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Abstract 

This dissertation presents analyses of subsurface motions of soil beneath different 
traction devices and develops new explanations of traction processes of wheels operating 
in loose granular soil based on these observations. This dissertation shows how these 
findings are useful for the development of planetary rover mobility systems. 
 
Shear Interface Imaging Analysis (SIIA), is a new technique, developed as part of this 
thesis research. SIIA is employed for visualizing the effects of wheel operation on the 
soil beneath a rim, in richer detail than before possible. SIIA relies on high-speed 
imaging of sub-surface soil and on computer vision software to produce soil displacement 
fields, of high fidelity. The resulting data provides new insight and can reveal 
misconceptions about how wheels generate traction. 
 
Two comprehensive studies relying on SIIA are undertaken: the investigation of wheel 
grouser mechanics and the investigation of push-roll locomotion. Soil forward motion, at 
a wheel leading edge, is identified as a key behavior for the grousered wheels. As a 
result, an equation for grouser height/spacing relationship to achieve a higher 
performance grouser configuration is developed and validated. This expression relates 
grouser configuration to wheel parameters (wheel radius) and operational parameters 
(sinkage and slip). 
 
The soil mechanics behind Push-roll locomotion for high net traction and soft ground 
applications are presented. SIIA reveals that high thrust generated by push-roll 
locomotion is due to ground failure of the soil. Confirmation of the type of soil failure 
and of the application of operation in soft ground (where most vehicles would be 
embedded), brings forward the mobility gains of this non-typical locomotion mode and as 
a possible use for future planetary missions. 
 
Additionally, insight into fundamental traction processes such as thrust, sinkage and 
motion resistance, are discussed with experimental evidence from soil displacement 
fields. This research proves that accounting for soil motion is of the utmost importance 
for the understanding of traction in loose, granular soils. 
 
As a result of the specific technique utilized for directly studying soil motion, this 
research enables improved analysis and new design relevant to planetary rover mobility.  
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1 Introduction 

1.1 Introduction and Motivation 
Limitations on mobility imposed by the terrain of planetary surfaces indicate a need for 

improved traction devices, such as wheels, for robotic vehicles. Specific scientific targets 

and larger areas of interest occur in terrain that is beyond the capability of state-of-art 

mobility platforms (Figure 1). This results in the loss of scientific data and potential 

scientific discovery. Particularly challenging are flat ground of low-strength materials 

and slopes of loose soil. Excessive sinkage can lead to entrapment on level ground and 

slip on slopes or any incline poses multiple potential failure modes. Either has the 

potential to end a mission (Figure 2). These obstacles block traverse or are avoided due to 

risk, leaving scientifically interesting locations inaccessible. This motivates the 

development of mobility systems with traction capabilities well beyond those currently 

available. 

 

Figure 1: Example of scientific target, of interest, that is outside the mobility capability of currently available systems. 
Steep slopes, of loose material, prevent rovers from reaching destinations, such as an outcropping on a slope during the 
NASA Mars Exploration Rover missions shown in the figure. Image credit [1]. 

In addition to needing direct capability to overcome obstacles, and a high margin of 

safety against vehicle entrapment on low-strength ground, operation of a vehicle remains 
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a challenging task. Vehicle capability, safety and operation all require an understanding 

of how the system interacts with terrain and more specifically, a detailed knowledge of 

the wheel-soil mechanics governing traction. The processes involved in traction related to 

vehicles in loose, granular soils, such as planetary rovers, are not well understood. Both 

empirical data and existing models have yet to describe the soil processes under a wheel 

in detail. 

 

Figure 2: Mars Exploration Rover (MER), “Spirit” entrapped, in weak soil, as a result of excessive slip and sinkage. 
This image is an example of a scenario that systems might encounter on the Moon or on Mars. The top image is visual 
representation of MER Spirit rover stuck in weak soil on Mars. Bottom image is Earth testing of MER rover testbed in 
stuck scenario. Image credit [2]. 

With the continued exploration of the Moon, Mars and of other planetary bodies, the 

study of wheel-soil behavior in loose, granular material remains imperative for 

developing systems to enable future scientific discoveries. 

 

1.2 Problem and Technical Approach 
Terramechanics is the field of engineering that investigates off-road vehicle locomotion. 

This field combines soil mechanics theory and vehicle engineering originally for the 
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purpose of agricultural vehicle research. There exists a well-developed theory for 

vehicles in this application, however as the models are highly empirical, generalization to 

other applications becomes difficult [3]. The vehicles and terrain materials related to 

planetary rovers and agricultural systems are substantially different, thus many 

fundamental assumptions are not applicable for both applications. A separate theory, with 

alternative assumptions is not available for planetary rovers, leading to the reliance on the 

original models intended for large terrestrial vehicles operating in organic soils. This 

results in a fundamental problem. Many assumptions required for conventional 

terramechanics theory are not applicable to the traction scenario involving small diameter 

rigid wheels operating loose, granular soil, as is the case for planetary rovers. As such, 

there is a lack of adequate traction mechanics theory for planetary rover applications, and 

the design and analysis process of these vehicles are in part limited by this deficiency. 

Commonly used models, for designing wheels and vehicles, are empirically derived and 

the theory frequently relied upon lacks support in terms of actual soil response. M.G. 

Bekker, widely considered the founder of terramechanics, states that the models, “are 

based on more or less arbitrary assumptions. The variable properties of soil have been 

expressed by certain empirical coefficients whose meaning and significance were not 

quite based on any physical facts. Although some of the results obtained have a definite 

practical value, their theoretical generalization is impossible because of the lack of 

systematic studies of the stress-strain pattern of soils under the action of a wheel…”(pp. 

187) [4]. The inability of the theory to generalize and possibly to misrepresent soil 

traction processes below a of wheel operating in loose, granular material leads to 

limitations in the design of high performance systems and has also led to mature systems 

of which the traction processes might not be fully understood. Two points, in which 

existing models do not adequately address physical realities, are the assumption of overly 

idealized wheels and the inability to account for mechanics related to loose, granular 

materials where significant particle motion occurs.  
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Figure 3: All wheels in loose granular materials create complex soil displacement fields that govern traction. Details of 
sub-surface soil failure patterns and soil flow processes is limited. Right image credit [5]. 

Examples of wheel non-idealities leading to complex soil stress-strain patterns are finite 

width, small radius, tread features, and non-flat profiles. Particles of loose soils undergo 

large transport due to a rotating rim that is sunken into the ground. As such, a pumping 

like action creates primary soil failure planes that can occur well below a wheel (Figure 

3). Current terramechanic models, originally developed for organic soils/clays, do not 

account for these subsurface failure planes that govern traction in loose, granular soil. 

Additionally, there is no accounting for soil transport, which may render aspects of 

analytical models for loose, granular soil unsound.  

It is the objective of this thesis to provide new insight into wheel-soil mechanics related 

to the design and operation of wheeled planetary vehicles in loose, granular soil. Current 

theory is quite limited for this application and development of high fidelity analytical 

models remains to be too complex a problem to be a viable research path. As such, an 

alternative approach of empirical analysis was followed, rather than to attempt 

advancement of analytical models.  

This research chose to follow an empirical approach, as it was expected to be a more 

direct route to research findings capable of informing design via new insight into traction 

processes. The specific experimentation method employed is a technique for visualizing 

the effects of wheel operation on the soil beneath a rim. This technique, called Shear 

Interface Imaging Analysis (SIIA), is a new method for analysis developed as part of this 
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research. SIIA measures soil particle motion within a large vertical cross-section of soil 

as is influenced by a wheel or other traction device [6]. The SIIA technique relies on 

high-speed imaging of sub-surface soil and on computer vision software to produce soil 

displacement fields of high fidelity that are used for wheel traction analysis. This method 

enables visualization of wheel-soil interactions in richer detail than possible before. The 

resulting data provides new insights and can reveal misconceptions about how wheels 

generate traction. For example, a commonly accepted theory is that wheels with grousers 

increase net traction by engaging deeper soil or provide a high friction rim-soil interface 

by directly engaging the soil. However, sub-surface soil motion analysis, utilizing SIIA, 

shows that traction gains are produced by reduction of motion resistance from the soil 

transport effect of the grousers, thus resulting in greater net traction [7]. The observation 

of the sub-surface soil behaviors led to this alternative explanation of grouser traction 

mechanics. Findings such as this would not be possible without the empirical analysis 

method enabled by SIIA. The grouser mechanics example demonstrates the need to 

conduct studies of wheel interaction effects on sub-surface soil behaviors, due to 

geometrically complex rim features, usually ignored in analysis.  

The tractions processes are not well understood for lightweight, wheeled vehicles 

operating in loose, granular materials (i.e. planetary rovers) as current theory and models 

for this situation lack sufficient complexity to describe many of the processes present 

underneath a rover wheel. To improve design through research of vehicles in this 

application, the empirical approach of observing sub-surface soil behaviors is undertaken 

using SIIA, as this method provides a significant increase in the value of soil motion data 

compared to the past. New insight into the soil mechanisms below a wheel could enable 

the development of new theory and improved design. 

1.3 Thesis Statement and Objective 

1.3.1 Thesis Statement 
This research reveals the nature of wheel-induced soil behaviors and their significant 

influence on traction. An empirical method of observing sub-surface soil particle motion 
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can be employed in analysis to explain traction processes. This method can be used to 

improve wheel design and control strategy.  

1.3.2 Thesis Objective and Intended Contributions 
The two main objectives, of the thesis research, rely on the method of directly 

investigating sub-surface soil motion. The first objective of this research is to produce 

principles of wheel traction for planetary vehicles that explain the wheel-soil mechanics 

of some common wheel types, in an effort to aid in design and operation. Many aspects 

of wheels utilized in planetary mobility create complex interactions with the ground that 

are not described by current theory. The second objective is the development of 

experimentation tools and methodologies, based on sub-surface soil motion analysis, that 

can be used for evaluation and validation of wheel designs. These tools and 

methodologies are intended to be of use to both designers and the terramechanics 

research community. The maturation of the SIIA technique and demonstration of its 

value was an important step in this objective. 

The overarching goal of this thesis is to enhance the limited knowledge of traction 

processes that occur within soil underneath a wheel by analyzing sub-surface soil motion 

and soil failure patterns. The unique method of analyzing sub-surface soil behaviors 

generates new insight and ultimately leads to new explanations of traction mechanisms 

that enable improved design. 

It is the intention of this thesis to make the following contributions to the planetary rover 

mobility and terramechanics community. 

� Developing the Shear Interface Imaging Analysis (SIIA) technique to enable direct 

study of traction processes via soil motion analysis. The highly detailed, empirical data 

SIIA provides can aid in design, can help validate theories in non-standard applications 

such as planetary mobility and can help validate simulation methods. As such, SIIA 

might have great impact on terramechanics research and in engineering of terrain-vehicle 

systems such as planetary rovers. 
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� Show that distinct wheel types generate traction differently due to subsurface soil 

responses. Soil motion itself, is shown to be not only a response to loading, but many 

times also plays a major role in governing traction.  

It is not the goal to explain all traction processes or to explain how all wheel types work, 

but rather to show a few important examples. The hope is that this research will spark 

renewed interest in fundamental terramechanics research and provide a framework to do 

so. This impetus will have a positive effect on the terramechanics research community 

beyond increasing performance due to specific design recommendations as a topic of 

research is revealed and a methodology is provided. 

� Formatting of principles describing wheel-soil mechanics to aid in design when 

developing a wheel or operating a vehicle. Explanation of traction processes specific to 

unique design features will allow designers to have knowledge of the soil shearing and 

mechanics that lead to performance gains. A design process accounting for actual soil 

response can then be undertaken. This enables an approach of design by soil behavior, 

rather than relying on models known to have limitations and on solely reaction force 

measurements. The investigation and resulting design considerations of grousered wheels 

and push-roll locomotion serve as examples of implementation for high performance 

utilizing SIIA and soil behavior analysis. 

1.4 Approach 
To prove or to refute the thesis statement specified in Section 1.3.1 and to achieve the 

objectives anticipated in Section 1.3.2, an approach relying on experimental results of 

SIIA was undertaken. This approach has three aspects:  

1. Investigate the nature of wheel-induced soil behaviors by directly observing sub-

surface soil motions. A variety of common wheel types and operating scenarios 

are investigated for soil motion behavior variation between wheel types, 

consistency of findings with literature and if observed soil behaviors have been 

documented during prior research.  
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2. Observe sub-surface soil motions directly to determine how soil behavior and 

traction processes influence wheel traction. The in-depth investigation of a limited 

set of soil motion behaviors is conducted during the analysis of grousered wheels 

and push-roll locomotion for the purpose of associating soil behaviors with 

measured traction gains. 

 

3. Formulate explanations of traction processes and to improve design of traction 

devices by employing sub-surface soil motion analysis. The investigation of 

grousered wheels and push-roll locomotion is continued to demonstrate how soil 

motion analysis can be utilized discover traction processes specific to each device 

and how to use this information to inform design. 

 

To summarize the approach, a survey into the soil motion response of common wheel 

types is conducted to show differences that are likely to influence traction through a 

variety of processes. This survey is followed by in-depth investigation of soil motion 

behavior of a sub-set of traction devices from the survey. The grousered type wheel and 

push-roll locomotion are investigated, in detail, through a rigorous SIIA test campaign to 

determine the mechanisms that govern numerous soil behaviors and how these soil 

behaviors in turn affect traction. The investigation into the wheel traction mechanics, 

based on observed sub-surface soil motion behaviors, leads to explanation of mechanisms 

behind specific traction processes occurring and how traction capability might be 

affected. These new explanations of specific traction mechanisms are then shown to be 

directly applicable to design of traction devices and to lead to increased performance. 

Performance gains are demonstrated for grousered wheels and push-roll locomotion. This 

approach will show that an empirical method of observing sub-surface particle motion 

can be employed in analysis to explain traction processes and inform design for improved 

traction. 
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1.5 Scope and Applicability of Research 
This thesis investigates soil displacement fields (i.e. soil motion), underneath wheels 

operating in loose, granular soil. The purpose is to discover how observable processes 

within the soil govern traction and ultimately lead to exploiting these processes for gains 

in mobility through design. The limitations of the thesis research define the scope in two 

ways. First, the experimental approach, relying on Shear Interface Imagine Analysis, is 

restricted by the type of information that it provides: measured soil motion. Secondly, 

scope is limited by the traction scenarios studied, such as the wheel types, the loadings 

and the soil types investigated.   

The SIIA method produces high fidelity soil displacement field measurements of a cross-

section below a wheel. Although this allows for quantitative measurements, the studies 

conducted in this body of research are mostly qualitative. Comparative studies, observing 

phenomena of soil as acted on by a wheel, are utilized to discover new processes or to 

explain complexities of traction that are not well described. The high level of resolution, 

the ability to see time varying soil displacement and the experimentation of many wheel 

types/scenarios make for a unique set of experimental results that provide numerous first 

time insights into many traction processes. As such, simply observing soil displacement 

fields allowed for conclusions to be drawn, forming new explanation of mechanisms 

governing traction for multiple devices. This qualitative approach forms the basis of this 

research but also is a limitation that must be recognized. As many important aspects of 

the soil are not measured, it must be recognized that conclusions formed from this 

research were not confirmed via stress measurements or load measurement within the soil 

volume. Additionally, local soil strength is not measurable via the technologies used in 

this research. Findings are based off soil motion analysis, including failure planes, and 

reaction force measurements. This does not imply a lack of empirical evidence for 

support of the major conclusions as comprehensive experimentation campaigns were 

conducted to provide compelling evidence for each explanation of traction processes. The 

limitation, however, indicates a possible avenue for additional verification. 
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The wheel types, sizes, loading and soils investigated are typical of those encountered 

during planetary surface missions (i.e. planetary exploration rover scenario). Key aspects 

that define this scenario are lightweight vehicles (<1kN payload per wheel), relatively 

small diameter wheels (<50cm), operation in loose granular soil (low cohesion, highly 

frictional), and at low speeds (<10cm/s). Most, if not all terrestrial vehicles (including 

off-road vehicles) do not have all of these characteristics and therefore this research 

generally does not apply. Although, some aspects of this work can be extended to other 

applications, specific results, describing traction processes, focus on the exploration-class 

rover scenario. There are systems, from both past missions and from recent prototypes, 

that exist which operate at high speeds, high wheel loadings or different surface materials 

where results from this thesis might not apply. However, the scenario encountered most 

often, and to be expected in the near future, is that of the scenario within the scope of this 

work; exploration-class rover for environments such as the Moon and Mars. To 

summarize, the findings generally apply only to the planetary rover scenario, where the 

vehicle and soil of interest have characteristics as described above.  

In addition to the general traction scenario that planetary rovers form, the research 

presented in this document focuses specifically on loose, granular soil. The soils that 

were utilized in experimentation were prepared to a homogeneous state, consisted solely 

of a pure regolith simulant and were leveled to form flat terrain. No gravel or small rocks 

were added to the material and the maximum particle size was 1.5mm in diameter. This 

narrow scope of terrain type does not faithfully represent real terrain, such as intermittent 

rocks, inclines and bedrock under-layers, however, it approximates many worst-case 

conditions and enables research of fundamental traction elements; thrust and motion 

resistance. The focus on pure loose, granular soils allows for generalization of many of 

the findings to more complex terrain scenarios.  



 
 

 

11 

1.6 Thesis Organization 
This thesis is organized as follows. The chapters should be read in order as concepts build 

from previous chapters and because the document follows the chronology of the research.  

Chapter 2 describes primarily the deficiencies of current terramechanics theory and 

models. This chapter offers the technical motivation for the research conducted in 

subsequent chapters and provides background on the general approach to using 

terramechanic models and underlying assumptions.  

Chapter 3 gives a detailed explanation of the novel analysis method and apparatus 

(hardware and software) developed as part of the thesis research. Interpretation, of 

example results, is provided for demonstration of use as a terramechanics analysis tool. 

The SIIA method is relied upon for all experimentation in the thesis research and is the 

source of the experimental data used in support of proving the thesis statement and in 

fulfilling the thesis objectives. 

Chapter 4 provides an overview of experimental results (using SIIA) from a survey of 

soil response due to the operation of common wheel types, vehicle parameters (such as 

payload) and a non-typical locomotion mode called push-roll. By simultaneously taking a 

broad look at the soil behaviors due to many wheel types, this chapter, early on, reveals 

that the soil below the wheel undergoes complex processes of which there exists little 

knowledge with respect to different wheel types. The variation observed and 

characteristic differences of soil shearing planes, flows and resistive processes, are 

readily evident and SIIA visualizations make for compelling support that an in depth 

study is warranted to further explain traction processes. 

Chapter 5 details two significant experimental campaigns conducted to investigate 

specific observed soil behaviors or specific wheel parameters that might govern traction. 

This chapter sets out to prove that the empirical method of observing soil behaviors due 

to a wheel in operation, can lead to new explanation of mechanisms affecting traction. 

The explanation of traction mechanisms formed from this research are then extended to 

design in order to show that this new understanding can lead directly to performance 
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gains. Two traction device types are thoroughly studied to show, by example, that soil 

behaviors can be researched to learn new terramechanics processes and to achieve 

improved performance of designs. 

Chapter 6 provides concluding remarks and discusses of the principle results of this 

research. The results are shown to directly support the thesis statement (from Section 

1.3.1). In addition to these results, experimental highlights are discussed to capture major 

findings of potentially significant impact on the terramechanics research community and 

on the rover development field. A summary of the major contributions of the research is 

provided and significance is discussed in the context of terramechanics as it exists today. 

Future research is discussed in terms continuation of the SIIA experimental program that 

has sprung from the research initiated as a part of this thesis.   
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2 Prior Work and Background on Terramechanics Modeling 

2.1 Terramechanics Models and Theory Basic Assumptions 
Terramechanic theory, that is routinely relied upon to explain physical phenomena for 

planetary rover applications, has been shown to be insufficient as soil shearing planes and 

soil displacement other than compaction has not been taken into account. Additionally, 

soil behavior implied often does not act as observed in reality for loose, granular material. 

Of the established theories, Wong states, “the basic assumption underlying existing 

wheel theories is inadequate in that soil does not flow akin to that beneath a plate.” 

Continuing he states, “There is a close relationship between the characteristics of the 

flow patterns beneath a wheel and its performance. Therefore, a sound theoretical basis 

for the prediction of wheel performance should be established on the knowledge of actual 

soil flow beneath wheels.”(pp. 268) [5] Theories must be developed that take the above 

into account. It is arguable that Wong’s statement has not yet been fulfilled, as rigorous 

investigation into actual soil response to wheel operation has not been conducted. Ad hoc 

methods of accounting for wheel slip and soil displacement have been established, 

however these methods are not related to actual mechanics, but rather employed to fit to 

trends in measured reaction loads such as increasing net traction with wheel slippage. 

Additionally, existing terramechanic theory and models have limitations when employed 

to aid design, as they have been developed primarily for prediction of performance and 

do not account for effects of commonly implemented traction improving features such as 

grousers or wheel compliance due to complexity of modeling the wheel-soil interaction.  

Current terramechanics methods are based off the works summarized by Bekker over half 

a century ago [4]. The foundation of the theories used today has remained essentially 

unchanged from those original works. Many assumptions that are employed to describe 

wheel-soil interaction for loose, granular materials, have been criticized for discrepancies 

when compared to real systems and for being mostly empirical rather than mechanics-

based [8]. A brief explanation of the underlying principles of terramechanics, applied to 

wheel traction, will help show the current state of this field and how it has motivated the 

this thesis research.  
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2.2 Basic Terramechanics Analytical Models 

2.2.1 Soil Properties as Related to Terramechanics Models 
Two principles are used to determine soil response to loading and the ability to predict 

soil failure under wheels. These principles are the Pressure-Sinkage relationship, 

Equation 1, and the Mohr-Coulomb failure criterion, Equation 3. 

 

 𝑝 = 𝑘𝑧! Equation 1 

Equation 1 simply states that the average pressure,  𝑝, under a plate, pushed into 

homogeneous, terrain is dependent on an exponential function of sinkage, 𝑧. Where the 

sinkage exponent, n, is a soil property dependent on wheel size and 𝑘 is the proportionality 

constant. 

 

 𝑝 =
𝑘!
𝑏
+ 𝑘! 𝑧! Equation 2 

 

Equation 2 is a more widely relied upon expression describing the Pressure-Sinkage 

Relationship of wheels.  The proportionality constant has been modified to account for the 

contact area dimensions. Where 𝑏 is the smaller dimension of contact (typically wheel 

width). 𝑘! and 𝑘! are again soil sinkage parameters that are not sensitive to contact area 

dimension for large plates and large aspect ratios [9]. The Pressure-Sinkage relationship, 

although semi-empirical, is the most important expression in terramechanics as shear 

strength is largely related to normal load (pressure) and motion resistance is proportional 

to sinkage (i.e. pressure and sinkage). It should be noted that this expression could take 

on many forms depending on the traction device (track, small/large wheel, pneumatic 

tire, etc.), on the accuracy required versus the number of empirical terms and on the users 

ability to experimentally determine the various constants that might be dependent on their 

system. 
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 𝜏!"# = 𝑐 +   𝜎𝑡𝑎𝑛𝜑 Equation 3 

 

The maximum shear stress that a soil can support before a limit is reached in ability to 

support increasing shear load is considered failure by the commonly relied upon Mohr-

Coulomb criteria shown in Equation 3 [9] [10]. This equation describes the relationship 

of shear strength to normal pressure, where 𝜏!"# is the shear strength of the material, 𝑐 is 

the apparent cohesion and 𝜑 is the angle of internal shearing resistance (friction angle). This 

equation shows the dependence of shear strength on normal loading.  

 

There are three methods that are commonly used to determine the two soil strength values 

(𝑐,𝜑), each yielding different results with respect to wheel mechanics due to different 

boundary conditions imposed. The triaxial shear test is a method commonly utilized by 

geotechnical engineers for a wide range of granular materials. It allows loads to be 

applied independent of a constant confining pressure [11]. A key aspect of this method is 

the ability to produce soil failure that is representative of the bulk material, typical of an 

engineering property. Strength properties are measured by applying an external load, to a 

soil sample in an extensible membrane, while hydrostatic pressure is applied. The sample 

is allowed to dilate (expand/contract volumetrically) naturally as shearing occurs (i.e. 

constant pressure, free volume change). This method is designed to evaluate the principle 

stresses, at failure, by use of stress-strain information inferred from external loading and 

bulk displacement measurements. These stress measurements are used to calculate the 

soil apparent cohesion, and angle of internal shearing resistance values (𝑐,𝜑). Another 

method commonly used to find soil property values (𝑘,𝑛, 𝑐,𝜑)  is the bevameter test, that 

was developed by Bekker [3]. This method relies upon an apparatus representative of a 

wheel since steps are taken to have similar interaction between the test plate and the soil, 

to that of a wheel rim with the ground. As such, more accurate results can be obtained 

when using the Pressure-Sinkage and Mohr-Coulomb relationships because many of the 
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complexities in modeling of the soil failure are encapsulated in the bevameter 

measurements. The bevameter produces soil strength values that are of practical use if 

these relationships are used to look at trends in changing basic wheel parameters or 

during trade studies over a limited design space. However, generalization of the soil 

property values becomes difficult as much of the response is dependent on the test plate 

itself. The grouser effects on soil failure, on sidewall drag and on sidewall bearing 

capacity, are examples of test plate parameters that cannot be independently represented 

by current theory. 

The bevameter apparatus (Figure 4) typically consists of a flat plate (sometimes two) and 

of a ring shaped plate (annulus) with grouser like protrusions that apply shear loads when 

applying torque. Both the flat plate and ring are of similar size to the contact area of the 

wheel of interest to model [12]. The flat plate is used for Pressure-Sinkage relationship 

data, while the ring (annulus) is used for Mohr-Coulomb failure data. The measurement 

of torque, at soil failure over various normal loads, is used to determine shear strength 

versus normal load. Applied load, versus penetration depth, determines the 𝑘  𝑎𝑛𝑑  𝑛 

pressure-sinkage parameters.  
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Figure 4: Schematic representation of Bevameter measurement unit [9] 

 

A third alternative, to measure apparent cohesion and angle of internal shearing resistance 

values (𝑐,𝜑), is the direct shear test. This test is similar to the bevameter torque ring. 

However, a rectangular plate is forced to displace in a linear motion to infer shear 

strength. 

 

An explanation, of these methods to measure soil properties, is provided as it is important 

to realize how the soil test implement differs from a wheel it represents. Also, the 

measured soil properties are strongly dependent on the geometry of the measurement unit 

plate compared to that of the wheel of interest for modeling. These issues are discussed 

later in the chapter. 

 

2.2.2 Terramechanics Analytical Models  
The Pressure-Sinkage and Mohr-Coulomb failure criteria are the two underlying 

expressions utilized to model wheel-soil interaction and predict traction performance. 

There are many assumptions made to apply these equations to the form of a wheel that 
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test, a sinkage plate that simulates the contact area of the vehicle running-gear is pushed 

vertically into the terrain (usually with a constant rate of penetration).  From this test, the 

applied force and resulting sinkage are measured and used to determine the pressure-

sinkage relationship of the soil.  During a shear test, a shear ring with a predetermined 

applied normal pressure is used to simulate the shearing action of the vehicle running-

gear by rotating on the terrain surface.  The applied torque and resulting angular 

displacement are measured and used to determine the horizontal stress-strain relationship 

of the soil.  The bevameter is also capable of performing repetitive normal and shear 

loading tests which are used to simulate the repetitive loading or shearing of a multi-axel 

wheeled vehicle.  However, this particular test is outside the scope of work and therefore 

will not be described in further detail.  More information on this topic can be found in 

(Wong 1989).    

 

 
Figure 3.12  Schematic of typical bevameter (Wong 2006). 
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supports a payload, reacts torque and generates thrust. Generally speaking, the over-

arching assumption is that a wheel, in its basic form, will interact with the soil the same 

way as a flat plate and that the Pressure-Sinkage relationship can be used to account for 

the non-flat geometry of the rim. More specifically, soil shearing and failure are of the 

same type as a plate, soil displacement or transport is insignificant and soil properties are 

homogeneous throughout the affected regions during wheel operation.  

The net traction generated by a terrain-vehicle system, termed Drawbar Pull, is the thrust 

generated minus any motion resistance forces apposing vehicle travel. This is often 

expressed as in the form of Equation 4, where 𝐷𝑃 is the drawbar pull, H is thrust and R is 

the sum of motion resistances [3] [10]. This expression, allows for easy explanation of the 

basic processes involved in the operation of a traction device.  

 

Drawbar pull normalized by vehicle weight (or wheel payload) is a form often referred-to. 

This form is called pull coefficient [13].  

where 𝑊= vehicle weight or weight-on-wheel. 

Explaining the derivation of wheel resistance, R, will highlight assumptions made and the 

lack of accounting for many physical considerations, such as soil displacement. These 

expressions are remarkably simple and, unfortunately, make the assumption that the 

behavior of soil underneath a wheel, in motion, is similar to that of a flat plat at rest in the 

ground.  

 

 𝐷𝑃 = 𝐻 − 𝑅 
Equation 4 

 𝑃𝑢𝑙𝑙  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 = 𝐷𝑃
𝑊 Equation 5 
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Figure 5: Diagram of rigid wheel, in deformable ground, with loads relevant to motion resistance indicated. Image 
credit: [9]. 

 

The use of the motion resistance relationship, 𝑅, and assumptions involved with applying 

it is described below. 

 

 
𝑅 = 𝑝𝑏  𝑑𝑧

!!

!
 

Equation 6 

 
 
Where 𝑅 is motion resistance, 𝑝 is rim pressure (described by Pressure-Sinkage 

relationship, Equation 1), 𝑏 is wheel width, 𝑧 is sinkage a point along the rim, and 𝑧! is 

total sinkage (see Figure 5 for meaning of variables). 

 
The motion resistance expression (Equation 6) [9] has a physical meaning. It assumes 

that the net motion resistance is the horizontal component of the normal pressure, on the 

wheel rim, created as the result of sinkage. The normal pressure,  𝑝, is governed by the 

Pressure-Sinkage relationship (Equation 1). Equation 6 implies that the motion resistance, 

on a wheel, is equal to the horizontal component of the soil acting on a static rim when 

pushed vertically into the ground. Applying this concept to estimate the performance of 
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wheels is not valid for the planetary rover application, as small diameter rigid wheels in 

loose, granular soil do not push on soil in a manner similar to a vertically loaded plate. In 

this application, sinkage is significant, soil flow is present and the wheel rim pushes soil 

in a horizontal manner. It should be noted, that this equation was formed for the 

prediction of motion resistance of a towed wheel, however, it is often assumed to apply to 

driven wheels [14].  

The issue of most concern is the lack of accounting for soil transport and non-vertical soil 

displacement. Both the calculation of normal pressure along the rim (which is the 

resisting force) and the quantity of soil interacting with the rim are drastically altered if or 

when the soil moves horizontally. Of common understanding is that the sinkage of a 

wheel can be dominated by slip-induced sinkage as a result of soil transport [3]. This is 

especially the case for planetary rovers where wheels are operating in loose, granular soil, 

resulting in a non-zero slip rate that is routinely medium to high. Only static sinkage is 

accounted for in the pressure sinkage relationship. As soil transport is not modeled, 

calculations relying on sinkage, such as motion resistance and thrust, cannot be estimated 

with reasonable accuracy. Additionally, much of the soil at the front of a wheel that is 

assumed to be resisting travel might be pushed to the side for narrow wheels, or 

transported away from the contact region due to wheel rotation when slippage occurs. 

These issues lead to difficulty in determining the sinkage value, 𝑧, of the pressure-

sinkage relation, resulting in large error in motion resistance estimates. 

Of predicting sinkage, Bekker states “the sinkage of powered wheels (including slip 

sinkage) appears to be beyond solution with a workable analytical model. Only static 

sinkage, such as is expressed by equations… , can be used as a first approximation, and 

although this is good in wet cohesive soils, it is poor in dry sand.” (pp. 452) [3] 

2.3 Recent and Past Work to Improve Analytical Models 
Research attempting to fix shortcomings in common terramechanics models, have 

focused on improved pressure distributions over the contact area [15] and on changes in 

pressure distribution with respect to slip [16] [17]. Recent research to account better for 
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the curved shape of a wheel, has been undertaken to develop a modified pressure-sinkage 

relationship [18]. However, this does not address the issue of soil movement and adds 

additional empirically determined terms for curvature and width. Unlike the 

terramechanics community, current planetary robotics mobility research has been 

focusing primarily on three themes: wheel prototype performance analysis; vehicle 

motion prediction via computer modeling and development of novel mobility systems. 

Performance analysis studies have focused on the net traction produced by a wheel and 

have endeavored to make discoveries through the study of  net traction changes due to 

parameter variation rather than a parametric study involving experimental investigation 

of the traction mechanisms of the wheels. This method has resulted in a lot of research 

that describes the potential performance of many example wheel configurations but lacks 

well supported explanations as to sources of traction gains and the traction processes 

occurring.  

As an example, parametric studies of grousered wheels are repeatedly encountered [19] 

[20]. To date, these investigations, of the function of grousers have taken the approach of 

relying solely on performance measurements. Net traction, sinkage, slippage, wheel 

torques, power and reaction forces are typically measured during single wheel testing 

over a wide range of parameter changes, such as grouser spacing or height. Trends in the 

data are used to determine optimal parameter combination and conclusions are often 

inferred from these results. This approach is suitable for determining the response and 

performance of specific designs, but provides limited information on the unique 

mechanisms within the soil that governs traction for the wheel type of interest. Therefore, 

an incomplete picture of how grousers function still exist and a lack design guidelines 

persists. 

2.4 Current Planetary Mobility Research Efforts 
Investigation of vehicle configuration and suspension types has also been a topic of 

interest to the planetary mobility research community. Vehicles, with a great number of 

different configurations, have been prototyped and studied over the last decade. These 

systems vary in number of wheels, suspension kinematics and articulation types, passive 
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and active control, and even walking or hopping locomotion. These vehicles are designed 

to traverse more extreme terrain and perform more complex tasks, but are still governed 

by poorly understood processes occurring in soil during locomotion. Many prototype 

systems such as the ExoMars rover mobility system [21], designed for a European Space 

agency Mars exploration mission, have undergone extensive analysis utilizing tools to 

assess the effects of vehicle configurations. These analysis tools include the Rover 

Chassis Evaluation Tool (RCET) [22], LocSync framework [23] and other efforts to 

standardize performance evaluation [24].  These methods provide great insight into the 

potential changes that basic vehicle configuration can have on performance. However 

many of the complexities, such as the effects of wheel type and even locomotion mode, 

cannot be accurately represented. More importantly, these tools may have limited use for 

development of novel systems with complex wheel-soil interactions, such as the recent 

JPL ATHLETE platform [25] and the NASA Chariot mobility system [26], both with 

active suspensions and possible secondary mobility modes.  

In recent years, the incorporation of analytical terramechanics models into multi-body 

simulators has received the most effort from the robotics-terramechanics research 

community. Full mobility system simulation modeling vehicle kinematics and wheel-soil 

interaction allow for prediction of vehicle path or response to three-dimensional terrain 

[27] [28]. This research is valuable in providing a framework for simulation and rover 

control development [29]. However, as advancement of the underlying terramechanic 

models is not undertaken, little is provided in terms of aid in detailed design or insight 

into developing novel full vehicle systems.  
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2.5 Past Subsurface Imaging Work 

2.5.1 Soil Particle Motion Analysis for Terramechanics Research 

 

Figure 6: Example of previous sub-surface soil imaging methods, conducted by M.G. Bekker, that rely on long 
exposure film to infer moving and stationary soil, as affected by a traction device [14].  Planes, a-b and b-c, are 
interpreted to be primary soil failure planes as transition between blurred (moving) and non-blurred (stationary) soil 
particles. 

The Shear Interface Imaging Analysis, method developed during this thesis research, 

builds off of earlier analysis methods utilized by Bekker (Figure 6), Wong (Figure 7), 

Harrison [30] and others. There have been prior efforts made to image soil effects due to 

wheel travel [5] and to image the operation of other devices such as excavation 

implements or footings [30] [31] [32].  For terramechanics research, the technique of 

observing soil motion utilizing long-exposure film photography has been the most 

extensively used. The film exposure time is sufficiently long in duration to intentionally 

create image blur and particle streaking. Soil engaged by the wheel is maintained in the 

camera frame and thus does not blur. The interface between blurred and non-blurred 

regions is interpreted as primary soil failure planes (Figure 6, lines a-b and b-c). 

Streaking of visually identifiable particles enable inference of soil motion direction. 

The ‘shear interface’ is a term describing the primary failure planes and outer extent of 

soil shearing that develop in the soil below a wheel. It is sometimes also called “slip 

planes.” Figure 6 shows an example of this concept. The lines drawn on the figure, a-b 

and b-c, denote the shear interface.  

a b 

c  
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The imaging work conducted by these researchers produced extensive results in their 

respective fields, but a limited amount of the work can provide direct insight into the 

application of design for planetary mobility systems.  Previous research focused on the 

validation of existing terramechanic theory, however the analytical models of interest are 

limited to simplified wheels. As such, the experimentation space was also limited to 

simple/idealized wheels (rigid, wide, no grousers, low slip ratios), without an 

investigation of soil behaviors due to a range of common design parameters and common 

operating scenarios. Also, these film photographic techniques, of soil imaging, produced 

lower fidelity results, were not quantitative and could not assess time varying responses 

present in soil during wheel operation. Results of this thesis research show the inability to 

assess time varying response is a limiting aspect of previous research and hid many 

important soil motion processes.

 

Figure 7: Photographic long exposure film method to infer primary soil shearing planes underneath a wheel. A wheel, 
at 37% slip, is shown as operating in loose, granular soil (dry sand). Wong noted many important conclusions from 
these results shown [5]. 
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Many of the early terramechanics imaging researchers, relying on long exposure imaging, 

concluded that terramechanic theory does not represent the large motions soil undergoes 

and that similar experimentation methods should be utilized for model development and 

validation of design [5]. These findings further motivate the research being conducted 

that utilizes the new Shear Interface Imaging Analysis method for higher fidelity soil 

motion measurement. 

2.5.2 Modern Techniques of Particle Velocity Measurement 
Modern techniques for particle image velocimetry (PIV), the method relying on image 

cross-correlation, originate from the need to measure fluid velocity fields. PIV became a 

common research tool in the field of fluid dynamics in the 1980’s [33]. More recently 

PIV has been used to measure soil displacement of granular materials. Most of these 

techniques rely on conventional PIV methods, developed for the measurement of fluid 

velocity. Adaptations to produce visualization of soil motion have included tracking 

tracer particles exposed to UV light [34], observing changes to a grid pattern of different-

colored particles [35], and applying white light speckle autocorrelation to an arrangement 

of natural and colored sand grains [36]. These techniques utilize specialized equipment 

such as high-speed cameras, pulsed lasers, multi-phase LED lamps [37] [36] and/or the 

alteration of the soil specimen via reference markers or coloring [38] [36].

 

Figure 8: Velocity field of granular material derived from optical flow algorithm. Soil motion is due to the action of an 
indenter. Image credit [39]. 
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Even more recently, the optical flow computer vision algorithm has been utilized in the 

measurement of granular soil displacement for the purpose of localizing soil failure 

planes under the action of simple indentation loading [39] (Figure 8). The use of optical 

flow in this in this application is limited and usually part of a hybrid system requiring 

other PIV techniques as well [38]. Optical flow has many benefits as it enables high 

fidelity measurement of soil motion (both accuracy, resolution and spatial density of 

information) while requiring only relatively low cost digital cameras and readily 

available software packages, and no alteration of the soil specimen. Optical flow is the 

image processing technique utilized by the SIIA method presented in this thesis. SIIA, for 

the first time, applies the optical flow algorithm for the purpose of studying soil particle 

motion underneath a wheel. The key innovation of SIIA is the application of optical flow 

specifically for terramechanics research. 

 

Figure 9: X-ray image of sub-surface soil deformation are used to visually validate pressure-sinkage model. This image 
enables analysis of the dilation of the soil being acted on by a wheel shaped indenter. Image credit [40]. 

Another visualization technology utilized for terramechanics and soil mechanics research 

is x-ray imaging. Both standard x-ray imaging and x-ray computed tomography (CT 

scan) are widely used for localization of shear bands within soil [41] (similar to failure 

planes) and detection of void ratio [42] (density) for the purposes of soil mechanics 

research.  Standard 2-dimensional x-ray imaging has been used in static testing of wheel-

like specimens for the development of modified terramechanics models. This primarily 

provides relative density information and shear band information by comparing 
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experiment “before and after” images.  Figure 9 illustrates an example of these two 

aspects of soil during the study of soil response to various wheel curvatures [40].  

2.6 Conclusions Drawn From Previous Work 
The theory that is currently available to support the design and evaluation of wheeled 

planetary mobility systems is not of sufficient accuracy to estimate performance and is 

inherently not useful in guiding design. Current wheel-soil models are not representative 

of the actual soil shearing processes occurring, thus leading to misunderstandings of 

traction fundamentals. In addition, this misunderstanding of traction can also lead to poor 

operation of vehicles during actual missions. 

Previous research, as discussed in this chapter, highlights the need to identify complex 

soil strain fields and failure planes as influenced by a wheel in operation. Methods of 

modeling wheel performance would benefit from accounting for these soil processes. 

However, simply understanding how the soil strain fields affect traction can allow for 

new terramechanics understanding to be generated thus aiding in traction device design. 
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3 Development of Shear Interface Imaging Analysis  

3.1 Motivation for Sub-surface Soil Analysis  
In an effort to directly investigate the soil shearing patterns and traction processes 

occurring due to wheel operation, the approach of empirically investigating soil particle 

motion was taken for this thesis. The design of traction devices, such as wheels for 

planetary rovers, rarely involves the analysis of the soil motion, of failure patterns and of 

soil transport processes. As the performance of a traction device in loose, granular soil is 

ultimately governed by both the bulk soil properties and the complex conditions induced 

a wheel, it is important to account for varied and intricate soil failure patterns and 

transport processes. Minute details of the wheel rim geometry or mechanics of the wheel 

carcass have a profound effect on the shearing processes. The study of wheel induced soil 

motion provides insight into these poorly understood aspects of traction that often occur 

in the case of planetary rovers on loose, granular soils. 

3.2  Description of Shear Interface Imaging Analysis Technique 
Development of a technique, called “Shear Interface Imaging Analysis (SIIA),” for 

detailed measurement and observation of the shear failure planes and soil transport 

processes, was undertaken as part of this research. This method relies on photographing 

soil, through a glass-walled bin, as a traction device operates. These images are then used 

to produce full-field motion plots at soil particle level detail via computer vision 

algorithms. The soil particle motion data is subsequently used for terramechanics 

analysis. The SIIA technique has proven to produce accurate results enabling in-depth 

investigation of unconventional locomotion modes such as push-roll [43] [44] and of 

various wheel types for planetary surface vehicles [6] [7]. This technique is also useful 

for investigation of more generalized wheel parameters and fundamental traction 

processes in various traction scenarios such as on the Moon and Mars.  

This chapter introduces the method of Shear Interface Imaging Analysis and, by use of 

examples, shows the value of using the SIIA technique for sub-surface soil investigation. 
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3.3 Description of Apparatus 
The experimental apparatus, constructed to analyze the soil motions below a wheel, 

consists of a glass-walled soil bin (Figure 11) filled with granular material, of a traction 

device (such as wheel), of an actuated horizontal axis of motion (Figure 10) and of an 

imaging system. The wheel module (Figure 13) of the SIIA test bed is controlled, in 

coordination with the horizontal axis, to create a commanded, constant slip as the wheel 

travels forward. A linear rail allows the wheel to translate freely, in the vertical direction, 

allowing for natural sinkage to occur. The free vertical axis also allows for the 

transmission of payload to be applied to the wheel in the form of dead weights. A 6-axis 

force/torque sensor is incorporated to measure reaction loads, specifically in the 

horizontal (travel) direction, as a result of traction generated. Sinkage is measured via an 

optical encoder affixed to the vertical free linear axis. All telemetry: wheel angular 

velocity; travel velocity; slip, sinkage; load and power, are logged simultaneously, at 

20Hz or higher, to a central desktop computer that also controls the experiment 

configuration and imaging system. 
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Figure 10: Single Wheel Soil Imaging Testbed. Wheel travels, from left to right, with controlled slip along a belt-driven 
linear axis or travels, in a self-propelled condition, with no external horizontal load or restriction applied. Note, a 50cm 
diameter half-wheel against the glass is shown. 

 

 

Figure 11: Alternate view to show glass wall of soil bin and depth of sand. 
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The wheel for SIIA experiments is pressed against a sheet of tempered glass that extends 

the depth of the soil bin. The wheel utilized in experimentation, is of half the width of the 

actual specimen of interest (example shown in Figure 12). That is, for a symmetrical 

wheel, it is equivalent to cutting the wheel in half, perpendicular to the axis of rotation. It 

should be noted that most wheels are symmetrical in their tread and rim profile, so no 

special consideration due to utilizing a half-wheel is needed.  

 

Figure 12: Example of a half-width specimen shown (left) and the full-width wheel of actual interest that it represents 
(right).  

The payload applied must also be half of what the full wheel normally carries. The half-

width wheel and half payload method results in reaction loads such as drawbar pull, 

normal load and torque to be half of that of the actual wheel specimen of interest. This 

method remains a valid technique since the soil response is the same to that of the full-

width wheel. As such, reaction loading can be assumed to be twice what is measured for 

the half-width wheel. The use of a half-wheel and glass wall, has been relied upon for 

over 50 years [31] and has been experimentally validated for loose granular soils and 

clays. The most important consideration is that the shear stress, at the glass-soil interface, 

should be the same as that of the soil-soil plane at the center of a full-wheel. If the shear 

stress (created by soil-glass friction) is negligible [45], then the glass surface acts as a 

plane of symmetry, allowing for the soil to behave as it would directly below a wheel, 

twice as wide, due to symmetrical soil flows [5]. This boundary condition, of sufficiently 
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low (ideally zero) shear stress along the plane of symmetry, is achieved by the use of 

tempered glass with a high hardness surface and by the low pressure of the soil particles 

against the glass wall. It should be noted, that for a symmetric wheel, there is symmetric 

soil flow and, therefore, no transverse soil motion occurs at the center plane of symmetry. 

Therefore, the boundary condition imposed by the glass restricting transverse flow is 

valid. 

 

Figure 13: Wheel module, carriage (travel axis) and glass-walled soil bin. A 31cm wide by 22cm high cross-section of 
soil, below the wheel, is imaged with a still camera. 
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Figure 14: Example image from wheel testbed camera. This image acts as the raw data to be processed by computer 
vision techniques that produces a full velocity field of the soil motion. Note that the camera moves with the wheel 
travel (right).  

Imaging, a cross-section of soil below the wheel, allows for the observation of soil 

processes at that plane only and of two-dimensional motion only. There are two 

assumptions made, when only observing the center plane, for conducting terramechanics 

analysis. First, the processes that can be seen, such as shearing planes or forward flow, 

are representative of most of the wheel width. For wheels that are not narrow, which most 

planetary rover wheels are not, this assumption is fair as the gradient of soil responses, 

such as shearing magnitude, from wheel center to edge would be expected to be quite 

low. The gradient in soil response is low because the confining pressure, due to the rim 

normal load, is much higher than that at the sidewall (rim edge) where there is little 

surcharge (i.e. sidewall effects not significant). The dominance of the rim normal load is 

especially true for loose, granular soils where cohesion is not present or when there is not 

extremely high sinkage (in which soil mass acts as significant surcharge). The second 
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assumption is that the soil processes, observed at the wheel center, are the most important 

and dominant in governing traction. One would expect resistive processes, such as 

bulldozing and compaction resistance, to be highest at the wheel center where no lateral 

flow is present and where greatest soil mass is accumulated. Soil motion, produced by 

thrust generating areas, are also expected to be at peak magnitude at the center plane due 

to symmetrical flow underneath a wheel. These assumptions are reasonable. However, 

there exists little experimental data to prove that these assumptions hold true. When 

narrow wheels are studied, special consideration must be made to acknowledge the 

limitations of these assumptions. 

The shearing analysis requires the ability to track soil motion. A digital SLR camera, 

model Canon D7, with a Canon EF 50mm Compact Macro lens (Figure 13), is used to 

image the wheel-soil interface and a cross-section of the soil below the wheel (Figure 

14). Frames are logged simultaneously to a central desktop computer with the rest of the 

telemetry previously discussed. A frame rate of 8 frames-per-second is used and is 

sufficiently fast for the low speeds of wheel travel applied (1cm/sec). The frame rate 

utilized and the wheel travel speed result in a maximum soil displacement between 

frames of 1.6mm, however, the maximum displacement during most test conditions is 

0.25mm. Extreme scenarios with high sinkage and lower slip rate result in the higher soil 

displacement condition.  

The digital camera is mounted perpendicular to the soil bin glass wall and travels with the 

wheel in the horizontal direction as the carriage moves. For most wheel specimens (23cm 

to 50cm diameter), a 31cm wide by 22cm high patch of soil is framed and captures the 

complete shear interface and secondary flows produced by the wheel in the soil types 

within the scope of this research. Halogen floodlights are utilized to illuminate the soil 

particles and are placed at a high angle normal to the glass to prevent direct reflection of 

light in the imaging system. 



 
 

 

35 

3.4 Description of Algorithms 
A novel aspect of this work, is the use of a computer vision technique not previously 

implement for terramechanics purposes, to measure soil motion below a wheel. The 

image processing comprises of an optical flow algorithm and clustering techniques. An 

overview of the complete process, from imaging to analysis plots, is presented in Figure 

15. Clustering is used to initially separate each image into "soil" and "not soil" regions. 

The region classified as “soil,” then, undergoes further processing.  

An optical flow algorithm [46] is implemented to track displacement of soil regions 

relative to a prior frame and to calculate a motion vector for each pixel. This step 

provides a high-density displacement field of size and resolution up to that of the raw 

camera images. The majority of SIIA plots, generated in this work, were processed from 

down sampled images to reduce processing times. Most results have frame dimensions, 

of 700 x 1300 pixels, which result in an effective pixel size of 0.19mm in terms of actual 

distance on the soil plane. The pixel size is smaller than the mean particle size (by 

weight) of the soil simulant, GRC-1, [47] that is used for most experiments in this 

research. Therefore, it is assumed that pixel displacement is representative of individual 

soil particle movement. The minimum resolution of measured displacement is not 

determined only by the effective pixel size (0.19mm) because the optical flow algorithm 

is capable of sub-pixel resolution [46]. As such, validation of the whole SIIA imaging 

system, with optical flow software, was undertaken to assess minimum resolution and 

absolute error. See Appendix 8.1 for validation and error analysis of the soil tracking 

implementation developed for SIIA. 

 Following calculation of the displacement field, soil motion is clustered into 

"significant" and "insignificant" magnitudes.  No explicit threshold is used to demarcate 

these clusters, rather automatically adaptive clustering is used.  The shear interface can 

then be derived from the boundary between significant and insignificant motions. Soil 

motion direction is calculated from the optical flow displacement vector fields, for 

regions exhibiting significant motions.  Soil motion, in any direction, is plotted and an 
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additional boundary is identified at points where the soil transitions between forward and 

rear flow.  

 

Figure 15: Processing steps, for image analysis, to produce soil motion and shear interface output plots. 

 

Figure 16 is a sample output of the process. Shown is soil velocity magnitude, shear 

interface between moving and non-moving soil, soil motion direction (within region of 

significant motion) and boundary between forward and rear flow. 

3.5 Use of Soil Displacement Plots in Terramechanics Analysis 
The soil displacement field generated during single wheel experimentation can be used to 

identify the affect wheel parameters and design features have on performance by 

inferring traction mechanisms from the measured soil motion. Performance metrics such 

as net thrust produced, referred to as drawbar pull [4], are critical for evaluation. 

However, when relying solely on measured reaction forces, there is little information 

provided that aids in investigation of the underlying traction mechanisms governing the 

measured performance.  



 
 

 

37 

Observing soil failure planes and soil motion enables the qualitative analysis of how soil 

structure develops and reacts to thrust loads, causes of sinkage and travel resistance 

mechanisms. The shear interface is indicative of soil failure processes and soil failure 

type. In the SIIA plots, the shear interface is the boundary between moving and non-

moving soil as determined by the clustering technique. When clustering is not employed, 

the shear interface is often determined by visual inspection. 

 

Figure 16: Shear Interface Imaging Analysis plot showing soil velocity magnitude (top) and direction (bottom).  
Magnitude is plotted from dark blue (stationary soil) to red (representing the soil moving at highest speed).  Direction 
(within the shear interface) is as shown in the circular color legend (ex. yellow forward). Note, conventions of all plots 
are wheel travel left to right and at 20% slip unless otherwise noted. 
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Figure 16 shows two types of soil displacement plots (velocity magnitude and direction) 

of a single wheel shear interface imaging analysis experiment. These plots show 

processes typically present within the soil under a wheel operating in loose, granular soil.  

The velocity magnitude plot is a visualization generated from the optical flow velocity 

field measured between image pairs. These plots (Figure 16, top) scale from dark blue 

(stationary soil) to red (representing the soil moving at maximum speed, Vmax). This type 

of plot allows for the evaluation of the soil motion due to a specific wheel design. The 

shear interface is a key indicator of the means by which the wheel produces traction since 

it is representative of the soil failure planes.  

The soil motion direction plot (Figure 16, bottom) displays the direction of soil particle 

motion as measured by the velocity field. The multi-colored wheel is the legend that 

maps color to direction with respect to ground coordinate frame. ‘Dark blue‘ indicates 

soil particles moving completely horizontal in the left hand direction (e.g. at wheel 

bottom), opposite to the direction of wheel travel, while ‘yellow’ soil is being pushed 

forward (e.g. at wheel front). The direction of soil motion aids in determining what type 

of soil failure process occurs, what design features that might contribute to the failure and 

in the identification of multiple flows, such as resistive types at the wheel front. The 

separation of two flows (Figure 16, bottom), as detected by the developed analysis 

software, allows for the identification of regions of forward soil motion and for the 

measurement of the location of point of the theoretical maximum shear stress along the 

rim [9]. This point occurs at the intersection of the wheel rim and the flow separation 

line.  

3.6 Example Analysis 
SIIA magnitude and direction plots can be used in wheel design analysis and in 

terramechanics research in many ways. Two types of examples are given as to how the 

plots might be used. The first example, Figure 16, shows how a specific wheel specimen 

can be analyzed, possibly for validation purposes. The second example, Figure 17, 
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illustrates, how for fundamental terramechanics research, SIIA plots can be used to study 

the influence of a specific vehicle-wheel parameter. 

 

Figure 17: Example analysis investigating the effects of varying wheel slip on soil behavior. Wheel motion is to the 
right (as convention in this document). In this example, demarcation of forward and rearward flow is not done. Both 
velocity plots share the same color scale. Additionally, clustering of “insignificant motion” is not conducted. These two 
features are sometimes not applied in image processing in order to hide as little information as possible. The wheel 
velocity magnitude plots are normalized by ground speed and are at equal scale, allowing for direct comparison. 

In the first example, Figure 16, if the small diameter wheel shown were to be assessed in 

the operating scenario as tested (slip, sinkage, soil type), one can draw conclusions 

regarding important traction processes occurring specific to the wheel. Looking at the 

SIIA results, in Figure 16, forward motion of soil in front of the wheel is evident from the 

direction plot (bottom). The “yellow” and “green” soil, at the wheel leading edge, 

indicates soil that is pushed forward by the rim that might result in resistance to vehicle 

travel. The velocity magnitude plot suggests that the soil forward motion is significant 

compared to other soil motion underneath the wheel and is likely an indicator of 

considerable motion resistance. This result might motivate design changes to reduce 

motion resistance. It should be noted that these conclusions could not be made by 

observing soil from the surface as only minor bulldozing occurs (accumulation of soil). 
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The second example, Figure 17, investigates changing a single wheel parameter in order 

to analyze potential affects on traction processes.  Figure 17 shows two experiments with 

all controlled parameters held constant other than a change in slip rate. The wheel 

velocity magnitude plots are normalized by ground speed and are at equal scale, allowing 

for direct comparison. The soil magnitude velocity distribution, in front of the wheels, 

varies with slip rate. The wheel at 20% slip (Figure 17A) shows a larger extent of soil 

forward motion (forward flow) at the wheel leading edge than the wheel operating at 60% 

slip (Figure 17B). The soil forward motion is similar evidence of motion resistance as in 

the previous example. Soil pushed forward in front of a wheel leading is an indicator of 

motion resistance. A conclusion that can be made, from this observation, is that 

increasing slip might result in lower motion resistance. This comparison is an example of 

how the SIIA method can be used to study a basic terramechanics parameter such as slip. 

The next step in a test campaign would be to use this method to explain why the region of 

soil forward motion is reduced with increasing slip. Although only the forward motion of 

the soil in front of the wheel leading edge was discussed, there are many other soil 

motion behaviors observable in Figure 17 that are informative of the wheel traction 

processes. For example, soil transport below the rim leading to slip induced sinkage can 

be compared. 

The above two examples, Figure 16 and Figure 17, are provided to illustrate the 

application of the SIIA technique. 

3.7 General Experiment Procedure and Single Wheel Test Considerations 
As an example of the experimental procedure, the testbed configuration for the SIIA data 

collection of the wheel that is shown in Figure 14 and in Figure 16 is described. The 

single wheel imaging testbed is prepared with GRC-1 lunar soil simulant [47] [48] before 

each test run (See Table 1 for properties and description of soil simulants used in the 

research presented in this thesis). First, the soil is loosened to a state of lowest relative 

density by using a trowel to lift the sand, allowing it to expand. Then, the soil is lightly 

compacted, by use of a drop tamper method, to increase compaction and to flatten the soil 

surface. The wheel specimen, shown in Figure 14, is rigid, 23cm diameter by 5.72cm 
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wide (11.5cm effective width), with the rim covered by course grain sandpaper. A 10kg 

payload is applied in the vertical direction via deadweight. The experiments are typically 

evaluated at steady-state response of the soil and reaction loads. The test run begins at 

static sinkage and then travels under a controlled slip rate for approximately five wheel 

diameters in distance. All rigid wheels (rough rim or grousers) quickly enter steady-state 

sinkage, reaction loading and soil shearing behavior within the first wheel revolution for 

a nominal soil simulant such as GRC-1.  

Table 1: Soil simulant properties and description. 
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Figure 18: Drawbar pull controlled experiments and slip controlled experiment [13] shown on same plot to demonstrate 
valid use of slip control utilized in single wheel testbed (data is from large diameter wheels in dry sand). It should be 
noted that this only shows the uniqueness of the drawbar-slip curve; it does not verify the soil response is unique. 
Drawbar pull and horizontal load, as referred to in the figure, can be used interchangeably. 

The testbed controls wheel slip by maintaining a tangential rim speed of 1cm/sec and by 

varying horizontal travel (carriage) speed. This coordinated motion produces a slip 

controlled type experiment. Consideration for the validity of this experiment type must be 

made since a vehicle does not interact with real terrain in a slip-controlled fashion. The 

slip-controlled method has been validated experimentally, except for very small slip 

values near zero and is seen as an acceptable method for performance evaluation [13] 

[49]. See Figure 18 for an example of this work. The SIIA single wheel testbed can also 

be configured for wheel self-propelled experiments (included in this research) where no 

external resistance is applied, resulting in free wheel slippage. Self-propelled mode is 

useful for testing flat ground (no inclination) wheel performance, specifically sand-trap 

scenarios, where vehicle entrapment might occur. 



 
 

 

43 

 

Figure 19: Most wheeled systems see sharp drop in drawbar pull (“DP coefficient”) increase with slip near the 20% slip 
point. The example, in this figure, is from a four-wheel rover operating in GRC-1 lunar soil simulant with various soil 
compaction levels [50]. Evaluating a traction device, such as a wheel or a full vehicle at 20% slip, is a good metric for 
drawbar pull performance before the system enters high slip and therefore in a potentially unsafe operating state. 

Generally, wheel peak performance in loose, granular material occurs between 15-30% 

slip. The drawbar pull, at 20% slip, is a common point of evaluating planetary mobility 

systems [10]. Even though this is the most common traction performance measurement 

point, it might not be the most informative from a sub-surface soil analysis stand point. 

However, as there is no established method for soil motion analysis, the 20% slip 

operating point was chosen for nominal evaluation in this thesis research. Shear 

displacement theory [51] and the stress-displacement response of dry sand [9] suggests 

that the soil reaches peak stress at 20% slip for wheels with contact length and with soil 

shear deformation modulus relevant to planetary vehicles. See work by Rula, et. al, for 

explanation of relationship of contact length, slip and shear deformation modulus [52]. 

Therefore, a physical explanation for soil response that might be visible within the soil 

structure exists at this point. Even though 20% was the nominal evaluation point for this 
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research, many wheel configurations did undergo a full range of slip values (5-65% slip, 

with 5% slip intervals) to observe if behaviors changed with respect to slip. For each 

experiment, at least three repeats were conducted.  

3.8 Other Applications and Visualizations  
The soil displacement data collected, by means of soil imaging, can be utilized for many 

purposes. As the displacement data is digitized and corresponds to many small time steps, 

it can be manipulated for different visualizations. When coupled to soil models, forming 

a hybrid experimental-modeling technique, this data can also be used to infer other 

information that might be desired such as soil stresses. Soil displacement data might be 

valuable in the validation of new, state of the art, wheel-soil modeling methods currently 

being developed.  

 

Figure 20: Virtual coloring of sand particles allows for a visualization of soil shearing and displacement as it interacts 
with the wheel. This visualization allows for easy comparison of shearing magnitude and of soil forward motion 
absolute soil displacement. Note that the soil is pushed forward in step 1 for wheel ‘B’ (flat rim) wheel, while wheel 
‘B’ (grousered) is unaffected.  

The visualization shown in Figure 20 is one example of the many ways of visualizing soil 

motion due to interaction with a wheel. This figure illustrates an intuitive way to observe 

both total and relative displacement of soil. It is useful to look at each time step 

throughout the duration in which the soil cells are being affected by a wheel. In this 
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example, there is a higher total shear displacement of the soil due to the wheel on the left. 

Also, looking closely, wheel ‘B’ shows evidence of soil pushed forward, in step 1 and 2, 

before it contacts the rim (colored soil cells appear to “lean” to the right), while wheel 

‘A’ does not exhibit this lean, but actually “pulls” in the soil. There is much value in 

visualizing the displacement data in multiple ways and many more visualizations are 

possible than are shown in this research. For example, sparsely distributed vector fields 

allow for an alternative view of the same data provided in the SIIA plots of this thesis. 

Sparsely distributed lines representing particle motion over many frame pairs enable 

tracking of soil particles over time. This visualization of absolute soil motion can be used 

for analysis of shear displacement of the thrust and motion resistance portions of soil 

interaction with the wheel.  

Novel hybrid experiment-model methods might be achieved utilizing the SIIA data. This 

type of approach is motivated by the difficulty in predicting soil motion over long 

distances and ground interaction with complex wheel geometries. The research by 

Vlahinic, et al, introduces a method that relies on high-fidelity soil displacement fields 

from SIIA experimentation, coupled with a physics-based computational framework to 

infer soil stress at high spatial density [53]. The method relies on Finite Element 

Modeling (FEM) and a Drucker-Prager (type of material failure criterion) material 

description for the soil model. Measured wheel reaction forces (applied loads) and local 

soil dilatancy (inferred from SIIA) are married with FEM enabling deviatoric stress and 

deviatoric strain to be inferred.  The SIIA data enabled for this novel hybrid 

experimental-model method to be initiated. See Figure 21 for preliminary results. 
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Figure 21: High resolution displacement fields, of actual experiments, can allow for hybrid experiment-modeling 
methods to infer additional information such as soil stress due to wheel operation [53]. 

The low accuracy of traditional terramechanics analytical models, for the purpose of 

planetary rover mobility, stems from assumptions that might not be valid for the specific 

application. Physics based methods, such as Discrete Element Modeling (DEM), do not 

rely on the same type of macro-system level assumptions, but rather on soil particle level 

interactions. This type of modeling calculates forces and displacements due to the contact 

mechanics of individual soil particles representative of actual soil grains. Now these 

simulations can be conducted for particle counts on the order of millions and higher.  
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Figure 22: High fidelity soil displacement plots can be used to validate promising, new soil simulation methods, such as 
Discrete Element Modeling (DEM), that model individual soil particles. Image courtesy of R. Mukherjee, JPL. 

The SIIA soil displacement data provide a unique method of validating these emerging 

simulation methods beyond traditional reaction force comparison (as a common single-

wheel dynamometer provides). In addition to providing a second method of validation for 

DEM simulation software, SIIA provides data to directly compare/validate soil failure 

patterns and strain fields that might be desired as an output of the DEM simulations (see 

Figure 22 for example comparison used for possible validation of DEM). That is, the 

DEM models can provide the same data that SIIA offers, therefore allowing for 

terramechanics studies similar to those as conducted in the results chapters of this thesis 

document. This example demonstrates another application of the SIIA method and the 

inherent value of providing a novel data type, that up until recently did not exist. 

The various visualization types, possible novel hybrid modeling methods and aid in 

development of new wheel-soil software illustrate the potential significance of using 

high-fidelity soil displacement plots. 
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3.9 Summary and Conclusion 
Though much research has been conducted regarding traction of wheels in loose, granular 

terrain, little empirical data exist on the motion of soil particles beneath the wheel. The 

Shear Interface Imaging Analysis experimental method directly addresses this poorly 

understood aspect of terramechanics: what happens to the soil below a wheel in operation 

(see Figure 23 for overview of the technique). This chapter provides details on the 

development of the novel experimentation and analysis technique relying on sub-surface 

soil displacement fields to investigate terramechanics fundamentals in great detail. Shear 

Interface Imaging Analysis (SIIA) provides visualization and analysis capability of soil 

motion at and below the wheel-soil interface.  This method places a wheel (or other 

traction device), in granular soil, up against a transparent sidewall.  While driving or 

towing the wheel, images are taken of the sub-surface soil at a constant frame rate and are 

processed with optical flow software. The resulting soil displacement field is of high 

fidelity and is useful for analysis of specific wheel mechanics and terramechanics 

fundamentals. Identification, of clusters of soil motion, of primary soil shearing planes 

and soil motion direction/magnitude enables analysis of mechanisms governing traction. 

The Shear Interface Imaging Analysis tool visualizes soil motion in richer detail than 

possible before and allows for deeper investigation of the mechanics involved in wheel-

terrain interaction.   

The SIIA technique forms the experimental method that this research follows to produce 

the results in the coming chapters of this thesis. Both example results given in this 

chapter and the detailed results in the following chapters, show the SIIA method is a 

valuable tool for both design of traction systems and for research of terramechanics 

fundamentals. 
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Figure 23: Recap of SIIA technique. Flow chart of critical steps of the Shear Interface Imaging Analysis (SIIA) 
technique. (A) Wheel module, carriage and glass-walled soil bin. A cross-section of soil below the wheel is imaged via 
high-speed camera. (B) Image from high-speed camera taken of soil seen through glass wall. Subsequent image pairs 
are fed into image processing software to produce useful output. (C) Image processing steps produce soil velocity and 
shear interface output plots. (D) Example Shear Interface Imaging Analysis plots generated.  
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4 Examples of Direct Observation of Soil Motion Behaviors 

4.1 Approach 
The SIIA technique is used to gather data to form a survey of wheel induced soil motion 

behaviors over a range of common wheel types and vehicle parameters. This approach is 

undertaken to reveal the nature of these soil behaviors, such as the general state of 

knowledge, variation between wheel types and possible influence on traction. 

Experimentation is the preferred method for this study as analytical terramechanics 

models do not recognize or predict distinct soil behavior between many wheel forms and 

operating points, such as grousered wheels or changes in slip rate. 

To show that the soil behaviors differ between wheel types, numerous specimens and 

operating points were investigated. These wheels are selected to represent a reasonable 

range of commonly implemented wheel types considered in the design space of planetary 

vehicles and in vehicle states that are encountered. Figure 24 shows example wheels and 

systems that represent the range that the study covers. This survey is not intended to be 

comprehensive, but to reveal some differences in soil processes between wheel types, and 

to have a sufficient breadth of soil behaviors as to reveal general characteristics that 

might occur during planetary rover wheeled mobility. The wheel types studied, due to 

their prolific use in planetary robotics, are rigid, compliant, small/large diameter, and 

grousered. The effects of unique locomotion modes such as push-roll are also studied in 

an effort to show key soil motion behavior differences that have large effects on traction; 

not due to common use. 

Each wheel specimen underwent testing in soil simulant, at loads (payload), and at 

operating conditions (slip rate) relevant to planetary rover applications. All reaction 

forces (including net traction) are measured as well as sub-surface soil particle motion, to 

produce a snapshot of wheel state and soil motion behaviors that might influence the 

measured traction. Refer to Table 3 for experiment type and corresponding test 

configurations for which results are shown in the next sections.  
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Figure 24:  Common wheel types and alternative locomotion modes within the soil behavior survey conducted. Note, 
these are not the specimens tested. (A) Compliant wheels, such as Lunar Roving Vehicle (LRV) are shown. (B) Rigid 
wheels shown; Mars rovers Sojourner, MER and MSL wheels pictured. Image credit [54].(C) Wheel diameter study 
specimens. (D) Example locomotion mode that might affect soil behaviors. Vehicles capable of “Push-roll” locomotion 
shown (top-left image credit [55]). 

To summarize, the approach followed at the stage of the research of this chapter 

investigates the nature of wheel-induced soil behaviors by directly observing sub-surface 

soil motions of a variety of common wheel types and operating scenarios. The analysis 

focuses on soil motion behavior variation between wheel types, consistency of findings 

with literature and if observed soil behaviors have been documented during prior 

research. These metrics provide a categorization to show the general status sub-surface 

soil behaviors have in current terramechanics research and the potential influence on 

traction. 

Table 2 summarizes the survey portion of this thesis and of all subsequent research in this 

thesis (remaining results chapters). Also, this table can be looked at as an overview of the 
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research conducted to satisfy results needed to prove or refute the thesis statement made 

in Section 1.3.1. 

Table 2: Wheel Aspects Studied at Each Step of Approach of Thesis Research 

 

 

Table 3: Soil Behavior Survey Test Configurations 
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4.2 Experimental Results – Survey Over Range of Common Wheel Types 
Most of the soil response behaviors observed in this chapter are either unaccounted for by 

terramechanics analytical models, might be documented for the first time as a result of 

this work or are inconsistent with literature. These behaviors are listed to illustrate the 

wide range of processes occurring underneath a wheel and to point out that most are 

unexplained to date. The goal is, that by bringing attention to these behaviors, it will be 

apparent that further understanding is needed and that an explanation of how the 

behaviors are related to traction might lead to improved design or models.  

Table 4 provides examples of SIIA results from the wheel survey and they show that the 

sub-surface soil motion behaviors vary widely over wheel type and are inadequately 

understood. The lack of understanding is evident due to inconsistency with literature, lack 

of previous direct observations and lack of accounting for in models. After Table 4, 

sections 4.2.1-4.2.6 elaborate on the survey and provide specific support for concluding 

that the observed soil behaviors are not adequately understood and warrant further 

research.   
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Table 4: Example SIIA plots displaying sub-surface soil motions of numerous wheel types and a locked/pushed wheel. 
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4.2.1 Rigid Wheel 

 

Figure 25: Rigid wheel with simple geometry rim; flat profile with sandpaper surface. Both instantaneous and average 
soil motions are shown to allow for easier visualization of soil processes such as forward flow. 

 

It is evident from the soil displacement plots of, Figure 25, that the soil fails sharply at 

the shear interface and that large soil motion occurs within this region; however, there is 

forward motion of the soil in front of the wheel. The soil failure is not of “grip” type (i.e. 

slip plane at rim-soil interface) and the shear interface does not terminate beyond the rear 

contact region, but rather at the wheel back contact point. Both of these observations are 

inconsistent with terramechanics literature, but are observed for all wheel types 

throughout this research. Bekker assumes grip failure for rolling wheels [14] while, when 

non-grip failure has been applied to wheel theory, a passive Rankine zone is assumed to 

exist and to provide thrust [56]. A passive Rankine zone, which typically has a 

logarithmic spiral shape extending behind the wheel, is only observed for the pushing 

wheel in Figure 35 and Figure 36. The confinement of the shear interface to wheel 

contact might not have been previously observed. Research by Wong, relied on long 
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exposure film, which was not accurate at measuring direction of motion [45]. The 

inability to accurately determine where the shear interface is located might have occurred 

due to small soil motions outside the primary shearing planes. 

The shape of the shear interface, the point at which it originates at the rim, the point at 

which it terminates at the wheel rear and the complex path soil motion follows, all 

indicate failure type not described by existing theory. It should be noted that although 

there is a distinct shear interface, the soil shearing distance at the shear interface is well 

below the shear modulus of the soil (GRC-1; shear modulus = 1.8-2.5cm). The above 

observations and measured soil displacement suggest that the soil, at the shear interface, 

might not undergo a simple failure determined by shearing distance and by shear 

modulus.  

Wheel models that account for slip and use soil displacement to predict thrust, do so as a 

result of research introduced by Onafeko and Reece. The assumption is that soil develops 

thrust are based on this derivation of shear distance, even though soil is not guaranteed to 

follow the rim motion. The SIIA results, for the small diameter rigid wheel, show that the 

soil motion along the shear interface, takes a path quite different from that of the rim. 

This observation and the examples of inconsistencies with literature given above, show 

that the sub-surface soil failure planes and soil motion processes present might be 

inadequately understood and that direct analysis of these behaviors could lead to new 

explanation of traction processes.  
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4.2.2 Large/Small Diameter Wheel  

 

Figure 26: 41cm and 23cm diameter rigid wheels shown. Both are 5.72cm wide and have a flat profile rim with a 
sandpaper surface. All results shown for controlled slip tests, at 20% slip and 5kg total payload. 

A comparison of the two wheels of different diameters shown in Figure 26 was 

conducted. The tractive performance, using the drawbar pull metric, measured a 33% 

increase in net traction for the larger diameter wheel over the smaller. The behavior of the 

soil motion between the two wheels also is observably different. 

Figure 27 shows that the larger diameter wheel has a shear interface, with lower 

magnitude of soil motion and motion direction that is more horizontal compared to the 

smaller diameter wheel. Benefits of soil shearing induced by rim rotation that is produced 

opposite the direction of travel (horizontal) might exist and therefore contribute to the 

increased drawbar pull of the larger wheel. The soil particles need not shear as much 

when only acted on horizontally, opposite the direction of travel. A lower shearing 

magnitude creates a larger portion of the shear interface that can operate at the peak stress 

of the stress-strain curve of the soil (loose, granular soil shear strength peaks at low shear 

strain). To note, contact length and average contact pressure are similar and are not any 

lower for the larger wheel (Figure 28). 
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Figure 27: Variation of shear interface with change in wheel diameter for 20% slip tests (both wheels commanded 
identical rim tangential speed and ground speed). Soil velocity magnitude for both diameter wheels are equally scaled. 
The large wheel shows nearly horizontal soil motion compared to large changes in direction (down then up) under the 
small wheel. Note the contact length, of both wheels, are similar, however the drawbar pull is quite different. 

 
Figure 28: The contact length of the two wheels are similar. The larger diameter wheel has a 6.4cm contact length, 
while the smaller wheel has a 7.7cm contact length.  

Increased sinkage of the smaller diameter wheel is most likely due to a thicker shear 

interface that is removing soil from underneath the wheel at a higher rate. Unless the 

smaller wheel replaces soil at a higher rate than the larger wheel, then greater sinkage 

develops. It is likely that the smaller wheel actually replaces soil at a lower rate than the 

larger diameter wheel, as it can be seen that more soil is pushed forward instead of being 
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directed underneath the wheel. Other researchers have noted that the excavating 

mechanism underneath a wheel is the most likely cause of slip induced sinkage. Wong 

made these comments with respect to sub-soil imaging results [45], while Reece drew 

these conclusions from conventional performance testing [57]. Differences in soil 

velocity magnitude, direction and accurate measurement of shear interface thickness, are 

obtained for the first time from research conducted in this thesis. The SIIA results show 

that the smaller shear interface, lower magnitude and horizontal soil motion might be 

responsible for the smaller sinkage of a larger diameter wheel.  

 

Figure 29: Forward motion at wheel front is evidence of motion resistance (see “yellow” patch). The smaller diameter 
wheel has a larger area of forward flow, which is expected.  

The lower sinkage of the large diameter contributes to the lack of observable forward 

flow (Figure 29). Lower resistive flows likely contribute to the increase in measured 

drawbar pull as well as a possible increase in thrust due to a different shear interface. 

4.2.3 Compliant Wheel  
Experiments were conducted using a 23cm diameter compliant wheel with sandpaper-like 

tread (unloaded diameter). The compressible foam material, used in construction of the 

wheel did not produce uniform contact pressure as a pneumatic tire would, however, a 

flat contact length was achieved. 

Many observable differences, between the rigid wheel and compliant wheel, are present 

in Figure 30. The direction, of the soil displacement, is near horizontal for all soil 

underneath the wheel (Figure 31). The horizontal soil motion might occur due to the 

extraordinary low sinkage and the flat shape of the contact along the length of the 

deformed rim.  
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Figure 30: Plots A and B are at the same scale, while plot C is approximately 1/6th full scale. Drawbar pull controlled 
experiment results shown for a compliant and a rigid wheel of equal non-deflected diameter and width. Both wheels 
(rigid and compliant) have the same constant external horizontal load applied (0.15 pull coefficient). Different slip rates 
and soil response are observed between the two wheels. 6-8 times magnitude of motion velocity is seen along the shear 
interface for the rigid wheel. The slip rates are 5% and 26% respectively for the compliant and rigid wheel. The angular 
velocities of the two wheels are equal. 

 

Figure 31: Nearly horizontal motion of soil displacement seen under the compliant wheel while the rigid wheel 
interaction causes a wide variation in direction with steep up and down motion. However, both wheels are generating 
similar drawbar pull loads (slightly lower for rigid wheel in these test cases). The slip rates are 5% and 20% 
respectively for the compliant and rigid wheels.  

The soil velocity magnitude of the compliant wheel is less than 1/6th that of the rigid 

wheel (Figure 30) and the ground speed of the compliant wheel is 1.28x that of the rigid 
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wheel. Therefore, the approximate maximum shear displacement of the soil underneath 

the rigid wheel was 8x that of the compliant wheel. According to shear displacement 

theory utilized in terramechanics modeling, the thrust produced by the rigid wheel should 

be 8x that of the compliant wheel due to the higher shear displacement [51] and because 

the average ground pressures are similar. However, the drawbar pull of both the wheels is 

similar (identical for tests of Figure 30). The rigid wheel likely has higher motion 

resistance than the compliant wheel. However, this cannot account for the significant 

differences in the theoretical drawbar pull of the two wheels based off soil displacement 

measurement. These differences in shear interface characteristics between the two wheel 

types and the inconstancies with theory, raise the question of the role the different soil 

motion patterns and sol failure patterns might play in governing traction. 

4.2.4 Grousers 

 

Figure 32: Time-lapse images (top to bottom) of soil shearing by a wheel with grousers over two cycles; two grouser 
plunges (velocity magnitude plot shown). Distinct, periodic soil motion are present as each new grouser rotates into the 
soil . Wheel travel is to the right. The three grousers in contact with the ground in the first image are denoted by a red, 
yellow and blue dot to aid in visualizing motion.  



 
 

 

62 

Grousers are often employed in wheel designs for planetary rovers. Grousers are paddle 

like protrusions from a rim designed to engage the soil. The effect of soil shearing can be 

studied when analyzing these features. Figure 32 shows the periodic nature of soil 

shearing due to individual grouser affects. It appears that the grouser at the front of the 

wheel entering the soil has the greatest effect. Also, experiments with very close spaced 

grousers showed similar results and exhibited periodicity proportional to spacing. As the 

optical flow algorithm utilizes overlapping image pairs, high fidelity movies of the 

grouser shearing effects, can be utilized to observe individual grousers interacting with 

soil as the rim rotates. This capability records the time varying soil shearing processes for 

the first time. Periodic forward flow was also observed for grousered wheels (Figure 33) 

and corresponded to periodic loss of drawbar pull measured  

 

Figure 33: Periodic forward soil motion at the wheel leading edge was observable for most grousered wheels evaluated 
in the survey. Soil forward motion and periodic drawbar pull behavior might be associated with a loss of traction. In 
general, the shear interface rearward of the front region, is remarkably similar to the same wheel without grousers 
(Figure 25). Two grousers are indicated by blue dots to aid in visualization of motion. 
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Figure 34: Forward motion of soil is not observed (or significantly smaller) for grousered wheels (B) of higher drawbar 
pull. The grousered wheel shown is of a configuration that significantly reduces forward motion of soil in front of the 
wheel leading edge and generates high drawbar pull. Pull coefficient are 0.21 and 0.32 for the grouserless (A) and 
grousered (B) wheel respective (as shown in figure). 

The traction performance of the wheel without grousers (Figure 34A) and of the same 

wheel with 48 grousers at 13mm height (Figure 34B), act as extremes of the grousered 

wheel configurations and of the drawbar pull performance of grousered wheels tested. 

The studying of these two cases leads to an important realization; the soil displacement 

behavior, of the grouserless wheel Figure 25 and the 48 grouser wheel (Figure 34), are 

very different at the leading edge of each wheel. The Figure 34A direction plot, no 

grousers, shows a yellow patch of soil in front of the wheel that moves in a horizontal 

direction forward. This soil motion is evidence of possible motion resistance that would 

be reacted against the rim. Motion resistance would reduce the drawbar pull of the wheel. 

However, a wheel with high drawbar pull utilizing high performance grouser parameters 

(Figure 34B), does not show evidence of forward soil motion at the wheel leading edge.  

The rear and bottom shear interface (regions except for front), of grousered and non-

grousered wheels, are quite similar. In fact, they are offset by the height of the grouser. If 

it is assumed that in the region rearward soil motion, the grousers are full of compacted 

soil, it will act like a wheel of larger diameter (only for the rearward region, not front 

entrance area). Differences in shear interfaces, can cause significant changes in thrust. 
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However the failure modes are of the same type for both shear interfaces observed. As 

such, the gain in drawbar pull due to implementation of grousers might be dependent on 

the reduction of motion resistance, indicated by a lack of forward soil motion observed 

for high performance wheels.  

Chapter 5 presents an in-depth analysis of this topic conducted during the thesis research, 

and therefore limited observations and explanations are provided in this section. 

4.2.5 Push-Roll 

 

Figure 35: Shear interface analysis comparing rolling wheel to a pushing (non-rotating) wheel utilized in push-roll 
locomotion. The rolling wheel travels to the right at 20% slip. A “ground failure” type response of the soil is observed 
for the pushing wheel, identifying a source of tractive gains. Force measurements show that the pushing wheel can 
generate multiple times the trust, of a rolling wheel, for the same resulting affect on sinkage (see Chapter 5.3). Soil 
velocity magnitude plots are scaled differently between pushed and rolling wheel. 

To investigate the effect of the rotating rim on the generation of thrust, a study comparing 

pushing locomotion to rolling locomotion was conducted (Figure 35). Push-roll 

locomotion (use of non-rolling and rolling wheels) has been demonstrated to produce 

high drawbar pull for increased mobility [43] [44]. 
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Figure 36: The pushing wheel has a horizontal displacement 6mm and 0.8mm sinkage, generating a pull coefficient of 
0.32. The rolling wheel is generating zero drawbar pull (0 pull coefficient) and is operating at high slip in a self-
propelled state. This wheel is at 60% slip and 40mm slip sinkage, therefore it might be close to entrapment. It should be 
noted that the sinkage visible in the pushing wheel plot, is almost solely due to the wheel rolling before the pushing is 
initiated. Rolling prior to pushing mimics the push-roll type locomotion motions of a suspension. Soil velocity 
magnitude plots are scaled differently between pushed and rolling wheel. 

 
Utilizing SIIA, it was shown that the soil failure mode, of the pushing wheel, was 

different from that of a rigid rolling wheel. These key differences can be observed in 

Figure 35 and Figure 36. Large differences in the direction and shape of the shear 

interface are evident. The soil beneath the rolling wheel appears to follow the shape of 

the wheel in a direction somewhat tangential to the wheel rotation. The failure occurs 

close to the wheel-terrain contact and is confined to the wheel contact area. However, the 

pushing wheel produces a much different response in the soil and a much larger thrust 

(see Section 5.3.3. for measured thrust). The soil displacement occurs as a unified mass 

moving together in the same direction and magnitude. The shear interface extends well 

beyond the contact region and looks like the shape of a logarithmic spiral failure (slip) 

plane that is common in soil mechanics theory [58]. Bekker describes this soil response 

as “ground failure” [14]. 
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Terramechanics theory does not discriminate between soil failure modes and therefore 

cannot account for this. It is likely that the thrust mode being generated by a bevameter or 

direct shear test apparatus actually creates a soil failure mode that is similar to that of the 

pushing wheel, not to that of the rolling wheel which it is used to represent. These types 

of apparatus that measure the effective internal angle of friction, φ, for a wheel are flat 

plates that move more similar to the pushed wheel. This issue is of concern as these 

values are widely used for terramechanics models to predict rolling wheel traction in 

loose, granular soil.  

Push-roll locomotion and the pushing wheel are studied in depth in Chapter 5.3 therefore 

limited observations and explanations are provided in this section. 

 

4.2.6 Slip Rate 

 

Figure 37: Drawbar-Slip curve with corresponding soil velocity magnitude plots at 5% slip intervals (see value above 
inset plots). Distinct changes in soil shearing behavior at key slip (0.2) and load points are observed. Wheel motion is 
to the right. 

 
The degree of wheel slippage affects not only the net traction produced, but also the soil 

behavior below a wheel. Figure 37 shows the drawbar-slip curve for a small diameter 
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rigid wheel. The shape of the curve is typical of many wheels in loose, granular soil 

relevant to planetary vehicles. A common trend is a knee in the curve that occurs near 

20% slip, where afterwards, the rate of increase in drawbar pull declines. The shape of 

the curve is still highly dependent on the specific wheel design and currently there is no 

method to predict the shape. 

There are distinct changes of the wheel induced soil motion at key points of the drawbar-

slip curve shown in Figure 37. Three important observations can be made: (1) the shear 

interface size and shape do not change between 0.05 and 0.20 slip ratio, although the 

drawbar pull produced quadrupled. (2) From 0.05 to 0.20 slip ratio, the soil motion 

velocity, within the shear interface, transitions from a low gradient motion (implying 

shearing) to a region with near zero gradient inside the shear interface (moving as a 

whole) and to a sharp gradient at the shear interface. (3) Above 0.20 slip ratio, the 

forward flow appears to diminish while the shearing zone (region within shear interface) 

begins to reduce in depth (see Figure 38 for a clearer example). There are a number of 

hypotheses that can be made from these observations. First, the shear interface (outer 

extent of soil affected by shearing) might primarily be governed, not by the applied 

drawbar pull load, but by the shearing induced by the rotation of the rim. Also, the extent 

of the soil shearing even at low slip and low thrust load (0.05 slip and lower), is similar to 

that at 0.20 slip ratio. Therefore, it may not be the horizontal thrust loads that produce the 

soil failure planes, but rather the forced displacement due to the rim curvature and 

sinkage.  

A second hypothesis states that the knee in the drawbar-slip curve (at 0.20 slip in this 

example) might occur when the soil shearing is fully developed within the shear 

interface. Operating at a slip ratio above 0.20 appears to transition, from a thrust 

generation type behavior of the wheel and to an excavation behavior at increasing slip. 

Further slip, beyond 20%, might result in increased drawbar pull by a different 

mechanism other than from thrust generated within the shear interface. Additional slip 

might reduce motion resistance due to soil transport at the wheel leading edge. 
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Figure 38: Major observations of effects of slip on shear interface and soil motion.  A wheel operating at a medium and 
high slip rate are shown. The wheel velocity magnitude plots are normalized by ground speed and are at equal scale, 
allowing for direct comparison. 

It is observed that the soil at the leading edge of a wheel that is pushed forward, reduces 

in magnitude and in the amount of soil engaged with increased slip. The wheel, operating 

at 20% slip (Figure 38), appears to push forward more soil, at a higher velocity, than the 

same wheel at 60% slip. Soil transport is a function of slip due to the fact that rim 

rotation, relative to stationary ground can cause soil motion. That fact and the observation 

of reduced forward soil motion, lead to the conclusion that soil transport due to 

increasing slip is a mechanism which slip can reduce motion resistance. There are other 

considerations, such as sinkage, when discussing mechanisms affecting motion 

resistance. However the realization that slip induced soil transport has a strong influence 

cannot be understated.  

Both Figure 37 and Figure 38 show soil transport at the bottom of the wheel, increasing 

with slip. Soil transport, at the wheel bottom, would have an effect on traction as well as 

increasing sinkage by excavating below the rim. This trend was observed during all tests, 
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over a range of slip values. An ideal wheel design would remove soil from the wheel 

leading edge while simultaneously not creating excessive soil transport from underneath 

the rim. A grousered wheel can be configured to address these two issues. 

Soil transport is not accounted for in terramechanics theory, and there are few 

investigations of sub-surface soil motion induced by a wheel. Bekker and Wong have 

conducted a small number of tests, looking at sub-surface soil motion, using long 

exposure film [5] [14]. This measurement method had low fidelity and could not produce 

visualizations that allow for many of the observations presented in this thesis. However, 

Wong concluded that the performance, of a wheel and the soil motion below a wheel, are 

closely related and that theory must be established to reflect soil motion.  

 

4.2.7 High Sinkage 

 

Figure 39: A material of very weak bearing and shear strength (Fillite) was used to demonstrate a high sinkage scenario 
where self-propelled travel is difficult. The grousered and grouserless wheels travel at 30% and 60% slip respectively 
(zero drawbar pull, self-propelled equivalent). High slip and sinkage resulted. The process of soil transport, at the 
wheel leading edge, can be observed and plays an increasingly important role in a high sinkage state. 
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It is evident from the SIIA plots, in Figure 39, that the soil in front of a wheel plays an 

important role in the traction process under high sinkage. These wheels are operating in 

the self-propelled state where the magnitude of thrust and motion resistances are equal 

and opposite. This is a scenario where self-propelled motion is not trivial since sinkage is 

significant enough to result in immobilization. It can be seen that soil in front of the 

wheel leading edge could create significant resistance to forward travel, therefore a wheel 

must manage this wall of soil since it is the only external force to overcome (when in a 

self-propelled state). 

Two different wheel types are shown in Figure 39. Both wheels, grousered and 

grouserless, are operating in a self-propelled state but at different slip rates. These tests 

are conducted without slip control or any external load, therefore the resulting slip is 

naturally occurring. The grousered wheel, being more capable of transporting soil from in 

front of the rim (due to grouser sweep), appears to have lower magnitude of soil pushed 

forward at the wheel leading edge. This may be the mechanism that results in lower slip 

in a self-propelled state.  

Although not fully supported by these experiments, a wheel, already operating at high 

slip (>20%), likely has to increase slip in order to reduce soil being pushed forward to 

match the thrust that has been generated.  
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Figure 40: Constant slip tests, in a high sinkage material (Fillite), with groused and grouserless wheels both operating at 
60% slip. Soil velocity magnitudes for both wheels are equally scaled. 

It is evident, from the two wheels in Figure 40, that the soil motion, in front of a wheel 

(leading to motion resistance), is governed primarily by rim feature design (such as 

grousers) and operating point (such as slip) and not by solely by sinkage and wheel radius 

as terramechanics theory states [4]. 

The SIIA plots, shown in this section, provide another example of a sub-surface soil 

motion due to the influence of a wheel that has not before been directly observed. 

Previous soil imaging work did not look at soil motion due to different wheel designs [5]. 

The soil transport, that affects pushing forward of soil, is poorly understood and is not 

accounted for in terramechanics models. Soil transport is seemingly very important as it 

could account for the difference in self-propelled slip of the two wheels shown in Figure 

39 and Figure 40. 
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Figure 41: Soil m
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4.3 Conclusion and Discussion 

4.3.1 Conclusion 
The survey of sub-surface soil motion behaviors due to the influence of common wheel 

types were revealed to be varied, generally inadequately understood and to possibly have 

significant influence on traction. The examples provided show that because most soil 

motion behaviors are either inconsistent with the literature, have not been observed 

before and are usually not accounted for in terramechanics models, that there is a general 

lack of understanding of how they affect traction. The objective of this chapter and the 

survey of soil behaviors, was to show the nature of these behaviors and that there is 

motivation to investigate specific phenomena. The discussion of some of these soil 

motion behaviors observable using SIIA, shows that soil motion must be taken into 

account if accurate prediction of performance is expected and if reasonable assumptions 

are to be made. 

This is a strong impetus for further work that studies what happens underneath a wheel 

operating in loose, granular materials. The experimental results in the next chapter show 

that by, example of the grousered wheel type and a locomotion mode (push-roll), how 

research into wheel induced soil motion leads to the explanation of mechanisms by which 

they govern traction. This information is then used to improve design and traction device 

performance. 

4.3.2 Discussion 
The experimental results of this chapter present some interesting information about how 

wheels might operate and highlight a general lack of understanding about specific 

processes governing traction. Also, it is obvious that details about wheel stiffness, tread 

geometry, diameter, operating point (e.g. slip, sinkage) and many other aspects, have a 

profound affect on soil shearing, which in turn must influence thrust and resistance. 

We see that results vary from the canonical simple wheel case, yet this is used to 

represent all wheels. Assumptions that only discriminate between contact area, are not 

truly accounting for the actual contacting surface (e.x. round, flat, lugged). Also, aspects 
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commonly thought of as being of much higher importance than other wheel parameters, 

such as contact area and payload, do not appear to have the most overpowering effect on 

soil shearing structure.  

It is also important to realize some of the many specific results. Studying wheels under 

varying slip rate and at high sinkage highlights soil transport, due to wheel rotation, as a 

mechanism that might play a major roll in traction; sinkage induced by slip affects 

resistance, while similarly, soil transport at the front of the rim can reduce traction by 

moving soil out of the wheel path. The shear interface shape of the rigid wheel is vastly 

different from that of the compliant, flat contact wheel and from that of the pushed wheel. 

Creating designs that could somehow achieve the shear interface of a high drawbar pull 

device, such as the pushed wheel, may produce wheels of extraordinary performance. 

These examples illustrate how studying soil motion behaviors could forward 

understanding and give insight into wheel-soil mechanisms that play important roles in 

traction. 
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5 Study of Soil Behaviors Governing Traction and 
Application to Design 

5.1 Introduction  
To show that behaviors of observed sub-surface soil motions influence traction and are 

important in understanding the operation of wheels in loose, granular material, the study 

of a wheel type and a locomotion mode are presented. Section 5.2, Grouser Mechanics, 

presents the study of the function of grousers and introduces design guidelines to achieve 

high performance based off SIIA observed traction processes. Section 5.3, Push-Roll 

Locomotion, investigates a non-typical locomotion mode to discover the sources of 

traction gains measured during full vehicle experimentation. The findings explain how 

this locomotion mode is able to produce high thrust and how best to implement for 

difficult surface materials.  

The findings presented in this chapter highlight the importance of recognizing these 

insufficiently understood soil motion behaviors and show that better design can be 

achieved by accounting for specific wheel induced soil motions during analysis. 

5.2 Grouser Mechanics 

5.2.1 Introduction and Background 
The use of features on the rim of wheels, such as grousers, has been relied upon for 

increasing traction of planetary rover mobility platforms in a wide range of applications. 

Performance measurements for use in loose, granular soil, have shown tractive gains for 

many implementations of these features [59] but little empirical data exist on the 

mechanisms present in the soil that contribute to increases in mobility capability. 

Additionally, there exists no well-supported theory pertaining to the soil failure 

characteristics created by wheel operations with grousers. As such, grousers are a poorly 

understood but commonly implemented design aspect of wheels for planetary rovers and 

other systems traversing loose, granular soil. Of theory that exists, no direct empirical 

evidence has been offered to validate the soil failure that governs how thrust is generated 

by grousers. 
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Figure 42: Rigid wheels with grouser implementations deployed to Mars. From left to right: Mars Exploration Rover, 
Sojourner, Mars Science Laboratory. Image credit [54]. 

The two soil failure types, shown in Figure 43, are commonly accepted and used in 

modeling of wheels with grousers. The left diagram, (A), shows soil shearing between 

immediately neighboring grouser tips. As soil has filled the spacing between the grousers, 

the effect on soil interaction below the wheel, is that of a slightly larger diameter wheel 

with an increase equal to two grouser heights. Bekker illustrates this soil failure type as a 

curved line of radius of the wheel radius, plus grouser height. He refers to the soil failure 

as a “grip” type failure [4]. The expected effect on traction would be to increase the rim-

soil coefficient of friction (immediate rim to soil contact) and to have gains associated 

with a larger wheel diameter. It has been previously shown that the traction gains, when 

utilizing grousers, exceeds that of a larger diameter wheel due to the additional height of 

the grousers [60] [61]. Therefore, it has been previously concluded that the wheel with 

grousers does not simply increase drawbar pull by increasing the effective diameter.  
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Figure 43:  Theory of the mechanics of grouser interaction with the ground is shown. Wong and Bekker describe two 
types of soil failure processes a wheel with grousers follow. (A) Soil shears along a straight line that occurs from 
grouser tip to tip. (B) Passive soil stress region, of which soil failure follows a line from tip to ground surface along a 
line of angle 45° - φ/2. Shown here are figures from [9] 

 

Diagram (B), of Figure 43, represents the passive soil stress state from conventional soil 

mechanics theory derived for bearing capacity and retaining walls [58]. Applying this 

method to a wheel, implies a failure plane along a line from the grouser tip to the soil 

surface at an angle of 45° - φ/2 from the horizontal (where φ is the internal angle of 

shearing resistance). The angle of the failure plane is constant and is dependent of soil 

properties. For loose GRC-1 this angle is as low as 30°. It should be noted that, for this 

type of failure to occur, very large grousers with large spacing would have to be 

implemented, to allow for a passive soil stress state to occur. 

As these two failure types are simple to describe, the soil response plots from Shear 

Interface Imaging Analysis should allow for easy identification of either of the 

characteristic shearing types if present during actual wheel operation. 

5.2.2 Approach  
The experimental approach was conducted in two stages. First, preliminary tests to 

survey general grousered wheel soil behavior were conducted. These tests were used to 

identify major differences in characteristics compared to a wheel without grousers. 

Additionally, large changes in spacing were examined to determine what major sub-

surface soil motion behaviors changed with the spacing parameter. The preliminary 
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results were used to assist experiment design of the second stage of the grouser 

mechanics research. 

The second stage was a comprehensive experimental campaign to associate changes in 

wheel induced soil motions with changes in grouser parameters: height and spacing. 

Twenty-five different wheel/grouser configurations were evaluated using SIIA and wheel 

force measurements (Table 5). These results were used to identify possible grouser 

induced traction mechanisms and were used to associate these mechanisms with 

configurations of high measured drawbar pull.  

5.2.3 Methodology 
The test configuration, for single wheel force measurements and SIIA sub-surface soil 

motion analysis varied only in wheel configuration and soil type. For all experiments, a 

slip controlled test type was applied. The wheel tangential rim velocity was 1cm/s and 

slip was held at 20% (carriage speed varies to control slip). A 23cm and 41cm diameter 

wheel, each 5.72cm wide (11.43cm effective width), were the two wheel sizes utilized in 

experimentation. These wheels were both rigid, flat rim profile, and with a sandpaper 

surface. Grousers, fabricated from aluminum angle stock (‘L’ shaped), were mounted to 

the wheels to form many different configurations. The total vertical load on both wheel 

types was 10kg (consisting of added deadweight, plus weight of the wheel module). The 

10kg payload was applied to the wheel creating an average ground pressure of 22kPa for 

the small, 23cm diameter wheel in GRC-1 soil simulant (by measuring contact area at 

20% slip, without grousers). This ground pressure is relevant to planetary vehicles, such 

as the NASA Mars Exploration Rovers [62]. The single wheel imaging test bed was 

prepared with GRC-1 lunar soil simulant or Fillite material before each test run. The soil 

is loosened to a state of lowest relative density and slightly compacted by use of a drop 

tamper method to produce repeatable soil properties. Shear strength measurements were 

taken after each soil preparation to verify consistent strength properties. Specific strength 

values were not required for the research type experimentation conducted. A torsional 

shear strength tester, modified for constant normal pressure control was utilized [63]. The 

Fillite did not undergo any compaction after loosening, as the very low density, due to 
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hollow particles, would create dust hazard to health. Shear strength, for this material, was 

not measured the as strength is too low for in-situ measurement tools available. 

 

Figure 44: Example rigid wheel with grousers in GRC-1 soil simulant at 20% controlled slip in the single wheel test 
apparatus. The median value during the steady state region of measured drawbar pull is used for evaluation to compare 
amongst grousered wheel configurations. 

Wheel reaction forces were measured using a 6-axis force/torque sensor [64]. The 

horizontal force in the direction of travel, called drawbar pull, was used for evaluation of 

traction performance. The median value of drawbar pull, during steady state response, 

was the value used to compare amongst different wheels (see Figure 44). The median 

value is a simple method for direct comparison of the grousered wheels since a similar 

drawbar pull-time response type of periodic response occurs. Using the median value to 

compare to other wheel types that do not have large amplitude, periodic responses such 

as a compliant wheel, could be problematic. Using the median drawbar pull value is not 

an appropriate method to compare very different wheel types or to estimate vehicle 

performance, such as slope climbing ability. The 25th percentile would be a suitable and 

more conservative method for estimate of vehicle performance. 
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5.2.4 Experimental Results 

5.2.4.1 Preliminary Experimental Results 
Preliminary experiments were conducted to look at wheel induced soil motion that occurs 

from grouser interaction. A single wheel diameter (23cm), two grouser spacings and a 

non-grousered wheel were compared. Basic soil responses were observed that resulted in 

important conclusions.  

Two wheels, with different grouser configurations, are shown in Figure 45. One wheel 

was selected to represent a design following a common spacing rule of thumb where at 

least two grousers are in contact with the ground. The other wheel had a closely spaced 

configuration that might force ‘grip’ soil failure. Both wheels have grousers of 13mm 

height.  

There are important observations, made from Figure 45, regarding the understanding of 

grousered wheel function. Periodic soil motions, induced by wheel rotation and a periodic 

response in drawbar pull are measured (Figure 46). The distinct periodic soil motion 

events and the major peaks of the drawbar pull have a period proportional to grouser 

spacing. The periodic nature of the soil motion response and the measured reaction forces 

suggest that the ‘grip’ type soil failure behavior, as suggested by Bekker, is probably not 

the dominant behavior in governing grousered wheel traction. Non-periodic soil and 

drawbar pull response would be expected, if a wheel simply acted as larger diameter 

wheel when grousers are added to a rim. 
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Figure 45: Wheel ‘A’ has 12 grousers and at least two are in contact with the ground at any time. Wheel ‘B’ has 24 
grousers and at least 4 are in contact with the ground at any time. Wheel motion, is to the right (clockwise wheel 
rotation) and is at 20% slip. Soil motion velocity magnitude plots, of major soil shearing events in a cycle, are shown; 
denoted as ‘1’ and ‘2’. Frame 1 is when the leading edge grouser first fully engages the soil and full rim contact occurs. 
Frame 2 is shortly after when this grouser displaces the soil due to slip. These two distinct soil motion characteristics 
repeat periodically. 

The two wheels, in Figure 45, exhibit similar soil motions throughout the cyclic 

processes. A cycle consists of the duration when a grouser engages new soil, to the time 

the next grouser meets the ground. The only difference between the two wheels, when 

assessing the SIIA magnitude plot, is the period of the soil response. This observation is 

important, as the measured mean drawbar pull of the two wheels is significantly different. 

Figure 46 shows a higher mean drawbar pull for the wheel with more grousers (pull 

coefficient of 0.24 versus 0.17). There is no mechanism observable, from these 

experiments to suggest why one wheel might generate more traction than the other. There 



 
 

 

82 

is no obvious mechanism of increasing thrust due to the grouser implementation of higher 

drawbar pull. Evidence of increased thrust would likely take the form of a larger shear 

interface that engages more soil. However, these observations do not preclude the 

existence of a mechanism to increase thrust that results in the two wheels having different 

drawbar pull characteristics.  

 

Figure 46: The drawbar pull is shown to be periodic for wheels with grousers. For these wheels, major period is 
observed to be proportional to grouser spacing. A large peak and trough occurs with each grouser. The period of 
response is proportional to the number of grousers. This means each grouser might have an individual effect on 
traction.  

The periodic response of the reaction loads (drawbar pull versus time shown in Figure 

46) is a key observation. There is a major peak for each grouser entering the soil for all 

spacing’s tested. The relationship of period of drawbar pull and number of grousers is an 

important realization as it shows that each grouser has an individual effect on drawbar 

pull. There is also an observable decrease in variation (amplitude of periodic curve) of 

the drawbar pull as a function of time as the spacing decreases. Although only two 
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spacing’s are shown in Figure 46, this trend is maintained for all spacing’s tested later 

and is presented in the next section. A physical explanation, for the cause of these 

observations, increased mean and lower variation of drawbar pull for smaller spacing, 

was sought when conducting the second part of the grouser mechanics study. 

Comparing a wheel with grousers to a wheel without grousers also yielded important 

findings. The concept that a wheel with grousers might act similarly to a slightly larger 

wheel because the grousers fill with soil is logical. SIIA results of a grousered and 

grouserless wheel (Figure 47) show that this concept might be valid, although still does 

not explain sources of drawbar pull gains due to grousers. 

 

Figure 47: Similarities between the grouserless wheel and grousered wheels are observable. The depth of the grouser 
tips is indicated by a white curve in the figure with the grousered wheel. The shear interface beyond the grouser tips is 
similar in thickness, magnitude of soil displacement and shape to that of the grouserless wheel. Soil velocity 
magnitudes for both wheels are equally scaled. 

Although there are periodic soil motion events, the snapshot of the soil motion shown in 

Figure 47, is representative of the longest duration of the cycle that soil motions go 

through. That is, there appears to be an underlying soil shearing plane and periodic bursts 

of motion, at the wheel front, occurring for each grouser (although not necessarily when 

the grouser interacts). The underlying shear interface is easier to observe in Figure 53 

which shows two cycles and four time steps per cycle.  
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It can be seen that the shear interface of the grousered wheel in Figure 47 is similar to the 

shear interface of the grouserless wheel. That is, the shape of the slip plane at the outer 

extent of significant soil motion might be identical to that of the grousered wheel. The 

shear interface is offset by the height of the grousers. Although the shear interface is 

deeper in the soil, it has the same size and shape. Additionally, the soil motion magnitude 

and direction along (and within) the shear interface are the same. These similarities 

suggest that the region of the wheel where the grousers are full of soil, creates a shear 

interface similar to that of a grouserless wheel. Therefore, the net traction created by a 

grousered wheel, would not change significantly compared to that of a grouserless wheel 

in terms of this region of the wheel (the contact region except for the front where 

grousers are yet to be filled with soil). This suggests that the front contact region might 

be of more importance to study. 

Figure 51 is another example, where an offset of grouser height of the shear interface 

compared to that of a non-grousered wheel is evident. For a more dramatic comparison, a 

48-grouser wheel that has a significantly higher drawbar pull than that of the same wheel 

without grousers (sandpaper surface), is compared in Figure 49. The wheel and grousers 

are blacked out to aid in direct comparison of SIIA plots to that of the grouserless wheel. 

For reference, Figure 49 shows a picture of the grousered wheel in this comparison. It can 

be seen that the shear interface and soil motions are remarkably similar between the two 

wheels except for the front contact region. This finding supports the hypothesis that the 

wheel front region for a grousered wheel is of importance for explaining grousered wheel 

mechanics. 
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Figure 48: Grousered and grouserless wheels are shown operating at 5% and 20% slip. The arc formed by the grouser 
tips is indicated by the blacked out region for ease of comparison. The shape of the shear interfaces below both wheel 
types is similar for the region outside the grouser tips. These similarities might suggest that once the grouser is full of 
soil, that part of the wheel acts simply as a larger diameter wheel with increase due to grouser height. See Figure 49 for 
picture of grousered wheel used in these tests.  
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Figure 49: Grousered wheel used in tests shown in Figure 48. This wheel has 48 grousers that are 13mm in height. 

5.2.4.2 Summary of Preliminary Results 
There are three main observations from the preliminary experiments. First, the soil and 

drawbar pull response are periodic. Since the period tracks directly with the number of 

grousers, it is probable that each grouser has an individual effect on traction. The second 

observation is that there is no evidence, in terms of soil motion, of a mechanism to 

produce higher thrust for a wheel with grousers of higher drawbar pull versus that of a 

grousered wheel of lower drawbar pull. Similar shear interfaces are seen for both grouser 

configurations studied via SIIA. The length, thickness and general shape are similar. The 

similarity might suggest, that for like wheel types of differing drawbar pull, looking for 

evidence of increased thrust in the form of soil mass engaged or different type of soil 

failure might not yield useful results. The third observation is that, other than the region 

at the wheel front where the grouser first engages the soil, the shear interface 

characteristics of grousered and non-grousered wheels are similar. The sources of traction 

might be associated with differences in soil motions at the front of the wheel where major 

dissimilarities are apparent. 
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5.2.4.3 Grouser Configuration Experimental Results 
A comprehensive experimental campaign, consisting of twenty-five different 

wheel/grouser configurations, was conducted. SIIA and wheel force measurements were 

collected for these configurations and are outlined in Table 5. The goal of the grouser 

configuration experimental campaign was to identify changes in wheel induced soil 

motions with changes in grouser parameters. Soil motion behaviors then could be 

associated with measured performance gains. As the soil behaviors are informative of 

actual traction processes, an effort to use wheel induced soil motions to explain the 

mechanisms behind grousered wheel traction was undertaken. 

 

Table 5:  Grouser Configurations Tested. 

 t =tested (telemetry collected),                i = SIIA processed 

 

 

The drawbar pull of many grouser configurations is plotted in Figure 50. It shows that 

grousers can be configured to increase drawbar pull. There is a trend of increasing 

traction with larger height and smaller spacing. Additionally, there is a plateau in drawbar 

pull as the number of grousers increase for a fixed height. 
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Figure 50: Drawbar pull results for 23cm diameter rigid wheel with grousers at six spacing’s and four heights. These 
results are evaluated at 20% slip and averaged over the steady state portion of response. The use of grousers shows 
significant increase in drawbar for some configurations. A plateau in performance is visible for two grouser heights. 

It is desirable to identify the specific mechanism due to grouser/wheel interaction with 

the ground that results in the observed soil failure, leading to specific trends such as the 

plateau in drawbar pull with respect to spacing. A similar plot, Figure 59, displays more 

grouser configurations and show the same trends. 

The traction performance, of the 23cm diameter wheel without grousers (sand paper rim) 

and of the same wheel with 48 grousers at 13mm height, act as extremes of the grouser 

configurations and drawbar pull measured. Studying SIIA plots (Figure 51) of these two 

cases leads to an important realization. The soil behavior of the grouserless wheel and of 

the 48-grouser wheel are very different at the leading edge of the rim. Figure 51A is a 

direction plot that shows a yellow patch of soil in front of the wheel that moves in a 

horizontal direction forward. The soil forward motion is evidence of wheel motion 

resistance as the soil is likely being pushed forward and reacting against the rim. This 

motion resistance would reduce the drawbar pull of the wheel. However, the wheel with 

highest drawbar pulled tested (48 grousers, 13mm height), does not display forward soil 

motion.  
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Figure 51: Forward flow is the most evident difference in soil motions between the lowest and highest drawbar pull 
wheels tested. (A) The wheel without grousers (sandpaper surface) does exhibit for forward motion at the wheel 
leading edge. (B) The wheel with 48 grousers at 13mm height does not display soil pushed forward at the wheel 
leading edge. Soil velocity magnitudes for both wheels are equally scaled. 

For small diameter rigid wheels operating at ground pressures and in soils relevant to 

planetary surface vehicles, motion resistance is usually in the range of 10% to 50% of 

available thrust, thus drastically reducing drawbar pull available. It is reasonable to 

conclude, from the lack of soil forward motion of the wheel in Figure 51B, that the 

grouser implementation can lead to reduced motion resistance, and thus higher drawbar 

pull. This can potentially account for the significant difference in drawbar pull between 

the two wheel types. 

This experimental result highlights forward soil motion at the wheel leading edge as a 

key behavior that can be linked to measured traction, theoretical drawbar pull gains and 

grouser interaction with the ground.  
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Figure 52: Periodic forward motion of soil at the wheel leading edge is evident. The ‘yellow patch’ at the right side of 
the wheel, at Time Step 2, is evidence of periodic motion resistance. A 23cm diameter wheel, with 12 grousers of 
13mm height, is shown. 

The forward motion of the soil, at the wheel leading edge, is periodic for most wheels 

with grousers. As the drawbar pull of grousered wheels is also periodic and of the same 

frequency as the forward soil motion, the two behaviors might be related (based off 

drawbar pull major peaks, see Figure 46). The periodic presence of motion resistance can 

account for the periodic drawbar pull measured. The conclusion that periodic motion 

resistance accounts for variations in drawbar pull does not preclude any additional thrust 

generated by a grouser, however, little experimental evidence was found to support 

possible gains due to thrust. 

Forward soil motion can only be affected by the interaction of the ground with the wheel 

leading edge; a mechanism should exist by which the grouser prevents soil forward 

motion and/or creates a periodic forward soil motion response. Looking for the wheel-

soil interaction that forces or reduces soil forward motion, leads to the results in Figure 

53. 
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Figure 53: Time lapse of two grouser engagements (two cycles). Rim interaction at the leading edge of the wheel 
creates periodic forward motion (motion resistance) that is reflected in the drawbar-pull versus time plot (Figure 46, 12 
grouser curve). The periodic ‘yellow’ patch of soil, at wheel front, is evidence of grousers affecting soil forward motion 
and wheel motion resistance. 
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All grousered wheels that displayed periodic forward soil motion (these all also had 

periodic drawbar pull) had a common behavior of rim interaction with the ground. When 

the rim first contacts the ground and pushes on the soil, forward motion of soil in front of 

the wheel is evident (Figure 53, 3a and 3b direction plots). This process is periodic as the 

grouser sweeps in front of the wheel and, therefore, the rim is not always in contact at the 

leading edge (in the region where it would contact on a grouserless wheel). During these 

non-contact times, the forward soil motion does not occur, as the rim is not pushing 

against the soil at the wheel front. 

This process can be seen in Figure 53. In direction plot 2a, the rim leading edge has just 

contacted the soil. Then, in direction plot 3a, the rim starts to push against the ground 

resulting in forward motion of the soil. At this point, motion resistance likely occurs and 

the drawbar pull momentarily drops. As the grouser continues to sweep (direction plot 

4a), soil at the leading edge is transported away from the very front contact point (now no 

longer in contact) and the motion resistance drops, resulting in an increase in drawbar 

pull. This cyclic process of the grouser at the leading edge transporting soil away from 

the rim front reduces the soil the wheel must push through and is the mechanism by 

which motion resistance is reduced. The effects of this process are evident by the 

reduction of measured forward soil motion. This simple mechanism can be seen as a 

result of tracking sub-surface soil motion by SIIA. 

 

Figure 54: Closer look at grouser sweeping action shown for a wheel operating at 20% slip. At step 4, the rim pushes 
soil forward similar to a wheel without grousers. 
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Figure 54 provides a closer look at the sweeping action that results in the grouser 

transporting soil underneath the rim before it can contact at the leading edge of the wheel. 

If a wheel is operating at non-zero slip, the rim will rotate faster than the forward motion 

of the wheel, thus creating a rearward motion of the rim with respect to the ground. When 

grousers are implemented, soil is transported away from the front of the wheel, removing 

soil that would normally be resisting forward motion. 

 

Figure 55: Time lapse of two grouser engagements (two cycles, a & b). The wheel shown does not exhibit forward 
motion of soil at wheel leading edge. This wheel generates the highest drawbar pull of the wheels tested and has a 
periodic response of lowest amplitude (i.e. low variation in drawbar pull). 

The 23cm diameter grousered wheel tested that had the highest drawbar pull is shown in 

Figure 55. This wheel does not show evidence of motion resistance and has a relatively 

high drawbar pull compared to other grouser configurations. The lack of soil forward 

motion and high drawbar pull demonstrates that wheels with grousers can be configured 

to significantly reduce motion resistance.  
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The height and spacing of the grousers on this wheel (Figure 55), must promote a 

reduction of forward soil motion, thus reduce motion resistance. Looking closely at the 

front contact of the wheel with the ground (similar to area magnified in Figure 54), it can 

be seen, in Figure 55, that the rim of this wheel can never push soil at the very front of 

the wheel since a grouser always sweeps the soil before it can touch the rim (as occurs in 

Figure 54, step 4). The soil at the very front, that would contact the rim and resist wheel 

travel, is instead confined by a grouser and transported away from this region. By 

transporting the soil out of the wheel path, the effective contact angle is reduced and less 

soil must be pushed on during forward travel.  

 

Figure 56: Drawbar pull measurement for two different wheel diameters with multiple grouser spacing’s and heights. 
These are evaluated at 20% slip. A plateau in drawbar pull can be identified for three of five curves. The plateau might 
occur due to the grouser configuration achieving a minimum motion resistance; therefore no additional gains can be 
achieved. Error bars indicate two standard deviations. 

Proper selection of length and spacing of grousers enhances these effects. If length and 

spacing are chosen properly so that the rim does not contact the soil surface before a 

grouser confines and transports soil, then motion resistance will be reduced.  
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There is a plateau in drawbar pull, as the number of grousers increase for a fixed height, 

observable in Figure 56. The plateau occurs, due to the fact that the grouser 

spacing/height combination is such that grousers are able to effectively remove soil at the 

wheel front before it can resist wheel travel. Since the contact at the wheel leading edge 

has been eliminated, decreasing grouser spacing to achieve higher drawbar pull yields no 

gains. The two different soil contact behaviors that occur either before the plateau and on 

the plateau, are confirmed by looking at SIIA plots on either side of the knee in the 

curves. See Figure 53 and Figure 55 for configurations before and on the plateau 

respectively. It can be observed that there is periodic rim contact leading to forward soil 

motion for the lower drawbar pull wheel, while no rim contact at the leading wheel edge 

occurs for the wheel on the plateau.  

Wheels with drawbar pull values lying on the plateau have grouser configurations that 

effectively reduce motion resistance and, therefore, yield higher performance. 

Formulating design guidelines to achieve low motion resistance, was undertaken by 

recognizing the grouser sweeping behavior, to reduce motion resistance as the 

mechanism that increases drawbar pull. 

5.2.5 Grouser Height/Spacing Relationship 
The mechanism of reducing motion resistance by confining and transporting soil from the 

wheel front can be used to guide design. Selection of proper grouser height and spacing 

can enhance the clearing effect and increase drawbar pull.  

A mathematical derivation of the grouser height/spacing relationship was introduced by 

C. Skonieczny and S. Moreland based off the SIIA results presented in the previous 

section [65]. This section covers the research of these authors. 

Parameters, relevant to the deriving an expression relating grouser spacing and height for 

high performance are summarized in Table 6. The length parameters are normalized with 

respect to wheel radius, r, for simpler derivation. Figure 57 diagrams relevant parameters 

related to the wheel and ground. Two protrusions from the rim of height, , indicate the 

grousers central in describing the rim contact process. 

ĥ
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Table 6: Wheel parameters used in minimum grouser spacing relationship. 

 

 

 

Figure 57: Diagram of parameters used in grouser spacing/height relationship. These are normalized with respect to 
wheel radius. 

Figure 58 indicates important geometric points in deriving the grouser configuration 

expression. The grouser at the leading edge of a wheel, that is moving forward and 

rotating with a non-zero slip rate, will sweep in front of the wheel, clearing a space in 

front. The wheel will not encounter the soil until it translates horizontally forward a 

distance BC (Figure 58). To ensure that the next grouser sweeps the ground in front of 

the wheel before the rim can contact this point the rim must rotate a minimum angle, ϕ.  
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Equating the rotation and translation times gives the expression:  

 

 

Figure 58: Geometry used in derivation of grouser height/spacing relationship. 

Applying Pythagoreans theorem to triangles OAC and OAB gives an expression for BC  
in terms of wheel parameters: 

As slip relates rotational and translational velocities, it is useful in the form: 

 

 

  

Equation 7 

 

 
Equation 8  

 

 

 

Equation 9 
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Substituting Equation 8 and Equation 9 into Equation 7 results in: 

Equation 10, calculates the minimum grouser spacing so that the rim does not contact the 

ground before a grouser removes soil that would normally contribute to motion 

resistance. Equation 10 relates grouser configuration (height and spacing) to wheel 

parameters (wheel radius) and operational parameters (sinkage and slip).  

The purpose of this equation is to predict the grouser geometry that determines the 

behavior of periodic forward motion of soil at the wheel front as seen in SIIA plots. Lack 

of this behavior correlates to high drawbar pull, therefore, use of this equation is expected 

to yield high performance for a given wheel size.  

5.2.5.1 Comparing Predicted Grouser Height/Spacing to Measured Data 
The grouser height/spacing expression can be corroborated, in terms of traction 

performance, by comparing predicted spacing values to the measured data in Figure 59. 

As the derivation of the equation is based off wheel geometry, operating parameters and 

the assumption of a motion resistance reducing mechanism, the measured drawbar pull 

curves are an independent check of the equation’s prediction capability. 

The values in Table 7 are fixed other than sinkage and the calculated grouser spacing (ϕ 

or minimum number of grousers). The two operating parameters are slip and sinkage. As 

the single wheel testbed allows for slip control, the slip rate was held at 0.20. The sinkage 

value was measured during single wheel tests of the rim with grousers and a sandpaper 

surface. With the soil type used and at slip rates tested (i.e. 0.20), the sinkage of the rim 

was similar with and without grousers and with different grouser configurations. This is 

due to the fact that at the wheel bottom grousers are already filled with soil and therefore 

do not contribute to additional soil transport from below the wheel. 

 

 

Equation 10 
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Table 7: Parameter values used to calculate minimum grouser spacing. 

 

 

 

The predicted grouser spacing (expressed as number of grousers per wheel), for each 

wheel diameter and grouser height tested, is shown in Figure 59 as a diamond shape. For 

the three wheel configurations (diameter and grouser height) that display a plateau, the 

predicted minimum number of grousers is consistent with its purpose. The 41cm diameter 

wheel with 25mm height grousers and the 23cm diameter wheel with 12mm and 9.5mm 

height grousers both display plateaus in drawbar pull with respect to spacing. The 

calculated minimum spacing values indeed predicts correctly for these three examples. 

The closest data points are all in the higher drawbar pull range and near the knee in the 

curve (therefore acting as a minimum value). This result demonstrates the usefulness of 

the grouser spacing equation from a design perspective, as the equation will predict the 

minimum number of grousers that must be implemented to achieve high drawbar pull 

(i.e. above the knee in the curve). In this sense, the equation serves to optimize a design 

for either a fixed grouser height or spacing. 
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Figure 59: Drawbar pull performance for many grouser and wheel configurations. The diamond shape on each curve 
denotes the predicted value for minimum number of grousers for the height and wheel diameter (From Table 7). 

For the two curves, where an obvious plateau does not exist, one might have a knee 

outside the experiment space (23cm diameter wheel with 6mm height grousers) while the 

other might not have been tested to a suitable low value for the number of grousers (41cm 

diameter wheel with 13mm height grousers).  

The grouser spacing and height are dependent on wheel diameter, sinkage and slip. A 

range of slip values was not tested with varied grouser configuration to validate the 

expression with respect to the slip parameter. Future experimentation should be 

conducted to validate the effects of slip. However, from a strictly design perspective, slip 

might have little importance and is discussed in the next section. As sinkage is related to 

slip it is treated in a similar manner and discussions of these parameters follow in the next 

section. Extreme values, of either grouser height or spacing, will probably result in 
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inaccurate predictions. The 6mm to 25mm range of heights was considered a reasonable 

range that covers most implementations of standard rigid wheels to date. 

The reduction of motion resistance might not be the only traction process affected by 

grouser parameters. There is a measured difference between the maximum drawbar pull 

for some of the grouser heights (e.g. 23cm diameter with 9.5mm and 13mm height 

grousers). Despite this drawbar pull difference, the equation for the height/spacing 

relationship of grousers is still very useful. It does appear that the change in drawbar pull 

with grouser spacing, is larger than changing height only (for all tested configurations). 

Therefore, motion resistance might still be the dominating process in governing drawbar 

pull with respect to grouser implementations.  

5.2.5.2 Use of Grouser Height/Spacing Expression 
The minimum grouser spacing equation can be useful to aid design. The equation 

introduced is a relationship of the height and spacing, so from a design perspective it 

allows for flexibility. If there were design constraints such as maximum height (i.e. for 

structural reasons), use of more grousers can be relied on to achieve the desired soil 

transport process. Also, the equation is inherently useful because a grouser height or 

spacing can be calculated and a factor of safety can be applied. Applying a factor of 

safety is applicable because the equation predicts the minimum spacing or height 

required, not an exact value. For example, if the minimum spacing equation predicted 24 

grousers for a given wheel, adding additional grousers beyond 24 would not degrade 

performance. This is due to the fact that the grousers would still transport soil from the 

wheel front before the rim contacts the ground surface level. The flexibility to add more 

grousers than necessary (from a loose, granular material traction perspective) is an 

important realization as additional grousers may be required for other aspects of mobility 

such as rock climbing or bedrock slopes. There is a practical limit, however, that will be 

reached when the soil transport mechanics is disrupted when spacing becomes too small 

between grousers. This limit was not investigated in this research, therefore, if closely 

spaced grousers are desired (with a height to space ratio >1:1), then verification of soil 

transport behavior should be undertaken. 
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To calculate a minimum spacing, sinkage and slip must be prescribed. If nominal values 

are chosen (measured sinkage at 0.20 slip, and slip value of 0.20), the result is still a 

robust design choice (i.e. if conditions degrade, the grouser implementation is still 

applicable to the situation). The minimum required number of grousers, predicted by the 

equation, decreases with increasing slip, therefore if a wheel were to enter higher 

slippage, as routinely occurs, the number of grousers would still satisfy the minimum 

required. When slip increases, the soil transport rate from the wheel front increases, as 

there is an increased rearward velocity of the grousers with respect to the ground. 

However, the number of grousers (or height) required does increase with increasing 

sinkage, but in reality, the effects of slip usually dominate the equation, since sinkage 

does not occur without slip increasing substantially. The relationship of slip and sinkage 

(i.e. slip induced sinkage) is complex and is beyond the predictive capability of current 

models. To demonstrate that the increase in wheel sinkage does not invalidate the 

usefulness of the grouser spacing equation, experimental data is used.  

 

Table 8: Measured slip and sinkage of Ø31cm by 16.5cm width rigid wheel with 30 grousers of 15mm height operating 
in dry sand [59]. Predicted minimum number of grousers required for reduced motion resistance using Equation 10 is 
provided.  
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Figure 60: Trend of predicted minimum number of grousers required to maintain low motion resistance with respect to 
slip and sinkage. The slip and sinkage are dependent on each other. Data of measured slip and sinkage of Ø31cm by 
16.5cm width rigid wheel with 30 grousers of 15mm height operating in dry sand from [59].  

The predicted minimum number of grousers required for a wheel configuration to 

maintain low motion resistance, does not increase with degrading conditions such as 

increase slippage and sinkage. Table 8 and Figure 60 show the predicted minimum 

number of grousers utilizing Equation 10 due to measured wheel sinkage and slip values 

during single wheel tests (sinkage and slip data from Ding, et. al [59]). This demonstrates 

that if nominal values from a low slip operating point (such as 20%) and the 

corresponding sinkage are utilized, the grouser configuration will still be above the 

minimum number of grousers to reduce motion resistance. It is possible that material 

types exist were the slip-sinkage relationship would cause an increase number of grousers 

to be required with degrading conditions. However, even for Fillite (fly ash), a material 

with extremely high initial sinkage (static sinkage), the effects of sinkage were still 

dominated by slip in terms of number of grousers required. 

There are many other considerations when utilizing Equation 10 for design applications. 

The grouser spacing equation predicts the clearing behavior that minimizes forward soil 

motion in front of a wheel, therefore, minimizing motion resistance. Since this 

mechanism was discovered via SIIA experimentation, it is recommended that a grousered 
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wheel implementation undergo soil imaging validation to make sure that soil, pushed 

forward, is minimal and the correct behavior is achieved.  

Outside the parameter space that the grouser equation was validated, the designer should 

consider the underlying soil behavior of transporting soil away from the wheel front, 

instead of relying on the equation. Again, validating the design via soil motion analysis is 

recommended. For example, if wheels were to be designed for very high sinkage 

application, the soil transport process should be directly observed to see if adequate 

removal of soil in front of the wheel occurs. The concept of reducing motion resistance 

by transporting soil away from the wheel front, and the method of selecting proper 

grouser geometry to promote adequate clearing is still correct, however, the minimum 

spacing equation may be altered to reduce resistance further.  

For example, if it were desired to have a low motion resistance at low slip while 

operating in a high sinkage material, one of the requirements for the formation of the 

equation could be altered. A requirement in forming Equation 10 is that the grouser 

sweeps soil away so the rim will never contact the soil at ground level (as described by 

Equation 7). If a configuration was desired that is most appropriate for high sinkage at 

low slippage, than Equation 7 should take the form that relates initial rim contact at a 

prescribed depth (absolute or percentage of wheel radius). This will actually produce a 

design that creates an effective reduced sinkage value, with respect to motion resistance 

processes, that is chosen by the designer. The initial point of contact may also be better 

described by a prescribed entrance angle (angle between rim tangent and ground plane at 

the point of initial contact). This relationship encompasses the effect of wheel radius on 

motion resistance and since it is a function of wheel radius, it is generalizable over 

wheels of different sizes. 

The gains of implementing grousers might be small for some wheel types. As this 

research hypothesizes that much of the expected gains are a result of reducing motion 

resistance, wheels that already have low resistance will not see much improvement in 

drawbar pull. Large diameter wheels and highly compliant wheels are examples where 
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grousers might yield little traction benefits. Also, in scenarios where when motion 

resistance is not the most significant source of resistance, such as slope climbing, a 

grouser implementation may not aid significantly in steepness of slopes ascendable. This 

often occurs on very steep slopes where the gravitational resistance is high compared the 

wheel sinkage. 

In traction scenarios that are not the intended focus of this research, such as ground 

materials outside the scope, the importance of the grouser spacing equation might lessen. 

This is due to the fact that grousers could increase thrust, resulting in a contribution to 

drawbar pull that should not be ignored during design. In cohesive materials (organic 

soils, clay, non-dry sand) grousers may cause direct increase in drawbar pull due to 

engagement of soil deeper in the ground with increased strength or due to increased 

amount of soil engaged. However, even in soils outside the scope of this research, the 

motion resistance reducing effect of grouser induced soil transport, is expected to provide 

traction benefits in the same manner as a planetary rover provided that non-trivial slip 

and sinkage occur. The design changes suggested by this thesis might still be valid with 

respect to reducing motion resistance only. Nevertheless, making design changes based 

off the concept of motion resistance reduction only (as this thesis suggests) is ill advised 

for materials outside the intended scope. Design changes might adversely affect the thrust 

producing ability of grousers unless it is separately determined that grousers do not have 

a significant effect on thrust. For traction scenarios within the scope of this research, 

thrust was found to be independent of the grouser configuration, therefore design changes 

suggested in this chapter are likely valid. 

5.2.6 Grouser Mechanics Summary and Conclusion 
The empirical study of sub-surface soil motion provides new information relevant to 

fundamental terramechanics and traction device design. SIIA was able to show that 

grousered wheels have a mechanism to reduce motion resistance, leading to higher 

drawbar pull. The mechanisms identified provide design guidelines for improved 

performance. 



 
 

 

106 

 

 

Figure 61: Key behavior identified using SIIA, that grousers can be implemented to reduce motion resistance. (A) A 
wheel without grousers and (B) a wheel with high performance grouser configuration is shown.  

 

Soil forward motion, at a wheel leading edge, was identified as a key behavior for the 

grousered wheels (Figure 61). The soil motion behaviors correlated with drawbar pull 

response and, therefore, were shown to have a strong influence on traction. In depth 

analysis of how a grousered wheel interacts with the soil led to the mechanics behind 

reducing motion resistance via soil transport. Furthermore, an equation for the 

implementation of high performance grouser configurations was developed and values 

predicted by the equation were corroborated by measured data.  
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5.3 Push-Roll Locomotion 

5.3.1 Introduction  
A study investigating a non-typical locomotion mode, called push-roll, was conducted to 

assess possible increases in traction compared to conventional rolling locomotion. Push-

roll locomotion utilizes non-rotating wheels in conjunction with the rolling wheels of a 

vehicle, in order to produce forward travel. This research consisted of two parts. First, 

full vehicle experimentation was conducted to measure potential traction gains (drawbar 

pull metric) provided by the hybrid locomotion mode, push-roll. Preliminary experiments 

showed an approximate doubling in drawbar pull for push-roll locomotion relative to 

traditional rolling for the vehicle that was tested. The source of the traction gains was not 

readily identifiable and since the non-rotating and the rolling wheels have a different 

interaction with the ground, SIIA was conducted to provide insight. The push-roll vehicle 

motions were mimicked in a single wheel testbed, while individual wheel reaction forces 

were measured and sub-surface soil motions were recorded. The Shear Interface Imaging 

Analysis plots revealed different failure modes between the rolling and pushing wheels. 

5.3.2 Push-roll Background 
Vehicles with a variety of articulation types are being developed for exploration of the 

Moon and of other planetary bodies [25] [26] [21] [66]. These vehicles are capable of 

modes of locomotion and methods of operation unlike that of previously deployed 

planetary rovers. Systems that are capable of conventional rolling, walking, hybrid push-

roll and center of gravity control, are continuously being developed. 

Push-roll is a hybrid locomotion mode where the vehicle wheelbase is actively expanded 

and contracted in a controlled manner using onboard actuation. By this action, a set of 

rolling wheels can be assisted by pushing or pulling off of a set of non-rolling wheels (not 

rotating with respect to ground). Net traction gains have been measured, which have been 

attributed to either a decrease in motion resistance or to an increased thrust available from 

the non-rotating set of wheels. Therefore, in push-roll mode, a vehicle could potentially 

climb higher slopes or tow a greater payload than in conventional rolling mode. Also, the 

vehicle could lower its slip rate during self-propelled operation (no external horizontal 
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load) and/or escape from an entrenched state in loose terrain. The analysis of push-roll 

locomotion has been previously undertaken for both planetary exploration [67] and for 

terrestrial vehicles [68]. At the Army Land Locomotion Laboratory, segmented vehicles 

were tested and showed mobility improvements [69]. It was determined through 

theoretical analysis, that eliminating resistances on one or more segments by remaining 

stationary was the source of measureable net traction gains. The assumption that motion 

resistances likely account for the differences in drawbar pull between push-roll and 

rolling vehicles, comes from the use of conventional terramechanics models relying on 

shear displacement theory to predict pushed wheel thrust. The research presented in this 

chapter supports an alternate conclusion. 

 

Figure 62: All vehicles shown are kinematically capable of push-roll locomotion. Clockwise from top left:  NASA 
MUSES-CN Nanorover, NASA ATHLETE rover and CMU Scarab rover. The ATHLETE rover can also walk; 
walking is another form of pushing locomotion. Top left image credit JPL [55]. 

A study of the European Space Agency (ESA) ExoMars rover system provides the latest 

example of a mobility system that benefits from push-roll like locomotion [21] [70]. 

Other recently developed vehicles that are capable of push-roll are the JPL ATHLETE 

system and the NASA Space Exploration Vehicle (SEV). Both are highly articulated. 
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However, there is not enough information to determine how to best take advantage of all 

the modalities available. Figure 62 shows the JPL ATHLETE rover and other push-roll 

capable vehicles. 

5.3.3 Full Vehicle Experimentation 
An existing system capable of push-roll locomotion was utilized for full vehicle traction 

measurements. Push-roll mode of locomotion can be achieved by the Scarab rover 

(Figure 63), a concept vehicle developed at Carnegie Mellon University. This system has 

demonstrated, on a full-scale prototype, push-roll locomotion in laboratory and in field 

settings that are analogous to lunar terrain [66]. 

 

Figure 63: The Scarab prototype rover capable of push-roll locomotion. This vehicle was utilized for drawbar pull 
measurement comparison of push-roll versus conventional rolling. In step ‘A,’ the vehicle is at nominal driving height 
and wheelbase. At step ‘B,’ the wheelbase is fully extended. Non-rotating and rolling wheels are used in conjunction 
with wheelbase change to produce forward motion.  
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Figure 64: Simplified kinematics of the Scarab rover showing push-roll motion. One wheel is held static in rotation 
with respect to the ground while the wheelbase is actively extended (or retracted) and the other wheel rolls in a rotating 
driven fashion.  

To begin the cycle of push-roll on Scarab, the wheelbase expands while rolling the front 

wheels forward and keeping the rear wheels fixed in rotation relative to the ground 

(Figure 64). Once the limit of body expansion is reached, the wheel base contracts while 

the rear wheels roll forward and the front wheels remain fixed with respect to the ground 

(other than slight sliding motion). Note that the fixed wheel actuators must counter-rotate 

in synchrony with the wheelbase expansion or contraction. If the wheels were to be 

locked, they would rotate in the direction of vehicle displacement and thereby induce 

slippage associated with a rotating wheel. These non-rotating wheels can provide 

extremely high thrust. To achieve these benefits, push-roll locomotion not only 

eliminates the wheel motion resistances on two of the four wheels by not travelling 

forward, but the non-rotating wheels also generate higher thrust than a conventional 

rolling wheel, thus adding to traction gains. 

Laboratory drawbar pull testing of Scarab was conducted to assess the tractive 

capabilities of the rolling push-roll mode of locomotion. Drawbar pull, as a metric, is 

quite informative when comparing different aspects of wheel and suspension designs but 
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also can be used for estimating the slope that a vehicle can continuously ascend for a 

specified material [10]. In experimentation, a towed load considered the drawbar pull, is 

equivalent to the net traction potential (thrust available in excess of wheel motion 

resistance) of the vehicle for the specific surface material being traversed. 

In the gathering of drawbar pull data, a range of external loads that resists vehicle travel 

is applied in steps resulting in a vehicle response ranging from low to high slip. The 

drawbar load is held constant for a set distance of vehicle travel (minimum two vehicle 

lengths) to allow steady-state slip to be achieved. Then the load is stepped up to a higher 

value to gather a subsequent data point.  

In the case of push-roll locomotion, the wheel angular speed and rate of wheel base 

expansion are predetermined. During steady-state response (after a full vehicle length), 

the vehicle speed is measured to determine slippage. As the vehicle velocity varies 

throughout the push-roll cycle, only full cycles are used in speed calculation. The average 

value of speed, , is used in the calculation of a slip metric. The meaning of slip, is ill 

defined for the non-rolling wheels, therefore a similar metric called “travel reduction” 

was utilized. Travel reduction is the percentage by which the vehicle ground speed is 

reduced compared to that of the vehicle at a nominal travel speed. A near zero load case, 

in which only self-propelled motion resistances are present, is utilized as the baseline 

speed. This is measured while the vehicle is driving (rolling or push-roll) on flat ground, 

with no external load and is used as the reference speed, . Travel reduction is defined 

as follows: 

 

Where is travel reduction,  

 is the measured speed of the vehicle during a drawbar pull test, 

vSP

vSP

TR

vmeasured

  
Equation 11  

TR =1− measuredv
SPv
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  is the self-propelled speed of the vehicle in the soil simulant. 

Drawbar pull tests were conducted at the NASA Glenn Research Center’s Simulated 

Lunar OPErations laboratory (SLOPE). A cable payout mechanism, with variable tension 

control (via a magnetic brake), was used to apply the drawbar load to the vehicle (Figure 

65) while vehicle velocity was determined using a 3-axis laser tracking system.  

 

Figure 65: Scarab rover undergoing drawbar pull test to evaluate net traction. The drawbar rig applies a constant 
controlled load via a magnetic brake, while a laser ranging system measures vehicle speed. 

The vehicle was configured at 400kg mass, with Ø71cm x 25cm wide rigid wheels 

(shown in Figure 63) and operated in GRC-1 lunar soil simulant. This soil was prepared 

before each test to achieve consistent strength values. Prior to each drawbar pull test, the 

soil was fully loosened (to 45cm depth) and then compacted with a heavily loaded roller. 

Cone penetration resistance measurements taken before each drawbar pull test, were used 

to check that the compaction gradient fell with in an allowable range. A description of the 

soil preparation process is given by Woodward [50].  

vSP
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5.3.3.1 Full Vehicle Traction Results  
The results of the drawbar pull experiments, Figure 66, show that for the nearly the entire 

range of travel reduction evaluated, push-roll produces approximately 100% more 

drawbar pull than conventional rolling. For example, at a travel reduction of about 0.3, 

the rolling locomotion drawbar pull is 11%, while the push-roll drawbar pull is 21%. 

 

Figure 66: Drawbar pull-travel reduction curves comparing conventional rolling to push-roll locomotion. Results 
indicate an approximate doubling of drawbar pull for almost the whole range of travel reduction.  

Increases in drawbar pull of this magnitude cannot be explained solely by reductions in 

wheel motion resistance. Therefore, it was hypothesized that there is a significant 

difference in the thrust potential between rolling and non-rolling, pushed wheels. This 

observation motivated the comparative study of the sub-surface soil response of the two 

types of wheel interaction with the ground that represent rolling and push-roll 

locomotion. 
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5.3.4 Shear Interface Imaging Analysis  
The Shear Interface Imaging Analysis study conducted was intended to investigate 

possible differences in soil structure or in soil failure modes between conventional rolling 

and push-roll locomotion. This research was not meant to replicate the Scarab rover 

vehicle in a scaled manner. For the results given in the next section, test parameters are as 

follows. A 23cm diameter wheel (5.72 cm width) with a 10kg payload was tested in 

GRC-1 for both rolling and pushing wheels. The rolling wheel was evaluated at 20% slip, 

while the pushed wheel underwent constant rate horizontal displacement of 1mm/s. For 

all SIIA plots, the equivalent wheel vehicle motion is to the right. For the pushed wheel, 

the wheel actually displaces slightly to the left. 

5.3.4.1 Push-Roll Compared to Rolling Results 

 

Figure 67: Soil velocity magnitude plots of a rolling wheel at 20% slip and a pushed (non-rotating) wheel sliding at 
constant rate. Note that the magnitude plots are different scales. “Ground failure” type response of the soil is observed 
for the pushing wheel, identifying a likely source of tractive gains. The rolling wheel soil velocity magnitude is 
averaged over 20 seconds since the soil undergoes steady-state response. The pushed wheel velocity is an instantaneous 
measurement since steady-state will not occur with increasing displacement. All pushing and rolling magnitude plots in 
this chapter are at different scales, therefore, the values cannot be directly compared. 

The SIIA plots, of Figure 67 and Figure 68, indicate that the soil failure patterns of the 

rolling and pushed wheels are very different. Differences in the direction and shape of the 
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shear interface and soil motions are evident. The soil beneath the rolling wheel appears to 

follow the shape of the wheel in a direction somewhat tangential to the wheel rotation 

and is confined to the wheel contact area. Large variations in soil motion direction are 

apparent Figure 68. However, the pushing wheel produces a much different soil response 

that might be contributing to a larger thrust than the rolling wheel can achieve. The soil 

displacement occurs as a unified mass moving together in the same direction, opposite 

the direction of thrust. The consistent magnitude and direction shows that the soil moves 

as a whole. The shear interface extends well beyond the wheel contact region and has a 

shape of that of a logarithmic spiral slip plane common in soil mechanics theory. This 

type of soil response is called “ground failure” [58]. Bekker describes how this 

fundamental difference in soil failure mode, enables traction devices producing ground 

failure, to generate thrust significantly higher than that of a conventional wheel or track 

[14]. 

 

Figure 68: Soil motion direction plots with thresholding and shear interface indication.  

The soil failure pattern formed by the pushed wheel, as seen in Figure 67, is 

fundamentally stronger than that of the rolling wheel (i.e. shear interface can support 
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higher thrust loads). The unified soil motion created by a pushed wheel in the direction of 

slide and the resulting long slip plane (shear interface), accounts for increased thrust. This 

soil motion behavior is very different from the shear interface of the rolling wheel where 

soil is undergoing constant change in direction and where confinement is limited to the 

contact length.  

Bekker provides analytical analysis for the ground failure type soil response. The Spaced-

Link Track was experimentally shown to produce the same type of soil failure mode of 

the pushed wheel investigated in this thesis research [14]. Bekker’s theoretical analysis, 

for the Spaced-Link Track, is adapted from Terzaghi’s bearing capacity theory for 

footings [58], not from conventional terramechanics models. Previous analysis of push-

roll locomotion [67] [68] [69] assumed conventional wheel mechanics to model the non-

rolling pushed wheel. The use of conventional wheel-soil models led to incorrect 

application of models and to the incorrect assumption that there is little difference 

between rolling and pushed wheel maximum thrust. Sub-surface soil analysis, provided 

by SIIA, allowed of the identification of the correct soil failure mode and for an 

explanation for the increased thrust ability of the pushed wheel.  

An analytical theoretical analysis, similar to Bekker’s Spaced-Link Track, was not 

undertaken in this thesis research. However, Bekker’s research provides compelling 

evidence showing the gains attainable by a traction device undergoing ground failure 

versus grip failure (the latter is the model utilized for rolling wheels). The comparison of 

the thrust of a Spaced-Link Track versus that of a conventional track is analogous to 

application of analytical models of ground failure mechanics versus conventional 

terramechanics models for a rolling wheel.  Figure 69, shows both the predicted thrust 

and measured thrust for both soil failure types. The thrust of the Spaced-Link Track, that 

produces ground failure, is up to 1.5x that of a conventional track that is governed by the 

same mechanics of a rolling wheel. The difference in thrust demonstrates that the correct 

model and assumption of soil failure type for the pushed wheel must be applied. If not, a 

large underestimate in the predicted thrust will occur. Bekker’s Spaced-Link Track 

research also provides an explanation for the increased drawbar pull measure by the 
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Scarab vehicle operating in push-roll mode compared to conventional rolling locomotion. 

Further single wheel experimentation, measuring individual wheel reaction loads, 

confirms the thrust capability of a pushed wheel. 

 

Figure 69: Thrust of Spaced-Link Track and conventional track. These track types correspond respectively to ground 
failure and grip type soil failure.  H is thrust, while W is vehicle weight. Image credit [14]. 

 

The realization that the pushed wheel, utilized in push-roll locomotion, relies on ground 

failure is quite important. The fact that the pushed wheel relies on ground failure means 

that little slide is needed to generate thrust, as no accumulation of soil is required (i.e. 

bulldozing). The pushed wheel, in Figure 67, generates a pull coefficient of 0.5 for the 

displacement shown in the image (approximately 4mm horizontal wheel motion). There 

are many beneficial implications of utilizing ground failure. First, the pushed wheel needs 

to contact only the soil below the wheel and does not need to create a rut from which to 

push off. Secondly, since high thrust is created at low horizontal displacement, the wheel 

undergoes little sinkage (see Figure 70). In terms of vehicle safety, low sinkage operation 

is highly desirable.  
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Figure 70:  Slide-sinkage metric is used to evaluate the pushed wheel. As the slip metric is meaningless for a sliding 
wheel, a useful safety metric is sinkage. The 23cm diameter wheel, with sandpaper rim, is pushed horizontally at 
constant speed (1mm/s) while carrying a 10kg payload. Like all previous SIIA plots in this chapter, GRC-1 was the soil 
simulant utilized. 

 

For a single wheel test, slip and travel reduction cannot be used as a metric to evaluate 

the pushed wheel as slip has no meaning for sliding motion. Sinkage is an alternative 

metric that is related to vehicle safety as excessive sinkage can lead to entrapment. Figure 

70 provides a look at the sinkage characteristics of a pushed wheel. A high drawbar pull, 

with 0.4 pull coefficient, was measured before moderate sinkage occurs. Even for 0.7 pull 

coefficient, the sinkage is not problematic. For comparison, the rolling wheel only 

generates a pull coefficient of 0.11 for the 20% slip metric, a standard evaluation point 

for drawbar pull. This comparison of thrust available at a reasonable operating point of 

the pushed wheel and rolling wheel, results in a thrust of up to 7x for the pushed wheel. 

 

 



 
 

 

119 

5.3.4.2 Push-Roll High Sinkage Scenario Results 
For both the subsystem (SIIA) and full-vehicle experimentation, research was conducted 

to evaluate mobility in extremely weak soil (Fillite) that would entrap many wheeled 

vehicles. The mechanics of push-roll in nominal materials (GRC-1) on flat ground and in 

slope climbing (using drawbar pull metric) were studied in the previous section. However 

this study, as documented in the previous section, was conducted in an inherently low 

sinkage material. In GRC-1, push-roll is able to achieve increased drawbar pull due to the 

high thrust capability of the pushing wheel. High thrust is most useful on steep terrain 

where high drawbar pull is needed to overcome gravity. Extremely weak materials on flat 

ground, such as fine, wind-blown materials on Mars, provide different challenges. In this 

scenario, a vehicle must overcome a potentially high motion resistance due to high 

sinkage. Push-roll can be used to operate in this scenario while maintaining high 

performance. High-slippage, high-sinkage operating point SIIA tests in Fillite, showed 

that motion resistance can be significantly reduced by controlling slip. High slip, with 

appropriate wheel types, can reduce motion resistance by directing soil underneath the 

wheel instead of it compacting and pushing against the rim. A push-roll vehicle can 

control the slip rate of the rolling wheel as wheel base extension and wheel rotation 

speeds are controlled. As such, the rolling wheel of a push-roll vehicle, can be controlled 

to operate at high slip and, therefore, low motion resistance. This feature was studied in 

an extremely loose material, Fillite, at both subsystem (SIIA) and full-vehicle levels.  

In Figure 71 the pushing wheel, operating in soft ground, shows a quite prominent 

example of ground failure type soil response. The commanded motion of the pushed 

wheel, is to roll forward for two wheel lengths at 20% slip and then begin to push 

backwards while rotation is locked. This mimics the motions of a push-roll vehicle. The 

sinkage visible in the pushing wheel plot is almost solely due to static sinkage and to the 

wheel roll before the pushing is initiated. It should be noted that all SIIA plots of pushing 

and rolling are conducted independently and are not coupled in any manner. 
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Figure 71: Pushing wheel shown with a rolling wheel to represent a push-roll vehicle in soft ground (Fillite). The 
pushing wheel has a horizontal displacement of 6mm and a 0.8mm sinkage generating a pull coefficient of 0.32. The 
rolling wheel is at 20% slip, 25mm slip induced sinkage and generates a pull coefficient of -0.10. Soil velocity 
magnitude plots are scaled differently between the pushed and rolling wheel. 

Controlling the wheelbase expansion rate and the wheel speed, determines rolling wheel 

slip. It should be noted that there is a slight increase in slippage differing from the 

commanded value due to the slide of the pushed wheel, however this difference is 

insignificant unless the pushed wheel slides excessively. As slip rate is predetermined by 

vehicle motion commands, the rolling wheel response can be thought to determine the 

vehicle state. That is, in a self-propelled scenario, the pushed wheel drawbar pull will be 

the opposite value of that of the rolling wheel drawbar pull (as a net zero drawbar pull is 

required). Therefore, it responds to overcome resistance created by the rolling wheel. 

Thus, varying the rolling wheel slip rate, changes the thrust requirement of the pushed 

wheel. 

The pushing wheel, in Figure 71, has a horizontal displacement of 6mm, slide sinkage of 

0.8mm and a pull coefficient of 0.32. The rolling wheel is operating at a commanded 

20% slip rate, has a pull coefficient of -0.10 (i.e. creating net resistance) and a slip 
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sinkage of 25mm. Slide sinkage refers to the sinkage induced by the sliding (pushing) 

operation, while slip sinkage refers to sinkage induced by rolling wheel slippage. As a 

rolling wheel, of a push-roll vehicle, can be arbitrarily commanded to operate at any slip 

point, 20% slip was chosen to begin discussion. Figure 71 provides a look at how a push-

roll vehicle might operate in Fillite, a high sinkage material where self-propelled motion 

is difficult. It can be concluded that utilizing the pushed wheel in conjunction with the 

rolling wheel (e.g. at 20% slip) that a positive net drawbar pull can be achieved and, 

therefore, forward, self-propelled motion occurs. Adding the measured pull coefficients 

of the pushed and rolling wheels results in a net positive (0.22), thus guaranteeing 

forward travel. In the case described above, the rolling wheel will still create a -0.10 pull 

coefficient, while the pushed wheel will operate at an equal but opposite thrust (0.10), 

leading to a lower slide sinkage than the measured 0.8mm at 0.32 pull coefficient. 

SIIA and external force measurements confirm that the pushed wheel can still operate in 

the ground failure regime and provide high thrust in the difficult material. A pull 

coefficient of 0.32, in the Fillite material, is quite high considering the rolling wheel, at 

20% slip, generates a negative drawbar pull (-0.10 pull coefficient). Also, the pushed 

wheel induces little sinkage compared to the rolling wheel. As the sinkage induced by the 

pushing wheel is much lower then the net sinkage of the rolling wheel, the additional 

sinkage caused by this motion has little effect. The rolling wheel recovers the small 

sinkage that the pushing adds when the rolling cycle begins (example shown in Figure 

72). 
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Figure 72: Slip sinkage time trace plotted for a roll-push-roll-push-roll motion of a single wheel. As slide induced 
sinkage is very small for pushed wheel, the rolling wheel easily recovers the sinkage, reducing the net value. 

 

 

Figure 73: Example of slip induced soil transport at wheel leading edge and wheel bottom. The wheel velocity 
magnitude plots are normalized by ground speed and are at equal scale, allowing for direct comparison. 
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The reduction of soil forward motion is affected by increasing slip rate (Figure 73B) 

because slip induced soil transport can move soil away from the wheel front. As a rolling 

wheel slip rate of a push-roll vehicle can be controlled, entering high slip to achieve 

higher drawbar pull can be used to a vehicle’s advantage. Similarly, reducing soil 

transport from underneath a wheel by lowering the slip rate, enables sinkage of the 

rolling wheel to be managed by a push-roll vehicle (Figure 73A). 

 

Figure 74: The pushing wheel generates substantial drawbar pull and, therefore, can work in conjunction with a rolling 
wheel that generates significant negative drawbar pull (from high motion resistance). The rolling wheel drawbar pull is  
-0.15 (pull coefficient), which is a considerable resistance. As an example, a wheel operating at 5% is chosen resulting 
in lower sinkage than the nominal 20% slip wheel (Figure 71). The 5% slip rate results in a slip induced sinkage of 
5.2mm (compared to 25mm of 20% slip wheel). The soil velocity magnitude plots are scaled differently between 
pushed and rolling wheel. 

 

An example representing use of a commanded low slip rolling wheel in conjunction with 

a pushing wheel is shown in Figure 74. The sinkage of the rolling wheel is much less then 

that of the push-roll example, in Fillite, given in Figure 71. By lowering the slip rate from 

20% to 5%, the slip sinkage changes from 25mm to 5.2mm. As a consequence, the pull 

coefficient of the rolling wheel drops from -0.10 to -0.15. This trade off, of higher motion 
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resistance, is manageable as the pushed wheel still generates 0.20 pull coefficient with 

only 0.4mm slide sinkage. 

 

Figure 75: Example operating range of push-roll locomotion in soft ground. Push-roll locomotion can control the 
rolling wheel slip, therefore it can operate at a predetermined point to manage drawbar-pull and sinkage. Sinkage is 
expressed in terms of slide induced or slip induced sinkage (not static). Soil velocity magnitude plots are scaled 
differently between pushed and rolling wheel. The rolling wheel velocity magnitude plots are normalized by ground 
speed and are at equal scale, allowing for direct comparison.  

A visualization, of a possible range of operating points of push-roll in soft ground is 

given in Figure 75 for discussion purposes. Figure 75 can be looked at as first choosing a 

wheel slip rate (which would be controlled by the vehicle) and then a pushed wheel that 

provides adequate thrust. Two examples of a pushed wheel are provided; one high thrust 

and one medium thrust. Although the lowest pushed wheel thrust provided in the figure, 



 
 

 

125 

is greater than that of the lowest rolling wheel net resistance; the two points are provided 

to give a look at the relative influence the two points have on soil motion. 

A wheel operating at a low slip rate must roll over the soil that is it encounters at its 

leading edge. At higher slip rates, a wheel is more capable of transporting soil away from 

the leading edge, resulting in a reduction of the resistance the soil in front of a wheel 

might produce. The increased pushing on soil, at low slip rates, reduces drawbar pull and 

an example of this process is evident in the 5% and 20% slip rolling grouserless wheels in 

Figure 75. At a low slip rate of 5%, the rate of soil removal below the grouserless wheel 

is reduced, however the rate of removal at the wheel front is also reduced. The lowered 

rate of soil transport, leads to decreased sinkage, but also a higher motion resistance 

(greater negative drawbar pull). This might be desired for flat ground in difficult 

materials where high margin against entrapment is warranted. As excessive resistance 

due to sinkage is the primary cause of vehicle entrapment, sinkage is a safety metric 

commonly utilized to asses full-vehicle mobility. 

As the slip rate may be commanded at a high rate to intentionally reduce motion 

resistance by transporting soil from the wheel front, the use of grousers is quite 

appropriate for the task. At 20% slip, the grousered wheel can be seen to remove a large 

volume of soil from the wheel front, thus reducing motion resistance. However, the soil 

transport due to grousers actually tends not to increase the rate of soil removed below the 

wheel. The grousers don’t increase sinkage due to the fact that the space between the 

grousers is filled by the soil from the wheel front (now acting like larger diameter wheel). 

For this reason, the wheel with and without grousers at the same slip rate has very similar 

sinkage. A major difference between the two wheel types is the drawbar pull. Therefore, 

using grousers on a push-roll vehicle, is a quite useful configuration of locomotion mode 

and wheel type when slip is intentionally increased to reduce rolling wheel resistance. 

This combination provides higher drawbar pull without increased sinkage. 

If high drawbar pull is desired for ascending an incline of high sinkage material, further 

slip might be required to reduce motion resistance to increase drawbar pull. This 
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requirement comes from the need to overcome gravity due to the incline and motion 

resistance due to high sinkage material. The incline increases the total drawbar pull 

required to travel uphill, while reducing motion resistance might lead to more available 

drawbar pull, especially in soft ground. The wheel at 60% acts as an example of this case. 

It can be seen in the SIIA plots that less soil is being pushed forward and, therefore, 

motion resistance is decreased. The increased drawbar pull measured reflects this 

reduction of motion resistance. 

Single wheel force measurements, sinkage measurements and sub-surface soil analysis 

show that push-roll might provide high mobility in high sinkage materials such as Fillite 

where many wheeled vehicles would become entrapped. The pushed wheel is still able to 

provide high thrust with little increase sinkage. When combined with a rolling wheel of 

high resistance, a net positive drawbar pull can still be achieved. A control strategy for 

prioritizing sinkage or drawbar pull can be implemented on a push-roll vehicle in soft 

ground by controlling the rolling wheel slip rate. 
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Figure 76: Full vehicle demonstration in soft ground (Fillite) in self-propelled state. The rolling locomotion is at high 
slip, substantial sinkage and near entrapment. The push-roll locomotion travels under much lower travel reduction 
(slip) and lower sinkage. State of sinkage after one vehicle length of travel is shown. The vehicle is not near entrapment 
and easily makes forward progress. The reduced sinkage is because the rolling wheel is able to operate at negative 
drawbar pull. The rolling wheel slip was estimated to be 10%. 

A full-vehicle demonstration of push-roll locomotion in Fillite was conducted to verify 

that increased performance would be achieved over conventional rolling as was 

concluded from sub-system SIIA results. By visual inspection, the Scarab vehicle 

operating in push-roll mode, was able to make forward self-propelled progress under 

what appeared to be low travel reduction (however travel reduction was not measured). 

Rolling locomotion resulted in high slip (greater than 90%) and in high sinkage of the 

vehicle rear wheel (Figure 76). While in conventional rolling locomotion, the vehicle was 

near entrapment. Alternatively, while operating in a push-roll mode, entrapment seemed 

unlikely as little wheel slide or slippage occurred. These experiments show that there is 
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potential use for push-roll in extreme scenarios such as the weak fly-ash material, Fillite, 

which would cause most wheeled vehicles to become entrapped.  

5.3.5 Design for Improved Traction 
The experimental results of this chapter can inform design in numerous ways; two 

examples are provided. First, identifying ground failure as the main source of traction 

gains, allows a designer to rely on high thrust in the development of a system using a 

pushing element. This not only enables better design of vehicles that may use a pushing 

element but also offers it as a design option to increase mobility through higher drawbar 

pull and lower sinkage. For example, a pushing element could be used on a tracked 

vehicle that already has very low sinkage (i.e. low motion resistance) and because thrust 

would be the additional source of drawbar pull gains, the design change might still yield 

significant mobility increases. Adding the pushing element would increase thrust and the 

ability to tow a larger load. On the contrary, if the assumption of previous works were 

made, that reduction of resistance is the most significant source of gains, then adding 

pushing to a vehicle with low resistance, would be expected to yield little gains. These 

implications are not true and lead to poor assumptions regarding use of pushing in vehicle 

design.  

Second is an example specific to push-roll implementation (i.e. guiding push-roll vehicle 

development). A design aspect realized from this thesis work is that push-roll provides an 

opportunity for unique control strategies to prioritize for drawbar pull or sinkage. As is 

revealed by SIIA, soil forward flow and soil transport, causing sinkage of wheels in soft 

ground, varies with slip. Since the rolling wheel of a push-roll vehicle can be set to an 

arbitrary slip rate, soil transport phenomena can be exploited. If high drawbar-pull is 

desired, for example, to climb a slope of weak material (with moderate-high sinkage), the 

rolling wheel slip can be commanded to increase to reduce soil trapped at the wheel front. 

The will reduced motion resistance, resulting in higher drawbar-pull. If entrapment is of 

concern, for example in a flat ground sand-trap scenario with very high sinkage, low 

rolling wheel slip can be commanded to minimize sinkage. The lower slip will reduce 

soil being transported from underneath the wheel. 
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The two examples provided show how the push-roll locomotion, which is supported by 

sub-surface soil motion analysis, can directly inform design for improved performance 

and mobility. 

5.3.6 Conclusions 
The major findings of the push-roll locomotion research are: 

• Push-roll locomotion generates thrust resulting in high drawbar pull that can aid 

in mobility. The pushing wheel produces this high degree of thrust as a result of 

ground failure. This soil failure mode is fundamentally different to that of a 

rolling wheel.  

 
• Demonstration of a full-vehicle push-roll implementation on the Scarab rover 

platform was measured to produce approximately double the drawbar pull of 

conventional rolling for an equal travel reduction. The measured traction gains 

support the conclusion that push-roll can be used for steep slope ascent where 

high drawbar pull is required to overcome gravity. Also, push-roll in a high 

sinkage material (Fillite) was demonstrated and showed traction gains compared 

to conventional rolling in this scenario. In this material, most wheeled vehicles 

would face entrapment.  

 
• High thrust is achievable without pushing off a wall of soil because of ground 

failure, not because of soil accumulation. This finding was experimentally proven 

in both loose material at low sinkage (GRC-1) and in extremely weak, high 

sinkage material (Fillite). The measured sinkage and horizontal displacement 

(slide) of pushed wheel was very low for both material types. These results show 

the overall feasibility of push-roll as it can gain high drawbar in many 

applications while still maintaining low sinkage. 

 

• Soft ground control strategies, via push-roll, offer low sinkage and high margins 

against entrapment. By coupling a high thrust pushed wheel and a negative 

drawbar low slip rolling wheel, low sinkage can be achieved in high sinkage 
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materials. Alternatively, operating at higher rolling wheel slip achieves lower 

motion resistance. As such, a push roll vehicle might be able to gain high drawbar 

pull in high sinkage materials. High drawbar pull in this scenario would be useful 

to ascend inclines of materials of high sinkage. 

A prime example of a study of sub-surface soil behaviors leading to increased 

understanding and design improvement is the fact that a pushed wheel was determined to 

undergo ground failure using SIIA. Previous to this work, it was assumed that the 

mechanics of a pushed wheel are the same as that of a rolling wheel. This assumption 

resulted in misunderstanding regarding the traction ability of push-roll locomotion and 

possibly to poor implementation. The understanding that a push-roll vehicle generates 

high drawbar pull by pushed wheel thrust has design implications, as was discussed in the 

previous section (5.3.5, page 128).  

5.4 Experimental Results Summary 
The results of the study of grouser mechanics and push-roll locomotion were presented to 

show that behaviors of observed sub-surface soil motions influence traction and that 

employing an empirical method for analysis of these behaviors leads to explanation of 

previously unknown traction processes. Shear Interface Imaging Analysis provided 

unique data in these studies and resulted in novel findings confirming the importance that 

detailed sub-surface soil behaviors should play in terramechanics research, analysis and 

design. 

Section 5.2, Grouser Mechanics, presented the study of the function of grousers and 

introduced design guidelines to achieve high performance based off a traction mechanism 

discovered by sub-surface soil motion analysis. Section 5.3, Push-Roll Locomotion, 

investigated a non-typical locomotion mode for the discovery of sources of traction gains 

measured during full vehicle experimentation. The findings explained how this 

locomotion mode is able to produced high thrust and how to implement for difficult 

terrain such as extremely weak surface materials.  
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Both the grouser wheel and push-roll studies resulted in guidelines for implementation 

for high performance. Examples of implementation for improved design are the minimum 

grouser spacing equation and slip control of push-roll for low sinkage. 

The studies highlight the importance of recognizing the insufficiently understood 

processes underneath a wheel and that better design can be achieved by accounting for 

specific wheel induced soil motions. If a common approach of terramechanics research 

were undertaken which relies solely on force and sinkage measurements, none of the 

major findings of this thesis research could have been made.   
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6 Conclusion 

6.1 Summary 
This research has shown that the behavior of soil under a rolling wheel was poorly 

understood, and that such understanding is important in the design and analysis of 

planetary rovers operating in loose, granular material. Empirical analysis of sub-surface 

soil motion exposes traction processes too complex for current models and theory to 

describe. 

 

The study of common wheel types, and a range of operating points, revealed soil motion 

behaviors that were previously unobserved, that were inconsistent with the literature and 

that were not accounted for in terramechanics models. These results motivated further 

investigation of specific soil motion behaviors. Examination of these soil behaviors show 

that accounting for soil behaviors is needed if accurate prediction of traction is expected 

and if reasonable assumptions regarding traction mechanics are to be made. 

 

The two major studies of this research, the investigation of grouser mechanics and the 

investigation of push-roll locomotion, show that the empirical method of observing sub-

surface soil motions can lead to new explanations of traction processes of wheels. This 

method led to improved wheel design and control strategy, during the research of 

grousered wheels and push-roll locomotion, respectively. The study of grousers led to an 

explanation of how they influence traction and introduced design guidelines to achieve 

high performance based off traction processes discovered by sub-surface soil motion 

analysis. The push-roll locomotion study, investigated a non-typical locomotion mode for 

the discovery of sources of traction gains measured during full vehicle experimentation. 

The findings explained how push-roll locomotion mode is able to produce high thrust and 

how to implement control for difficult terrain such as extremely weak surface materials.  

As a result of sub-surface soil motion analysis, a new explanation of traction mechanics 

of grousered wheels was formed, and design guidelines for improved performance were 

developed. Soil forward motion at a wheel leading edge was identified as a crucial soil 
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behavior associated with grousered wheels. The forward motion correlated with drawbar 

pull response and, therefore, was shown to have a strong positive influence on traction. 

In-depth analysis of how grousers interact with the ground resulted in the formation of 

the concept regarding reduction of motion resistance via grouser induced soil transport. 

The selection of proper grouser height and spacing enhances the soil transport clearing 

effect and can increase drawbar pull. As a result, an equation for grouser height/spacing 

relationship to achieve high performance grouser configuration was developed and 

partially validated. This equation predicts the minimum grouser spacing such that the rim 

does not contact the ground before a grouser removes soil that would normally contribute 

to motion resistance. This expression relates grouser configuration (height and spacing) 

to wheel parameters (wheel radius) and operational parameters (sinkage and slip).  

Sub-surface soil motion analysis of push-roll locomotion revealed new potential for the 

mobility mode. Full vehicle traction measurements quantified mobility gains and 

confirmed feasibility in low bearing strength materials.  

The pushed wheel is able to produce large thrust as a result of ground failure. This soil 

failure mode is fundamentally different than that occurring below a rolling wheel. It was 

revealed that high thrust could be achieved without requiring an accumulation of soil 

behind the wheel due to the nature of a ground failure response. This result was 

experimentally proven in both loose material at low sinkage (GRC-1) and in high sinkage 

material (Fillite). Measured sinkage and horizontal displacement (slide) of a pushed 

wheel was also very low for both material types. These findings confirm the overall 

feasibility of push-roll as a locomotion mode as it can gain high drawbar pull at low 

horizontal displacement, thus maintaining low sinkage. 

It was discovered that push-roll provides an opportunity for unique control strategies to 

prioritize for drawbar pull or sinkage. As was revealed by sub-surface soil motion 

analysis, soil forward flow and soil transport, causing sinkage of wheels in soft ground, 

varies with slip. Since the rolling wheel of a push-roll vehicle can be set to an arbitrary 

slip rate, soil transport processes can be exploited. By coupling a high thrust pushed 
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wheel and a negative drawbar pull, low slip, rolling wheel, low sinkage can be achieved 

in high sinkage materials. Alternatively, operating at higher rolling wheel slip achieves 

lower motion resistance. As such, a push roll vehicle might be able to gain high drawbar 

pull in high sinkage materials. Soft ground control strategies via push-roll offer low 

sinkage and high margins against entrapment or high drawbar pull to ascend slopes of 

materials of high sinkage. 

Push-roll implementation, on the Scarab rover platform, produced approximately double 

the drawbar pull of conventional rolling. This large traction gain might allow for 

increased steepness of slopes ascendable as high drawbar pull is required to overcome 

gravity in this scenario. Push-roll in a high sinkage material (Fillite) was demonstrated 

and showed mobility performance gains, such as lowered sinkage and slip, compared to 

conventional rolling. In this material, most wheeled vehicles would face entrapment. 

In summary, the results of the experimentation campaigns of this research, verify all 

aspects the thesis statement asserted in this document.  

 

6.2 Contributions and Significance 
The research of this thesis advance planetary rover mobility and the study of 

terramechanics in the following ways: 

§ Introduced a method of empirical terramechanics investigation based on observation 

and analysis of design prototypes. The general approach, utilized in the two major 

studies included in this research, show how empirical observation of sub-surface soil 

motion utilized for analysis can be an insightful method of studying both 

terramechanics fundamental traction processes and specific wheel prototype designs. 

This method for research can be used in the formation of principles describing wheel-

soil mechanics and aid in developing a wheel or operating a vehicle. Direct analysis 

of soil motion provides knowledge of the soil failure planes, soil transport processes 

and many other aspects of traction. This analysis leads to insight into complex 

traction processes not described by current theory, and can lead to improved mobility 



 
 

 

135 

performance through design changes. This research also introduces the concept of 

validating design via subsurface soil motion analysis and designing for specific sub-

surface soil response behavior. Design using this approach is an alternative to typical 

evaluation by reaction forces and theoretical analysis.  

 
§ Created the Shear Interface Imaging Analysis (SIIA) method as a new tool for 

terramechanics research. The SIIA method utilizes the optical flow computer vision 

techniques to measure sub-surface soil motion underneath a wheel for the first time. 

This method produces high fidelity, spatially dense soil displacement fields. The SIIA 

method differs from other methods of investigating sub-surface soil motion by not 

needing specialized equipment, such as high-speed cameras, pulsed lasers, multi-

phase LED lamps, or the alteration of the soil specimen via reference markers or 

coloring. Other methods also had lower resolution, accuracy and spatial density of 

information than the optical flow implementation utilized by SIIA. Shear Interface 

Imaging Analysis (SIIA) does not require special soil preparation or alteration of the 

soil sample and relies on an inexpensive consumer digital camera and readily 

available software. The high fidelity soil displacement fields produced by SIIA were 

demonstrated to provide useful data during both the research and in guiding design by 

enabling sub-surface soil motion analysis as described previously. Other research 

groups have already adopted this technique as a result of this work [71]. The high 

fidelity soil particle motion fields, generated by the novel soil tracking approach for 

terramechanics, also has many other uses such as validation of DEM models and 

possible hybrid methods to infer soil stress/strength.  

 

§ Observed that different wheel types and devices generate traction in different ways. 

Empirical evidence showing unexplained phenomena of sub-surface soil motions 

between wheel types, gives direction for much potential research. This thesis provides 

a framework that may be followed to conduct the research. A need to validate basic 

assumptions that underpin conventional terramechanics theory and models is also 
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highlighted. The validity of many assumptions can be called into question as a result 

of this research and by the empirical results presented. 

 

§ Investigated empirically the sub-surface soil mechanisms related to grousered wheel 

traction. As a result, design guidelines for improved performance are offered based on 

a new explanation of grousered wheel traction. Analysis of grousered wheel-soil 

interaction led to the mechanics behind reducing motion resistance via soil transport. 

An equation for the implementation of high performance grouser configurations was 

developed and demonstrated to predict useful values compared to measured data. 

Also, highlighted is the importance of validating aspects of traction devices that are 

not explicitly part of model. Fine details, such as rim surface features, have a 

profound effect on soil shearing, and in turn, on traction. 

 

§ Revealed the soil mechanisms behind push-roll locomotion and demonstrated high 

drawbar pull (slope climb) and soft ground (high sinkage) applications. SIIA analysis 

provided unique insight to confirm ground failure type soil response that provides 

high thrust used by push-roll locomotion. This thesis research provides the most 

comprehensive empirical study of wheel-soil interaction of push-roll locomotion to 

date. Confirmation of the high thrust capability due to the type of soil failure and the 

implementation for operation in soft ground brings forward the mobility gains of this 

non-typical locomotion mode and as a possible use for future planetary missions. 

 

§ Provided insight into traction processes of wheels operating in loose, granular soil. 

Although numerous novel findings were made (see Table 4), three key examples are 

worth highlighting. The extent of the role soil transport processes play in traction was 

shown. The observation that the shear interface is almost always confined to wheel 

contact, and the drastically different shape of soil failure planes for different wheel 

types are important findings. The former observation is important as it suggests that 

the soil failure planes may be governed by the path the soil is forced to take due to 

wheel geometry and is not only a function of loading. Studying wheels under varying 
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slip rate and at high sinkage highlights soil transport, due to wheel rotation, as a 

mechanism that plays an important role in traction; sinkage induced by slip affects 

resistance, while similarly, soil transport at the front of the rim can reduce traction by 

moving soil out of the wheel path. The shear interface shape of the rigid wheel is 

different from that of the compliant, flat contact wheel and from that of the pushed 

wheel. The drastically different shape of the shear interfaces (soil failure planes) is an 

important finding as it suggests that the thrust producing mechanism varies between 

wheel types. This finding motivates research into the different processes governing 

the different shear interface shapes. Creating designs that could somehow achieve the 

shear interface of a high drawbar pull device, such as the pushed wheel, would 

produce wheels of extraordinary performance.  

6.3 Importance of Soil Transport 

 
Figure 77: A grousered and grousereless wheel is shown operating in high sinkage material at 60% slip. The grousered 
wheel is generating 10N drawbar pull, while the grouserless wheel generates 2.5N. This experiment highlights multiple 
key insights into wheel operation in general. At the front of the wheels, the soil moves in a tangential direction for the 
grousered wheel, while the direction of the soil is near normal to the rim for the grouserless wheels. Soil velocity 
magnitudes for both wheels are equally scaled. 

Soil transport is a key process highlighted by much of the experimental results. This 

process can explain many aspects of wheeled traction in loose, granular soil. However, it 

has received little attention in research and is not accounted for in terramechanics theory. 
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In Figure 77, wheels operating in high sinkage material are shown and are an example 

where soil transport can be seen to play a major roll in motion resistance. If soil is moved 

away from a wheel region of interest, the soil can no longer play a role in generating 

thrust or resistance with respect to that region. A clear example of the result of soil 

transport is seen in Figure 77. There is less soil visible in front of the wheel with grousers 

(a wheel type that transports soil well). This experimental result highlights soil transport 

as a key traction process that must be accounted for, if accurate predictions of 

performance are to be made. 

6.4 Future Work 
This thesis research developed improved PIV (Particle Image Velocimetry) tools and 

demonstrated a unique approach to conducting terramechanics research. The experiment 

space of the traction device types and range of parameters investigated was fairly limited. 

Although various wheel diameters and wheel types were tested, only grousers and push-

roll were studied in depth. A comprehensive investigation of all wheel types, and of 

expanding the experiment space to include other traction devices, such as tracks, is 

expected to yield useful results. The results would not only lead to knowledge about a 

specific device studied, but also by accruing the results of many traction device types, a 

comparative study could be conducted. There is a lot to learn by identifying differences 

in traction processes between traction device types. For example, the study of the shear 

interface of a highly compliant wheel compared to that of a track, could inform how to 

better design the wheel to approach the high performance of a track. A deeper 

understanding of how the flat contact of a track affects soil transport and soil failure 

planes might direct efforts of compliant wheel design toward a flat contact or show if this 

feature is not importance. Another example from the study of push-roll locomotion is that 

research could be conducted to attempt to develop a rolling wheel that would produce 

ground failure of the soil, similar to that of the pushed wheel. There is no reason in 

principle why this could not be done, and traction gains would be extraordinary. 

However, a practical design of a rolling that interacts with the soil the same manner as 

the pushed wheel might not be feasible from a mechanical design perspective. 
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Many basic traction processes should also be the focus of investigation via a method like 

SIIA. As an example, a study of sinkage due to soil transport could provide insight about 

fundamental processes such as motion resistance and slip.  

There is value in specifically investigating some of the underlying assumptions of 

terramechanics as applied to wheels in loose, granular material. This investigation might 

show limitations of current analytical models or provide insight into modifications and 

improvement. It might be possible to improve some aspects of existing analytical models 

by accounting for soil motion. For example, an effective sinkage and contact angle may 

be determined based on sub-surface soil motion analysis. An effective sinkage value 

could be utilized to calculate motion resistance while accounting for soil transport. 

Analysis techniques and how to use soil displacement plots should be expanded upon. 

This research relied primarily on soil motion velocity magnitude and on direction fields. 

There are better indicators of both thrust and resistive forces such as total displacement. 

For example, manipulating the velocity data to calculate total displacement of soil in 

front of a wheel could be used to compare motion resistances between wheels. There are 

other ways to visualize the soil motion data that might be an informative output of SIIA. 

For example, tracking groups of particles and calculating the change in area particles are 

spread over can lead to measurement of change in density. This measurement can be 

useful as density strongly correlates to soil strength, therefore SIIA could be used to infer 

local changes in soil strength due to wheel influence. 

The use of high fidelity soil displacement plots, to infer stress and strength could be 

powerful. Novel hybrid experiment-model methods might be achieved utilizing the SIIA 

data. This type of approach is motivated by the difficulty in predicting soil motion over 

long distances and by interaction with complex wheel geometries. An example of a 

hybrid approach, is the method introduced by Vlahinic, the author of this thesis, and 

others, that rely on high-fidelity soil displacement fields from SIIA experimentation, 

coupled with a physics-based computational framework to infer soil stress at high spatial 
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density [53]. This hybrid method is an example of possible uses of sub-surface soil 

motion data that may open doors for new terramechanics research.  

The study of wheels with grousers resulted in an alternative explanation of the processes 

leading to traction gains seen by wheels with these rim features. The process of reducing 

motion resistance and an explanation of the wheel interaction mechanism by which this 

occurs was discovered. An equation for high performance grouser configuration was also 

developed, based off the concept of reducing motion resistance via grousers. The 

transport of soil away from the wheel leading edge was found to reduce contact in this 

region, thus reducing resistance to forward wheel travel. As soil transport is the key 

process, there are many implications in terms of wheel design. This research solely 

investigated grousers that were straight, paddle like protrusions. Alternate shapes of 

grousers might promote more efficient clearing of soil from the wheel leading edge, or 

even reduce slip-induced sinkage. As soil transport plays a key role in both the grouser 

induced drawbar pull gains and slip sinkage, any wheel feature that has a significant 

effect on soil transport should be a focus of future research. For example, confining soil 

on all sides before forcing it to move might better transport all the soil from in front of 

the wheel without inadvertently pushing some to the side. The shape of the grousers is 

expected to have a significant effect on how well it contains the soil it initially engages 

(e.g. a U-shaped grouser would confine soil well). As more soil that is moved away from 

the wheel front will end up passing underneath the wheel, the slip induced sinkage might 

actually be lowered due to this grouser shape that better confines soil. There are many 

other considerations with regard to grouser shape and possible effects on traction due to 

soil transport. This aspect of grouser configuration has potential to influence traction and 

is a suggested avenue of future research. 

The minimum grouser spacing equation for high performance presented in this thesis is a 

first of its kind and therefore might be overly simplified or not expressed in the most 

suitable manner. The formation of the equation resulted from an attempt to capture 

algebraically the basic mechanism by which grousers can reduce motion resistance. As 

such, it is in its simplest form. It is suggested that the wheel-ground interactions related to 
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the soil clearing behavior be further investigated to reveal any secondary behaviors that 

influence motion resistance and that were not accounted for in the equation. Accounting 

for soil properties that have an obvious effect on the grouser soil transport behavior is 

expected to produce more accurate results. Soils that flow easily or are highly 

compressible will have less stringent requirements for grouser spacing and height, as soil 

transports more easily and resists forward motion less respectively for these soil types. 

Accounting for flowability and compressibility is expected to lead to a more refined form 

of the grouser spacing equation. Currently, a requirement in forming the grouser spacing 

equation is that the grouser sweeps soil away so the rim will never contact the soil at 

ground level. If a configuration was desired that is most appropriate for high sinkage at 

low slippage than the derivation of the equation could impose an initial rim contact at a 

prescribed depth (absolute or percentage of wheel radius). Prescribing an initial contact 

depth will actually produce a design that creates an effective reduced sinkage value, with 

respect to motion resistance processes, that is chosen by the designer. The initial point of 

contact may also be better described by a prescribed entrance angle (angle between rim 

tangent and ground plane at the point of initial contact). This relationship encompasses 

the affect of wheel radius on motion resistance and since it is a function of wheel radius, 

it is generalizable over wheels of different sizes. These types of improvements to the 

equation should be undertaken to produce a revision that can be broadly applied, thus of 

greater value for design.  
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8 Appendix 

8.1 SIIA Optical Flow Algorithm Error Analysis 

8.1.1 Controlled rotation test 
To quantify the error of soil motion measurement output by SIIA, GRC-1 soil [47] was 

spread out flat covering a plate (Figure 78), which was then rotated by a very precise 

amount: 0.02944 rad ± 0.00003 rad.  

 

Figure 78. GRC-1 spread flat on a plate, viewed from directly above. A sharpened pin at the center marks the point of 
rotation for ground-truth testing. 

The ground truth of this prescribed motion was compared to soil motion measurement 

output by SIIA by processing pre- and post-motion photographs, as shown in Figure 79. 

The largest displacement, at the corners of the image, is 15.6 pixels, or 3.12 mm. 
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Figure 79. Ground truth (left) and measured (right) soil displacement magnitude (top) and direction (bottom), induced 
by a prescribed 0.02944 rad rotation. 

Motion error at each pixel is measured by: 

 

This error is shown in Figure 80, according to its distribution in the image as well as its 

statistical distribution by magnitude. Errors are sub-pixel in magnitude throughout the 
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image, with more of the higher magnitude errors observed near the edges where motion 

magnitude is also larger (as high as 15.6 pixels); regression shows a weak correlation of 

error magnitude with motion magnitude, with an R2 of 0.25. The large displacements at 

the extremes of this test case are 2 to 3 times larger than the largest displacements 

observed during typical testing. Combined with the fact that error magnitudes are 

correlated with signal magnitudes, this suggests that the distribution shown in Figure 80 

may be considered an upper bound on the error. 

 

 

Figure 80. Motion error at each pixel of the image (left; warmer colors indicate higher error). Distribution of motion 
error by magnitude (right; median error = 0.14 pixels, 95th percentile = 0.28 pixels) 

8.1.2 Constant horizontal speed tests 
Typical SIIA tests involve moving the test implement and camera horizontally at a 

constant speed (and, in the case of wheel tests, coordinated rotation of the wheel for 

constant slip, as described in 8.1.1). The majority of the soil captured in the image is not 

influenced by the test implement, and remains static (see the large region of dark blue in 

Figure 7, for example). This static soil should thus move horizontally through the passing 

camera’s field of view, at the speed that the carriage is commanded. The velocity of the 

static soil in the camera’s reference frame may deviate slightly from this constant 

horizontal speed due to error in the processing technique, error in the control of the 

horizontal motion, vibrations in the structure between the test implement and camera, 

and/or inconsistencies in the camera’s frame rate. 
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Figure 81 shows a sample of processed output from a 20% constant slip test. Results from 

a single frame pair are shown; the full test consists of 51 frames (and thus 50 frame 

pairs). The wheel is commanded at a tangential speed of 1 cm/s, and the carriage is 

advanced at 0.8 cm/s to maintain the desired 20% slip test condition. From the median 

horizontal soil flow of each of the 50 frame pairs of the test, the average horizontal speed 

was estimated to be 0.79 cm/s, and the 95% confidence interval for the horizontal speed 

was [0.75 cm/s, 0.83 cm/s]. This horizontal motion corresponds to average and 95% 

confidence values of 7.23 ± 0.34 pixels/frame. The error in horizontal motion detected is 

thus not much higher than the error introduced by the processing technique alone (± 0.28 

pixels/frame, as shown in Figure 80), suggesting that the additional potential sources of 

error are not as significant as the error in the optical flow itself. 

 

Figure 81. Sample output from a constant horizontal speed (constant slip) wheel test. The region colored dark blue in 
the velocity magnitude plot (top), covering the majority of the image, represents static soil unaffected by the test 
implement. 

8.1.3 Cross-validation with feature tracking 
Ground-truth measurements of soil displacement can be made for simple motions, such 

as the rotation and horizontal flow described in Section 8.1.1 and 8.1.2, but are not easy 



 
 

 

153 

to obtain or enforce for more complex flows. Where validation against ground-truth is 

infeasible, it is useful to at least cross-validate against other techniques. 

To gain insight into how the optical flow technique described here handles complex soil 

flows, its output is compared to corresponding output calculated via scale-invariant 

feature tracking (SIFT). SIFT searches for robustly distinguishable features in an image, 

and can then match that feature in a subsequent image. Soil displacement can thus be 

calculated at key points between an image pair. 

Cross-validation tests for optical flow and SIFT were run using GRIP-1 soil. This is 

GRC-1 with 5% of its particles dyed black to increase the number of features discernible 

by SIFT. Sample output from both techniques for one of the GRIP-1 tests is shown in 

Figure 8. The top image shows motion of the tracked SIFT features between a pair of 

images, indicated by line segments. For each SIFT feature, the optical flow at the nearest 

pixel center is plotted on the bottom image. Where the error (Equation 13) between the 

computed optical flow (OF) and SIFT displacements is greater than 0.56 pixels (i.e. twice 

the 95% percentile error calculated from the ground-truth rotation test), the motion is 

displayed in red. 

 

Note that these instances are rare, but do tend to occur in regions of the soil affected by 

the test implement (where more complex flow occurs). Again, SIFT output is not ground-

truth, so differences between optical flow and SIFT should not automatically be 

considered as errors on the optical flow side. However, these cross-validation tests do 

explicitly show that capturing soil motion for regions of complex flow is more 

challenging than for simple rotations and translations. Errors in these regions may thus be 

higher than those characterized in ground-truth testing. 

 𝑢𝑂𝐹 − 𝑢𝑆𝐼𝐹𝑇 2 + 𝑣𝑂𝐹 − 𝑣𝑆𝐼𝐹𝑇 2 Equation 13 
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Figure 82. Soil flow captured using scale-invariant feature tracking (SIFT; top image), for cross-validation of soil flow 
computed by optical flow (bottom). Blue line segments show agreement between the two techniques within 0.56 pixels. 
Red lines indicate larger disparities, and occur where the wheel interacts with the soil causing complex flow. 

For an extended explanation of the soil imaging software and error analysis see [72]. The 

information provided in this chapter is largely an excerpt from this publication. 


