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Abstract

Cyber-physical systems (CPS) integrate sensing, computing, communication and actu-

ation capabilities to monitor and control operations in the physical environment. A key

requirement of such systems is the need to provide predictable real-time performance: the

timing correctness of the system should be analyzable at design time with a quantitative

metric and guaranteed at runtime with high assurance. This requirement of predictability

is particularly important for safety-critical domains such as automobiles, aerospace, defense,

manufacturing and medical devices.

The work in this dissertation focuses on the challenges arising from the use of modern

multi-core platforms in CPS. Even as of today, multi-core platforms are rarely used in

safety-critical applications primarily due to the temporal interference caused by contention

on various resources shared among processor cores, such as caches, memory buses, and I/O

devices. Such interference is hard to predict and can significantly increase task execution

time, e.g., up to 12× on commodity quad-core platforms. To address the problem of ensuring

timing predictability on multi-core platforms, we develop novel analytical and systems

techniques in this dissertation. Our proposed techniques theoretically bound temporal

interference that tasks may suffer from when accessing shared resources. Our techniques also

involve software primitives and algorithms for real-time operating systems and hypervisors,

which significantly reduce the degree of the temporal interference. Specifically, we tackle the

issues of cache and memory contention, locking and synchronization, interrupt handling, and

access control for computational accelerators such as general-purpose graphics processing

units (GPGPUs), all of which are crucial to achieving predictable real-time performance on

a modern multi-core platform. Our solutions are readily applicable to commodity multi-core

platforms, and can be used not only for developing new systems but also migrating existing

applications from single-core to multi-core platforms.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are increasingly used in safety-critical application domains

including automotive, aerospace, defense, manufacturing and medical devices. Since many

CPS directly impact human safety and the environment, they must sense, process and

react to external events with stringent timing requirements. Any transient violation of the

timing requirements may lead to system failures, resulting in catastrophic consequences.

Hence, a cyber-physical system for safety-critical applications should provide predictable

real-time performance. The timing correctness of the system should be analyzable at design

time with a quantitative metric and be guaranteed at runtime with high assurance.

The conventional approach to developing a system for safety-critical applications is to use

single-core processor platforms. This is because, although ensuring real-time predictability

is a challenging issue, existing theoretical foundations and real-time operating systems

(OSs) make it achievable on only single-core platforms. Unfortunately, these approaches

have limitations in meeting the ever-increasing computational demands for additional

functionalities in safety-critical applications. For example, in the automotive domain, some

recent cars such as Lexus LS430 already have more than a hundred of processors each [1],

and adding advanced automotive technologies like adaptive cruise control, pedestrian

detection and collision avoidance is becoming harder due to space and cost requirements.

Modern multi-core processors are therefore receiving much attention as promising
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candidates for the development of next-generation CPS for safety-critical applications.

The use of multi-core platforms gives an opportunity to consolidate multiple applications

onto a single hardware platform. Such consolidation leads to a significant reduction in

space requirements while also reducing installation, management and production costs

by reducing the number of processor chips and wiring harnesses among them. However,

providing real-time predictability on a multi-core platform is substantially different from

doing so on a single-core platform. Tasks executing in parallel on different cores may

contend with each other to access shared resources, e.g., a last-level cache, main memory,

and I/O devices. This contention causes temporal interference among tasks and may result

in significant delay, e.g., up to 12× increase in task execution time [2], which can easily

jeopardize the timing predictability of the entire system. For this reason, government

regulations and certification standards for safety-critical systems, e.g., DO-178C by the U.S.

Federal Aviation Administration (FAA), still do not advise the use of multi-core platforms.

In this dissertation, we focus on the challenges arising from the use of modern multi-core

platforms in CPS. Specifically, we develop novel analytical and systems techniques that

address the predictability issues associated with shared resources in multi-core platforms.

Our techniques theoretically bound temporal interference among tasks in the presence

of contention on the shared resources. Also, our techniques reduce the interference by

complementary software techniques and algorithms for real-time OSs and virtualization.

With these techniques, we provide predictable real-time performance on accessing each type

of shared resource, e.g., caches, main memory, sensor, I/O devices and GPUs, and ensures

the predictability of the entire system in an efficient way. The main thesis supported by

this dissertation is as follows:

Thesis Statement: Novel primitives in systems software combined with analyt-

ical techniques yield timing predictability on a multi-core platform by bounding

and significantly reducing temporal interference from shared platform resources.

The remainder of this chapter provides context for this dissertation. First, we describe
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the scope of this work. Secondly, we discuss the challenges associated with each type of

shared resource. Thirdly, we present the contributions of this dissertation, along with

forward references to later chapters. Lastly, we describe the organization of this dissertation.

1.1 Scope of This Work

We give a brief description of shared resources and task execution environments considered

in this dissertation. The detailed system model used in this work will be described in

Chapter 3.

1.1.1 Multi-Core Platform and Shared Resources

The work in this dissertation considers a computing platform equipped with a single-chip,

homogeneous multi-core processor. All the cores of the processor are identical to each other,

in terms of clock speed, instruction execution performance, and access time to platform

resources. This corresponds to many of today’s multi-core processors, such as Intel Core

i7, AMD FX, ARM Cortex-A15, and NXP QorIQ processors. Although there also exist

other types of multi-core processors, such as IBM Cell and ARM big.Little architectures,

we focus on the former type of processors in this work.

The computing platform has various resources shared among all processor cores, as

illustrated in Figure 1.1. We categorize those shared resources into the following three

types:

• Concurrent Resources: Shared resources that allow concurrent access from mul-

tiple tasks are referred to as concurrent resources. The resources in the multi-core

memory hierarchy, such as a last-level cache, a memory controller, and DRAM, belong

to this type.

• Mutually-Exclusive Resources: Shared resources that require no more than one

task to access them at a time are referred to as mutually-exclusive resources. Any

access to mutually-exclusive resources should obey the requirement of mutual exclusion
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Figure 1.1: Multi-core platform and shared resources

to prevent data corruption and/or unexpected behavior. I/O devices, such as sensors,

actuators and network interfaces, typically belong to this category. Also, shared data

regions are considered as mutually-exclusive resources.

• Computational Accelerators: Shared resources that supplement the computa-

tional capacity are referred to as computational accelerators. GPGPUs (general-

purpose graphics processing units), DSPs (digital signal processors), and FPGAs

(field-programmable gate arrays) fall into this category, but in this work, we specifically

focus on GPGPUs. In the rest of this dissertation, we will use the terms “GPGPU”

and “GPU” interchangeably.

1.1.2 Tasks and Task Execution Environments

CPS applications are typically composed of a set of recurrent tasks with timing constraints.

Hence, we consider the sporadic taskmodel [3] to represent CPS applications in an analyzable

way. Under the sporadic task model, each task repeatedly releases a workload, called a

job, with a minimum time interval. The response time of a task is the time duration from

the release of a job of the task to the completion of the job execution. Each task has a

timing constraint, called a relative deadline, and the timing constraint of a task is deemed

to be satisfied if the worst-case response time of the task is smaller than or equal to its

relative deadline. A task is called schedulable if it satisfies its timing constraint. A set of

tasks (taskset) is schedulable if all tasks in the set satisfy their timing constraints.
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Figure 1.2: Task execution environments and scheduling structures

Task execution environments considered in this work fall into two categories: native and

virtualized environments. In a native environment, the system runs an OS that schedules

tasks on physical CPU cores (PCPUs)1, as shown in Figure 1.2(a). This is referred to as

a non-hierarchical scheduling structure. In a virtualized environment, the system runs a

hypervisor providing a two-level hierarchical scheduling structure as shown in Figure 1.2(b).

The hypervisor hosts multiple guest virtual machines (VMs), each of which has one or

more virtual CPUs (VCPUs). The tasks of a VM are scheduled on the VCPUs of that

VM by the guest OS. Each VCPU is a scheduling entity to the hypervisor, meaning that

the hypervisor schedules VCPUs on PCPUs. Each VCPU has an execution budget and a

budget replenishment period, and the tasks of a VCPU can only execute when the VCPU

has spare budget. The VCPU budget replenishment policy used in the system, such as a

periodic server [4], a deferrable server [5] and a sporadic server [6], determines when and

how to refill the budget of VCPUs. The characteristics of these policies will be described in

Section 3.

There are two approaches to schedule tasks on multiple processing cores: partitioned

and global. Partitioned scheduling statically assigns each task to a core and always executes

the task on that core. Under partitioned scheduling, finding an optimal task allocation

can be modeled as a bin-packing problem. Global scheduling, on the other hand, allows

1We will use the terms “cores” and “PCPUs” interchangeably in the rest of this dissertation.
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tasks to migrate from one core to another at runtime. In this dissertation, we focus on

partitioned fixed-priority preemptive scheduling for both OSs and hypervisors due to the

following reasons:

(i) It is widely supported in many commercial real-time embedded OSs and hypervisors

such as OKL4 [7] and PikeOS [8].

(ii) It does not introduce task migration costs.

(iii) It can benefit from the well-established uniprocessor theoretical framework.

1.2 Challenges with Shared Resources

Shared resources on a multi-core platform cause different challenges depending on their

types. We briefly discuss the specific challenges associated with each type of shared resource.

1.2.1 Concurrent Resources

Cache Interference: Many of today’s multi-core processors incorporate a large last-level

shared cache to improve the performance and efficiency of the system. The shared cache

can efficiently bridge the performance gap between memory access latency and processor

clock speed by backing up small private caches. Each of the cores can access the entire

shared cache so that a better cache hit ratio can be statistically achieved. However, the

uncontrolled use of the shared cache introduces significant worst-case timing penalties

in task execution, due to cache interference among tasks. It has been shown in [9] that

cache interference on a quad-core processor increases task response time by up to 40%,

compared to when the task runs alone in the system with no cache interference from other

tasks. As the number of cores increases, the negative impact of cache interference becomes

more significant. In this dissertation, we develop OS-level and hypervisor-level techniques

to provide predictable cache performance to tasks executing in native and virtualized

environments, respectively.

Memory Interference: Main memory is another major shared resource among processor
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cores. A task running on one core can be delayed by other tasks running simultaneously on

different cores due to interference in the shared main memory system, which is referred

to as memory interference. Memory interference delay can be large and highly variable,

thereby posing a significant challenge for the design of predictable systems. Specifically, in

modern systems, commercial-off-the-shelf (COTS) DRAM systems have been widely used

as main memory to cope with high performance and capacity demands. The DRAM system

contains multiple hardware components such as a memory controller, DRAM banks, and

buses. Each of these components has different timing characteristics, making it difficult to

analyze memory interference. In addition, as memory-intensive applications are becoming

more prevalent in CPS, the reduction of this interference is critical to making effective use

of multi-core platforms. The work in this dissertation presents techniques to bound and

reduce memory interference.

1.2.2 Mutually-Exclusive Resources

Synchronization: Consolidating multiple tasks onto a single hardware platform inevitably

introduces sharing of mutually-exclusive resources, e.g. shared data regions for inter-task

communication, network interfaces, and I/O devices. Those resources are typically protected

by mutually-exclusive locks to avoid race conditions. When a task requests access to such

a resource, the resource can be granted to the task only if it is not held by another task.

Otherwise, the task is blocked until the requested resource is released. Hence, for the

timing predictability of tasks, we need a synchronization mechanism that provides bounded

blocking times. The sharing of mutually-exclusive resources and task synchronization

issues have been intensively studied in the context of native environments. However, prior

approaches can lead to unbounded blocking times in a virtualized environment due to the

hierarchical scheduling structure. In this dissertation, we present a novel synchronization

scheme to address such timing penalties in a virtualized environment.

Interrupt Handling: I/O devices like sensors and actuators use interrupts to notify events
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in the physical environment to the computing system. Hence, in addition to synchronization,

interrupt handling and resulting execution flows should be carefully designed for predictable

access to I/O devices. We have identified two strong requirements for the interrupt handling

scheme of CPS: (i) providing responsive and bounded interrupt handling time while ensuring

the schedulability of tasks, and (ii) enforcing interrupts to protect task execution from

interrupt storms2. The issues of responsive and enforced interrupt handling have been

mainly studied for a native execution environment. However, these requirements are not

satisfied by prior work in a virtualized environment. In this dissertation, we develop an

analyzable interrupt handling scheme to address the aforementioned requirements in a

virtualized environment.

1.2.3 Computational Accelerators

GPGPU Management: The high computational demands of complex algorithmic tasks

used in recent CPS pose substantial challenges in guaranteeing their timeliness. For example,

the CMU’s autonomous vehicle [11] executes perception and motion planning algorithms

along with running tasks for data fusion from tens of sensors equipped within the vehicle.

Since each of these tasks is computation intensive, it becomes harder to satisfy their timing

requirements when they execute on the same hardware platform. Fortunately, many of

today’s embedded multi-core processors, such as NXP i.MX6 and NVIDIA Tegra K1, have

an on-chip GPGPU, the use of which can greatly help in addressing the timing challenges

of computation-intensive tasks by accelerating their execution. However, today’s COTS

GPU hardware and device drivers are not designed with predictability as a primary concern.

First of all, execution on a GPU is non-preemptive. While a lower-priority task is using

a GPU, GPU execution requests from higher-priority tasks are delayed until the current

GPU execution finishes. In addition, GPU device drivers do not consider the scheduling

policy used in the system. Hence, GPU requests from lower-priority tasks may be handled
2An interrupt storm is a condition where a system receives interrupts at an unexpectedly high rate

and the processing of those interrupts takes the majority of the CPU time. It is also known as the receive
livelock problem [10].

8



earlier than those from higher-priority tasks, which negatively impact the schedulability of

tasks. In this dissertation, we present techniques to control GPU access in a timely and

efficient manner.

1.3 Contributions

The overarching contribution of this work is the development of novel analytical and

systems techniques to yield timing predictability on a multi-core platform. Our techniques

address cache and memory interference, synchronization, interrupt handling, and GPGPU

management issues, all of which are crucial to achieving predictable real-time performance

on modern multi-core platforms.

1.3.1 Analytical and Systems Support for Concurrent Resources

The following is a brief description of our contributions to concurrent resources. Details on

these contributions are described in Chapters 4, 5, and 6.

• Coordinated Approach for Predictable Cache Management: We develop a

coordinated OS-level cache management scheme to address cache interference. Our

scheme provides predictable cache performance through tight coordination of cache

reservation, reserved cache sharing, and cache-aware task allocation. This approach

also mitigates the two major problems of the conventional software cache partitioning

technique: (i) the memory co-partitioning problem, which results in page swapping

or waste of memory, and (ii) the availability of a limited number of cache partitions,

which causes degraded performance.3 We have implemented and evaluated our scheme

in Linux/RK running on a quad-core platform. Experimental results indicate that,

compared to the traditional approaches, our scheme is up to 39% more memory space

efficient and consumes up to 25% fewer cache partitions while preserving timing

predictability. Our scheme also yields a significant utilization benefit that increases

3For additional details, please see Section 2.1.
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with the number of tasks.

• Bounding and Reducing Memory Interference: We present techniques to

reduce memory interference and find an upper bound on the worst-case memory

interference on a multi-core platform with DRAM-based main memory. We explicitly

model major resources in the DRAM system, including banks, buses, and the memory

controller. By considering their timing characteristics, we analyze the worst-case

memory interference delay imposed on a task by other tasks running in parallel.

Experimental results show that our approach provides an upper bound very close

to our measured worst-case interference. From our analysis, we find that memory

interference can be significantly reduced by (i) partitioning DRAM banks, and (ii)

co-locating memory-access-intensive tasks on the same processing core. Based on

these observations, we develop a memory interference-aware task allocation algorithm

for reducing memory interference. Our memory interference-aware task allocation

algorithm provides a significant improvement in task schedulability over previous

work, with as much as 96% more tasksets being schedulable.

• Predictable Cache Management for Virtualization: In addition to OS-level

techniques, we develop a predictable cache management framework for a virtualized

environment. Our framework introduces two hypervisor-level techniques, vLLC and

vColoring, that enable the allocation of cache partitions to individual tasks running

in a virtual machine (VM), which is not achievable by prior work. Our framework

also provides a cache management scheme that determines cache allocation to tasks,

designs VMs in a cache-aware manner, and minimizes the aggregated utilization

of VMs to be consolidated. As a proof of concept, we implemented vLLC and

vColoring in the KVM hypervisor running on x86 and ARM multi-core platforms.

Experimental results with three different guest OSs, namely Linux/RK, vanilla Linux

and MS Windows Embedded, show that our techniques can effectively control the

allocation of cache partitions to tasks in VMs. Experimental results also show that
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our cache management scheme yields a significant utilization benefit compared to

other approaches.

1.3.2 Analytical and Systems Support for Mutually-Exclusive Resources

The following is a brief description of our contributions to mutually-exclusive resources.

Details on these contributions are described in Chapters 7 and 8.

• Synchronization for Multi-Core Virtual Machines: We develop vMPCP, a

synchronization framework for tasks executing in a virtualized environment. vMPCP

exposes the execution of critical sections of tasks in a guest virtual machine to

the hypervisor. Using this approach, vMPCP reduces and bounds blocking time

on accessing mutually-exclusive resources shared within and across virtual CPUs

(VCPUs) assigned to different physical CPU cores. vMPCP supports various VCPU

budget replenishment policies, with an optional budget overrun to reduce blocking

times. We provide the VCPU and task schedulability analyses under vMPCP, with

different VCPU budget replenishment policies, with and without budget overrun. The

case study using our hypervisor implementation shows that vMPCP yields significant

benefits compared to a virtualization-unaware multi-core synchronization protocol,

with 29% shorter response time on average.

• Responsive and Enforced Interrupt Handling: We develop a novel interrupt

handling scheme for a multi-core virtualization environment, called vINT. vINT pro-

vides a pseudo-VCPU abstraction dedicated for interrupt handling, which overcomes

the limits imposed by the timing parameters of virtual CPUs in an analyzable way.

vINT also accounts for and enforces interrupt handling and resulting execution flows

within a guest virtual machine. We analyze interrupt handling time as well as VCPU

and task schedulability, with and without vINT. Our experimental results indicate

that vINT achieves timely interrupt handling while providing as good task schedula-

bility as when it is not used. Our case study based on a prototype implementation on

11



the KVM hypervisor shows that vINT yields significant benefits in reducing interrupt

handling time and in protecting tasks against interrupt storms permeating into the

virtual machine.

1.3.3 Analytical and Systems Support for Computational Accelerators

The following is a brief description of our contributions to computational accelerators,

specifically general-purpose GPUs. Details on these contributions are described in Chapter 9.

• Predictable GPGPU Access Control: We develop a server-based GPU access

control approach to manage a GPU in a predictable manner. Our proposed approach

introduces a dedicated server task that handles GPU requests from other tasks with

respect to their priority order. Although we focus on a GPU in this work, our

approach can be used for other types of computational accelerators, such as DSPs.

Our server-based approach also addresses the main limitations of an existing real-

time synchronization-based GPU access control approach, which will be discussed in

Section 9.1. Experimental results indicate that our server-based approach yields sig-

nificant improvements in task schedulability over the synchronization-based approach.

For example, a quad-core system with our approach schedules 66% more randomly-

generated tasksets than the same quad-core system that uses the synchronization-based

approach with the multiprocessor priority ceiling protocol [12, 13].

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews the background and

related work, and Chapter 3 describes the system model used in this work. Chapters 4, 5,

and 6 present our work for concurrent resources. Chapters 7 and 8 present our work for

mutually-exclusive resources. Chapter 9 presents our work for computational accelerators.

Chapter 10 discusses guidelines for future computer architecture designs. Chapter 11

concludes this dissertation.
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Chapter 2

Background and Related Work

This chapter presents the background and related work on the following five issues: cache

interference, memory interference, synchronization, interrupt handling, and GPGPU man-

agement. Each section of this chapter reviews relevant systems software techniques and/or

hardware components, and discuss related prior work.

2.1 Cache Interference

Many researchers have recognized and studied the problem of cache interference in order

to use a shared cache in a predictable manner. Among a variety of approaches, software

cache partitioning, called page coloring, has been considered as an appealing approach to

address this issue. Page coloring prevents cache disruptions from other tasks by assigning

exclusive cache partitions to each task. It does not require any hardware support beyond

what is available on most of today’s multi-core processors. In this section, we describe the

page coloring technique and discuss its problems. We then review related work on cache

interference.
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Figure 2.1: Memory address to cache mapping and page coloring

2.1.1 Page Coloring

Page coloring is a software technique used to control a physically-indexed set-associative

cache, which is the case for most shared caches on modern processors. On a physically-

indexed cache, page coloring uses the mapping between physical addresses and cache set

indices. As shown in Figure 2.1, there are overlapping intersection bits between the physical

page number and the cache set index. Page coloring uses those intersection bits as a

cache-partition index which partitions the cache into n cache partitions. Simultaneously, the

cache-partition index co-partitions the entire physical memory into n memory partitions. In

other words, physical memory pages with the same cache-partition index are grouped into

a memory partition, and each physical memory partition corresponds to a cache partition

with the same cache-partition index. Since the OS has direct control over the mapping

between physical pages and the virtual pages of an application task, it can allocate specific

cache partitions to a task by providing the task with physical pages in the corresponding

memory partitions.

The number of cache partitions available in the system is calculated as follows: n =

S/(W ×P ), where n is the number of cache partitions, S is the cache size, W is the number

of ways of the cache, and P is the size of a page frame and is typically 4KB. Hence, if

S = 256KB, W = 16 and P = 4KB, the number of cache partitions n is 4. One implicit

assumption in page coloring is that the number of cache sets is a power of two. In some

architectures like Intel Sandy Bridge and Haswell, the last-level cache consists of cache

slices, the number of which is equal to that of physical cores [14, 15]. As shown in [16, 17],
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although the mapping between physical addresses and cache slices is not publicly known,

page coloring on such architectures can be implemented on a per cache-slice basis. This

results in the number of cache partitions equal to n = S/(W × P ×NP ), where NP is the

number of physical cores.

2.1.2 Problems with Page Coloring

There are several challenging problems to be solved before page coloring can be used widely

in multi-core systems. The first problem is the memory co-partitioning problem [18, 19].

Page coloring simultaneously partitions the entire physical memory into the number of

cache partitions. If a certain number of cache partitions is assigned to a task, the same

number of memory partitions is also assigned to that task. However, a task’s memory

usage is not necessarily related to its cache usage. If a task requires more number of

memory partitions than that of cache partitions, the required memory partitions should be

assigned to the task despite its small cache usage. Otherwise, the task would suffer from

page swapping. If a task requires more number of cache partitions than that of memory

partitions, some of the assigned memory would be wasted.

The second problem is the availability of a limited number of cache partitions. As the

number of tasks increases, the amount of cache that can be used for an individual task

becomes smaller and smaller, resulting in degraded performance. Moreover, the number of

cache partitions may not be enough for each task to have its own cache partition. This

second problem also unfortunately applies to hardware-based cache partitioning schemes.

Page coloring was originally developed for a native environment. In a virtualized

environment, there is one more problem: page coloring implemented in a guest OS running

in a VM can no longer map a task’s virtual page to a specific cache partition. This is

because there is an additional address translation layer at the hypervisor, which is to

spatially isolate VMs from each other. One simple approach to consider is to implement

page coloring in the hypervisor and assign cache partitions to VMs, as proposed in [20, 21].

However, this approach cannot allocate cache partitions to individual tasks running in a
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VM. In other words, all tasks within the same VM share the cache partitions assigned to

that VM and will suffer from cache interference. In this dissertation, we address these

problems.

2.1.3 Related Work

With cache partitioning, the system performance is largely dependent on how cache

partitions are allocated to tasks. Yoon et al. [22] formulated cache allocation as an MILP

problem to minimize the total CPU utilization of Paolieri’s new multi-core architecture [23].

Fu et al. [24] proposed a sophisticated low-power scheme that uses both cache partitioning

and DVFS. Paolieri et al. [25] proposed a task and cache allocation algorithm for a

system using non-preemptive partitioned scheduling. These approaches, however, assume

hardware cache partitioning support, which is not yet widely available in current commodity

processors [26, 27, 28].

Software cache partitioning or page coloring is an alternative to hardware cache par-

titioning support. Wolfe [29] and Liedtke et al. [18] used page coloring to prevent cache

interference in a single-core system. Bui et al. [30] focused on improving the schedulability

of a single-core system with page coloring. Page coloring also has been studied for multi-core

systems in [31, 32, 33]. Guan et al. [34] proposed a non-preemptive scheduling algorithm for

a multi-core real-time system using page coloring. Lin et al. [19] conducted a comparative

study on various multi-core cache partitioning schemes by implementing them with page

coloring. Mancuso et al. [35] proposed the Colored Lockdown technique that combines

page coloring and cache lockdown to better keep the frequently accessed pages of tasks

in a cache. Ye et al. [17] developed COLORIS that supports both static and dynamic

cache partitioning based on page coloring. Ward et al. [36] focused on cache management

issues in multi-core mixed-criticality systems and proposed cache locking and scheduling

techniques that use page coloring. Zhang et al. [33] proposed a hot-page coloring approach

that assigns cache partitions only to a small set of frequently accessed pages. However,

since they use on-line page access monitoring and page migration, it may not be suitable
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for time-critical systems.

Cache interference also happens in single-core systems due to task preemption, which

causes the eviction of the cache contents of a preempted task. Such cache interference

penalties are bounded by accounting them as cache-related preemption delays while per-

forming schedulability analysis. Altmeyer et al. [37], Lunniss et al. [38] and Lee et al. [39]

focused on reducing the cache penalties by using static cache analyses. However, they do

not consider cache partitioning that can prevent the cache penalties by assigning exclusive

cache partitions to tasks. Busquets-Mataix et al. [40] proposed a hybrid technique of cache

partitioning and schedulability analysis for a single core system, but it cannot be directly

applied to a shared cache of a multi-core processor. Xu et al. [41] extended multi-core

compositional analysis to incorporate cache interference delay caused by private caches,

assuming that there is no shared cache. Lunniss et al. [42] extended CRPD analysis to a

single-core hierarchical scheduling environment. However, none of these approaches focuses

on a shared cache in a multi-core platform.

There also exist some research efforts to address cache interference in a virtualized

environment. Previous work on software-based cache management in a virtualization

environment [20, 21] proposed to implement page coloring in the hypervisor and to allocate

cache partitions to virtual machines (VMs). This approach, however, cannot be used to

address cache interference among tasks running within a VM due to an additional address

translation layer at the hypervisor. Kim et al. [43] proposed a hardware-based solution to

enable page coloring implemented in a guest OS to work. However, hardware modification

required by this approach does not allow the use of commodity multi-core processors. In

addition, if a guest OS does not have page coloring support, tasks running on that guest

OS cannot get any benefit.
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Figure 2.2: DRAM device organization

2.2 Memory Interference

Memory interference in a DRAM system is largely affected by two major components: (i)

the DRAM chips where the actual data are stored, and (ii) the memory controller that

schedules memory read/write requests to the DRAM chips. In this section, we provide a

brief description of these two components. Our description is based on DDR3 SDRAM

systems, but it generally applies to other types of COTS DRAM systems. For more

information, interested readers may refer to [44, 45, 46, 47].

2.2.1 DRAM Organization

A DRAM system as shown in Figure 2.2 is organized as a set of ranks, each of which consists

of multiple DRAM chips. Each DRAM chip has a narrow data interface (e.g. 8 bits), so

the DRAM chips in the same rank are combined to widen the width of the data interface

(e.g. 8 bits/chip × 8 chips = 64 bits data bus). A DRAM chip consists of multiple DRAM

banks and memory requests to different banks can be serviced in parallel. Each DRAM
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Figure 2.3: Logical structure of a DRAM controller

bank has a two-dimensional array of rows and columns of memory locations. To access a

column in the array, the entire row containing the column first needs to be transferred to

a row-buffer. This action is known as opening a row. Each bank has one row-buffer that

contains at most one row at a time. The size of the row-buffer is therefore equal to the size

of one row, which is 1024 or 2048 columns in a DDR3 SDRAM chip [48].

The DRAM access latency varies depending on which row is currently stored in the

row-buffer of a requested bank. If a memory request accesses a row already in the row-buffer,

the request is directly serviced from the row-buffer, resulting in a short latency. This case

is called a row hit. If the request is to a row that is different from the one in the row-buffer,

the currently open row should be closed by a precharge command and the requested row

should be delivered to the row-buffer by an activate command. Then the request can be

serviced from the row-buffer. This case is called a row conflict and results in a much longer

latency. In both cases, transferring data through the data bus incurs additional latency.

The data is transferred in a burst mode and a burst length (BL) determines the number of

columns transferred per read/write access.

2.2.2 Memory Controller

Figure 2.3 shows the structure of a memory controller in a modern DRAM system. The

memory controller is a mediator between the last-level cache of a processor and the DRAM
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chips. It translates read/write memory requests into corresponding DRAM commands and

schedules the commands while satisfying the timing constraints of DRAM banks and buses.

To do so, a memory controller consists of a request buffer, read/write buffers, and a memory

scheduler. The request buffer holds the state information of each memory request, such

as an address, a read/write type, a timestamp and its readiness status. The read/write

buffers hold the data read from or to be written to the DRAM. The memory scheduler

determines the service order of the pending memory requests.

The memory scheduler typically has a two-level hierarchical structure.1 As shown

in Figure 2.3, the first level consists of per-bank priority queues and bank schedulers.

When a memory request is generated, the request is enqueued into the priority queue

that corresponds to the request’s bank index. The bank scheduler determines priorities of

pending requests and generates a sequence of DRAM commands to service each request.

The bank scheduler also tracks the state of the bank. If the highest-priority command

does not violate any timing constraints of the bank, the command is said to be ready for

the bank and is sent to the next level. The second level consists of a channel scheduler.

It keeps track of DRAM commands from all bank schedulers, and monitors the timing

constraints of ranks and address/command/data buses. Among the commands that are

ready with respect to such channel timing constraints, the channel scheduler issues the

highest-priority command. Once the command is issued, the channel scheduler signals

ACK to the corresponding bank scheduler, and then the bank scheduler selects the next

command to be sent.

Memory Scheduling Policy: Scheduling algorithms for COTS memory controllers have

been developed to maximize the data throughput and minimize the average-case latency of

DRAM systems. Specifically, modern memory controllers employ First-Ready First-Come

First-Serve (FR-FCFS) [44, 45] as their base scheduling policy. FR-FCFS first prioritizes

ready DRAM commands over others, just as the two-level scheduling structure does. At
1The physical structure of priority queues, bank schedulers, and the channel scheduler depends on the

implementation. They can be implemented as a single hardware structure [45] or as multiple decoupled
structures [47, 49, 50].
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Figure 2.4: Task address to cache and DRAM mapping (Intel i7-2600)

the bank scheduler level, FR-FCFS re-orders memory requests as follows:

1. Row-hit memory requests have higher priorities than row-conflict requests.

2. In case of a tie, older requests have higher priorities.

Note that, in order to prevent starvation, many DRAM controllers impose a limit on

the number of consecutive row-hit requests that can be serviced before a row-conflict

request [47, 51]. We will discuss such a limit in Section 5.1. At the channel scheduler level,

FR-FCFS issues DRAM commands in the order of their arrival time. Therefore, under

FR-FCFS, the oldest row-hit request has the highest priority and the newest row-miss

request has the lowest priority.

2.2.3 Bank Address Mapping and Bank Partitioning

In modern DRAM systems, physical addresses are interleaved among multiple banks (and

ranks) to exploit bank-level parallelism for average-case performance improvement. The

granularity of address interleaving is typically equal to the size of one row, because mapping

adjacent addresses to the same row may provide better row-buffer locality. This strategy

is called a row-interleaved address mapping policy and it is widely used in many COTS

systems. As an example, Figure 2.4 shows the address mapping of the system equipped

with the Intel i7-2600 processor which follows the row-interleaved policy.2 In this system,

bits 13 to 16 of the physical address are used for the rank and bank indices.

The row-interleaved policy, however, can significantly increase the memory access latency

in a multi-core system [52, 53, 54]. For instance, multiple tasks running simultaneously on

2The DRAM mapping of Figure 2.4 is for the single-channel configuration in this system.
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different cores may be mapped to the same DRAM banks. This mapping can unexpectedly

decrease the row-buffer hit ratio of each task and introduce re-ordering of the memory

requests, causing significant delays in memory access.

Software bank partitioning [2, 53, 55, 56, 57, 58] is a technique used to avoid the delays

due to shared banks. By dedicating a set of specific DRAM banks to each core, bank

partitioning prevents both (i) the unexpected close of the currently-open row and (ii) the

negative effect of request re-ordering. Therefore, with bank partitioning, bank-level interfer-

ence among tasks simultaneously executing on different cores can be effectively eliminated.

Similar to software cache partitioning discussed in Section 2.1.1, bank partitioning can be

implemented by exploiting the mapping between physical addresses and rank-bank indices.

If a task is assigned only physical pages with a specific rank-bank index b, all the memory

accesses of that task are performed on the rank-bank b. By controlling the physical page

allocation in the OS, the physical memory space can be divided into bank partitions and a

specific bank partition can be assigned to a core by allocating corresponding physical pages

to the tasks of the core. Each bank partition may comprise one or more DRAM banks. If

the memory requirement of the tasks of a core is larger than the size of one DRAM bank,

each bank partition can be configured to have multiple DRAM banks to sufficiently satisfy

the memory requirement with a single bank partition. However, due to the resulting smaller

number of bank partitions, it may not be feasible to assign a dedicated bank partition to

each core. In our work, we therefore consider not only dedicated DRAM banks to reduce

memory interference delay but also shared banks to cope with the limited number of banks.

2.2.4 Related Work

Several prior studies have developed special non-COTS memory components to achieve

predictable memory access time. The Predator memory controller [59] uses credit-based

arbitration and closes an open row after each access. The AMC memory controller [60]

spreads the data of a single cache block across all DRAM banks so as to reduce the impact of

interference by serializing all memory requests. The PRET DRAM controller [61] hardware
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partitions banks among cores for predictability. A memory controller that allows different

burst sizes for different memory requests has been proposed [62]. A memory controller that

partitions the set of banks so that a single memory access can fetch data from multiple

banks (bank interleaving) within a partition of banks has been proposed and it uses the

open-row policy [63]. Researchers have also proposed techniques that modify a program

and carefully set up time-triggered schedules so that there is no instant where two processor

cores have outstanding memory operations [64].

We have heard, however, a strong interest from practitioners in techniques that can use

COTS-based multi-core platforms and existing applications without requiring modifications.

Therefore, this has been the focus of our work. In this context, some previous work considers

the entire memory system as a single resource such that a processor core holds the memory

system exclusively until the requested data are delivered to the core [65, 66, 67, 68, 69].

They commonly assumed that each memory request takes a constant service time and

memory requests from multiple cores are serviced in the order of their arrival time. However,

these assumptions may lead to overly pessimistic or optimistic estimates in modern COTS

DRAM systems, where the service time of each memory request varies and the memory

controller re-orders the memory requests [46].

Instead of considering the memory system as a single resource, recent work [70] makes

a more realistic assumption about the memory system, where the memory controller has

one request queue per DRAM bank and one system-wide queue connected to the per-bank

queues. That analysis, however, only considers the case where each processor core is

assigned a private DRAM bank. Unfortunately, the number of DRAM banks is growing

more slowly than the number of cores, and the memory space requirement of a workload

in a core may exceed the size of a single bank. Due to this limited availability of DRAM

banks, it is necessary to consider sharing of DRAM banks among multiple cores. With bank

sharing, memory requests can be re-ordered in the per-bank queues, thereby increasing

memory request service times. The work in [70] unfortunately does not model this request

re-ordering effect. In addition, the work assumes a special non-COTS memory controller.
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In this dissertation, we address these limitations.

In the field of task allocation, the problem of finding an optimal allocation of tasks to

cores is known to be NP-complete [71]. Hence, many near-optimal algorithms based on

the bin-packing heuristics have been proposed as practical solutions to the task allocation

problem [72, 73, 74]. The IA3 algorithm [25] is the first approach to take memory interference

into account when allocating tasks. IA3 pessimistically assumes that the amount of memory

interference for a task is only affected by the number of cores used, and does not consider

the actual number of interfering memory requests generated by other tasks that run in

parallel. Motivated by this, we develop a memory interference-aware allocation algorithm

that reduces memory interference by considering the memory access intensity of each task.

Chapter 5 will present details on our algorithm and its experimental results.

Finally, there has been recent work in the computer architecture community on the

design of memory controllers and memory systems that can dynamically estimate application

slowdowns [46, 75, 76, 77]. These designs, however, do not aim to provide worst-case bounds

and may under-estimate memory interference. There also exist research efforts on designing

memory controllers for heterogeneous systems (e.g., [78, 79]) and nonvolatile memory

(e.g., [80]). Future memory controllers might incorporate ideas like batching and thread

prioritization (e.g., [49, 51, 81, 82, 83]), which would raise interesting research questions

regarding predictability.

2.3 Synchronization

From a scheduling perspective, shared mutually-exclusive resources, such as I/O devices

and shared data regions, are categorized into two types: global and local resources. Global

resources are the resources shared among tasks executing on different physical CPU cores

(PCPUs) in a native environment, or on different virtual CPUs (VCPUs) in a virtualized

environment. The critical sections corresponding to the global resources are referred to as

global critical sections. Conversely, local resources are shared among tasks executing on
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the same PCPU or VCPU. The corresponding critical sections are local critical sections.

In this section, we characterize timing penalties that arise from the two types of shared

mutually-exclusive resources in native and virtualized environments. Then, we review

related prior work.

2.3.1 Timing Penalties from Mutually-Exclusive Resources

Timing penalties caused by accessing mutually-exclusive resources in a multi-core platform

can be categorized into local blocking and remote blocking. Local blocking time is the

duration for which a task needs to wait for the execution of lower-priority tasks assigned

on the same core. Uniprocessor real-time synchronization protocols like PCP [84] can

bound the local blocking time to at most the duration of one local critical section. Remote

blocking time is the duration that a task has to wait for the executions of tasks of any

priorities assigned on different cores. If a task tries to access a resource held by another

task on a different core, task τi suspends by itself until the resource-holding task finishes

its corresponding critical section. Multiprocessor real-time synchronization protocols such

as MPCP [12] are proposed to bound and minimize the duration of remote blocking.

Unlike local blocking, remote blocking causes additional timing penalties even though a

multiprocessor synchronization protocol like MPCP is used [85]:

• Back-to-back execution: If a task suspends by itself due to remote blocking,

its self-suspending behavior can cause a back-to-back execution phenomenon [86],

resulting in additional interference to lower-priority tasks.

• Multiple priority inversions: Whenever a medium-priority task suspends due

to remote blocking, lower-priority tasks get a chance to execute and issue requests

for local or global resources. In case of local resources under PCP, every normal

execution segment of a medium-priority task can be blocked at most once by one of

the lower-priority tasks executing their local critical sections with inherited higher

priorities. In case of global resources under MPCP, every normal execution segment
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of a task can be preempted at most once by each of the lower-priority tasks executing

global critical sections. Consequently, multiple priority inversions caused by remote

blocking increase the local blocking time.

In a virtualized environment, the length of remote blocking time may become even

significantly longer due to:

• Preemptions by higher-priority VCPUs: Consider a task τi in a VCPU vj

waiting on a global resource held by another task in a VCPU vk assigned on a

different physical core. If the VCPU vk is preempted by higher-priority VCPUs on

its core, the remote blocking time for the task τi is increased by the execution times

of those higher-priority VCPUs.

• VCPU budget depletion: Tasks in a VCPU are scheduled by using their VCPU’s

budget. When the VCPU budget of a resource-holding task is depleted, a task

waiting remotely on that resource needs to wait at least until the start of the next

replenishment period of the resource-holding task’s VCPU.

2.3.2 Related Work

Synchronization issues in multi-core and multiprocessor systems have been intensively

studied in the non-hierarchical scheduling context. MPCP (Multiprocessor Priority Ceiling

Protocol) [12, 13] provides bounded remote blocking time on accessing global shared

resources under partitioned fixed-priority scheduling. MPCP uses the uniprocessor PCP [84]

for accessing local resources. Recently, a new schedulability analysis for MPCP is proposed

in [85]. MSRP (Multiprocessor Stack-based Resource Policy) [87] is an extension of

the uniprocessor SRP [88] for resource sharing under partitioned EDF scheduling. A

comparison of MPCP and MSRP is also provided in [87]. FMLP (Flexible Multiprocessor

Locking Protocol) [89] is the first protocol that supports both partitioned and global EDF

scheduling. MSOS (Multiprocessors Synchronization for real-time Open Systems) [90] is

designed for resource sharing among independently-developed systems where each processor
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uses different scheduling algorithms. All these protocols, however, are designed for non-

hierarchical scheduling, so they may cause indefinite remote blocking time under the

hierarchical scheduling of virtualization environments.

In the hierarchical scheduling context, much research has been conducted on the

schedulability analysis of independent tasks on uniprocessors [91, 92, 93, 94] and multi-

processors [95, 96]. For tasks with shared resources, HSRP (Hierarchical Stack Resource

Policy) [97] is the first synchronization protocol proposed in the context of uniprocessor

hierarchical scheduling. HSRP uses budget overrun and payback mechanisms to limit

priority inversion. SIRAP (Subsystem Integration and Resource Allocation Policy) [98] uses

the idea of self-blocking to bound delays on accessing shared resources without knowing the

timing parameters of other subsystems. RRP (Rollback Resource Policy) [99] uses a rollback

mechanism to avoid a lock-holding task to be blocked while holding a lock. However, none

of these protocols has been extended to the multi-core hierarchical scheduling context.

In [100], the authors propose to group tasks sharing a resource into a single component

and to use the hierarchical scheduling model to schedule the tasks and the component. The

purpose of this approach is to avoid global resource sharing in a multi-core system, but it

limits the sum of the utilization of tasks sharing a resource to be less than one.

The virtualization of real-time and cyber-physical systems have recently received much

attention. RT-Xen [101, 102] is the first hierarchical real-time scheduling framework for

the Xen hypervisor. RT-Xen implements a suite of fixed-priority servers for the VCPU

budget replenishment policy. The work in [103] investigates the real-time performance of

the L4/Fiasco microkernel-based hypervisor [104]. However, these approaches have not

considered the synchronization issues.

In this dissertation, our goal on mutually-exclusive resources is to minimize the remote

blocking in a multi-core virtualized environment. Another goal is to bound the remote

blocking time of a task as a function of the duration of global critical sections of other tasks

(and the parameters of VCPUs having those tasks when overrun is not used), and not as a

function of the duration of normal execution segments or local critical sections.
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2.4 Interrupt Handling

Interrupt handling and resulting execution flows are indispensable for many systems that

interact with the physical environment in a lower latency compared to polling. As discussed

in Section 1.2.2, techniques for predictable interrupt handling have been intensively studied

in a native environment, but not in a virtualized environment. Therefore, we focus on

predictable interrupt handling in a virtualized environment.

In a virtualized environment, a physical interrupt generated by a sensor or network

interface is first handled by the interrupt service routine (ISR) of the hypervisor, and then

delivered to the corresponding VCPU in the form of a virtual interrupt. Once that VCPU

is scheduled, the virtual interrupt is handled by the ISR of the guest OS while consuming

the VCPU’s budget. Finally, the interrupt triggers the execution of any task responsible for

reacting to that interrupt. In this section, we describe problems with interrupt handling in

virtualization, and then review related prior work.

2.4.1 Problems with Virtual Interrupts

The main difference between interrupt handling in virtualized and non-virtualized environ-

ments is the presence of virtual interrupts. Here, we detail two major problems associated

with virtual interrupts.

• Timing penalties to virtual interrupt handling: Once a virtual interrupt is

injected into a VCPU, it is handled by using the priority and budget of the VCPU.

Virtual interrupt handling time is thus affected by the following two factors. First,

when a virtual interrupt is delivered to a VCPU, the budget of the VCPU vi might

have been completely consumed by other tasks within vi. Hence, the handling of the

virtual interrupt may be delayed until the start of the next replenishment period of

the VCPU vi. Second, although a VCPU vi has an enough budget to handle a virtual

interrupt, the handling of that virtual interrupt may be delayed by the execution of

any task on higher-priority VCPUs that can preempt the VCPU vi.
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• Virtual interrupt storms: Previous work proposed to address interrupt storms

in a native environment [105, 106, 107] uses a dedicated aperiodic server, e.g., a

deferrable server or a sporadic server, for interrupt handling. When the server budget

is depleted, the associated interrupt is not handled until the start of the next replenish

period of the server. By doing so, the impact of an interrupt storm on CPU time is

limited to the amount of the budget assigned to the associated server.

While previous work can be applied to the hypervisor to address physical interrupt

storms, it may not be used for virtual interrupt storms in a full-virtualization scenario,

where an unmodified guest OS is used and it is unaware of being virtualized. In

general, OSs measure the passage of time by reading and comparing two clock values,

e.g., t1 − t0 = elapsed time from t0 to t1. Under full virtualization, an unmodified

guest OS can check the passage of physical time in this manner. However, the guest

OS cannot use the same manner to check the passage of virtual time, which is the

actual CPU time used by the guest VCPU. This is because the guest OS is unaware

of when and how much VCPU-level preemptions are caused. In other words, when

previous work is used for virtual interrupts under full virtualization, it may result in

significant errors in the accounting of virtual interrupt handling.

In this dissertation, our goals on interrupt handling are twofold: (i) minimize and bound

interrupt handling time in a virtualized environment, and (ii) account for virtual interrupt

handling and protect tasks from virtual interrupt storms without any modifications to the

guest OS.

2.4.2 Related Work

Previous work on interrupt handling in a native environment commonly uses a split

interrupt handling model to execute deferrable work within a task context [106, 108, 109].

Specifically, Zhang and West [110] proposed the Process-Aware Interrupt (PAI) mechanism

that schedules and accounts Linux bottom halves with the highest priority of the tasks
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waiting on the corresponding interrupt. Palmer and West [107] proposed to use deferrable

servers to handle interrupts in order to minimize the receive livelock problem [10]. Danish

et al. [105] proposed a Priority Inheritance Bandwidth-Preserving (PIBP) policy to handle

interrupts and I/O requests with the budget and priority of the associated task. All these

schemes, however, are designed for a native system and cannot address the problems of

virtual interrupt handling in a virtualized system, discussed in the previous subsection.

There also exist many research efforts attempting to address other aspects of interrupts

in a native environment. Leyva-del-Foyo et al. [111] proposed an integrated task and

interrupt management model. By using a very short ISR that only activates a task

corresponding to the interrupt, the proposed model could reduce the interference from

interrupts associated with lower-priority tasks. Elliott and Anderson [112] focused on

the priority inversion problem caused by the interrupts of GPU asynchronous I/O in a

multi-core system using global scheduling. Brandenburg et al. [113] investigated various

interrupt accounting mechanisms for multi-core systems using global EDF scheduling.

To overcome the limitations of hierarchical scheduling in virtualization, approaches based

on paravirtualized scheduling [114, 115, 116] have been studied. All of these approaches

require modifications to the scheduler of a guest OS to let the hypervisor know the currently-

executing task within the VM. Using this information, the hypervisor increases the priority

of the corresponding VCPU so that the VCPU is not preempted by other VMs executing

lower-priority tasks. However, none of these approaches bounds the worst-case interrupt

handling time. They also do not enforce virtual interrupt handling. Specifically, the work in

[115] proposes to assign a separate budget and priority to a subset of tasks and interrupts

of a VCPU, but does not consider virtual interrupt storms and does not show how the

separate budget and priority values can be determined.

Beckert et al. [117] proposed an interrupt handling scheme for virtualization. However,

their approach has several limitations: (i) the hypervisor is assumed to use TDMA to

schedule VCPUs, which does not conform to the latest research efforts on real-time system

virtualization, (ii) virtual interrupts may be handled while consuming the budgets of
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unrelated other VCPUs, meaning that each VCPU is not guaranteed to use its assigned

budget for its own purpose, and (iii) task schedulability in the presence of virtual interrupts

is not considered. In this dissertation, we address these limitations.

2.5 GPGPU Management

A GPGPU or simply GPU is a computational accelerator. Tasks running on CPU cores can

offload some of their workloads to the GPU to reduce their response times and to save CPU

utilization. The use of a GPU, of course, causes a different execution pattern compared

to when it is not used. The characteristics of the GPU hardware and device driver also

affects the timing behavior of the task execution. In this section, we first describe the

execution pattern of a task using a GPU, and then review prior work on predictable GPU

management.

GPU 

CPU 

Normal  
execution  
segment 

Normal  
execution  
segment GPU access segment 

� Copy data  

       to GPU 

� Trigger GPU execution � Copy results  

       to CPU 

GPU execution time 

� Notify completion 

Figure 2.5: Execution pattern of a task accessing a GPU

2.5.1 GPU Execution Pattern

The execution time of a task using a GPU can be decomposed into normal execution

segments and GPU access segments. Normal execution segments run entirely on CPU cores

and GPU access segments involve GPU executions. Figure 2.5 depicts an example of a task

having one GPU access segment. In the GPU access segment, the task first copies data

needed for GPU execution, from CPU memory to GPU memory. Then, the task triggers
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the GPU execution and waits until the GPU execution finishes. During this time, the task

may suspend or busy-wait, depending on the implementation of the GPU device driver

and the configuration used. The task is notified when the GPU execution finishes, and it

copies the results back from the GPU to the CPU. Finally, the task continues its normal

execution segment.

There are several issues we need to consider for the use of a GPU in a predictable manner.

First, today’s COTS GPUs do not support a preemption mechanism, and GPU execution

requests from multiple tasks are handled in a sequential, non-preemptive manner. This

is primarily due to the high overhead expected on GPU context switching [118]. Second,

COTS GPU device drivers do not respect task priorities and the scheduling policy used

in the system. Hence, in the worst case, the GPU access request of the highest-priority

task may be delayed by the requests of all lower-priority tasks in the system, which causes

possibly unbounded priority inversion. These issues have motivated the development of a

predictable GPU management scheme to ensure task timing constraints while achieving

performance improvement.

2.5.2 Related Work

Many software techniques have been developed to utilize a GPU as a predictable, shared

computing resource. TimeGraph [119] is a real-time GPU scheduler that schedules GPU

access requests from tasks with respect to task priorities. This is done by modifying an

open-source GPU device driver and monitoring GPU commands issued by tasks at the

driver level. TimeGraph also provides a resource reservation mechanism that accounts for

and enforces the GPU usage of each task, with posterior and apriori enforcement techniques.

RGEM [120] is another real-time GPU scheduler implemented as a user-level library. Hence,

RGEM can be used with proprietary, closed-source GPU device drivers. RGEM provides

similar features to TimeGraph, such as scheduling of GPU requests in task priority order. In

addition, RGEM allows splitting a long data-copy operation into smaller chunks, reducing

blocking time on data-copy operations. Gdev [121] is similar to TimeGraph and RGEM in
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the GPU scheduling perspective, but provides common APIs to both user-level tasks and

the OS kernel to use a GPU as a computing resource. GPES [122] is a software technique

to break a long GPU execution segment into smaller sub-segments, allowing preemptions

at the boundaries of sub-segments. While all these techniques can mitigate the limitations

of today’s GPU hardware and device drivers, they have not considered the schedulability

of tasks. In other words, GPU requests from tasks are handled in a predictable manner

under those techniques, but the timing behavior of tasks on the CPU side, especially on a

multi-core CPU, has not been studied as a primary concern.

Kim et al. [123] focused on the schedulability analysis of tasks using hardware accelerators

like GPUs. They found that conventional real-time scheduling analysis requires tasks not

to suspend while accessing GPUs, which may significantly waste CPU utilization. As

a solution to this problem, they proposed a new scheduling policy, called segment-fixed

priority scheduling, which assigns different priorities and phase offsets to each segment of

tasks. Since the determination of the optimal priorities and offsets for individual segments

is NP-hard in the strong sense, they developed several heuristics for priority and offset

assignment. However, their approach is limited to single-core systems.

Elliott et al. [124, 125] modeled GPUs as mutually-exclusive resources and developed

GPUSync, a software framework based on real-time synchronization protocols to access

GPUs. This synchronization-based approach has many benefits. First, it can schedule

GPU requests from tasks in a predictable manner, without making changes to GPU device

drivers. Second, it allows the task schedulability analysis originally developed for multi-core

synchronization protocols to be directly used for analyzing the tasks accessing GPUs in

a multi-core environment. However, this approach requires the GPU access segments of

tasks to be treated as critical sections, meaning that tasks cannot suspend during GPU

executions. Also, the use of real-time synchronization protocols for GPUs may unnecessarily

delay the executions of high-priority tasks due to the priority-boosting mechanism employed

in such protocols. In this dissertation, we develop a new approach to address the limitations

of the synchronization-based approach for GPU management. Section 9 will discuss more
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details on the use of the synchronization-based approach under partitioned fixed-priority

scheduling, present our proposed approach, and compare the performance characteristics of

these two approaches.
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Chapter 3

System Model

This chapter describes the system model used throughout this dissertation. As briefly

described in Section 1.1, we consider a multi-core platform equipped with three types of

shared resources: concurrent resources, mutually-exclusive resources, and computational

accelerators. Figure 3.1 illustrates the computing platform, denoted as Π, considered in

this work and the parameters associated with the shared platform resources. Tasks are

executed with access to the shared platform resources of Π in either native or virtualized

environments. The entire system parameters we use, including the platform, tasks, and

virtual machines, are summarized in Table 3.1. Detailed explanations are given in the

following sections.
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Figure 3.1: Multi-core platform considered in this work
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Table 3.1: Summary of system model parameters

Type Params Descriptions
Platform NP Number of physical CPU cores

(Π) Mtotal Total memory size in Mbytes
Ncache Number of cache partitions
Nbank Number of bank partitions

Task Ci(k) WCET of task τi, when k cache partitions are assigned to it
(τi) Ci Simplified form of Ci(k)

Ti Minimum inter-arrival time of each job of τi
Di Relative deadline of τi
Mi Required physical memory size in Mbytes
Hi(k) Max. DRAM requests of τi, when k cache partitions are assigned to it
Hi Simplified form of Hi(k)
Gi Maximum accumulated GPU access time of τi

Critical Ci,j WCET of j-th normal execution segment of τi
section Ei,j WCET of j-th critical section segment of τi

σi Number of critical section segments of τi
GPU Gi,j Maximum length of j-th GPU access segment of task τi
access ηi Number of GPU access segments of τi

Xe
i,j Worst-case GPU execution time in j-th GPU access segment of τi

Xm
i,j WCET of miscellaneous operations in j-th GPU access segment of τi

Virtual Nvcpu Number of VCPUs in a VM
machine Cvi (k) Execution budget of a VCPU vi, when k cache partitions are assigned to it
(VM) Cvi Simplified form of Cvi (k)

T vi Budget replenishment period of a VCPU vi

3.1 Platform Model

We consider a computing platform Π equipped with a single-chip multi-core processor

and Mtotal Mbytes of DRAM as main memory. The processor has NP identical cores

running at a fixed clock speed. In this work, we assume that each core has a fully timing-

compositional architecture as described in [126]. This means that each core is in-order with

one outstanding memory access request and any delay from shared resources are additive

to task response time.

Shared Cache: The multi-core processor has a unified last-level cache (LLC) shared among

all cores. We use page coloring to manage the shared cache in software. Page coloring is

implemented in the OS in a native environment, and in the hypervisor in a virtualized

environment. With page coloring, the LLC is divided into Ncache cache partitions. Each

cache partition is represented as a unique integer in the range from 1 to Ncache.

DRAM System: We assume the DDR SDRAM system described in Section 2.2. The
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memory controller uses the FR-FCFS policy, and the arrival times of memory requests are

assumed to be recorded when they arrive at the memory controller. DRAM consists of one

or more ranks. The memory controller uses an open-row policy which keeps the row-buffer

open. We assume that the DRAM is not put into a low-power state at any time.

The LLC and the DRAM system are connected by a single memory channel. We assume

that all data fetched from the DRAM system are stored in the LLC. A single memory

request can fetch one entire cache line from the DRAM because of the burst-mode data

transfer. The addresses of memory requests are aligned to the size of BL (burst length).

We limit our focus on memory requests from CPU cores and leave DMA (Direct Memory

Access) as our future work.

Bank partitioning is considered to divide DRAM banks into Nbank partitions. Each

bank partition comprises one or more DRAM banks that are not shared with other bank

partitions, and is represented as a unique integer in the range from 1 to Nbank. It is assumed

that the number of DRAM banks in each bank partition and the number of bank partitions

assigned to a task do not affect the task’s worst-case execution time.

GPGPU: We assume that the platform Π is equipped with a single, general-purpose GPU

device. The GPU has the characteristics described in Section 2.5. Hence, although the GPU

can be shared among multiple tasks, GPU requests from tasks are handled in a sequential,

non-preemptive manner. The GPU has its own memory space, which is assumed to be

sufficiently enough for the GPU memory usage of tasks. We also assume that the data

copy request of a GPU-using task from the main memory to the GPU memory, and vice

versa, is handled by the memory controller, just like normal memory requests. Analyzing

the effects of using DMA for GPU data copy remains as our future work.

3.2 Task Model

We consider sporadic tasks with constrained deadlines. Tasks are scheduled by parti-

tioned fixed-priority preemptive scheduling. Thus, each task is statically assigned to a
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single physical core in a native environment, and to a single virtual CPU (VCPU) in a

virtualized environment. Any fixed-priority assignment can be used for tasks, such as

Rate-Monotonic [127]. Task τi is represented with the following parameters:

τi := (Ci(k), Ti, Di,Mi, Hi(k), Gi)

• Ci(k): the worst-case execution time (WCET) of task τi, when it runs alone in a

system with k cache partitions assigned to it

• Ti: the minimum inter-arrival time of each job of τi

• Di: the relative deadline of each job of τi (Di ≤ Ti)

• Mi: the size of required physical memory in Mbytes, which should be assigned to τi

to prevent swapping

• Hi(k): an upper bound on the number of DRAM requests generated by any job of τi,

when k cache partitions are assigned to it

• Gi: the maximum accumulated GPU access time of τi

We assume that Ci(k) is monotonically decreasing with k. This is a common assumption

in the literature: the actual WCET function may not be monotonic, but this assumption

can be easily satisfied by monotonic over-approximations of WCETs with insignificant

pessimism [128]. Each task τi has a unique priority πi. An arbitrary tie-breaking rule can

be used to achieve this under fixed-priority scheduling. Note that no assumptions are made

on the memory access pattern of a task (e.g., access rate).

Parameters Ci(k) and Hi(k) can be obtained by either measurement-based or static-

analysis tools. When a measurement-based approach is used, Ci(k) and Hi(k) need to be

conservatively estimated. Especially in a system with a write-back cache, Hi(k) should

take into account dirty lines remaining in the cache. We assume that Ci(k) and Hi(k)

1Capturing the overhead of virtualization in those parameters is beyond the scope of our work. However,
we believe this does not limit the practicality of our work because it is relatively small (e.g., more than
99% of native performance can be achieved in full-virtualization mode with recent hardware virtualization
support [129]).
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parameters remain the same in both native and virtualized environments.1

In the rest of this dissertation, Ci and Hi may be used instead of Ci(k) and Hi(k
′),

respectively, when each task is assumed to have been already assigned its cache partitions.

Tasks with Critical Sections: Mutually-exclusive resources considered in this work are

protected by suspension-based mutex locks. Tasks access shared resources in a non-nested

manner, meaning that each task can hold only one resource at a time. If a task τi accesses

such resources, the WCET Ci can be decomposed into an alternating sequence of normal

execution segments and critical section segments as follows:

Ci := (Ci,1, Ei,1, Ci,2, Ei,2, ..., Ei,σi , Ci,σi+1)

• Ci,j : the WCET of the j-th normal execution segment of task τi

• Ei,j : the WCET of the j-th critical section segment of τi

• σi: the number of critical section segments of τi

We use Ei to denote the sum of the WCETs of the critical section segments of τi. Hence,

Ei =

σi∑
j=1

Ei,j , and Ci =

σi+1∑
j=1

Ci,j +

σi∑
j=1

Ei,j

Tasks with GPGPU Accesses: As presented in Section 2.5.1, a task using a GPU has

one or more GPU access segments. We use ηi to denote the number of GPU access segments

of task τi, and Gi,j to denote the maximum length of the j-th GPU access segment of τi.

Hence,

Gi =

ηi∑
j=1

Gi,j

The j-th GPU access segment of τi can be decomposed as follows:

Gi,j := (Xe
i,j , X

m
i,j)
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• Xe
i,j : the worst-case GPU execution time in the j-th GPU access segment of τi

• Xm
i,j : the WCET of miscellaneous operations, including data copies and notifications,

in the j-th GPU access segment of τi

3.3 Virtual Machine Model

When virtualization is used, the system runs a hypervisor hosting multiple guest virtual

machines (VMs). To distinguish it from VMs, the system is also referred to as a host

machine in a virtualized environment. Each VM has one or more VCPUs. The VCPUs

are scheduled on the physical CPU cores (PCPUs) of the host machine by partitioned

fixed-priority preemptive scheduling. Hence, each VCPU is statically assigned to a single

PCPU, and any fixed-priority assignment can be used for VCPUs. Each VM is represented

as follows:

VM := (v1, v2, ..., vNvcpu)

where vi is a VCPU and Nvcpu is the number of VCPUs in the VM. We represent a VCPU

vi as follows:

vi := (Cvi (k), T vi )

• Cvi (k): the execution budget of a VCPU vi, represented as a function of the total

number of cache partitions (k) assigned to vi

• T vi : the budget replenishment period of a VCPU vi

Since task execution time is affected by the number of assigned cache partitions, it is obvious

that the required budget of a VCPU is also affected by the number of cache partitions

to be used by its tasks. With this model, the computational demand of each VM can be

presented to the hypervisor and other VMs, without revealing its task attributes. We will

show in Section 6.2 how to find the budget of each VCPU with respect to the number

of cache partitions. For brevity, Cvi may be used instead of Cvi (k), when each VCPU is

assumed to have been assigned its cache partitions.
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For the VCPU budget supply and replenishment policies, we consider periodic server [4],

sporadic server [6], and deferrable server [5] variants, because they have been widely used

in real-time virtualization [20, 102, 130, 131]. Under the periodic server policy, each VCPU

becomes active periodically and executes its tasks that are ready to be executed until the

VCPU’s budget is exhausted. When a VCPU has no task ready to execute, the VCPU

cannot preserve its budget; the budget is idled away. Under the deferrable server policy, a

VCPU can preserve its budget until the end of its current period. Hence, the tasks of the

VCPU can execute any time while the VCPU’s budget remains. The budget-preserving

feature of the deferrable server policy causes a jitter equal to T v − Cv [132]. Under the

sporadic server policy, a VCPU can preserve its budget, but only the amount of budget

used is replenished T vi units after the start of the use of that amount, yielding a zero release

jitter.

3.4 Other Assumptions

We further make the following assumptions in this dissertation:

• We assume that the multi-core processor considered in this work uses neither si-

multaneous multithreading (SMT) [133] nor dynamic voltage and frequency scaling

(DVFS) [134]. This assumption is made to minimize timing uncertainties possibly

caused by such techniques. Although there has been work on utilizing SMT (e.g., [135])

and DVFS (e.g., [136, 137]) in predictable systems, we leave them as our future work.

• We assume that tasks do not use dynamic memory allocation, since it is typically

prohibitively expensive when real-time predictability is important [35]. Also, we

assume that tasks do not experience page swapping and they have been allocated

their required physical memory size (Mi).

• We assume that each VM has been allocated a sufficient number of host physical pages

and that page swapping does not happen at run-time. This is a reasonable assumption

in CPS virtualization scenarios because, unlike in server virtualization, memory
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underprovisioning is considered to be harmful to timing predictability [114]. Also,

this assumption can be easily achieved by VM admission control at the hypervisor.
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Chapter 4

Coordinated Approach for

Predictable Cache Management

Cache interference in multi-core systems can be categorized into two types: inter-core and

intra-core. Inter-core cache interference happens when tasks running on different cores

access the last-level shared cache (LLC) simultaneously. Since the execution of a task

may be potentially affected by memory accesses of all tasks running on other cores, the

accurate analysis of inter-core cache interference is extremely difficult [34]. Intra-core cache

interference, in contrast, occurs within a core. When a task preempts another task, the

preempting task may evict the cache contents of the preempted task. Moreover, while a

task is inactive, other tasks can corrupt its cache.

In this chapter, we introduce a novel OS-level cache management scheme to address

inter-core and intra-core cache interference in a multi-core platform. Our scheme provides

predictable cache performance and addresses the problems of page coloring discussed in

Section 2.1.2, through tight coordination of cache reservation, cache sharing, and cache-

aware task allocation. Cache reservation ensures the exclusive use of a certain amount

of cache for individual cores to prevent inter-core cache interference. Within each core,

cache sharing allows tasks to share the reserved cache, while providing a safe upper bound
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on intra-core cache interference. Cache sharing also significantly mitigates the memory

co-partitioning problem and the limitations on the number of cache partitions. By using

cache reservation and cache sharing, cache-aware task allocation determines efficient task

and cache allocation to schedule a given taskset. Our scheme does not require special

hardware cache partitioning support or modifications to application software. Hence, it

is readily applicable to commodity processors such as the Intel Core i7. Our scheme can

be used not only for developing a new system but also for migrating existing applications

from single-core to multi-core platforms.

The detailed contributions of our scheme are as follows. First, we introduce the concept

of sharing cache partitions under page coloring to counter the memory co-partitioning

problem and the limited number of cache partitions. We show how pages are allocated when

cache partitions are shared, and provide a condition that checks the feasibility of sharing

while guaranteeing the allocation of the required memory to tasks. Second, we provide

a response time test for checking task schedulability when cache partitions are shared

among tasks. Our approach is independent of the specific cache analysis used and allows

estimating the worst-case execution time (WCET) of a task in isolation from other tasks.

Third, our cache-aware task allocation algorithm reduces the number of cache partitions

required to schedule a given taskset, while meeting both the task memory requirements

and the task timing constraints. We also show that the remaining cache partitions after

the allocation can be used to save the total CPU utilization. Forth, we have implemented

and evaluated our scheme by extending the Linux/RK platform [138, 139] running on the

Intel Core i7 quad-core processor. The experimental results on a real machine demonstrate

the effectiveness of our scheme.

For simplicity, our analysis provided in this chapter considers cache interference only.

Interference delays from other shared resources will be analyzed in later chapters. However,

it is worth noting that our analysis provided in this chapter can be easily combined with

those in other chapters, since any delay from shared resources is additive to task response

time in a fully timing-compositional architecture [126] we assume. An example of combining
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Figure 4.1: Overview of the proposed OS-level cache management

cache and memory interference analyses will be provided in Section 5.1.5.

The background and related prior work on cache interference have been discussed in

Section 2.1. The system model including assumptions and notation for a shared cache and

tasks can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 4.1 presents our coordinated

cache management scheme. A detailed evaluation of our scheme is provided in Section 4.2.

Section 4.3 summarizes this chapter.

4.1 Coordinated Cache Management

In this section, we describe our proposed cache management scheme. Figure 4.1 shows the

overview of our scheme that consists of three components: cache reservation, cache sharing,

and cache-aware task allocation. Cache reservation ensures the exclusive use of a portion of

the shared cache for each core. Cache sharing enables sharing of cache partitions among

tasks within each core. Cache-aware task allocation uses these two components to find

efficient cache and task allocation while maintaining feasibility.
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4.1.1 Cache Reservation

Due to the inherent difficulties of precisely analyzing inter-core cache interference on a

multi-core processor, we reserve a portion of cache partitions for each core to prevent

inter-core cache interference. The reserved cache partitions are exclusively used by their

owner core, thereby preventing cache contention from other cores. Per-core cache reservation

differentiates our scheme from other cache partitioning techniques that allocate exclusive

cache partitions to each task. Within each core, cache partitions reserved for the core can

be shared by tasks running on the core. This approach allows the core to execute more

tasks than the number of cache partitions allocated to that core. The execution time of

a task can potentially be further reduced by providing more cache partitions to the task.

Moreover, since the sharing of a cache partition means the sharing of an associated memory

partition, it can significantly reduce the waste of cache and memory space caused by the

memory co-partitioning problem due to page coloring.

Cache partitions are reserved for a core by allocating associated memory partitions to

the core. Each core manages the state of pages in its memory partitions. When a new task

is assigned to a core, the task’s memory requests are handled by allocating free pages from

the core’s memory partitions. The appropriate number of cache partitions for each core

depends on the tasks running on the core. This cache allocation will be determined by our

cache-aware task allocation, discussed in Section 4.1.4.

4.1.2 Cache Sharing: Bounding Intra-core Penalties

Suppose that a certain number of cache partitions is allocated to a core by cache reservation.

Our scheme allows tasks running on the core to share the given partitions, but sharing

causes intra-core cache interference. Intra-core cache interference can be further subdivided

into two types:

1. Cache warm-up delay: occurs at the beginning of each period of a task and arises

due to the execution of other tasks while the task is inactive.
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2. Cache-related preemption delay: occurs when a task is preempted by a higher-priority

task and is imposed on the preempted task.

Previous work on bounding cache interference on single-core platforms [37, 38, 39] assumes

that the cache warm-up delay can be taken into account in the WCET of a task by static

cache analyses. However, such static cache analysis tools may not be readily available

for modern multi-core processors. We therefore consider the cache warm-up delay as an

extrinsic factor to a task’s WCET. This approach enables measurement-based WCET

analysis to estimate the task WCET in isolation from other tasks.1 For instance, once a

task is launched, the task’s cache is initially warmed up during the startup phase or the

very first execution of the task. If the task runs alone in the system or uses its cache all by

itself, subsequent task instances do not experience any cache warm-up delay at run-time

[18]. By considering the cache warm-up delay as an extrinsic factor, the WCET obtained

in such an isolated environment can be safely used even when the task’s cache is shared.

We formally define cache warm-up delay and cache-related preemption delay. ωj,i is

τj ’s cache warm-up delay, which is caused by the tasks that (i) have priorities higher than

or equal to τi and (ii) share cache partitions with τj . γj,i is the cache-related preemption

delay caused by τj and imposed on the tasks that (i) have priorities lower than τj and

higher than or equal to τi and (ii) share cache partitions with τj . Hence, ωj,i and γj,i are

represented as follows:

ωj,i =

∣∣∣∣∣∣Sj ∩
⋃

τk∈P(τi)∧τk 6=τj∧πk≥πi

Sk

∣∣∣∣∣∣ ·∆
γj,i =

∣∣∣∣∣∣Sj ∩
⋃

τk∈P(τi)∧πk<πj∧πk≥πi

Sk

∣∣∣∣∣∣ ·∆
where Sj is the set of cache partitions assigned to τj , ∆ is the maximum time to refill one

cache partition, P(τi) is the core of τi, and πk is the priority of τk. Note that, in case of a

1Appropriate “error margins” that are proportional to system criticality can be applied to these
measurements, as is done in practice.
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write-back cache, ∆ should take into account the effect of a dirty cache line that requires

two memory accesses to fetch a new cache line [140].

The utilization of a taskset Γj , which is allocated to a core j, with intra-core cache inter-

ference penalties, ω and γ, can be calculated by extending Liu and Layland’s schedulability

condition [127] as follows:

util(Γj) =
∑
τi∈Γj

(
Ci
Ti

+
ωi,n
Ti

+
γi,n
Ti

)
(4.1)

where n is the index of the lowest-priority task in Γj . It is based on the Basumallick and

Nilsen’s technique [141], but we explicitly consider cache warm-up delay ω.

The iterative response time test [142] can be extended as follows to incorporate the two

types of intra-core cache interference:

W k+1
i = Ci + ωi,n +

∑
τh∈P(τi)∧πh>πi

⌈
W k
i

Th

⌉
Ch+

∑
τh∈P(τi)∧πh>πi

{
ωh,n+

(⌈
W k
i

Th

⌉
−1

)
ωh,i

}
+

∑
τh∈P(τi)∧πh>πi

⌈
W k
i

Th

⌉
γh,i

(4.2)

where W k
i is the worst-case response time of τi at the kth iteration, and n is the index of

the lowest-priority task on τi’s core. The test terminates when W k+1
i = W k

i . Task τi is

schedulable if its response time is before its deadline: W k
i ≤ Di. We represent the amount

of ω and γ delays caused by the execution of a higher priority task τj within the worst-case

response time W k
i in the second and the third summing terms of (4.2). Note that the first

execution of a higher priority task τh within W k
i causes a cache warm-up delay of ωh,n, but

the subsequent executions of τh cause only ωh,i because tasks with lower priorities than τi

are not scheduled while τi is executing.

Figure 4.2 shows an example taskset {τh, τm, τl} sharing a set of cache partitions {1, 2}.

In this taskset, τh is a high-priority task, τm is a medium-priority task, and τl is a low-

priority task. Assume that the cache partitions are assigned to the tasks as follows: Sh is

{1, 2}, Sm is {1}, and Sl is {2}. All tasks have the same execution time Ci = 2 and the
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Figure 4.2: Three tasks sharing cache partitions with intra-core cache interference penalties

same periods and deadlines Ti = Di = 12. The cache partition refill time ∆ is 1 in this

example. When τh starts its execution, it needs to refill its two cache partitions. τm has

one cache warm-up delay and one cache-related preemption delay due to τh. τl also has

one cache warm-up delay and one cache-related preemption delay.

It is worth noting that Eqs. (4.1) and (4.2) are independent of the specific cache analysis

used. If a precise cache analysis tool is available for a target multi-core processor’s shared

cache, the cache partition refilling time ∆ can be more tightly estimated.

4.1.3 Cache Sharing: How to Share Cache Partitions

We now describe how cache partitions are allocated to tasks within a core such that

schedulability is preserved and memory requirements are guaranteed despite sharing the

partitions. There are two conditions for a cache allocation to be feasible. The first condition

is the response time test given by Eq. (4.2). The factors affecting a task’s response time

are as follows: (i) cache-related task execution time Ci(k), (ii) cache partition refill time ∆,

(iii) the number of other tasks sharing the task’s cache partitions, and (iv) the periods of

the tasks sharing the cache partitions. Factors (i) and (ii) are explicitly used to calculate

the response time. If factor (iii) increases or factor (iv) is relatively short, the response

time may be lengthened due to cache penalties caused by frequent preemptions.

The second condition is related to the task memory requirements. Before defining

this condition, we show in Figure 4.3 an example of page allocations for different cache

allocation cases. In each case, there are four memory partitions and one task τi. Each

memory partition is depicted as a square and the shaded area represents the memory space
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Figure 4.3: Page allocations for different cache allocation scenarios

allocated to τi. The task τi’s memory requirement Mi is equal to the size of one memory

partition. If we assign only one cache partition to τi, all pages for τi are allocated from one

memory partition (Case 1 in Figure 4.3). If we assign more than one cache partition to τi,

our scheme allocates pages to τi from the corresponding memory partitions in round-robin

order.2 Thus, the same amount of pages from each of the corresponding memory partitions

is allocated to τi at its maximum memory usage (Cases 2, 3, and 4 in Figure 4.3). The

reason behind this approach is to render the page allocation deterministic, which is required

for each task’s cache access behavior to be consistent. For instance, if pages are allocated

randomly, a task may have different cache performance when it re-launches.

A cache partition can be shared among tasks by sharing a memory partition. We

present a necessary and sufficient condition for cache sharing to meet the task memory

requirements under our page allocation approach. For each cache partition ρ, the following

condition must be satisfied:

∑
∀τi: Si3ρ

Mi

|Si|
≤Mtotal/Ncache (4.3)

where Mi is the size of the memory requirement of τi, |Si| is the number of cache partitions

assigned to τi, Mtotal is the entire memory size, and Ncache is the number of cache partitions.

Hence. Mtotal/Ncache represents the size of a single memory partition. Mi
|Si| represents

τi’s per-memory-partition memory usage. This condition means that the sum of the per-
2If a page is deallocated from τi, the deallocated page is used ahead of never-allocated free pages to

service τi’s next page request. This enables multiple memory partitions to be allocated at the same rate
without explicit enforcement such as in memory reservation [143].
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Algorithm 1 MinCacheAlloc(Γj , N ′cache)
Input: Γj : a taskset assigned to the core j, N ′cache: the number of available cache partitions
Output: ϕmin: a cache allocation with the minimum CPU utilization (ϕmin = ∅, if no allocation is feasible),

minUtil: the CPU utilization of Γj with ϕmin
1: ϕmin ← ∅
2: minUtil← 1
3: Φ← a set of candidate allocations of N ′cache to Γj
4: for each allocation ϕi in Φ do
5: Apply ϕi to Γj
6: if Γj satisfies both Eq. (4.2) and Eq. (4.3) then
7: currentUtil← CPU utilization from Eq. (4.1)
8: if minUtil ≥ currentUtil then
9: ϕmin ← ϕi
10: minUtil← currentUtil
11: return {ϕmin,minUtil}

Algorithm 2 FindBestFit(τi, NP , AΓ, Acache)
Input: τi: a task to be allocated, NP : the number of cores, AΓ: an array of a taskset allocated to each core, Acache:

an array of the number of cache partitions assigned to each core
Output: cid: the best-fit core’s index (cid = 0, if no core can schedule τi)
1: space← 1
2: cid← 0
3: for j ← 1 to NP do
4: {ϕ, util} ← MinCacheAlloc(τi ∪AΓ[j], Acache[j])
5: if ϕ 6= ∅ and space ≥ 1− util then
6: space← 1− util
7: cid← j
8: return cid

memory-partition usage of the tasks sharing the cache partition ρ should not exceed the size

of one memory partition. If this condition is not satisfied, tasks may experience memory

pressure or swapping.

Algorithm 1 shows a procedure for finding a feasible cache allocation with the minimum

CPU utilization. It first creates a set of candidate cache allocations to be examined, which

are combinations of given cache partitions for a given taskset. Then, it checks the feasibility

of each candidate allocation by using Eqs. (4.2) and (4.3). Many methods can be used to

generate the candidate cache allocations, such as exhaustive search and heuristics. We

use an exhaustive search in the evaluation of this chapter. A heuristic approach will be

introduced in Section 6.2.2.
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4.1.4 Cache-Aware Task Allocation

Cache-aware task allocation is an algorithm to allocate tasks and cache partitions to cores

while exploiting the benefits of cache reservation and cache sharing. The objective of our

algorithm is to reduce the number of cache partitions required to schedule a given taskset

on a given number of cores, because remaining cache partitions can be used for many

purposes, such as for non-real-time tasks or for saving the CPU utilization.

Under our scheme, tasks may share cache partitions when they are assigned to the

same core. This means that, to take advantage of cache sharing, it is desired to pack tasks

into the same core as much as possible. Hence, our algorithm is based on the best-fit

decreasing bin-packing algorithm that results in load concentration. For cache allocation,

our algorithm gradually assigns cache partitions to cores while allocating tasks to cores by

using cache reservation and cache sharing.

We first explain Algorithm 2 that finds the best-fit core in our task allocation algorithm.

Once the task to be allocated is given, Algorithm 2 checks whether the task is schedulable

on each core and estimates the total utilization of each core with the task. Then, it selects

the core where the task fits best.

Our cache-aware task allocation algorithm is given in Algorithm 3. Before allocating

tasks, it sorts tasks in decreasing order of their average utilization, i.e. (
∑Ncache

k=1 Ci(k)/Ti)/Ncache.

The number of cache partitions for each core is set to zero. Then, the algorithm initiates

task allocation. If a task to be allocated is not schedulable on any core and the number of

remaining cache partitions is not zero, the algorithm increases the number of each core’s

cache partitions by 1 and finds the best-fit core again, until the cache partition increment

per core exceeds Ncache. When the algorithm finds the best-fit core, only the best-fit core

maintains its increased number of cache partitions and other cores return to their previous

number of cache partitions.

The algorithm returns the number of remaining cache partitions along with the task

allocation and cache assignment. Here, we employ a simple solution to save the CPU
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Algorithm 3 CacheAwareTaskAlloc(Γ, NP , Ncache)
Input: Γ: a taskset to be allocated, NP : the number of cores, Ncache: the number of available cache partitions
Output: True/False: the schedulability of Γ, AΓ: an array of a taskset allocated to each core, Acache: an array of

the number of cache partitions assigned to each core, NP ′ : the number of remaining cache partitions
1: Sort tasks in Γ in decreasing order of their average utilization
2: Initialize elements of AΓ to ∅ and Acache to 0
3: for each task τi in Γ do
4: cid← FindBestFit(τi, NP , AΓ, Acache)
5: if cid > 0 then
6: /* Found the core for τi */
7: Insert τi to AΓ[cid]
8: Mark τi schedulable
9: continue
10: /* Try with k more partitions */
11: for k ← 1 to Ncache do
12: for j ← 1 to NP do
13: Atmp[j]← Acache[j] + k
14: cid← FindBestFit(τi, NP , AΓ, Atmp)
15: if cid > 0 then
16: Insert τi to AΓ[cid]
17: Mark τi schedulable
18: Ncache ← Ncache − k /* Assign k to the core */
19: Acache[cid]← Acache[cid] + k
20: break
21: if all tasks schedulable then
22: return {True, AΓ, Acache, Ncache}
23: else
24: return {False, AΓ, Acache, Ncache}

utilization with the remaining cache partitions: assigning each remaining cache partition

to a core which will obtain the greatest saving in utilization when an additional cache

partition is given to it. We use this approach in our experiments when we measure the

CPU utilization with a specified number of cache partitions.

4.1.5 Tasks with Shared Memory Regions

Like previous work on cache-aware response time analysis [37, 39] and software cache

partitioning schemes [18, 19, 33], we have so far assumed that tasks do not use share

memory regions. However, recent operating systems widely use shared pages, not only

for inter-process communication and shared libraries, but also the kernel’s copy-on-write

technique and file caches [144]. Suppose that two tasks share a memory region and they are

allocated to different cores. Then, the tasks may experience inter-core cache interference

because the shared memory region causes the sharing of cache partitions among those tasks.

We suggest one simple but effective strategy for this problem. Tasks that share their
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memory regions are bundled together and each task bundle is allocated together as a

single task into a core. Hence, the tasks in the same bundle will not cause inter-core cache

interference to each other as well as to the other tasks on other cores. This strategy can be

integrated into our cache-aware task allocation and be performed before allocating tasks

with no shared memory regions.

If a task bundle cannot be allocated to a single core and the shared memory regions are

read/writable data regions, we can assign exclusive cache partitions to each of the shared

data regions. Since the shared data regions are typically protected by mutually-exclusive

locks (mutexes) to avoid race conditions, only one task in the bundle accesses each data

region, which prevents inter-core cache interference among tasks in the bundle. Of course,

other tasks will not experience any cache interference from the use of the shared data

regions because those regions are assigned exclusive cache partitions. If the shared memory

regions are read-only regions and not protected by mutexes, such as shared libraries and file

caches, the system may duplicate the pages of the memory regions for each core and assign

exclusive cache partitions to the duplicated regions to avoid inter-core cache interference.

4.2 Evaluation

In this section, we evaluate our proposed cache management scheme. We first describe the

implementation of our scheme and then show the experimental results of cache reservation,

cache sharing, and cache-aware task allocation.

4.2.1 Implementation

We have implemented our scheme in Linux/RK, based on the Linux 2.6.38.8 kernel. To

easily implement page coloring, we have used the memory reservation mechanism [143, 144]

of Linux/RK. Memory reservation maintains a global page pool to manage unallocated

physical pages. In this page pool, we categorize pages into memory partitions with their

color indices. When a real-time taskset is given, our scheme assigns a core index and color
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Figure 4.4: Page coloring on the Intel i7-2600 L3 cache

indices to each task. Then, a memory reservation is created for each task from the page

pool, using the task’s memory demand and assigned color indices, and each task only uses

pages within its memory reservation during execution.

The target system is equipped with the Intel Core i7-2600 3.4GHz quad-core processor.

The system is configured for 4KB page frames and a 1GB memory reservation page pool.

The processor has a unified 8MB L3 shared cache that consists of four cache slices. Each

cache slice has 2MB and is 16-way set associative with a line size of 64B, thereby having

2048 sets. For the entire L3 cache to be shared among all cores, the processor distributes all

physical addresses across the four cache slices by using an on-chip hash function [15, 27].3

Figure 4.4 shows the implementation of page coloring on this cache configuration. Regardless

of the hash function, the cache set index for a given physical address is independent from

the cache slice index. Hence, with page coloring, we can use 32 cache partitions and each

cache partition spans the four cache slices. Page coloring divides the L3 cache into 32 cache

partitions of 256KB and the page pool into 32 memory partitions of 32MB. The cache

partition refill time ∆ in the target system is 45.3 µsec,4 which is an empirically obtained

from a cache calibration tool, as given in [145].

3Intel refers to this technique, which is unrelated to cache partitioning, as a Smart Cache. The details
on the hash function are proprietary in nature.

4The cache partition refill time is the time to fetch from memory to the L3 cache. Thus, it is hardly
affected by the fact that the Intel i7’s core-to-L3 access time varies from 26 to 31 cycles. Our WCET
estimation covers such L3 access variations.
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4.2.2 Taskset

Table 4.1 shows four periodic tasks that we have created for the evaluation. The task

functions are selected from the PARSEC benchmark suite [146] to create a taskset consisting

of cache-sensitive and cache-insensitive tasks. We utilize them as representative components

of complex real-time embedded applications such as sensor fusion and computer vision

in an autonomous vehicle [147]. Each task has a relative deadline Di equal to its period

Ti and a memory requirement Mi. Due to the memory co-partitioning of page coloring,

Mi determines the minimum required number of cache partitions k for a task τi, given

by d Mi
Mtotal/Ncache

e ≤ k. Task priorities are assigned by the deadline-monotonic scheduling

policy.

For the WCET analysis, we used the measurement-based approach. To reduce inac-

curacies in measurement, we disabled the processor’s simultaneous multithreading and

dynamic clock frequency scaling. All unrelated system services such as GUI and networking

were also disabled during the experiments. We used the processor’s hardware performance

counters to measure the task execution time and the L3 misses, when each of the tasks

were running alone in the system. Then, we chose the maximum observed execution time

and the maximum observed L3 misses as the WCET estimate and the worst-case L3 misses,

respectively. Figure 4.5 shows each task’s per-period execution time as the number of

assigned cache partitions increases. In each sub-figure, the WCET and the average-case

execution time (ACET) are plotted as a solid line and a dotted line, respectively. The

worst-case L3 misses per period are presented as a bar graph with the scale on the right

y-axis.

The taskset used in our evaluation is a mixture of cache-sensitive and cache-insensitive

tasks. We can confirm this from Figure 4.5. τ1 and τ3 are cache-sensitive tasks. The τ1’s

WCET C1(k) drastically decreases as the number of cache partitions k increases, until

k exceeds 12. The number of τ1’s L3 misses also decreases as k increases. τ3’s WCET

C3(k) continuously decreases as k increases. In terms of utilization, the difference between
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Table 4.1: Taskset information

Task Ti=Di Mi Min. Cache Name and description
τi (msec) (MB) k Sensitive
τ1 40 18 1 Yes p_streamcluster: computes clustering of data points
τ2 120 66 3 No p_ferret: image-based similarity search engine
τ3 180 52 2 Yes p_canneal: graph restructuring for low routing cost
τ4 600 50 2 No p_fluidanimate: simulates fluid motion for animations

the maximum and the minimum utilization of τ1 is (C1(32)− C1(1))/T1 = 10.82%. The

utilization difference of τ3 is 11.83%. On the other hand, τ2 and τ4 are cache-insensitive.

The utilization differences of τ2 and τ4 are merely 0.56% and 0.54%, respectively.

4.2.3 Cache Reservation

The purpose of this experiment is to verify how effective cache reservation is in avoiding

inter-core cache interference. We ran each task on different cores simultaneously, i.e. τi

on Core i, under two cases: with and without cache reservation. Memory reservation was

used in both cases. Without cache reservation, all tasks competitively used the entire cache

space. With cache reservation, the number of cache partitions for each core was as follows:

12 partitions for Core 1, 3 for Core 2, 14 for Core 3, and 3 for Core 4. These numbers are

determined to reduce the total CPU utilization by the observation of Figure 4.5. The cache

partitions assigned to each core were solely used by the task on that core.

Figure 4.6 presents the observed execution time and the L3 misses of four tasks with

and without cache reservation, when they ran simultaneously on different cores. In each

sub-figure, the upper graph shows the execution time of each task instance and the lower

graph shows the number of L3 misses for each instance. The x-axis on each graph indicates

the instance numbers of a task. Tasks are released at the same instance using hrtimers in

Linux.

The execution times of all tasks without cache reservation vary significantly compared

to the execution times with cache reservation. Without cache reservation, tasks compete

for the L3 cache and higher worst-case L3 misses are encountered. The correlation between

execution time and L3 misses is clearly shown in Figure 4.6a and Figure 4.6c. The average
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(a) τ1: p_streamcluster
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(b) τ2: p_ferret
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(c) τ3: p_canneal
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(d) τ4: p_fluidanimate

Figure 4.5: Execution time and L3 misses of each task as the number of cache partitions increases
when running alone in the system

execution time of tasks without cache reservation may not be much higher. However,

the absence of cache reservation contributes to poor timing predictability. The longest

execution time of τ1 without cache reservation is close to its WCET with 8 dedicated cache

partitions (C1(8)), that of τ2 is close to C2(3), that of τ3 is close to C3(10), and that of

τ4 is close to C4(4). Note that, without cache reservation, the longest execution times

cannot be obtained before profiling the whole taskset. Hence, the profiling may need to

be re-conducted whenever a single parameter of the taskset changes. In addition, without

cache reservation, the cache is not effectively utilized. The total number of cache partitions

for the above longest execution times is 8 + 3 + 10 + 4 = 25. This means that 7 partitions

are wasted in terms of WCET.

With cache reservation, the execution times of τ1, τ2, and τ4 do not exceed their WCETs
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Figure 4.6: Observed execution time and L3 misses of tasks when each task runs simultaneously
on different cores

that are estimated in isolation from other tasks. τ3 also does not exceed its WCET except at

the beginning of each hyper-period of 1800 msec. τ3 exceeds its WCET by less than 2% once

in a hyper-period. However, this is not caused by inter-core cache interference. As shown in

Figure 4.6c, the L3 misses of τ3 instances are always lower than its worst-case L3 misses even

at the beginning of each hyper-period, meaning that cache reservation successfully avoids

inter-core cache interference. Since all task instances start their execution concurrently at

the beginning of each hyper-period, we strongly suspect that the observed execution time

slightly greater than the WCET is caused by other shared memory resources in the system,

such as a memory controller and memory buses. We will address this issue in Chapter 5.

4.2.4 Cache Sharing

We first evaluate the effectiveness of our proposed equations in predicting the worst-case

response time (WCRT) of a task with cache sharing. In this experiment, all tasks run on a
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Table 4.2: Cache allocation to tasks with cache sharing

τi
Allocated cache WCET Worst-Case Response-Time
partitions Si (msec) NoCInt CInt

τ1 {1, 2, 3, 4, 5, 6, 7, 8} C1(8) = 11.94 11.94 12.30
τ2 {1, 2, 3} C2(3) = 13.15 25.09 25.72
τ3 {1, 2, 3, 4, 5, 6, 7, 8} C3(8) = 49.58 98.55 101.36
τ4 {4, 5, 6, 7, 8} C4(5) = 44.30 179.88 273.78
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Figure 4.7: Response time of tasks with cache sharing on a single core

single core with 8 cache partitions. Table 4.2 shows the cache partition allocations to the

tasks by the cache-sharing technique and the predicted WCRT of the tasks. The WCRT is

calculated with two methods: “NoCInt” means intra-core cache interference is not taken

into account, and “CInt” means the WCRT is calculated by Eq. (4.2).

Figure 4.7 illustrates the observed response time of each task. The WCRT values with

NoCInt and CInt are depicted as straight lines in each graph. In all tasks, the observed

response time exceeds the WCRT with NoCInt, but does not exceed the WCRT with CInt.

For τ1, the observed response time greater than the WCRT with NoCInt is solely caused by

the cache warm-up delay, because τ1 has the highest priority task and does not experience

any cache-related preemption delay. Figure 4.8 supports this observation. It shows the

observed L3 misses of τ1’s instances. Since τ1 shares its cache partitions with other tasks,

the observed L3 misses are higher than the worst-case L3 miss value that is estimated when

τ1 does not share cache partitions. The correlation between τ1’s observed response time and
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Figure 4.8: L3 misses of task τ1 with cache sharing

observed L3 misses is also clearly shown. Hence, we can identify that τ1’s observed response

time greater than the WCRT with NoCInt is caused by increased L3 cache misses, rather

than jitter. This result shows the effect of our response time test that explicitly considers

the cache warm-up delay. Task τ4 shows a significant 93.9 msec difference between NoCInt

and CInt. Since the WCRT with NoCInt is close to the period of τ3, timing penalties from

intra-core cache interference make the response time exceed the period of τ3. Then, the

next instance of τ3 preempts τ4, thereby increasing the response time of τ4 significantly.

Secondly, we identify the utilization benefit of the cache-sharing technique by comparing

the total CPU utilization with and without cache sharing. Without cache sharing, cache

allocations are as follows: τ1 is assigned 1 partition, τ2 is assigned 3 partitions, τ3 is assigned

2 partitions, and τ4 is assigned 2 partitions. Note that this is the only possible cache

allocation without cache sharing because the number of available cache partitions is eight,

which is equal to the sum of each task’s minimum cache requirement. With cache sharing,

the same cache allocations as in the Table 4.2 are used. Figure 4.9 depicts the total CPU

utilization with and without cache sharing. The left three bars are the predicted and the

observed values without cache sharing and the right four bars are the values with cache

sharing. The utilization values with cache sharing are almost 10% lower than the values

without cache sharing. This result shows that cache sharing is very beneficial for saving the

CPU utilization. Furthermore, with cache sharing, both the worst-case and the average-case

observed utilization are higher than the predicted utilization with NoCInt but lower than

the predicted value with CInt. This implies that Eq. (4.1) provides a safe upper bound on

the total utilization with intra-core cache interference.
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Figure 4.9: Total CPU utilization with and without cache sharing

4.2.5 Cache-Aware Task Allocation

We now evaluate the effectiveness of our cache-aware task allocation (CATA) algorithm that

exploits cache reservation and cache sharing. Note that it is not appropriate to compare

CATA against previous approaches such as in [25, 148], since (i) they do not consider the

task memory requirements, which is essential to prevent page swapping when page coloring

is used, and (ii) they require non-preemptive EDF scheduling due to the lack of intra-core

cache interference analysis. Hence, for comparison, we consider the best-fit decreasing

(BFD) and the worst-fit decreasing (WFD) bin-packing algorithms. BFD and WFD is each

combined with a conventional software cache partitioning approach. Before allocating tasks,

BFD and WFD evenly distribute given cache partitions to all NP cores and sort tasks in

decreasing order of task utilization with the number of per-core cache partitions. During

task allocation, they do not use cache sharing.

The system parameters used in this experiment are as follows: the number of tasks

n = {8, 12, 16}, the number of cores NP = 4, the number of total cache partitions

Ncache = 32, and the size of total system memory Mtotal = {1024, 2048} MB. To generate

more than the four tasks in Table 4.1, we have duplicated the taskset such that the number

of tasks is a multiple of four.

We first compare in Figure 4.10 the minimum number of cache partitions required

to schedule a given taskset under BFD, WFD, and CATA. The y-axis represents the

cache partition usage as a percentage to Ncache, for ease of comparison. CATA schedules

given tasksets by using 16% to 25% and 12% to 19% less cache partitions than BFD and

WFD, respectively. All algorithms consume more cache partitions when Mtotal = 1024,
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Figure 4.10: Minimum amount of cache required to schedule given tasksets

compared to when Mtotal = 2048, due to the task memory requirements. BFD fails to

schedule a taskset with 16 tasks when Mtotal = 1024 but schedules the taskset when

Mtotal = 2048. We next compare the memory space efficiency of the algorithms at their

minimum cache partition usage. The memory space efficiency in our context is the ratio

of the total memory usage of tasks to the size of allocated memory partitions, computed

as (
∑
Mi)/{(Mtotal/Ncache)× (# of allocated memory partitions)}. Figure 4.11 shows the

memory space efficiency. CATA is 25% to 39% and 14% to 35% more memory space

efficient than BFD and WFD, respectively. Since BFD and WFD suffer from the memory

co-partitioning problem, they exhibit poor memory space efficiency. On the other hand,

CATA shows 97% of memory space efficiency when n = 8 and Mtotal = 1024, meaning that

only 3% of slack space exists in the allocated memory partitions. Lastly, we compare in

Figure 4.12 the total accumulated CPU utilization required to schedule given tasksets under

BFD, WFD, and CATA when all cache partitions are used. CATA requires 29% to 44%

and 14% to 49% less CPU utilization than BFD and WFD, respectively. The utilization

benefit of CATA becomes larger as the number of tasks increases. This is because CATA

utilizes cache sharing but BFD and WFD suffer from the availability of a limited number of

cache partitions. Based on these results, we therefore conclude that our scheme efficiently

allocates cache partitions to tasks and significantly mitigates the memory co-partitioning

problem and the availability of a limited number of cache partitions.
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Figure 4.12: Total CPU utilization required to schedule given tasksets

4.3 Summary

In this chapter, we introduced a coordinated OS-level cache management scheme for a

multi-core platform. While providing predictable performance on architectures with shared

caches across cores, our scheme addresses the two major challenges of page coloring: the

memory co-partitioning problem and the availability of only a limited number of cache

partitions. Experimental results indicate that our scheme significantly mitigates the negative

impact of the memory co-partitioning problem, by yielding as much as 39% higher memory

efficiency than the conventional approaches. Also, experimental results show that our

scheme is effective in overcoming the limited number of cache partitions, by consuming up

to 25% fewer cache partitions for satisfying timing constraints compared to the conventional

approaches. Our scheme can be used not only for developing new multi-core systems but

also for migrating existing applications from single-core to multi-core platforms.
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Chapter 5

Bounding and Reducing Memory

Interference

Prior work on addressing memory interference [65, 66, 67, 68, 149] has modeled main

memory as a black-box system, where each memory request takes a constant service time

and memory requests from different cores are serviced in either Round-Robin (RR) or

First-Come First-Serve (FCFS) order. However, such an over-simplified memory model used

by prior work may produce pessimistic or optimistic estimates on the memory interference

delay in a COTS multi-core system.

In this chapter, we propose a white-box approach for bounding and reducing memory

interference. By explicitly considering the timing characteristics of major resources in the

DRAM system, including the re-ordering effect of FR-FCFS and the rank/bank/bus timing

constraints, we obtain an upper bound on the worst-case memory interference delay for a

task when it executes in parallel with other tasks. Our technique combines two approaches:

a request-driven approach focused on the task’s own memory requests and a job-driven

approach focused on interfering memory requests during the task’s execution. Combining

them, our analysis yields a tighter upper bound on the worst-case response time of a task in

the presence of memory interference. To reduce the negative impact of memory interference,
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we use software DRAM bank partitioning [2, 53, 55, 56, 57, 58]. We consider both dedicated

and shared bank partitions due to the limited availability of DRAM banks, and our analysis

results in an upper bound on the interference delay in both cases. In the evaluation section,

we show the effectiveness of our analysis on a well-known COTS multi-core platform.

In addition, we develop a memory interference-aware task allocation algorithm that

accommodates memory interference delay during the allocation phase. The key idea of our

algorithm is to co-locate memory-intensive tasks on the same core with dedicated DRAM

banks. This approach reduces the amount of memory interference among tasks, thereby

improving task schedulability. Experimental results indicate that our algorithm yields a

significant improvement in task schedulability over existing approaches such as in [25], with

as much as 96% more tasksets being schedulable.

To focus on the memory interference problem, we make the following assumptions in

this chapter. First, tasks fit in the memory capacity. In a system with bank partitioning,

this assumption can be satisfied by configuring each bank partition to have multiple DRAM

banks. Second, each task is assigned private cache partitions, thereby no cache interference

among tasks. This assumption will be relaxed in Section 5.1.5 by combining our cache

and memory interference analyses. Third, each task is assumed to have sufficient cache

space of its own to store one row of each DRAM bank assigned to it. This assumption is

used to bound the re-ordering effect of the memory controller, which will be described in

Section 5.1.1. In fact, this is a reasonable assumption in a modern multi-core system which

typically has a large LLC.1 For brevity, we use the following notation in this chapter:

• bank(p): the set of bank partitions assigned to a core p

• shared(p, q): the intersection of bank(p) and bank(q)

• Γp: the set of tasks allocated to a core p

1For instance, Figure 2.4 shows a physical address mapping to the LLC and the DRAM in the Intel
Core-i7 system. For the LLC mapping, the last 6 bits of a physical address are used as a cache line offset,
and the next 11 bits are used as a cache set index. For the DRAM mapping, the last 13 bits are used as a
column index and the next 4 bits are used as a bank index. In order for a task to store one row in its cache,
consecutive 213−6 = 128 cache sets need to be allocated to the task. With page coloring, this is equal to 2
out of 32 cache partitions in the example system.
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The background and related prior work on memory interference have been presented in

Section 2.2. The system model including assumptions and notation for DRAM-based main

memory and tasks can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 5.1 presents our memory inter-

ference analysis. Section 5.2 provides our memory interference-aware allocation algorithm.

Section 5.3 provides a detailed evaluation. Section 5.4 summarizes this chapter.

5.1 Bounding Memory Interference Delay

The memory interference delay that a task can suffer from other tasks can be bounded by

using either of two factors: (i) the number of memory requests generated by the task itself,

and (ii) the number of interfering requests generated by other tasks that run in parallel. For

instance, if a task τi does not generate any memory requests during its execution, this task

will not suffer from any delays regardless of the number of interfering memory requests from

other tasks. In this case, the use of factor (i) will give a tighter bound. Conversely, assume

that other tasks simultaneously running on different cores do not generate any memory

requests. Task τi will not experience any delays because there is no extra contention on the

memory system from τi’s perspective, so the use of factor (ii) will give a tighter bound in

this case.

In this section, we present our approach for bounding memory interference based on

the aforementioned observation. We first analyze the memory interference delay using

two different approaches: request-driven (Sec. 5.1.1) and job-driven (Sec. 5.1.2). Then

by combining them, we present a response-time-based schedulability analysis that tightly

bounds the worst-case memory interference delay of a task (Sec. 5.1.3). We also discuss

the effect of write batching in memory controllers (Sec. 5.1.4), and present how memory

interference and cache interference analyses can be combined (Sec. 5.1.5).

DRAM Commands: Four DRAM commands are considered in our analysis: precharge

(PRE), activate (ACT), read (RD) and write (WR). Depending on the current state of
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Table 5.1: DRAM timing parameters

Parameters Symbols DDR3-1333 Units
DRAM clock cycle time tCK 1.5 nsec
Precharge latency tRP 9 cycles
Activate latency tRCD 9 cycles
CAS read latency CL 9 cycles
CAS write latency WL 7 cycles
Burst Length BL 8 columns
Write to read delay tWTR 5 cycles
Write recovery time tWR 10 cycles
Activate to activate delay tRRD 4 cycles
Four activate windows tFAW 20 cycles
Activate to precharge delay tRAS 24 cycles
Row cycle time tRC 33 cycles
Read to precharge delay tRTP 5 cycles
Refresh to activate delay tRFC 160 nsec
Average refresh interval tREFI 7.8 µsec
Rank-to-rank switch delay tRTRS 2 cycles

the bank, the memory controller generates a sequence of DRAM commands for a single

read/write memory request:

• Row-hit request: RD/WR

• Row-conflict request: PRE, ACT and RD/WR

Each DRAM command is assumed to have the same priority and arrival time as the

corresponding memory request. Note that the auto-precharge commands (RDAP/WRAP)

are not generated under the open-row policy. We do not consider the refresh (REF)

command because the effect of REF in memory interference delay is rather negligible

compared to that of other commands.2 The DRAM timing parameters used in this work

are summarized in Table 5.1 and are taken from Micron’s datasheet [151].

5.1.1 Request-Driven Bounding Approach

The request-driven approach focuses on the number of memory requests generated by a

task τi (Hi) and the amount of additional delay imposed on each request of τi. In other

2The effect of REF (ER) in memory interference delay can be roughly estimated as Ek+1
R =

d{(total delay from analysis) + EkR}/tREFIe · tRFC , where E0
R = 0. For the DDR3-1333 with 2Gb density

below 85℃, tRFC/tREFI is 160ns/7.8µs = 0.02, so the effect of REF results in only about 2% increase in
the total memory interference delay. A more detailed analysis on REF can be found in [150].
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Figure 5.2: Data bus turn-around delay

words, it bounds the total interference delay by Hi×(per-request interference delay), where

the per-request delay is bounded by using DRAM and processor parameters, not by using

task parameters of other tasks.

The interference delay for a memory request generated by a processor core p can be

categorized into two types: inter-bank and intra-bank. If there is one core q that does not

share any bank partitions with p, the core q only incurs inter-bank memory interference

delay to p. If there is another core q′ that shares bank partitions with p, the core q′ incurs

intra-bank memory interference. We present analyses on the two types of interference delay

and calculate the total interference delay based on them.
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Figure 5.3: Rank-to-rank switch delay

Inter-bank interference delay: Suppose that a core p is assigned dedicated bank

partitions. When a memory request is generated by one task on p, the request is enqueued

into the request queue of the corresponding DRAM bank. Then, a sequence of DRAM

commands is generated based on the type of the request, i.e., one command (RD/WR) for a

row-hit request, and three commands (PRE, ACT, RD/WR) for a row-conflict request. At

the bank scheduler, there is no interference delay from other cores because p does not share

its banks. In contrast, once a command of the request is sent to the channel scheduler, it

can be delayed by the commands from other banks, because the FR-FCFS policy at the
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channel scheduler issues ready commands (with respect to the channel timing constraints)

in the order of arrival time. The amount of delay imposed on each DRAM command is

determined by the following factors:

• Address/command bus scheduling time: Each DRAM command takes one DRAM

clock cycle on the address/command buses. For a PRE command, as it is not affected

by other timing constraints, the delay caused by each of the commands that have

arrived earlier is:

LPREinter = tCK

• Inter-bank row-activate timing constraints: The JEDEC standard [48] specifies that

there be a minimum separation time of tRRD between two ACTs to different banks,

and no more than four ACTs can be issued during tFAW (Figure 5.1). Thus, in case

of an ACT command, the maximum delay from each of the commands that have

arrived earlier is:

LACTinter = max(tRRD, tFAW − 3 · tRRD) · tCK

• Data bus turn-around and rank-to-rank switch delay: When a RD/WR command is

issued, data is transfered in burst mode on both the rising and falling edges of the

DRAM clock signal, resulting in BL/2 of delay due to data bus contention. In addition,

if a WR/RD command is followed by an RD/WR command to different banks in the

same rank, the data flow direction of the data bus needs to be reversed, resulting in data

bus turn-around delay. Figure 5.2 depicts the data bus contention and bus turn-around

delay in two cases. When a WR command is followed by an RD command to different

banks in the same rank, RD is delayed by WL + BL/2 + tWTR cycles (Figure 5.2(a)).

When RD is followed by WR, WR is delayed by CL + BL/2 + 2 − WL cycles

(Figure 5.2(b)). If two consecutive WR/RD commands are issued to different ranks,

there is rank-to-rank switch delay, tRTRS , between the resulting two data transfers.
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Figure 5.3 shows the rank-to-rank switch delay in three cases. When WR is followed by

RD to different ranks, RD is delayed byWL+BL/2+tRTRS−CL cycles (Figure 5.3(a)).

When RD is followed by WR, WR is delayed by CL + BL/2 + tRTRS −WL cycles

(Figure 5.3(b)). Lastly, when the two commands are of the same type, the latter is

delayed by BL/2 + tRTRS cycles (Figure 5.3(b)). Therefore, for a WR/RD command,

the maximum delay from each of the commands that have arrived earlier is given by:

LRWinter = max(WL + BL/2 + tWTR,

CL + BL/2 + 2−WL,

WL + BL/2 + tRTRS − CL,

CL + BL/2 + tRTRS −WL,

BL/2 + tRTRS) · tCK

Using these parameters, we derive the inter-bank interference delay imposed on each

memory request of a core p. Recall that each memory request may consist of up to three

DRAM commands: PRE, ACT and RD/WR. Each command of a request can be delayed

by all commands that have arrived earlier at other banks. The worst-case delay for p’s

request occurs when (i) a request of p arrives after the arrival of the requests of all other

cores that do not share banks with p, and (ii) each previous request causes PRE, ACT and

RD/WR commands. Therefore, the worst-case per-request inter-bank interference delay for

a core p, RDinter
p , is given by:

RDinter
p =

∑
∀q: q 6=p∧

shared(q,p)=∅

(
LPREinter + LACTinter + LRWinter

)
(5.1)

Intra-bank interference delay: Memory requests to the same bank are queued into

the bank request buffer and their service order is determined by the bank scheduler. A

lower-priority request should wait until all higher priority requests are completely serviced

by the bank. The delay caused by each higher-priority request includes (i) the inter-bank
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interference delay for the higher priority request, and (ii) the service time of the request

within the DRAM bank. The inter-bank interference delay can be calculated by Eq. (5.1).

The service time within the DRAM bank depends on the type of the request:

• Row-hit service time: The row-hit request is for a requested column already in the

row-buffer. Hence, it can simply read/write its column. In case of read, an RD

command takes CL + BL/2 for data transfer and may cause 2 cycles of delay to the

next request for data bus turn-around time [48]. Note that the read-to-precharge

delay (tRTP ) does not need to be explicitly considered here because the worst-case

delay of an RD command is larger than tRTP in DDR3 SDRAM [48] (or Table 5.1

for DDR3-1333), i.e., tRTP < CL+BL/2 + 2. In case of write, a WR command takes

WL + BL/2 for data transfer and may cause max(tWTR, tWR) of delay to the next

request for bus turn-around or write recovery time, depending on the type of the next

request. Thus, in the worst case, the service time for one row-hit request is:

Lhit = max{CL + BL/2 + 2,WL + BL/2 + max(tWTR, tWR)} · tCK

• Row-conflict service time: The row-conflict request should open a row before accessing

a column by issuing PRE and ACT commands, which may take up to tRP and tRCD

cycles, respectively. Hence, the worst-case service time for one row-conflict request is

represented as follows:

Lconf = (tRP + tRCD) · tCK + Lhit

If the next request is also row-conflict and issues PRE and ACT commands, constraints

on the active-to-precharge delay (tRAS) and the row-cycle time (tRC , a minimum

separation between two ACTs in the same bank) should be satisfied. The row-conflict

service time Lconf satisfies tRAS because tRCD · tCK +Lhit is larger than tRAS · tCK in

DDR3 SDRAM [48] (or Table 5.1 for DDR3-1333). Lconf also satisfies tRC , because
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tRC is equal to tRAS + tRP where tRP is time for the PRE command of the next

request to be completed.

• Consecutive row-hit requests: If m row-hit requests are present in the memory request

buffer, their service time is much smaller thanm·Lhit. Due to the data bus turn-around

time, the worst-case service time happens when the requests alternate between read

and write, as depicted in Figure 5.4. WR followed by RD causes WL + BL/2 + tWTR

of delay to RD, and RD followed by WR causes CL of delay to WR. As WR-to-RD

causes larger delay than RD-to-WR in DDR3 SDRAM [48, 152], m row-hits takes

dm2 e · (WL + BL/2 + tWTR) + bm2 c ·CL cycles. In addition, if a PRE command is the

next command to be issued after the m row-hits, it needs to wait an extra tWR−tWTR

cycles due to the write recovery time. Therefore, the worst-case service time for m

consecutive row-hit requests is:

Lconhit(m) = { dm/2e · (WL + BL/2 + tWTR) + bm/2c · CL + (tWR − tWTR)} · tCK

Under the FR-FCFS policy, the bank scheduler serves row-conflict requests in the order

of their arrival times. When row-hit requests arrive at the queue, the bank scheduler

re-orders memory requests such that row-hits are served earlier than older row-conflicts.

For each open row, the maximum row-hit requests that can be generated in a system is

represented as Ncols/BL, where Ncols is the number of columns in one row. This is due to

the fact that, as described in the system model, (i) each task is assumed to have enough

cache space to store one row of each bank assigned to it, (ii) the memory request addresses
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are aligned to the size of BL, and (iii) tasks do not share memory. Once the tasks that have

their data in the currently open row fetch all columns in the open row into their caches,

all the subsequent memory accesses to the row will be served at the cache level and no

DRAM requests will be generated for those accesses. If one of the tasks accesses a row

different from the currently open one, this memory access causes a row-conflict request so

that the re-ordering effect no longer occurs. In many systems, as described in [46, 47, 50],

the re-ordering effect can also be bounded by a hardware threshold Ncap, which caps the

number of re-ordering between requests. Therefore, the maximum number of row-hits that

can be prioritized over older row-conflicts is:

Nreorder = min (Ncols/BL, Ncap) (5.2)

The exact value of Ncap is not publicly available on many platforms. Even so, we can still

obtain a theoretical bound on Nreorder by Ncols/BL, the parameters of which are easily

found in the JEDEC standard [48].

We now analyze the intra-bank interference delay for each memory request generated

by a processor core p. Within a bank request buffer, each request of p can be delayed by

both the re-ordering effect and the previous memory requests in the queue. Therefore, the

worst-case per-request interference delay for a core p (RDintra
p ) is calculated as follows:

RDintra
p = reorder(p) +

∑
∀q: q 6=p∧

shared(q,p) 6=∅

(
Lconf +RDinter

q

)
(5.3)

reorder(p) =


0 if @q : q 6= p ∧ shared(q, p) 6= ∅

Lconhit(Nreorder) +

(
Nreorder ·

∑
∀q: q 6=p∧

shared(q,p)=∅

LRWinter

)
+ (tRP + tRCD) · tCK otherwise

(5.4)

In Eq. (5.3), the summation part calculates the delay from memory requests that can

be queued before the arrival of p’s request. It considers processor cores that share bank
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partitions with p. Since row-conflict causes a longer delay than row-hit, the worst-case

delay from each of the older requests is the sum of the row-conflict service time (Lconf ) and

the per-request inter-bank interference delay (RDinter
q ). The function reorder(p) calculates

the delay from the re-ordering effect. As shown in Eq. (5.4), it gives zero if there is no

core sharing bank partitions with p. Otherwise, it calculates the re-ordering effect as the

sum of the consecutive row-hits’ service time (Lconhit(Nreorder)) and the inter-bank delay

for the row-hits (Nreorder ·
∑
LRWinter). In addition, since the memory request of p that was

originally row-hit could become row-conflict due to interfering requests from cores sharing

bank partitions with p, Eq. (5.4) captures delays for additional PRE and ACT commands

((tRP + tRCD) · tCK).

Total interference delay: A memory request from a core p experiences both inter-bank

and intra-bank interference delay. Hence, the worst-case per-request interference delay for

p, RDp, is represented as follows:

RDp = RDinter
p +RDintra

p (5.5)

Since RDp is the worst-case delay for each request, the total memory interference delay of

τi is upper bounded by Hi ·RDp.

5.1.2 Job-Driven Bounding Approach

The job-driven approach focuses on how many interfering memory requests are generated

during a task’s job execution time. In the worst case, every memory request from other

cores can delay the execution of a task running on a specific core. Therefore, by capturing

the maximum number of requests generated by the other cores during a time interval t, the

job-driven approach bounds the memory interference delay that can be imposed on tasks

running on a specific core in any time interval t.

We define Ap(t), which is the maximum number of memory requests generated by the
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core p during a time interval t as:

Ap(t) =
∑
∀τi∈Γp

(⌈
t

Ti

⌉
+ 1

)
·Hi (5.6)

where Γp is the set of tasks assigned to the core p. The “+1” term is to capture the

carry-in job of each task during a given time interval t. Note that this calculation is

quite pessimistic, because we do not make assumptions on memory access patterns (e.g.

access rate or distribution). It is possible to add this type of assumptions, such as the

specific memory access pattern of the tasks [66, 67] or using memory request throttling

mechanisms [76, 149, 153]. This helps to calculate a tighter Ap(t), while other equations in

our work can be used independent of such additional assumptions.

Inter-bank interference delay: The worst-case inter-bank interference delay imposed

on a core p during a time interval t is represented as follows:

JDinter
p (t) =

∑
∀q: q 6=p∧

shared(q,p)=∅

Aq(t) ·
(
LACTinter + LRWinter + LPREinter

)
(5.7)

In this equation, the summation considers processor cores that do not share bank partitions

with p. The other cores sharing banks with p will be taken into account in Eq. (5.8). The

number of memory requests generated by other cores (Aq(t)) is multiplied by the maximum

inter-bank interference delay from each of these requests (LACTinter + LRWinter + LPREinter ).

Intra-bank interference delay: The worst-case intra-bank interference delay imposed

on a core p during t is as follows:

JDintra
p (t) =

∑
∀q: q 6=p∧

shared(q,p)6=∅

(
Aq(t) · Lconf + JDinter

q (t)
)

(5.8)

Eq. (5.8) considers other cores that share bank partitions with p. The number of requests

generated by each of these cores during t is calculated as Aq(t). Since a row-conflict request

causes larger delay than a row-hit one, Aq(t) is multiplied by the row-conflict service time
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Lconf . In addition, JDinter
q is added because each interfering core q itself may be delayed

by inter-bank interference depending on its bank partitions. Note that the re-ordering effect

of the bank scheduler does not need to be considered here because Eq. (5.8) captures the

worst case where all the possible memory requests generated by other cores arrived ahead

of any request from p.

Total interference delay: The worst-case memory interference delay is the sum of the

worst-case inter-bank and intra-bank delays. Therefore, the memory interference delay for

a core p during a time interval t, JDp(t), is upper bounded by:

JDp(t) = JDinter
p (t) + JDintra

p (t) (5.9)

It is worth noting that the job-driven approach will give a tighter bound than the request-

driven approach when the number of interfering memory requests from other cores is

relatively small compared to the number of the memory requests of the task under analysis.

Conversely, in the opposite case, the request-driven approach will give a tighter bound

than the job-driven approach. We will compare the results of these two approaches in

Section 5.3.

5.1.3 Response-Time Based Schedulability Analysis

We have presented the request-driven and the job-driven approaches to analyze the worst-

case memory interference delay. Since each of the two approaches bounds the interference

delay by itself, a tighter upper bound can be obtained by taking the smaller result from

the two approaches. Based on the analyses of the two approaches, the iterative response

time test [142] is extended as follows to incorporate the memory interference delay:

W k+1
i = Ci +

∑
τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
· Ch

+ min

Hi ·RDp +
∑

τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
·Hh ·RDp, JDp(W

k
i )


(5.10)
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where W k
i is the worst-case response time of τi at the kth iteration, p is the core of τi, Γp

is the set of tasks assigned to the core p, and πi is the priority of τi. The test terminates

when W k+1
i = W k

i . The task τi is schedulable if its response time does not exceed its

deadline: W k
i ≤ Di. The first and the second terms are the same as the classical response

time test. In the third term, the memory interference delay for τi is bounded by using

the two approaches. The request-driven approach bounds the delay with the addition of

Hi · RDp and
∑
dW

k
i

Th
e ·Hh · RDp, which is the total delay imposed on τi and its higher

priority tasks. The job-driven approach bounds the delay by JDp(W
k
i ), that captures the

total delay incurred during τi’s response time.

5.1.4 Memory Controllers with Write Batching

Many recent memory controllers handle write requests in batches when the write buffer is

close to full so that the bus turn-around delay can be amortized across many requests [152,

154]. Although the modeling of memory controllers using write batching is not within

the scope of our work, we believe that our analysis could still be used to bound memory

interference in systems with such memory controllers. If a memory controller uses write

batching, the worst-case delay of a single memory operation can be much larger than the

one computed by LPREinter +LACTinter +LRWinter, due to write-buffer draining.3 However, this does

not restrict the applicability of our theory on such memory controllers. We discuss this

from two cases as follows.

First, consider a job of task τi and how it experiences interference from a job of task

τj where τj is assigned to a different core than τi. If the job of τi starts its execution at a

time when the write buffer is fully filled with the memory requests of the job of τj , then

the job of τi suffers additional interference from at most w memory requests, where w is

3Note that the write-buffer draining does not completely block read requests until all the write requests
are serviced. In a memory controller with write batching, read requests are always exposed to the memory
controller, but write requests are exposed to and scheduled by the memory controller only when the write
buffer is close to full [152]. Hence, even when the write buffer is being drained, a read request can be
scheduled if its commands are ready with respect to DRAM timing constraints (e.g., read and write requests
to different banks).
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the size of the write buffer. However, this effect can only happen once per the job of τi

and be bounded by a constant value. Afterwards, the total number of interfering memory

requests remains the same during the execution of the job of τi. In addition, since the use

of write batching reduces memory bus turn-around delay, it may even shorten the response

time of the job of τi.

Second, consider a job of task τi and how it experiences interference from a job of task

τj where τj is assigned to the same core as τi. If the job of τi starts its execution at a time

when the write buffer is full with the memory requests of the job of τj , all the memory

requests in the write buffer need to be serviced first, which can delay the execution of the

job of τi. However, this effect can only happen once per context switch and hence it can be

accounted for as a preemption cost.

5.1.5 Combining with Cache Interference Analysis

We have so far assumed that there is no cache interference among tasks. Now, we relax

this assumption by combining our memory interference analysis with our cache interference

analysis presented in Chapter 4. For simplicity, we assume that cache warm-up delay has

been taken into account in the WCET of each task. Then, the analysis for the worst-case

response time of a task τi in the presence of cache interference is re-written as follows:

W k+1
i = Ci +

∑
τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
Ch +

∑
τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
γh,i (5.11)

where W k
i is the worst-case response time of τi at the kth iteration, p is the core where τi is

allocated, πh is the priority of τh, and Γp is the set of tasks allocated to the core p, and γh,i

is the cache-related preemption delay caused by τh. The term γh,i is calculated as follows:

γh,i =

∣∣∣∣∣∣Sh ∩
⋃

τj∈Γp∧πj<πh∧πj≥πi

Sj

∣∣∣∣∣∣ ·∆ (5.12)
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where Sh is the set of cache partitions assigned to τh, and ∆ is the maximum time needed

to reload data in one cache partition.

In Eq (5.11), the last term captures the total amount of cache interference delay caused

by higher-priority tasks. To identify the number of memory requests generated by cache

interference, we introduce a new term, γ∗h,i:

γ∗h,i =

∣∣∣∣∣∣Sh ∩
⋃

τj∈Γp∧πj<πh∧πj≥πi

Sj

∣∣∣∣∣∣ · δ (5.13)

where δ is the number of memory requests needed to reload one cache partition. Note that

δ is determined by the size of a cache partition in the system. In case of a write-back cache,

δ should take into account the effect of a dirty cache line that requires two memory accesses

to fetch a new cache line [140].

Then, we incorporate γ∗h,i in the request-driven and job-driven approaches. For the

request-driven approach, the total number of memory requests generated by cache interfer-

ence during the response time of a task τi is given by:

H∗i (Wi) =
∑

τh∈Γp∧πh>πi

⌈
Wi

Th

⌉
γ∗h,i (5.14)

For the job-driven approach, the Ap(t) function given in Eq. (5.6), which captures the

maximum number of memory requests generated by the core p during a time interval t, is

extended as follows to incorporate cache interference:

Ap(t) =
∑
∀τi∈Γp

(⌈
t

Ti

⌉
+ 1

)
· (Hi + γ∗i,n) (5.15)

where n is the index of the lowest-priority task in Γp.

Finally, the response-time based schedulability analysis incorporating both cache and
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memory interference delay is given as follows:

W k+1
i = Ci +

∑
τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
· Ch

+ min

Hi ·RDp +
∑

τh∈Γp∧πh>πi

⌈
W k
i

Th

⌉
·Hh ·RDp +H∗i (W k

i ) ·RDp, JDp(W
k
i )


(5.16)

where W k
i is the worst-case response time of τi at the kth iteration. The test terminates

when W k+1
i = W k

i . The task τi is schedulable if its response time does not exceed its

deadline: W k
i ≤ Di. Using this equation, we can check task schedulability in the presence

of both cache and memory interference.

5.2 Reducing Memory Interference via Task Allocation

In this section, we present our memory interference-aware task allocation algorithm to

reduce memory interference during the allocation phase. Our algorithm is motivated by the

following observations we have made from our analysis given in Section 5.1: (i) memory

interference for a task is caused by other tasks running on other cores in parallel, (ii)

tasks running on the same core do not interfere with each other, and (iii) the use of bank

partitioning reduces the memory interference delay. These observations lead to an efficient

task allocation under partitioned scheduling. By co-locating memory-intensive tasks on the

same core with dedicated DRAM banks, the amount of memory interference among tasks

can be significantly reduced, thereby providing better schedulability.

Our memory interference-aware allocation algorithm (MIAA) is given in Algorithm 4.

MIAA takes three input parameters: Γ is a set of tasks to be allocated, NP is the number

of available processor cores, and Nbank is the number of available bank partitions. MIAA

returns schedulable, if every task in Γ can meet its deadline, and unschedulable, if any task

misses its deadline.
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Algorithm 4 MIAA(Γ, NP , Nbank)
Input: Γ: a taskset to be allocated, NP : the number of processor cores, Nbank: the number of available bank

partitions
Output: Schedulability of Γ
1: G← MemoryInterferenceGraph(Γ)
2: Γp1 ← ∅
3: bank(p1)← LeastInterferingBank(Nbank,Π,G,Γ)
4: Π← {p1}
5: Φ← {Γ}
6: while Φ 6= ∅ do
7: /* Allocates bundles */
8: Φ′ ← Φ; Φrest ← ∅
9: for all ϕi ∈ Φ′ in descending order of utilization do
10: Φ← Φ \ {ϕi}
11: pbestfit ← BestFit(ϕi,Π)
12: if pbestfit 6= invalid then
13: for all pj ∈ Π : pj 6= pbestfit ∧ ¬schedulable(pj) do
14: Φ← Φ ∪ {RemoveExcess(pj ,G)}
15: else
16: Φrest ← Φrest ∪ {ϕi}
17: if |Φrest| = 0 then
18: continue
19: /* Breaks unallocated bundles */
20: all_singletons← true
21: for all ϕi ∈ Φrest do
22: if |ϕi| > 1 then
23: all_singletons← false
24: pemptiest ← argmin

pi∈Π
(utilization(pi))

25: (ϕj , ϕk)←ExtractMinCut(ϕi, 1− utilization(pemptiest),G)
26: Φ← Φ ∪ {ϕj , ϕk}
27: else
28: Φ← Φ ∪ {ϕi}
29: /* Opens a new processor core */
30: if all_singletons = true then
31: if |Π| = NP then
32: return unschedulable
33: ϕ←

⋃
ϕi∈Φ

ϕi

34: Γpnew ← ∅
35: bank(pnew)←LeastInterferingBank(Nbank,Π,G, ϕ)
36: Π← Π ∪ {pnew}
37: Φ← {ϕ}
38: return schedulable

To understand the intensity of memory interference among tasks, MIAA first constructs

a memory interference graph G (line 1 of Alg. 4). The graph G is a fully-connected,

weighted, undirected graph, where each node represents a task and the weight of an edge

between two nodes represents the amount of memory interference that the corresponding

two tasks can generate. Algorithm 5 gives the pseudo-code for constructing G. For each

pair of two tasks, τi and τj , the edge weight between the two tasks is calculated as follows.

First, the two tasks are assumed to be assigned to two empty cores that share the same
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Algorithm 5 MemoryInterferenceGraph(Γ)
Input: Γ: a taskset (Γ = {τ1, τ2, ..., τn})
Output: G: a graph with tasks as nodes and memory interference-intensity among nodes as edge weights
1: Construct a fully-connected undirected graph G with tasks in Γ as nodes
2: for i← 1 to n do
3: for j ← i+ 1 to n do
4: Let two processors, p1 and p2, share the same bank partition
5: Γp1 ← {τi}
6: Γp2 ← {τj}
7: Wi ← response time of τi
8: Wj ← response time of τj
9: weight(G, τi, τj)← (Wi − Ci)/Ti + (Wj − Cj)/Tj
10: return G

Algorithm 6 LeastInterferingBank(Nbank,Π,G, ϕ)
Input: Nbank: the number of bank partitions, Π: a set of processor cores, G: a memory interference graph, ϕ: a

set of tasks that have not been allocated to cores yet
Output: b: a bank partition index (1 ≤ b ≤ Nbank)
1: if |Π| < Nbank then
2: return indexof(unused_bank_partition())
3: pmin ← p1

4: wpmin ←∞
5: for all pi ∈ Π do
6: wpi ←

∑
τj∈Γpi

∑
τk∈ϕ weight(G, τj , τk)

7: if wpmin > wpi then
8: pmin ← pi
9: wpmin ← wpi
10: return bank(pmin)

bank partition. Then, the response times of the two tasks, Wi and Wj , are calculated by

using Eq. (5.10), assuming that no other tasks are executing in the system. Since each

task is the only task allocated to its core, the task response time is equal to the sum

of the task WCET and the memory interference delay imposed on the task. Hence, we

use (Wi − Ci)/Ti + (Wj − Cj)/Tj as the edge weight between τi and τj (weight(G, τi, τj)),

which represents the amount of CPU utilization penalty that may occur due to memory

interference among τi and τj .

After constructing the graph G, MIAA opens one core, p1, by adding it to the core

set Π. It is worth noting that every time a new core is opened (added to Π), a bank

partition is assigned to it by the LeastInterferingBank() function given in Algorithm 6.

The purpose of LeastInterferingBank() is to find a bank partition that likely leads to

the least amount of memory interference to the tasks that have not been allocated yet

(input parameter ϕ of Alg. 6). If the number of cores in Π does not exceed the number of
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Algorithm 7 BestFit(ϕ,Π)
Input: ϕ: a task bundle to be allocated, Π: a set of available processor cores
Output: pi: the processor core where ϕ is allocated (pi = invalid, if the allocation fails)
1: for all pi ∈ Π in non-increasing order of utilization do
2: Γpi ← Γpi ∪ ϕ
3: if schedulable(pi) then
4: return pi
5: Γpi ← Γpi \ ϕ
6: return invalid

bank partitions (Nbank), LeastInterferingBank() returns the index of an unused bank

partition (line 2 of Alg. 6). Otherwise, LeastInterferingBank() tries to find the least

interfering bank by using G as follows. For each core pi, it calculates wpi that is the sum of

the weights of all edges between the tasks in pi and the tasks in ϕ. Then, it returns the

bank partition index of a core pmin with the smallest wpmin .

The allocation strategy of MIAA is to group memory-intensive tasks into a single bundle

and allocate as many tasks in each bundle as possible into the same core. To do so, MIAA

first groups all tasks in Γ into a single bundle and assign that bundle as an element of

the set of bundles to be allocated (line 5 of Alg. 4). Then, it allocates all bundles in Φ

based on the best-fit decreasing (BFD) heuristic (from line 9 to line 16). Here, we define

the utilization of a bundle ϕi as
∑

τk∈ϕk Ck/Tk. Bundles are sorted in descending order

of utilization and MIAA tries to allocate each bundle to a core by using the BestFit()

function given in Algorithm 7. This algorithm finds the best-fit core that can schedule a

given bundle with the least amount of remaining utilization. The utilization of a core pi is

defined as
∑

τk∈Γpi
Ck/Tk, where Γpi is the set of tasks allocated to the core pi. If a bundle

is allocated (line 12 of Alg. 4), that bundle may introduce additional memory interference

to all other cores. Therefore, we need to check if the other cores can still schedule their

tasksets. If any core becomes unschedulable due to the just-allocated bundle, MIAA uses

the RemoveExcess() function to remove enough tasks from the core in order to make it

schedulable again, and puts the removed tasks as a new bundle into Φ (line 14). Conversely,

if a bundle is not allocated to any core (line 15), it is put into Φrest and will be considered

later.
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Algorithm 8 RemoveExcess(pi,G)
Input: pi: a processor core, G: a memory interference graph
Output: ϕ: a set of tasks removed from pi
1: ϕ← ∅
2: repeat
3: wτmin ←∞
4: for all τj ∈ Γpi do
5: wτi ←

∑
τk∈Γpi

∧τk 6=τj weight(G, τj , τk)

6: if wτmin > wτi then
7: τmin ← τj
8: wτmin ← wτi
9: Γpi ← Γpi \ {τmin}
10: ϕ← ϕ ∪ {τmin}
11: until schedulable(pi)
12: return ϕ

Algorithm 9 ExtractMinCut(ϕ,max_util,G)
Input: ϕ: a task bundle to be broken, max_util: the maximum utilization allowed for the first sub-bundle, G: a

memory interference graph
Output: (ϕ′, ϕ′′): a tuple of sub-bundles
1: Find a task τi ∈ ϕ with the highest utilization
2: ϕ′ ← {τi}
3: ϕ′′ ← ϕ \ {τi}
4: while |ϕ′′| > 1 do
5: wτmax ← −1
6: for all τi ∈ ϕ′′ do
7: w ←

∑
τj∈ϕ′ weight(G, τi, τj)

8: if wτmax < w then
9: τmax ← τi
10: wτmax ← w
11: if utilization(ϕ′ ∪ {τmax}) ≤ max_util then
12: ϕ′ ← ϕ′ ∪ {τmax}
13: ϕ′′ ← ϕ′′ \ {τmax}
14: else
15: break
16: return (ϕ′, ϕ′′)

We shall explain the RemoveExcess() function before moving onto the next phase of

MIAA. The pseudo-code of RemoveExcess() is given in Algorithm 8. The goal of this

function is to make the core pi schedulable again while keeping as many memory-intensive

tasks as possible. To do so, the function extracts one task at a time from the core with

the following two steps. In step one, it calculates the weight wτi for each task τi, which is

the sum of all edge weights from τi to the other tasks on the same core. In step two, it

removes a task τmin with the smallest wτmin from the core. These two steps are repeated

until the core becomes schedulable. Then, the function groups the removed tasks into a

single bundle and returns it.

Once the bundle allocation phase is done, MIAA attempts to break unallocated bundles

86



in Φrest (line 21 of Alg. 4). If an unallocated bundle ϕi contains more than one task, it is

broken into two sub-bundles by the ExtractMinCut() function such that the utilization of

the first sub-bundle does not exceed the remaining utilization of the emptiest core (line 25).

If ϕi has only one task in it, ϕi is put again into Φ. Algorithm 9 gives the pseudo-code

of ExtractMinCut(). The primary goal of this function is to break a bundle into two

sub-bundles while minimizing memory interference among them. To meet this goal, the

function first finds a task with the highest utilization in the input bundle and puts that

task into the first sub-bundle ϕ′. All the other tasks are put into the second sub-bundle ϕ′′.

Then, the function selects a task in ϕ′′ with the maximum sum of edge weights to the tasks

in ϕ′ and moves that task to ϕ′. This operation repeats as long as ϕ′′ has enough tasks

and the utilization of ϕ′ does not exceed the requested sub-bundle utilization (max_util).

When ExtractMinCut() returns the two sub-bundles, MIAA puts them into Φ (line 26 of

Alg. 4).

If all unallocated bundles are singletons, meaning that none of them can be broken

into sub-bundles, and the number of cores used is less than NP , MIAA adds a new core

to Π (line 36). Since the addition of a new core opens up the possibility of allocating all

remaining bundles together to the same core, MIAA merges the remaining bundles into

a single bundle (line 33) and puts it into Φ. MIAA then repeats the whole process again

until Φ becomes empty.

MIAA is based on the BFD heuristic which has O(n ·m) complexity, where n is the

number of tasks and m is the number of processor cores used. On the one hand, the

complexity of MIAA could be better than that of BFD due to the bundled allocation of

tasks. On the other hand, the complexity of MIAA could be worse than that of BFD

due to RemoveExcess() which can undo task allocation. However, MIAA is guaranteed to

complete in bounded time. The worst case of RemoveExcess() happens when it removes all

the previously-allocated tasks from cores. Then, MIAA opens a new core until there is any

remaining core. If there is no remaining core, MIAA completes and returns a failure result.

It is worth noting that MIAA allocates at most one bank partition to each core, assuming
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that one bank partition is sufficient to meet the memory requirements of any set of tasks

that may be allocated to a single core. This assumption can be satisfied by configuring

one bank partition to have multiple DRAM banks, as discussed in Section 2.2.3. However,

we believe that explicitly modeling each task’s memory requirement can help in providing

better schedulability, which remains as our future work.

5.3 Evaluation

In this section, we first compare the memory interference delay observed in a real platform

with the one predicted by our analysis. Then, we evaluate our memory interference-aware

allocation algorithm.

5.3.1 Memory Interference in a Real Platform

5.3.1.1 Experimental Setup

The target platform is equipped with an Intel Core i7-2600 quad-core processor running at

3.4 GHz. The on-chip memory controller of the processor supports dual memory channels,

but by installing a single DIMM, only one channel is activated in accordance with our

system model.4 The platform uses a single DDR3-1333 DIMM that consists of 2 ranks and

8 banks per each rank. The timing parameters of the DIMM are shown in Table 5.1.

We used the latest version of Linux/RK [138, 139] for software cache and bank parti-

tioning [16, 55].5 Cache partitioning divides the shared L3 cache of the processor into 32

partitions, and bank partitioning divides the DRAM banks into 16 partitions (1 DRAM bank

per partition). For the measurement tool, we used the Linux/RK profiler [155] that records

execution times and memory accesses (last-level cache misses) using hardware performance

counters. In addition, we used the memory reservation mechanism of Linux/RK [143, 144]

to protect each application against unexpected page swap-outs. To reduce measurement

4This is why the DRAM address mapping in Figure 2.4 does not have a bit for channel selection.
5Linux/RK is available at https://rtml.ece.cmu.edu/redmine/projects/rk.
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inaccuracies and improve predictability, we disabled the stride-based and adjacent cache-

line prefetchers, simultaneous multithreading, and dynamic clock frequency scaling of the

processor. All unrelated system services such as GUI and networking were also disabled.

It is worth noting that some of our assumptions do not hold in the target platform.

First, the processor of the target platform is not fully timing-compositional, in that it

can generate multiple outstanding memory requests and hide memory access delay by

out-of-order execution. Second, the memory controller of the target platform uses write

batching, and there may be other discordances between the memory controller and our

system model because detailed information on the memory controller is not open to the

public. However, we have chosen the target platform because (i) it is equipped with DDR3

SDRAM which is our main focus in this work, and (ii) it can run an OS that provides the

software cache and DRAM bank partitioning features needed for our experiments. We will

explore how the aforementioned differences between the target platform and our system

model influences our experimental results.

5.3.1.2 Results with Synthetic Tasks

Our focus here is on analyzing the memory interference of the two types of synthetic tasks.

At first, we use the synthetic latency task [56], which traverses a randomly ordered linked

list. Due to the data dependency of pointer-chasing operations in linked-list traversals, the

latency task generates only one outstanding memory request at a time, nullifying the effect

of multiple outstanding memory requests in the target platform. We configure the working

set size of the latency task to be four times of the L3 cache in order to minimize cache

hits. In addition, we configure the latency task to generate only read requests in order to

avoid the write-batching effect of the memory controller. We execute multiple instances of

the latency task to generate interfering memory requests and to measure delay caused by

them. Each instance is allocated to a different core, and assigned 4 cache partitions and 1

bank partition. We evaluate two cases where the instances share and do not share bank

partitions.
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Figure 5.5: Response times of a synthetic task that generates one outstanding read memory
request at a time

Figure 5.5 compares the maximum observed response times of one instance of the latency

task with the calculated response times from our analysis, while the other instances are

running in parallel. Since the latency task generates only read requests, we present results

from a variation of our analysis, “Calculated (RD only)”, which considers only read requests

in LRWinter and Lhit, in addition to “Calculated (RD+WR)”, which is our original analysis

considering both read and write requests. The x-axis of each subgraph denotes the total

number of cores used, e.g., “2 cores” means that two instances run on two different cores

and the other cores are left idle. The y-axis shows the response time of the instance under

analysis, normalized to the case when it runs alone in the system. Since each instance is

allocated alone to each core, the response time increase is equal to the amount of memory

interference suffered from other cores. The difference between the observed and calculated

values represents the pessimism embedded in our analysis. Figure 5.5(a) shows the response

times when each instance has a private bank partition. We observed a very small increase

in response times even when all four cores were used. This is because (i) each instance

of the latency task does not experience intra-bank interference due to its private bank

partition, and (ii) each instance generates a relatively small number of memory requests,

so each memory request is likely serviced before the arrival of requests from other cores.

However, our analysis pessimistically assumes that each memory request may always be

delayed by the memory requests of all other cores. In addition, the executions of DRAM
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commands at different banks can be overlapped as long as DRAM timing constraints are

not violated, but our analysis does not consider such an overlapping effect.

Figure 5.5(b) depicts the response times when all cores share the same bank partition.

We set the re-ordering window size Nreorder to zero in our analysis, because the latency task

accesses a randomly ordered linked list and has very low row-buffer locality, thereby hardly

generating row-hit requests. As can be seen in this figure, the results from both of our

analyses bound the observed response times. The pessimism of our analysis in the shared

bank case is not as significant as the one in the private bank case. This is due to the fact

that the use of a single shared bank serializes the executions of DRAM commands from

multiple cores, making their executions close to the worst-case considered by our analysis.
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Figure 5.6: Response times of a synthetic task that generates multiple outstanding read and write
memory requests at a time

Next, we use a synthetic memory-intensive task which has the opposite characteris-

tics of the latency task. The memory-intensive task is a modified version of the stream

benchmark [156]. The memory-intensive task generates a combination of read and write

requests with very high row-buffer locality and little computation. In addition, it can

generate multiple outstanding memory requests in the target platform due to the lack of

data dependency. Therefore, by using the memory-intensive task, we can identify the effects

of the differences between the target platform and our analysis. Similar to the latency

task experiments, we execute multiple instances of the memory-intensive task, with each

assigned 4 cache partitions and 1 bank partition, and compare private and shared bank
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cases.

Figure 5.6 compares the response times of one instance of the memory-intensive task,

while the other instances are running in parallel. Since the memory-intensive task generates

both read and write requests, we do not consider our read-only analysis used in Figure 5.5.

Figure 5.6(a) shows the response times with a private bank partition per core. Since the

memory-intensive task generates a larger number of memory requests than the latency task,

the observed response times of the memory-intensive task is longer than the ones of the

latency task. Interestingly, although the memory-intensive task might generate multiple

outstanding memory requests at a time, our analysis could bound memory interference delay.

This is because the extra penalty caused by multiple outstanding memory requests can be

compensated by various latency-hiding effects in the target platform. First, an increase

in the memory access latency can be hidden by the out-of-order execution of the target

processor. Second, the memory controller handles the write requests in batches, which can

reduce the processor stall time. However, in order to precisely analyze memory interference

in a platform like ours, both the extra penalty caused by multiple outstanding memory

requests and the latency-hiding effects from out-of-order execution and write batching

should be accounted for by analysis, which remains as future work.

Figure 5.6(b) illustrates the response times when all cores share the same bank partition.

Since the memory-intensive task has very high row-buffer locality, we expected that a

large re-ordering window size Nreorder would be needed for our analysis to bound the

re-ordering effect. However, as shown in this figure, our analysis could bound memory

interference even when we set Nreorder to zero. We suspect that the re-ordering effect on

the memory-intensive task is canceled out by the memory latency-hiding techniques of the

target platform.

5.3.1.3 Results with PARSEC Benchmarks

We now analyze the memory interference delay of the PARSEC benchmarks [146], which are

closer to the memory access patterns of real applications compared to the synthetic tasks
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used in Section 5.3.1.2. A total of eleven PARSEC benchmarks are used in this experiment.

Two PARSEC benchmarks, dedup and facesim, are excluded from the experiment due to

their frequent disk accesses for data files. In order to compare the impact of different

amounts of interfering memory requests, we use the two types of synthetic tasks, memory-

intensive and memory-non-intensive. Each PARSEC benchmark is assigned to Core 1 and

the synthetic tasks are assigned to the other cores (Core 2, 3, 4) to generate interfering

memory requests. To meet the memory size requirement of the benchmarks, each benchmark

is assigned 20 private cache partitions.6 The synthetic tasks are each assigned 4 private

cache partitions. Each of the benchmarks and the synthetic tasks is assigned 1 bank

partition, and we evaluate two cases where tasks share or do not share bank partitions.

The memory-intensive task is the one used in Section 5.3.1.2. When running in isolation,

the memory-intensive task generates up to 40K DRAM requests per msec (combination of

read and write). Since it has very high row-buffer locality with little computations, “40K

requests per msec” is likely close to the maximum possible value that a single core can

generate with a single bank partition in the target system. The memory-non-intensive task

has a similar structure to the stream benchmark [156], but it has multiple non-memory

operations between memory operations, thereby generating much fewer DRAM requests.

When running alone in the system, the memory-non-intensive task generates up to 1K

DRAM requests per msec.

We first evaluate the response times of benchmarks with memory-intensive tasks.

Figure 5.7 and Figure 5.8 compare the maximum observed response times with the calculated

response times from our analysis, when memory-intensive tasks are running in parallel.

The x-axis of each subgraph denotes the benchmark names, and the y-axis shows the

response time of each benchmark normalized to the case when it runs alone in the system.

Figure 5.7 shows the response times with a private bank partition per core. We observed

up to 4.1x of response time increase with three memory-intensive tasks in the target system

6Software cache partitioning simultaneously partitions the entire physical memory space into the number
of cache partitions. Therefore the spatial memory requirement of a task determines the minimum number
of cache partitions for that task [16].
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(a) One memory-intensive task on Core 2
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(b) Two memory-intensive tasks on Core 2 and 3
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(c) Three memory-intensive tasks on Core 2, 3 and 4

Figure 5.7: Response times of benchmarks with a private bank partition when memory-intensive
tasks run in parallel

(streamcluster in Figure 5.7(c)). Our analysis could bound memory interference delay

in all cases. The worst over-estimation is found in fluidanimate. We suspect that this

over-estimation comes from the varying memory access patten of the benchmark, because

our analysis considers the worst-case memory access scenario. Recall that our analysis

bounds memory interference based on two approaches: request-driven and job-driven. In
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(a) One memory-intensive task on Core 2
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(b) Two memory-intensive tasks on Core 2 and 3

0

200

400

600

800

1000

1200

1400

1600

N
o

rm
. 

R
e

sp
o

n
se

 T
im

e
 (

%
) 

black- 
scholes 

body- 
track 

canneal ferret fluid- 
animate 

freq- 
mine 

ray- 
trace 

stream- 
cluster 

swap- 
tions 

vips x264 

Observed 

Calculated 

Calculated 

(Nreorder = 0) 

(Nreorder = 12) 

Calculated (Nreorder = 6) 

(c) Three memory-intensive tasks on Core 2, 3 and 4

Figure 5.8: Response times of benchmarks with a shared bank partition when memory-intensive
tasks run in parallel

this experiment, as the memory-intensive tasks generate an enormous number of memory

requests, the response times of all benchmarks are bounded by the request-driven approach.

When only the job-driven approach is used, the results are unrealistically pessimistic

(>10000x; not shown in the figure for simplicity). Thus, these experimental results show

the advantage of the request-driven approach.
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(a) Private bank partition
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(b) Shared bank partition

Figure 5.9: Response times of benchmarks with three memory-non-intensive tasks

Figure 5.8 illustrates the response times when all cores share the same bank partition.

With bank sharing, we observed up to 12x of response time increase in the target platform.

Our analysis requires the re-ordering window size Nreorder to calculate the response time

when a bank partition is shared. However, we cannot obtain the precise Nreorder value

because the Ncap value of the target platform is not publicly available. Although the Ncap

value is crucial to reduce the pessimism in our analysis, Nreorder can still be bounded

without the knowledge of the Ncap value, as given in Eq. (5.2). The DRAM used in this

platform has Ncols of 1024 and BL of 8, so the Nreorder value does not exceed 128. In this

figure, for purposes of comparison, we present the results from our analysis when Nreorder

is set to 0, 6, and 12. If we disregard the re-ordering effect of FR-FCFS in this platform

(Nreorder = 0), the analysis generates overly optimistic values. In case of streamcluster with

three memory-intensive tasks (Figure 5.8(c)), the analysis that does not account for the
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Table 5.2: Base parameters for allocation algorithm experiments

Parameters Values
Number of processor cores (NP ) 8
Number of bank partitions (Nbank) 8
Number of tasks to be allocated 20
Task period (Ti) uniform from [100, 200] msec
Task utilization (Ui) uniform from [0.1, 0.3]
Task WCET (Ci) Ui · Ti
Task deadline (Di) equal to Ti
Ratio of memory-intensive tasks to memory-non-intensive tasks 5:5
Hi for memory-intensive task uniform from [10000, 100000]
Hi for memory-non-intensive task uniform from [100, 1000]

re-ordering effect results in only about half of the observed one. When Nreorder = 12, our

analysis can find bounds in all cases. However, this does not necessarily mean that the re-

ordering window size of the memory controller is 12. As we have discussed in Section 5.3.1.2,

multiple outstanding memory requests and various latency hiding techniques cancel their

effects on each other in the target platform. Hence, the exact size re-ordering window size

of the memory controller can be either greater or smaller than 12.

We next evaluate the response times with memory-non-intensive tasks. Figure 5.9(a)

and Figure 5.9(b) depict the response times of benchmarks with a private and a shared

bank partition, respectively, when three memory-non-intensive tasks run in parallel. In

contrast to the memory-intensive case, the smallest upper-bounds on the response times are

mostly obtained by the job-driven approach due to the low number of interfering memory

requests. The experimental results show that our analysis can closely estimate memory

interference delay under scenarios with both high and low memory contention.

5.3.2 Memory Interference-Aware Task Allocation

In this subsection, we evaluate the effectiveness of our memory interference-aware allocation

(MIAA) algorithm. To do this, we use randomly-generated tasksets and capture the

percentage of schedulable tasksets as the metric.
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5.3.2.1 Experimental Setup

The base parameters we use for experiments are summarized in Table 5.2. Once a taskset

is generated, the priorities of tasks are assigned by the Rate Monotonic Scheduling (RMS)

policy [127]. The same DRAM parameters as in Table 5.1 are used, and the re-ordering

window size of 12 is used (Nreorder = 12).

We consider the following six schemes for performance comparison: (i) the best-fit

decreasing algorithm (BFDnB), (ii) BFD with bank partitioning (BFDwB), (iii) the first-

fit decreasing algorithm (FFDnB), (iv) FFD with bank partitioning (FFDwB), (v) the

IA3 algorithm proposed in [25] (IA3nB), and (vi) IA3 with bank partitioning (IA3wB).

The BFD and FFD algorithms are traditional bin-packing heuristics, and IA3 is a recent

interference-aware task allocation algorithm based on FFD. As none of these algorithms is

originally designed to consider bank partitioning, all cores share all available bank partitions

under BFDnB, FFDnB and IA3nB. Conversely, under BFDwB, FFDwB and IA3wB, bank

partitions are assigned to cores in round-robin order so that each core can have a dedicated

bank partition. In all these algorithms, we use our response-time test given in Eq. (5.10) to

check if a task to be allocated can fit into a candidate core.

IA3 requires each task to have a set of WCET values to represent memory interference as

part of the task’s WCET. Specifically, IA3 assumes that the worst-case memory interference

is affected only by the number of cores used and is not affected by the memory access

characteristics of other tasks running in parallel. Hence, under IA3nB and IA3wB, we

calculate each task’s WCET value as C ′i = Ci +RD ·Hi, and use C ′i instead of Ci when

the FFD module of IA3 sorts tasks in descending order of utilization. We have observed

that the use of C ′i with a conventional response-time test [142] to check if a task to be

allocated can fit into a candidate core yields worse performance than the use of Ci with our

response-time test. Hence, we use only C ′i when sorting tasks in utilization. In addition,

IA3 is designed to allocate cache partitions to cores as well, but we do not consider this

feature in our experiments.
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Figure 5.10: Taskset schedulability as the ratio of memory-intensive tasks increases
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Figure 5.11: Taskset schedulability as the number of tasks increases

5.3.2.2 Results

We explore four main factors that affect taskset schedulability in the presence of memory

interference: (i) the ratio of memory-intensive tasks, (ii) the number of tasks, (iii) the

utilization of each task, and (iv) the number of cores allowed to use. We generate 10,000

tasksets for each experimental setting, and record the percentage of tasksets where all the

tasks pass the response-time test given in Eq. (5.10).

Figure 5.10 shows the percentage of schedulable tasksets as the ratio of memory-intensive

tasks to memory-non-intensive tasks increases. The left-most point on the x-axis represents

that all tasks are memory-non-intensive, and the right-most point represents the opposite.

The percentage difference between MIAA and the other schemes becomes larger as the ratio

of memory-intensive tasks increases. For instance, when the ratio is 7:3, MIAA schedules

98% of tasksets while the other schemes schedule only less than 2% of tasksets. This big

difference mainly comes from the fact that MIAA tries to co-allocate memory-intensive
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Figure 5.12: Taskset schedulability as the utilization of each task increases
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Figure 5.13: Taskset schedulability when tasks have medium memory intensity

tasks to the same core to avoid memory interference among them. The schedulability of

MIAA also decreases as the ratio of approaches to 10:0. This is a natural trend, because

the amount of memory interference increases while the number of cores remains unchanged.

We now explore the trend of increasing the number of tasks and the utilization of each

task. Figure 5.11 and Figure 5.12 depict the results. In Figure 5.12, each point k on the

x-axis represents that the utilization of each task ranges [k− 0.01, k+ 0.01]. As can be seen,

MIAA performs the best, and BFDnB and FFDnB show the worst performance. Especially,

all the schemes except MIAA schedule less than 70% of tasksets even if there are only 10

tasks in each taskset or the utilization of each task ranges only [0.09, 0.11]. This is due

to the fact that, when a new task is allocated, tasks that have been allocated earlier on

other cores may become unschedulable due to the memory interference from the new task.

As MIAA is the only scheme accommodating such a case, it provides significantly higher

schedulability than the other schemes.
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Figure 5.14: Taskset schedulability as the number of cores increases

In Figure 5.13, we consider the case where tasks have medium memory intensity. For

this purpose, we randomly select the Hi value for each task in the range of [100, 10000].

The results in this figure show that MIAA also outperforms the other schemes when tasks

do not have a bimodal distribution of memory intensity.

Lastly, we compare in Figure 5.14 the percentage of schedulable tasksets under different

schemes when the number of cores is more than the number of bank partitions. In this

experiment, the number of tasks per taskset is set to 25, and the Hi value and the utilization

Ui of each task are randomly selected from [100, 10000] and [0.2, 0.4], respectively. The

percentage under MIAA increases with the number of cores. Especially, MIAA can schedule

98% of tasksets with 11 cores. However, the other schemes cannot schedule more than 70%

of tasksets, even with 12 cores. These experimental results show that a task allocation

algorithm cannot scale well on multi-core platforms without explicit consideration of

memory interference and MIAA yields a significant improvement in task schedulability

compared to previous schemes. We expect that the performance of MIAA can be further

improved by elaborating the functions used by MIAA, such as LeastInterferingBank()

and ExtractMinCut(). This remains as part of future work.

5.4 Summary

In this chapter, we presented an analysis for bounding memory interference on a multi-core

platform with a COTS DRAM system. Our analysis is based on a realistic memory model,
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which considers the Joint Electron Device Engineering Council (JEDEC) DDR3 SDRAM

standard, the FR-FCFS policy of the memory controller, and shared/private DRAM banks.

To provide a tighter upper-bound on the memory interference delay, our analysis uses the

combination of the request-driven and job-driven approaches. Experimental results from

a real hardware platform show that, although some of our assumptions do not hold in

the platform used, our analysis can closely estimate the memory interference delay under

workloads with both high and low memory contention.

We also presented a memory interference-aware task allocation algorithm that accom-

modates memory interference delay during the task allocation phase. Experimental results

indicate that our algorithm yields significant benefits in task schedulability, with as much

as 96% more tasksets being schedulable than previous schemes.

As memory-access-intensive tasks become prevalent in cyber-physical systems, contention

in shared main memory should be seriously considered and mitigated. We believe that

our analysis and task allocation algorithm can be effectively used for designing predictable

systems with multi-core platforms. Interesting future directions in this area include: (i)

analysis on the effect of hardware prefetchers on memory interference delay, (ii) extensions

to a non-timing-compositional architecture that allows out-of-order execution and multiple

outstanding cache misses, and (iii) examining the effects of upcoming memory schedulers

that serve heterogeneous agents.
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Chapter 6

Predictable Cache Management for

Virtualization

With the growth of processing core counts on recent processors, there is a strong demand

for consolidating multiple systems onto a single hardware platform. One of the promising

solutions for such consolidation is virtualization. With virtualization, each consolidated

system is contained within a virtual machine (VM), which is spatially isolated from other

VMs by an additional address translation layer introduced by a hypervisor. Figure 6.1

illustrates the three address layers in modern virtualization platforms, such as Xen [157]

and KVM [158]. Guest virtual pages for application tasks within a VM are mapped to guest

physical pages by the guest OS of that VM, and those guest physical pages are mapped to

host physical pages by the hypervisor. Using this approach, the hypervisor ensures that any

software failure in one VM does not propagate to other VMs.

The additional address layer at the hypervisor, however, makes page coloring and OS-

level cache management schemes based on it not to function properly in a VM. Although

a guest OS selects guest physical pages for page coloring, those pages may be mapped to

host physical pages corresponding to cache sets different from the ones intended by the

guest OS, resulting in unpredictable cache allocation. Even if page coloring works in a VM,
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Figure 6.1: Address translation layers in virtualization

tasks running on other guest OSs that do not support page coloring will suffer from cache

interference. Also, cache allocation algorithms developed for native execution environments

cannot provide an efficient solution to design VMs in a cache-aware manner and to allocate

the host machine’s cache to VMs to be consolidated.

In this chapter, we propose a predictable cache management framework for a multi-core

virtualization environment. To address the problem of cache-to-task allocation in a VM,

our framework supports two new hypervisor-level techniques, named vLLC and vColoring.

vLLC is designed for a VM that runs a guest OS with page coloring support. vLLC provides

such a VM with a portion of the host machine’s last-level shared cache (LLC) in the form

of a virtual LLC. Then, vLLC enables the guest OS to control the virtual LLC by using its

own implementation of page coloring. vColoring, on the other hand, is designed for a VM

that runs a guest OS having no page coloring support. vColoring allows the hypervisor to

directly assign a portion of the host LLC to a task running in a VM. Hence, with vColoring,

we can even control the cache allocation of tasks running on proprietary, closed-source OSs

that do not support page coloring. We have implemented prototypes of vLLC and vColoring

in the KVM hypervisor running on x86 and ARM multi-core platforms. Experimental

results show that vLLC and vColoring are effective in controlling cache allocation to tasks

and in addressing cache interference, on both an OS with page coloring (Linux/RK [16, 138])

and OSs without page coloring (vanilla Linux and MS Windows Embedded).

In addition, we propose a new cache management scheme as part of our framework.

Our scheme determines a cache-to-task allocation that reduces taskset utilization while
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satisfying timing constraints. Our scheme also designs a VM in a way that the VM’s

computational demand is captured with respect to the number of cache partitions allocated.

Lastly, when VMs are consolidated into the host machine, our scheme finds a cache-to-VM

allocation that minimizes the total VM utilization. We use randomly-generated tasksets

for the evaluation of our cache management scheme. Experimental results indicate that our

scheme yields a significant benefit in VM utilization over other approaches.

The background and related prior work on cache interference were presented in Sec-

tion 2.1. The system model including assumptions and notation for a last-level cache, tasks

and virtual machines can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 6.1 presents our vLLC and

vColoring techniques. Section 6.2 presents our cache management scheme. Section 6.3

provides detailed evaluation, and Section 6.4 summarizes this chapter.

6.1 Cache Control in Virtualization

In this section, we provide a brief description on address translation in virtualization.

Then, we present our vLLC and vColoring techniques. Both techniques provide a way to

allocate cache partitions to individual tasks running in a VM. They do not rely on the

page-fault exception of shadow paging or the hardware support of two-dimensional paging.

Our techniques differ in their target guest OSs: vLLC is for guest OSs with page coloring

(coloring-aware OSs) and vColoring is for guest OSs without page coloring (coloring-unaware

OSs).

6.1.1 Address Translation in Virtualization

There are three types of addresses in a virtualized environment: guest virtual addresses

(GVA), guest physical address (GPA), and host physical address (HPA). Whenever a

GVA is accessed, it needs to be translated to the corresponding HPA. Shadow paging and

two-dimensional paging are techniques to do such translation in full virtualization scenarios,
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where unmodified guest OSs can be used.

Shadow paging: Under shadow paging, the hypervisor generates shadow page tables

where GVAs are directly mapped to HPAs. Although a guest OS still maintains its own

page tables, the memory management unit (MMU) uses the shadow page tables for address

translation so that a GVA can be directly translated to its corresponding HPA without

having GVA-to-GPA translation. To maintain the validity of contents of the shadow page

tables, the hypervisor has to keep track of any change in the guest page tables. A well-known

approach to doing this is to write-protect the guest page tables, which triggers a page-fault

exception to the hypervisor whenever any change is made to the guest page tables.

Two-dimensional paging: Two-dimensional paging refers to hardware-assisted address

translation techniques introduced in recent processors, e.g., AMD Nested Page Tables

(NPT), Intel Extended Page Tables (EPT), and ARM Stage-2 Page Tables. Under two-

dimensional paging, the MMU can traverse both guest and host page tables. Hence, when

a GVA is accessed, the MMU first translates it to a GPA by using the guest page tables

and then translates that GPA to an HPA by using the host page tables. Such two-step

address translation requires more memory accesses than the direct GVA-to-HPA translation

of shadow paging, but it eliminates the overhead of maintaining valid shadow page tables.

Neither shadow paging nor two-dimensional paging dominates the other in terms of

performance [159]. It is also currently unknown which technique is preferable for real-

time virtualization. Therefore, our goal is to develop cache control techniques that are

independent of a specific address translation technique used.

6.1.2 vLLC for Coloring-aware Guest OSs

As previously discussed, page coloring implemented in a guest OS cannot allocate cache

partitions to tasks in a VM due to the additional address layer in the hypervisor. vLLC

overcomes this limitation. The keys to vLLC are (i) to provide a VM with “virtual LLC

(last-level cache)” information that corresponds to the cache partitions assigned to the VM,

106



 
 

Phy. pages 

 
 

Phy. pages Host LLC 

Cache partition 1 

Cache partition 2 

Cache partition 3 

Cache partition 4 

Guest VM Host machine 

Virtual LLC 

Cache partition 1 

256KB size 
512 sets 
16-way 

Host LLC Info 

128KB size 
256 sets 
16-way 

Virtual LLC Info 

Cache partitions 2 and 4 

Page coloring 

Cache partition 2 
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and (ii) to map guest physical pages to host physical pages corresponding to the assigned

cache partitions. Figure 6.2 illustrates an example of vLLC. The virtual LLC provided

to the VM is different from the actual LLC of the host machine in terms of the size of a

cache and the number of cache sets, which are the main factors determining the number

of cache partitions. In Figure 6.2, since the hypervisor assigns two cache partitions out

of four to the guest VM, the size and the number of cache sets of the virtual LLC are

each half of those of the host LLC. Using this virtual LLC, the guest OS can identify that

the number of available cache partitions is two. The virtual LLC can be implemented by

trapping and emulating cache-related operations, e.g., executions of a CPUID instruction on

x86 architectures [27] and accesses to CCSIDR and CSSERR registers on an ARM Cortex-A15

architecture [160].

In addition to the virtual LLC information, vLLC maps guest physical pages (GPPs)

to host physical pages (HPPs) such that guest cache partitions are mapped to their

corresponding host cache partitions. This can be easily done by the hypervisor because

the hypervisor has both the virtual LLC information and the control of the GPP-to-HPP

mapping. When a GPP needs to be mapped to an HPP, vLLC in the hypervisor checks the

guest cache-partition index of the GPP, finds out the corresponding host cache partition,

and maps the GPP to an HPP with that host cache partition. For instance, in Figure 6.2,

cache partitions 2 and 4 of the host machine are represented as cache partitions 1 and 2 in
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the guest VM, respectively, and GPPs with cache partitions 1 and 2 are mapped to HPPs

with cache partitions 2 and 4, respectively. With this approach, a guest OS can allocate

cache partitions to tasks. It is worth noting that the GPP-to-HPP mapping happens only

once per GPP during the lifetime of a VM. Therefore, once all GPPs used by a task have

been populated, vLLC does not cause any runtime overhead to that task.

There are two constraints in vLLC. First, virtual LLC information should be in accor-

dance with the assumption of page coloring, where the number of cache sets is a power of

two. This means that, with vLLC, the number of cache partitions that can be assigned to

a VM is restricted to a power of two. Second, it cannot support a guest OS where page

coloring is hard-coded (e.g., using fixed cache parameters, instead of checking them when

the system boots). If these constraints become a problem, one can disable the page coloring

feature of the guest OS and use our vColoring technique.

6.1.3 vColoring for Coloring-unaware Guest OSs

With vColoring, a VM is assigned two sets of cache partitions, default and extra. The

default set is used whenever a GPP needs to be mapped to an HPP. The hypervisor maps

a GPP to an HPP corresponding to one of the cache partitions in the default set. Hence,

by default, all tasks are constrained to use only the default cache partitions. The extra set

is used for explicit cache allocation requests. When a task running in a VM makes such a

request, the hypervisor re-maps all GPPs used by that task to HPPs corresponding to the

requested cache partitions in the extra set.

Re-mapping GPPs to new HPPs: Figure 6.3 shows the detailed steps for re-mapping

all the GPPs of a task from the currently-used HPPs to new HPPs for the requested cache

partitions. The first step is to obtain the task’s page table base address (PTBA), which

we will explain in detail later. Once the PTBA is obtained, the hypervisor can traverse

the task’s page tables that are maintained by the guest OS. The second step is to find

out present and user-level accessible GPPs in the task’s page tables. This can be done
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Figure 6.3: Steps for re-mapping GPPs to new HPPs

by checking the information bits of page table entries (PTEs). The third step is to find

an HPP mapped to each of the GPPs found in the second step. The fourth step is to

migrate each HPP obtained in the third step to a new HPP that corresponds to one of the

requested cache partitions. As part of page migration, references to the previous HPP are

also updated to the new one. During all these steps, guest page tables are not changed

at all. Therefore, the task can be assigned its requested cache partitions transparent to

the guest OS. Note that, since the above steps re-map GPPs present at that time, it is

desirable to make a cache allocation request at the end of the initialization phase, where a

real-time task typically initializes and places all the required data into memory.

PTBA identification: On most processors, the currently-executing task’s PTBA is stored

in a specific register to facilitate address translation, e.g., a CR3 register in x86 architectures

and a Translation Table Base register in ARM architectures. We will refer to such a register

as a PTB (Page Table Base) register. Under shadow paging, the hypervisor traps on write

accesses to the PTB register and stores the base address of the corresponding shadow page

table into the PTB register. The real PTBA value trapped by the hypervisor is stored in

the hypervisor’s memory space and used for synchronizing the shadow page table with the

guest page table. Under two-dimensional paging, the MMU has two PTB registers, one

for a guest PTBA and the other for a host PTBA, and the hypervisor has access to both

registers. Therefore, under both address translation techniques, the current task’s PTBA

can be obtained by the hypervisor.
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Cache allocation request: To make a cache allocation request to the hypervisor, on

x86 architectures, a task can use a “hypercall” instruction. It can be executed by any

user-level task in a VM and results in a world switch to the hypervisor [27]. Then, the

hypervisor can easily get the task’s PTBA because that task is the currently executing

one, and the hypervisor can allocate requested cache partitions to the task by following

the re-mapping steps explained before. On other architectures, a user-level task is not

allowed to execute a hypercall. Hence, we propose the inclusion of a simple driver that

provides a user-level task with an interface to issue a hypercall. Then, the task can make

a cache allocation request through the driver interface. Since many recent real-time OSs

such as VxWorks [161] support implementing device drivers as loadable kernel modules,

this approach can be easily used for such OSs without rebuilding the entire kernel image.

6.2 Cache Management Scheme

In this section, we present our cache management scheme which (i) allocates cache partitions

to tasks within a VM while satisfying timing constraints, (ii) designs a VM in a cache-aware

manner so that the VM’s computational demand is specified w.r.t. the number of cache

partitions allocated, and (iii) determines the allocation of cache partitions to a set of VMs

to be consolidated.

Cache interference among tasks in a multi-core virtualization environment can be

categorized into two types: inter-VCPU and intra-VCPU. Inter-VCPU cache interference

happens among tasks running on different virtual CPUs (VCPUs). Since those VCPUs can

be scheduled on different physical CPU cores (PCPUs) by the hypervisor, tasks on different

VCPUs may access the LLC simultaneously. In addition, when a VCPU preempts another

VCPU, the cache contents of tasks on the preempted VCPU may be evicted by tasks on

the preempting VCPU. Intra-VCPU cache interference happens among tasks running on

the same VCPU. Although tasks on the same VCPU cannot access the LLC simultaneously,

a task preempting another task may evict the cache contents of the preempted task.
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To avoid both inter- and intra-VCPU cache interference, a simple approach would be

assigning each task a dedicated set of cache partitions for its own exclusive use. Hence,

tasks do not share their assigned cache partitions with others, resulting in no conflicts in

the LLC. We will refer to this approach as complete cache partitioning (CCP). However, due

to the availability of a limited number of cache partitions, CCP may result in performance

degradation. Many prior studies in non-virtualized environments [16, 30, 40, 128] have

shown that sharing of cache partitions among tasks on the same core yields better task

schedulability than CCP, and the resulting cache interference can be safely upper-bounded

by the notion of cache-related preemption delay (CRPD). Therefore, our scheme builds on

this idea in that (i) cache partitions are not shared among tasks on different VCPUs to

prevent inter-VCPU cache interference, and (ii) cache partitions can be shared among tasks

on the same core with the cost of intra-VCPU cache interference.

6.2.1 Schedulability Analysis

Before presenting our scheme, we first review VCPU and task schedulability analyses. The

schedulability of a VCPU vi can be determined by the following recurrence equation [142]:

W v,n+1
i = Cvi +

∑
vh∈P(vi)∧πvh>π

v
i

⌈
W v,n
i + Jvh
T vh

⌉
Cvh (6.1)

where W v,n
i is the worst-case response time (WCRT) of a VCPU vi at the nth iteration

(W v,0
i = Cvi ), π

v
i is the priority of a VCPU vi, P(vi) is the PCPU of vi, and Jvh is a release

jitter (Jvh = T vh − Cvh for the deferrable server policy and Jvh = 0 for the periodic and

sporadic server policies [132]). It terminates when W v,n+1
i = W v,n

i , and the VCPU vi is

schedulable if its WCRT does not exceed its period, i.e., W v,n
i <= T vi .

The schedulability of task τj running on a VCPU vi can be determined by:

Wn+1
j = Cj +

∑
τh∈V(τj)
∧πh>πj

⌈
Wn
j + Jh

Th

⌉
(Ch + γh,j) +

⌈
Wn
j + Cvi
T vi

⌉
(T vi − Cvi )

(6.2)
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where Wn
j is the WCRT of task τj at the nth iteration (W 0

j = Cj), πj is the priority of τj ,

V(τj) is the VCPU of τj , Jh is the release jitters of a task τh (Jh = T vi − Cvi ), and γh,j is

the cache-related preemption delay (CRPD) caused by τh and imposed on τj . Task τj is

schedulable if its WCRT does not exceed its deadline, i.e., Wn
j <= Dj . Note that Eq. (6.2)

is based on the task schedulability test under hierarchical scheduling given in [92] but

extended with the CRPD [16, 40] to bound intra-VCPU cache interference. For simplicity,

we assume that the cache warm-up delay has been taken into account in the WCET of each

task. The CRPD γj,i is given by:

γj,i =

∣∣∣∣Sj ∩ ⋃
τk∈V(τi)∧πk<πj∧πk≥πi

Sk
∣∣∣∣ ·∆ (6.3)

where Sj is the set of cache partitions assigned to τj , and ∆ is the maximum time needed

to reload data in one cache partitions.1

In the presence of intra-cache VCPU interference, the utilization of a taskset Γ allocated

to the same VCPU is calculated as follows [16, 141]:

util(Γ) =
∑
τi∈Γ

(
Ci
Ti

+
γi,n
Ti

)
(6.4)

where n is the index of the lowest-priority task in Γ.

6.2.2 Allocating Cache Partitions to Tasks

Suppose that we have a set of tasks running on the same VCPU and a set of cache partitions

is to be allocated to the tasks. Our goal is to find a cache-to-task allocation that minimizes

taskset utilization while satisfying taskset schedulability. When cache sharing is allowed,

the problem of cache-to-task allocation is known to be NP-hard [30]. Hence, we present in

Alg. 10 a heuristic to solve this problem. It first checks if Ncache is non-zero because page

coloring requires tasks to be assigned at least one cache partition [16]. Then, for each task

1In case of a write-back cache, ∆ should take into account the effect of a dirty cache line that requires
two memory accesses to fetch a new cache line [140].
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Algorithm 10 CacheToTaskAlloc(Γ, Ncache)
Input: Γ: taskset, Ncache: the number of cache partitions
Output: Utilization of Γ if schedulable, and ∞ otherwise
1: if Ncache = 0 then
2: return ∞
3: cache_idx← 1
4: for all τi ∈ Γ do
5: /* Find the number of cache partitions for τi */
6: Si ← argmin1≤k≤Ncache

(
Ci(k)
Ti

+
γi,n
Ti

)

7: /* Find cache-partition indices for τi */
8: Si ← ∅
9: for k ← 1 to Si do
10: Si ← Si ∪ {cache_idx}
11: cache_idx← (cache_idx+ 1) mod Ncache
12: if schedulable(Γ) then
13: return util(Γ)
14: else
15: return ∞

τi, it finds the number of cache partitions, Si, that minimizes the sum of the utilization of

and CRPD caused by τi (line 6). Since cache allocation is not done yet, we approximate

γi,n by assuming that all other tasks have been allocated all Ncache partitions. Once the

number of cache partitions for τi is found, our heuristic finds cache-partitions indices to

be allocated (line 9). It records the index of the next cache partition to be allocated in

cache_idx and begins the allocation starting from cache_idx, with an increment of 1 and

a modulo of Ncache. This approach ensures that the difference in the number of tasks

sharing each partition does not exceed 1.

6.2.3 Designing a Cache-Aware VM

The computational demand of a VM is the aggregate of the demands of all VCPUs

in that VM, and it is affected by the allocation of tasks to VCPUs. Especially, when

cache-sensitive tasks are allocated together to the same VCPU, the benefit of cache sharing

increases, thereby reducing the computational demand. Hence, we propose a cache-aware

VM designing algorithm (CAVM) that (i) allocates tasks to VCPUs in a way so as to

increase the benefit of cache sharing, and (ii) derives each VCPU’s computational demand

w.r.t. the number of cache partitions allocated to its taskset. Our algorithm can be used for

designing a new VM as well as calculating the computational demand of an existing VM.
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Algorithm 11 CacheAwareVM(Γ, Nvcpu, Ncache, T
v)

Input: Γ: taskset, Nvcpu: the number of VCPUs, Ncache: the number of cache partitions, T v : VCPU period
Output: Success or Fail
1: V ← {v1, v2, ..., vNvcpu}
2: ∀vi ∈ V : T vi ← T v , Cvi (1, ..., Ncache)← T v , Svi ← 0
3: Nrem ← Ncache /* Remaining cache partitions */
4: /* Phase 1: Allocate task bundles to VCPUs */
5: ϕ← Γ; Φ← ∅
6: while util(ϕ) > 1 do
7: (ϕ′, ϕ′′)← BreakBundle(ϕ, 1, Ncache)
8: Φ← Φ ∪ {ϕ′};ϕ← ϕ′

9: Φ← Φ ∪ {ϕ}
10: while Φ 6= ∅ do
11: /* Allocate bundles */
12: Φrest ← ∅
13: for all ϕi ∈ Φ in dec. order of average utilization do
14: (vBF , k)← BestFitWithCache(ϕi,V, Nrem)
15: if vBF 6= invalid then
16: ΓBF←ΓBF ∪ ϕi;SvBF←SvBF +k;Nrem←Nrem−k
17: else
18: Φrest ← Φrest ∪ {ϕi}
19: /* Break unallocated bundles */
20: Φ← ∅; singletons← true
21: for all ϕi ∈ Φrest do
22: if |ϕi| > 1 then
23: singletons←false; size←1−minvj∈Vutil(Γj)

24: (ϕ′, ϕ′′)← BreakBundle(ϕi, size,Ncache)
25: Φ← Φ ∪ {ϕ′, ϕ′′}
26: else
27: Φ← Φ ∪ {ϕi}
28: if singletons = true then
29: return Fail
30: /* Phase 2: Determine VCPU budget */
31: for all vi ∈ V do
32: Cvi (0)← invalid
33: for k ← 1 to Ncache do
34: if CacheToTaskAlloc(Γi, k) ≤ 1 then
35: Svi ← k; Cvi (k)← Budget x found by binary search
36: else
37: Cvi (k)← invalid
38: if Ci(k − 1) 6= invalid ∧ (Cvi (k − 1) < Cvi (k) ∨ Cvi (k) = invalid) then
39: Cvi (k)← Cvi (k − 1)
40: return Success

Alg. 11 presents the pseudo-code of CAVM. It takes four input parameters: Γ is a

taskset to be allocated, Nvcpu is the number of VCPUs in the VM, Ncache is the number of

available cache partitions, and T v is the VCPU period that will be assigned to all VCPUs

in the VM.2 CAVM initializes the budget of each VCPU vi to be full, i.e., Cvi = T v, and

the number of cache partitions for vi (Svi ) to zero (line 2).

CAVM consists of two phases. The first phase is allocating tasks to VCPUs. Our

2There are many ways to choose T v. For example, system designers may use a hyperperiod to improve
VCPU schedulability, or utilize the findings in [94] to reduce the overhead of hierarchical scheduling.
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Algorithm 12 BestFitWithCache(ϕ,V, Nrem)
Input: ϕ: a bundle of tasks to be allocated, V: a set of VCPUs, Nrem: the number of cache partitions
Output: (vi, k): a tuple of the best-fit VCPU and the number of additional cache partitions needed
1: for k ← 0 to Nrem do
2: for all vi∈V in decreasing order of util(Γi) do
3: if CacheToTaskAlloc(Γi ∪ ϕ, Svi + k) ≤ 1 then
4: return (vi, k)
5: return (invalid,−1)

allocation strategy is to group cache-sensitive tasks into a “bundle” and allocate as many

tasks in the bundle as possible onto the same VCPU. To do so, CAVM first groups all

tasks in Γ into a single bundle ϕ. Then, it checks the utilization of ϕ, assuming each

task in ϕ uses one dedicated cache partition (line 6). If it is greater than 1, ϕ is broken

into two sub-bundles by BreakBundle() such that the size of the first sub-bundle does

not exceed 1. The pseudo-code of BreakBundle() is given in Alg. 13. To keep as many

cache-sensitive tasks as possible in the first sub-bundle, BreakBundle() removes tasks

from the first sub-bundle in increasing order of cache sensitivity, which is calculated by

(Ci(1) − Ci(Ncache))/Ti, until the size of the first sub-bundle becomes not to exceed the

given size constraint. When BreakBundle() returns, CAVM puts the first sub-bundle into

Φ that is the set of bundles to be allocated (line 8 of Alg. 11), and continues to check the

second bundle if it needs to be broken. As a result, each bundle in Φ has a utilization not

exceeding 1 and is ready to be allocated.

CAVM allocates bundles in Φ to VCPUs based on the best-fit decreasing (BFD) heuris-

tic (from line 13 to line 18). Here, we define the average utilization of a bundle ϕi as∑
τj∈ϕi

∑Ncache
k=1 {(Cj(k)/Tj)/Ncache}. Bundles are sorted in descending order of average uti-

lization and CAVM tries to allocate each bundle to a VCPU by using BestFitWithCache()

given in Alg. 12. This function finds the best-fit VCPU that can schedule a given bundle

with k additional cache partitions assigned to it, where k starts from 0 to the number of

remaining cache partitions (Nrem). If a best-fit VCPU is found (line 15 of Alg. 11), the

bundle is allocated to that VCPU, and the number of cache partitions of that VCPU (SvBF )

and the number of remaining cache partitions are updated. Otherwise, the bundle is put

into Φrest (line 18).
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Algorithm 13 BreakBundle(ϕ, size,Ncache)
Input: ϕ: a bundle to be broken, size: the size constraint for the first sub-bundle, Ncache: the number of partitions
Output: (ϕ′, ϕ′′): a tuple of sub-bundles
1: ϕ′ ← ϕ;ϕ′′ ← ∅
2: for all τi ∈ ϕ in increasing order of cache sensitivity do
3: ϕ′ ← ϕ′ \ τi; ϕ′′ ← ϕ′′ ∪ τi
4: /* Get util(ϕ′) assuming each task uses one partition */
5: if util(ϕ′) ≤ size then
6: break
7: return (ϕ′, ϕ′′)

Then, CAVM attempts to break all unallocated bundles in Φrest. If a bundle in Φrest

has more than one task (line 22), it is broken into two sub-bundles by BreakBundle() such

that the size of the first sub-bundle does not exceed the remaining capacity of a VCPU

having the minimum taskset utilization. The resulting two sub-bundles are put into Φ so

that they can be allocated in the next iteration. If all unallocated bundles are singletons

(line 28 of Alg. 11), CAVM returns fail because none of these bundles can be broken into

sub-bundles.

After finishing the first phase of task allocation, each VCPU vi is allocated its own

taskset Γi. The second phase of CAVM determines the budget Cvi (k) of a VCPU vi for all

possible k values (1 ≤ k ≤ Ncache). If Γi with k cache partitions is schedulable (line 34),

CAVM finds the minimum possible budget x of vi by using a binary search between 0 and

Tv, and sets Cvi (k) to x. Otherwise, Cvi (k) is marked as invalid. Here, it may happen

that, due to CRPD, Cvi (k − 1) is smaller than Cvi (k) or is valid while Cvi (k) is invalid.

In such cases (line 38), CAVM sets Cvi (k) to Cvi (k − 1) and lets vi use only k − 1 cache

partitions when k partitions are given. With this, CAVM can find Cvi (k) values that are

monotonically decreasing with k.

6.2.4 Allocating Host Cache Partitions to VMs

We now present our cache-to-VM allocation algorithm that determines the number of

cache partitions for each VCPU of the VMs to be consolidated, while minimizing the total

utilization of those VMs. Once cache partitions are allocated, conventional bin-packing

heuristics such as BFD can be used to allocate the VCPUs of those VMs to PCPUs.
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Let ρi,k denote the number of cache partitions assigned to vi when a total of k partitions

is provided in the host machine, and V denote a set of VCPUs of all VMs to be consolidated.

Then, the total utilization of VMs with k cache partitions is given by:

∑
vi∈V

Cvi (ρi,k)

Ti
(6.5)

To find the minimum total utilization of VMs with k cache colors, U(k), we use a

dynamic programming approach. Let xi denote the smallest number of cache partitions

that gives a valid budget for vi, i.e., Cvi (xi) 6= invalid and Cvi (xi − 1) = invalid, and

let z denote the minimum number of cache partitions needed to schedule all VCPUs

in V. Then, z is calculated by z =
∑

vi∈V xi, and ρi,z is equal to xi because there is

only one valid cache allocation to vi when z cache partitions are provided. For k < z,

we represent U(k) as ∞ because there is no valid allocation. For k = z, U(k) can be

computed by Eq. (6.5) because ρi,k = xi. For k = z + 1, U(k) cannot be computed by

Eq. (6.5) because ρi,k is unknown. Instead, we can compute U(k) from U(z). Recall

that our CAVM algorithm given in Section 6.2.3 ensures that Cvi (k) is monotonically

decreasing with k. Hence, if any additional cache partition is assigned to vi, a non-negative

utilization gain is obtainable. Based on this observation, we can compute U(k = z + 1)

by U(z)−max
Cvi (ρi,z)−Cvi (ρi,z+1)

T vi
, which subtracts the maximum utilization gain made by

one additional cache partition from U(z). We can also find ρi,z+1 by recording the number

of cache partitions of vi that leads to U(z + 1). For k = z + 2, U(k) can be calculated

by the minimum between U(z) − max
Cvi (ρi,z)−Cvi (ρi,z+2)

T vi
, which subtracts the maximum

gain by two additional partitions from U(z), and U(z + 1) − max
Cvi (ρi,z+1)−Cvi (ρi,z+1+1)

T vi
,

which subtracts the maximum gain by one additional cache partition from U(z + 1). This
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Algorithm 14 CacheToVMAlloc(V, Ncache)
Input: V: a set of VCPUs of all VMs to be consolidated, Ncache: the number of available cache partitions
Output: Success or Fail
1: Find xi for each VCPU vi ∈ V
2: z ←

∑
vi∈V xi

3: if Ncache < z then
4: return Fail
5: ∀vi ∈ V : ρi,x ← xi

6: U(z)←
∑
vi∈V

Cv
i (ρi,z)

Tv
i

/* U(z): total utilization */
7: for k ← z + 1 to Ncache do

8: U(k)← min
z≤k′<k

(
U(k′)− max

vi∈V

Cvi (ρi,k′ )− Cvi (ρi,k′ + (k − k′))
T vi

)
9: ∀vi∈V : ρi,k← # of cache partitions of vi contributing to U(k)
10: ∀vi ∈ V : Svi ← ρi,Ncache

11: return Success

approach can be extended to all k > z, and U(k) is given by the following recurrence:

U(k) =



∞ (unschedulable) : k < z∑
vi∈V

Cvi (ρi,k)

Ti
: k = z

min
z≤k′<k

(
U(k′)−max

vi∈V

Cvi (ρi,k′)− Cvi (ρi,k′ + (k − k′))
T vi

)
: k > z

(6.6)

Alg. 14 shows our cache-to-VM allocation algorithm based on the recurrence in Eq. (6.6).

Our algorithm first finds z, and if a given number of cache partitions (Ncache) is smaller

than z, it returns fail (line 4). Otherwise, it computes U(k) iteratively (line 8) and saves ρi,k

that leads to U(k) (line 9). Once the iteration completes, our algorithm sets the number of

cache partitions for each VCPU to ρi,Ncache and returns success. The time complexity of

our algorithm is O((Ncache)
2 · |V|).

6.3 Evaluation

This section presents our experimental results on our vLLC, vColoring, and cache manage-

ment scheme.
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Table 6.1: Implementation cost of vLLC and vColoring

Name Items Cost (nsec)
x86 ARM

vLLC Virtual LLC emulation 787 12212
Cache partition check in GPP-to-HPP mapping 34 921

vColoring Page migration for GPP re-mapping 2359 31864

6.3.1 vLLC and vColoring

Experimental Setup: We have implemented vLLC and vColoring on the KVM hyper-

visor included in the Linux 3.10.39 kernel. We chose KVM for its convenience, such as

supporting various architectures and providing both shadow paging and two-dimensional

paging. However, it is worth noting that our techniques, vLLC and vColoring, can also

be implemented in other hypervisors. In our experiments, we use two-dimensional paging

because it is the default address translation technique of KVM and shadow paging is not

yet supported by KVM for ARM.

We use x86 and ARM platforms as host machines for our experiments. The x86 platform

is equipped with an Intel i7-2600 3.4GHz quad-core processor and 16GB of DDR3 1666MHz

memory. The Intel processor has a unified 8MB shared LLC that consists of four 2MB

cache slices, providing 32 cache partitions. We disabled hardware prefetcher, simultaneous

multithreading, and dynamic clock frequency scaling to reduce measurement inaccuracies.

The ARM platform used is an ODROID-XU4 board. It has 2GB of LPDDR3 933MHz

memory and a Samsung Exynos 5422 SoC that combines a cluster of four ARM Cortex-A15

cores with a cluster of four Cortex-A7 cores. However, we only use the cluster of Cortex-A15

cores because the performance of the other cluster seems inadequate for our experiments.

The LLC shared among four Cortex-A15 cores is 2MB, providing 32 cache partitions. We

disabled dynamic clock frequency scaling and configured each core to run at its maximum

speed, 2GHz.

Since our focus is on cache interference imposed on tasks in a VM, each platform hosts

one VM that has four VCPUs (VCPUs 1-4). Each VCPU is allocated to a different PCPU

with 100% of budget. Hence, there is only one VCPU per PCPU on both the x86 and

119



0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32

N
o

rm
. 

E
xe

cu
ti

o
n

 T
im

e
 (

%
) 

# of cache partitions 

Linux/RK w/ vLLC

Vanilla Linux w/ vColoring

MS Windows w/ vColoring

(a) x86 platform

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32

N
o

rm
. 

E
xe

cu
ti

o
n

 T
im

e
 (

%
) 

# of cache partitions 

Linux/RK w/ vLLC

Vanilla Linux w/ vColoring

(b) ARM platform

Figure 6.4: Execution times of the latency task

ARM platforms. The VM is assigned all the 32 cache partitions of the host machine. On

the host side, VCPU threads are assigned real-time priorities, which prevents unexpected

delays from indispensable system services that could not be disabled.

Three different guest OSs are used in our experiments: Linux/RK and the vanilla

Linux kernel 3.10.39 for x86 and ARM, and MS Windows Embedded 8.1 Industry for x86.

Linux/RK is used as a guest OS to evaluate vLLC because it supports page coloring. The

vanilla Linux and MS Windows Embedded OSs are used to evaluate vColoring because

they both do not support page coloring. Specifically, MS Windows Embedded is chosen to

verify that vColoring can be used for proprietary, closed-source guest OSs.

Implementation Overhead: Table 6.1 shows the computational overhead of vLLC and

vColoring, measured with hardware performance counters on the x86 and ARM platforms.

vLLC performs the virtual LLC emulation when a guest OS reads the VM’s LLC information,

which is typically done during the system initialization phase. The GPP-to-HPP mapping

occurs only once per GPP, as described in Section 6.1.1, and the overhead added by

the cache partition check of vLLC in the GPP-to-HPP mapping is less than 5% of the

original mapping time on both platforms. Hence, we consider that the overhead of vLLC

is acceptably small. vColoring re-maps GPPs when cache partitions are assigned to a

task. Since the major overhead of this re-mapping is caused by page migration, we present

per-page migration time in Table 6.1.

Results with a Synthetic Task: As the first step of our experiments, we check if vLLC
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Figure 6.5: Execution times of the PARSEC benchmarks when synthetic tasks run on different
VCPUs in parallel
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Figure 6.6: Response times of the PARSEC benchmarks when synthetic tasks are scheduled on
the same VCPU

and vColoring can correctly assign cache partitions to a task running in a VM. We use the

latency task [56] which traverses a randomly-ordered linked list. The execution time of the

latency task highly depends on the memory access time, due to the data dependency of

pointer-chasing operations in linked-list traversals. To make the latency task cache-sensitive,

we configured the working set size of the latency task to be half of the LLC of each platform,

i.e., 4MB on x86 and 1MB on ARM. We compiled this task for both Linux and MS Windows

guests on x86.

Figure 6.4 compares the maximum observed execution times of the latency task when it

runs alone in each VM with different numbers of cache partitions assigned to it. The x-axis

of each graph denotes the number of cache partitions assigned to the task. The y-axis shows

the execution time normalized to the case where the task runs with one cache partition. On

both x86 and ARM platforms, the execution time of the task begins to plateau after more

than 16 cache partitions are assigned to it. This is because the entire working set of the
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task can fit into the LLC after that point. On each platform, a very similar execution-time

pattern is observed although different guest OSs are used. This shows that both vLLC and

vColoring work as expected.

Results with PARSEC Benchmarks: We use the PARSEC benchmarks [146], which

are closer to the memory access patterns of real applications compared to the synthetic

task, latency. A total of eleven PARSEC benchmarks is used. We have excluded two

PARSEC benchmarks, dedup and facesim, due to their excessive disk accesses for data files.

Since we have shown in the previous subsection that vLLC and vColoring are equivalent in

preventing cache interference on x86 and ARM platforms, we use only vLLC on x86 for

simplicity.

We first identify the impact of inter-VCPU cache interference on the PARSEC bench-

marks. Each benchmark is assigned to VCPU 1 and the three instances of the latency task

are assigned to the other VCPUs to generate interfering cache requests. When vLLC is not

used, the benchmark and the three instances share all 32 cache partitions. When vLLC

is used, our objective here is to protect the cache behavior of the benchmark from the

three instances of latency. Hence, with vLLC, each benchmark is assigned 31 private cache

partitions and the three instances share the remaining 1 partition.

Figure 6.5 compares the execution time of each PARSEC benchmark with and without

vLLC. The x-axis denotes the benchmark names, and the y-axis shows the execution time

of each benchmark normalized to the case when it runs alone in the VM with 32 cache

partitions. When vLLC is not used (Baseline), there is up to 30% of execution time increase.

When vLLC is used, only streamcluster has an execution time increase of 2% and the other

benchmarks have no noticeable difference in their execution times. The reason for the

increase in streamcluster’s execution time is due to the fact that it is assigned a smaller

number of cache partitions when vLLC is used, compared to when vLLC is not used.

Next, we explore the impact of intra-VCPU cache interference on the PARSEC bench-

marks. Each benchmark and the three instances of latency are assigned to the same
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VCPU, and the SCHED_RR policy with a time quantum of 10 msec is used to time-share that

VCPU. When vLLC is used, the benchmark is assigned 31 private cache partitions and the

three instances share 1 remaining cache partition, just like the inter-VCPU interference

experiment.

Figure 6.6 shows the response time of each benchmark when the three instances of

latency are scheduled on the same VCPU. The response time of a benchmark is normalized

to the case when it is scheduled on the same VCPU with three instances of a busyloop

task. busyloop runs an empty infinite while loop, thereby causing no cache interference.

When vLLC is not used, the response time increases by up to 15%. When vLLC is used, all

the benchmarks except streamcluster have no noticeable difference in their response times.

The increase in streamcluster’s execution time is again because a smaller number of cache

partitions is assigned to the benchmark when vLLC is used. To summarize, the results

with the PARSEC benchmarks show that both inter- and intra-VCPU cache interference

can significantly degrade task performance, and our techniques are effective in allocating

cache partitions to tasks running in a VM.

6.3.2 Cache Management Scheme

In this subsection, we evaluate our real-time cache management scheme for multi-core

virtualization. To do this, we use randomly-generated tasksets and capture the total

utilization of VMs as the metric.

Experimental Setup: We generated 10,000 tasksets with the parameters in Table 6.2.

Cache hit/miss delay and cache partition reload time (∆) were obtained by measurement

on our ARM platform. To generate a WCET function (Ci(k)) for each task τi, we use the

method described in [30]. This method first calculates a cache miss rate for given cache size,

neighborhood size, locality, and task memory usage, by using the analytical cache behavior

model proposed in [162]. It then generates an execution time with the calculated cache

miss rate, the timing delay of a cache miss, and the number of memory accesses. With this
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Table 6.2: Parameters for taskset generation

Type Parameters Values
System Number of PCPUs 4

Number of VMs 2
Number of VCPUs per VM 4
VCPU replenishment period 10 msec
Cache (LLC) size 2048 KB
# of cache partitions (Ncache) 32
Cache hit delay 26 nsec
Cache miss delay 202 nsec
Cache partition reload time (∆) 207 µsec

Taskset Total number of tasks [10, 15]
Taskset utilization (Utaskset) 3.0

WCET Memory accesses per job [100000, 1000000]
Neighborhood size [16, 64]
Locality [1.5, 3.0]
Task memory usage [8, 40] MB
*Resulting working-set size [64 KB, 40 MB]
*Resulting WCET [8.47, 202.02] msec
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Figure 6.7: Some of WCETs generated for our experiments

method, we were able to generate WCETs with different cache sensitivities, as shown in

Figure 6.7. Then, the total taskset utilization (Utaskset) is split into n random-sized pieces,

where n is the total number of tasks. The size of each piece represents the utilization of

the corresponding task when one cache partition is assigned to it. The period of a task

τi is calculated by dividing Ci(1) by its utilization. Once a taskset is generated, they are

randomly distributed to two VMs, each of which has four VCPUs. Within each VM, the

priorities of tasks are assigned by the Rate-Monotonic Scheduling (RMS) policy [127]. The

priorities of VCPUs are arbitrarily assigned since they use the same period. The sporadic

server policy is used for VCPU budget replenishment.

Results: For comparison with our scheme, we consider variants of the best-fit decreasing
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Figure 6.8: VM utilization w.r.t the number of cache partitions
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Figure 6.9: VM utilization (∆ = 10 msec)

(BFD), worst-fit decreasing (WFD), and first-fit decreasing (FFD) heuristics. Each heuristic

is used for task-to-VCPU allocation within a VM and combined with two different cache-

to-task allocation policies: complete cache partitioning (CCP) and complete cache sharing

(CCS). CCP allocates private cache partitions to tasks in proportion to their working-

set sizes. On the other hand, CCS lets tasks on the same VCPU share all their cache

partitions. Hence, we compare our scheme against a total of six approaches: BFD+CCP,

WFD+CCP, FFD+CCP, BFD+CCS, WFD+CCS, and FFD+CCS. For each approach,

k cache partitions, where 1 ≤ k ≤ Ncache, are evenly distributed to all VCPUs of the two

VMs such that the difference in the number of cache partitions of each VCPU does not

exceed 1. Tasks are sorted in decreasing order of utilization w.r.t. the number of cache

partitions per VCPU. Once task-to-VCPU allocation is done, we determine the budget of

each VCPU by the binary search approach used in the Phase 2 of our CAVM algorithm

given in Alg. 14. Finally, we find the total utilization of VMs by summing up the utilization

of all VCPUs.
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Figure 6.8 shows the total VM utilization as the number of cache partitions increases.

Since CCP cannot find a schedulable allocation if the number of partitions is smaller than

that of tasks, we compare only the cases where the number of cache partitions is greater

than 15. Our scheme outperforms all other approaches, yielding 1.18× to 1.54× lower

utilization. This is because our scheme allocates cache-sensitive tasks together to the same

VCPU to increase the benefit of cache sharing and finds the minimum total VM utilization

for a given number of cache partitions. The heuristics with CCS perform better than the

ones with CCP. This is because ∆ obtained from our ARM platform is relatively small so

that the reduction in task execution time from cache sharing is larger than the resulting

CRPD in our experiments.

Figure 6.9 shows the total VM utilization when ∆ is 10 msec. This experiment is to

evaluate our scheme when CRPD is extremely high. Overall, the benefit of using more

cache partitions is smaller compared to the previous case. Our scheme outperforms other

approaches because it can balance between the utilization gain and CRPD from cache

sharing. The heuristics with CCS perform worse than the ones with CCP due to the

high CRPD. WFD+CCS is affected less by the high CRPD compared with BFD+CCS

and FFD+CCS, because WFD results in less number of tasks per VCPU. Based on these

results, we conclude that our scheme allocates cache partitions efficiently in a virtualization

environment and yields a significant utilization benefit.

6.4 Summary

In this chapter, we presented our proposed predictable cache management framework

for multi-core virtualization. Our framework has vLLC and vColoring, hypervisor-level

techniques to enable the cache allocation of individual tasks running in a VM. They do

not require any hardware feature beyond that available on today’s processors. We have

implemented vLLC and vColoring on the KVM hypervisor running on x86 and ARM

platforms. Experimental results with three different guest OSs show that both vLLC and
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vColoring can effectively control the cache allocation of tasks in a VM. vColoring can also

be used for DRAM bank partitioning in a virtualized environment, because software-based

bank partitioning uses the same approach as page coloring.

Our framework also supports a cache management scheme that determines cache to

task allocation, designs a VM in the presence of cache interference, and minimizes the total

utilization of VMs to be consolidated into the host machine. Experimental results with

randomly-generated tasksets show that our scheme consumes as much as 1.54× lower CPU

utilization for satisfying timing constraints compared with the conventional approaches.

Future work involves addressing temporal interference from main memory in a virtualization

environment.
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Chapter 7

Synchronization for Multi-Core

Virtual Machines

Real-time hierarchical scheduling theory [41, 91, 92, 94, 96] and its implementations [20, 102,

130] have established a good foundation for ensuring timing predictability in a virtualized

environment. However, the current state of the art still lacks properties required for the

sharing of mutually-exclusive resources in virtualization. Specifically, multi-core synchro-

nization mechanisms designed for non-hierarchical scheduling, such as MPCP [12, 13] and

MSRP [87], can lead to excessive blocking times due to the preemption and budget depletion

of VCPUs, as discussed in Section 2.3.1. Available solutions in the uni-core hierarchical

scheduling context [97, 98, 99] have not yet been extended to multi-core platforms. More

importantly, in current virtualization solutions, the hypervisor is unaware of the executions

of critical sections of tasks within VCPUs and there is no systematic mechanism to do so.

In this chapter, we develop a virtualization-aware multi-core priority ceiling protocol

(vMPCP) and its framework to address the synchronization issue in a virtualized environ-

ment. vMPCP extends the well-known multiprocessor priority ceiling protocol (MPCP)

to the multi-core two-level hierarchical scheduling context. vMPCP enables the sharing

of resources in a bounded time, within and across VCPUs that could be assigned on

129



different PCPUs. To do so, it uses a para-virtualization approach to expose the executions

of critical sections in VCPUs to the hypervisor. Each guest VM can maintain its own

priority-numbering scheme and task priorities do not need to be compared across VMs.

For the VCPU budget supply and replenishment policy, vMPCP supports both periodic

server [4] and deferrable server [5] policies. In addition, vMPCP provides an option for

VCPUs to overrun their budgets while their tasks are executing critical sections. The effect

of the overrun is analyzed and evaluated in detail.

The detailed contributions of our framework are as follows. First, we propose a new

synchronization protocol, vMPCP, for multi-core virtualization. We characterize timing

penalties caused by critical sections in a virtualized environment and develop a protocol

to address such penalties. Second, we analyze the impact of different VCPU budget

supply policies, namely periodic and deferrable servers, on synchronization in a multi-core

virtualization environment. We also analyze each of the policies with and without VCPU

budget overrun. Third, from our analysis and experimental results, we found that the

periodic server policy, which has been considered to dominate the deferrable server policy in

the literature, does not dominate the deferrable server policy when overrun is used. We also

found that the use of overrun does not always yield better results, especially for tasks with

relatively long critical sections. Fourth, we have implemented the prototype of vMPCP

on the KVM hypervisor running on a multi-core platform. Using this implementation, we

identify the effect of vMPCP on a real system by comparing it against a virtualization-

unaware synchronization protocol (MPCP).

Since our focus in this chapter is on mutually-exclusive shared resources, we will call

them simply “shared resources”. As described in Section 2.3, there are two types of shared

resources, global and local, and the critical sections corresponding to those resources are

referred to as global critical sections (gcs’s) and local critical sections (lcs’s), respectively.

Each shared resource has a unique index and the function R(τi, j) returns the index of the

resource used by the j-th critical section of task τi. The function type(τi, j) returns gcs or

lcs, which is the type of the j-th critical section of τi. In addition, we use σgcsi and σlcsi to
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Figure 7.1: Two-level priority queue of a global mutex

denote the number of global and local critical section segments of τi, respectively. Hence,

the total number of critical section segments of τi is σi = σgcsi + σlcsi . For brevity, we will

also use the following notation in this chapter:

• V(τi): the VCPU where a task τi is allocated

• P(vi): the PCPU where a VCPU vi is allocated

The background and related prior work on synchronization were presented in Section 2.3.

The system model including assumptions and notation for tasks, critical sections and virtual

machines can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 7.1 presents the vMPCP

framework. Section 7.2 provides the analysis on VCPU and task schedulability under

vMPCP. A detailed evaluation is provided in Section 7.3. Section 7.4 summarizes this

chapter.

7.1 vMPCP Framework

In this section, we present the virtualization-aware multiprocessor ceiling protocol (vMPCP).

We first define vMPCP and explain the optional VCPU budget overrun mechanism for

periodic server and deferrable server replenishment policies under vMPCP. Then, we provide

the details on the software design to implement vMPCP in the hypervisor.
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7.1.1 Protocol Description

vMPCP is specifically designed to reduce and bound remote blocking times for accessing

global shared resources in a multi-core virtualization environment. To do so, vMPCP uses

hierarchical priority ceilings for global critical sections. This approach suppresses both

task-level and VCPU-level preemptions while accessing a global resource, thereby reducing

the remote blocking times of other tasks waiting on that resource. Global and local resource

access rules under vMPCP are defined as follows.

Global shared resources: vMPCP is based on the multiprocessor priority ceiling protocol

(MPCP) [12, 13], and extends it to the hierarchical scheduling context.

1. Under vMPCP, each mutex protecting a global resource uses a two-level priority

queue for its waiting list. Figure 7.1 shows a logical structure of this two-level priority

queue, where the first level is ordered by VCPU priorities and the second level is

ordered by task priorities. The key for queue insertion is a pair of VCPU priority and

task priority, i.e. (j, i) is a key for a task τi in a VCPU vj . The queue has a dequeue

function, which returns the highest priority task of the highest priority VCPU and

removes it from the queue.

2. When a task τi requests an access to a global resource Rk, the resource Rk can be

granted to the task τi, if it is not held by another task.

3. While a task τi in a VCPU vj is holding a resource for its global critical section

(gcs), the priority of τi is raised to πB,vj + πi, where πB,vj is a base task-priority level

greater than that of any task in the VCPU vj , and πi is the normal priority of τi. We

refer to πB,vj + πi as the task-level priority ceiling of the gcs of τi.

4. While a task τi executes a gcs, the priority of its VCPU vj is raised to πvB + πvj ,

where πvB is a base VCPU-priority level greater than that of any other VCPUs in the

system, and πvj is the normal priority of the VCPU vj . We refer to πvB + πvj as the

VCPU-level priority ceiling of the gcs of τi.
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5. When a task τi requests access to a resource Rk, the resource Rk cannot be granted

to τi, if it is already held by another task. In this case, the task τi is inserted to the

waiting list (two-level priority queue) of the mutex for Rk.

6. When a global resource Rk is released and the waiting list of the mutex for Rk is not

empty, a task dequeued from the head of the queue is granted the resource Rk.

Local shared resources: vMPCP follows the uniprocessor priority ceiling protocol

(PCP) [84] for accessing local resources.1 Unlike the global resource case, a VCPU priority

is not affected while its task is accessing a local resource.

1. Each mutex associated with a local resource Rk is assigned a task-level priority ceiling,

which is equal to the highest priority of any task accessing Rk. Note that this is valid

only within this VCPU.

2. A task τi can access a local resource Rk, if the priority of τi is higher than the priority

ceilings of any other mutexes currently locked by other tasks in that VCPU.

3. If a task τi is blocked on a local resource by another task that has a lower priority

than τi, the lower-priority task inherits the priority of τi.

7.1.2 VCPU Budget Overrun

vMPCP provides an option for VCPUs to overrun their budgets when their tasks are in

gcs’s. This allows tasks to complete their gcs’s, even though their VCPU has exhausted its

budget. Hence, remote blocking time can be significantly reduced. We present the detailed

behavior of the VCPU budget overrun under periodic server and deferrable server policies.

Periodic server with overrun: The VCPU budget overrun with VCPUs under the

periodic server policy works similar to the one presented in [97]. Suppose that a VCPU’s

budget is exhausted while one of its tasks is in a gcs. If overrun is enabled, the task can

continue to execute and finish the gcs. Recall that vMPCP immediately increases the

priority of any task executing a gcs to be higher than that of any other normally executing
1As an alternative to PCP, the highest locker priority protocol (HLP) can also be used for local resources.
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tasks or tasks accessing local resources. Therefore, the amount of overrun time is only

affected by the lengths of global critical sections in a VCPU.

If a VCPU’s budget is exhausted while no task of the VCPU is in a gcs, the VCPU

suspends until the start of its next replenishment period. Once the VCPU suspends,

overrun has no effect. This is to maintain the good property of the periodic server policy,

no potential back-to-back interference to lower-priority VCPUs. For instance, consider a

task τi waiting for a global resource R that is held by another task on a different physical

core. The VCPU of τi is currently suspended due to its budget depletion. If the resource

R is released while the VCPU of τi is suspended, the task τi needs to wait until the next

replenishment period of its VCPU although overrun is enabled.

Deferrable server with overrun: Unlike the periodic server policy, VCPUs under the

deferrable server policy can overrun more flexibly. Consider a task τi waiting for a global

resource R that is held by another task on different physical core. The VCPU of τi has

exhausted its regular budget. If the resource R is released, the VCPU of τi is allowed to

overrun its budget and the task τi can execute its gcs corresponding to R. Once the task τi

finishes its gcs, the VCPU of τi suspends again. This difference between periodic server

and deferrable server with overrun leads to different values in remote blocking time. We

will analyze the details in Section 7.2.2.

7.1.3 vMPCP Para-virtualization Interface

vMPCP increases both the priorities of a task and its VCPU when the task executes a gcs.

If a lock corresponding to a global resource is implemented at the hypervisor, e.g., resource

sharing among VCPUs from different guest VMs, the hypervisor can manage the priorities

of VCPUs appropriately. However, if a lock for a global resource is implemented within a

guest VM image, e.g., resource sharing in a multi-core guest VM hosted on the hypervisor,

there is no way for the hypervisor to know if any task of a VCPU of the VM executes a gcs

2Para-virtualization is a technique involving small modifications to guest operating systems or device
drivers to achieve high performance and efficiency.
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associated with the lock.

To address this issue, vMPCP provides a para-virtualization2 interface for a VCPU to

let the hypervisor know the executions of gcs’s in the VCPU. The interface consists of the

following two functions:

• vmpcp_start_gcs(): If any task of a VCPU acquires a lock for a global resource,

this function is called to let the hypervisor increase the priority of the VCPU by the

base VCPU-priority level πvB of the system. If overrun is enabled, the hypervisor

allows the VCPU to continue to execute until vmpcp_finish_gcs() is called. The

hypervisor may implement an enforcement mechanism for the VCPU not to exceed

its pre-determined overrun time that will be given in Sec. 7.2.1.

• vmpcp_finish_gcs(): When there is no global-resource lock held by any task in a

VCPU, this function is called to let the hypervisor reduce the priority of the VCPU to

its normal priority. Also, if the VCPU’s budget is exhausted, the hypervisor suspends

the VCPU.

7.2 vMPCP Schedulability Analysis

In this section, we present the schedulability analysis under our proposed vMPCP. Our

analysis considers each of the periodic server and deferrable server policies with and without

VCPU budget overrun. We first analyze the VCPU schedulability on a physical core and

the task schedulability on a VCPU.

7.2.1 VCPU Schedulability

vMPCP increases the priority of a VCPU while any task of the VCPU is holding a global

resource, which enables a lower-priority VCPU to block a higher-priority VCPU.3 Also,

vMPCP results in increased VCPU execution times when overrun is enabled. We now

3vMPCP does not increase the priority of a VCPU when its task is holding a local resource. Hence,
local resources do not affect the VCPU schedulability.
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analyze these worst-case effects on VCPU schedulability and derive the VCPU schedulability

test under vMPCP.

Blocking from lower-priority VCPUs: We first focus on the case where the periodic

server policy is used. Consider a higher-priority VCPU vh and a lower-priority VCPU vl,

both assigned to the same core. Under the periodic server policy, the higher-priority VCPU

vh never suspends by itself until its budget is exhausted. Hence, the lower-priority VCPU

vl can block vh only when any global resource that vl’s task has been waiting on is released

from another core. The blocking time is equal to the duration of the corresponding gcs

(global resource holding time). The worst case happens when all the tasks of vl have been

waiting on global resources and these resources are released from other cores while the

higher-priority VCPU vh is executing. The maximum global resource holding time of vl is

as follows:

ght(vl) =
∑

τj∈vl∧σgcsj >0

max
1≤k≤σj∧type(τj ,k)=gcs

Ej,k (7.1)

Using Eq. (7.1), the worst-case blocking time imposed on a VCPU vi during a time interval

t under the periodic server policy is given as follows:

Bv
i (t) =

∑
vl∈P(vi)∧πvl <π

v
i

ght(vl) (7.2)

where πvi is the priority of the VCPU vi. Note that the parameter t is used to be consistent

with the deferrable server case which will be shown in Eq. (7.4).

We now consider the case where the deferrable server policy is used. Under this policy,

a higher-priority VCPU vh may suspend itself several times every period. This means that,

unlike the periodic server case, the tasks of a lower-priority VCPU vl may get a chance

to request global resources whenever vh suspends. Hence, each task of the lower-priority

VCPU vl may block the higher-priority VCPU vh multiple times during vh’s period. The

maximum accumulated global resource holding time of the tasks of vl during a time interval
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t is given by:

sum_ght(vl, t) =
∑
τj∈vl

{(⌈ t
Tj

⌉
+1

)
·

∑
1≤k≤σj∧

type(τj ,k)=gcs

Ej,k

}
(7.3)

Note that the “+1” term is to capture the carry-in job of each task during a given time

interval t. By using Eq. (7.3), the worst-case blocking time imposed on a VCPU vi during

a time interval t under the deferrable server policy is represented as follows:

Bv
i (t) =

∑
vl∈P(vi)∧πvl <π

v
i

sum_ght(vl, t) (7.4)

Budget overrun time: If the VCPU budget overrun option is enabled, a VCPU can

overrun its budget only when its tasks are executing gcs’s. Hence, the maximum time that

a VCPU vi can overrun is bounded by the maximum global resource holding time of that

VCPU, which is given in Eq (7.1). Therefore, the maximum overrun time of a VCPU vi

(Ovi ) is equal to ght(vi) if overrun is enabled, and zero if overrun is not enabled.

VCPU schedulability: The schedulability of a VCPU vi can be determined by the

following recurrence equation:

W v,n+1
i =Cvi +Ovi +Bv

i (W v,n
i ) +

∑
vh∈P(vi)∧πvh>π

v
i

⌈
W v,n
i + Jvh
T vh

⌉
· (Cvh +Ovh) (7.5)

where W v,n
i is the worst-case response time of vi at the nth iteration (W v,0

i = Cvi +Ovi ) and

Jvh is a VCPU release jitter (Jvh = 0 under the periodic server policy and Jvh = T vh−Cvh under

the deferrable server policy). Eq. (7.5) is based on the iterative response time test [142]. It

terminates when W v,n+1
i = W v,n

i , and the VCPU vi is schedulable if its response time does

not exceed its period: W v,n
i <= T vi . In this equation, Ovi and Ovh are used to represent the

budget overrun of vi and its higher-priority VCPUs, repectively. The third term represents

the blocking time from lower-priority VCPUs during vi’s response time.
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7.2.2 Task Schedulability

To determine the schedulability of a task τi under vMPCP, we need to consider the factors

discussed in Section 2.3.1: (i) local blocking time, (ii) remote blocking time, (iii) back-to-

back execution due to remote blocking, (iv) multiple priority inversions, (v) preemptions by

higher-priority VCPUs, and (vi) VCPU budget depletion. We take into account factor (iv)

when analyzing local blocking time, and factors (v) and (vi) when analyzing remote blocking

time. By considering factors (i), (ii) and (iii), we use the following recurrence equation that

bounds the worst-case response time of a task τi in a VCPU vk under vMPCP:

Wn+1
i =Ci +Bl

i +Br
i +

∑
τh∈V(τi)∧πh>πi

⌈
Wn
i +Jh+(Wh−Ch)

Th

⌉
Ch

+

⌈
Wn
i + Cvk
T vk

⌉
(T vk − Cvk )

(7.6)

where Bl
i is the local blocking time for τi, Br

i is the remote blocking time for τi, and Jh

is the release jitter of each higher-priority task τh (Jh = T vk − Cvk). It terminates when

Wn+1
i = Wn

i , and the task τi is schedulable if its response time does not exceed its deadline:

Wn
i <= Di. Eq. (7.6) is based on the response-time test for independent tasks under

hierarchical scheduling given in [92]. Specifically, the last term of Eq. (7.6) is from [92],

which captures the execution gap due to the periodic budget supply of the VCPU. The

back-to-back execution due to remote blocking from each higher-priority task τh is captured

by adding Wh − Ch in the summing term.4

In the rest of this section, we shall analyze the local and remote blocking times, Bl
i and

Br
i . We use tci,j as the task-level priority ceiling of the j-th critical section segment of task

τi. Similarly, vci,j is used to represent the VCPU-level priority ceiling of the j-th critical

section segment of task τi.

Local blocking time: The local and global critical sections of lower-priority tasks can

block the normal execution segment of a higher-priority task τi. With the local resource
4This is a correction made from our previous work [130]. More details on this correction and a suspension-

based blocking term in a response-time test can be found in [163].
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Figure 7.2: Periodic server with overrun

access rule of vMPCP based on PCP [84], only one lower-priority task with a priority ceiling

higher than the normal priority of τi can block each normal execution segment of τi. Hence,

the maximum per-segment blocking time from the local critical sections of lower-priority

tasks is given by:

B
l_lcs
i = max

τl∈V(τi)∧πl<πi
∧σlcsl >0

(
max

1≤u≤σl∧type(τl,u)=lcs
∧tcl,u>i

El,u

)
(7.7)

Unlike lcs’s, the gcs’s of each lower-priority task can block the normal execution segment

of τi. The maximum per-segment blocking time from the gcs’s of lower-priority tasks is

given by:

B
l_gcs
i =

∑
τl∈V(τi)∧πl<πi∧σgcsl >0

(
max

1≤u≤σl∧type(τl,u)=gcs
El,u

)
(7.8)

The total local blocking time from both the local and global critical sections of lower-

priority tasks is given by:

Bl
i = (B

l_lcs
i +B

l_gcs
i ) · (σgcsi + 1) (7.9)

Here, the reason for multiplying by σgcsi + 1 is that, before a task τi executes or whenever

τi self-suspends due to a global resource, lower-priority tasks may issue requests for local or

global resources.
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Figure 7.3: Deferrable server with overrun

Remote blocking time: The remote blocking time Br
i of a task τi is given by:

Br
i =

∑
1≤j≤σi∧type(τi,j)=gcs

Br
i,j (7.10)

where Br
i,j is the remote blocking time for τi in acquiring the global resource associated

with the j-th critical section of τi. Note that Br
i,j = 0 if the j-th critical section of τi is a

lcs.

The term Br
i,j is bounded by the following recurrence equation:

Br,n+1
i,j = max

V(τl)∈lpvcpus(V(τi))
∧R(τl,u)=R(τi,j)

W gcs
l,u +

∑
V(τh)∈hpvcpus(V(τi))
∧R(τh,u)=R(τi,j)

(⌈
Br,n
i,j

Th

⌉
+ 1

)
·W gcs

h,u (7.11)

where Br,0
i,j = maxV(τl)∈lpvcpus(V(τi))∧R(τl,u)=R(τi,j)W

gcs
l,u (the first term of the equation),

lpvcpus(V(τi)) is the set of lower-priority VCPUs than the VCPU of τi in the system,

hpvcpus(V(τi)) is the set of higher-priority VCPUs than the VCPU of τi, and W gcs
l,u

represents the worst-case response time of the execution El,u of a gcs after acquiring the

corresponding global resource. The first term of Eq. (7.11) captures the time for a task in

a lower-priority VCPU to finish its gcs. The second term represents the time for tasks in

higher-priority VCPUs to execute their gcs’s.

We now analyze W gcs
l,u , the amount of which depends on which VCPU policy is used and

whether overrun is used. We first define two terms, loadl,u and vcpu_prml,u, as follows:

loadl,u = El,u +
∑

τx∈V(τl)

max
1≤y≤σx∧tcx,y>tcl,u

Ex,y (7.12)
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vcpu_prml,u =
∑

vz∈P(V(τl))∧vz 6=V(τl)

∑
τx∈vz

max
1≤y≤σx∧vcx,y>vcl,u

Ex,y (7.13)

The term loadl,u bounds the maximum VCPU budget required to execute the critical

section El,u. It captures the execution time of El,u and the execution times of gcs’s with

higher task-level priority ceilings in the same VCPU. Since every gcs has a higher priority

than any normal execution segment, we only need to consider one global critical section per

task. The term vcpu_prml,u bounds the VCPU-level preemptions while El,u executes. The

VCPU of El,u can only be preempted by other VCPUs that have tasks being executing gcs’s

with higher VCPU-level priority ceilings. Note that vcpu_prml,u increases the response

time of El,u (W gcs
l,u ), but does not consume the budget of El,u’s VCPU.

• Periodic server with overrun: The worst-case response time of the execution El,u

of a gcs happens when the corresponding resource is acquired right after its VCPU

is suspended. In this case, the execution is delayed until the start of its VCPU’s

next replenishment period, and this waiting time is up to T vV(τl)
−CvV(τl)

, as shown in

Figure 7.2. Once the next period of the VCPU starts, the VCPU can execute and

finish El,u within this period due to overrun. Therefore, W gcs
l,u under the periodic

server policy with overrun is given by:

W gcs
l,u = T vV(τl)

− CvV(τl)
+ loadl,u + vcpu_prml,u (7.14)

• Deferrable server with overrun: In this case, El,u can be executed without the need

to wait until the VCPU’s next replenishment period (Figure 7.3). Therefore, W gcs
l,u

under the deferrable server policy with overrun is given by:

W gcs
l,u = loadl,u + vcpu_prml,u (7.15)

• Periodic/deferrable server without overrun: When overrun is not used, the execution of

loadl,u may span over multiple of its VCPU periods (Figure 7.4). The total execution
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Figure 7.4: Periodic/deferrable server without overrun

gap is bounded by d loadl,uCvV(τl)
e(T vV(τl)

− CvV(τl)
). Therefore, W gcs

l,u under the periodic or

deferrable server policy without overrun is given by:

W gcs
l,u =

⌈
loadl,u
CvV(τl)

⌉
(T vV(τl)

− CvV(τl)
) + loadl,u + vcpu_prml,u (7.16)

Note that, if the amount of loadl,u is smaller than the per-period execution budget of

the VCPU (CvV(τl)
), Eq. (7.16) becomes equal to Eq. (7.14).

7.3 Evaluation

This section presents our experimental evaluation on vMPCP. To our knowledge, vM-

PCP is the first virtualization-aware multi-core synchronization protocol and there is no

schedulability test for existing protocols in the multi-core virtualization environment. We

first empirically investigate the performance characteristics of vMPCP in terms of task

schedulability, and then compare vMPCP against a virtualization-unaware protocol (MPCP)

in terms of response times on a real hardware platform.

7.3.1 Comparison of Different Configurations

The purpose of this experiment is to explore the impact of different uses of vMPCP on task

schedulability. To do this, we use randomly-generated tasksets and capture the percentage

of schedulable tasksets as the metric.

Experimental Setup: The base parameters we use for experiments are summarized in

Table 7.1. As the main interest of our work is in the timing penalties caused by global
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Table 7.1: Base parameters for experiments

Parameters Values Parameters Values
# of physical cores 8 # of VCPUs per core 2
# of tasks per VCPU 3 Period of a VCPU 5 msec
Min. task period 100 msec Max. task period 500 msec
Per-VCPU task util 15% # of gcs’s per task 1
# of lockers per mutex 2 Size of a gcs 10 µsec

resources, local resources are not considered. For each experimental setting, we first generate

the defined numbers of physical CPU cores in the system, VCPUs for each core, and tasks

for each VCPU. Task periods are randomly selected within the defined min/max task

period range. On each VCPU, the VCPU task utilization is split into k random-sized

pieces, where k is the number of tasks in the VCPU. The size of each piece represents

the utilization of the corresponding task. Then, the WCET of each task is calculated by

dividing its utilization by its period. The priorities of tasks and VCPUs are assigned by the

Rate-Monotonic Scheduling (RMS) policy [127] (ties are broken arbitrarily). Once the task

information is generated, we determine a VCPU budget value that is used for all VCPUs

in the system. Starting from a value equal to the VCPU period, we decrease the VCPU

budget by 10 µsecs until all VCPUs pass the VCPU schedulability test given in Eq. (7.5).5

We generate 10,000 tasksets for each experimental setting, and record the percentage of

tasksets where all the tasks pass the task schedulability test given in Eq. (7.6).

Results: We consider the following four uses of vMPCP: periodic server with overrun

(PSwO), deferrable server with overrun (DSwO), periodic server with no overrun (PSnO),

and deferrable server with no overrun (DSnO). The main factors affecting task schedulability

under vMPCP are: (i) the size of a gcs, (ii) the number of lockers per mutex, (iii) the

number of gcs’s per task, (iv) the VCPU period, and (v) the utilization of tasks in each

VCPU. By exploring these factors, we identify the characteristics of the four schemes of

vMPCP.

Figure 7.5 shows the percentage of schedulable tasksets as the size of a gcs increases.

5As the minimum time unit in Table 7.1 is 10 µsec, the step size of 10 µsec is fine-grained enough to
find the VCPU budget values in this experiment.
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Figure 7.5: Taskset schedulability as the size of a gcs increases
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Figure 7.6: Taskset schedulability as the number of lockers per mutex increases

The schemes with no overrun, PSnO and DSnO, are almost unaffected by the size of a

gcs. Conversely, the schedulability under the schemes with overrun, PSwO and DSwO,

decreases as the size of a gcs increases. This is due to the fact that, without overrun,

more VCPU budget can be used for the executions of normal execution segments of tasks.

DSwO performs better than PSwO because DSwO results in a shorter response time of the

execution of a gcs, as given in Eq. (7.15).

Figure 7.6 shows the percentage of schedulable tasksets as the number of lockers per

mutex increases. Points on the x-axis represent all possible values for the number of lockers

per mutex in our experimental setting. The performance degradation happens only when

the number of lockers per muxex is very high (> 12). This is because vMPCP uses a

two-level priority queue as the waiting list for a mutex. Hence, higher priority tasks or

tasks in higher-priority VCPUs do not need to wait until all the lower-priority tasks or

tasks in lower-priority VCPUs finish their gcs’s.
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Figure 7.7: Taskset schedulability as the number of gcs’s per task increases
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Figure 7.8: Taskset schedulability as the VCPU period increases

Figure 7.7 shows the percentage of schedulable tasksets as the number of gcs’s per

task increases. The performance difference between DSwO and the other three schemes

becomes larger as the number of gcs’s per task increases. Even if the number of gcs’s per

task reaches 32, DSwO does not show any noticeable performance degradation due to its

short gcs response time.

Figure 7.8 shows the percentage of schedulable tasksets as the VCPU period increases.

DSwO performs much better than the other three schemes. Especially, when the VCPU

period is 40 msec, the difference in the percentage of schedulable tasksets between DSwO

and the other schemes is about 80%. This big difference is due to the fact that PSwO,

PSnO and DSnO are sensitive to the VCPU period when accessing global resources, as

given by Eq. (7.14) and Eq. (7.16).

Lastly, Figure 7.9 shows the percentage of schedulable tasksets as the utilization of

tasks per VCPU increases. For all schemes, the percentage decreases when the per-VCPU
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Figure 7.9: Taskset schedulability as the task utilization per VCPU increases

utilization is greater than 17.0%. Interestingly, when the utilization is 19.0%, DSwO

performs better than PSnO and DSnO, but when the utilization is 20.0%, the result is the

opposite.

In summary, we observe from the results that there is no single scheme that can dominate

the others. DSwO generally performs better than PSwO, PSnO and DSnO, due to its

short gcs response time. In some cases, PSnO and DSnO outperform DSwO by allowing

more VCPU budgets for the normal execution segments of tasks. PSwO gives the worst

performance in our experiments. This is because PSwO allows less VCPU budget for normal

execution segments than PSnO and DSnO, and gives longer gcs response time than DSwO.

7.3.2 Case Study: vMPCP on KVM Hypervisor

We now present a case study demonstrating the benefit of vMPCP by using our implemen-

tation on the KVM hypervisor.

Implementation: We have implemented vMPCP on the KVM (Kernel-based Virtual

Machine) hypervisor [158] of the latest version of Linux/RK [138, 139].6 The host machine

runs on Linux/RK, and uses KVM to execute guest VMs that also run on Linux/RK. Our

implementation supports the deferrable server policy and an optional overrun mechanism.

The vMPCP mutex data structures and APIs (e.g., open, lock, unlock) are implemented

as part of the Linux/RK kernel module. Specifically, the vMPCP mutexes are classified

6Linux/RK is available at https://rtml.ece.cmu.edu/redmine/projects/rk.
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Table 7.2: Implementation cost of vMPCP on the KVM hypervisor

Types Mutex APIs Avg (µsec) Max (µsec)

Intra-VM

open (create new mutex) 4.16 7.14
open (existing mutex) 1.87 3.64
destroy 1.83 3.50
lock 3.51 5.69
trylock 2.75 5.15
unlock 2.26 2.68
*vmpcp_start_gcs 2.05 2.88
*vmpcp_finish_gcs 1.40 1.60

Inter-VM

open (create new mutex) 1.79 3.48
open (existing mutex) 1.76 3.35
destroy 1.49 1.78
lock 3.09 5.31
trylock 2.80 5.29
unlock 1.93 2.57

into intra-VM and inter-VM mutexes based on the memory spaces their corresponding

global resources belong to. The intra-VM mutexes are for resources shared within a

guest VM and use the vmpcp_start_gcs() and vmpcp_finish_gcs() hypercalls internally.

The inter-VM mutexes are for resources shared among guest VMs and the hypervisor.

They are implemented by using the per-VCPU virtqueue interface of virtio [164] for

hypervisor-VM communication.

Table 7.2 lists the implementation costs of vMPCP APIs on the KVM hypervisor. The

target system used is equipped with an Intel Core i7-2600 quad-core processor running at

3.4 GHz and 8GBytes of RAM. To reduce measurement inaccuracies, we have disabled the

simultaneous multithreading and dynamic clock frequency scaling of the processor. The

open and destroy APIs take longer times for intra-VM mutexes than for inter-VM mutexes.

This is mainly due to the performance difference between a VM and the hypervisor in

memory allocation and deallocation for mutex data structures. The costs of lock, trylock

and unlock APIs are similar for both intra- and inter-VM mutexes. The major factor

contributing to the lock/unlock costs is the “world switch” between a VM and the hypervisor.

Since the intra-VM mutexes cause the vmpcp_start_gcs and vmpcp_finish_gcs hypercalls,

the world switch happens for intra-VM mutexes as well.

Case Study: In this case study, we compare the response times of tasks sharing a global
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resource under vMPCP and those under a virtualization-unaware multi-core synchronization

protocol, MPCP. The target system hosts two guest VMs, each of which has four VCPUs

(VM1: {v1, v3, v5, v7}, VM2: {v2, v4, v6, v8}). All VCPUs have the same budget and period:

vi = (3, 10), units in msec. The VCPUs are ordered in increasing order of priorities, i.e.,

i < j =⇒ πvi < πvj . Hence, v8 is the highest-priority VCPU. The release offset of each

VCPU is zero. The target machine has four processing cores, Core 1, 2, 3 and 4. Each

core is assigned two VCPUs: Core 1 = {v1, v2}, Core 2 = {v3, v4}, Core 3 = {v5, v6},

Core 4 = {v7, v8}. For a taskset, we use eight synthetic tasks, each of which has one gcs.

There is one global resource shared among all these tasks. Each task is assigned to a

VCPU with the same index number, e.g., τ5 ∈ v5. All tasks except τ2 have the same timing

parameters: τi = ((2, 1, 2), 200), where i 6= 2, units in msec. Task τ2 has a slightly longer

gcs: τ2 = ((2, 1.1, 2), 200). Each task τi also has a release offset of i − 1 msec, e.g., τ5 is

released at t = 4 msec. We used Linux/RK to set the periods, release offsets, and real-time

priorities of VCPUs and tasks. In accordance with our system model, tasks and VCPUs

with higher indices are assigned higher priorities.

Figure 7.10 shows the execution timelines of tasks captured under MPCP, vMPCP

with deferrable server and no overrun (vMPCP+DSnO), and vMPCP with deferrable

server and overrun enabled (vMPCP+DSwO). As can be seen, the response times of tasks

are much shorter under vMPCP+DSnO and vMPCP+DSwO, compared to those under

MPCP (7.5% of resposne time decrease on average under vMPCP+DSnO, and 29.1% under

vMPCP+DSwO). The shared resource is first held by τ2 at t = 3, but under MPCP and

vMPCP+DSnO, it cannot release the resource due to its VCPU’s budget depletion. Hence,

the resource is held by τ2 until the start of its VCPU’s next replenish period. Conversely,

under vMPCP+DSwO, τ2 can finish its gcs and release the resource. This allows other

tasks to access the resource within the first VCPU period, thereby significantly reducing

the response times of tasks. In case of task τ8, it acquires the resource at t = 10 under

both MPCP and vMPCP+DSnO. Here, the difference happens when τ8 finishes its gcs.

Under MPCP, τ8 continues to execute because its VCPU has the highest priority on that
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Figure 7.10: Task execution timelines under MPCP, vMPCP+DSnO and vMPCP+DSwO

core. This causes a delay to task τ7, which is the highest-priority task among the tasks

waiting on the resource, to enter its gcs. However, under vMPCP+DSnO, τ7 starts its

gcs right after the resource is released by τ8. This slightly lengthens the response time of

τ8, but allows other tasks to access the resource much faster. Under vMPCP+DSwO, the

response times of all tasks except τ7 are shorter than those under the other two schemes.

The increase in τ7’s response time is due to the back-to-back execution of the VCPU of τ8,

the amount of which is bounded by our analysis. The case study results show that vMPCP
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is effective in reducing the response times of tasks accessing shared resources in a multi-core

virtualization environment.

7.4 Summary

In this chapter, we developed a novel synchronization framework, vMPCP, to provide

bounded blocking time on accessing shared resources in a multi-core virtualization environ-

ment. vMPCP reduces the major inefficiencies caused by shared resources, by exposing the

executions of global critical sections to the hypervisor. We presented the schedulability

analysis under vMPCP, with the periodic and deferrable server policies with and without

the budget overrun mechanism. From our analysis and experimental results, we made two

important findings: (i) the deferrable server outperforms the periodic server when overrun

is used, and (ii) the use of overrun does not always yield better schedulability, especially

for tasks with long critical sections. We implemented vMPCP on the KVM hypervisor

and demonstrated the effect of vMPCP in reducing task response times by an average of

29% in our case study. Interesting future directions that can build on our work include the

extension of our schedulability analysis to the compositional framework [93, 94], and the

implementation and evaluation of vMPCP on other hypervisors, such as L4/Fiasco [104].
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Chapter 8

Responsive and Enforced Interrupt

Handling

This chapter describes our proposed interrupt handling scheme for multi-core virtualization,

called vINT. vINT provides a pseudo-VCPU abstraction to explicitly account for and

enforce the CPU usage of virtual interrupt handling. With a pseudo-VCPU, vINT enables

tasks within a VCPU to meet their deadlines without suffering from virtual interrupt

storms. The use of the pseudo-VCPU abstraction also allows assigning a separate budget

and priority to just the interrupt handler and interrupt-triggered tasks of a guest VM. This

makes a virtual interrupt be handled although the budget of its original VCPU has been

depleted. In addition, virtual interrupt handling is no longer dominated by the budget,

replenishment period and priority of its original VCPU, thereby significantly reducing

interrupt handling time in a virtualized environment. vINT does not require making any

change to the guest OS code. Hence, it can be easily applicable to full virtualization

scenarios hosting unmodified, proprietary guest OSs.

We analyze interrupt handling time in a virtualized environment with and without

vINT. We also provide analyses on the schedulability of VCPUs and tasks in the presence

of physical and virtual interrupts. Our experimental results indicate that vINT achieves
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Table 8.1: Comparison with previous work

Priority VCPU Bounded Enforced Task Unmodified
Schemes based temporal interrupt interrupt schedulability guest OS

scheduling isolation handling handling analysis support
[117] X X X
[114] X X
[115] X X
[116] X X
vINT X X X X X X

timely interrupt handling while providing as good task schedulability as when it is not

used. We have implemented a prototype of vINT on the KVM hypervisor (chosen for

convenience). Our case study using this implementation shows the benefits of vINT in

providing responsive interrupt handling times and protecting tasks against virtual interrupt

storms. Table 8.1 gives a brief comparison of vINT with closely related prior work.

The background and related prior work on interrupt handling were discussed in Sec-

tion 2.4. The system model including assumptions and notation for tasks and virtual

machines can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 8.1 gives a detailed description

on interrupt handling in a virtualization environment and defines interrupt handling time.

Section 8.2 presents our proposed vINT scheme. Section 8.3 shows our analyses on interrupt

handling time, and VCPU and task schedulability. Section 8.4 provides detailed evaluation,

and Section 8.5 summarizes this chapter.

8.1 Interrupt Handling Time in Virtualization

We consider two types of interrupts: physical and virtual. A physical interrupt Ipii is a

signal issued from a hardware device to a PCPU. Each physical interrupt is assumed to be

statically pinned to one PCPU, which can be easily done in software with the support of

a programmable interrupt controller (PIC). When a PCPU receives a physical interrupt,

the currently executing VCPU on that PCPU is halted and the corresponding ISR of

the hypervisor is executed (Step 1○ in Figure 8.1). The CPU time usage of the ISR of a

physical interrupt is accounted for as the hypervisor’s usage, not as the halted VCPU’s
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Figure 8.1: Interrupt handling in virtualization

usage. Each physical interrupt has a unique priority πpii determined by the PIC. The ISR

of a lower-priority physical interrupt can be preempted by that of a higher-priority physical

interrupt. The ISRs of physical interrupts are not preemptible by VCPUs. Therefore,

a VCPU preempted by an ISR can only resume its execution when all ISRs have been

completed. A physical interrupt Ipii is represented as follows:

Ipii := (Cpii , T
pi
i )

where,

• Cpii : the WCET of the ISR of Ipii

• T pii : the minimum inter-arrival time1 of Ipii
1Similarly to prior work [111, 113], the minimal inter-arrival time of an interrupt refers to a value

expected or identified at design time. An interrupt unexpectedly arriving faster than that value may cause
an interrupt storm at runtime.
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The response time of a physical interrupt (or physical interrupt handling time) is the time

from the arrival of the physical interrupt signal to the completion of the corresponding ISR.

A virtual interrupt Ivii is a software signal from the hypervisor to a guest VM, issued

upon the completion of the ISR of a physical interrupt.2 Each virtual interrupt is assumed

to be statically pinned to one VCPU of a VM. If a target VCPU is located on a PCPU

different from that of a physical ISR, e.g., a physical interrupt shared among multiple

VCPUs, the delivery of a virtual interrupt from a physical ISR to the VCPU causes an

inter-processor interrupt (IPI) that is an additional physical interrupt to notify a state

change to the VCPU running on a different PCPU (Steps 1’○ and 2○ in Figure 8.1(b)).

Otherwise, a virtual interrupt is immediately delivered to the corresponding VCPU (Step 2○

in Figure 8.1(a)). When a VCPU receives a virtual interrupt, the currently executing task

in that VCPU is halted and the corresponding ISR of the guest OS is executed. Each virtual

interrupt has a unique priority πvii given by the emulated PIC. Within each VCPU, the

ISRs of lower-priority virtual interrupts can be preempted by those of higher-priority virtual

interrupts, and virtual ISRs are not preemptible by tasks. As in most CPU architectures,

each ISR executes an End-Of-Interrupt (EOI) instruction at the end to notify the completion

of the ISR to the PIC. As the EOI is a privileged instruction called by the guest OS, it is

trapped and emulated by the hypervisor while consuming the budget of the corresponding

VCPU (Step 3○ in Figure 8.1). A virtual interrupt is pending if it has been injected to the

corresponding VCPU but its ISR has not yet been completed. A virtual interrupt Ivii is

represented as follows:

Ivii := (Cvii , T
vi
i )

where,

• Cvii : the WCET of the ISR of Ivii

• T vii : the minimum inter-arrival time of Ivii

2There might be some cases where virtual interrupts are generated as a result of polling at the hypervisor.
Considering such a mixed use of interrupts and polling in real-time virtualization remains as future work.
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We consider a split interrupt handling model for guest OSs due to its the wide acceptance

in both real-time and non-real-time OSs. Under split interrupt handling, the ISR of a

virtual interrupt performs the minimum amount of work and activates zero or more tasks

to execute a deferred service routine (DSR) in the task context (Step 4○ in Figure 8.1).

Hence, the priorities of DSRs can be easily configured in contrast to ISRs, and the majority

of interrupt handling can be done with desired priorities. We use D(Ivii ) to denote the set

of DSR tasks triggered by the ISR of a virtual interrupt Ivii . The minimum inter-arrival

time of any task in D(Ivii ) is therefore equal to or greater than T vii . The response time of a

virtual interrupt (or virtual interrupt handling time) is the time from the arrival of the

virtual interrupt to the completion of the corresponding ISR and DSR. Lastly, we denote

the sum of the WCETs of the ISR and DSR of a virtual interrupt Ivii as:

Cvii = Cvii +
∑

τj∈D(Ivii )

Cj

Definition 1. An interrupt-triggered execution flow in a virtualized environment is the

sequence of executions from the arrival of a physical interrupt to the completion of the ISR

and DSR of the corresponding virtual interrupt.

Definition 2. The total interrupt handling time is the amount of time to complete the

corresponding interrupt-triggered execution flow.

Definition 3. An interrupt-triggered execution flow is serviceable, if its total interrupt

handling time does not exceed the minimum inter-arrival times of the corresponding physical

and virtual interrupts.

8.2 vINT Scheme

The problems with virtual interrupt handling described in Section 2.4.1 are caused by the

fact that a virtual interrupt is handled by the same VCPU as the one used by other regular

tasks. Motivated by this, we propose vINT that can conceptually split virtual interrupt
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handling from the VCPU of regular tasks in an analyzable way, without modifying the

guest OS code. vINT can be selectively used for a subset of virtual interrupts that cannot

be serviced within their minimal inter-arrival times by default, or have a possibility of

causing virtual interrupt storms. For convenience of explanation, we assume that all virtual

interrupts are managed by vINT in Section 8.2.1 and 8.2.2. In Section 8.2.3 we relax this

assumption.

8.2.1 Pseudo-VCPU Abstraction

vINT uses a pseudo-VCPU abstraction to represent the resource requirement of the ISR

and DSR of a virtual interrupt as a separate VCPU to the hypervisor. The pseudo-VCPU

differs from its original VCPU in that it does not have an execution context. In other

words, the use of the pseudo-VCPU introduces no additional processing core visible to the

guest VM, which is typically a high demand to host legacy guest OSs that may support

only uniprocessors.

Each virtual interrupt can be exclusively associated with one pseudo-VCPU that is

located on the same PCPU as its original VCPU. A pseudo-VCPU vp is described by

the same types of parameters as a regular VCPU: Cvp and T vp . The replenishment period

of a pseudo-VCPU vp is equal to or greater than the minimum inter-arrival time of the

associated virtual interrupt Ivii , i.e., T vp ≥ T vii . The budget Cvp of a pseudo-VCPU vp

associated with a virtual interrupt Ivii is assigned as follows:

Cvp =

⌈
T vp
T vii

⌉
Cvii (8.1)

It is worth noting that, once a virtual interrupt is assigned its pseudo-VCPU, the budget

of its original VCPU can be reduced because the virtual interrupt will be handled by using

the budget of the pseudo-VCPU.

Prioritization of pseudo-VCPUs: One of our goals is to provide responsive interrupt

handling time, which is challenging due to the VCPU-level preemption while handling a
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virtual interrupt. To achieve this goal, vINT prioritizes pseudo-VCPUs over regular VCPUs.

The priority of a pseudo-VCPU vp associated with a virtual interrupt Ivii is assigned a

priority of πvB + (πvo − 1) · Lo + πD(Ivii ), where πvB is a base VCPU-priority level greater

than that of any regular VCPU on the same PCPU, πvo is the priority of the original VCPU

of Ivii , Lo is the number of priority levels for all DSR tasks in the original VCPU, and

πD(Ivii ) is the priority difference between the highest-priority DSR task of Ivii and the

highest-priority DSR task among all DSR tasks in the original VCPU. With this approach,

the pseudo-VCPU vp is not preempted by any regular VCPU, and the relative priority

ordering of DSRs within the same original VCPU are preserved.

8.2.2 Pseudo-VCPU Realization

As a pseudo-VCPU does not have an execution context, in its realization, the actual

execution of the ISR and DSR of a virtual interrupt still happens within the execution

context of their original VCPU. We now explain how vINT handles a virtual interrupt as if

it was handled in its pseudo-VCPU.

DSR task priority adjustment: Since pseudo-VCPUs are assigned higher priorities

than regular VCPUs, the executions of DSRs should not be preempted by regular tasks

in the realization. vINT therefore statically adjusts the priority of each DSR task τj to

πB,vo + πj , where πB,vo is a base task-priority level greater than any regular task in the

task τj ’s original VCPU vo, and πj is the original priority of τj . Note that this priority

adjustment is not needed if the priorities of DSR tasks are already higher than those of

regular tasks in the original VCPU. In addition, since even closed-source, proprietary OSs

provide an interface to configure task priorities, the priority adjustment does not violate

the requirement of full virtualization.

Virtual interrupt injection: vINT maintains a counter for each pseudo-VCPU to indicate

the number of virtual interrupts that can be handled by the pseudo-VCPU at that moment.

The maximum possible value of the counter for a pseudo-VCPU vp associated with a virtual
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interrupt Ivii is given by dT vp /T vii e. When a virtual interrupt is generated, vINT checks the

counter value of the corresponding pseudo-VCPU. If the counter is greater than zero, the

counter is decremented by one and the virtual interrupt is injected into its original VCPU.

Otherwise, the injection of the virtual interrupt is delayed until the counter becomes greater

than zero. The replenishment rule of the counter is similar to that of the VCPU budget.

Under the deferrable server policy, the counter is fully replenished at the start of every

replenishment period of the pseudo-VCPU. Under the sporadic server policy, the counter is

replenished by one at the time when the budget is replenished.

Virtual interrupt handling: We first consider a non-nested interrupt handling scenario.

When a virtual interrupt Ivii is injected, the original VCPU vo should handle the ISR and

DSR of Ivii by using the priority and budget of the corresponding pseudo-VCPU vp. Hence,

vINT immediately raises the priority of vo to that of vp, and let vo use the budget of vp for

the amount of Cvii . As the DSR tasks of Ivii have higher priorities than regular tasks, they

are guaranteed to be executed as soon as the corresponding ISR finishes. When the VCPU

vo has consumed Cvii units of the budget of vp, vINT restores the priority of vo and lets vo

use its own budget afterwards. The ISR and DSR of Ivii may be finished earlier than Cvii

and regular tasks may be executed while their VCPU is still using the budget and priority

of the pseudo-VCPU of Ivii . However, this does not change the worst-case interference that

can be imposed on other VCPUs.

We next consider a nested interrupt handling scenario. vINT exploits the following

two factors to support nested interrupt handling with pseudo-VCPUs: (i) the hypervisor is

aware of the set of all pending virtual interrupts in each VCPU, and (ii) the hypervisor

traps an EOI instruction called at the end of each virtual ISR. When a new virtual interrupt

is injected into a VCPU vo, vINT lets vo use the budget and priority of the pseudo-VCPU

that is associated with the highest-priority virtual interrupt among all pending interrupts.

This is because the VCPU executes the ISR of the highest-priority pending interrupt first.

When the hypervisor catches an EOI from vo, vINT checks if there is another pending
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Figure 8.2: vINT nested interrupt handling

interrupt. If so, vINT lets vo use the budget and priority of the pseudo-VCPU of the

higher-priority pending interrupt, and repeats this until there is no pending interrupt.

If there is no pending interrupt, vINT now lets vo use the budget and priority of the

highest-priority pseudo-VCPU, the budget of which has not yet been used for the amount

of Cvii by vo to handle the injected interrupt Ivii . As the relative priorities of pseudo-VCPU

follow those of DSR tasks, this approach makes the sequence of the pseudo-VCPU usage

correspond to that of the DSR task executions. Figure 8.2 shows an example of nested

interrupt handling with vINT. In this figure, the x-axis represents the passage of virtual

time so the activities of the hypervisor and other VCPUs are omitted. In this figure, tasks,

VCPUs, and interrupts are ordered in increasing order of priorities, e.g., Ivi2 has higher

priority than Ivi1 .
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8.2.3 Selective Use of vINT

We now relax our assumption that all virtual interrupts are managed by vINT. If a virtual

interrupt is not managed by vINT, it is not associated with a pseudo-VCPU. The priorities

of its DSR tasks remain unchanged. However, the presence of such an unmanaged virtual

interrupt affects the pseudo-VCPU budgets of virtual interrupts managed by vINT. Consider

a virtual interrupt Ivii associated with a pseudo-VCPU vp. If there is any virtual interrupt

not managed by vINT in the original VCPU of Ivii , the budget Cvp of vp is assigned by:

Cvp =

⌈
T vp
T vii

⌉Cvii +
∑

Ivij ∈V(Ivii )∧pseudo(Ivij )=∅

⌈
T vii
T vij

⌉
Cvij

 (8.2)

where, V(Ivii ) is the original VCPU of Ivii , and pseudo(Ivij ) is a function returning the

pseudo-VCPU of Ivij if exists, and ∅ otherwise. The second term in the parenthesis of

Eq. (8.2) is an extra budget for the executions of the ISRs of virtual interrupts not managed

by vINT. Since those ISRs may block the handling of Ivii in the realization, the extra

budget allows the ISRs to be executed with the budget and priority of Ivii ’s pseudo-VCPU.

Therefore, when an instance of Ivii is injected into its original VCPU vo, vINT lets vo use

the budget and priority of the pseudo-VCPU vp for the sum of the terms in the parenthesis

of Eq. (8.2), instead of only Cvii .

8.3 vINT Timing Analysis

In this section, we first analyze VCPU and task schedulability in the presence of physical

and virtual interrupts. Then, we analyze interrupt handling time with and without vINT.

For convenience, we use the following notation in this section:

• P(vi) and P(Ipij ): PCPUs for a VCPU vi and for a physical interrupt Ipij , respectively

• V(τi) and V(Ivij ): Original VCPUs for task τi and for a virtual interrupt Ivij , respec-

tively
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• pseudo(τi) and pseudo(Ivij ): Pseudo VCPUs for task τi and for a virtual interrupt

Ivij , respectively, if exist; ∅ otherwise.

8.3.1 VCPU and Task Schedulability

The schedulability of a VCPU vi can be determined by the following recurrence equation:

W v,n+1
i = Cvi +

∑
Ipiu ∈P(vi)

⌈
W v,n
i

T piu

⌉
Cpiu +

∑
vh∈P(vi)∧πvh>π

v
i

⌈
W v,n
i + Jvh
T vh

⌉
Cvh (8.3)

where, W v,n
i is the worst-case response time (WCRT) of a VCPU vi at the nth iteration

(W v,0
i = Cvi ), π

v
i is the priority of a VCPU vi, and Jvh is a release jitter (Jvh = T vh − Cvh for

the deferrable server policy and Jvh = 0 for the sporadic server policy). Eq. (8.3) is based

on the iterative response time test in [142]. It terminates when W v,n+1
i = W v,n

i , and the

VCPU vi is schedulable if its WCRT does not exceed its period, i.e., W v,n
i <= T vi . In this

equation, the second term represents the interference from the ISRs of physical interrupts

during the execution of vi.

For task schedulability, we need to consider virtual interrupts. If a virtual interrupt is

managed by vINT, regular tasks do not experience any direct interference from that virtual

interrupt because it is handled by using the budget of its pseudo-VCPU. On the other

hand, if a virtual interrupt is not managed by vINT, it may be handled by the budget of

the same VCPU as regular tasks. Hence, we can extend the task response-time test under

hierarchical scheduling given in [92] as follows to check the schedulability of a regular task

τi in a VCPU vk:

Wn+1
i =Ci +

∑
τh∈V(τi)∧πh>πi
∧pseudo(τi)=∅

⌈
Wn
i +Jh
Th

⌉
Ch

+

⌈
Wn
i + Cvk
T vk

⌉
(T vk − Cvk ) +

∑
Iviu ∈V(τi)∧

pseudo(Iviu )=∅

⌈
Wn
i + Jviu
T viu

⌉
Cviu

(8.4)
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where, Wn
i is the WCRT of task τi at the nth iteration (W 0

i = Ci), πi is the priority of τi,

and Jh and Jviu are the release jitters of a task τh and a virtual interrupt Iviu , respectively

(Jh = Jviu = T vk −Cvk ). It terminates when Wn+1
i = Wn

i , and the task τi is schedulable if its

WCRT does not exceed its deadline, i.e., Wn
i <= Di. Note that the schedulability result

for a task from Eq. (8.4) is valid only if the task’s VCPU passes the VCPU schedulability

test given in Eq. (8.3). The last summing term of Eq. (8.4) captures the interference from

the ISRs of virtual interrupts that are not managed by vINT. In addition, since Eq. (8.4)

conservatively assumes that the budget of the task’s VCPU is available at the latest time

possible within each period (T vk − Cvk ), the interference from physical interrupts does not

need to be considered in Eq. (8.4).

8.3.2 Interrupt Handling Time

The total interrupt handling time can be bounded by the sum of (i) the WCRT of the ISR

of a physical interrupt, (ii) the WCRT of the ISR of a physical IPI if the target VCPU

is on a different PCPU, and (iii) the WCRT of the ISR and DSR of the corresponding

virtual interrupt. For factors (i) and (ii), the WCRT of the ISR of a physical interrupt Ipii

is bounded by the following recurrence equation:

W pi,n+1
i = Cpii +

∑
Ipih ∈P(Ipii )∧πpih >π

pi
i

⌈
W pi,n
i

T pih

⌉
Cpih (8.5)

where, W pi,n
i is the WCRT of a physical interrupt Ipii at the nth iteration (W pi,0

i = Cpii ),

and πpii is the priority of Ipii .

We now consider the last factor. When vINT is used, as shown in Figure 8.2, the ISR

and DSR of a virtual interrupt may be blocked by the ISRs of virtual interrupts that are

associated with lower-priority pseudo-VCPUs and executed in the execution context of the

same original VCPU. The virtual interrupt may also be blocked by other virtual interrupts

that are not managed by vINT. For a virtual interrupt Ivij associated with a pseudo-VCPU

vp, the maximum blocking time from such virtual interrupts during a time interval t is
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given by:

Bp,j(t) =
∑

Iviu ∈V(Ivij )∧(pseudo(Iviu )=∅
∨πp

pseudo(Iviu )
<πpj )

⌈
t

T viu

⌉
Cviu

(8.6)

where, πp
pseudo(Iviu )

is the priority of Iviu ’s pseudo-VCPU. In addition, the worst case happens

when all physical interrupts on the same PCPU arrive with their minimum inter-arrival

times and all higher-priority VCPUs fully consume their budgets. The WCRT of a virtual

interrupt Ivij associated with a pseudo-VCPU vp is therefore bounded by:

W vi,n+1
j =Cvij +Bp,j(W

vi,n
j )+

∑
Ipiu ∈P(vp)

⌈
W vi,n
j

T piu

⌉
Cpiu +

∑
vh∈P(vp)∧πvh>πvp

⌈
W vi,n
j + Jvh
T vh

⌉
Cvh

(8.7)

where, W vi,n
j is the WCRT of a virtual interrupt Ivij (W vi,0

j = Cvij ). Note that Eq. (8.7) is

similar to the VCPU schedulability test given in Eq. (8.3), except the blocking term. This

is because the pseudo-VCPU of a virtual interrupt is guaranteed to have enough budget to

handle one instance of a virtual interrupt, and there is no other task interfering with the

execution of the ISR and DSR of the virtual interrupt in the pseudo-VCPU.

When vINT is not used, the response time of a virtual interrupt should be captured by

considering the executions of other tasks within the same VCPU. Therefore, the WCRT of

a virtual interrupt Ivij in a VCPU vk is bounded by:

W vi,n+1
j =Cvij +

∑
τh∈V(Ivij )∧πh>π̌D
∧pseudo(τh)=∅

⌈
W vi,n
j +Jh

Th

⌉
Ch

+

⌈
W vi,n
j +Cvk
T vk

⌉
(T vk −Cvk ) +

∑
Iviu ∈V(Ivij )∧u6=j
pseudo(Iviu )=∅

⌈
W vi,n
j +Jviu

T viu

⌉
Cviu

(8.8)
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Table 8.2: Base parameters for our experiments

Parameters Values
Number of PCPUs 4
Number of VCPUs per PCPU 3
Number of physical interrupts per PCPU 6
Number of virtual interrupts per VCPU 2
VCPU replenishment period 10 msec
Minimum inter-arrival time of a physical interrupt [5, 10] msec
Minimum inter-arrival time of a regular task [100, 500] msec
WCET of ISR of a physical/virtual interrupt [5, 10] µsec
WCET of DSR of a virtual interrupt [10, 50] µsec
Number of regular tasks per VCPU 3
Number of DSR tasks per VCPU 2
Task set utilization per VCPU 10 %

where, π̌D is the priority of the lowest-priority task in D(Ivij ). Note that this equation is

similar to Eq. (8.4) which captures the WCRT of a task.

8.4 Evaluation

In this section, we first empirically investigate the performance characteristics and benefits

of vINT, and then show its effects on a real hardware platform.

8.4.1 Experimental Setup

We consider the following schemes in our experiments: deferrable server without vINT

(DSbase), sporadic server without vINT (SSbase), deferrable server with vINT (DSvINT),

and sporadic server with vINT (SSvINT). We use randomly-generated task sets and interrupt

sets to compare these schemes on how many task sets could be schedulable and how many

interrupt sets could be serviced on a timely basis.

Since, in practice, vINT can be selectively applied to a subset of virtual interrupts

that cannot be serviced within their virtual interrupt times by the baseline scheme, our

experiments only focus on interrupts with short inter-arrival times. Table 8.2 lists the base

parameters we use for our experiments. For each experimental setting, we first generate

PCPUs, VCPUs, physical interrupts, and tasks and virtual interrupts for each VCPU

based on the defined parameters. Each virtual interrupt is exclusively associated with one
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physical interrupt in a random manner, and the minimum inter-arrival time of each virtual

interrupt is set equal to that of its associated physical interrupt. For each VCPU, the task

set utilization per VCPU is split into k random-sized pieces, where k is the number of tasks

per VCPU. The size of each piece becomes the utilization of the corresponding task, and

the WCET of each task is calculated by dividing its utilization by its minimum inter-arrival

time. For DSvINT and SSvINT, we create a pseudo-VCPU for each virtual interrupt with

a period equal to the minimum inter-arrival time of the corresponding virtual interrupt and

with a budget determined by Eq. (8.2). VCPUs and tasks are assigned unique priorities by

using the Rate-Monotonic Scheduling (RMS) policy [127], with an arbitrary tie-breaking

rule. The priorities of physical and virtual interrupts are assigned randomly. Once this is

done, we finally determine the VCPU budget value for each scheme. Starting from a value

equal to the VCPU period, the VCPU budget for each scheme is decreased by 1 µsec until

all VCPUs pass the VCPU schedulability test given in Eq. (8.3).3

We generate 10,000 task sets and 10,000 interrupt sets for each experimental setting.

The metrics used are: (i) the percentage of schedulable task sets where all tasks pass the

schedulability test given in Eq. (8.4), and (ii) the percentage of serviceable interrupt sets

where all interrupt-triggered execution flows are serviceable, checked by Eqs. (8.5), (8.7)

and (8.8).

8.4.2 Results

We explore three main factors that affect task schedulability and interrupt serviceability in

a virtualized environment: (i) the minimum inter-arrival time of interrupts, (ii) the VCPU

period, and (iii) the WCET of interrupt handlers.

Minimum inter-arrival time of interrupts: Figure 8.3 shows the percentages of schedu-

lable task sets and serviceable interrupt sets as the minimum inter-arrival time of interrupts

decreases. Each point k on the x-axis represents that the minimum inter-arrival time of each

3Considering the time-unit granularity used in Table 8.2, the step size of 1 µsec is fine-grained enough
to find the maximum-possible VCPU budget for each scheme in our experiments.
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Figure 8.3: Results with short interrupt inter-arrival time
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Figure 8.4: Results with long interrupt inter-arrival time

interrupt ranges [k, k+0.5] msec. In general, the sporadic server policy (SS) performs better

than the deferrable server policy (DS). This is because SS has zero release jitter and allows

assigning larger budget values to VCPUs than DS. vINT has benefits in both task scheduling

and interrupt handling. DSvINT and SSvINT schedule more task sets than DSbase and

SSbase, respectively. Especially, when the range is [0.6, 1.1] msec, DSvINT schedules 67%

more task sets than DSbase. The benefit is more significant in interrupt handling. While

the schemes without vINT service 0% of interrupt sets in all cases, the schemes with vINT

service more than 99% of interrupt sets until the range reaches [0.8, 1.3] msec.

When vINT is not used, only the interrupts with slightly longer inter-arrival times

can be serviced. Figure 8.4 depicts the results. In this figure, each point k on the x-axis
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Figure 8.5: Results with the change of VCPU period
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Figure 8.6: Results with the change of pseudo-VCPU period

represents the minimum inter-arrival time of each interrupt in the range of [k, k + 5] msec.

As all the schemes schedule 100% of task sets in all cases, we only display the percentage

of serviceable interrupt sets in this figure. When the range reaches [13, 18] msec, DSbase

services less than 1% of interrupt sets. SSbase performs better than DSbase, but services

less than 2% of interrupt sets when the range becomes [11, 16] msec.

VCPU periods: Since the interrupt handling time is largely affected by the VCPU period

when vINT is not used, we compare in Figure 8.5 the percentage of serviceable interrupt

sets as the VCPU period increases. All the schemes could schedule 100% of task sets with

all VCPU period values depicted in this figure. The schemes with vINT also show 100%

of serviceable interrupt sets in all cases. However, without vINT, the percentage drops

significantly when the VCPU period is longer than 3.5 msec.

We have also evaluated the impact of the pseudo-VCPU period. Figure 8.6 shows the

percentage of schedulable task sets as the pseudo-VCPU period increases. Each number

shown on the x-axis of this figure represents the ratio of the pseudo-VCPU period to the

minimum inter-arrival time of interrupts. Hence, a larger value on the x-axis means a

167



 0

 20

 40

 60

 80

 100

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

S
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
%

)

DSbase

SSbase

DSvINT

SSvINT

 0

 20

 40

 60

 80

 100

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

S
e

rv
ic

e
a

b
le

 i
n

te
rr

u
p

t 
s
e

ts
 (

%
)

WCET of physical interrupt service routine (ISR) (msec)

DSbase

SSbase

DSvINT

SSvINT

Figure 8.7: Results with the change of physical ISR length

longer pseudo-VCPU period. As the pseudo-VCPU period increases, task schedulability

under DSvINT decreases. This is because DS has a release jitter equal to T v − Cv. Since

vINT assigns higher priorities to pseudo-VCPUs, the larger jitter values of pseudo-VCPUs

under DS effectively reduce the amount of budget assigned to regular VCPUs. In contrast,

SS shows no performance degradation because it has zero release jitter.

WCET of interrupt handlers: We now evaluate the impact of the length of interrupt

handlers. Figure 8.7 and Figure 8.8 show the results when the WCET of a physical ISR,

and the sum of the WCETs of virtual ISR and DSR change, respectively. As the WCET

increases, both the percentages of schedulable task sets and serviceable interrupt sets

decrease. In case of increasing the WCETs of virtual ISRs and DSRs, the schemes with

vINT show lower performance in task schedulability than the schemes without vINT, but

provide significantly higher performance in interrupt handling. This is mainly due to the

fact that vINT creates pseudo-VCPUs and prioritizes them over regular VCPUs in order to

reduce interrupt handling time.

In summary, vINT achieves timely interrupt handling while providing as good task

schedulability as when it is not used in most cases. The benefit of vINT multiplies if the
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Figure 8.8: Results with the change of virtual ISR and DSR length

inter-arrival time of interrupts is short. Especially, when the minimum inter-arrival time of

interrupts is much shorter than the period of VCPUs, the system with vINT outperforms

the system without vINT in both task scheduling and interrupt servicing.

8.4.3 Case Study: vINT on KVM Hypervisor

We present a case study demonstrating the effects of vINT by using our implementation on

the KVM hypervisor. We chose KVM because it is open-source software and widely used

in real-time virtualization studies [114, 116, 165]. Also, it is useful to observe the overall

performance impact of vINT, which can be applied to commercial real-time hypervisors.

Implementation: We have implemented a prototype version of vINT on the KVM

hypervisor [158] of the latest version of Linux/RK [138, 139].4 The KVM of Linux/RK

allows the host machine to run multiple guest VMs with the deferrable server policy as

the VCPU budget replenishment policy. We use an unmodified Linux kernel v3.10.39 as a

guest OS.

We have applied vINT to the pass-through PCI device management of KVM. Note that

4Linux/RK is available at https://rtml.ece.cmu.edu/redmine/projects/rk.
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Table 8.3: Implementation cost of vINT on the KVM hypervisor

Primitives Avg (µsec) Max (µsec)
Switching btw. pseudo and reg. VCPUs 0.703 1.192
Pseudo-VCPU budget accounting 0.341 1.265
Pseudo-VCPU budget replenishment 0.621 3.045
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Figure 8.9: Cumulative distribution of Netperf UDP round-trip latency

PCI pass-through devices do not involve QEMU in interrupt handling. Hence, once a PCI

device is assigned to a guest VM in pass-through mode, all physical interrupts generated

by the device are handled by the interrupt handler of KVM, and then resulting virtual

interrupts are delivered to the corresponding guest VM, without any intervention from

QEMU.

Table 8.3 lists the implementation costs of vINT. The target system used is equipped

with an Intel Core i7-2600 3.4 GHz quad-core processor and a TP-Link PCI Gigabit NIC

using a RTL8169 controller. To reduce measurement inaccuracies, we have disabled the

simultaneous multithreading and dynamic clock frequency scaling features of the processor.

Case Study: The target system hosts one guest VM, which has four VCPUs: {v1, v2, v3, v4}.

Each VCPU is statically assigned to a PCPU with the same index number, i.e. vi on Core

i. The Gigabit NIC of the target system is assigned to the guest VM in pass-through mode.
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Figure 8.10: Netperf TCP throughput
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Figure 8.11: MPlayer fps under virtual interrupt storms

The physical interrupt of the NIC is statically pinned to Core 1 and the corresponding

virtual interrupt is pinned to the VCPU v1. The QEMU process is assigned the highest

prioriry to prevent unexpected delays from QEMU device emulation, although it is not

involved in the critical path of interrupt handling in pass-through mode. In our case study,

we only focus on v1 on Core 1 and other VCPUs on other cores are kept in idle. When

vINT is not used, the VCPU v1 is assigned 4 msec of budget and 10 msec of replenishment

period (40% VCPU utilization). When vINT is used, both v1 and a pseudo-VCPU created

for NIC interrupts are each assigned 2 msec of budget and 10 msec of replenishment period

(total 40% VCPU utilization).

We use three applications in our case study: Netperf [166], MPlayer [167] and busyloop.

Netperf is a network benchmark consisting of sender and receiver tasks. The Netperf sender

task runs natively on a remote system, which has no other workload and is connected to

the target system with a direct Ethernet connection. The Netperf receiver task runs in

the VCPU v1. When v1 receives a virtual interrupt of the NIC, the ISR of the virtual

interrupt activates the softirq task of the guest Linux kernel, which in turn activates the

Netperf receiver task. Both the softirq and Netperf receiver tasks are assigned the highest
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real-time priority. MPlayer is an open-source movie player. MPlayer runs in v1, with a

real-time priority lower than the Netperf receiver task, and decodes a MPEG2 video stream

with 1920x1080 (1080p) frame size and 29.97 fps. Busyloop is a background task that

continuously consumes CPU time, and runs in v1 with the lowest priority.

We first compare interrupt handling time with and without vINT. For this purpose, we

use the UDP round-trip latency test of Netperf, which is highly affected by the system’s

interrupt handling time. Figure 8.9 shows the cumulative distribution of the Netperf UDP

round-trip latency. “Baseline” and “Baseline_1ms” show the results without vINT, and

“vINT” shows the results with vINT. Baseline and vINT use the aforementioned VCPU

parameters for v1. Baseline_1ms uses 0.4 msec of budget and 1 msec of replenishment

period for v1, which results in the same VCPU utilization as Baseline. As shown in the

figure, Baseline and Baseline_1ms are significantly affected by the executions of lower-

priority tasks within the same VCPU, but vINT is nearly unaffected. Especially, when both

MPlayer and busyloop are running, vINT handles 95% of round-trips in less than 200 µsec,

while Baseline and Baseline_1ms handle only 50% and 2% of round-trips in 200 µsec,

respectively. Interestingly, Baseline_1ms would be expected to outperform Baseline due to

its shorter replenishment period, but the results are the opposite due to the higher overhead

occurred.

Next, we identify the impact of vINT overhead on the throughput of NIC. Figure 8.10

shows the results of the TCP throughput test of Netperf with and without vINT as the

VCPU utilization increases. The VCPU period is 10 msec in all cases. Only the budget

varies from 2 msec to 6 msec. In case of vINT, each point on the x-axis represents the

utilization of the pseudo-VCPU. As can be seen, there is no noticeable difference between

Baseline and vINT in TCP throughput. This implies that the impact of the overhead

induced by vINT is either negligible or acceptably small.

Lastly, we demonstrate the effect of vINT in protecting a real-time task against a virtual

interrupt storm. Figure 8.11 compares the frame rate of MPlayer with and without vINT,

in the presence of a virtual interrupt storm which is generated by the TCP throughput
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test of Netperf. In case of vINT, each point on the x-axis represents the total utilization of

original and pseudo-VCPUs. Hence, the budget of the original VCPU varies from 4 msec

to 8 msec for Baseline, and from 2 msec to 6 msec for vINT (the pseudo-VCPU budget is

unchanged). When vINT is not used, the frame rate of Mplayer is severely degraded by

a virtual interrupt storm, even when 80% of VCPU utilization is assigned. In contrast,

when vINT is used, the frame rate is very close to when there is no interrupt storm. This

result shows that vINT can effectively protect the execution of a real-time task against the

occurrence of a virtual interrupt storm in a virtualized environment.

8.5 Summary

In this chapter, we presented vINT, an interrupt handling scheme to provide responsive

and enforced interrupt handling in a virtualized environment. We introduced our analyses

on interrupt handling time, and the schedulability of VCPUs and tasks with and without

vINT. Experimental results show that vINT yields significant improvements in interrupt

handling performance. For example, a system with vINT services 99% of interrupt sets

while a system without vINT cannot service any interrupt set. Our case study on the KVM

hypervisor, chosen for convenience, also shows the effects of vINT in reducing interrupt

handling time and protecting against interrupt storms. For example, a system with vINT

handles 95% of Ethernet round-trips in 200 µsec, and a system without vINT handles only

50% of round-trips during that time. Under interrupt storms, the frame rate of MPlayer

with vINT is nearly unaffected while the frame rate without vINT is dropped to one-fifth

of the original one.

173



174



Chapter 9

Predictable GPGPU Access Control

In this chapter, we first review the use of a real-time synchronization protocol for tasks

accessing a general-purpose GPU (graphics processing unit) on a multi-core platform, and

characterize the limitations of this approach. Among a variety of real-time synchronization

protocols, we focus on the multiprocessor priority ceiling protocol (MPCP) [12, 13] because

it is designed for partitioned fixed-priority scheduling that we use in our work. Then,

we present our new GPU access control technique, called a server-based approach. Our

proposed server-based approach provides a dedicated GPU server task that receives GPU

access requests from other tasks and handles the requests on behalf of them. Unlike

the synchronization-based approach, the server-based approach allows tasks to suspend

during their GPU executions, yielding significant CPU utilization benefits. The server-

based approach can also reduce the response time of a task using a GPU, compared the

synchronization-based approach. Although we have focused on a GPU in this work, our

approach can be used for other types of computational accelerators, such as DSPs.

We provide the schedulability analysis of tasks under our server-based approach, which

accounts for the overhead of the use of the GPU server task. Experimental results indicate

that, when the overhead is reasonable, the server-based approach significantly outperforms

the synchronization-based approach, with as much as 66% more tasksets being schedulable.

The background and related earlier work on GPGPU management were presented in
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Section 2.5. The system model including assumptions and notation for tasks and GPU

access segments can be found in Chapter 3.

The rest of this chapter is organized as follows. Section 9.1 reviews the use of the

synchronization-based approach for GPU access control. Section 9.2 presents our proposed

server-based approach. Section 9.3 provides detailed evaluation. Section 9.4 summarizes

this chapter.

9.1 Synchronization-based GPU Access Control

The synchronization-based approach models the GPU as a global mutually-exclusive resource

and the GPU access segments of tasks as critical sections. A single mutex is used for

protecting such GPU critical sections. Hence, under the synchronization-based approach, a

task can only enter its GPU access segment when the mutex for the GPU is not held by

any other task. If the mutex is already held by another task, the task is inserted into the

waiting list of the mutex and waits until the mutex can be held by that task.

Since our focus is on the multiprocessor priority ceiling protocol (MPCP), we shall

briefly review the definition of MPCP below. More details on MPCP can be found in

[12, 13, 74].

1. When a task τi requests an access to a global resource Rk, the resource Rk can be

granted to the task τi, if it is not held by another task.

2. While a task τi is holding a resource for its global critical section (gcs), the priority

of τi is raised to πB + πi, where πB is a base task-priority level greater than that of

any task in the system, and πi is the normal priority of τi. This priority boosting is

referred to as the global priority ceiling of the gcs of τi.

3. When a task τi requests access to a resource Rk, the resource Rk cannot be granted

to τi, if it is already held by another task. In this case, the task τi is inserted to the

waiting list of the mutex for Rk.
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Figure 9.1: Task execution pattern under the synchronization-based approach

4. When a global resource Rk is released and the waiting list of the mutex for Rk is not

empty, the highest-priority task in the waiting list is dequeued from the list and is

granted the resource Rk.

9.1.1 Limitations of Synchronization-based Approach

As discussed in Section 2.5.1, each GPU access segment contains various operations,

including data copies, notifications, and the actual GPU code execution. Specifically, a task

may suspend during the GPU code execution to save CPU utilization. However, under the

synchronization-based approach, any task in its GPU access segment should busy-wait for

any operation conducted on the GPU in order to ensure predictability. This is because each

GPU access segment is modeled as a critical section, and real-time synchronization protocols

including MPCP commonly assume that (i) a critical section is executed entirely on the

CPU, and (ii) there is no suspension during the execution of the critical section. Figure 9.1

shows the execution pattern of a GPU-using task under the synchronization-based approach.

The entire GPU access segment is protected by a mutex. Hence, the task should hold

the mutex to enter its GPU access segment. The task releases the mutex when it leaves

the GPU access segment. While the GPU code execution happens on the GPU, the task

consumes CPU time because of the busy-waiting requirement of the synchronization-based

approach. As the GPU execution time increases, the CPU utilization loss under the
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Figure 9.2: Example of the synchronization-based approach

synchronization-based approach is therefore expected to increase.

There is another issue with the synchronization-based approach. That is, the priority

boosting mechanism of the synchronization-based approach introduces priority inversion

that is unnecessarily long for tasks accessing a GPU. We describe this issue with the example

illustrated in Figure 9.2. In this figure, there are three tasks, τh, τm, and τl, allocated to

two CPU cores, Cores 1 and 2. Task τh is a high-priority task, τm is a medium-priority

task, and τl is a low-priority task. Each task has one GPU access segment that is executed

after a normal execution segment of one time unit. Each of τh and τm has a GPU access

segment of three time units, τl has a GPU access segment of four time units. The GPU

access segment of each task is followed by another normal execution segment of one time

unit. In this figure, τl is released at time 0 and makes a GPU request at time 1. Since

there is no other task using the GPU at that point, τl can hold the mutex for the GPU and

enter its GPU access segment. Then, τl executes with the global priority ceiling associated

with the mutex. Tasks τm and τh are released at time 2 and 3, respectively. They make

GPU requests at time 3 and 4, but the GPU cannot be granted to any of them because
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it is already held by τl. At time 5, τl releases the GPU and τh holds the GPU because it

has higher priority than τm. At time 8, τh finishes its GPU access segment and releases

the GPU. Then, the task τm holds the GPU and enters its GPU access segment with the

global priority ceiling. This makes τm to preempt the normal execution segment of τh.

Hence, although the majority of τm’s GPU access segment merely performs busy-waiting,

the execution of the normal segment of τh is delayed until the GPU access segment of τm

finishes. Finally, τh completes its normal execution segment at time 12 and the response

time of τh is 9 in this example. In the next section, we will present our new approach to

address these issues.

9.1.2 Schedulability Analysis

We review the task schedulability analysis under the synchronization-based approach with

MPCP. The analysis described here is originally developed by Lakshmanan et al.[85], and

combined with a correction given by Bletsas et al.[163] and Huang et al. [168].

The worst-case response time of a task τi under the synchronization-based approach

with MPCP is given by the following recurrence equation:

Wn+1
i =Ci +Gi +Br

i +
∑

τh∈P(τi)∧πh>πi

⌈
Wn
i +{Wh−(Ch +Gh)}

Th

⌉
(Ch +Gh)

+ (ηi + 1)

( ∑
τl∈P(τi)∧πl<πi∧ηl>0

max
1≤u≤ηl

Gl,u

) (9.1)

where Br
i is the remote blocking time for τi, P(τi) is the CPU core where τi is allocated, πi

is the priority of τi. It terminates when Wn+1
i = Wn

i , and the task τi is schedulable if its

response time does not exceed its deadline: Wn
i ≤ Di. Since the task τi should busy-wait

during its GPU access, the entire GPU access segment, Gi, is captured as the CPU usage

of τi, along with its WCET Ci.

The remote blocking time Br
i is given by Br

i =
∑

1≤j≤ηi B
r
i,j , where B

r
i,j is the remote

blocking time for the j-th GPU access segment of τi to acquire the GPU. The term Br
i,j is
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Figure 9.3: Overview of the server-based approach

bounded by the following recurrence:

Br,n+1
i,j = max

πl<πi∧1≤u≤ηl
W gpu
l,u +

∑
πh>πi∧1≤u≤ηh

(⌈
Br,n
i,j

Th

⌉
+ 1

)
W gpu
h,u (9.2)

where Br,0
i,j = maxπl<πi∧1≤u≤ηlW

gpu
l,u (the first term of the equation), and W gpu

l,u represents

the worst-case response time of a GPU access segment Gl,u. The first term of Eq. (9.2)

captures the time for a lower-priority task to finish its GPU access segment. The second

term represents the time for the GPU access segments of higher-priority tasks.

The worst-case response time of a GPU access segment Gl,u, namely W gpu
l,u , is given by:

W gpu
l,u = Gl,u +

∑
τx∈P(τl)

max
1≤y≤ηx∧πx>πl

Gx,y (9.3)

This equation captures the length of Gl,u and the lengths of GPU access segments of

higher-priority tasks on the same core. It considers only one GPU access segment from

each task, because every GPU access segment is associated with a global priority ceiling

and Gl,u will never be preempted by normal execution segments.
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9.2 Server-based GPU Access Control

In this section, we present our server-based approach for predictable GPU access control.

This approach addresses the two main limitations of the synchronization-based approach:

busy waiting and long priority inversion. To do so, our approach creates a GPU server task

that handles GPU access requests from other tasks on behalf of them. The GPU server is

assigned the highest priority in the system, which is to prevent preemptions by other tasks.

Figure 9.3 shows the sequence of GPU request handling under our approach. First, when a

task τi enters its GPU access segment, it makes a GPU access request to the GPU server,

not to the GPU device driver. The request is sent to the server by sending the memory

region information for the GPU access segment, including in/output data, commands and

code for GPU execution. This requires the memory regions to be configured as shared

memory regions so that the GPU server can access them with their identifiers, e.g., shmid.

After sending the request to the GPU server, the task τi can suspend, allowing other tasks

to execute. Second, the GPU server enqueues the received request into the GPU request

queue, if the GPU is being used by another request. The GPU request queue is a priority

queue, where elements are ordered in their task priorities. Third, once the GPU becomes

free, the GPU server dequeues a request from the head of the queue and executes the GPU

access segment corresponding to that request. Finally, when the request finishes, the GPU

server notifies the completion of the request to the task τi. Then, τi resumes its execution.

Figure 9.4 shows an example of task scheduling under our server-based approach. This

example has the same configuration as the one in Figure 9.2. Hence, τh and τm are allocated

to Core 1, and τl is allocated to Core 3. The GPU server, which the server-based approach

creates, is allocated to Core 1. At time 1, the task τl makes a GPU access request to the

GPU server. Then, the GPU server receives the request and executes the corresponding

GPU access segment at time 1 + ε, where the term ε is the amount of the overhead that the

GPU server introduces. Since the server-based approach does not require tasks to busy-wait,

τl can suspend until the completion of its GPU request. The GPU request of τm at time
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3 is enqueued into the request queue of the GPU server. Since the GPU server executes

with the highest priority in the system, it delays the execution of τh released at time 3 by ε.

Hence, τh starts execution at time 3 + ε and makes a GPU request at time 4 + ε. When the

GPU access segment of τl finishes, it is notified to the GPU server. Then, the GPU server

notifies the completion of the GPU request to τl, and executes the GPU access segment of

τh at time 5 + 2ε. The task τh suspends until its GPU request finishes. The GPU access

segment of τh finishes at time 8 + 2ε and that of τm starts at time 8 + 3ε. Unlike the case

under the synchronization-based approach, τh can continue to execute its normal execution

segment from time 8 + 3ε, because τm suspends and the priority of τm is not boosted. The

task τh finishes its normal execution segment at time 9 + 3ε and the response time of τh is

6 + 3ε. Recall that the response time of τh is 9 under the synchronization-based approach,

as shown in Figure 9.2. Therefore, this example shows that, if ε < 1, the server-based

approach can provide shorter response time than the synchronization-based approach.
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9.2.1 Schedulability Analysis

We analyze task schedulability under our server-based approach. Since the GPU server

handles the GPU requests of tasks on their behalf, we first identify the GPU request

handling time of the GPU server. The maximum handling time of τi’s GPU request is

given by:

Bgpu
i =

 Bw
i + (Gi + 2ε) : ηi > 0

0 : ηi = 0
(9.4)

where Bw
i is the maximum time the τi’s GPU request has to wait, Gi is the length of τi’s

GPU request, ε is the overhead of the GPU server, and ηi is the number of GPU access

segments of τi. Obviously, in case of ηi = 0, Bgpu
i is zero. In case of ηi > 0, the reason for

adding 2ε to Gi is that the GPU server intervenes before and after the execution of τi’s

GPU request.

The maximum waiting time of τi’s GPU request, Bw
i , is bounded by the following

recurrence equation:

Bw,n+1
i = max

τj∈Γ∧τj 6=τi
(Gl + ε) +

∑
τh∈Γ∧πh>πi

⌈
Bw,n
i

Th

⌉
(Gh + ε) (9.5)

where Bw,0
i = maxτj∈Γ∧τj 6=τi(Gl + ε) (the first term of the equation), Γ is the set of all

tasks in the system, πh is the priority of a task τh. The first term of this equation captures

the longest GPU access segment among all other tasks, because GPU execution happens in

a non-preemptive manner. Here, we add only one ε to Gl, because other GPU requests will

be followed and the the GPU server needs to be invoked only once between two consecutive

GPU requests, as depicted in Figure 9.4. The second term captures the fact that the GPU

server prioritizes requests from higher-priority tasks.

The response time of a task τi is affected by the presence of the GPU server on τi’s core.

If τi is allocated to a core different from the GPU server, the worst-case response time of τi
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under the server-based approach is given as follows:

Wn+1
i =Ci +Bgpu

i +
∑

τh∈P(τi)∧πh>πi

⌈
Wn
i +(Wh−Ch)

Th

⌉
Ch (9.6)

where P is the CPU core where τi is allocated. It terminates when Wn+1
i = Wn

i , and τi

is schedulable if its response time does not exceed its deadline: Wn
i ≤ Di. Unlike the

response-time analysis given in Eq. (9.1), the GPU access segment of each task is not

accounted for in this equation. This is because GPU access segments are executed by the

GPU server under the server-based approach.

If τi is allocated to the same core as the GPU server, the worst-case response time of τi

under the server-based approach is given as follows:

Wn+1
i =Ci +Bgpu

i +
∑

τh∈P(τi)∧πh>πi

⌈
Wn
i +(Wh−Ch)

Th

⌉
Ch

+
∑

τj∈Γ∧ηj>0

⌈
Wn
i + {Dj−(Xm

j + 2ε)}
Tj

⌉
(Xm

j + 2ε)

(9.7)

where Xm
j is the sum of the WCETs of miscellaneous operations in τi’s GPU access segments,

i.e., Xm
j =

∑ηj
k=1X

m
j,k. The main difference of this equation from Eq. (9.6) is the last

term in this equation. The last term captures the execution time of the GPU server task.

We capture this by summing up the miscellaneous operations and the server overhead

(Xm
j + 2ε) caused by GPU requests from all other tasks. In this way, we can upper-bound

task response time in the presence of the GPU server.

9.3 Evaluation

This section provides our experimental evaluation of two different approaches for GPU

access control: the synchronization-based and server-based approaches. Our focus here

is to explore the impact of those approaches on task schedulability. To do this, we use

randomly-generated tasksets and capture the percentage of schedulable tasksets as the
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Table 9.1: Base parameters for taskset generation

Parameters Values
Number of CPU cores (NP ) 4, 8
Number of tasks per core 4
Ratio of GPU-using tasks 20%
Task period (Ti) [100, 500] msec
Taskset utilization per core 50%
Number of GPU access segment per task (ηi) 1
Length of GPU access segment (Gi) [5, 10] msec
WCET of misc. operations in GPU access segment (Xm

i ) [0.5, 2] msec
GPU server overhead (ε) 100 µsec

metric.

9.3.1 Experimental Setup

We generate 10,000 tasksets with the parameters given in Table 9.1 for each experimental

setting. We consider two different system configurations: systems with four cores (NP = 4)

and eight cores (NP = 8). For each taskset, we first generate the defined number of CPU

cores in the system and tasks for each core. Task periods are randomly selected within

the defined minimum and maximum task period range. Task deadlines are set equal to

their periods. On each core, the taskset utilization is split into k random-sized pieces,

where k is the number of tasks per core. The size of each piece represents the utilization

of the corresponding task. Then, the WCET of each task is calculated by dividing its

utilization by its period. Task priorities are assigned by the Rate-Monotonic policy [127],

with arbitrary tie-breaking. A subset of the generated tasks is randomly chosen according

to the defined ratio of GPU-using tasks, and each task in that subset is assigned a GPU

access segment. Under the server-based approach, the GPU server is randomly allocated to

one of the cores in the system.

9.3.2 Results

Figure 9.5 shows the percentage of schedulable tasksets as the length of the GPU access

segment increases. In general, the percentage of schedulable tasksets is higher when NP = 4,

compared to when NP = 8. This is because the GPU is contended for by more tasks as
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Figure 9.5: Percentage of schedulable tasksets as the length of GPU access segment increases

the number of cores increases. In both NP = 4 and NP = 8, the server-based approach

performs much better than the synchronization-based approach. Especially, when the GPU

access segment is 12 msec and NP = 8, the difference in the percentage of schedulable

tasksets between the two approaches is about 50%. This big difference is mainly due to

the fact that the server-based approach allows a task to suspend while its GPU segment is

being executed on the GPU.

Figure 9.6 shows the percentage of schedulable tasksets as the ratio of GPU-using

tasks increases. The left-most point on the x-axis of each graph represents that all tasks

are CPU-only tasks, and the right-most point represents that all tasks access the GPU.

Under both approaches, the percentage of schedulable tasksets reduces as the ratio of

GPU-using tasks increases. However, there are many cases where the server-based approach

significantly outperforms the synchronization-based approach, with as much as 66% more

tasksets being schedulable when the ratio is 50% and NP = 4.
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Figure 9.6: Percentage of schedulable tasksets as the ratio of GPU-using tasks increases

The benefit of the server-based approach is adversely affected by the amount of mis-

cellaneous operations in GPU access segments, because such operations require the GPU

server to consume CPU time. Figure 9.7 shows the percentage of schedulable tasksets

as the WCET of miscellaneous operations in GPU access segments increases. Since the

synchronization-based approach makes tasks to busy-wait during their entire GPU access

segments, its performance is not affected by the WCET of miscellaneous operations. How-

ever, as expected, the performance of the server-based approach reduces as the WCET of

miscellaneous GPU operations increases.

The performance of the server-based approach is also affected by the amount of the

overhead ε that the GPU server introduces. Although ε of 100 µsec we have used in prior

experiments is sufficient enough to upper-bound the GPU server overhead in practical

systems, we further investigate with larger ε values. Figure 9.8 shows the percentage of

schedulable tasksets as the GPU server overhead increases. Since such overhead only exists
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Figure 9.7: Percentage of schedulable tasksets as the ratio of GPU-using tasks increases

under the server-based approach, the performance of the synchronization-based approach is

unaffected by this factor. On the other hand, the performance of the server-based approach

reduces as the amount of the overhead increases.

In summary, the server-based approach outperforms the synchronization-based approach

in many cases. Especially, the benefit of the server-based approach can be significant when

the length of GPU access segments is long or the ratio of GPU-using tasks is high. However,

we find that the server-based approach does not dominate the synchronization-based

approach. The use of the synchronization-based approach may be a better choice than that

of the server-based approach, when miscellaneous operations, e.g., data copy between GPU

and CPU, take the majority time of the GPU access segment.
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Figure 9.8: Percentage of schedulable tasksets as the overhead of the GPU server (ε) increases

9.4 Summary

In this chapter, we presented our server-based approach to control GPU access requests

from tasks in a predictable manner. Our approach is motivated by the limitations of

the synchronization-based approach, namely busy-waiting and long priority inversion. By

introducing a dedicated server task for GPU request handling, our approach addresses

those limitations, while ensuring the analyzability and predictability of the system. We

also described our analysis on task schedulability under the server-based approach. Ex-

perimental results show that the server-based approach yields significant improvements in

task schedulability over the synchronization-based approach. For example, the system with

the server-based approach schedules 66% more randomly-generated tasksets than the one

with the synchronization-based approach. Future work involves extending the GPU access

control approaches to a virtualized environment.

189



190



Chapter 10

Guidelines for Future Computer

Architecture Designs

The analytical and systems techniques proposed in this dissertation provide predictable

real-time performance on commodity multi-core platforms. We believe that, however, our

techniques can benefit from new computer architecture support. In this chapter, we discuss

hardware features that are as yet unavailable on most of today’s platforms but can help the

development of predictable and efficient systems. Our discussions may serve as guidelines to

design future computer architectures for cyber-physical systems. In the following sections,

we describe architecture support desired for each type of shared resource.

10.1 Architecture Support for Concurrent Resources

In Chapters 4, 5, and 6, we proposed analytical and systems techniques to address cache

and memory interference issues. In this section, we describe hardware features that can be

used with our techniques to improve the degree of efficiency and predictability.

• Fine-grained Hardware Cache Partitioning: Our work uses a software-based

cache partitioning technique to manage a last-level cache in software. As discussed in

Section 2.1.2, software cache partitioning has two main problems: (i) the memory
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co-partitioning problem, which results in page swapping or waste of memory, and

(ii) the availability of a limited number of cache partitions, which causes degraded

performance. Our techniques proposed in Chapter 4 can significantly mitigate these

problems, but cannot eliminate them. We believe that a fine-grained hardware

cache partitioning feature, such as the one proposed in [169], can further reduce the

negative impact of those problems. If cache allocation to a task becomes independent

of physical page allocation to the task, the memory co-partitioning problem will

disappear, and the problem of finding a feasible cache allocation will be reduced to

finding a cache allocation for guaranteeing timing constraints. Also, if more number of

cache partitions are provided in the system, the problem of limited cache partitions will

be easily resolved. Our analysis techniques and cache allocation algorithm proposed

in Chapter 4 can be used together with future hardware cache partitioning features,

since our techniques are independent of a specific cache partitioning technique used

in the system.

• Software-controllable Miss Status Holding Registers: Recent work in [170]

reported that the contention on Miss Status Holding Registers (MSHR), which are

employed in many of today’s shared caches to support memory-level parallelism,

may cause significant performance interference among tasks, even when tasks are

assigned private cache partitions. The authors of that work also proposed an MSHR

partitioning technique as a solution to this problem. We are a proponent of such a

technique because it can be used along with cache partitioning techniques to improve

the performance isolation capability of the system.

• Task-aware Memory Scheduling: Our work in Chapter 5 analyzes memory inter-

ference delay on a COTS DRAM system, where a memory controller handles memory

requests without considering the priority of tasks that have generated those requests.

In the computer architecture community, thread prioritization approaches [77, 81]

have been proposed to achieve high memory throughput and fairness. The key idea
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of those approaches is to make the memory controller be aware of threads so that

the memory controller can prioritize memory requests based on the priorities of their

origin threads. This idea can be used to improve the predictability and schedulability

of the system. For instance, if the memory controller makes use of task priorities

on memory request scheduling, memory requests from higher-priority tasks can be

prioritized, thereby reducing their response times. Also, the idea of thread clustering

in the memory controller [81] can be used to protect the performance of critical tasks

in a safety-critical system.

• Slowdown Estimation Techniques: Recent work in the computer architecture

community on the design of memory controllers and memory systems has proposed

techniques for dynamically estimating application slowdowns [46, 75, 76, 77]. Although

these techniques are not designed to find worst-case bounds, they can provide various

metrics to understand the performance characteristics of application tasks running on

the target hardware. Having such knowledge would help develop measurement-based

WCET analysis tools for modern multi-core platforms.

10.2 Architecture Support for Mutually-Exclusive Resources

In Chapters 7 and 8, we proposed analytical and systems techniques to address challenges

on accessing mutually-exclusive resources. In this section, we describe hardware features

that can be utilized with our techniques to improve system performance while preserving

predictability.

• Critical Section Acceleration: Our work in Chapter 7 provides a synchronization

mechanism to provide predictable access to mutually-exclusive resources. Although

our proposed technique bounds and minimizes blocking time on accessing such

resources, the blocking time can be further reduced with architecture support. In the

computer architecture community, there has been recent work on accelerating the

execution of critical sections with high-performance cores in an asymmetric multi-core
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processor [171, 172]. These approaches migrate a critical section to a dedicated

high-performance core that executes the critical section faster than the other cores.

Hence, they can reduce the blocking time imposed on other tasks waiting for the

corresponding resource. The effect of the critical section acceleration can be easily

incorporated into our analysis for synchronization.

• Interrupt Throttling and Enforcement: To protect the execution of tasks from

interrupt storms, our work in Chapter 8 uses a software-based interrupt enforcement

mechanism which incurs a small but measurable overhead. The interrupt throttling

and enforcement mechanism can be implemented in hardware, and in fact, some

of today’s I/O devices employ these mechanisms, e.g., Intel Gigabit Ethernet con-

trollers [173]. However, there exist many I/O devices that do not support such a

mechanism. If the interrupt throttling and enforcement mechanism is implemented as

part of the interrupt controller of the processor, instead of in individual I/O devices,

all I/O devices equipped in the system can benefit from it. Also, the system can use

a common approach to control the rates of interrupts coming from different types of

I/O devices, simplifying the design of systems software.

10.3 Architecture Support for Computational Accelerators

In Chapter 9, we proposed analytical and systems techniques to provide predictable

access to a general-purpose GPU, which is a computational accelerator recently receiving

much attention. In this section, we describe hardware features desirable for future GPU

architectures with respect to predictability.

• GPU Partitioning: Although a GPU is viewed as a single accelerator device by

application tasks, it consists of many GPU cores that execute a given parallel workload

in an aggregate manner. Hence, depending on the characteristics of workloads, only

some of the GPU cores may be utilized. To address this GPU underutilization

problem, some of recent GPU architectures, e.g., NVIDIA Kepler, introduce a feature
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to execute multiple GPU functions concurrently. However, this feature is limited only

to GPU functions from threads sharing the same process context. More importantly,

this feature may cause performance interference among concurrent GPU executions,

which can hamper real-time predictability. Therefore, we believe that the partitioning

of GPU cores is a desirable feature to improve GPU utilization while preserving

predictability. For example, with GPU partitioning, each application task can specify

its required number of GPU cores and the requested number of GPU cores can be

granted to the task by the admission control mechanism of a GPU device driver.

Then, multiple tasks can execute GPU functions concurrently by using their assigned

GPU cores. GPU partitioning would open interesting research directions that could

build upon our work.

• GPU Context Switching: Today’s GPU architectures do not support preemptive

execution due to the high overhead expected on GPU context switching. However,

recent work [118] reports that the overhead of GPU context switching is not as high as

expected and the GPU preemption mechanism improves the throughput and fairness

of the system, even in the presence of the GPU context switching overhead. The use

of the GPU preemption mechanism can eliminate priority inversion issues caused by

the non-preemptivity of today’s GPUs. Therefore, we expect that it can significantly

improve the schedulability of tasks using GPUs.

10.4 Summary

In this chapter, we discussed future architecture support that could be utilized with

our proposed techniques in the design of cyber-physical systems. The addition of the

discussed hardware features can improve the degree of the predictability and efficiency

of cyber-physical systems significantly. These hardware features are also beneficial to a

wide range of general-purpose systems, such as smartphones, video game consoles, web

servers and cloud services, where fairness, responsiveness, and quality-of-service are the key
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performance requirements. Therefore, we strongly encourage hardware manufacturers to

adopt these architecture techniques in their future products so that both cyber-physical

and general-purpose systems can enjoy the benefit of them.
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Chapter 11

Conclusions

In this dissertation, we have presented novel analytical and systems techniques to address

the predictability issues associated with shared resources in multi-core platforms. Our work

categorizes the shared resources into three types: (i) concurrent resources (Chapters 4,

5, and 6), which allow concurrent access from multiple tasks executing on different cores,

e.g., a last-level cache, a memory controller, and DRAM, (ii) mutually-exclusive resources

(Chapters 7 and 8), which require no more than one task to access them at a time to prevent

race conditions, e.g., sensors, actuators, network interfaces, and shared data regions, and

(iii) computational accelerators (Chapter 9), which supplement the computational capacity,

e.g., general-purpose graphics processing units (GPGPUs). Our proposed techniques in this

work provide predictable real-time performance on accessing these three types of shared

resources in modern multi-core platforms and guarantee the predictability of the entire

system in an efficient way.

11.1 Contributions of Our Work

The work in this dissertation addresses the challenges faced by cache interference, memory

interference, synchronization, interrupt handling, and GPGPU access control issues. While

each chapter in this dissertation has dealt with a different issue, our analysis presented in
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each chapter can be easily combined with those in other chapters in an additive manner,

e.g., combined cache and memory interference analysis given in Section 5.1.5. The following

summarizes our contributions.

• Coordinated Approach for Predictable Cache Management: Chapter 4

presents our coordinated OS-level cache management scheme to address cache inter-

ference. Our scheme provides predictable cache performance through tight coordi-

nation of cache reservation, reserved cache sharing, and cache-aware task allocation.

Our scheme mitigates the two major challenges of page coloring: the memory co-

partitioning problem and the availability of limited number of cache partitions. We

provide a condition that checks the feasibility of cache sharing while guaranteeing the

allocation of the required memory space to tasks. We also provide a response-time

based schedulability analysis in the presence of cache interference. We have imple-

mented and evaluated our scheme in Linux/RK running on an Intel Core i7 quad-core

processor. Experimental results with our implementation indicate that, compared

to the traditional approaches, our scheme yields a significant utilization benefit that

increases with the number of tasks.

• Bounding and Reducing Memory Interference: Chapter 5 describes our pro-

posed techniques to bound and reduce memory interference on a multi-core platform

with DRAM-based main memory. Our analysis is based on a realistic memory model,

which considers the Joint Electron Device Engineering Council (JEDEC) DDR3

SDRAM standard, the FR-FCFS policy of the memory controller, and shared/private

DRAM banks. To provide a tighter upper-bound on the memory interference delay,

our analysis uses the combination of the request-driven and job-driven approaches. We

find that memory interference can be significantly reduced by (i) partitioning DRAM

banks, and (ii) co-locating memory-access-intensive tasks on the same processing core.

Based on these observations, we develop a memory interference-aware task allocation

algorithm. Experimental results from a real hardware platform show that our analysis
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can closely estimate the memory interference delay under workloads with both high

and low memory contention. Also, our memory interference-aware task allocation

algorithm provides a significant improvement in task schedulability over previous

work, with as much as 96% more tasksets being schedulable.

• Predictable Cache Management for Virtualization: Chapter 6 focuses on pre-

dictable cache management in a virtualized environment. We develop two hypervisor-

level techniques, vLLC and vColoring, that enable the cache allocation of individual

tasks running in a virtual machine (VM), which is not achievable by prior work. We

have implemented vLLC and vColoring on the KVM hypervisor running on x86 and

ARM platforms. Experimental results with three different guest OSs show that both

vLLC and vColoring can effectively control the cache allocation of tasks in a VM.

vColoring can also be used for DRAM bank partitioning in a virtualized environment.

In addition, we develop a cache management scheme that determines cache alloca-

tion to tasks, designs VMs in a cache-aware manner, and minimizes the aggregated

utilization of VMs to be consolidated. Experimental results with randomly-generated

tasksets show that our scheme yields a significant utilization benefit compared to

other approaches.

• Synchronization for Multi-Core Virtual Machines: Chapter 7 presents vM-

PCP, a synchronization framework to provide bounded blocking time on accessing

mutually-exclusive resources in a virtualized environment. vMPCP extends the well-

known multiprocessor priority ceiling protocol to the multi-core two-level hierarchical

scheduling context. vMPCP reduces the major timing penalties caused by resources

shared among tasks on virtual CPUs allocated to different physical cores, by exposing

the executions of global critical sections to the hypervisor. We have presented the

schedulability analysis under vMPCP, with the periodic and deferrable server policies

with and without the budget overrun mechanism. Experimental results indicate that,

under vMPCP, deferrable server outperforms periodic server when overrun is used,
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with as much as 80% more tasksets being schedulable. We also have implemented

vMPCP on the KVM hypervisor and demonstrated the effect of vMPCP in reducing

task response times by an average of 29% in our case study.

• Responsive and Enforced Interrupt Handling: Chapter 8 presents vINT, an

interrupt handling scheme to provide responsive and enforced interrupt handling in a

virtualized environment. vINT provides a pseudo-VCPU abstraction dedicated for

interrupt handling, which overcomes the limits imposed by the timing parameters of

virtual CPUs in an analyzable way. vINT also accounts for and enforces interrupt

handling and resulting execution flows within a guest VM. We have presented our

analyses on interrupt handling time, and the schedulability of VCPUs and tasks with

and without vINT. Experimental results show that vINT yields significant improve-

ments in interrupt handling performance while providing as good task schedulability

as when it is not used. For example, a system with vINT services 99% of interrupt

sets while a system without vINT cannot service any interrupt set. Our case study

based on a prototype implementation on the KVM hypervisor also shows that vINT

yields significant benefits in reducing interrupt handling time and in protecting tasks

against interrupt storms permeating into the VM.

• Predictable GPGPUAccess Control: In Chapter 9, we first review a synchronization-

based GPU access control approach that uses a real-time synchronization proto-

col for tasks accessing a GPU. We characterize the two major limitations of the

synchronization-based approach: busy-waiting and long priority inversion. Then, we

present our proposed server-based approach to control GPU access requests from tasks

in a predictable manner. Our approach introduces a dedicated server task that handles

GPU requests from other tasks with respect to their priority order. Our approach

addresses the limitations of the synchronization-based approach. Although we focus

on a GPU in this work, our approach can be used for other types of computational

accelerators, such as DSPs. Experimental results show that our server-based approach
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yields significant improvements in task schedulability over the synchronization-based

approach. For example, a quad-core system with the server-based approach schedules

66% more randomly-generated tasksets than the one with the synchronization-based

approach.

11.2 Future Research Directions

Cyber-physical systems (CPS) are expected to become more pervasive in various safety-

critical application domains in near future. We believe that the work in this dissertation

can be effectively used for designing predictable CPS. There still exists plenty of future

work in this area. We describe some of future research topics in the following.

• Handling Variations in CPS Workloads: To provide predictable real-time per-

formance without sacrificing efficiency, program execution times should be bounded

with acceptable margins. However, it is hard to find such bounds on programs that

vary their execution times, e.g., the size and arrival rate of input determined by

physical environmental factors. A potential direction to address this issue would be

developing an analytical model of program execution times as a function of features.

The features may be extracted from possible inputs and system conditions. Then, one

can develop a systems framework that leverages the analytical model. For example,

the system may control the CPU usage by limiting input arrival rate, while preserving

predictability. The system may also offload some workloads to other computing re-

sources before execution by checking their inputs. We believe that this idea of taking

physical environmental factors into performance analysis and control is essential for

the development of scalable and resilient CPS.

• Large-scale CPS with Distributed, Non-Uniform Multi-Core Platforms:

Large-scale CPS will likely be implemented by a coordination of distributed, non-

uniform multi-core platforms. Each platform may be equipped with a different set

of I/O devices like sensors, which may need to be accessible by other platforms. Of

201



course, there already exist some approaches for sharing I/O devices in a distributed

environment, e.g., IP cameras and network speakers. However, they are specific

to one I/O device type and require modifications to application software so that

existing applications cannot use remote devices directly. For the ease development

and integration of large-scale safety-critical CPS, we believe that OS support for

seamless resource sharing is strongly required. Distributed real-time synchronization

protocols should also be revisited and enhanced for the predictability of the entire

system. In addition, each platform may be equipped with heterogeneous multi-core

processors, such as various types of CPU cores and GPUs. Providing predictable

performance on such processors is a challenging issue.

• Cloudlet Computing for CPS: The use of cloud computing in CPS has recently

gained considerable interest due to its many benefits, e.g., rapid provisioning and

flexibility in software deployment. However, cloud computing may not be appropriate

for mobile CPS like autonomous vehicles. Although some recent cars are equipped

with cellular data communication capabilities, network connectivity, bandwidth and

latency may not be sufficient for timing-sensitive applications. Hence, we believe

that an in-vehicle cloudlet, which operates as a small-scale cloud system for CPS

applications, will play an important role. Unlike regular cloudlets, the in-vehicle

cloudlet should be able to provide quantifiable and predictable performance. A

solution to this issue can be built upon our contributions for multi-core virtualization,

described in Chapters 6, 7, and 8.
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