we occlude images as opposed to random sets. Each image can have distinct and complex

textures though this may weaken the overall result of Theorem 4 in comparison to those

images composed of simple textures. The final improvement is achieved through our overlay

operation (4.14) as discussed previously. In spite of the fact that no related work we have

encountered addresses all these additional improvements, we acknowledge that extensions of
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the DLM to incorporate these items is feasible.



Chapter 5

Classification System

We now present the second main contribution of this thesis: a classification system for

the identification and delineation of tissues and pathologies in H&E-stained images based

on expert domain knowledge. We begin by detailing our methodology for expert domain

knowledge based feature design called the HV, and follow with a discussion of the purpose and

implementation details of the derived features. We then present our approach to achieving

both identification and delineation via pixel-level classification. We conclude by discussing

the challenging task of rejection that is needed in certain applications. While Chapter 4

presented the primary theoretical contributions of this thesis, this chapter aims to describe

the algorithmic and implementation related aspects of the overall work.

5.1 Histopathology Vocabulary

Histopathology classification problems are expert classification problems (see Section 2.3);

the pathologist’s extensive training and experience that allow him to perform very complex

histopathology tasks is clear evidence of this. Almost every effort in designing machine

learning tools (including classification systems) for histopathology is based on some task

that a pathologist is already capable of. Many of these seek to automate these tasks for the

108
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sake of improved efficacy and efficiency.

The pathologist’s participation is critical to the design of these systems by allowing the

engineer to leverage the his knowledge and experience. For classification systems, feature

design is likely to be initially based on the pathologist’s input such as application appropriate

feature types. In interpreting this input, the engineer must address a critical challenge: his

lack of a detailed pathology knowledge.

The pathologist and the engineer each use specialized languages. Specifically, the pathol-

ogist’s medical language differs greatly from the engineer’s computational one. There must

be enough communication between them to ensure that the engineer’s interpretation of the

pathologist’s input is faithful to the pathologist’s knowledge. However, for many works, not

only is the engineer’s interpretation not necessarily verified, but it may also be too specialized

to the task at hand.

As stated in Section 1.4, a single pathologist is capable of almost all the tasks automation

efforts address without any explicit retraining. This implies that there is some fundamen-

tal collection of knowledge that is used across applications. While some applications may

require extremely specific knowledge, the majority of them are well within the grasp of a

reasonably trained and experienced pathologist. Therefore, in our efforts to automate vari-

ous histopathology tasks, we must ask if it is better to address each task individually or to

address many tasks simultaneously as the pathologist does?

One could argue that by focusing on an individual application, automation of the task be-

comes more feasible. However, the algorithm for a specific application is most likely ill-suited

for an unrelated application. Furthermore, very few algorithms achieve levels of performance

that match the pathologist in spite of their single application focus. For these reasons, we

believe that a larger impact can be made by learning from the pathologist’s knowledge in a

verifiable manner and by addressing many applications with the same framework.

Thus, we propose the HV as an expert-guided feature set created through the collabora-
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tion of pathologists and engineers, using strong feedback mechanisms to ensure effectiveness.

The HV will be an intuitive feature set that reflects the pathologist’s knowledge and specif-

ically targets those discriminative qualities used by him. By basing its derivation on the

extremely general histopathology application of teratomas discussed in Section 2.1.1, we will

create a feature set that can be used for many applications without significant modification.

Naturally, the idea of leveraging expert knowledge is not novel by itself but by proposing a

formal methodology, we will avoid the pitfall of not verifying the engineer’s interpretation of

the pathologist’s input. We will first discuss and illustrate the basic methodology and then

explain the feature set derived by applying it to histopathology.

5.1.1 Methodology

We start by describing the basic methodology used to formulate the HV, shown pictorially

in Figure 5.1. The primary goal of this methodology is to create a set of computational

descriptors/features that are derived from the specialized knowledge of the expert. This

approach uses iterative communication between expert and engineer to ensure that both

parties understand each other as much as possible. We now describe each of the 5 main

steps of the methodology in the context of histopathology.

Formulation of Initial Set of Descriptions

For almost every histopathology classification system, the pathologist serves as the ideal

existing system whose method and performance sets the standard for the engineer. When

addressing tasks such as identifying tissues and pathologies or grading the progression of

a disease, a pathologist can provide a wealth of information. Thus, the first step of the

methodology is for the pathologist to describe how he identifies/discriminates each tissue,

pathology, or other label of interest.

As discussed earlier, without any modifications, the pathologist’s descriptions are likely to
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Figure 5.1: Flowchart demonstrating basic HV formulation methodology. Dashed lines
indicate one-time steps while solid lines are part of the iterative/feedback portion of the
process.

use medical terminology that the engineer does not understand. To avoid this, the pathologist

is asked to provide these initial descriptions using as simple and accessible language as

possible. This often corresponds with avoiding the use of medical language and dividing

complex concepts into collections of simpler ones.

These descriptions should also reflect the importance of certain descriptive characteristics

for each label of interest. For example, when identifying bone, the background material color

is the most important characteristic while for fat it is the presence of lumen. The ranking of

these characteristics allows the engineer to better understand the pathologist’s method for

identifying each label. Later we will show how these ranked lists describing each individual

label are combined to provide a global list describing all the labels together.

This step in some form or another is performed during the majority of collaborations

between pathologists and engineers. In such applications, an engineer should not design a

classification system based purely on a problem definition and his own knowledge. However,

in most works, this is the limit of communication between pathologist and engineer before

any actual algorithm design takes place. Later steps of the methodology will address this

shortcoming but we now detail the step of converting the pathologist’s descriptions into
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computational terms.

Computational Translation of Key Characteristics

The pathologist’s lists of ranked descriptive characteristics for each label are used to form a

set of computational counterparts or synonyms from which features can be implemented. If

the engineer is to use the pathologist’s input in designing features, he must determine how to

computationally model them. For many works, this computational implementation happens

immediately without any sort of validation of how correct the engineer’s interpretation is,

a potential mistake that we wish to avoid. To perform this verification, the engineer must

give some indication as to how he might implement the features based on the pathologist’s

descriptions, i.e., a computational translation.

This computational translation is simply the determination of computational synonyms

for the various descriptive characteristics put forth by the pathologist. Computational syn-

onyms are terms that are understandable to the non-engineer while still having a clear

computational meaning or implementation. For example, a description of color can be im-

plemented using any one of a number of colorspaces. In contrast, a description of texture

can have many interpretations that may not correspond to what the pathologist is actu-

ally describing. Furthermore, the computational translations must still be reasonably well

understood by the pathologist so that he may verify them. For example, the pathologist’s

description of “box-shaped tissue” by the engineer into “shape whose chain code has 4 dis-

tinct runs and the difference between changes is 2” is more than likely not well understood

by the pathologist.

After the computational translation, the engineer distills the most globally important

characteristics based on their relative importance to each individual label. By doing so, the

engineer begins to form the feature set best suited to describing all the labels collectively.

It is from this process that the methodology’s title of “vocabulary” is motivated. The
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pathologist’s descriptions represent a collection of category-value pairs where a category is

a particular descriptive characteristic type and a value is a specific member of this category.

For example, color and shape are categories while red/blue/white and circle/square/triangle

are example values, respectively.

The first iteration of this step results in a first draft of the computational vocabulary

that will be used as the blueprint for the implemented features. The engineer has distilled

from the pathologist’s collection of category-value pairs, the categories that are the most dis-

criminative and can be computationally modeled. The next step enters an iterative feedback

loop that will refine this vocabulary to maximize practical effectiveness and understanding

by both pathologist and engineer.

Computational Translation of Descriptions

The engineer now presents to the pathologist the computational translations of his original

descriptions. For example, the pathologist’s description of striated muscle may be: “Muscle

sheets are striated and parallel to each other with nuclei elongated and parallel to each

other.” This can be computationally translated to: “Muscle sheets are linear in shape with

common orientation and nuclei are strongly elliptical in shape with common orientation.”

In this example, the main categories are the shape and relative orientation of muscle sheets

and nuclei. Using these computational translations, the pathologist will now either validate

the engineer’s interpretation or identify areas of improvement.

Verification of Translated Descriptions

In this step, the pathologist checks the computational translations of his original descriptions

for correctness. As was stated earlier, the engineer’s lack of a formal pathology knowledge

may lead to misinterpretations of the pathologist’s descriptions. By inspecting the compu-

tational translations of his descriptions, the pathologist will determine whether or not his
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knowledge has been faithfully modeled.

The pathologist performs this verification by seeing if he can identify the label being

described based on the computational translation alone. In a way, this verification emulates

the classification process where the translated descriptions are the features and the patholo-

gist is the classifier. If the pathologist is able to correctly identify the label and all aspects of

the translation are reasonably well understood, then we have some validation that the trans-

lation is sufficient to describe the label. However, should the translation not insufficient in

some way (either leading to an incorrect label or having unclear aspects) then it must be

refined.

For example, the translation for cartilage may be: “Of the tissue’s average RGB value,

the B value is significantly greater than that of R. The tissue contains, on average, circularly

shaped regions of lumen whose spatial density ranges from dense to sparse. Within these

lumen regions, nuclei can be found whose average B value is overwhelmingly greater than

the R value.” The pathologist will identify this as describing cartilage though he may be

uncertain about certain aspects of the description such as the how dense and sparse compare

to each other. To address these insufficiencies, the overall translations are refined by refining

the computational vocabulary term.

Refinement of Insufficient Terms

We refine the computational vocabulary so that it is more effective in describing labels,

more faithful to the pathologist’s knowledge, and more understandable by both pathologist

and engineer. In the previous step, the pathologist identified aspects of the computational

vocabulary that were either insufficient in either discriminative power or clarity and must now

be refined by the engineer. For example, assume that the current computational vocabulary

contains a term for the collective nuclei orientation in a local area. Specifically, the entropy

of the discrete histogram of the individual nuclei orientations in a local area. For tissues
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whose nuclei only have a few orientations, the entropy will be small, while for tissues whose

nuclei are randomly oriented, the entropy will be large.

Therefore, for cartilage, whose distribution of nuclei orientations is close to random,

this term would be: “The local nuclei orientation histogram has high entropy.” However,

this description is probably not well understood, if at all, by the pathologist. Therefore,

the engineer must refine this term so it is better understood by the pathologist while still

having a clear computational meaning. For example, a possible refinement is: “The average

difference in orientation between all pairs of nuclei in a local area.” Based on this refinement,

the translation is updated to: “The average difference in orientation of nuclei is greater than

45◦.” This is most likely to be better understood by the pathologist and when combined

with other terms, allow the pathologist to identify cartilage.

After the current round of refinement, the translations are updated and then presented for

verification. This iterative feedback loop persists until no further refinement is required. It

may also be that there are terms that are too abstract or specialized to have computational

translation that is well understood by both pathologist and engineer. Those terms that

require no refinement have demonstrated sufficient discriminative power, faithfulness to the

pathologist’s knowledge, and clarity for both parties to be added to the HV feature set.

Histopathology Vocabulary

The iterative feedback loop formed by the previous steps has refined the computational

vocabulary terms to a level where we can confidently create features based on them. By

maximizing the coherence between the pathologist’s domain knowledge and the engineer’s

computational interpretation, we increase our understanding of the algorithm’s behavior.

Therefore, we have a justified belief that the implemented features are practically effective

and faithful to the pathologist’s knowledge. In this work, we apply this methodology to our

teratoma application (see Section 2.1.1) whose resulting feature set we discuss next.
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5.1.2 Vocabulary

Using the proposed methodology, we have created an initial HV consisting of the 8 features

summarized in Table 5.1. To utilize our mathematical framework and support our delineation

goal, these features are computed in a local neighborhood around a given pixel (see Figure 5.2

for some examples). By computing local features, each pixel provides a local description of

its tissue. In this section we describe the HV features and their implementations. We begin

with our algorithm for the segmentation of important tissues components: cytoplasm, lumen,

nuclei, and background material.

1. Background/fiber color 5. Nuclei density

2. Cytoplasm color 6. Nuclei shape

3. Clear areas (lumen) 7. Nuclei orientation

4. Nuclei color 8. Nuclei organization

Table 5.1: HV features ranked according to their discriminative power with respect to
teratoma tissue identification.

Component Segmentation Algorithm

An important part of the extraction of many of the HV features is the segmentation of

components that are common to the majority of tissues and pathologies. Cytoplasm, lumen,

nuclei, and background material are amongst the most important of these and in this section

we describe an algorithm for their segmentation. Segmentation is a well studied problem

and we do not focus of the development of a novel approach, but rather a simple one that

works reasonably well under a variety of conditions.

The nature of H&E staining, as discussed in Section 1.1, supports a segmentation ap-

proach based on analyzing the differing contributions of H&E stains to each component.

The general appearance of a component is the direct result of absorbing a certain amount

and ratio of H&E resulting in some combination of blue-purple and pink-red coloration. For
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our work, cytoplasm is primarily pink, lumen is white, nuclei is dark-blue, and background

material is a mixture of colors.

The difficulty in this segmentation arises from the variations that contribute to a com-

ponent’s exact appearance (see Chapter 1). Specifically, the exact shades of the components

colors described above can vary in a non-negligible way, something the segmentation al-

gorithm must account for in order to be effective and widely applicable. We propose to

normalize our data by using a demixing/stain separation algorithm for H&E-stained images

proposed by Macenko et. al [25].

Demixing algorithms in image analysis try to decompose complex images into combi-

nations of simpler parts. For example, a standard RGB image can be demixed into linear

combinations of pure red, pure green, and pure blue vectors, i.e., the individual channels of

the image. The intuition for using demixing for H&E-stained image normalization is that the

image’s appearance is the result of absorbing H&E stains in specific ratios. The variations

that occur are the result of these ratios being altered. If we make some assumptions about

how these ratios are altered, we can normalize them across images and thus account for the

corresponding variations.

The method we use [25] utilizes a specific color representation and the SVD to demix

H&E-stained images into images representing each stain. Figure 5.3 presents some exam-

ples of this demixing or stain separation. This algorithm not only determines the relative

amounts of the H&E stains that is absorbed at each pixel, but also achieves the desired

lumen segmentation. For details, we refer readers to the work itself.

The segmentation of the remaining components is based on the assumption that they are

present in any given image and that regardless of the exact nature of the variations in an

image, the variations affect the entire sample consistently, i.e., affect each component equally.

While only an assumption, our experimentation and knowledge of the H&E staining process

supports this at a reasonable level. Based on this assumption and our lumen segmentation,
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we segment cytoplasm and nuclei with the remaining portion of the image being labeled as

background material.

The first step is to transform the standard RGB image to the L*a*b* colorspace. In this

space, the luminance of the image is captured by the L* channel and thus can be ignored

to help mitigate illumination variation. Using the remaining channels of a* and b*, we

apply a simple K-means clustering [44] to compute clusters representing different shades

and combinations of the blue-purple and red-pink coloration of H&E, respectively. Based on

experimentation, we determined that K = 5 clusters was fairly robust in identifying different

color and shades. Our intuition is that two clusters will represent shades of hematoxylin’s

blue-purple with another two representing shades of eosin’s red-pink. The remaining cluster

will collect unclear or ill-defined combinations of these stains.

Since K-means incorporates some randomness in it’s overall algorithm, we must deter-

mine the correspondence between clusters and colors/shades. We apply heuristics using the

b* component and the desired constancy in the appearance of the components. The b*

component represents a color’s position between yellow and blue. Therefore, a reasonably

robust way to order the clusters in terms of their color is according to the value of the clus-

ter center’s b* component. We now have two pairs of clusters, one that is predominantly

blue-purple while the other is red-pink, leaving a final cluster of indeterminate color.

However, the average color of a cluster does not reflect its constancy within that cluster.

Thus, we apply a second ordering based on the average distance of a cluster’s members to

its center as an estimate of the cluster’s compactness. Each of the two pairs of clusters

determined previously is further ordered based on this compactness measure. The cluster

that is more compact is labeled as representing one of the desired components, nuclei for the

blue-purple clusters and cytoplasm for the red-pink clusters. The pixels corresponding to

these clusters are now labeled as one of these components though some additional refinement

is performed to reduce errors and noise.
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A key consideration is that these components are spatially connected objects and not

just random collections of pixels. Labeling completely isolated pixels or small and irregularly

shaped collections of pixels with the same label are most likely errors. The segmentation

has so far ignored any spatial information and is likely to make such errors. To address

this, we apply a series of morphological operations to each of the labeled components to first

remove connected groups of pixels smaller than a specified size appropriate for the current

magnification. Furthermore, for nuclei which are generally elliptical, an opening operation

with an appropriately sized circle removes spurs and connections between adjacent nuclei.

After this refinement, the labels for cytoplasm, nuclei, and lumen have been finalized with

the remaining portion of the image being labeled as background material.

HV Features

In this section we describe the implementation of each of the 8 HV features detailed in

Table 5.1. As many of these features have parallels in other works, our implementation

reflects both our mathematical framework and the local nature of the features. Naturally,

we expect future work to not only refine the existing features but also develop new ones.

We begin this section with a discussion of some aspects that are common to many of the

features.

Implementation via local histograms is our preferred approach but due to the com-

putational constraints, it is not always done. For example, statistics such as means and

moments can be extracted from the appropriate local histograms, but when attempting to

compute them for large images, the memory requirements become unrealistic and we must

avoid explicit computation. For example, the local average color of an image corresponds

to the sum of the bin positions, each weighted by their value, of the color local histogram.

Therefore, we present our current implementations where we often forgo explicit local his-

togram computation in order to achieve reasonable computational efficiency. As hardware
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and algorithms improve, we hope to implement as many features as possible using local

histograms to strengthen the connection between algorithm and theory.

Locality or scale is a notion that we discussed in Chapter 4. For our identification

and delineation goal, we classify each pixel individually. However, using only that pixel’s

information will not yield desired or robust performance. Thus, we classify using both

the pixel’s and its neighbors’ information (see Chapter 1). Naturally, the choice of these

neighbors has a major impact on the overall performance of the algorithm. We use a 2-D filter

whose values specify the neighborhood’s spatial span and the relative importance of any given

neighbor. This is effectively the same approach taken in Chapter 4 to define the locality of

local histograms. We design and experiment with many types of filters based experience and

intuition. In Chapter 6 we discuss these experiments and present our conclusions concerning

locality and its effect on overall performance.

Color representation is critical since color is the primary descriptor of so many aspects

of a tissue or pathology. A very active area of research for a variety of applications, the

needs of the application determine which representations are best. In this work, we seek

a representation that is best suited to our classification task. Our investigation led us to

explore standard colorspaces such as RGB, L*a*b*, HSV, and YCbCr.

Our experimentation sought the colorspace that provides the most consistent presentation

of tissues and pathologies. In other words, given a set of examples of a given tissue or

pathology, which colorspace would most tightly cluster those examples and similarly for other

tissues? These experiments showed that the RGB and L*a*b* colorspaces outperformed the

others in this regard without a clear winner between them. Thus, in the interest of simplicity,

we have chosen to use the standard RGB colorspace throughout our algorithm except for

when explicitly stated otherwise.

Background/fiber color characterizes the collective color of the tissue aside from nu-

clei, lumen, and cytoplasm. As this component often represents a large portion of any given
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tissue, its appearance is highly indicative of identity. General descriptors such as color have

been observed to be reasonably effective and robust in describing this component. Given a

segmentation of the background material and our local feature approach, the primary design

choice is the specification of locality via a filter.

For this feature, the main constraints for filter design are that it be rotationally symmetric

and be a proper averaging filter (only positive values and sums to 1). By being rotationally

symmetric we are account for the fact we do not know the exact orientation of the sample. As

a proper averaging filter, the feature will extract actual colors and thus allow us to visualize

them. For each pixel labeled as background material, we compute the average local color by

applying the specified filter to each channel of the RGB image. For illustration we present

the mathematical details of computing this feature in using local histograms as opposed to

the more computationally direct method above.

The computed background/fiber boolean mask m(x) specifies the positions x which will

be ignored in computing the local background/fiber color. This mask along with a specified

weighting function/filter w (following our design constraints stated earlier) allows us to

compute the local histogram of the RGB image f(x) for all possible 8-bit RGB values y ∈

Y = Z
3
256 according to:

(LHwf)(x, y) :=
∑

x′∈X

w(x′)δy(f(x+ x′))m(x+ x′), (5.1)

where

m(x) =











1, x ∈ background,

0, x 6∈ background,
(5.2)

The average background/fiber color (Cwf)(x) of f(x) is approximately equal to the sum

of the image’s local histogram bin positions (RGB values) y weighted by their respective bin

values values (LHwf)(x, y):
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(Cwf)(x) =
∑

y∈Y

(LHwf)(x, y)y (5.3)

As stated in Chapter 4, a shortcoming of local histograms is the memory needed for

storage. As a result, direct computation of (5.3) can be prohibitive due to the memory

requirements of (LHwf)(x, y). To mitigate this issue, we compute (LHwf)(x, y) sequentially

with respect to y and update (Cwf)(x) according to the following algorithm:

Algorithm 1 Computation of background/fiber color via local histograms

(Cwf)(x) = 0 for all x ∈ X
for y′ ∈ Y = Z

3
256 do

Compute: (LHwf)(x) = (LHwf)(x, y
′) according to (5.1) for all x ∈ X

Update: (Cwf)(x) = (Cwf)(x) + ((LHwf)(x)y
′) for all x ∈ X

end for

The final result of this algorithm is the desired weighted sum of the local histogram bin

positions by their values as specified in (5.3) which represents the background/fiber color in

the local neighborhood specified by w.

Cytoplasm color is effectively the same feature as the previous one though applied to

a different component. Cytoplasm is a major component of many tissues, providing much

of structural matrix that supports most tissues. It’s almost constant presence means that

differences in its appearance are good indicators of a tissue’s identity. For many related

tissues, such as types of muscle, the color of cytoplasm can often distinguish between them

in spite of many other similarities. In designing this color feature, the same considerations

of filter design and color representation are also addressed and will be discussed in the next

chapter. The binary labeling from the cytoplasm segmentation is filtered with the specified

filter to compute this local feature.

Clear areas (lumen) are those regions where the H&E stains are not absorbed either

due to no nucleic acid or proteins being present, or a complete lack of tissue. For tissues such

as fat, cartilage, and skin, the local density of lumen is a key descriptive characteristic. For
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example, fat has a very high local lumen density while it is less dense for cartilage and skin.

Similarly, certain tissues sometimes form around lumen during the process of the creating

organs; for example, GI tissue forming into a colon.

We apply a standard filtering approach to the binary labeling of the lumen segmentation

we previously computed where values of 1 represents lumen and 0 non-lumen. The result of

filtering is that each pixel provides an estimate of the amount of lumen in its neighborhood.

The filter is constrained to sum to 1 so that the estimate is a weighted percentage of the

lumen pixels in the neighborhood. It is also constrained to be rotationally symmetric so that

orientation of the sample is not a factor.

Nuclei color, while primarily blue-purple, does vary according to tissue in terms of

shade and saturation, a direct consequence of different levels of nucleic acid being present.

Tissue identity, tissue maturity, and whether or not cells are growing or dying will dictate

how much nucleic acid is present. After specifying a rotationally symmetric filter that sums

to 1, we filter the RGB image masked by the nuclei segmentation in the same fashion as we

did when computing background/fiber color.

Nuclei density or cellularity is highly indicative of tissue and pathology identity. Nuclei

density is highly variable between tissues making it a good indicator of them. Furthermore,

given a set of related pathologies such as those concerning a particular tissue, changes in

cellularity often correlates very strongly with specific pathologies. For example, as a reaction

to an infection, cellularity will increase reflecting the body’s immune response. This feature

is computed in the same fashion as our estimation of clear area (lumen) density using the

nuclei segmentation result and a specified filter.

Nuclei shape often correlates strongly with nuclei orientation and organization that

collectively correlate with tissue identity. These three features partially reflect tissue and

pathology structure. For example, many infections and diseases directly affect the nuclei of

tissues with extreme cases completely distorting their shape. The general shape of nuclei
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and regularity of that shape can very indicative of tissue and pathology.

We compute the average local nuclei shape using basic blob detection/scale-space filtering

concepts [68]. Using our nuclei segmentation, we apply a series of Gaussian filters that vary

in orientation and scale. This series of filters estimate the apparent size and shape of the

nuclei. The collective results of the filters are refined by using non-maxima suppression to

determine at each pixel which filter yielded the best match. Those determined nuclei shapes

and sizes are assigned to the positions of the apparent nuclei centers. Using the specified

filter, this sparse image is filtered to yield an estimate of the average shape and size of the

nuclei in the neighborhood of any given pixel.

Nuclei orientation is typically a strong indicator of structure and thus identity. In

particular, the orientation of individual nuclei with respect to their neighbors can tell a

great deal about overall organization. It is the uniformity or randomness in local nuclei

orientation that can serve as good feature. Using our nuclei segmentation, we apply a simple

orientation filtering to the binary nuclei labeling. Orientation filtering most commonly refers

to algorithms which use various derivatives of Gaussian and other similar filters to determine

the orientation of edges in an image. These filters vary in orientation and scale in order to

detect objects of varying orientations and scales.

Using our previously computed nuclei shape, we have an estimate of each nuclei’s center.

Thus, the orientation of the filter which yields the largest response for any given nuclei

center is chosen as orientation of that nuclei. We now have a sparse image whose non-zero

values indicate the orientation of nuclei. A specified filter is applied to the sparse image to

compute an estimate of the average nuclei orientation in a neighborhood. The computed

average is then subtracted from the sparse image, the result squared, and then filtered with

the same filter. This effectively computes the variance of nuclei orientation in the specified

neighborhood. The intuition is that when large numbers of nuclei have the same orientation,

the variance will be small and when they have many different orientations, the variance will
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be large.

Nuclei organization is a fairly ambiguous term by itself whose uncertainty is partially

expressed by its lower ranking amongst the HV features. In spite of this, we want to quantify

it by determining the degree of spatial isotropy that the nuclei have. For example, in skin

tissue, nuclei are arranged in smoothly changing collinear layers of common orientation.

Similarly, some structures specific to various tissues are formed by collections of nuclei in

well defined organizations. To capture this behavior, we use our nuclei segmentation to

first compute local centers of mass. These centers of mass are merely the weighted average

position of the nuclei in a neighborhood around a given pixel. For each pixel, the average

and variance of the distance and angle of the local nuclei to the local centers of mass is

computed via filtering.

Given well structured objects, the variances will be relatively small as opposed to the

large variances for randomly organized nuclei. The local averages should partially quantify

the scale of the organization which may help identify tissues that contain noticeably large

or small organizations of nuclei. More refined approaches could be taken to quantify this

organization, but the simplicity of this approach offers some robustness to the errors that

may arise from both the original nuclei segmentation and any subsequent steps.

5.2 Pixel-Level Classification

Now that we have designed our HV features, our task is to design an appropriate classifier to

label regions of H&E stained images according to our set of tissues and pathologies. For those

applications where an image consists of only one tissue or pathology, the labeling of regions

is equivalent to labeling the entire image. In contrast, those applications where an image

consists of many tissues or pathologies, we must be able to identify and label these regions

individually. One standard approach is to first segment the image and then identify each

segmented region. However, for reasons discussed Chapters 1 and 2, this approach cannot
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be taken in all many applications due to complexity of the segmentation task. Therefore, we

propose to accomplish a simultaneous segmentation/delineation and identification of tissues

and pathologies by classifying each individual pixel in an image based on its local features.

A decision about the identity of a pixel cannot be reliably made based on the pixel’s

presentation alone. Local information, that is, the pixel’s neighbors must contribute to

its labeling. This is already reflected in our formulation of the HV features; they are all

scale-adaptive features that compute values based on local neighborhoods. Assuming some

homogeneity in the presentation of a tissue, we expect this approach to yield relatively

smooth delineations. However, junctures between tissues will lead to regions of confusion

where exact delineations will be called into question. However, this same uncertainty occurs

when pathologists delineate images for a variety of reasons and as such we hope to operate

within a reasonable degree of uncertainty.

We propose to use one of the many well-known classifiers to assign a label to each in-

dividual pixel based on its extracted HV features. Among these classifiers are the NN [46],

the SVM [45], PCA [44], LDA [44], likelihood estimators [44], ensemble methods [69, 70],

classification trees [71], and many more. We have experimented extensively with these gen-

eral families of classifiers to determine which are better suited to histopathology related

problems than others. Intuitively, the complexity and variety of problems demands a very

flexible classifier and these experiments will be detailed in the next chapter.

Since we are making a decision for each individual pixel, there is inevitably some amount

of pixel-to-pixel variation that leads to discontinuities in delineations. While some of these

are meaningful, others, such as when a single pixel is labeled as a different tissue than all

of its neighbors who share a common label, are possibly errors. To address such errors, we

apply a local refinement in the form of a weighted local voting to the initial set of labels.

For many classifiers, such as a NN or a probabilistic SVM, a label ℓ(x) ∈ {1, 2, . . . , L} can

be accompanied by a corresponding confidence c(x) ∈ (0, 1]. Given this set of initial labels,
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their confidences, and a finite weighting function w(x) that sums to 1, we refine the label as

follows:

ℓ′(x) = argmax
i=1,...,L

∑

x′∈X

w(x′)ℓ(i)(x+ x′)c(x+ x′), (5.4)

where

ℓ(i)(x) =











1, ℓ(x) = i

0, otherwise
(5.5)

Confidences c(x, y) as well as the weighting enforced by w(x, y), reflect our intuition that

more confident labels and certain neighbors are likely to be the same label as a given pixel.

5.3 Rejection

In various histopathology applications, it may be necessary to actively ignore or reject data

that is unclear, of unknown identity, or is not of interest. This is particularly needed with

respect to our delineation goal. If given a task where the entirety of an image does not

have a clear label of interest, to accurately delineate those labels we interested in, we must

reject those unwanted regions. However, rejection in any classification task is an extremely

challenging task. While this is a generalization, rejection in classification tasks is the need

to define the boundaries between those defined labels of interest and all other types of data,

be they defined labels of non-interest or purely unknown labels. Defining a boundary of any

sort is equivalent to characterizing one or both of the regions that it separates.

Regardless of the approach taken, the nature of the data to be rejected is often the

most challenging aspect of the task. Given a set of defined labels, the task of classifying

some subset of them and rejecting the complementary subset is simply another classification

task. In such a task, we merely have to classify all of the defined labels and subsequently

reject those designated for rejection. However, if we are given such a set of defined labels in

addition to undefined set of data, the task becomes more difficult.
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The challenge in such a situation is learning both the structured nature of the defined

labels to be rejected and the unstructured nature of the undefined data. In our histopathology

tasks, structured components come from well-defined tissues and pathologies that are of non-

interest, while the unstructured components come from tissues that are not yet well-defined

and completely undefined tissues. This is of particular relevance to our teratoma application

where the maturity of tissues and pathologies vary along with tissue regions that have no

identity, i.e., background/noise.

To address this task, we investigated two primary approaches: rejection based on per-

ceived confidence and rejection via classification. The first approach merely rejects labels

provided by the algorithm if the associated confidence does not meet some criteria, e.g.,

a threshold. The confidence associated with each label is a function of the classifier we

use; some classifiers provide pure probabilistic measures while others must be further ma-

nipulated to resemble a confidence. The second approach uses a wide variety of classifiers

that directly address the rejection task as part of their design. We will discuss the particular

methods we investigated for both of these approaches, along with our results and conclusions

on rejection, in Chapter 6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: The appearance of some HV terms in different tissues. Background/fiber color
for (a) bone is bright pink, while it is (b) dark pink for pseudovascular tissue. Nuclei
orientation and organization for (c) smooth muscle is unstructured, while it is (d) structured
for skin tissue. Clear areas (lumen) for (e) cartilage are less dense than for (f) fat.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Examples of H&E stain separation. The first row presents the original H&E
stained image with the second and third rows showing the computed hematoxylin-only and
eosin-only separated images. Take note of how structures primarily saturated with one stain
in comparison to another appear more dominantly in the corresponding stain separated
image. Continued in subsequent figure.
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(g) (h)

(i) (j)

(k) (l)

Figure 5.3 continued.



Chapter 6

Experimental Results

We now present the results of applying our overall classification algorithm to two very differ-

ent histopathology applications of active colitis detection and teratoma tissue identification.

In the first section we will discuss aspects of the experimental setup that are used for both

applications such as feature selection, classifier design, training/testing set selection, and pa-

rameter choices. The next two sections present the experimental results for our applications

with corresponding discussion. The last section focuses on overall experimental conclusions

and discussion of various challenges and concerns we encountered during experiments.

6.1 Features

While the HV features are designed to work across applications, in each particular application

only a subset of these features may be considered relevant. While a robust classifier may

be able to automatically learn which subsets are appropriate for any given application, we

choose to further leverage our HV methodology and select subsets based on pathologist’s

guidance. In future work, we hope to eventually incorporate automated feature selection

into our algorithm.

Part of the definition of the HV features is the notion of the local neighborhood or, in our

132
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case, the filter whose spatial span along with its values completely specify the neighborhood.

As discussed before in Chapters 1 and 2, a tissue’s or pathology’s local presentation is the

most consistent or stable in a particular range of sizes or scales. To learn about and capture

this stable behavior, we explored families of filters whose members vary according to scale.

We investigated many standard image processing families such as simple averaging fil-

ters, edge detection filters (Prewitt, Canny, and Sobel), Gaussians and their derivatives, and

Gabor filters. Averaging and standard Gaussian filters define easily understood neighbor-

hoods; their shape and values result in a simple weighted sum of the feature (e.g., color or

density) to be computed. The other families are less intuitive though their shape and values

provide possibly useful qualities such as preferential orientation and frequency analysis. We

found that due to a lack of knowledge about sample position and orientation, filters that

have directional bias are ill-suited to the task. This observation combined with experimental

results lead us to choose circular averaging filters, which are completely parameterized by

their radius and the fact they sum to 1, and whose isotropy removes the effect of sample

orientation.

Using this family of filters, we follow a scale-space type of approach [72] in attempting to

learn ideal scale selection for a given application. Given a fine-resolution or very small scale,

subsequent scales are derived by multiplying by powers of a fixed factor. Our experiments

with low-magnification imagery revealed 2 to be a reasonable factor, with a maximum fine-

resolution scale of 4 pixels. The final set of scales with which we experimented are s = 2k,

k = 2, . . . , 6 pixels. This family of filters is used for all our subsequent experiments with

references to scale being the radii of the circular averaging filter.

6.2 Classifiers

While the main focus in our work has been the intelligent design of features and a mathemat-

ical framework to support them, the overall goal is a maximally effective overall algorithm.
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We have thus performed extensive experimentation in choosing a classifier among the typical

ones such as SVMs, NNs, nearest-neighbor classifiers [44], and LDA methods. Our exper-

iments have shown NNs to be the most effective for our applications due to their overall

effectiveness and efficiency. SVMs also showed promise though their learning rate was far

from ideal and often non-converging due to the sheer amount of data being addressed.

To quickly review NN basics, the algorithm is a series of layers which consist of weighted

linear sums, constant biases, and function evaluations. There are three types of layers: input,

hidden, and output. Each layer consists of a series of nodes, each of which evaluates the

same pre-defined function or activation functions (for that layer) using the weighted linear

sum , biased by some constant, of the previous layer’s node values. The input layers is

evaluated using the initial values input to the NN, i.e., the feature vector to be classified.

Hidden layers are named due to the fact that their inputs and outputs are not directly visible.

The output layer’s outputs are the NN’s overall result which, depending on the manner of

training, indicates the determined label in a variety of ways.

The primary design choices of the NN are the number hidden layers used, the number of

nodes in each layer, and the functions to be evaluated at each layer. We refer readers to [46]

and other related works for more information on methods for determining these parameters.

Once these aspects of the NN are fixed, the weights and bias used to compute the function

input for each layer are learned based on training data and labels. The most popular method

of learning is backpropogation [73], an iterative optimization method that updates an initial

set of weights and biases (e.g., randomly initialized) to minimize the overall error between

NN output and the desired training labels. The combination of number of layers, size of

each layer, weights, biases, and functions allow a NN to learn a very complex function of

the feature space that can be very effective. However, said complexity may also lead to

overfitting to the data and increased sensitivity to variations in data.

As our prototype NN design, we use a simple 2-layer setup consisting only of an input
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layer and an output layer. The input layer consists of as many nodes as the length of

the feature vectors and hyperbolic tangent sigmoid activation functions. The output layer

consists of as many nodes as the number of labels of interest with linear activation functions

resulting in an output label vector as opposed to a scalar label. We use a 1-hot training

approach where the label for each training sample is a binary vector where only the position

for the appropriate label is non-zero. The final label is taken as that of the ideal 1-hot

binary vector whose Euclidean distance to the output label vector is smallest. Our choice of

network design is motivated by our past success with it in a variety of applications including

histopathology and its overall simplicity which aids efficiency and helps avoid overfitting.

6.3 Training and Testing Set Selection

Training and testing set selection in our approach is a two-step process that considers the

two functional units of data available, images and pixels. While the core unit of data is

a pixel, one must consider the issues of selecting pixels without considering their source

images. Our goal is to learn the identity of a tissue or pathology or other label of interest

in a general manner so as to ensure that new examples are classified correctly. Consider the

situation where all training pixels for a particular tissue come from a small set of images

and furthermore, all available pixels in these images are used. In this situation, there is the

chance that the overall algorithm will learn to identify these particular images as opposed to

the tissue at large. In other words, overfitting may occur. To avoid this while maintaining

a clear separation between training and testing data, we perform the following two-step

process.

As is customary, the first step involves the separation of the available images into training

and testing sets. We begin by randomly choosing (according to a uniform distribution) a

fixed percentage of the available images that contain any of the labels of interest for training

with the unselected images forming the testing set. From each training image, we randomly
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sample a percentage of the pixels from each label of interest present. The resulting collection

of sampled pixels across the training images for each label of interest form that label’s training

set. While the exact method of pixel sampling can vary, we have chosen a weighted random

sampling that gives greater likelihood to pixels located in the interior of a a given label’s

region in any given image. This method is based on our observation that pixels at the

boundaries between labeled regions, provide less reliable information that may confuse the

classifier.

For a given application, due to the biological nature of the data, certain labels are likely to

occur more often than others. For certain applications there may be no way to reliably collect

more examples of a deficient label, making the effect of these imbalances not negligible. To

address this issue, we enforce a level of equality among the training sets for each label by

further sampling the training sets to the same size as the smallest training set formed so far.

To avoid situations where this additional sampling results in overly small training sets for

all labels, we also enforce a minimum training set size if it can be met by the available data.

Due to the sheer number of permutations of images, pixels, and associated training

percentages, we have only explored a small set of training and testing set configurations.

For the experiments presented, any given training and testing set pair are created by first

sampling 50% of the available images for training with the rest assigned to testing. From

each of the training images, 1% of the available pixels are sampled to create the training

set. The minimum training set size was chosen to be 20 thousand samples to allow for

maximum computational efficiency. No data from any of the training images is used for

testing, maintaining a complete separation between training and testing data.

6.4 Parameter Selection

We now cover parameter choices made in our experiments; some of which we have discussed

in Section 6.1, such as the choice of neighborhood via filter design; the classifier choice
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we discussed in Section 6.2. Local histograms form the basis of the majority of our HV

features, and in spite of often avoiding their explicit computation, properties such as their

coarseness/fineness must still be defined.

For example, in quantifying local average color, we must choose a quantization which is

equivalent to setting the number of bins in the local histogram given a defined range of colors.

Sometimes the choice is implicitly made by the feature such as density where the local his-

togram only contains 2 bins corresponding to nuclei and non-nuclei pixels. When we do have

the option of defining this aspect of the local histogram, we must consider the computational

requirements discussed in Chapter 4. Specifically, given an image’s spatial resolution and the

available memory, how fine can our local histograms be without significantly compromising

computational efficiency?

As mentioned earlier, trade offs can be made to alleviate these issues at the cost of

information. As a result, parameter selection for local histogram formation is done in a

two-step manner. First, given the computational constraints of the executing system, cross-

validation within a number of training sets is performed to select optimal parameters. Given

the large number of possible choices for these parameters, a relatively small set of variation is

analyzed. For example, the number of quantization levels used in any given local histogram

is usually chosen to maximize the usage of all available memory while satisfying the desired

spatial resolution. The second step is a mass repetition of these experiments to learn the

overall performance trend with respect to these parameters. Within the scope of this work,

parameter selection is left to the cross-validation stage although as the work matures, this

selection will be based on our increasing number of observations.

The other major parameter to be selected is the exact spatial support of scale of the

neighborhood used to compute the local features. In spite of our guidance by pathologists,

there is little intuition about what the ideal scales for any given tissue or pathology is.

When combined with the intricacies of the algorithm, the scales at which classification can
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be performed the most accurately and robustly for a given label can only be determined

through empirical study. The experimental results we will present include such a study by

observing the performance trends with respect to changes in scale. We not only attempt to

identify ideal scales for individual tissues and pathologies, but also for groups of them where

there are clearly differences in performance amongst individual labels.

6.5 Clinical Application: Active Colitis

To illustrate our algorithm on a clinical application, we attempt to identify an inflammation

in the GI tract, more specifically of the colon, called active colitis. As detailed in Section 2.1.2,

it is typically diagnosed by performing an endoscopy to obtain a biopsy of the inner wall

of the colon. After sectioning and H&E staining, the biopsied sample is visualized with a

microscope; the pathologist makes a diagnosis. While active colitis has many degrees of

severity, we consider only a 2-class problem, that is, discrimination between the absence or

presence of active colitis.

6.5.1 Dataset

The dataset consists of 40 colon biopsies that have been H&E stained and imaged at a resolu-

tion of 1600×1200 under two magnifications, 40X and 100X (see Figures 2.6 and 2.7). Half of

the samples are considered normal (absence of inflammation) while the other half are active

colitis (presence of inflammation) resulting in a total of 40 images for each magnification.

Each image is labeled as either normal or active colitis by our pathologists to provide a

ground truth. A normal label is given only if the entire image is free of active colitis while

an active colitis label is assigned if any active colitis is observed. This means that for a given

biopsy, the labels of its two images may differ, but thanks to careful selection of the biopsy

regions imaged, this is not the case with our data.
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However, there is still some degree of uncertainty in the ground truth of the images

labeled as active colitis. Specifically, active colitis images do demonstrate differing degrees

of inflammation that translate to how much of the image is inflamed, e.g., an image where

only 10% of its area is inflammed is labeled the same as an image where 90% of the area

is inflammed. This lack of distinction in the ground truth will be discussed later when

analyzing our results. Using our component segmentation, we detect no-stain regions in

every image and assign them a background label (ignored for all purposes), with the rest of

the image being given the pathologist’s label.

6.5.2 Experimental Setup

In these experiments, we used the most appropriate subset of HV features based on expert

guidance: nuclei density, ratio of lumen, and color of background/fiber colors. Figure 2.5

illustrates the differences between the two pathologies and their more discriminative qualities

that coincide with the features selected. Testing of the HV feature sets at different scales

to determine ideal spatial support, the classifier used, as well as training and testing set

formation are as specified at the beginning of the section.

Though each image is given only a single label, we still perform pixel-level classification

to avoid modification of our algorithm. Thus, the ideal result for any given image is one

where every pixel is given the same and correct label; implications of this approach with

respect to the nuances of the ground truth will be discussed later. We create 10 different

training/testing sets (folds) using the previously discussed approach and report average

pixel-level classification accuracies for each pathology of interest.

6.5.3 Results and Discussions

Table 6.1 gives average classification accuracy across magnifications and scales. The first

trend we notice is that the performance on this dataset is relatively insensitive to the scale
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of the feature set. We believe that this is because at these magnifications the cellularity,

i.e., the nuclei of a region is still sufficiently captured. However, at higher magnifications,

scale will be more important as too small an area will only capture a few nuclei and will not

reveal the true identity of the sample.

Accuracy [%] 40X 100X

Scale [pixels] Normal Active colitis Normal Active colitis

4 94 94 81 76

8 95 93 87 78

16 94 92 87 78

32 92 90 84 77

64 93 90 88 81

Table 6.1: Average pixel-level classification accuracies for normal and active colitis images
over 10 distinct folds.

The next trend is that the accuracy is higher in identifying normal tissue; this is primarily

a reflection of the feature set and the fact that our ground truth assigns one label to an entire

image. For samples labeled as normal, the entire sample must be free of active colitis and

thus the ground truth is more accurate; on the other hand, for samples labeled as active

colitis, the pathology may not be present throughout, and thus the ground truth may not

be completely accurate in a spatial sense. Given this lack of detail in the ground truth,

our pixel-level classification approach can result in apparent misclassifications where regions

labeled as being active colitis may in fact be normal. However, this same consideration must

be given to the training of the algorithm where training images may be presenting normal

tissue as active colitis. The overall result of this aspect of the ground truth on both training

and testing has not yet been explored due to the lack of refinement in the ground truth.

Sill, in this application where a noticeable presence of active colitis is a call for treatment

such an approach is not without merit. Our algorithm can identify all samples where more

than 25% of the sample’s area contains active colitis which correspond to all samples labeled



CHAPTER 6. EXPERIMENTAL RESULTS 141

as having active colitis by our collaborating pathologists. We show in Figures 6.1 and 6.2

some examples of identification and delineation for each magnification and each pathology.

(a) Example 1 - Normal labeled 40X image (b) Example 1 - Result

(c) Example 2 - Active colitis labeled 40X image (d) Example 2 - Result

Figure 6.1: Example identification and delineation results for 40X magnification colon data.
Black is background, gray is normal, and white is active colitis (ideally, normal should be all
gray and active colitis should be all white).

While the results are promising, there are still aspects that need to be addressed, such as

the introduction/implementation of architectural features describing various macro-structures

present in a given sample. For example, the current feature set cannot quantify macro-

structures such as crypts adequately (see Figures 2.2, 2.4, and 2.5). The first step in such

a feature would be the segmentation of crypts which the work of [74, 75] addresses in the

context of colon-related applications.
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(e) Example 3 - Normal labeled 40X image (f) Example 3 - Result

(g) Example 4 - Active colitis labeled 40X image (h) Example 4 - Result

Figure 6.1 continued.

While ideally we would prefer a characterization of macro-structures that was indepen-

dent of the application, this may be a less than optimal approach as a whole. In particular,

the various sources of variation (acquisition and imaging specifics, sample to sample vari-

ance, etc.) may be better addressed by application specific methods for quantization of

known macro-structures. While this somewhat contradicts our goal of creating a vocabulary

to describe the large number of problems in this domain, it is still motivated by expert

knowledge in that the particular macro-structures we wish to characterize are ones identified

by collaborating experts. We expect the addition of such a feature to improve the accuracy

in identifying active colitis; this is left for future work.
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(a) Example 1 - Normal labeled 100X image (b) Example 1 - Result

(c) Example 2 - Active colitis labeled 100X image (d) Example 2 - Result

Figure 6.2: Example identification and delineation results for 100X magnification colon
data. Black is background, gray is normal, and white is active colitis (ideally, normal should
be all gray and active colitis should be all white).

6.6 Research Application: Teratomas

6.6.1 Dataset

The dataset consists of H&E-stained samples of teratomas whose purpose is to research the

development of germ-layer components from human and nonhuman embryonic stem cells (see

Section 2.1.1). All tissue types found in humans can be found in this data, and individual

images often consist of multiple tissue types and pathologies.(e.g., levels of maturity), making

it one of the most general classification tasks possible in histopathology.
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(e) Example 3 - Normal labeled 100X image (f) Example 3 - Result

(g) Example 4 - Active colitis labeled 100X image (h) Example 3 - Result

Figure 6.2 continued.

Teratomas are derived and serially sectioned as detailed in [49], then H&E-stained and

imaged at 4X magnification resulting in 36 images of size 1600× 1200; 15 tissues appear in

these images although the number of images in which each tissue appears varies greatly. We

choose to work with this magnification as it is the most useful from the pathologist’s point of

view as well as because it allows for the greatest amount of multiple tissue presentation. The

ground-truth for each image is obtained by hand segmentation and labeling of tissues by our

collaborating pathologists. Regions of uncertain identity, due to either lack of information

or artifacts, are ignored and not used for evaluation.
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6.6.2 Experimental Setup

Given the nature of this dataset, we have an opportunity to gauge the discriminative and

generalization power of our algorithm and HV features. To this end, we perform a series

of experiments in which the number of tissues being classified changes. We begin with the

2-class problem of classifying bone (B) and cartilage (C), chosen as our baseline due to the

relative ease of distinguishing them. We then introduce immature neuroglial tissue (I) for a

3-class problem, neuroepithelial tissue (N) for the 4-class problem, and finally, fat (F) for the

5-class problem. Testing of the HV feature sets at different scales to determine ideal spatial

support, the classifier used, as well as training and testing set formation are as specified at

the beginning of the section.

Given the multiple-tissue composition of the images, this experiment represents a true test

of our identification and delineation goal. We create 10 different folds using the previously

discussed approach and report average pixel-level classification accuracies for each tissue of

interest.

6.6.3 Results and Discussion

Table 6.2 gives average classification accuracy for each problem size and the best-performing

scale, while Figures 6.3 through 6.7 shows some examples of identification and delineation.

Scale [pixels] Accuracy [%]

B C I N F

16 89 89

16 84 84 86

32 78 81 75 71

32 75 76 71 70 71

Table 6.2: Average pixel-level classification accuracies for teratoma images over 10 distinct
folds with best-performing scale indicated for each problem size.



CHAPTER 6. EXPERIMENTAL RESULTS 146

(a) Example 1 - Image (b) Example 2 - Image

(c) Example 1 - Ground truth (d) Example 2 - Ground truth

(e) Example 1 - Result (f) Example 2 - Result

Figure 6.3: Example identification and delineation results for 4X magnification teratoma
data. The ground truth and results are color coded as follows: background (dark blue), bone
(light blue), cartilage (cyan), fat (yellow), neuroepithelial (orange), and immature neuroglial
tissue (maroon).
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(a) Example 3 - Image (b) Example 4 - Image

(c) Example 3 - Ground truth (d) Example 4 - Ground truth

(e) Example 3 - Result (f) Example 4 - Result

Figure 6.4: Additional examples of identification and delineation results for 4X magnification
teratoma data.
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(a) Example 5 - Image (b) Example 6 - Image

(c) Example 5 - Ground truth (d) Example 6 - Ground truth

(e) Example 5 - Result (f) Example 6 - Result

Figure 6.5: Additional examples of identification and delineation results for 4X magnification
teratoma data.
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(a) Example 7 - Image (b) Example 8 - Image

(c) Example 7 - Ground truth (d) Example 8 - Ground truth

(e) Example 7 - Result (f) Example 8 - Result

Figure 6.6: Additional examples of identification and delineation results for 4X magnification
teratoma data.
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(a) Example 9 - Image (b) Example 10 - Image

(c) Example 9 - Ground truth (d) Example 10 - Ground truth

(e) Example 9 - Result (f) Example 10 - Result

Figure 6.7: Additional examples of identification and delineation results for 4X magnification
teratoma data.
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The trend we observe is that as the problem size grows the performance degrades. This

is not unexpected due to the difficulty of the problem. Based on various confusion matrices,

bone and cartilage are consistently well separated with misclassifications coming from the

other three classes. The majority of the HV features capture visual cues though some focus

on architectural/structural features. This division of discriminative power is observed in

the results. Tissues that are primarily distinguished based on visual cues such as cartilage

and bone perform better than those where architectural cues are more important such as

neuroepithelial tissue. Naturally, as more appropriate features are implemented, we expect

performance amongst these tissues to improve and equalize.

The scale preference of various problems may demonstrate some consistency in the pre-

sentation of various tissues or the scale at which differences are maximized. These empirical

results suggest some optimal scales for 4X magnification images. Specifically, it seems that

the scales of 16 and 32 pixel radii are appropriate for this collection of tissues at 4X magni-

fication. With respect to the other scales, these relatively medium scales indicate that the

discriminative information is spatially localized. We are in the process of collecting images

of samples at multiple magnifications to determine if scale preferences change proportionally

to magnification.

The apparent fragmentation of some tissues highlights the need for architectural features

in the HV. For example, as seen in Figure 6.7, bone is fragmented, primarily by labels of

fat, mainly due to the lack of features quantifying the spatial relationship between lumen

and bone tissue. In contrast, the delineation of cartilage is relatively smooth. This is due to

cartilage’s homogeneous appearance in a given image and the relative scale-invariance of its

architectural cues.
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Scale [px] Accuracy (HV | Gabor | LBP | Textons) [%]

B C I N F

4 72 | 35 | 62 | 40 72 | 51 | 65 | 60 66 | 44 | 50 | 54 73 | 33 | 60 | 39 65 | 44 | 62 | 51

8 72 | 38 | 61 | 41 71 | 48 | 66 | 52 71 | 43 | 52 | 48 72 | 37 | 61 | 43 67 | 40 | 64 | 45

16 73 | 36 | 65 | 41 73 | 50 | 65 | 53 70 | 46 | 56 | 50 70 | 35 | 62 | 40 69 | 40 | 62 | 42

32 75 | 38 | 58 | 42 76 | 53 | 60 | 56 71 | 48 | 50 | 52 70 | 38 | 59 | 42 71 | 42 | 60 | 45

64 70 | 39 | 57 | 45 74 | 55 | 60 | 58 69 | 50 | 51 | 54 71 | 40 | 54 | 45 70 | 43 | 55 | 43

Table 6.3: Comparison of average accuracies of HV versus Gabor, LBP and texton features
on teratoma data over 10 folds across scales. For each scale and tissue, the HV features
perform the best. The best-performing scale for each tissue is given in bold.

6.7 Comparison to Other Methods

We designed the HV to mimic those tissue attributes pathologists use when identifying a

given tissue. While one can argue that most of those features are not new per se, the success

of the HV in identifying H&E-stained tissues clearly shows it is the right approach. In many

histopathology classification tasks [6,76,77], texture information was chosen as the primary

descriptor of class identity, as it is both intuitively and empirically a vital descriptor in many

applications. We now compare our HV to commonly used texture descriptors: Gabor filter

banks, local binary patterns (LBP), and textons. In the interest of space, we only consider

the 5-tissue teratoma experiment. The choice of scales, classifier, training and testing sets

are all identical and as described previously.

6.7.1 Gabor Filters

Gabor filters have been used in image analysis for a long time [78–84] including in histopathol-

ogy applications [6, 76, 85, 86]. They are designed to respond to textures at specific orienta-

tions and scales. We use Gabor filters at 8 evenly spaced orientations θ ∈ {0, π/8, . . . , 7π/8}

over 5 scales s = 2k, k = 2, . . . , 6 (in pixels), for a total of 40 filters. Each of these 40 filters

is applied to each channel of the RGB version of the image. The final features are formed by
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computing the local mean, standard deviation, and mode of each filter’s response, yielding

a total of 40× 3× 3 = 360 Gabor features per pixel.

From Table 6.3 we see that the HV features (first column) outperform the Gabor ones

(second column) across all scales and tissues. Note that the Gabor features perform the

best on cartilage; this coincides with our general perception that texture is an important

distinguisher of cartilage (see Figure 5.2(e)). Similarly, the relatively low performance with

respect to bone tissue reflects a lack of color and architectural information that is more

indicative of this tissue as opposed to others. We thus conclude that while Gabor features

are a reasonable texture descriptor in this case, they are still not powerful enough for high

performance in this challenging application.

6.7.2 Local Binary Patterns

LBPs are another powerful method for texture characterization; initially proposed as a means

to discriminate between textures using statistical measures [87], LBP methods have been used

in many applications [34,88–91], including biomedical [92–94] and specifically histopathologi-

cal applications [77]. The basic premise of a LBP feature is to describe a micro-texture (local

texture) using simple spatial operators and encoding methods [34, 87]. The first parameter

of an LBP operator is a spatial neighborhood around a pixel of interest. The neighborhood

values are thresholded against the value of the pixel of interest resulting in a binary vector

that is then typically encoded using a binomial scheme (identical to binary to decimal con-

version) to yield a unique texture identifier. This encoding is further refined by introducing

rotation invariance and a sense of uniformity. For our comparison, we use a LBP operator

with a circular neighborhood of radius 1 pixel with 8 evenly spaced (angularly) points. The

resulting binary vectors are then encoded as rotation-invariant uniform textures and then

further aggregated into local histograms of these codes. These local histograms are com-

puted over the same regions of support as the HV, specifically, circular neighborhoods of
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varying radii. These local histograms are then used directly as feature vectors for training

and testing of classifiers.

From Table 6.3 we see that LBP (third column) perform well and better than Gabor

features. We again see that while texture description is vital, it is not sufficient. In particular,

color information and organization of components are needed. Note that the LBP features

perform better at smaller scales; this fits our intuition on the power of LBP in quantifying

micro-textures, for example, cartilage.

6.7.3 Textons

The term texton was first proposed by Julesz [95] and later mathematically modeled by

Leung and Malik [96] for texture classification who proposed the use of filter banks and

clustering methods to create a prototype library of textures with which to both classify and

generate textures. Beyond texture classification, textons were used in a host of applications

[97–99] including biomedical ones [100–102]. Typically, texton formulation begins with the

application of a filter bank to a set of training images. This set of responses is then used

to identify the most discriminative subspaces of the filter space using a variety of methods

such as clustering or dimensionality reduction. A specified number of subspaces, or textons,

is identified to form a dictionary. Test images undergo the same filtering process; their

responses are compared to the dictionary to determine the most similar texton. These

similarities are most commonly used to form histograms of texton occurrence within a spatial

domain. The histograms of labeled images are then compared to those of unlabeled images

with the best match dictating the assigned label. We use an implementation consisting

of isotropic Gaussians and Laplacians of Gaussians in addition to oriented Gabor filters as

before, for a total of 50 filters. Following the filter phase, we apply a K-means clustering using

a Euclidean distance metric to learn a fixed number (we chose 100) of textons/dictionary

elements. We then compute local histograms of texton occurrence in circular neighborhoods
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of varying radii. These local histograms become the feature vectors used for training and

testing.

From Table 6.3 we see that textons (fourth column) perform somewhere between LBP

and Gabor features, and are inferior to HV. Note that here, commonalities between the

texton and Gabor features become apparent; the improved performance at larger scales can

be attributed to an increased robustness to noise. Moreover, the superior performance of

textons when compared to Gabor features lends credence to the notion that the increased

conciseness of the texton representation improves discrimination.

6.8 Rejection Experiments

As discussed in Section 5.3, rejection is a needed component for identification and delineation

in some histopathology applications such as our teratoma data. To achieve this rejection, we

investigated a variety of techniques of two types of approaches: rejection based on perceived

confidence and rejection via classification. In this section, we will briefly discuss these tech-

niques, present some results, and discuss our findings. In all our experiments, we use the

exact same experimental setup that led to Table 6.2 to allow for direct comparison.

Under the first approach, we experimented with confidence thresholding and ensemble

voting. Confidence thresholding is merely the rejection of a label if the associated confidence

does not meet a defined threshold. The intuition behind this approach is that the overall

classification algorithm will overwhelmingly learn the defined set of labels of interest almost to

the degree of over-fitting. This strong learning should then result in the classifier being very

confident for the labels it has learned but much less confident for everything else. However,

this does assume that the classification region that has been defined by the classifier contains

only the labels of interest and that the data to be rejected lies reasonably far away from this

region. Should either of these assumptions be violated by some sample, the assigned label

may have a high enough confidence to be incorrectly accepted instead of rejected. Given
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our NN classifier training approach, our confidences are the reciprocal absolute Euclidean

distance of the ideal 1-hot binary vector to the output label vector. Thus, smaller distances to

the ideal label result in higher confidences and vice versa for larger distances. An empirically

optimal confidence threshold of 0.7 (labels whose confidences are less than this are rejected)

led to the results presented in Table 6.4. Variations of the threshold demonstrated extreme

sensitivity by leading to either complete rejection of all testing data or complete acceptance,

implying that this approach given the current classifier is ineffective.

Scale [pixels] Accuracy [%]

B C I N F R

16 74 72 24

16 70 69 65 28

32 65 66 63 60 26

32 62 61 60 59 57 30

Table 6.4: Average pixel-level classification and rejection (R) accuracies for teratoma images
using confidence thresholding over 10 distinct folds with chosen scale indicated for each
problem size.

The other technique of ensemble voting is still a type of probabilistic approach but takes

advantage of behavior observed in boosting [103] and bagging [69] methods. The basic idea

is that a collection of classifiers, each trained differently, will each make an independent

decision about any given sample from which a final collective decision will be made. The

manner in which the collection of decisions is combined into a single one is a topic of much

research, but in the interest of simplicity, we take a simple majority vote approach. A

computationally feasible number of 20 NN classifiers are trained, each using a different

sampling (with replacement) of the available training data. Each of the NNs makes a decision

with the final decision being the final label that was in the true majority, i.e., at least half

of the NNs agreed. Those samples for which no label received at least half of the votes

are rejected as a form of confidence. This approach is equivalent to bagging though we do
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not use all the subtleties of that method. Using the same experimental setup as before, we

present the results using this approach in Table 6.5. These results are an improvement from

those of confidence thresholding, but still demonstrate an inability to simultaneously achieve

reasonable classification of the labels of interest while rejecting everything else.

Scale [pixels] Accuracy [%]

B C I N F R

16 77 75 34

16 72 70 66 32

32 68 65 63 63 35

32 65 63 60 61 60 40

Table 6.5: Average pixel-level classification and rejection (R) accuracies for teratoma images
using ensemble voting over 10 distinct folds with chosen scale indicated for each problem
size.

The second approach of rejection via classification is generally a much richer area of

research though it is also often hindered by complex algorithms and computational issues.

The fundamental notion behind these types of methods is that the classifier will not only

characterize the various classification regions but also the rejection space in an balanced

manner. We chose to focus on a modifications to the standard SVM that include the 1-class

SVM, the support vector rejection decision machine (SVRDM), and the support vector data

descriptor (SVDD). As the techniques that we will present are highly complex, we refer

readers to the referenced works for more detail.

The 1-class SVM [104] is a simple extension of the standard 2-class SVM. Rather than

try to maximize the margin between two differently labeled sets of data, the 1-class SVM

attempts to fit a hypersphere around as much of the data of each class; thus, for a fixed

number of labels, we have as many hyperspheres. Discrimination between multiple labels

using 1-class SVMs involves testing the membership of a sample to each label by measuring

its distance from the centers of the hyperspheres. The final labels is assigned by choosing
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the hypersphere, and its associated label, for which the sample lies not only within the

hypersphere’s boundary but also is the closest amongst all such hyperspheres. Rejection is

accomplished by rejecting any sample for which no hyperspheres are found to contain the

sample. Due to its derivation, the SVM extension to a kernel-based derivation applies. For

our experiments we used a series of standard 1-class SVMs of radial basis function kernels

and slack parameters computed automatically based on the nature of the training data; the

results are summarized in Table 6.6. As can be seen, almost no rejection is accomplished

using this method which implies that the hyperspheres are not only encompassing the labels

of interest but also those labels to be rejected and the unknown data. Furthermore, the

classification accuracies also suffer implying that the hyperspheres are also overlapping with

one another.

Scale [pixels] Accuracy [%]

B C I N F R

16 50 52 6

16 45 44 40 8

32 40 42 38 36 9

32 38 39 36 35 35 13

Table 6.6: Average pixel-level classification and rejection (R) accuracies for teratoma images
using 1-class SVMs over 10 distinct folds with chosen scale indicated for each problem size.

The next technique is the SVRDM proposed by Yuan and Casasent [105]. The premise

of the SVRDM is to adapt the standard SVM to define the traditional positive and negative

regions of classification in addition to a new rejection region. This adaptation is achieved

by modifying the optimization metric typically used in the SVM to define a single boundary

to one that defines two boundaries. One side of one boundary corresponds to the positive

classification region while the complementary side of the other boundary defines the negative

classification region. The region between these boundaries is considered the rejection region

as samples lying in this area are not well-defined members of the defined labels. To achieve
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rejection for multiple labels using this method, we train a SVRDM for each label where the

label is the positive class and all other labels are collectively the negative class. A testing

sample is assigned the label of the SVRDM for which its membership in the positive region

of that SVRDM is the strongest. Rejection of the sample occurs when the sample does not

belong to the positive region of any of the SVRDMs. The results using this method are

summarized in Table 6.7 where a similar trend with the 1-class SVM is observed though the

classification accuracies have improved.

Scale [pixels] Accuracy [%]

B C I N F R

16 56 55 5

16 52 51 48 7

32 50 51 43 42 11

32 49 47 40 41 40 15

Table 6.7: Average pixel-level classification and rejection (R) accuracies for teratoma images
using SVRDMs over 10 distinct folds with chosen scale indicated for each problem size.

The final method is that of the SVDD [106] whose purpose is very similar to the 1-

class SVM though the optimization method taken differs. Rather than try to maximize the

amount of data captured by the hypersphere, the SVDD attempts to minimize the radius

of the hypersphere that encapsulates a specified proportion of a label’s training data. The

difference, though apparently subtle, can lead to significant differences in the hypersphere

found in the SVDD when compared to the 1-class SVM. Due to their similar nature, we take

the same approach of classification and rejection as we did with the 1-class SVM and present

the results in Table 6.8. The SVDD performance is almost equivalent to the SVRDM though

it does achieve slightly improved rejection while maintaining similar levels of classification

performance.

From these experiments, the difficulty of the rejection task is clear for the teratoma data.

Since the teratoma application is very difficult in any regard due to its highly chaotic nature,
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Scale [pixels] Accuracy [%]

B C I N F R

16 55 57 10

16 53 52 46 15

32 49 51 45 43 18

32 45 48 42 40 42 20

Table 6.8: Average pixel-level classification and rejection (R) accuracies for teratoma images
using SVDDs over 10 distinct folds with chosen scale indicated for each problem size.

we will not claim that rejection is not feasible in other applications. Instead, we emphasize

the lack of clarity in both defined labels and in seemingly unknown tissues that is the result

of the biological nature of the data. Many other rejection approaches exist and we intend to

explore them incrementally, though based on our results, the optimal direction is not clear.



Chapter 7

Discussion, Conclusions, and Future

Work

7.1 Discussion

The overall goal of this work was to create a system for automated delineation and iden-

tification of H&E-stained tissues for digital histopathology. One of the two main guiding

principles was to design and use a vocabulary of features that would mimic those attributes

pathologists use when making decisions. In other words, we were not aiming to design nec-

essarily new features, but rather a set of features uniquely suited to this domain. The other

guiding principle of pixel-level classification is not a novel concept, but is well suited to this

domain and our task. In following both of these guiding principles, a mathematical frame-

work based on local histograms and occlusion models for the analysis of local textures was

formulated. Again, while not wholly novel concepts, their use as a mathematical framework

for histopathology is. As a whole, this algorithm seeks to be maximally effective by propos-

ing a rigorous mathematical foundation with which the knowledge of the pathologist can be

verifiably modeled. Though we have presented an ongoing discussion of our motivations and

solutions, we present here some additional points of interest.

161
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7.1.1 Feature Dimensionality

We now discuss the effectiveness of various features with respect to their dimensionality.

This analysis provides further evidence supporting our guiding principle that a concise and

intelligently guided description can be far more effective than a bulky undirected collection

of descriptors. Figure 7.1 shows a comparison of the results shown in Table 6.3 with an

additional, combined set, consisting of Gabor, LBP and texton features.

Figure 7.1: Comparison of results shown in Table 6.3 with the combined set consisting of
Gabor, LBP and texton features. The blue squares represent the overall average accuracy
across all 5 tissues while the red and green squares represent the minimum and maximum
individual tissue accuracies respectively. All results are given for the best-performing scale
of 32 pixels.
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It is clear that the HV features outperform all other features while using a much smaller

number of features (apart from LBP that is close in number). Furthermore, the simple

combination of available features, as is often done in many machine learning applications,

does not yield a tangible benefit. Based on the intervals of performance, one can infer that

this combined feature set results in either an increased sensitivity of the overall algorithm

or a case of overfitting.

As we discussed before, in spite of the variety of approaches, many algorithms do not

achieve the same level of performance as their pathologist counterparts. In the pursuit of

this performance standard, some researchers take the approach of combining large sets of

relatively undirected features in the hopes of learning some combination of them best suited

to the task at hand. While this approach may be valid in some situations (e.g., unknown

classification problems), we believe it is not appropriate as a first attempt in the majority

of histopathology applications. Rather, we must first learn and use the approach of the

pathologist, i.e., those features that have been demonstrated to be effective and intuitive.

Once this family of expert-guided features have been exhausted, we should then explore

those undirected features.

It is at this limit of well-understood performance that we, as the designers of a com-

putational algorithm, should utilize the exploratory power of machine learning methods for

improvement. Assuming we have matched the pathologist’s level of performance, it is these

purely algorithmic efforts that will take us beyond human performance by exploring rep-

resentations of the data that are not well-understood by humans. However, while we still

pursue the pathologist’s standard of performance in our applications, we believe that this

family of problems can be best served by a sparse but intelligent and robust set of features.
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7.1.2 Noise

A concern in any image classification task is noise, which in histopathology, occurs in a

myriad of common and uncommon ways. Traditional image noise such as white noise, shot

noise, and blurring can be attributed to the quality of the microscope optics and image

sensors. Others sources of noise include variations in aspects of the physical acquisition such

as the surgical procedure and the staining process whose effects are generally large physical

defects and image-level variation, respectively. Since gross defects or image-level variations

are not locally varying, our pixel-level classification approach will not be affected greatly

by them. However, should these noise effects be so great that they truly alter or mask the

identity of tissues and pathologies, a preferred approach is to identify such images as being

of unacceptable quality.

However, noise that has a more local effect can have a negative effect on our algorithm.

In particular, point-wise noise (e.g., white noise) and blurring (e.g., out-of-focus) would be

serious challenges if the description of a pixel was based on the pixel alone. However, since

our algorithm utilizes local descriptions for each pixel, we have some robustness to both

these types of noise. While we have not explicitly quantified the noise present in our data

(e.g., SNR), the relatively smooth (continuous) labellings we have achieved indicate that

such image noise has not yet become a serious source of error.

7.2 Conclusions

Histopathology is a critical component of many clinical and research pathways in medicine.

In particular, the immunohistochemical technique of H&E staining provides extremely de-

tailed presentations of tissues and pathologies with which many important tasks can be

performed. However, this same richness in detail means that only highly trained experts,

i.e., pathologists, can properly perform these tasks. The constant need for histopatholog-
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ical analysis results in a significant burden of time and effort on pathologists that can in

turn lead to inefficiency, inconsistency, and inaccuracy in their analysis. To aid patholo-

gists, engineers design computational algorithms that partially or completely address some

of these histopathology tasks. This thesis proposes such an algorithm whose purpose is the

automated identification and delineation of tissues and pathologies in H&E stained images,

a task fundamental to many histopathology applications. The algorithm’s theoretical and

practical foundations not only help justify our approach, but also allow us to propose a scope

much greater than those of other works in this area.

We began with our mathematical framework for describing certain types of local textures,

such as the ones found in H&E stained images, for the purpose of classification. This frame-

work defines local histograms as a unit of description and occlusion models as a method for

generating increasingly more complex textures from simpler ones. We then derived relation-

ships between the local histograms of complex textures and those of the simpler textures

used to generate them via occlusion models. In addition to the theoretical contributions,

the framework also provides methods for local histogram computation and occlusion models

formulation. However, the potential power of local histograms is limited by their significant

computational requirements, specifically, the large storage requirements. We concluded our

mathematical framework by comparing it to the related works of mathematical morphol-

ogy and the Dead Leaves Model where various similarities were shown, but fundamental

differences in assumptions and applicability distinguish those works from our own.

Given our mathematical framework, we next presented algorithmic details beginning

with a methodology for the creation of an expert-guided feature set that, for histopathology

applications, we call the HV. The primary goal of the HV is to not only take advantage of

the knowledge and experience of pathologists, but also improve the engineer’s understanding

of how the designed algorithm utilizes the features used. Without this understanding, we

would be ill-equipped to understand the reasons for both positive and negative performance
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from a feature perspective, and thus, find it harder to identify areas of possible improvement.

Furthermore, these HV feature sets can be either specific or general in their applicability

depending on what application they are derived from. For our experiments, we derive a HV

features set for the very general application of tissue identification in teratomas and apply

it to an additional application of active colitis detection.

The final portion of algorithm addressed how we achieve simultaneous identification and

delineation through pixel-level classification. To avoid the exceedingly difficult, if not impos-

sible, task of unsupervised segmentation of tissues and pathologies necessary for straightfor-

ward tissue identification, we classify each individual pixel based on it and its neighboring

pixels. The use of a neighborhood or local features reflects the fact that a tissue or pathol-

ogy is maximally stable in local appearance at certain scales. The previously defined HV

features are formulated as local features to support out pixel-level classification approach.

Through experimentation, we attempted to learn the ideal scales for a variety of tissues and

pathologies.

We then applied our algorithm (utilizing our teratoma-based HV feature set) to two very

different applications: detection of active colitis (a clinical task) and tissue identification in

teratomas (a research task). Though these applications vary both in goal and scope, the same

algorithm with minor modifications achieved more than reasonable performance for both of

them. We compared our HV feature set’s performance to those of some common, though

general, feature sets used in other histopathology works and segmentation in general. In these

comparisons, our more concise HV feature set significantly outperformed the other features,

demonstrating the power of expert-guidance and the difficulty of this family of problems.

Based on these results, we believe that our approach warrants further development to not

only improve performance, but also to expand single-algorithm applicability.

However, while our final goal is the identification and delineation of labels of interest, we

can only claim to have achieved promising success with identification while the delineation
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task requires additional investigation. Specifically, given a particular application, portions of

an image may need to be labeled as background or be rejected since they do not belong to the

defined set of labels of interest. Thus, the algorithm needs the ability to reject these undesired

samples, a task that is extremely difficult in any application. Our attempts at achieving this

rejection met with varying types and degrees of success though no clear conclusion could

be made. Fundamentally, the challenge of rejection in this application arises from a lack of

data and the need to reject both structured and unstructured labels simultaneously.

This thesis recognizes and utilizes the simple fact that the general family of histopathology

applications are based on tasks requiring highly specialized knowledge. To accurately and

faithfully computationally model this knowledge requires both theoretical justification and

verification of said computational modeling. Doing so maximizes our understanding of the

algorithm that will be created, allowing us to not only better analyze its own performance,

but also better identify the ways in which to improve upon it. Experimental results from

different applications demonstrate promising performance though some aspects of our goal

require additional research.

7.3 Future Work

7.3.1 Existing Algorithm

The work presented in this thesis represents the initial efforts in developing a highly capable

and intuitive algorithm for identification and delineation of tissues and pathologies in H&E

stained images. Our experimental results on two different applications encourages further

research along many different directions including improvement of all aspect of the algorithm

beginning with the mathematical framework.inning with the mathematical framework.

Our mathematical framework, though rigorous in its analysis, is lacking in some areas.

First, methods for local histogram computation must be improved so that we can apply
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our framework directly. Given the current state of computing hardware, improvements to

software are the only reasonable path in the short-term. Storage is the primary limitation

both as a strict constraint on the resolution of our local histograms and a computational

hindrance. Compression of local histograms or implicit extraction of desired metrics from

local histograms can reduce this storage constraint. In terms of computation, data and

task parallelism are applicable given our definition of local histograms, allowing us to take

advantage of distributed computing platforms. Though hardware will improve and relax

these constraints in time, improvements in both computation and storage approaches can

yield short-term gains.

We can also further our occlusion models by using them in a truly generative manner

to create synthetic textures. The discriminative power of our framework has been shown

through both theory and experimentation, but by demonstrating generative capability, we

will “close the loop” between them. The challenge here is to not only model the simple

textures that will represent basic components (e.g., nuclei and cytoplasm), but also deter-

mine the occlusion models that will accurately yield the complex textures of tissues and

pathologies.

The HV methodology is simple enough that it does not require further improvement, but

the features derived from its application can be improved. Specifically, our component seg-

mentation algorithm should be made more robust to changes in appearance due to staining

variations, exact magnification, and imaging conditions. Various HV features can be im-

proved through the investigation of more appropriate and effective neighborhoods. New HV

features can be extracted by applying the methodology to other applications, both clinical

and research oriented.

We will continue to research rejection of unwanted labels in the context of H&E stained

histopathology images. In particular, we plan to familiarize ourselves with the relevant lit-

erature in other fields such as automatic target recognition, biometrics, and image quality
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assessment where rejection has long been needed and explored. The challenge of accom-

plishing rejection in a general and robust fashion lies in determining a rejection method that

properly addresses the different natures of labels of non-interest and truly undefined labels.

7.3.2 Hierarchical Classification

Hierarchical classification is a new direction that could be quite powerful in not only im-

proving the algorithm’s performance, but also in expanding its applicability. As discussed in

Chapter 1, sub-groups of the tissues and pathologies will demonstrate differing levels of sim-

ilarity, one of the primary challenges of discriminating between the individual labels. When

using a standard approach where all individual labels are identified simultaneously, members

of a sub-group are often confused with each other because their perceived separation is small

relative to the separation between the various sub-groups. To mitigate this type of error,

we propose a divide-and-conquer approach where we incrementally divide a large group of

labels into smaller and smaller sub-groups and update an assigned label in a similar fashion.

The composition of these sub-groups should maximize the dissimilarity between them, and

as a result, maximize the accuracy of classifying into these sub-groups. Each subsequent

level of sub-group division corresponds to an increasingly fine classification, the final level

being into the finest (smallest) sub-groups.

However, the choice of these sub-groups at any level is entirely dependent on the features

used for classification at that level. For example, using color will lead to sub-groups that are

similar in color. Our HV has provided an initial indication of the importance of features to

the various labels and using this knowledge we could specify some intuitive division of labels.

However, the empirical nature of the entire algorithm would require us to use some sort of

feature selection in addition to our expert-guidance. After all these design choices are made,

we would have a hierarchy where each subsequent level would refine the label assigned to

a test sample using the optimal grouping of labels based on the optimal set of features for
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that level. To determine this optimal configuration we could use an optimization approach

though the challenges will be search space size, convergence issues, and expectations on final

performance.



Appendix A

Proofs

A.1 Proof of Theorem 1

For (a), replacing x′ with −x′, and substituting the relation δy(f(x− x′)) = 1f−1{y}(x− x′)

into (4.1) yields:

(LHwf)(x, y) =
∑

x′∈X

w(x′)δy(f(x+ x′))

=
∑

x′∈X

w(−x′)1f−1{y}(x− x′)

=
∑

x′∈X

w̃(x′)1f−1{y}(x− x′)

= (w̃ ∗ 1f−1{y})(x). (A.1)

For (b), the definition of δ0 gives:

[(δ0 ⊗ ω) ∗ LHwf ](x, y) =
∑

(x′,y′)∈X×Y

(δ0 ⊗ ω)(x′, y′)(LHwf)(x− x′, y − y′)

=
∑

y′∈Y

ω(y′)(LHwf)(x, y − y′). (A.2)
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Substituting (A.1) into (A.2) and using (4.4), gives our result:

[(δ0 ⊗ ω) ∗ LHwf ](x, y) =
∑

y′∈Y

ω(y′)(w̃ ∗ 1f−1{y−y′})(x)

=
∑

y′∈Y

ω(y′)
∑

x′∈X

w̃(x′)1f−1{y−y′}(x− x′)

=
∑

(x′,y′)∈X×Y

(w̃ ⊗ ω)(x′, y′)1f(x− x′, y − y′)

= [(w̃ ⊗ ω) ∗ 1f ](x, y).

A.2 Proof of Proposition 2

For any w ∈ ℓ(X ,R) and f ∈ ℓ(X ,Y):

(a) Let (x, y) ∈ X ×Y . By exchanging sums and noting that for any fixed x′ ∈ X , f(x+x′)

is equal to one and only one y ∈ Y , it follows that

∑

y∈Y

(LHwf)(x, y) =
∑

y∈Y

∑

x′∈X

w(x′)δy(f(x+ x′))

=
∑

x′∈X

w(x′)

= 1.

(b) Let (x′, y) ∈ X × Y . By definition of the local histogram,

(LHwT
xf)(x′, y) =

∑

x′′∈X

w(x′′)δy(T
xf(x′ + x′′))

= (LHwf)(x
′ − x, y)

= (T(x,0)LHwf)(x
′, y),

obtaining the result.
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(c) For any (x, y′) ∈ X × Y , noting that δy′((f + y)(x+ x′)) = δy′−y(f(x+ x′)) yields:

[LHw(f + y)](x, y′) =
∑

x′∈X

w(x′)δy′−y(f(x+ x′))

= (LHwf)(x, y
′ − y)

= (T (0,y)LHwf)(x, y
′).

(d) Let (x, y) ∈ X × Y and q ∈ ℓ(Y ,Y ′). An exchange of sums and the observation that

for any fixed y′ ∈ Y ′, δy′(q(f(x+x
′))) = δy(f(x+x

′)) for all y ∈ Y such that q(y) = y′,

allows us to show that:

[LHw(q ◦ f)](x, y
′) =

∑

x′∈X

w(x′)δy′(q(f(x+ x′)))

=
∑

x′∈X

∑

y∈Y
q(y)=y′

w(x′)δy(f(x+ x′))

=
∑

y∈Y
q(y)=y′

(LHwf)(x, y).

A.3 Proof of Theorem 3

The expected value of the local histogram (4.1) of a composite image (4.3) is:

EΦ(LHwoccΦ{fn}
N−1
n=0 )(x, y) =

∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)
∑

x′∈X

w(x′)δy((occϕ{fn}
N−1
n=0 )(x+ x′)). (A.3)

For any fixed ϕ, x, and x′, we have ϕ(x+x′) = n for exactly one n. Thus, for any fixed x, x′

and y, we can split a sum of 1ϕ(x+ x′, n)δy(fn(x+ x′)) over all n into one summand where
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n = ϕ(x+ x′) and the remaining N − 1 summands for which n 6= ϕ(x+ x′):

N−1
∑

n=0

1ϕ(x+ x′, n)δy(fn(x+ x′)) = (1)δy(fϕ(x+x′)(x+ x′)) +
∑

n 6=ϕ(x+x′)

(0)δy(fn(x+ x′))

= δy((occϕ{fn}
N−1
n=0 )(x+ x′)), (A.4)

where the final equality follows immediately from (4.3). Substituting (A.4) into (A.3) and

using (4.5) yields:

EΦ(LHwoccΦ{fn}
N−1
n=0 )(x, y) =

∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)
∑

x′∈X

w(x′)

(N−1
∑

n=0

1ϕ(x+ x′, n)δy(fn(x+ x′))

)

=
N−1
∑

n=0

∑

x′∈X

w(x′)δy(fn(x+ x′))
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)1ϕ(x+ x′, n)

=
N−1
∑

n=0

∑

x′∈X

w(x′)δy(fn(x+ x′))1Φ(x+ x′, n). (A.5)

Rewriting (A.5) in terms of ε :=
N−1
∑

n=0

∑

x′∈X

w(x′)δy(fn(x + x′))[1Φ(x + x′, n) − 1Φ(x, n)] gives

our first claim (4.6):

EΦ(LHwoccΦ{fn}
N−1
n=0 )(x, y) =

N−1
∑

n=0

∑

x′∈X

w(x′)δy(fn(x+ x′))1Φ(x, n) + ε

=

N−1
∑

n=0

1Φ(x, n)
∑

x′∈X

w(x′)δy(fn(x+ x′)) + ε

=

N−1
∑

n=0

1Φ(x, n)(LHwfn)(x, y) + ε.
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For the second claim, the fact that |δy(fn(x+ x′))| ≤ 1 and the triangle inequality bound on

ε leads to:

|ε| =

∣

∣

∣

∣

∣

N−1
∑

n=0

∑

x′∈X

w(x′)δy(fn(x+ x′))[1Φ(x+ x′, n)− 1Φ(x, n)]

∣

∣

∣

∣

∣

≤
N−1
∑

n=0

∑

x′∈X

w(x′)|1Φ(x+ x′, n)− 1Φ(x, n)|.

Finally, to prove our third claim (4.7), note that for any fixed x ∈ X , (4.5) gives:

N−1
∑

n=0

1Φ(x, n) =
N−1
∑

n=0

∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)1ϕ(x, n) =
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)
N−1
∑

n=0











1, ϕ(x) = n,

0, ϕ(x) 6= n.
(A.6)

Since as previously noted we have ϕ(x) = n for exactly one n, (A.6) becomes:

N−1
∑

n=0

1Φ(x, n) =
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ) = 1.

A.4 Proof of Theorem 4

If Φ is flat, 1Φ(x + x′, n) = 1Φ(x, n) for all x, x′ ∈ X . The error bound in Theorem 3 then

gives ε = 0. Denoting 1Φ(x, n) as λn in (4.7) thus yields our claim.

A.5 Proof of Theorem 5

We begin by placing an equivalence relation ∼ on ℓ(X ,ZN), letting ϕ′ ∼ ϕ when there

exists some x ∈ X such that ϕ′ = Txϕ. Letting R denote a set of representatives from the

corresponding equivalence classes, we have that for all ϕ′ ∈ ℓ(X ,ZN), there exists a unique
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ϕ ∈ R such that ϕ′ = Txϕ. As such,

1Φ =
∑

ϕ∈ℓ(X ,ZN )

PΦ(ϕ)1ϕ =
∑

ϕ∈R

∑

ϕ′∼ϕ

PΦ(ϕ
′)1ϕ′. (A.7)

Now, fix any ϕ ∈ R, and consider the subgroup Wϕ = {x ∈ X : Txϕ = ϕ} of the finite

abelian group X . Letting X /Wϕ denote a fixed set of coset representatives of X with

respect to Wϕ, we claim that β : X /Wϕ → {ϕ′ : ϕ′ ∼ ϕ}, β(x) := Txϕ is a bijection.

Indeed, to show β is one-to-one, note that if Txϕ = β(x) = β(x′) = Tx
′

ϕ, then Tx−x
′

ϕ =

ϕ, implying x − x′ ∈ Wϕ; since x and x′ are both coset representatives of X /Wϕ, this is a

contradiction unless x = x′. Meanwhile, to show β is onto, take any ϕ′ ∼ ϕ, and consider a

corresponding x′ such that ϕ′ = Tx
′

ϕ. Taking the unique x ∈ X /Wϕ and w ∈ Wϕ such that

x′ = x+ w, we have: ϕ′ = Tx
′

ϕ = Tx+wϕ = Tx(Twϕ) = Txϕ = β(x).

Invoking this claim, along with the assumed translation-invariance of Φ, yields:

∑

ϕ′∼ϕ

PΦ(ϕ
′)1ϕ′ =

∑

x∈X/Wϕ

PΦ(β(x))1β(x)

=
∑

x∈X/Wϕ

PΦ(T
xϕ)1Txϕ

=
∑

x∈X/Wϕ

PΦ(ϕ)1Txϕ

= PΦ(ϕ)
∑

x∈X/Wϕ

1Txϕ. (A.8)

Again, writing any x′ ∈ X as x′ = x+ w, where x ∈ X /Wϕ and w ∈ Wϕ, gives:

∑

x′∈X

1Tx′ϕ =
∑

x∈X/Wϕ

∑

w∈Wϕ

1Tx+wϕ =

(

∑

w∈Wϕ

1

)

∑

x∈X/Wϕ

1Txϕ = |Wϕ|
∑

x∈X/Wϕ

1Txϕ. (A.9)
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Substituting (A.9) into (A.8) gives:

∑

ϕ′∼ϕ

PΦ(ϕ
′)1ϕ′ = PΦ(ϕ)

∑

x∈X/Wϕ

1Txϕ =
PΦ(ϕ)

|Wϕ|

∑

x′∈X

1Tx′ϕ. (A.10)

Since
∑

x′∈X

1Tx′ϕ(x, n) =
∑

x′∈X











1, ϕ(x− x′) = n

0, ϕ(x− x′) 6= n











=
∣

∣{x′ ∈ X : ϕ(x′) = n}
∣

∣ = |ϕ−1{n}|,

substituting (A.10) into (A.7) gives:

1Φ(x, n) =
∑

ϕ∈R

∑

ϕ′∼ϕ

PΦ(ϕ
′)1ϕ′(x, n) =

∑

ϕ∈R

PΦ(ϕ)

|Wϕ|

∑

x′∈X

1Tx′ϕ(x, n) =
∑

ϕ∈R

PΦ(ϕ)

|Wϕ|
|ϕ−1{n}|,

implying Φ is flat, since the value of 1Φ(x, n) depends only on n and is independent of x.

A.6 Proof of Theorem 6

We first show that (4.12) defines a probability density function, namely that values of PΦ⋆Ψ(σ)

over all σ in ℓ(X ,Z2) sum to 1. Since PΦ is a probability density function by assumption,

we have:

1 =
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ). (A.11)

Similarly, for any fixed x ∈ X , we have:

1 =
∑

ψx∈ℓ(X ,Z2)

PΨ(ψx), (A.12)

where the subscript “x” on ψ indicates that this particular ψ is intended to expand ϕ at the

particular point x as opposed to at some other point. Taking the product of (A.11) with the
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product of (A.12) over all x yields:

1 = 1(1)|X | =
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)
∏

x∈X

∑

ψx∈ℓ(X ,Z2)

PΨ(ψx) =
∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

PΦ(ϕ)
∏

x∈X

PΨ(ψx),

(A.13)

where the final quantity in (A.13) contains all of the cross terms resulting from distributing

the product over all sums of the form (A.12). Now, since for each choice of ϕ and {ψx}x∈X

there is exactly one resulting σ = ϕ ⋆ {ψx}x∈X , we can rewrite (A.13) in terms of the

definition (4.12) of PΦ⋆Ψ, obtaining our claim:

1 =
∑

σ∈ℓ(X ,Z2)

∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

ϕ⋆{ψx}x∈X=σ

PΦ(ϕ)
∏

x∈X

PΨ(ψx) =
∑

σ∈ℓ(X ,Z2)

PΦ⋆Ψ(σ).

Thus, (4.12) indeed defines a probability density function, as claimed.

We next show that the occlusion model Φ ⋆Ψ is translation-invariant, if Φ is translation-

invariant. To do this, we claim that if Tx̃σ = ϕ ⋆ {ψx}x∈X then σ = (T−x̃ϕ) ⋆ {ψx+x̃}x∈X . To

see this claim, note that

σ(x− x̃) = (Tx̃σ)(x) = (ϕ ⋆ {ψx′}x′∈X )(x) = 1

if and only if there exists some x′, x′′ in X such that x = x′+x′′, ϕ(x′) = 1, and ψx′(x
′′) = 1.

Letting x̂ = x − x̃, we thus have that σ(x̂) = 1 if and only if x̂ = (x′ − x̃) + x′′, where

(T−x̃ϕ)(x′ − x̃) = ϕ(x′ − x̃ + x̃) = ϕ(x′) = 1 and ψ(x′−x̃)+x̃(x
′′) = ψx′(x

′′) = 1, implying

σ = (T−x̃ϕ) ⋆ {ψx+x̃}x∈X , as claimed. Having the claim, (4.12) implies:

PΦ⋆Ψ(T
x̃σ) =

∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

ϕ⋆{ψx}x∈X=Tx̃σ

PΦ(ϕ)
∏

x∈X

PΨ(ψx) =
∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

(T−x̃ϕ)⋆{ψx+x̃}x∈X=σ

PΦ(ϕ)
∏

x∈X

PΨ(ψx).
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To continue, we make the change of variables ϕ′ := T−x̃ϕ and ψ′
x := ψx+x̃:

PΦ⋆Ψ(T
x̃σ) =

∑

ϕ′∈ℓ(X ,Z2)
{ψ′
x}x∈X∈[ℓ(X ,Z2)]X

(ϕ′)⋆{ψ′
x}x∈X=σ

PΦ(T
x̃ϕ′)

∏

x∈X

PΨ(ψ
′
x−x̃).

Since Φ is translation-invariant and
∏

x∈X

PΨ(ψ
′
x−x̃) =

∏

x∈X

PΨ(ψ
′
x), we have:

PΦ⋆Ψ(T
x̃σ) =

∑

ϕ′∈ℓ(X ,Z2)
{ψ′
x}x∈X∈[ℓ(X ,Z2)]X

(ϕ′)⋆{ψ′
x}x∈X=σ

PΦ(ϕ
′)
∏

x∈X

PΨ(ψ
′
x) = PΦ⋆Ψ(σ),

and so Φ ⋆Ψ is indeed translation-invariant (4.10), as claimed.

For our final claim, we assume that Φ and Ψ are effectively disjoint (4.13) and that either

Φ or Ψ is flat. To do so, it is helpful to characterize the flatness of an arbitrary occlusion

model Φ from X to Z2 in terms of the corresponding function Φ :=
∑

ϕ∈ℓ(X ,Z2)
PΦ(ϕ)ϕ.

Indeed, for any ϕ : X → Z2, (4.4) may be rewritten as 1ϕ(x, 1) = ϕ(x) and so:

1Φ(x, 1) =
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)1ϕ(x, 1) =
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)ϕ(x) = Φ(x). (A.14)

In light of (A.14), we claim that Φ is flat if and only if Φ is constant. Indeed, if Φ is

flat, then there exists λ1 such that Φ(x) = 1Φ(x, 1) = λ1 for all x ∈ X . Conversely, if Φ(x)

is constant, then there exists λ1 such that 1Φ(x, 1) = Φ(x) = λ1 for all x ∈ X ; by (4.7), this

further implies that 1Φ(x, 0) = 1− 1Φ(x, 1) = 1− λ1 for all x ∈ X and so Φ is flat.

Having this claim, we show that Φ ⋆ Ψ is flat by showing that Φ ⋆Ψ is constant. To do

this, we show that if Φ and Ψ are effectively disjoint then Φ ⋆Ψ = Φ ∗Ψ where “∗” denotes
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standard convolution over X . According to the definition of Φ ⋆Ψ (4.12) we have:

Φ ⋆Ψ =
∑

σ∈ℓ(X ,Z2)

PΦ⋆Ψ(σ)σ

=
∑

σ∈ℓ(X ,Z2)

∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

ϕ⋆{ψx}x∈X=σ

PΦ(ϕ)

(

∏

x∈X

PΨ(ψx)

)

(ϕ ⋆ {ψx}x∈X ). (A.15)

Since any particular choice of ϕ and {ψx}x∈X produces a unique σ via ⋆ we can simplify (A.15)

to

Φ ⋆Ψ =
∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

PΦ(ϕ)

(

∏

x∈X

PΨ(ψx)

)

(ϕ ⋆ {ψx}x∈X ). (A.16)

Moreover, since Φ and Ψ are effectively disjoint (4.13) we have ϕ ⋆ {ψx}x∈X =
∑

x′∈X
ϕ(x′)=1

Tx
′

ψx′

meaning (A.16) becomes:

Φ ⋆Ψ =
∑

ϕ∈ℓ(X ,Z2)
{ψx}x∈X∈[ℓ(X ,Z2)]X

PΦ(ϕ)

(

∏

x∈X

PΨ(ψx)

)(

∑

x′∈X
ϕ(x′)=1

Tx
′

ψx′

)

=
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)
∑

x′∈X
ϕ(x′)=1

Tx
′

[

∑

{ψx}x∈X∈[ℓ(X ,Z2)]X

(

∏

x∈X

PΨ(ψx)

)

ψx′

]

. (A.17)

Now, for any fixed x′ ∈ X such that ϕ(x′) = 1, we factor the corresponding innermost sum

in (A.17) into a product of |X | distinct sums—one for each x ∈ X—to obtain:

∑

{ψx}x∈X∈[ℓ(X ,Z2)]X

(

∏

x∈X

PΨ(ψx)

)

ψx′ =

[

∏

x 6=x′

(

∑

ψx∈ℓ(X ,Z2)

PΨ(ψx)

)]

∑

ψx′∈ℓ(X ,Z2)

PΨ(ψx′)ψx′

=

(

∏

x 6=x′

1

)

Ψ

= Ψ. (A.18)
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Substituting (A.18) into (A.17) then gives:

Φ ⋆Ψ =
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)
∑

x′∈X
ϕ(x′)=1

Tx
′

Ψ

=
∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)

(

∑

x′∈X
ϕ(x′)=1

δx′

)

∗Ψ

=

(

∑

ϕ∈ℓ(X ,Z2)

PΦ(ϕ)ϕ

)

∗Ψ

= Φ ∗Ψ.

Thus, the effective disjointness of Φ and Ψ indeed implies Φ ⋆Ψ = Φ ∗ Ψ. As such, if we

further assume that either Φ or Ψ is flat, then either Φ or Ψ is constant, implying in either

case that Φ ⋆Ψ is constant and so Φ ⋆Ψ is flat.

A.7 Proof of Theorem 7

To show that (4.15) defines a probability density function on ℓ(X ,ZNϕ+Nψ), note that:

1 = (1)(1)(1)

=

(

∑

ϕ∈ℓ(X ,ZNϕ )

PΦ(ϕ)

)(

∑

ψ∈ℓ(X ,ZNψ )

PΨ(ψ)

)(

∑

σ∈ℓ(X ,Z2)

PΣ(σ)

)

=
∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2)

PΦ(ϕ)PΨ(ψ)PΣ(σ). (A.19)
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Noting that for each fixed ϕ, ψ, and σ, there exists exactly one υ ∈ ℓ(X ,ZNϕ+Nψ) such that

ϕ#σψ = υ, (A.19) becomes:

1 =
∑

υ∈ℓ(X ,ZNϕ+Nψ
)

∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2)
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ) =
∑

υ∈ℓ(X ,ZNϕ+Nψ
)

PΦ#ΣΨ(υ),

as claimed. For the second conclusion, assume that Φ, Ψ, and Σ are flat. Our goal is to

show that Φ#ΣΨ is flat (4.8), meaning that for any n ∈ ZNϕ+Nψ , we want to show that there

exists a scalar λn such that:

∑

υ∈ℓ(X ,ZNϕ+Nψ
)

υ(x)=n

PΦ#ΣΨ(υ) = λn (A.20)

for all x ∈ X . To see this, note that for any such x and n, we have:

∑

υ∈ℓ(X ,ZNϕ+Nψ
)

υ(x)=n

PΦ#ΣΨ(υ) =
∑

υ∈ℓ(X ,ZNϕ+Nψ
)

υ(x)=n

∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2)
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=
∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2)
(ϕ#σψ)(x)=n

PΦ(ϕ)PΨ(ψ)PΣ(σ). (A.21)
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Now, in the special case where n = 0, . . . , Nϕ − 1, (4.14) gives that (ϕ#σψ)(x) = n if and

only if ϕ(x) = n and σ(x) = 0. As such, in this case (A.21) becomes:

∑

υ∈ℓ(X ,ZNϕ+Nψ
)

υ(x)=n

PΦ#ΣΨ(υ) =
∑

ϕ∈ℓ(X ,ZNϕ ),ϕ(x)=n

ψ∈ℓ(X ,ZNψ )

σ∈ℓ(X ,Z2),σ(x)=0

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=

(

∑

ϕ∈ℓ(X ,ZNϕ )

ϕ(x)=n

PΦ(ϕ)

)(

∑

ψ∈ℓ(X ,ZNψ )

PΨ(ψ)

)(

∑

σ∈ℓ(X ,Z2)
σ(x)=0

PΣ(σ)

)

= λΦ,nλΣ,0. (A.22)

If, on the other hand n = Nϕ, . . . , Nϕ +Nψ − 1 then (4.14) gives that (ϕ#σψ)(x) = n if and

only if ψ(x) = n−Nϕ and σ(x) = 1. In this case, (A.21) becomes:

∑

υ∈ℓ(X ,ZNϕ+Nψ
)

υ(x)=n

PΦ#ΣΨ(υ) =
∑

ϕ∈ℓ(X ,ZNϕ )

ψ∈ℓ(X ,ZNψ ),ψ(x)=n−Nϕ

σ∈ℓ(X ,Z2),σ(x)=1

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=

(

∑

ϕ∈ℓ(X ,ZNϕ )

PΦ(ϕ)

)(

∑

ψ∈ℓ(X ,ZNψ )

ψ(x)=n−Nϕ

PΨ(ψ)

)(

∑

σ∈ℓ(X ,Z2)
σ(x)=1

PΣ(σ)

)

= λΨ,n−NϕλΣ,1. (A.23)

Thus, for any x ∈ X we either have (A.22) or (A.23) meaning Φ#ΣΨ is flat (A.20), as

claimed.
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