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Abstract

Data driven approaches to modeling time-series are important in a variety
of applications from market prediction in economics to the simulation of robotic
systems. However, traditional supervised machine learning techniques designed
for i.i.d. data often perform poorly on these sequential problems. This the-
sis proposes that time series and sequential prediction, whether for forecasting,
filtering, or reinforcement learning, can be effectively achieved by directly train-
ing recurrent prediction procedures rather then building generative probabilistic
models.

To this end, we introduce a new training algorithm for learned time-series
models, DATA AS DEMONSTRATOR (DAD), that theoretically and empirically
improves multi-step prediction performance on model classes such as recurrent
neural networks, kernel regressors, and random forests. Additionally, exper-
imental results indicate that DAD can accelerate model-based reinforcement
learning. We next show that latent-state time-series models, where a suf-
ficient state parametrization may be unknown, can be learned effectively in
a supervised way using predictive representations derived from observations
alone. Our approach, PREDICTIVE STATE INFERENCE MACHINES (PSIMs),
directly optimizes — through a DAD-style training procedure — the inference
performance without local optima by identifying the recurrent hidden state as
a predictive belief over statistics of future observations. Finally, we experimen-
tally demonstrate that augmenting recurrent neural network architectures with
PREDICTIVE-STATE DECODERS (PSDs), derived using the same objective opti-
mized by PSIMS, improves both the performance and convergence for recurrent
networks on probabilistic filtering, imitation learning, and reinforcement learn-
ing tasks. Fundamental to our learning framework is that the prediction of
observable quantities is a lingua franca for building Al systems.
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Chapter 1

Introduction

Data driven approaches to modeling time-series are important across a vari-
ety of application domains from translating languages (Sutskever et al., 2014)
in natural language processing to market prediction in economics (Marcellino
et al., 2006) and to the simulation of robotic systems (Deisenroth et al., 2015).
Data-driven approaches allow us to model complex systems where it often be-
comes difficult to robustly characterize the system a priori with analytic models.
Indeed, machine learning and data modeling have became mainstays of technol-
ogy. Much of the field of machine learning has been focused on the standard
supervised learning problem (Bishop, 2006) and has been successfully used in
a variety of applications, from spam filtering (Drucker et al., 1999) to hand-
writing recognition (Hull, 1994). However, these traditional learning techniques
designed for i.i.d. data frequently perform poorly on sequential prediction prob-
lems such as those that arise when learning and using time-series models.

This thesis proposes that time series and sequential prediction, whether
for forecasting, filtering, or reinforcement learning, can be effectively
achieved by directly training recurrent prediction procedures rather
then building generative probabilistic models.

While there are many applications for time series and sequential prediction,
this thesis is motivated by and often uses robotics examples for experimental
evaluation, though the techniques we develop are more generally applicable.
Our prior experiences with robotic systems (Fig. 1.1) showcase the breadth and
diversity of the sequential and time-series problems that exist: from perception
systems that must track objects in the workspace of the robot (e.g. Position
of the wheel, holes, and pegs for wheel replacement (Bagnell et al., 2012) or
seeing clutter in the environment (Katz et al., 2013)) to planning with dynamics
(e.g. Stacking blocks to create a dynamically stable structure at the ARM-
S Exhibit at the National Air and Space Museum?!) to control (e.g. What
action should the prosthetic make to help the user achieve their goal? (Muelling

1Video at https://youtu.be/dSIJP1BRuJ5Y
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(b) BCI Teleoperated Prosthetic (left) and Robotic Car (right)

Figure 1.1: Robotics problems span the space from perception to planning to
control to state estimation. Each of these is often the result of a sequential pro-
cess such as a visual tracking system, kinematics or dynamics planner, feedback
control loop, and Bayesian filter respectively.

et al.,, 2015)?) and to state estimation (e.g. How to track the state of the
car and objects around it from sensor data.?). All of these problems have a
sequential process compent that is result of it being a time-series or having to
make sequential predictions. Though many of the experimental setups we use
throughout our work are simpler than those illustrated in Fig. 1.1, we hopefully
develop foundational algorithms for using machine learning in these large-scale
problems.

In robotics we can consider three clasees of time-series and sequential pre-
diction problems: multi-step prediction and forecasting, filtering and state esi-
mation, and control and reinforcement learning. To illustrate and ground these
problems, we look at how they apply to robotic, autonomous self-driving ve-
hicles. This is relevant as interest in these robotic systems has exponentially

2Video at https://youtu.be/5KjLnyNxeyk
3Robotic car image, Aurora Innovation, http://aurora.tech/
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grown due to their potential? for large societal and environmental benefits.

The first issue, multi-step prediction and forecasting is a common time-series
problem in robotics. The robot must predict what the world around it will look
like in the future to reason about safety and what actions can be taken. An
example of this is shown in Fig. 1.2 where an autonomous vehicle® uses a model
f for sequential prediction — predicting the pedestrian’s state in the future.
However, any earlier error in the prediction can cascade and grow in future
predictions.

St+1

Figure 1.2: Using a model f recursively allows predict future states s; of the
pedestrian.

The second time-series problem often faced in robotics is finding a model f
that achieves good performance for probabilistic filtering and state estimation.
The model must be able to integrate a variety of different sensing modalities
such as encoders and GPS to determine the underlying state. The challenge here
is two fold. First, it can be difficult to find the analytic causative relationship
between the sensor observation and the state of the system. Second, and more
important, the true underlying state of the system may be directly unobservable
or even unknown. An example state estimation problem is show in Fig. 1.3.
The robotic vehicle uses GPS along with on-board sensors such as an IMU to
estimate its position, velocity and acceleration. A predictive model f must be
able to predict the state of vehicle even with noisy and lossy observations (e.g.
GPS under occlusion — the orange state in Fig. 1.3).

The third sequential prediction problem confronted in robotics is selecting
actions for the robot. The actions may be selected through a planning or control
method in which the model f must be used to predict the future states of the
robot after applying the actions. In Fig. 1.4, the model is used to predict the
states of the self-driving vehicle to determine the proximity to obstacles, such
as pedestrians.

4 Rethinking Transportation 2020-2030, RethinkX
5“Google Car” icon by Guillaume Berry from thenounproject.com
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R4

,”yxt , y/$t+2

’fﬁ /‘?

St St+4+1 St+4+2

Figure 1.3: The model f is used to integrate sensor measurements x; to pre-
dict the future state s;11 (e.g. position, velocity) even under a noisy or lossy
observation xy41 (orange).

X i
y \
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Figure 1.4: When predicting future motion u;, the model f is used with the
current state s; to predict the future states of the vehicle.

While the three settings above were described individually, they are most
often coupled. A forward predictive model f with good multi-step predictive
capability is often required for good state estimation and control. A model for
handling hidden state such as for probabilistic filtering is needed for control and
prediction when only partial state information is known. In each of the above
settings, machine learning provides a tantalizing alternative to manual speci-
fication of analytic models. However, utilizing machine learning is hampered
in the above three settings, at least in part, by two key challenges which we
investigate in this thesis.

Challenge 1.

Multi-step prediction cascades error.

How can we optimize time-series models for multi-step prediction that han-
dle the model’s own prediction error?



Towards Challenge 1, we introduce a new training algorithm for time-series
prediction, DATA AS DEMONSTRATOR (DAD), based on the DAgger approach (Ross
et al., 2011a) that improves the multi-step predictive capability of time-series
models. Traditional methods optimize the one-step lookahead capability and
iteratively apply such learned models to predict multiple steps into the future.
DAD is a meta-algorithm that wraps these traditional approaches. We show
theoretically and empirically (Chapter 3) that it improves multi-step perfor-
mance on model classes from RNNs (Bengio et al., 2015) to random forests.
The key insight is that training data can be reused as the oracle to learn from
model’s errors. We additionally show in Chapter 4 that DAD can be useful to
accelerate model-based reinforcement learning.

Challenge 2.

Hidden state accentuates prediction error.

How can we better train recurrent predictors in partially observable sys-
tems?

We next show in Chapter 5 that latent-state time-series models, in which
a sufficient state parametrization may be unknown, can be learned effectively
in a supervised way using online instrumental variable regression. We show
that our algorithm learns a model for the latent state system, that when used
in a Kalman filter, reduces prediction error. In Chapter 6, we next show a
method for directly learning a filter function for partially observable systems.
More conventional approaches often choose parametric graphical model rep-
resentations and more importantly decouple the model learning from proba-
bilistic inference on the model, including the approach presented in Chapter 5.
Using a DAD-style training procedure, our approach, the PREDICTIVE STATE
INFERENCE MACHINE (PSIM), directly optimizes the inference (filtering) per-
formance by identifying the recurrent hidden state as a predictive belief over
statistics of future observations. Additionally, when partial-state information is
available for training, a common scenario in robotics applications, PSIM can
be modified (Chapter 7) to predict this quantity and utilize it to improve per-
formance. PSIM represents one of the first practical ways to replace hidden
state with predictive belief learning. Our quantitative results indicate that our
approach results in improved performance compared to spectral and backprop-
agation trained baselines. Finally, Chapter 8 develops a simple method using
the lessons learned in PSIM to create PREDICTIVE-STATE DECODERS (PsDs),
an easy-to-implement augmentation for general recurrent neural networks. We
show that adding PsDs improves empirical performance for probabilistic filter-
ing, imitation learning, and reinforcement learning.

Central to our algorithms is that the prediction of observable quantities is a
lingua franca for building AT systems. Many of the techniques developed in this
thesis are meta-learning methods for time-series and sequential prediction that
leverage existing supervised machine learning methods as a workhorse. The
thesis’ final insight is that directly training inference models for the target task
has good performance, often more so than more generative graphical modelling
approaches.
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Chapter 2

Background

In this chapter, we setup the problems investigated in the thesis as well as sum-
marize the relevant literature. We introduce classical single-step approaches and
progress in the literature towards Challenge 1, improving multi-step prediction.
We then introduce the problem of modelling partially observable systems and
advances made toward Challenge 2. We finish with a short discussion on rein-
forcement learning as related to this thesis.

2.1 Time-series Modeling

2.1.1 Single Step Predictive Models

Determining models for time series data is important in applications ranging
from market prediction to the simulation of chemical processes and robotic
systems. As supervised learning algorithms have evolved and been developed
in the machine learning community, they have been used towards modeling
these systems (Sjoberg et al., 1995). The choice of learning algorithm is a
result of trading off the desired model complexity, computational complexity
of the algorithm, and its usefulness for solving a later task (e.g. control policy
generation). We give in Table 2.1 a sample of the breadth of work in the
machine learning community towards learning time-series models, organized by
the learning algorithm. Many but not all of these assume, at least implicitly,
that the system is observable. This assumption implies that learner’s input
(feature vector) is sufficient for predicting the future. We discuss this below in
Section 2.2 and revisit it in Chapters 5 to 8 where we develop new algorithms
to handle situations when there is a latent state space that could even have
unknown parametrization.

Common to many of the algorithms in Table 2.1 and to many other typical
statistical and machine learning approaches to time series modeling is to fit a
model

frime—= Te (2.1)
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Machine Learning Technique Example Literature
Linear Least Squares (Abbeel et al., 2005b; Levine and Abbeel, 2014)
Neural Networks (Narendra and Parthasarathy, 1990; Punjani and Abbeel, 2015)
Support Vector Regression (Miller et al., 1997)
Gaussian process regression (Wang et al., 2005; Ko et al., 2007; Deisenroth and Rasmussen, 2011)
Nadaraya-Watson kernel regression (Basharat and Shah, 2009)
Gaussian mixture models (Khansari-Zadeh and Billard, 2011; Levine et al., 2016)
Kernel PCA (Ralaivola and D’Alche-Buc, 2004; Chan and Vasconcelos, 2007)

Table 2.1: Machine Learning Techniques applied to Dynamical System Modeling

to optimize a single-step prediction error
> i@ zesn)})-
t

This single-step loss corresponds to traditional supervised learning objective,
using input features 2 = x; and targets y = 2,41 to optimize a loss £(f(x),y)
such as squared loss or likelihood loss to find f . This process is shown in Fig. 2.1.

To using such models for forecasting multiple-steps into the future, the
learned model f is recursively applied, feeding through the previous output
Z; as its new input to predict Z;y;. Such an estimator f , however, inevitably
introduces errors with each prediction, and recursive use of the model f to
predict into the future accentuates the error through a feedback effect (see The-
orem 3.1.1). The compounding errors alter the input distribution for future
prediction steps, breaking the train-test i.i.d assumption common in supervised
learning. Thus, optimizing the single-step predictive loss does not guarantee
accurate multiple-step simulation accuracy.

The cascading of modeling errors is well known in the planning, control, and
reinforcement learning literature. For example, failures in planning can often be
attributed to inaccuracies in modeling even when using physics-based generative
models (Koval et al., 2016). For controller synthesis problems, learned models
are often used to optimize a policy or generate future sequence of controls.
This optimization over the control problem horizon can be sensitive to long
term prediction errors in the modeling (Abbeel et al., 2006; Nguyen-Tuong and
Peters, 2011; Heess et al., 2015).

2.1.2 Direct Method for Multi-Step Predictive Models

Various methods to handle or mitigate the multi-step predictive error have been
proposed. These approaches can usually be split into two groups, direct ap-
proaches or iterative approaches. In the direct approach, a model is fit to
predict k steps in the future (Chevillon and Hendry, 2005; Langer et al., 2016):

f(k) X = Tk
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Training Data Set “(x,y)” pair

Figure 2.1: Learning a single-step predictive model consists of taking the time-
series xg, ..., 2zt (e.g., from a video texture, Section 3.3.4) and constructing a
training dataset D of transitions (2, z;1+1) which can be used as the traditional
features ‘x’ and targets ‘y’ for any supervised machine learning algorithm.

In contrast, iterative approaches (which we also refer to as recursive or recur-
rent), fit a model f: x; — z441 (Eq. (2.1)) and repeatedly compose the model
to predict

k times

Ty = fo-o f(xy).

Much of the analysis comparing direct and iterative models is is focused on the
auto-regressive (AR) class of models (Weiss, 1991; Marcellino et al., 2006). The
direct method’s advantage is that it directly optimizes for the prediction to a
fixed look-ahead length and does not suffer from bias introduced by sequential
use of the iterative model for that same length. To achieve arbitrary horizons,
one can fit predictors for various k and compose those functions (Langer et al.,
2016). However, such models have a couple drawbacks. First, models at many
scales are required for making forward predictions at arbitrary time-lengths, in-
creasing the model complexity and thus sample complexity. The other drawback
is that to achieve arbitrary time-horizon predictions still requires compositions
of the functions, which leads to same feedback issues as with the iterative model.
Marcellino et al. (2006) empirically found that iterative AR models perform bet-
ter than direct models.

2.1.3 Iterative Method for Multi-Step Predictive Models

In this thesis, we focus on iterative (i.e. recursive or recurrent) use of time-
series models as most machine learning approaches (Table 2.1) are generally
used in this fashion. Within iterative models, there has been work in address-
ing the challenge of sequential prediction with the model. One class of such
works attempts to handle this by propagating model uncertainty through the
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Figure 2.2: Recurrent or iterative methods use a single model f to roll-out
predictions from an initial input.

predictions (Candela et al., 2003; Girard et al., 2003) over time. This uncer-
tainty can be used in computing the expected rewards when optimizing a control
policy (Deisenroth and Rasmussen, 2011). Though this approach helps to mit-
igate the effect of compounding model errors, these methods may not precisely
capture the true cascading multi-step modeling inaccuracies. Additionally, this
approach does not address how to improve the multi-step prediction itself but
merely at capturing the resulting uncertainty.

An alternative is to setup a loss function that captures the multi-step pre-
dictive error when using the iterative model. Abbeel and Ng (2005a) introduce
a “lagged-error” criterion in contrast with the traditional single-step maximum-
likelihood objective commonly used. However, loss functions like the lagger-
error criterion are often non-convex in the model parameters due to the recursive
prediction and is difficult to solve. Expectation-Maximization (EM), an itera-
tive optimization approach, can be used (Ghahramani and Roweis, 1999; Abbeel
and Ng, 2005a; Coates et al., 2008) for this sort of optimization. However, EM
is prone to local-minima and therefore is heavily dependent on initialization.
Abbeel et al. (2005b) propose a simpler yet still non-convex objective that still
only achieve local optimality.

We finish with a discussion on “backpropagation-through-time” (BPTT)
(Werbos, 1990), a method that has seen resurgent interest and popularity (Le-
Cun et al., 2015). BPTT (Fig. 2.3) extends back-propagation (i.e. gradient-
descent with chain-rule) for training differentiable models in networks with re-
currence relations. Unfortunately, such gradient methods are limited in the
model classes they can consider, effectively ruling out broad classes of some
of the most effective regression algorithms including decision trees and random
forests. Moreover, such methods — even on simple linear predictive models — tend
to suffer from a “gradient collapse” and ill-conditioning (Bengio et al., 1994),
where the gradient decreases exponentially or “explodes” exponentially in the
prediction horizon T'. While various attempts to improve the stability of BPTT
have been proposed such as truncated gradients (Sutskever, 2013) or gradient
clipping (Pascanu et al., 2013), to our knowledge, no formal guarantees have
been provided for BPTT or its variants for optimizing the multi-step predictive
error. Even so, BPTT has been used to great success in fields such as natu-
ral language processing through its use for training recurrent neural networks,
which we discuss below in Section 2.2.3. In this thesis, we present an alter-
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Figure 2.3: Backpropagation through time uses the chain rule to update the
model at timestep t with the gradients for all the timesteps in the future. This
results in an update to the model which reasons about how the local change will
cascade for future timesteps of prediction.

native training procedure in Chapter 3 that provides a theoretical performance
bound for the multi-step predictive performance. We apply this for both general
time-series problems as well as on partially observed systems. Additionally, we
present experimental findings in Chapter 8 which show that augmenting a re-
current network with secondary objective related to multi-step future prediction
improves performance and convergence when using BPTT.

2.2 Modeling Partially Observable Systems

A large family of time-series and sequential problems fall within the class of
partially observable systems. These target tasks are often believed to have a la-
tent state sequence that characterizes the underlying sequential data-generating
process. However, direct recording of the latent state is usually impossible and
only observations of the system are accessible. In partially-observable systems,
a single observation is not guaranteed to contain enough information to fully
represent the system’s latent state. For example, a single image of a robot is
insufficient to characterize its latent velocity and acceleration. While a latent
state parametrization may be known in some domains — e.g. a simple pendulum
can be sufficiently modeled by its angle and angular velocity (6, 0) — data from
most domains cannot be explicitly parametrized.

To model sequential prediction problems, it is common to cast this problem
into the Markov Process framework. Predictive distributions in this framework
satisfy the Markov property:

P(St+1|8t, St—Tyeeey So) = P(St+1|8t)

where s; is the latent state of the system at timestep ¢. Intuitively, this property
tells us that the future sy41 is only dependent on the current state. Note that in
Markov Decision Processes (MDPs), P(sty1]|st) may depend on an action taken
at s;. With the Markov assumption, s; and does not depend on any previous
state sg,...,S;_1. As s is latent, the learner only has access to observations
x¢, which are produced by s;. For example, in robotics, z; may be joint angles
from sensors or a scene observed as an image. A common graphical model
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Figure 2.4: The process generating sequential data has latent state s; which
generates the next latent state s;11. s; is often unknown but generates the
observations x; (e.g. sensor measurements) which are used to learn a model for
the system.

representation is shown in Fig. 2.4. The learning goal is to find a model and
possibly an internal state representation that allows for accurate prediction
under a defined loss.

Below, in Sections 2.2.1 and 2.2.2, we discuss literature in the field of model-
ing time-series problems. Many of these approaches look at modeling partially
observable systems for the purposes of developing Bayesian filters (Thrun et al.,
2005) to estimate the underlying state given observations (e.g. sensor readings).
The filter’s state estimate can then be used to control the underlying system,
for example through model-based reinforcement learning. In Section 2.2.3, we
give an overview of a different class of approaches, recurrent neural networks,
that aim to train discriminative models for a target application without directly
reasoning about the underlying data-generating processes. This approach has
resulted in great strides forward in fields such as natural language processing.

2.2.1 System Identification and Filtering

A body work of related to time-series modeling has been conducted in system
identification, which specifically looks at the statistical modeling of dynami-
cal systems from data. The literature in this field is expansive (Astrém and
Eykhoff, 1971; Sjoberg et al., 1995; Ljung, 1998). The primary use of system
identification for Bayesian filtering comes in specifying and fitting (learning)
the system (transition) model and the observation (sensor) model. The system
model defines how the state of the system evolves and the observation model
defines how a sensor generates an observation given a state.

The work in system identification can be split into those that handle iden-
tification in the supervised-state or latent-state settings. The supervised-state
setting is more commonly found in the machine learning literature. It assumes
ground-truth access to both the system’s states and observations at training
time to learn a dynamics model (Ralaivola and D’Alche-Buc, 2004; Ko et al.,
2007; Deisenroth et al., 2009; Levine et al., 2016). For example. Ko et al. (2007);
Deisenroth et al. (2009) use Gaussian Process to optimize two separate models
for the state transition model and observation model. They are are then able
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to exploit the probabilistic nature of the Gaussian process to better the predict
and update steps of the Bayesian filtering. However, many real systems are not
Gaussian and may be poorly represented by such an assumption.

Additionally, many times, we are unable to instrument a system to get ac-
cess to the full state to collect ground truth. At other times, we may not know
what form the true state of the system takes. In the latent-state formulation,
the goal is to build a predictive model for predicting future observations. One
way of overcoming this difficulty can be with latent-variable models like Hid-
den Markov Models (HMMs) (Siddiqi et al., 2010; Hsu et al., 2012; Song et al.,
2010) or with more classical linear dynamical system (LDS) state space mod-
els (Van Overschee and De Moor, 2012), which represent the belief state as a
distribution over the latent-state space of the model. In this thesis however, we
leverage ideas from Predictive State Representations (PSRs) (Littman et al.,
2001b; Singh et al., 2004; Rudary and Singh, 2005; Wingate and Singh, 2006;
Boots et al., 2011; Hefny et al., 2015a; Venkatraman et al., 2016b). Unlike the
previously presented latent state-space models, PSRs maintain the belief state
as an equivalent belief over sufficient features of future observations. It has
been observed that this structure can be more expressive than the HMM (Singh
et al., 2004) and can subsume the LDS models (Rudary and Singh, 2005). These
learned models can then be used for inference tasks such as Bayesian filtering or
forward prediction. As a positive, this family of algorithms provides theoretical
guarantees on discovering the global optimum for the model parameters under
the assumptions of infinite training data and realizability. However, in the non-
realizable setting — i.e. model mismatch (e.g., using learned parameters of a
Linear Dynamical System (LDS) model for a non-linear dynamical system) —
these algorithms lose any performance guarantees on using the learned model for
filtering or other inference tasks. They can also perform arbitrarily bad (Kulesza
et al., 2014) for example when the learned model rank is lower than the rank of
the underlying dynamical system.

2.2.2 Direct Filter Learning

In contrast to explicitly building transition and observation models to use in
Bayesian filtering, there has been effort to directly optimize the filter perfor-
mance itself. Some of these methods directly try to address failures in existing
filtering algorithms by using learning-based approaches to try to improve the se-
lection of a filter’s hyper-parameters (Turner and Rasmussen, 2012) given a fixed
transition and observation model. Other approaches also try to improve per-
formance of within the Kalman family of filtering algorithms by learning noise
covariance models that maximize the likelihood of states or observations (Abbeel
et al., 2005a; Vega-Brown and Roy, 2013; Hu and Kantor, 2015). All these works
assume known dynamics and observation models as well as a known state rep-
resentations for the internal state. Recent work augments the aforementioned
additionally learning part of the observation model using deep learning in an
end-to-end fashion (Haarnoja et al., 2016). However, these approaches have
a few drawbacks. They assume the structure of the Kalman family of filters;
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the systems evolve under a Gaussian distribution and often with linear transi-
tion and observation models (e.g. (Haarnoja et al., 2016)) for the belief state
update. Though these can work adequately for many applications, it can be
hard to model more complex systems where a sufficient state parametrization®
may be unknown. Ondruska and Posner (2016) propose a full end-to-end model
that learns a latent state representation as well as the belief state transition
model and observation model. Langford et al. (2009) trains four discrimina-
tive models to learn aspects of the filtering function: an initialization function,
an update function, an observation function, and a transition function. The
multi-step nature of the likelihood objectives forces all these approaches to use
backpropagation-through-time? or an EM style optimization that faces compu-
tational hardness for finding the globally optimal solution.

2.2.3 Recurrent Neural Networks

While choosing a fixed representational form for the modeled internal state can
improve data-efficiency by reducing model complexity, as some of the above
approaches do, it can adversely affect performance if the underlying representa-
tion is not known or well understood. For complex problems such as as speech
recognition (Graves and Jaitly, 2014), text generation (Sutskever et al., 2011),
or generating images (van den Oord et al., 2016), it is difficult to parametrize
and define a sufficient internal state representation. These approaches rely on
a learning architecture known as the Recurrent Neural Network (RNN) (LeCun
et al., 2015; Sutskever, 2013), which uses an open-ended representation for its
internal state.

RNNs employ internal states to summarize previous data, serving as a
learner’s memory. We avoid the terminology “hidden state” as it refers to
the internal state in the RNN literature but refers to the latent state in the
HMM, PSR, and related literature. Internal states are modified towards mini-
mizing the target application’s loss, e.g., minimizing observation loss in filtering
or cumulative reward in reinforcement learning. The target application’s loss
is not directly defined over the internal states: they are updated via the chain
rule (backpropagation) through the global loss. Although this modeling is indi-
rect, recurrent networks nonetheless can achieve state-of-the-art results on many
robotics (Duan et al., 2016; Hausknecht and Stone, 2015), vision (Ondruska and
Posner, 2016; van den Oord et al., 2016), and natural language tasks (Chung
et al., 2015; Graves and Jaitly, 2014; Ranzato et al., 2016) when training suc-
ceeds. These models often directly target the multi-step predictive loss

mfinﬁ = mfin Xt: Ce(f(he, )

by optimizing the network parameters with back-propagation-through-time (BPTT).
As discussed in Section 2.1.3, BPTT often has stability issues and the techniques

1We define a sufficient state as one that satisfies the Markov assumption.
2BPTT is similar to EM in that it has a forward pass which mimics the E-step and a backwards
pass that follows the gradient as the M-step.
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to improve stability do so by discarding information about how future observa-
tions and predictions should backpropagate through the current internal state.
A significant innovation in training internal states of recurrent models with long-
term dependence was the LSTM (Hochreiter and Schmidhuber, 1997). Many
variants on LSTMs exist (e.g. GRUs (Cho et al., 2014)), yet in the domains
evaluated by Greff et al. (2016), none consistently exhibit statistically signifi-
cant improvements over LSTMs. While the resurgence of RNNs has shown great
success, recurrent model optimization is hampered by two main difficulties: 1)
non-convexity, and 2) the loss does not directly encourage the internal state to
model the latent state. A poor internal state representation can yield poor task
performance, but rarely does the task objective directly measure the quality
of the internal state. In this thesis, we develop a new method for improving
the training of recurrent neural networks using lessons learned when developing
training procedures for modeling partially observed dynamical systems.

2.3 Reinforcement Learning

Many of the time-series modeling techniques we develop in this thesis are in-
spired by problems in robotics where the final goal is control actuation via
planning, imitation learning, or reinforcement learning. Traditional methods
often require a lot of manual tuning of models. Learning based approaches
then offer a potential panacea for automating the process. Learning based ap-
proaches for controlling autonomous agents fall into two primary categories:
model-based (Schaal et al., 1997; Bakker et al., 2006; Hester et al., 2012) and
model-free (Thrun, 1995; Matari¢, 1997; Duan et al., 2007; Konidaris et al.,
2011; Mnih et al., 2015). Common to both is the target objective,

T T

max Zrt(st,ut) < min th(st,ut),

m:{uo,...,ur} =0 m:{uo,...,ur} +—0

which aims to maximize accumulated rewards or equivalently minimize accumu-
lated costs over a finite or infinite time horizon for a sequence of states s; and
actions (controls) u;. The actions ug,; may come from a parametrized closed
loop policy 7 : s +— u that chooses an action given a state or an open loop
policy 7 : ¢ — u that returns an action for each time step of the problem. In
many reinforcement learning (RL) problems, the functional form of the reward
r or cost ¢ is unknown, making the problem more difficult. In Chapter 4, we
assume knowledge of ¢(-), but in Chapter 8, we do not. RL problems are also
often difficult since the relationship between s; and s;11 is unknown a priori. In
model-based approaches, this provides the starting point, developing a model to
map the state transition. In model-free methods, explicit dynamics modelling
is eschewed for directly learning a policy to map states (or observations) to
actions.

In model-based reinforcement learning, a system transition function — a dy-
namics model — is used to guide the creation of a control policy. The quality of
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this policy is often a function of the quality of the dynamics model. A specific
control methodology, Model Predictive Control is especially reliant on the dy-
namics models for doing multi-step rollouts (Kelly et al., 2006; Williams et al.,
2016). The ability to accurately predict state sequences in the future affects the
capability to generate a good sequence of controls. Though approximate mod-
els can be used, to improve performance (Thomas and Brunskill, 2016), often
times, a poor model makes the reinforcement learning problem more harder.
Finally, there has been work to formalize the methods control engineers have
long done in practice. Abbeel et al. (2006) formalized the iterative procedure
between generating learning a dynamics model, optimizing a control policy, col-
lecting data on the real system and starting again. This process allows for
the distribution on which data is collected to match that seen by the policies.
This process was further studied and developed by Ross and Bagnell (2012) to
provide model-agnostic theoretical guarantees.

Though model based RL methods are thought to have a better sample com-
plexity (e.g. having the true model can make it easier to solve difficult problems
such as Go (Silver et al., 2016)), model-free methods such as Q-learning (Mnih
et al., 2015) and policy gradient approaches (Kakade, 2002; Schulman et al.,
2015) have gained popularity often due to failures of planning with imperfect
dynamics models. Heess et al. (2015) developed a family of Stochastic Value
Gradient algorithms that move along the spectrum from using a dynamics model
to not. The primary learning is done by the model-free Value gradient network,
but in one variation, a learned dynamics model neural network is used to improve
this estimate for a single-step in time. The authors specifically note a failure
for propagating the gradients longer in time through the dynamics model. A
more direct ‘in-between’ model-free and model-based RL are those that look to
optimize and estimate of the future rewards while passing around a recurrent
internal state (Lin and Mitchell, 1992, 1993; Hausknecht and Stone, 2015) or for
policy optimization over future predicted states and actions (Mordatch et al.,
2015; Duan et al., 2016). In this thesis, we look at improving how recurrent
learners are used for both model-based (Chapter 4) and model-free (Chapter 8)
reinforcement learning methods.



Part 11

Improving Multi-step
Predictive Performance
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Chapter 3

Data as Demonstrator:
Training Time-Series
Models for Multi-step
Prediction

Most supervised machine learning techniques used for time-series problems face
the challgenge of having poor predictive performance when used for forecasting
multiple steps into the future (Challenge 1). These approachs often target
minimizing the single-step error, defined as the error in predicting a future state
or observation x¢1 given ;. The prevalence of single-step modeling approaches
is a result of the difficulty in directly optimizing the multiple-step prediction
error. As an example, consider fitting a simple linear dynamical system model
for the multi-step error over the time horizon 7" from an initial condition z,

T
X . 2
A :argmanth —AtcchH2 (3.1)
A0
Even this seemingly innocuous squared-loss objective is difficult to optimize in
two ways: it is non-convex in A, and though differentiable, the matrix power
derivatives are non-trivial. In comparison, the single-step squared loss used in
supervised learning,
T—1
X . 2
A* = argmin Z le41 — Ax5 (3.2)
A0
is more appealing to solve as it has an easy, closed form solution. Abbeel and
Ng (2005a) propose a generalization of (Eq. (3.1)) coined the “lagged error”

This work was originally presented in Improving Multi-Step Prediction of Learned Time Series
Models at AAAT 2015 (Venkatraman et al., 2015).
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criterion which penalizes deviations during forward simulation. However, as
noted by the authors, this objective is also non-linear and non-convex as the
second step prediction is conditioned on the output of the first. If the predictive
model is differentiable, one can apply “backpropagation-through-time” (Werbos,
1990), which however has its own difficulties during optimization as discussed
in Section 2.1.3. Finally, to our knowledge, no formal guarantees have been
provided for any such optimization of multi-step predictive error. Perhaps as a
result, many approaches in the literature focus on using single-step prediction
models to take advantage of techniques developed in the statistical and machine
learning communities.

In this section, we introduce a new meta-algorithm, DATA AS DEMONSTRA-
TOR (DAD), for improving the multi-step prediction capability of a time-series
learner.

— We propose a simple, easy to implement meta-algorithm, DAD, that can
wrap an existing time-series learning procedure.

— Our method makes no assumption on differentiability. This allows our
algorithm to be utilized on top of a larger array of supervised learning
algorithms.

— Our method is data-efficient in improving a learned model. Without
querying the actual system for more training data, our method is able to
achieve better performance on the multi-step criterion by reusing training
data to correct for prediction mistakes.

— Moreover, through a reduction to imitation learning, we demonstrate that
when the learner exhibits the no-regret property, we can provide perfor-
mance guarantees that relate the one-step predictive error to the multi-
step error.

Finally, we demonstrate experimentally that our method improves the multi-
step prediction error.

3.1 Problem Setup

We consider the problem of modeling a discrete-time time-series (system) char-
acterized by a time-indexed state x; generated from some stationary dynamics,

Ti41 = E[f(l’t)] (3.3)

The problem we address is to learn a model given K sample trajectories & € =
of {xo,21,...,27,} generated by the system (Eq. (3.3)). As motivated in the
introduction, it is easiest to learn a forward prediction model by considering the
prediction of single, consecutive steps in each trajectory. To do so, we create a
dataset D of input-target pairs {(z:,2++1)}; and optimize for a learned model:

f= arfgen;in zl: Cr({(ze, me41) 1) (3.4)
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for some regression loss function £ and class of models F. For multiple-step
prediction and simulation with the learned model f, we follow the simple two-
step procedure:

Recursive Time Series Prediction: (3.5)

~

Step 1: T = f ()
Step 2: Return to Step 1 with &y < 2441

In traditional supervised learning, we assume independence of each predic-
tion. If each prediction with with f is bounded with error e, making 7T such
predictions for a rollout with the model (Eq. (3.5)) leads to Te error. Extending
this, one may naively intuit that the multi-step predictive error of predictions
made through a T-length rollout is also linear in the number of predictions as
well as in the supervised setting. However, as mentioned in Section 2.1.1, the
predictions Z; are not from the same distribution that the true x; where gen-
erated from, i.e., at each execution of Step 1, prediction error from f results
in a state that could be outside of the training distribution represented in the
dataset of trajectories = = {&;}. This multi-step error can grow to be up to
exponential in 7', even under nice conditions.

Theorem 3.1.1. Let f be learned model with bounded single-step prediction
error || f(x¢) — xeq1]| < €. Also let f be Lipshitz continuous with constant L > 1

~

under the metric ||-||. Then, ||f(Z1) — xr41|| € O (exp(T log(L))e)

Proof. From the Lipshitz continuous property, bounded error assumption, and
the triangle inequality, we can show that

~

1f(@r) = fler)|| < LIf(@r—1) = fler—1)| + Le

Applying the same process, we eventually get
ne n T
1f@r) — Flar)l < 5L, Lte.

Using the bounded error assumption along with another application of triangle
inequality, we arrive at || f(Z1) — 21| < ZtT:O L'e € O (exp(T'log(L))e). O

The bound in Theorem 3.1.1 tells us that the multi-step prediction error is
bounded by an exponential in the time horizon. This bound is tight. Consider
a fitted a linear model A > 1 on a 1-D training trajectory &, with bounded error
¢ and Lipshitz constant A. If we make a single-step error € on the first step of
forward simulation, &, = Azo =1 + €, we get: Tpypq = AT(ml + ¢) Then,

|71 —2raa]l = AT (@1 + €) — arill € QATe) (3.6)

It is also worthwhile to note the Lipshitz constant conditions: For L > 1, we get
the bound in Theorem 3.1.1. If L = 1, the bound reduces to O(T¢), which is
equivalent to the result for the supervised learning setting. Finally, for L < 1,
we get O(Le). This situation specifies a stable fitted model that decays to
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zero change in state over the time horizon. For many time-series problems,
this results in boring simulated behavior as the predictions converge to the
mean, as exemplified with the “Fireplace” video texture in the experimental
sectionSection 3.3. For many real-world problems, a model that is near the
limit of stability is preferred. As a result, we may learn approximations that
are unstable, yielding the exponential bound as shown above. In the following
sections, we motivate and develop an algorithm which can achieve regret linear
in the prediction horizon.

3.2 Data as Demonstrator Algorithm

To resolve differences in the train and test (forward prediction) distributions,
it would be convenient to augment our training set to meet the test distribu-
tion. This is reminiscent of work that uses the predictions from the learner to
augment the dataset by searching for (Daumé III et al., 2009) or querying an
oracle (Ross et al., 2011a) for the optimal next prediction to make given the
previous prediction. Though a natural approach, collecting new data from the
true system on the induced ‘test’ distribution may be impossible. Practically, it
could be expensive to query the true system at the incorrectly predicted state
(e.g. an inverted helicopter). The more impeding concern, however, is that the
predicted states may not be feasible for the generating system. Consider data
collected from a pendulum on a string with radius 1. The mechanics of the
system require the Euclidean coordinates to reside on the unit circle. During
forward simulation with an approximate model, we may predict points off this
constraint manifold from which we can never collect a true transition. This
situation is illustrated in Fig. 3.1(a). Though we need to augment the dataset
with predictions, the above reasons make it often difficult to get a ground truth
response for the target. Below, we introduce a new algorithm for generating an
“oracle” without requiring computation of the true system’s optimal next pre-
diction. Instead, we synthetically generate correction examples for the learner
to use. Since the given training trajectories are time-indexed, they can provide
a correction for each time step when simulating from points along the training
trajectories, as depicted in Fig. 3.1(b). This idea motivates our algorithm, DATA
AS DEMONSTRATOR (DAD), detailed in Algorithm 1.

3.2.1 Reduction to imitation learning

DATA AS DEMONSTRATOR forward simulates a learned model, collecting data on
the encountered prediction, ‘test’ time, distribution by simulating from points
along training trajectories. The next model is trained from input-target pairs
created by pointing the ‘test’ time prediction to the correct next time-indexed
state along the trajectory. By iterating and retraining a new model on the
aggregate dataset, DAD can be considered a Follow-The-Leader algorithm.
Since we are applying corrections from the dataset, we can also interpret
DAD as a simplified scenario of interactive imitation learning. Let the expert
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(a) Forward simulation of learned model (gray) introduces error at each prediction
step compared to the true time-series (red)

(b) Data provides a demonstration of corrections required to return back to proper
prediction

Figure 3.1: In typical time-series systems, realized states of the true system
are a small subset or even a low-dimensional manifold of all possible states.
Cascading prediction errors from forward simulation with a learned model will
often result in predicted infeasible states (Fig. 3.1(a)). Our algorithm, DATA
AS DEMONSTRATOR (DAD), generates synthetic examples for the learner to
ensure that prediction returns back to typical states (Fig. 3.1(b)).

be the training data which “demonstrates” expert actions by specifying at each
point in time the correct state for the next time step. The learned time-series
model f acts as the state dependent action policy 7. The state dynamics simply
pass on the predictions from the learned model as the input for the next state.

This reduction to the interactive imitation learning setting allows us to
avail ourselves of the theoretical guarantees for the Dataset Aggregation al-
gorithm (DAgger) introduced in (Ross et al., 2011a). Notationally, let a ground
truth trajectory from the underlying system be £ = {zg,z1,...}, and let é =
{zg,&1,22,...} denote the trajectory induced by starting at zy from the true
trajectory and iteratively applying the model f as described in the two-step
forward prediction procedure. Let

Py = Py(£,€) (3.7)

denote the distribution of the time-synchronized pairs (24, z;) from the predicted
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Algorithm 1 DATA AS DEMONSTRATOR (DAD)

Input:
&> Number of iterations N, set {{x} of K trajectories of time lengths {7} }.
> No-regret learning procedure LEARN
> Corresponding PREDICT procedure for multi-step prediction that takes
an initial state, model, and number of time steps.
Output: Model f
1: Initialize aggregate data set D <— {(zt, z¢41)} of (T} — 1) input-target pairs
from each trajectory &
Train initial model fy <~ LEARNER(D)
forn=1,...,N do
for k=1,...,K do
(Z1,...,2Z7) < PREDICT(&,(0), frm1,Tk)
D'+ {(fl’gk(Q))’ ) ('/ka—lvgk'(Tk))}
D+ DuD'
end for
fn < LEARN(D)
end for
: return f < f, with lowest error on validation trajectories

© % NPT R

=
= o

states and the true system’s trajectory.
Let e be the true loss of the best model in hindsight, defined as

N

1
e = min ;Empri [y ()]
Finally, let f = arg minge s, Ezwp, [£f(z)] be the model returned by DAD that
performed best on its own induced distribution of states. We are then able to
achieve the following performance guarantee:

Theorem 3.2.1. Given a bounded single-step prediction (regression) loss £ and
associated no-regret learning procedure LEARN, DAD has found a model f €
f1.n as N — oo, such that EIpr [Ef(x)} <en+o(1).

Proof. We setup the imitation learning framework as described earlier: learned
policy # = f and degenerate state dynamics that rely on the policy (learned
model) to solely transition the state. By this reduction to imitation learning,
the result follows from Theorem 4.1 of (Ross et al., 2011a). O

We can also relate the number of iterations of DAD to get a linear per-
formance guarantee with respect to the prediction horizon for the regularized
squared loss, a commonly used regression loss. Letting J(f) = Z;‘F:O C[(E(), €()))]
define the multiple-step prediction error, we get:
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Theorem 3.2.2. If ¢ is the reqularized squared loss over a linear predictor (or
kernel linear regressor) and if N is O(T), then 3 f € fi1.n found by DAD such

~

that J(f) < O(T - en)

Proof. The regularized squared loss on a linear prediction model (or on a kernel
linear regressor) is strongly convex in the model parameters. The result then
follows from our reduction and Theorem 3.2 of (Ross et al., 2011a). O

Intuitively, these results tell us that for a given time-series modeling problem,
we either fail to find a model because the generation of synthetic training points
creates conflicting inputs for the learner when our new data-points overlap or
we guarantee good performance after a certain number of iterations. Addition-
ally, the performance guarantees given by Theorem 3.2.1 and Theorem 3.2.2
have some subtleties and depend on a few critical assumptions. Firstly, DAD
gives no guarantee on any specific learned model f € fi.5 from each iteration
but only that there exists a generated model that performs well. In addition,
since the efficacy of the learner shows up in the bound, it is necessary to have a
learning procedure LEARN(D) that is capable of achieving low training error on
the single-step loss. Furthermore, the bounds we have shown are valid with an
infinite number of completely new trajectories at each step n, a similar require-
ment for related methods such as SEARN (Daumé III et al., 2009), Forward
training (Ross and Bagnell, 2010), and DAgger (Ross et al., 2011a). Following
the practice of the aforementioned methods, due to limited data and for data
efficiency, the iterations share a single batch of training trajectories.

There are a large class of learning algorithms that meet the no-regret re-
quirement for the internal learning procedure in DAD. A no-regret learning
algorithm is one that produces a sequence of models f;,, such that the average
regret

1 1
Riparer = N Z ly, () — ?%12 N Z Uy (zn) (3.8)

tends to 0 as N — oo. Since DAD is a Follow-The-Leader algorithm, any
strongly convex loss (e.g. regularized squared loss) on the aggregated dataset
will result in a no-regret learner. In fact, stability and asymptotic consistency
are enough to ensure no-regret (Ross and Bagnell, 2011). Additionally, we
can even utilize other online learning methods to achieve the same performance
bounds since many are also no-regret (Cesa-Bianchi et al., 2004). The advantage
of online methods is that we no longer have to store the ever-growing dataset
but simply update the learned model for every new data point.

Finally, we would like to note a few additional details on using the DATA
AS DEMONSTRATOR algorithm. Even though Algo. 1 starts the predictions at
£:(0), better utilization of the dataset can be achieved by starting at other
points in the training trajectories. Also, the aggregation phase may require a
thresholding or filtering step. For longer horizon problems and with weaker
learners, it may be difficult to achieve improvement by giving equal importance
to the larger corrections at the end of the prediction horizon and to the small
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errors made at the beginning. Intuitively, we hope that by the end, the learned
model should not wander far away from the ground truth trajectory, and thus
we ignore those points during the training iterations.

3.3 Experimental Evaluation

To demonstrate the efficacy of the DATA AS DEMONSTRATOR algorithm, we
consider two markedly different, challenging time series prediction problems.
Since our approach is a meta-algorithm, it requires an underlying no-regret
learning procedure to optimize the single-step prediction error. Below, we use
a simple but expressive learning procedure, but we wish to emphasize that it
could be replaced with other domain specific learning methods.

3.3.1 Underlying single-step learning procedures

We show results using both a differentiable and non-differentiable underlying
learning procedure for optimizing the single-step loss. The first, kernel regres-
sion, is a differentiable learning algorithm that allows us to embed our data
points into a high, possibly infinite, dimensional space. Let ¢(z) define the
feature map that induces the kernel k(z,y) = (¢(-),#(-)). We minimize the
A-regularized squared loss:

min - AR~ X+ AL (LAIR (3.9)

for the forward prediction model:
i1 = AP(Ty) (3.10)

However, for some choice of kernels, such as the Gaussian kernel, the solution
to (Eq. (3.9)) cannot be evaluated as ¢ embeds the original data points into an
infinite dimensional space. A standard approach would be to solve the objective
in the dual. Since DAD is a dataset aggregation algorithm that augments the
dataset with O(IN') new input-target pairs every iteration, this procedure quickly
becomes intractable.

Recent work in kernel machines enables us to instead approximate ¢ through
generating random Fourier features (Rahimi and Recht, 2007; Lazaro-Gredilla,
2010). For a shift-invariant kernel function k, the feature map ¢ can be approx-
imated by constructing a mapping

bilz) = [COS(“’;I)] ,wi e RY ~ F(k(-) (3.11)

sin(w; )
where F(k(-,-)) is the Fourier transform of the kernel function. This approxi-
mates the kernal function in expectation, i.e. E[{(¢;, ®;)] = k(-,-). By sampling

m such w; and concatenating to create feature vector ¢(x), we can get a lower
variance approximation of the kernel function. Using ¢ in (Eq. (3.9)), allows
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Figure 3.2: A pendulum trajectory’s ground truth (top) compared with multi-
step predictions displayed for time steps 1, 8, 16, 23, and 30 from the traditional
minimization of single-step error (middle) and from our approach (bottom). The
final output of DAD is closer to the true final state.

us to retrieve the model parameter C'. In the experiments described below,
we choose m = 500 and use the Gaussian kernel. The hyperparameters A\ and
kernel bandwidth o were chosen using cross-validated grid search.

The second learning algorithm we use is a random forest regressor (Breiman,
2001). Random forests are non-differentiable learners that train a sequence of
decision trees either through bagging or boosting. As they are very powerful
learners, they can tend to overfit through iterations of DAD. If we let the
learning rate n = 1/(1+n)%5, where n is iteration of DAD, then we regularize the
random forest by setting the minimum samples per leaf as a scaled quantity on
the relative size of the aggregated dataset max({1, nI‘D%‘l}). We may equivalently
regularize by setting the minimum weight per left to ) to achieve a similar effect.
We further regularize the trees by setting a max tree construction depth as well

as the maximum number of trees.

3.3.2 Performance Evaluation

For each test bench, we evaluate the performance of the baseline single-step
optimized predictor as well as DAD on the task of multiple-step prediction.
The multiple-step prediction error is measured as the RMS error e, between
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Relative Improvement with DaD over Single-Step

Learner
Benchmark Random
. Random Forest
Fourier Features

Flag 16.7% 66.0%
Fireplace 12.3% 6.23%
Beach 20.0% 75.8%
Pumpjack 17.0% -
Windfarm 2.57% -
Pendulum 44.7% —
Cartpole 57.1% 34.7%
Helicopter 42.8% 0.33%

Table 3.1: DATA AS DEMONSTRATOR (DAD) significantly improves the perfor-
mance of the traditional Single-Step method on many benchmarks. The average
multi-step errors are shown in Fig. 3.8.

the prediction ék and the ground truth trajectory &, computed as

Ty

1
[ Tkz

&) — &)

For each experiment, a random 10% of the trajectories were used as hold out
data for performance reporting. In Fig. 3.8, we report the the multi-step error
as the mean normalized RMSE by normalizing against the signal power for each
trajectory, py = 7 ST ek ())|2. This normalization allows us to better ascer-
tain the magnitude of error compared to the original trajectory. A comparison
to the baseline single-step optimized method is shown in Table 3.1.

3.3.3 Dynamical Systems

We examine the performance of the proposed method on simulation test benches
of physical dynamical systems of varying modeling difficulty. The pendulum and
cart pole datasets are constructed from their respective uncontrolled dynamics
and consist of 1000 trajectories of 30 time steps each. Both of these systems
exhibit interesting limit-cycle behaviors. The final dynamical system we test
on is the simulated helicopter from (Abbeel and Ng, 2005b). This dynamical
system operates in a larger, 21-dimensional state space and is governed by more
complicated dynamics equations. In addition, the helicopter simulation is con-
trolled by a closed-loop LQR controller trying to hover the helicopter around
the origin from randomly chosen starting points in the basin of attraction. The
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Figure 3.3: RMSE of multiple-step predictions using RFF learner for train (blue,
circles) and test (orange, triangles) trajectories. Note that the shown test RMSE
was not used by DAD during training and was computed for visualization only.

LQR controller chooses actions based on state and thus it poses a challenge for
the learner to extract this implicit relationship from data of the system.

Qualitatively, we can see the effect of improving a single-step prediction
model in Fig. 3.2 for the pendulum system. For all three of the examples,
including the difficult controlled helicopter simulation, DAD is able to achieve
over 40% relative improvement over the traditional baseline approach.

3.3.4 Video Textures

Dynamic video textures are image sequences generated from some underlying
structure such as a flag waving, waves lapping, or a fire burning (Siddiqi et al.,
2007; Chan and Vasconcelos, 2007; Basharat and Shah, 2009). Video textures
are inherently complicated to simulate due to being visual observations of com-
plex underlying dynamics. In order to test DAD, we require many training
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Figure 3.4: Single-step loss using RFF learner on the aggregated training (blue,
circles) and test (orange, triangles) data set. Notice that the error increases
and then stabilizes over iterations as distribution of states induced by learner’s
multiple-step prediction stabilizes. Often, the single-step error is worse than
Note that the aggregated test set is never used during training and is shown for
comparative purposes only.

trajectories, which is not present in standard video texture datasets. We in-
stead use online videos that range from minutes to a half-hour at 24-30 fps. To
make the learning faster and tractable, we use PCA to lower the dimensionality,
sample every fifth frame, and construct trajectories with 16-26 time steps.

For many of the video texture test benches, the baseline of single-shot, single-
step regression loss optimization was significantly improved upon by DAD. This
is especially true for the harder and less repetitive video textures such as ‘Flag’
(Fig. 3.5) and ‘Beach’ (Fig. 3.6). These video textures are influenced by complex
real-world dynamics. The simpler ones, such as ‘Pumpjack’ and ‘Windfarm’
are more cyclic, making the test and train trajectories similar. We see minor
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absolute improvement in both, but meaningful relative improvement for the
pumpjack. This small change in absolute improvement implies that the single-
step learner was able to capture the primary evolution, but even with DAD,
it is unable to capture the remaining detail in the system (e.g. clouds in the
background of the “Windfarm?’).

A common failing of dynamical system modeling methods is the degeneration
of the forward simulation to the mean value in the dataset. In the top frames
of Fig. 3.7(a), we see the system converge by halfway through the prediction
horizon to the mean. DAD provides corrections that can mitigate this tendency
(bottom frames in Fig. 3.7(a)). This results in a qualitatively crisper and more
believable video, as shown in the close up (Fig. 3.7(b)).

Finally, it is interesting to observe the multi-step error and the single-step
prediction loss over iterations of DAD. As mentioned previously, the multi-step
error does not necessarily decrease with each iteration (e.g. second from left in
3.3). Additionally in Fig. 3.4, we notice that the single-step regression loss on
the aggregate data set initially increases as the learning problem is made harder
through the addition of more data. As the multi-step prediction distribution
converges, the single-step loss also stabilizes.

3.4 Conclusion

Towards Challenge 1, we presented DAD, a data-efficient, simple to implement
meta-algorithm for improving the multiple-step prediction capability of a learner
for modeling time-series data. Through a reduction to imitation learning, we
establish strong theoretical performance guarantees. On a challenging set of ex-
periments, we show significant performance gains over the traditional, baseline
approach of minimizing the single-step prediction error. Though not included
in this document, we refer to reader to preliminary results with subspace iden-
tification on a slotcar dataset and cartpole (Venkatraman et al., 2014). A very
similar algorithm called Scheduled sampling was published after DAD for recur-
rent neural networks (RNNs) (Bengio et al., 2015). This work provides further
experimental validation for the use of generating synthetic training examples
from ground truth trajectories for the purpose of improving the multi-step pre-
dictive performance. In the next section, we investigate controlled systems and
the use of DAD in the context of model-based reinforcement learning.
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(b) Predicted Flag trajectory using Random Forest learner

Figure 3.5: Predicted trajectories of a Flag Video texture with the RFF and
Random Forest Learner. Note these are different trajectories.
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(a) Predicted Beach trajectory using Random Forest learner

Figure 3.6: Predicted trajectory of a Beach Video texture.

(a) Prediction of frames 14, 19, 26 for the baseline method (top) and DAD (bottom). Note
the averaging effect with the single-step predictor with predictions converging on the mean
from the dataset. DAD yields crisper predicted images.

(b) Comparison of final predicted frames

Figure 3.7: In the Fireplace video texture, our method produces a more believ-
able evolution.
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Figure 3.8: DATA AS DEMONSTRATOR (DAD) multi-step predictive perfor-
mance with both a differentiable (RFF) and non-differentiable (Random Forest)
learner.



Chapter 4

Model-Based
Reinforcement Learning
with DaD

Section 2.3 introduced control and model-based reinforcement learning (MBRL)
as problems where dynamical system modeling plays a vital role. In this chap-
ter, we extend the DATA AS DEMONSTRATOR (DAD) (introduced in Chapter 3)
as a training procedure for control problems. In addressing Challenge 1, this
improves the data efficiency of MBRL by reusing collected data for better train-
ing a dynamics model without running more the trials on the real system. Our
experimental results indicate that using DAD can enable us to achieve good
control performance with less data.

The goal of MBRL is to learn a dynamics model which is then used for the
optimization of a control policy that minimizes future costs. Generating low
cost control policies necessitates accurate dynamics models that can capture
the evolution of the controlled system. However, with the increasing complexity
of systems and robotic technologies, it becomes difficult to robustly character-
ize dynamics a priori with simple analytic models. Machine learning provides
an avenue to to tackle this problem and to scale model-based control tech-
niques to new systems. Prior work in using machine learning methods scale the
gamut from adapting physics-based parameterizations (Abbeel et al., 2005b),
augmenting physics models (Ko et al., 2007), or through non-parametric, black-
box learning (Bagnell and Hneider, 2001). Typically, the accuracy of data-driven
dynamics models depends on the amount of collected data. However, for many
real-world robotic systems, it can be labor intensive and expensive to acquire
large data-sets for training models. Hence, it is often desirable to improve model
fidelity by observing fewer example trajectories on the physical system.

This work was originally presented in Improved Learning of Dynamics for Control at
ISER 2016 (Venkatraman et al., 2016a) and contains joint work done in collaboration with
Roberto Capobianco, Lerrel Pinto, and Daniele Nardi.

37
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4.1 Preliminaries

We consider systems that operate as a Markov Decision Process (MDP). The
MDP is defined by states x; that follow an unknown state transition (dynamics)
function f(x¢,ut) — @41, where u; are controls (actions). We additionally
assume a known cost function ¢ : x;,uy — R. Solving this MDP consists of
minimizing the (expected) cumulative cost over a time horizon T', which may
be infinite, by finding a control policy m(x;):

!
-

7 = argmin c(xe,up) st up = 7(xy) and xp1 = f(@, up)- (4.1)
Tt

Il
<

Model-based reinforcement learning (MBRL) attempts to solve the above in
situations where the underlying dynamics and sometimes the cost function are
unknown, adding the burden of deriving estimators of both. In this work, we
assume knowledge of the cost function and focus solely on system identification
in which we fit a function approximator f to be used as the dynamics constraint
for the policy optimization in Eq. (4.1). The learning problem for the dynamics
model is then formulated as minimizing the predictive error, similar to Eq. (3.4)
but with a control input added,

T-1
f=argmin Yl — flwi—1,u-1)ll3 (4.2)
t=1

from a data-set of trajectories {(zq,uo) ..., (x7—1,ur—1)} of state-action pairs
collected from the system. As shown in Chapter 3, the downside of only doing
this optimization Eq. (4.2) is that errors can compound (e.g. Theorem 3.1.1).
We thus propose to adapt DAD for for system identification in the controlled
setting.

4.1.1 System Identification for Control

Simply collecting system trajectories, learning the dynamics, and optimizing the
control policy typically results in inaccurate or unstable dynamics models and
poorly performing control policies. An iterative process to achieve better perfor-
mance was formalized in the MBRL literature (Abbeel et al., 2006; Deisenroth
and Rasmussen, 2011), generating a procedure similar to the one outlined in
Fig. 4.1. By alternating between fitting the dynamics model and collecting new
data under the distribution induced by the policy, the model becomes better at
capturing the dynamics over the important regions of the state-space while the
control policy derived from the dynamics is either improved over that region or
erroneously exploits inaccuracies in the dynamics model. Thus in each itera-
tion, a good policy is found or data is collected from the controller’s mistakes
for improvement at the next iteration.

We specifically refer to the loop in Fig. 4.1 as the DAgger (Data-set Aggrega-
tion) system identification learning framework (Ross and Bagnell, 2012). A key
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Figure 4.1: DAgger System Identification for Model Learning and Control. We
show that using DAD (Chapter 3) for the dynamics model fitting (red) can
improve control performance.

difference lies in the aggregation step of the procedure in order to provide model
agnostic guarantees. At the beginning of the algorithm, DAgger initializes an
empty training data-set and an exploration policy Texplore(#+) that generates an
action (control) u; given a state ;. This initial policy can either consist of ran-
dom controls (referred to as a random policy) or be an expert demonstration.
Then, DAgger iteratively proceeds by:

1. Executing the latest policy to collect a set of new trajectories {¢; f;ol

where & = {(z¢, ut)...}; is a time series of state-action pairs
2. Aggregating the trajectories {&}7=) into the training data-set
3. Learning from the data-set a forward dynamics model f (T4, ut) = T

4. Optimizing a new control policy 7 that minimizes a given cost function
c(x¢, ug) over the time horizon T of the control problem

5. Tracking the best policy from all those generated.

During the execution of the first DAgger loop, the state distribution induced
by m can greatly differ from the initial Texpiore; the first generated policies may
perform poorly due to inaccuracies in f . The iterative procedure refines the dy-
namics model by aggregating data from states induced by running the system
with 71, ..., 7n. In particular, Ross et al. (Ross and Bagnell, 2012) provide the-
oretical guarantees for this algorithm, as long as we also sample states from the
exploration distribution when aggregating data. This can be simply obtained by
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aggregating additionally a constant percentage of trajectories obtained from the
exploration distribution. For example, this can be obtained by sampling from
the original dataset or running the system with Texplore- This helps prevent the
learner from focusing only on the induced distributions from the policies. Ad-
ditionally, note that although in theory we need, at each iteration, an optimal
control policy under f (Ross and Bagnell, 2012), it may be possible to use a
suboptimal policy (Talvitie, 2015). Finally, the algorithm does not guarantee
that the policy gets monotonically better with every iteration. Thus, we must
track the performance of the executed policies and return the best one obtained
so far.

4.2 DaD-+4Control

As discussed at length in Chapter 3, solely Eq. (4.2) can yield poor prediction
capability into the future. This can be further problematic in planning or control
where the control optimizer can exploit inaccuracies in the simulator (model) to
result in unusual behavior that is infeasible on the real system®. We adapt DAD
to the control setting as shown in Fig. 4.2 and Algorithm 2. In our scenario,
as we try to minimize the number of times that we run the real system, we
sub-sampled trajectories to be shorter than the control problem’s time horizon.
We believe this had added benefit as there is a tradeoff between the single-
step (Fig. 3.4) and multi-step error (Fig. 3.3). This is more of an issue for
DAD+CONTROL?. as the control synthesis process chooses actions based on
every prediction. Making a poor choice of action early on can be disastrous on
a highly unstable system such as a helicopter.

4.3 Experimental Evaluation

We evaluate our algorithm (‘DAgger +DAD’ (+CONTROL)) both on simulated
dynamical systems® and real robotic platforms. In particular, we consider two
simulated scenarios: the classic cartpole swing-up problem and the challenging
helicopter hovering problem. Additionally, we show the applicability of our
approach on real systems such as the Videre Erratic mobile base and the Baxter
robot. In each described experiment, we learn dynamical models of the form:

At — f(xt,ut), where At =Tty — Tt- (43)

This parametrization is similar to (Deisenroth and Rasmussen, 2011), where the
previous state is used as the mean prior for predicting the next state. Due to

1The DARPA Virtual Robotics Challenge is a good example of human “control optimizers”
exploiting a simulation model, https://www.youtube.com/watch?v=0dC8FVuo9dc.

2The code implementing DAD+CONTROL is available at https://github.com/LAIRLAB/DaD

3Simulators, except the helicopter, available at https://github.com/LAIRLAB/control_
simulators with C4++ and Python APIs
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Algorithm 2 DAD+CONTROL

Input:
> Number of iterations N, set {£;} of K trajectories of time lengths {7} }.
> No-regret learning procedure LEARN
Output: Model f
1: Initialize data-set D  {([z¢, us], 2e41)} of (T — 1) input-target pairs from
each trajectory &

2: Train initial model fy <~ LEARNER(D)

3: forn=1,...,N do

4: fork=1,...,K do

5: Extract xg < &(0), {us}it, « &

6: (Z1, ..., Zr) + ROLLOUT(f, 2o, {us }15y)

7: D' {([z1,w],22), .., ([Frp—1, ur,—1], 21, } where 2y < & (2)
8: D+ DUD

9: end for

10:  fn < LEARN(D)

11: end for

return j?e fn with lowest error on validation trajectories

—
v

the difficulty of optimizing Eq. (4.1) under arbitrary dynamics and cost models,
for simplicity, we focus on minimizing a sum-of-quadratics cost-to-go function:

Z C($t, ut) = Z IZQtl‘t + U?Rtut. (44)
t

t

By using this form of cost function, along with a linearization of the learned dy-
namics model, we can formulate the policy synthesis problem as that of a Linear
Quadratic Regulator, which allows the policy to be computed in closed-form. In
each experiment, we compare ‘DAD +DAgger’ to ‘DAgger Only’. For Cartpole,
Erratic, and Baxter the data-set was initialized with a random exploratory pol-
icy, while the helicopter problem received both a random and an expert policy
(generated form LQR on the true dynamics) roll-out for initialization. The sim-
ulated cartpole and helicopter experiments got additional exploratory roll-outs
on every iteration of DAgger with the random and expert policies respectively.
For the Baxter robot experiment, instead, we achieved exploration through an
e-random controller that added random perturbation to the commanded control
with e probability. For each method, we report the average cumulative cost at
each iteration of DAgger as averaged over ran trials. Three trials were run on
the Erratic while five were ran for other benchmarks. The charts that illustrate
the obtained results are all normalized to the highest observed cost, since the
cost functions are tuned to promote the desired control behavior rather than to
have a physical interpretation.
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(a) Forward simulation of learned model (gray) introduces error at each prediction
step compared to the true time-series (red)

(b) Data provides a demonstration of corrections required to return back to proper
prediction

Figure 4.2: Similar to setting considered in Chapter 3 (Fig. 3.1), cascading
errors from model learning with controls (blue) can lead to errors in forward
simulation (gray) (Fig. 4.2(a). As the control policy will not see these predicted
states at test time, we do not query the policy to for new controls at these
states. DAD+4+CONTROL reuses the sequence of controls from the trajectory in
synthesizing new correction training samples (Fig. 4.2(b)).

4.3.1 Simulation Experiments

Cartpole swing-up: The cartpole swing-up is a classic controls and MBRL
benchmark where the goal is to swing-up a pendulum by only applying a linear
force on the translatable base. We learn a linear dynamics model in the form
of Eq. (4.3) using Ridge Regression (regularized linear regression). We then
use an iterative Linear Quadratic Regulator (Li and Todorov, 2004) (iLQR)
controller about a nominal swing-up trajectory in state-space with an initial
control trajectory of zeros. The iLQR optimization procedure finds a sequence
of states and controls feasible under the learned dynamics model to minimize
the cost. The simulated system has system-transition noise and we compare
our algorithm’s performance both with and without control noise to simulate
the effects of noisy actuation on a real-robot. We show results in Fig. 4.3 of the
evaluated trajectory costs accumulated over the problem’s time horizon.
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Figure 4.3: Controlling a simulated cartpole for swing-up behavior.
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Figure 4.4: Controlling a simulated helicopter to hover. Note the log-scale on
cost.

Helicopter simulator: Helicopter hovering is a difficult problem due to the
instability of the dynamical system, especially under noise. We utilize the he-
licopter simulator from (Abbeel and Ng, 2005b) with additive white noise and
follow a problem setup similar to (Ross and Bagnell, 2012). We make the prob-
lem more difficult by initializing the helicopter at states up to 10 meters away
from the nominal hover configuration. As the dynamics are highly nonlinear, we
show the advantage of using Random Fourier Features (RFF) regression (Rahimi
and Recht, 2007) to learn a dynamics model in a 21-dimensional state space.
We find a steady-state linear quadratic regulator (LQR) policy to map the heli-
copter’s state to the 4-D control input. The results in Fig. 4.4 show that DAD
dramatically improves performance over only DAgger.
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Figure 4.5: Results for controlling a Videre Erratic differential-drive mobile
robot.
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Figure 4.6: Results on controlling a Baxter robot. We learn a dynamics model
and compute a control policy to move the robot manipulator from state xy to

xT.

4.3.2 Real-Robot Experiments

Videre Erratic: In this experiment, we control the velocity of a Videre Erratic
mobile base. The goal is to drive the robot to a given position specified in the
robot’s reference frame. The 3-D state vector includes the robot position and
orientation while the 2-D control vector is the robot velocity. The dynamics
model is learned using Ridge Regression. Unlike the other experiments, we use
a trajectory-control policy that finds a sequence of controls wuq,...,ur to ap-
ply open-loop at run time on the robot. We compute the control sequence by
simulating the learned dynamics model f with a simple proportional controller.
Results are shown in Fig. 4.5.

Baxter robot: We use the 'DAgger +DAD’ approach to control a 7-degree-
of-freedom manipulator to a target joint configuration. We command the robot
arm in torque control mode with suppression of the inbuilt gravity compen-
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sation. The 14-dimensional state vector consists of the joint angles and their
velocities. We learn the dynamics model using Ridge Regression and compute
a steady-state LQR control policy, obtaining the results in Fig. 4.6.

4.4 Discussion

In our simulation experiments we compared the performance obtained by ap-
plying ‘DAgger +DAD’ on a cartpole with and without control noise. Results
show that the improvement of our method over ‘DAgger Only’ decreases in pres-
ence of actuation noise. This can be explained by the fact that, over the same
generated nominal controls, the state trajectories obtained during each roll-out
are slightly different and represent a limitation on the efficacy of the learner
over the same number of iterations — i.e. there is a higher baseline error in the
dynamics model.

In the case of the helicopter, we additionally compared the results obtained
by using two different learning algorithms and by applying different exploration
policies. For the former, we compared the non-linear RFF (Rahimi and Recht,
2007) regression against linear regression. As shown in Fig. 4.4(b), the nonlinear
learner performs much better as it better captures the heavy nonlinearity of the
helicopter dynamics. The DAgger method (Ross and Bagnell, 2012) requires
drawing state-transition samples at every iteration from some exploration dis-
tribution. In Fig. 4.7(a), we compare using an expert exploration policy (LQR
controller using the true dynamics) versus a random-control exploration policy.
With DAgger +DAD, the learned dynamics and policy yield a stable behavior
for both types of exploration, with some improvement using the expert policy.
The DAgger Only baseline often is unable to learn a stable policy using the ran-
dom exploration policy. We believe that DAgger +DAD learns a more stable
multi-step predictive dynamics model — an important aspect for the Bellman
backup during policy optimization. An interesting observation is that DAgger
+DAD without the exploration policy does not lead to a significant perfor-
mance difference (Fig. 4.7(b)) compared to the ‘DAgger Only’ baselines. This
comparison shows the difference between (Abbeel et al., 2005b) (no exploration)
and (Ross and Bagnell, 2012) (constant fraction exploration). Note that to keep
the amount of data constant in the trials without the exploration trajectories,
the learners were given the difference as test trials under the current optimized
policy.

The real-robot evaluations show the applicability of our method on real sys-
tems and complex platforms. In particular, the Erratic experiments show that
by using DAD, we are indeed able to get a better dynamics model for forward-
prediction. This model can be used for trajectory generation and optimization
as described in Section 4.3.2, where the sequence of obtained controls has been
directly applied to the Erratic in an open-loop as a control trajectory. While
the application of ‘DAgger +DAD’ on the Baxter robot results in a limited per-
formance improvement, this confirms our hypothesis that, in robotic platforms
characterized by high actuation noise (e.g. Baxter’s chain of noisy actuators),
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Figure 4.7: Comparison of Exploration policies. Cost values are not normalized
across plots.

only smaller improvements over ‘DAgger Only’ can be achieved (consistent with
the simulated noisy-actuation result in Fig. 4.3(b)). Additionally, the considered
problem on the Baxter is relatively simple with control authority at every joint.
In these settings, DAgger seemingly can still efficiently capture the dynamics of
the system with only a minor benefit from the additional DAD loop.

4.5 Conclusion

DAD+CONTROL can improve the data-efficiency of MBRL, requiring less data
to be collected on the real system for the same level of performance. We showed
a variety of experiences that showed both the strengths and weakness of the
proposed algorithm. We see reduced performance under heavy control noise (e.g.
Baxter) and significant gains for open-loop control synthesis (e.g. Erratic).
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Chapter 5

Linear System Modeling
with Predictive
Representations via Online
Instrumental Variable
Regression

In this chapter, we start our investigation into the specific issues that arise
when modeling dynamical systems which are only partially observed, as stated
in Challenge 2. An example graphical model of a partially observed system is
shown in Fig. 2.4. In this system, the observations are not independent but are
conditionally independent given state s,. That is, x44; is correlated with xy.
A function to predict z;41 from the past observation z; can therefore require
all the correlated dependencies of xy, i.e., all of the history x;_1,z¢_o,...,x¢.
As the history can be aribitrarily long, this is computationally untenable when
learning a time-series model.

In this chapter, we develop a technique for online learning predictive models
on partially observed time series. We use a predictive representation derived
by Boots and Gordon (2011b); Hefny et al. (2015b) as a state representation
sufficient for predicting the future. Hefny et al. (2015b) showed that using in-
strumental variable regression (IVR) with this representation removes the bias
from past obsevations to learn a linear dynamics model that can be used in a
Kalman filter. Our contribution is an extension of instrumental variable regres-
sion to the online setting with streaming data. The chapter below spends most
of its focus on developing online instrumental variable regression in general as

This work was originally presented in Online Instrumental Variable Regression with Applica-
tions to Online Linear System Identification at AAAI 2016 (Venkatraman et al., 2016b) and
containts joint work done in collaboration with Wen Sun and Byron Boots.
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Figure 5.1: Instrumental variable regression is a classical statistical technique
for linear regression when the features and targets are correlated through an
unobserved variable E. The introduction of the instrument Z is used to decor-
relate the effect of the unobserved variable in finding the linear predictor A from
features X to targets Y.

an extension to the classical stastitics technique. From Section 5.5, the focus
moves to dynamical system learning. We experimentally demonstrate the effi-
cacy of our algorithm in combination with popular no-regret online algorithms
for the task of learning predictive dynamical system models and on a prototyp-
ical econometrics instrumental variable regression problem.

5.1 Introduction

Instrumental variable regression (IVR) is a popular statistical linear regression
technique to help remove bias in the prediction of targets when both the features
and targets are correlated with some unknown additive noise, usually a variable
omitted from the regression due to the difficulty in observing it (Bowden and
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Turkington, 1990). In this setting, ordinary least squares (OLS) (i.e. linear re-
gression) from features to targets leads to a biased estimate of the dependence
between features and targets (see Fig. 5.1). For applications where the under-
lying unbiased dependency is required, such as in the study of causal effects
for econometrics (Miguel et al., 2004), epidemiology (Greenland, 2000), or for
the learning of dynamical system models (Séderstrom and Stoica, 2002), IVR
provides a technique to remove the correlation with the unobserved variables.

We focus in this chapter on the regression application of instrumental vari-
ables where the IVR process consists of multiple linear regressions steps. Prior
attention on IVR has focused on the batch learning scenario: each step of re-
gression is performed in whole with all of the data at once. However, with the
ever growing prevalence of large datasets, such an approach becomes quickly
infeasible due to the scaling of the memory and computational complexity with
regards to the data set size and feature dimensionality. Towards this end, we
propose an online version of instrumental variable regression that replaces each
of the regression steps with an online learner.

Specifically, we develop an Online Instrumental Variable Regression (OI1VR)
procedure that can be regarded as a reduction to no-regret online learning. Un-
der the assumption that the set of regression and instrumental variables are
i.i.d, we derive a strong no-regret bound with respect to the desired objec-
tive optimized by the batch setting (batch IvVR). Our theorem allows us to
take advantage of any no-regret online learning procedure for the multiple re-
gression steps in IVR. We explicitly show that O1vR allows us to introduce
a new family of online system identification algorithms that can exploit no-
regret online learning. This reduction extends on the initial reduction given
by Hefny et al. (2015b) from batch predictive state dynamical system learning
to batch IVR. Finally, we investigate the experimental performance of several
popular online algorithms such as Online Gradient Descent (OGD) (Zinkevich,
2003), Online Newton Step (Hazan et al., 2007) (ONS), Implicit Online Gra-
dient Descent (1I0GD) (Kulis et al., 2010), and Follow The Regularized Leader
(FTRL) (Shalev-Shwartz, 2011) in the context of OI1VR for both dynamical
system modeling and on a simple but illustrative econometrics example.

5.2 Instrumental Variable Regression
Consider the standard linear regression scenario where we wish to find A given
design matrices (datasets) X = [z1 @2 ... and Y = [y1 w2 ...| repre-
senting our explanatory variables (features) z; € R™*! and outputs (targets)
y; € R™*1, This relationship is modeled by:

Y=AX+FE (5.1)

where £ = [51 €9 } are independent noise (error). Solving this via least-
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squares minimization, gives us:

A=YXT(XXT)y"'=(AX + E)XT(xxT)!
=AXXT(XXT)"' + ExT(xxT)~!
= A+ EXT(XXxT)™! (5.2)

When the number of samples T" goes to infinity, by law of large number, we
will have: EXT /T — E(ezT) and X XT /T — E(zz7) in probability. Normally,
we assume that & and  are uncorrelated, which means EX? /T converges to
zero in probability, (E(ez”) = 0), which yields an unbiased estimate of A from
Eq. 5.2

A 1 T 1 T -
A=A+ 2EX (TXX> A

However, if € and x are correlated E(ex”) # 0, we are only able to get a biased

estimate of A through the least-squares optimization, since E [5zT] E [mxT] -1 #+
0.

On the other hand, IVR can achieve an unbiased estimate of A (Rao et al.,
2008; Cameron and Trivedi, 2005). In IVR, we remove this bias by utilizing an
instrumental variable, denoted as Z = [21 29 ] in Fig. 5.2. For a variable
to be an instrumental variable, we need two conditions: (1) the instrumental
variable z is correlated with z such that E(z2T) is full row rank and (2) the
instrumental variable is uncorrelated with ¢, i.e. E(zeT) = 0.

—>X—>Y
r_—~

9

Figure 5.2: Causal diagram for IvRr

Instrumental variable regression proceeds as follows. IVR first linearly re-
gresses from Z to X to get X = XZ'Z, where ZT = Z7(ZZ")~!. Then, IVR
linearly regresses from the projection X to Y to get an estimate of A:

Apg = YXT(XXT)7?
=YZizxT(xz1zxT)~!
= AXZ1zXT(xztzXxT)~!
+EZ'ZzXT (X2t 2XT)~?
= A+EZT (22T 1 zXxT(xX 21 ZzXxT)~!
Note that Ajyr — A in probability since EZT /T — 0 in probability under the

assumption that instrumental variable z and ¢ are uncorrelated.
The process of instrumental variable regression can be represented through
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Algorithm 3 Batch Instrumental Variable Regression

Input:
> Explanatory Variable Design Matrix X € R%=",
> Instrumental Variable Design Matrix Z € R%",
> Prediction Targets Design Matrix Y € R%"
Output: A* € R%d=
1. M* <+ argmin,, ||X7MZ||?,
2 X M*Z ,
3 A <—argminAHY—A)?H
N F
5:

return A*

the following two steps (also known as two-stage regression):
M* « argmin || X — MZ|> (5.3)
M

A* « argmin||Y — AM*Z|%, (5.4)
A

For shorthand, we will generally refer to the final regression stage, Eqn. 5.4, as
the batch IVR objective .

5.3 Online Instrumental Variable Regression

The formulation of online algorithms yields a two-fold benefit — first, it allows
us to use datasets that are too large to fit in memory by considering only
one or a few data points at a time; second, it allows us to run our algorithm
with streaming data, a vital capability in fields such as robotics where many
sensors can push out volumes of data in seconds. In the following section, we
formulate an online, streaming-capable adaptation of the batch Instrumental
Variable Regression (IVR) algorithm. We show that our online algorithm has
a strong theoretical performance guarantee with respect to the performance
measure in the batch setting.

In the batch setup of IVR (Algorithm 3), we require all the datapoints a
priori in order to find A*. To create an online version of this algorithm, it must
instead compute estimates M; and A; as it receives a single set of data points,
Ty, 2t, Y¢- To motivate our adaptation of IVR, we first consider the adaptation
of OLS (i.e. linear regression) to the online setting. Given the design matrices

X =[xo,.-..,Tt,...,]and Y = [yo, ..., Y, .. .], in OLS, we optimize the following
batch objective over all the data points:
B* = argmin||fX — Y3 = argmin y _£,(8) (5.5)
8 B 4
where the loss function £(8) = || Szt — ytHg is the L2 loss for the correspond-

ing pair of data points (z:,y;). To formulate an online OLS algorithm, we
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may naturally try to optimize the L2 loss for an individual data point pair
|8z — yt||§ at each timestep without directly considering the loss induced by
other pairs. Prior work in the literature has developed algorithms that address
this problem of considering losses ¢; and predicting a ;11 while still achiev-
ing provable performance with respect to the optimization of 8 over the batch
objective (Zinkevich, 2003; Hazan et al., 2007; Shalev-Shwartz, 2011). The per-
formance guarantee of these algorithms is in terms of the (average) regret, which
is defined as:

1 1 1
T REGRET = — Zt:ét(ﬂt) ~ 7 mﬁmzt:et(ﬁ) (5.6)

We say a learning procedure is no-regret if limp_, o, % (REGRET) = 0 = REGRET
o(T).

Intuitively, the no-regret property tells us that the optimization of the the
loss in this way gives us a solution that is competitive with the best result in
hindsight (i.e. if we had optimized over the losses from all data points). In
IVvR (Algorithm 3), lines 1 and 3 are each linear regression steps which are
individually the same as Eq. (5.5). Motivated by this, we introduce Online
Instrumental Variable Regression (O1VR), in which we utilize a no-regret online
learner for the individual batch linear regressions in IVR. The detailed flow of
O1VR is shown in Algorithm 4 and depicted in Fig. 5.3.

Algorithm 4 Online Instrumental Variable Regression with No-Regret Learn-
ers

Input:
> no-regret online learning procedures LEARN;, LEARN,
> Streaming data sources for the explanatory variable S (t) : t — x € R,
the instrumental variable S,(t) : t — z € R% and the target variable
Sy(t) =y € R%

Output Ap € Rv:de

1: Initialize My € R%-4= A, € R

2: Initialize My < 0 € Rd«’dz, Ay + 0 € Rvd=
3: Initialize t < 1

4: while S; # 0 and S, # 0 and S, # 0 do
5 (@4, 26, yr) < (Sz(t), S2(t), Sy(t))

6: M; LEARNl(ZJt,.Z‘t7 M 1)

T My ((t = 1) Moy + M)/t

8: IEt «— MtZt

9:  A; < LEARNy(ZTt, Ur, Ai—1)
100 Ay ((E= 1A + A/t
11: t —t+1
12: end while
13:
14: return A,

€



5.3. ONLINE INSTRUMENTAL VARIABLE REGRESSION 55

M M own )
tput
v v o
Zt ONLINELEARN())—' M, —{TIMEAVERAGE()]

| ‘ —

Yt :
\[ONLINELEARN()]—» Ay —’[TIMEAVERAGE()]—»

Streaming Data

Figure 5.3: Graphical representation of Algorithm 4

From the definition of no-regret for the optimization on lines 6 and 9 in
Algorithm 4, we get the following;:

%2; | Meze — o3 — %m]\/ifng 1Mz — 2|2 < o(T)
1 _ 1 .
7 2 Mz —lly = gomin 3 [[ AN~y < o(T)

Though these regret bounds give us a guarantee on each individual regression
with respect the sequence of data points, they fail to give us the desired per-
formance bound as we get in the single OLS scenario; these bounds do not
show that this method is competitive with the optimal result from batch IVR
in hindsight (e.g., how close is A; to A* from Algorithm 3 with M™* instead of
My). We wish to show that this algorithm is in fact competitive with the batch
instrumental variable regression algorithm (Algorithm 3). Specifically, we focus
on the stochastic setting where each set of data points (xy, z¢, y¢) ~ P is i.i.d..
In this setting, we would like to show that:

ZE [”AtM*z - y”i] - mjnZE [HAM*Z - y||§] <o(T)

where ming Y, E [||[AM*z — y||3] is exactly the last objective of batch IVR,
since under the assumption that z¢,ys, z are i.id, &||Y — AM*Z||% (Eq. 5.4)
converges to E [|AM*z — y||3] in probability. In the below section, we derive
the above bound for our OIVR algorithm. Through this bound, we are able
to show that even though we optimize A, with regards to the online M, at
every timestep, we are finally competitive with the solution achieved by the
batch procedure that uses the batch M* to learn A*. We also note that the
prior technique, recursive IVR (e.g. (Soderstrom and Stoica, 2002)), is similar
to using FTRL (Shalev-Shwartz, 2011) with rank-1 updates. We below extend
prior analysis in that we derive a regret bound for this type of update procedure.
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5.4 Performance Analysis of Online IVR

In order to derive the primary theoretical contribution in this chapter, Theo-
rem 5.4.1, we first present the lemma below. We follow with the proof for the
performance guarantee of OIVR with regards to the batch IVR solution. detailed
derivation.

In lines 7 and 10 of Algorithm 4, we compute an average of the sequence
of predictors (matrices). This computation can be done relatively efficiently
without storing all the predictors trained. The usefulness of this operation can
be seen in the result of the below lemma.

Lemma 5.4.1:  Given a sequence of convez loss functions {€,(8)}, 1 <t <T,
and the sequence of {ft} that is generated by any no-regret online algorithm,
under the assumption that ¢y is i.i.d and £ = E(¢;), the average B =1/T ", B
of {Bt} has the following properties:

E [(B) —¢(BY)] < %T(T) —0, T — oo, (5.7)

where v(T) stands for the function of the regret bound with respect to T, which
is sublinear and belongs to o(T) for all no-regret online learning algorithms.
When € is o strongly convex with respect to 8 in norm || - ||, we have:

— 2
E[IB=pl] < —5r(T) =0, T = (5-8)

Proof. Since we use no-regret algorithms on losses {¢;}, for any *, we have:

> (B = 4(BY) < r(T) € o(T), (5.9)

where ), denotes Zthl and 7(7T) is the regret rate of the online algorithm
(upper bound of the regret), which is sublinear for all no-regret online algo-

rithms. Taking the expectation of I; on both sides of the equation (let us assume
¢ =Ey, (¢;),Vt), we have:

E

LCIEDS wa*)] € o(T). (5.10)

The expectation taken here is of 8; with respect to the stochastic losses so far.
B¢ (the parameter being optimized) is a random variable that depends on only
the previous ¢ — 1 loss functions. Thus, the loss ¢; at step t is independent of
Bi. The expectation over the losses becomes Ey, ¢, [:(8t)] = Eqy,..0, . [0(B1)]s
where the expectation of ¢; is ¢ (i.e. the loss is stochastic due to drawing the

'For instance, online gradient descent (Zinkevich, 2003) has r(T") = Cv/T for some positive
constant C.
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next set of data points from an i.i.d. distribution).

Since ¢ is convex with respect to 3, from Jensen’s Inequality, we have:
U8 < 7 306 (5.11)
T =" = e '
Combining Eqn. 5.11 and Eqn. 5.10, we have:

E[0(3) - ((5")] <E %Ze(fm - %Zzw*) <E BT(T)} 0, as T — oo,

(5.12)

When £ is a a strongly-convex loss function with respect to § under norm || - ||
and B* = argming £(8), we have that the convergence in the objective gives us
convergence in the parameter:

8- 57)| < 4B) ~ p)” < (). (513)

T
Putting the expectation back and taking T to infinity, we have:

_ . 2
E[||8-58%] < —7(T) =0, as T — oo (5.14)

O

Similar online-to-batch analysis can be found in (Cesa-Bianchi et al., 2004;
Littlestone, 2014; Hazan and Kale, 2014).

With this, we now approach the main theorem for the regret bound on Online
Instrumental Variable Regression. We explicitly assume that x;, y, and z; are
iid, and 2 = E(x¢), y = E(y), 2 = E(2;), and E(2:2]) is positive definite.

Theorem 5.4.1. Assume (v, y;, 2t) are i.i.d. and E(zz7) is postive definite.
Following any online no-regret procedure on the conver L2 losses for M, and
Ay and computing My, A; as shown in Algorithm 4, we get that as T — oo:

1 * 2 * * 2
E[HATM z_yHQ} _>E[||A M z—yHQ} (5.15)
and ~Ap — A* (5.16)
for the A*, M* from Batch IVR (Alg. 3).
Proof. Let ¢, = M* — M,. Then,

| AN,z — ye||2 = |AM* — )z — wil3

= [|AM* 2z — ye5 + | Aecze]ls — 2(AM* 2 — ye)" (Aerzt)
(5.17)



58 CHAPTER 5. ONLINE INSTRUMENTAL VARIABLE REGRESSION

Since we run a no-regret online algorithm for A, on loss function || A; My 2, — |3,
we have:

Z HAtMtZt — ytH% S REGRETA —+ Z HA*MtZt — yt”g
t t

where Y, denotes 37,

Applying Eq. (5.17) to the right hand side, we get that for any A* including the
minimizer:

Z ||AtMtZt — yt”% < REGRET4 + Z HA*M*Zt - yt”; + ”A*tang -2 (A*M*Zt — yt)T (A*EtZt)
t t
(5.18)
Applying Eq. (5.17) to the left hand side, we get:
S 1AMz — w3 + [ Averzely — 2 (AM 2 — )" (Aerze)
t
< REGRET4 + Z |A*M* 2z — ytHg + ||A*etzt||§ —2(A*M*z — )" (A% er2)
t
(5.19)

Rearranging terms,
S NAM 2z — yill; < REGRETA + Y [A*M* 2 — il + | A%zl — 2 (A" Mz — yo) " (A%er20)
t t

2 * T
— HAtetZtHQ + 2 (AtM Zt — yt) (AthZt) (520)
2 %12 2 2 2 2 2
< REGRET4 + Z [A*M 2 — yelly + | A% lleellz 1212 + ([ AellF el z [[2¢]l;
t

+2 ‘(A*M*Zt - yt)T (A*etzt)’ +2 ‘(AtM*Zt — )" (Arerzt)
(5.21)

The Cauchy-Swartz and the triangle inequality gives us that for any A:

(AM*z = y0)" (Aerz0)| < [AM* 20 = yilly | Aerzally
< (1AM* 2], + lyela) | Aeezell,
< (1Al 1M1 Nzl + lgella) 1Al el 121

2 2 *
< (WA Nell3 1M L + 1AL Dzl el Nl
(5.22)

Assuming that ||z¢]|y, ||Yello, M ||gs |Aellp, [|[A*||F are each always upper
bounded by some positive constant, define positive constants C; and C5 such
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that:
Cr >zl (14l + 14715 (5.23)

2 2 * * (12 2 * *
Cpy>2 (IlAtHF zello 1M p + [ Al p lzell Nyelly + AR zell2 1M 4 1A l12¢]] IIytllg)
(5.24)

Utilizing Eq. (5.22) with Eq. (5.21):
D AM*z — yi|l; < REGRETA + > [[A*M*2 — i3 + Ch [lerll7 + Ca llecl| o
t t
(5.25)

Let E denote the expectation with regards to the whole sequence of data. As-
suming that z;, x;, and y; are i.i.d. we get:

E < E[REGRET4] + E

* 2
Do 1AMz —yll;
t

SolAarrz - y||§]
t

+E > (01 lecll + Ca etIIF)] (5.26)

t

Now let us consider how ||&||r can be upper bounded. For ¢, since we run
a no-regret online algorithm on loss ||M;z; — x¢||3 assuming z;, 2, and y; are
i.i.d and that E[227] is positive definite, we use Lemma 5.4.1 to get:

E el = B||M; — M

1
= Eellp =/ (Blallp)? < VEllals <y/;ru(t) » 0, as t > o0 (5.28)

We get the inequality in Eq. (5.28) since Var(e;) = E [¢}] - E [e]* > 0. Dividing
by T in Eq. (5.26), we get:

2 1
P < ETM(t) —0, as t =00 (5.27)

1 REGRET 1 N
7B | S a0rs -yl < B[R0 4B | 15T an z—yné]
t t
1 ra(t) T (t)
+E th: <01 Oy = (5.29)

Note that for no-regret online algorithms, lim;_, 7as(t)/t = 0 since ry(t) €
o(T). Then because E [% Do JASM*z — y||§} =E {HA*M*z — y||§}7 applying
Cesaro Mean (Hardy, 2000) and taking the limit of T, we get:
1
—E
T

Z||AtM*z—y||g <E [||A*M*z—y\|§}, T — 00 (5.30)
t
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Thus, we have shown the algorithm is no-regret. Let Ap = % >, A¢. Using
Jensen’s inequality, we get:

E (|| ArM*z - g5 < %E SOIAM 2yl | SE[JA Mz —yl}], T oo
t

(5.31)

Since the above is valid for any A*, let A* = argmin, E [HAM*Z - yl\ﬂ Then

by construction,
B[ ArMez —y|i] 2 B[4 M7z~ 2], T o0 (5.32)
Therefore, by Eq. (5.31) and Eq. (5.32), we have that:
A * 2 ERVE 2
B[ ArMez — gl > B[4z —yll2], T o0 (5.33)

With E [zzT] > 0 resulting in a strongly convex objective, we get a unique
minimizer for the objective. Therefore,

Ar — A*, T — o0 (5.34)
Hence, we prove the theorem. O

We also want to note that the regret rate of our algorithm depends on
the no-regret online algorithms used. For instance, if we use OGD, which has
no-regret rate of O(v/T/T) for LEARN; and LEARNy, then our algorithm has
a no-regret rate of O(v/T/T). The choice of learning algorithm is related to
the desired trade-off between computational complexity and convergence rate.
FTRL and ONS can have faster convergence, making them suitable for appli-
cations where obtaining samples is difficult: e.g., data from a physical robot.
In contrast, gradient-based algorithms (e.g. iOGD, OGD) have lower compu-
tational complexity but may converge slower, making them useful for scenarios
where obtaining samples is cheap, e.g., data from video games.

5.5 Dynamical Systems as
Instrumental Variable Models

For a dynamical system, let us define state s € S € R™ and observation z €
X € R™. At time step t, the system stochastically transitions from state s;
to state s;y1 and then receives an observation z;y; corresponding to s¢y1. A
dynamical system generates a sequence of observations x; from latent states
s¢ connected in a chain (e.g., Fig. 2.4). A popular family of algorithms for
representing and learning dynamical systems are predictive state representations
(PSRs) (Littman et al., 2001a; Singh et al., 2004; Boots and Gordon, 2012,
2011a,b; Boots et al., 2011; Hefny et al., 2015b). It also has been shown in (Boots
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and Gordon, 2011b; Hefny et al., 2015b) that we can interpret the problem
of learning PSRs as linear instrumental-variable regression, which reduces the
dynamical system learning problem to a regression problem.

Following (Hefny et al., 2015b), we define the predictive state @ as Q; =
E(zt.445-1]z1.4—1) (instead of tracking the posterior distribution P(s¢|x1..—1) on
state, we track the observable representation Q¢ ), where 4. y,—1 is a k-step time
window of future observations. We also define the extended future observations
as Ty.yk, which is a (k+1)-step time window of future observations. The predic-
tive state representation of extended futures is defined as Py = E(xp.41x|T1.4-1)-
Therefore, learning a dynamical system is equivalent to finding an operator A
that maps from Q; to P;:

P, = AQy (5.35)

With A and the initial belief Q¢ = E(xg.x—1), we are able to perform fil-
tering and prediction. Given the belief Q; at step ¢, we use A to compute
P, = E(zt4k]x1.4-1). To compute E(xiq1.44%|21.4—1) (prediction), we simply
drop the z; from P;. For filtering, given a new observation x;, under the assump-
tion that the extended future x;¢4 has constant covariance, we can compute
E(%41.44k|21.t) by simply performing a conditional Gaussian operation.

A naive approach to compute A is to use ordinary linear regression directly
from futures ;.44 —1 to extended futures x4, 1. However, even though @441
and x4y are unbiased samples of @y and P, they are noisy observations of
Q: and P, respectively. The noises overlap: @y yr—1 and xy..qx share a k-step
time window (Hefny et al., 2015b). Therefore, directly regressing from @Q; to
P, gives a biased estimate of A, which can lead to poor prediction and filtering
performance. Indeed, as verified in our experiments, the biased A computed by
ordinary least square regression performs worse in comparison to the IVR based
methods.

To overcome the bias, the authors in (Boots and Gordon, 2011b; Hefny
et al., 2015b) introduce past observations z;_.;—1 as instruments. The past
observations x;_j.;—1 are not correlated with the noise in the future observations
ZTet+k—1 and extended future observations xyi4r but are correlated with Q.
Explicitly matching terms to those used in IVR, the noisy observation of P;
is equivalent to y, the noisy observation of @Q; is equivalent to z, and the past
observations x¢_k.;—1 is the instrumental variable z. Unlike (Hefny et al., 2015b),
which introduced batch IVR (Alg. 3) for system identification, we use O1VR (Alg.
4) where we receive observations online.

5.5.1 Online Learning for Dynamical Systems

Given OIVR, learning dynamical systems online becomes straightforward. To
apply Alg. 4 to model dynamical systems, we maintain a k-step time window
of the future xy.44k—1, a (k+ 1)-step time window of the extended future xy.4k,
and a k-step time window of the past z;_g.;—1. Matching terms to Alg. 4, we set
Ty = Tptyh—1, Yt = Tetk, and 2¢ = Ty_pp—1. With x4, y; and z;, we update M;
and A; following lines 6 and 9. When a new observation x4 is received, the
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Figure 5.4: Convergence Plots for the Dynamical System Experiments. (Best
viewed in color)

update of z; and y; and 2z to x¢41, yiy1 and 2441 is simple and can be computed
efficiently (e.g., to compute y;41 = Tit1:44k+1, We simply drop x; from z; and
append x;1+1 at the end (i.e. circular buffer)).

By maintaining these three fixed-step time window of observations instead
of building a large Hankel matrix ((Hefny et al., 2015b; Boots et al., 2011)) that
stores concatenations of all the observations, we significantly reduce the re-
quired space complexity. At every online update step (lines 6 and 9 in Alg. 4),
the online learning procedure usually has lower computational complexity. For
instance, using Online Gradient Descent (Zinkevich, 2003) requires O((kn)?)
computations at each step compared to the O((kn)3) in the batch-based algo-
rithms (usually due to matrix inversions).
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Figure 5.5: Filtering Error for the Dynamical System Experiments. Note that
the results for OLS iOGD in Fig. 5.5(c) and for ONS in Fig. 5.5(d) are higher
than the plotted area. (Best viewed in color)

5.6 Experiments

We demonstrate the performance OIVR on a variety of dynamics benchmark and
one illustrative econometrics problem. In Fig. 5.4, we show the convergence of
the estimated A; in OIVR to the A* computed with IVR. As an additional
performance metric, we report the observation prediction error with a constant
covariance Kalman filter using A; (Fig. 5.5) on a set of held out test trajectories.
For computational reasons, we report the filter error after every 50 data points
given to the online learner. Below we describe each our test benches.

MG-10 The Mackey-Glass (MG) time-series is a standard dynamical model-
ing benchmark (Ralaivola and D’Alche-Buc, 2004; Wingate and Singh, 2006)
generated from the nonlinear time-delay differential equation &(t) = —bx(t) +

%. This system produces chaotic behavior for larger time delays 7
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(seconds).

Helicopter The simulated helicopter from (Abbeel and Ng, 2005b) computes
its dynamics in a 21-dimensional state space with a 4-dimensional control in-
put. In our experiments, a closed loop LQR controller attempts to bring the
helicopter to hover at a fixed point from randomly chosen starting configura-
tions. White noise is added in each state transition. The LQR controller chooses
actions based on state and it poses a challenge for the learner to extract this
implicit relationship governing the evolution of the system.

Airplane Flight Take Off We also consider the complex dynamics gener-
ated during a DA-42 airplane’s take off in a flight simulator, X-plane (Research,
2015), a well known program for training pilots. Trajectories of observations,
which include among others speed, height, angles, and the pilot’s control inputs,
were collected were collected from a human expert controlling the aircraft. Due
to high correlation among the observation dimensions, we precompute a whiten-
ing projection at the beginning of online learning using a small set of observa-
tions to reduce the dimensionality of the observations by an order of magnitude.

Robot Drill Assembly Our final dynamics benchmark consists of 96 sen-
sor telemetry traces from a robotic manipulator assembling the battery pack
on a power drill. The 13 dimensional observations consist of the robot arm’s
7 joint torques as well as the 3D force and torque vectors as measured at the
wrist of the robotic arm. The difficulty in this real-world dataset is that the
sensors, especially the force-torque sensor, are known to be noisy and are prone
to hysteresis. Additionally, the fixed higher level closed-loop control policy for
the drill assembly task is not explicitly given in the observations and must be
implicitly learned.

We applied four different no-regret online learning algorithms on the dynamical
system test benches: OGD (Online Gradient Descent), iOGD (implict Online
Gradient Descent), ONS (Ounline Newton Step), and FTRL (Follow the Regu-
larized Leader). Fig. 5.4 shows the convergence of these online algorithms in
terms of ||A; — A*||p, where A; is the solution of OIVR at time step ¢ and A*
is the solution from batch IvR. Though FTRL had the fastest convergence,
FRTL is memory intensive and computationally expensive as it runs a batch
IVR at every time step over all the data points which have to be stored. ONS,
also a computationally intensive algorithm, generally achieved fast convergence
on the testbenches, except in the Robot Drill Assembly benchmark due to the
difficulty in tuning the parameters of ONS. In general, OGD and iOGD perform
well while only requiring storage of the latest data point. Furthermore, these
algorithms have lower computational complexity than ONS and FTRL at each
iteration.

We also compared the filtering performance of these O1VR methods with
batch IVR, batch OLS, and online OLS (via iOGD) on these datasets. The
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results are shown in Fig. 5.5. First, by comparing the batch IVR and batch
OLS, we observe that the biased A computed by batch OLS is consistently
outperformed on the filtering error by the A computed by from batch IVR.
Secondly, we also compare the performance of O1VR and online OLS where O1vR
outperforms online OLS in in most cases. In Fig. 5.5(c) we notice that O1vR with
FTRL, ONS, iOGD gives smaller filter error than batch IvR. This is possible
since IVR does not explicitly minimize the filter error but instead minimizes
the single step prediction error. The consistency result for IVR only holds if
the system has truely linear dynamics. However, as our dynamics benchmarks
consist of non-linear dynamics, there may exist a linear estimator of the system
dynamics that can outperform IVR in terms of minimizing filter error.

College Distance We finally consider an econometrics problem, a traditional
application domain for instrumental variable regression, the College Distance
vignette. In this experiment, we try to predict future wages given the number
of years of education as the explanatory variable (feature) and the distance to
the nearest 4 year college as the instrument (Kleiber and Zeileis, 2008; Card,
1993). The claim is that the distance is correlated with the years of college
but is uncorrelated with future wages except through the education level. The
goal is to find the meaningful linear coefficient from education level to wages.
As such, we do not compare against OLS as it does not try to find a similarly
meaningful representation. We see in Table 5.1 that the online algorithm is able
to converge on the solution found in the batch setting.

Ivr | iOGD | ONS | OGD | FTRL
Computed A | 0.688 | 0.690 | 0.689 | 0.698 0.688

Table 5.1: A found using various online no-regret algorithms versus A from
batch IVR for the College Distance dataset.

5.7 Conclusion

We introduced a new algorithm, Online Instrumental Variable Regression, and
proved strong theoretical performance bounds with regard to the traditional
batch IVR setting. Through connections between IVR and dynamical system
identification, we introduced a rich new family of online system identification
algorithms for partially observable systems. Our results further show that with
a predictive representation built from sufficient statistics of future observations,
we can improve filtering performance on a variety of benchmarks, moving us
toward a technique for handling Challenge 2. In Chapters 6 and 7, we derive
a more robust approach to directly optimizing for filtering performance using
similar ideas on predictive representations. We then expand this idea to aug-
ment general recurrent neural network in Chapter 8 for applications beyond
probabilistic filtering, such as imitation and reinforcement learning.
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Chapter 6

Nonparametric filter
learning: Predictive State
Inference Machines

Bayesian filtering plays a vital role in applications ranging from robotic state
estimation to visual tracking in images to real-time natural language processing.
Filtering allows the system to reason about the current state given a sequence
of observations. Filtering is usually connected to the time-series domain of
problems through the transition (dynamics) and observation (sensor) models.
Machine learned models are primarily utilized to find these models (Fig. 6.1),
e.g., linear dynamics and observation models for the Kalman Filter (Roweis and
Ghahramani, 1999), the Unscented Kalman Filter for nonlinear models with
Gaussian noise (Ko et al., 2007; Wan and Van Der Merwe, 2000), or particle
filters for nonlinear models from other distributions (Thrun et al., 2005).

St—1 St

Bayesian
Update

Bayesian
Predict

LEARNER #2
Ty =g (St)

Observation

Model

LEARNER #1
st = f(s4-1)

Dynamics Model

Figure 6.1: Traditional “Filter Learning”. Learning is often decoupled for the
transition and observation models.

In contrast to the classical separation of model learning and the probabilis-
tic filtering method, we propose PREDICTIVE STATE INFERENCE MACHINES

This work was originally presented in Learning to Filter with Predictive State Inference Ma-
chines at ICML 2016 (Sun et al., 2016) and contains joint work done in collaboration with
Wen Sun and Byron Boots.

67
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(PSIMSs), an algorithm that treats the inference procedure (filtering) on a dy-
namical system as a composition of predictors. Our procedure takes the current
predictive state and the latest observation from the dynamical system as in-
puts and outputs the next predictive state (Fig. 6.2). PSIM allows us to treat
filtering as a general supervised learning problem handed-off to a black box
learner of our choosing, where the complexity of the learner naturally controls
the trade-off between computational complexity and prediction accuracy. This
procedure learns an implicit dynamics model in order to directly tackles the
filtering problem (Challenge 2).

LEARNER | Tk

FA’(mt,l, l't)

@)

Figure 6.2: Filter Learning with PSIMs. This framework learns a joint predict-
and-update function to predict the next belief state.

In traditional filtering, the process (dynamics) model describes the transi-
tion of the system from state s; to state s;11 by specifying P(s:41|s:), and the
sensor (observation) model generates a distribution over observations P(x¢|s:)
given state. Using these models in conjunction with a new observation x;, the
filter conditions on observations to compute the posterior P(s¢|x;). As a re-
sult, the performance of the filter, its ability to estimate the state or predict
future observations, is limited by the fidelity of dynamics and observation mod-
els (Aguirre et al., 2005).

However, we often do not have knowledge of the true system’s state s;. This
could be due to the difficulty of instrumenting it or we may not know how to
fully parametrize the model. The classic generative approach is to assume that
each observation is correlated to the value of a latent state in a graphical model.
The parameters of the model are then optimized with Maximum Likelihood Es-
timation (MLE) based methods (e.g. (Coates et al., 2008)); however, these
approaches have at least two shortcomings. First, it may be difficult to find an
appropriate parametrization for the latent states. If the model is parametrized
incorrectly, the learned model may exhibit poor performance on inference tasks
such as Bayesian filtering or predicting multiple time steps into the future. Sec-
ond, the MLE objective is non-convex and finding the globally optimal solution
is often computationally infeasible. Instead, algorithms such as Expectation-
Maximization (EM) are used to compute locally optimal solutions. Although
the maximizer of the likelihood objective can promise good performance guar-
antees when it is used for inference, the locally optimal solutions returned by
EM typically do not have any performance guarantees.

Spectral Learning methods are a popular alternative to MLE for learning
models of dynamical systems (e.g. (Boots, 2012; Hsu et al., 2009; Hefny et al.,
2015a) and provides theoretical guarantees on discovering the global optimum
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for the model parameters under the assumptions of infinite training data and
realizability. However, in the non-realizable setting — i.e. model mismatch
(e.g., using learned parameters of a Linear Dynamical System (LDS) model
for a non-linear dynamical system) — these algorithms lose any performance
guarantees on using the learned model for filtering or other inference tasks.

In scenarios where our ultimate goal is to infer some quantity from observed
data, a natural solution is to skip the step of learning a model, and instead
directly optimize the inference procedure (Fig. 6.2). Toward this end, we gener-
alize the supervised message-passing Inference Machine approach of Ross et al.
(2011b); Ramakrishna et al. (2014); Lin et al. (2015). Inference machines do
not parametrize the graphical model (e.g., design of potential functions) and
instead directly train predictors that use incoming messages and local features
to predict outgoing messages via black-box supervised learning algorithms. By
combining the model and inference procedure into a single object — an In-
ference Machine — we directly optimize the end-to-end quality of inference.
This unified perspective of learning and inference enables stronger theoretical
guarantees on the inference procedure: the ultimate task that we care about.

One of the principal limitations of inference machines is that they require
supervision. If we only have access to observations during training, then there is
no obvious way to apply the inference machine framework to graphical models
with latent states. We leverage ideas from Predictive State Representations
(PSRs) (Littman et al., 2001a; Singh et al., 2004; Boots et al., 2011; Hefny
et al., 2015a) to develop a training procedure without supervision. In contrast
to latent variable representations of dynamical systems, which represent the
belief state as a probability distribution over the unobserved state space of the
model, PSRs instead maintain an equivalent belief over sufficient features of
future observations.

We present an abbreviated introduction to PREDICTIVE STATE INFERENCE
MACHINES (PSIMS) here and refer the reader to (Sun et al., 2016) for more
details.

6.1 Predictive State Representations (PSRs)

We follow a predictive state representation (PSR) framework and define state
as the distribution of a k-step fixed size time window of future observations,
fo = [af, .2l ]" € RF" (Hefny et al., 2015a)!. The key assumption in
PSRs is that the state of the dynamical system at timestep t¢ is equivalent to
being able to predict everything about f; at time-step t (e.g., the distribution
of f;) (Singh et al., 2004). We assume in our work that systems we consider are
k-observable? for k € N*: there is a bijective function that maps P(s¢|h;_1) to
P(ft|hi—1). For convenience of notation, we will present our results in terms

IThis is similar to the rank k of the observability matrix O = [C A, CA2,...,CAF] for linear
systems (Astrom and Murray, 2010)

2This assumption allows us to avoid the cryptographic hardness of the general problem (Hsu
et al., 2009).
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Figure 6.3: Filtering with predictive states for a k-observable system. At time
step t, the filter uses the belief E[¢(f;)|hi—1] and the latest observation z; as
feedback, outputs the next belief E[¢(frr1)|ht—1, Tt

of k-observable systems, where it suffices to select features from the next k
observations.

Following Hefny et al. (2015a), we define the predictive state at time step
t as E[o(fi)|hi—1] where ¢ is some feature function that is sufficient for the
distribution P(f¢|ht—1). The expectation is taken with respect to the distri-
bution P(fi|hi—1): E[p(fe)|hi—1] = fft, &(ft)P(ft|ht—1)dft. The conditional
expectation can be understood as a function of which the input is the ran-
dom variable h;_;. For example, we can set E[p(f)|hi—1] = E[f, ffT|hi_1] if
P(fi|hi—1) is a Gaussian distribution (e.g., linear dynamical system); or we can
set ¢(f) = [x¢ @ ... @ Ty4,—1] if we are working on a discrete models (discrete
latent states and discrete observations), where z; is an indicator vector rep-
resentation of the observation and ® is the tensor product. In summary, we
assume that there exists a bijective function mapping

P(stlhi—1) & P(ft|hi—1) < E[(fi)|hr—1]. (6.1)

Note that the mapping from E[¢(f:)|ht—1] to P(f{|ht—1) is not necessarily lin-
ear. To filter from the current predictive state E[¢(f;)|hi—1] to the next state
E[¢(fi+1)|ht] conditioned on the most recent observation z; (see Fig. 6.3 for
an illustration), PSRs additionally additionally assume a linear mapping to
extended-state operator as well as nonlinear conditioning operator that can
compute the next predictive state with the extended state and the latest obser-
vation as inputs.

6.2 Predictive State Inference Machines

Inference Machines reduce the problem of learning graphical models to solving
a set of discriminative classification or regression problems, where the learned
classifiers mimic message passing procedures that output marginal distributions
for the nodes in the model (e.g. (Ross et al., 2011b)). However, Inference
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Machines cannot be directly applied to learning latent state space models as we
lack the supervision over these hidden states.

We address this limitation using predictive state representations. By using
an observable representation for state, observations in the training data can
be used for supervision in the inference machine. From Eq. (6.1), instead of
tracking the hidden state s;, we focus on the corresponding predictive state
E[é(ft)|hi—1]- The training data can then quantify how good the predictive
state is by computing the likelihood of f;. The goal is to learn an operator F'
(the green box in Fig. 6.3) which deterministically passes the predictive states
forward in time conditioned on the latest observation:

E[$(fr1)lli] = F(E[B(f)lher] 1) (6:2)

such that the likelihood of the observations {f;}+ being generated from the
sequence of predictive states {E[¢(f;)|hi—1]}+ is maximized. In the standard
PSR framework, the predictor F' can be regarded as the composition of the
linear mapping (from predictive state to extended state) and the conditioning
operator. It is important note the equivalence of predictive state representations
and latent variable models. This equivalence allows us to use the inference
machine framework with the “future” as supervision. Thus, if we can correctly
filter with predictive states, then this is equivalent to filtering with latent states.

We do not place any parametrization assumptions on the transition and
observation models (as in latent state-space models). Instead, we parametrize
and restrict the class of predictors to encode the underlying dynamical sys-
tem and aim to find a predictor F' from the restricted class to forward propa-
gate this predictive state (Eq. (6.2)). We call this framework for inference the
PREDICTIVE STATE INFERENCE MACHINE (PSIM).

PSIM is different from PSRs in the following respects:

1. PSIM collapses the two steps of PSRs (predict the extended state and
then condition on the latest observation) into one step—as an Inference
Machine—for closed-loop update of predictive states

2. PSIM directly targets the filtering task and has theoretical guarantees on
the filtering performance

3. Unlike PSRs where one usually needs to utilize linear PSRs for learning
purposes (Boots et al., 2011), PSIM can generalize to non-linear dynamics
by leveraging non-linear regression or classification models.

6.2.1 Learning PSIMs

For notational simplicity, let 7 be a trajectory which is sampled from a unknown
distribution D,. We denote the predictive state as

me = E[p(fe)|he—1]. (6.3)
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We use 74 to denote an approximation of m;. Given a predictive state m; and
a noisy observation f; conditioned on the history h;_1, we let the loss function®

d(my, fi) = lme = o(fo)|3-

This squares loss function can be regarded as matching moments. For in-
stance, in the stationary Kalman filter setting, we could set m; = E[f;|h;_1]
and d(my, f;) = ||ms — fi]|3 for matching the first moment. We present two
different methods for optimizing the PSIM filter. The first method is based
on Forward Training (Ross and Bagnell, 2010) and the second on Dataset-
Aggregation (DAgger) (Ross et al., 2011a). Both methods use a similar proce-
dure as DAD (Chapter 3) to generate synthetic training examples by treating
the time-indexed training trajectories as oracles to make the predictors robust
to their own induced distribution.

6.3 Forward Training PSIMs

PSIM with Forward Training aims learn a non-stationary filter. We formulate
this as optimizing a good sequence of hypotheses {F;} such that:

T
3 1 AT T T
pomin B [ ;:1: A(F 17, w7), f73)|, (6.4)
st i = F,(m],a]),vt € [1,T — 1], (6.5)

where 1 = argmin,, Zt]\il d(m, f{), which is equal to 7 ZiT:1 #(f1). This
problem is not separable since we need to learn the first F; in order to generate
the input features for learning F». We optimize this following the procedure
described in Algorithm 5.

To better understand what this training procedure does, let us define w; as
the joint distribution of feature variables z; and targets f;1; after rolling out
Fi,...,Fi_1 on the trajectories sampled from D, (similar to Eq. (3.7)). Under
this definition, the filter error defined above is equivalent to

1 T
T ;Ew,f)wt [d(Ft(Z), f)} .

Essentially the dataset D; collected on Line 5 by Algorithm 5 forms a finite
sample estimation of wy.

The forward-training method for PSIM allows us to derive a few theoretical
bounds and guarantees. The theorems are reproduced below, and we refer the
reader to (Sun et al., 2016) for proofs and additional details. For the first result
we assume that every learning problem for F; can be solved perfectly (i.e. risk
minimizer finds the Bayes optimal) (Langford et al., 2009).

3Squared loss in an example Bregman divergence of which there are others that are optimized
by the conditional expectation (Banerjee et al., 2005). We can design d(m¢, f¢) as negative
log-likelihood, as long as it can be represented as a Bregman divergence (e.g., negative log-
likelihood of distributions in exponential family).
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Algorithm 5 PREDICTIVE STATE INFERENCE MACHINE (PSIM) with Forward
Training

1: Input: M independent trajectories 7;, 1 < i < M;

2: Set 1y = 77 Yity B(f7);

3: Set mj = 1y for trajectory 7,1 <1i < M;

4: fort =1to T do

5. For each trajectory 7;, add the input z{ = (¢, z%) to D, as feature vari-
ables and the corresponding f; 1 to Dy as the targets;

6:  Train a hypothesis F; on D; to minimize the loss d(F(z), f) over Dy;

7. For each trajectory 7;, roll out Fi, ..., F; along the trajectory (Eq. 6.5) to
compute 1}, ;

8: end for

9: Return: the sequence of hypothesis {F;}¥ ;.

Theorem 6.3.1. With infinite many training trajectories and in the realiz-
able case, if all learning problems are solved perfectly, the sequence of predictors
Fy, Fy, ..., Fr from Algorithm 5 can generate exact predictive states E[g(f7)|h]_1]
for any trajectory T ~ D, and 1 <t <T.

In addition to the above assumption and the usual asymptotic in dataset
size requirement, Theorem 6.3.1 assumes the problem is realizable. That is, the
underlying true filters Fy, ..., Fi;. are in the hypothesis class F. Though this is
not often the case for real-world problems and small function classes, it shows
that in a well-behaved scenario, we can achieve the correct solution — similar to
the guarantees given by spectral methods.

Our second result addresses this limitation. For the model-agnostic case (i.e.
possibly not realizable), we show that Algorithm 5 can still achieve a reasonable
upper bound. Let us define

€t = F@?—'E(ZJ)NU% [d(F(Z)7 f)L

which is the minimum batch training error under the distribution of inputs
resulting from hypothesis class F. Let us define €n.x = max;{e;}. Under
infinite many training trajectories, even in the model agnostic case, we have the
following guarantees for filtering error for Alg. 5:

Theorem 6.3.2. With infinite many training trajectories, for the sequence
{F:}+ generated by Alg. 5, we have:

1 AT T T 1
IE7'~'DT |:T Zd(Ft(mtvxt)aft+1)i| = T Zet < €maz-
t

t=1

Theorem. 6.3.2 shows that the filtering error is upper-bounded by the average
of the minimum batch training errors from each step. If we have a rich class of
hypotheses and small noise (e.g., small Bayes error), e; could be small.
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The final result we derive addresses the infinite-sample assumptions from
above to provide a finite sample analysis. To analyze finite sample complexity,
we need to split the dataset into T disjoint sets to make sure that the samples
in the dataset D; are i.i.d. Hence we reduce forward training to 7" independent
supervised learning problems. We have the following agnostic theoretical bound:

Theorem 6.3.3. With M training trajectories, for any Fy € F,Vt, we have
with probability at least 1 — §:

1

= S ARG 7). )]

M~

ETNDT |:

-
Il

1

T
<E;op, TZ (K (i, 1), fi)]
(7o)

R
+4vR(F)+2 Wi

(6.6)
where v = supp , ; 2||F(2)—fll2, R(F) = ¢ S Re(F)) and Ri(F) is the Rademacher
number of F under wy.

As one might expect, the learning problem becomes harder as T increases.
Although Algorithm 5 has nice theoretical properties, it is not very data efficient.
It requires many trajectories to get good performance, but in practice, it is
possible that we only have small number of training trajectories. The other
major limitation is that often problems have long horizons (T is big). It becomes
impractical to construct as many predictors as the horizon of the problem — it
would require even more data and possible be computationally and memory
intractable. We introduce a second training procedure that addresses these
practical concerns.

6.4 DAgger (DaD) training PSIMs

The PSIM training with DAgger trains a stationary filter F'. With this filter,
we can filter for an arbitrary horizon. This training method shares a lot of
similarity with the multi-step training procedure introduced in Chapter 3. The
optimization we wish to target for finding a good stationary filter F is

T

. 1 R
Frpel‘r;—ETND'r T tz:; d(F(mta 'Tt)? ft+l)7 (67)
st Mpp1 = F(g,a),Vt € [1,T — 1], (6.8)

where

(6.9)

HMH

my = argmand m, fi) =
t=1
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Algorithm 6 PREDICTIVE STATE INFERENCE MACHINE (PSIM) with DAgger
Training

Input: M independent trajectories 7;, 1 <i < M

Output: Filter function F

. Initialize Dy ¢+ () and initialize Fyy to be any hypothesis* in F;

: Tnitialize 11 = & S0, 6(f])

: for n =0 to N do

Use F,, to perform belief propagation (Eq. (6.8)) on trajectory 7;, 1 < i <

M

5. For each trajectory 7; and each time step ¢, add the input 2} = (mz ,wt)
encountered by F,, to Dj,_, as feature variables and the corresponding
fiiq to Dl as the targets ;

6:  Aggregate dataset D41 = D, U Dy, ;

7:  Train a new hypothesis F, 1 on D,,11 to minimize the loss d(F(m, z), f)

8

9

=W N

Fr

: end for .
: Return: the best hypothesis F' € {F}, },, on validation trajectories.

Note that the above objective function is non-convex since the input feature
for each t depend on the prediction from the previous timestep. Optimizing this
objective function via back-propagation-through-time (BPTT) can be difficult
and likely leads to local optima. Instead, we optimize the above objective func-
tion using the lessons learned in Chapter 3. The iterative approach we describe
(Algorithm 6, Fig. 6.4) is based on DAD, which itself based on approach called
Dataset Aggregation (DAgger) (Ross et al., 2011a). Due to the non-convexity
of the objective, DAgger does not promise global optimality, but PSIM with
DAgger gives us a sound theoretical bound for multi-step filtering error in terms
of the single-step batch error.

Given a trajectory 7 and hypothesis F', we define m:F as the predictive
belief generated by F on 7 at time step . We also define z; " to represent the
feature variables (1h]", 27). At iteration n, Algorithm 6 rolls out the predictive
states using its current hypothesis F,, (Eq. (6.8)) on all the given training tra-
jectories (Line 4). Then it collects all the feature variables {(/m"™, i)}, and
the corresponding target variables { f} 1}t from the ground truth trajectory to
form a new dataset D). This is then aggregated with the to the original dataset
D;,—1. Then a new hypothesis F;, is learned from the aggregated dataset D,, by
minimizing the loss d(F'(z), f) over D,,. This procedure is in the in the same
vein DAD extended to work for PSIM. We illustrate this procedure in Fig. 6.4

By using DAgger, we can guarantee a hypothesis that, when used during
filtering, performs nearly as well as when performing regression on the aggregate
dataset Dy. In practice, with a rich hypothesis class F and small noise (e.g.,
small Bayes error), small regression error is possible. We can use the results of
Ross et al. (2011a) to give a couple theoretical guarantees on the filter function

4Better performance is often achieved if Fp is initialized by minimizing d(F(¢(ft), ), d(f))),
the single-step loss (like in Algorithm 1).
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F
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[$t+17 ceey l”t+k]

Figure 6.4: Graphical representation of PSIM with DAgger training, Algo-
rithm 6. The model F,, from the n-th iteration is rolled forward to generated
predicted message m (Eq. (6.3)). These are then trained against the ground
truth trajectory from which features ¢(f;) are constructed. By aggregating
data over each of the models F;,, we can learn a predictor with good multi-step
filtering performance over the time horizon.

used.
Let us fix a hypothesis F' and a trajectory 7, we define wr , as the uniform

distribution of (z, f): wg, = U[(ZI’F, F3)y oy (2105, f’17;+1):|' The filtering error
Eq. (6.7) can be rewritten as

L(F) = Er[E: frwp [d(F(2), f)]I7]. (6.10)
Define the loss function for any predictor F' at iteration n of Algorithm 6 as:
Ln(F) = Er[Ez. fowr, , [d(F(2), 7). (6.11)

At iteration n, the dataset D] made from M trajectories forms an empirical
estimate of the loss L,:

M
EaF) = 2 3 B o, (A(F(2), ). (612)

T=1

Algorithm 6 can be regarded as running the Follow the Leader (FTL) (Cesa-
Bianchi et al., 2004; Hazan et al., 2007) on the sequence of loss functions
{L,(F)})_,. When the loss function L, (F) is strongly convex with respect
to F', FTL is no-regret in a sense that limy_.. vy = 0.

Now, define the minimum average training error

eN = mig% > Lu(F). (6.13)
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The Regret vy of an algorithm is then given as

N N
1 1
— — min — < .
~ n§:1Ln(Fn) min n§:1Ln(F) <N (6.14)

€N

For the first result, assume that M = co = L,(F) = L,(F). Applying
Theorem 4.1 and its reduction to no-regret learning analysis from (Ross et al.,
2011a) to our setting, we have the following guarantee for filtering error:

Corollary 1. (Ross et al., 2011a) For Algorithm 6, there exists a predictor
F e {F,}}_, such that:

L(F) = Er [Ex frwp (d(F(2), ))IT] < v + en.

Under the assumption that L, is strongly convex (e.g. regularized square
loss), as N — oo, yn goes to zero. Hence the filtering error of Fis upper
bounded by the minimum batch training error that could be achieved by do-
ing regression on Dy within class F. Previous approaches such as Inference
Machines (Ross et al., 2011b) and DAD (Theorem 3.2.1) have a similar upper
bound by using DAgger for optimizing their multi-step objectives. In general
the term ey depends on the noise of the data and the expressiveness of the
hypothesis class F.

Note that though we present Algorithm 6 using FTL to update the hy-
pothesis, we can use other no-regret online algorithms such as Online Gradient
Descent (Zinkevich, 2003), Online Frank-Wolfe (Hazan and Kale, 2012) to up-
date F,. Depending on the choice of algorithm, we can even relax the strong
convexity assumption on L,, to convexity.

The finite sample analysis from (Ross et al., 2011b) can also be applied to
PSIM. Let us define

1 A
€ = 1 —LnF 1
€N Iglel?:N (F) (6.15)
1. 1.
v > —min — ) .
AN > Nn:1Ln(Fn) }I'pelgNn:an(F) (6.16)

we have:

Corollary 2. (Ross et al., 2011a) For Algorithm 6, there exists a predictor
F e {F,}N_, such that with probability at least 1 — §:

L(F) =E; [E. frw,

F,r

(A (2), MIT] < Aw +én

21n(1/9)

+ Lmax( MN

). (6.17)
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6.5 Experimental Evaluation

We evaluate PSIMS on an illustrative synthetic example as well as a variety of
dynamical system benchmarks. We use two feature functions:

b1(fe) = [Tt, s Tok—1] (6.18)

¢2(ft> = [l‘t, ...,.’I},H,k,]_, J}tQ, ...7.’1,'?+k71]. (619)

¢1 stacks the k future observations together. The resulting predicted messages
m can then be regarded as a prediction of future k observations (&4, .., Zt4k—1))-
@2 includes the diagonal-elements of the second moments as a Gaussian distri-
bution approximating the true distribution of future observations. To measure
the error on the computed predictive states are, we extract &; from m; and
evaluate the squared error ||#; — 2;]|3 between the predicted observation #; and
the corresponding true observation x;.

For the dynamical system benchmarks, we present various PSIM results:

Method Description

PSIM-Lineary DAgger training with linear ridge regression as the un-
derlying learn procedure.

PSIM-RFF, DAgger training with linear ridge regression on on the
original observation space plus Random Fourier Features
(RFF) (Rahimi and Recht, 2007). With RFF, PSIM ap-
proximately embeds the distribution of f; into a Repro-
ducing Kernel Hilbert Space (RKHS).

PSIM-Linear, Back-propagation-through-time (BPTT) for linear re-
gression. BPTT is used to optimize the multi-step error
as an alternative for DAgger.

PSIM-RFF, BPTT for linear regression on RFF.

PSIM-Linear,,;, Initialization with DAgger training followed by BPTT for
linear regression.

Table 6.1: Various implementations of PSIM tested on the dynamical systems.

We compare the PSIM variations in Table 6.1 to several baselines: Autore-
gressive models (AR), Subspace State Space System Identification (N4SID) (Van Over-
schee and De Moor, 2012), PSRs implemented with IVR (Hefny et al., 2015a),
and give some results with comparisons to a Recurrent Neural Network (RININ)
trained with BPTT (LeCun et al., 2015).
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Figure 6.5: The convergence rate of different algorithms. The ratios (y-axis)

are computed as log(é) for error e from corresponding algorithms. The x-axis
is computed as log(NN), where N is the number of trajectories used for training.

6.5.1 Toy Example: Synthetic Linear Dynamical System

Before delving into the PSIM benchmark results, we first showcase a simple
filtering example on a known linear dynamical system of the form

Sta1 = Asp + €5, €5 ~N(0,Q),
xy = Cs; + €z, €, ~N(0,R), (6.20)

The system was designed to be exactly & = 2 observable. The sequences of
observations are collected from the linear stationary Kalman filter of the LDS
(Boots, 2012; Hefny et al., 2015a)

Since the data is collected from the stationary Kalman filter of the 2-observable
LDS, we set k = 2 and use ¢1(ft) = [2¢,2¢41].- Note that the 4-dimensional
predictive state E[pq(f:)|h:] will represent the exact conditional distribution of
observations (x4, x+1) and therefore is equivalent to P(s¢|hi—1) (see the de-
tailed case study for LDS in Appendix). With linear ridge regression, we test
PSIM with forward training, PSIM with DAgger, and AR models (AR-k) with
different length histories kj,. Note that the AR model uses past observation
for its features where as PSIM uses a belief over future observations. For each
method, we compare the average filtering error e to ex which is computed by
using the underlying linear stationary filter F' of the LDS.

The convergence results are shown in Fig. 6.5 as the number of training
trajectories N increases. While we tested AR models with k;, = 5, k, = 10,
and kjp = 20, the error with these models exceeds the axis limits of Fig. 6.5.
PSIM with DAgger performs much better with few training data while Forward
Training eventually slightly surpasses DAgger with sufficient data. The AR-k
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Figure 6.6: PSIM vs. Baselines. Filter error for multiple look ahead steps for
the future predictions shown for a few of the datasets. We see across datasets
that the performance of both IVR and N4SID are significantly worse than using
PSIM. For some datasets, the nonlinearity of the Random Fourier Features
helps to improve the performance.

models need long histories to perform well given data generated by latent state
space models, even for this 2-observable LDS. Note AR-35 performs regression
in a 70-dimensional (35 x 2-dimensional observations) feature space (35 past
observations), while PSIM only uses 6-d features (k = 2 x 2 = 4-d predictive
state + 2-d current observation). This shows that predictive state is a more
compact representation of the history — closer to “state” — and can reduce the
complexity of learning problem.

6.5.2 Dynamical System Benchmarks

We consider the following three real dynamical systems:

1. Robot Drill Assembly: the dataset consists of 96 sensor telemetry traces,
each of length 350, from a robotic manipulator assembling the battery
pack on a power drill>. The 13 dimensional noisy observations consist of
the robot arm’s 7 joint torques as well as the the 3D force and torque
vectors as measured from a noisy sensor located in the wrist of the robotic
arm. Note the fixed higher level control policy for the drill assembly task is
not given in the observations and must be learned as part of the dynamics.

2. Human Motion Capture: The dataset consists of 48 skeletal tracks of 300
timesteps each from a Vicon motion capture system from three human
subjects performing walking actions®. The observations consist of the 3D
positions of the various skeletal parts (e.g. upperback, thorax, clavicle,
etc.); Due to very high correlation in some of the observation dimensions,
we precompute a projection matrix from the eigenvectors of the first tra-
jectory.

5Collected from the ARM-S system (Bagnell et al., 2012)
6 Available at http://mocap.cs.cmu.edu
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3. Video Textures: We also test two different video texture datasets, one
video of a flag waving (e.g. Fig. 3.5) and the other one of waves on a
beach (e.g. Fig. 3.6). More details can be found in Section 3.3.4.

Method Robot Drill Motion Cap. Beach Video Flag Video
N4SID 2.87 7.86 231.33 3.38e3

IVR 2.39 6.88 213.27 3.38e3
RNN, 1.99 9.60 346.00 -
PSIM-Linear 2.15 5.75 164.23 1.28e3
PSIM-Linear, 2.54 9.94 268.73 1.31e3
PSIM-Linearg,, 2.09 5.66 164.08 -
PSIM-RFF, 1.80 5.41 130.53 1.24e3
PSIM-RFF, 2.54 9.26 202.10 -

Traj. Pwr 27.90 107.92 873.77 3.73e3

Table 6.2: Filter error (single-step ahead) for various methods and datasets.
All PSIM approaches use the ¢; message type. PSIM with DAgger with both
RFF+Linear or Linear Regression outperforms most baselines. For a scale on
the error, we also give the average trajectory power for the true observations
from each dataset.

We do not test PSIM with Forward Training since some our benchmarks
have a large number of time steps per trajectory. Throughout the experiments,
we set k = b for all datasets except for video textures, where we set k = 3. For
each dataset, we randomly pick a small number of trajectories as a validation
set for parameter tuning (e.g., ridge, rank for N4SID and IVR, band width
for RFF). For both N4SID and IVR, we only perform grid search for picking
the rank while using normal least squares regression. We partition the whole
dataset into ten folds, train all algorithms on 9 folds and test on 1 fold.

For the feature function ¢, the average one-step filtering errors across the
ten folds are shown in Table 6.2. Our approaches outperforms the three base-
lines (N4SID, IVR, RNN) across all tested datasets. Since the datasets are gen-
erated from complex dynamics, PSIM with RFF exhibits better performance
than PSIM with Linear. This experimentally supports our theorems suggesting
that with powerful regressors, PSIM could perform better. DAgger (20 itera-
tions) trains a better linear regression for PSIM than back-propagation with
random initialization (400 epochs), likely due to local optimality. PSIM Linear
with DAgger +Backprop fine tunes a model initialized from DAgger training
to achieve marginal performance improvement over DAgger. Our results show
that PSIM with DAgger finds good models by itself. We also compare some
of these approaches for multi-step look ahead (Fig. 6.6). PSIM consistently
outperforms the two baselines.
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To show predictive states with larger k encode more information about latent
states, we additionally run PSIM with k£ = 1 using ¢;. The results are show
in Table 6.3. Including belief over longer futures into predictive states helps
capture more information and increase the performance.

Dataset % Improvement
Robot Drill Assembly 5%
Motion Capture 6 %
Beach Video 32 %
Flag Video 8 %

Table 6.3: Relative performance improvement using k =5 vs. k = 1 for PSIM

We next investigate how the performance varies how using second moments
can affect performance The results are show in Table 6.4 for feature function
¢2 (first and second-moment features) and k& = 5 using PSIM with linear ridge
regression and DAgger training. Comparing to the results with ¢, using ¢o
achieves slightly better performance on all datasets, and noticeably better per-
formance on the beach video texture.

Dataset PSIM + ¢; PSIM + ¢o
Robot Drill Assembly 2.15 2.05
Motion Capture 5.75 5.47

Beach Video 164.23 154.02

Flag Video 1.28e3 1.27e3

Table 6.4: PSIM with linear regression using first-moment, ¢;, and
first4+-second-moment features ¢o.

6.6 Conclusion

We introduced PREDICTIVE STATE INFERENCE MACHINES, a novel approach
fore directly learn to filter. Leveraging ideas from PSRs, PSIM reduces the un-
supervised learning of latent state space models to a supervised learning setting.
Our approach gives theoretical guaranties on the filtering performance for gen-
eral non-linear models in both the realizable and model-agnostic settings. The
filter function learned by PSIM can be considered a dynamical system model
specialized for filtering performance on partially observable systems (Challenge
2). In the next chapter, we introduce an extension that allows us to use the
power of predictive states in problems with labeled partial-state or target infor-
mation, which we call “hints”.



Chapter 7

Predicting ‘“useful”

quantities: Extending
PSIM with Hints

The standard PSIM (Chapter 6) address prediction over the space of future
observations. Many real world applications, however, require the estimation or
prediction of useful physical quantities, which traditional filtering algorithms
are capable of but PSIMSs were not. For example, given observation of a neural
spikes from a brain implant, the filter must be able to predict prosthetic motion
commands (Muelling et al., 2015).

In this chapter, we continue to address Challenge 2, extending PSIM to
work with these real-world targets which we term “hints”. Our extension,
PSIM+HINTS adds this vital capability. PSIM as introduced, developed an
inference machine approach in the latent-state setting where the sufficient un-
derlying state representation is at least partially unobserved at training time. In
this chapter, we also consider the supervised-state setting in which we wish
to learn a filter model for a system with a known state representation for which
we are able to obtain ground truth at training time. We show the supervised-
state is a special case of the latent-state PSIM. The supervised-state filters,
or INFERENCE MACHINE FILTERS (IMFS) can be considered a specialization
of (Ross et al., 2011b) for the time-series setting. We use the feature embedding
trick from PSIM to handle continuous-valued observations.

To ground the difference between supervised-state and latent-state, we con-
sider simple pendulum dynamics (e.g. Fig. 3.2). In the supervised-state setting,
we assume access at training to a sufficient-state representation of the system.
For the pendulum the natural and sufficient state representation is the angle
and angular velocity (9,9). There exist other sufficient state representations

This work was originally presented in Inference Machines for Nonparametric Filter Learning
at IJCAI 2016 (Venkatraman et al., 2016c) contains joint work done in collaboration with
Wen Sun and Byron Boots.
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1t

P(st, he|st—1,he—1)

(a) “Hints” Model (b) Message passing in the “Hints” Model

Figure 7.1: (a): Adding hints, h;, allow us to extend the HMM model with
partially observed states (labels). The true latent-states s; of an unknown rep-
resentation generate observations x; and labels h; of which both are observed
at training time but only the former at inference time. The state s; and hint
ht together generate the next label h;y1. (b): If we do not need the messages
passed between the states and hints, we can abstract them away and consider
the net message output by the hint and state before the process model, drawn
as the black square factor, but after the observation update.

such as the Euclidean position and velocities (z,y, &, y) which can be used to
predict the future exactly. Any subset of each would not be a sufficient state
and would not have enough information to predict the next state with certainty.
If we have any of these components as observations or as the “hints”, this would
be the latent-state setting.

7.1 Predictive State Inference Machine with Hints

In this chapter, we extend PSIMS to models with partially observable states
or side-information (Fig. 7.1(a)). In the semi-supervised setup, the hints h and
observations x are at training time though the true sufficient-state s is either
unknown or unobserved. Although PSIM is well defined on a simple chain-
structured model (e.g. Fig. 7.2), it is not straightforward to extend PSIM to a
model with the complicated latent structure in Fig. 7.1(a).

To handle this type of graph structure, we collapse the hints & and the latent
states s into a single unit-configuration as shown in the abstracted factor graph,
Fig. 7.1(b), and only focus on the net message passed into the configuration and
the net message passed out from the configuration. Ideally, we would like to
design an inference machine that mimics this net message passing procedure.

In Fig. 7.1(b), m; represents the joint belief of h; and s,

me = ]D(ht7 St‘pt)' (71)

Note that we changed notation compared to Chapter 6. h; now refers to the hint
while p; refers to the history of observations. Directly tracking these messages is
difficult due to the existence of latent state s;. Following the approach of PSRs
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Algorithm 7 PSIM+HINTS with DAgger Training

Input: M independent trajectories 7;, 1 <1 < M;

1: Initialize D < Dy + 0

Initialize Fy to be any hypothesis in F;

Initialize 1y = 37 Zi\il (b, fi=1a%,)

for n=0to N do
Roll out F), to perform belief propagation on trajectory 7;, 1 <i < M
Create dataset D,: V7;, add predicted message with observation z{ =
(m:_Ff ,2¢) encountered by F), to D,, as feature variables (inputs) and the
corresponding ¢(ht, f) to D,, as the learning targets

7. DAgger Step: aggregate dataset, D = DU D,

8:  Train a new hypothesis F,, ;1 on D to minimize the loss d(F(m, ), ¢(h, f))

9: end for

10: return Best hypothesis F' € {F;}N; on validation trajectories.

and PSIMs, we use observable quantities to represent the belief of h; and s;.
Since the latent state s; affects the future observations starting from z; and also
the future partial states starting from h;, we use sufficient features of the joint
distribution of future observations and hints to encode the information of s; in
message m;_1. Similar to PSIM, we assume that there exists an underlying
mapping between the following two representations:

P(h, silpt) < P(he, Teg 14k, [Pr)- (7.2)

Assuming that ¢ computes the sufficient features (e.g., first and second moments
for a Gaussian), we can represent P(hs, T111:t4%,|p¢) by the following conditional
expectation:

E [¢(ht, Tegr:e4n,)|pe] - (7.3)

When ¢ is rich enough, E [¢(ht, Tii1:t4k f)|pt:| is equivalent to the distribution

P(hi, o410+, pr). For example, if ¢ is a kernel mapping, B [¢(he, @11.614,)|pi]
essentially becomes the RKHS embedding of P(h¢, 14 1:t41, [p:). We call Eq. (7.3)
as the predictive state!. For notational simplicity, define

my=E [¢(ht7xt+1:t+kf)|pt] .

We are then capable of training an inference machine that mimics the fol-
lowing predictive state flow:

my = F(mt,h .’L't), (74.)

which takes the previous predictive state m;_1 and current observation z; and
outputs the next predictive state my.

IThe choice of only one hint at each timestep is by assumption. For some applications, we
may see improved performance with a belief over more than one future hint.
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Define 7 ~ D as a trajectory {z1,hy, ..., 27, hy} of observations and hints
sampled from an unknown distribution D. Given a function F' € F, let us
define my * as the corresponding predictive state generated by F' when rolling
out using the observations in 7 described by Eq. 7.4.

Similar to PSIM, we aim to find a good hypothesis F' from hypothesis class
F, that can approximate the true messages well. We define the multi-step
(recursive) predictive objective:

T
s 1 A T T
glel% TETND tZ:; d(F(mt—lﬂ xt)’ (ht ) xt+1:t+l€f)) )
S.t., mt = F"(’I?’Lt,l7 xt),Vt, (75)

where d is the loss function (e.g., the squared loss).

As with PSIM, the optimization objective presented in Eq. (7.5) is non-
convex in F' due to the objective involving sequential prediction terms where
the output of F' from time-step ¢ — 1 is used as the input in the loss for the
next timestep ¢. As optimizing Eq. (7.5) directly is impractical, we utilize
Dataset Aggregation (DAgger) (Ross et al., 2011a) training in a similar fashion
to DAD Chapter 3 and PSIM Chapter 6 to find a filter function (model) F
with bounded error. The training procedure for PSIM+HINTS is detailed in
Algorithm 7. By rolling out the learned filter and collecting new training points
(lines 6, 7), subsequent models are trained (line 9) to be robust to the induced
message distribution caused by sequential prediction.

Specifically, let us define z] = (htT7$Z+1:t+kf) for any trajectory 7 at time
step t and define dr as the joint distribution of (m{;Fl, x7,2{),Vt when rolling
out F' on trajectory 7 sampled from D. Then our objective function can be rep-
resented alternatively as E(p, 5 .)~a, d(F(m, ), 2). Alg. 7 guarantees to output
a hypothesis F' such that:

T
1 SNPRINY  S T
ETNDf tg_l d(F(my,x]),2) <e (7.6)
XN
where € = IIPEH;_ N 7;:1 E(m.z,z)~dp, d(F(m, x), 2), (7.7)

€ is the minimum batch minimization error from the entire aggregated dataset
in hindsight after IV iterations of Algorithm 7. Note that this bound applies to
Eq. (7.5) for the F' found by Algorithm 7.

Despite the learner’s loss € in Eq. (7.7) being over the aggregated dataset,
it can be driven low (e.g. with a powerful learner), making the bound useful
in practice. For long-horizons, the possible exponential rollout error (Theo-
rem 3.1.1) from optimizing only the one-step error often dominates the error
over the aggregated dataset.

We conclude with a few final notes. First, even though Fy would ideally be
initialized (line 3) by optimizing for the transition between the true messages,
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in practice Fj is often initialized from the empirical estimates. Second, though
the sufficient-feature assumption is common in the PSR literature (Hefny et al.,
2015a), an approximate feature transform ¢ balances computational complexity
with prediction accuracy: simple feature design (e.g., first moment) makes for
faster training of F' while Hilbert Space embeddings are harder to optimize but
may improve accuracy (Boots, 2012; Boots et al., 2013). Additionally, the bound
in Egs. (7.6) and (7.7) holds for the approximate message statistics. Finally,
though the learning procedure is shown in a follow-the-leader fashion on the
batch data (line 9), we can use any online no-regret learning algorithm (e.g.
OGD (Zinkevich, 2003)), alleviating computational and memory concerns.

7.1.1 Hint Pre-image Computation

Since the ultimate goal is to predict the hint, we need to extract a prediction
of h; from the computed predictive state m,, which is an approximation of the
true conditional distribution P(h¢, Z¢y1.¢4x,|p¢). Exactly computing the MLE
or mean of h; from m; might be difficult (e.g., sampling points from a Hilbert
space embedding is not trivial (Chen et al., 2012)). Instead, we formulate the
step of extracting h; from m; as an additional regression problem:

T
. 1 o 12
min Erp5 > llgmi) — 7|3 (7.8)

t=1

To find g, we roll out F on each trajectory from the training data and collect all
the pairs of M}, h]. Then we can use any powerful learning algorithm to learn
this pre-image mapping g (e.g., random forests, kernel regression). Note that
this is a standard supervised learning problem and not a sequential prediction
problem — the output from g is not used for future predictions using g or the
filter function F.

There is another hypothesis as to why this is useful. In Chapter 6, we took
the predicted value from the first moment portion of the message 1m; to get the
predicted observation. However, this prediction is the output of a filter function
F optimized using DAgger style training for multi-step performance. The pre-
image computation we do here is instead formulated as a standard supervised
learning procedure. This step may be useful a “DAgger-cleanup” to utilize a
learner’s full model complexity for the singe-step performance.

7.2 The Inference Machine Filter for Supervised-
State Models

In contrast to filter learning in the latent-state problem, the supervised-state
setting affords us access to both the sufficient-state s and observations x dur-
ing training time. We specifically look at learning a filter function on Hid-
den Markov Models (HMMs) as shown in Fig. 7.2. This problem setting sim-
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m0m1 m2 mt

Figure 7.2: Message Passing on a Hidden Markov Model (HMM). The state
of the system s; generates an observation x;. In the superv1sed—state setting,
the sufficient-states s and observations x are given at training time though
only observations are seen at test time. In the latent-state problem setting, we
additionally do not have access to the sufficient state at training time — it may
be unobserved or have an unknown representation.

ilar to those considered in the learning-based system identification literature
(e.g. (Abbeel et al., 2005a; Ko and Fox, 2009; Nishiyama et al., 2016)). How-
ever, many of these previous methods use supervised learning to learn inde-
pendent dynamics and observation models and then use these learned models
for inference. This approach may result in unstable dynamics models and poor
performance when used for filtering and cascading prediction. As before, we di-
rectly optimize filtering performance (Challenge 2) by adapting PSIM+HINTS
to learn message passing in this supervised setting. We term this simpler algo-
rithm as the INFERENCE MACHINE FILTER (IMF).

Referencing Algorithm 7, the IMF simply sets the hints h; in PSIM+HINTS
to be the observed states s; and sets the number of future observations k¢ = 0;
in other words, s; is assumed to be a sufficient-state representation. The IMF
learns a deterministic filter function F' that combines the predict-and-update
steps of a Bayesian filter to recursively compute:

P(st|pt) < E[¢(se)|pe] = my = F(my—1,¢) (7.9)

The INFERENCE MACHINE FILTER (IMF) can be viewed as a specialization of
both the theory and application of inference machines to the domain of time-
series hidden Markov models. Our guarantee in Eq. (7.6) shows that the pre-
diction error on the messages optimized by DAgger is bounded linearly in the
filtering problem’s time horizon. Additionally, the sufficient feature representa-
tion of PSIM+HINTS allows IMF'S to represent distributions over continuous
variables, compared to the discrete tabular setting of (Ross et al., 2011b).

The IMF approach differs from the approach of Langford et al. (2009) in
several important ways. The authors proposed a method that learns four op-
erators: one to map the first observation to initial state, one for the belief
update with an observation, one for state-to-state transition, and one for state
to observation. This results in a more complex learning procedure as well as a
special initialization procedure at test time for the filter. Our algorithm learns
a single filter function instead of four. It also operates like a traditional filter;
it is initialized from a prior over belief state instead of mapping from the first
observation to the first state. Finally, Algorithm 7 does not assume differentia-
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Figure 7.3: Many real-world systems rely on the ability to utilize observations
from noisy sensors in order to update a belief over some component of state.
For example, the attitude of a quadrotor from linear accelerations and angular
velocities (left) or the mass of a grasped object from the robot’s joint positions
and applied torques (right).

bility of the learning procedure as required for backpropagation-through-time
used in (Langford et al., 2009).

7.3 Experiments

We focus on robotics-inspired filtering experiments. In the supervised-state
representation, we are given the state (e.g. robot’s pose) and observations (e.g.
IMU readings) at training time. In the latent-state setting, we only gain access
to the observations and instead of observing the full state at training time, we
see only a hint (e.g. only the z-position of the pose). In both scenarios, the hint
or state could be collected by instrumenting the system at training time (e.g.
having the robot in a motion capture arena), which we then do not have access
to at test time (e.g. robot moves in an outdoor area). The latent-state setting
with hints is additionally relevant in domains where it is difficult to observe the
full state but easy to observe quantities that are heavily correlated with it.
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7.3.1 Baselines

We compare our approach against both learning-based algorithms as well as
physics based, hand-tuned filters when relevant. For the first baseline, we com-
pare against a learned linear Kalman filter (Linear KF'). Here, the hints h are
the states X for the Kalman filter and Y are the observations. We learn the
Kalman filter using the MAP estimate:

A= argmin , [ AX, — Xoal3 + 81 [ Al

C = argming |CX; — Vi3 + 2 [|C|.

Q = cov(AX; — Xi10), R=cov(CX;—Y})
o = mean(Xy), Xo = cov(Xp)

We select the regularization (Gaussian prior) terms (1, 82 by cross-validation.

We also compare against a model that uses a fixed-sized history k, of ob-
servations to predict the hint at the next time step. We find this model by
optimizing the objective,

AR = argminy, Z?:ik{p [AR(Ye—r,s-- - 9e]) = htH; ’

where hy is the hint we wish to predict at timestep ¢, y;_,,...,ys are past
observations, and AR is the learned function. This baseline is similar to Au-
toregressive (AR) Models (Wei, 1994). It is important to note that using a
past sequence of observations is different than tracking a belief over the future
observations (the predictive state) as PSIM does. The AR model does not
marginalize over the whole history as a Bayesian filter would. In our experi-
ments, we set the history (past) length k, = 5. Choosing higher k, reduces the
comparability of the results as the AR model has to wait k, timesteps before giv-
ing a prediction while the other filter algorithms predict from the first timestep.
To get good performance, we chose the AR model to be Random Fourier Fea-
tures (RFF) regression (Rahimi and Recht, 2007) with hyper-parameters tuned
via cross-validation.

Finally, on several of the applicable dynamics benchmarks below, we also
compare against a hand-tuned filter for the problem. The overall error is re-
ported as the mean L2 norm error + ZtT=1||}{t — he?.

7.3.2 Dynamical Systems

We describe the experimental setup below for each of the dynamical system
benchmarks we use. A simulated pendulum is used to show that the inference
machine is competitive with, and even outperforms, a physics-knowledgeable
baseline on a sufficient-state representation (Table 7.1). This simulated dataset
additionally illustrates the power of using predictive state when we only access
a partial-state to use as a hint. Two real-world datasets show the applicabil-
ity of our algorithms on robotic tasks. The numerical results are computed
across a k-fold validation (k = 10) over the trajectories in each dataset. We
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. Observation Full State Est. Partial State Est.
Algorithm

Length s=h=(0,0) s=h=(0)
Physics UKF - 1.224+1.2 N/A
AR kp=25 296+1.5 1.60£1.5
Linear KF - 4.67+0.98 1.81£1.6
IMF - 0.5774+0.33 1.43+£1.3
kr=5 0.554 +0.33 1.27£1.0
PSIM+-HINTS { ky =10 0.549 £ 0.32 0.888 £0.78
k=20 0.544 £ 0.31 0.758 £ 0.68

Table 7.1: Mean L2 Error +1¢ for Pendulum Full State (6, ) and Partial State
(9) Estimation from observations of the Cartesian 2 position of the pendulum.
Notice that when the full-state is given, the performance of PSIM and IMF
are similar; increasing k¢ for PSIM+4HINTS does not significantly improve its
performance. However, when the hint defines only a partial representation (s =
h = 0), we achieve significantly better results using PSIM+HINTS.

use linear regression or Random Fourier Feature (RFF) regression to learn the
message passing function F' for PSIM+HINTS and IMF and report the bet-
ter performing result. Random forests (Breiman, 2001) or RFF regression are
used to learn the pre-image map g, chosen by cross-validation over that k-fold’s
training trajectories.

Pendulum State Estimation In this problem, the goal is to estimate the
sufficient state s; = hy = (0,0); from observations z; of the Cartesian coor-
dinate of the mass at the end of pendulum. For PSIM+4HINTS and IMF we
use a message that approximates the first two moments. This is accomplished
by stacking the state with its element-wise squared value, with the latter ap-
proximating the covariance by its diagonal elements. IMF does this for only
the state while PSIM+HINTS does this for the hint (state) and the future ob-
servations. Since we know the dynamics and observation models explicitly for
this dynamical system, we also compare against a baseline that can exploit this
domain knowledge, the Unscented Kalman Filter (Physics UKF) (Wan and
Van Der Merwe, 2000). The process and sensor models given to the UKF were
the exact functions used to generate the training and test trajectories.

Pendulum Partial State Estimation To illustrate the utility of tracking
a predictive state, consider the same simulated pendulum where we take the
partial state, 6; as the hint h; for PSIM+HINTS and use as the (insufficent)
state s; for the IMF. We use the first and approximate second moment features
to generate the messages. On this benchmark, we do not compare against
a UKF physics-model since the partial state is not sufficient to define a full



92 CHAPTER 7. PSIM WITH HINTS

Algorithm Mean L2 Error tlo
Complementary Filter 0.0167 £ 0.011
AR (k, =5) 0.0884 £ 0.063
Linear KF 0.0853 £ 0.066
IMF 0.037 £ 0.0305
PSIM+HINTS (ky = 5) 0.0136 + 0.017

Table 7.2: Quadrotor Attitude Estimation Performance

Algorithm Mean L2 Error tlo
AR (k, =5) 42.82 +£19.62
Linear KF 89.13 £ 52.22
PSIM+HINTS (k; = 40) 32.77 £14.09

Table 7.3: Performance on mass estimation task

process model of the system’s evolution.

Quadrotor Attitude Estimation In this real-world state-estimation prob-
lem, we look to estimate the attitude of a quadrotor in hover under external
wind disturbance. The quadrotor runs a hover controller in a Vicon capture en-
vironment, shown in Fig. 7.3(a). We use the Vicon’s output as the ground truth
for the roll and pitch of the quadrotor and use the angular velocities and ac-
celeration measurements from an on-board IMU as the observations. As an ap-
plication specific baseline, we compare against a Complementary Filter (Hamel
and Mahony, 2006) hand-tuned by domain experts. We use only first moment
features for the messages in PSIM+HINTS and first and approximate second
moment features for IMF messages.

Mass Estimation from Robot Manipulator This dataset tests the filter
performance at a parameter estimation task where the goal is to estimate the
mass carried by the robot manipulator shown in Fig. 7.3(b). Each trajectory
has the robot arm lift an object with mass 45g-355g. The robot starts moving
at approximately the halfway point of the recorded trajectories. We use as
observations the joint angles and joint motor torques of the manipulator. Only
first moment features are used for the messages for PSIM-+HINTS. With this
experiment, we show that that filtering helps reduce error compared to using
simply a sequence of past observations (AR baseline) even on a problem of
estimating a parameter held static per test trajectory.
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Figure 7.4: Mean L2 Error + 1 Standard Error versus filtering time. The AR
model in each was set with k, = 5. See results tables for k; parameter values
for PSIM+HINTS.

7.4 Discussion

In all of the experiments, IMF and PSIM-+HINTS outperform the baselines.
Table 7.1 (left column) shows that the IMF and PSIM+HINTS both outperform
the baseline Unscented Kalman Filter which uses knowledge of the underlying
physics and noise models. We do not compare against a learned-model UKF,
such as the Gaussian Process-UKF (Ko and Fox, 2009), because any learned
dynamics and observation models would be less accurate than the ezract ones
in our Physics UKF baseline. For fair comparison, the UKF, Linear KF, IMF,
and PSIM+HINTS all start with empirical estimates of the initial belief state
(note the similar error at the beginning of Fig. 7.4(a)). We believe that the
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IMF and PSIM+HINTS outperforms the Physics UKF for two reasons: (1)
Inference machines do not make Gaussian assumptions on the belief updates
as the UKF does, (2) The large variance for the UKF (Table 7.1) shows that
it performs well on some trajectories. We qualitatively observed this variance
is heavily correlated with the difference between the UKF’s initial belief-state
evolution and the true states. Our proposed inference machine filter methods
instead directly optimize the filter’s performance over all of the time-horizon
are are thus more robust to the initialization of the filter .

The simulated pendulum example also demonstrates the usefulness of pre-
dictive representations. When a sufficient state is used (i.e. (,8) for the pen-
dulum) for the filter’s belief, similar performance is achieved using either IMF
or PSIM+HINTS. Table 7.1’s right column (or Fig. 7.4(b)) shows that when a
partial-state representation is used instead (i.e. (6)), PSIM+HINTS vastly out-
performs IMF. Specifically, we require a larger predictive state representation
(larger ky) over the observation space in order to better capture the evolu-
tion of the system. This ablation-style experiment demonstrates the ability of
PSIM+HINTS to produce more accurate filters.

Finally, our real-world dataset experiments provide additional experimental
validation of inference machines for filtering. Both the IMF and PSIM+HINTS
outperform baselines in Table 7.2. In Fig. 7.4(d), PSIM+HINTS is on average
50% more accurate at the end of the trajectory than the AR baseline; the
average error over the whole trajectory is given in Table 7.3. For this problem,
the largest information gain is when the robot starts moving halfway along the
trajectory. We see less performance gain from using a filter compared to the
AR baseline in this problem as the hint (mass) does not change over time as
the state does in pendulum or quadrotor problems. The error versus time plots
in Fig. 7.4 show the relative stability of the inference machine filters even over
large time horizons.

7.5 Conclusion

In this chapter, we presented an extension to PSIM that allows for the learning
of discriminative filter models that apply to a larger class of practical problems,
making more progress on Challenge 2 of this thesis. The proposed algorithms
show promise in many robotic applications where ground-truth information
about state is available during training, for example by over-instrumenting dur-
ing prototyping or calibration. We empirically validated our approaches on sev-
eral simulated and real world tasks, illustrating the advantage of PSIMs+HINTS
and IMF's over previous methods.

PSIM and PSIM+HINTS are reminiscent of recurrent neural network (RNN)
architectures. They train a recurrent predictor that predicts a new target every
step from a new observation as input along with the previous predicted mes-
sage. The predicted message from PSIM is similar to the internal state of an
RNN. We explore this connection in the next chapter and develop a procedure
to improve the convergence and capability of general recurrent architectures.



Chapter 8

Predictive-State Decoders

for General Recurrent
Networks

In Chapter 6, we first introduced PSIM to directly learn a filter function that
targets the inference output itself, predicting future observations. In Chap-
ter 7, PSIM+HINTS extended the approach to predicting other useful side-
information which we coined as “hints”. Common to both was to setup a super-
vised learning problem over a predictive representation that summarized past
observations in order to predict the future. This same idea is key to a larger
class of sequential prediction architectures — recurrent neural networks (RNNs).
For RNNs, the internal state (sometimes called its memory) represents the sum-
mary of past information. In PSIM, we introduced a recurrent network with a
specific structure that targeted a specific internal state representation.

However, an advantage for more complex recurrent architectures is that they
can be used to find a better internal state representation if underlying repre-
sentation is not known or well understood. In this chapter, we look at how
advantages of PSIM can be used to improve learning of general recurrent archi-
tures. We develop PREDICTIVE-STATE DECODERS (PsDs) that can be used to
better train neural networks to achieve lower error on their target tasks as well
as faster convergence. While the original PSIM and PSIM+HINTS focused on
the filtering problem, PSDs can be used on possibly arbitrary problems facing
Challenge 2 with partial observability that already use a recurrent network.

This work was originally presented in Predictive-State Decoders: Encoding the Future into
Recurrent Networks at NIPS 2017 (Venkatraman et al., 2017) and containts joint work done
in collaboration with Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Byron Boots, and Kris M.
Kitani.
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8.1 Motivation

Despite their wide success in a variety of domains, recurrent neural networks
(RNNs) are often inhibited by the difficulty of learning an internal state rep-
resentation. Internal state is a unifying characteristic of RNNs, as it serves as
an RNN’s memory. Learning these internal states is challenging because op-
timization is guided by the indirect signal of the RNN’s target task, such as
maximizing the cost-to-go for reinforcement learning or maximizing the likeli-
hood of a sequence of words. These target tasks have a latent state sequence
that characterizes the underlying sequential data-generating process. Unfortu-
nately, most settings do not afford a parametric model of latent state that is
available to the learner.

In lieu of ground truth access to latent states, recurrent neural networks (Le-
Cun et al., 2015; Sutskever, 2013) employ internal states to summarize previous
data, serving as a learner’s memory. We avoid the terminology “hidden state” as
it refers to the internal state in the RNN literature but refers to the latent state
in the HMM, PSR, and related literature. Internal states are modified towards
minimizing the target application’s loss, e.g., minimizing observation loss in fil-
tering or cumulative reward in reinforcement learning. The target application’s
loss is not directly defined over the internal states: they are updated via the
chain rule (backpropagation) through the global loss. Although this modeling
is indirect, recurrent networks nonetheless can achieve state-of-the-art results
on many robotics (Duan et al., 2016; Hausknecht and Stone, 2015), vision (On-
druska and Posner, 2016; van den Oord et al., 2016), and natural language
tasks (Chung et al., 2015; Graves and Jaitly, 2014; Ranzato et al., 2016) when
training succeeds. However, recurrent model optimization is hampered by two
main difficulties: 1) non-convexity, and 2) the loss does not directly encourage
the internal state to model the latent state. A poor internal state representa-
tion can yield poor task performance, but rarely does the task objective directly
measure the quality of the internal state.

In Chapters 6 and 7, we leveraged a key idea from the PSR literature: latent
states can be characterized by observations. In partially-observable problems
(e.g. Fig. 2.4), a single observation is not guaranteed to contain enough in-
formation to fully represent the system’s latent state. However, a predictive
representation using statistics of future observations was shown to provide a
good internal state representation for learning probabilistic filter functions.

We leverage ideas from the both RNN and PSIM (PSR) paradigms, resulting
in a marriage of two orthogonal sequential modeling approaches. When training
an RNN, PREDICTIVE-STATE DECODERS (Fig. 8.1) provide direct supervision
on the internal state, aiding the training problem. The proposed method can
be viewed as an instance of Multi-Task Learning (MTL) (Caruana, 1998) and
self-supervision (Jaderberg et al., 2016), using the inputs to the learner to form
a secondary unsupervised objective. Our contribution is a general method that
improves performance of learning RNNs for sequential prediction problems. The
approach is easy to implement as a regularize on traditional RNN loss functions
with little overhead and can thus be incorporated into a variety of existing
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Figure 8.1: An overview of our approach for modeling the process from Fig. 2.4.
We attach a decoder to the internal state of an RNN to predict statistics of
future observations x; to z;1x observed at training time.

recurrent models.

In our experiments, we examine three domains where recurrent models are
used to model temporal dependencies: probabilistic filtering, where we predict
the future observation given past observations; Imitation Learning, where the
learner attempts to mimic an expert’s actions; and Reinforcement Learning,
where a policy is trained to maximize cumulative reward. We observe that
our method improves loss convergence rates and results in higher-quality final
objectives in these domains.

Unlike traditional supervised machine learning problems, learning models
for latent state problems must be accomplished without ground-truth supervi-
sion of the internal states themselves. Two distinct paradigms for latent state
modeling exist. The first are discriminative approaches based on RNNs, and
the second is a set of theoretically well-studied approaches based on Predictive-
State Representations, such as PSIM. In the following section we provide a brief
overview of RNN approaches, extending on Section 2.2.3 from Chapter 2. An
overview of PSRs can be found in Section 6.1 in Chapter 6.

8.2 Recurrent Models and RNNs

Many modern approaches to learning models for partially observed systems rely
on the recurrent neural network (RNN) architecture. The RNN model (Fig. 8.2).
The machine learning problem is to find a model f that uses the latest observa-
tion x; to recursively update an internal state, denoted h;, illustrated in Fig. 8.2.
Note that h; is distinct from s;. h; is the learner’s internal state, and
s¢ is the underlying configuration of the data-generating Markov Pro-
cess. For example, the internal state in the Bayesian filtering/POMDP setup
is represented as a belief state (Thrun et al., 2005), a “memory” unit in neural
networks, or as a distribution over observations for PSRs. The RNN model uses
the internal state to make predictions y; = f(ht, 2¢) and is trained by minimiz-
ing a series of loss functions ¢; over each prediction, as shown in the following
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Figure 8.2: Learning recurrent models consists of learning a function f that
updates the internal state h; given the latest observation z;. The internal state
may also be used to predict targets y;, such as control actions for imitation
and reinforcement learning. These are then inputs to a loss function ¢ which
accumulate as the multi-step loss £ over all timesteps.

optimization problem:
min £ = min E Le(f(hg, 8.1
¥ [ - t( ( t t)) ( )

The loss functions ¢; are usually application- and domain-specific. For exam-
ple, in a probabilistic filtering problem, the objective may be to minimize the
negative log-likelihood of the observations (Abbeel et al., 2005a; Vega-Brown
and Roy, 2013) or the prediction of the next observation (Ondruska and Pos-
ner, 2016). For imitation learning, this objective function will penalize devi-
ation of the prediction from the expert’s action (Ross et al., 2011a), and for
policy-gradient reinforcement learning methods, the objective includes the log-
likelihood of choosing actions weighted by their observed returns. In general,
the task objective optimized by the network does not directly specify a loss
directly over the values of the internal state h;. RNN models are thus often
trained with backpropagation-through-time (Werbos, 1990) (BPTT). BPTT al-
lows future losses incurred at timestep t to be back-propagated and affect the
parameter updates to f. These updates to f then change the distribution of
internal states computed during the next forward pass through time. The diffi-
culty is then that small updates to f can drastically change the distribution of
h¢, sometimes resulting in error exponential in the time horizon Theorem 3.1.1.
Regardless, as the problem is non-convex, BPTT can only move the learner
towards a local optimum while a better solution for the internal state transition
model may exist elsewhere in parameter space. Below, we propose PSDs as an
additional supervision signal which empirically improves the convergence basin
quality for RNNs.
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Figure 8.3: PREDICTIVE-STATE DECODER Architecture. We augment the RNN
from Fig. 8.2 with an additional objective function R which targets decoding of
the internal state through F' at each time step to the predictive-state which is
represented as statistics over the future observations.

8.3 Predictive-State Decoders Architecture

Our PREDICTIVE-STATE DECODERS architecture extends the PSIM idea to
general recurrent architectures. We hypothesize that by encouraging the internal
states to encode information sufficient for reconstructing the predictive state, the
resulting internal states better capture the underlying dynamics and learning
can be improved. The predictive-state we discuss here is equivalent to the
learned message passing, Eq. (6.3), introduced in Chapter 6 for PSIM. The
result is a simple-to-implement objective function which is coupled with the
existing RNN loss. To represent arbitrary sizes and values of PSRs with a fixed-
size internal state in the recurrent network, we attach a decoding module F'(-) to
the internal states to produce the resulting PSR estimates. Fig. 8.3 illustrates
our approach.

Our PsD objective R is the predictive-state loss:

R = Z I1F'(he) = o([T441, Tota, - .])||§, he = f(hi—1,20-1), (8.2)

where F' is a decoder that maps from the internal state h; to an empirical
sample of the predictive-state, computed from a sequence of observed future
observations available at training. The network is optimized by minimizing the
weighted total loss function £ 4+ AR where A is the weighting on the predictive-
state objective R. This penalty encourages the internal states to encode infor-
mation sufficient for directly predicting sufficient future observations. Unlike
more standard regularization techniques, R does not regularize the parameters
of the network but instead regularizes the output variables, the internal states
predicted by the network.
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Our method may be interpreted as an instance of Multi-Task Learning
(MTL) (Caruana, 1998). MTL has found use in recent deep neural networks
(Agrawal et al., 2016; Jaderberg et al., 2016; Kokkinos, 2016). The idea of
MTL is to employ a shared representation to perform complementary or similar
tasks. When the learner exhibits good performance on one task, some of its
understanding can be transferred to a related task. In our case, forcing RNNs
to be able to more explicitly reason about the future they will encounter is an
intuitive and general method. Endowing RNNs with a theoretically-motivated
representation of the future better enables them to serve their purpose of mak-
ing sequential predictions, resulting in more effective learning. This difference is
pronounced in applications such as imitation and reinforcement learning (Sec-
tions 8.4.2 and 8.4.3) where the primary objective is to find a control policy
to maximize accumulated future reward while receiving only observations from
the system. MTL with PsSDs supervises the network to predict the future and
implicitly the consequences of the learned policy. Finally, our PSD objective can
be considered an instance of self-supervision (Jaderberg et al., 2016) as it uses
the inputs to the learner to form a secondary unsupervised objective.

As discussed in Section 8.2, the purpose of the internal state in recurrent
network models (RNNs, LSTMs, deep, or otherwise) is to capture a quantity
similar to that of state. Ideally, the learner would be able to back-propagate
through the primary objective function £ and discover the best representation
of the latent state of the system towards minimizing the objective. However, as
this problem highly non-convex, BPTT often yields a locally-optimal solution
in a basin determined by the initialization of the parameters and the dataset.
By introducing R, the space of feasible models is reduced. We observe next how
this objective leads our method to find better models.

8.4 Experiments

We present results on problems of increasing complexity for recurrent mod-
els: probabilistic filtering, Imitation Learning (IL), and Reinforcement Learning
(RL). The first is easiest, as the goal is to predict the next future observation
given the current observation and internal state. For imitation learning, the
recurrent model is given training-time expert guidance with the goal of choos-
ing actions to maximize the sequence of future rewards. Finally, we analyze
the challenging domain of reinforcement learning, where the goal is the same as
imitation learning but expert guidance is unavailable.

PREDICTIVE-STATE DECODERS require two hyperparameters: k, the num-
ber of observations to characterize the predictive state and A, the regulariza-
tion trade-off factor. In most cases, we primarily tune A, and set k to one of
{2,...,10}. For each domain, for each k, there were A values for which the
performance was worse than the baseline. However, for many sets of hyper-
parameters, the performance exceeded the baselines. Most notably, for many
experiments, the convergence rate was significantly better using PSDs, imply-
ing that Psps allows for more efficient data utilization for learning recurrent
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Figure 8.4: Loss over predicting future observations during filtering. For both
RNNs with GRU cells (top) and with with LSTM cells (bottom), adding PSDs
to the RNN networks can often improve performance and convergence rate.

models.

PspDs also require a specification of two other parameters in the architec-
ture: the featurization function ¢ and decoding module F. For simplicity, we
use an affine function as the decoder F' in Eq. (8.2). The results presented
below use an identity featurization ¢ for the presented results but include a
short discussion of second order featurization. We find that in each domain,
we are able to improve the performance of the state-of-the-art baselines. We
observe improvements with both GRU and LSTM cells across a range of k£ and
A. In IL with PsDs, we come significantly closer and occasionally eclipse the ex-
pert’s performance, whereas the baselines never do. In our RL experiments, our
method achieves statistically significant improvements over the state-of-the-art
approach of (Duan et al., 2016; Schulman et al., 2015) on the 5 different settings
we tested.

8.4.1 Probabilistic Filtering

In the probabilistic filtering problem, the goal is to predict the future from the
current internal state. Recurrent models for filtering use a multi-step objective
function that maximizes the likelihood of the future observations over the inter-
nal states and dynamics model f’s parameters. Under a Gaussian assumption
(e.g. like a Kalman filter (Haarnoja et al., 2016)), the equivalent objective that
minimizes the negative log-likelihood is given as

min | £ = > ey = flae bl - (83)
t
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Figure 8.5: Cumulative rewards for AGGREVATED and AGGRE-

VATED+PREDICTIVE-STATE DECODERS, with both LSTM (right) and
GRU (left) cell, averaged over 15 runs with different random seeds, on partially
observable CartPole and Acrobot.

While traditional methods would explicitly solve for parametric internal states
h¢ using an EM style approach, we use BPTT to implicitly find an non-parametric
internal state. We optimize the end-to-end filtering performance through the
PsD joint objective miny p £ + AR. Our experimental results are shown in
Fig. 8.4. The experiments were run with ¢ as the identity, capturing statis-
tics representing the first moment. We tested ¢ as second-order statistics and
found while the performance improved over the baseline, it was outperformed
by the first moment. In all environments, a dataset was collected using a preset
control policy. In the Pendulum experiments, we predict the pendulum’s angle
6. The LQR controlled Helicopter experiments (Abbeel and Ng, 2005b) use
a noisy state as the observation, and the Hopper dataset was generated using
the OpenAl simulation (Brockman et al., 2016) with robust policy optimization
algorithm (Pinto et al., 2017) as the controller.

We test each environment with Tensorflow’s built-in GRU and LSTM cells
(Abadi et al., 2016). We sweep over various k and A hyperparameters and
present the average results and standard deviations from runs with different

random seeds. Fig. 8.4 baselines are recurrent models equivalent to PSDs with
A=0.
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Figure 8.6: Walker Cumulative Rewards and Sorted Percentiles. N = 15, 5ed
TRPO steps per iteration.

8.4.2 Imitation Learning

We experiment with the partially observable CartPole and Acrobot domains!
from OpenAl Gym (Brockman et al., 2016). We applied the method of Aggre-
VaTeD (Sun et al., 2017), a policy-gradient method, to train our expert models.
AggreVaTeD uses access to a cost-to-go oracle in order to train a policy that
is sensitive to the value of the expert’s actions, providing an advantage over
behavior cloning IL approaches. The experts have access to the full state of the
robots, unlike the learned recurrent policies.

We tune the parameters of LSTM and GRU agents (e.g., learning rate,
number of internal units) and afterwards only tune A for Psps. In Fig. 8.5, we
observe that PsDs improve performance for both GRU- and LSTM-based agents
and increasing the predictive-state horizon k yields better results. Notably, PSDs
achieves 73% relative improvement over baseline LSTM and 42% over GRU on
Cartpole. Difference random seeds were used. The cumulative reward of the
current best policy is shown.

8.4.3 Reinforcement Learning

Reinforcement learning (RL) increases the problem complexity from imitation
learning by removing expert guidance. The latent state of the system is heavily
influenced by the RL agent itself and changes as the policy improves. We use
(Duan et al., 2016)’s implementation of TRPO (Schulman et al., 2015), a Nat-
ural Policy Gradient method (Kakade, 2002). Although (Schulman et al., 2015)
defines a KL-constraint on policy parameters that affect actions, our implemen-
tation of PsDs introduces parameters (those of the decoder) that are unaffected
by the constraint, as the decoder does not directly govern the agent’s actions.
In these experiments, results are highly stochastic due to both environment
randomness and nondeterministic parallelization of rllab (Duan et al., 2016).
We therefore repeat each experiment at least 15 times with paired random seeds.

I The observation function only provides positional information (including joint angles), ex-
cluding velocities.
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Figure 8.7: Top: Per-iteration average returns for TRPO and
TRPO+PREDICTIVE-STATE DECODERS vs. batch iteration, with 5e3
steps per iteration. Bottom: Sorted per-run mean average returns (across
iterations). Our method generally produces better models.

We use k = 2 for most experiments (k = 4 for Hopper), the identity featurization
for ¢, and vary A in {1017 10°,..., 10’6}, and employ the LSTM cell and other
default parameters of TRPO. We report the same metric as (Duan et al., 2016):
per-TRPO batch average return. Additionally, we report per-run performance
by plotting the sorted average TRPO batch returns (each item is a number
representing a method’s performance for a single seed).

Figs. 8.6 and 8.7 demonstrate that our method generally produces higher-
quality results than the baseline. These results are further summarized by their
means and stds. in Table 8.1. In Figure 8.6, 40% of our method’s models are
better than the best baseline model. In Figure 8.7(g), 26% of our method’s
models are better than the second-best (98*" percentile) baseline model. We
compare various RNN cells in Table 8.2, and find our method can improve Basic
(linear + tanh nonlinearity), GRU, and LSTM RNNs, and usually reduces the
performance variance. We used Tensorflow (Abadi et al., 2016) and passed
both the “hidden” and “cell” components of an LSTM’s internal state to the
decoder. We also conducted preliminary additional experiments with second
order featurization (¢(z) = [z, vec(xzT)]). Corresponding to Tab. 8.2, column
1 for the inverted pendulum, second order features yielded 861 + 41, a 4.9%
improvement in the mean and a large reduction in variance.
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Swimmer HalfCheetah  Hopper Walker2d ~ Walker2d?

(Schulman et al., 2015) 91.3+£25.5 330 £158 1103 £264  383+£96 1396 + 396
(Schulman et al., 2015)+Psps  97.0 £19.4 372 +143 1195 +£272 416 +88 1611 +436

Rel. A 6.30%* 13.0%* 9.06%* 8.59%* 15.4%**

Table 8.1: Top: Mean Average Returns £ one standard deviation, with N = 15
for Walker2d! and N = 30 otherwise. Bottom: Relative improvement of on
the means. * indicates p < 0.05 and ** indicates p < 0.005 on Wilcoxon’s
signed-rank test for significance of improvement. All runs computed with 5e3
transitions per iteration, except Walker2d?, with 5e4.

InvertedPendulum Swimmer
Basic GRU LSTM Basic GRU LSTM
(Schulman et al., 2015) 820+£139 673+£268 640+265 66.0+21.4 64.6+553 56.5+23.8
(Schulman et al., 2015)+Psps 820+ 118 782+ 183 784+215 71.4+26.9 751+288 61.0+238
Rel. A —0.08% 20.4% 22.6% 8.21% 16.1% 7.94%

Table 8.2: Variations of RNN units. Mean Average Returns 4+ one standard
deviation, with NV = 20. 1e3 transitions per iteration are used. Our method
can improve each recurrent unit we tested.

8.5 Conclusion

We introduced PREDICTIVE-STATE DECODERS, a theoretically-motivated method
developed from PSIMs (Chapters 6 and 7) for improving the training of RNNs.
PsbDs assign statistical meaning to a learner’s internal state when modeling par-
tially observable systems.. Our approach adapts the learning objective from
PSIMs and applies it to more complicated recurrent models such as LSTMs
and GRUs. With Psps, we also show that the PSIM idea can be used for learn-
ing objectives beyond probabilistic filtering such as imitation and reinforcement
learning. Our straightforward method improves performance across all domains
with which we experimented.
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Chapter 9

Summary and Future

This thesis shows that by directly targeting the inference task using observable
quantities to generate supervision, machine learning can be used to achieve good
performance on time-series and sequential prediction problems. We first showed
that observable quantities could serve as the oracle for a learner to correct its
mistakes during multi-step prediction (Challenge 1). For prediction in partially
observed systems with hidden state (Challenge 2), the observations themselves
were used to create a sufficient state representation, allowing supervised learning
algorithms to directly target inference performance.

9.1 Summary of Contributions

Data as Demonstrator (DaD)

Chapters 3 and 4 developed DAD to address the shortcomings seen in existing
supervised learning methods for learning multi-step predictive models. Our
meta-algorithm uses a DAgger-inspired iterative procedure to learn a model. By
using the training data itself to generate synthetic training examples, DAD is
able to correct for learner-induced error during multi-step sequential prediction.
We then showed that DAD with model-based reinforcement learning achieves
better control performance using fewer samples from the system.

Online Instrumental Variable Regression (Oivr)

O1vR was introduced in Chapter 5 as a method to model partially observable
linear systems using streaming data. We note that this technique is applicable
anywhere where batch instrumental variable regression (IVR) can be used. We
derived a regret analysis of OIVR and showed it was no-regret with respect to
batch IVR. The key insight into modelling partially observed system from Boots
et al. (2013); Hefny et al. (2015a) showed that statistics of future observations
(given the past) provide a predictive representation of the system’s state. Using
batch IVR or O1VR allows for better performance in running a probabilistic filter
on the dynamics model, as it works to remove correlation between the past and

109
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future prediction of observations.

Predictive State Inference Machines (PSIMs)

O1vR enhanced filtering performance indirectly by improving the method for
learning the dynamics of a model. However, it did not directly targeting the in-
ference problem itself. Chapter 6 introduced a new inference machine procedure,
PSIM, that directly optimized the end-to-end filtering performance using a sim-
ilar predictive representation derived from statistics over future observations.
Even when optimizing a linear model, PSIM showed significant improvement
over IVR because it directly optimized for the filter’s output. We presented
results using multiple training methods, including Forward Training, DAgger
training, and backpropagation-through-time (BPTT). PSIM was extended in
Chapter 7 to simultaneously predict side-information available at training time.
Our extension expanded the usefulness of PSIM to situations where there are
other desired prediction targets beyond simply predicting future observations.

Predictive-State Decoders (Psds)

Finally, Chapter 8 expanded the applicability of predictive representations to
include other learning architectures, such as recurrent LSTM and GRU neural
networks, that cannot not be trained via DAgger or Forward Training. Our
approach augments any general recurrent neural network with a PSD objective
to target the prediction of statistics over future observations. We showed that
this works in a variety of domains with different target objective functions. In
probabilistic filtering, the objective was the same as for PSIM, however, more
complex recurrent models were used. With imitation learning, the objective was
a cost-sensitive loss to mimic the expert’s action, and in reinforcement learning
the optimization was to find a recurrent control policy to maximize expected
accumulated reward. PsDs improved performance and convergence rates in
these three distinct domains.

9.2 Comparison

While these algorithms target different problems, we summarize and provide
a comparison in Table 9.1 of our contributions along with other algorithms
discussed in this paper. We mark an algorithm as “working on observable
quantities” if it does not require information about the underlying system that
is not directly available in the training data. We also classify if an algorithm
was “built for time-series problems” versus being a general machine learning or
statistics technique. Finally, we categorize the methods by if it “directly trains
an inference procedure” versus finding a model which is used within another
method to do inference.

A discerning reader will note in Table 9.1 we mark DAD — MBRL Control as
not “directly training the inference procedure” since the inference goal in control
is to predict the action to take, and not to learn the dynamics model. DAD in
this setting only targeted the multi-step predictive performance of the model.
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Observable  Built for Time-Series & Directly Trains

Quantities  Sequential Prediction Inference Procedure
Single-step ML models v X X
DaD v v v
DAgger — MBRL Control v X X
DAD — MBRL Control v v X

Ordinary Least Squares
— Kalman Filter
O1vR — Kalman Filter

N X

v
v
Autoregressive Model v
IvkR — Kalman Filter v
v
v

X X
X X | x x

N4SID — Kalman Filter
PSIM via DAD (DAgger),
BPTT, and Forward Training

X

<
\

Kalman Filter with
assumed State Parametrization X
Unscented Kalman Filter X
IMF X
PSIM +Hints v
v
v

RNN + BPTT
RNN + Psps + BPTT

el ax x
NN ENEN

+

Table 9.1: Comparison of various algorithms discussed in this thesis. A v
specifies that an algorithm satisfies the condition and X indicates not achieving
the condition.

The algorithms marked as “— Kalman filter” are similar; they optimize for a
dynamics model independent of the intended goal for use in a Kalman filter. We
categorize autoregressive models as “not training a time-series model” since they
are often trained for single-step performance and thus has the same issues as
described in Chapter 3. Of final note, we classify RNN + PSDs as v'+ to signify
that we improved performance over the baseline which was already trained to
handle sequential prediction via BPTT.

9.3 Limitations and Future Work

Neither the PSIM architecture we introduced in Chapter 6 nor the extension in
Chapter 7 accommodate controlled dynamical systems with actions chosen with
a non-blind policy. Non-blind policies are those that depend on observations,
current or past, coming from the system. The challenge in allowing such policies
when modeling partially observed systems is that it becomes difficult to decouple
the effect of the control policy from the natural dynamics. In many ways this is
simply the same issue as decoupling causative relationships from correlation —
what part of the state transition is from control versus any inherent, unobserved
dynamics? Learning a model via PSIM of a system controlled with a non-blind
policy would result in a biased estimator (an example of a biased estimator for
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linear dynamics was discussed in Chapter 5). This setting is more studied in
the field of linear systems and can be solved with special projection operators
(e.g. oblique projection), but these do not trivially generalize to nonlinear
dynamics. In discrete observation and action spaces, Bowling et al. (2006)
provides methods for learning unbiased PSRs. In a preliminary analysis, we
found that importance sampling could be used to find an unbiased estimator
for PSIMs. However, in experimental tests, we were unable to see a significant
improvement in prediction or control performance. This may be due to the bias-
variance trade-off in importance sampling. Using more biased estimators may
decrease the variance and therefore achieve better performance. An unbiased
estimator will often have high variance and thus achieve poor performance. A
more elegant solution is necessary to move forward the idea of using PSIM for
modeling systems were the observable quantities are collected under a non-blind
policy.

We side-stepped this limitation in Chapter 8 by directly optimizing the con-
trol performance with a policy gradient approach. Even though using a PsD
objective would still promote a biased estimate, we found that adding PsSDs
improved convergence and performance for both imitation and reinforcement
learning. Both the preliminary work we have done with PSIM and actions (dis-
cussed above) as well as with PSDs suggests that good empirical performance
can be achieved for control tasks without directly addressing the biased esti-
mator problem. It would be interesting to develop more robust theory as to
when this is true. One possibility is that collecting data across iterations under
a changing policy decorrelates some of the bias effects. Laskey et al. (2017) per-
forms an analysis into how the state distribution changes induced by a changing
policy can affect the value of the policy. An open question remains in how such
changes affects the overal bias in the learned model.

Finally, it may unnecessary for PSDs to target prediction error of future ob-
servations in the imitation and reinforcement learning settings. The strucutre
of PsDs as presented was inspired by a traditional factorization of the prob-
lem: one would first define a belief state filter and then define a control policy.
However, for problems where the goal is to maximize the expected accumulated
reward, i.e., the expected Value of the policy, it may be sufficient to target the
prediction of statistics over future rewards. Intuitively, actions can be easily
selected if the future sequence of rewards can be accurately predicted.

This thesis developed various novel techniques addressing the two funda-
mental challenges, Challenge 1 and Challenge 2, as outlined in the introduction
of the thesis. Yet, many fascinating problems remain in advancing machine
learning towards solving those challenges. Our results, theoretical and experi-
mental, showed significant advances over existing supervised learning methods
on time-series and sequential prediction problems and serve as a stepping-stone
for future advances in the field.
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