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2. Abstract

Interfaces are subjected to electric fields in a variety of applications. To

tune the system in a given application to yield a desired electric–field–induced

interfacial response, knowledge of the system timescales and resulting trans-

port at a given set of conditions is advantageous. In this thesis, we consider the

time–dependent dynamics of a weakly conducting drop subjected to a uniform

DC electric field. The impact is an assessment of the importance of surface

charge transport on the ability to predict experimental measurements for drop

response under electric fields.

First, we develop a linear theory, valid in the limit of slight drop defor-

mation, in which we account for timescales that quantify transient fluid in-

ertia and transient charging of the interface. We demonstrate that either

timescale can yield a nonmonotonic development in the drop shape before

reaching steady–state. The theory is extended to model large drop deforma-

tion through the boundary integral method. We demonstrate that the fluid

charging timescale yields two distinct forms of charge transport: charge re-

laxation and surface charge convection. These two mechanisms of interfacial

charge transport are crucial to determine the transient oblate deformation of

an oil drop measured experimentally.
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We proceed to quantify the dynamics of a low–conductivity prolate drop

upon removal of a uniform DC electric field via computation and experiment.

We find that counterintuitively, a large fluid charging timescale yields a fast

drop relaxation due to the simultaneous action of the interfacial electrical

stress and the capillary stress. Finally, we examine the electric–field–induced

breakup of an oil drop containing a colloidal suspension of carbon black par-

ticles and varying amounts of surfactant. Depending on the amount of added

dispersant, the drop achieves radically different breakup conformations under

the applied field.
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List of Figures

3.1 Schematic of a drop with permittivity εi, resistivity χi, and

viscosity µi suspended in a medium with permittivity εo, resis-

tivity χo, and viscosity µo. A uniform DC electric field, given

by E∞, is applied across the system, which causes the drop to

undergo a deformation D = r1−r2
r1+r2

, where r1 and r2 represent

the major and minor semi–axes, respectively. In this figure, the

drop deformation is along the applied field (r1 > r2, D > 0);

i.e. the drop experiences a prolate deformation. Note that ez

is a unit vector in the z–direction (horizontal). Furthermore,

θ denotes the polar angle and r denotes the radial position in

spherical coordinates. . . . . . . . . . . . . . . . . . . . . . . . 3
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3.2 Electrokinetic interpretation of the surface charge density q (im-

age extracted from Schnitzer and Yariv10). Ions adsorb to the

interface in the absence of a uniform applied field; they are

screened by diffuse layers at either side of the drop surface.

When the electric field is applied, the triple–layer structure,

which is composed of the adsorbed charge and corresponding

screening layers, locally deviates from electroneutrality. This

gives rise to an apparent charge per unit area q (Λ∗ in this

figure), as predicted by Taylor,13 which is responsible for an-

imating the dominant tangential electrical stress that drives a

flow which scales quadratically with the applied field. Although

there is a local electroosmotic flow at the drop surface, it is coun-

teracted by an electrical stress exerted at the genuine interface.

This results in electrophoretic drop migration that is asymptot-

ically small compared the the strong tangential fluid flow driven

by the apparent surface charge q. In this figure, the subscripts

∗ are implemented to denote a dimensional quantity and the

overbars are implemented to denote a variable that corresponds

to the drop phase. Furthermore, E∗ is the local electric field, ε∗

is the electric permittivity, and c∗ is the ionic concentration. . 9
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4.1 Definition sketch for electrohydrodynamic drop deformation.

Prolate droplet of radius a, viscosity µi, permittivity εi, and

resistivity χi suspended in a medium with viscosity, permittiv-

ity, and resistivity µo, εo, and χo, respectively. The upper half

depicts electric field lines, while the lower half displays fluid

streamlines. Both are symmetric with respect to the equator

of the drop (θ = π/2), and are also axisymmetric about the

applied field. For clarity, field lines are omitted from the top

half of the drop. The major and minor semi-axes r∗1 and r∗2 are

also shown. Here, r∗ denotes the position vector, while ez and

θ represent a unit vector in the direction along the applied field

and the polar angle, respectively. . . . . . . . . . . . . . . . . 20

4.2 (a) Normalized transient deformation of a droplet for param-

eters listed in table 4.1. The solid curve (red online) is the

inversion of (A24), which considers transient inertia and charge

relaxation of both fluids, while the dashed curve (blue online)

corresponds to (4.3) from Esmaeeli and Sharifi’s work,19 which

assumes quasi-steady Stokes flow and instantaneous interfacial

charging. The solid curve initially acquires negative ordinate

values, which represents a prolate configuration. After this, the

deformation profile crosses the origin and monotonically arrives

at (4.1), substantially lagging (4.3). (b) Inversion of (A24) to-

gether with early- and late-time asymptotics (4.35) and (4.37),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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4.3 (a) Normalized transient deformation of a droplet for param-

eters listed in table 4.2. The solid curve (red online) is the

inversion of (A24), which considers transient inertia and charge

relaxation of both fluids, while the dashed curve (blue online)

corresponds to (4.3) from Esmaeeli and Sharifi’s work,19 which

assumes quasi-steady Stokes flow and instantaneous interfacial

charging. The solid curve immediately reaches negative D/DT

values, which represents a prolate configuration. After this, the

deformation profile crosses the origin at tνi/a
2 ≈ 0.02 while lag-

ging (4.3), and overshoots before arriving at steady-state (4.1)

with an algebraic tail. (b) Inversion of (A24) together with

early- and late-time asymptotics (4.35) and (4.37), respectively. 36

4.4 Fluid streamlines inside and outside of a droplet during the

development of an electrohydrodynamic flow and drop defor-

mation for parameters listed in table 4.2. The subfigures (a) –

(d) are presented in chronological order, and the droplet sur-

face is also shown. A steady flow pattern is achieved when

tνi/a
2 ∼ O(100). . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Normalized transient deformation of a droplet. The parameters

are those listed in table 4.1, with the exception of the viscos-

ity ratio M = 60, which provides {Ohi = 0.4, Oho = 26.2},

for which no overshoot is observed. The curves represent the

inversions of (A24), while the circles correspond to (4.3) from

Esmaeeli and Sharifi.19 As expected, our results match those of

Esmaeeli and Sharifi as Sai,o approaches zero. . . . . . . . . . 50
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5.1 Schematic of the electric field–induced oblate deformation of a

weakly conducting drop. The drop of viscosity µi, permittivity

εi, and resistivity χi is suspended in a medium with properties

µo, εo, and χo, respectively. The case considered is that for

which the inner charging timescale τe,i = εiχi is greater than

the outer charging timescale τe,o = εoχo, which yields the sur-

face charge distribution and oblate deformation qualitatively

drawn here. The electric field is directed from left to right,

while streamlines are depicted inside and outside of the drop.

The direction of flow is from the poles (θ = 0, π) towards the

equator (θ = π/2) of the drop. The electric field and induced

fluid flow are both independent of the azimuth φ. Here, (σ,φ,z)

corresponds to the set of cylindrical coordinates, while θ repre-

sents the polar angle measured from the positive z–axis. The

major and minor semi–axes are denoted by r∗2 and r∗1, respectively. 57

5.2 Computational diagram of the initial drop shape. As the field

and flow are considered axisymmetric, the integral equations

(5.5), (5.6), (5.8) are reduced from integrals along the surface

A to integrals along the contour C. Here, the normal n and

tangential t vectors are illustrated; the former is positive when

pointing outwards, while the latter is positive when pointing

in the counter–clockwise direction, respectively. Finally, the

continuous arc–length s, which begins from the positive z–axis

(θ = 0), is positive when pointing in the counter–clockwise di-

rection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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5.3 Transient deformation D(t) as a function of dimensionless time

for different ratios of charging τe,o to capillary τc,o timescales,

which we label as a Saville number Sao. The capillary number

Cao = 0.5 and the set of dimensionless parameters (S, M , R)

= (20, 1, 0.5) correspond to one of the cases analyzed by Lac

and Homsy.48 Here, time t∗ is normalized by the electrical re-

laxation timescale τe,o of the dotted curve describing Sao = 0.1.

The shape of the drop possessing the largest transient prolate

deformation (Sao = 10, the solid curve) and its steady oblate de-

formation shape (applicable to all three curves) are also shown.

The dash–dotted line represents the steady–state reported by

Lac and Homsy.48 . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Transient deformation D(t) as a function of dimensionless time

t = t∗/τe,o. The capillary number Cao = 2 and (S, M , R) =

(0.5, 1, 100). Both curves account for charge relaxation (∂q
∂t

in

equation (5.10)). The solid curve, however, results from a simu-

lation that also includes charge convection (an electric Reynolds

number Reo = 0.7), while the dashed curve is obtained in the

limit Reo → 0. Here, we display the final shape of the drop

corresponding to the simulation conducted at finite Reo, which

achieves a steady deformation. The shape resulting from the

simulation carried out at Reo → 0 is shown right before the

onset of numerical instability (t ≈ 60). . . . . . . . . . . . . . 70
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5.5 Transient deformation of a silicone oil drop suspended in a cas-

tor oil medium at a field strength of 1.6 kV/cm. The dimen-

sional parameters for this system are listed in table 5.1 and the

dimensionless groups are listed in table 5.2. The open circles

denote the experimental measurement, while the dashed curve

illustrates the small–Ca theory of Lanauze et al.55 that accounts

for charge relaxation. The remaining curves result from bound-

ary integral calculations. The dotted curve results from a simu-

lation that considers an instantaneous interfacial charging with

no charge convection, while the dash–dotted curve results from a

simulation that considers finite electrical relaxation timescales

τe(i,o) = εi,oχi,o with no charge convection. Finally, the solid

curve results from a simulation that accounts for charge relax-

ation together with charge convection. The inset is an image of

the steady oblate shape measured experimentally. . . . . . . . 75

5.6 Transient deformation of a silicone oil drop suspended in a cas-

tor oil medium at a field strength of 2.1 kV/cm. The dimen-

sional parameters for this system are listed in table 5.1 and the

dimensionless groups are listed in table 5.3. The description of

the curves is the same as in figure 5.5. The inset is an image of

the steady oblate shape measured experimentally. . . . . . . . 78
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5.7 (a) Steady interfacial charge density profile q as a function of

the polar angle θ corresponding to a silicone oil drop suspended

in a castor oil medium at a field strength of 2.1 kV/cm (t∗ ≈ 3 s

in figure 5.6). The solid curve results from the simulation that

considers surface charge convection from the poles (θ = 0, π)

towards the equator (θ = π/2) of the drop; the dashed curve

does not account for interfacial charge convection. (b) Steady

interfacial tangential velocity ut (note that ut,o = ut,i) as a

function of the polar angle θ (t∗ ≈ 3 s in figure 5.6). The solid

curve results from the simulation that considers surface charge

convection towards the equator of the drop; the dashed curve

does not account for interfacial charge convection. . . . . . . . 80
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castor oil medium at a field strength of 2.1 kV/cm. (a) The set

of curves corresponds to the simulation for transient deforma-

tion that accounts for charge relaxation and does not consider

charge convection in figure 5.6 (the dash–dotted curve), which

eventually yields the same steady–state surface charge density

distribution as the dashed curve in figure 5.7(a). (b) The set

of curves corresponds to the simulation for transient deforma-

tion that accounts for both charge relaxation and charge con-

vection in figure 5.6 (the solid curve), which eventually yields
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small–Ca theory of Lanauze et al.55 that considers charge relax-

ation. Finally, the solid line represents the boundary integral

simulation that accounts for both charge relaxation and charge

convection through equation (5.10). The inset is an image of

the steady oblate shape measured experimentally. (b) Interfa-

cial charge density profile q as a function of the polar angle θ.

The solid curve results from the simulation corresponding to a

field strength of 6.1 kV/cm (t∗ ≈ 0.8 s in figure 5.9(a)), which

considers surface charge convection from the poles (θ = 0, π)

towards the equator (θ = π/2) of the drop. The dashed curve

accounts for charge convection at field strength of 2.1 kV/cm,
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6.1 Schematic of the prolate deformation of a leaky dielectric drop

under a uniform DC electric field of magnitude E∞. The drop

is characterized by permittivity εi, resistivity χi, and viscosity

µi, while the medium is characterized by properties εo, χo, and

µo, respectively. The permittivity S = εi/εo and resistivity R =

χi/χo ratios chosen in this work yield a flow directed from the

equator (θ = π/2) towards the poles (θ = 0, π) of the drop, as

illustrated by the depicted streamlines. A cylindrical coordinate

system (σ,φ,z) is implemented due to the assumed axisymmetric

nature of the field and flow. Here, r∗1 and r∗2 represent the major

and minor semi–axes, while θ denotes the polar angle. . . . . . 93

6.2 Transient deformation and relaxation of a weakly conducting

drop. The material properties of this system are listed in table

6.1, while the relevant dimensionless groups are given in table

6.2. The open circles (deformation) and open squares (relax-

ation) represent boundary integral computations, while solid

(deformation55) and dashed lines (relaxation, equation (6.8))

denote linear theory calculations. Figure 6.2(a) corresponds to

capillary numbers Cai = 1.3×10−2 and Cao = 7.1×10−3, while

figure 6.2(b) corresponds to Cai = 0.4 and Cao = 0.2, respectively.104
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6.3 Transient deformation and relaxation of a castor oil drop sus-

pended in silicone oil. The material properties of this system

are listed in table 6.1, while the relevant dimensionless groups

are given in table 6.2. The imposed electric field strength is

E∞ = 1.8 kV/cm, which yields the capillary numbers Cai = 0.2

and Cao = 0.1, respectively. The open circles (deformation) and

open squares (relaxation) denote experimental measurements,

while solid (deformation) and dashed (relaxation) lines corre-

spond to boundary integral computations. . . . . . . . . . . . 106

6.4 Transient deformation and relaxation of a castor oil drop sus-

pended in silicone oil. The material properties of this system

are listed in table 6.1, while the relevant dimensionless groups

are given in table 6.2. The imposed electric field strength is

E∞ = 1.8 kV/cm, which yields the capillary numbers Cai =

0.2 and Cao = 0.1, respectively. The solid (deformation) and

dashed (relaxation) lines denote boundary integral computa-

tions conducted in the absence of surface charge convection,

while dash–dotted (deformation) and dotted (relaxation) lines

correspond to boundary integral computations that account for

surface charge convection. . . . . . . . . . . . . . . . . . . . . 107

6.5 Transient deformation and relaxation of a castor oil drop sus-

pended in silicone oil. The material properties of this system

are listed in table 6.1, while the relevant dimensionless groups

are given in table 6.2. The imposed electric field strength is

E∞ = 2.3 kV/cm, which yields the capillary numbers Cai = 0.3

and Cao = 0.2, respectively. The legend is the same as that in

figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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6.6 Time–dependent dimensionless tangential velocity ut at the sur-

face of a castor oil drop suspended in silicone oil (θ ≈ π/4). The

imposed electric field strength is E∞ = 2.3 kV/cm, which yields

the capillary numbers Cai = 0.3 and Cao = 0.2, respectively. In

figure 6.6(a) the fieldE∞ is applied, which yields a development

of interfacial velocity directed from equator–to–pole (denoted by

the negative sign in ut) that helps drive the drop deformation

depicted by the solid curve in figure 6.5. In figure 6.6(b) the

field is removed, which yields a decay in the interfacial velocity

directed from pole–to–equator (denoted by the positive sign in

ut) that helps drive the drop relaxation depicted by the dashed

curve in figure 6.5. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Electric field lines outside a castor oil drop suspended in silicone

oil. The imposed electric field strength is E∞ = 2.3 kV/cm,

which yields the capillary numbers Cai = 0.3 and Cao = 0.2,

respectively. Figure 6.7(a) illustrates the field lines calculated

from Taylor’s analysis13 when the steady–state deformation in

figure 6.5 is achieved, while figure 6.7(b) depicts the field lines

computed from our analysis in section 6.2.1 when the field is

removed and the drop is allowed to relax. . . . . . . . . . . . . 111
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6.8 Transient deformation and relaxation of a castor oil drop sus-

pended in silicone oil. The material properties of this system

are listed in table 6.1, with the resistivity χ of each phase de-

creased by two orders of magnitude. This in turn decreases

the Saville numbers Sai,o = τe(i,o)/τc(i,o) by two orders of mag-

nitude, while leaving the remaining dimensionless groups in

table 6.2 unchanged. The imposed electric field strength is

E∞ = 2.3 kV/cm, which yields the capillary numbers Cai = 0.3

and Cao = 0.2, respectively. The drop deformation (solid) and

relaxation (dashed) curves result from our boundary integral

computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Time–dependent energy storage and release by a castor oil drop

suspended in silicone oil. The imposed electric field strength is

E∞ = 2.3 kV/cm, which yields the capillary numbers Cai = 0.3

and Cao = 0.2, respectively. This storage and release of energy

corresponds to the deformation–relaxation profile illustrated in

figure 6.5. Figure 6.9(a) depicts the storage and release of ca-

pacitive energy, given in dimensionless form as 1
2

∫
1
2
A
q dA. Fig-

ure 6.9(b) illustrates the storage and release of capillary energy,

given in dimensionless form as
∫
A
dA. Here, we subtract the

dimensionless capillary energy of a spherical drop 4π from the
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3. Introduction

Deformable interfaces under electric fields are of interest in applications

including electrospinning,1 inkjet printing,2 oil recovery,3 and cell membrane

electroporation.4 Here, an interface may undergo a variety of dynamics such

as deformation, breakup, coalescence, or a change in a given property. To yield

a desired electric–field–induced interfacial response, knowledge of the system

timescales and resulting transport at a given set of conditions is advantageous.

The field of electrohydrodynamics is concerned with the dynamics of an in-

terface separating low–conductivity fluids under an electric field. For these sys-

tems, the applied field animates a flow throughout the drop and medium, which

in turn may yield a variety of drop responses such as deformation, breakup,

and rotation. We elaborate on the variety of drop dynamics throughout this

thesis. Although the field of electrohydrodynamics has recently undergone

a fair share of advances,5–10 we find that significant questions regarding the

transient behavior of an isolated low–conductivity drop under a uniform DC

electric field remain unanswered. The objective of this thesis is to quantify the

time–dependent response of a weakly conducting (“leaky dielectric”) drop ex-

posed to a uniform DC electric field via theory, computation, and experiment.

The impact is an assessment of the importance and influence of surface charge

transport on the ability to predict experimental measurements.
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3.1 Background

The fluid–fluid systems under electric fields most commonly implemented

in applications1–4 are conductors suspended in insulators (a conductor–insulator

system) and insulators suspended in insulators (an insulator–insulator system),

respectively. Conductor–insulator systems under electric fields are relevant in

processes such as the demulsification of water–in–oil emulsions for enhanced

oil recovery;3 insulator–insulator systems are relevant in processes such as elec-

trospinning of polymeric solutions or melts for the production of thin fibers.1

For simplicity, we will consider a conducting drop suspended in a dielectric

medium as the base case for a conductor–insulator system, and dielectric drop

suspended in a dielectric medium as the base case for an insulator–insulator

system throughout the rest of this section.

We consider a uniform DC electric field, given by E∞, applied across a

conductor–insulator or insulator–insulator system. When placed under an

electric field, the drops pertaining to these two systems will undergo a defor-

mation, which we parametrize by the expression D = r1−r2
r1+r2

, where r1 and r2

denote the semi–axes along and normal to the applied field, respectively (figure

3.1). In spherical coordinates attached to the instantaneous center of the drop,

the radial component of the applied electric field is given by E∞,r = E∞ cos θ,

where E∞ = |E∞| and θ represents the polar angle measured from the posi-

tive z–axis. The stress exerted by the applied field on an interface is obtained

by evaluating the jump in electrical stress across the drop surface [τ e · n],

where τ e is the Maxwell stress tensor and n = r
|r| is a unit normal vector

that acquires a positive sign when pointing in the positive (outward) direction

of the radial coordinate r. The radial component of the jump in electrical
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Figure 3.1: Schematic of a drop with permittivity εi, resistivity χi, and viscos-
ity µi suspended in a medium with permittivity εo, resistivity χo, and viscosity
µo. A uniform DC electric field, given by E∞, is applied across the system,
which causes the drop to undergo a deformation D = r1−r2

r1+r2
, where r1 and r2

represent the major and minor semi–axes, respectively. In this figure, the drop
deformation is along the applied field (r1 > r2, D > 0); i.e. the drop experi-
ences a prolate deformation. Note that ez is a unit vector in the z–direction
(horizontal). Furthermore, θ denotes the polar angle and r denotes the radial
position in spherical coordinates.

stress scales quadratically with the radial component of the applied field, i.e.

[τ e · n]r ∼ E2
∞,r ∼ E2

∞ cos2 θ. This entails that the normal electrical stress

will attain a maximum at the poles of the drop, located at θ = 0 and θ = π.

These stresses are balanced by the capillary stress γ∇s · n, and the induced

drop deformation will be along the applied field (r1 > r2): the drop undergoes

a prolate deformation. Here, γ denotes the interfacial tension and ∇s denotes

the surface gradient operator.

In 1962, Allan and Mason derived expressions for the steady–state deforma-

tion attained by a conducting drop and a dielectric drop exposed to a uniform

DC electric field.11 For a conducting drop suspended in a dielectric medium,

the expressions reads

Dconductor =
9

16
Cao. (3.1)

For a dielectric drop suspended in a dielectric medium, the steady field–
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induced deformation is given by

Ddielectric =
9

16

(S − 1)2

(S + 2)2
Cao. (3.2)

Here, Cao = εoE
2
∞a/γ is the electric capillary number based on the medium

properties. This dimensionless group represents a ratio of electrical stress,

which scales as εoE
2
∞, to capillary stress, which scales as γ/a. Note that the

subscripts i and o are implemented to distinguish the drop (inner phase, i)

from the medium (outer phase, o). Furthermore, ε is the electric permittivity,

a is the radius of a spherical drop, and the dimensionless parameter S = εi/εo.

Equation (3.1) and (3.2) require the following assumptions:

1. The bulk fluid phases are electrically neutral.

2. The normal interfacial electrical stress is balanced by the capillary stress.

Since the electric field is irrotational, it may be expressed as the gradient of

a scalar electrostatic potential φ. The first assumption conveniently reduces

Gauss’s law from Poisson’s equation ∇2φ = ρe to Laplace’s equation ∇2φ = 0

for the drop and medium, where ρe is the volumetric free charge density. Fur-

thermore, the second assumption eliminates the need to solve a momentum

balance to obtain the resulting drop deformation under the applied electric

field. Equations (3.1) and (3.2) were derived in the limit of Cao � 1, in

which the drop is slightly perturbed away from its spherical equilibrium shape

and the deformation scales linearly with the capillary number; i.e. D ∼ Cao.

These two expressions are only capable of predicting slight prolate deforma-

tions (r1 > r2, D > 0). When comparing the theoretical predictions (3.1)

and (3.2) against experimental measurements, Allan and Mason confirmed

the field–induced prolate deformation of a conducing drop. However a surpris-

ing result was encountered for dielectric drops: deformations normal to the
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electric field, oblate deformations (r1 < r2, D < 0), were measured for some of

the systems examined.11 This observation was puzzling at the time, since none

of the existing theory11,12 was capable of predicting the oblate deformations

measured in some experiments.

Since the existing theory at the time did not require solving a momentum

balance or predict any fluid flow at steady–state, it is often referred to as

an electrohydrostatic theory. To understand the missing link that will yield

a qualitative prediction of the unexpected oblate deformations measured ex-

perimentally, we examine the jump in tangential electrical stress across the

drop surface [τ e · n]t = qEt. Here, q denotes the amount of free charge per

unit area of the drop, Et = (E · t) t denotes the tangential component of the

electric field evaluated at the interface, and t denotes a unit tangent vector

that is positive when pointing in the positive θ–direction along the interface.

If one considers a conducting drop suspended in a dielectric medium under an

electric field, any free charge throughout the conducting phase will distribute

itself throughout the drop surface in such a way that the interfacial electric

field is purely normal: Et = 0 yields [τ e ·n]t = 0. Furthermore, if one considers

a dielectric drop suspended in a dielectric medium under an electric field, no

free charge is expected to reside throughout the drop, medium, and interface:

q = 0 yields [τ e · n]t = 0. Thus, it seems that the tangential electrical stress

is continuous across the drop surface. Moreover, q = 0 yields a continuous

electric displacement across the interface [εEn] = 0, where En = E ·n denotes

the normal component of the electric field evaluated at the interface.

In 1966, G.I. Taylor published a seminal manuscript13 in which he extended

the existing electrohydrostatic theory for a dielectric drop suspended in a di-
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electric medium. His main insight was the following: although the bulk fluid

phases are expected to remain electroneutral, a finite amount of charge will

reach the interface under the action of an applied electric field. Thus, the

drop and medium are not perfect insulators, but rather weak conductors. The

nonzero surface charge q gives rise to a jump in the interfacial tangential electri-

cal stress [τ e ·n]t = qEt. These shear electrical stresses are balanced by shear

viscous stresses, and fluid flow is induced inside of the drop and throughout

the medium. Here, assumption 1 still allows implementation of the solution to

Laplace’s equation to quantify the interfacial stresses exerted by the electric

field. However, assumption 2 breaks down, as a solution to a momentum bal-

ance is now required to calculate the resulting drop deformation; Taylor solved

the Stokes equations (of inertialess flow) for the drop and medium. Further-

more, the boundary conditions applied at the drop surface must be modified to

impose a continuity in current across the interface [ 1
χ
En] = 0, and a tangential

stress balance between electrical and viscous stresses [τ e · n]t + [τ h · n]t = 0.

Note that χ represents the electrical resistivity and τ h represents the hydro-

dynamic stress tensor. Taylor derived the following expression for the linear

deformation of a weakly conducting drop under a uniform DC electric field:

DTaylor =
9

16(2R + 1)2

[
3R(3M + 2)(1− SR)

5(M + 1)
+R2(1− 2S) + 1

]
Cao, (3.3)

where R = χi/χo, M = µi/µo, and µ is the fluid viscosity, respectively. This

expression was able to predict both the prolate and oblate drop deforma-

tions measured in the experiments of Allan and Mason.11 Furthermore, since

Taylor’s theory predicts steady–state recirculating toroidal flows inside and

outside of the drop, it is often referred to as an electrohydrodynamic theory.

The mathematical model Taylor followed to arrive to equation (3.3) is known
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as the “leaky dielectric model.”13–15 Despite the very low, O(10−10 S/m), con-

ductivity of many systems, mainly composed of oils, there is no such thing as

a perfect dielectric fluid–fluid system; impurities such as trace amounts of wa-

ter will always induce charge at the interface, and a weak or strong fluid flow

will arise in conjunction with a prolate or oblate drop deformation. These

field–induced flows, which help drive a prolate or oblate drop deformation

depending on the material properties of each phase, is a unique feature of

low–conductivity fluids under electric fields.

Taylor’s model13 has proven to be successful in predicting the slight field–

induced drop deformation and direction of fluid flow for experimental systems

characterized by different sets of dimensionless parameters {S,M,R}.16–18

However, despite the fact that many studies have implemented Taylor’s ap-

proach in quantifying the deformation of low–conductivity drops under electric

fields, the interpretation of the surface charge density q has remained ambigu-

ous. Recently, an article addressing this issue was published by Schnitzer and

Yariv.10 By employing a matched asymptotic analysis valid in the limit of thin

Debye length and strong electric field, they successfully derived Taylor’s model

from the more fundamental electrokinetic (Poisson–Nernst–Planck) equations.

The physical interpretation of the surface charge q is as follows: when a weakly

conductive drop is placed in a weakly conductive medium, ions will adsorb to

the interface even in the absence of an applied field. This adsorbed charge is

screened by diffuse layers of counterions at either side of the drop surface; a

triple–layer structure forms at the interface. The action of the electric field on

this triple layer perturbs it and gives rise to an apparent local charge per unit

area q (figure 3.2). Thus, q is not confined to the genuine interface, but rather

encompasses the ions adsorbed to the interface and corresponding screening
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layers once the field is applied. This perturbed triple layer gives rise to the

dominant interfacial tangential electrical stresses and resulting toroidal fluid

flow predicted by Taylor.13 Although Schnitzer and Yariv’s model10 predicts

electrophoretic drop motion under a uniform DC electric field, this effect is

small compared to the dynamics that result from the apparent surface charge

density q. Remarkably, Taylor’s model, which was published 50 years ago, cap-

tures the essential field–induced response of low–conductivity systems without

requiring the explicit modeling of transport of ionic species: it is considered a

“lumped parameter” model. We make use of Taylor’s coarse–grained interpre-

tation of the interfacial charge q throughout the work presented in this thesis.

3.2 Structure of thesis

In chapter 4, we develop a linear, O(Ca) theory to describe the transient

electrohydrodynamic deformation of a drop upon application of an electric

field. Previous analytical work has suggested that the capillary timescale

τc = µa/γ is the only relevant timescale required to correctly quantify the

slight field–induced transient deformation of a low–conductivity drop.19 Here,

the drop acquires its final deformation in a monotonic fashion, which may be

modeled by a simple exponential decay in time that yields Taylor’s expression

(3.3) at steady–state; D(t) = DTaylor

(
1− e− t

τc

)
. In this chapter, we account

for two additional fluid timescales: first, we account for a timescale for dif-

fusion of momentum throughout the drop and medium τm = a2ρ/µ, where ρ

denotes the fluid density. This leads to the consideration of transient (or lin-

ear) fluid inertia via the unsteady Stokes equations. Furthermore, we account

for an electrical relaxation time τe = εχ over which the drop interface charges.

The temporal drop deformation is governed by two dimensionless groups: (i)
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Figure 1. Schematic accompanying the intuitive overview of §3. Description from right to left: (i)
Asymmetric ionic sorption implies an ‘equilibrium’ interfacial charge, screened by two adjacent
diffuse layers. Sorption also allows electric currents associated with the applied field to pass
through the compound Taylor–Melcher interface, while resulting in only a slight perturbation
to the triple-layer structure. (ii) Gauss law on the depicted control-volume reveals that the
perturbed triple layer deviates from electro-neutrality. The overall, or apparent, charge per unit
area is Λ∗. (iii) The tangential field is approximately uniform on the Debye scale. Its action
on the apparent charge, itself induced by the field, results in a macroscopic stress jump which
drives the dominant flow field. (iv) The action of the field on the equilibrium charge distribution
results in steep electro-osmotic flow profiles. While this flow, and the macroscopic slip it entails,
is relatively weak, the viscous shear inflicted on the microscopic interface is strong. It is exactly
balanced by the interfacial electric stress associated with the equilibrium surface-excess ion
concentration.

voltage ϕ∗ = k∗T∗/ze∗ (k∗T ∗ being the Boltzmann temperature and e∗ the elementary
charge). We consider the limit where applied field is large compared with thermal scale
ϕ∗/a∗ but is nonetheless small compared with the transverse field in the narrow Debye
layers, which is of order κ∗ϕ∗:

ϕ∗
a∗

≪ E∗ ≪ κ∗ϕ∗. (3.1)

This assumption is represented by the Baygents–Saville limit (1.1) mentioned above.
We start with the effect of the applied field on the bulk liquid domains lying outside

the two diffuse-charge layers. These domains are approximately electro-neutral, with the
cation and anion concentrations being nearly identical. The ionic concentration is uniform
far away from the drop. In principle, concentration polarization on the drop scale may
by triggered by effective ‘surface’ currents which originate at the Debye-scale transport.
The extent and topology of such concentration non-uniformities are determined by a
balance between diffusion and advection by the field-induced flow, characterised by the
velocity scale U∗. With the applied field assumed strong, it is plausible that the flow is
strong as well, in the sense that the Péclet number Pe = a∗U∗/D∗ is large, D∗ being a
characteristic diffusivity. Thus, the ionic concentration is dominated by advection, and
possesses uniform values in the external and internal bulk domains. The concentration
value in the suspending liquid is simply given by the far-field concentration, namely c∗; the
drop concentration, say c̄∗, is generally different. Thus, bulk concentration polarization

Figure 3.2: Electrokinetic interpretation of the surface charge density q (im-
age extracted from Schnitzer and Yariv10). Ions adsorb to the interface in
the absence of a uniform applied field; they are screened by diffuse layers at
either side of the drop surface. When the electric field is applied, the triple–
layer structure, which is composed of the adsorbed charge and corresponding
screening layers, locally deviates from electroneutrality. This gives rise to an
apparent charge per unit area q (Λ∗ in this figure), as predicted by Taylor,13

which is responsible for animating the dominant tangential electrical stress
that drives a flow which scales quadratically with the applied field. Although
there is a local electroosmotic flow at the drop surface, it is counteracted by an
electrical stress exerted at the genuine interface. This results in electrophoretic
drop migration that is asymptotically small compared the the strong tangen-
tial fluid flow driven by the apparent surface charge q. In this figure, the
subscripts ∗ are implemented to denote a dimensional quantity and the over-
bars are implemented to denote a variable that corresponds to the drop phase.
Furthermore, E∗ is the local electric field, ε∗ is the electric permittivity, and
c∗ is the ionic concentration.
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the ratio of capillary to momentum diffusion timescales: an Ohnesorge number

Oh; and (ii) the ratio of charge relaxation to momentum diffusion timescales,

which we denote by a Saville number15 Sa. If charge and momentum relax-

ation occur quickly compared to interface deformation, Sa � 1 and Oh � 1

for the drop and medium, and a monotonic deformation is acquired. In con-

trast, Sa > 1 and Oh < 1 for either phase can lead to a non–monotonic

development in the deformation. The drop and medium behave as perfect di-

electrics at early times, which always favors an initial prolate (parallel to the

applied field) deformation. As a consequence, for a final oblate (normal to the

applied field) deformation, there is a shape transition from prolate to oblate

at intermediate times. This transition is caused by the accumulation of suffi-

cient charge at the interface to generate electrical and viscous shear stresses.

Notably, after the transition, there may be an “overshoot” in the deforma-

tion, i.e. the magnitude exceeds its steady–state value, which is proceeded by

an algebraic tail describing the arrival towards the final, steady deformation.

Our work demonstrates that transient inertia or the electrical relaxation time

can yield nonmonotonic electrohydrodynamic drop deformation in the linear

regime, which has not been shown previously in the literature. This chapter

has been published as an article in the Physics of Fluids journal.

In chapter 5, we extend the theory developed in chapter 4, and compute the

the transient deformation of a leaky dielectric drop under a uniform DC elec-

tric field via an axisymmetric boundary integral method, which accounts for

surface charge convection and transient charging of the drop interface. The

boundary integral method enables the computation of large drop deforma-

tion. The effect of surface charge convection is quantified through an electric

Reynolds number14 Re, which represents a ratio of the interfacial charging
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timescale τe to a flow timescale τf = a/U , where U is a characteristic flow

strength. The effect of transient charging of the drop surface is quantified

through the previously–defined Saville number15 Sa, which in this chapter rep-

resents a ratio of the electrical relaxation timescale τe to the capillary timescale

τc. We focus on drops that attain an ultimate oblate (major axis normal to

the applied field) steady–state configuration. The computations predict that

as the timescale for interfacial charging increases, a shape transition from

prolate deformation (major axis parallel to the applied field) to oblate de-

formation occurs at intermediate times due to the slow buildup of charge at

the surface of the drop. Convection of surface charge towards the equator

of the drop is shown to weaken the steady–state oblate deformation. Addi-

tionally, convection results in sharp, shock–like variations in surface charge

density near the equator of the drop. Our numerical results are then com-

pared with an experimental system consisting of a millimeter–sized silicone

oil drop suspended in castor oil. Agreement in the transient deformation is

observed between our numerical results and experimental measurements for

moderate electric field strengths. This suggests that both charge relaxation

and charge convection are required, in general, to quantify the time–dependent

deformation of leaky dielectric drops. Importantly, accurate prediction of the

observed modest deformation requires a nonlinear model. Discrepancies be-

tween our numerical calculations and experimental results arise as the field

strength is increased. We believe that this is due to the observed onset of

rotation and three–dimensional flow at such high electric fields in the exper-

iments,17,18 which an axisymmetric boundary integral formulation naturally

cannot capture. This work is the first to examine the effect of surface charge

transport on the transient deformation of a low–conductivity drop via compar-

ison between computation and experiment. This chapter has been published

11



as an article in the Journal of Fluid Mechanics.

In chapter 6, we quantify the dynamics of a prolate leaky dielectric drop

upon removal of a uniform DC electric field. Experiments consisting of a

castor oil drop suspended in silicone oil are compared against axisymmetric

boundary integral computations that account for transient charging, or charge

relaxation, of the interface. A temporal asymmetry between the drop deforma-

tion and relaxation processes is observed in the experiments and computations:

the drop relaxes back to its spherical equilibrium shape faster than the time

taken to achieve its steady–state deformation. During the deformation pro-

cess, the electrical (Maxwell) stress deforms the drop along the direction of the

applied field; it is counteracted by the capillary stress. During the relaxation

process, i.e. after the field is removed, the electrical stress now acts together

with the capillary stress to quickly restore the drop back to equilibrium. This

change in action of the electrical stress is responsible for the asymmetry be-

tween the drop deformation and relaxation. Notably, the electrical stress acts

over the charge relaxation timescales of the fluids: thus, counterintuitively,

longer charging timescales yield faster drop relaxation. That is, the longer it

takes for the interface to discharge, the faster the drop shape relaxes. We also

present computational results for a drop that does not relax back to its initial

spherical shape upon removal of the electric field; rather, the drop breaks up

via an end–pinching mechanism.20 This work is the first to quantify the re-

laxation of a low–conductivity drop upon removal of an applied electric field.

This chapter has been accepted for publication in the Physical Review Fluids

journal.

In chapter 7, we examine the breakup of an oil drop containing a colloidal
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suspension of carbon black particles under a uniform DC electric field. A drop

of squalane containing a fixed concentration 3.3 g/L of carbon black particles

and varying amounts of polyisobutylene succinimide surfactant (OLOA) is ex-

posed to a field strength E∞ = 2.5 kV/cm that yields drop breakup. When the

concentration of OLOA is appreciable (30 parts OLOA per 100 parts carbon

black, pph OLOA), the drop exhibits breakup via the formation of bulbous

ends. Here, the added dispersant stabilizes the colloidal suspension of carbon

black particles, which yields homogeneous field–induced drop breakup at this

applied field strength. When the concentration of surfactant is decreased to a

value of 2 pph OLOA, the suspension becomes unstable within the timescale

of the experiment, and achieves breakup via the formation of lobes that turn

into fingers and eventually disintegrate. Furthermore, we find that the stable

30 pph system may be destabilized at a higher field strength E∞ = 5.3 kV/cm,

which we believe is due to the direct action of the electric field on the col-

loidal suspension. The experimental systems in this study are modeled using

the boundary integral method, which assumes that both the drop and medium

phases are homogeneous. We implement our computations to assess the impor-

tance of surface charge transport and the heterogeneity of the particle–loaded

drop. The method depicted in this chapter may be implemented to deduce

the colloidal stability of drops containing particles.
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4. The influence of inertia and

charge relaxation on

electrohydrodynamic drop

deformation

4.1 Introduction

We restate Taylor’s expression13,14 for the final, steady–state slight drop

deformation DT achieved under a weak applied electric field of magnitude E∞,

given as

DT ≡
r∗1 − r∗2
r∗1 + r∗2

=
9

16(R + 2)2
ΦT Cai, (4.1)

where

ΦT =
3(2M + 3)(SR− 1)

5(M + 1)
+ S(R2 + 1)− 2. (4.2)

In (4.1) and (4.2), S = εo/εi, M = µo/µi, and R = χo/χi, are the permittivitiy

(ε), viscosity (µ), and resistivity (χ) ratios of the outer fluid (subscript o) to

that of the droplet (subscript i). The electric capillary number Cai = εiE
2
∞a/γ

represents a ratio of electrical stress εiE
2
∞ to capillary stress γ/a, where γ is

the interfacial tension between the two liquids, and a is the radius of the un-
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deformed droplet. Finally, r∗1 and r∗2 denote the semi-axes along and normal

to the applied field, respectively (figure 4.1). The superscript ∗ is used to

represent a dimensional variable; dimensional material properties and char-

acteristic process time scales contain no superscript. Taylor’s theory requires

Cai to be small so that the deformation is slight and linear in Cai. The steady

shape of the deformed drop is determined by the sign of Taylor’s so-called dis-

criminating function ΦT .13,14 A positive ΦT represents a prolate deformation

(r∗1 > r∗2), while ΦT < 0 represents an oblate deformation (r∗1 < r∗2). Note that

this is the only chapter in which we implement Taylor’s notation to conduct our

analysis and nondimensionalization in terms of the inner fluid (drop) variables.

Although steady electrohydrodynamic droplet deformation is relatively

well-understood15 for two Newtonian liquids with a clean interface, the manner

in which this steady-state is attained has received continued attention. Recent

numerical studies that employ the Navier-Stokes equations have presented an

“overshoot” (i.e., the magnitude of the deformation exceeds its final value)

in the transient deformation of leaky dielectric drops exposed to DC fields,

which can display oscillations before settling to the steady-state value. For

example, Supeene et al.21 accounted for charge convection at the interface and

used the finite element method with a moving mesh to obtain numerical values

for deformation versus time. Fernández et al.22 considered the deformation of

an emulsion of multiple drops and used a front-tracking – finite volume tech-

nique to solve the momentum balance. Before presenting their main results,

they performed a sample calculation for a single oblate droplet. These two

works presented an overshoot in the deformation profile. Moreover, Haywood

et al.23 used the finite volume method with an adaptive grid to study liquid

– liquid and liquid – air systems. Despite the fact that these were combina-
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tions of perfect conductors and insulators, they reported an overshoot for a

liquid – air system (corresponding to a dielectric drop and medium), which

they claimed was due to fluid inertia. Paknemat et al.24 also analyzed the re-

sponse of conducting and perfectly insulating droplets in dielectric media, and

leaky dielectric droplets in weakly conductive media. They used the level set

method together with the ghost fluid method to calculate drop deformation

and breakup under a DC electric field. To check that their calculated defor-

mation converged to known analytical results for dielectric drops exposed to

weak fields,11 they performed a grid resolution test which displayed an over-

shoot before arriving to the steady (prolate) deformation. These last two

studies describing perfect conductive and dielectric droplet response suggest

that steady-state fluid recirculation is not necessary for an overshoot to man-

ifest itself. In addition, overshoots can sometimes take on relatively large

values, such as that presented in figure 6 of Supeene et al.,21 which depicts

a normalized transient deformation profile for a dielectric droplet. Here, an

overshoot that is approximately 1.4 times the steady value is observed, which

is followed by a decaying oscillation before the steady deformation is attained.

Analytical models have also been developed to describe the transient defor-

mation of perfectly conducting23,25 droplets subjected to DC fields, and weakly

conducting droplets subjected to DC19 and AC26 fields. (The latter of which

also contains an oscillatory component in the total deformation.) Aside from

Nishiwaki et al.,26 these studies have assumed instantaneous interfacial charg-

ing, and all have made use of the quasi-steady Stokes equations. For example,

Esmaeeli and Sharifi19 considered a leaky dielectric droplet and medium under

a suddenly-applied DC field. They obtained the following expression for the
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deformation:

DES(t) = DT

(
1− e−t∗/τ

)
, (4.3)

where DT is the steady deformation (4.1), t∗ denotes time, and τ is a char-

acteristic capillary time scale (equation 23 in their paper). Equation (4.3)

monotonically settles towards Taylor’s classic result as t∗ → ∞. This result

is clearly unable to predict an overshoot as observed in the numerical works

of Supeene et al.21 and Fernández et al.22 for leaky dielectrics. A goal of the

present work is to resolve this discrepancy and determine under which condi-

tions an overshoot occurs.

As we shall show, the appearance of an overshoot is linked to the value of a

particular dimensionless group: the Ohnesorge number Ohi,o = µi,o/
√
γaρi,o,

where µi,o and ρi,o represent the viscosity and density of either phase, respec-

tively. This equality defines Oh as a material property, which can acquire a

wide range of values in practice. This parameter evaluates the importance of

transient fluid inertia: when it is considerably less than unity, the overshoot

is most apparent. Not surprisingly, the plots generated by Supeene et al.21

and Fernández et al.22 displayed an overshoot when Ohi,o ≈ 0.2. Addition-

ally, the work by Paknemat et al.24 depicted an overshoot when Ohi,o ≈ 0.02,

while Haywood et al.23 reported an overshoot when Ohi = 1.37 × 10−3 and

Oho ≈ 7.8× 10−4. Haywood et al.23 also compared numerical results for a liq-

uid – liquid system with an analytical model that assumed quasi-steady Stokes

flow: the two displayed a monotonic deformation for various Ohi greater than

unity, although there was a lag in the deformation predicted by numerics

when Ohi = 2 and Oho = 0.2. The analytical quasi-steady Stokes flow mod-

els19,23,25,26 that predict monotonic deformation profiles effectively assume that

Ohi,o → ∞; that is, the flow is established instantaneously on the timescale
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that the interface deforms.

Sozou27 first explored the validity of neglecting inertial terms in the mo-

mentum balance when describing the deformation of a droplet exposed to an

AC electric field. Specifically, Sozou retained only the linear inertial term

ρ ∂u∗/∂t∗, where u∗ denotes the fluid velocity, as opposed to Torza et al.,28

who assumed a quasi-steady flow. Retaining this term was found to yield

results substantially different from Torza et al.28 when the time scale for mo-

mentum diffusion of either phase a2/νi,o was the same order of magnitude as

the reciprocal of the frequency of oscillation ω (here, νi,o = µi,o/ρi,o is a kine-

matic viscosity). Notably, taking the limit ω →∞ provided a time-dependent

deformation and fluid velocity profiles with a frequency dependence different

from that obtained by Torza et al. Souzou also considered the development of

deformation and flow for a leaky dielectric droplet in response to a suddenly-

applied, uniform DC field.29 Sozou solved the unsteady Stokes equations via

Laplace transforms, although only few numerical values for the deformation

throughout time were reported, all of which suggest a monotonic development

towards the steady-state (i.e., no overshoot). Our work re-examines the tran-

sient deformation of a drop under a uniform DC field. The technical approach

accounting for fluid inertia via the unsteady Stokes equations is analogous

to Sozou.29 However, unlike Sozou, we consider the electric field to not be

established instantaneously, in which case the charging of the interface must

be accounted for. Two recent analytical works that have accounted for finite

electrical relaxation times are those of Xu30 and Zhang et al.31 Zhang et al.

employed prolate spherical coordinates to describe the large unsteady defor-

mation of a weakly conductive droplet, while Xu solved for the interfacial flow

field in the small-deformation regime for a leaky dielectric drop. However,
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both of these studies neglect fluid inertia. Therefore, unlike Sozou,29 Xu,30

and Zhang et al.,31 we consider the influence of both charge relaxation and

momentum diffusion.21 The ratio of charge relaxation to momentum diffusion

time scales may acquire an O(1) number in practice, as discussed by Sav-

ille;14,15 we label the ratio of these time scales as Sa. The parameters Oh and

Sa dictate the transient deformation; the former determines the appearance

(or absence) of an overshoot, and the latter may provide a prolate-oblate shape

transition preceding the overshoot. Asymptotic approximations for the defor-

mation at early and late times are derived, which are bridged by the numerical

inversion of an analytical result for the deformation obtained in the Laplace

domain. Finally, we discuss under which conditions the neglect of transient

fluid inertia and interfacial charging are valid.

4.2 Problem formulation and solution

A droplet is suspended in a weakly conductive medium with differing vis-

cosity, permittivity, and resistivity (figure 4.1). A uniform DC electric field

is suddenly imposed around the drop, which causes it to deform due to the

mismatch in electrical permittivity and resistivity between the two phases.

We consider a slight spheroidal deformation of the surface (small capillary

number). This permits treatment of the drop as spherical during the imple-

mentation of boundary conditions,19 and ultimately results in Taylor’s expres-

sion (4.1) once the steady-state is reached. Hence, spherical coordinates are

employed, and the symmetry axis is taken along the applied field.
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Figure 4.1: Definition sketch for electrohydrodynamic drop deformation. Pro-

late droplet of radius a, viscosity µi, permittivity εi, and resistivity χi sus-

pended in a medium with viscosity, permittivity, and resistivity µo, εo, and

χo, respectively. The upper half depicts electric field lines, while the lower half

displays fluid streamlines. Both are symmetric with respect to the equator of

the drop (θ = π/2), and are also axisymmetric about the applied field. For

clarity, field lines are omitted from the top half of the drop. The major and

minor semi-axes r∗1 and r∗2 are also shown. Here, r∗ denotes the position vec-

tor, while ez and θ represent a unit vector in the direction along the applied

field and the polar angle, respectively.

The electric field is expressed as the gradient of a scalar electrostatic poten-

tial φ∗. Due to the negligible amount of net free charge density, the potential

satisfies Laplace’s equation inside and outside of the droplet,

∇∗2φ∗i,o = 0. (4.4)

The inner potential φ∗i is bounded at the origin, and the outer field −∇∗φ∗o
approaches the applied field E∞ez at large distances from the drop. The

20



boundary conditions at the surface of the droplet r∗ =
√
r∗ · r∗ = a are:

φ∗i = φ∗o (4.5)

and

[−ε∇∗φ∗ · n] = q∗(t∗, θ), (4.6)

respectively, where the square brackets in (4.6) denote a difference between

the outer and inner quantities, and n is a normal vector which points in the

positive (outwards) radial direction. Equation (4.5) represents the continuity

of potential, while (4.6) accounts for a surface charge density q∗(t∗, θ) that

causes a jump in the electric displacement. Since q∗(t∗, θ) is an unknown

time-dependent quantity, we seek an additional equation describing the Ohmic

transport of charge to the interface, which may be expressed as14,15

[
1

χ
∇∗φ∗ · n

]
=
∂q∗

∂t∗
, (4.7)

where we have neglected surface charge convection30,31 (see Appendix B for

justification). Taking the Laplace transform of (4.6) and (4.7), eliminating the

transform of q∗(t∗, θ), and imposing an initially uncharged interface, q∗(0, θ) =

0, provides the more useful boundary condition

∂φ̃∗i
∂r∗

(1 + Sai τm,i s
∗) =

∂φ̃∗o
∂r∗

(
1

R
+ Sai S τm,i s

∗
)
, (4.8)

where φ̃∗i,o(r
∗, θ, s∗) represents the Laplace transform of φ∗i,o(r

∗, θ, t∗), i.e., φ̃∗i,o =∫∞
0
e−s

∗t∗φ∗i,o dt
∗. Here, Sai = εiχiνi/a

2 = τe,i/τm,i is a dimensionless quantity

introduced by Saville,15 νi = µi/ρi is the kinematic viscosity of the droplet,

and τe,i = εiχi and τm,i = a2/νi represent the characteristic time scales for

charge relaxation and diffusion of momentum within the drop, respectively.
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The retainment of the terms that multiply Sai in (4.8) indicates that the

electrical relaxation time may take on finite values. That is, the electric field

is not established instantaneously, and the surface charge q∗(t∗, θ) accumulates

at the interface to give rise to tangential electrical stresses. The remaining

steps to solve for the potentials are implemented in the Laplace domain and

are presented in Appendix A. After inversion back to the time domain, the

tangential and radial jump in electrical stress at the interface are given by

[τ ∗e · n]θ =
εiE

2
∞

(R + 2)2(2S + 1)

[
9(RS − 1)

(
e
− R+2
SaiR(2S+1)

t∗
τm,i − 1

)
×
(

(RS − 1)e
− R+2
SaiR(2S+1)

t∗
τm,i + 2S + 1

)]
sin θ cos θ (4.9)

and

[τ ∗e · n]r = − 9 εiE
2
∞

2(R + 2)2(2S + 1)2

[
− 1

2
(RS − 1)2

(
(5S − 2) cos 2θ + 3S

)
e
− 2R+4
SaiR(2S+1)

t∗
τm,i

+2(2S + 1)(RS − 1)
(

(2RS + 1) cos2 θ + (S − 1) sin2 θ
)
e
− R+2
SaiR(2S+1)

t∗
τm,i

+(2S + 1)2
(
− (R2S − 1) cos2 θ + (S − 1) sin2 θ

)]
, (4.10)

respectively, where the subscripts r and θ represent the normal and tangential

components of the jump in stress, τ ∗e = ε
(
∇∗φ∗∇∗φ∗ − 1

2
∇∗φ∗ · ∇∗φ∗ I

)
is the

Maxwell stress tensor, and I is the identity tensor.

The electrical shear stress (4.9) is balanced by viscous forces for the drop

to remain in mechanical equilibrium; this entails fluid flow. The Navier-Stokes

equations (NSE) inside and outside of the droplet are

ρi,o

(
∂u∗i,o
∂t∗

+ u∗i,o · ∇∗u∗i,o
)

= −∇∗p∗i,o + µi,o∇∗2u∗i,o and ∇∗ · u∗i,o = 0,

(4.11)
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where ρi,o, u
∗
i,o, and p∗i,o denote the density, velocity, and pressure within the

drop and medium, as appropriate. The two phases are assumed to be density-

matched (ρi = ρo) so that sedimentation is negligible. Balancing electrical

stress εiE
2
∞ and viscous stress µiU/a inside the drop yields the velocity scale

U ∼ εiE
2
∞a/µi. The pressure is normalized by the inner electrical stress εiE

2
∞.

We non-dimensionalize time with the characteristic time for momentum dif-

fusion within the droplet τm,i = a2/νi, and distance with the radius of the

undeformed drop a. These scalings lead to the dimensionless NSE,

∂ui,o
∂t

+Rei ui,o · ∇ui,o = −∇pi,o + α∇2ui,o and ∇ · ui,o = 0, (4.12)

where the lack of superscripts represents a dimensionless variable, and the

constant α = 1 for the inner phase, while α = M = µo/µi for the outer phase.

Here, Rei = ρi Ua /µi = ρiεiE
2
∞a

2/µ2
i is the Reynolds number based on the

drop. As the model to be derived will describe low-Reynolds-number flows, we

neglect the convective inertial term in (4.12). Thus, we obtain the unsteady

Stokes equations for both fluids,

∂ui,o
∂t

= −∇pi,o + α∇2ui,o and ∇ · ui,o = 0. (4.13)

Note that normalizing time by τm,i automatically preserves the transient in-

ertial contribution in (4.13). Symmetry permits the use of a stream function

ψ that automatically satisfies the incompressibility constraint in (4.13), such

that32

ui,o = ∇∧
[
ψi,o(r, θ, t)eφ

r sin θ

]
, (4.14)

where eφ is a unit vector in the azimuthal direction. To solve for ψi,o, we

choose the angular form needed to balance the tangential electrical stress in
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(4.9), which is

ψi,o(r, θ, t) = f1(i,o)(r, t) sin2 θ cos θ. (4.15)

Similarly, to match the normal electrical stress (4.10), the pressure takes the

form

pi,o(r, θ, t) = f2(i,o)(r, t)(1− 3 cos2 θ). (4.16)

Since the flow is unsteady, the functions f1(i,o)(r, t) and f2(i,o)(r, t) depend on

distance r and time t. There are four unknown functions in (4.15) and (4.16):

f1,i(r, t), f1,o(r, t), f2,i(r, t), and f2,o(r, t); the radial and angular components of

(4.13) provide four equations, yielding a well-posed system. Taking the Laplace

transform of (4.13) – (4.16), substituting (4.14) into (4.13), using (4.15) and

(4.16), and eliminating the transform of f2(i,o) leads to the following ordinary

differential equation (ODE):

αr4d
4f̃1(i,o)(r, s)

dr4
−(sr4+12αr2)

d2f̃1(i,o)(r, s)

dr2
+24αr

df̃1(i,o)(r, s)

dr
+6sr2f̃1(i,o)(r, s) = 0,

(4.17)

where f̃1(i,o)(r, s) indicates the dimensionless Laplace transform of f1(i,o)(r, t).

As f̃2(i,o)(r, s) was eliminated to arrive at (4.17), an expression for it may be

written in terms of f̃1(i,o)(r, s) as

f̃2(i,o)(r, s) =
s

6

df̃1(i,o)(r, s)

dr
+
α

6

[
−d

3f̃1(i,o)(r, s)

dr3
+

6

r2

df̃1(i,o)(r, s)

dr
− 12

r3
f̃1(i,o)(r, s)

]
.

(4.18)

The general solution to (4.17) is

f̃1(i,o)(r, s) = c(1,5) r
3 +

c(2,6)

r2
+ c(3,7) e

r
√

s
α

(
s− 3

√
αs

r
+

3α

r2

)
+c(4,8) e

−r
√

s
α

(
s+

3
√
αs

r
+

3α

r2

)
, (4.19)
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where c1 through c8 are functions of s. To reiterate, this expression applies

for both the droplet and medium, thereby yielding a total of eight integration

constants.

We now proceed to find solutions for f̃1(i,o) that are well-behaved through-

out the domain of interest. First, the stream function ψi(r, θ, t) must vanish

at the origin r = 0. Additionally, ψo(r, θ, t) must approach a spatially inde-

pendent (yet possibly time-dependent) value as r →∞. The implementation

of these conditions is discussed in detail in Appendix C, which eliminates four

of the integration constants in (4.19). The solution of (4.19) inside of the drop

is then

f̃1,i(r, s) = C1r
3 + C2

√
r I 5

2
(r
√
s), (4.20)

and outside of the droplet,

f̃1,o(r, s) =
C3

r2
+ C4

√
r K 5

2

(
r

√
s

M

)
, (4.21)

where

I 5
2
(x) =

1√
2πx

[
ex
(

1− 3

x
+

3

x2

)
− e−x

(
1 +

3

x
+

3

x2

)]
(4.22)

and

K 5
2
(x) =

√
π

2x
e−x

(
1 +

3

x
+

3

x2

)
(4.23)

are modified Bessel functions of order 5
2
, C1 = c1, C2 = c3 s

5
4

√
2π, C3 = c6,

and C4 = c8 s
5
4

√
2
/
M

1
4
√
π. Note that (4.20) and (4.21) were presented in

dimensional form by Sozou29 (equations (19) and (20) in that paper). To

determine C1−C4, the subsequent interfacial boundary conditions are applied

at r = 1:
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uθ,i = uθ,o, (4.24)

ur,i = ur,o =
1

Rei

∂ξ

∂t
, (4.25)

[τ e · n]θ + [τ h · n]θ = 0, (4.26)

and

[τ e · n]r + [τ h · n]r =
1

Cai
∇ · n, (4.27)

where ur(i,o) and uθ(i,o) denote the radial and tangential velocities, respectively,

and τ h = −pI+µ
[
∇u+ (∇u)T

]
is the hydrodynamic stress tensor. Equation

(4.24) represents the no-slip condition, while (4.25) represents the no-flux con-

dition, with ξ(t, θ) as the instantaneous material surface of the drop. Finally,

the balance between electrical and hydrodynamic shear stresses is imposed

through (4.26), while (4.27) balances the jump in electrical and hydrodynamic

normal stresses with the interfacial stress that the droplet exerts to resist de-

viation from a spherical shape. At small field strengths, Cai � 1, the drop is

only slightly distorted. Hence, we may write ξ(t, θ) = 1+ 2
3
D(t)(3 cos2 θ−1),19

where D(t) is a time-dependent deformation. Furthermore, we let

D(t) =
Φ(t)

8
Cai, (4.28)

where Φ(t) is a time-dependent discriminating parameter, whose sign will de-

termine the droplet configuration (prolate versus oblate) at all times, and may

be computed by collecting the terms that multiply cos2 θ in the normal stress

balance (4.27). This assumes that the only mode of deformation that evolves

is that which results in Taylor’s steady deformation (4.1) as t→∞. That is,

we do not allow for higher order modes that grow and then ultimately decay

to zero as t → ∞. Inserting the expression for the surface ξ(t, θ) and (4.28)
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into (4.25) yields

ur,i = ur,o =
1

12

Cai
Rei

dΦ(t)

dt
(3 cos2 θ − 1), (4.29)

where the ratio Cai/Rei is the square of an Ohnesorge number based on the

drop properties Ohi = µi/
√
γaρi (recall ρi = ρo in our analysis). This expres-

sion may be recast as Ohi =
√
τc,i/τm,i, where τc,i = µia/γ is a characteristic

time scale for droplet relaxation due to capillary forces, which is related to the

capillary time scale τ in (4.3) of Esmaeeli and Sharifi.19 As Ohi → ∞, this

capillary time-scale dictates the dynamics as the flow is established in a quasi-

steady manner. The Laplace transforms of (4.15) and (4.16) (using (4.14))

are substituted into the transforms of (4.24), (4.26), and (4.29) to obtain the

following expressions that relate the unknown functions f̃1,i(r, s) and f̃1,o(r, s)

((4.20) and (4.21)):

df̃1,i(1, s)

dr
=
df̃1,o(1, s)

dr
, (4.30)

f̃1,i(1, s) = f̃1,o(1, s) =
Oh2

i

12
s Φ̃(s), (4.31)

and

d2f̃1,i(1, s)

dr2
− 2

df̃1,i(1, s)

dr
+ 6f̃1,i(1, s)−M

[
d2f̃1,o(1, s)

dr2
− 2

df̃1,o(1, s)

dr
+ 6f̃1,o(1, s)

]

− 9(RS − 1)(SaiRSs+ 2)

s
[
SaiRs(2S + 1) +R + 2

][
SaiRs(2S + 1) + 2R + 4

] = 0, (4.32)
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where

Φ̃(s) = −6
df̃1,i(1, s)

dr
+ 12f̃1,i(1, s)−M

[
−6

df̃1,o(1, s)

dr
+ 12f̃1,o(1, s)

]

−3

[
s

6

df̃1,i(1, s)

dr
+

1

6

(
−d

3f̃1,i(1, s)

dr3
+ 6

df̃1,i(1, s)

dr
− 12f̃1,i(1, s)

)]

+3

[
s

6

df̃1,o(1, s)

dr
+
M

6

(
−d

3f̃1,o(1, s)

dr3
+ 6

df̃1,o(1, s)

dr
− 12f̃1,o(1, s)

)]
+

9

2s(2S + 1)
[
SaiRs(2S + 1) +R + 2

][
SaiRs(2S + 1) + 2R + 4

]
×
[
S

(
R2

(
Sais

(
Sais(2S + 1)(S − 1)2 + S(S + 2) + 3

)
+ 4S + 2

)

+2SaiRs
(
S(3S − 5)− 1

)
+ 4S − 6

)
− 4

]
, (4.33)

and Φ̃(s) indicates the Laplace transform of the discriminating function Φ(t).

Substituting f̃1,i and f̃1,o from (4.20) and (4.21) indicates that the only un-

knowns in (4.30) – (4.33) are C1 − C4, which are solved for analytically.

4.3 Results

To obtain the time-dependent deformationD(t), the expressions for f1,i(1, t)

and f1,o(1, t) are required. We perform the necessary calculations in the

Laplace domain and solve for the unknown constants C1 − C4 in (4.20) and

(4.21). These constants are too lengthy to present here; however, Mathematica

files with expressions for C1−C4 are available upon request. It is then straight-

forward to calculate the Laplace transform of the deformation (4.28) through

the expression for Φ̃(s) in (4.33). The initial rest condition D(t = 0) = 0

is imposed, and the Laplace-space deformation D̃(s) is inverted numerically

via an open source Laplace-inversion program.33 The final expression for the

deformation in the Laplace domain is in Appendix D (A24). Validation of
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(A24) is presented in Appendix E. Expanding D̃(s) about s = 0 and s → ∞

offers useful insight into the physics at late and early times, respectively. An

expansion about s = 0 yields

D̃(s) =
DT

s
+ β + γ Cai

√
s+O(s

3
2 ), (4.34)

where the first term is Taylor’s steady deformation DT divided by s, and β

and γ are time-independent constants, which depend on the ratios S, M , and

R, and are presented in Appendix D. Inverting (4.34) gives

D(t) = DT + β δ(t)− γ Cai
2
√
π

1

t
3
2

+O

(
1

t
5
2

)
, (4.35)

where δ(t) is the Dirac-delta function centered at zero. Since (4.35) consid-

ers late times, the second term β δ(t) in this series may be discarded. Thus,

the drop approaches its steady deformation with a long-time (algebraic) tail,

scaling as t−
3
2 . This should be contrasted against (4.3), which neglects fluid

inertia and charge relaxation, and predicts that the steady deformation DT

is approached with an exponentially-decaying transient. Retaining transient

inertia predicts the long-time behavior presented in (4.35) – a slower approach

towards the steady deformation. The algebraic tail in (4.35) is reminiscent of

the problem of an initially stationary solid sphere in a fluid medium under a

suddenly imposed force.34 There, retaining linear inertia in the momentum

balance predicts an approach towards the steady-state particle velocity with

an algebraic tail scaling as t−
1
2 ,34 whereas the quasi-steady Stokes equations

again suggest an exponentially decaying transient at large times.
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An expansion of D̃(s) about s→∞ yields

D̃(s) = ε
Cai
Oh2

i

1

s3
+ η

Cai
Oh2

i

1

s
7
2

+O

(
1

s4

)
, (4.36)

where ε and η are constants listed in Appendix D. The inversion of (4.36)

shows that at small times,

D(t) = ε
1

2

Cai
Oh2

i

t2 + η
8

15
√
π

Cai
Oh2

i

t
5
2 +O(t3). (4.37)

A Taylor expansion of (4.3) gives DES = DT t/τ + O(t2) for t � 1. Clearly,

(4.37) depicts a slower deformation, an early-time lag, as it shows a t2 depen-

dence as opposed to a linear dependence in time. We now present results that

quantify the deformation D(t) at times that bridge the early and late-time

asymptotics presented previously.

A case in which the medium is much more viscous than the drop is con-

sidered first. Material properties as well as values for pertinent dimensionless

groups are listed in table 4.1. Many of these parameters were acquired from the

experimental work of other researchers, which considered a castor oil-silicone

oil system.18,35 The droplet radius was chosen within sizes normally gener-

ated in experiments,18 while the viscosities are reasonable values for oils. The

quantities S, M , and R yield a final oblate droplet configuration.

Phase εr 1/χ µ ρ a γ

(S/m) (Pa s) (kg/m3) (mm) (mN/m)

drop 3.0 1.2× 10−12 0.0484 960

4.0 3.2

medium 5.3 4.5× 10−11 0.4840 960
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Phase Ca Re Oh Sa S M R

drop 0.001 0.005 0.4 68.0

1.8 10.0 0.03

medium 0.002 9.3× 10−5 4.4 32.8

Table 4.1: First set of parameters for a droplet suspended in a weakly conduc-

tive medium. The top section of the table displays properties for the drop and

medium, while the bottom section lists pertinent dimensionless groups. Here,

εr is the relative permittivity.

Note that Rei and Reo, and Cai and Cao are small compared to unity,

which justifies the use of the unsteady Stokes equations and a first-order ex-

pansion of the droplet surface about equilibrium. The Ohnesorge number Oh

of the outer phase is greater than unity, while the converse holds for the drop.

Recall that Ohi appeared naturally within the scaled interfacial boundary con-

dition (4.29) as Oh2
i = Cai/Rei = µ2

i /γaρi. The second equality defines Ohi as

a material property, which can acquire a wide range of values in experimental

systems. One can, in principle, always decrease the electric field strength E∞

to comply with Rei,o � 1 and Cai,o � 1, as these are proportional to E2
∞,

while Ohi,o takes on O(1) (or less) values, independent of E∞. In fact, Oh < 1

is readily achievable in experiments.36,37 The dimensionless group that mea-

sures the relative time scales of charge to momentum relaxation, Sa, is much

greater than unity for both phases. A comparison between the deformation

calculated from the inversion of the exact expression (A24) in Appendix D and

the deformation obtained by employing the quasi-steady Stokes equations with

instantaneous charging of the interface19 (4.3) is shown in figure 4.2(a). The

deformation profile D(t) from the inversion of (A24) is negative (prolate) when

normalized by DT for tνi/a
2 . 1,21 crosses the origin at tνi/a

2 ≈ 1.12, and
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then monotonically reaches the steady-state oblate deformation (4.1). The de-

velopment of this curve also displays a significant lag compared to (4.3), which

is caused by transient charging of the interface, and, to a lesser extent, diffu-

sion of momentum throughout both fluids. The numerical inversion of (A24)

is shown together with the asymptotic expansions about t = 0 and t → ∞,

(4.35) and (4.37), respectively, in figure 4.2(b), showing good agreement at

late and early times.
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Figure 4.2: (a) Normalized transient deformation of a droplet for parameters

listed in table 4.1. The solid curve (red online) is the inversion of (A24),

which considers transient inertia and charge relaxation of both fluids, while

the dashed curve (blue online) corresponds to (4.3) from Esmaeeli and Sharifi’s

work,19 which assumes quasi-steady Stokes flow and instantaneous interfacial

charging. The solid curve initially acquires negative ordinate values, which

represents a prolate configuration. After this, the deformation profile crosses

the origin and monotonically arrives at (4.1), substantially lagging (4.3). (b)

Inversion of (A24) together with early- and late-time asymptotics (4.35) and

(4.37), respectively.

Based on the literature reviewed in the Introduction, one may expect to
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observe the retainment of transient inertia to result in an overshoot in the

deformation profile. Recall the definition of the Ohnesorge number Ohi,o =√
τc(i,o)/τm(i,o), where τc(i,o) = µi,oa/γ and τm(i,o) = a2/νi,o are the capillary and

viscous relaxation time scales. If Oh� 1, the time scale for droplet relaxation

τc is much greater than the time scale for diffusion of momentum τm, which

implies that τc will dominate over the former; the droplet quickly establishes

a quasi-steady flow, and the dynamics are dictated by interface deformation.

On the other hand, if Oh � 1, then τm will dominate, and the dynamics are

controlled by the inertia of both fluids. Indeed, it is unsurprising that the

results in figure 4.2 do not display an overshoot: although Ohi < 1, we have

Oho > 1/Ohi, and τc,o is dominant over the inner and outer momentum dif-

fusion time scales. However, this does not mean that the capillary time scale

τc,o determines the transient behavior of the system. As stated previously,

Sai � 1 and Sao � 1, which represents the dominance of the charge relax-

ation time τe = εχ over τm = a2/ν both inside and outside of the drop. The

ratio of electrical to droplet relaxation time scales τe/τc is greater than unity

for both phases, which implies that the dynamics are controlled by the trans-

port of charge to the interface. At early times tνi/a
2 . 1, insufficient charge

has reached the surface of the droplet to develop an appreciable tangential

electrical stress. Thus, the drop behaves as a perfect dielectric, and adapts

a prolate configuration. Eventually, sufficient charge arrives at the interface,

and the droplet switches towards an oblate configuration (D/DT crosses the

origin in 4.2(a)). A similar explanation was offered by Supeene et al.21 for

their numerical calculations.

Following this line of reasoning, we move to a different model system, in

which the medium is less viscous than the drop. The parameters are listed
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in table 4.2. Note that the outer fluid viscosity and interfacial tension have

changed relative to the previous system (table 4.1), the latter of which was

slightly modified to decrease the Ohnesorge number of both fluids while still

maintaining the feasibility of such a system in an experiment.18 Finally, the

conductivities of both oils were increased by two orders of magnitude in order

to minimize the influence of charge relaxation and highlight the impact of fluid

inertia on the system. Note, these conductivities are within the range of ex-

perimental values that characterize leaky dielectric liquids (see Fernández38).

Phase εr 1/χ µ ρ a γ

(S/m) (Pa s) (kg/m3) (mm) (mN/m)

drop 3.0 1.2× 10−10 0.0484 960

4.0 4.8

medium 5.3 4.5× 10−9 0.0290 960

Phase Ca Re Oh Sa S M R

drop 0.007 0.05 0.4 0.68

1.8 0.6 0.03

medium 0.012 0.26 0.2 0.02

Table 4.2: Second set of parameters for a droplet suspended in a weakly con-

ductive medium. The organization is the same as in table 4.1.

The Ohnesorge number is now less than unity in both fluids, while Rei,o

and Cai,o are maintained at values low enough to validate the neglect of the

non-linear inertial term and the small-deformation assumption. A compari-

son between the deformation obtained by employing the unsteady (A24) and

quasi-steady (4.3) Stokes equations is displayed in figure 4.3(a). The lag in
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the transient profile now begins essentially instantaneously at t = 0, although

the dip towards a prolate conformation is not as pronounced as that in fig-

ure 4.2(a). Similar to figure 4.2(a), however, a lag is observed for the curve

generated from the numerical inversion of (A24). In fact, it takes this curve

roughly an order of magnitude longer to reach a deformation D(t) ≈ 0.1 as

opposed to the curve generated from (4.3). This lag at early times is proceeded

by an overshoot in the deformation at intermediate times, which is followed

by an algebraic tail before settling towards Taylor’s steady value. Following

the previous analysis, Ohi,o < 1 together with Sai,o < 1 now represents quick

charging of the interface and a dominant momentum diffusion time scale τm(i,o).

This contributes towards the less pronounced initial prolate conformation as

well as the overshoot and algebraic tail. A comparison between the numerical

inversion of (A24) and the asymptotic expansions (4.35) and (4.37) is shown

in figure 4.3(b), with good agreement observed once again.
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Figure 4.3: (a) Normalized transient deformation of a droplet for parameters

listed in table 4.2. The solid curve (red online) is the inversion of (A24),

which considers transient inertia and charge relaxation of both fluids, while

the dashed curve (blue online) corresponds to (4.3) from Esmaeeli and Sharifi’s

work,19 which assumes quasi-steady Stokes flow and instantaneous interfacial

charging. The solid curve immediately reaches negative D/DT values, which

represents a prolate configuration. After this, the deformation profile crosses

the origin at tνi/a
2 ≈ 0.02 while lagging (4.3), and overshoots before arriving

at steady-state (4.1) with an algebraic tail. (b) Inversion of (A24) together

with early- and late-time asymptotics (4.35) and (4.37), respectively.

Transient fluid inertia also affects the development of the flow inside and

outside the drop. Esmaeeli and Sharifi19 present open fluid streamlines that

cross the surface of the droplet at early times (figures 2 and 5 in that paper).

These streamlines evolve towards the outside of the drop, and four inner vor-

tices emerge, yielding a steady configuration. Figure 4.4 presents streamlines

for the parameters presented in table 4.2. The sequence (a) – (d) presents

the development towards a steady flow in chronological order. As opposed to

Esmaeeli and Sharifi, we observe that at first, four vortices already promote re-
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circulation inside of the drop, while closed streamlines cross the surface (figure

4.4(a)). These vortices then disappear, and the fluid streamlines migrate out-

wards (figure 4.4(b)). While the streamlines are moving towards the outside of

the surface, the four inner vortices reappear (figure 4.4(c)). The closed outer

streamlines finally extend from the surface towards infinity, thereby appearing

as open (figure 4.4(d)). This is consistent with figure 1 of Sozou,29 although

Sozou presented separately the streamlines due to the normal and tangential

interfacial stresses. The illustrations of Esmaeeli and Sharifi are not incor-

rect, but rather reflect their neglect of charge relaxation and transient inertia,

which is valid only for Ohi,o � 1 and Sai,o � 1. As mentioned previously,

these restrictions are often not valid for experimental systems.
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Figure 4.4: Fluid streamlines inside and outside of a droplet during the devel-

opment of an electrohydrodynamic flow and drop deformation for parameters

listed in table 4.2. The subfigures (a) – (d) are presented in chronological

order, and the droplet surface is also shown. A steady flow pattern is achieved

when tνi/a
2 ∼ O(100).

4.4 Discussion

We have analyzed the deformation of a droplet suspended in a medium

with a different permittivity, resistivity, and viscosity, under sudden exposure

to a DC electric field. Both fluids were treated as leaky dielectrics, and the

development of the deformation and flow were examined throughout time, as-
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suming that the latter develops according to the unsteady Stokes equations.

The novelty of our work is in the analytical study of the influence of linear

fluid inertia and interfacial charging, whereas existing theoretical works exclu-

sively consider the former30,31 or the latter.29 The presence or absence of an

overshoot in the deformation is dictated by the value of an Ohnesorge number,

which is the ratio of capillary to momentum diffusion time scales. Additionally,

given that the final configuration of the drop is oblate, the extent of adaptation

of an initial prolate configuration is controlled by the dimensionless quantity

Sa, representing a ratio of the time scales for electrical to viscous relaxation.

Consequently, Ohi,o and Sai,o provide three time scales of interest for each

phase: capillary τc(i,o) = µi,oa/γ, diffusion of momentum τm(i,o) = a2/νi,o, and

charge relaxation τe(i,o) = εi,oχi,o. The largest of these determines how the de-

formation evolves throughout time towards Taylor’s steady-state (4.1). Note

that non-monotonic evolutions towards a steady-state are a generic feature of

flows governed by multiple time scales, and have been observed in thermocap-

illary motion of droplets39 and inertial drop deformation in shear flows,40 for

example.

A value of Oh � 1 and Sa � 1 for either of the two phases represents

a dominant τc(i,o), and provides results which do not differ qualitatively from

(4.3), which assumes that inertia is negligible and charging of the droplet sur-

face is instantaneous. If Ohi,o is fixed and Sa for either phase is increased

such that τe(i,o) is dominant for a final oblate conformation, an increasingly

pronounced transition towards an initial prolate shape indicates that at early

times the droplet is behaving as a perfect dielectric.21 Similar to a capacitor,

after a surface charge q(t, θ) accumulates at the interface, the transition to-

wards the oblate deformation takes place, and the development towards the
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expected steady deformation substantially lags (4.3). A slow transient flow

development was reported by Xu,30 who observed the motion of fluorescent

particles inside a silicone drop suspended in castor oil, and attributed this be-

havior to a finite electrical relaxation time scale and charge convection effects,

the former of which was accounted for in a similar manner to (4.7). Note that

for a final prolate configuration, no such transition to oblate would occur.

As Oh and Sa for either phase are decreased to make τm(i,o) dominant, an

overshoot manifests. This overshoot is preceded by a transient profile which

also lags (4.3). After this, an algebraic tail describes the settlement towards

the steady deformation. Note that our constraint of creeping flow Rei,o � 1

renders it difficult to observe a sustained oscillatory behavior towards steady-

state, as observed in Supeene et al.21 Supeene et al. considered finite Reynolds

numbers, which contribute towards the appearance of a more pronounced os-

cillatory behavior. As shown in the series expansions in (4.35) and (4.37), the

deformation is mathematically different from (4.3) at both early and late times.

However, the series coefficients in (4.35) and (4.37) adjust themselves to pro-

vide a similar qualitative appearance as (4.3) when Ohi,o →∞ and Sai,o → 0.

The quasi-steady assumption and neglect of interfacial charging are clearly

inaccurate outside of this regime, which is experimentally relevant when con-

sidering a leaky dielectric system. For example, low Ohnesorge numbers are

normally encountered for liquid jets,41,42 and experimental studies36,37 on oil-

water systems have attained Ohnesorge numbers as low as O(10−2), which

is expected due to the low viscosity of water and its high interfacial tension

against oil. It has been shown that conductive droplets suspended in dielec-

tric media (such as a drop of deionized water in silicone oil) are reasonably

well approximated by electrostatic theory.16,43 Although we have developed
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a model to describe an electrohydrodynamic phenomenon, the impact of in-

ertia should still be probed through varying Ohi,o, as overshoots have been

previously presented in the absence of steady recirculatory flows.23,24 Such a

system, however, may provide additional complexities (e.g., density-matching).

Transient, or linear, inertia alone is enough to cause an overshoot in the de-

formation profile. Despite this, one may envision that convective inertia (finite

Re) in (4.12) will result in additional dynamics not captured by our model.

We acknowledge the work of others which has included a complete momentum

balance;21,22,24 however, directly comparing the presence and absence of non-

linear inertia at various Ohi,o has not yet been investigated. Few experiments

regarding transient drop deformation have been conducted,25,26 all of which

have suggested a monotonic deformation similar to (4.3). As future work, we

aim to experimentally explore the effect of varying Oh and Sa for a system of

two fluids. The overshoot and shape transitions may be challenging to capture

due to their relatively short-lived duration and small magnitude. On the other

hand, capturing the lag at intermediate times for Ohi,o < 1 or Sai,o > 1 should

be more experimentally feasible, as the difference between the two curves in

figures 4.2(a) and 4.3(a) can be an order of magnitude. Finally, the significant

effect of inertia and finite electrical relaxation times highlighted in our work

serves as motivation to consider systems such as suspended vesicles.4 Despite

the complexity compared with a fluid-fluid interface, our results serve as an

incentive to examine the influence of inertia and charge relaxation on transient

electrohydrodynamic vesicle deformation.
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4.5 Conclusions

We have shown that linear inertia or charge relaxation can lead to non-

monotonic transient droplet deformation under a uniform DC electric field.

The importance of the former is characterized by the ratio of capillary to mo-

mentum diffusion time scales, the Ohnesorge number Oh; the importance of

the latter is characterized by the ratio of charge relaxation to momentum dif-

fusion time scales, Sa. Depending on the values of these dimensionless groups,

one may obtain a prolate-oblate shape transition or an overshoot in the defor-

mation, or a combination of the two (or neither). Importantly, experimental

systems exist in which the values of Oh and Sa are such that transient inertia

and interfacial charging cannot be neglected.

Appendix A: calculation of the electrical stresses

We begin with the Laplace transform of the axisymmetric solutions to

Laplace’s equation (4.4) for the potential φ∗i,o in spherical coordinates that

contain the angular form needed to satisfy the far-field condition −∇∗φ∗o →

E∞ez. These are

φ̃∗i (r
∗, θ, s∗) =

( c9

r∗2
+ c10r

∗
)

cos θ (A1)

and

φ̃∗o(r
∗, θ, s∗) =

(c11

r∗2
+ c12r

∗
)

cos θ, (A2)

where c9 through c12 are dependent on s∗. The Laplace transform of φ∗i and

φ∗o is taken for an easier implementation of the surface boundary conditions.

Forcing φ̃∗i to remain bounded at the origin and applying −∇∗φ̃∗o → E∞ez/s
∗

as r∗ → ∞ together with (4.8) and the Laplace transform of (4.5) provides
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the following values for c9 − c12:

c9 = 0, (A3)

c10 = −
(

3E∞
τm,i s∗

)(
SaiRS τm,i s

∗ + 1

SaiR τm,i s∗(2S + 1) +R + 2

)
, (A4)

c11 = a3

(
c10 +

E∞
τm,i s∗

)
, (A5)

and

c12 = − E∞
τm,i s∗

, (A6)

from which the electric fields throughout both phases may be readily calcu-

lated. The expressions for these in the time domain are

E∗i =
3E∞

(R + 2)(2S + 1)

(
(RS − 1)e

− R+2
SaiR(2S+1)

t∗
τm,i + 2S + 1

)
ez, (A7)

and

E∗o =
E∞

(R + 2)(2S + 1)

( a
r∗

)3
[
− 6(RS − 1)e

− R+2
SaiR(2S+1)

t∗
τm,i

+(2S + 1)

((
r∗

a

)3

(R + 2) + 2(R− 1)

)]
cos θ er

− E∞
(R + 2)(2S + 1)

( a
r∗

)3
[

3(RS − 1)e
− R+2
SaiR(2S+1)

t∗
τm,i

+(2S + 1)

((
r∗

a

)3

(R + 2)−R + 1

)]
sin θ eθ, (A8)

where er and eθ are basis vectors in the radial and angular direction, respec-

tively. The electric fields are inverted back to the time domain to calculate the

electrical interfacial stresses, after which the Laplace transform is taken again

to arrive at (4.9) and (4.10). In addition, as q∗(t∗, θ) was eliminated to obtain
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(4.8), it may be calculated through (4.6), yielding

q∗(t∗, θ) = 3 εiE∞
RS − 1

R + 2

(
1− e−

R+2
SaiR(2S+1)

t∗
τm,i

)
cos θ. (A9)

The cos θ dependence indicates that the net charge on the droplet is identically

zero at all times during the charging.

Appendix B: scaling arguments to affirm the

use of (4.7)

The full dimensionless equation describing conservation of charge at the

surface of the droplet may be written as

Sai
∂q

∂t
−ReE,i

(
u · ∇sq − qn · (n · ∇)u

)
= −∂φi

∂r
+R

∂φo
∂r

, (A10)

where ∇s = ∇ − n(n · ∇) denotes the surface gradient and ReE,i is the

electric Reynolds number14,30 based on the drop. The surface charge q(t, θ) has

been normalized by εiE∞, while the velocity u together with the differential

operators, ∇, ∇s, and ∂
∂r

have been made dimensionless as in main text. From

left to right, the two terms that multiply ReE,i represent convection of charge

along the boundary and a change in surface charge density due to dilation of

the interface.14,21 Here, ReE,i = εiχiU/a = τe,i/τf,i, where τf,i = a/U is a

characteristic flow time scale. After some manipulation, the electric Reynolds

number may be rewritten as ReE,i = CaiSai/Ohi. As an example, inserting

the dimensionless groups from table 4.2, we find that ReE,i ≈ 0.01 and ReE,o ≈

1 × 10−3, which permits the disregard of the terms that multiply the electric

Reynolds number. One can always decrease Cai by decreasing the electric field

E∞ to comply with the assumption behind (4.7).
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Appendix C: full solution of the ODE for f̃1(i,o)(r, s)

Recall the ODE for f̃1(i,o)(r, s) provided in (4.17). Given that this is a non-

constant coefficient differential equation, the Frobenius method is the most

intuitive approach towards a solution. Seeking a power series about r = 0 of

the form
∞∑
n=0

anr
n+α yields α = −2, 0, 3, and 5, and two exact solutions: 1/r2

and r3. There are two other series solutions about the same point of expan-

sion; however, we resort to another method to find the remaining two solutions.

Note that despite the regularity of the point r = 0, r →∞ is an irregular

singular point of (4.17). Hence, a convergent power-series solution about this

point is not guaranteed. Indeed, the only well behaved series solution about

r →∞ may be found via a change of variables r̄ = 1/r. This solution is r̄2 =

1/r2, which was found above. We therefore turn to the method of dominant

balance,44 which identifies the controlling factor of a solution near an irregular

singular point. To find this leading behavior, a substitution f̃1(i,o)(r, s) =

eS̃1(r,s) is inserted into (4.17). As an approximation, it is customary to neglect

all higher-order derivatives after making this substitution, and check if this

assumption was valid after a solution is obtained. The fourth order linear

differential equation is then exchanged for a first order nonlinear equation:

αr4

(
dS̃1(r, s)

dr

)4

− (sr4 + 12αr2)

(
dS̃1(r, s)

dr

)2

+ 24αr
dS̃1(r, s)

dr
+ 6sr2 = 0.

(A11)

As we are concerned with the behavior of a solution as r →∞, we only retain

the terms that are most significant in that limit, which yields

α

(
dS̃1(r, s)

dr

)4

− s
(
dS̃1(r, s)

dr

)2

= 0. (A12)
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The two solutions that are consistent with our assumptions are S̃1(r, s) =

−r√ s
α

and S̃1(r, s) = r
√

s
α

, which in turn determines the leading behavior of

f̃1(i,o)(r, s) as e−r
√

s
α and er

√
s
α . To find the two full solutions for f̃1(i,o), we

work with the former controlling factor e−r
√

s
α and perform the substitution

f̃1(i,o)(r, s) = Ṽ (r, s) e−r
√

s
α . After replacing this expression in (4.17), an ODE

is obtained for Ṽ (r, s) as

α
3
2 r3d

4Ṽ (r, s)

dr4
− 4αr3

√
s
d3Ṽ (r, s)

dr3
+ (5
√
αr3s− 12α

3
2 r)

d2Ṽ (r, s)

dr2
+ (−2r3s

3
2

+24αr
√
s+ 24α

3
2 )
dṼ (r, s)

dr
− (6
√
αrs+ 24α

√
s ) Ṽ (r, s) = 0. (A13)

Seeking a series expansion of the form
∞∑
n=0

anr
−n now allows the exact solution

Ṽ (r, s) = s+
3
√
αs

r
+

3α

r2
, (A14)

where the r0 coefficient s can take on any value, as long as consistency is

kept with the subsequent terms in (A14). This is because Ṽ will be used

to build an overall general solution. We now have another exact solution

for f̃1(i,o), which was found by analyzing the behavior of our equations far

away from the droplet. Following the same method, a similar substitution

f̃1(i,o)(r, s) = W̃ (r, s) er
√

s
α is made to find the fourth and final solution. The

expression for W̃ results in

W̃ (r, s) = s− 3
√
αs

r
+

3α

r2
. (A15)

Combining all of the solutions previously introduced provides (4.19), which we
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present separately for the inner and outer phases as

f̃1,i(r, s) = c1r
3 +

c2

r2
+ c3e

r
√
s

(
s− 3

√
s

r
+

3

r2

)
+ c4e

−r
√
s

(
s+

3
√
s

r
+

3

r2

)
,

(A16)

and

f̃1,o(r, s) = c5r
3+

c6

r2
+c7e

r
√

s
M

(
s− 3

√
Ms

r
+

3M

r2

)
+c8e

−r
√

s
M

(
s+

3
√
Ms

r
+

3M

r2

)
.

(A17)

Consequently, finding a simplified expression for f̃1,i that is non-divergent

at the origin first requires us to set c2 = 0. Besides this, a Maclaurin series

expansion is needed to determine the relationship between c3 and c4:

f̃1,i(r, s) = c1r
3 +

3α2(c3 + c4)

sr2
− 1

2
α (c3 + c4) +O(r2). (A18)

It now becomes clear that c3 = −c4 for f̃1,i to vanish at r = 0. Equation (A16)

then becomes

f̃1,i(r, s) = c1r
3 + c3

[
er
√
s

(
s− 3

√
s

r
+

3

r2

)
− e−r

√
s

(
s+

3
√
s

r
+

3

r2

)]
,

(A19)

which shows how the Bessel function I 5
2

appears in (4.20), where C1 = c1 and

C2 = c3 s
5
4

√
2π. Carrying out the analogous procedure to determine which

constants to discard for f̃1,o in (A17) is simpler in comparison to (A16). It is

clear that to avoid deviations as r → ∞, one must discard c5 and c7, which

yields

f̃1,o(r, s) =
c6

r2
+ c8 e

−r
√

s
M

(
s+

3
√
Ms

r
+

3M

r2

)
. (A20)
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Again, it is easy to see how the Bessel function K 5
2

appears in (4.21), where

C3 = c6 and C4 = c8 s
5
4

√
2
/
M

1
4
√
π.

Appendix D: constants in (4.35) and (4.37), and

expression for D̃(s)

The constants C1−C4 in (4.20) and (4.21) are dependent upon values for the

parameters s, S, M , R, Ohi, and Sai, and are too lengthy to list in a manner

that is convenient for the reader to interpret. As stated previously, we are

able to provide a Mathematica file which contains the analytical expressions

for these upon request. The constants γ, ε, and η presented in the asymptotic

expansions (4.35) and (4.37) are presented below:

γ =
9(16M + 19)(RS − 1)

400
√
M(M + 1)2(R + 2)2

, (A21)

ε =
27(S − 1)2S

10(2S + 1)2
, (A22)

and

η = − 27
√
M(S − 1)2S

2
(√

M + 1
)

(2S + 1)2
, (A23)

while the full analytical expression for the Laplace-space deformation D̃(s)

from which the expansions in (4.35) and (4.37) were generated reads
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D̃(s) =
[
27Cai(

√
s cosh(

√
s)(2(2S + 1)((s+ 15)((R(5R + 6) + 5)S − 16)M

3
2 +
√
s(s+ 15)

×((R(5R + 6) + 5)S − 16)M + (s((s+R(10R + (R− 2)s− 51) + 10)S + 31)− 30((R(R + 6)

+1)S − 8))
√
M −√s(30((R(R + 6) + 1)S − 8) + s((R(5R + 21) + 5)S − 31))) +RSSais

×(Rs(5(s+ 15)M
3
2 + 5

√
s(s+ 15)M + (s(s+ 10)− 30)

√
M − 5

√
s(s+ 6))(2S + 1)Sai(S − 1)2

+
√
M(6(s(s+ 10)− 30)S2 + 2(−3s2 + s+ 330)S + 31s+R(−(s(3s+ 92) + 390)S2 − 31Ss

+3s(s+ 10)− 30(8S + 3)) + 240) +M
3
2 (s+ 15)(30S2 − 62S +R(S(17S + 16) + 15)− 16)

+M
√
s(s+ 15)(30S2 − 62S +R(S(17S + 16) + 15)− 16) +

√
s(−30(s+ 6)S2 + 92Ss+ 660S

+31s−R(30(S(13S + 8) + 3) + s(S(47S + 31) + 15)) + 240))) + sinh(
√
s)(RSSais(Rs(−15

×(2s+ 5)M
3
2 − 15

√
s(2s+ 5)M − 5(s2 − 6)

√
M +

√
s(s(s+ 15) + 30))(2S + 1)Sai(S − 1)2

−3M
3
2 (2s+ 5)(30S2 − 62S +R(S(17S + 16) + 15)− 16)− 3M

√
s(2s+ 5)(30S2 − 62S +R

×(S(17S + 16) + 15)− 16) +
√
M(−5(6S2 − 4S + 1)s2 − 111(2S + 1)s+ 60(S − 4)(3S + 1)

+R(5(5S2 + S − 3)s2 + 111S(2S + 1)s+ 30(S(13S + 8) + 3))) +
√
s((2S(3S − 8)− 5)s2 + 3

×(2S(15S − 52)− 37)s+ 60(S − 4)(3S + 1) +R((S(7S + 5) + 3)s2 + 3(S(59S + 37) + 15)s

+30(S(13S + 8) + 3))))− 2(2S + 1)(3(2s+ 5)((R(5R + 6) + 5)S − 16)M
3
2 + 3

√
s(2s+ 5)

×((R(5R + 6) + 5)S − 16)M + (5(((R− 3)R + 1)S + 1)s2 − 111(RS − 1)s− 30((R(R + 6)

+1)S − 8))
√
M +

√
s(s(5s− ((s+ 15)R2 + 3(s+ 27)R + s+ 15)S + 111)− 30((R(R + 6) + 1)

×S − 8)))))
]
/
[
2s(2S + 1)(Rs(2S + 1)Sai +R + 2)(R(Sai(2Ss+ s) + 2) + 4)(Oh2

i s((48(−18M2

+M + 17)s
3
2 − 105(M − 1)s

5
2 − 585(M − 1)

√
Ms2 − 288(M − 1)

√
M(3M + 7)s− 720(M

−1)(3M + 2)
√
s− 720(M − 1)

√
M(3M + 2) + 5s

7
2 ) sinh(

√
s) +

√
s(25(M − 1)s

5
2 + 48(M

−1)(3M + 7)s
3
2 + 5

√
Ms3 + 105(M − 1)

√
Ms2 + 48(M − 1)

√
M(3M + 32)s+ 720(M − 1)

×(3M + 2)
√
s+ 720(M − 1)

√
M(3M + 2)) cosh(

√
s)) + 24((−15M

3
2 (2s+ 5)− 5

√
M(s2 − 6)

−15M
√
s(2s+ 5) +

√
s(s(s+ 15) + 30)) sinh(

√
s) +

√
s(5M

3
2 (s+ 15) + 5M

√
s(s+ 15) +

√
M

×(s(s+ 10)− 30)− 5
√
s(s+ 6)) cosh(

√
s)))

]
. (A24)
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Appendix E: comparison to previous work

To verify that our results approach those of Esmaeeli and Sharifi19 as the capillary
time scales τc(i,o) become dominant, we consider {Ohi = 0.4, Oho = 26.2} (for which
an overshoot is absent), and probe the influence of a varying electrical relaxation time
scale τe(i,o). Three curves corresponding to {Sai = 68.0, Sao = 197.0}, {Sai = 20.4,
Sao = 59.1}, and {Sai = 0, Sao = 0} are shown in figure 4.5. Our expression (A24)
becomes identical to the monotonic deformation profile of Esmaeeli and Sharifi (4.3) as
Sai,o → 0, i.e., as the charge relaxation becomes instantaneous.
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{Sai= 0, Sao= 0}

Esmaeeli and Sharifi (2011)

Figure 4.5: Normalized transient deformation of a droplet. The parameters are those

listed in table 4.1, with the exception of the viscosity ratio M = 60, which provides

{Ohi = 0.4, Oho = 26.2}, for which no overshoot is observed. The curves represent the

inversions of (A24), while the circles correspond to (4.3) from Esmaeeli and Sharifi.19

As expected, our results match those of Esmaeeli and Sharifi as Sai,o approaches zero.

Sozou29 only tabulated six values of deformation versus time in tables 1
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and 2, which suggest a monotonic transient deformation profile. Furthermore,

Sozou did not provide actual values for the permittivity S and resistivity R

ratios. Thus, direct comparison of our work to Sozou’s is difficult. However,

the parameters presented in tables 1 and 2 of Sozou29 yield {Ohi = 12.9,

Oho = 25.8}. For these values of the Ohnesorge number, our calculations

predict a monotonic deformation as well. In addition, recall that our stream

function in equations (4.20) and (4.21) matches Sozou’s solution ((19) and

(20) in that paper). Qualitative agreement is also observed in the streamline

pattern between our figure 4.4 and Sozou’s figure 1.
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5. Nonlinear

electrohydrodynamics of slightly

deformed oblate drops

5.1 Introduction

Taylor’s model13 predicts accurate values for the steady deformation at

small capillary numbers Cai,o.
16–18 Here, the double subscript i, o is imple-

mented to label a certain quantity for both the drop and medium, e.g. Cai,o

signifies Cai and Cao. The large capillary number regime has received com-

putational treatment to enable the prediction of larger, nonlinear, steady–

state deformations of isolated leaky dielectric drops21,45–50 as well as their

breakup.21,45–48 In this nonlinear regime, the stable drop shape need not

be spheroidal. Sherwood45 was the first to numerically calculate the pro-

late deformation of a weakly conducting drop subjected to a uniform DC

electric field. By implementing the boundary integral method to calculate

the electrostatic field and flow field, his work predicted the equilibrium drop

shapes and unstable configurations for creeping flow, i.e. Reynolds numbers

ReFlow(i,o) = ρi,oUa/µi,o → 0, where ρi,o denotes the density of either phase

and U is a characteristic flow strength. Additionally, the viscosity ratio was set
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to unity (M = 1). Lac and Homsy48 considered prolate and oblate conforma-

tions, and a differing viscosity between the two phases (M 6= 1). By perform-

ing a thorough investigation of the dimensionless parameter space spanned by

S = εi/εo, R = χi/χo, and M = µi/µo, they predicted various stable drop con-

figurations, as well as highly nonlinear (e.g. multi–lobed) shapes and breakup

modes. Their work also analyzed how a differing viscosity between the drop

and medium can either enhance stability or promote breakup. Both of these

works considered either steady–state deformations or breakup of drops under

high field strengths.

Lac and Homsy48 also compared simulation results against two sets of ex-

periments from Ha and Yang,51 which measured the steady deformation of a

castor oil drop immersed in silicone oil at varying electric capillary number

Cao. To calculate the interfacial tension γ, Lac and Homsy rescaled the capil-

lary number Cao corresponding to the experimental data of Ha and Yang to fit

the O(Ca2
o) weak–field perturbation theory of Ajayi,52 instead of the O(Cao)

theory developed by Taylor.13 This provided a numerically computed defor-

mation curve that matched the experiments for capillary numbers Cao . 0.2,

with some deviation observed at higher capillary numbers. Further rescal-

ing of the capillary number as well as a slight modification of the dimen-

sionless ratios S and R provided another computational result that yielded

a closer match to the experiments of Ha and Yang.51 Lac and Homsy con-

cluded that careful measurement of the system properties is imperative, and

that considering nonlinear effects such as interfacial charge convection may

be required to match experimental measurements in some cases. Feng47 and

Fernández49 have incorporated charge convection when calculating steady–

state deformations. Feng47 implemented a Galerkin finite–element method,
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while Fernández49 used a front–tracking/finite–volume method. Similar to

Lac and Homsy,48 Feng47 also emphasized the importance of accurate mea-

surement of physical properties, in particular the fluid conductivities (1/χi,o).

The work of Fernández49 assumes values for the conductivity of both phases

when comparing against the experimental measurements of Vizika and Sav-

ille.16 Furthermore, as stated by Feng,47 the experimental work of Torza

et al.,28 Vizika and Saville,16 and Tsukada et al.53 reports measurements for

the steady deformation as a function of E2
∞a without separately stating the

values for E∞ and a. This does not provide sufficient information to quantify

the effect of charge convection, which is reflected through the electric Reynolds

numbers Rei,o = εi,oχi,oU/a = E2
∞ε

2
i,o χi,o/µi,o,

14 where U ∼ εi,oE
2
∞a/µi,o is a

characteristic velocity scale, which may be expressed in terms of the magni-

tude of the field E∞ by balancing electrical and viscous stresses. This di-

mensionless number is also defined as a ratio of charge relaxation timescales

τe(i,o) = εi,oχi,o (a characteristic time for charge to reach the interface) to flow

timescale τf = a/U . We provide an in–depth discussion on this dimension-

less group and its implications for electrohydrodynamic drop deformation in

the following sections. The computational studies of Feng47 and Fernández49

concluded that surface charge convection suppresses steady–state oblate defor-

mations and strengthens steady–state prolate deformations. Our work, which

considers the effect of charge convection on transient deformation via the

boundary integral method, also predicts weaker oblate configurations and a

strong influence of interfacial charge convection on relatively small deforma-

tions.

The transient deformation of a leaky dielectric drop has also received the-

oretical19,54,55 and computational21,56 treatment. For such low–conductivity
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systems, the finite amount of time taken for a quantity of charge q∗ to ar-

rive at the interface, characterized by the charge relaxation timescales τe(i,o),

implies that another form of charge transport must be accounted for: the in-

terfacial accumulation of charge. Although this transient phenomenon yields

the same steady deformation, it may yield a nonmonotonic approach towards

steady–state when the ratio τe(i,o)/τp is not small (where τp represents a process

timescale different from the convective timescale τf
15). Although the influence

of the electrical relaxation timescales τe(i,o) has been considered when describ-

ing phenomena such as stability57 and tipstreaming58 of jets, less attention

has been provided to its influence on the transient behavior of isolated, weakly

conducting drops exposed to uniform DC electric fields. Supeene et al.21 im-

plemented the finite element method to predict the transient deformation of

a leaky dielectric drop via a general electrokinetic model and a surface charge

conservation equation. Lanauze et al.55 developed an O(Ca) perturbation the-

ory that accounts for charge relaxation and linear inertia. These computational

and theoretical efforts have predicted prolate–oblate shape transitions at in-

termediate times for ultimately steady oblate conformations due to the dom-

inance of the charge relaxation timescales τe(i,o) (i.e. they are the timescales

of longest duration). As these timescales are increased, the accumulation of

interfacial charge q∗ is decelerated, which causes the fluids to initially behave

as a system of two perfect dielectrics that deform in a prolate fashion due to

the absence of any substantial induced electrohydrodynamic flow. Eventually,

the steady–state surface charge density profile is slowly reached, thus achiev-

ing the expected recirculatory flow and ultimate oblate configuration.

A major conclusion of the present chapter is that both charge relaxation

and charge convection must be accounted for when modeling the transient
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deformation of low–conductivity drops. An example of such a system – im-

plemented in our experiments – is a millimeter–sized oil drop under a field of

strength on the order of kV/cm. Our focus will be on the transient approach

towards steady oblate configurations, which will be predicted via the boundary

integral method. We account for both charge relaxation and charge convec-

tion through a governing equation that considers the transport of interfacial

charge. Previous researchers have implemented the boundary integral method

without charge relaxation and charge convection to calculate the steady de-

formation of drops under electric fields.45,48,59,60 Unlike Supeene et al.21 and

Lanauze et al.,55 we compare our calculations for transient deformation against

an experimental system consisting of a silicone oil drop suspended in a castor

oil medium, with electrical material properties accurately measured via elec-

trochemical impedance spectroscopy. To our knowledge, this is the first direct

comparison of computation against experiment for the transient nonlinear de-

formation of a leaky dielectric drop.

5.2 Problem formulation

Consider a leaky dielectric drop of permittivity εi, resistivity χi, and vis-

cosity µi suspended in a medium with permittivity εo, resistivity χo, and vis-

cosity µo, respectively (figure 5.1). The two phases are assumed to be density–

matched (ρo = ρi). A uniform DC electric field is applied, which induces

tangential electrical stresses at the interface between the drop and medium.

The electrical stresses are balanced by viscous stresses, which in turn induce

fluid flow inside and outside of the drop. The induced flow may be directed

from the poles towards the equator of the drop (pole to equator), or from

the equator towards the poles (equator to pole), depending on the ratio of

the values of the characteristic timescales for the development of interfacial
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Figure 5.1: Schematic of the electric field–induced oblate deformation of a
weakly conducting drop. The drop of viscosity µi, permittivity εi, and resis-
tivity χi is suspended in a medium with properties µo, εo, and χo, respectively.
The case considered is that for which the inner charging timescale τe,i = εiχi is
greater than the outer charging timescale τe,o = εoχo, which yields the surface
charge distribution and oblate deformation qualitatively drawn here. The elec-
tric field is directed from left to right, while streamlines are depicted inside and
outside of the drop. The direction of flow is from the poles (θ = 0, π) towards
the equator (θ = π/2) of the drop. The electric field and induced fluid flow
are both independent of the azimuth φ. Here, (σ,φ,z) corresponds to the set
of cylindrical coordinates, while θ represents the polar angle measured from
the positive z–axis. The major and minor semi–axes are denoted by r∗2 and
r∗1, respectively.
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charge of both phases τe(i,o) = εi,oχi,o (also known as the charge relaxation

timescales15). If the electrical relaxation timescale of the medium is greater

than that of the drop (τe,o > τe,i), the flow is directed from equator to pole;

the converse yields a flow that is pole to equator (τe,i > τe,o). Prolate drops

may experience flows that are either equator to pole or pole to equator; oblate

drops exclusively undergo flows that are pole to equator.18,48 In this work,

we only consider steady deformations that are oblate and axisymmetric (no

dependence on the azimuth φ shown in figure 5.1). This permits the use of a

cylindrical coordinate system (σ,φ,z) when quantifying the drop deformation.

5.3 Governing equations

We utilize the boundary integral method to calculate the electric field and

fluid velocity at the interface, and subsequently the deformation of the drop

throughout time. We account for the interfacial accumulation of charge and

the convection of that charge by the induced electrohydrodynamic flow, the

latter of which couples the field and flow governing equations.

5.3.1 Electric field

The first step is to calculate the electric field at the interface separating

the drop and medium. The electric field is irrotational, and we neglect any

diffuse charge due to the low–conductivity fluids inherent to leaky dielectric

systems. In this framework, Gauss’s law for electrostatics reduces to Laplace’s

equation for the inner and outer electrostatic potential φ∗i,o.
48,59,60 One bound-

ary condition dictates the outer electric field to approach the applied field

E∗o = −∇∗φ∗o → E∞ at large distances from the drop. Two interfacial bound-

ary conditions require that48,59

E∗t,o = E∗t,i (5.1)
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and

εoE
∗
n,o − εiE∗n,i = q∗, (5.2)

where E∗t(i,o) = E∗i,o · t denotes the tangential components of the electric fields

at the boundary that separates the two phases, and t is a unit tangent vector

that is positive in the counter–clockwise direction (note that the latter should

not be confused with dimensionless time t, which is a scalar quantity). The

normal components of the electric fields at the interface are designated by

E∗n(i,o) = E∗i,o ·n, where n is a unit normal vector that is positive when pointing

outward from the drop. The condition (5.1) imposes a continuous tangential

electric field across the interface (or equivalently, a continuity in potential),

while (5.2) relates the jump in electric displacement caused by the surface

charge q∗ that accumulates due to the differing permittivity ε and resistivity χ

between the two phases. The final electrical boundary condition at the surface

of the drop describes the conservation of interfacial charge, namely

1

χi
E∗n,i −

1

χo
E∗n,o =

∂q∗

∂t∗
+∇∗s · (u∗o q∗). (5.3)

The first term on the right–hand side represents charge relaxation, i.e. the

temporal accumulation of charge at the interface. The second term accounts

for charge convection and changes in the surface charge density q∗ due to

dilation of the interface.15 For brevity, we refer to this second term as the

convective term, since it is responsible for surface charge convection. Note

that the appearance of the fluid velocity u∗o in (5.3) couples the electrostatic

and flow fields.

We now non–dimensionalize the equations for the electric part of the prob-

lem. Distance is made dimensionless with the radius of the initial spherical
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drop a. The electric fields E∗i,o are normalized by the magnitude of the uni-

form applied field E∞. The charge density q∗ is normalized by εoE∞, while

time t∗ is made dimensionless with the outer electrical relaxation timescale

τe,o = εoχo due to the fact that the timescales τe(i,o) are largest for our experi-

mental system. Finally, the velocities u∗i,o are normalized by U ∼ εoE
2
∞a/µo.

These scalings are applied to all equations henceforth. Laplace’s equation may

be reformulated as an integral equation that satisfies the far–field condition

and (5.1), which reads48,59,60

E∞ ·n(x)− 1

4π

∮
A

r · n(x)

r3
(En,o(y)− En,i(y))dA(y) =

1

2
[En,o(x) + En,i(x)] ,

(5.4)

where the closed integral is over the surface A of the drop. Here, r = y−x is

the distance between an observation point y that is free to move throughout

the boundary and a fixed source point x on the interface, while r =
√
r · r.

The lack of asterisks ∗ above any quantity in equation (5.4) emphasizes that

each quantity in (5.4) is dimensionless. As (5.4) contains two unknowns En,o

and En,i, we turn to the dimensionless form of equation (5.2), which is En,o −

SEn,i = q. This equation is applied by substituting the inner perpendicular

field En,i into (5.4), which yields

S − 1

4πS

∮
A

r · n(x)

r3
En,o(y)dA(y) +

S + 1

2S
En,o(x) = E∞ · n(x)− (5.5)

1

4πS

∮
A

r · n(x)

r3
q(y)dA(y) +

1

2S
q(x).

If the surface charge density q is given at an instant in time, the right–hand

side of (5.5) is a known quantity. This is indeed the case, as we assume an

uncharged interface q = 0 at time t = 0. Hence, the interfacial charge evolu-

tion equation (5.3) is not needed at this stage, and it is possible to solve for
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the normal field En,o at this instant.

Once the normal electric fields En(i,o) are calculated from (5.2) and (5.5),

the tangential field Et,o = Et,i remains unknown. The tangential field may

be obtained via an integral formulation of Laplace’s equation in terms of the

electrostatic potential φo:
61

φo(x) = φ∞(x) +

∮
A

1

4πr
(En,o(y)− En,i(y))dA(y). (5.6)

The tangential field is computed according to Et,o = −∂φo
∂s

, where s is a

tangential coordinate measured from the positive z–axis. From the solution

to the normal and tangential electric fields, the jump in electrical stress at

the interface is readily calculated by evaluating the Maxwell stress tensor

τ ∗e(i,o) = εi,o
(
E∗i,oE

∗
i,o − 1

2
E∗2i,oI

)
, where I is the identity tensor. Once nor-

malized by εoE
2
∞, the jump in electrical stress (from out to in) across the

interface is given by

[τ e · n] =
1

2

[
(E2

n,o − SE2
n,i) + (S − 1)E2

t,o

]
n (5.7)

+Et,o(En,o − SEn,i) t = ∆pEn+ qEt,ot.

Equation (5.7) is a general condition that assumes that the electrical relaxation

timescales τe(i,o) may take on arbitrary values. Assuming that charge relaxation

and charge convection in (5.3) become vanishingly small (τe(i,o) → 0), the

charge conservation equation (5.3) results in En,i − REn,o = 0. Substituting

for En,i in equation (5.7) yields the jump in electrical stress derived by Lac

and Homsy48 (equation (2.7) in that paper). Following their notation, we

refer to the normal component ∆pE in (5.7) as the electric pressure, while

the tangential component qEt,o is responsible for the induction of steady–state
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recirculatory fluid flow within the drop and throughout the medium. Note,

however, that we cannot implement equation (2.7) in Lac and Homsy48 due

to our consideration of charge relaxation and charge convection. Instead, we

make use of (5.7) to calculate the jump in electrical stress at the surface of

the drop.

5.3.2 Fluid flow

The tangential electrical stresses (5.7) exerted at the interface are balanced

by viscous stresses, thus resulting in fluid flow. To compute the resulting in-

terfacial velocity profile, we assume zero–Reynolds–number flow. For the drop

size and applied fields in our experiments, the Reynolds numbers ReFlow(i,o)

are O(1). However, Feng and Scott46 showed that computations at Reynolds

numbers of order unity provided little difference in the steady deformation

from those predicted under creeping flow. Also, as shown in the following sec-

tions, our computations reach a steady–state deformation close to that of the

experimental measurements. This provides an a posteriori validation of our

creeping flow assumption. Here, the interfacial fluid velocity may be expressed

in terms of an integral equation, which reads in dimensionless form62

uo(x) = − 1

4π(M + 1)

∮
S

∆f(y) · J(y,x) dS(y) (5.8)

− 1

4π

M − 1

M + 1

∮
S

uo(y) ·K(y,x) · n(y) dS(y),

where J andK denote the free–space Green’s functions for velocity and stress,

respectively.62 The dimensionless jump in hydrodynamic traction ∆f across

the surface is given by

∆f =
2κmn

Cao
− [τ e · n] , (5.9)
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where κm represents the mean curvature and [τ e · n] is the jump in electrical

stress in (5.7). Knowledge of uo from solving (5.8) now permits updating the

interfacial charge through the charge conservation equation (5.3), which reads

in dimensionless form as

∂q

∂t
=
En,i
R
− En,o −Reo∇s · (uoq), (5.10)

where Reo = εoχoU/a = E2
∞ε

2
o χo/µo designates the electric Reynolds number

based on the medium properties. This dimensionless group represents the ra-

tio of charge relaxation τe,o = εoχo to flow τf = a/U timescales.

Following Feng,47

∇s · (uoq) =
dq(uo · t)

ds
+
quo · eσ

σ
(5.11)

for our coordinate system, where eσ is a basis vector in the σ–direction (ra-

dial). Furthermore, the position of the interface is updated by integrating the

kinematic condition

∂ξ

∂t
= Reo un,o, (5.12)

where un,o = (uo · n)n and ξ denotes the positions of a set of marker points

placed on the surface of the drop. The time–dependent quantities q and ξ may

be updated by a time–stepping scheme, as explained below.

5.3.3 Numerical scheme

We impose an initially uncharged interface (q = 0 throughout), and con-

secutively solve the integral equations (5.5), (5.6), and (5.8) via the boundary

element method. Thereafter, the time–dependent conditions (5.10) and (5.12)

are integrated through a second order Runge–Kutta method, while assuring
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Figure 5.2: Computational diagram of the initial drop shape. As the field
and flow are considered axisymmetric, the integral equations (5.5), (5.6), (5.8)
are reduced from integrals along the surface A to integrals along the contour
C. Here, the normal n and tangential t vectors are illustrated; the former
is positive when pointing outwards, while the latter is positive when pointing
in the counter–clockwise direction, respectively. Finally, the continuous arc–
length s, which begins from the positive z–axis (θ = 0), is positive when
pointing in the counter–clockwise direction.

that the step–size ∆t is maintained small enough such that the volumetric

flow–rate across the interface
∮
S
un,o dS is at most O(10−6). The field and

flow are assumed axisymmetric, which permits analytical integration of the

integrands in (5.5), (5.6), and (5.8) over the azimuth, thus reducing the sur-

face integrals to line integrals along the drop contour C (see figure 5.2). Thus,

the tangential coordinate s corresponds to the continuous arc–length along the

surface of the drop measured from the positive z–axis in the counter–clockwise

direction. The axisymmetric free–space Green’s functions J and K in (5.8)

are computed in terms of elliptic integrals of the first and second kind, respec-

tively. These are extracted from the open–source library BEMLIB.61

The top half of the drop (0 ≤ θ ≤ π) is partitioned into N segments, typi-

cally ranging from N = 100− 200, for which all functions are interpolated by

piecewise–continuous cubic polynomials (splines) parametrized with respect to
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the continuous arc–length s. Following Lac and Homsy,48 these polynomial

representations may possess either vanishing first or second derivatives at the

endpoints (θ = 0, π). Implementing either one of these conditions for the

unknown functions provides enough information to solve the boundary inte-

gral equations (5.5), (5.6), (5.8). Note that we do not assume symmetry with

respect to the plane z = 0. Following standard regularization techniques,61

the logarithmically singular terms in these kernels are subtracted from the

main integrals, thus rendering the integrands regular as the observer y ap-

proaches the source point x. Subsequently, the singularity is added back and

integrated. The regular integrals in (5.5), (5.6), (5.8) are then broken up into

integrals along each segment, each of which is calculated by implementing

Gauss–Legendre quadrature; the remaining singular integrals are computed

by utilizing Gauss–Legendre quadrature for integrals that posses logarithmic

singularities.61 All simulations are conducted until the normal velocity un,o

at every node is at most O(10−4), such that steady–state is reached and no

subsequent appreciable changes occur in the calculated quantities throughout

time.

5.4 Computations for transient deformation

The impacts of charge relaxation and charge convection on transient drop

deformation are first probed separately. Our focus is on the transient deforma-

tion; however, comparison of the attained steady–state against values reported

in the literature provides a useful check of our computations.

5.4.1 The effect of charge relaxation

We first examine the influence of the charging term ∂q
∂t

in (5.10), while still

focusing on the limit of negligibly small electric Reynolds numbers Rei,o → 0.

Here, convection of charge by the flow becomes negligible. In this limit, (5.10)

65



yields the interfacial charging condition

En,i −REn,o = R
∂q

∂t
. (5.13)

Here, the electrical relaxation timescales τe(i,o) = εi,oχi,o are considered nonzero,

although small in comparison with the flow timescale τf = a/U . The inter-

face acquires a surface charge q over the timescales τe(i,o), similar to the RC

time constant of a capacitor. Note that although the convective term is ne-

glected in equation (5.10), the effect of the electric Reynolds number Reo is

preserved through the kinematic condition (5.12). This dimensionless group

may be rewritten as Reo = Cao
τe,o
τc,o

, where τc,o = µoa/γ represents the cap-

illary timescale based on the medium properties. Here, τe,o/τc,o is the ratio

of timescales τe,o/τp defined by Saville15 that characterizes the transport of

charge towards the interface, with the process timescale τp = τc,o. Hence, we

label this ratio of timescales τe,o/τc,o as a Saville number Sao. To compare our

computational results against published literature results for steady deforma-

tion, we focus on the particular set of dimensionless parameters (S, M , R)

= (20, 1, 0.5), which was examined by Lac and Homsy,48 and corresponds to

a drop that is less conductive than the medium and fluids that possess vis-

cosities equal to one another. Note that for this set of values (SR > 1), the

steady–state conformation is oblate. The electric capillary number is held at

Cao = 0.5. To probe the influence of a varying charging timescale τe,o, the

transient deformation is examined as Sao = τe,o/τc,o is varied over two orders

of magnitude.

The transient deformation corresponding to Sao = {0.1, 1, 10} and Cao =

0.5 is illustrated in figure 5.3. All three curves achieve a steady deformation
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Figure 5.3: Transient deformation D(t) as a function of dimensionless time
for different ratios of charging τe,o to capillary τc,o timescales, which we la-
bel as a Saville number Sao. The capillary number Cao = 0.5 and the set
of dimensionless parameters (S, M , R) = (20, 1, 0.5) correspond to one of
the cases analyzed by Lac and Homsy.48 Here, time t∗ is normalized by the
electrical relaxation timescale τe,o of the dotted curve describing Sao = 0.1.
The shape of the drop possessing the largest transient prolate deformation
(Sao = 10, the solid curve) and its steady oblate deformation shape (applica-
ble to all three curves) are also shown. The dash–dotted line represents the
steady–state reported by Lac and Homsy.48
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of D = −0.58 (denoted by the dash–dotted line), in agreement with Lac and

Homsy.48 For this set of parameters, Taylor’s O(Ca) theory would predict an

oblate deformation DT of magnitude greater than unity, which is clearly in-

correct. Approaching the same steady–state value for the deformation as Lac

and Homsy confirms that our numerical method has been implemented prop-

erly. Unlike Lac and Homsy,48 however, we also compute the entire transient

deformation profile, which displays nonmonotonic behavior. In particular, an

increasingly pronounced prolate–oblate shape transition is observed as Sao

increases. As described by Supeene et al.21 and Lanauze et al.,55 an increas-

ing charging timescale τe,o extends the amount of time for charge to reach

the interface. Thus, at early times, both phases behave as perfect dielectrics;

hence, the drop deforms along the applied field (prolate) due to the absence

of sufficient induced electrohydrodynamic flow. Eventually, enough charge

reaches the interface to drive the recirculatory flow and promote a change

in configuration, thus yielding the expected ultimate oblate deformation. As

Sao is increased, the shape transition becomes more pronounced, in terms of

the maximum transient prolate deformation; it also becomes more long–lived,

in terms of the amount of time during which the shape remains prolate. It

takes the solid curve describing Sao = 10 more than an order of magnitude

longer to reach steady–state in comparison to the dotted curve corresponding

to Sao = 0.1.

5.4.2 The effect of charge convection

We now consider the effects of charge relaxation and charge convection.

As a basis for comparison, we focus on a system for which (S, M , R) =

(0.5, 1, 100), studied by Feng.47 In figure 7 of that paper, Feng plots the

steady deformation for this system as a function of the square of the applied
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dimensionless electric field, namely E2
∞εfa/γ, where the field is normalized

by performing a balance of electrical stress εfE
2
∞ and interfacial stress γ/a.

Here, εf is the permittivity of free space. In that figure, two curves, which

correspond to zero and finite electric Reynolds number, respectively, indicate

that charge convection suppresses the steady oblate deformation at a given

electric field strength. At an electric capillary number Cao = 2 (a dimension-

less electric field squared of 0.4 in Feng’s paper), the simulation that does not

consider charge convection is unable predict a stable drop shape; the compu-

tation that is conducted at a nonzero electric Reynolds number Reo = 0.7

predicts a steady oblate conformation. Note that our definition for Rei,o dif-

fers from that of Feng.47 While we separately define an electric Reynolds

number Re = εχU/a for each phase, Feng defines this dimensionless group

as ReFeng = (εi + εo)χiχoUTaylor/(χi + χo)a, where UTaylor is expressed as the

maximum interfacial angular velocity derived by Taylor.13

We predict the exact same behavior as Feng47 when comparing our simula-

tions with and without charge convection. Additionally, we report the devel-

opment towards the steady–state shape. Figure 5.4 depicts the transient defor-

mation for these two conditions, where the dashed and solid curves correspond

to computational results in the limit of electric Reynolds number Reo → 0 and

Reo = 0.7, respectively. Although these two curves follow the same behavior

at early times (roughly t = t∗/τe,o < 10), the dashed curve begins to diverge

from the solid curve when t ≈ 10 and finally predicts drop breakup, while the

solid curve predicts a steady–state deformation of D = −0.23.47 Achieving

the same steady configuration as predicted by Feng indicates that proper nu-

merical implementation of charge convection has been achieved. As described

by Feng,47 the stabilization of oblate drops due to charge convection results
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Figure 5.4: Transient deformation D(t) as a function of dimensionless time
t = t∗/τe,o. The capillary number Cao = 2 and (S, M , R) = (0.5, 1, 100).
Both curves account for charge relaxation (∂q

∂t
in equation (5.10)). The solid

curve, however, results from a simulation that also includes charge convection
(an electric Reynolds number Reo = 0.7), while the dashed curve is obtained in
the limit Reo → 0. Here, we display the final shape of the drop corresponding
to the simulation conducted at finite Reo, which achieves a steady deformation.
The shape resulting from the simulation carried out at Reo → 0 is shown right
before the onset of numerical instability (t ≈ 60).

from the weakened tangential flow resulting from the distorted surface charge

density profile, which we will discuss further later.

5.5 Comparison of computation against exper-

iment

5.5.1 Experimental procedure

Two 5× 5 cm brass electrodes are attached to either side of a plastic cell,

which holds the fluids, at a separation of 2 cm. A 1.9 cm diameter hole is

made through the bottom of the cell to allow illumination with a fiber optic

illuminator (Fiber–Lite MI–152, Dolan–Jenner Industries). A drop of silicone

oil (Sigma–Aldrich) is injected into a castor oil (Sigma–Aldrich) medium from
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a 25µL glass syringe with a 22 gauge needle. A potential difference is applied

across the two electrodes using a high–voltage power supply (Gamma High

Voltage Research, Inc.). As soon as the field is applied, images are recorded at

a rate of 15 frames per second with a firewire camera (Guppy PRO F–125B,

Allied Vision Technologies) until the drop deformation reaches steady–state.

All image analyses are subsequently conducted with ImageJ software. Our

experimental setup is similar to that of Salipante and Vlahovska.18

To accurately predict the deformation of leaky dielectric systems, precise

measurement of the fluid properties is crucial.16 Here, the permittivity ε and

resistivity χ of each phase is measured via electrochemical impedance spec-

troscopy.63 The viscosity µ of each fluid is measured using a cone–and–plate

rheometer (D–HR 2 rheometer, TA Instruments). Finally, the interfacial ten-

sion of the castor oil–silicone oil interface is extracted from the experimental

work of Salipante and Vlahovska.18 These material properties are listed in ta-

ble 5.1. The greatest source of measurement error originates from the voltage

measurement. For this purpose, a high–voltage probe (80K–15, Fluke Cor-

poration) is implemented in conjunction with a standard digital multimeter

(HHM29, Omega Engineering, Inc.). The error in measurement of the applied

voltage is 2.25% (based on accuracy of the probe and multimeter). This error

does not significantly change the results of any of our computational predic-

tions. Given that we expect possible losses of voltage, we use the lower bound

of the confidence in applied voltage in our computations. A minimum of six

measurements of the transient drop deformation are taken per field strength.

The transient deformation is then repeatedly measured for a different drop of

approximately the same size and voltage to assess for reproducibility between

different drops. All measurements produced a similar result for the transient
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Phase εr 1/χ µ a γ

(S/m) (Pa S) (mm) (mN/m)
drop (silicone oil) 2.8 2.0× 10−12 0.05

2.0 4.5
medium (castor oil) 4.9 5.8× 10−11 0.68

Table 5.1: Dimensional parameters for a silicone oil drop suspended in a castor
oil medium. Here, εr denotes the relative permittivity.

drop deformation. A representative measurement of deformation for each field

strength at a fixed size is presented in this work to display the error in the

deformation due to measurement of the drop semi–axes. Note that we display

this uncertainty because it is larger than the standard deviation that arises

from the repeated measurement of the transient deformation.

5.5.2 Transient deformation at an electric field strength

of 1.6 kV/cm

The experimental castor oil–silicone oil system is described in table 5.1.

For this set of parameters, all steady–state configurations are oblate. The cor-

respondent dimensionless groups are listed in table 5.2. The viscosity ratio M

is less than unity; i.e. the drop is less viscous than the suspending medium.

The capillary numbers Cai,o are O(10−1), while the Saville numbers Sai,o and

electric Reynolds numbers Rei,o are greater than unity. Here, Sai,o > 1 and

Rei,o > 1 represent a dominance of the electrical relaxation timescales τe(i,o)

over the capillary τc(i,o) = µi,oa/γ and flow τf = a/U timescales, respectively.

Thus, the transient and steady–state behavior are controlled by the transport

of charge towards and along the interface, i.e. we expect charge relaxation and

charge convection to be relevant. The dimensionless groups in table 5.2 are

implemented in our computations.
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Phase Ca Sa Re S M R

drop (silicone oil) 0.3 605.3 158.2
0.6 0.1 29.2

medium (castor oil) 0.5 2.6 1.2

Table 5.2: Dimensionless groups that describe a drop of silicone oil suspended
in a castor oil medium at an electric field strength of 1.6 kV/cm. See table 5.1
for dimensional quantities.
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The experimental measurement of the deformation throughout time is de-

picted by the open circles in figure 5.5. The error bars in this curve originate

from the measurement of the major r∗2 and minor r∗1 semi–axes, handled using

standard propagation of error. The O(Ca) theory of Lanauze et al.55 that con-

siders the charge relaxation τe(i,o) and momentum diffusion τm(i,o) = a2ρi,o/µi,o

timescales is shown as the dashed curve. Note that this theory yields the

steady–state deformation DT predicted by Taylor.13 Due to the fact that

τe(i,o) � τm(i,o) for this experimental system (assuming that ρo = ρi ≈ 960

kg/m3), considering the momentum relaxation timescales τm(i,o) makes no dif-

ference in predicting the development of the drop shape; i.e. transient inertia

is irrelevant and the flow is essentially quasi–steady. The theory captures the

initial prolate–oblate shape transition during early times t∗ . 0.5 s, before

diverging from the experimental measurement and overpredicting the steady

deformation.

The remaining curves in figure 5.5 result from boundary integral calcu-

lations. The simulation that considers neither charge relaxation nor charge

convection is implemented by making use of equation (5.13) and decreasing

the resistivities χi,o by two orders of magnitude for use in (5.12), while still

maintaining the resistivity ratio R = χi/χo unchanged. The result from this

calculation is shown as the dotted curve in figure 5.5. This curve is unable to

capture the shape transition, instead predicting a monotonic development to-

wards a steady–state deformation that overpredicts the deformation measured

in the experiment.

The dash–dotted curve in figure 5.5 results from a simulation that only

takes charge relaxation into account through equation (5.13). This curve ex-
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Figure 5.5: Transient deformation of a silicone oil drop suspended in a castor
oil medium at a field strength of 1.6 kV/cm. The dimensional parameters for
this system are listed in table 5.1 and the dimensionless groups are listed in
table 5.2. The open circles denote the experimental measurement, while the
dashed curve illustrates the small–Ca theory of Lanauze et al.55 that accounts
for charge relaxation. The remaining curves result from boundary integral
calculations. The dotted curve results from a simulation that considers an
instantaneous interfacial charging with no charge convection, while the dash–
dotted curve results from a simulation that considers finite electrical relaxation
timescales τe(i,o) = εi,oχi,o with no charge convection. Finally, the solid curve
results from a simulation that accounts for charge relaxation together with
charge convection. The inset is an image of the steady oblate shape measured
experimentally.
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hibits similar transient behavior to the O(Ca) theory of Lanauze et al.55 during

times t∗ . 2 s, which is unsurprising since they both account for charge relax-

ation (equation (5.13)). The dash–dotted curve eventually reaches the same

steady–state as the dotted curve that considers instantaneous charge relax-

ation and no charge convection. When the capillary number is not small,

we expect the O(Ca) theory to deviate from this computational prediction

(dash–dotted curve). It is merely a coincidence that the O(Ca) prediction is

actually closer to the steady–state experimental measurement than the bound-

ary integral calculation; the latter should provide a more accurate result at

the capillary numbers Cai = 0.3 and Cao = 0.5 considered. The fact that

this calculation is unable to capture the experimental curve together with

the large electric Reynolds numbers Rei,o (table 5.2) leads us to consider the

full charge–transport equation (5.10). The solid curve depicted in figure 5.5

results from a simulation that considers both charge relaxation and charge

convection. Although slight deviation from the experiment is observed during

intermediate times 0.5 s . t∗ . 2.5 s, this computation provides a more ac-

curate representation of the experimentally–measured transient deformation

(within the calculated error). Hence, both charge relaxation and charge con-

vection in (5.10) must be accounted for when predicting time–dependent drop

deformation for such low–conductivity systems with large electrical relaxation

timescales τe(i,o), such that Sai,o > 1 and Rei,o > 1. Note that although the

deformations illustrated in figure 5.5 are small, the nonlinear effect of charge

convection still plays a role in determining the steady–state deformation. This

is a central conclusion of our work.
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Phase Ca Sa Re S M R

drop (silicone oil) 0.4 605.3 263.0
0.6 0.1 29.2

medium (castor oil) 0.8 2.6 2.0

Table 5.3: Dimensionless groups that describe a drop of silicone oil suspended
in a castor oil medium at an electric field strength of 2.1 kV/cm.

5.5.3 Transient deformation at an electric field strength

of 2.1 kV/cm

The electric field is increased to 2.1 kV/cm, yielding the dimensionless pa-

rameters in table 5.3. The electric capillary Cai,o = εi,oE
2
∞a/γ and electric

Reynolds Rei,o = E2
∞ε

2
i,o χi,o/µi,o numbers have increased due to their pro-

portionality to E2
∞, while the Saville numbers Sai,o remain unchanged. The

resulting experimental measurement and computational curves for this set

of parameters are displayed in figure 5.6. The description for each of these

curves is the same as in figure 5.5. Since larger capillary numbers Cai,o are

considered, the O(Ca) theory of Lanauze et al.55 shows a greater deviation

at steady–state from the boundary integral simulations and the experimental

measurement. Note that the dash–dotted curve (only charge relaxation) has

not yet reached steady–state in figure 5.6; it eventually settles towards the

same steady deformation as the dotted curve (no charge relaxation or convec-

tion). Although the same trend is observed in the extent of agreement of the

set of boundary integral calculations with the experimental measurement, the

curves that are not able to capture the transient deformation profile measured

in the experiment overpredict the steady–steady state deformation by a more

substantial amount in comparison to figure 5.5. This is due to the more pro-

nounced effect of charge convection, which is reflected through the increase in

electric Reynolds numbers Rei,o due to the larger applied voltage.
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Figure 5.6: Transient deformation of a silicone oil drop suspended in a castor
oil medium at a field strength of 2.1 kV/cm. The dimensional parameters for
this system are listed in table 5.1 and the dimensionless groups are listed in
table 5.3. The description of the curves is the same as in figure 5.5. The inset
is an image of the steady oblate shape measured experimentally.
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To understand why charge convection suppresses steady oblate deforma-

tions, we examine the surface charge density profile along the interface of the

drop. Figure 5.7(a) shows the steady–state (t∗ ≈ 3 s in figure 5.6) dimension-

less interfacial charge q as a function of the polar angle θ. As we assumed

symmetry with respect to the azimuth φ (see figure 5.2), analyzing the results

for the top half of the drop yields all necessary information to investigate the

effects of surface charge convection. The dashed curve in figure 5.7(a) results

from the simulation that does not take charge convection into account (equa-

tion (5.13)), while the solid curve considers the full governing equation (5.10)

for charge transport. Here, the magnitude of the surface charge density q is

lessened throughout the regions away from the equator (θ = π/2) due to con-

vection of charge from pole to equator. Convection of charge is also observed

to cause a rapid variation in q at the equator of the drop. As the scaling for the

electrical stress is given by [τ e · n] ∼ qE∞, the pronounced reduction in q leads

to a decrease in the electrical stress. Due to the fact that oblate configurations

are driven by an induced electrohydrodynamic flow, a simple balance of elec-

trical and viscous stresses yields U ∼ qE∞a/µ ∼ εE2
∞a/µ. This relationship

dictates that the decrease in [τ e · n] provides a suppression of the flow strength

U that drives the deformation. This is illustrated in figure 5.7(b), where the

tangential velocity ut,o = ut,i = ui,o · t is presented as a function of the polar

angle θ for the cases where charge convection is considered (solid line) and

neglected (dashed line). Here, a weakening of the tangential flow is present

throughout the regions of reduced interfacial charge q. This reasoning helps

understand the difference between the simulated steady deformations that do

and do not account for surface convection of charge in figure 5.6. Note that

the magnitude of the steady–state charge
∫
S
q dS =

∫
C

2πqσ dC that resides
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Figure 5.7: (a) Steady interfacial charge density profile q as a function of the
polar angle θ corresponding to a silicone oil drop suspended in a castor oil
medium at a field strength of 2.1 kV/cm (t∗ ≈ 3 s in figure 5.6). The solid
curve results from the simulation that considers surface charge convection
from the poles (θ = 0, π) towards the equator (θ = π/2) of the drop; the
dashed curve does not account for interfacial charge convection. (b) Steady
interfacial tangential velocity ut (note that ut,o = ut,i) as a function of the polar
angle θ (t∗ ≈ 3 s in figure 5.6). The solid curve results from the simulation
that considers surface charge convection towards the equator of the drop; the
dashed curve does not account for interfacial charge convection.

at each half of the drop decreases with increasing electric Reynolds numbers

Rei,o. When charge convection is accounted for, charge swept from pole to

equator by the induced electrohydrodynamic flow is neutralized at the equa-

tor. Hence, the overall amount of charge on each half of the drop is reduced.

We now examine the development of the two steady surface charge density

profiles q displayed in figure 5.7(a). Figure 5.8(a) illustrates the evolution of

interfacial charge that yields the steady–state depicted by the dashed curve in

figure 5.7(a), while figure 5.8(b) illustrates the evolution of interfacial charge

that yields the steady–state depicted by the solid curve in figure 5.7(a). In fig-

ure 5.8(a), the four curves present a gradual development towards the steady

charge density profile. Here, all curves qualitatively display a cos(θ) depen-
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Figure 5.8: Development of the interfacial charge density profile q as a function
of the polar angle θ for a silicone oil drop suspended in a castor oil medium at
a field strength of 2.1 kV/cm. (a) The set of curves corresponds to the simu-
lation for transient deformation that accounts for charge relaxation and does
not consider charge convection in figure 5.6 (the dash–dotted curve), which
eventually yields the same steady–state surface charge density distribution as
the dashed curve in figure 5.7(a). (b) The set of curves corresponds to the
simulation for transient deformation that accounts for both charge relaxation
and charge convection in figure 5.6 (the solid curve), which eventually yields
the same steady–state surface charge density distribution as the solid curve
figure 5.7(a).

dence that results due to charge accumulating at the interface without any

convection by the fluid flow. If convection of charge by the induced electro-

hydrodynamic flow is accounted for, the flow sweeps the accumulating charge

from pole to equator (figure 5.8(b)). Here, the maximum in surface charge

q increases at the poles as time progresses. Simultaneously, the previously–

described sharp variation in q occurs at the equator due to charge convection

from pole to equator. As the electric Reynolds numbers Rei,o increase at high

electric field strengths, the governing equation for interfacial charge (5.10) be-

comes approximately hyperbolic. Thus, there exists the possibility of a “charge

shock,” in which the surface charge distribution displays nearly discontinuous

behavior at the equator, as illustratd in figure 5.8(b) for t∗ = 3 s.
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Phase Ca Sa Re S M R

drop (silicone oil) 3.8 605.3 2.3× 103

0.6 0.1 29.2
medium (castor oil) 6.6 2.6 17.7

Table 5.4: Dimensionless groups that describe a drop of silicone oil suspended
in a castor oil medium at an electric field strength of 6.1 kV/cm.

5.5.4 Transient deformation at an electric field strength

of 6.1 kV/cm

The electric field is further increased to 6.1 kV/cm, which provides the di-

mensionless groups listed in table 5.4. The electric capillary Cai,o and electric

Reynolds Rei,o numbers have increased by approximately an order of magni-

tude in comparison with table 5.3. The results for this system are presented in

figures 5.9(a) and 5.9(b). In figure 5.9(a), only the experimental measurement

of the transient deformation, the boundary integral simulation that consid-

ers charge relaxation and charge convection through equation (5.10), and the

O(Ca) theory of Lanauze et al.55 are displayed. Although the deformation in

the experiment reaches steady–state around time t∗ ≈ 3 s, the simulation only

reaches t∗ ≈ 0.8 s, at which time the normal velocity un,o in equation (5.12) is

O(10−3). The computation is only shown until this point in time. From this

point forth un,o increases, eventually predicting an unstable drop conforma-

tion. The O(Ca) theory is displayed until t∗ ≈ 0.75 s as a basis for comparison

against the other curves. The curve corresponding to the linear theory begins

to deviate from the computation and experiment around D = −0.02, and ends

with a large overprediction of the steady deformation measured experimentally

(DT = −0.72, not shown).

The surface charge density q as a function of the polar angle θ correspond-
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Figure 5.9: (a) Transient deformation of a silicone oil drop suspended in a cas-
tor oil medium at a field strength of 6.1 kV/cm. The dimensional parameters
for this system are listed in table 5.1 and the dimensionless groups are listed
in table 5.4. The open circles denote the experiment, while the dashed curve
illustrates the small–Ca theory of Lanauze et al.55 that considers charge relax-
ation. Finally, the solid line represents the boundary integral simulation that
accounts for both charge relaxation and charge convection through equation
(5.10). The inset is an image of the steady oblate shape measured experimen-
tally. (b) Interfacial charge density profile q as a function of the polar angle θ.
The solid curve results from the simulation corresponding to a field strength of
6.1 kV/cm (t∗ ≈ 0.8 s in figure 5.9(a)), which considers surface charge convec-
tion from the poles (θ = 0, π) towards the equator (θ = π/2) of the drop. The
dashed curve accounts for charge convection at field strength of 2.1 kV/cm,
which results in a steady–state profile (note that this is the same curve as the
solid curve in figure 5.7(a)).
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ing to the approximate point of instability of the computation, t∗ ≈ 0.8 s in

figure 5.9(a), is illustrated through the solid curve in figure 5.9(b). The dashed

curve is exactly the same as the solid curve in figure 5.7(a), which considers

charge convection and is able to predict the steady–state deformation dis-

played by the solid curve in figure 5.6 at a lower field strength of 2.1 kV/cm.

Although a sharp variation in q was previously observed in figure 5.7(a) at the

equator of the drop at a field of 2.1 kV/cm due to interfacial charge convection

directed from pole to equator, this abrupt change is further accentuated when

the field is increased to 6.1 kV/cm. Furthermore, this increase in field strength

provides a maximum in the magnitude of the interfacial charge distribution q

near the equator, thus providing a nonmonotonic surface charge density pro-

file. If the simulation were to proceed beyond t∗ ≈ 0.8 s, the sharp variation at

the equator and the maximum in q would both increase until the curve ceases

to be smooth and the simulation terminates.

We believe that the solid curve in figure 5.9(b) is an artifact of the imposed

axisymmetry of the boundary integral calculation. At a high enough electric

field strength, an onset of drop rotation and three–dimensional flow is expected

due to an electric torque exerted to restore the misaligned dipole that arises

in systems for which τe,i > τe,o.
17,18 Hence, axisymmetric oblate deformations

are unstable to three–dimensional instabilities at high electric fields.15 This

phenomenon is akin to Quincke rotation for a solid particle suspended in a

fluid.64 To check whether this critical voltage for the onset of rotation has

been reached, we calculate the threshold electric field for a solid particle,65

EQ =

√
2µoS(2R + 1)2

3εiεoχoR(RS − 1)
, (5.14)
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Figure 5.10: Onset of rotation and three–dimensional flow of a silicone oil
drop suspended in a castor oil medium at a field strength of 6.8 kV/cm. An
air bubble is present inside of the drop. This bubble does not affect the
experimental measurement; it allows the direction of flow to be traced.

where EQ denotes the critical electric field for the onset of Quincke rotation of

a solid particle. Equation (5.14) is obtained by balancing the electrical and vis-

cous torques on a spherical rigid object. It is independent of particle size since

both the electrical and viscous torques scale as a3. We implement this expres-

sion as an approximation; considerable experimental deviation from (5.14) has

been observed for low–viscosity drops,17,18 which is the regime of our experi-

ments (M = 0.1). Inserting the dimensional parameters from table 5.1 and the

dimensionless groups S,M,R from table 5.2 yields EQ = 3.2 kV/cm. For our

system, the experimental onset of rotation occurs at a threshold field strength

of approximately 6.8 kV/cm – only 0.7 kV/cm greater than the field strength

in figure 5.9 – which is closer to the threshold electric fields reported in the

literature17,18 for castor oil–silicone oil systems. As illustrated in figure 5.10,

such three–dimensional instabilities may occur for deformations of modest am-

plitude. Here, the sequential images illustrate the silicone oil drop acquiring

an oblate shape and then transitioning towards an unstable configuration.
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5.6 Conclusion

We have analyzed the nonlinear transient deformation of a leaky dielectric

drop of permittivity εi, resistivity χi, and viscosity µi suspended in a medium

with permittivity εo, resistivity χo, and viscosity µo, respectively. Our first con-

tribution was the calculation of the transient deformation via an axisymmetric

boundary integral method, which accounts for surface charge convection and

a finite relaxation timescale for interfacial accumulation of charge. For steady

oblate drops, the dominant electrical relaxation timescales τe(i,o) = εi,oχi,o

yielded an initial prolate configuration due to a lack of sufficient charge at

the interface,21,55 which in turn causes the drop and medium to initially be-

have akin to perfect dielectrics. As the ratio of charge relaxation to capillary

timescale (Saville number Sao = τe,o/τc,o) increased at a fixed capillary num-

ber Cao, the prolate conformation became more pronounced and long–lived,

while the steady–state deformation remained unchanged. Furthermore, charge

convection was shown to restrain steady oblate deformations.

Our second contribution was a direct comparison of numerical simulation

against experimental measurement with no adjustable parameters. Our fo-

cus on oblate drops was due to their flow–driven nature, which therefore ac-

centuates interfacial charge convection.47 Both charge relaxation and charge

convection were required to correctly quantify the time–dependent deforma-

tions measured experimentally. Furthermore, these two forms of surface charge

transport were found to operate simultaneously rather than serially (see figure

5.8(b)); that is, charge accumulates at the interface as the electrohydrody-

namic flow convects the charge from pole to equator. Good agreement was

observed for moderate electric field strengths (1.6 kV/cm, 2.1 kV/cm). How-
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ever, the computation failed as the field increased towards 6.1 kV/cm, which

is due to an onset of drop rotation and unsteady three–dimensional flow.17,18

Although the oblate deformations illustrated in figures 5.5 and 5.6 were mod-

erate, charge convection provided a strong nonlinear effect on the interfacial

charge distribution q, as illustrated in figures 5.7(a) and 5.9(b). We have not

encountered such distorted surface charge density profiles in published works

that consider the effects of interfacial charge convection on steady oblate elec-

trohydrodynamic drop deformation,47,49 which we believe is due to the lack of

any reported results at such high electric Reynolds numbers Rei,o = τe(i,o)/τf .

This effect, which mostly reduced q throughout the interface, translates to a

less–pronounced tangential flow ut (figure 5.7(b)), and thus a reduced oblate

deformation. Thus, the modest deformations measured experimentally re-

quired a nonlinear model to enable an accurate prediction.

Our boundary integral calculations enabled the prediction of the transient

deformation of the castor oil–silicone oil system in tables 5.2 and 5.3; however,

room for improvement of the experimental setup exists. The most substantial

issue in our system is the dielectrophoretic migration of silicone oil drops at

high electric field strengths. Although care was taken when injecting the drop

into the center of the cell, we believe that more careful alignment of the elec-

trodes would minimize the migration of these drops, and improve agreement

between our computations and the experiments in figures 5.5 and 5.6. Our

work emphasizes the need to consider both charge relaxation and charge con-

vection when modeling the transient deformation of leaky dielectric systems at

large Saville Sai,o and electric Reynolds Rei,o numbers. The significant effects

of these two phenomena serves as motivation to perform further experimental

and computational studies that consider a wider range of systems with dif-
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fering permittivity S, resistivity R, and viscosity M ratios. Finally, a fully

three–dimensional boundary integral simulation would prove useful in predict-

ing steady–state drop deformation at higher electric fields, as well as the exact

field strength at the onset of drop rotation and unsteady flow observed in

experiments.17,18
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6. Relaxation or breakup of a

low–conductivity drop upon

removal of a uniform DC

electric field

6.1 Introduction

As stated in the Introduction of this thesis, the dynamics of “leaky dielec-

tric” materials under electric fields are of recent interest in areas of soft matter

physics such as vesicle manipulation,4,66–69 interfacial self–assembly of colloidal

particles,6,70–72 electrorheological response of polymer blends,38,73–75 and field–

induced dynamics of pendant and sessile drops.76–79 To gain insight into the

response of these relatively complicated systems to electric fields, it is essential

to first quantify the timescales and occurring dynamics of simple systems, such

as a single isolated drop placed under a uniform DC electric field. The mod-

eling of the transient field–induced deformation of isolated weakly conductive

drops has received continued attention.19,21,54–56,80 For these low–conductivity

systems, the charge relaxation timescales τe(i,o) = εi,oχi,o, which characterize

the time over which the interface acquires its steady–state surface charge den-
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sity distribution q∗, are often comparable to other system timescales and must

be accounted for. Note that the superscript ∗ is implemented to identify a

dimensional variable; material properties contain no superscripts. The ratios

of charge relaxation timescales τe(i,o) to the flow timescale τf = a/U are la-

beled as the electric Reynolds numbers Rei,o = τe(i,o)/τf .
14 Here, U represents

a characteristic velocity scale. When the electric Reynolds numbers are O(1),

the induced EHD flow convects charge as it accumulates at the drop surface.

This interfacial charge convection provides an intricate coupling between the

electric field and fluid flow; it has been shown to strengthen prolate deforma-

tions and weaken oblate deformations.47,49 It has also been shown to drive

“charge shocks” in the surface charge density profile of oblate drops,80 where

a rapid variation in the charge density occurs near the equator. Large charge

relaxation timescales τe(i,o) relative to the capillary timescales τc(i,o) = µi,oa/γ

delay interfacial charging,15 which in turn extends the transient deformation

process.21,54,55,80 Increasingly large values of τe(i,o)/τc(i,o) also cause prolate to

oblate shape transitions for ultimate oblate configurations.21,55,80 We labeled

the ratios of τe(i,o) to capillary timescales τc(i,o) as Saville numbers15 Sai,o in

our previous publication.80 Our work examined the role of transient interfacial

charging and surface charge convection on transient EHD drop deformation.

There, we analyzed the effects of finite Sai,o and Rei,o via experiment and com-

putation. Accounting for charge relaxation and charge convection was crucial

to correctly predict our experimental measurements for the transient oblate

deformation of a silicone oil drop suspended in a castor oil medium.

The impact of charge transport towards and along the interface is dic-

tated by the magnitude of the electrical relaxation timescales τe(i,o) relative

to other system timescales. This in turn determines the appropriate retention
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of terms in the governing equation dictating the conservation of interfacial

charge. For example, vesicle systems normally possess a high membrane re-

sistivity in comparison to their surrounding salt solutions.4,66,68 This in turn

yields fast charging timescales τe(i,o) in comparison to the membrane capacitive

timescale τb = CbL(χi + 0.5χo), where Cb is the biomimetic membrane capaci-

tance and L denotes a characteristic lengthscale (typically the vesicle radius).

Since τe(i,o)/τb � 1, transient charging of the surrounding fluids is negligible in

comparison to charging of the membrane capacitor; hence, fluid charge relax-

ation is negligible. Furthermore, charge convection is normally neglected for

these systems since at steady–state, tangential electrical stresses are balanced

by interfacial tension gradients4,66,68 as opposed to viscous stresses; no fluid

flow is induced at the membrane surface. On the other hand, the weakly con-

ductive fluids implemented in the present study are characterized by electrical

relaxation timescales τe(i,o) that may be on the order of the capillary τc(i,o) and

flow τf timescales. This in turn renders relevance to the transient interfacial

charging and surface charge convection mechanisms, respectively.

Since charge relaxation affects the time–dependent deformation of a weakly

conducting drop exposed to an electric field, we expect it to play a major role

in the relaxation of a drop upon removal of the field. While the relaxation

of a drop upon cessation of a flow field is well studied,20,81–83 the relaxation

of a drop upon cessation of an electric field has received scant attention. Im-

portantly, the presence of an additional (charging) timescale under an electric

field suggests that the drop relaxation dynamics should be rich. Therefore,

in the present chapter, we analyze the relaxation of a prolate leaky dielectric

drop upon removal of a uniform DC electric field via theory, computation, and

experiment. This work is therefore an extension of our previous publication;80
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here, we examine the effect of surface charge transport on drop relaxation

upon removal of an applied electric field. In our experimental system, consist-

ing of a castor oil drop suspended in silicone oil, we observe an asymmetry

between the transient deformation and relaxation processes: the drop relaxes

faster than the rate at which it achieves its steady deformation. Our compu-

tations reveal that the asymmetry in the deformation–relaxation profile arises

from an interfacial tangential electrical stress that acts together with the cap-

illary stress to quickly restore the shape of the drop back to a sphere once the

applied field is removed; this differs from the deformation process in which

the electrical stress and capillary stress counteract one another. Furthermore,

we present computational results for a different low–conductivity system for

which a highly nonlinear (multi–lobed) steady–state deformation can lead to

drop breakup when the electric field is withdrawn; i.e. the drop does not relax

back to equilibrium.

6.2 Modeling drop deformation and relaxation

A uniform DC electric field E∞ is applied across a neutrally buoyant drop

suspended in an immiscible medium. The mismatch in permittivity and resis-

tivity between the two phases gives rise to interfacial shear electrical stresses

that are balanced by shear viscous stresses; an EHD flow is thus induced

throughout the drop and medium. In this work, we consider a drop with

greater conductivity than the medium (R < 1). We further stipulate the

timescale for charge relaxation in the medium τe,o = εoχo is greater than that

of the drop τe,i = εiχi (SR < 1). Thus, the rate of charging of the surface is

limited by the medium. This yields EHD flows that are directed from the equa-

tor (θ = π/2) towards the poles (θ = 0, π) of the drop (equator–to–pole)18,48

(figure 6.1). Here, the field–induced dipole is along the imposed electric field
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Figure 6.1: Schematic of the prolate deformation of a leaky dielectric drop
under a uniform DC electric field of magnitude E∞. The drop is characterized
by permittivity εi, resistivity χi, and viscosity µi, while the medium is charac-
terized by properties εo, χo, and µo, respectively. The permittivity S = εi/εo
and resistivity R = χi/χo ratios chosen in this work yield a flow directed from
the equator (θ = π/2) towards the poles (θ = 0, π) of the drop, as illustrated
by the depicted streamlines. A cylindrical coordinate system (σ,φ,z) is imple-
mented due to the assumed axisymmetric nature of the field and flow. Here,
r∗1 and r∗2 represent the major and minor semi–axes, while θ denotes the polar
angle.

and the field–induced deformation is prolate. The drop deformation is assumed

to be independent of the azimuthal angle φ. This axisymmetry permits the use

of a cylindrical coordinate system (σ,φ,z). Once a steady–state deformation

is achieved, the electric field is removed, allowing the interface to discharge

and the drop to relax back to its spherical equilibrium shape, or to undergo

breakup.

We solve for both the electric field and fluid flow profiles at the surface

of the drop once the uniform field E∞ is applied at time t∗d = 0. Here, t∗d

is the elapsed time for the deformation process. The transient drop defor-

mation D(t∗d) is then quantified from the calculated interfacial field and flow.

Once a steady–state deformation is achieved, the field E∞ is set to zero, and

the drop is allowed to relax (or break up). The transient deformation and

drop relaxation are first quantified through asymptotic analysis valid in the
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linear regime (i.e. to first order in Cai,o). The drop deformation–relaxation

process is then quantified through boundary integral computations capable

of predicting linear and nonlinear deformations. Unlike previous researchers

who have implemented the boundary integral method to calculate the steady–

state field–induced deformation of liquid drops,9,45,48,59,60 we account for finite

charge relaxation timescales τe(i,o) through an equation that dictates the con-

servation of surface charge density. Furthermore, we compute the transient

drop deformation under an electric field and drop relaxation upon removal of

the applied field. The computational results are validated against the linear

theory predictions and compared against experimental measurements.

6.2.1 Linear theory

To calculate the transient drop deformation D(t∗d) when the electric field

is applied, we make use of our previously–developed linear theory55 that con-

siders both the charge relaxation τe(i,o) = εi,oχi,o and momentum relaxation

τm(i,o) = a2ρi,o/µi,o timescales, where ρi,o denotes the density of either phase,

respectively. As we shall show in the subsequent sections, our experimental sys-

tem yields dominant electrical relaxation timescales, for which τe(i,o) � τm(i,o)

(note that ρi = ρo ≈ 960 kg/m3). Hence the interfacial charging timescales

τe(i,o) dictate the temporal evolution of the drop shape; the momentum dif-

fusion timescales τm(i,o) do not impact the occurring dynamics of the system.

Our analytical expression55 for the evolution of the drop shape yields Taylor’s

steady–state linear deformation13 at long times. This analytical expression is

given in the Laplace domain in equation (D4) of our previous article.55

To calculate the drop relaxation upon removal of the electric field, we

begin with the governing equations for electrostatics. Note that spherical
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coordinates (ζ =
√
z2 + σ2, θ, φ) are implemented to develop our analysis in the

linear regime Cai,o � 1. Knowledge of the inner φ∗i and outer φ∗o electrostatic

potentials requires solutions to Laplace’s equation48,59,60 ∇∗ 2φ∗i,o = 0. The

irrotational electric fields are calculated from the gradient of the potentials.

The inner electrostatic potential is bounded at the origin ζ = 0, and the outer

field −∇∗φ∗o approaches zero (note that E∞ = 0 during relaxation) as ζ →∞.

Furthermore, the potential is continuous across the interface; i.e. φ∗i = φ∗o at

ζ = a. The remaining boundary conditions applied at the drop surface ζ = a

read

εoE
∗
n,o − εiE∗n,i = q∗ (6.1)

and

1

χi
E∗n,i −

1

χo
E∗n,o =

∂q∗

∂t∗r
, (6.2)

where E∗n(i,o) = E∗i,o ·n represents the normal component of the electric fields

evaluated at the interface, and t∗r is the time elapsed since the field is removed.

Here, the unit normal vector n is positive when pointing into the medium.

The boundary condition (6.1) accounts for the jump in electric displacement,

while (6.2) dictates the conservation of surface charge density q∗. The right–

hand side of equation (6.2) represents the accumulation of interfacial charge

q∗,14,15 which occurs over the electrical relaxation timescales τe(i,o).

Following our analytical approach in quantifying transient deformation,55

we take the Laplace transform of equations (6.1) and (6.2) to eliminate q∗ and

formulate a new boundary condition. Unlike our previous approach, however,

we require the steady–state value for the surface charge density q∗t∗r=0 just before

the electric field is removed and the interface begins to discharge. Eliminating
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q∗ through use of (6.1) and (6.2) yields

Ẽ∗n,i (1 + s∗τe,i) = R Ẽ∗n,o (1 + s∗τe,o)− q∗t∗r=0 χi, (6.3)

where the Laplace transform of E∗n(i,o) is given by Ẽ∗n(i,o) =
∫∞

0
e−s

∗t∗rE∗n(i,o) dt
∗
r.

After applying the aforementioned boundary conditions to the general solu-

tions for the electrostatic potentials φ∗i,o, the interfacial electrical stresses are

readily computed through the Maxwell stress tensor τ ∗e(i,o) = εi,o
(
E∗i,oE

∗
i,o − 1

2
E∗2i,o I

)
,

where I represents the identity tensor. After inversion towards the time do-

main, the radial and angular jump (from outside to inside) in electrical stress

across the surface of the drop is given by

[τ ∗e · n]ζ = −
q∗ 2
t∗r=0

εo

((2S − 5) cos 2θ − 3)

4S(S + 2)2 cos θ
e
− 2(2R+1)
R(S+2)

t∗r
τe,o (6.4)

and

[τ ∗e · n]θ =
q∗ 2
t∗r=0

εo

sin θ

S(S + 2)
e
− 2(2R+1)
R(S+2)

t∗r
τe,o , (6.5)

where q∗t∗r=0 = −3 εoE∞
RS−1
2R+1

cos θ denotes steady–state surface charge density

distribution of a slightly–deformed drop.55 When the electric field is removed,

the interface begins to discharge; the radial and angular jump in electrical

stress decays towards zero.

We compute the fluid flow and drop relaxation that result from the elec-

trical stresses (6.4) and (6.5). Our focus is on dominant viscous forces (i.e.

Reynolds numbers ReFlow(i,o) = ρi,oUa/µi,o � 1). This requires solution to the

Stokes equations

∇∗p∗i,o = µi,o∇∗2u∗i,o and ∇∗ · u∗i,o = 0, (6.6)
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where p∗i,o and u∗i,o represent the pressure and velocity distributions. To solve

for the velocity and pressure fields, we first implement a stream function

ψ∗i,o(ζ, θ, t
∗
r) from which the velocity profiles are readily calculated through

u∗i,o = ∇∗ ∧
[
ψ∗
i,o(ζ,θ,t

∗
r)eφ

ζ sin θ

]
. Use of the stream function automatically satisfies

the incompressibility constraint. The stream function satisfies the biharmonic

equation32 D4ψ∗i,o = 0, where

D2 =
∂2

∂ζ2
+

sin θ

ζ2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (6.7)

The pressure fields p∗i,o are then obtained through solution of the momen-

tum balance in (6.6). The interfacial boundary conditions involve a no–

slip condition u∗θ,i = u∗θ,o, a no–flux condition u∗ζ,i = u∗ζ,o = ∂ξ∗

∂t∗r
, a bal-

ance between tangential electrical and viscous stresses [τ ∗e · n]θ + [τ ∗h · n]θ =

0, and a balance between normal electrical, viscous, and capillary stresses

[τ ∗e · n]ζ + [τ ∗h · n]ζ = γ ∇∗s ·n. Here, u∗θ(i,o) and u∗ζ(i,o) denote the angular and

radial components of the interfacial velocities u∗i,o, ξ
∗ represents the drop sur-

face, τ ∗h = −p∗I+µ
[
∇∗u∗ + (∇∗u∗)T

]
is the hydrodynamic stress tensor, and

∇∗s denotes the surface gradient operator. For a detailed explanation of the ap-

plication of these conditions, see Esmaeeli and Sharifi19 and Lanauze et al.55

Note that unlike Esmaeeli and Sharifi, we account for transient interfacial

charging through equation (6.2). However, the remaining interfacial boundary

conditions required to solve for the velocity and pressure fields throughout

the drop and medium are the exact same as those considered by Esmaeeli

and Sharifi19 and Lanauze et al.55 We implement these boundary conditions,

with distance scaled with the spherical drop radius a, time scaled with the

outer charge relaxation timescale τe,o = εoχo, surface charge density scaled

with
√
γ εo/a, electric field scaled with the characteristic field Ec =

√
γ/aεo,
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stress scaled with the capillary stress γ/a, and velocity scaled with the capil-

lary velocity U = γ/µo. Note that the nondimensionalization applied to the

field and velocity is derived by balancing the scaling for electrical stress εoE
2
c

(for the field) and viscous stress µoU/a (for the velocity) against the scaling

for the capillary stress γ/a. This is preferred to any scaling with E∞ since

the applied field is set to zero to allow the drop to relax once it has achieved

its steady–state conformation. The scaling for the interfacial charge q∗ fol-

lows by substituting the scaling for the electric field into εoEc. We omit the

remainder of the applied steps and present our analytical expression for the

drop relaxation, which reads

D(tr) = [e
− 40(M+1)trSao

38M2+89M+48{(qtr=0/cos θ)2RSao(−19MS + 7M − 16S + 13) + 4(S + 2)DT ((2M

+3)(19M + 16)(2R + 1)− 20(M + 1)R(S + 2)Sao)}+ (qtr=0/cos θ)2RSao(M(19S

−7) + 16S − 13)e−
2(2R+1)tr
R(S+2) ]/[4(S + 2)((2M + 3)(19M + 16)(2R + 1)− 20(M

+1)R(S + 2)Sao)], (6.8)

where DT denotes the steady field–induced linear deformation predicted by

Taylor.13 Note that qtr=0 is divided by cos θ to eliminate any angular depen-

dence in this expression. An expansion around tr = 0 yields

D(tr) = DT−
[(qtr=0/cos θ)2(M(19S − 7) + 16S − 13) + 80(M + 1)(S + 2)2DT ]Saotr

2 (38M2 + 89M + 48) (S + 2)2
+O(t2r).

(6.9)

Equation (6.9) indicates that once a stable linear deformation DT is achieved,

the rate at which the drop relaxes increases with both the magnitude of DT

and the value of the Saville number Sao. As shown in the following sections,

our experiments and computations also display this trend.
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6.2.2 Boundary integral formulation

The boundary integral method is implemented to solve for the electric field

and fluid flow at the surface of the drop, as well as the resulting time–dependent

drop deformation D(t). The integral formulation and numerical solution of the

differential governing equations for the field and flow are discussed in detail by

Lanauze et al.80 Unlike that work, however, charge convection is unaccounted

for in the charge conservation equation (6.2), despite the electric Reynolds

numbers Rei,o ∼ O(1). This is due to the negligible role of charge convec-

tion in determining the steady prolate configurations that characterize our

experimental system. As we shall see, our computations predict the steady

deformations achieved in our experiments within the error in measurement.

Hence, this assumption is verified a posteriori when comparing computational

results against experimental measurements in the following sections. Further-

more, the previously–described nondimensionalization procedure is applied to

the subsequent equations.

When the drop achieves a steady–state deformation, its shape ξ∗ and sur-

face charge density q∗ profiles are extracted. With these numerical values for

the steady drop shape and interfacial charge, the capillary numbers Cai,o are

set to zero due to the removal of the uniform applied field E∞ = 0. The

boundary integral computations are then conducted in absence of the imposed

field to model drop relaxation. Note that all equations henceforth have been

rendered dimensionless, as indicated by the lack of the superscript ∗.

We begin with the dimensionless integral formulation of Laplace’s equation
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for the electric potential, namely48,59,60,80

S − 1

4πS

∮
A

r · n(x)

r3
En,o(y)dA(y) +

S + 1

2S
En,o(x) = nz(x)

√
Cao (6.10)

− 1

4πS

∮
A

r · n(x)

r3
q(y)dA(y) +

1

2S
q(x),

where the closed integral is evaluated over the interface. Note that (6.10)

satisfies all the boundary conditions for the electric field described in section

6.2.1 except for equation (6.2), which remains to be applied. Here, nz = n · z,

r = y − x is the distance between an observation point y and a source point

x, and r =
√
r · r. The instantaneous surface charge density q is required

to solve equation (6.10) for the normal field En,o. When the field is initially

applied, the surface of the drop contains no charge (i.e. q = 0 at time td = 0).

When the field is removed, the steady–state value for the interfacial charge

distribution is implemented as the initial condition. The value for q at future

times is obtained through numerical time integration of equation (6.2). The

instantaneous shape of the drop is required to calculate the surface integrals

in equation (6.10) and all equations that follow.

The inner normal electric field En,i may be calculated through application

of (6.1). The tangential field Et,o = Et,i = Ei,o · t is acquired via an integral

equation that governs the electrostatic potential φo,
61 which is given by

φo(x) = −z(x)
√
Cao +

∮
A

1

4πr
(En,o(y)− En,i(y))dA(y). (6.11)

The tangential field is Et,o = −∂φo
∂s

, where s represents the continuous drop

arc–length measured from the positive z–axis. The jump in electrical stress
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(from outside to inside) across the drop surface is

[τ e · n] =
1

2

[
(E2

n,o − SE2
n,i) + (S − 1)E2

t,o

]
n+ Et,o(En,o − SEn,i) t. (6.12)

Note that equation (6.12) differs from (6.4) and (6.5) since those equations are

only valid in the linear regime. Equation (6.12) holds regardless of the value

of the electric capillary numbers Cai,o.

The field–induced interfacial fluid flow is computed through an integral

formulation of the Stokes equations,62

uo(x) = − 1

4π(M + 1)

∮
S

∆f(y) · J(y,x) dS(y) (6.13)

− 1

4π

M − 1

M + 1

∮
S

uo(y) ·K(y,x) · n(y) dS(y),

where J and K denote the free–space Green’s functions for velocity and

stress,62 ∆f = 2κmn − [τ e · n] represents the jump in hydrodynamic trac-

tion across the interface, and κm is the mean curvature. The position of the

interface is updated via time integration of the kinematic condition

∂ξ

∂t
= Sao un,o, (6.14)

where un,o = (uo · n)n, t = td during the deformation process, and t = tr dur-

ing the relaxation process. Once the drop shape ξ and surface charge density

distribution q have been updated, equations (6.10) through (6.14) are solved

recursively until the drop achieves a steady–state conformation or breaks up.

The numerical solution procedure of these equations is discussed in our previ-

ous publication.80
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6.2.3 Validation of numerical computation

To validate our boundary integral computations, we compare the predicted

numerical deformation–relaxation profile with the small–Ca theory given in

our previous publication55 that describes the transient drop deformation, and

equation (6.8) describing the drop relaxation. The physical system of inter-

est is a drop of castor oil suspended in silicone oil; it is characterized by the

material properties listed in table 6.1. The pertinent dimensionless groups

extracted from these properties are displayed in table 6.2. Here, the drop is

less viscous and more conductive than the medium (i.e. M < 1 and R < 1).

First, we focus on an electric field strength of E∞ = 0.5 kV/cm, which yields

small capillary numbers Cai = 1.3× 10−2 and Cao = 7.1× 10−3, respectively.

The resulting curves for the transient drop deformation and drop relax-

ation are presented in figure 6.2(a). Note that all curves begin from time

t∗ = 0 although the drop relaxation occurs after a steady deformation has

been achieved; this visualization approach is implemented to emphasize any

asymmetry between the deformation and relaxation processes. The horizon-

tal axis time t∗ is equal to the deformation time t∗d for the drop deformation

process, and equal to the relaxation time t∗r for the drop relaxation process.

Here, the linear theory for the deformation and relaxation agrees well with our

computational predictions. This verifies the numerical predictions since our

theory provides accurate results for small capillary numbers Cai,o. Increasing

the electric field to E∞ = 2.8 kV/cm yields the capillary numbers Cai = 0.4

and Cao = 0.2, respectively. The deformation–relaxation profile in this case

is illustrated in figure 6.2(b). As the capillary numbers are increased from

those in figure 6.2(a), deviation between the linear theory and computational

predictions becomes pronounced. Here, the higher applied field results in de-
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formations that are nonlinear in the capillary numbers Cai,o, which the theory

is unable to capture.

Phase εr 1/χ µ a γ

(S/m) (Pa s) (mm) (mN/m)

drop (castor oil) 4.9 5.8× 10−11 0.68

0.5 4.5

medium (silicone oil) 2.8 2.0× 10−12 4.80

Table 6.1: Material properties of a castor oil drop suspended in silicone oil.

Here, εr denotes the relative permittivity.

Phase Sa S M R

drop (castor oil) 2.6

1.8 0.14 0.03

medium (silicone oil) 22.3

Table 6.2: Electric–field–independent dimensionless groups that describe a

castor oil drop suspended in silicone oil.

6.3 Comparison of numerical computation against

experimental measurement

6.3.1 Experimental setup

The present experimental setup is similar to that in our previous publi-

cation.80 A drop of castor oil (Sigma–Aldrich) is injected into a silicone oil

(Sigma–Aldrich) medium held by a plastic cell with two 5 cm×5 cm brass paral-

lel electrodes separated at a distance of 2 cm. The permittivity ε and resistivity

χ of each fluid is measured via electrochemical impedance spectroscopy.63 A
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Figure 6.2: Transient deformation and relaxation of a weakly conducting drop.
The material properties of this system are listed in table 6.1, while the rele-
vant dimensionless groups are given in table 6.2. The open circles (deforma-
tion) and open squares (relaxation) represent boundary integral computations,
while solid (deformation55) and dashed lines (relaxation, equation (6.8)) de-
note linear theory calculations. Figure 6.2(a) corresponds to capillary numbers
Cai = 1.3 × 10−2 and Cao = 7.1 × 10−3, while figure 6.2(b) corresponds to
Cai = 0.4 and Cao = 0.2, respectively.

voltage is applied across the electrodes using a DC power supply (Gamma

High Voltage Research, Inc.). Images of the drop are then collected at a rate

of 15 frames per second though a firewire camera (Guppy PRO F–125B, Allied

Vision Technologies). When the drop reaches a steady–state deformation, the

power supply is switched off, thereby allowing the drop to relax back to its

initial equilibrium shape. We analyze the collected images using ImageJ soft-

ware. The error bars in our measurements of the drop deformation–relaxation

profile originate from the uncertainty in measurement of the drop semi–axes

r∗1 and r∗2, respectively. To compare our experimental measurements against

computational predictions, the relaxation process is assumed to begin once

the deformation deviates from the error corresponding to the steady drop con-

formation; the preceding measurement is thus considered the initial point in

the relaxation profile. Both the experimental and computational curves for
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the transient deformation and drop relaxation will be shown from t∗ = 0 to

highlight any asymmetry between the two processes.

6.3.2 Drop deformation and relaxation at electric field

strengths of 1.8 kV/cm and 2.3 kV/cm

We quantify the deformation–relaxation profile of the castor oil–silicone oil

system characterized by the properties given in table 6.1 and table 6.2. The

applied field E∞ = 1.8 kV/cm yields the capillary numbers Cai = 0.2 and

Cao = 0.1, respectively. The results for this system are displayed in figure

6.3. Our computations predict the measured drop deformation and relaxation

within the experimental error, with some slight deviation between the com-

putation and experiment during 1 s . t∗ . 3 s for both the deformation and

relaxation processes. Furthermore, our computation slightly overestimates the

measured steady–state deformation. We believe the deviation occurs due to

the dielectrophoretic migration of the castor oil drop, which originates from

nonuniformities in the applied field arising from slight tilts in the electrodes.

To verify the neglect of interfacial charge convection in equation (6.2), we

compare the computational results illustrated in figure 6.3 against computa-

tions that account for charge convection. The results from these computations

are depicted in figure 6.4. Although the electric Reynolds number for the drop

Rei = 1.6 and medium Reo = 2.1, the curves resulting from computations

conducted at these Reynolds numbers exhibit minimal deviation from those

conducted at Rei,o = 0. From this figure, it is apparent that at this applied

field strength, surface charge convection does not play an appreciable role in

the transient deformation and drop relaxation processes. This differs from the

system we examined in our previous publication80 (a drop of silicone oil sus-
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Figure 6.3: Transient deformation and relaxation of a castor oil drop suspended
in silicone oil. The material properties of this system are listed in table 6.1,
while the relevant dimensionless groups are given in table 6.2. The imposed
electric field strength is E∞ = 1.8 kV/cm, which yields the capillary num-
bers Cai = 0.2 and Cao = 0.1, respectively. The open circles (deformation)
and open squares (relaxation) denote experimental measurements, while solid
(deformation) and dashed (relaxation) lines correspond to boundary integral
computations.

pended in castor oil) in which higher field strengths were required to achieve

modest oblate deformations, thereby yielding larger electric Reynolds numbers

(note that Rei,o ∼ E2
∞). Furthermore, we expect charge convection to play a

less substantial role for prolate drops since these systems do not require steady

EHD flows to drive the drop away from equilibrium. This differs from oblate

drops, in which electric field–induced flows are essential to achieve a defor-

mation. To simplify our analysis in the subsequent sections, the remaining

systems are modeled under the absence of surface charge convection.

From figure 6.3, it is apparent that the drop quickly relaxes towards its

spherical equilibrium shape in comparison to the rate at which it reaches its

steady prolate conformation. To quantify this asymmetry between the tran-

sient deformation and relaxation processes, we define the ratio τon/off = t∗on/t
∗
off.

Here, t∗on is the time required for the drop to reach 90% of its steady–state de-
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Figure 6.4: Transient deformation and relaxation of a castor oil drop suspended
in silicone oil. The material properties of this system are listed in table 6.1,
while the relevant dimensionless groups are given in table 6.2. The imposed
electric field strength is E∞ = 1.8 kV/cm, which yields the capillary numbers
Cai = 0.2 and Cao = 0.1, respectively. The solid (deformation) and dashed
(relaxation) lines denote boundary integral computations conducted in the
absence of surface charge convection, while dash–dotted (deformation) and
dotted (relaxation) lines correspond to boundary integral computations that
account for surface charge convection.
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Figure 6.5: Transient deformation and relaxation of a castor oil drop suspended
in silicone oil. The material properties of this system are listed in table 6.1,
while the relevant dimensionless groups are given in table 6.2. The imposed
electric field strength is E∞ = 2.3 kV/cm, which yields the capillary numbers
Cai = 0.3 and Cao = 0.2, respectively. The legend is the same as that in
figure 6.3.

formation, while t∗off is the time required for the drop to undergo a 90% loss

of its steady deformation. This definition for t∗on and t∗off avoids discerning the

specific time when the drop achieves its steady configuration. For this applied

field strength, τon/off = 2.9. Slightly increasing the electric field to a value

E∞ = 2.3 kV/cm yields the deformation–relaxation profile presented in figure

6.5. Here, values for the electric capillary numbers are given by Cai = 0.3 and

Cao = 0.2, respectively. Our computations are once again able to predict the

measured transient deformation and drop relaxation. The increase in Cai,o

provides the accompanying increase in τon/off = 3.5.

Since the driving force for the deformation of a low–conductivity drop

is the interfacial electrical stress jump [τ ∗e · n], we expect it to play a ma-

jor role in the relaxation process of the deformed drop. We thus turn to

the dimensionless normal stress balance at the surface of the drop, given by

[τ e · n]n + [τ h · n]n = ∇s · n. When the field E∞ is applied, both the nor-
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mal electrical stress [τ e · n]n and the normal viscous stress [τ h · n]n act to

deform the drop, while the capillary stress ∇s · n acts to resist any deviation

away from the minimum energy configuration provided by the initial spherical

shape. The tangential stress balance [τ e · n]t + [τ h · n]t = 0 indicates that

that the tangential viscous stress [τ h · n]t counteracts the tangential electri-

cal stress [τ e · n]t that induces the EHD flow directed from equator–to–pole

(depicted by the tangential velocity profile ut at θ ≈ π/4 in figure 6.6(a)). In

short, the normal and tangential components of the electrical stress [τ e · n]

drive the drop away from equilibrium and cause it deform in the direction of

the applied field. The main change that occurs when the applied field is re-

moved is a reversal in direction of the interfacial tangential electric field Et, as

shown in figure 6.7. Figure 6.7(a) depicts the field lines around the castor oil

drop when the steady–state deformation in figure 6.5 is achieved. Note that

although the steady deformation displayed in figure 6.5 is nonlinear, the field

lines are computed from Taylor’s analysis13 to simply illustrate their direction.

The field lines in figure 6.7(b) are computed from our linear theory in section

6.2.1.

Figure 6.7(b) shows that when the electric field is removed, the tangential

component of the field at the drop surface Et increases in magnitude rela-

tive to figure 6.7(a) and reverses direction. This change is most pronounced

near the equator of the drop. Since the interfacial tangential electrical stress

[τ e · n]t = qEt,
48 the change in Et yields a reversal in the direction of this elec-

trical stress, which is now directed from pole–to–equator. The field–induced

tangential flow ut during the discharging process now favors drop relaxation

(figure 6.6(b)). Furthermore, the magnitude of the interfacial flow is large

yet short–lived in comparison to the flow achieved at steady–steady when the
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Figure 6.6: Time–dependent dimensionless tangential velocity ut at the sur-
face of a castor oil drop suspended in silicone oil (θ ≈ π/4). The imposed
electric field strength is E∞ = 2.3 kV/cm, which yields the capillary numbers
Cai = 0.3 and Cao = 0.2, respectively. In figure 6.6(a) the field E∞ is applied,
which yields a development of interfacial velocity directed from equator–to–
pole (denoted by the negative sign in ut) that helps drive the drop deformation
depicted by the solid curve in figure 6.5. In figure 6.6(b) the field is removed,
which yields a decay in the interfacial velocity directed from pole–to–equator
(denoted by the positive sign in ut) that helps drive the drop relaxation de-
picted by the dashed curve in figure 6.5.

drop surface is fully charged. This occurs due to the fact that the tangen-

tial electrical stress [τ e · n]t and the capillary stress ∇s · n both favor drop

relaxation, which was not the case then the uniform field was applied. This

in turn causes the asymmetry in the deformation–relaxation profile quanti-

fied in figure 6.3 and figure 6.5, respectively. Note that if the charging and

discharging processes occurred instantaneously, the capillary timescales τc(i,o)

would dictate the transient drop deformation and drop relaxation, thus yield-

ing a symmetric deformation–relaxation profile. This becomes apparent when

applying the limit τe,o → 0 to the normal and tangential components of the

electrical stress in equations (6.4) and (6.5). Here, the electrical stresses be-

come zero upon removal of the applied field E∞, which in turn yields no as-

sistance to the capillary stress in the drop relaxation process. Decreasing the
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Figure 6.7: Electric field lines outside a castor oil drop suspended in silicone
oil. The imposed electric field strength is E∞ = 2.3 kV/cm, which yields
the capillary numbers Cai = 0.3 and Cao = 0.2, respectively. Figure 6.7(a)
illustrates the field lines calculated from Taylor’s analysis13 when the steady–
state deformation in figure 6.5 is achieved, while figure 6.7(b) depicts the field
lines computed from our analysis in section 6.2.1 when the field is removed
and the drop is allowed to relax.

charging timescales τe(i,o) by two orders of magnitude through decreasing the

resistivity χ of each phase for the same system presented figure 6.5 yields the

computational deformation–relaxation profile illustrated in figure 6.8. Here,

the dimensionless ratio τon/off is decreased from τon/off = 3.5 (figure 6.5) to

τon/off = 1.4. Since the dimensionless groups {S,M,R} and capillary numbers

Cai,o remain unaltered from those in figure 6.5, we conclude that the decrease

in Saville numbers Sai,o (or equivalently, a decrease in the resistivities of the

fluids) is solely responsible for the decrease in asymmetry between the drop

deformation and relaxation processes. As previously stated, removing the

electric field yields a reversal in the interfacial tangential electrical stress. To

observe an asymmetry in the drop deformation–relaxation profile, the charg-

ing timescales τe(i,o) should be O(1) relative to the capillary timescales τc(i,o).

This allows the tangential electrical stress to act over a longer period of time

to assist in the drop relaxation process towards equilibrium.
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Figure 6.8: Transient deformation and relaxation of a castor oil drop suspended
in silicone oil. The material properties of this system are listed in table 6.1,
with the resistivity χ of each phase decreased by two orders of magnitude.
This in turn decreases the Saville numbers Sai,o = τe(i,o)/τc(i,o) by two orders
of magnitude, while leaving the remaining dimensionless groups in table 6.2
unchanged. The imposed electric field strength is E∞ = 2.3 kV/cm, which
yields the capillary numbers Cai = 0.3 and Cao = 0.2, respectively. The drop
deformation (solid) and relaxation (dashed) curves result from our boundary
integral computations.
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As an alternative view on the asymmetry between the deformation and re-

laxation, we examine the transient storage of energy within the drop when the

field E∞ is applied, as well as the release of stored energy when the field is re-

moved. Due to the finite resistivity χ of each fluid, a certain amount of charge∫
1
2
A
q∗dA accumulates at each half of the drop surface. Here, the surface inte-

gral is carried out over the right half of the drop. The drop is thus able to store

charge at its interface, similar to a capacitor. The energy stored in a capacitor

is given by 1
2
E∞ a

∫
1
2
A
q∗dA, where E∞ a is the applied voltage. Furthermore,

deforming the drop also results in storage of capillary energy, given by γ
∫
A
dA.

Note that the interfacial tension γ is assumed to remain constant throughout

the drop deformation and relaxation. After applying the previously–described

scaling for the electric field and surface charge, and normalizing energy by γ a2,

the expressions for capacitive and capillary energy yield 1
2

∫
1
2
A
q dA and

∫
dA,

respectively. The storage and release of capacitive and capillary energy for

the conditions in figure 6.5 is shown in figure 6.9. Interestingly, figure 6.9(a)

indicates that the surface of the drop charges and discharges in a symmetric

fashion, on the order of the larger charging timescale τe,o = 12.3 s. How-

ever, figure 6.9(b) displays an asymmetry between the storage and release of

capillary energy. This asymmetry is directly correlated to the asymmetry in

the drop deformation–relaxation profiles depicted in figure 6.3 and figure 6.5.

That is, a drop with an asymmetric deformation–relaxation profile is expected

to store and release capillary energy in an asymmetric fashion. Surprisingly,

however, the storage and release of capacitive energy is symmetric.

113



0 2 4 6 8 10 12 14

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

simulation: energy storage

simulation: energy release

Figure 6.9: Time–dependent energy storage and release by a castor oil drop
suspended in silicone oil. The imposed electric field strength is E∞ =
2.3 kV/cm, which yields the capillary numbers Cai = 0.3 and Cao = 0.2, re-
spectively. This storage and release of energy corresponds to the deformation–
relaxation profile illustrated in figure 6.5. Figure 6.9(a) depicts the storage
and release of capacitive energy, given in dimensionless form as 1

2

∫
1
2
A
q dA.

Figure 6.9(b) illustrates the storage and release of capillary energy, given in
dimensionless form as

∫
A
dA. Here, we subtract the dimensionless capillary

energy of a spherical drop 4π from the energy profile to depict the deviation
from this minimum energy configuration.

6.4 Breakup of a drop upon removal of im-

posed field

We examine the relaxation of a leaky dielectric system characterized by

the set of dimensionless parameters (S,M,R) = (1.37, 1, 0.1), which yields

prolate conformations under a uniform DC electric field. The steady–state

drop deformation for this system was thoroughly quantified as a function of

outer electric capillary number Cao by Lac and Homsy.48 In their analysis, a

range of capillary numbers 0.345 < Cao < 0.365 yielded access to two steady

drop configurations: spheroidal and two–lobed. Above this electric capillary

number (0.365 ≤ Cao ≤ 0.5), a family of two through five–lobed drop shapes

become attainable. These highly nonlinear shapes do not undergo breakup;
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rather, the drops achieve steady–state deformations due to multiple internal

recirculating flows.48

From this system,48 the capillary numbers Cao = {0.3, 0.38, 0.4} are chosen

for the present study. For Cao = 0.3, a steady spheroidal drop deformation is

achieved, while Cao = 0.38 and Cao = 0.4 yield two–lobed and three–lobed

stable shapes, respectively. The transient drop deformation and drop relax-

ation corresponding to the electric capillary number Cao = 0.3 is displayed

in figure 6.10. Figure 6.11(a) and figure 6.12(a) illustrate the deformation–

relaxation profile for Cao = 0.38 and Cao = 0.4, respectively. The outer Saville

number Sao = τe,o/τc,o for these three computations (Cao = {0.3, 0.38, 0.4})

are chosen as Sao = {0.167, 0.132, 0.125}. Note that the time axis of these

figures is normalized by the charging timescale of figure 6.10 for proper com-

parison of the time–dependent deformation and drop relaxation. These values

for the Saville number are chosen due to the fact that they yield τe,o < τc,o,

which indicates that the surface of the drop discharges quickly in comparison

with the rate at which it relaxes due to capillary stress. Hence, the transient

interfacial charging and discharging is assumed to play a minimal role in the

drop relaxation process, and we interpret the relaxation of the deformed sur-

face as being capillary–driven.20,81–83

After the field is removed, the stable spheroidal configuration attained in

figure 6.10 relaxes to a spherical equilibrium shape. The transient deforma-

tion profiles for Cao = 0.38 and Cao = 0.4 displayed in figure 6.11(a) and

figure 6.12(a) display highly nonmonotonic behavior. We believe that this

occurs because these values for the capillary number are near Cao = 0.365,

for which bifurcation into two stable drop configurations is observed.48 The
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Figure 6.10: Capillary–driven relaxation of a prolate low–conductivity
drop corresponding to a system characterized by the dimensionless groups
(S,M,R) = (1.37, 1, 0.1).48 Here, we compute the transient deformation (solid
curve) under the imposed uniform field, and allow the drop to undergo relax-
ation (dashed curve) once the electric field is removed. This figure illustrates
the deformation–relaxation profile of a spheroidal configuration achieved at
Cao = 0.3, which is able to recover its initial spherical equilibrium shape upon
removal of the applied field.

two and three–lobe shapes illustrated in figure 6.11(b) and figure 6.12(b) un-

dergo breakup once the field is removed. The dashed curve in figure 6.11(b)

shows an increase in the time–dependent deformation parameter D(t) when

the field is removed after a stable two–lobed shape is achieved at Cao = 0.38.

This increase is due to the occurrence of a local minimum in the drop radius

between the two lobes at steady–state, which in this case corresponds to the

minor semi–axis. A large capillary pressure results from this minimum, which

drives flow towards the two lobes and further elongates the drop shape, even-

tually leading to breakup81 (shown at the end of the dashed curve in figure

6.11(b)). The dashed curve in figure 6.12(b) illustrates a continuous decrease

in the time–dependent deformation parameter D(t) when the field is removed

after a stable three–lobed shape is achieved at Cao = 0.40. Here, the lobes

at the end of the drop drive flow towards the middle lobe, thus causing the

drop to retract as the local minimum in drop radius between each lobe pair
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Figure 6.11: Capillary–driven relaxation of a prolate low–conductivity
drop corresponding to a system characterized by the dimensionless groups
(S,M,R) = (1.37, 1, 0.1).48 Here, we compute the transient deformation (solid
curve) under the imposed uniform field, and allow the drop to undergo relax-
ation (dashed curve) once the electric field is removed. Figure 6.11(a) illus-
trates the deformation–relaxation profile of a stable two–lobed shape achieved
at Cao = 0.38, which attains breakup via end–pinching upon removal of the
applied field. Figure 6.11(b) depicts the drop breakup process in greater detail.
The insets correspond to the initial and final drop shape for the relaxation,
respectively.

decreases. Hence, the minor semi–axis increases due to this influx and the

deformation decreases before resulting in drop breakup (shown at the end of

the dashed curve in figure 6.12(b)).

For the steady two–lobed shape achieved at Cao = 0.38, we examine two

orders of magnitude of the Saville number Sao to probe its influence on the

relaxation and eventual breakup of this highly nonlinear drop conformation.

Figure 6.13 shows that increasing the Saville number from Sao = 0.05 to

Sao = 5 delays the interfacial discharging process by over two orders of mag-

nitude. Note that the time axis is normalized by the charging timescale for

Sao = 0.05. However, as illustrated in figure 6.14, increasing Sao from 0.05

to 5 plays a minimal role on the relaxation process of the drop as well as the
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Figure 6.12: Capillary–driven relaxation of a prolate low–conductivity
drop corresponding to a system characterized by the dimensionless groups
(S,M,R) = (1.37, 1, 0.1).48 Here, we compute the transient deformation (solid
curve) under the imposed uniform field, and allow the drop to undergo re-
laxation (dashed curve) once the electric field is removed. Figure 6.12(a)
illustrates the deformation–relaxation profile of a stable three–lobed shape
achieved at Cao = 0.4, which attains breakup via end–pinching upon removal
of the applied field. Figure 6.12(b) depicts the drop breakup process in greater
detail. The insets correspond to the initial and final drop shape for the relax-
ation, respectively.

shape it acquires during breakup. The curve for Sao = 5 in these two figures

indicates that the drop surface has not fully discharged by the time the drop

breaks up. Thus, the timescale for breakup does not seem to be enslaved to

the charging timescale. We find this to be surprising since varying the Saville

numbers Sai,o plays a crucial role in determining the temporal asymmetry in

transient drop deformation and drop relaxation to equilibrium.

In essence, the breakup of the two drops in figure 6.11(b) and figure 6.12(b)

results from induced flows at the local minima in radius that separate the drop

lobes, which in turn causes the continuous thinning of this radius until pinch–

off of the lobes is achieved. This breakup mechanism resulting from capillary–

driven drop relaxation, known as “end–pinching,”20,81–83 was originally devel-
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Figure 6.13: Time–dependent release of capacitive energy, given in dimension-
less form as 1

2

∫
1
2
A
q dA, by a prolate low–conductivity drop corresponding to a

system characterized by the dimensionless groups (S,M,R) = (1.37, 1, 0.1).48

The steady–state two–lobed shape is achieved under a capillary number
Cao = 0.38. This steady drop configuration is allowed to relax under Saville
numbers Sao = 0.05 (solid curve) and Sao = 5 (dashed curve), respectively.
The initial and final shapes for this relaxation process are illustrated in figure
6.11(b).
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Figure 6.14: Breakup of a prolate low–conductivity drop corresponding to a
system characterized by the dimensionless groups (S,M,R) = (1.37, 1, 0.1).48

The steady–state two–lobed shape is achieved under a capillary number Cao =
0.38. This steady drop configuration is allowed to relax under Saville numbers
Sao = 0.05 (solid curve) and Sao = 5 (dashed curve), respectively. The initial
and final shapes for this relaxation process are illustrated in figure 6.11(b).

119



oped to explain the relaxation of drops deformed by uniaxial extensional flows.

In those cases, the drops reached steady shapes characterized by long cylin-

drical midsections with bulbous ends under the imposed flows, and attained

breakup once the flow fields were removed. Although we have carried out our

computations for drop breakup in the Stokes flow regime ReFlow(i,o) → 0, in-

ertia has been determined to be relevant during pinch–off of viscous threads

resulting from drops undergoing capillary relaxation.84,85 Here, the local ve-

locity scale at the thinning thread Ul ∼ τβ−1
b , where τb is the time remaining

until breakup and the constant parameter β ≤ 0.175. As τb → 0, the local

velocity Ul diverges. Hence, the neglect of inertia becomes invalid as the local

minimum in drop radius approaches zero. A detailed study that accounts for

electrical, viscous, inertial, and capillary forces during drop breakup, however,

is outside of the scope of the present article.

6.5 Conclusions

We have examined the deformation–relaxation profile of a prolate low–

conductivity drop with permittivity εi, resistivity χi, and viscosity µi sus-

pended in a medium with permittivity εo, resistivity χo, and viscosity µo,

respectively. The transient deformation and drop relaxation were computed

via the boundary integral method, with transient charging and discharging

of the interface accounted for. Our computations for the drop deformation–

relaxation profile were first validated through comparison against linear, O(Cai,o)

theory. Furthermore, our computational results were also compared against

an experimental system consisting of a castor oil drop suspended in a silicone

oil medium under two distinct electric field strengths. Our numerical predic-

tions for the transient deformation and drop relaxation qualitatively captured

the experimental measurements within the error in measurement of the time–

120



dependent deformation parameter D(t).

Both our experiments and numerical computations displayed an asymme-

try between the drop deformation and relaxation processes, in which the drop

relaxed back to its initial spherical shape quickly in comparison to the rate

at which it achieved its steady–state deformation. This asymmetry occurred

due to the instantaneous reversal of the interfacial tangential electrical stress

when the applied field was removed. This in turn reversed the direction of

the induced interfacial tangential flow, which was originally directed from the

equator towards the poles of the drop and acted to drive the drop away from

equilibrium. The tangential electrical stress and capillary stress thus acted in

unison to quickly restore the shape of the deformed drop back to equilibrium

when the field was removed. For an asymmetry in the drop deformation–

relaxation profile to arise, the charging timescales τe(i,o) need to be compa-

rable to the capillary timescales τc(i,o) so that these electrical stresses remain

long–lived to assist the drop retraction process: slow interfacial charging and

discharging yields fast drop relaxation. This asymmetry is further accentuated

with increasing capillary numbers Cai,o. Our quantification of the transient

storage and release of capacitive and capillary energy showed that although

the drop stored and released capillary energy in an asymmetric fashion, the

storage and release of capacitive energy occurred symmetrically.

Finally, we showed that a drop that achieves a stable field–induced defor-

mation need not relax back to its initial spherical equilibrium shape when the

electric field is removed. For the case of two and three–lobed steady shapes,48

the drop achieved breakup via the end–pinching mechanism.20,81–83 We believe

that end–pinching of the multi–lobed stable drop shapes predicted by our com-
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putations would be difficult to achieve experimentally, since large drop aspect

ratios yield a high sensitivity to nonuniformities in the applied field. Based on

experimental observations, highly deformed drops often migrate under elec-

tric fields that are presumed to be uniform, and achieve asymmetric breakup.

Instead of achieving a multi–lobed steady drop conformation, we believe that

a convenient alternative to observe end–pinching would involve driving drops

out of equilibrium at or above their critical capillary number. After the drop

has achieved a time–dependent highly nonlinear shape, one would remove the

applied field. Such has been the approach taken by researchers who have ex-

amined the relaxation of exceedingly deformed drops upon removal of planar

extensional flows.81,86

We believe that quantifying the deformation–relaxation profiles of weakly

conducting drops is useful to understand increasingly complex systems such as

multiple drops exposed to electric fields. For example, if two leaky dielectric

drops are placed next to each other along the axis of the imposed field9,59,87

each drop will experience a dielectrophoretic attraction due to the presence of

the neighboring drop. Furthermore, the field–induced flows outside each drop

may yield drop–drop attraction or repulsion.59 For drops separated at large

distances relative to their radius, this EHD response will dictate the interac-

tion between the two drops. If the field is removed, our results indicate that

provided that the drops do not coalesce, the finite charging timescales τe(i,o)

would yield EHD flows outside each drop that would in turn provide a strong

yet short–lived opposing interaction in comparison to that achieved under the

applied field. That is, if the field–induced flows yielded a net attractive (repul-

sive) force, the drops would experience a greater repulsive (attractive) force

upon removal of the field. We also expect the nonzero charging timescales τe(i,o)
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of these low–conductivity fluids to affect the rheological response of multiple–

drop systems under the simultaneous application of electric fields and flow

fields38,73,75 during deformation and relaxation, respectively.

Finally, surface charge convection was neglected throughout the majority

of this work due to its minimal role in determining the transient deformation

and drop relaxation measured in our experiments. However, we hypothesize

that its effect on drop deformation and relaxation of field–induced multi–lobed

configurations will be significantly more pronounced. Examining the effect of

charge convection on the evolution of highly nonlinear prolate drop shapes is

currently under investigation.
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7. The breakup of an oil drop

containing a colloidal suspension

of carbon black particles under

a uniform DC electric field

7.1 Introduction

Suspension stability in nonpolar fluids is of relevance for use in the petroleum

industry,88 use in drug delivery,89 and use in electrophoretic displays.90 Sta-

bility of the suspension may be achieved via the addition of surfactant, which

prevents particle aggregation through either steric stabilization due to poly-

mer adsorbed to the particle surface, or electrostatic stabilization due to par-

ticle surface charging.91 These two regimes of suspension stability may be

attained through varying amounts of added dispersant. The Bjerrum length

λB = e2

4πεrε0kBT
characterizes the distance required for the electric potential en-

ergy between two opposite monovalent charges to balance the thermal energy,

thus resulting in the separation of the two charges. Here, e is the elementary

charge, εr represents the relative electric permittivity, ε0 denotes the permittiv-

ity of free space, kB represents the Boltzmann constant, and T is the absolute
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temperature. Due to the low dielectric constant of nonpolar fluids (εr ≈ 2)

in comparison to water (εr ≈ 80), the Bjerrum length λB for these systems is

around 40 times greater than it is for water. The addition of surfactant to non-

polar fluids helps lower the Bjerrum length through the formation of reverse

micelles, which contain polar head groups that locally increase the permittiv-

ity of the solution;92 this results in electrostatic stabilization of the colloidal

suspension. Although dispersants are often implemented to yield stabilization

of charge in nonpolar fluids, the origin and dynamics of charge in these low–

conductivity systems remains an active research area in colloid science.93–96

One may find a number of studies regarding the formation of colloidal ag-

gregates under the action of an electric field97–99 or flow field,100–102 and the

breakup of aggregates under flow fields.103–105 However, comparatively less

research has been conducted with respect to drops containing suspensions of

varying degrees of colloidal stability. Furthermore, the influence of external

stimuli, such as an electric field, on drops with a range of suspension stabilities

has not been addressed. The aim of this work is to examine the breakup of an

oil drop composed of a fixed amount of carbon black particles suspended in a

nonpolar fluid under a uniform DC electric field. Varying amounts surfactant

will be added to the suspension to yield a range of degrees of colloidal stabil-

ity. As we shall show, two distinct concentrations of dispersant yield radically

different field–induced drop breakup. To our knowledge, this a previously–

unobserved phenomenon. Processes such as piezoelectric inkjet printing re-

quire the application of a voltage to generate liquid drops often composed of

dilute colloidal suspensions.2,106 Moreover, we expect that our results will per-

mit a deduction on colloidal stability based on the qualitative drop breakup

configurations achieved under applied electric fields. This could in turn help
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tune key parameters in applications, such as particle concentration and applied

voltage, to achieve a desired outcome such as a specific electric–field–induced

drop breakup conformation.

7.2 Materials and methods

7.2.1 Sample preparation and experimental setup

Samples of carbon black (Monarch 280, Cabot Corporation) and poly-

isobutylene succinimide surfactant (OLOA 11000, Chevron Oronite) suspended

in squalane (Alfa Aesar) were produced in 50 ml vials at various concentra-

tions of OLOA. The carbon black was reported to have a primary particle

diameter of 30 nm. A primary particle aggregate diameter of 200 nm was de-

termined from light scattering measurements (Zetasizer Nano ZS90). The true

composition of OLOA 11000 is 75% surfactant and 25% mineral oil. However,

the amount of mineral oil was considered negligibly small when preparing the

samples. Hence, we interpreted the amount of added OLOA as pure surfac-

tant. In this work, the added amount of surfactant is reported in parts OLOA

per 100 parts carbon black (pph). Carbon black was heated in a vacuum

oven at 200◦C for 4 hours and allowed to cool to remove trace amounts of

water. Then, the particles were introduced into premixed samples of squalane

and OLOA surfactant; the particle concentration was fixed at 3.3 g/L and the

carbon black volume fraction was fixed at 0.19%. The samples were soni-

cated (Cole–Parmer 750–Watt Ultrasonic Homogenizer) for 20 minutes and

stored in a desiccator. For each experiment, the samples were resonicated

for 30 minutes. The colloidal stability of a given sample was evaluated by

conducting millifluidic experiments on an particle–loaded squalane drop, in

which the area that contains carbon black was measured throughout time.

These experiments were conducted in conjunction with measurements for the

126



fluid conductivity. A suspension that is sterically stabilized is expected to

yield a clear supernatant within the drop, thus indicating that the carbon

black particles have aggregated and the colloidal clusters have sedimented.

An electrostatically–stabilized suspension is expected to yield no supernatant

and display an increase in the measured solution conductivity. Although we

do not allude to these measurements that quantify colloidal stability, we utilize

them to interpret the dynamics of the particle–loaded squalane drops under

the electric fields implemented in our experiments.

The drop of particle–loaded squalane is injected into a plastic cell filled

with silicone oil. A voltage on the order of kV/cm is applied across two

5 cm× 5 cm brass electrodes separated at a distance of 2 cm using high–voltage

DC power supply (Gamma High Voltage Research, Inc.). As soon as the

electric field is applied, the time–dependent drop shape is recorded at a rate

of 7.5 frames per second using a firewire camera (Guppy PRO F–125B, Allied

Vision Technologies). Image analysis is conducted using ImageJ software. The

material properties of the systems examined in this study are listed in table 7.1.

The permittivity and resistivity of each fluid is measured via electrochemical

impedance spectroscopy.63 The viscosity of each phase is extracted from the

literature. Finally, the interfacial tension is acquired by fitting our previously–

developed linear theory, which quantifies the electric field–induced transient

deformation of a low–conductivity drop,55 to the experimental timespan during

which the drop deformation is O(10−2). Here, the deformation is quantified as

the difference between the drop semi–axes parallel and normal to the applied

field divided by the sum of the two.
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7.2.2 Computation of transient drop shape

We implement the boundary integral method to compute the electric field

and fluid flow at the drop surface, as well as the resulting drop deformation.

The differential governing equations are those described by Taylor’s leaky di-

electric model.13–15 Here, the electric field is governed by Laplace’s equation

for the electrostatic potential and the fluid flow is governed by the Stokes

equations for the velocity and pressure fields. The linearity of the differential

equations conveniently permits a reformulation to integral equations that hold

at the drop surface. The form and numerical solution procedure of the integral

equations is discussed in detail in previous publications.9,45,48,59,60,80 These

equations apply to viscous low–conductivity systems, for which the volumetric

charge density is negligibly small; charge is localized at the drop interface. This

entails the exertion of interfacial tangential electrical stresses by the applied

electric field, which are balanced by viscous stresses; a steady recirculating flow

is generated within the drop and throughout the medium. The resulting drop

deformation may be along (prolate) the applied field or normal (oblate) to the

applied field, depending on the ratio of the permittivity S = εi/εo, resistivity

R = χi/χo, and viscosity M = µi/µo of the fluids. Here, the subscripts denote

the drop (inner, i) and medium (outer, o) phases, respectively. If charging of

the drop surface is assumed instantaneous, the magnitude of the resulting drop

shape for a system with fixed values for the parameters {S,M,R} is dictated

by the electric capillary number Cao = εoE
2
∞a/γ. This dimensionless group

quantifies the strength of the electrical stress εoE
2
∞ that acts to deform the

drop, relative to the capillary stress γ/a that acts to restore the drop back

to equilibrium. Here, E∞ is the magnitude of the uniform applied field, a

denotes the radius of a spherical drop, and γ represents the interfacial tension.

Although we refer to the capillary number Cao as that of the medium, we
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examine this and the remainder of the dimensionless groups for both phases

throughout this work.

In practice, charging of the drop surface does not occur instantaneously.

This leads to the examination of charge transport towards21,54,55,80 and along21,47,49,80

the interface. The characteristic timescale for the drop to acquire a certain

amount of charge per unit area q∗ at steady–state is the electrical relaxation

timescale τe,o = εoχo. Note that the superscript ∗ is implemented to denote

a dimensional variable; the lack of a superscript renders that variable dimen-

sionless. This charging timescale leads to the examination of the governing

equation dictating the conservation of interfacial charge, which reads in di-

mensionless form as

1

R
En,i − En,o = Sao

∂q

∂t
+Reo∇s · (uoq). (7.1)

Here, En,i and En,o denote the inner and outer normal electric fields evaluated

at the interface. Furthermore, note that the electric fields have been normal-

ized by the magnitude of the uniform applied field E∞, the surface charge

density has been normalized by εoE∞, time has been normalized by the cap-

illary timescale τc,o = µoa/γ that characterizes deformation of the interface,

distance has been normalized by the drop radius a, and velocity has been nor-

malized by the characteristic velocity scale U . This equation is applied as a

boundary condition to solve for the electric field at the surface of the drop.

Importantly, terms in the right–hand side of this equation represent transient

charging of the interface and convection of the charge by the induced fluid flow.

The dimensionless groups that dictate the relative importance of these charge

transport mechanisms are the Saville number15 Sao = τe,o/τc,o, which repre-
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sents a ratio of the charging timescale τe,o = εoχo to the capillary timescale

τc,o = µoa/γ, and the electric Reynolds number14 Reo = τe,o/τf , which repre-

sents a ratio of the charging timescale to the flow timescale τf = a/U . For

the low–conductivity systems and high applied field strengths examined here,

these two dimensionless groups and corresponding charge transport mecha-

nisms are of relevance to capture the correct time–dependent field–induced

drop configurations. We also discuss the consequences of these two forms

of charge transport in our previous publication.80 In the present work, our

computations are implemented to predict the qualitative transient drop shape

achieved under the experimental conditions. Note the computations assume a

homogeneous drop phase; the numerical predictions for the drop shape will be

implemented to evaluate the heterogeneity of the particle–loaded drop.

7.3 Breakup of a squalane drop

We first examine the field–induced breakup of a pure squalane drop sus-

pended in silicone oil via experiment and computation. The material proper-

ties for this system and the remainder of the systems examined in this study

are listed in table 7.1; the relevant dimensionless groups are listed in table 7.2.

Here, the drop is more conductive (R < 1) and less viscous (M < 1) than

the medium. The resulting transient drop deformation for this system (and

all systems that follow) is along the electric field; i.e. the drop undergoes a

prolate deformation. The applied field is 7.6 kV/cm, which is approximately

the critical field strength to induce breakup of the pure squalane drop in our

experiment.
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Phase εr 1/χ µ a γ

(S/m) (Pa s) (mm) (mN/m)

medium–silicone oil 2.8 2.0× 10−12 4.80 – –

drop–squalane (pure) 2.1 2.1× 10−12 0.03 0.6 4.6

drop–squalane (30 pph–no CB) 2.1 2.2× 10−10 0.03 0.7 5.2

drop–squalane (30 pph–with CB) 2.1 2.6× 10−10 0.03 0.6 1.4

drop–squalane (2 pph–with CB) 2.1 2.3× 10−10 0.03 0.6 1.5

Table 7.1: Material properties of a squalane drop suspended in silicone oil.

Here, εr denotes the relative permittivity and “CB” denotes carbon black.
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Phase Ca Sa Re S M R

medium–silicone oil 1.7 21.1 36.6 – – –

drop–squalane (pure) 1.3 2.6× 103 3.4× 103 0.75 0.01 0.97

drop–squalane (30 pph–no CB) 0.2 22.4 3.6 0.75 0.01 0.01

drop–squalane (30 pph–with CB) 0.6 6.5 4.1 0.75 0.01 0.01

drop–squalane (2 pph–with CB) 0.5 7.2 3.5 0.75 0.01 0.01

Table 7.2: Dimensionless groups that describe a squalane drop suspended in

silicone oil. Here, “CB” denotes carbon black.

The time–dependent drop shape for this system is displayed in figure 7.1(a).

In this figure (and all figures that follow), the applied electric field is directed

from left to right. The change in the shape of the drop is quantified through

changes in the dimensionless drop major semi–axis L/a. Here, L represents

half of the length of the drop parallel to the applied field; it is initially equal

to the spherical drop radius a. The open circles denote the experimental mea-

surement, while the solid curve results from boundary integral computations

conducted at the conditions of the experiment. The experiment shows that

the squalane drop forms pointed ends and achieves breakup via tipstreaming

at the end nearest to the left electrode; the measurement is illustrated until

this point in time (t∗ = 14.1 s). The inset next to the experimental curve

in figure 7.1(a) displays the asymmetric drop breakup at this point in time;

the inset below shows the eventual breakup through tipstreaming from both
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pointed ends of the drop.
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Figure 7.1: (a) Experiment and computation illustrating the time–dependent
dimensionless major semi–axis of a pure squalane drop suspended in silicone oil
at an electric field strength E∞ = 7.6 kV/cm. The material properties for this
system are listed in table 7.1, while the relevant dimensionless groups are listed
in table 7.2. (b) Computations for the time–dependent dimensionless major
semi–axis of a pure squalane drop suspended in silicone oil at an electric field
strength E∞ = 7.6 kV/cm and two different values for the interfacial tension
γ.

The computational curve is illustrated until t∗ = 14.1 s for proper com-

parison against the experimental measurement; the insets above this curve

display the time–dependent drop shape at t∗ = 5 s and the end of the exper-

imental curve, respectively. The solid curve in figure 7.1(b) is a continuation

of the solid curve in figure 7.1(a). Although the experiment indicates that

the squalane drop undergoes breakup at this electric field strength, the solid

curve in figure 7.1(b) suggests that the drop achieves a steady prolate config-

uration that exceeds the maximum aspect ratio measured in the experiment.

This steady–state shape is non–spheroidal; the drop forms pointed ends with-

out undergoing actual breakup. We believe that this stable non–spheroidal

conformation is difficult to achieve experimentally due to its high sensitivity
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to non–uniformities in the applied electric field. Thus, the discrepancy be-

tween the experiment and computation arises as the squalane drop undergoes

breakup in the experiment while the computation predicts a steady drop shape.

The dashed curve in figure 7.1(b) shows the effect of a varying interfacial

tension on the shape development of the pure squalane drop at the same

applied field strength. Here, we have chosen the lowest interfacial tension

from the experimental systems that will be analyzed in this study, all of which

are listed in table 7.1. This system corresponds to a millimeter–sized drop

of squalane with a concentration of 3.3 g/L carbon black and 30 pph OLOA

surfactant suspended in silicone oil. As illustrated by the dashed curve in figure

7.1(b), lowering the interfacial tension from that of pure squalane in silicone

oil yields drop breakup in our computation. Although lowering the interfacial

tension has increased the electric capillary number from Cao = 1.7 to Cao =

5.6 to yield drop breakup at a fixed field strength, the general qualitative

time–dependent shape of the drop remains relatively unchanged; i.e. the drop

still forms pointed ends. Furthermore, this drop shape does not resemble the

transient shapes and breakup modes of the particle–loaded drops presented in

the proceeding sections. Since the systems to be analyzed are characterized

by different drop conductivities and interfacial tensions, we postulate that the

differing transient deformation and breakup processes between a pure squalane

drop and a squalane drop with carbon black particles and OLOA surfactant

occur mainly due to a change in drop conductivity, not interfacial tension. We

elaborate on these differing time–dependent processes in the next section.
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7.4 Breakup of a drop containing a stable col-

loidal suspension

The breakup of a drop containing a stable suspension of carbon black

particles is quantified experimentally. Here, the amount of added surfactant

(30 pph OLOA) is enough to provide stabilization of the suspension through

electrostatic repulsion between the particles. As a basis for comparison, we

examine the breakup of a drop containing an equivalent amount of surfactant

with no carbon black. The time–dependent major semi–axis of the drops con-

taining a fixed amount of surfactant with and without carbon black is depicted

by the open circles and open squares in figure 7.2(a). Here, the applied field

is E∞ = 2.5 kV/cm, which is much lower than the electric field required to

achieve the breakup of a pure squalane drop E∞ = 7.6 kV/cm.
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Figure 7.2: (a) Experiments illustrating the time–dependent dimensionless ma-
jor semi–axis of a squalane drop containing 3.3 g/L carbon black and 30 pph
OLOA surfactant, and a drop containing the equivalent amount of surfactant
and no carbon black. Here, the drops are suspended in silicone oil and the ap-
plied field strength E∞ = 2.5 kV/cm. The material properties for this system
are listed in table 7.1, while the relevant dimensionless groups are listed in
table 7.2. (b), (c) Electric field–induced drop breakup of the systems described
in figure 7.2(a).
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Figure 7.2 shows that at early times t∗ ≤ 4 s, the two experimental curves

overlap. As time progresses, the two curves deviate from one another until the

onset of drop breakup is achieved; the two experiments are illustrated until

this point in time (t∗ = 9.7 s). The insets for each curve display the shapes

of the drop at t∗ = 5 s and the end of the measurement, respectively. Fig-

ures 7.2(b) and 7.2(c) illustrate the breakup process of the drop containing

carbon black particles stabilized by surfactant and the drop containing surfac-

tant only. As shown in table 7.1, the two material properties that change from

those pertaining to figure 7.1 are the drop conductivity and interfacial ten-

sion. As stated in the previous section, changing the interfacial tension from

that of pure squalane against silicone oil (4.6 mN/m) to that of squalane con-

taining a colloidal suspension stabilized by 30 pph OLOA against silicone oil

(1.4 mN/m) does not appreciably vary the time–dependent shape and breakup

mode of a pure squalane drop. Thus, we attribute the change in breakup mode

from figure 7.1 to figure 7.2 due to a change of two orders of magnitude in the

conductivity of the drop (note that the viscosity ratio M remains unchanged).

Due to the fact that the drop conductivity has increased by two orders of

magnitude relative to figure 7.1 (see table 7.1), the mismatch in conductiv-

ity between the two phases is accentuated for the system illustrated in figure

7.2 (see table 7.2). This in turn provides a substantial decrease in the field

strength required to promote drop breakup. Furthermore, instead of achiev-

ing drop breakup via tipstreaming from pointed ends, the drop now breaks up

through the formation of two bulbous ends connected by a thin midsection.

The two curves that quantify the normalized drop major semi–axis in fig-

ure 7.2(a) and the images shown in figure 7.2(b) and 7.2(c) suggest that the
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development of the drop shape, the onset of drop breakup, and the actual

breakup process of a drop with surfactant and carbon black is qualitatively

similar to that of a drop with surfactant alone. This is due to the fact that

the carbon black particles are stabilized by 30 pph OLOA, which in turn yields

homogeneous drop breakup that resembles the breakup of a drop with no car-

bon black and the equivalent amount of surfactant, which simply provides an

increase in the conductivity of the inner phase. Although these two systems

display similar qualitative behavior, we highlight the slight deviation between

the two curves in figure 7.2(a). At times t∗ > 5 s, the measurement for the sys-

tem with carbon black and 30 pph OLOA displays a change in both slope and

concavity, finally ending with a breakup conformation that slightly exceeds

the measurement for the drop with surfactant only. Since the conductivity

does not vary appreciably from one drop system to another, we attribute the

slightly larger aspect ratio of the drop with carbon black and surfactant as the

drop approaches the onset of breakup due to a decrease in interfacial tension

between the fluids. We suggest that this may occur due to an adsorption of

carbon black particles to the oil–oil interface as flows within the drop develop

and the surface continually deforms.

We aim to model the drop breakup and uncover the occurring charge trans-

port dynamics of the carbon black system stabilized by 30 pph OLOA through

our boundary integral computations. The results of our computations for the

time–dependent drop shape are plotted against the experimental measurement

in figure 7.3. Here, the solid line results from a computation that accounts

for both interfacial charge relaxation and charge convection, while the dashed

curve results from a computation that only accounts for charge relaxation,

respectively. The inset at t∗ = 5 s displays a spheroidal drop shape that all
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of the illustrated curves share in common. The solid curve follows the ex-

perimental measurement in comparison to the dashed curve, which suggests

that interfacial charge convection by the field–induced fluid flow is relevant.

This is expected due to the large electrical Reynolds numbers of the drop

Rei = 4.1 and medium Reo = 36.6, respectively. Hence, we expect the solid

curve to closely follow the experimental measurement. However, as we have

shown in our previous work, systems with high electrical Reynolds numbers

display shocks in the surface charge distribution of a drop due to the interfa-

cial charge convection mechanism.80 For the system we studied in that work,

the charge shock occurred near the equator due to charge convection from the

poles towards the equator of the oblate drop. In the current work, a rapid

variation in the surface charge density is observed near the poles due to the

convection of charge from the equator towards the poles of the drop. This

shock in the interfacial charge density distribution renders our computations

difficult to yield a steady–state deformation. Although the computation that

accounts for surface charge convection is only able to reach t∗ = 4.5 s, the

computation that does not account for charge convection (while only account-

ing for charge relaxation) predicts a shape during the onset of drop breakup

that qualitatively follows that measured in the experiment, as observed in the

insets at the end of the computational and experimental curves, respectively.

This suggests that the dynamics of the particle–loaded drop are akin to a ho-

mogeneous drop, which we believe is due to the stability of the carbon black

suspension inside of the drop within the timescale of the experiment.
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Figure 7.3: (a) Experiment and computations illustrating the time–dependent
dimensionless major semi–axis of a squalane drop containing 3.3 g/L carbon
black and 30 pph OLOA surfactant. Here, the drop is suspended in silicone oil
and the applied field strength E∞ = 2.5 kV/cm. The material properties for
this system are listed in table 7.1, while the relevant dimensionless groups are
listed in table 7.2.

7.5 Breakup of a drop containing an unstable

colloidal suspensions

The field–induced breakup of a drop containing 3.3 g/L carbon black with

2 pph added OLOA surfactant is examined at the same field strength applied

in the previous section. Note that although table 7.1 suggests that the elec-

trical conductivity of the fluid is similar to that of squalane with carbon black

stabilized by 30 pph OLOA, we believe that this is an artifact of electrical per-

colation across the cell implemented to conduct the electrochemical impedance

spectroscopy measurements; the particle–free conductivity of the system is ex-

pected to exhibit a much lower value, as the concentration of added dispersant

is presumed to yield no electrostatic stabilization. The time–dependent drop

shape for this system is depicted by the open squares in figure 7.4. The

experimental measurement for the 30 pph system is presented as a basis for

comparison. The insets for the 2 pph system show the drop shapes for each
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experiment at times t∗ = 5 s and t∗ = 7.9 s, respectively.
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Figure 7.4: (a) Experiments illustrating the time–dependent dimensionless
major semi–axis of a squalane drop containing 3.3 g/L carbon black and 30 pph
OLOA surfactant, and a drop containing the equivalent amount of carbon
black and 2 pph OLOA. Here, the drops are suspended in silicone oil and
the applied field strength E∞ = 2.5 kV/cm. The material properties for this
system are listed in table 7.1, while the relevant dimensionless groups are listed
in table 7.2. (b) Electric field–induced drop breakup of the systems described
in figure 4(a).

At early times t∗ ≤ 4 s, the measurements for 2 pph OLOA and 30 pph

OLOA overlap. Here, the lower concentration of added surfactant provides

short–term steric stabilization of the colloidal suspension. As soon as the 2 pph

sample undergoes the sonication process, the carbon black particles begin to

flocculate. The aggregation time is within the timescale of the experimental

measurement (minutes); hence, the drop shape corresponding to the 2 pph

sample eventually deviates from the curve describing the 30 pph system and

achieves a radically different breakup mode. Here, the extremities of the drop,

which are attached by a thin midsection, yield asymmetric lobes that form

fingers that extend into each electrode and eventually disintegrate. We believe

that this unstable drop breakup mechanism occurs due to the formation of car-

bon black aggregates during the timescale of the experiment. Inhomogeneities
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within the drop arise due to the sedimentation of these colloidal clusters to-

wards the bottom of the drop (into the page for the images presented in figure

7.4). The drop in turn displays an inhomogeneous breakup conformation due

to the action of the applied field on the formed clusters.

When the 2 pph system is placed in the cell for a prolonged amount of time

before an electric field of the same magnitude is applied, the transient drop

configuration is given by the open squares in figure 7.5. A time of 11 minutes

is chosen before applying the field because that is the time elapsed for the

squalane drop to rise from the bottom of the cell towards the middle of the

two 5 cm× 5 cm electrodes, where the field is presumed to be uniform. Keep-

ing the drop suspended for this amount of time allows for the carbon black

particles to further flocculate and form aggregates that will sediment towards

the bottom of the drop by the time the field is applied. The experimental

measurement for the 2 pph system that is subjected to an electric field imme-

diately after the drop is generated is depicted by the open circles as a basis for

comparison. Here, the drop shows signs of heterogeneity at time t∗ = 0 s and

attains a non–spheroidal shape at an early stage of the deformation process, as

evidenced by the inset for this measurement at t∗ = 3 s. The drop proceeds to

extend and achieve breakup through the formation of a continually–thinning

midsection with lobes at each end that eventually form fingers that extend

towards the electrodes and disintegrate (see figure 7.5(b)). This unstable drop

breakup mode, which was also observed for the system corresponding to the

measurement depicted by the open circles, now occurs when the drop is rel-

atively less extended. We believe that this is due to the extended period of

time during which the drop was suspended and the colloidal suspension was

allowed to destabilize under the lack of the applied electric field.
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Figure 7.5: (a) Experiments illustrating the time–dependent dimensionless
major semi–axis of a squalane drop containing 3.3 g/L carbon black and 2 pph
OLOA surfactant. Here, the drops are suspended in silicone oil, and the field
strength E∞ = 2.5 kV/cm is applied immediately (open circles) and 11 minutes
(open squares) after the drop is generated. The material properties for this
system are listed in table 7.1, while the relevant dimensionless groups are listed
in table 7.2. (b) Electric field–induced drop breakup of the system described
in figure 7.5(a).

7.6 Field–induced destabilization of a drop con-

taining a stable colloidal suspension

The 30 pph system is reexamined at a higher applied field strength of

5.3 kV/cm. The resulting measurement for the development of the dimension-

less drop major semi–axis is denoted by the open squares in figure 7.6(a). Here,

the drop quickly achieves a highly elongated conformation before reaching the

onset of breakup, in comparison to the 30 pph system at a lower field strength

E∞ = 2.5 kV/cm. A higher electric field entails a higher electric capillary num-

ber Ca = εoE
2
∞a/γ, which represents the ratio of electrical stress, given by the

scaling εoE
2
∞, to capillary stress, given by the scaling γ/a. The larger drop

conformation is due to an increased electrical stress that acts against the cap-

illary stress to further drive the drop away from equilibrium under the higher

142



applied field. Furthermore, the electric capillary number may be interpreted

as a ratio of timescales Ca = τc/τf , where τc = µa/γ denotes the capillary

timescale for interface deformation and τf = a/U represents the timescale for

the development of fluid flow. Here, the characteristic flow timescale U ∼ E2
∞,

which becomes evident when balancing the scaling for electrical stress εoE
2
∞

against the scaling for viscous stress µoU/a. In this case, a higher capillary

number indicates that a quick flow timescale τf yields a fast development of

the electric field–induced flow that acts to deform the drop.
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Figure 7.6: (a) Experiments illustrating the time–dependent dimensionless
major semi–axis of a squalane drop containing 3.3 g/L carbon black and 30 pph
OLOA surfactant. Here, the drops are suspended in silicone oil, and the
applied field strengths are E∞ = 2.5 kV/cm and E∞ = 5.3 kV/cm, respectively.
The material properties for this system are listed in table 7.1, while the relevant
dimensionless groups are listed in table 7.2. (b) Electric field–induced drop
breakup of the system described in figure 7.6(a).

The breakup process of the drop is shown in figure 7.6(b). Importantly,

the lobes depicted in this figure motivate us to recall the breakup of the 2 pph

system illustrated in figure 7.4 and figure 7.5. We believe that this high electric

field strength has caused aggregation of the stable suspension of carbon black

particles. This field–induced destabilization could occur due to the action of
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the electric field on the double layer that surrounds each colloid, which served

to electrostatically stabilize the suspension. Furthermore, the carbon black

particles may be experiencing a dielectrophoretic force, as the electric field

experienced by each colloid within the drop is non–uniform. The effect of the

non–uniformity of the applied field is further accentuated when the droplet is

highly elongated and the two lobes approach the neighboring electrodes.

7.7 Conclusions

We have quantified the breakup of a low–conductivity squalane drop con-

taining carbon black particles and varying amounts of OLOA surfactant. When

the amount of surfactant was appreciable (30 parts OLOA per 100 parts carbon

black, pph OLOA) for a fixed concentration of 3.3 g/L carbon black, the drop

achieved homogeneous breakup under an applied field of E∞ = 2.5 kV/cm via

the formation of bulbous ends. The homogeneous breakup of the system with

carbon black and and 30 pph OLOA occurred due to the long term electrostatic

stabilization91 of the colloidal particles by the dispersant. Lower concentra-

tions of surfactant (2 pph OLOA) yielded inhomogeneous drop breakup, in

which the lobe at each end of the drop formed fingers that extended towards

the electrodes and eventually disintegrated. In this system, the lower amount

of surfactant provided short term steric stability91 of the carbon black particles;

the colloidal suspension began to flocculate as soon as the drop was generated

and the aggregates sedimented towards the bottom of the drop within the

timescale of the experiment (minutes). Extending the aggregation time of the

suspension before the uniform field was applied yielded the same qualitative

drop breakup mode at lower aspect ratios. Finally, we achieved destabiliza-

tion of a stable colloidal suspension of carbon black and 30 pph OLOA by in-

creasing the previously–applied field strength to E∞ = 5.3 kV/cm. Here, the
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drop rapidly extended towards a highly elongated two–lobed conformation,

after which the two lobes disintegrated in a similar fashion to the sterically–

stabilized 2 pph system.
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8. Conclusions

We have quantified the importance of surface charge transport on the time–

dependent response of a low–conductivity drop exposed to a uniform DC elec-

tric field. Here, the response encompasses the transient drop deformation

under an applied electric field, drop relaxation upon removal of the applied

field, and drop breakup at or above a critical field strength. In chapter 4,

we demonstrated that two fluid timescales, the timescale for diffusion of mo-

mentum τm = a2ρ/µ and the timescale for interfacial charging τe = εχ, may

yield a nonmonotonic development in the deformation of a weakly conducting

drop exposed to a uniform DC electric field. In chapter 5, we extended the

theory developed in chapter 4, and demonstrated that modeling the trans-

port of charge towards and along the drop surface is essential to predict the

time–dependent field–induced oblate deformation measured in experiments.

In chapter 6, we demonstrated that a large fluid interfacial charging timescale

τe yields fast drop relaxation upon removal of a uniform DC electric field. In

chapter 7, we demonstrated that a drop containing a colloidal suspension and

varying amounts of surfactant may exhibit radically different field–induced

breakup modes depending on the stability of the suspension provided by the

added dispersant.
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8.1 Impact

If one desires to make use of an electric field to manipulate a low–conductivity

drop in a macro– or microscale device for a desired application, it is advanta-

geous to know what conformation the drop will adopt under a certain applied

field strength and the timescale under which it will achieve that conformation.

Furthermore, it is also useful to be aware of the critical field strength under

which the drop will achieve breakup and what shape the drop will acquire dur-

ing the breakup process. Although there have been numerous publications ad-

dressing the steady field–induced deformation of leaky dielectric drops,21,45–50

our work is the first to consider the effect of surface charge transport on the

ability to predict the transient drop deformation and drop relaxation measured

in an experiment. Unlike other computational studies,47,49 our model does not

make use of any fitted experimental parameters. If the interfacial charging

timescale τe and resulting surface charge transport are neglected when predict-

ing the steady oblate (prolate) configuration of a certain experimental system,

the theoretical or computational prediction may predict a larger (smaller) drop

deformation than that achieved in an experiment. Furthermore, the timescale

under which the drop attains its ultimate steady–state deformation will be

incorrect, as the dynamics of most low–conductivity systems are dictated by

the electrical relaxation timescale τe, which is typically on the order of seconds.

As the applied electric field increases, the effects of surface charge trans-

port become more pronounced. At higher field strengths, transient interfacial

charging, which we characterized by the Saville number15 Sa, will yield a

longer–lived drop evolution towards steady–state and a quicker drop relax-

ation towards equilibrium when the field is removed. Surface charge convec-
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tion, which we characterized by the electric Reynolds number14 Re, will yield

a more pronounced shock in the surface charge density distribution and re-

sulting interfacial flow profile. Although this form of charge transport has

been shown to weaken (strengthen) oblate (prolate) drop deformations,47,49

thus resulting in larger (smaller) critical field strengths required to achieve

drop breakup, we have performed preliminary computations that suggest that

charge convection provides a change in the topology of the drop during the

breakup process. For prolate drops, we have found surface charge convec-

tion to yield tipstreaming at or above a critical electric capillary number Ca.

For oblate drops, we expect charge convection to yield drop breakup through

equatorial streaming, as observed in the recent experiments performed by the

Vlahovska group at Brown University. This is an important finding, as existing

theoretical and computational studies capable of quantifying the field–induced

response of low–conductivity systems may predict an incorrect drop breakup

conformation for a given experiment (e.g. prediction of formation of bulbous

ends as opposed to observed tipstreaming). This is a topic currently under

investigation.

8.2 Future work

We possess the skills required to advance the field of electrohydrodynamics

in a variety of promising directions that would yield a deeper understanding

of low–conductivity fluid–fluid systems under electric fields. First, our results

from chapter 7 lead our interest to the design of an experimental protocol to

assess the stability of a drop containing a colloidal suspension. If one obtains

a sample of an oil drop containing an unknown concentration of particles and

dispersant, our method would be a quick way to determine whether the sus-

pension is stable or unstable depending on the drop breakup mode achieved
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at multiple applied field strengths. We note, however, that this design would

require examining a larger parameter space such as additional surfactant con-

centrations, and different types of colloidal particles and added dispersant.

One may also tailor variables such as particle concentration, surfactant con-

centration, and electric field strength of a given experimental system to obtain

a desired drop breakup configuration or to prevent breakup; i.e. for encapsu-

lation of suspensions.

A second area that shows promise is the modeling of the onset of unsteady

rotation and three–dimensional flow of oblate drops exposed to high electric

fields.17,18 As stated in chapter 5, there is a critical electric field strength

above which an oblate drop will spontaneously rotate in an eventual chaotic

fashion.7 Computationally predicting this onset of drop rotation requires use

of a three–dimensional numerical solver for the partial differential governing

equations presented in this thesis. Furthermore, a shock–capturing numeri-

cal scheme is essential to accurately capture the shocks in the surface charge

density profile depicted in chapter 5. Predictions of this critical field strength

would help determine conditions under which the drop may or may not spon-

taneously rotate in a given experiment. Furthermore, the computational pre-

dictions would permit an in–depth analysis of chaotic drop rotation and yield

potential tailoring of this phenomenon for a desired application, such as fluid

mixing.

Lastly, introducing species to the drop interface6,107 and rendering either

of the bulk fluid phases non–Newtonian108 is a direction the field seems to

be gravitating towards. For example, the electric–field–induced response of

oil drops containing colloidal particles at the interface has received contin-
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ued attention.6,70,72 Here, the electrohydrodynamic flow sweeps the particles

towards the drop surface, where they presumably adsorb. The particles then

move along the interface with the direction of the flow, which in turn provides a

variety of interesting drop conformations and breakup modes.70,72 Character-

izing the mechanics of these particle–laden interfaces may yield additional in-

sight into the origin of the complex drop dynamics under applied electric fields.

We have appropriately characterized the timescales and surface charge trans-

port that yield the field–induced response of a clean fluid interface separating

two Newtonian, weakly conducting phases. Thus, additional timescales, such

as a surfactant diffusion timescale or a viscoelastic fluid relaxation timescale,

may be introduced into the system to examine the additional dynamics that

they entail.
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