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Abstract

Discriminating data classes emanating from sensors is an important problem with

many applications in science and technology. This study describes a new transform

for pattern identification that interprets patterns as probability density functions, and

has special properties with regards to classification. The transform, built upon the

optimal transport theory, is invertible, with well defined forward and inverse operations.

This study shows that the transform can be useful in ‘parsing out’ variations that are

‘Lagrangian’ (displacement and intensity variations) by converting these to ‘Eulerian’

(intensity variations) in transform space. This conversion is the basis for the main result

that describes when the transforms can allow for linear classification to be possible in

transform space. Demonstrated with computational experiments that used both real

and simulated data, the transforms can help render a variety of real world problems

simpler to solve.

Moreover, making use of a newly developed theory suggesting a link between im-

age turbulence and photon transport through the continuity equation, the transform is

utilized to perform a decoding task for orbital angular momentum carrying beam pat-

terns. Free space optical communications utilizing orbital angular momentum beams

have recently emerged as a new technique for communications with potential for in-

creased channel capacity. Turbulence due to changes in the index of refraction emanat-

ing from temperature, humidity, and air flow patterns, however, add nonlinear effects to

the received patterns, thus making the demultiplexing task more difficult. The decoding

technique is tested and compared against previous approaches using deep convolutional

neural networks. Results show that the new method can obtain comparable classifica-

tion accuracies (bit error rate) at a fraction of the computational cost, thus enabling

higher bit rates.
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Chapter 1

Introduction

1.1 Mathematical Transformations in the Domain of Pat-

tern Recognition

Mathematical transforms are useful tools in engineering, physics, and mathematics

given that they can often render certain problems easier to solve in transform space.

Fourier transforms [3] for example, are well-known for providing simple answers re-

lated to the analysis of linear time-invariant systems. Wavelet transforms, on the other

hand, are well suited for detecting and analyzing signal transients (fast changes) [4].

These and other transforms have been instrumental in the design of sampling and recon-

struction algorithms for analog-to-digital conversion, modulation and demodulation,

compression, communications, etc, and have found numerous applications in science

and technology.

On the other hand, the past few decades have brought about the emergence of ubiq-

uitous, accurate, user friendly, and low cost digital sensing devices. These devices

produce a wealth of data about the world we live in, ranging from digital microscopy

images of sub-cellular patterns to satellite imagery and detailed telescope images of

our universe. The relative ease with which vast amounts of data can be accessed and

queried for information have brought about challenges related to ‘telling signals apart’,
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or sensor data classification. Examples include being able to distinguish between be-

nign and malignant tumors from medical images [5], between ‘normal’ and ‘abnormal’

physiological sensor data (e.g. flow cytometry) [6], identifying people from images of

faces or fingerprints [7], identifying biological/chemical threats from resonant optical

spectra [8] and others. For such problems, mathematical transforms have been used as

low level representation models to facilitate pattern recognition by simplifying feature

extraction from data.

Some interesting applications of transforms in pattern recognition are presented in

[9, 10, 11, 12, 13]. In [9], discrete Fourier transform (DFT) was used for palm print

identification. Monro et al. [10] used discrete cosine transform (DCT) for iris recog-

nition. Wavelet coefficients were used as texture features in [11] for image retrieval.

Mandal et al. [12] used curvelet-based features for face recognition. The Radon trans-

form was used for Gait recognition in [13]. The list above is obviously not exhaustive.

They represent just but a few examples of many applications of transforms in pattern

recognition.

A common property among aforementioned transforms is that they are all invertible

linear transforms that seek to represent a given image as a linear combination of a set of

functions (or discrete vectors for digital signals). What we mean by an invertible linear

transform, F , is that for images I and J , F satisfies F (I) + F (J) = F (I + J),

F (αI) = αF (I), and F−1 exists. Linear transforms are unable to alter the ‘shape’ of

image classes (i.e. distribution of the point cloud data) so as to fundamentally simplify

the actual classification task. For example, linear operations are unable to render clas-

sification problems that are not linearly separable into linearly separable ones. When

considering many important classification tasks, it is not hard to understand the prob-

lem at an intuitive level. One can often visually observe that in many categories (e.g.

human faces, cell nuclei, galaxies, etc.) a common way in which one data differ from

one another is not only in their intensities, but also in where the intensities are po-

sitioned. By definition, however, linear transforms must operate at fixed pixel coordi-

nates. As such, they are unable to move or dislocate pixel intensities in any way. Hence,

for pattern recognition purposes, linear transforms are usually followed by a nonlinear

operator to demonstrate an overall nonlinear effect (e.g. thresholding in curvelet and

15



wavelet transforms, magnitude of Fourier coefficients, blob detection/analysis in Radon

transform, etc.).

Many feature extraction methods have been developed for images [14, 15, 16] along

side with the end to end deep neural network approaches such as convolutional neural

networks [17, 18] and scattering networks (ScatNets) [19, 20, 16]. These recent meth-

ods have proven to be very successful in image classification and they have improved

the state of the art classification for a wide range of image datasets. Such methods,

however, are often not well suited for image modeling applications, including imaging

and image reconstruction, as they provide a noninvertible nonlinear mapping from the

image space to the feature space. Meaning that while the nonlinearity of the image

classes are captured through the extracted features, any statistical analysis in the fea-

ture space does not have a direct interpretation in the image space as the mapping is

noninvertible.

1.2 Motivations for a New Transform

Important practical questions often arise in the process of designing solution to many

data classification problems. Examples would be: “Which features should be ex-

tracted?”, “What classifier should be used?”, “How can one model, visualize and un-

derstand any discriminating variations in the dataset?”, etc. For many applications

where optimal feature sets are yet to be discovered, researchers are faced with the task

of utilizing a trial and error approach that involves testing for different combinations

of features [21, 22], classifiers [23], kernels [24] in the effort to arriving at a useful so-

lution of the problem. We note that many of the available signal transforms (Wavelet,

Fourier, Hilbert, etc.) are linear transforms, and thus offer limited capabilities related to

enhancing or facilitating separation in feature (transform) space unless some non-linear

operations are performed.

The new signal data transformation framework described in this study renders cer-

tain classification problems linearly separable in the transform space. Linear separabil-

ity in the transform space gains practical importance with datasets that contain a small

number of high dimensional signals. When the number of available signals for training

16



are far less than their dimension, the nonlinear classifiers become prone to overfitting.

This is a well known effect, and is addressed as the problem of high dimensional and

low sample size (HDLSS) [25] in the literature. In addition, the overall variance of a

classifier increases as the classifier becomes more complex [26], and often times sim-

pler classifiers (e.g. linear) can yield higher accuracies than more sophisticated ones

[27]. Transforming the data and rendering it to be linearly separable will help maintain

small classification error, balance the bias/variance tradeoff, streamline the implemen-

tation of classification systems in many real world problems, and could bypass the

often time consuming process of devising large sets of specially tailored numerical

signal descriptors and testing each descriptor with various classifiers.

Signal Discrimination Problems

Let P and Q denote two disjoint classes of functions (signals) within a normed vector

space V . The goal in classification is to deduce a functional to ‘regress’ a given label

for each signal [28]. For a binary classification problem, the label of each signal can

be considered 0/1 or -1/+1, and the problem of classifying a signal f can be solved by

finding a linear functional T : V → R and b ∈ R such that

T (f) < b ∀f ∈ P,

T (f) > b ∀f ∈ Q. (1.1)

Below we specifically consider the case when T is a linear classifier in V . For ex-

ample, for real functions in L2, one may find w such that T (f) =
∫
V
w(x)f(x)dx.

For discrete signal data in countable domain Z one may find w such that T (f) =
∑
k∈Z w[k]f [k]. Thus the goal is to obtain the linear function w and the scalar b from

labeled data. In practice, linear classifiers are important given their efficient imple-

mentation, and favorable bias-variance trade off, especially in classification of high

dimensional data [29].
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Figure 1.1: Two types of textures under illumination variation and their corresponding intensity
histograms.

1.2.1 An illustrative example

Consider the problem of discriminating images of two different image patterns. The

first column of Figure 1.1, contains two sample images from the UIUC Texture dataset

[30], with their intensity histograms of the corresponding textures appearing directly

above or beneath each texture. Now consider the same texture images, but under dif-

ferent brightness (which causes a translation of the histograms) and linear contrast

(which causes a scaling of the histograms). Such variations in brightness and con-

trast are displayed in the different columns of Figure 1.1. A generative model for the

histogram data corresponding to each texture class under brightness and contrast vari-

ations can be built by translation and scaling of the histograms. In other words, we

Table 1.1: Average Classification Error of the texture dataset

Classifier type Dataset L2 space CDT space

Fisher LDA Training set 0 % 0%
Testing set 56.36 % 0.84%

PLDA Training set 41.81 % 0%
Testing set 44.39 % 0%

Linear SVM Training set 57.02 % 0.20%
Testing set 50.06 % 1.60%
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generate a set of histograms {pi}Ni=1 and {qj}Nj=1, each belonging to class P and Q,

by appropriately scaling (a) and translating (µ) ‘prototype’ signals p0 and q0, such that

pi(x) = p0(ai(x− µi)) and qj(x) = q0(aj(x− µj)). Finally, we note that stationary

additive noise in these images can be modeled as a convolution of each signal pi or qj

with the appropriate probability density of the noise model.

In order to illustrate the main difficulty with utilizing linear classification methods

under these sources of signal variation, we attempted to train a linear classifier to a set

of histograms under random brightness (µ) and contrast (a). We used a well-known

Fisher Linear Discriminant Analysis (Fisher LDA) method [31] that seeks to maximize

the differences in the projected mean of each class, while at the same time minimizing

their intra class variances. We also generated a testing set by again applying the same

brightness and contrast random model to the image data to create a testing data. Table

1.1 contains both the average training and testing error of 5-fold cross validation when

using this simulated data model. It is clear that while the training error is very low, the

resulting linear classifier fails to generalize to test data not used in training. We note

that there is nothing special related to the use of the Fisher LDA criterion in solving for

w in this example. That is, similar results are obtained utilizing linear Support Vector

Machines instead (see Table 1.1).

Simple consideration of the structure of the problem can reveal the reason why it

is hard to fit linear classifier to the testing dataset. This is because a single w, a linear

classifier, is unable to ‘cope’ with the translation and scaling variations encountered in

the test data p0(ats(x−µts)). In other words, the operation
∫
V
w(x)p0(ats(x−µts))dx

fails to satisfy equation (1.1) for randomly selected ats and µts used to generate the

test set. To be clear, it is well-known that, for a training set of fixed size, and for data

of large enough dimension, a linear classifier w can always be found that will near

perfectly separate the training data [32]. However, as this simple simulation is meant

to clarify, such classifier may fail to generalize to testing data if such w fails to capture

anything meaningful about the mathematical generative model of the problem. This is

the phenomenon exemplified here.

Now, the histograms in this problem could be rendered linearly separable if, for any

input histogram, one could simply ‘mod out’ the translation and scaling parameters,
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thus removing the confounding variations rendering the problem not linearly separable.

This is the intuition behind the Cumulative Distribution transform (CDT). It is able to

handle variations such as translation, scaling, and others by computing rearrangements

in the locations of the signal intensities with respect to a chosen reference, which does

not require the estimation of the prototype histograms p0 and q0. Results in Table 1.1

show that the same Fisher LDA and SVM technique, when applied to data that have

been transformed with the CDT, is perfectly able to separate the data.

1.3 Optimal Transport Primer

Let µ, ν be probability measures on probability spaces (X ,Σ(X )), (Y,Σ(Y)). Σ(A)

refers to a σ-algebra of a measurable set A.

Marginals

Let π be a probability measure onX×Y . Its marginal (or projection) onX (or Y) is the

measure (projX )#π (or (projY)#π), where projX and projY stand for the projection

maps (x, y)→ x and (x, y)→ y.

Transport Plan

Let Π(µ, ν) be the set of all joint probability measures on X × Y whose marginals are

µ and ν. Then Π is transport plan. Note that there is always a trivial transport plan in

which the variables X and Y are independent, i.e. π(x, y) = µ(x)ν(y). If there exists

a measurable function f : X → Y such that Y = f(x), then f is called a transport

map. Transport map does not always exist (for example, when µ is a Dirac mass and ν

is not).

Transport Map

If a measurable map f pushes µ onto ν such that

∫

f−1(A)

dµ =

∫

A

dν for any measurable A
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then f is a mass preserving map, or a transport map. Informally, one can say that

f transports the mass represented by the measure µ to the mass represented by the

measure ν.

Optimal Transport

The optimal transport, introduces a cost function c(x, y) on X × Y , that can be inter-

preted as the work needed to move on unit mass from location x to location y. The

Monge-Kantorovich minimization problem considers finding the solution for:

inf
X×Y

c(x, y)dπ(x, y), (1.2)

where the infimum runs over all joint probability measures π on X ×Y with marginals

µ and ν. Such joint measures are called transport plans, those achieving the infimum

are called optimal transport plans.

Under certain assumptions, there exists a transport map f . The search of the

transport map is called the Monge problem:

inf
X×Y

c(x, f(x))dµ(x).

When c(x, y) = |x − y|2 in the Euclidean space, µ is absolutely continuous with

respect to Lebesgue measure, and µ, ν have finite moments of order 2, then there is a

unique optimal transport map between µ and ν.

Wasserstein distance

The p-Wasserstein metric, Wp, for p ≥ 1 on Pp(Ω), set of Borel probability measures

on Ω, can be defined as using the optimal transportation problem (1.2) with the cost

function c(x, y) = |x− y|p. For µ and ν in Pp(Ω),

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

Ω×Ω

|x− y|pdπ(x, y)

) 1
p

. (1.3)

For any p ≥ 1, Wp is a metric on Pp(Ω).
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Unique optimal transport map in R

Let µ, ν be two probability measures on R, and define their cumulative distribution

function by

F (x) =

∫ x

−∞
dµ, G(y) =

∫ y

−∞
dν.

Further, define their right-continuous inverse by

F−1(t) = inf{x ∈ R;F (x) > t}

G−1(t) = inf{y ∈ R;G(x) > t}

and set

f = G−1 ◦ F.

If µ does not have atoms, then f is the optimal transport map that pushes µ onto ν.

Wasserstein distance

The p-Wasserstein metric, Wp, for p ≥ 1 on Pp(Ω), set of Borel probability measures

on Ω, can be defined as using the optimal transportation problem (1.2) with the cost

function c(x, y) = |x− y|p. For µ and ν in Pp(Ω),

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

Ω×Ω

|x− y|pdπ(x, y)

) 1
p

. (1.4)

For any p ≥ 1, Wp is a metric on Pp(Ω).

1.4 Transport-based Approaches in Pattern Recogni-

tion

In contrast to commonly used linear signal transformation frameworks (e.g. Fourier

and Wavelet transforms) which only employ signal intensities at fixed coordinate points,

thus adopting an ‘Eulerian’ point of view, the idea behind the transport-based ap-

proaches is to consider the intensity variations together with the locations of the in-
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tensity variations in the signal. Therefore, such transport-based solutions adopt a ‘La-

grangian’ point of view for analyzing signals.

Previous works have shown that the optimal transport theory can be utilized to solve

pattern discrimination tasks. [33] utilized the optimal transport framework for nuclei

image classification, and showed that the classification accuracy obtained using the L2

Wasserstein metric are as good or better than those obtained utilizing a set of feature-

based method. The work was further developed into [34], named the linear optimal

transform (LOT) framework, which measures similarities between pairs of images by

Kantorovich-Wasserstein distance. Under this framework, LOT Euclidean embedding

is computed for each image, which can be viewed as a nonlinear image transformation

method.

Given their suitability for comparing mass distributions, transport-based approaches

for performing pattern recognition of morphometry encoded in image intensity values

have also recently emerged. Recently described approaches for transport-based mor-

phometry (TBM) [34, 35, 36] work by computing transport maps or plans between a

set of images and a reference or template image. The transport plans/maps are then

utilized as an invertible feature/transform onto which pattern recognition algorithms

such as principal component analysis (PCA) or linear discriminant analysis (LDA) can

be applied. These techniques has been recently employed to decode differences in cell

and nuclear morphology for drug screening [35], and cancer detection histopathology

[37, 38] and cytology [39], amongst other applications including the analysis of galaxy

morphologies [36], for example.

Specifically, Fig. 1.2 shows how transport based learning can be applied to model

the variation in a nuclei dataset (in this case malignant versus benign). The optimal

transport maps between input images and a template image I0 are calculated. Next,

linear statistical modeling such as principal component analysis (PCA), linear discrim-

inant analysis (LDA), and canonical correlation analysis (CCA) is performed on the

optimal transport maps. The resulting transport maps obtained from PCA, LDA, and

CCA can then be inverted back to image space.

We note the strong similarity between deformation-based methods which have long

been used to analyzed radiological images [40, 41], for example. The difference be-
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Figure 1.2: An Example of Transport-based Learning

ing that the transport based approach allows for numerically exact, uniquely defined

solutions for the transport plans or maps used. That is, images can be matched with

little perceptible error. The same is not true in methods that rely on registration via

the computation of deformations, given the significant topology differences commonly

found in medical images. Moreover, transport based approach allows for comparison

of the entire intensity information present in the images (shapes and textures), while

deformation-based methods are usually employed to deal with shape differences.

1.5 Notations and Symbols

Through out the thesis, we will consider two probability spaces (X,Σ(X), I0) and

(Y,Σ(Y ), I1) where X and Y are connected sets in Rn. Σ(A) refers to a σ-algebra of

measurable setA, and I0 and I1 are probability measures, i.e. I0(X) = 1, I1(Y ) = 1.

Furthermore, let I0(A) > 0, I1(A) > 0 for Lebesgue measurable setAwhose λ(A) >

0, and let I0 and I1 denote density functions associated with I0 and I1, respectively:

dI0(x) = I0(x)dx, dI1(x) = I1(x)dx. Let f1 : X → Y define a measurable map that

pushes I0 onto I1 such that

∫

f−1
1 (A)

dI0 =

∫

A

dI1 for any Lebesgue measurable A ⊂ Y. (1.5)

24



In our case, we will consider d = 1 and I0 and I1 that have densities as defined above.

In this case, the relation above can be expressed, through Lebesgue integration, as

∫ x

inf(X)

I0(τ)dτ =

∫ f1(x)

inf(Y )

I1(τ)dτ. (1.6)

for In addition, certain results shown below will require us to interpret measurable

densities I0, I1 and maps f1, f2 as elements of L2 function spaces. That is, given a

measurable map f1 : X → Y defined as above, for example, we can view it as an

element of the space of functions whose absolute square value is Lebesgue integrable.

In this case, the space is denoted as L2(X) and is defined as the set of functions that

satisfy:

‖f‖2 =

(∫

X

|f |2dλ
) 1

2

<∞,

with λ referring to the Lebesgue measure in X .

1.6 Contributions and Outline of the Thesis

In this thesis, we propose a signal transformation framework, for signals and images,

designed to facilitate the pattern recognition problem. This thesis consists of five main

chapters, in which Chapter 2-5 are the main contributions of the author.

The specific contributions of this thesis are:

• Contribution 1: Developing a new mathematical transform and a theory that

can render data linearly separable in the transform space,

• Contribution 2: Providing experimental validation that the transform indeed

can facilitate pattern recognition using various examples,

• Contribution 3: Developing a classification pipeline utilizing the transform to

enhance the performance of optical communications system.

The second chapter of this thesis introduces the Cumulative Distribution transform.

We show that CDT is a nonlinear signal transformation, which takes an input a signal

(treated as probability distribution function), and outputs an invertible function that is
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related to morphing that signal to a chosen reference signal. We show that under some

general conditions, the CDT transform can turn not-linearly separable classes of signals

into linearly separable classes in the CDT space.

In the third chapter, we extend the CDT, which is developed for signal (a function

with one independent variable), to Radon-Cumulative Distribution transform, which is

developed for images (a function with two independent variables). We show that the

Radon-CDT also shares the linear separability theorem of the CDT.

The fourth chapter of this thesis aims to provide the experimental justification of

the method as well as developing pattern recognition pipeline utilizing the transforms.

Five datasets are tested for each transform, 10 in total. The experiments demonstrate

that under the condition where data are generated according to our model, the classes

of different signals/images would belong to distinct convex sets in the transform space,

and therefore be linearly separable.

The fifth chapter of this thesis utilizes the transform and the classification pipeline

developed above to aid solving the demultiplexing problem in free space optical com-

munications. Based on the recent finding in [42] that the light traveling in atmospheric

turbulence would approximately follow the ‘optimal transport path’, we claim that the

laser beams undergo deformation which can be decoded easily in the transform space.

We demonstrate that the demultiplexing in transform space yields comparable BER as

in the image space with a fraction of the computational cost.

Finally, Chapter six concludes the thesis and lists future work and directions.

26



Chapter 2

The Cumulative Distribution

Transform

2.1 Introduction

In this chapter, we describe a new one-dimensional signal transformation framework,

with well-defined analysis (forward transform) and synthesis (inverse transform) oper-

ations that, for signals that can be interpreted as probability density functions, can help

facilitate the problem of recognition. Denoted as the Cumulative Distribution trans-

form (CDT), the CDT can be viewed as a one to one mapping between the space of

smooth probability densities and the space of differentiable functions, and therefore by

definition retains all of the signal information. We show that the CDT can be computed

efficiently, and can turn certain types of classification problems linearly separable in

the transform space. In contrast to linear data transformation frameworks (e.g. Fourier

and Wavelet transforms) which simply consider signal intensities at fixed coordinate

points, thus adopting an ‘Eulerian’ point of view, the idea behind the CDT is to also

consider the location of the intensities in a signal, with respect to a chosen reference,

in the effort to ‘simplify’ pattern recognition problems. Thus, the CDT adopts a ‘La-

grangian’ point of view for analyzing signals. The idea is similar to our work on linear
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optimal transport [34], and the links will be explicitly elucidated below. The chapter

is organized as follows. We present the definition of the CDT in Section 2.2 then its

properties in Section 2.3. The linear separability property in CDT space is presented in

Section 2.4, and a numerical method for approximating the forward CDT for discrete

signals is described in Section 2.5.

2.2 The 1D Cumulative Distribution Transform

Consider two probability density functions I0 and I1 defined as in Sec. 1.5. Consider-

ing I0 to be a pre-determined ‘reference’ density, one can use relation (1.6) to uniquely

associate f1 with a given density I1. We use this relationship to define the Cumulative

Distribution Transform (CDT) of I1 (denoted as Î1 : X → R), with respect to the

reference I0:

Î1(x) = (f1(x)− x)
√
I0(x). (2.1)

with f1 : X → Y satisfying (1.6) for x ∈ X.
Now let J0 : X → [0, 1] and J1 : Y → [0, 1] be the corresponding cumula-

tive distribution functions for I0 and I1, that is: J0(x) =
∫ x

inf(X)
I0(τ)dτ , J1(x) =

∫ x
inf(Y )

I1(τ)dτ . With f1 defined in (1.6) one can re-write J0 : X → [0, 1] as

J0(x) = J1(f1(x)). (2.2)

For continuous cumulative distribution functions J0 and J1 (functions whose first deriva-

tive exists throughout their respective domains), f1 is a continuous and monotonic

function. If f1 is differentiable, (2.2) can be rewritten as

I0(x) = f ′1(x)I1(f1(x)). (2.3)

For measurable but discontinuous functions the relationship above does not hold for

points at discontinuities.
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The inverse Cumulative Distribution Transform of Î1 is defined as:

I1(y) =
d

dy
J0(f−1

1 (y)) = (f−1
1 )′I0(f−1

1 (y)) (2.4)

where f−1
1 : Y → X refers to the inverse of f1 (i.e. f−1

1 (f1(x)) = x), f1(x) =

Î1(x)/
√
I0(x) + x. Naturally, formula (2.4) holds for points where J0 and f1 are

differentiable. By the construction above, f1 will be differentiable except for points

where I0 and I1 are discontinuous. Note that in practice, we have control over the

definition of I0, and in our numerical implementation described in section 6, we take

it to be the uniform density. The example presented below shows the CDT of normal

distribution density.

−1 −0.5 0 0.5 1 1.5 2
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1
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(a) I0(x)
−2 0 2 4

0.2

0.4

0.6

(b) I1(x)

Figure 2.1: Example 2.2.1

Example 2.2.1. Consider a probability density of uniform distribution I0 : [0, 1]→ R:

I0(x) = 1,

and a normal distribution density I1 : R → R with zero-mean and unit-variance (see

Figure 2.1):

I1(x) =
1√
2π
e−x

2/2.

∫∞
−∞ I1(τ)dτ =

∫ 1

0
I0(τ)dτ = 1 holds by definition. To find the CDT for I1 with

respect to the reference I0, we first solve for f1 : [0, 1]→ R:

∫ f1(x)

−∞
I1(τ)dτ =

∫ f1(x)

−∞

1√
2π
e−τ

2/2dτ =

∫ x

0

1dτ = x. (2.5)
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By setting Φ(x) = 1/
√

2π
∫ x
−∞ e−τ

2/2dτ , (2.5) can be rewritten as

Φ (f1(x)) = x.

Φ(x) is a monotonically increasing function, and the inverse exists. Hence, we get

f1(x) = Φ−1(x). (2.6)

By substituting (2.6) into (2.1), we have found the CDT, Î1(x) : [0, 1]→ R

Î1(x) = Φ−1(x)− x. (2.7)

Figure 2.2 shows the plot (black dotted line) for the CDT of a normal distribution

density function with zero mean and unit variance.

2.3 CDT Properties

Here we describe a few basic properties of the CDT, with the main purpose of eluci-

dating certain of its qualities necessary for understanding its ability to linearly separate

particular types of densities.

Property 2.3.1. Nonlinearity The CDT is a non-linear transformation.

For transformation A to be linear, we must have that A(αI1 + βI2) = αA(I1) +

βA(I2). It is easy to check by example 2.2.1 that this relation does not hold. Suppose

α = 1/2, β = 1/2, I1 be a normal density and I2 be a uniform density. Then A(αI1 +

βI2) 6= αA(I1) + βA(I2).

Before going on to state further properties of the CDT, it is worth expanding upon

the geometric meaning of the CDT. We first note that, using the standard definition of

the L2 norm, i.e. ‖Îi‖L2 =
(∫

X
|Îi(x)|2dx

)1/2

, we have:

‖Î1‖2L2 =

∫

X

(f1(x)− x)2I0(x)dx. (2.8)
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As such, the quantity ‖Î1‖2L2 computes the ‘amount’ of intensity from I0 at coordi-

nate x that will be displaced to coordinate f1(x). Because f1 is uniquely defined

for nonzero probability densities, the quantity ‖Î1‖2L2 can be viewed as the minimum

amount of ‘effort’ (quantified as density intensity × displacement) that must be ap-

plied to ‘morph’ I1 onto I0. This quantity can be interpreted as the optimal transport

(Kantorovich-Wasserstein) distance between I0 and I1 [43]. Moreover, the set of con-

tinuous density functions is formally a Riemannian manifold [43] meaning that at any

point in probability density space, there is a tangent space endowed with an inner prod-

uct corresponding to the incremental intensity flow (see [34] for more details). There-

fore the distance between I1 and I0 expressed in (2.8) can be interpreted as a geodesic

distance over the associated manifold.

Now consider the distance between the CDT of two different densities I1 and I2,

computed with respect to the same reference I0:

‖Î1 − Î2‖2L2 =

∫

X

((f1(x)− x)− (f2(x)− x))
2
I0(x)dx (2.9)

where f1 and f2 correspond to the mappings between I1 and I0, and I2 and I0 respec-

tively. In two or more dimensions, as described in [34], this distance can be thought

of as the ‘linearized’ optimal transport (generalized geodesic) metric between density

functions I1 and I2. It can be interpreted as a azimuthal equidistant projection of I1

and I2 onto the plane associated with the incremental intensity flows about the point I0.

For one dimensional density functions, however, f is uniquely determined. Hence the

optimal transport distance computed between densities I1 and I2 can also be expressed

through (2.9) above. In short, the CDT of a given probability density function Ii can be

viewed as an invertible embedding of the function onto a linear space that is isometric

with respect to the standard optimal transport (also known as Earth Mover’s) distance.

We now describe important properties of the CDT operation relative to density

coordinate changes such as translation, scaling, and more generally diffeomorphisms

applied to a given density.

Property 2.3.2. Translation. Let Iµ represent a translation of the probability density

I1 by µ, Iµ(x) = I1(x − µ). The CDT of Iµ with respect to the reference probability
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Figure 2.2: Example 2.3.3

density I0 : X → R is given by Îµ : X → R:

Îµ(x) = Î1(x) + µ
√
I0(x). (2.10)

For a proof, see A.1.

Example 2.3.3. Consider a translation of the density function I1(x) in Example 2.2.1

by µ

Iµ(x) = I1(x− µ) =
1√
2π
e−(x−µ)2/2.

This is a normal distribution with mean µ and unit variance. The corresponding CDT,

Îµ : [0, 1] → R, for Iµ with respect to the uniform reference density I0 : [0, 1] → R

can be found by the translation property (2.10) and by the CDT found in (2.7)

Îµ(x) = Î1(x) + µ = Φ−1(x)− x+ µ,

which is translation constant µ plus the CDT of zero-mean normal distribution. Fig-

ure 2.2 is plotted for case when µ = 2.

Property 2.3.4. Scaling. Let Ia represent a scaling of the probability density I1 by a,

Ia(x) = aI1(ax). The CDT of Ia respect to the reference probability density I0 : X →
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Figure 2.3: Example 2.3.5

R is given by Îa : X → R:

Îa(x) =
Î1(x)− x(a− 1)

√
I0(x)

a
. (2.11)

For a proof, see A.2.

Example 2.3.5. Consider the density function I1(x) in Example 2.2.1 scaled with a

factor a, such as

Ia(x) = aI1(ax) =
a√
2π
e−

(ax)2

2 .

This is identical to a normal distribution with zero-mean and a standard deviation 1
a .

The corresponding CDT, Îa : [0, 1] → R, for Ia with respect to the uniform reference

density I0 : [0, 1] → R can be found by the scaling property (2.11) and by the CDT

found in (2.7):

Îa(x) =
Î1(x)− x(a− 1)

a

=
Φ−1(x)− x− ax+ x

a

=
Φ−1(x)

a
− x.

Figure 2.3 plots this function for the case when a = 2.

Property 2.3.6. Composition. Let Ig : Z → R represent a probability density that has
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the following relation with the probability density I1 : Y → R

Jg(x) = J1(g(x)).

J1 : Y → R and Jg : Z → R represent the corresponding cumulative distribution

for I1 and Ig respectively. g : Z → Y is an invertible, differentiable function. The

CDT of the corresponding density Ig with respect to the reference probability density

I0 : X → R is given by

Îg(x) =

(
g−1

(
Î1(x)√
I0(x)

+ x

)
− x
)
√
I0(x).

See A.3 for a proof. Property 2.3.6 summarizes one of the main characteristics of

the CDT transform so far, as rendering diffeomorphic transport changes ‘Eulerian’ in

the CDT space. In detail, in CDT space, the changes in Îg at coordinate x0 is only

affected by the change of the same coordinate x0, i.e. Î1(x0). On the other hand, in L2

space, the changes in Ig at coordinate x0 is affected by the changes in both coordinates

x0 and g(x0), i.e. Ig(x0) = g′(x0)I1(g(x0)).

2.4 Linear Separability in the CDT space

One of the main contributions of this paper is to describe how the CDT transforma-

tion can enhance linear separability of signal classes. Before stating the main result

regarding linear separation, a few preliminary results are necessary. As is well-known,

the linear separability of two sets in Rn is determined by the existence of a separating

hyperplane. If two sets are convex and disjoint, a separating hyperplane always exists,

and hence the sets are linearly separable. Furthermore, the converse holds when at least

one set is an open set [44]. The Hahn-Banach Separation Theorem is a generalization

of the separating hyperplane theorem for infinite dimensional spaces.

Theorem 2.4.1 (Hahn-Banach Separation Theorem for Normed Vector Spaces). Let P

and Q be nonempty, convex subsets of a real normed vector space V . Furthermore,

assume P and Q are disjoint and that one is closed and the other is compact. Then,
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there exists a continuous linear functional T on V and b ∈ R that strictly separates set

P and Q such that

T (p) < b < T (q), ∀p ∈ P,∀q ∈ Q. (2.12)

For a non-zero linear functional T and a real number b, a hyperplane H(T, b) =

{v ∈ V |T (v) = b} can be defined, and a hyperplane that satisfies (2.12) is called a

separating hyperplane. For a proof and more details on the Hahn-Banach separation

theorem, please refer to [45, 46]. For L2 spaces, the Hahn-Banach Separation Theorem

implies that there exists a unique linear classifier w that linearly separates two convex

sets. To derive this, we need the following theorem, which states that every linear

functional T on L2 is of the form (2.13) for some w ∈ L2.

Theorem 2.4.2. For every continuous linear functional T on L2 there is a unique

w ∈ L2 so that

T (f) =

∫

X

f(x)w(x)dx, ∀f ∈ L2. (2.13)

In other words, there exists a separating hyperplane in L2 space, H(w, b) = {x ∈
X|w(x) = b}. For a proof and more details, please refer to [47]. Therefore, for a

continuous linear functional T on L2, a unique w can always be found. The following

Lemma is a consequence of Theorem 2.4.1 and Theorem 2.4.2 that state there exists a

linear classifier w that can separate two disjoint, convex sets in L2 space.

Lemma 2.4.3 (Linear Classifier for Convex Sets inL2 Space). Let P and Q be nonempty,

convex subsets of L2 space, where P and Q are disjoint and that one is closed and

the other is compact. Then, there exists a continuous hyperplane H(w, b) = {x ∈
X|w(x) = b} that separates set P and Q such that

∫

X

w(x)pi(x)dx < b, ∀pi ∈ P
∫

X

w(x)qj(x)dx > b, ∀qj ∈ Q, (2.14)

andH(w, b) is called a linear classifier.
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Figure 2.4: Depiction for linear separability properties of the CDT.

So far, we have seen that a linear classifier always exists for two disjoint, convex

sets in L2 with one being compact and the other closed. Moreover, the linear classifier

would also linearly separate any subset pair from each convex hull of each convex

set. In other words, two linearly separable convex sets imply that any subset pair from

each convex hull is linearly separable, and vice versa. Therefore, in order to determine

whether or not two sets are linearly separable, it suffices to show whether any subset

pair from each convex hull is linearly separable. The following Lemma states this

argument and will be used to show the main result of the paper.

Lemma 2.4.4. [Linear Separation of Compact Convex Hulls of Convex Sets in L2

Space] Two nonempty, compact subsets P and Q in L2 space are linearly separable if

and only if both their convex hulls are disjoint, i.e. when the following equation holds:

Np∑

i=1

αipi 6=
Nq∑

j=1

βjqj , (2.15)

for any subset {pi}Npi=1 ⊂ P and {qj}Nqj=1 ⊂ Q, and for any αi, βj > 0 that satisfies
∑
i αi =

∑
j βj = 1.

For proof, see A.4.

We now discuss the conditions under which the CDT can render classes of 1-

dimensional probability densities linearly separable. We begin by defining a generative

model for classes P and Q.

Definition 2.4.5. H is a set of monotonic and differentiable functions. P and Q are two

disjoint sets satisfying

i) h′(p0 ◦ h) ∈ P, h′(q0 ◦ h) ∈ Q, ∀h ∈ H, p0 ∈ P, q0 ∈ Q

ii) ∀p ∈ P, ∀q ∈ Q, p 6= q (disjoint).
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Note that in the definition above we have used the notation p ◦ h(x) = p(h(x)).

The definition provides a framework which one can use to construct (or interpret) sig-

nal classes. In more practical language, we envision signal classes as being generated

from fundamental patterns, but with distortions or confounds applied to them. For ex-

ample, let p0 and q0 be two distinct probability densities, which we denote as ‘mother’

densities. Furthermore, let H be composed of all translations: hτ (x) = x − τ , with τ

a random variable. Elements of the sets P and Q are thus p0 ◦ hτ , and q0 ◦ hτ , respec-

tively, and can be viewed as translations of the original mother densities. In this case,

the translation makes up the ‘nuisance’ (confound) parameter a classifier must decode

to enable accurate separation of the classes. Note that we have used the translation case

as an example here, and the model specified above allows for more complex classes to

be created. We note that since h ∈ H is monotonic and differentiable, its inverse h−1

exists and is also differentiable.

We now describe the main Theorem of this paper clarifying the linear separation

properties of the newly proposed CDT.

Theorem 2.4.6. Linear Separability Theorem in CDT Space Let P,Q,H follow be

defined according to Definition 2.4.5. In addition, let h ∈ H satisfy the following

conditions:

i) ∀h ∈ H, h−1 ∈ H.

ii) ∀h ∈ H and αi > 0 that satisfies
∑
i αi = 1, h−1

α =
∑
i αih

−1
i ∈ H.

iii) ∀h1, h2 ∈ H, h1 ◦ h2 ∈ H.

Then the corresponding sets in the CDT space P̂, Q̂ are linearly separable.

We note that the linear separability theorem is independent of the choice of the

reference I0. For a proof, see A.5.

2.5 Numerical implementation

We now describe a numerical method for approximating the CDT given discrete data.

Recall that the CDT is defined for continuous-time functions in contiguous, finite do-
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main. In order to compute the CDT for a discrete-time signal, we need a way of esti-

mating its cumulative function at any arbitrary coordinate. We do so via interpolation.

Given a discrete signal of N points and an interpolating model, the forward CDT can

be estimated numerically at all N points. Our numerical method is designed when the

reference function is I0(x) = 1 for x ∈ [0, 1] (recall the linear separation properties of

the CDT are independent of the choice of reference). The computation is formulated

with the aid of B-splines [48]. We use the B-spline of degree zero which guarantees

that the reconstructed signals are always positive, which yields a low complexity algo-

rithm (O(N)). We note that under the specific construction below the approximated

density functions will be discontinuous at the half way point between sampled nodes,

and, as stated above, reconstruction at these points is not possible.

Let π(x) be the B-spline of degree zero of width r

π(x) =





1 x ∈ [− 1
2r,

1
2r]

0 elsewhere

and define Π(x) =
∫ x
−∞ π(τ)dτ as

Π(x) =





0 x < − 1
2r

x+ 1
2r x ∈ [− 1

2r,
1
2r]

r x > 1
2r.

(2.16)

Let’s denote a N -point discrete-time signal as c = [c1, · · · , cN ] and xi as the ith

sample location of c, i.e. c(xi) = ci, ∀i = 1, · · · , N . We interpolate the discrete-

time signal c with the B-spline of degree zero to be a continuous-time signal such as

I1(x) =
∑N
i=1 ciπ(x− xi) for x ∈ [x1 − 1

2r, xN + 1
2r]. Rewriting (1.6), we have

∫ f1(x)

x1− 1
2 r

I1(τ)dτ =

∫ f1(x)

x1− 1
2 r

N∑

i=1

ciπ(τ − xi)dτ = x (2.17)

which can be simplified further by interchanging the sum and the integral, and then
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using Π to denote the cumulative integral function of π as

N∑

i=1

ciΠ(f1(x)− xi) = x. (2.18)

By substituting (2.16) into (2.18) and taking the inverse of Π(x) which is piecewise

linear, f1(x) is computed according to the following algorithm:

1. When 0 < x < rc1, we have c1Π(f1(x)− x1) = x. Thus,

f1(x) =
x

c1
+ x1 −

1

2
r

2. When−rcn+
∑n−1
i=1 ci < x < rcn+

∑n−1
i=1 ci, we have

∑n
i=1 ciΠ(f1(x)−xi) =

x. Thus,

f1(x) =
x−∑n−1

i=1 ci
cn

+ xn −
1

2
r. (2.19)

3. Proceed until n = N .
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Chapter 3

The Radon-Cumulative

Distribution Transform

3.1 Introduction

Intensity vector flows represent an interesting alternative for encoding the pixel inten-

sity movements which help simplify certain pattern recognition tasks. Past works have

been done [34, 36] to describe a framework that makes use of the L2 optimal trans-

port metric (Earth Mover’s distance) to define a new invertible image transform. The

transport-based approach, however, depends on obtaining a unique transport map that

encodes an image via minimization of a transport metric, which is relatively cumber-

some and slow for large images.

In this chapter, we describe a new 2D image transform by combining the stan-

dard 2D Radon transform of an image with the 1D Cumulative Distribution Transform

(CDT) proposed earlier. As the CDT, the transform for 2D, namely Radon-CDT, uti-

lizes a reference (or template), and it can be computed with a (nonlinear) closed form

formula without the need for a numerical minimization method. Also, The Radon-CDT

shares similar properties as the CDT including enhancements in linear separation, and

therefore can be used to improve the linear separability of image classes.
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The Radon-CDT is a nonlinear and invertible image transform that enables any

statistical analysis in the transform space to be directly inverted to the image space. In

other words, given that the transform is invertible, the approach enables visualization

of any regression applied in transform space. It thus enables one to visualize variations

in texture and shapes, as well as to visualize discriminant information by inverting

classifiers.

In what follows, we start by introducing the Radon cumulative transform. Its prop-

erties are enumerated in Section 3.3, and the linear separation theorem is presented in

Section 3.4. The details of the numerical implementation of the method is presented in

Section 3.5.

3.2 The Radon-Cumulative Distribution Transform

3.2.1 The Radon transform

The Radon transform of a function I : R2 → R+, which we denote by R = R(I), is

defined as:

R(t, θ) =

∫ ∞

−∞

∫ ∞

−∞
I(x, y)δ(t− x cos θ − y sin θ)dxdy

where δ(t) is a Dirac delta function, x cos θ + y sin θ = t defines a line, t is the

perpendicular distance from the line to the origin, and θ is the angle between the line

and the y-axis as shown in Fig. 3.1.

The inverse Radon transform, I = R−1(R), is defined with the aid of the Fourier

Slice Theorem as [49, 50]:

I(x, y) =

∫ π

0

R∗(x cos θ + y sin θ, θ)dθ,

where R∗(t, θ) = w(t) ∗ R(t, θ) is the one-dimensional convolution with respect to

variable t, w(t) = F−1(|ω|) is the ramp filter, F−1 is the inverse Fourier transform.

The total integral of the function I(x, y) along x and y is equivalent to the line
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Figure 3.1: Geometry of the line integral associated with the Radon transform

integral of R(t, θ) along t:

∫ ∞

−∞

∫ ∞

−∞
I(x, y)dxdy =

∫ ∞

−∞
R(t, θ)dt, ∀θ ∈ [0, π]. (3.1)

Here we combine the CDT [51] and the Radon transform to describe the Radon

Cumulative Distribution Transform (Radon-CDT). We then derive a few properties of

the Radon-CDT, and extend the CDT results [51] on linear separability of classes of

one-dimensional signals [51] to classes of images.

3.2.2 The Radon-CDT transform

Consider an image I : R2 → R+ and a reference image I0 : R2 → R+, where both

images are normalized such that

∫

R

∫

R
I(x, y)dxdy =

∫

R

∫

R
I0(x)dxdy = 1.

The forward Radon-CDT for I is defined as,

Î(t, θ) = (f(t, θ)− I(t))
√
R0(t, θ), (3.2)

where
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• R0 and R are corresponding Radon transforms for I and I0,

• For each θ, the monotonic differentiable map f(t, θ) is found that tranports the

one-dimensional signal R0(t, θ) to R(t, θ), i.e.

∫ fθ(t)

0

Rθ(τ)dτ =

∫ t

0

R0,θ(τ)dτ.

Here, we used f(t, θ) = fθ(t), R(t, θ) = Rθ(t), and R0(t, θ) = R0,θ(t) in

abuse of notation to explicitly state that the θ is fixed.

• I represents the identity map, i.e. f−1(f(t, θ), θ) = I, or equivalently I(t) = t.

The inverse Radon-CDT is defined as,

I = R−1(det(Dg)(R0 ◦ g)) (3.3)

where

• g(t, θ) = [f−1(t, θ), θ]T ,

• Dg is the Jacobian of g,

• det(Dg(t, θ)) = ∂f−1(t,θ)
∂t .

Fig. 3.2 visualizes the steps for computing Radon-CDT of a sample image I with

respect to a reference image I0. The radon transforms for images are first computed,

denoted as R and R0. Then for each θ = θ∗ where θ∗ is an arbitrary projection angle,

the one-dimensional transport map fromR0(t, θ∗) toR(t, θ∗) is computed. Finally, the

Radon-CDT is obtained from f and R0.

3.3 Radon-CDT properties

Here we describe a few basic properties of the Radon-CDT, with the main purpose

of elucidating certain of its qualities necessary for understanding its ability to linearly

separate certain types of two-dimensional densities.
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Figure 3.2: The process of calculating the Radon-CDT transform of image I with respect to the
reference image I0.

Property 3.3.1. Translation. Let J(x, y) = I(x−x0, y− y0) and let Î be the Radon-

CDT of I . The Radon-CDT of J with respect to a reference image I0 is given by,

Ĵ(t, θ) = Î(t, θ) + (x0 cos(θ) + y0 sin(θ))
√
R0(t, θ),

t ∈ R and θ ∈ [0, π]. (3.4)

See A.6 for a proof. Similar to the CDT example in Eq. 2.10, it can be seen that while

I(x− x0, y − y0) is nonlinear with respect to [x0, y0] the presentation of the image in

the Radon-CDT, Î(t, θ) + (x0 cos(θ) + y0 sin(θ))
√
R0(t, θ) is linear.

Property 3.3.2. Scaling. Let J(x, y) = α2I(αx, αy) with α > 0 and let Î be the

Radon-CDT of I . The Radon-CDT of J with respect to a reference image I0 is given
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by,

Ĵ(t, θ) =
Î(t, θ)

α
+

(
1− α
α

)√
R0(t, θ),

t ∈ R and θ ∈ [0, π]. (3.5)

See A.7 for a proof. Similar to the translation property, it can be seen that while

α2I(αx, αy) is nonlinear with respect to α the corresponding presentation in the

Radon-CDT space, Î(t,θ)α +
(

1−α
α

)√
R0(t, θ), is linear in 1

α .

Property 3.3.3. Rotation. Let J(x, y) = I(x cos(φ)+y sin(φ),−x sin(φ)+y cos(θ))

and let Î be the Radon-CDT of I . For a circularly symmetric reference image I0, the

Radon-CDT of J is given by,

Ĵ(t, θ) = Î(t, θ − φ), t ∈ R and θ ∈ [0, π] (3.6)

See A.8 for a proof. Note that unlike translation and scaling, for rotation the trans-

formed image remains nonlinear with respect to φ.

3.3.1 The Radon-CDT Representation

Here we show some implications of these properties in image modeling. Let I0 be an

arbitrary image and let I(x, y) = I0(x − x0, y − y0) be a translated version of I0. A

natural interpolation between these images follows from Iα(x, y) = I0(x − αx0, y −
αy0) where α ∈ [0, 1]. The linear interpolation between these images in the image

space, however, is equal to,

Iα(x, y) = αI1(x, y) + (1− α)I0(x, y)

6= I0(x− αx0, y − αy0) (3.7)

In fact, above equation is also true for any linear image transform. Take the Radon

transform for example, where the linear interpolation in the transform space is equal
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to,

Îα(t, θ) = αR(I1(x, y)) + (1− α)R(I0(x, y))

= R(αI1(x, y)) + (1− α)I0(x, y))⇒

Iα(x, y) = R−1(Îα(t, θ)) = αI1(x, y) + (1− α)I0(x, y)

6= I0(x− αx0, y − αy0). (3.8)

On the other hand, due to its nonlinear nature, this scenario is completely different in

the Radon-CDT space. Let I0 be the template image for the Radon-CDT (the follow-

ing argument holds even if the template is chosen to be different from I0), then from

Equation (3.4) we have Ĩ0(t, θ) = 0 and Ĩ1(t, θ) = (x0cos(θ) + y0sin(θ))

√
Î0(t, θ).

The linear interpolation in the Radon-CDT space is then equal to,

Ĩα(t, θ) = αĨ1(t, θ) + (1− α)Ĩ0(t, θ)

= α(x0cos(θ) + y0sin(θ))

√
Î0(t, θ)⇒

Iα(t, θ) = I0(x− αx0, y − αy0). (3.9)

which is the natural interpolation between these images and captures the underlaying

translation. Figure 3.3 summarizes the equations presented above and provides a visu-

alization of this effect.

3.4 Linear separability in the Radon-CDT space

Here, as in the CDT case, we describe that the linear separability theorem holds for

the Radon-CDT. With the same framework of constructing image classes based on the

‘mother images’, we show that the sets of images corrupted by confounds H can be

effectively linearly separated in the Radon-CDT space.

Let P and Q be sets of normalized images born from two mother images p0 and q0
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Figure 3.3: A simple linear interpolation between two images in the image space, the Radon
transform space (which is a linear transform), and the Radon-CDT space.
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as follows,

P = {p|p = R−1(det(Dh)(p̃0 ◦ h)) (3.10)

Q = {q|q = R−1(det(Dh)(q̃0 ◦ h)) (3.11)

where

• p̃0, q̃0 corresponds to the Radon transform of p0, q0,

• H is a set of measurable maps, with h ∈ H,

• h(t, θ) = [h(t, θ), θ]T ,∀h ∈ H,∀θ ∈ [0, π].

It is important to note that h must be absolutely continuous in t and θ, so that

det(Dh)(p̃0 ◦ h) and det(Dh)(q̃0 ◦ h) remain in the range of the Radon transform

[52]. Now, we can state the linear separation theorem.

Theorem 3.4.1. Linear Separation Theorem in R2 Under the signal generative model

described in (3.11), the sets P and Q become linearly separable in the transform space

ifH satisfies the following conditions,

i) h ∈ H ⇒ h−1 ∈ H

ii) h1, h2 ∈ H ⇒ αh1 + (1− α)h2 ∈ H, ∀α ∈ [0, 1]

iii) h1, h2 ∈ H ⇒ h1(h2), h2(h1) ∈ H

iv) det(Dh)(p̃0 ◦ h) 6= q̃0, h(t, θ) = [h(t, θ), θ]T , ∀hθ ∈ H

The theorem holds regardless of the choice of the reference image I0. See A.9 for a

proof.

3.5 Numerical Implementation

3.5.1 The Radon transform

A large body of work on numerical implementation of the Radon transform exists in

the literature [53]. Here, we use a simple numerical integration approach that utilizes
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nearest neighbor interpolation of the given images, and summation.

3.5.2 Measure preserving map

Here, we follow the similar computation algorithm as in Sec. 2.5. The measure pre-

serving map that warps Î(., θ) into Î0(., θ) is found with the aid of the B-spline π of

degree zero of width r,

π(x) =





1/r |x| ≤ 1
2r

0 |x| > 1
2r

. (3.12)

and define Π as,

Π(x) =





0 x < − 1
2r

x
r + 1

2 − 1
2r ≤ x ≤ 1

2r

1 x > 1
2r

(3.13)

Using the B-spline of degree zero, we approximate the continuous sinograms, Î(., θ)

and Î0(., θ), with their corresponding discrete counterparts c and c0 as follows,

Î(t, θ) ≈
K∑

k=1

c[k]π(t− tk) (3.14)

Î0(t, θ) ≈
K∑

k=1

c0[k]π(t− tk). (3.15)

Now the goal is to find f(., θ) such that,

∫ f(t,θ)

−∞
Î(τ, θ)dτ =

∫ t

−∞
Î0(τ, θ)dτ
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which is equivalent to,

K∑

k=1

c[k]Π(f(t, θ)− tk) =

K∑

k=1

c0[k]Π(t− tk)

let ρ = [0, 1
L ,

2
L , ...,

L−1
L , 1]T for L > 1, and define τ 0 and τ such that,

K∑

k=1

c[k]Π(τ [l]− tk) = ρ[l]

K∑

k=1

c0[k]Π(τ 0[l]− tk) = ρ[l]

for l = 1, ..., L + 1, where τ and τ 0 are found using the algorithm defined in

Sec. 2.5. From the equation above we have that f(τ 0[l], θ) = τ [l]. Finally we interpo-

late f to obtain its values on the regular grid, tk for k = 1, ...,K.

3.5.3 Computational complexity

The computational complexity of the Radon transform of N × N images at M pro-

jection angles is O(N2M), and the computational cost for finding the mass preserving

map, f(t, θ), from a pair of sinograms is O(MN log(N)), hence, the overall compu-

tational cost of the Radon-CDT is dominated by the computational complexity of the

Radon transform, O(N2M).
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Chapter 4

Applications to the Linear

Classification

In the second part of the thesis, we experimentally evaluate the properties of the CDT

and Radon-CDT by comparing linear classification performed in the transform space

with that in original signal space (L2). We present computational examples that show

the CDT and Radon-CDT can significantly increase linear classification accuracy com-

pared to simply treating signals in `2 space.

The chpater demonstrates linear separability in the CDT space for signals with 1

independent variables. We investigate five cases of signal classification: classification

of texture images from histograms, classification of accelerometer signals, classifica-

tion of flow Cytometry data, classification of histograms from hand gesture image data,

and classification of cell images from orientation histograms.

The second chapter demonstrates linear separability in the Radon-CDT space, we

investigate five cases of image classifications on real images – classification of face

images, classification of liver nuclei images, classification of animal face images, clas-

sification of handwriting digit images, and classification or shape images – as well as a

synthetic example.

Note that the goal is not to propose the ultimate, or optimal, classification method
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for each application, but rather to experimentally validate Theorem 2.4.6 and Theo-

rem 3.4.1 using both simulated (manufactured) data and diverse, real datasets. We note

that, with the exception of the simulated cases in Section 1.2 and in Section 4.2.1, we

have no precise knowledge of whether conditions i), ii), and iii) for H specified in the

Theorem hold. Results seem to confirm, however, that the generative model specified

in these conditions has a least some bearing on each problem investigated here.

4.1 Linear Classification in the CDT space

In this chapter, we demonstrate the application of the CDT in pattern recognition by

demonstrating its capability to linearly separate the data. We quantify the degree of

linear separability of the data by computing classification error using linear classifiers.

As the CDT does not actually prescribe an optimal classifier, we compute three differ-

ent linear classifiers using a standard cross validation procedure (or leave-one-out cross

validation when data size is small) that separates training and testing data. In addition,

we provide qualitative (visual) evidence, by computing a low dimensional projection of

the data using training data only, that the CDT indeed tends to make data more linearly

separable.

4.1.1 Experimental procedure

Average classification error is compared using three different linear classifiers: Fisher’s

linear discriminant analysis (Fisher LDA) method [31], the penalized LDA (pLDA)

method of Wang et al [54], and the linear Support Vector Machine (SVM) method

[55]. All experiments were performed using the MATLAB [56] programming lan-

guage, while the SVM method was implemented using the LIBSVM package [57].

While the Fisher LDA method does not require parameter tuning, the linear SVM and

pLDA methods require parameter tuning steps which were performed using 2nd depth

cross validation utilizing the training set only. In the SVM method, the parameter is set

to reflect how much error the separating hyperplane is to tolerate, while the parameter

in the pLDA method determine the regularization to be applied when computing the
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covariance matrix (refer to references [55, 54] for more details).

The low dimensional visualization plots were computed using the pLDA method,

which in contrast to the standard LDA method can yield multi dimensional embeddings

for the given data. The dimensions of each embedding are weighted according to a

optimization metric, which combines a data separation term (given by LDA) and a

‘data fitting’ term (given by the standard Principal Component Analysis cost function).

For each experiment reported below, we utilize the pLDA method to visualize a 2-

dimensional embedding of the testing data. In each case, a subset of the data was used

to estimate the lower dimensional embedding. Remaining (testing) data was used to

obtain the visualizations.

The computational experiments shown in subsections 4.1.2, 4.1.4, 4.1.5, 4.1.6 were

computed using a five-fold cross validation strategy, with 80% of the data used for train-

ing, and 20% for testing. For experiment in subsection 4.1.3, due to small sample size,

a leave-one-out cross validation is used instead. The experimental procedure is sum-

marized in Algorithm 1. For more details on cross validation experimental procedures,

refer to references [29, 28].

Algorithm 1: 5-fold cross validation

1 Partition the dataset into 5 groups. Leave one fold out for testing and use the
remaining fold for training.

2 foreach training set do
3 1. For SVM and PLDA, partition the training set into 5 groups again. Leave

one fold out for validation and use remaining fold for training. For LDA,
skip to step 2.

4 foreach training set (parameter sweep) do
5 1. Learn the classifier for different parameter values.
6 2. Compute the validation error.

7 Return the best parameter of average validation error.
8 2. Learn the classifier with the optimal parameter.
9 3. Compute the testing error.

10 2. Compute the average classification error.
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(b) PLDA projection in CDT space

Figure 4.1: PLDA projection for texture dataset

4.1.2 Texture classification from intensity histograms

In this application, already discussed in the introduction as a motivating example, our

goal is to utilize the CDT to distinguish between two types of texture images, under

brightness and contrast variations, from their intensity histograms. Consider the tex-

tures displayed in the middle rows of Figure 1.1. Their corresponding histograms are

shown directly under and above each image, with variations in brightness and contrast.

Variations in brightness correspond to translations in the histograms, while variations

in contrast correspond to scalings (dilations) of the histograms. We note that such vari-

ations (translation and scaling) satisfy the necessary properties described in Theorem

2.4.6. Our theory thus predicts that the histogram data would be perfectly separable

in CDT space. For testing this hypothesis, we generated a set of 128 images (2 sets

of 64 images) by applying 8 random variations in brightness, with the translations in

the range of [0, 0.5], and 8 random variations in contrast, with scalings in the range

of [0.6, 1.67]. Results are shown in Table 1.1, and confirm that 1) the data is not lin-

early separable in histogram space and 2) becomes linearly separable in CDT space.

The lower dimensional representation of the original data using Penalized LDA also

confirms this (see Figure 4.1).
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Table 4.1: Average classification error of the accelerometer dataset

Classifier type Dataset L2 space CDT space

Fisher LDA Training set 0 % 0%
Testing set 50 % 10%

PLDA Training set 0% 0 %
Testing set 60 % 5 %

Linear SVM Training set 8.75% 7.5 %
Testing set 55 % 10 %

4.1.3 Activity Recognition with Accelerometer Data

An accelerometer is a device that records the acceleration of a moving object. Modern

‘smartphones’ are commonly equipped with a 3-axis accelerometer that keeps track

of the acceleration in 3 different directions x, y, and z, and accelerometers have been

widely adapted to various wearable devices (e.g. watches) for human activity recog-

nition. In this example, we aim to detect (classify) two different activities given ac-

celerometer data obtained from an iphone 5. Class 1 consists of a person swinging arms

while holding the phone. Class 2 consists of a phone being dropped to the ground. Fig-

ure 4.2a shows the raw data recorded from the accelerometer for both cases. We note

that in this case, the signals varied in length given the different duration of the episodes.

Signals were zero-padded so that they match the length of the largest signal. 10 sample

signals were acquired for each class. For each instance, the Energy = x2 + y2 + z2

is computed from the tri-axis measurements (see Figure 4.2b). Here we compare the

ability of the linear classification in original (energy) signal space versus in CDT space.

Results are shown in Table 4.1, and clearly indicates that the data becomes lin-

early separable in CDT space. The lower dimensional representation of the original

data using Penalized LDA (PLDA) [54] indicates (see Figure 4.3) that each class forms

convex hulls that are linearly separable in CDT space but not in energy signal space.

For this example, both training and testing data are represented in the lower dimen-

sional embedding in Figure 4.3. By seeing Figure 4.3, we can verify that the linear

classifier computed using only training set correctly separates both training and testing

set in CDT space, but not in energy signal space.

In this experiment, it is apparent that the signals varied in terms of intensity and
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the location where the maximum peak has occurred, and this explains the inability of

linear classifiers to perform well in original (energy) signal space. As explained above,

the CDT is able to overcome such variations.

4.1.4 Flow Cytometry

Flow Cytometry is a technique used to analyze light emission properties of grouped

cells using fluorescence markers. In this example, we utilize an existing database (the

FlowRepository database [6]) to distinguish DNA histograms between normal subjects

and donors diagnosed with acute myeloid leukemia (AML), obtained from peripheral

blood or bone marrow aspirates. The data included 8 measurements per each sub-

ject, where fluorochrome signals were detected at the 620nm wavelength specifically.

Sample data is shown in Figure 4.4a, where the x-axis represents each cell that passed

through the flow cytometry sensor, and the y-axis correspond to the DNA intensity

measurement of the cell at wavelength 620nm. The intensity histogram with 1024

intensity levels are computed and their corresponding CDTs (see Figure 4.4b and Fig-

ure 4.4c).

The average classification error is reported in Table 4.2. We note that the classifi-

cation in the signal space using LDA (test accuracy of 84.99%) is worse than the line

of chance (87.5%), given the uneven distribution of patient data. Comparison with

the line of chance and the classification accuracy in histogram space using PLDA or

SVM also suggests that linear classifiers trained are more or less equivalant to random

classification. However, classifying data in CDT space suggests that linear separation

is possible, and the Cohen’s Kappa for this computation (0.3) confirms fair agreement

Table 4.2: Average Classification Error of the flow cytometry dataset

Classifier type Dataset L2 space CDT space

Fisher LDA Training set 6.81 % 5.82%
Testing set 15.01 % 11.31 %

PLDA Training set 11.55 % 7.75%
Testing set 12.03 % 9.15 %

Linear SVM Training set 10.39 % 8.65%
Testing set 11.46 % 8.88%
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[58].

4.1.5 Cambridge Hand Dataset

The Cambridge hand gesture dataset consists of 900 image sequences of 3 primitive

hand shapes (see Figure 4.6a) where each image sequence consists of around 60 frames

of 3 different motions [59]. In this example, we try to distinguish 3 different hand

shapes; flat, spread, and v-shape. There are 2678 images for flat hands, 2992 images

for spread hands, and 2764 images for v-shape hands, and each image was taken under

arbitrary positioning and illumination. A preprocessing step computes the edge of each

image (240 x 320 pixels large) and the corresponding indices of the edge pixels. Two

histograms are created counting x coordinates and y coordinates of the edge pixels per

image Figure 4.6b. Corresponding CDTs are computed for each x and y histogram

Figure 4.6c. The classification is done with concatenation of two x and y histograms

and concatenation of two x and y CDTs.

Table 4.3: Average Classification Error of the hand gestures dataset

Classifier type Dataset L2 space CDT space

Fisher LDA Training set 13.92 % 4.58%
Testing set 16.11 % 5.76%

PLDA Training set 38.02 % 6.73%
Testing set 38.21 % 6.97%

Linear SVM Training set 13.77% 1.27%
Testing set 15.73 % 1.65%

Results are shown in Table 4.3, which clearly indicate that the data becomes more

linearly separable in CDT space. As in previous examples, the two dimensional repre-

sentation of the original testing data using Penalized LDA (PLDA) [54] indicates (see

Figure 4.7) that classes form convex hulls that are linearly separable in CDT space and

not in histogram space. Moreover, this example shows that the CDT can be applied to

multi-class problems which would enhance the simplicity of the classification problem.
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Table 4.4: Average Classification Error of the HeLa dataset

Classifier type Dataset L2 space CDT space

Fisher LDA Training set 0.53 % 0.40%
Testing set 2.66 % 2.59%

PLDA Training set 0.14 % 0.92%
Testing set 1.59 % 1.07%

Linear SVM Training set 0 % 0.26%
Testing set 0.53 % 1.05%

4.1.6 Actin and Microtubules Classification

Our goal in this experiment is to quantify how well actin and microtubule filaments

in HeLa cells [60] differ from one another in terms of their orientation distributions.

Fluorescence microscope images of HeLa cells were grouped into two classes accord-

ing to their protein structure: rhodamine-conjugated phalloidin, which labels F-actin

and a monoclonal antibody against beta-tubulin (microtubules). Each image was pre-

processed such that outside the cropped region was set to 0 and contrast-stretched to

have full scale (see Figure 4.8a). In order to compute the orientation of each pixel, the

images were filtered with 32 Gabor filters of size 9 × 9, and for each pixel, the filter

with the maximum response is selected and labeled from 1 to 32 (see Figure 4.8b). A

histogram of orientation filter responses are computed for each image (see Figure 4.8c)

and then the CDT is computed for each histogram (see Figure 4.8d). In this example,

both histogram and CDT show excellent classification accuracy, given that the differ-

ence between two protein structures are hard to be recognized by visual inspection. It

is an instance where data is already well (linearly) separated in Euclidean space, and is

also linearly separable in CDT space (i.e. the CDT did not destroy linear separation in

this example).

4.2 Linear Classification in the Radon CDT Space

In this chapter, we describe the application of Radon-CDT in pattern recognition by

demonstrating its capability to simplify data structure on real image datasets. Our goal

is to demonstrate that the data classes in the Radon-CDT space become more linearly
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Figure 4.2: Two classes of accelerometer dataset, swinging (top row) vs free falling (bottom
row)
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(b) PLDA projection in CDT space

Figure 4.3: PLDA projection for accelerometer dataset
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Figure 4.4: Two classes of flow cytometry data, AML (top row) vs. Normal (bottom row)
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separable. This is done by utilizing linear classifiers (e.g. linear discriminant analysis

and linear support vector machine (SVM) classifiers) in the image and the Radon-CDT

space. Although the image classes do not exactly follow the class structures stated in

subsection 3.4, linear classifiers in the Radon-CDT space consistently lead to higher

classification accuracy compared to that in the image space.

4.2.1 Synthetic example

Before delving into real examples, let us demonstrate the linear separability property

of our proposed image transform with the simulated examples which follow the model

provided in Theorem 3.4.1:

Two classes of images P and Q are generated as follows,

P =

{
p|p(x) =

1

2πσ2
e−
‖x−µ‖2

2σ2 ,µ ∼ unif([0, 1]2)

}

Q =

{
q|q(x) =

1

4πσ2
(e−

‖x−µ1‖
2

2σ2 + e−
‖x−µ2‖

2

2σ2 ),µ1 ∼ unif([0, 1]),µ2 = µ1 + [0, 0.2]T
}

Figure 4.10 illustrates these classes of images (left: images, right: Radon-CDT).

2000 images were generated for the training set, 1000 images per class. Also, 2000

images were generated for the testing set, 1000 images per class. Each image is of size

40× 40.
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Figure 4.5: PLDA projection for flow cytometry dataset
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Figure 4.6: Three different classes of hand gestures dataset
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Figure 4.7: PLDA projection for hand gesture dataset
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Figure 4.8: Two classes of HeLa dataset, Actin (top row) vs. Microtubules (bottom row)
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Figure 4.9: PLDA projection for HeLa dataset

Figure 4.10: Two example image classes P and Q and their corresponding Radon-CDT, and the
corresponding linear classifiers in each space

Classes P and Q are disjoint, however, they are not linearly separable in the image

space. This is demonstrated by computing a linear classifier and seeing the ability to

separate the training data and testing data. Specifically, the linear discriminant analysis

was performed in each space. The 5-fold average classification accuracy in each space
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is reported in Table. 4.5. The discriminant hyperplane computed in the training dataset

doesn’t generalize to the testing dataset, which suggests that the data is not linearly

separable in the image space.

Perfect testing classification accuracy in the Radon-CDT space suggests that the

data is linearly separable in the Radon-CDT space. Next, we demonstrate the linear

separability property of our proposed image transform by calculating the Radon-CDT

of classes P and Q with respect to an arbitrary image I0 (here we used uniform density

for a reference). Perfect classification accuracy in both training and testing data set

implies that the image classes have become linearly separable in the Radon-CDT space.

The third row of 4.10 plots the linear hyperplane, and the fourth row shows the

inner product between the test data samples and the linear hyperplane. In Radon-CDT

space, the clear line can be drawn to distinguish two classes, suggesting that the data is

linearly separable.

TR TS
L2 71.75 % 66.95 %

Radon CDT 100 % 100 %

Table 4.5: Linear classification accuracy for the synthetic dataset

4.2.2 Datasets

1. MNIST Digit Classification: MNIST [61] dataset consist of 70000 images of

handwritten digits from 0-9 (see Fig. 4.11 (a)) of size 28×28.

2. Shape Classification: MPEG-7 [62] dataset consist of 1400 images of shapes of

various size, of 70 different kinds (see Fig. 4.11 (b)). For this dataset, we resized

each image into 32×32, provided that there is no loss of quality in the image.

3. Face Image Classification: The Carnegie Mellon University Face Images database

[63] includes frontal images of 40 subjects, and contains two classes of expres-

sions, namely ‘neutral’ and ‘smiling’ (see Fig. 4.11 (c)).

4. Liver Nuclei Classification The Liver Nuclei dataset contains 500 images of

segmented liver nuclei extracted from histology images obtained from the archives
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(a)
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(e)

Figure 4.11: The image classes and their Radon-CDT for the MNIST(a), MPEG-7 (b), face (c),
liver nuclei (d), animal face(e) data set

of the University of Pittsburgh Medical Center (UPMC). The nuclei belong to 10

different subjects including five cancer patients suffering from fetal-type hep-
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Algorithm 2: Training Linear Discriminant Classifier with 5-fold Cross Valida-
tion
1 Partition the dataset into 5 groups. Leave one fold out for testing and use the

remaining fold for training.
2 foreach training set do
3 1. Fit the gaussian distribution for each class samples. 2. Compute the

testing error.
4 3. Repeat the steps for all folds, and return the average testing error.

atoblastoma (FHB), with the remaining images from the liver of five healthy

individuals [33] (in average 50 nuclei are extracted per subject). The classes in

the nuclei dataset are ‘fetal-type hepatoblastoma’ (type of a liver cancer) and

‘benign’ for liver nuclei (see Fig. 4.11 (d)). .

5. Animal Faces Classification: The last dataset contains facial images of three

different animals [64], , namely cat, deer, and panda under a variety of variations

including translation, pose, scale, texture, etc. The dataset includes 159 images

of cat faces, 101 images of deer faces, and 116 images of panda faces. The

animal face dataset is preprocessed by first calculating the image edges using the

Canny operator and then filtering the edge-maps of the images with a Gaussian

low pass filter. (see Fig. 4.11 (e)).

4.2.3 Experimental procedure

We describe below the experimental procedures that was performed on the real images

to demonstrate the linear separability in the Radon-CDT space.

For the MNIST and MPEG dataset, we fit gaussian distribution with equal covari-

ance directly to the images of same class (i.e. linear discriminant analysis). MNIST

dataset consists of 70,000 images of size 28×28, which is a reliable amount of samples

to learn a distribution in R28×28 with lesser chance of overfitting. MPEG dataset con-

sists of 1,400 images of size 32× 32, which can guide us how Radon-CDT can perform

against mid-size classification problem. The data was cross-validated with 5 folds, and

the detailed procedure is described in 2.
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Algorithm 3: Training Linear SVM with 10-fold Cross Validation with 2nd-
depth Parameter Sweep

1 Partition the dataset into 5 groups. Leave one fold out for testing and use the
remaining fold for training.

2 foreach training+validation set do
3 1. Compute the PCA subspace. 2. Partition the training set into 5 groups

again. Leave one fold out for validation and use remaining fold for training.
foreach training set do

4 1. Learn the classifier for different hyper-parameter values.
5 2. Compute the validation error.
6 3. Return the validation error.

7 4. Choose the hyper-parameter (and corresponding classifier) with the
smallest validation error.

8 5. Compute the testing error.

9 3. Repeat the steps for all folds, and return the average testing error.

For rest of the datasets, the linear SVM was learned and cross-validated on the data.

A linear SVM was specifically chosen to mitigate the effect of overfitting due to small

sample size. The data was divided into 10 folds, where 1 fold (20%) was used for

testing and the remaining was used for training+validation.

The principal components of the datasets were calculated using the entire dataset

and all data points were projected to these principal components (i.e. the dimensions

which are not populated by data points were discarded).

For each 1-st depth cross validation, the linear-SVM was found using the training

set, and tested on the validation set and the testing set. During training, a five-fold 2-nd

depth cross validation scheme was used, to train the linear SVM (using training set)

while finding the correct hyper-parameter (for margin/error trade off) for the classifier

(using validation set). This was repeated for each fold, and then average accuracy is

reported. The procedure is summarize in 3.

4.2.4 Discussion

The classification accuracy for training and testing set for MNIST and MPEG-7 dataset

is reported in Table. 4.6 using LDA classifier. It can be clearly seen that the image

classes become more linearly separable in the Radon-CDT space.
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MNIST data LDA
Training accuracy Testing Accuracy

Image space 87.36 ± 0.05 86.56 ± 0.27
Radon-CDT space 92.97 ± 0.07 92.37 ± 0.25

(a)

MPEG-7 data LDA
Training accuracy Testing Accuracy

Image space 100 ± 0 62.07 ± 1.83
Radon-CDT space 100 ± 0 73.93 ± 1.73

(b)

Table 4.6: Average classification accuracy for the (a) MNIST dataset and (b) MPEG-7 dataset,
calculated from five-fold cross validation using linear discriminant analysis in the
image space and the Radon-CDT space

The classification accuracy for remaining dataset is reported in in Table 4.7 using

linear SVM. Also, here we compared our Radon-CDT with well-known image trans-

forms such as the Radon transform and the Ridgelet transform [65]. Radon-CDT space

consistently provided higher classification accuracy than that of Radon transform or

Ridglet transform. We can confirm that the Radon transform block in Radon-CDT

played no role in boosting linear separability in Radon-CDT space, and rather the lin-

ear separability is derived from the Radon-CDT’s original property. Throughout the

dataset and regardless of the linear classification methods, It can be seen that the linear

classification accuracy is not only higher in the Radon-CDT space but also computed

with smaller standard deviation.

Moreover, we can check that the Radon-CDT captures the nonlinearity of the data

and simplifies the data structure significantly by looking at the cumulative percent vari-

ance (CPV) captured by the principal components. Figure 4.12 shows the CPV calcu-

lated from the image space, the Radon transform space, the Ridgelet transform space,

and the Radon-CDT space as a function of the number of principal components for all

the datasets. It can be seen that the variations in the datasets are captured more effi-

ciently and with fewer principal components in the Radon-CDT space as compared to

the other transformation spaces. This indicates that the data structure becomes simpler

in the Radon-CDT space, and the variations in the datasets can be explained with fewer

parameters. We can also visually verify that the representation in Radon-CDT space

appears more simpler than that in image space from Figures 4.11 to 4.11.
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Face data Linear SVM
Training accuracy Testing Accuracy

Image space 100 ±0 76.0 ± 11.94
Radon space 100± 0 79.12± 12.25
Ridgelet space 100± 0 68.75± 78.12
Radon-CDT space 100± 0 82.62± 11.5

(a)

Nuclei data Linear SVM
Training accuracy Testing Accuracy

Image space 100± 0 65.2± 6.6
Radon space 100± 0 62.56± 6.7
Ridgelet space 100± 0 63.8± 66.7
Radon-CDT space 100± 0 75.56± 6.21

(b)

Animal Face data Linear SVM
Training accuracy Testing Accuracy

Image space 59.77 ± 2.68 58.24 ± 2.07
Radon space 100± 0 77.38± 5.18
Ridgelet space 94.21± 0.03 85.11± 5.59
Radon-CDT space 92.48± 0.53 86.43± 5.29

(c)

Table 4.7: Average classification accuracy for the face dataset (a), the nuclei dataset (b), and the
animal face dataset (c), calculated from ten-fold cross validation using linear SVM
in the image space, the Radon transform space, and the Radon-CDT spaces. The
improvements are statistically significant for all datasets.

In summary, provided that the image dataset is generated according to the model

specified in Theorem. 3.4.1, the image classification in the Radon-CDT space can be

performed using linear classifiers with less overfitting. This can be a useful solution

when only small number of samples available. Also, simpler representation (using a

fewer number of bases) in Radon-CDT space provides additional benefit.

We emphasize here that the use of linear classifier over any other nonlinear classi-

fiers is intentional. The classification experiments in this subsection serve as a measure

of linear separability of image classes in the corresponding transform spaces and are

designed to test our theorem on the linear separability of image classes in the Radon-

CDT space.
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Figure 4.12: Cumulative percent variance (CPV) captured by the principal components
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Chapter 5

Applications to Demultiplexing

Optical Spatial Patterns

5.1 Introduction to Free Space Optical (FSO) Commu-

nications

Free-space optics (FSO) communication systems use optical or laser beams with opti-

cal wavelengths such as ultraviolet, visible, and infrared for communication. In com-

parison to fiber optics, FSO communications systems have fewer channel limitation and

can be used in air, water or terrain where optical fiber might be too expensive to install.

Also, FSO systems are capable of providing larger signal intensity at the receiver – due

to smaller beam divergence– than the radio frequency (RF) communications systems,

which promoted the recent advances in deep space communications between Mars and

Earth [66].

In FSO communications, to achieve higher channel capacity, modulated optical (or

laser) beams have been multiplexed either in time, frequency, polarization, or separate

locations. A decade ago, [67] demonstrated that the light could also be multiplexed

in orbital angular momentum (OAM). Paraxial beams possessing different orbital an-

gular momentum are orthogonal, and therefore can be multiplexed and demultiplexed
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without information interference. There exist some controversies over using OAM

multiplexing that there is no gain in data rate when compared to traditional spatial mul-

tiplexing (MIMO) [68] and that OAM does not increase the channel capacity compared

to a mode set void of OAM [69]. But the diverse signal path for spatial MIMO cannot

always be guaranteed, and successive researches [70, 71, 72, 73] have demonstrated

the prospects of utilizing OAM carrying beams in FSO communication.

OAM beams are orthogonal in nature. However, demultiplexing OAM beams be-

comes nontrivial when the orthogonality breaks down in data channels. In fibers, OAM

modes become unstable when fibers are bent and stressed. In free space communi-

cations, atmospheric effects such as scintillation, turbulence, beam wandering, will

challenge demultiplexing OAM beams. Instead of direct detection of OAM beams us-

ing its orthogonality principles [74], indirect methods have been investigated, where

[71] demultiplexed the OAM beams using offline DSP (digital signal processor) based

on coherent detection and MIMO, while [72, 75] took an approach utilizing machine

learning methods.

Here we sought to demultiplex OAM carrying beams as in [72, 75], by adopting a

pattern classification methods. Specifically, the OAM carrying beams are captured by

a CCD camera, and will be represented as a unique pattern, and can be identified with a

classification system. Moreover, based on the recent finding [42] that the light traveling

in atmospheric turbulence would approximately follow the ‘optimal transport path’,

we investigate the hypothesis that the OAM beams undergo deformation which can

be decoded easily in the transport based transforms described earlier. We demonstrate

that the OAM carrying beam patterns are (nearly) linearly separated in the Radon-CDT

space, and are near perfectly separated in the Radon-CDT space with the aid of the

shallow convolutional network.

The last chapter is organized as follows. In Section 5.2, we overview the basics

of FSO communications utilizing OAM carrying beams. In Section 5.3, we introduce

how we can apply classification system to demultiplex OAM carrying beams. In Sec-

tion 5.4, we explain the experimental procedures, including the procedures for the data

collection and the outline of the computational methods. In Section 5.5, we demon-

strate that the demultiplexing OAM carrying beams is feasible with a simple classifier,
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which is robust to turbulence, spatial down-sampling, and beam-wandering.

5.2 FSO Communication with OAM Carrying Beams

5.2.1 Orbital Angular Momentum (OAM)

Mathematically, an electromagnetic wave can be described as a field u(x, y, z, ; t) with

spatial coordinates (x, y, z) and time t, which follows the hyperbolic partial differential

equation [76]:
∂2u

∂t2
= c2∇2u,

where ∇2 is Laplacian operator defined by

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

For electromagnetic waves, c = 3x108m/s is the speed of flight. If the field variation

is sinusoidal (i.e. a monochromatic wave), u(x, y, z; t) = U(x, y, z)e−iωt, where ω is

the angular frequency and U(x, y, z) is the complex amplitude of the wave, then we

get the time-independent reduced wave equation (or Helmholtz equation):

∇2U + k2U = 0, (5.1)

where k = ω/c = 2π/λ is the optical wavenumber and λ is the wavelength.

If we now change to cylindrical coordinates, Eq. (5.1) becomes

1

r

∂

∂r

(
r
∂Ũ

∂r

)
+
∂2Ũ

∂z2
+ k2∂U = 0.

Using a simplification, V (r, z) = Ũ(r, z)e−ikz , and the paraxial assumption, ∂2V/∂z2 =

0, we get the paraxial wave equation:

1

r

∂

∂r

(
r
∂V

∂r

)
+ 2ik

∂V

∂z
= 0. (5.2)
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By solving Eq. (5.2) in different coordinate system with different symmetry assump-

tions, several beams that carry OAM can be defined. For example, Gaussian-tapered

Bessel beams (BGB) arise from assuming the problem is cylindrically symmetric and

solving circular cylindrical coordinates and Bessel function. If the problem is cylindri-

cally smmetric and cylindrical coordinates (r, φ, z) is used, the Laguerre-Gauss beam

(LGB) arise.

5.2.2 Laguerre-Gauss Beam (LGB)

Laguerre-Gauss beams, an OAM carrying beam with spiral phase distribution exp(imθ)

are described as

uLG(p,m)(r, θ, z) =
CLG(p,m)

w(z)

(
r
√

2

w(z)

)|m|
L|m|p

(
2r2

w2(z)

)
× (5.3)

exp

( −r2

w2(z)
− ikr2z

2(z2 + z2
R)

)
× exp(i(2p+ |m|+ 1)ψ(z)) exp(imθ)

(5.4)

or when z = 0

uLG(p,m)(r, θ, z = 0) = CLG(p,m)

(
r
√

2

w0

)|m|
L|m|p (2r2)× exp(imθ).

Lmp is the generalized Laguerre-Gauss polynomial of p (radial mode) and m (angular

mode), CLG(p,m) is a normalization constant, ψ(z) = tan−1(z/zR) is the Gouy phase,

w(z) = w0

√
1 + (z/zR) is the beam radius, w0 is the beam waist, and zR = πw2

0/λ is

the Rayleigh range. An example of LGB with OAM mode m = 1, · · · , 5 (left to right)

propagating in z direction is shown in Fig. 5.1. The top row shows the magnitude

of the transverse plane at z = 0, and the bottom row shows the phase front of the

same transverse plane. LGB beams in each column are realizations of different orbital

angular momentum, and hence orthogonal to one another.

Fig. 5.2 and Fig. 5.3 shows the LGB with OAM mode m = 1, · · · , 5 (left to right)

propagating in z at z = 10 and z = 100 respectively. As the beam propagates forward,

we can see that the phase in the field circulates around the the points of zero intensity
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(i.e. vortex).

Figure 5.1: Laguerre-Gauss Beam, z = 0.

Figure 5.2: Laguerre-Gauss Beam, z = 10.

Figure 5.3: Laguerre-Gauss Beam, z = 100.

5.2.3 Gaussian-tapered Bessel Beam (BGB)

Ideal Bessel beams, an OAM carrying beam with spiral phase distribution exp(imθ),

are described as

uB(m)(r, θ, z) = CbJm(βr) exp(−ikzz) exp(imθ)
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where Jm is the order ofmBessel function and β is the radial frequency, k =
√
k2
z + β2 =

2π/λ. m defines the OAM mode number of photons that can take any integer value.

Example Ideal BG beams with OAM mode m = 1, · · · , 5 (left to right) are shown in

Fig. 5.4. The top row shows the magnitude of the transverse plane at z = 0, and the bot-

tom row shows the phase front of the same transverse plane. Fig. 5.5 and Fig. 5.6 show

the ideal BG beam propagating in the direction of z at z = 10(m), and z = 100(m)

respectively. Because the ideal BG beam is diffraction free, the magnitude of the BG

beam stays the same, and only the phase rotates as it propagates in the medium.

And ideal Bessel beam cannot be realized, however, because it would require an in-

finite amount of energy. Gaussian-tapered Bessel beam (BGB) can approximate ideal

Bessel beam for a finite distance (pseudo diffraction-free beam) instead. For the circu-

lar symmetric case, the pseudo BGB can be realized by [77]:

uBG(m)(r, θ, z) =
CBGw0

w(z)
Jm

(
βr

1 + iz/zr

)
(5.5)

× exp

(
i(

(
k − β2

2k

)
z − ψ(z)− 1

w2(z)

)
(5.6)

× exp

(
ik

2R(z)

)(
r2 + β2 zr

k2

)
exp(imθ), (5.7)

whereR(z) = z
(

1 +
(
zR
z

)2)
is the radius of curvature of the beam, ψ(z) = tan−1(z/zR)

is the Gouy phase, zR = πw2
0λ is the Rayleigh range, w(z) = w0

√
1 + (z/zR) is the

beam radius, w0 is the beam waist. When z = 0, the above equation simplifies to:

uBG(m)(r, θ, z = 0) = CBGJm(βr) exp
(
−(r/w0)2

)
exp(imθ).

Fig. 5.7 shows the magnitude (top) and phase front (bottom) of the Pseudo Bessel-

Gauss Beam at z = 0. Fig. 5.8 and Fig. 5.9 show the Pseudo BG beam at z = 100(m)

and z = 10000(m) respectively. The pseudo BG beam retains its diffraction-less

property up-to several kilometers, compared to the LG beam. Also, the Gaussian phase

profile, exp(imθ), allows these beams to exhibit OAM. The BG beams in each column
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Figure 5.4: Ideal Bessel-Gauss Beam, z = 0.

Figure 5.5: Ideal Bessel-Gauss Beam, z = 10.

Figure 5.6: Ideal Bessel-Gauss Beam, z = 100.

(of different mode m) are orthogonal to one another, i. e.

∫

r

∫

θ

uBG(m1)u
∗
BG(m2)drdθ = 0.

A BGB is produced by the superposition of Gaussian beams whose axes are uni-

formly distributed on a cone of angle θc. The radial frequency of the BGB is given

by: β = k sin(θc). For a fixed θc, after a certain propagation distance, the BGB beam

76



Figure 5.7: Pseudo Bessel-Gauss Beam, z = 0 (m).

Figure 5.8: Pseudo Bessel-Gauss Beam, z = 100 (m).

Figure 5.9: Pseudo Bessel-Gauss Beam, z = 10000 (m).

will result in normal Gaussian beams. The radial frequency (or the angle of the cone)

supporting the propagation distance Z can be found by

β = k sin(w0/Z).
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Figure 5.10: RF Communications Diagram

5.2.4 OAM Communications System

Free space communications using OAM carrying beams are mostly adapted from the

RF communications systems. Fig. 5.10 illustrates the standard RF communications

pipeline: (a) analog signals are digitized to digital bits in the source encoder, (b) error

correcting codes are added in the channel encoder so that the bits can be more robust

to the errors in noisy channels, (c) source symbols are represented with analog signals

in the baseband modulator, (d) single data source is multiplexed with other sources in

the multiplexer, and (e) baseband signals are modulated into carrier frequency so that

it can be transmitted over the channel in the carrier modulator. OAM carrying beams

have been utilized to substitute conventional baseband modulations (denoted as (c)) or

subcarrier multiplexing (denoted as (d)). [78, 73].

Baseband Modulation

In baseband modulation, single OAM mode can be used to represent digital symbols

of single data stream. So far, most of the work has been carried out using On-off

keying (OOK) modulation scheme [79, 80, 81, 82] or pulse position modulation (PPM)

[83, 84] because of its simple implementation. In OOK, the transmission of binary data

is represented by the presence or absence of light pulse, i.e., if the information bit is 1,

the laser is turned on for the duration Tb, and if it is 0, nothing is transmitted. Fig. 5.11

shows the OOK modulation scheme for the transmission of message 110010. In M-

PPM scheme, each symbol period is divided into M time slots each of duration Ts
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Figure 5.11: OOK modulation scheme for the transmission of message 110010

Figure 5.12: 8-PPM scheme with eight slots for the transmission of message 110010

seconds, and the information is placed in one of the M time slots to represent a data

word. Here, M = 2n where n is the number of information bits. Therefore, each

PPM symbol is mapped directly to n bit sequence and thus allows log2M bits within

each PPM symbol. Fig. 5.12 describes how PPM modulations scheme can be used to

transmit message 110010 [85].

On the other hand, we can expect OAM carrying beams be utilized in a similar

manner as Frequency shift keying (FSK) modulation scheme. In FSK modulation,

different frequencies can be used to represent different data symbols. As such, we

can use OAM carrying beams with different OAM modes to represent data symbols.

Table. 5.1 illustrates how we can encode 2-bit symbol [0, 0], [0, 1], [1, 0], [1, 1] onto

OAM beams with 4 modes {m1,m2,m2,m4}.

OAM Modes m1 m2 m3 m4

Symbol [1,1] [0,1] [1,0] [0,0]

Table 5.1: Modulation Example

Multiplexing

To utilize OAM modes for multiplexing [73], separate data streams are first modulated

via any modulation schemes of choice. Any modulation scheme like binary phase-shift

keying (BPSK), quadrature phase-shift keying (QPSK), quadrature amplitude modula-

tion (QAM), amplitude modulation (AM), or frequency modulation (FM) are a valid

choice. Then each data stream can be multiplexed using OAM beams in a similar man-

ner as the frequency division multiplexing (where each frequency channel serves as the
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optical carrier). As FDM, each OAM mode channel can serve as the optical carrier due

to their orthogonality. Moreover, OAM carrying beams can share the same frequency

channel without interfering with one another, which provides much higher channel ca-

pacity. Also, OAM can multiplex single stream data as well - dividing high data rate to

multiple low data rates and transmitting them in parallel form.

Various spatial patterns can be created by multiplexing OAM carrying beams. For

example, Fig. 5.13 shows the analytical plot for the multiplexed patterns of LG beam

using mode set = [25, 20, 15, 10, 5]. The bit string indicates the presence of the OAM

beam; for example, 10000 implies that only mode 25 is multiplexed, and 11000 implies

that mode 25, 20 are multiplexed.

Similarly, Fig. 5.14 shows analytical plots for the multiplexed patterns of BG beam

of modes = [−3,−1, 2, 4, 6], Fig. 5.15 shows the patterns of BG beam of modes =

[−4,−1, 2, 5, 8], and Fig. 5.16 shows patterns of BG beam of modes = [−7,−2, 3, 8, 13].

By using different types of beams (e.g. Lauguerre Guass, Hermit Gauss, etc.) and

by the combination of different mode sets, distinctive spatial patterns can be designed.

Each distinctive spatial pattern can carry information, either by encoding symbols (i.e.

modulation) or carrying independent information streams (i.e. multiplexing).

Detection of OAM Carrying Beams

Receiver design of the OAM detector is based on the principle of orthogonality. Al-

though the superposition and simultaneous propagation of a set of OAM beams with

different OAM mode can produce an unrecognizable intensity pattern, the inner prod-

uct of any two of the orthogonal fields is zero after propagating in a vacuum. Thus,

co-propagating modes can be perfectly split and recombined.

Given the received field un(r, φ, z) with OAM state n and the analyzing field

u∗m(r, φ, z) (where the ∗ indicates the complex conjugate) with OAM state m, the mth
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channel output signal (observed at the detector of channel m) is

un(r, φ, z) · um(r, φ, z) =

∫
rdrdφun(r, φ, z)u∗m(r, φ, z)

=





0 ∀n 6= m

∫
rdrdφ|um(r, φ, z)|2 n = m

It is clear that for n = m, the outcome is equal to the total power of the observed

field. With this approach one can use on-off keying (OOK), pulse-position modulation

(PPM), or any other modulation scheme appropriate for direct-detection.

Conjugate mode sorting

The conjugate mode sorting [86] is a method to determine the OAM mode of a de-

tected beam based on its orthogonality properties. Given a transmitted OAM beam,

un(r, φ, z), OAM Beams of support of the mode set u∗m(r, φ, z) are cycled through.

In optical implementation, the beam from the transmitter is reflected from the spatial

light modulator (SLM), programmed with the analysing-hologram pattern of negative

mode. If the m value of the beam is added with the −m value of the hologram, then

the resulting beam has planar phase fronts and therefore can be focussed through a pin

hole.

Fig. 5.17 illustrates the concept of conjugate mode sorting with Laguerre-Gauss

(LG) beam. The LG beam of mode m = 5 (left, plotting magnitude only) is multi-

plied with its complex conjugate, resulting in real-valued planar phase wave (middle,

real-valued). When the multiplication of the two, um=5(r, θ)u∗m=5(r, θ), is Fourier

transformed, we get a transform of high-intensity at the origin. However, when the

transmitted mode n and analyzing mode m are mismatched (as in Fig. 5.18, which

illustrates when the mode m = 10 is used for detection instead), the Fourier transform

results in a doughnut-shaped transform indicating that the transmitted signal does not

contain the OAM mode n.

This sorting method is dependent on having good alignment between the transmit-

ter and the receiver; mis- alignment is shown to have comparable effects to turbulence
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in the correct determination of the OAM mode. Due to the effect of turbulence, the

normalized energy will not be concentrated exactly at the origin of the correct conju-

gate mode, thus we have to look at the relative energy across all the modes. For the

non-multiplexing case, one can simply take the maximum value across the support of

the mode set; for the multiplexing case, a threshold must be chosen so as to decide

whether a mode is present or not in the signal.

Other classical methods of detecting OAM beams include optical transformation

sorting [87], counting spiral fringes [88], using dove prism interferometer [89], or mea-

suring the doppler effect [90], which are all built upon the orthogonality principle of

OAM beams.

However, OAM beams arriving at the transmitter would undergo undesired defor-

mations due to the various atmospheric effects, such as changes in air pressure and

temperatures, the presence of cloud and particles, and OAM beams would be no longer

orthogonal when arriving at the receiver. As a consequence, the performance of the

classical detectors degrades substantially in the presence of turbulence. Therefore, to

detect the multiplexed OAM patterns deformed by strong atmospheric effects, we in-

stead turn to utilizing a machine learning approach.

5.3 Detection of OAM Carrying Beams via Classifica-

tion

5.3.1 Problem Formulation

Consider a OAM mode set {mi}log2(K)
i=1 and suppose ϕmi(~x) is the OAM beam of

mode mi. For example, ϕmi(~x) may correspond to the Laguerre-Gauss beam pre-

sented in (5.4) or the Bessel-Gauss beam presented in (5.7). Let I(~x) be generated by

linearly combining the beams with OAM:

I(~x) =

log2(K)∑

i=1

ciϕmi(~x).
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ci, either 0 or 1, indicates whether the mode mi is present in I(~x). Modes can be

linearly combined in K (= 2log2(K)) different ways, resulting in K distinct beams.

Each combination patten is associated with an integer label [1, · · · ,K].

Given a set of arbitrary OAM beams [I1, · · · , IN ], now detecting which modes

are present translates into a problem of assigning one of K integers to the beam, i.e.

identifying its corresponding label [`1, · · · , `N ]. In order to do so, a classification

model W that identifies the label, ˆ̀
i = W(Ii), shall be derived, and we want that

identification to match its original label, i.e. ˆ̀
i = `i.

Formally speaking, given a training set [I1, · · · , IN ] and its corresponding labels

[`1, · · · , `N ], a classifier W can be learned such that it minimizes mis-classification

measure L:

W∗ = arg min
W
L(W(Ii), `i).

Once the model is learned, Itest can be identified by

ˆ̀
test = arg min`={1,··· ,K}L(W(Itest), `). (5.8)

Especially, when L is the expected value of the 0-1 loss, E[1(`i, ˆ̀
i)], minimizing

L leads to a bayes classifier:

ˆ̀
test =W(Its) = arg max

`
P (`|I = Its). (5.9)

5.3.2 Classification Methods

5.3.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [91] is a bayes classifier that arise when condi-

tional probability density functions for each class are modeled as a multivariate normal

distribution:

P (I|` = k) =
1

(2π)p/2|Σ|1/2 exp−
1
2 (x−µk)TΣ−1(x−µk),

and when each class shares the same covariance matrix Σ.
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The training step involves finding the model parameters {µ`}K`=1 and Σ. Given the

training set I = {In}Nn=1, the estimates of the class means are given as

µ̂k =

∑N
n=1 pnkIn∑N
n=1 pnk

.

pnk = 1 if observation n is from class k and pnk = 0 otherwise. The unbiased estimate

of the covariance matrix is given as

Σ̂ =

∑N
n=1

∑K
k=1 pnk(In − µ̂k)(In − µ̂k)T

N −K .

The testing phase involves finding the label that maximizes the Bayes classification

rule in Eq. (5.9):

ˆ̀
ts = arg max

`
p(`|I = Its) =

p(Its|`)p(`)∑K
`=1 p(Its|`)p(`)

,

among all possible ` = [1, · · · ,K]. Specifically, determining whether the data Its

belongs to label k1 or k2 can be done by looking at the log-ratio the posteriori proba-

bilities:

log
P (` = k1|I = Its)

P (` = k2|I = Its)
= log

P (I|k1)

P (I|k2)
+ log

p(k1)

p(k1)

=
p(k1)

p(k1)
− 1

2
(µk1 + µk2)TΣ−1(µk1 − µk2) + xTΣ−1(µk1 − µk2).

The set yielding P (` = k1|I = Its) = P (` = k2|I = Its), whose log ratio is 0, is the

decision boundary between the two classes k1 and k2. As the name LDA suggests, the

decision boundary is represented as a linear hyperplane:

p(` = k1|I = Its) = p(` = k2|I = Its)

⇔ ITtsw = b

where w = Σ−1(µk1 −µk2) and b = − log p(k=k1)
p(k=k2) + 1

2 (µk1 +µk2)TΣ−1(µk1 −µk2).
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5.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a supervised learning method for finding

a non-linear mapping between input and output pairs. The mapping is made up of

composition of functions:

y(L) = aL ◦ a(L−1) ◦ · · · ◦ a(1)(I).

a(i) denotes the ith layer’s mapping function and y(i) denotes its output. Functions

range from linear operations such as convolution and downsampling to non-linear func-

tions such as max-pooling and rectified unit activations. Network architectures can

vary greatly depending on the combinations of functions, and because of this versatil-

ity, CNN can produce much flexible and complex decision rules.

For multi-class classification, we specifically choose the final layer aL to be a soft-

max function, i.e.

y
(L)
` = a(L)

(
y

(L−1)
`

)
=

ey
(L−1)
`

∑K
k=1 e

y
(L−1)
k

.

In probabilistical view point, the output y(L)
` can be interpreted as posterior proba-

bility p(`|I = Its). By Bayes classification rule, the negative log of the posterior is

minimized (equivalent to maximizing the posterior probability):

− log p(`|I = Its) = − log


 ey

L−1
`

∑K
j=1 e

yL−1
j




= −
K∑

k=1

1(` = k) log


 ey

L−1
k

∑K
j=1 e

yL−1
j




= −
K∑

k=1

pk log p̂k,

which is coined as cross-entropy loss. pk = 1 when k = ` and otherwise pk = 0.

The training step involves finding the parameters for subsequent layers a1, · · · , aL that

minimizes the cross-entropy loss.
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At the testing step, the label is assigned based on the bayes classification rule:

`∗ts = arg max
k=1··· ,K

eyk
∑K
j=1 e

yj
.

5.4 Experimental Setup

5.4.1 Laboratory Setup and Data Collection

The OAM carrying BGB beams were simulated in the Naval Research Laboratory,

with 633-nm Gaussian laser, binary phase ferroelectric spatial light modulators (SLM),

Dalsa GigE camera, and several optical tools such as mirrors and pinhole filters. The

diagram of the experiment is depicted in Fig. 5.19. The collimated Gaussian plane

wave is emitted, and as it interferes with the spatial light modulator, the OAM modes

are encoded into the beam. Specifically, the SLM is programmed with a binary phase

hologram which represents the desired OAM mode multiplexing and the effect of tur-

bulence. The beam propagates through free space until the beam is recorded by the

camera. High spatial frequency components are filtered by the pinhole located before

the camera. The SLM and camera are driven by a MATLAB program.

Simulating the Effect of Turbulence

The light propagating through the turbulence is simulated through the phase screen

method [92]. In this method, light passes through a layer of changing diffractive index,

and is assumed to diffract and propagate to the next layer. In order to produce this

behavior of light, statistically generated phase screens are placed at a layer. These phase

screens represent the phase that would have occurred in propagation from the previous

layer. Specifically, phase screens can be generated as follows. Complex Gaussian white

noise (two 2-D array of i.i.d. Gaussian random numbers for the real and imaginary

parts)C is multiplied by the square root of the spectrum Ψ(κ), and then inverse Fourier

transformed:

P = F−1{
√

Ψ(κ)C}. (5.10)
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where F−1 is the inverse 2-D Fourier transform, and Ψ(κ) corresponds to modified

Kolmogorov turbulence model [93]:

Ψ(κ) = 0.033C2
n(κ2+1/L2

0)−11/6 exp(−κ2/κ2
`)×(1+1.082(κ/κ`)−0.254(κ/κ`)

7/6),

where κ is the spatial frequency (rad/m), L0 is the outer scale of turbulence, `0 is the

inner scale of turbulence, and κ` = κ/(3.3`0). C2
n is the structure constant of the

index refraction, which measures the strength of the turbulence (more details on the

turbulence theory and the phase screen method can be found in Section C.2.1).

The strength of the simulated turbulence are varied controlling D/r0, where D is

the dimension of the SLM and r0 is the Fried parameter in Eq. (C.2). In the experiments

shown below, 3 levels of turbulence D/r0 = [5, 10, 15], corresponding to medium,

strong, very strong turbulence were simulated via the phase screen method.

Encoding the Hologram

The ideal OAM beam multiplexed with modes {m1,m2, · · · ,mM} under the effect of

turbulence – which is encoded into the phase screen P [x, y] – can be represented as

S[x, y] = exp(iP [x, y])

M∑

j=1

uBG(mj)[x, y].

The hologram is written to the SLM, which, when illuminated by a Gaussian plane

wave, will create a desired multiplexed OAM beam with simulated turbulence. The

phase of the hologram imprinted on SLM is created as follows. Uniform amplitude

beams with a tilt phase and the multiplexed beam phase are added to create an off-axis

hologram:

H[x, y] = | exp(ix) + exp(i∠(S[x, u]))|2.

H is then binarized

Ĥ[x, y] =




π H[x, y] > (|Hmax|+ |Hmin|)/2

0 otherwise.
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The SLM had pixel dimensions of 1280 x 1024 (but only centered 1024x1024 re-

gion was used to keep things square). The pixel size was 13.62 micrometers (µm), and

the entire SLM dimensionD was about 1.3cm assuming that the laser fully illuminated

the SLM. The binary phase-only SLM was used for efficient projection, however, but

can create the light that is an approximation of the true light field.

5.4.2 Description of the Dataset

We remark that the dataset was generated and shared by Dr.Nichols, Dr.Watnik, and

Dr.Doster from optical science division in Naval research laboratory with Dr.Rohde’s

laboratory at UVA.

Three mode sets, which consist of 5 mode numbers, were configured to see whether

a particular set is more detectable than the other. Table. 5.3 describes the mode numbers

for each set. The sets are all approximately centered around m = 0, but contain

different spacing between adjacent modes. Increasing the spacing between modes in

the encoding set diminishes the effects of mode coupling. However, because including

higher mode numbers is inevitable, the OAM beams interfere with turbulence field

more due to wider beam diameter.

Five mode numbers in each set, when multiplexed, generated 32 (25) distinctive

mode patterns. The multiplexed patterns of set 1, 2, and 3 are visualized in Fig. 5.20,

Fig.5.21, and Fig. 5.22 respectively. Each mode set generates different multiplexing

patterns, where patterns for set 3 appears to be coarser than that for set 1.

Each pattern was transmitted and recorded 1000 times while being interfered with

one of 1000 phase screens that simulated the effect of random turbulence. The phase

screens were kept same across all patterns. Pattens transmitted from phase screens

indexed by 1 to 850 were used for the training set, and the remainder was used for the

testing set.

Turbulence Level Very Strong Strong Medium
D/r0 15 10 5

Table 5.2: Simulated Turbulence Levels
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The demultiplexing performance was tested under 3 turbulence conditions – medium

, strong, very strong – to test how robust the classification methods are under different

level of atmospheric turbulence. The OAM beams propagating through different level

of turbulence are shown in Fig. 5.26, Fig. 5.27, and Fig. 5.28 for set 1, set 2, and set 3

respectively.

Set # Modes (m)
1 { -7, -2, 3, 8, 13}
2 { -4, -1, 2, 5, 8}
3 {-3, -1, 2, 4, 6 }

Table 5.3: Mode Sets Used in Experiment

5.4.3 Experimental Procedures

The experiment was designed to evaluate how accurately different classifications sys-

tems can decode demultiplexed patterns distorted by the turbulence. In detail, we were

interested whether the classification system could be applicable in the presence of se-

vere turbulence. Three levels of turbulence, D/r0 = [5, 10, 15], corresponding to

medium, strong, very strong turbulence, were tested. Also, we investigated whether

multiplexing with certain mode set is more favorable performance-wise, i.e. whether

it is more easily decoded by the classifier, or less susceptible to the turbulent atmo-

sphere. Three mode sets were compared. In addition, we examined the advantage of

the Radon-CDT transform in designing simple classifications system, bearing in mind

that the demultiplexing system should be computationally cheap to achieve high data

rate.

We trained a 32-class classifier to demultiplex 5 OAM carrying beams for fixed

mode set and the turbulence level (unless stated otherwise). The training set consisted

of 850 images per pattern, and the testing set consisted of 150 images per pattern,

which have a dimension of 151×151. The Radon transform1 and the Radon-CDT

were applied to normalized images (i.e.
∫ ∫

I(x, y)dxdy = 1), using equidistant, N

projections, i.e. θ, the angle between the projection line and the y-axis, is configured to
1Radon space was tested to support the claim that classification performance gained in Radon-CDT space

was not due to the Radon transform.

89



be (θ =
[
0, 180

N , 180
N 2, · · · , 180

N (N − 1)
]
). Example images for Radon-CDT data are

shown in Fig. 5.23, Fig. 5.24, and Fig. 5.25 for set 1,2, and 3 respectively.

Performance Measures

We evaluated the performance of classifiers on their ability to decode symbols and

the computation complexity. The demultiplexing power is measured by the classifica-

tion accuracy and the bit error rate (BER). The computation complexity is determined

through the complexity of the classifier and the number of floating point operations re-

quired at the testing phase. (The symbols represent; In: multiplexed pattern, `n: label,

N : number of samples)

1. Classification accuracy (%):

Acc =

∑N
n=1 1

(
ˆ̀
n = `n

)

N
× 100,

where `n is the true label of pattern In, ˆ̀
n is the predicted label, 1(ˆ̀

n = `n) is

an indicator function – 1 if ˆ̀
n = `n and otherwise 0, and N is the number of

samples considered.

2. Bit error rate (BER):

BER =

∑N
n=1

∑5
i=1 1 (p̂ni = pni)∑N

n=1

∑5
i=1 p̂ni

× 100,

where pni is the true mode indicator of pattern In – 1 if the pattern In consists of

mode mi, and otherwise 0– and p̂ni is the predicted mode indicator. In this BER

formulation, each OAM carrying beam represents ’1’, and therefore the OOK

modulation is inherently assumed.

3. the number of trainable parameters in classifiers,

4. the number of total floating point operations (FLOPs).
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Figure 5.17: Conjugate Mode Sorting With LG Beam, n=5 transmitted, m=5 used for detection

Figure 5.18: Conjugate Mode Sorting With LG Beam, n=5 transmitted, m=10 used for detection

Figure 5.19: Experiment Diagram
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5.5 Experimental Results

Our study was conducted with several aims. The foremost goal was to design a clas-

sification system that can accurately demultiplex OAM beam patterns deformed by

atmospheric turbulence. For reliable communication, we aimed for the BER (bit error

rate) ∼ 1.0e−3, which can be combined with the current out-of-shelf error correcting

codes such as LDPC (low-density parity-check code) to achieve coding gain about 5dB

[94]. [95] also showed that in the presence of turbulence, LDPC coding is sufficient

to decrease BERs within the threshold of threshold of 3e−2. Therefore, we set the

maximum tolerable BER to be 3e−2 for our system.

Also, bearing in mind that the demultiplexing system should achieve high data rate,

we aimed to design computationally fast and cheap system, which can operate with the

lesser number of FLOPs (floating point operations).

In addition, we investigated whether multiplexing with certain mode set is more

favorable performance-wise. Three mode sets were compared; the set #1 had the most

gap between the mode numbers and hence included the highest mode number, and set

#3 had the least separation between the mode numbers. We also examined the potential

possibility of including more mode numbers to a set, i.e. to multiplex more than 5 OAM

carrying beams. Lastly, we examined the robustness of the classification system under

several adverse effects, such as spatial downsampling – due to low-resolution CCD

camera – and beam-wandering – due to turbulence and misalignment between the laser

and receiver.

Our experiment revealed that demultiplexing 5 OAM carrying beams could be per-

formed reliably under severe turbulence. In conjunction with the Radon-CDT, 1-layer

CNN system achieved BER near 1e−3 regardless of the turbulence level. The experi-

ment with enlarged mode set revealed that potentially 15 or more OAM carrying beams

could be multiplexed without compromise in BER. Also, we validated that the Radon-

CDT was also robust to spatial down-sampling and beam wandering.
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Data dim #θ
D/r0 = 5 D/r0 = 10 D/r0 = 15

Space Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
Image 4000 - 98.50 99.48 99.71 83.37 87.78 90.15 58.71 79.08 84.27

RadonCDT 4000 180 99.29 99.96 100 98.19 95.98 97.58 97.1 95.31 98.85
Radon 3906 18 98.5 99.48 99.75 90.05 91.64 93.54 73.88 82.94 87.88

RadonCDT 3906 18 98.98 99.95 99.95 96.81 98.23 99.21 94.73 94.58 98.27

Table 5.4: Linear Classification Accuracy for Testing Sets

5.5.1 Linear Classification

In a vacuum, an EM wave will propagate through a straight path, or the optimal trans-

port path (more details can be found in Section. B.3). If the mixing of air is present

causing turbulence, EM wave will wander locally, but still be approximated by the

straight path defined by the optimal transport map. Each instance of EM wave received

under the random effect of turbulence can be associated with its optimal transport map.

The maps affect the transmitted beam regardless of the type of the multiplexed pattern

and will break down orthogonality at the receiver. We hypothesize that the collection

of optimal transport maps belongs to the map of diffeomorphisms that satisfy the con-

ditions stated in Section 3.4.

The first experiment was conducted to validate the claim that the received patterns

can be linearly decoded in the Radon-CDT space. The linear discriminant analysis

(LDA) was chosen as the linear classifier. We compute the linear classifier and compare

the linear classification accuracy between image space and Radon-CDT space.

Computing LDA involves inverting a data matrix, and for 32000 images of size

151×151, this is practically infeasible with a standard computer given the storage re-

quirement and the cost of diagonalization. Therefore, the data size was reduced to

4000 using PCA and then to 31 using Fisher-LDA. The entire training set was used to

compute the PCA subspace since PCA doesn’t require label information. However, the

Fisher-LDA finds the discriminant subspace based on the label. 80% of the training

set was used to compute the Fisher-LDA subspace, and the 20% of the training set was

allocated as a validation set. The LDA classifier was trained using only this 80% of the

training set.

Table. 5.4 shows the classification accuracy of LDA classifiers on different input
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space (TR: training, VAL: validation, and TS: testing) of various levels of turbulence.

Among all input space considered, Radon-CDT space consistently showed the highest

demultiplexing accuracy, with the least ‘subspace’ overfitting and the ‘classifier’ over-

fitting. High linear classification accuracy in the image space for D/r0 = 5 suggests

that the patterns are linearly separable. The advantage of utilizing Radon-CDT be-

comes more prominent under severe turbulence, indicating that the Radon-CDT trans-

form decoded out the deformation from the OAM beam patterns caused by turbulent

atmospheric effects.

We demonstrated here that Radon-CDT could enhance linear classification. To

achieve lesser BER, however, we adopted a shallow convolutional neural network to

add non-linear feature extraction in prior to the linear classification.

5.5.2 Non-linear Classification: 1-layer Convolution Network

To improve upon the linear classification of the Radon-CDT data, a 1-layer convo-

lutional neural network was chosen to exploit an additional non-linearity. With the

softmax function at the final output layer and the cross entropy loss, CNN can be de-

scribed as a concatenation of non-linear mapping plus a linear classifier. 1-layer CNN

is specifically chosen for two folds: i) to learn a dimension reduction mapping that

wouldn’t overfit as much as PCA and ii) to boost the classification accuracy by adding

a slight non-linearity to the classifier in addition to ones accounted by the Radon-CDT.

Our 1-layer CNN consists of a convolution layer, a batch normalization layer, a

max-pooling layer, and a reLu activation layer, followed by a softmax layer. The cross-

entropy loss was used, and the CNN was minimized via stochastic gradient descent

with Adaptive Moment Estimation [96]. The exact configurations are shown in Ta-

ble.5.8.

Table. 5.5 shows demultiplexing accuracy for the TS set for Radon-CDT space

(TR set accuracy is omitted because they were all 100%), for the highest turbulence

level (D/r0 = 15), utilizing 90 projections in Radon-CDT. Compared to the linear

classification accuracy, providing a non-linear feature extraction using convolutional

layer helped in improving the performance. BER is also measured, which lie in the
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D/r0
Acc (%) BER

set 1 set 2 set 3 set1 set 2 set 3
5 99.50 100 99.75 0.002625 0 0.001917

10 99.91 99.67 99.75 0.000917 0001583 0.0015
15 99.23 99.17 99.60 0.004167 0.003958 0.002250

Table 5.5: 1-Layer CNN Performance in the Radon-CDT space for Testing Sets, θ = 90

D/r0
Acc (%) BER

set 1 set 2 set 3 set1 set 2 set 3
5 99.90 99.94 99.92 0.00042 0.00025 0.00004

10 99.63 99.69 99.56 0.00150 0.00125 0.00200
15 99.30 99.43 99.48 0.00183 0.00489 0.00258

Table 5.6: Alexnet Performance in the Image Space

Conv 1, # θ : 90 Alexnet
# Params 550.4 K 69M
# Flops 9.11 M 832 M

Table 5.7: Computational Complexity
conv1 # filter : 96 Size: 11× 5 Strides:3×3

Max pooling Size: 3×3 Strides: 2×2
Batch Normalization

Relu
Softmax

Table 5.8: 1 Layer CNN Architectures

margin of the safe zone (∼ 1e−3) for reliable communication when additional error

correcting code schemes are taken into account.

It is notable that decoding in Radon-CDT space provides comparable results com-

pared to the accuracy and BER reported previously in [75], shown in Table. 5.6. The

authors utilized Alexnet for decoding, which is about 100 the size of the network we

implemented here and requires about 100 times more Flops to decode a single image.

In summary, the non-linearity introduced into the data by atmospheric turbulence

effect, that can be not decoded linearly in Radon-CDT space, can be reliably decoded

utilizing a simple non-linear feature extractor (a convolutional layer).
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5.5.3 Generalization to Demultiplexing with Low Resolution Im-

ages

In this experiment, we test whether we can share the same classifier on the channel

that is affected by different levels of turbulence. We combined the non-turbulent and

turbulent datasets for each mode set, and trained the classifier.

Table. 5.9 shows the corresponding classification accuracy and BER. The BER of

each set is almost similar or even better to that of the BER of worst turbulence type.

We assume that during the optimization process, the CNN classifier converged to the

better solution due to increased number of samples.

Through this experiment, we could confirm that that the CNN classifier can be

generalized to decode multiplexed OAM patterns regardless of the strength of the tur-

bulence.

- set 1 set 2 set 3
BER 0.0029 0.0029 0.0033
Acc 99.32 99.30 99.48

Table 5.9: Results for mixed turbulence sets

5.5.4 Demultiplexing with Low Resolution Images

Downsample Data Size Data SizeFactor Space Space
16

Image
9×9

R-CDT
15×9

8 19×19 29×19
4 38×38 57×38

Table 5.10: Size for down-sampled data

Here we investigated whether we can utilize low-resolution image for demultiplex-

ing. The images were down-sampled by a factor of α = [1/4, 1/8, 1/16] followed

by the Radon-CDT transform. Fig. 5.29 shows the down-sampled images (top) and

Radon-CDT data (bottom). Table. 5.10 summarizes the size of the down-sampled data.

Two classifiers were tested: a linear classifier (LDA) and a 1-layer regular neural net-

work (NN). We note that the reduced image size enabled to train both classifiers without
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Figure 5.29: Downsampled image (top) and R-CDT (bottom) by factor of [1, 4, 8, 16] from left
to right

Downsampl e Data set 1 set 2 set 3
Factor Space TR TS TR TS TR TS

16
Image

36.27 44.19 29.14 37.54 23.47 29.65
8 6.68 13.29 6.36 12.00 4.42 7.46
4 3.44 13.19 3.43 11.81 2.24 7.71
16

R-CDT
34.54 42.62 28.14 36.40 20.62 26.50

8 2.21 4.69 2.96 1.55 1.2 2.1
4 0.28 2.40 0.19 1.31 0.22 0.96

Table 5.11: LDA Classification Results for down-sampled testing set, D/r0 = 15

Downsample Data # Dense # Params set 1 set 2 set 3Factor Space Nodes
16

Image
5000 580k 13.09 8.36 5.19

8 1500 594k 3.29 5.57 4.05
4 400 591k 3.42 6.07 3.17
16

R-CDT
3000 510k 18.51 13.23 8.82

8 1000 588k 2.56 1.63 0.83
4 250 550k 2.94 4.46 0.94

Table 5.12: NN Classification Results for down-sampled testing set, D/r0 = 15

any computational issues. The number of dense nodes in NN was devised to render the

network size consisting of approximately 500k parameters.

Table. 5.11 shows the classification performance for LDA. For a down-sample fac-

tor of 4 and 8, classification performance was not significantly compromised by re-

ducing the size of images. In fact, in the image space, training in reduced dimension

facilitated higher linear classification accuracy than using full dimension images. Yet,

again, Radon-CDT yielded consistently higher accuracy. Table. 5.12 shows the clas-
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- Radon-CDT set 1+3 Radon-CDT set 1+2+3
BER 0.002962 0.003941
Acc 99.35 99.15

Table 5.13: Results for larger mode set

Data
/w Beam Wandering /wo Beam Wandering

set 1 set 2 set 3 set1 set 2 set 3
Image 48.33 38.44 47.81 65.43 64.14 68.06

Radon-CDT 98.64 98.50 98.71 98.58 98.62 98.79

Table 5.14: Classification Accuracy for Testing Set for 1-Layer CNN, D/r0 = 15, α = 0.2

sification performance for NN. As similar to the previous result with 1-layer CNN,

adding non-linear feature extraction step enhanced classification performance. For a

down-sample factor of 4 and 8, the demultiplexing accuracy is nearly similar to full

resolution images. We conclude that demultiplexing using low-resolution images can

greatly reduce the computation cost without damaging the performance.

5.5.5 Demultiplexing with Larger Mode Sets

In this experiment, we test whether we can share the same detector on the channel when

mode sets are all used to communicate data. We train a detector for two scenarios: i)

when mode set 1 and set 3 are used to transmit data over the same channel, and ii) when

all three mode sets are used to transmit data. When mode set 1 and three are used, there

are 63 (32+32-1, minus 1 for ‘00000’ case) distinctive patterns, and when mode set 1,

2, three are used, there are 92 (discarding overlapping multiplexing cases) distinctive

patterns.

Table. 5.13 shows the classification accuracy and BER. There exists a performance

drop compared to the single mode set performance, but considering that the number of

classes is doubled or tripled, the drop is marginal. Therefore, we conclude that a single

detector can be utilized when different mode sets are used for multiplexing/modulating

data over the same communication channel.
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5.5.6 Robustness to Beam Wandering

The OAM carrying beam, generated in the laboratory, propagated through a pre-defined

path. The beam patterns were collected by a fixed camera that heads towards the mirror,

whose center was matched to the center of the beam. However, if we were to transmit

the visible lights via air, beam wandering – due to atmospheric effect but also by in-

herent jitter present in a laser – is unavoidable, and the patterns captured by the camera

would not be aligned properly. In this experiment, we test whether our classification

system can robustly demultiplex off balance OAM patterns, using 1-layer CNN in the

radon-CDT space.

To mimic the effect of beam wandering, the images were randomly translated by

[∆x,∆y], where ∆x and ∆y was independently drawn from a uniform distribution in

a range [−151α, 151α], where α ∈ [0, 1] controls the severity of the beam wandering.

The mentioned preprocessing was performed on-line, while training the Convolutional

Neural Network, which resulted in augmenting the dataset. Note that the translations

in the image space convert to the vertical shifts in the Radon-CDT space by the Trans-

lation Property Stated in (3.4). The Radon-CDT under the effect of beam wandering

can, therefore, be computed on-line without the additional cost of computation given

that the Radon-CDT before the translation is already computed.

Table. 5.14 shows the classification accuracy for the testing set in the Radon-CDT

space and the image space. Two types of testing sets were tested: i) the original testing

set without the effect of beam-wandering and ii) the augmented testing set with the

effect of beam-wandering.For both types of testing sets, in the Radon-CDT space, the

CNN successfully decoded the multiplexed patterns, whereas, in the image space, it

failed to. The Radon-CDT removed the wandering effect from the image and therefore

reduced the task of ‘shallow’ CNN substantially, rendering CNN to classify the pat-

terns correctly. However, in the image space, the shallow CNN could not decode the

translation and the turbulent confounds at the same time. We hypothesize that this is

due to the linear separability property of the CDT which accounts for the translation

confounds and mode them out in the transform space.

In summary, in the Radon-CDT space, the classifier is robust to beam-wandering
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effects, and also provides an additional advantage of training better classifier.
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Chapter 6

Conclusion

In this study, we have described a new nonlinear operation, termed the Cumulative Dis-

tribution Transform (CDT), that takes as input signals that can be understood as prob-

ability density functions, and outputs a continuous function that is related to morphing

that signal to a chosen reference signal. Also, we extended the CDT by combining

the 2D Radon transform, to a new, non-linear, low-level image transform, termed the

Radon-CDT.The transforms are invertible as it contains well-defined forward (analysis)

and inverse (synthesis) operations.

In addition to describing a few of its properties, we have extensively studied the

ability of the transforms to improve the linear separability in comparison to the linear

separability in original signal space. We experimentally validated with signal and im-

age applications involving both simulated and real data. In all examples shown, the

results of the Theorem are confirmed, and the theory and experimental results here add

to our understanding in explaining why transport-based approaches have been able to

improve the state of the art in certain cancer detection from microscopy images prob-

lems [38, 39].

The CDT is cheap to compute. We described a numerical approximation for dis-

crete signals that is O(n log(n)), with n the length of the signal. The Radon-CDT,

which is built upon the CDT, also has a closed form, and hence does not require nu-

merical optimization for computation. Its computational efficiency combined with the-
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oretical and experimental results presented above suggest that the transforms could be

a useful tool for building more complex signal pattern recognition systems.

Moreover, guided by newly developed theory suggesting a link between image tur-

bulence and photon transport through the continuity equation, we utilized the transform

to perform a decoding task for orbital angular momentum carrying beam patterns. The

fact that the transforms are a mathematically invertible transform ensures that no in-

formation will be lost in this step, and we hypothesized that the transforms to be a

useful pre-processing step in the search for solutions. The decoding technique was

tested in the Radon-CDT space and was compared against previous approaches using

deep convolutional neural networks. Results showed that the new method could obtain

comparable classification accuracies (bit error rate) at a fraction of the computational

cost, thus enabling higher bit rates.

Our study was conducted with several aims. The foremost goal was to design a

classification system that can accurately demultiplex OAM beam patterns deformed

by atmospheric turbulence. Our experiment revealed that the demultiplexing could

be performed reliably under severe turbulence achieving BER ∼< 1.0e3 for medium

or strong turbulence, and ∼ 1.0e − 3 for very severe turbulence. Also, we aimed

to design fast and cheap method, and the advantage of using Radon-CDT space was

clear, it enabled simpler representations in the Radon-CDT space, that facilitated better

classification using simple 1-layer CNN. Also, we investigated whether multiplexing

with certain mode set is more favorable, and concluded that although the difference

is minimal, the set #3 is more robust to classification. The mode set #3 has the least

gap between the modes, and therefore is more susceptible to mode coupling, but less

perturbed by turbulence.

Provided that the light propagation path can be explained by the transport phenom-

ena, we hypothesized that certain deformations could be (nearly) linearly decoded in

the Radon-CDT space, and showed empirical evidence. In the presence of turbulence,

the light would only approximately follow the optimal transport path. With the aid of

non-linear feature extractor (1-layer CNN), which decoded out the confounds intro-

duced by the turbulence, the OAM patterns are decoded near perfectly in the Radon-

CDT space. We omitted the analysis of the light propagation and its relation to the
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optimal transport for brevity in previous chapters, but for interested readers, we in-

cluded the details in Appendix B.

The main limitation of the CDT and Radon-CDT model is that the linear separabil-

ity properties depend on the signals being generated from mother signals through the

application of a differential, one to one diffeomorphic mapping with additional restric-

tions. In certain cases, a physical model for the data can help determine whether the

conditions for linear separability in the transform space are applicable. In some cases,

the transform can indeed be a poor match for the problem. In such cases, the transform

can still be applied with no loss of information, though we currently offer no informa-

tion regarding whether the CDT would enhance (or help destroy) linear separability.

The variety of examples shown above, however, have helped us confirm the model

is applicable, at least to some extent, to not an insignificant number of applications.

We envision that the transforms could be used as a step in pattern recognition pipeline

that could simplify (and enhance the performance) subsequent feature extraction and

classification.
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Appendix A

Proofs

A.1 Proof for translation property of CDT

Consider a probability density I1 : [y1, y2] → R, and let Iµ : [y1 + µ, y2 + µ] → R

represent a translation of the probability density I1 by µ, i.e. Iµ(x) = I1(x − µ). To

find the CDT for Iµ with respect to the reference probability density I0 : X → R, we

solve for fµ : X → [y1 + µ, y2 + µ]:

∫ fµ(x)

y1+µ

Iµ(τ)dτ =

∫ x

inf(X)

I0(τ)dτ = x. (A.1)

And similarly, to find the CDT for I1 with respect to the reference I0, we solve for

f1 : X → [y1, y2]:

∫ f1(x)

y1

I1(τ)dτ =

∫ x

inf(X)

I0(τ)dτ = x. (A.2)

(A.1) and (A.2) can be set equal,

∫ fµ(x)

y1+µ

Iµ(τ)dτ =

∫ f1(x)

y1

I1(τ)dτ. (A.3)
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By substituting I1 for Iµ in (A.3), we have

∫ fµ(x)

y1+µ

I1(τ − µ)dτ =

∫ f1(x)

y1

I1(τ)dτ. (A.4)

By the change of variables theorem, we can substitute u = τ − µ in (A.4)

∫ fµ(x)−µ

y1

I1(u)du =

∫ f1(x)

y1

I1(τ)dτ.

Since upper limit on left and right side of the integrals are equal, we have fµ(x) =

f1(x) +µ. Substituting this into expression for Îµ(x) = (fµ(x)− x)
√
I0(x), we have

Îµ(x) = (f1(x) + µ− x)
√
I0(x).

By substituting Î1(x) = (f1(x)− x)
√
I0(x), we have proved the translation property

Îµ(x) = Î1(x) + µ
√
I0(x).

A.2 Proof for scaling property of CDT

Consider a probability density I1 : [y1, y2] → R, and let Ia : [y1/a, y2/a] → R

represent a scaling of the probability density I1 by a, i.e. Ia(x) = aI1(ax). To find

the CDT for Ia with respect to the reference I0 : X → R, we solve for fa : X →:

[y1/a, y2/a]:

∫ fa(x)

y1/a

Ia(τ)dτ =

∫ x

inf(X)

I0(τ)dτ. (A.5)

And similarly, to find the CDT for I1 with respect to the reference I0, we solve for

f1 : X → [y1, y2]:

∫ f1(x)

y1

I1(τ)dτ =

∫ x

inf(X)

I0(τ)dτ (A.6)
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(A.5) and (A.6) can be set equal,

∫ fa(x)

y1/a

Ia(τ)dτ =

∫ f1(x)

y1

I1(τ)dτ. (A.7)

By substituting Ia = aI1(ax) in (A.7), we have

∫ fa(x)

y1/a

aI1(aτ)dτ =

∫ f1(x)

y1

I1(τ)dτ. (A.8)

By the change of variables theorem we can substitute aτ = u, adτ = du in (A.8),

∫ afa(x)

y1

I1(u)du =

∫ f1(x)

y1

I1(τ)dτ.

Since the upper limit on left and right side of the integrals are equal, we have fa(x) =

f1(x)
a . Substituting this expression for Îa(x) = (fa(x) − x)

√
I0(x), and cleaning up

some algebras, we get Îa : X → R:

Îa(x) =
Î1(x)− x(a− 1)

√
I0(x)

a
.

A.3 Proof for composition property of CDT

Let I1 : Y → R represent a probability density, and J1 : Y → R its cumulative

distribution function. Let Ig : Z → R represent a probability density that has the

following relation with I1:

Jg(x) = J1(g(x)). (A.9)

Jg : Z → R represent the corresponding cumulative distribution for Ig , and g : Z → Y

is an invertible, differentiable. By differentiating each side of (A.9), we have

Ig(x) = g′(x)I1(g(x)).
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To find the CDT for Ig with respect to the reference probability density I0 : X → R,

we solve for fg : X → Z:

∫ fg(x)

inf(Z)

Ig(τ)dτ =

∫ x

inf(X)

I0(τ)dτ (A.10)

And similarly, to find the CDT for I1, we solve for f1 : X → Y :

∫ f1(x)

inf(Y )

I1(τ)dτ =

∫ x

inf(X)

I0(τ)dτ (A.11)

(A.10) and (A.11) can be set equal,

∫ fg(x)

inf(Z)

Ig(τ)dτ =

∫ f1(x)

inf(X)

I1(τ)dτ. (A.12)

By substituting Ig(x) = g′(x)I1(g(x)) in (A.12), we have

∫ fg(x)

inf(Z)

g′(τ)I1(g(τ))dτ =

∫ f1(x)

inf(Y )

I1(τ)dτ. (A.13)

By the change of variables theorem we can substitute g(τ) = u, g′(τ)dτ = du in

(A.13), ∫ g(fg(x))

inf(Y )

I1(u)du =

∫ f1(x)

inf(Y )

I1(τ)dτ.

Since the upper limit on left and right side of the integrals are equal, we have

g(fg(x)) = f1(x).

Since g is an invertible function, fg(x) = g−1(f1(x)) holds. By substituting this

expression for Îg(x) = (fg(x) − x)
√
I0(x), and cleaning up some algebra, we get

Îg : Z → R:

Îg(x) =
(
g−1 (f1(x))− x

)√
I0(x)

=

(
g−1

(
Î1(x)√
I0(x)

+ x

)
− x
)
√
I0(x).
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A.4 Proof for Lemma 2.4.4

Proof. (if) The convex hulls of compact convex sets are compact in L2 space. There-

fore, the convex hulls are compact. For disjoint, compact convex sets sets, we know

from Lemma 2.4.3 that there exists a hyperplane that linear separates the two. There-

fore, if convex hulls are disjoint (i.e. (2.15) holds), then P and Q are linearly separable.

(only if) Suppose P and Q are linearly separable but there exists convex hulls of P

and Q that are not disjoint, i.e. there exist {pi}Npi=1 ⊂ P, {qj}Nqj=1 ⊂ Q, and αi, βj > 0

that satisfies
∑Np
i=1 αi = 1,

∑Nq
j=1 βj = 1 s.t.

Np∑

i=1

αipi =

Nq∑

j=1

βjqj , (A.14)

for finite Np, Nq . We can easily see that this contradicts linear separability. Suppose

there exists a linear classifier (i.e. w(x) = b exists that satisfies (2.14)). By multiplying

each side of (A.14) with w(x) and integrating over X , we have

∫

X

w(x)

(∑

i

αipi(x)

)
dx =

∫

X

w(x)


∑

j

βjqj(x)


 dx. (A.15)

The left side of (A.15) is always smaller than b because

∫

X

w(x)

(∑

i

αipi(x)

)
dx =

∑

i

αi

∫

X

w(x)pi(x)dx <
∑

i

αib = b. (A.16)

On the other hand, the right side of (A.15) is always larger than b because

∫

X

w(x)


∑

j

βjqj(x)


 dx =

∑

j

βj

∫

X

w(x)qj(x)dx >
∑

j

βjb = b (A.17)

However, (A.16) and (A.17) contradict to the equivalence in (A.15), which implies that

the linear classifierw cannot exist. Therefore, the convex hulls must be disjoint if linear

classifier exists.
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A.5 Proof for Theorem 2.4.6: Linear Separability in

the CDT Space

Proof. We show that P̂, Q̂ must be linearly separable. If not, it would contradict Def-

inition 2.4.5 that they are disjoint. Suppose P̂, Q̂ are not linearly separable. Then by

Lemma 2.4.4, there exist {pi}Npi=1 ⊂ P, {qj}Nqj=1 ⊂ Q, and αi, βj > 0 that satisfies
∑Np
i=1 αi =

∑Nq
j=1 βj = 1 such that the convex combination of {pi}Npi=1 and {qj}Nqj=1

are equivalent, i.e.

Np∑

i=1

αip̂i =

Nq∑

j=1

βj q̂j .

By substituting p̂i = (fi−1)
√
I0 and q̂j = (gj −1)

√
I0, where 1 refers to an identity

map, we have

Np∑

i=1

αi(fi − 1)
√
I0 =

Nq∑

j=1

βj(gj − 1)
√
I0.

By using
∑Np
i=1 αi =

∑Nq
j=1 βj = 1, and dividing each side of the equation by I0, we

have
Np∑

i=1

αifi =

Nq∑

j=1

βjgj .

By substituting fi = h−1
i ◦ f0 and gj = h−1

j ◦ g0 (see Lemma E.1 presented below),

we have

Np∑

i=1

αi(h
−1
i ◦ f0) =

Nq∑

j=1

βj(h
−1
j ◦ g0).

By substituting h−1
α =

∑Np
i=1 αih

−1
i and h−1

β =
∑Nq
j=1 βjh

−1
j , we have

h−1
α ◦ f0 = h−1

β ◦ g0.
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By composing each side of the equation with hα, we have

f0 = hα ◦ h−1
β ◦ g0. (A.18)

Note that h−1
α , hα, hα ◦ h−1

β ∈ H by conditions i), ii), iii). From the definition of the

CDT in (2.3) with respect to reference I0, we have

f ′0(p0 ◦ f0) = g′0(q0 ◦ g0) = I0.

By substituting f0 with the right side of (A.18), we have

(hα ◦ h−1
β ◦ g0)′(p0 ◦ (hα ◦ h−1

β ◦ g0)) = g′0(q0 ◦ g0)

⇔ (hα ◦ h−1
β )′(p0 ◦ (hα ◦ h−1

β )) = q0

⇔ h′αβ−1p0(hαβ−1) = q0.

The last step of the equation is derive by setting hαβ−1 = hα ◦h−1
β , where hαβ−1 ∈ H.

However, the last statement contradicts the Definition 2.4.5 that h′p0(h) and h′q0(h)

each belong to disjoint set P̂ and Q̂. Therefore, P̂, Q̂ must be linearly separable.

Lemma E.1. Let f0, fi be monotonic functions from X → Y for probability densities

p0 : Y → R, pi : Y → R with respect to reference I0 : X → R, such that

∫ f0(x)

inf(Y )

p0(τ)dτ =

∫ fi(x)

inf(Y )

pi(τ)dτ =

∫ x

inf(X)

I0(τ)dτ. (A.19)

Then pi = h′i(p0 ◦ hi) implies hi ◦ fi = f0.

Proof. Substituting (A.19) with pi = h′ip0(hi), we have

∫ fi(x)

inf(Y )

h′i(τ)p0(hi(τ))dτ =

∫ x

inf(X)

I0(τ)dτ.
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By change of variables theorem, substituting hi(τ) = u and h′i(τ)dτ = du, we have

∫ hi(fi(x))

inf(Y )

p0(u)du =

∫ x

inf(X)

I0(τ)dτ.

Since
∫ f0(x)

inf(Y )
p0(τ)dτ =

∫ x
inf(X)

I0(τ)dτ holds (see (A.19)), we have

∫ hi(fi(x))

inf(Y )

p0(τ)dτ =

∫ f0(x)

inf(Y )

p0(τ)dτ. (A.20)

The upper limits on each side of the integrals in (A.20) can be set to be equal since

both fi and hi are strictly increasing functions:

hi(fi(x)) = f0(x). (A.21)

Equivalently, we have fi(x) = h−1
i (f0(x)) by inverting (A.21).

A.6 Proof for Translation property of Radon-CDT

For J(x, y) = I(x−x0, y− y0) and using the properties of Radon transform we have,

Ĵ(t, θ) = Î(t− x0 cos(θ)− y0 sin(θ), θ)

Therefore the Radon-CDT of J can be written as,

J̃(t, θ) = (g(t, θ)− t)
√
Î0(t, θ)

where g(t, θ) satisfies,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ t

−∞
Î0(τ, θ)dτ
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The left hand side of above equation can be rewritten as,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ g(t,θ)

−∞
Î(τ − x0 cos(θ)− y0 sin(θ), θ)dτ

=

∫ g(t,θ)−x0 cos(θ)−y0 sin(θ)

−∞
Î(u, θ)du⇒

g(t, θ)− x0 cos(θ)− y0 sin(θ) = f(t, θ)⇒

g(t, θ) = f(t, θ) + x0 cos(θ) + y0 sin(θ)⇒

(g(t, θ)− t)
√
Î0(t, θ) = (f(t, θ)− t)

√
Î0(t, θ) +

(x0 cos(θ) + y0 sin(θ))

√
Î0(t, θ)⇒

J̃(t, θ) = Ĩ(t, θ) + (x0 cos(θ) + y0 sin(θ))

√
Î0(t, θ)

where ∂f
∂t (t, θ)Î(f(t, θ), θ) = Î0(t, θ).

A.7 Proof for Scaling property of Radon-CDT

For J(x, y) = α2I(αx, αy) with α > 0 and using the properties of Radon transform

we have,

Ĵ(t, θ) = αÎ(αt, θ).

The Radon-CDT of J can be written as,

J̃(t, θ) = (g(t, θ)− t)
√
Î0(t, θ)

where g(t, θ) satisfies,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ t

−∞
Î0(τ, θ)dτ
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The left hand side of above equation can be rewritten as,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ g(t,θ)

−∞
αÎ(ατ, θ)dτ

=

∫ αg(t,θ)

−∞
Î(u, θ)du⇒

g(t, θ) =
f(t, θ)

α
⇒

(g(t, θ)− t)
√
Î0(t, θ) = (

f(t, θ)

α
− t)

√
Î0(t, θ)

=
(f(t, θ)− t)

√
Î0(t, θ)

α
+ (

1− α
α

)

√
Î0(t, θ)⇒

J̃(t, θ) =
Ĩ(t, θ)

α
+ (

1− α
α

)

√
Î0(t, θ)

A.8 Proof for Rotation property of Radon-CDT

For J(x, y) = I(x cos(φ) + y sin(φ),−x sin(φ) + y cos(θ)) and using the properties

of Radon transform we have,

Ĵ(t, θ) = Î(t, θ − φ).

Given a circularly symmetric reference image, the Radon-CDT of J can be written as,

J̃(t, θ) = (g(t, θ)− t)
√
Î0(t, θ)

where g(t, θ) satisfies,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ t

−∞
Î0(τ, θ)dτ
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The left hand side of above equation can be rewritten as,

∫ g(t,θ)

−∞
Ĵ(τ, θ)dτ =

∫ g(t,θ+φ)

−∞
Î(τ, θ)dτ ⇒

f(t, θ) = g(t, θ + φ)⇒ g(t, θ) = f(t, θ − φ)⇒

(g(t, θ)− t)
√
Î0(t, θ) = (f(t, θ − φ)− t)

√
Î0(t, θ)

= (f(t, θ − φ)− t)
√
Î0(t, θ − φ)⇒

J̃(t, θ) = Ĩ(t, θ − φ)

A.9 Proof for Theorem 3.4.1: Linear separability in the

Radon-CDT space

Let image classes P and Q be generated from Eq. (3.11). Here we show that the classes

are linearly separable in the Radon-CDT space.

Proof. By contradiction we assume that the transformed image classes are not linearly

separable,

∑

i

αip̃i(t, θ) =
∑

j

βj q̃j(t, θ)⇒
∑

i

αifi(t, θ) =
∑

j

βjgj(t, θ)

where
∑
i αi =

∑
j αj = 1, ∂fi∂t (t, θ)p̂i(fi(t, θ), θ) = Î0(t, θ), and ∂gj

∂t (t, θ)q̂j(gj(t, θ), θ) =

Î0(t, θ). Figure A.1 shows a diagram which illustrates the interactions between q̂js,

p̂is, and Î0. It is straightforward to show that fi(t, θ) = h−1
i (f0(t, θ), θ) and gj(t, θ) =

h−1
j (g0(t, θ), θ) as can also be seen from the diagram in Figure A.1. Therefore we can

write,

∑

i

αifi(t, θ) =
∑

j

βjgj(t, θ)⇒
∑

i

αih
−1
i (f0(t, θ), θ) =

∑

j

βjh
−1
j (g0(t, θ), θ)
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Figure A.1: The diagram of interactions of the images mass preserving maps.

Defining hα(t, θ) =
∑
i αih

−1
i (t, θ) ∈ H and hβ(t, θ) =

∑
i βjh

−1
j (t, θ) ∈ H, we

can rewrite above equation as,

hα(f0(t, θ), θ) = hβ(g0(t, θ), θ)⇒

f0(t, θ) = h−1
α (hβ(g0(t, θ), θ), θ).

Defining h(t, θ) = h−1
α (hβ(t, θ), θ) ∈ H we have,

f0(t, θ) = h(g0(t, θ), θ)

which implies that ∃h ∈ H → ∂h
∂t (t, θ)p̂0(h(t, θ), θ) = q̂0(t, θ), which contradicts

with the fourth condition ofH.
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Appendix B

Link from Wave Propagation to

the Optimal Transport

B.1 Transport and The Conservation of Mass

The continuity equation (or conservation of mass formula) in continuum physics states:

∂ρ

∂t
+∇ · (ρv) = 0. (B.1)

Here ρ = ρ(t, ~x) stands for the density of a system of particles at time t and posi-

tion ~x; v = v(t, ~x) for the velocity field at time t and position ~x, and ∇· stands for

the divergence operator. The natural setting for this equation is a Riemannian mani-

fold M . This Eulerian description (B.1), can be alternatively expressed in Lagrangian

description with the dynamic coordinates [97]:

~xz ≡ f(~x0, z), (B.2)

the coordinates is labeled according to their ‘new’ location defined by the Lagrangian

map ft, which evolves the starting coordinates ~x0 forward in space to location z. The
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velocity can be expressed as

v(t, ft(~x)) =
d

dt
ft(~x).

If v(t, ~x) is (locally) Lipschitz continuous, this is equivalent to saying that there always

exist a transport map ft that pushes the density ρ0 onto ρt:

ρt = (ft)#ρ0.

B.2 Parabolic wave equation to continuity equation

The parabolic wave equation can be written as

i2k0
∂Ψ(~x, z)

∂z
+∇2

XΨ(~x, z)− 2k2
0η(~x, z)Ψ(~x, z) = 0. (B.3)

where

• ~x = (x1, x2) defines the plane in the direction traverse to propagation,

• wave is propagating horizontally (in the z direction) with wavenumber k0,

• ∇2
X denotes the Laplacian operating in the transverse coordinates (x1, x2),

• ñ(~x, z) ≡ n(~x, z) + iκ(~x, z) is the complex index of refraction, where n(~x, z)

is the refractive index and κ(~x, z) is extinction coefficient, and

• η(~x, z) ≡ n(~x, z)− 1 is the deviation in refractive index from unity.

Assuming ρ(~x, z) ≥ 0 and using the Madelung transformations [98] Ψ(~x, z) =
√
ρ(~x, z) exp(iφ(~x, z)/2), Eq. (B.3) becomes:

∂ρ(~x, z)

∂z
+∇X · (ρ(~x, z)v(~x, z)) = 0, (B.4)

∂v(~x, z)

∂z
+ (v(~x, z) · ∇X)v(~x, z) = ∇Xp(~x, z) + 2∇Xη(~x, z). (B.5)
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where v(~x, z) ≡ ∇Xφ(~x, z) and p(~x, z) =
2∇2

X(ρ(~x,z)1/2)
ρ(~x,z)1/2

. Therefore, the parabolic

wave equation given in Eq. (B.3) can be interpreted as the continuity and momen-

tum equation in Eq. (B.4) and Eq. (B.5) in fluid mechanics. The ‘density’ ρ(~x, z) =

Ψ(~x, z)Ψ(~x, z)∗ is the image intensity, and the phase gradient v(~x, z) ≡ ∇Xφ(~x, z)

plays the role of the velocity.

If we assume additional constraints that the the polarization in the direction of

propagation z is minimal (and thus can be neglected) and that the extinction coefficient

κ = 0 [jon], we can rewrite Eq. (B.5) as

∂v(~x, z)

∂z
+ (v(~x, z) · ∇X)v(~x, z) = 2∇Xg(η(~x, z)). (B.6)

where the right hand side is now written entirely in terms of the material index

g(η(~x, z)) = −2∇2
X log(n(~x, z)) + 4(∇X log(n(~x, z)))2 + η(~x, z),

In other words, the refractive index creates the potential function g(η(~x, z)) of the

momentum equation in Eq. (B.5). In the absence of turbulence, or other index fluc-

tuations, the right hand side disappears and the momentum equation becomes simply

Dv(~x, z)/Dz = 0 which suggests a constant velocity solution. Because the right hand

side is a function of the traverse index gradient, a constant velocity solution applies

when in the case that the refractive index n is varying in z only. Therefore, each local-

ized portion of the electric field moves in straight lines from source to destination, as

illustrated in Fig. B.1.

B.3 Solution for the Parabolic Wave Equation via Op-

timal Transport

In the previous section, we derived continuity and momentum Eq. (B.4), Eq. (B.5)

from the parabolic wave equation (B.3). On the other hand, we saw from Eq. (B.1)

that when the velocity field is locally Lipschitz continuous, than there always exist a

transport map which satisfies Eq. (B.1).
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Figure B.1: Illustration of the transport problem. Intensity is transported in the transverse plane
as the associated EM field moves through space from z = 0 to z = Z. Absent fluc-
tuations in the refractive index the intensity is transported along constant velocity
paths, i.e., straight lines.

We can furthermore relate the the solution of the optimal transport map in Eq. (B.4)

to the solution the parabolic equation in (B.3) with two assumptions:

1. We are minimizing Kinetic energy, namely action:

minA ≡ Z
∫

R2

∫ Z

0

ρ(~x, z)|v(~x, z)|2dzd~x, (B.7)

which is associated with moving ‘image’ intensity over a distance z = [0, Z] in

time interval t = [0, T ].

2. The potential function V (~x, z) = 2g(η(vx, z)) in Eq.(B.5) is neglected in form-

ing the action (or η(x, z)� 1).

We mention that it has been recently shown in [99] that minimization of the specific

action (B.7) given the constraint (B.4) and the assumption that intensity is conserved

yields precisely (B.5) along with the requirement that v(~x, z) = ∇Xφ(~x, z).

In summary, if we accept the minimization of action principle, if the index fluctu-

ations are small, if two intensity points ρ0, ρT are given, and if the total mass between

two points are conserved, then the solution to the parabolic wave equation can be found

by seeking for the optimal transport map that pushes ρ0 to ρT .

Specifically, the flow map, f , so that resulting intensity and velocity field minimizes
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the action Eq. (B.7) can be obtained via minimizing the Kantorovich-formulation:

dp(0, Z)2 = inf
f

∫

R2

‖f(~x0, Z)− ~x0‖2ρ(~x0, 0)d~x = min
v
A (B.8)

subject to the constraints imposed by continuity equation (conservation of mass) which

can be rewritten as,

∫
ρ(~xz, z)d~x =

∫
ρ(~x0, 0)d~x (B.9)

det(Jf (~x0, z))ρ(~xz, z) = ρ(~x0, 0). (B.10)

where Jf (~x0, z) denotes the Jacobian of f(~x0, z) (see [97], [100] or [99]).

Also, the velocity (which is constant in z) can be expressed as a phase gradient

[99],

v(~xz, z) = (f(~x0, Z)− ~x0)/Z = ∇Xφ(~xz, z). (B.11)

The solution is exact if the index perturbations are zero as the light will travel in straight

lines, with constant velocity. In the event that the index is fluctuating, the constant

velocity solutions are approximating a wandering path with a straight line. And once

the map f is found, the displacement coordinates can be linearly interpolated via

~xz = f(~x0, z) = (1− z/Z)~x0 +
z

Z
f(~x0, Z).
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Appendix C

Atmospheric Turbulence

C.1 Atmospheric Turbulence as Random Fields

C.1.1 Spatial Covariance Function

A random field u(~r) is a collection of random numbers whose indices are identified

with a spatial coordinates in ~r = [x, y, z].

We define the mean or expected value of the random field u(~r) by

m(~r) = 〈u(~r)〉

where the brackets 〈〉 denote an ensemble average.

The associated spatial autocovariance function, or simply the covariance function

is

Bu(~r1, ~r2) = 〈(u(~r1)−m(~r1))(u∗(~r2)−m∗(~r2))〉,

where u∗(~r1) denotes the complex conjugate of u(~r1).

The random field u(~r) is statistically homogeneous if its moments are invariant

under a spatial translation. In other words, it is equivalent to saying that:

1. its mean value 〈u(~r)〉 = m(~r) = m is independent of the spatial position ~r, and
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2. the covariance function depends only on the spatial vector difference ~r = ~r2−~r1,

and the covariance function can be represented as:

Bu(~r) = 〈u(~r1)u∗(~r1 + ~r)〉 − |m|2.

The random field u(~r) is statistically isotropic if the moments are invariant under

rotations; the covariance function depends only on the scalar distanceR, i.e. 4Bu(~r1, ~r2) =

Bu(r).

C.1.2 Spatial power spectrum

If u(~r) is statistically homogeneous and isotropic complex random field with zero

mean, its covariance function Bu(r) can be expressed in the Fourier integral form

Bu(r) =

∫
expiκr Vu(κ)dκ,

where κ (in units of rad/m) denotes the wave number (spatial frequency) and Vu(κ) is

the one-dimensional spectrum of the random field u(~r).

If u(~r) is statistically homogeneous with zero mean, the covariance Bu(~r) can be

represented as

Bu(~r) =

∫ ∫ ∫
expiK·~r Ψu(K)d3κ

where the function Ψu(K) is the three-dimensional spatial power spectrum of the ran-

dom field u(~r). This function also can be obtained directly from the covariance func-

tion through the inverse Fourier transform relation.

C.1.3 Structure Function of Random Fields

Random fields are often times not strictly stationary, and in practice, the theoretical

description of spatial fluctuations of a random field in terms of the covariance function

and power spectral density are very limiting. For instance, velocity fields in turbulence

are not strictly homogeneous because the average velocity field cannot be constant over

widely separated portions of the random medium. Nonetheless, the velocity difference
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at two distinct points almost always behaves like a statistically homogeneous field.

Formally speaking, the random field u(~r) is decomposed into the sum

u(~r) = m(~r) + u1(~r)

where m(~r) = 〈u(~r)〉 is the mean and u1(~r) is statistically homogeneous fluctuation

with mean value 0. Random fields that permit a decomposition into a varying mean

and a statistically homogeneous fluctuation are called locally homogeneous.

Locally homogeneous fields are characterized by the structure function. In general,

the structure function for a locally homogeneous random field u(~r) can be expressed

in the form

Du(~r1, ~r2) = Du(r) = 〈(u(~r1)− u(~r1 + ~r))
2〉

= 〈(u1(~r1)− u1(~r1 + ~r))
2〉

and the spectrum is related to the structure function by

Du(~r) = 2

∫ ∫ ∫
Ψu(K)(1− cos(K · ~r))d2κ

C.2 Turbulence Theory

Light propagating through the atmosphere is affected by random fluctuations caused

by the atmospheric turbulence. The atmospheric turbulence can be described in tem-

perature fluctuations and index of refraction fluctuations. Specifically, air of different

temperature leads to inhomogeneities in the index of refractions. For example, when

the plane wave front light propagates through the atmosphere through the regions of

high refractive index, the light will be delayed with respect to other regions. And when

the light is received at the transmitter, the plane wave front would no longer be flat but

severely distorted. The phase interference caused by the delay across the beam would

eventually result in fluctuations in intensity. Spatial spreading of the beam occurs as

well, if the turbulence eddies of size greater than the beam diameter act like moving
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lenses [2].

To describe atmospheric turbulence, statistical approaches - modeling turbulence

as a random field - have been taken since Kolmogorov’s theory of turbulence [101].

For mathematical simplicity, Kolmogorov assumed that the turbulence field is locally

homogeneous and isotropic. Recall from Sec. C.1 that statistical local homogeneity

of the random field implies that the field can be decomposed into a varying mean and

statistically homogeneous fluctuations, and that isotropic field can be described by only

on their vector separation (independent of the chosen observation points).

Here we describe the turbulence caused by the fluctuations in the index of refraction

n(~r), which are primarily to random temperature fluctuations in the visible and near-

IR region of the spectrum. Under the assumption that the random field of the index

of refraction n(~r) can be considered locally homogeneous and isotropic, the spatial

distribution of the field can be characterized by the structure function, which is the

variance of index of refraction difference between two points separated by a vector

[102].

Dn(~r) = 〈|n(~r, ·)− n(~r + ~r1, ·)|2〉

=




C2
nl
−4/3
0 r2, 0� r � l0

C2
nr

2/3, l0 � r � L0

where L0 and l0 are the outer and inner scale respectively, which bounds the subrange

which turbulence properties are assumed to be statistically homogeneous and isotropic.

Cn is the index-of-refraction structure constant (in units ofm−2/3), which is a measure

of the strength of the fluctuations in the refractive index. Values of C2
n typically range

from 10−17 or less for weak turbulence and up to 10−13 or more for strong turbulence.

At constant height above the ground and for short time intervals at a fixed propagation

distance, it may be reasonable to assume that C2
n is essentially constant. For example,

Fig. C.1 shows the refractive structure parameter over a three-day period in August

2002 [1] in Washington D.C.

From the structure function, the well-known Kolmogorov power-law spectrum can
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Figure C.1: Daytime C2
n Profile over a three-day period in August 2002 [1].

be derived:

Ψn(κ) = 0.033C2
nκ
−11/3, 1/L0 � κ� l0.

C.2.1 Simulating Turbulence through Phase Screen

One of the technique to simulate the light propagating through the turbulence is the

phase screen method [92]. In this method, the light propagation path is modeled as

layers of medium of fluctuating diffractive index (see Fig. C.5). When light passes

through layer of changing diffractive index, the light is assumed to diffract and propa-

gate to the next layer. In order to produce this behavior of light, statistically generated

phase screens are placed at each layer. These phase screens represent the phase that

would have occurred in propagation from the previous layer.

Specifically, phase screens can be generate as follows. Here we used modified Kol-

mogorov spectrum, but other spectrum model can be used as well. Complex Gaussian

white noise (two 2-D array of Gaussian random numbers for the real and imaginary

parts)C is multiplied by the square root of the spectrum Ψ(κ), and then inverse Fourier

transformed:

P = F−1{
√

Ψ(κ)C}. (C.1)

where F−1 is the inverse 2-D Fourier transform, and Ψ(κ) corresponds to modified

Kolmogorov turbulence model [93]:

Ψ(κ) = 0.033C2
n(κ2+1/L2

0)−11/6 exp(−κ2/κ2
`)×(1+1.082(κ/κ`)−0.254(κ/κ`)

7/6),
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where κ is the spatial frequency (rad/m), L0 is the outer scale of turbulence, `0 is the

inner scale of turbulence, and κ` = κ/(3.3`0). C2
n is the structure constant of the index

refraction, which measures the strength of the turbulence.

Fig. C.2 shows the Kolmogorov spectrum (left), the gaussian random numbers

(middle), and the resulting phase screens (right). Note that multiplication of Kol-

mogorov spectrum with the gaussian can be viewed as filtering the gaussian field with

the low frequency spatial filter Ψ(κ) . Fig. C.3 shows the random phase screens which

all conform to the same Kolmogorov spectral model. By averaging |FT |2 of 100

random phase screens and plotting the spectrum in kx direction, we can verify from

Fig. C.4 that the averaging approximates the true Kolmogorov spectrum very well.

When these phase screens are placed in the propagation path, they introduce spa-

tially stochastic variations to the wave phase, and will develop amplitude fluctuations

during wave propagation through the free space from screen to screen. Fig. C.6 shows a

simulation example of how phase screens interrupts and distorts the beam intensity dur-

ing propagation. Fig. C.6 (top) shows LG beam propagating in vacuum at z = 100m

(top). When a random phase screen (one of Fig. C.3) is inserted, it will distort the phase

as shown in Fig. C.6 (bottom, right). The beam intensity after propagating z = 1m is

shown in Fig. C.6 (bottom, left). In later chapters, these generate phase screens are

used to simulate the effect of turbulence on the propagation of light.

The fried parameter, or coherent length, r0, measures the quality of the optical

transmission through the atmosphere along the defined path. r0 is related to Cn(z)2 by

r0 =

(
0.432

(
2π

λ

)2

sec(α)

∫

path

zCn(z)2dz

)−3/5

, (C.2)

where α is the zenith angle. When a constant turbulence strength is assumed over the

propagation distance and α = 0, (C.2) can be rewritten in relation to the structure

constant of the index refraction C2
n as or

r0 =

(
0.432

(
2π

λ

)2

∆zC2
n

)−3/5

.
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Figure C.2: Generation of Phase Screen

Figure C.3: Random Realization of Turbulence

Figure C.4: Verification of Kolmogorov Spectrum, of 100 random realizations
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Figure C.5: Layered Propagation System for Modeling Propagation of light through Turbulent
Atmosphere [2].

It has the dimension of length – at visible wavelengths, r0 varies from 20 cm at the

best locations to 5 cm at typical sea-level sites. It defines an important length scale of

the theory of seeing: the scale length over which phase errors in a wave front are of

the order of 1 radian, or put in another way, the phase variance σ2 over an aperture of

diameter D is approximately 1 rad2 [103]:

σ2 = 1.0299

(
D

r0

)5/3

.
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Figure C.6: Effect of a phase screen
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