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Abstract

Location tracking on mobile devices like smartphones has already begun to revo-
lutionize personal navigation. Unfortunately, these services perform poorly indoors
when GPS signals are no longer available. Highly accurate indoor location tracking
would enhance a wide variety of applications including: building navigation (malls,
factories, airports), augmented reality, location-aware pervasive computing, targeted
advertising, social networking, participatory sensing and could even support next
generation beam forming MIMO wireless networks. Current indoor localization
systems for smartphones often use RF signal strength from WiFi access points or
Bluetooth Low Energy (BLE) beacons to fingerprint indoor locations. Such systems
are sensitive to environmental changes and obstructions, require extensive training
procedures and are limited in both absolute as well as semantic localization accuracy.

We propose using audio signals in the ultrasound spectrum, just above the hu-
man hearing range, to provide ranging and localization for many off-the-shelf mo-
bile devices that are equipped with microphones. Ultrasonic ranging provides sev-
eral advantages over RF-based ranging and fingerprinting approaches, which make
it attractive for indoor localization. A relatively low propagation speed and carrier
frequency allow for precise propagation time measurements in software using com-
modity hardware. Acoustic signals also have a low penetration depth, which confines
them to target areas for accurate semantic localization. In this dissertation we ad-
dress several challenges related to acoustic localization, including system scalability,
ranging and localization accuracy, energy efficiency, robustness to noise, elimination
of human perceivable audio artifacts, efficient use of limited acoustic bandwidth and
rapid deployment strategies.
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Chapter 1

Introduction

1.1 Background

Since the dawn of humanity, navigation has been an invaluable tool that allows people to traverse

the world from an origin to a destination in a controlled manner. From the earliest recorded

use of celestial based navigation in Homer’s Odyssey in the 8th century BC [45], to modern

satellite navigation systems using the Global Positioning System (GPS), navigation has been

an indispensable catalyst to civilization. Despite the thousands of years of progress separating

ancient navigation methods to current ones, the core approach has still remained the same:

1. Locate yourself in relation to your destination.

2. Determine a path to your destination and follow it.

This dissertation addresses the first step of this process in indoor environments, where current

solutions like GPS are not available.
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1.2 Motivation

Localization systems have already revolutionized how smartphones interact with the surrounding

world. Up to this point, location-aware applications have been limited to outdoor environments

where devices are in reception range of satellite systems such as GPS. Unfortunately, satellite-

based approaches do not function indoors since their weak signals do not easily penetrate through

building walls, leaving the places people spend the majority of their time in as blind spots. Al-

though many technical principles of GPS can be applied to indoor localization systems, the

challenges of indoor and outdoor localization are vastly different. While GPS provides global

outdoor coverage using 31 satellites [79], the currently most prevalent indoor systems using WiFi

and Bluetooth Low Energy (BLE) beacons like [20] would require an order of magnitude or two

more beacons/access points to provide comparable localization precision inside an average sized

airport. The pervasiveness of obstacles inside buildings and the dynamic nature of these envi-

ronments make localization difficult as they block or add significant noise to the phenomena that

one can measure to determine one’s location like WiFi signal strength, the earth’s magnetic field,

the Time of Flight (TOF) of acoustic or RF signals and so on.

It is also interesting to perform a rough coverage cost comparison between GPS and an indoor

system. The US Department of Defense estimates that GPS has cost an estimated total of 14, 089

million USD since its inception until 2016 (including development and deployment) in 1995

USD ( 22, 941 million USD in 2017 USD) [82]. While these figures seem daunting, GPS provides

approximately 510, 072, 000km2 of coverage, or 0.0222km2/USD. If we imagine covering the

same area with WiFi access points, assuming a 100m coverage radius (0.0314km2) and a cost of

50 USD per unit, this would equate to a global coverage cost of 811, 805 million USD, or around

35x the cost of GPS, not accounting for installation or maintenance costs. It should also be noted

that a hypothetical WiFi based localization system such as this would provide poor performance

since the coverage areas of the access points do not overlap.
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If these challenges were overcome, the applications of indoor location-based services would

enhance a wide variety of applications including: augmented reality, pervasive computing, ad-

vertising, social networking and asset management. Various techniques have been proposed

and developed for indoor localization such as broadcast-based technologies (WLAN, RFID etc.)

and motion-based technologies, such as inertial sensing-based localization. Many technology

companies have been racing to develop Active Badge [103] type indoor location solutions like

iBeacon [20] and Gimbal [15] that provide proximity-based services. RF signal strength based

solutions are notoriously unable to provide accurate localization due to multipath caused by in-

door obstructions. They also suffer from the barrier problem, where a node placed close to a

wall often incorrectly localizes a user in the neighboring room. Although this may only present

a low-error in terms of absolute distance, it equates to a large error in terms of context. In order

to compensate for poor ranging technologies, the number of beacons can be increased and the

transmit power reduced to improve spatial resolution. However, this higher density of beacons

increases setup time along with hardware and management costs.

Ultrasound-based localization systems have been shown to outperform many RF-based sys-

tems in terms of accuracy. For example, the MIT cricket system [87] can range to within 5cm,

has a boundary detection accuracy of 1cm and can compute 3D location to within 10cm and ori-

entation within 3◦. Ultrasound is comparatively much slower than electromagnetic waves, which

makes it easy to measure signal Time Of Arrival (TOA) and perform TOF, Time Difference Of

Arrival (TDOA) or Round Trip Time Of Flight (RTOF) measurements. It also does not suffer

from the barrier problem since ultrasound does not penetrate walls nearly as easily as RF. The

main drawback to ultrasonic approaches is that they require custom hardware and infrastructure.

Our goal is to bring many of the benefits of ultrasonic localization to existing mobile devices like

smartphones and tablets.
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solute localization error

Figure 1.1 shows a comparison of current localization technologies in terms of mobile de-

vice complexity and infrastructure complexity versus location error. Current systems like [58,

59, 77, 87] require custom hardware (high mobile device and infrastructure complexity) in order

to achieve low positing error or use WiFi signal strength based approaches for coarser-grained

localization [38]. Inertial Measurement Unit (IMU) based systems require several inertial sen-

sors, are only able to provide relative positioning and accumulate error over time due to drift.

Visual Light Communication (VLC) and IR based systems such as [65, 90] work with unmodified

smartphones while other systems like [103] require custom receiver hardware and are affected

by ambient lighting conditions. RF RTOF systems like [9, 30] utilize Ultra Wide Band (UWB)

ranging technology to obtain precise location information at high update rates, however, require

custom receiver and transmitter hardware. We aim to provide highly accurate localization with

minimal mobile device complexity, while also keeping the amount of transmitters and their com-

plexity to a minimum. In this dissertation we describe the development of an ultrasound-based,

indoor localization system ALPS, which utilizes off-the-shelf mobile devices as receivers and

cheap transmitters to fit into the green squares in Figure 1.1.
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1.3 Problem Statement

We propose to develop a method and system for providing sub-meter accurate indoor ranging

and location data to off-the-shelf mobile devices using ultrasound signals. By off-the-shelf mo-

bile devices we refer to any unmodified mobile computing device, which is equipped with digital

sound recording hardware that has a frequency response reaching above the human hearing range.

Current typical devices such as smart-phones and tablets are equipped with audio hardware sen-

sitive up to a frequency of 24kHz.

Given the increased processing capabilities of mobile devices, it is now possible to demodu-

late data and ranging information in real-time. In Chapter 4 we show the feasibility of detecting

and measuring the propagation time of ultrasonic transmissions. We believe that this communi-

cations primitive can be used to develop transmitters that act as a fine-grained indoor localization

infrastructure.

One can think of a mobile device as acting like a software-defined radio (SDR) for acous-

tic signals. This flexibility allows us to perform relatively complex signal processing, but also

brings up many research challenges including: How should we construct the signal? How many

signals can coexist in a single space (channel capacity)? Since timing and localization are so

closely related, what are the limits in terms of time synchronization and ranging? This requires a

new architecture that lies at the intersection of acoustic communication, timing, localization and

mobile computing.

We aim to answer the following research questions:

1. How well can the limited ultrasonic audio bandwidth of commodity mobile devices be

used for ranging and localization applications? What parameters impact performance in
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terms of ranging accuracy, reliability, robustness, energy consumption and scale?

(a) How can we make acoustic ranging transmissions imperceptible to humans, but still

detectable using commodity mobile devices?

(b) How can we allow for multiple-access between transmitters and receivers?

(c) What is the capacity of this communication channel and how robust is it to external

noise?

(d) How can we efficiently map received signals to the beacons that sent them?

2. What are the trade-offs and limitations performing time synchronization through a mobile

operating system’s stack that would impact applications with tight timing requirements

like ranging and localization?

3. What are the critical design components required of a transmission infrastructure to make

an acoustic localization system economical and easy to deploy?

4. How can we maximize the signals coverage of ultrasound beacons to decrease the amount

of beacons needed for an installation?

5. How does the proposed system compare to state-of-the-art technologies in terms of local-

ization accuracy and update rate?

1.4 The Acoustic Location Processing System (ALPS)

The core concepts of this thesis are demonstrated through a system called the Acoustic Location

Processing System (ALPS) which addresses many of the challenges found in indoor localization.

ALPS is an ultrasound-based indoor localization system that uses the small amount of bandwidth

just above the human hearing range to localize off-the-shelf mobile devices such as smartphones

and tablets. As shown in Figure 1.2, a typical installation consists of two or more beacons de-
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ployed in the target area at known locations. The beacons transmit an ultrasonic ranging signal at

pre-defined release intervals, i.e. Time Division Multiple Access (TDMA). The beacons are time

synchronized using 802.15.4 radios that listen to periodic transmissions from a network master.

The mobile device(s) to be localized are time synchronized to the beacon infrastructure using

BLE and record audio at a high-sampling rate (48kHz) for a period of time to collect available

transmissions. The mobile device(s) then demodulate any received signals, determine which bea-

con each signal originated from based on its TOA and then calculate the TDOA of the signals.

The location of the receiver can then be calculated using multilateration based on the TDOA

of the signals and the location of the beacons. ALPS is capable of time synchronizing tightly

with the ultrasound transmissions by recovering the network master’s clock using multilatera-

tion. While synchronized it can perform TOF ranging (see Section 5.4), which requires fewer

ultrasound signals to be received to localize the device compared to TDOA pseudo-ranging. The

location calculations are performed on a cloud based location engine, which communicates with

the mobile devices via a WiFi or cellular data connection.

The ultrasound signals emitted by ALPS beacons are designed to be inaudible to humans, re-

ceivable by mobile devices and are able to provide high resolution ranging information. Specifi-

cally, we use acoustic linear chirp signals in the 20kHz−21.5kHz frequency band, which is just

outside the human hearing range (20Hz−20kHz), but detectable using common MEMS micro-

phones with 48kHz ADCs on mobile devices. The ultrasound modulation scheme is described

in Chapter 4.

In a range-based localization system, signal timing accuracy translates directly into ranging

and therefore localization accuracy. ALPS is able to determine the TOA of received ultrasound

signals to a very high accuracy in part because we designed these signals to exhibit a property

well known in the RADAR community called Pulse Compression (see Section 4.2). This dramat-

ically increases the Signal to Noise Ratio (SNR) of the signal at the receiver over conventional
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Figure 1.2: ALPS architecture overview

systems that do not employ Pulse Compression.

Despite the ultrasound signals being outside of the human hearing range, one of the main

challenges associated with near sonic modulation over standard audio speakers (such as those

used in ALPS beacons) is avoiding humanly perceivable artifacts. Since speakers are mechan-

ical systems, they cannot instantly transition between gain settings without creating clicking

noises. To alleviate these problems, our chirp signals require slow amplitude fade-in and fade-

out changes, slow frequency changes and all adjustments are only made during zero-crossing

points in the signal. We conducted a user study and extensive range and timing jitter testing in

Section 4.3.1 to verify that our acoustic signal design fulfills all of our design goals.

Once a recording of several ultrasound signals is completed, it is demodulated in software

on the mobile device and the TDOA or TOF (if tightly time synchronized via clock recovery) of

the signals is measured based on their TOA and the time the signals were transmitted. Next the

8



received signals need to be associated with their source beacons and in turn the known locations

of the beacons in order to calculate the position of the mobile device. Since the beacons transmit

ultrasound according to a fixed schedule, time synchronizing each mobile device to this schedule

allows them to determine the source beacon of each ultrasound signal. To do this, our beacons

and network master nodes transmit periodic BLE packets that contain a counter value indicating

the time offset from the broadcast of the BLE packet to the beginning of the ultrasound transmis-

sion cycle. Due to the indeterministic timing jitter of delivering a BLE packet to the application

running on the mobile device, our time synchronization precision is only to the nearest time slot

(see Section 5.5). Once the TOA values are measured and mapped to the corresponding beacons,

the ranges or pseudo-ranges from the mobile device to these beacons are calculated and sent to

a cloud based solver, which calculates the location of the mobile device by multilateration or

trilateration respectively, and sends the result back to the device.

1.5 Thesis Statement

The measurement of time synchronized ultrasonic signal propagation can be used to precisely

range to and localize mobile devices.

1.6 Contributions

The work as part of this thesis will provide the the following contributions. The chapters of this

dissertation which address each contribution are noted below.

1. The design and evaluation of an ultrasound modulation scheme (Chapter 4):

(a) Which can provide accurate ranging information.

(b) Which can provide multiple access for transmitters and receivers.
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(c) Which is imperceptible to humans, but detectable by commodity mobile devices.

(d) Which is able to allow the receiver to map individual ranging signals to the transmit-

ters that sent them.

2. Design and evaluate a method to time synchronize mobile devices to the transmission

infrastructure which allows them to perform both pseudo-ranging (TDOA) as well as direct

ranging (TOF) (Chapter 5).

3. Design and evaluate an embedded beacon platform (Chapter 3 and Appendix A)

(a) Which can support the modulation scheme from 1.

(b) Which can provide localization coverage to large areas with a relatively low amount

of beacons by dispersing the transmitted signals in an omni-directional fashion.

(c) Which is sufficiently energy efficient to allow for battery or energy harvesting opera-

tion.

4. Design and evaluate a location engine (Chapter 6)

(a) Which can perform multilateration and trilateration to determine the location of mo-

bile devices.

(b) Which is scalable in terms of the amount of mobile devices being localized.

(c) Which integrates with standard communication protocols for interfacing with mobile

devices and location services.

(d) Which provides IMU sensor fusion for improving localization accuracy and update

rate.

(e) Which supports the rapid localization of beacons by non-technical users for easy

system deployment.
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Chapter 2

Related Work

2.1 Overview

This dissertation touches upon topics related to ultrasonic communication, ranging, localization

and time synchronization. All of these areas have large bodies of related research, so our discus-

sion will focus primarily on closely related work in the mobile computing space.

At the core of any localization system lies a ranging or measurement technique which can be

classified as a range-based approach or a range-free approach, as are described in Section 2.2 and

Section 2.3 respectively. In Section 2.4 we detail current ranging technologies which incorporate

these techniques and then describe localization systems that are based on these technologies in

Section 2.5. Finally we address the related work on time synchronization that is critical to many

localization systems in Section 2.6.

2.2 Range-based Approaches

Range-based approaches are used to directly or indirectly measure distances between a target

that is being localized and another object or anchor point. This typically involves measuring the
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propagation time of a signal or the difference in propagation times. Systems such as [42, 59, 83,

87], make use of these techniques.

2.2.1 Time Of Flight (TOF)

TOF is a ranging method that directly measures the signal propagation time between a transmitter

and a receiver, for example as seen between transmitter A and receiver B in Figure 2.1. TOF

relies on knowing the time of transmission tTXA, the time of arrival of the signal at the receiver

tRXB and the signal propagation speed c. From these values, the range rAB can by calculated

using Equation 2.1.

rAB = c(tRXB − tTXA) (2.1)
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(a) TOF System diagram
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(b) TOF Transaction diagram

Figure 2.1: Time of Flight ranging

There are several ranging and localization systems which employ variations of TOF ranging,
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such as many Radio Detection and Ranging (RADAR) (Section 2.4.1) and SONAR systems

(Section 2.4.2), as well as Cricket [87] (Section 2.5.2) and ALPS. The primary challenge of

many TOF based systems, is to time synchronize the transmitter and receiver to a precision

high enough to allow the measurement of the propagation time of the signal being sent. ALPS

uses a clock recovery method (see Section 5.4), similar to that of common GPS receivers to

time synchronize with the beacon infrastructure. Common RADAR and SONAR systems do not

require time synchronization since the transmitter measures the TOF of the signal traveling to its

target and its reflection returning to the same transmitter.

2.2.2 Time Difference of Arrival (TDOA)

TDOA is a pseudo-ranging method that measures the Time Difference Of Arrival of two or more

signals sent from transmitters to a receiver, for example as seen between transmitters A and C

sending out signals of propagation speed c to a receiver B in Figure 2.2. Pseudo-ranging, as

opposed to direct ranging like TOF, does not directly calculate the ranges rAB and rBC since the

times of transmission tTXA and tTXC are not known. Instead, it assumes that the transmissions

of the transmitters are concurrent or at known offsets and that otherwise only the times of arrival

tRXB0 and tRXB1 are known. From this the difference of the ranges rAB − rBC can be calculated

using equation 2.1. Starting with the TOF equations 2.2 and 2.3:

rAB = c(tRXB1 − tTXA) (2.2)

rBC = c(tRXB0 − tTXB) (2.3)

Taking the difference between these ranges

rAB − rBC = c(tRXB1 − tTXA − tRXB0 + tTXB) (2.4)
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Figure 2.2: Time Difference of Arrival pseudo-ranging

Since we assume a concurrent signal transmission, tTXA = tTXB. Therefore:

rAB − rBC = c(tRXB1 − tRXB0) (2.5)

If the range between the transmitter A and C is known rAC = rAB + rBC , we can substitute

this into equation 2.5, from which the individual ranges rAB and rBC can be calculated using

equations 2.6 and 2.7 respectively.

rAB =
c(tRXB1 − tRXB0) + rAC

2
(2.6)

rBC =
−c(tRXB1 − tRXB0) + rAC

2
(2.7)
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The main advantage of TDOA based systems is that only the transmitters (or in an inverse

system the receivers) need to be time synchronized instead of both the transmitters and the re-

ceivers. This allows for virtually unlimited receivers in systems like the GPS (see Section 2.5.1)

and enables systems where the latter synchronization is not possible, like shooter localization

systems such as [95]. Many systems such as ALPS [66, 67, 68] incorporate TDOA for local-

ization. The main disadvantage of TDOA over TOF lies in the requirement for one additional

transmitter per measured dimension (i.e. two in the above example for 1D, three for 2D and so

on).

2.2.3 Round Trip Time Of Flight (RTOF)

RTOF is a ranging method that measures the time of flight of one signal sent from a node A to

a node B, which then replies with another signal sent back to the A after a known time delay as

seen in Figure 2.3. To calculate the range rAB, node A sends a signal with propagation speed c

to node B at time tTXA, which is timestamped by its local clock. Node B receives the packet at

time tRXB and replies with another packet after a known delay of tTXB− tRXB. Node A receives

the reply at time tRXA and records this timestamp. The RTOF tRTOF can then be calculated by

equation 2.8.

tRTOF = tRXA − tTXA − (tTXB − tRXB) (2.8)

Since tRTOF is twice the time of a one-way trip, the range rAB can be calculated using equation

2.9.

rAB =
c tRTOF

2
(2.9)
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Figure 2.3: Round Trip Time Of Flight ranging

The major advantage of RTOF over schemes like TOF and TDOA is that no time synchronization

is required between the nodes, which is often difficult to achieve to a viable precision in RF based

systems. The scheme, however, is at a major disadvantage in terms of scalability since it requires

an exchange of packets to take place, rather than only having one-way communication between

nodes like in TOF and TDOA. There are several systems that employ RTOF for ranging, such as

the majority of Decawave UWB systems [9] (Section 2.4.4), Nanotron systems [26], as well as

the Beep Beep system [84] (Section 2.5.8).

2.3 Range-free Approaches

Range-free approaches do not rely on direct range measurements to determine distances, but

instead rely on other metrics that can be used to localize devices such as the angle a signal arrived

at with respect to the receiver or the signal strength of artificial or natural phenomena which may
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be mapped to a location or be used to calculate ranges. Systems such as [38, 72, 76, 99, 103],

make use of these techniques.

2.3.1 Angle of Arrival (AOA)

Angle Of Arrival (AOA) is a method used to determine the angle of arrival α of a signal sent

from a node A to a node B. As opposed to the ranging methods discussed previously (TOF,

TDOA, RTOF), this method does not determine any ranges or pseudo-ranges, but only the angle

that a signal propagated from with respect to the receiver. Systems commonly use arrays of

receiving elements (antennas for RF and microphones for acoustic systems) to determine the

AOA of a signal. The angle can be determined using the relative TOA of the same signal at

different receiving elements on the same unit, which are at known locations or using the relative

Received Signal Strength Indicator (RSSI) of the signal at the different receivers.

A

B
𝛼𝛼𝐵𝐵𝐵𝐵

Time

A

B

(a) AOA System diagram

A

B
𝛼𝛼𝐵𝐵𝐵𝐵

Time

A

B

(b) AOA Transaction diagram

Figure 2.4: Angle of Arrival measurement
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Although limited AOA measurements are already possible with only two receiving elements,

practical systems such as Cisco’s Hyperlocation system [19] use upward of 30 antennas for

higher accuracy. Several AOA measurements from multiple transmitters can be used to deter-

mine the location of a receiver using triangulation. AOA measurements are often combined with

range measurements using TOF, TDOA or RTOF for better localization in systems like [102].

The advantages of AOA lie in not requiring time synchronization or two-way communication

between nodes, however, the additional hardware costs of having multiple receiving elements

(or transmitting elements in an inverse system) is a major drawback, especially for mobile and

power constrained devices.

2.3.2 Received Signal Strength Indicator (RSSI)

RSSI based ranging and localization are techniques that can be regarded to be range-based or

range-free. These systems measure the range or location of a node B based on one or more

nodes A that transmit packets of a known signal strength STXA and are received by B at a

reduced signal strength SRXB due to the loss in power associated with free space propagation

and absorption by obstacles. From the difference in sTXA and sRXB an approximate range can be

calculated by using a path loss model [96] such as the free space path loss formula 2.10, where

sTXA and sRXB are in dB, f is the frequency of the signal and c is the propagation speed of the

signal.

sTXA − sRXB = 20 log10(
4πrABf

c
) (2.10)

Different models can be formulated to different environments, propagation mediums and

signal types. Alternately, the signal strength can be mapped to a location experimentally, which

would be classified as a range-less localization technique. In general RSSI, especially for RF
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Figure 2.5: Received Signal Strength Indicator measurement

based systems, is a very noisy metric, which is highly dependent upon the environment, receiver

and transmitter orientation, the directionality of the signals emitted by the transmitters, obstacles

and multipath propagation, which leads to high positioning errors, usually of several meters.

Despite this, it is currently the most prevalent method used in indoor localization products such

as [1, 12, 15, 17, 20, 34, 97] and many more. Its popularity is primarily due to it working with

WiFi signals from commodity access points, which are ubiquitous in most indoor environments

and RSSI being an easily accessible metric on modern smartphones, tablets and laptops. One of

the first systems which pioneered indoor localization using WiFi RSSI is Microsoft’s RADAR

system [38], which is described in Section 2.5.4.
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2.4 Ranging Technologies

This section examines several ranging technologies which utilize distance estimation techniques

from Section 2.2 and form the basis of many range-based localization systems.

2.4.1 Radio Detection and Ranging (RADAR)

RADAR has its roots as a military technology, originally developed before and during World

War II for aircraft detection. It uses radio waves to measure range, velocity, angle and even

the shape of objects. There are a plethora of commercial RADAR systems for a wide array of

applications, ranging from military missile defense systems, to weather RADAR, to RADAR

sensors in autonomous vehicles for obstacle detection. The architecture of a common RADAR

system consists of a transceiver transmitting an RF signal at an object. The signal is reflected

by the object, back to the transceiver and the signal’s TOF (see Section 2.2.1) is measured.

This information can be used to calculate the range of the object from the transceiver by using

the classic RADAR equation 2.11 [91], where R is the range between the RADAR transceiver

and the target object, PS is the transmitted power of the signal, G is the antenna gain, λ is the

wavelength of the signal, σ is the RADAR cross section and PE is the received power. Other

metrics such as the orientation of the RADAR antenna at the time of detection or the Doppler

shift in the received signal may be used to calculate the location and velocity of the object.

R = 4

√
PSG2λ2σ

PE(4π)3
(2.11)

The RADAR community has been elemental in developing several signaling and ranging meth-

ods that are elemental to practically all range-based localization systems, including ALPS. One

of these methods is Pulse Compression, which is described in Section 4.2.
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2.4.2 Sound Navigation and Ranging (SONAR)

Active Sound Navigation and Ranging (SONAR) in principle is similar to RADAR (see Sec-

tion 2.4.1), except that it uses sound waves as signals instead of radio waves. This makes SONAR

particularly well suited for underwater applications, where RF signals attenuate faster than sound.

In fact, marine animals have been using the principles behind SONAR for navigation for millions

of years. Although SONAR is capable of functioning using air as a transmission medium instead

of water or other dense materials, RADAR and Light Detection and Ranging (LIDAR) are gener-

ally favored for these applications due to their superior range and sampling rate in air. Man-made

SONAR, like RADAR has most of its roots in military applications, although the first underwater

echo ranging device was developed as a response to the Titanic disaster in 1913 [105]. SONAR

systems have many applications, primarily in the maritime sector, like underwater mapping, mil-

itary submarine and vessel detection and accident investigation for sunken ships and planes.

There are two types of SONAR systems: active, which like RADAR relies on an transceiver

to send out a signal which reflects off of an object and is again received by the transceiver, and

passive, which simply listens to signal sources that are in the environment. Both active and

passive SONAR can be used to determine the range and location of an object using TOF and

TDOA respectively. AOA, RSSI and Doppler shift may also be used to determine the location,

range and velocity of an object.

Many signaling and ranging methods that are used in SONAR are also employed in RADAR,

such as Pulse Compression (see Section 4.2), which is a technique also used by ALPS.

2.4.3 Light Detection and Ranging (LIDAR)

LIDAR is the most recent of the ranging technologies described so far, originating in the 1960’s

and is similar to RADAR and active SONAR in that it commonly measures the TOF of a signal

being sent to and reflected off of an object. Instead of radio signals like RADAR or acoustic
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signals like SONAR, LIDAR uses light (ultraviolet, visible or infrared), typically emitted by a

laser for ranging. Like RADAR, it is also generally used in air or space, but has the advantage of

being able to capture higher resolution data due to the shorter wavelength of the emitted signal.

This makes it ideal for applications such as high resolution obstacle detection in autonomous

cars, 3D laser scanning , mapping, and atmospheric sensing. Generally LIDAR systems have

less range and are more expensive than similar RADAR systems, but are becoming increasingly

popular due their high resolution and the high amount of interest in autonomous cars and robots.

In terms of accuracy applied towards indoor localization systems, LIDAR based systems are

regarded as the most accurate of all current technologies [7], however, their high cost and power

requirements are prohibitive for many indoor localization applications, especially for mobile

devices.

2.4.4 Ultra Wide Band (UWB) Ranging

UWB based systems use RF signals, usually in the sub-1GHz, 2 − 5GHz and 6 − 10GHz

frequency ranges, over wide bandwidths for ranging. The wide bandwidth allows for precise

timestamping of received signals. These systems commonly employ RTOF (see Section 2.2.3)

ranging schemes, however, TDOA (see Section 2.2.2) is also possible with tight time synchro-

nization [32] and TOF (see Section 2.2.1) for example when acting as RADAR (see Section 2.4.1)

systems. UWB ranging has been an active area of research since the early 2000s [46, 62, 70],

and has lead to the development of the IEEE 802.15.4a standard [35], which specifies two phys-

ical layer standards using UWB and Chirp Spread Spectrum (CSS) for precise ranging in short

range networks. To our knowledge, there are currently only two companies who design IEEE

802.15.4a compliant chipsets specifically for UWB ranging: Time Domain [30] and more re-

cently Decawave [9]. Time Domain enables sub-2cm ranging accuracy at an update rate of up to

125Hz over up to 1.1km (dependent upon the environment, antenna and government RF power
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regulations) with its PulsON 440 module shown in Figure 2.6(a). This module is also capable of

acting as a RADAR and performs TOF ranging by bouncing signals off of objects and receiving

their reflections.

(a) Time Domain PulsON 440
module with second antenna for

RADAR operation [30]

(b) Decawave DWM1000 module [9]

Figure 2.6: UWB ranging modules

Decawave’s DWM1000 module, shown in Figure 2.6(b), integrates its DW1000 UWB rang-

ing chipset, which claims a ranging precision of 10cm, a maximum update rate of more than

100Hz and a range of up to 280m (although this requires a power level that is not compliant

with FCC regulations). At a cost of 15.19 USD in single quantities, the DW1000 chipset is

reasonably cheap and only requires few external components, which combined with its high ac-

curacy, high update rate, small size, long range and ability to pass through a limited amount

of walls have made it a clear choice for the majority of cutting edge UWB indoor localization

systems such as [13, 29, 63]. Due to commonly employing an RTOF ranging scheme, these

are however not as scalable as many competing systems. UWB chipsets also have not made

their way into any smartphones, tablets or laptops yet, and it is questionable whether this will
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ever happen due to power and space constraints, as well as the need for a beacon infrastructure.

Current ALPS beacons and network masters/and plug forwarders (see Section 3.2) also use this

chipset for inter-beacon ranging, as well as future tag tracking.

2.5 Localization Systems

Localization systems are used to determine the location of a target, such as a mobile device in an

environment. They may incorporate one or more of the techniques discussed in Section 2.2 and

Section 2.3, and may be based upon one of the technologies described in Section 2.4.

2.5.1 Global Positioning System (GPS)

GPS is probably the most well known localization system to date. It is a type of Global Naviga-

tion Satellite System (GNSS) (other examples include Europe’s Galileo, Russia’s GLONASS and

China’s BeiDou-2) consisting currently of 32 satellites (31 active) and provides global outdoor

localization coverage with an accuracy of around 5m. It was developed by the US Department

of Defense starting in 1973, and became fully operational in 1995 with a constellation of 24

satellites in medium earth orbit places [83].

GPS functions by transmitting RF signals from its satellites, which are tightly time synchro-

nized using atomic clocks and are orbiting at precisely known locations in orbits around the

globe. In its current constellation, about nine satellites are visible from anywhere on earth (that

is not obstructed by obstacles like buildings) at any point in time. Each satellite transmits a

signal that encodes a pseudo-random code that is known to the receiver, along with the time of

transmission of a designated point in the pseudo-random code (known as an epoch), as well as

the satellite’s position at that time. A GPS receiver receives these signals from multiple satellites

simultaneously and cross correlates the known pseudo-random code with the received signals to
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find their times of arrival. Since GPS receivers are typically not tightly time synchronized with

the satellites, a TDOA (see Section 2.2.2) ranging scheme is used to determine a set of pseudo-

ranges from the receiver to the satellites. The location of the receiver can then be solved for

using multilateration. The speed of the receiver as well as highly precise Coordinated Universal

Time (UTC) can also be calculated from the received signals. GPS receivers are commonly also

able to perform TOF ranging (see Section 2.2.1) once they are tightly time synchronized.

GPS receivers are cheap and ubiquitous nowadays and have found their way into many sys-

tems from military missiles, to smartphones, to automotive navigation systems, to cameras that

geotag photos. Unfortunately, GNSS signals do not penetrate walls, and are therefore not acces-

sible in buildings so they cannot be used for indoor localization systems.

2.5.2 Cricket Location-Support System

MIT’s Cricket Location-Support System [87] is an ultrasound and RF based localization system

that measures the TOF (see Section 2.2.1) of ultrasonic pulses transmitted by beacons to mobile

receivers, which are time synchronized to the beacons via RF. It is able to achieve a ranging

accuracy of 5cm, a localization accuracy of 10cm and an orientation accuracy of 3◦.

Cricket uses what is often called a thunder/lightning approach for ranging by first sending out

an RF message that travels at the speed of light (lightning) to time synchronize nearby receivers

to a beacon’s transmission and also send the beacon’s location, followed by an ultrasonic signal

(thunder) at a known time offset from the RF signal. Since the RF signal’s propagation time is

negligible to that of the ultrasonic signal, the TOF of the ultrasound can be precisely and easily

measured. The location of the receiver is determined by collecting range samples from multiple

beacons and then performing trilateration.

Cricket uses custom beacons and receivers with standard 40kHz piezo ultrasound transmit-

ting/receiving elements and 418MHz radios. 40kHz ultrasound transceivers are highly direc-
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tional and in the Cricket system have a beam width of about 30◦+/−3dB in both the horizontal

and vertical planes. This results in a high required beacon density for localization, however,

also reduces interference between beacons. The system handles multiple access by randomiz-

ing transmissions in time instead of coordinating them, which reduces complexity and power

consumption. Orientation of the receiver is calculated using AOA techniques and an array of

ultrasound receiver elements on each receiver.

ALPS also faces the speaker directionality problem, although since it uses a lower frequency

band, it is not as prominent as that of Cricket. Previous ALPS beacon generations used an

omni-directional ultrasonic speaker horn (see Section 3.7.2), for increasing ultrasound signal

coverage, while the latest beacons use a four speaker array for even better coverage and range

(Section 3.7.3).

2.5.3 Dolphin

Dolphin [58, 59] is an acoustic based system that adopts a TDOA pseudo-ranging approach using

ultrasonic modulation. Dolphin uses a 50kHz carrier for ultrasound signal transmission that is

phase modulated by 511 bit Gold codes using Direct Sequence Spread Spectrum (DSSS) for

multiple access. This allows all of their time synchronized beacons to transmit simultaneously

and their receiver to disaggregate the signals in software by cross correlation or matched filtering

to determine their TOA and which transmitter they originated from.

Dolphin uses broadband 50kHz ultrasound transmitters, which in their test setup are de-

ployed in a very dense manner with four transmitters placed at the vertices of every 1.2mx1.2m

square of area. The system provides a localization accuracy of < 5cm for 95% of the measured

points, and a high update rate due to the concurrent transmissions of ultrasound ranging sig-

nals. These transmitters also have a highly directional beam pattern, similar to MIT’s Cricket

(Section 2.5.2), therefore requiring a high transmitter density.
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2.5.4 Microsoft RADAR

Microsoft RADAR [38] was the first WiFi based indoor localization systems and uses RSSI mea-

surements (see Section 2.3.2) from multiple access points to determine the position of multiple

laptop receivers. It is able to determine the location of a receiver to a median accuracy of 2.94m

over a roughly 1000m2 large office space area using only three WiFi access points.

RADAR used an empirical and a propagation model based method for mapping WiFi RSSI

data to locations. The empirical method consisted of walking through the target environment

and taking RSSI measurements at regular distance intervals at multiple receiver orientations. To

determine a receiver’s location, RSSI samples were taken and then correlated with the training

data set by using a k-nearest neighbour pattern matching algorithm. The propagation model

based method consisted of modeling the WiFi signal propagation characteristics based on the

target environment’s floor plan and the Wall Attenuation Factor (WAF) of the walls. Overall

the empirical model performed better with a median localization accuracy of 2.94m, while the

propagation model based method provided a median resolution of 4.3m. While the empirical

model performed better, it is generally more difficult to train and changes rapidly depending on

how many people there are in rooms, if furniture is moved, etc. The propagation model method is

somewhat more easy to train if the floor plan and the WAF of all walls are known, however, this

model does not account for differences between receiver and transmitter hardware and dynamic

obstacles such as moving people.

Microsoft RADAR laid the foundation for several systems such as [1, 15, 17, 20, 34, 40, 53,

71] and many more. WiFi RSSI based localization has come a long way, however, the inherent

noisiness of the RSSI metric still make it lag behind range-based systems as can be seen in the

results of Microsoft’s annual localization competitions [22, 23, 24, 25].
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2.5.5 Motetrack

The MoteTrack [72] system uses a similar approach to Microsoft’s RADAR system (see Sec-

tion 2.5.4), with an emphasis on distributed operation in a sensor network. MoteTrack is able to

achieve a median and 80th percentile location-tracking accuracy of 2m and 3m respectively over

an office space area of 1742m2 using 20 beacons.

MoteTrack works by measuring the RSSI (see Section 2.3.2) of RF signals transmitted by

several beacons within range of a receiver. Instead of WiFi signals, the system relies on custom

hardware with 433/916MHz radios. MoteTrack varies the transmission power level of each RF

transmission and transmits the used power level in its radio messages to provide more diverse

data samples with different multipath, range and signal strength characteristics depending on the

transmission power level. Like in Microsoft’s RADAR system, RSSI and transmitter ID data

is mapped to locations throughout the target space manually in a training phase. MoteTrack is

designed to be fault-tolerant and can function with up to 60% of the beacons failing thanks to a

decentralized location estimation protocol.

2.5.6 Active Badge

Active Badge was a pioneering indoor localization system which dates back to 1990 and uses

IR transmitters and receivers to localize users via a simple RSSI (see Section 2.3.2) based local-

ization scheme. The system consists of IR transmitters carried by users (active badges), which

transmit unique ID codes once every 10s to IR receivers placed throughout the target environ-

ment. If a receiver receives an IR packet from a badge, it will signal a location server that the user

associated with the received ID is present near the receiver. This provides room level accuracy

and does not suffer from the barrier problem (incorrectly localizing transmitters to an adjacent

room), since IR does not penetrate through walls. The badges lasted up to 16 months on batter-

ies, however, the receivers needed to be hardwired in a network, which carries a high installation
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cost. There were also scaling limitations in terms of the number of transmitters as there was no

multiple access scheme.

2.5.7 Active Bat

The Active Bat system [57, 104] is an ultrasound and RF based TOF (see Section 2.2.1) indoor

localization system, which similar to MIT’s Cricket (see Section 2.5.2) uses the thunder/lighting

principle to measure the TOF of ultrasound signals. It achieves a localization accuracy of 14cm

for 95% of location samples.

Active Bat system consists of mobile ultrasound and RF transmitters which send RF mes-

sages with the transmitter’s unique ID to a network of receivers that are deployed in the en-

vironment. The TOF of the ultrasound signal emitted by the transmitter is measured by first

transmitting an RF message to time synchronize nearby receivers, followed by an ultrasound sig-

nal after a fixed time interval. The receivers are all networked and attached to a central location

server, which performs trilateration on the received TOF and ID values from the networked re-

ceivers. The orientation of transmitters can also be calculated based on the transmitter’s location

and the location of the receivers due to the directional ultrasound signal only being received by

receivers in its narrow beam. Multiple access is handled by the location server coordinating the

transmissions of the transmitters via a TDMA scheme.

2.5.8 BeepBeep

BeepBeep [84] is one of the first acoustic ranging systems that was implemented on off-the-

shelf mobile phones. It uses an acoustic based RTOF ranging scheme (see Section 2.2.3) to

determine the range between two mobile phones. BeepBeep uses the free running clock of the

audio subsystem on the phone as a time reference for timestamping the transmission and receipt

of the audio signals it sends. Its system setup is like that shown in Figure 2.3(a) and its ranging
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scheme works as follows:

1. Both devices A and B start recording audio.

2. Device A transmits an acoustic signal to B and records it using its own microphone which

is co-located with its speaker.

3. Device B receives the signal and replies by sending another acoustic signal to A and

records its transmission with its microphone.

4. Device A receives and records the acoustic signal from B.

5. Both devices examine their audio recordings to determine the time when they transmitted

and received the acoustic signals (i.e. times tTXA, tTXB, tRXA and tRXB in Figure 2.3(b)).

6. The devices exchange these timestamps and can then calculate the distance between them

using equations 2.8 and 2.9.

Two important aspects to note about the above process are the use of the free running audio

clocks to timestamp the transmission and reception of the acoustic signals on both devices and

that both devices record their own transmissions, which they timestamp later on when processing

their recordings. When attempting to timestamp transmissions as they are submitted to the audio

driver for transmission, there is a non-deterministic delay before playback starts, which can sig-

nificantly impact the range measurement. By having the devices record their own transmission

using their microphone, which is co-located with its speaker, this delay is eliminated and re-

placed by a constant, known time offset corresponding to the TOF of the acoustic signal from the

microphone to the speaker. The use of the free-running audio clock instead of the phone’s system

clock also eliminates any clock adjustment that the OS may apply while the ranging operation is

running. ALPS also makes use of the free running audio clock as is described in Section 5.3 and

Section 5.4.

The BeepBeep system uses linear chirp audio signals for ranging instead of pure sine waves.
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These signals exhibit Pulse Compression when being correlated at the receiver, which dramat-

ically increases the SNR in the recording. Pulse Compression (see Section 4.2) is a signaling

technique originally developed by the RADAR community, which is also used in ALPS for in-

creased range and improved range resolution.

2.5.9 Enhanced 911 (E911) Mobile Phone Localization

The US FCC mandates several features for mobile phones, which allows them to be located in

emergency situations [11]. E911 Phase 2 required that 95% of a network operators phones must

be location capable by the end of 2015. This means that an emergency responder must be able

to localize a phone to within 300m. This requirement is expected to decrease over the next few

years to within 10m.

Most current smartphones provide their own location services based on a combination of

GPS, WiFi, BLE and cell tower based localization, which can be forwarded to a 911 responder.

If a phone does not provide location services, it may still be localized based on the AOA (see

Section 2.3.1) between multiple antennas on multiple cell towers, the TDOA (see Section 2.2.2)

of the phone’s signals to at least three towers, or using fingerprinting of certain channel charac-

teristics such as multipath fading which is mapped to locations within a cell. None of the latter

methods provide highly accurate location data due to the Line of Sight (LOS) requirement for

AOA and TDOA and the noisy nature of the fingerprinting method.

2.6 Time Synchronization

Time synchronization is tightly coupled to the performance of TOF and TDOA based localization

systems such as ALPS. In TOF systems, time synchronization is required between transmitters

and receivers, while in TDOA systems only the transmitters (or receivers in an inverse system)
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need to be time synchronized. This section provides and overview of time synchronization tech-

nologies that are commonly used in mobile and embedded devices such as smartphones, tablets

and sensor network nodes.

2.6.1 The Network Time Protocol (NTP)

The Network Time Protocol (NTP) [75, 78] is the most common time synchronization protocol

for computer systems in use today. It synchronizes systems commonly to within less then 1ms on

wired local area networks and 10s of ms over the Internet of UTC. NTP employs a hierarchical

structure of time sources, where each level is called a ”stratum”. Stratum layers are numbered

starting at 0 at the top, and incremented by one for every additional layer. The stratum 0 layer

is comprised of reference clocks that are highly accurate, such as GPS based and atomic clocks.

Stratum 1 devices are time servers that are time synchronized to within several microseconds of

stratum 0 devices. Each additional stratum layer time synchronizes with the one above itself at a

gradually decreasing precision from the reference stratum 0 layer.

NTP’s clock synchronization algorithm calculates the round trip-delay time associated with

sending a packet back and forth between the client and the time server. This is virtually identical

to the RTOF ranging method (Section 2.2.3), except that propagation time is not converted into a

range. The packets may take different routes outbound and inbound, resulting in an asymmetric

time delay, which can be filtered over multiple transmissions. Typically clients measure the

round trip time-delay to at least three time servers, filter outliers and perform additional statistical

analysis to estimate the time offset to UTC.

NTP is used in iOS and Android operating systems (among other technologies) to time syn-

chronize the system’s clock over a WiFi or cellular data connection. As we show in Section 5.3.4,

there is a significant timing jitter associated with running NTP in a userspace application due to

the often asymmetric latency of wireless data connections and the non-deterministic delay caused
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by timing packets at the application layer. ALPS employs BLE time synchronization and clock

recovery methods to time synchronize to the beacon infrastructure as these methods produce less

timing jitter (see Section 5).

2.6.2 The Global Positioning System (GPS)

As a result of providing high accuracy localization, GPS also provides a free, high precision

time source, which can be distributed to receivers within an error of approximately 30ns [79].

GPS satellites are time synchronized to a reference time source at the US Naval Observatory and

carry atomic clocks that are extremely stable to keep synchronization between themselves. Based

on the TDOA pseudo ranging technique described in Section 2.2.2, we can see that in order to

determine the location of a GPS receiver in three dimensions, we need to solve four simultaneous

equations that include pseudo-ranges to four satellites. Given a position, the equations can be

solved for GPS time. This is a clock recovery method similar to what ALPS uses as described in

Section 5.4.

GPS receivers commonly can output a 1 Pulse Per Second (PPS) signal, which transitions on

the second edge of GPS time, which is on the same scale as UTC. This transition is generated

by the receiver’s local clock based on the last GPS time synchronization, so it will contain clock

drift and jitter errors caused by the receiver’s clock. Frequency recovery of the 1Hz signal is

typically done using a Frequency Locked Loop (FLL) or a Phase Locked Loop (PLL), which

reduces these errors.

In [68] we advocated time synchronizing all network master nodes to GPS time to provide

global time synchronization across large installations. Current generation 3b ALPS beacons are

time synchronized to plug forwarders via 802.15.4, which in turn are time synchronized to a

central network master via a Long Range Wide Area Network (LoRaWAN), which provides

microsecond level synchronization precision across large installations (see Section 5.7). This
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eliminated the need for GPS receivers, which require LOS to the satellites and therefore reduced

the installation flexibility of the system.

2.6.3 Cellular Timing Service

Several cellular networking standards feature or even rely upon tight time synchronization. Syn-

chronous Code Division Multiplexing (CDMA) based networks such as CDMA2000 require

sub-microsecond time synchronization between base stations and cell phones to coordinate si-

multaneous transmissions such that the signals are mutually orthogonal to each other in order to

be decodable [98]. Long Term Evolution - Time Division Duplex (LTE-TDD) is a TDMA based

protocol that relies upon time synchronization to cell phones within 1.5µs [81] to time multiplex

its transmissions. Network Identity and Time Zone (NITZ) is a widespread protocol used to pro-

vide local time and time-zone information to cell phones. It’s required accuracy is only the order

of minutes [51], although in practice it usually achieves sub-second levels.

Although there are several cellular communications protocols that require tight time synchro-

nization, it is unclear which smartphones, if any, synchronize their system clocks according to

them (aside from NITZ) and to what precision. Protocols like CDMA2000 and LTE-TDD are

usually handled by the baseband processor, which may not support synchronization of the system

clock. Beacons could potentially be synchronized via these protocols, but the required hardware

would be cost prohibitive in comparison to the 802.15.4 and LoRaWAN time synchronization

ALPS uses (see Section 3.6).

2.6.4 Flooding Time Synchronization Protocol (FTSP)

The Flooding Time Synchronization Protocol (FTSP) [73] is a well known time synchronization

protocol for synchronizing large multi-hop networks. The protocol consists of the following

steps:
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• A root node is elected based on the unique node IDs existing in the network.

• The root node periodically timestamps synchronization packets according to its global time

and immediately broadcasts them as well as its node ID to all nodes withing range.

• Each receiving node immediately timestamps the received synchronization packets ac-

cording to its own local time. The combination of the global and local timestamps that are

referring to the same time instant is referred to as a reference point.

If the root node receives a packet from a node with a lower node ID, it gives up root

status.

If a listening node does not receive a packet within a set time interval, it declares

itself the new root node.

• Every receiving node estimates the clock offset between its local time and the global time

of the root node based on the packet it received. Once it has received enough consistent

synchronization packets it can correct its local clock skew and becomes synchronized.

• Synchronized nodes broadcast synchronization packets to the nodes within their broadcast

radius to synchronize nodes further away from the root node. This allows reference points

to be indirectly distributed across the network and gradually synchronizes nodes across

multiple hops.

• This cycle repeats continuously to maintain synchronization.

FTSP is designed to work with sensor nodes which have low level access to interrupt routines

for timestamping the synchronization packets. This reduces timestamping latency and jitter. The

jitter is further reduced by calculating a node’s clock skew in relation to global time over several

packet transmissions. FTSP achieves a 1.5µs synchronization precision over a single hop with an

average precision of 0.5µs per hop using Mica and Mica2 sensor nodes [74]. The protocol there-

fore provides more than enough precision for synchronizing nodes in ALPS installations, but
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falls short on power consumption as compared to the simpler protocol ALPS uses as described

in Section 3.6.

2.6.5 Glossy Time Synchronization Protocol

The Glossy time synchronization protocol is a novel method to time synchronize sensor nodes

which achieves an average time synchronization error of below 1µs [52]. Glossy uses a rapid

flooding scheme to propagate time synchronization packets from a root node across an 802.15.4

wireless network through concurrent transmissions. It exploits the constructive interference of

simultaneous time synchronization packets arriving at nodes to maximize their packet reception

rate and is able to time synchronize large sensor networks of 94 nodes in less than 2.28ms with

a reliability of greater than 99.98%. The protocol maximizes the likelihood of multiple packets

achieving constructive interference at nodes by tightly bounding the latency from receiving a

packet to transmitting another over the next hop. Range differences of up to 150m for simulta-

neously transmitted packets are allowable before destructive interference occurs at the receiver.

Due to the tight timing constraints, the implementation of Glossy is radio specific, but it is theo-

retically possible to implement for most 802.15.4 radios.
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Chapter 3

ALPS System Architecture and Platform

3.1 Overview

An ALPS setup consists of four main components as seen in Figure 3.1:

• Beacons

• A network master/plug forwarders

• Mobile devices

• A software location engine

The beacons are small embedded devices that are deployed throughout the target environment

at known locations responsible for signaling to mobile devices. The beacon infrastructure is time

synchronized using 802.15.4 by a central network master. Each beacon periodically transmits

time multiplexed ultrasound raging signals to mobile devices that are to be localized within

the environment. In order to improve coverage in larges spaces, plug forwarders can distribute

messages across the network. The beacons send BLE packets to the mobile devices to time

synchronize them with respect to the ultrasound transmission cycle in order for them to map

received ultrasound signals to the locations of the beacons that transmitted them. A software
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Figure 3.1: ALPS system architecture

location engine, which may be run as a cloud-based service or on the mobile devices, calculates

the location of the mobile devices based on the time of arrival of the ultrasound signals they

received and the location of the beacons.

The basic method to localize a device is as follows:

1. Time synchronize beacons to a central network master via 802.15.4.

2. Transmit periodic time multiplexed ultrasound ranging signals and BLE time synchroniza-

tion packets from the beacons.

3. Time synchronize mobile device via BLE to the ultrasound transmission cycle.

4. Record ultrasound signals with mobile device and demodulate to measure TOA of signals.

5. Map TOA values to corresponding beacon locations based on transmission schedule.

6. Send TOA values and beacon mapping to location engine and solve for the location of the

mobile device.

7. Send calculated location back to mobile device or process/store as needed by application.

In the following sections, we will describe the hardware and software design of the ALPS
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platform (Sections 3.2-3.5), provide a detailed explanation of the platform’s transmission proto-

col (Section 3.6), describe and evaluate acoustic challenges and design decisions made in regard

to the directionality and frequency response of the system’s speakers and microphones (Sections

3.7-3.7.4) and evaluate the power consumption and energy harvesting capabilities of the beacons

(Section 3.8).

3.2 ALPS Platform Hardware Design

ALPS beacons are custom embedded devices, which consist of the primary components shown

in Figure 3.2 and Figure 3.3(c). A TI CC2650 System on Chip (SOC) with a 32-bit ARM

Cortex M3 is the main processing unit of the system, which also contains on-board 802.15.4 and

BLE radios. A stereo audio codec running at a sampling rate of 48kHz is used to generate the

ultrasound signals that are amplified by the class-D piezo speaker amplifiers and then transmitted

by the low cost piezo ultrasound speakers (< 1 USD). The piezo speaker amplifier contains an

on-board DC-DC boost converter which supplies up to 19VP-P to the amplifier to better drive the

piezo speaker, which improves the range of the system and also features a more advanced, lower

power modulation scheme that increases the transmission efficiency. Four solid state relays are

used to route ultrasound transmissions to individual speakers and for disabling speakers that are

not in use. Although there are four speakers, only two unique ultrasound signals can be played

back simultaneously since the audio codec only has two DACs. Beacon configuration settings

and over-the-air firmware updates are stored on an 8MBit flash chip and a MEMs microphone

connected to the audio codec can be used for acoustic beacon-beacon ranging. A Decawave

DWM1000 UWB radio (see Section 2.4.4) can be used for longer range beacon-beacon ranging

and tag tracking. An energy harvesting controller manages system power and charges three

rechargeable batteries using an external solar cell. As seen in Figure 3.3, the hardware is housed
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in a ceiling mountable enclosure with a 3D printed top that contains the speakers and is attached

to an off-the-shelf base containing the PCB and batteries.
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Speaker Amplifier

Decawave 
DWM1000

Microphone

UWB

Class D Piezo 
Speaker Amplifier

Power

Digital

Analog

Energy Harvesting 
Controller with 1.8V 

DC-DC Buck 
Converter

8MBit Flash

TI CC2650 SoC

3.0V DC-DC Buck 
Converter

Piezo
Speaker 1

Piezo
Speaker 2

Piezo
Speaker 3

Piezo
Speaker 4

Solid 
State 
Relay

Solid 
State 
Relay

Solid 
State 
Relay

Solid 
State 
Relay

Figure 3.2: ALPS beacon architecture

The platform is designed to have a low enough power consumption so that it can be powered

using a small solar cell, harvesting energy from artificial or natural light sources (see Section 3.8).

This allows for a flexible installation at a low cost, since the beacons do not need to be connected

to AC wall power, which is often difficult to access at ceiling mounting locations. The harvested

energy is buffered in three ultra low self discharge NiMH batteries with 2000mAh each, which

have a high cycle lifetime of 2000 cycles and retain 70% of their charge after ten years.

The network master/plug forwarder hardware is based on the same TI CC2650 SOC used

in the beacons (see Figure 3.4 and Figure 3.5(b)) and shares a significant amount of their code

base. It also features a LoRaWAN radio for providing a single hop, long range data link and

time synchronization (see Section 5.7) to plug forwarders (see Figure 3.1) in large deployments.
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Figure 3.3: ALPS beacon hardware

A Decawave DW1000 UWB radio (see Section 2.4.4) may be used for ranging to beacons and

future tag tracking. All of this is integrated into a plug design, which directly plugs into electrical

outlets as can be seen in Figure 3.5(a). The network master/plug forwarder has a USB port to

connect to a computer for sending commands to the ALPS deployment, as well as for distributing

over-the-air firmware updates.
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Figure 3.4: ALPS network master/plug forwarder architecture

3.3 Beacon and Network Master Firmware

ALPS beacons and network master nodes run TI-RTOS [31], which is a preemptive multitasking

microkernel based Real Time Operating System (RTOS) that also provides device drivers for

most peripherals on the CC2650. The firmware is segmented into multiple tasks (generally one

per peripheral e.g. radio, audio, flash memory, etc.), which run at different priority levels and

can be preempted. Since the CC2650 features a Direct Memory Access (DMA) controller, the

CPU can run other tasks during SPI transactions and when audio is being played back. The

on-chip radio is controlled by an ARM Cortex M0 core that has shared memory access with the

M3 core and can therefore transmit and receive packets without help from the CPU. Ultrasound

waveforms are generated on the fly using ARM’s CMSIS DSP library [3].

The firmware running on the network master/plug forwarder is a variant of the beacon firmware

reusing several tasks like accessing the external flash memory and radio. The forwarders are re-

sponsible for running the LoRa radio and for sending out time synchronization packets. It also

provides a serial interface which can be used to control the system.
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Figure 3.5: Generation 3b ALPS network master/plug forwarder hardware

3.4 iOS Application

The software running on the phone consists of an audio recording routine, a demodulator, a BLE

synchronization routine and the necessary networking code to communicate with the cloud based

location engine.

Upon starting the application, the BLE routine first attempts to time synchronize with the

ultrasound transmission cycle of the beacons. It does this by listening for iBeacon advertisement

packets sent by the beacons that contain a counter value indicating the time elapsed since the

start of the current transmission cycle (see Section 5.5). The application timestamps the receipt

of these packets and calculates its corresponding system time in relation to the beacons’ trans-

mission cycle. Once the application is synchronized via BLE, the audio recording routine is

started and runs continuously in the background. It fires a callback whenever an audio buffer is

filled, which is then passed to the demodulator (see Section 4.5.3). The demodulator extracts the

TOA values of the received ultrasound signals and the corresponding beacon IDs based on the
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BLE time synchronization. These values are then sent to the location engine over a websocket

connection, or may be processed internally if the location engine is running locally.

The iOS application is written in objective C and the demodulator is written in C from code

generated by MATLAB’s C coder.

3.5 Future Hardware Improvements

The current ALPS design uses multiple speakers for improved ultrasound signal coverage. The

mismatch between two audio channels and four speakers limits us to transmitting from only two

speakers at a time to prevent interference, which results in a longer transmission time (see Sec-

tion 4.5.6). Based on the speaker beam pattern seen in Figure 3.11 and the linear increase of

power associated with adding multiple speakers to an amplifier, the increase in coverage should

have been directly proportional to the increase in the power requirement. However, due to the

overhead in the idle power consumption of the piezo speaker amplifiers, the addition of an an-

other amplifier disproportionately increased the power requirement. Despite this, it is still possi-

ble to power each beacon perpetually using solar energy harvesting as evaluated in Section 3.8.

A future beacon generation would likely support four channel audio to eliminate the need to time

multiplex transmissions between the speakers and would use a four channel piezo amplifier with

a single DC-DC boost converter to reduce the power overhead of multiple piezo amplifiers with

multiple boost converters.

3.6 Transmission Protocol

This section presents the protocol used to coordinate RF and ultrasound transmissions across

a network of beacons. Figure 3.1 shows a typical setup with an overview of the transmission

protocol as referred to below shown in Figure 3.6. ALPS utilizes a mixture of LoRaWAN,
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Figure 3.6: Generation 3b ALPS transmission protocol

802.15.4 and BLE communication. 802.15.4 remains in use instead of solely BLE due to its

increased range, additional features like automatic acknowledgements, more available channels

(as opposed to BLE advertisement channels) and existing legacy code. LoRaWAN is used to both

transmit time synchronization signals across large deployments in a single hop from a central

network master as shown in (a), as well sending system control commands. The same hardware

used for the network master is re-purposed as an RF forwarding device (b), which acts as a bridge

between the LoRa network and the beacons, which operate on BLE and 802.15.4. The forwarders

are synchronized by the network master using LoRaWAN (Section 5.7) and then synchronize the

beacons (c) and (d) via 802.15.4 (Section 5.6) and the smartphones (e) via BLE (Section 5.5), as

seen in the time span before slot 0. Synchronization is performed periodically so that the clocks

of the devices don’t drift too far apart.

The ultrasound modulation detailed in Section 4.5.6 is used for ultrasound ranging. Up- and
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down-chirps are transmitted simultaneously from two speakers as they are orthogonal to each

other and the beacons only support two audio channels (see Section 3.2). This transmission can

be seen as an ”X” in (c-e). The second ”X” is transmitted from the remaining two speakers after

the first. Each ultrasound chirp in our system is sized to be 100ms in length (plus an additional

5ms each for fade in/out) to provide adequate range, with 2.6ms between successive chirps to

switch the audio channels via the solid state relays (Section 3.2). Each ”XX” transmission is

followed by a period of silence for 127.4ms to let the ultrasound transmissions travel across the

room and dissipate, resulting in a total slot length of 350ms. The length of the chirps and the

period of silence may be adjusted according to room size.

3.7 Speaker and Microphone Directionality

This section details the constraints imposed upon ALPS due to the directionality of the speakers

in the beacons and the microphones in the mobile device receivers. We present measurements

of the beam patterns of our beacons, sample mobile devices and show two ways how we were

able to achieve an omnidirectional beam pattern with our beacons: First describe the design of an

omnidirectional ultrasonic speaker horn, which can disperse ultrasound signals from a directional

speaker. Secondly we show an omnidirectional sectored speaker design, which is a more costly

solution compared to the horn, but can support AOA measurements between the beacon and the

mobile device and has an increased transmission range.

3.7.1 Experimental Setup

To measure the beam pattern of speakers, we designed an automated measurement system con-

sisting of a serially controlled, motorized pan tilt mechanism onto which the speaker under test

would be mounted, as can be seen in Figure 3.7. We would then place the setup into an ane-
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choic chamber and position an Audix TM-1 measurement microphone at a fixed distance in front

of the mechanism. A Motu ultralite mk3 audio interface running at a sampling rate of 192kHz

would generate and record the test sounds and an Onkyo HT-R540 amplifier was used to drive the

speaker. Linear chirp signals, which sweep a sine wave signal between two frequency bounds at

a constant rate, would be played back across our target frequency range of 19kHz-24kHz, which

accommodates many modern smartphone and tablet models as can be seen in Section 3.7.4 and

[69]. An ideal speaker would emit every frequency in this range at the same power level, how-

ever, real speakers have non-flat frequency responses so the transmit power level may vary greatly

with respect to frequency. After several samples were recorded, we would rotate the speaker a

fixed interval in the horizontal plane and again record several chirp signals. This process would

continue over at least 150◦ in the horizontal and vertical planes. The resulting data can be used

to produce beam patterns that show the intensity of the received signal in relation to the angle of

the speaker. Ideally a beam pattern should be omnidirectional across all tested frequency bands,

which would mean that it disperses the signal equally in all directions.

3.7.2 Omnidirectional Ultrasonic Speaker Horn

In certain installations, it may be sufficient to have a single omni-directional speaker that sup-

ports a lower-cost deployment. In an early generation of ALPS (Generation 2b - see Section A.3,

and Generation 2c - see Section A.4), beacons featured an omnidirectional ultrasonic speaker

horn, which was used to disperse the sound of their speaker. In a typical loudspeaker, as the au-

dio frequency increases, the spatial spread of the signal decreases, eventually forming a narrow

beam. In our system, we ideally want an omni-directional speaker that has a flat frequency re-

sponse across the 19−24kHz frequency band, that can uniformly deliver ranging signals without

distortion. Since no such speaker was commercially available, we designed a custom transducer

based on a multi-sector omni-directional horn design shown in Figure 3.8, Figure A.8(a) and Fig-

47



Speaker 
Under Test

Pan Tilt 
Mechanism

Anechoic Chamber

Speaker Under Test

Pan Tilt 
Mechanism

Measurement 
Microphone

Figure 3.7: Beam pattern measurement setup with pan-tilt mount and measurement microphone
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ure A.10(a). This turned out to be a non-trivial effort that required significant experimentation.

We initially evaluated multiple commercial speakers in order to determine suitable driver

components and geometries. In terms of frequency response, we found that ribbon tweeters

(as used in Generation 2a beacons - see Section A.2) had an excellent frequency response and

horizontal dispersion pattern. Unfortunately, they require large magnets that are both heavy and

expensive (> 70 USD). They also have a narrow vertical beam pattern. In certain scenarios,

they could be an ideal transducer, but are too expensive for general purpose indoor localization

applications. We also evaluated piezo bullet speakers since they are low-cost (< 2 USD) and

have a reasonably linear frequency response. Unfortunately, without a horn to guide the signal,

they are quite directional. The top two rows in Figure 3.9 show a comparison of the vertical and

horizontal beam patterns of a ribbon tweeter and piezo bullet speaker.

The acoustic literature has many models that describe a wide variety of speaker designs

[39]. Most of the common designs tend to be for audible frequencies and exhibit confined beam
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Figure 3.8: Omnidirectional ultrasound horn CAD model

patterns. In order to design a custom horn, we initially modeled a cone based on standard horn

equations. These models specify the width of the horn’s mouth to be 4.76mm in diameter to

support frequencies above 20kHz. The resonant chamber needs to be at least one wavelength,

or 1.6cm in length. The horn throat then needs to be sized in order to reduce distortion while

having sufficient amplification. A point source (pin-hole speaker) would be ideal, except that

the volume would be insufficient. Figure 3.8 shows the basic geometry of our omni-directional

horn. In order to evaluate performance, we varied the horn angle, the height of the top of the horn

and experimented with different numbers of internal sectors. Each horn variant was printed on

an SLA 3D printer and then tested using a pan-tilt mechanism that allowed automatic frequency

response measurements to be taken at different angles. We tested 12 different horn designs

generating a vertical and horizontal frequency response plot by using the method detailed in

Section 3.7.1.

We define two metrics to compare different speaker configurations. These metrics are com-

puted from the gain values at different frequencies and directions, as seen in Figure 3.9. To
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Figure 3.9: Ultrasonic beam patterns

measure the flatness of frequency response, we compute the frequency distortion. The frequency

distortion of a speaker in a particular direction is the difference between the maximum and min-

imum gain in the frequency band of interest. We average this metric across all directions to

compute the frequency distortion (lower plots in Figure 3.10(a-d)). To measure the deviation

from omni-directionality for a speaker, we first find the gain in a particular direction by averag-

ing the gain across the frequency band. We then compute the average deviation from the mean

gain across all directions to arrive at the directional distortion (upper plots in Figure 3.10(a-d)).
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Figure 3.10: Omnidirectional ultrasound horn design evaluation

Both these metrics are averaged across the horizontal and vertical orientations for each speaker.

Frequency distortion as well as directional distortion both directly impact the SNR at the re-

ceiver. Frequency distortion will create a mismatch between the recorded signal and the template

used during matched filtering, while directional distortion will vary the signal level with respect

to the angle between the beacon and the receiver. A decrease in SNR increases timing jitter when

determining the TOA of the received ultrasound transmissions, which in turn negatively impacts

ranging and localization performance.

3.7.3 Quad Sectored Speakers

Although the speaker horn from Section 3.7.2 provided an omnidirectional beam pattern, we

decided to use a different speaker for the current ALPS beacons (see Section 3.2) due to reliability

problems and the large size of the previously employed piezo bullet speaker. Since the horn from

previous generations was not compatible with the new speaker, we decided to develop a four

speaker design, which also provides omnidirectional dispersion, but also has the possibility of

obtaining AOA measurements (see Section 2.3.1) for potential single beacon deployments in the

future.
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Figure 3.11: ALPS beacon Generation 3b, quad speaker array horizontal beam pattern

The horizontal beam pattern of a Generation 3b beacon can be seen in Figure 3.11, where

each color represents the pattern of one speaker. The vertical pattern is largely the same as the

speakers are symmetric about both planes. Note that the curves on this pattern measure the

received signal strength after being cross correlated with the transmitted chirp signal, rather than

the received signal strength at different frequencies as shown in Figure 3.9. While the information

about signal strength at specific frequencies is lost in this representation, it is the signal strength

over the entire frequency band which determines the performance of the transmitter and is more

clearly represented in this way. When the patterns of all speakers are combined, the dispersion

of the signal is very omnidirectional, with a difference of 12dB between the maximum and

minimum points on the pattern, and has a longer range of a 35m radius compared to the 20m

radius range of previous generation beacons using the horn.
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0 Figure 3.12: iPhone 3GS microphone beam pattern

3.7.4 iPhone Microphone

We measured the beam pattern of the microphone in an iPhone 3GS to validate that the ultrasound

signals can be adequately received in most orientations. To do this we inverted our test setup

from Section 3.7.1 by placing the phone on the pan tilt mount and replacing the measurement

microphone with a speaker, from which we transmitted our test signals. Other smart phone

models are expected to exhibit similar beam patterns since the MEMS microphones inside current

smartphones are similar to that of the 3GS and are generally highly omnidirectional. Figure 3.12

shows the beam pattern of the iPhone 3GS, where the front of the microphone is pointing towards

the 180◦ marker in the vertical pattern, and the screen of the phone is pointing towards the 180◦

marker in the horizontal pattern. While the horizontal pattern is reasonably omnidirectional at all

frequencies in the 19− 23kHz range, the vertical pattern shows significant attenuation from 70◦

to 280◦ due to the back side of the microphone being blocked by the phone’s chassis. Although

signals arriving at that angle are significantly attenuated, they can often still be detected. Many

newer phone models contain an additional microphone on their top side, which could potentially
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Figure 3.13: iPhone and iPad microphone frequency response

be used in combination with the main microphone to achieve greater omnidirectionality.

The frequency response of the microphone of past iPhone and iPad models compared to the

Audix measurement microphone (dashed line) is shown in Figure 3.13. The non-straight shape of

the measurement microphone reference line is due to the frequency response of our test speakers.

Since the microphone is calibrated to have a nearly flat frequency response, any line that follows

its shape should share a similar characteristic. It can be seen that both the iPhone 3GS and

iPhone 4, which represent some of the best models in terms of frequency response, exhibit very

flat frequency responses up until the Nyquist limit of their 48kHz audio codec. Most newer

iPhone and iPad models, with the exception of current iPad Pros that exhibit responses similar to

the old iPhones, have a frequency response which rapidly drops off past 21kHz. This diminished

bandwidth has led us to change our modulation scheme through the generations as detailed in

Section 4.5. Several Android smartphones are evaluated in [69] and their frequency response

ranges are shown to be similar to that of current iPhones.
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3.8 Power Consumption

By far the largest cost of installing a beacon-based localization system such as ALPS is the in-

stallation cost, which usually includes running power wires to each beacon. In typical ALPS

installations, an ultrasound transmission typically lasts for 220ms and the transmission power

increases exponentially with range. Ultrasound transmission is by far the most power consum-

ing process of the beacons since they spend most of their time in low-power modes. The low

processing and RF communication overhead are negligible in comparison.

ALPS beacons are capable of running perpetually off of solar energy harvested from artificial

and natural lighting in typical installations. We tested the power output of several solar cells

when placed at a 5cm distance of a 100W equivalent CFL bulb rated at 1600 lumens, the results

of which are shown in Table 3.1. The data was collected by connecting the solar cell to the input

of a Generation 3b ALPS beacon to engage the Maximum Power Point (MPP) tracking feature

of the energy harvesting controller. This modulates the input impedance of the energy harvester

to lower the output voltage of the solar panel to 80% of its open circuit voltage, which results

in maximum power conversion. Note that long rectangular panels performed slightly worse than

shorter ones since the bulb is cylindrical and concentrates its light onto a point rather than more

broadly like tube CFLs.

Panel Type Panel Size Panel Area Power at MPP
(cm) (cm2) (mW)

Monocrystalline 7.0x5.5 38.5 31.43
Monocrystalline 10.0x8.0 80.0 47.97
Monocrystalline 13.7x8.1 111.0 55.81
Monocrystalline 18.0x8.0 144.0 50.10
Monocrystalline 11.6x16.0 185.6 92.85
Monocrystalline 13.8x16.0 220.8 91.63
Polycrystalline flexible 6.5x14.5 94.25 38.73
Polycrystalline flexible 16.5x7.8 128.7 48.60

Table 3.1: Power output of different types and sizes of solar cells at a 5cm distance from a 1600
lumen CFL bulb
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The power consumption of a Generation 3b beacon over two 1.5s long TDMA cycles is

shown in Figure 3.14. The power trace was collected using a Keysight N6705C DC power

analyzer with a highly precise N6784A source measurement unit. Over the period of a com-

munication cycle the beacon is responsible for receiving time synchronization messages using

the CC2650 SOC and then periodically transmitting ultrasonic chirps and BLE advertisement

packets (see Section 3.6). A cycle starts at (1) with the beacon waking up to receive an 802.15.4

time-sync packet and then immediately going to sleep at (2) to wait for its ultrasonic transmission

slot. Initially, if the node has not yet been synchronized, it will perform low-power listening on

the 802.15.4 channel until it receives a time-sync packet, after this it only needs to synchronize

every few minutes. At (3) the beacon wakes up and turns on its audio codec, which requires

about 40ms to transition to an active state. Next (4), the beacon turns on its piezo speaker am-

plifiers, which require 8ms to become active and also transmits a BLE advertisement packet for

detection (BLE proximity) and transmission tiling as described in Section 4.5.2. The beacon

then transmits an up-chirp and a down-chirp over speakers A and C at (5), switches its solid state

relays to speakers B and D during a 2.6ms period of silence between transmissions (6) and then

transmits another up-chirp and down-chirp. After this the beacon puts all of its systems into sleep

mode and waits for the next transmission cycle (7). Note that it does not need to receive another

802.15.4 time-sync packet to transmit in the next cycle because it is still synchronized. At (8)

the beacon wakes up to turn its audio codec on and steps (4-7) repeat through (9-12).

The average power consumption of the beacon over the 1.5s cycle is 64.6mW and achieves

a 30m range radius. When factoring in a 90% efficiency of our energy harvesting controller that

charges the batteries, the solar cell of size 185.6cm2 or larger (see Table 3.1) provides more than

enough energy for perpetual operation. It should be noted that many applications do not require

perpetual operation of the system. For example airport and retail installations would only be

active during business hours and could harvest energy at night if the lights are left on.
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Figure 3.14: Power consumption of a Generation 3b ALPS beacon during two TDMA cycles
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Chapter 4

Ultrasound Signal Modulation and

Demodulation

4.1 Overview

ALPS uses ultrasound signals just above the human hearing range range (commonly cited as

20Hz-20kHz [85]), yet still within the sensitivity range of modern mobile devices for ranging

and data transmission. There are several advantages for using ultrasound instead of RF signals

for this, namely:

• They propagate relatively slowly, at about 340.29m/s, so timing their propagation for

using TOF, TDOA and RTOF ranging methods is easily possible to a high precision using

commodity hardware.

• They do not penetrate walls and therefore the system does not suffer from the barrier

problem, commonly experienced by RF based systems, where a device may be erroneously

localized in an adjacent room since RF signals penetrate walls easily while ultrasound

signals are absorbed.

58



• Off-the-shelf mobile devices can receive them using their microphone and digitize them

with their audio codec.

• The received signals can be demodulated and processed entirely in software by the mobile

device.

Despite these advantages, there are also many challenges in designing a localization system

using ultrasound signals:

• There is very limited ultrasound bandwidth available on most mobile devices that com-

monly use 48kHz audio codecs (typically only 1.5kHz), with which we need to achieve:

Precise ranging

Multiple access

Adequate latency by minimizing transmission length

Data transmission (for mapping received ultrasound signals to the beacons that trans-

mitted them)

• Although theoretically inaudible by humans, the playback through loudspeakers may in-

troduce audible artifacts

• Multipath signals lead to inaccurate range measurements and need to be detected

The sections below describe solutions to these challenges. Section 4.2 examines how we de-

signed our ultrasound signals to exhibit pulse compression for increasing the SNR at the receiver

and improving ranging resolution. Section 4.3.1 details a user study we performed to determine

how to shape the ultrasound signals to be inaudible to humans. Section 4.4 describes the de-

sign and evaluation of a rate-adaptive Chirp Spread Spectrum ultrasound modulation scheme for

ranging and data transmission, including how multiple access for simultaneous transmissions is

handled. Section 4.5 describes and evaluates a time multiplexed Chirp Spread Spectrum modu-

lation scheme, which is used in current ALPS systems and features shorter ultrasound packets,
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multipath signal detection, beacon tiling for large installations and sectored speaker array support

for improved ultrasound signal coverage.

4.2 Pulse Compression

Pulse Compression is a technique used in RADAR systems (see Section 2.4.1) to increase range

resolution through an increase of SNR at the receiver. When performing ranging using a standard

sinusoidal pulse of constant frequency as a signal, the range resolution improves inversely pro-

portional to the length of the pulse. After correlating the reflected signal with the original tone

waveform, a signal with a broad base similar to that in Figure 4.1(a) can be seen. The magnitude

as well as the breadth of this signal increases proportionally to the length of the pulse, therefore

increasing the received signal magnitude, but decreasing its range resolution. Pulse Compression

on the other hand employs chirp waveforms that linearly increase (or decrease) in frequency as

ranging signals. Now when the received signal is correlated with the original chirp, the width of

the intercorrelated signals is smaller than what you would see from a standard sinusoidal pulse.

Figure 4.1 shows an example of a tone and chirp before and after filtering. The peak value after

filtering is identical, but the chirp appears to be compressed (hence the name Pulse Compres-

sion). This compression makes the signal simpler to detect as it effectively increases its SNR,

which leads to lower amounts of timing jitter, hence improving the range resolution. The gain

in SNR and the improvement in range resolution is given by the compression ratio of the chirp,

which is equal to its time bandwidth product.

We now briefly summarize some of the key theoretical properties of Pulse Compression. A

linear frequency modulation is described by the following equation:

s(t) = sin(2π(fc +
k

2
t)t) (4.1)
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Figure 4.1: Pulse Compression illustration before and after matched filtering

For 0 ≤ t ≤ τ where τ is the pulse duration, k is the rate of frequency change, fc is the starting

frequency and t is time. The bandwidth ∆f can be computed as:

∆f = kτ 2 (4.2)

The range resolution ρ can be computed as:

ρ =
c

2∆f
(4.3)

where c is the propagation speed of the medium (in this case sound which is about 340ms/s).

Given the 2kHz of bandwidth available on mobile devices, the best range resolution we can

expect in practice is 8.5cm.

We evaluated the impact of various modulation parameters on timing jitter, which provides
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insight into ranging accuracy. Wide jitter distributions would result in poor distance estimates.

During these experiments, we transmitted equally spaced chirps and then measured the distance

in time between adjacent chirps. The jitter value is simply the difference between the detected

chirp spacing and the transmitted chirp spacing. Our experimental setup consisted of a generation

1 ALPS beacon (Section A.1), which consisted of a piezo speaker connected to a PC controlled

audio interface via a home theater amplifier. The beacon transmitted ultrasound signals to an

iPhone 3GS and an Audix TM1 measurement microphone, which were both mounted on a tripod

at a 2m distance from the beacon’s speaker. In Figure 4.2 we show plots for chirps recorded

by the Audix and iPhone, both recording at a 48kHz sampling rate. The first histogram shows

the performance of a fixed tone. We clearly see that without Pulse Compression the ranging

resolution is quite poor (on the order of 2 − 4ms, which corresponds to 6 − 14 meters). Next,

we use a 20ms tone and adjust the chirp bandwidth. We clearly see that additional bandwidth

reduces the jitter. In the right-most histogram we then increase the length of the chirp from

20ms to 100ms. By increasing the chirp length we also see the jitter slightly reduce. These

graphs verify the properties of Pulse Compression on chirps and show that our fade-in and rate

adaptation is not introducing a significant degradation in quality.

4.3 Reducing Audible Artifacts

One of the main challenges associated with near sonic modulation over standard audio speakers

is avoiding humanly perceivable artifacts. Since speakers are mechanical systems, they cannot

instantly transition between gain settings without creating clicking noises. To alleviate these

problems, our chirp signals require slow amplitude fade-in and fade-out changes, slow frequency

changes and all adjustments are only made during zero-crossing points in the signal. Figure 4.3

shows the overall layout and various parameters associated with a chirp symbol used in our mod-
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Figure 4.2: Jitter performance of tones and chirps of various lengths and bandwidths
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Figure 4.3: Chirp components for the modulation scheme with data transmission

ulation scheme with data transmission (Section 4.4). The chirp symbols used in our modulation

scheme without data transmission (Section 4.5) only use a single rate, but are otherwise identi-

cal. The spectrogram in the lower portion of the figure shows that the fades occur at a constant

frequency followed by the two chirp rates, and then a fade-out at the highest fixed frequency.

The chirp waveform that is used for correlation does not include the fade-in and fade-out periods

since they interfere with the Pulse Compression.

4.3.1 Audio User Study

In order to better understand the perceived effect of these attributes we conducted a user study

where participants ranked the perceived loudness of different waveform configurations. The test

was designed to evaluate the perceived audio artifacts associated with: (1) size of frequency

jumps, (2) length of fade-in and fade-out, (3) linear versus exponential fades, (4) chirp duration,
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and (5) multiplexing of chirp rates. Participants were asked to watch a video that presented them

with an intense click (70dB(A)) as a loud reference and a soft click (10dB(A)) as a low-level

reference, followed by 35 different test sequences. Each test sequence was played three times

per title slide in the video. All of the tests were randomized and some of the title slides contained

no sound as a placebo value. Users would rank the intensity of the sound on a scale from 0 to

5 where 0 was considered silence and 5 was a loud sound. The experiments were conducted

using high-end audio headphones connected to an external DAC at a fixed volume level. The

histograms in Figure 4.4 summarize the results obtained from 35 users between the ages of 18

and 35. The dotted line at the bottom represents the average rating for the silent sequences.

The error bars represent 1 standard deviation. Some of the tests included fixed tone with long

fade-in sequences at different frequencies to act as a crude approximation of the user’s frequency

range. Our data showed a rapid fall-off around 19kHz, which agrees with the standard hearing

literature.

The first set of experiments was designed to determine if users could detect large frequency

jumps. The test waveforms started off with a slow 20ms fade-in to a fixed frequency tone be-

tween 19 and 23kHz. The tone would run for 20ms and then jump 1,2, or 3kHz to a higher

fixed frequency followed by a slow fade-out. The slow fade lengths had earlier been selected

since they were relatively unnoticeable. The idea was to simulate the types of frequency changes

that would be apparent during Pseudo-random Noise (PN) DSSS modulation schemes. As can

be seen in Figure 4.4 (a), even at 1kHz the artifacts were quite noticeable with an average level

above 2. This indicates that just using PN modulation would in fact be quite noticeable as com-

pared to the chirps. Note, this histogram is on a scale of 1 to 5 while the remaining histograms

are on a scale from 0-1.

The next sequence of tests compared linear and exponential fading lengths. Each fade-in and

fade-out was added to front and back of a 20ms chirp between 19kHz and 23kHz. The fade
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Figure 4.4: Audio perception user study results

periods were on fixed tones and hence do not remove any amplitude from the main chirp. To our

surprise it appears that exponential fade approaches tend to be significantly more noticeable than

linear fading. Linear fading tends to decrease and then flatten-off at around 5ms. To minimize

transmission time, we chose a final fade value of 5ms.

Using a long fading length of greater than 20ms, we then test if the duration of the chirp has

any impact on its perceptibility. All of the chirps swept between 19kHz and 23kHz with a rate

configured by the desired test duration. As shown in Figure 4.4 (d), users could easily perceive

very short chirps since they are quite similar to frequency jumps. Interestingly, as the length of

the chirp increased, users began to notice a ”swooshing” sound. For this reason, we sized our

chirps to be at least 20ms and no longer than 200ms. In practice, the chirp should be sized to the

excess delay of the channel which is usually around 100ms at reasonable power output levels.

The final set of experiments evaluated the impact of applying rate adaptation to the chirps.

In these tests, a worst-case chirp was generated for each chirp rate size where users were given
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the slowest rate followed by the fastest rate. As the second rate increases one would expect the

user to perceive the rapid frequency changes. As can be seen in Figure 4.4 (e), there was a slight

increase in perception due to increasing the number of possible rates (which leads to a higher

rate for one of the chirp sections).

4.3.2 Human Health Concerns

Extensive studies have been conducted to quantify safe volumes and exposure limits of ultra-

sound on humans. The Health Protection Branch of Health Canada published a report that sum-

marizes multiple studies related to ultrasound [44]. This report suggests that for frequencies

above 20kHz, the level should be kept below 110dB to prevent undesirable subjective effects of

ultrasound. These effects include fullness in the ear, fatigue, headache and malaise. For refer-

ence, in the audio range, 110dB is approximately the loudness of a power saw from three feet

away. Hearing damage can occur at above 95dB. The study also indicates that subjects are more

susceptible to fixed frequency tonal sounds. For this reason, we believe that chirp pulses can

be considered safe under prolonged exposure when kept at a reasonable volume. To achieve the

maximum range of 35m an ALPS beacon transmits at a power level of approximately 80dB,

which is well below the suggested limits. Furthermore there are several widely adopted prod-

ucts in pubic spaces that generate fairly high-powered near-ultrasound signals, such as ultrasonic

motion detectors and emergency public announcement systems like [43]. The PA systems peri-

odically (or often continuously) play back 20kHz pilot tones for self-testing system components

and are imperceptible to humans.

4.3.3 Animal Exposure

Animals are known to have a significantly greater hearing range than humans [92]. At the ex-

treme, mice, bats, whales and porpoises can hear frequencies as high as 90− 150kHz. However,
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one would be more concerned by the hearing range of household pets and service animals in real-

world ALPS deployments. Dogs and cats can hear frequencies as high as 45kHz and 64kHz

respectively. It is difficult to ascertain the full extent of hearing attenuation at higher frequencies

or if the sounds have a negative effect on the animals. While not extensively tested, we did play

sample tones in a home with two cats. Initially, it was unclear if the cats could hear the tones

since they exhibited no noticeable response. We then played a sample tone before feeding each

cat for a few consecutive days. It then became apparent that the cats could in fact hear the tone

based on their reaction once a food association was established. We have also witnessed a guide

dog moving about in a space where an ALPS installation was active, which did not seem to affect

the dog’s behaviour. Significant further testing would be required to draw any real conclusions,

but while it appears that animals do hear the sound, it seems like limited exposure does not cause

an (immediate) adverse reaction.

4.4 Modulation Scheme With Data Transmission

In order for a mobile device to localize itself using ALPS, we would like the ability to map re-

ceived ultrasound transmissions to the corresponding transmitting beacons and with that, their

locations. Early generations of ALPS without BLE time synchronization functionality (see Sec-

tion 5.5), relied on modulating data onto the ultrasound carrier to encode beacon IDs, which

can then be mapped to their locations to perform trilateration or multilateration. This section

presents our modulation scheme for encoding these IDs into the ultrasound ranging signals and

the demodulation process.
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Figure 4.5: Example of four symbols encoded with Rate-Adaptive Chirp Spread Spectrum

4.4.1 Modulation

In Section 4.2 we presented the advantages of using linear chirp signals as ranging signals. In

order to encode data using a chirp as a symbol, common techniques such as On Off Keying

(OOK) could be applied. OOK would, however result in long packet lengths since only two

symbols are used. [94] introduces the use of chirp-rates as a mechanism to create multiple chirp

symbols. This approach decomposes each chirp into two interconnected chirps with different

frequency rates that change at the half-way point of the symbol. Figure 4.5 illustrates a scheme

that supports four unique symbols across a shared bandwidth. Each rate represents a different

signal waveform that is correlated with the received signal to extract the embedded sequences of

data. In this scheme we provide each beacon with a unique ID, which is encoded as a series of up-

chirps, each representing two bits. It is worth noting that [94] was based entirely on simulation.
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Figure 4.6: Beacon ID packet structure using Rate-Adaptive Chirp Spread Spectrum

We validate that such rate adaptation works in practice in Section 4.4.4.

Figure 4.6 shows a diagram where two beacons are using our chirp modulation scheme along

with chirp rate adaptation. Each beacon ID is encoded as a sequence of two (7, 4) Hamming

codes, allowing us to transmit 256 unique IDs by using seven two-bit symbols. The error coding

allows us to correct up to two single-bit errors and detect all single-bit, as well as two-bit errors.

Furthermore, as a mobile device moves through a space, a map can be used to identify which

beacons are likely to be in range, allowing out-of-range IDs that were erroneously decoded to

be discarded. Each data symbol is represented as a rate adapted up-chirp, and is prefixed by a

preamble encoded as a constant-rate down-chirp. The preambles are used to mark the begin-

nings of data sequences and to measure high resolution TOA information from. The modulation

scheme can be easily adapted to larger installations with more than 256 beacons by employing a

(15, 11) Hamming code and/or tiling beacons.
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4.4.2 Multiple Access

Communication systems with multiple transmitters like ALPS usually require a way to share a

common transmission medium to prevent packet collisions, known as Multiple Access Control

(MAC) protocols/methods. There are multiple ways to facilitate multiple-access transmissions

using ultrasonic chirps including TDMA, Frequency Division Multiplexing (FDMA), CDMA

and CSS. While TDMA suffers from scalability, configuration and latency issues since all ul-

trasound packets need to be successively scheduled in a collision-free manner, it completely

eliminates interference between transmissions, imposes no additional bandwidth requirements

like FDMA and CDMA and does not require power control for optimal operation like CDMA.

Larger deployments may be segmented into multiple zones with separate TDMA cycles as de-

scribed in Section 4.5.2 to keep cycle lengths to a minimum. Using frequency diversity isn’t ideal

since a chirp’s timing resolution is directly related to the frequency bandwidth that it operates

on. Ideally, you would like each chirp to cover the maximum bandwidth to achieve the highest

ranging resolution. Chirp Spread Spectrum typically uses chipping codes composed of up-chirps

and down-chirps to represent patterns of 1’s and 0’s. While promising, this approach can re-

quire long transmission times depending on the number of bits used in each code. Code division

multiplexing commonly requires significant bandwidth (or long codes) as well as power control

so that overlapping transmissions do not overpower each other, all of which are not feasible for

ALPS.

In generation 1 ALPS employed a rate adaptive CSS technique as discussed in Section 4.4.1

with concurrent transmissions from beacons. As shown in Section 4.4.4, this scheme worked

well under controlled conditions, however, we quickly realized that like with CDMA schemes,

it was also dependant upon the ultrasound signals being received at similar power levels so that

they don’t overpower each other. This drawback was further exacerbated by iPhone models

after the iPhone 4 having a drastically decreased audio frequency response (Figure 3.13), which
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cut our usable bandwidth down from 4kHz to 1.5kHz. In early platform generations without

BLE functionality, ALPS employed a TDMA scheme with data transmission as described in

this section. More recent generations that featured BLE time synchronization used the scheme

described in Section 4.5.

4.4.3 Demodulation

The demodulation of the received signal is performed completely in software, in part by a pro-

cess known as matched filtering. In matched filtering the incoming signal is convolved with a

conjugated, time-reversed version of a signature signal that is expected to be contained within

the received signal. This results in a distribution showing the similarity of both signals as they

are slid across each other. Peaks of high magnitude denote a high cross correlation between both

signals, therefore making it likely that an instance of the signature signal is located at the same

location as the peak in the received signal. Therefore, by applying a matched filter for each rate

adjusted chirp and the preamble, we are able to determine the starting locations of the signals as

well as the time difference between them.

There are multiple ways of computing the matched filtering output. Running a matched filter

in the time domain requires O(n · m) operations, however when performed in the frequency

domain, can be processed in O(n · log · n) time. In the frequency domain, the FFT of the

modulated signal is multiplied with a frequency domain representation of the signature signal

and is then converted back into the time domain.

Since we are using sequences of multiple chirp rates as symbols to uniquely identify bea-

cons, the symbols need to be as orthogonal as possible (i.e. have low cross correlation properties

between each other) in order to be differentiable after matched filtering. Rate adjusted chirps

generally fulfill this requirement if the number of chirps within a set is kept to a reasonable num-

ber (in our case 4 - see Figure 4.5), but in practice we have found that the superposition of chirps,
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of different rates that are staggered in time can become very difficult to detect, which is often the

case when multiple beacons are transmitting simultaneously in a generation 1 system. For this

reason we prefix each data string with clearly identifiable preambles represented by down-chirps,

which are highly orthogonal with respect to up-chirps. The preambles mark the beginning of the

data sequences, which allows us to bound the region of signal that we perform matched-filtering

on, and act as markers for receivers to synchronize to a beacon’s broadcasts. Since each beacon

broadcasts identical sequences of data periodically, the ID of incoming data sequences can be

predicted based on their arrival time with respect to a previous sequence. Therefore once a re-

ceiver is synchronized to a particular beacon, TDOA pseudo-ranging can be performed on each

detected symbol, before the entire corresponding data sequence is decoded. This allows for sig-

nificantly higher ranging update rates (but is not required). The time required to send an 8-bit ID

is 240ms, but new ranging information can be obtained at up to every 30ms if successive broad-

casts are transmitted in a gap-less fashion. The preambles also provide us with an estimate of the

amplitude of the following data sequence. Since we know the location of the data symbols with

respect to the preamble, we can now filter overlapping symbols according to their magnitude and

position in time. In combination with the forward error correction, and discarding erroneously

decoded transmitters that are likely to be out of range, we can achieve high packet reception

rates.

Another technique that can be applied to help separate overlapping data sequences is Succes-

sive Interference Cancellation as described in [101]. Here the modulated signals of successfully

decoded data sequences are reconstructed and then subtracted from the received signal in order of

descending amplitude before any further decoding is performed. Furthermore the incorporation

of a Rake Receiver as described in [86], or an Adaptive Matched Filter could improve robustness

against multi-path interference.

Generation 2a and 2b systems employ a TDMA multiplexing scheme where the beacons
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transmit successively rather than simultaneously. This requires the demodulator to process a

significantly longer recording, but makes it easier to detect the encoded beacons IDs and TOA

values accurately. Techniques such as Successive Interference Cancellation (SIC) would not

bring any benefit to this scheme.

4.4.4 Evaluation

In this section we evaluate the performance of the modulation scheme with data transmission

described above.

Our experimental setup included a microphone stand, audio DAC/ADC and piezo electric

tweeters. The microphone stand shown in Figure 4.7 consisted of an Audix TM1 omnidirectional

measurement microphone and a smart-phone holder. In Figure 4.7 we see the Audix microphone

on the left and an iPhone in the holder on the right. The Audix microphone was chosen due to its

extremely flat frequency response all the way up to 25kHz. We transmitted all ultrasound from

generation 1 ALPS beacons as described in Section A.1.1, which consist of bullet piezo speakers

connected to home theater amplifiers and a MOTU Ultralite-mk3 audio interface.

For each test (unless specified otherwise), audio was transmitted from the speakers and

recorded by both the Audix microphone using the mk3 ADC and by an iPhone 3GS. The iPhone

used a wireless file-sharing program to push the recorded sound clips back to our main computer

for processing. Test sequences could be remotely started and stopped using a VNC client on the

iPhone. Streamlining this process enabled us to evaluate an extensive set of parameters. The

following graphs were generated from over 25 hours of combined recording samples.

Impact of fading functions on BER

First, we determine the impact of fading the signal in and out on the Bit Error Rate (BER) of

data transmissions. In order to compute the BER, we transmit a modulated sequence of 1024
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Figure 4.7: Experimental receiver setup for evaluating ALPS modulation scheme with data trans-
mission

random bits using a 20ms chirp (sweeping from 19kHz to 23kHz) at different transmit powers

while varying the length of the fade in and out durations. Each point in the plot represents 20

seconds of samples. The signal-to-noise ratio was computed based on the average intensity of the

chirp signal as compared to the average intensity of the noise floor when there is no transmission.

In both cases, the signal was high-pass filtered to remove audible noise. In the following tests,

the microphone was mounted approximately 2m from the speaker. As the transmit power is

decreased, the SNR correspondingly decreases. At each bit interval, the receiver must decide

if it correctly detects a 1 or 0 bit by correlating an up-chirp or down-chirp at the correct rate

across the signal. A BER value of 0.5 corresponds to the expected value if the bits are decided
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by random chance (the signal is unreadable). In this experiment, all measurements were taken

using the Audix microphone so as to determine the general trend. Figure 4.8 shows that the fade

lengths have almost no impact on the BER. This makes sense since the correlated input signal

does not include the fade-in and fade-out regions.
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Figure 4.8: Impact of fade in/out on BER

Impact of chirp length on BER

Next, we evaluate how chirp length impacts BER. This test is similar to the one performed in the

previous example, except now the fade period per symbol was set constant at 10ms (5ms fade in

and out) while the chirp length was adjusted. We see that as the chirp length increases, the BER

falls off at lower and lower SNR levels. This corresponds to the Pulse Compression equations

that indicate that with longer chirps the signal should be distinguishable at lower SNR levels.

Based on this performance graph as well as the user study, we select chirp lengths of 20ms for

use in practice. In general, chirps should be greater than the excess delay of the channel in order

to maximize performance under multi-path conditions. The excess delay can be determined by

looking at the ultrasonic impulse response of a particular space.
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Figure 4.9: Impact of chirp length on BER

Impact of concurrent transmitters on BER

We now evaluate how well the system scales with multiple concurrent transmitters by increment-

ing the number of rates used by the chirp. This test is only relevant to a generation 1 system as

successive generations use a TDMA scheme to multiplex transmissions. For each additional rate,

we mix in a signal for all other rate values given a random offset around the signal that we are

trying to decode. This corresponds to all other possible transmitters sending data simultaneously.

For example, four concurrent transmitters would mean that the chirp can be modulated with four

different rates and the three other possible rates are being mixed into the transmitted signal to

act as simultaneous transmissions. Figure 4.10 shows the performance of the Audix reference

microphone as well as an unequalized iPhone 3GS. First, we see that the Audix and iPhone

perform comparably. We also see that the BER remains below 10% up to about 10 concurrent

transmitters. In practice, most receivers will not overhear transmissions from all possible chirp

rates within close proximity of each other, so this performance is quite pessimistic. Such a situ-
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Figure 4.10: Impact of concurrent symbols on BER

ation would only occur if many transmitters were placed in the same location. Above 16 rates,

the system’s BER begins to severely deteriorate. In order to support additional rates, we would

require more bandwidth which is unfortunately limited by the microphone sampling rate. If in

the future mobile devices could support higher sampling rates we would be able to support more

concurrent transmitters and we would be able to achieve more precise ranging.

Figure 4.11 shows a spectrogram recorded on an iPhone of a 14 bit sequence from a single

transmitter. Figure 4.12 shows the spectrogram when many transmitters are broadcasting simul-

taneously. The spaces between the sequences are still visible, but the other symbols are no longer

distinguishable unless the signal is demodulated.
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Figure 4.11: Spectrogram with a single beacon transmitting

Figure 4.12: Spectrogram with four beacons transmitting

Transmission Range

In order to estimate the transmission range of the system, we measure SNR versus distance as

shown in Figure 4.13. For this test, the signal intensity at 1 meter away was measured at a

modest 48dB(A), which corresponds to a volume level of about 5% of the maximum volume

possible on the Onkyo amplifier and equivalent to a sound slightly louder than the humming of

a refrigerator. At higher volume levels, we see transmissions as far as 50 − 70 meters (using

generation 1 beacons which are powered by multichannel amplifiers, the embedded beacons of

succeeding generations cannot achieve these ranges). Depending on the deployment scenario, the
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Figure 4.13: Distance vs SNR using a Generation 1 ALPS beacon transmitting at 48dB(A)@1m

transmit volume can be adjusted one way or another to aid in maximizing coverage and number

of concurrent transmitters.

4.5 Modulation Scheme without Data Transmission

While the modulation scheme with data transmission described in Section 4.4 provided a good

way to map received ultrasound transmissions to the beacons which transmitted them, the move

to a TDMA based multiplexing scheme prompted the need to reduce the ultrasound packet length

from 240ms to 60ms (including fade in and fade out). This section describes the modulation

scheme employed in ALPS generations 2c-3a, which does not transmit beacon IDs over ultra-

sound, but relies on BLE time synchronization (see Section 5.5) to map received ultrasound

signals to the corresponding beacons.
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4.5.1 Modulation

In this scheme the only transmitted symbol is a 50ms long upchirp from 20.0kHz-21.5kHz,

which is prefixed by a 5ms fade in function and succeeded by a 5ms fade out function. Each

beacon simply transmits a single upchirp with these parameters at the beginning of its TDMA

slot. The length of 50ms was chosen due to the 50% reduction of audio bandwidth available to

iPhone models succeeding the iPhone 4 (see Figure 3.13). Since the pulse compression gain of a

chirp signal (Section 4.2) is equal to its time-bandwidth product, the bandwidth reduction results

in a 50% reduction of SNR at the receiver, which is compensated by the longer chirp length. A

50ms chirp length also still performs well in terms of being inaudible to humans as shown in

Section 4.3.1.

4.5.2 Multiple Access and Tiling

Multiple access in this modulation scheme is handled by time multiplexing. Each beacon is as-

signed a time-slot during which it transmits its signal. Since the mobile devices are time synchro-

nized to the TDMA cycle, we can easily map the transmitting beacon to the received ultrasound

signal. Unfortunately, giving each beacon a unique time-slot would lead to an extremely long

time cycle length which would negatively impact the system’s update rate. Since each BLE bea-

con provides a unique ID, we can increase concurrency by reusing ultrasonic time slots that we

know are out of range of each other. The logical approach would be to schedule the ultrasonic

transmissions using graph coloring such that acoustic regions never overlap. Unfortunately, as

can be seen in Figure 4.14(a) , since acoustic signals alone do not uniquely identify nodes, this

can lead to conflicts. In the figure, B1 and B2 are in separate rooms so that all areas have unique

ultrasonic coverage. The BLE transmission range is shown by the dashed circles. In this exam-

ple, to uniquely identify a location if B1 and B2 shared the same channel we would rely on the

BLE to distinguish locations. This would only be possible at points XC and XD and not in much
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Figure 4.14: TDMA coloring schemes for acoustic tiling

of the space confining XA and XB. Instead, we need to create edges between beacons if the

coverage of beacon overlaps in both acoustic and RF. This would include picking the maximum

coverage between BLE and ultrasonic. In our system, BLE range is almost always larger than

ultrasonic and it passes through walls. In practice, we can conservatively apply a unit-disc model

at the cost of potentially requiring slightly more colors than the minimal requirement. Graph col-

oring is known to be NP-complete, but we approximate the coloring using a breadth first search

greedy approach. Figure 4.14(b) shows an example coloring scheme for four nodes using BLE

range.

4.5.3 Demodulation

Demodulation in this modulation scheme is similar to that of Section 4.4. First the approximate

beginning of the TDMA cycle in the recording is found by using the BLE time synchronization

method described in Section 5.5. A matched filter is used to filter each time slot in the audio
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recording containing the received ultrasound signals. Next the envelope of the matched filter

output is calculated to simplify peak detection. A peak detector with a variable power level

threshold is employed to detect the peak values of the envelope, which denote the TOA values

of the ultrasound transmissions. The thresholder uses a combination of a threshold calculated

to be slightly above the noise floor of the recording, and a variable threshold, which is set to

be a fraction of the maximum correlation value found in that time slot. The higher of the two

thresholds is set for the peak detector on a slot by slot basis. This setup will allow the detector

to find peaks that are below the peak correlation value and account for the often vastly different

power levels of each recorded signal. Since the peak correlation does not always correspond to

the correct TOA, but may be a multipath copy of the transmission, the first peak within a time

slot (rather than the highest peak) satisfying the threshold requirements is selected as the corre-

sponding TOA value. Finally the beacon IDs corresponding to each TOA value are calculated

based on the beginning of the transmission cycle and time slot boundaries.

4.5.4 Non-Line of Sight Signal Multipath Detection

A major source of error in TOF ranging systems are incorrect measurements due to multipath

Non-Line of Sight (NLOS) signals. Failing to identify the NLOS signals can introduce estimation

errors in ranging and therefore seriously affect the localization performance. The identification

of LOS/NLOS signals not only facilitates the process of selecting the right measurements, but

also helps to further mitigate the ranging bias. Most of the identification techniques deal with

the problem based on the range estimates or Channel Pulse Response (CPR), but are often un-

feasible in the real world since a large amount of training data is required for characterization.

The Cricket system [87] (Section 2.5.2) was one of the first efforts that noticed that the differ-

ence between two transmission media could be used to possibly infer NLOS transmissions. In

Cricket, the frequency of the ultrasound signals was quite high at 40kHz, making the transmis-
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sions highly directional, which made the correlation between RSSI distance and ultrasonic TOF

more obvious. At lower frequencies, with chirp encoding and omni-directional transmitters, the

ultrasound diffracts significantly more, making the distinction between LOS and NLOS more

difficult.

We developed a machine learning based approach that uses a binary classifier for NLOS

detection that is able to learn the characteristics of a space with relatively little training data. This

method can supplement the NLOS signal detection that is done by the demodulator described in

Section 4.5.3. During the development of the machine learning based approach we collected

3600 samples of LOS data and 1200 samples of NLOS data from arbitrary locations in more

then 6 environments. The unbalanced amount of LOS data and NLOS data are designed to

model the real world scenario where LOS data is much easier to collect during the installation

process. Since the rate of position updates is relatively low, we ideally want to find a set of

features that can be extracted from a single measurement. The key insight to our approach is that

we are able to detect ultrasonic TOF, ultrasonic RSSI and BLE RSSI, which are different in LOS

and NLOS cases.

In Table 4.1 we show classification accuracy with different combinations of features, where

Fus is the ratio of RSSIus to DiB, FiB is the ratio of RSSIiB to DiB, Fwav is the normalized

waveform of the received ultrasonic signal, and Fdelay is the root mean square (RMS) delay

spread of the ultrasonic signal. DiB is the distance estimate returned by BLE, RSSIus and

RSSIiB are RSSI values from ultrasonic and BLE respectively.

Based on the results in Table 4.1, we selected Fus and FiB because they perform best with the

least amount of training data. A Support Vector Machine (SVM) classifier is trained with 10-fold

cross validation and grid search on selecting the best parameters in order to prevent over-fitting.

Other features like the shape of the ultrasonic waveform performed poorly in our experiments.
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Feature Set Accuracy
{Fus} 0.644
{FiB} 0.925
{Fwave} 0.767
{Fdelay} 0.753
{FiB, Fwave} 0.779
{Fus, FiB} 0.965
{Fdelay, Fwave} 0.787
{Fus, FiB, Fdelay} 0.959

{Fus, FiB, Fdelay, Fwave} 0.779

Table 4.1: Identification accuracy of NLOS signals with machine learning approach using mul-
tiple features

4.5.5 Evaluation

In this section we evaluate the performance of the modulation scheme without data transmission

described above. The fundamental evaluation of chirp signals as described in Section 4.4.4,

are also applicable to this modulation scheme since the time-bandwidth product of the 50ms

20kHz-21.5kHz chirps is roughly the same as the 20ms 19kHz-23kHz chirps used before (see

Section 4.4).

Ranging and Multipath Performance

In order to evaluate the ranging performance of this modulation scheme and better understand

the impact of the environment the system is operating in, we evaluated the ultrasound ranging

performance of our generation 2c beacons in two different spaces. Figure 4.15 shows the ranging

error in a free space with minimal multipath propagation and in a confined corridor setting, which

exhibits high multipath propagation using only the demodulator to filter out NLOS multipath

signals. The data was collected by time synchronizing an iPhone 5S to the beacon by holding it

directly at the speaker while it was playing evenly spaced 50ms chirp signals and then placing

it at a known distance away from the beacon. The beacon would then transmit 500 additional

periodic chirp signals per sampled distance after a known time delay, for which we calculated
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Figure 4.15: Ultrasound ranging error in free space and corridor environments

the measured distance based on the propagation time of the signal. We collected samples at

10 different beacon to receiver distances in both environments. For the free space case using

ultrasound a mean absolute ranging error of 8.9cm with 95% of the distance samples below

33.5cm in error was observed. For the corridor case a mean absolute ranging error of 17.9cm

with 95% of the distance samples below 34.2cm in error was observed.

In Table 4.2 we summarize the identification performance of our machine learning based

NLOS detector from data we collected in six environments with different multipath propagation

characteristics (kitchen, lab and 4 different office environments). We collected 3600 samples

of LOS data and 1200 samples of NLOS data from arbitrary locations in the six environments,

of which we used 10% of the LOS data for training and varying the amount of NLOS data for

evaluating the detector. We see that even with 1% of the NLOS data used for training, we are able

to achieve an 80% classification accuracy. In any one mapping collection cycle, this corresponds

to about 300 LOS samples (which are easily captured while holding the phone in the open during

the mapping phase) and 12 NLOS samples which the user is instructed to collect. However, we

should note that most of classification error results from false negative (FN) instead of false

positive (FP) due to the unbalanced data set, which can seriously decrease the performance of
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NLOS Accuracy FP FN Prec. Recall
1% 0.805 0 0.195 1.00 0.805
4% 0.826 0 0.175 1.00 0.826
7% 0.837 0.007 0.156 0.992 0.843
10% 0.841 0.016 0.143 0.982 0.855

Table 4.2: Impact of training samples on FiB and Fus performance

our localization algorithm. With an increased number of NLOS data samples in the training

phase, we observe a slight increase in overall accuracy while FN probability greatly decreased

as a trade-off with more data collection time.

4.5.6 Sectored Speaker Array Modulation

ALPS beacons feature a sectored four speaker array (see Section 3.2) for improving ultrasound

signal coverage and to provide AOA data in the future. The beacons feature a two channel audio

codec, which means that they can transmit two different signals simultaneously and can select

which speakers to transmit from. Although the speakers are separated by 90◦ in the horizontal

plane and 120◦ in the vertical, the signals from adjacent speakers will eventually collide with

each other after a certain distance when transmitted simultaneously (see Figure 3.11), which

causes interference if they are identical. In order to prevent interference, we only transmit a

single upchirp and a single downchirp signal simultaneously from two speakers. Since these

signals are orthogonal to each other, they do not interfere and can be easily separated by using

a matched filter. This initial transmission is followed by a short 2.6ms long period of silence

to switch over to the second set of speakers and then a second identical transmission from the

remaining two speakers, as can be seen as the ”XX” pattern in Figure 3.6. After this there is a

period of silence of 127.4ms for the signals to propagate throughout the space. We increased the

length of the chirps in this scheme to 100ms (plus a fade/in out time of 5ms each) to increase

the range, however the length of the signals and the length of the period of silence after their
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transmission can be adjusted based on the size of the space the beacons are deployed in.

The demodulation of this scheme is very similar to the process described in Section 4.5.3,

but requires two matched filters to be applied to the data for filtering the up- and downchirps.

Since the successive ”Xs” are separated by 112.6ms and each speaker always transmits the same

chirp at the same time in the time slot, the demodulator can determine which speaker performed

the transmission, even if only a single chirp of ”X” is received, since the range of the beacons is

limited to 35m or 102ms of propagation time.
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Chapter 5

Time Synchronization

5.1 Overview

Time synchronization is extremely valuable in a wide variety of applications. It enables event

ordering, coordinated actuation, energy-efficient communication, low-power duty cycling and

the ability to measure distances. Time synchronization and ranging/localization are very tightly

knit together in range based systems. Generally more precise synchronization results in more

precise ranging/localization. In TOF ranging systems it is used to synchronize receivers with

transmitters to measure the propagation time of signals sent between them. In TDOA systems,

the transmitters are time synchronized to precisely schedule their transmissions using a common

time base, which is key to being able to solve for the receiver’s location.

One immediate application of tight time synchronization within the context of localization is

the ability for devices to perform direct TOF ranging from beacons instead of TDOA ranging.

After a node has heard from four or more nodes within a single area, the mobile device can

synchronize with global time and then perform TOF ranging for any successive beacons. In the

following sections we present and evaluate a novel time synchronization technique that leverages

the continuously free-running audio sampling subsystem of a smartphone to synchronize with
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global time. Once synchronized, each device can determine an accurate proximity from as little

as one beacon using TOF measurements. This significantly decreases the number of beacons

required to cover an indoor space and improves performance in the face of obstructions. We

show through experiments that this approach outperforms the Network Time Protocol (NTP) on

smartphones by an order of magnitude, providing an average 720µs synchronization accuracy

with clock drift rates as low as 2ppm.

In Section 5.5 we describe and evaluate the BLE based time synchronization method used

in current ALPS platforms, which is used to time synchronize receivers to the beacons’ TDMA

cycle on a time slot level for mapping ultrasound transmissions to their corresponding beacons.

While this method does not provide the precision needed to perform TOF ranging, it is employed

by ALPS when TDOA ranging is used.

Section 5.6 evaluates the latency and jitter of time synchronizing ALPS beacons via 802.15.4,

which has been used as the time synchronization communications medium between network

masters/plug forwarders and beacons.

Finally Section 5.7 evaluates the feasibility of using LoRaWAN transmissions for time syn-

chronizing Plug Forwarders to a central Network Master.

5.2 Time Synchronization Background

A significant amount of work from the distributed systems community has focused on time syn-

chronization [47, 56, 64, 78]. The most commonly adopted of these approaches is NTP (see

Section 2.6.1) that uses round-trip message delay averaging to set times. In this section we show

through our experiments that due to the asymmetric and lossy nature of modern wireless com-

munication channels, it is extremely difficult to reach sub millisecond levels of accuracy. To

the best of our knowledge, this is one of the first efforts to explore how tightly smartphones can
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synchronize with global time at the application level. Celltower and GPS synchronization ex-

ist within their own subsystem but are usually isolated from the main system clock or updated

at a coarse granularity (seconds). There has been significant work related to message passing

based approaches from the sensor networking community [50, 52, 55, 74] that can be applied

towards infrastructure timestamping. Eventually these approaches could find their way into mo-

bile phones. Please refer to Section 2.6 for more detailed explanations of related work on time

synchronization.

5.3 iPhone Network Time Synchronization Benchmarks

In this section, we explore the limits of time synchronization on iPhone 4 and 5S mobile plat-

forms and propose a new approach that uses the audio recording subsystem to recover the sys-

tem clock of ALPS beacons. This provides applications with the ability to perform precise

time-stamping (especially of audio events) isolated from non-determinism within the operating

system and network.

Benchmarking time synchronization accuracy on a smartphone is difficult because the current

platforms typically do not expose low-level I/O and the operating systems are optimized for

energy-efficiency rather then timing performance. In order to understand the nature of timing

and synchronization on smartphones, we ran a set of timing experiments that examine key time-

synchronization performance characteristics as described below.

5.3.1 Clock Granularity

We first need to establish the granularity of the clock on our mobile device in order to bound

the minimal synchronization accuracy. This can be achieved by calling os get time of day()

continuously in a tight loop and inspecting the tick increments. Figure 5.1 shows the resulting
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Figure 5.1: Delay in consecutive iOS system time calls

distribution of tick values for two iOS devices. The histograms show that the system clock has

a granularity of 1-microsecond and that jitter associated with OS delays and context swaps is

quite low. The faster of the two platforms (iPhone 5S) exhibits almost no jitter from background

tasks. A similar experiment on an Android Galaxy Nexus 4 showed high levels of jitter for most

reads, on the order of milliseconds and greater due to differences in Android’s task scheduler.

For this reason, we perform the rest of our experiments using iOS. Also, currently iOS has a

lower latency audio subsystem as compared to Android. Round-trip audio times computed by

looping test sounds back from input to output using [4] and are typically below 10ms on iOS

devices.

5.3.2 ADC Timing Performance

In order to compare the smartphone’s clock against a reference source, we need to establish a

low-latency input or output mechanism. Typical smartphone I/O includes: UART, Bluetooth,

WiFi, LTE, the display, audio, external buttons and various sensors like light and acceleration.

With the exception of audio and the UART, the interfaces exhibit milliseconds or greater amounts

of timing uncertainty. The audio interface is particularly appealing since it contains its own
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Jitter (samples at 48kHz)
0 1 (22µs) 2 (44µs)

iPhone 4 66% 34% 0%
iPhone 5S 0% 87% 13%

Table 5.1: Audio ADC sampling jitter on iPhone 4 and 5S

continuous sampling clock that can be used for relative time stamping and has the ability to

configure buffer sizes and sampling rates.

In order to estimate audio latency, resolution and clock drift, we connect the PPS output from

a uBlox 7 GPS receiver through a level shifter into the microphone input of a smartphone. The

GPS PPS output provides a highly stable clock reference with less then 25 nano-seconds of jitter.

In our first experiment, we collect 1 hour of PPS input audio signals. Table 5.1 shows the jitter

between the time that the PPS signal transitions as compared to the expected time based on the

audio sampling rate. For example, a jitter value of 1 means that the PPS pulse period was 1

audio sample (22µs) different than expected over that period of time due to sampling jitter or

clock drift. From these values we can compute that the clock drift-rate over an extended period

on the iPhone 4 and iPhone 5S are 7.17ppm and 23.56ppm respectively as compared to the GPS

reference. We see a worst-case sampling jitter between two PPS edges as 2 audio samples.

5.3.3 OS Timing Performance

In order to measure timing performance based on OS timestamping, we use the same experimen-

tal setup from the previous section and also timestamp the arrival of each audio buffer segment

using the OS clock (1µs granularity) and compute the relative PPS edge in the audio stream.

Figure 5.2 shows that the worst-case jitter between OS tick time and a PPS tick is 724µs with

an average jitter of 53.2µs. Since the PPS signal is regular, this allows us to bound the OS

timestamping jitter to within 1ms.
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Figure 5.2: Audio buffer OS time-stamping jitter

5.3.4 NTP Timing Performance

We can now use our OS timestamping bounds to benchmark the performance of NTP running

on the phone as compared to the GPS input. Using ios-ntp [21], we capture NTP timestamps

along with the system time and our audio PPS input. For each NTP sample, we allow the server

to synchronize for 200 seconds before comparing against the OS and PPS time. During this time

the NTP process performs clock rate adjustment. Figure 5.3 shows the jitter between the NTP

clock and the PPS timestamps over 100 different NTP synchronizations. Since NTP is negatively

impacted by jitter and asymmetry in communication channels, we ran experiments using LTE,

campus WiFi and an idle WiFi router directly connected to a Stratum 1 NTP server fed by a

dedicated GPS clock. We see that NTP using LTE has an average jitter between synchronization

attempts of 47ms (max 466ms), while NTP over normal WiFi has an average jitter of 30ms (max

326.5ms) and even in the isolated ideal case, there is an average of 19.3ms (max 74ms) of jitter.

For measuring audio TOF, a time of 1ms corresponds to a distance of 0.33m while the distance

equivalent to 47ms is more than 15m. This is not accurate enough to be useful for most indoor

localization applications. In the next section, we describe our acoustic TDOA synchronization

approach that improves timing accuracy to 720µs on average in practice.
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Figure 5.3: NTP second tick deviation from UTC second tick

5.4 Clock Recovery via TDOA Based Localization

As part of the TDOA calculation, it is possible to estimate the instant when each signal was

originally transmitted. We use this approach to synchronize the audio stream with respect to

global time, which can then be used as a reference for application-level time-stamping. Time-

stamping of audio events based on their position in a buffer completely removes any sources

of delay from the operating system or networking stack. Given the relatively small amount of

jitter seen when sampling audio, it also stands as a reasonable alternative for synchronizing other

events, for example to perform cooperative ranging between two mobile phones.
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Figure 5.4: Estimation of start of ultrasound transmission cycle timing

Figure 5.4 shows the layout of three transmitters and a receiver in 2-D space, and their cor-

responding notions of time. We consider the receiver’s clock to be offset by Toffset from the

transmitter’s clock. Synchronization is achieved by estimating this offset. Typically this time

offset is not estimated since the TDOA equations are used to directly estimate the position of

the receiver [61]. However, the time offset can be obtained easily once the position has been

estimated, as explained below.

(Xi, Yi) denotes the position of transmitter i for i = 1, 2, 3 and is assumed to be known.

The position of the receiver (x, y) is unknown. di is the distance between transmitter i and the

receiver and is given by Equation 5.1.

di(x, y) =
√

(Xi − x)2 + (Yi − y)2 (5.1)

The TOF of the audio signal from transmitter i to the receiver is given by Equation 5.2.

TOFi =
di(x, y)

V
(5.2)

where V is the speed of sound.

The corresponding arrival time of the signal measured by the receiver is the TOAi, given by
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Equations 5.3 and 5.4.

TOAi = TOFi + Toffset (5.3)

TOAi =
di(x, y)

V
+ Toffset (5.4)

The receiver needs to estimate Toffset given TOAi and (Xi, Yi) for i = 1, 2, 3. To estimate

the Toffset, we first estimate the position of the receiver. To estimate (x, y), we use the standard

multilateration technique [61] by eliminating Toffset and arrive at the TDOA equations. We then

find the (x, y) that minimizes the sum of squares of error (ξ) in TDOA using Equations 5.5, 5.6,

5.7 and 5.8.

Measured TDOAij = TOAi − TOAj (5.5)

True TDOAij =
di(x, y)− dj(x, y)

V
(5.6)

ξTDOAij
(x, y) = [TOAi − TOAj −

di(x, y)− dj(x, y)

V
]2 (5.7)

(x̂, ŷ) = argmin
x,y

∑
(i,j)

1≤j≤N
j 6=i

ξTDOAij
(x, y) (5.8)

We next estimate Toffset from (x̂, ŷ) and the TOA using Equation 5.9.

ˆToffset =
1

3

( 3∑
i=1

(
TOAi −

di(x̂, ŷ)

V

))
(5.9)

5.4.1 iOS App Design

Figure 5.5 shows an overview of the receiver demodulation software that runs on iOS and is used

to recover the localization system’s clock via TDOA localization. It was prototyped in MATLAB

before being ported to Objective-C. The algorithm for demodulating the ultrasonic transmissions

and calculating the receiver’s position was translated into C code using MATLAB’s C coder. The
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Figure 5.5: iOS app flowchart for clock recovery via TDOA based localization

iOS app continuously listens on the microphone and periodically passes filled audio buffers to the

demodulator. Once the phone’s position is determined using TDOA ranging and multilateraion,

the app computes the TOF of the signals it has just received to determine the start of the previous

TDMA cycle relative to the captured audio buffer. The audio sample index s0 at which the

TDMA cycle started is stored in memory and the phone is now synchronized to the transmission

infrastructure. A counter keeps track of how many audio samples have been captured since s0

and calculates successive TOF values of successfully demodulated ultrasonic packets based on

their TOA in relation to s0. Whenever the phone successfully demodulates enough ultrasonic

packets to localize itself using TDOA it will resynchronize to the transmitters.

98



5.4.2 Evaluation

In this section, we evaluate the effect of errors in deployment and measurement of beacon node

locations on our ability to synchronize time which is equivalent to estimating the Toffset value

defined in Section 5.4. We also evaluate the sensitivity of transmitter placement. These two

evaluations are performed through simulation given the model described in the section below.

We then experimentally evaluate the timing accuracy and ranging capabilities of our platform.

5.4.3 Modulation Scheme

The ultrasound modulation scheme used in the following experiments was adapted from the one

described in Section 4.4. Due to the more limited frequency response of the iPhone 5S used in

these experiments (same frequency response as the iPhone 4S seen in Figure 3.13), we modi-

fied the scheme to employ longer preambles of 150ms, which are transmitted simultaneously to

the encoded data as shown in Figure 5.6. Since chirp signals sweep across a given frequency

range, it is possible to partially overlap symbols without causing significant interference. This

not only allows us to increase the data rate, but also increase the symbol duration, which in-

creases the SNR of the signal at the receiver while keeping packet duration to a minimum. The

preamble is stretched over the entire packet, making it easily discernible after matched filtering

and improving the range resolution of the transmission. Data symbols have also been increased

in length, with the start of each data symbol being separated by several milliseconds. Instead

of using different chirp rates to denote four different data symbols, only an upchirp (frequency

increasing over time) and a highly orthogonal down-chirp (frequency decreasing over time) are

employed to keep the scheme robust to errors. Each symbol is faded in and out in amplitude over

5ms to prevent the loudspeaker from producing audible clicks due to rapid changes in signal

power. In order to enable multiple access between ultrasound transmissions, all transmissions

are time-multiplexed with only a single transmission taking place per time slot.
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Figure 5.7: Performance of modulation scheme

Figure 5.7 shows the performance of our modulation scheme for two different packet lengths

of 150ms and 250ms. The 150ms packets use a data symbol length of 25ms, a preamble length

of 150ms and a symbol separation of 9ms. The 250ms packets use a data symbol length of

30ms, a preamble length of 250ms and a symbol separation of 15ms. To test the performance of

this modulation scheme, we transmitted 500 packets with random data while varying the transmit

power to an iPhone 5S, which performed the demodulation of the received data. The 150ms long

packets perform nearly as well as the 250ms long packets in terms of Bit Error Rate (BER) and

Packet Reception Rate (PRR), with only a negligible impact on PRR down to an SNR of 2.5dB.

The 250ms long packets do not exhibit a significant impact on PRR until an SNR of 1.8dB.
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Figure 5.8: Deployment and geometry error

5.4.4 Deployment and Geometry Error

We assume the spatial configuration of beacons and receivers in 2-D space as shown in Fig-

ure 5.8(a). The room is circular with a radius of Rroom. For simplicity, the three beacons are

assumed to be placed in the periphery of the room. We assume some symmetry in placement as

indicated by the separation angle φ between two pairs of beacons. The measurement error rerror

in beacon position is assumed to be uniform in all directions around a transmitter and to be equal

at all three beacons. The true position of each transmitter is at a random location on the circle

that defines possible deployment error. The receiver is placed in the center of the room and we

assume that the speed of sound is constant at 340m/s.
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Effect of incorrect measurements in transmitter positions

First, we evaluate the impact of measurement error in the transmitters’ positions with Rroom =

5m and φ = 120◦. We then analyze the effect of rerror on Toffset by sweeping rerror from 0 to 1m

and generating 400 random configurations of the transmitters on their error circles and estimating

the Toffset for each configuration. The solid blue lines in Figure 5.8(b) show all possible values

of errors. We see that the worst-case error for each rerror is bounded at the top by the time taken

by sound to travel the same distance. Typically, while deploying this system with nominal care,

the measurement error can be restricted to below 10cm, which is equivalent to an error of 270µs

in Toffset .

Effect of transmitter placement geometry and room size

Next, we evaluate the effect of room size and geometry of the placement by increasing Rroom up

to 10m and varying φ from the worst possible placement (φ = 0◦) to the best possible placement

(φ = 120◦) geometry. We assume a value of 10cm for rerror from the previous section. Fig-

ure 5.8(c) shows the worst case error among 400 simulations at each data point. We see that for

φ = 1.5◦ the error is quite high (15ms for Rroom = 5m) and grows proportionally to the room

size. This is because the transmitters are almost at the same location, therefore the three unique

TOA equations that we expect from the transmitters are identical, leading to insufficient infor-

mation. The position of the receiver could be incorrectly estimated anywhere within the room,

which is why we see the worst case error in Toffset growing linearly with the room size. For

the best case geometry of φ = 120◦, we see that the error (270µs) is not dependent on the room

size and is determined by rerror, except when Rroom is small and comparable to rerror. This is

because at φ = 120◦ the transmitters are sufficiently separated to provide the timing information

required to estimate the receiver position and Toffset. For intermediate values of φ, we see that

as the room size increases, the error increases with room size until the point where the room size
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Figure 5.9: Experimental setup

is large enough to provide sufficient spatial separation to the transmitters. This can be seen when

each line reaches a maximum and then decreases.

5.4.5 Synchronization and Ranging Performance

In order to evaluate the synchronization error of our method and the resulting positioning error,

we set up four ultrasonic beacons in a 4.5x5.5m area. Our ranging signals were generated using a

MOTU Ultralite mk3 10 channel audio interface hooked up to an Onkyo HT-R540 amplifier and

received by an iPhone 5S and an Audix TM-1 measurement microphone, which were co-located

on a microphone stand. The experimental setup can be seen in Figure 5.9. The second recording

device allowed us to tightly time synchronize all transmitters as well as the measurement micro-

phone to obtain ground truth TOF and position measurements. The iPhone synchronizes itself

to the transmitters using our audio synchronization method and recorded its calculated position
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and TOF values. We perform measurements at 20 random locations in the room, for which 60

samples were recorded each. A mean absolute time synchronization error of 720µs with a max-

imum of 1484µs was achieved. This resulted in a maximum absolute distance error of 15.6cm.

Figure 5.10(c) shows the Cumulative Distribution Function of positioning error resulting from

time synchronization using our method. 98% of the samples exhibit a positioning error of less

than 12cm and 100% show an error of 16cm or less in LOS conditions. This small-scale exper-

iment validates the concept that highly accurate clock synchronization is possible through audio

sampling.
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Figure 5.10: Acoustic time synchronization accuracy and position error
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Further, we conducted an experiment where one or two transmitters (depending on the posi-

tion of the receiver) were obstructed by a large white board. In this case, approximately 78% of

the calculated position samples were within an absolute distance error of less than 14cm (see Fig-

ure 5.10(c)) and a maximum error of 4.16mwas encountered. The large maximum error is due to

the phone being unable to measure its position accurately due to multipath or severely attenuated

ranging signals, causing it to synchronize erroneously to the transmitting infrastructure when

placed in certain locations. Figure 5.10(b) shows that this is reflected in a maximum absolute

time synchronization error of 39.1ms with a mean of 2.33ms. These points could be eliminated

if we received one good set of samples and then performed TOF ranging. We purposefully dis-

abled this capability to highlight the impact of obstructions on TDOA localization. One could

also apply filtering to the recorded signals by thresholding and sampling over multiple TDMA

cycles to obtain an accurate lock on the receiver’s position. A software-based Phase-Loop Lock

(PLL) controller that slowly adjusts the clock based TDOA inputs when available rather than

immediately resetting the timing offset on each sample can prevent isolated erroneous position

measurements from causing significant time synchronization errors.

5.4.6 Limitations

Although promising, there are a few limitations to our approach for recovering the clock of the

localization system via TDOA localization. In 3-D space, our system relies on the receiver being

in LOS of at least four transmitters in order to synchronize. However, it is possible that obstruc-

tions inside the building or the person holding the mobile device block one or more transmitters.

We experimentally studied the effect of this as shown in Figure 5.10(b) and Figure 5.10(c). It is

also possible that in certain areas such as long corridors, fewer than three transmitters are present.

In these cases, we can utilize the inertial sensors on the phone to track the mobile device using

pedestrian dead reckoning [88]. Our method also depends upon measuring the location of the
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mobile device accurately in order to recover the clock. The IMU sensors may also be used to

filter out location errors and to only allow clock recovery when the mobile device is stationary,

which generally results in a more accurate location measurement. Another challenge is the need

to filter NLOS multipath signals. The presence of a multipath signal in the absence of a direct

LOS signal could result in a TOF measurement which is equivalent to the receiver being located

at a much larger distance away from the transmitter. We have developed several methods to filter

NLOS multipath signals to mitigate this problem as described in Section 4.5.3 and Section 4.5.4.

τtx0

τtx1

Slot 0 Slot 1

a)

b)

τtx2 . . . 

c)

τtx3 τtx4

τrx0

Figure 5.11: BLE synchronization transaction diagram

5.5 BLE Time Synchronization

In order to map received ultrasound transmissions to their respective beacons, ALPS beacons

transmit periodic iBeacon BLE advertisement packets that contain a counter value τtx indicating

the time offset from the broadcast of the BLE advertisement packet to the beginning of the

TDMA cycle shown in Figure 5.11 (a), (b). Mobile receivers can synchronize to the TDMA cycle
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by timestamping the BLE packet reception τrx (Figure 5.11 (c)) and subtracting the received

counter value from τrx. While iBeacon BLE advertisement intervals can be as low as 20ms,

there is a non-deterministic latency associated with receiving them in an application running on

a smartphone. Smartphones such as the iPhone 5S do not allow low-level access to their BLE

stack for accurate timestamping. On the iPhone 5S, received iBeacon BLE advertisements are

passed to the application roughly once a second, but it is unclear how often the phone receives

BLE packets and how long it takes before they signal applications.
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Figure 5.12: BLE advertisement packet reception latency

In order to evaluate the feasibility of time-synchronizing the mobile device to the TDMA

cycle of the broadcasting infrastructure, we measured the latency between BLE advertisement
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packets and the audio input of an iPhone 5S. We set up a beacon to toggle a GPIO pin that was

connected to the phone’s microphone input when a new TDMA cycle started and simultaneously

started broadcasting BLE advertisement packets containing τtx. The phone timestamped the re-

ception of each BLE packet in the application and subtracted τtx to determine when the GPIO pin

was toggled in its frame of reference. Simultaneously the phone was recording the GPIO trig-

ger in an audio waveform, which was precisely timestamped to within 1ms using the technique

detailed in Section 5.3.2. Figure 5.12 shows the BLE advertisement packet reception latency for

20, 50 and 100ms advertisement intervals across 1000 packets. When set to a 20ms interval, we

measured an average latency of 25.1ms with a maximum of 72.4ms, which is well below our

100ms long TDMA slot length, hence allowing slot-accurate time synchronization via BLE. The

less frequent intervals provided unacceptable worst-case latency of 169.3ms and 275.1ms (50

and 100ms intervals respectively).

5.6 802.15.4 Time Synchronization

ALPS uses 802.15.4 networking to time synchronize its beacons to a network master or plug

forwarder by simply timestamping periodically received packets (see Section 3.6). The syn-

chronization precision of ultrasound transmissions across all beacons is directly related to the

localization performance of the system and therefore should be as high as possible. In order to

measure the time synchronization performance of the 802.15.4 links we measured the jitter of

sending 100 periodic 802.15.4 packets at regular intervals from a generation 2 Network Master

(see Section A.2.1) to a generation 2b beacon (see Section A.3.1), which triggered the playback

of an ultrasonic chirp signal. The network master and beacon featured an embedded design run-

ning firmware bare-metal on an 8-bit Atmel SOC for low latency audio playback and low jitter

synchronization. The jitter was measured by connecting an oscilloscope to the line output of the
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audio codec of the beacon and measuring the jitter between successive ultrasonic signal trans-

missions. This resulted in a worst case jitter of 20µs as shown in Figure 5.13, corresponding to

an ultrasound ranging error of 6.8mm, which is more than accurate enough for our purposes.
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Figure 5.13: Beacon ultrasound transmission jitter using 802.15.4 time synchronization

5.7 LoRaWAN Time Synchronization

The time synchronization between ALPS network masters and plug forwarders (see Section 3.2

is performed using LoRaWAN packets. LoRaWAN provides a license-free and long-range (up

to 22km LOS, 2km NLOS) communication mechanism for synchronizing clocks and collecting

data. The long range allows for a single Network Master to reach all Plug Forwarders within

a single hop for the vast majority of installations and therefore greatly simplifies the network’s

complexity. However, since LoRa is narrow-band (125KHz) and has extremely long packet

sizes (up to 400ms limited by FCC regulations), we needed to confirm that it could provide

better than our 1ms required time synchronization accuracy. Please refer to [93] for a primer

on LoRa modulation. Figure 5.14 shows the measured jitter across pairwise LoRaWAN nodes

that are toggling a GPIO pin upon completion of a packet. We attenuated the transmitters and
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exposed them to heavy multipath environments and yet still see a worst-case error of 6µs at the

largest spreading factor (SF11) allowable by the FCC and 4µs at the smallest, which is more than

enough to accurately synchronize our beacons.
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Figure 5.14: LoRaWAN time synchronization jitter
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Chapter 6

Location Calculation

In order to localize a mobile device based on ranges or pseudo-ranges to beacons at known

locations, ALPS performs trilateration (Section 6.1) or multilateration (Section 6.2) respectively.

This is done in a cloud based gradient descent solver running in MATLAB. The following chapter

will describe the math behind solving for the location of the mobile devices (Sections 6.1 and

6.2), the software infrastructure of the cloud based solver (Section 6.4), a rapid, user-assisted

setup procedure for small ALPS deployments (Section 6.6) and how IMU sensor data fusion can

improve ultrasound location accuracy and latency (Section 6.6.3).

6.1 Trilateration

Trilateration is a method to determine the coordinates of a point, given the distances from two

or more points with known coordinates. The technique is commonly used in TOA (see Sec-

tion 2.2.1) and RTOF (see Section 2.2.3) based localization systems, where the direct ranges

from anchor points to the object being localized are known. Figure 6.1 illustrates an example

of a receiver R being localized using trilateration based on the ranges rA, rB, rC between it and

three beacons A,B,C at known locations. The circles in the figure show a cross sectional view
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B

C

𝑟𝑟𝑎𝑎
𝑟𝑟𝑏𝑏

𝑟𝑟𝑐𝑐

(𝑥𝑥𝐴𝐴,𝑦𝑦𝐴𝐴, 𝑧𝑧𝐴𝐴)

(𝑥𝑥𝐵𝐵 ,𝑦𝑦𝐵𝐵 , 𝑧𝑧𝐵𝐵)

(𝑥𝑥𝐶𝐶 , 𝑦𝑦𝐶𝐶 , 𝑧𝑧𝐶𝐶)

(𝑥𝑥𝑅𝑅, 𝑦𝑦𝑅𝑅 , 𝑧𝑧𝑅𝑅)

Figure 6.1: Trilateration example diagram

of three spheres of radius rA, rB, rC being projected from the beacons, the intersection of which

is the location (xR, yR, zR) of the receiver R. Equations 6.1 [79] are the system of equations

to be solved for the location of receiver R, based on the ranges rA, rB, rC and the location of

each beacon (xA, yA, zA), (xB, yB, zB), (xC , yC , zC). The ranges can be calculated based on the

propagation speed of the signals c that were transmitted by the beacons and their respective

propagation times tAR, tBR, tCR. Trilateration requires range measurements from at least n bea-

cons to localize a receiver in n dimensions, however localization accuracy generally increases

with the amount of beacons. ALPS uses trilateration for localizing mobile devices once they

are synchronized with the network master’s clock using the clock recovery method described in

Section 5.4.
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rA = c tAR =
√

(xA − xR)2 + (yA − yR)2 + (zA − zR)2

rB = c tBR =
√

(xB − xR)2 + (yB − yR)2 + (zB − zR)2

rC = c tCR =
√

(xC − xR)2 + (yC − yR)2 + (zB − zR)2

(6.1)

6.2 Multilateration

Multilateration is a method to determine the coordinates of a point, given the difference in dis-

tances, i.e. pseudo-ranges, from two or more points with known coordinates. The technique is

commonly used in TDOA (see Section 2.2.2) based localization systems, where the difference in

the TOAs tA, tB, tC , tD of several signals transmitted by beacons A,B,C,D, corresponding to

the pseudo-ranges multiplied by the propagation speed c of the signals, are measured. Figure 6.2

illustrates an example of a receiver R being localized using multilateration based on the pseudo-

ranges rBA = rB − rA, rCA = rC − rA, rDA = rD − rA between it and four beacons at known

locations. The Equations 6.2 are used to solve for the location of the receiver (xR, yR, zR). The

locus of the points having the same pseudo-ranges from a pair of beacons is a hyperbola in two

dimensions [79], or a hyperboloid in three dimensions. The figure shows cross sections of hy-

perboloids for all beacons with reference to beacon A, the intersection of which is the location

of the receiver. The resulting localization of this method is highly dependent upon the error of

the TOA value from the reference beacon (in this case A). ALPS picks the beacon whose signal

was received at the highest SNR as the reference, as it is mostly likely to have the most accurate

TOA value. Multilateration requires pseudo-range measurements from at least n+ 1 beacons to

localize a receiver in n dimensions, however, localization accuracy generally increases with the

amount of beacons.
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Figure 6.2: Multilateration example diagram

rBA = c (tB − tA) =
√

(xB − xR)2 + (yB − yR)2 + (zB − zR)2

−
√

(xA − xR)2 + (yA − yR)2 + (zA − zR)2

rCA = c (tC − tA) =
√

(xC − xR)2 + (yC − yR)2 + (zC − zR)2

−
√

(xA − xR)2 + (yA − yR)2 + (zA − zR)2

rDA = c (tD − tA) =
√

(xD − xR)2 + (yD − yR)2 + (zD − zR)2

−
√

(xA − xR)2 + (yA − yR)2 + (zA − zR)2

(6.2)

6.3 Geometric Dilution of Precision (GDOP)

In order to achieve high localization precision using trilateration (Section 6.1) or multilateration

(Section 6.2), the beacons need to be separated significantly with respect to the location of the
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receiver in all axes that the receiver is being localized in. This is referred to as the Geometric

Dilution of Precision (GDOP), which is a measure of how errors in the range measurements

will affect the localization measurement calculated using Equation 6.3 [49]. Generally a GDOP

value of < 1 is considered optimal, with increasing values reflecting increasingly less precision.

Figure 6.3 shows two nodes ranging to a point with a true range denoted by the solid circles and

maximum/minimum ranging errors denoted by the dashed circles. The point may therefore be

localized anywhere within the green region, which is significantly larger (i.e. results in a lower

localization precision) for a geometry with high (poor) GDOP as shown in Figure 6.3(a) than for

a more optimal geometry with a low GDOP in Figure 6.3(b).

GDOP =
∆(Output Location)

∆(Measured Data)
(6.3)

A

B

A
B

(a) High GDOP

A

B

A
B

(b) Low GDOP

Figure 6.3: Geometric Dilution of Precision (GDOP) example diagram

Since most localization applications ALPS is used for only require two dimensional local-

ization, the separation of beacons on the z axis is irrelevant and the beacons can all share the

same z coordinate when being mounted on a ceiling. Section 5.4.4 provides insight into how the

geometry of beacons affects the localization performance in ALPS.
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6.4 Solver Software Architecture

ALPS uses a gradient descent solver running in MATLAB capable of performing trilateration

(see Section 6.1) when the mobile device has recovered the network master’s clock allowing it

to perform TOF (see Section 5.4), as well as multilateration (see Section 6.2) when TDOA is

used. MATLAB was chosen as the runtime environment due to its rapid prototyping capabilities

and cross-platform support. The functions which perform the gradient descent minimization

operation are coded in C to improve performance and are called from MATLAB.

The MATLAB solver provides a websocket interface for mobile devices to connect to. Every

connection spawns a new thread, which can be handled by a separate CPU core for improved

performance. Once a websocket connection is established, the mobile device asynchronously

sends multiple corresponding TOA or TOF, Beacon ID and SNR values for the ultrasound signals

that it received and demodulated. The solver then performs the trilateration or multilateration

operation based on the received values and the known locations of the beacons and sends back

the location result to the mobile device. If floor plan information is available, the solver is capable

of detecting localization errors which locate the mobile device outside of the area in range with

the beacons it has received signals from (e.g. in a different room, inside a wall, outside the

building, etc.). In this case the solver will send back an error to the mobile device.

The solver is also able to publish the location information via XMPP, MQTT or REST to

Sensor Andrew [37] or OpenChirp [28] servers for further processing or storage. We envision

OpenChirp powering the networking and management backend of future ALPS systems. The

lean publish-subscribe architecture is highly scalable and lends itself well to the requirements of

ALPS, namely web based system management interfaces, mobile device tracking, tag tracking,

map and beacon location storage and a simple MQTT or REST based API for interfacing with

the system.
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6.5 Intertial Sensor Fusion

IMU based sensor fusion is used in many localization systems such as automotive GPS receivers

and aircraft navigation systems to improve location accuracy as well as the update rate of the

system. We implemented an Extended Kalman Filter (EKF) in iOS to filter the location esti-

mates of a mobile user by utilizing an iPhone 5S’s IMU sensors for tracking. For step count

and direction we use the step count from the iPhone’s accelerometer and the direction from the

compass which already fuses the magnetometer with the rate gyros. The details of our process

model and measurement model for the EKF are given below and the performance of our IMU

sensor fusion approach is evaluated in Section 6.7.

Our objective is to estimate the 2-D position (xt, yt) of the mobile device at time t.

Equation 6.4 defines our state vector:

Xt =

 xt

yt

 ∼ N (µt,Σt) (6.4)

where µt is the expected value of Xt and Σt is the uncertainty in the state. The EKF generates

estimates of µt and Σt based on the prediction from the previous state Xt−1 and the process

model, and then updates this estimate based on measurement Zt and the measurement model. A

time step of t = 1 is the time a person takes for one step while walking.

6.5.1 Process Model

The input ut to this system is given by Equation 6.5:

ut =

 ∆Dt

θt

 (6.5)
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with noise vt such that:

vt =

 vDt

vθt

 ∼ N (0,Mt)

Mt =

 σ2
D 0

0 σ2
θ

 (6.6)

∆Dt is the step length of the mobile device and θt is the heading. The step length and heading

of the mobile device can be estimated from its IMU sensors and are used as input to the filter.

σ2
D and σ2

θ are the variance in the step length and heading respectively. The focus of our work is

not on implementing an accurate step length and heading estimation method, so for our model

we conservatively assumed that 2σD is 10cm and 2σθ as 45◦ (For a normal distribution 95.45%

of the values lie within 2σ of the mean)

The process model is given by Equation 6.7:

 xt

yt

 =

 xt−1

yt−1

+

 (∆Dt + vDt ) cos(θt + vθt )

(∆Dt + vDt ) sin(θt + vθt )

 (6.7)

The process model is linearized and µt and Σt are updated as Equations 6.8 and 6.9 respectively:

µt = g(µt−1, ut) (6.8)

Σt = GtΣt−1G
T
t +Rt (6.9)
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where

g(µt−1, ut) = Gtµt−1 +

 ∆Dt cos(θt)

∆Dt sin(θt)


Gt =

 1 0

0 1


Rt = VtMtV

T
t

Vt =
∂g(µt−1, ut)

∂ut

Vt =

 cos(θt) −∆Dt sin(θt)

sin(θt) ∆Dt cos(θt)

 (6.10)

6.5.2 Measurement Model

Though the actual measurements from our system are the TDOA values from the set of visible

beacons, these can not be directly used with an EKF due to the linear approximation of the TDOA

equations. Instead, we first estimate the position using the TDOA measurements, and use this

estimate as our measurement. Our measurement model is given by Equations 6.11 and 6.12:

Zt =

 xt

yt

+ wt (6.11)

wt ∼ N (0, Qt) (6.12)

where Zt = [x̂t, ŷt]
T is obtained by multilateration. From Figure 6.11, we observe that 90% of

the range errors are less than 30cm. We assume that the errors in the x̂t and ŷt are uncorrelated

and assign Qt = σzI where σz = 30cm

In case one or more beacons are blocked, or if the phone identifies that one of the signals
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from the beacons is a NLOS signal, it does not update its measurement Zt. In this case, we

assign Qt = σnI where σn is a large number, such that the filtering effectively updates the

estimate of the location based purely on tracking.

6.6 Rapid User-Assisted Setup

Any beacon-based localization system requires the location of the beacons with respect to the

floor plan to provide meaningful location estimates. Most systems assume these beacon posi-

tions can be easily determined manually, but in practice this can be quite difficult. Errors in

the position of the beacons can cause significant end-to-end localization errors. Measuring bea-

con positions is a labor-intensive time-consuming process which involves either taking extensive

range measurements to walls using laser rangers or employing other equipment like a robotic sys-

tem with accurate motion control equipped with the ability to sense the signal from the beacons.

What makes this process difficult is that the floor plan information itself may not be provided

to the installer. We propose a semi-automatic mapping process where the installer deploys the

beacons and walks around the room taking a few measurements to aid the mapping process.

The goal of the proposed mapping process is to (a) map the beacons with respect to the floor

plan, and (b) generate the floor plan using landmarks such as the corners if it is not already

available. This process can be performed by a non-expert user in a few minutes for a single area.

6.6.1 Procedure

The process for mapping three beacons in a single area is given below. The approach can be

extended to more beacons in a single area and conceptually also multiple areas. Though not

currently implemented, the app could potentially take existing floor plan images and determine

anchor points within them. Our mobile app guides the user through these steps:
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1. Deploy the three beacons such that they provide good coverage of the area and are in LOS

of each other.

2. Hold the phone close to one of the beacons and select the Sync option in the app and wait

for 10 seconds while the phone synchronizes to the beacons.

3. Identify three points on the floor such that all three beacons are visible from each point.

Place the phone at each location, and select the Floor reference point option.

4. If the floor plan is not provided, walk around the room and go to each corner and select the

Corner reference point option. This will compute line segments between the corner points.

5. Specify an origin and the orientation of the x− y coordinate space. One way to do this is

to select one of the corners as the origin and an adjacent corner to be on the x or y axis.

6.6.2 Algorithm

The basic principle of the 3-D mapping process is that we make use of the following three types of

information to uniquely solve for the beacon positions: (a) ultrasonic-based inter-beacon ranging

(b) estimation of z − plane using the three ground measurement points (c) user specified x − y

plane origin and orientation. The algorithm for mapping three beacons is as follows:

1. Given inter-node ranges r12, r23, r13 between the three beacons B1, B2, B3, define a 3-D

coordinate system R3
a such that the three beacons are on the z = 0 plane, B1 is the the

origin [0, 0, 0], and B2 is along the x axis [r12, 0, 0]. Coordinates of B3 can be obtained as

[r13 cos(α), r13 sin(α), 0], where α = arccos(
r212+r

2
13−r223

2r12r13
)

2. Estimate the coordinates of the three ground measurement points with respect to the bea-

cons in R3
a.

3. Define a new coordinate system R3
b such that the plane that contains the three ground points

is the new z = 0 plane in R3
b .
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4. The x− y plane of R3
b can be defined by its origin and one of the axes. This can be chosen

arbitrarily since we would re-assign the x− y plane after generating the floor plan. In our

implementation, we did the following: The projection of B1 on the x− y plane is assigned

as the origin (0, 0, 0) of R3
b . The projection of B2 on this plane is assigned to lie on the

y-axis of the new plane. The x-axis of R3
b is found to be normal to the y and z axes.

5. Estimate the location of all the corner points in R3
b using trilateration.

6. The x − y coordinates of the required 2-D coordinate system are specified by the user

during the calibration process. Either apply an affine transformation on R3
b to get the final

coordinate system, or for better accuracy, apply non-linear transformations to minimize

error across all reference points if more than two reference points are available.

Beacon	
  1	
   Beacon	
  2	
   Beacon	
  3	
  Phone	
  

Area	
  A	
   Area	
  B	
   Area	
  C	
  Wall	
  1	
   Wall	
  2	
  

Figure 6.4: Panorama of automatically set up kitchen area using three beacons

6.6.3 Evaluation

We evaluated our mapping process in half a dozen areas: a kitchen and lounge space, a lab and

in four office areas. The largest space in terms of area and number of corners was a lounge and

kitchen space, as shown in Figure 6.4, with a total area of around 72m2. and 10 corners. The

generated map is shown in Figure 6.5. A second generated map from the lab setup is shown in
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Figure 6.5: Kitchen area beacon mapping output

Figure 6.6. Note that this process requires all the corners to be in LOS of the three beacons. Some

of the boundaries in Figure 6.5 were not physical walls but were either 1.5m tall partitions or

were chosen to ensure all corners are in LOS. The results of the mapping process for the kitchen

setup and averaged across all six experimental setups are shown in Table 6.1. Our system can

determine three-dimensional beacon location with a Euclidean distance error of 16.1cm averaged

over the three beacons, and can generate maps with room measurements with a two-dimensional

Euclidean distance error of 19.8cm averaged over all the corners. We observe that while map-

ping the beacons, the overall error in the height is around 13.5cm, while the error in the x or y

coordinate is less than 4cm. This is because the heights of the beacons were within 1m of each

other, whereas they were well separated in the x− y plane.

Beacon Error (cm) Corner Error (cm)
Setup Avg. x y z Avg. Max

Kitchen 13.9 2.2 1.4 13.4 26.8 43.6
Lab 18.2 5.4 3.6 13.6 13.0 25.2

Office 1 17.5 4.6 3.5 15.0 10.7 13.9
Office 2 17.2 5.0 1.6 15.1 22.8 34.0
Office 3 15.5 2.3 1.7 11.1 18.9 40.9
Office 4 14.1 3.4 3.1 12.9 26.5 31.4
Overall 16.1 3.8 2.5 13.5 19.8 43.6

Table 6.1: Beacon mapping error using user-assisted rapid setup
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Figure 6.6: Lab area beacon mapping output

6.7 Localization Performance Evaluation

In this section we present the results of evaluating the localization performance of ALPS using

a generation 1 system, with a stationary receiver and precisely measured beacon locations in

Section 6.7.1 and with a generation 2c system using automatically mapped beacons and IMU

sensor fusion in Section 6.7.2. The generation 1 system consisted of piezo bullet speaker bea-

cons connected to a PC controlled audio interface via a home theater amplifier. The generation

2c system featured an embedded design with BLE time synchronization functionality and an

omnidirectional ultrasound speaker horn for improved ultrasound signal coverage.

Mic	
  /	
  Phone	
   Speaker	
  A	
  (zoom)	
   Speaker	
  B	
  (zoom)	
  Speaker	
  A	
   Speaker	
  B	
  

Figure 6.7: Photo of atrium environment (two speakers outside field of view)
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(a) Atrium environment

(b) Small room environment

Figure 6.8: Ultrasound impulse response measurements

6.7.1 Stationary Receiver

For this experiment we placed four beacons in the corners of two spaces on campus. The first

location is the 20m x 20m atrium shown in Figure 6.7. We chose the atrium location since it was

similar to that of a museum environment with hard walls and tile floors. We then also chose a

small 5m x 5m room with cement walls that exhibits a large amount of multipath fading due to

echoing. In order to capture the multipath characteristics of each of these spaces, we record the

impulse response at the center of the room. Figure 6.8(a) shows the excess delay in the atrium
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to be about 90ms, while Figure 6.8(b) shows an excess channel delay of about 60ms. One can

see the multipath is greater in the small room based on the number of echoes. One can also infer

the size of the room by noting the spacing between echoes. We precisely measured the x,y, and

z locations of the beacons’ speakers using a laser range finder. Using our microphone stand, we

moved an iPhone 3GS and an Audix TM-1 measurement microphone to 25 different locations

along a grid in the room. At each location we took five audio recordings to compute five position

samples. We then computed the ranging accuracy of the system by comparing our measured

location as ground truth to each computed location. Figure 6.9(a) shows the distribution of errors

across all of the samples.
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Figure 6.9: Localization error

We see that 95% of the samples are within 100cm of the actual location with a worst-case

overall error of 4m. As shown in Figure 6.9(b), the small room behaves similarly except with a

sharper position accuracy fall-off due to the added channel fading. In some cases, the system was

only able to detect three out of the four beacons if for example an obstacle blocked one of the

speakers. In these cases, our positioning algorithm estimated the 2-dimensional location using

the 3 detectable speakers. The step-like shape of the CDFs is attributed to having successfully

detected all four beacons in the vast majority of cases, but occasionally choosing the incorrect

TOAs for one or more of them when they are blocked or out of range. This results in the vast
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majority of errors being below 10cm, with only a handful of much larger ones. In practice,

adding additional beacons will help alleviate bind spots.
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Figure 6.10: Localization performance in lab environment

6.7.2 Mobile Receiver and IMU Sensor Fusion

In this section we present the results of evaluating the localization performance of ALPS, in the

lab and kitchen environments described in Section 6.6.3. We used the maps that were generated

by our rapid user-assisted setup process described in Section 6.6 using generation 2c ALPS

beacons (see Section A.4). In each test a user held an iPhone 5S and took approximately 30

steps in the area at a regular walking speed of approximately 1.4m/s. We collected data from

the iOS’s heading and pedometer functions. Ultrasonic measurements from the beacons were

also collected at every step. We analyzed the data offline using MATLAB. The results from

the lab setup are presented in Figure 6.10 and from the kitchen are presented in Figure 6.11.

The Localization lines refer to position estimates based on only the ranges from the beacons,

the Dead Reckoning lines refer to position estimates purely based on the IMU sensors and the

motion model, the Localization and Tracking lines refer to the output of the EKF explained in

Section 6.5 and the True Path lines denote the ground truth path taken by the person holding
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the phone. Figure 6.10(b) and Figure 6.11(b) show that tracking does not improve the accuracy

significantly as compared to using only localization since the localization is much more accurate

than the estimates from the motion model (error less than 30cm 90% of the time for the kitchen

setup and 47cm 90% of the time for the lab setup).
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Figure 6.11: Localization performance in kitchen environment with no blocked beacons
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Figure 6.12: Localization performance in kitchen environment with one blocked beacon

Note that the localization results without tracking are also affected by the errors in deter-

mining the beacon’s positions using the user-assisted setup procedure (see Table 6.1), as well as

the motion of the person holding the phone. We then simulated situations when the user blocks
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one beacon by removing some of the range measurements from a beacon in the data-set. The

Localization line in Figure 6.12 shows the localization estimates under this case for the kitchen

setup. The location does not update when insufficient measurements are received. We observe

that in such cases the system benefits from tracking, as seen in the Localization+Tracking line.

As can be seen in the CDF in Figure 6.12(b), tracking improved the localization performance

from 250cm to 50cm for the 90th percentile in position error.
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Chapter 7

Conclusions

This dissertation examined the use of synchronized ultrasonic signals for precise ranging and

localization of mobile devices. ALPS is an ultrasound based indoor localization system for

off-the-shelf mobile devices that provides high localization precision and is both scalable and

cheap to deploy. It is a beacon based system which uses custom embedded beacons, usually

mounted to ceilings, to transmit time synchronized ultrasonic signals to mobile device receivers.

The devices receive the ultrasound signals along with timing information via BLE, which allows

them to time synchronize with the ultrasound transmission cycle on a time slot level. ALPS

employs an ultrasound modulation scheme which allows for precise ranging and is inaudible

to humans. A rapid user-assisted setup procedure makes the system easy to deploy and energy

harvesting beacons avoid high wiring costs. This dissertation makes the following contributions:

1. Ultrasound Modulation Scheme: We designed and implemented two ultrasound modu-

lation schemes that provide precise ranging information to mobile devices. Both schemes

allow for multiple access via time multiplexing and are imperceptible by humans. One

scheme allows for encoding beacon IDs onto the ultrasound carrier. The demodulator im-

plementation of these schemes filters some multipath interference, which is then further

mitigated by a machine learning based approach that exploits the difference in propagation
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characteristics between ultrasound and BLE signals for detecting multipath.

2. Time Synchronization: We implemented a clock recovery scheme via TDOA based lo-

calization on iOS devices that allows them to tightly time synchronize with the ultrasound

transmission cycle. This allows for TOF ranging between beacons and mobile devices. We

implemented time synchronization protocols for BLE, 802.15.4 and LoRaWAN links for

time synchronizing the beacons, plug forwarders and mobile devices to a central network

master node.

3. Beacon and Networking Hardware: We developed several generations of ultrasonic bea-

con hardware, which culminated in an energy harvesting beacon design with a switchable

beam speaker array as well as a Decawave UWB module for ranging and BLE and 802.15.4

connectivity for data transfer and time synchronization. We evaluated the directionality of

several ultrasound speakers and designed an omnidirectional ultrasound speaker horn and

a four speaker array for optimal signal coverage. We also designed two networking nodes

that allow data transfer and time synchronization with the beacons. The latest network

master and plug forwarder networking nodes also provide LoRaWAN connectivity for cre-

ating long range networks in large installations.

4. Location Engine: We implemented a cloud based location engine which performs the

localization computations for the mobile devices. It is able to interface with MQTT and

XMPP publish-subscribe protocols for the distribution of location data. We also imple-

mented an IMU sensor fusion based tracking system which improves the ultrasound loca-

tion accuracy and fills in coverage gaps. Our rapid user-assisted setup procedure simplifies

the system’s setup by semi-automatically calculating the beacon locations in 3D space.
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7.1 Future Work

This section will explore the possibilities for future work on ALPS. Section 7.1.1 covers the

possibilities of tag localization and tracking, which would expand the localization capabilities

of an ALPS installation to low power tags that are valuable for asset tracking applications. Sec-

tion 7.1.2 describes the potential for AOA measurements using the sectored speaker array of

ALPS beacons for detecting localization errors, reducing the amount of computation for solving

for a location by constraining the search space and potential localization using a single beacon.

Section 7.1.3 looks at future advanced automatic beacon localization methods, which localize

beacons across large installations. Finally, Section 7.1.4 describes improvements to our localiza-

tion engine by accounting for floor plan data.

7.1.1 Tag Localization and Tracking

The primary use-case for ALPS is the localization of smartphones and tablets, however, there

are several applications that would benefit from integrating custom localization hardware such

as small tags. For example, asset tracking, worker safety and VR/AR applications often already

use custom hardware into which a tag could easily be integrated. Current ALPS beacons have

the capability of receiving and sending signals to BLE tags such as iBeacon [20], Gimbal [15]

and Eddystone [12], as well as Decawave [9] UWB equipped hardware. While BLE tags don’t

provide anywhere near the localization precision of ultrasound based localization, they are very

cheap, have a low power consumption and can give a general idea as to where the tag is located.

UWB tags such as Estimote UWB tag like devices [13] can provide high accuracy and high

update rates at a higher cost than BLE tags. ALPS beacons are capable of periodically pinging

tags and sending back ranging data to a location server via the 802.15.4 and LoRaWAN backhaul

described in Section 3.1.
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ALPS meets both the hardware and networking infrastructure requirements to localize and

track tags. We envision adding the necessary software for this in the future to make ALPS a

multi-technology localization system.

7.1.2 Angle of Arrival (AOA) Measurement

Current ALPS beacons feature an array of four individually addressable speakers with a 90◦ an-

gular separation in the horizontal plane (see Section 3.2). By transmitting uniquely identifiable

ultrasound signals using the modulation scheme described in Section 4.5.6, it would be possible

to perform AOA measurements at the receiving mobile device with a single microphone. Split-

ting the beam pattern of the beacon (see Figure 3.11) up into four sectors of 90◦, the sector which

the receiving device is located in should be identifiable based on the RSSI of the received ultra-

sound signals. It may be possible to obtain a more precise AOA measurement based upon the

RSSI ratio of multiple ultrasound signals received from different speakers of the same beacon

and comparing them to the known beam pattern. This would be challenging because the ratios of

the RSSI values change based upon the angle the receiving device has in relation to the vertical

plane of the beacon and because RSSI is a notoriously noisy metric.

AOA measurement data could significantly benefit the location solving process in ALPS

(see Section 6) by confining the area to solve across based upon the sector the mobile device is

located in, hence greatly reducing the amount of computation required compared to solving over

the entire space within range of the beacons. This may also be used to reduce errors caused by

inaccurate range measurements by checking if the calculated position of the mobile device lies

within the region measured by the AOAs of all received ultrasound signals.

Additionally AOA measurements may be used for localization from a single beacon. Once

a mobile device is synchronized with the network master using the scheme described in Sec-

tion 5.4.1 and can perform TOF ranging, the range data can be combined with the AOA data to
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localize the device to a higher precision. This would be particularly beneficial to smaller rooms

where it may be cost prohibitive to install multiple beacons and where the localization error using

this method is more tightly bounded.

7.1.3 Automatic Beacon Setup

One of the largest costs of installing a beacon based localization system like ALPS is the cost

of surveying the location of the beacons. In Section 6.6 we presented a rapid, user-assisted

setup technique for a three beacon system, which calculates the location of the beacons to a high

accuracy. This method, however, does not scale well to large installations.

A better approach would be to construct a range graph by utilizing the Decawave UWB

ranging modules in current ALPS beacons (Section A.5.1) to perform longer range inter-beacon

ranging, rather than by transmitting ultrasound between beacons. Obtaining the geometry of the

vertices of the graph based on the edges (distances) between them is a well researched problem in

the sensor networking, robotics and math communities [41, 48, 54] known as graph realization.

The main challenge in applying this to an ALPS installation is that the graph would often not be

fully connected and may even have disjoint vertices. It may be possible for a user to carry around

a mobile node with UWB ranging hardware, which can be used to add additional temporary

vertices to the graph to obtain a higher level of connectivity. A Simultaneous Localization and

Mapping (SLAM) based approach such as Range-Only SLAM [60, 80] or Graph SLAM [100]

may also be applicable.

7.1.4 Advanced Location Engine

The current ALPS location engine (see Section 6) only utilizes floor plan data to determine

whether a location measurement is valid based on if it lies within the transmission range of the

beacons heard by the mobile device. Floor plan information can, however, be used in several
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more ways to aid localization.

When combined with a ray-tracer, previous location data and IMU sensor fusion, it may be

used to detect NLOS signals based on their ranges to the estimated location. NLOS signals may

then be discarded and the location can be recomputed using only LOS signals, leading to a better

location estimate.

Buildings contain several areas where only one dimensional localization is necessary such as

hallways. A more advanced solver could automatically detect these areas based on the floor plan

and require less beacons to be placed in these areas.

Floor plan data may also be used to determine the best locations for beacons. [89] describes

an automated beacon placement algorithm, which minimizes both the amount of beacons neces-

sary to cover indoor areas and also the resulting GDOP.

The location engine also needs to manage floor plan and beacon location data in a scalable

way to support simultaneously solving requests from multiple large installations. We envision

using the MQTT based OpenChirp [28] management system for easily storing and retrieving

this data. OpenChirp’s publish-subscribe architecture lends itself well for tracking applications,

where asynchronous multicasting of location data is necessary. Furthermore it provides a simple

MQTT and REST API, as well as a flexible web interface for easy app integration and system

management.

7.1.5 Augmented/Virtual Reality Integration

With Virtual Reality (VR) [6, 14, 27, 33] and Augmented Reality (AR) [16, 18] systems becom-

ing incredibly popular, there are many applications that would benefit from combining them with

highly accurate (sub-meter) indoor localization, for example in the retail and facility maintenance

spaces. iOS and Android smartphones already feature software frameworks [2, 8] for VR and

AR applications, which may be used in conjunction with ALPS today. We believe that even next
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generation indoor localization technologies for smartphones like 802.11mc [36], with an antic-

ipated indoor localization accuracy of 1 − 3m, will likely not be accurate enough for many of

these applications like AR based store product finders and machine control/maintenance apps.

We will be closely following this space in the future.
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Appendix A

ALPS Platform Evolution

This appendix presents the evolution of the ALPS platform over three major and several minor

generations. It identifies key features in every generation and describes the hardware, firmware

and software architecture. An overview of all platform generations and their features is presented

in Table A.1.

A.1 Generation 1

A.1.1 Hardware

The first generation of the ALPS platform served mainly as a proof-of-concept for indoor local-

ization using ultrasound based TDOA pseudo-ranging for mobile devices [66]. The beacons con-

sisted of piezo electric tweeters that were hard wired to multichannel audio amplifiers connected

to an audio interface, which generated the ultrasound ranging signals as seen in Figure A.1. In or-

der to create high-quality ranging signals we chose to use a Motu UltraLite-mk3 audio interface.

The mk3 provides both a 24bit 192kHz ADC and DAC with up to 10 channels of analog output.

We connected the mk3 to two Onkyo HT-R540 amplifiers via standard unbalanced analog audio
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Figure A.1: Generation 1 ALPS beacon architecture

connections. Each Onkyo amplifier provides 7 channels of amplification, so we require two of

them to utilize the entire 10 channels of output from the mk3. The HT-R540 has an extended fre-

quency response mode that remains relatively flat up to 100kHz. Finally, we connect each output

channel from the Onkyo to 10 Goldwood GT-1016 Dispersion Piezo Horn Tweeters. These are

low-cost (< $2 each) tweeters that have a frequency response of up to 27kHz and were mounted

to tripod stands for optimal placement. A photo of the described hardware setup can be seen in

Figure A.2.

A.1.2 Software

In generation 1 signal generation, synchronization and playback were handled by a computer run-

ning MATLAB, which was connected directly to the audio interface. Reception was performed

in iOS on an iPhone 3GS and iPhone 4, after which the audio recording was transferred back

to the computer over a WiFi or cellular data collection. The demodulator running in MATLAB
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Figure A.2: Generation 1 ALPS Beacon hardware

would then process the recording and the resulting TOA values and beacon IDs were processed

by a location solver also running in MATLAB to solve for the location of the smartphones.

A.1.3 Generation Summary

This setup was able to prove the feasibility of transmitting time synchronized ultrasound ranging

signals, which were inaudible to humans, to localize iPhone 3GS and iPhone 4 smartphones. It

was also used as a testbed to validate the first ultrasound modulation scheme (see Section 4.4)

and to determine how to design a signal which is inaudible to humans (see Section 4.3.1). The in-

stallation difficulty of the first generation system was high due to its hardwired beacons and need

for a computer to drive the audio interface, which called for the development of an embedded

platform starting in generation 2a (see Section A.2). During testing the speakers were also found

to exhibit directional beam patterns, which limited the ultrasound coverage of each beacon.
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Figure A.3: Generation 2a ALPS beacon architecture

A.2 Generation 2a

A.2.1 Hardware

2a was the first generation to feature embedded beacons (Figure A.4(a)) and a network master

node (Figure A.6) to provide wireless time synchronization via 802.15.4. The beacons used an 8-

bit Atmel ATMega128RFA1 SOC with an on-board 802.15.4 radio as can be seen in Figure A.3

and Figure A.4(b). The SOC stored the samples of the externally generated ultrasound wave-

forms in internal flash at a 125kHz sampling rate and output them via I2S to an audio codec.

Since the ATMega128RFA1 does not have an I2S port, the protocol was implemented using the

SPI port and a timer for the word clock. The analog waveform produced by the audio codec

was piped into a class G (similar to class AB, but with optimized power consumption) mono

audio amplifier and then output to a ribbon tweeter. Although expensive (approximately $70),

the ribbon tweeter provided an omnidirectional beam pattern in the horizontal plane as seen in

Figure 3.9(e) and therefore allowed for greater signal coverage although the vertical beam pattern
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Figure A.4: Generation 2a ALPS beaon hardware

was very directional as seen in Figure 3.9(f). Time synchronization was handled via 802.15.4

packets sent from a network master (Figure A.6) at regular intervals. An interrupt routine which

timestamped incoming 802.15.4 packets was sufficient to provide time synchronization on a 10s

of microseconds level. The beacons were powered by external 5V power supplies and housed in

an off-the-shelf cube enclosure.

For the network master (Figure A.6), Carnegie Mellon University’s Drone RK Hardware

Module [10] was used. The module uses the same SOC as the generation 2a beacons and adds

an RF power amplifier for extended 802.15.4 coverage as well as a USB to serial converter (see

Figure A.5) to connect to a computer for issuing commands to control an ALPS deployment.

A.2.2 Software

The firmware of generation 2a and 2b beacons was coded in C and ran bare-metal on the Atmel

SOCs. Its functionality was simple: It listened on the radio for a time synchronization packet,
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on reception waited for its TDMA slot and then started loading the ultrasonic signal data from

internal flash onto its emulated I2S bus and sending it to the audio codec for playback. After

this the SOC and audio codec would be put into sleep mode until shortly before the next RF

message was expected and then began listening on the radio again. If an RF message was missed,

the beacon would continue listening until it received the next time synchronization message.

Since the Atmel SOCs lacked a DMA controller, no RF commands could be received while the

ultrasound transmission was in progress since the CPU was fully utilized by that transaction.

The beacons could also receive other commands via RF for setting their volume and setting the

TDMA cycle time.

The firmware of the network master was responsible for transmitting periodic RF packets to

the beacons to time synchronize their ultrasound transmissions. This was implemented using a

simple timer interrupt routine, which transmitted the RF packet when a timer expired after the

set TDMA cycle time. The network master featured a serial terminal that could be opened in a

terminal application on a computer it was plugged into. This allowed the user to issue commands

to start/stop ultrasound transmissions and to control the beacons (set volume and TDMA cycle

time).

The software running on the phone consisted of an audio recording routine which ran con-
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Figure A.6: Generation 2a, 2b, 2c, 3a ALPS network master hardware

tinuously and would fire a callback when an audio buffer was filled. This buffer was then passed

to the demodulator (see Section 4.4.3), which would extract the TOA values of the received ul-

trasound signals and the beacon IDs that were encoded. These values would then be sent to

a location solver running in MATLAB on an external computer over the WiFI or cellular data

connection in order to solve for the smartphone’s location. The demodulator was written in

MATLAB and then coded into C using MATLAB’s C coder.

A.2.3 Summary and Possible Improvements

This generation validated the use of embedded components and wireless time synchronization

for ALPS. The main advantages over the generation 1 system were the significantly simplified

beacon deployment since no wires needed to be run from central audio amplifiers to the bea-

cons, although the beacons still needed to be powered by external power supplies, which could

be plugged into nearby outlets. The coverage of the beacons was also improved due to the more

omnidirectional beam pattern of the ribbon speakers, at the expense of a much higher cost com-

pared to the previous piezo speakers. This generation was placed 4th in the Infrastrucure Based

Localization category of the 2014 Microsoft Indoor Localization competition [22].
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A.3 Generation 2b

A.3.1 Hardware

Generation 2b was the first minor generation increment to the ALPS platform and was focused

on the beacon hardware (Figure A.7, Figure A.8(a) and Figure A.8(b)). The new design had

improved RF coverage, ultrasound coverage and memory capacity compared to generation 2a.

It also featured an integrated audio codec with audio amplifier and a microphone for beacon-to-

beacon ranging. The ATMega128RFA1 SOC was replaced by an ATMega256RFR2 chip, which

is largely identical, but has twice the flash memory capacity to store longer or multiple ultrasound

signals. An RF amplifier was added to the beacons to increase the RF coverage and a Class D

audio amplifier integrated into the audio codec was employed to lower the power consumption

compared to the Class G amplifier. We developed an omnidirectional ultrasonic speaker horn (see

Section 3.7.2), which allowed a cheap piezo bullet speaker (similar to that used in generation 1)

to provide omnidirectional ultrasound coverage at a significantly reduced cost to the previously
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Figure A.8: Generation 2b ALPS beacon hardware

used ribbon speaker. The beacon now also was tripod mountable, similar to the generation 1

beacons. A MEMS microphone was hooked up to the audio codec to enable beacon-to-beacon

ranging for the automatic localization of beacons once they are deployed (see Section 6.6). This

generation used the same network master node as generation 2a.

A.3.2 Software

The firmware running on the beacons and the network masters, and the demodulation software

on the mobile devices was largely identical to that of generation 2a beacons described in Sec-

tion A.2.2.
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A.3.3 Summary and Possible Improvements

With increased RF and ultrasound coverage, larger deployments were now possible. Multiple

deployments were performed using this generation and we determined that powering the beacons

via an external power supply drastically limited installation options or made them difficult and

costly since the beacons are usually mounted on or close to ceilings, where no electrical outlets

are available.

A.4 Generation 2c

A.4.1 Hardware

Generation 2c was introduced in [67] and used mostly the same beacon hardware as 2b (Sec-

tion A.3), but added support for battery power, a custom 3D printed enclosure (Figure A.10(a))

and BLE via a daughter board (Figure A.7 and Figure A.10(b)) for coarse time synchronization

with the mobile device receivers (see Section 5.5). Although the beacons were not power efficient

enough for long-term battery power deployments, the installation for testbeds and demonstrations

was greatly simplified by not requiring an external power supply. The custom enclosure allowed

the beacons to be mounted on tripods, on ceilings and above tile ceilings with the horn sticking

through a ceiling tile. The BLE daughter board allowed for coarse time synchronization with

the mobile devices so that they could map received ultrasound transmissions to their respective

beacon in a TDMA cycle. This eliminated the need for data transmission via ultrasound, which

had become difficult due to the reduced ultrasonic bandwidth of newer iPhone models as shown

in Figure 3.13.
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Figure A.9: Generation 2c ALPS beacon architecture

A.4.2 Software

The firmware running on the Atmel SOC was very similar to that running in generations 2a and

2b (see Section A.2.2), with the addition of a GPIO line triggering the CC2640 SOC at the start

of every TDMA cycle to provide coarse time synchronization to the mobile device receivers via

BLE. The CC2640 ran TI’s BLE stack [5], which is a full BLE stack running on TI’s RTOS TI-

RTOS [31]. TI-RTOS is a preemptive multitasking microkernel based RTOS which also provides

device drivers for most peripherals on the CC2640. In generation 2c, the only task of the CC2640

was to transmit BLE advertisement packets containing the time elapsed since the start of the

current TDMA cycle at a 20ms interval (lowest possible according to the BLE4 specification).

See Section 5.5 for more details about this time synchronization method.

The application running on the mobile devices had to be updated starting in this generation

to incorporate the BLE time synchronization. The BLE advertisement packets were sent in an

iBeacon compatible format, which can be continuously received by iOS. Additionally, software

for performing the clock recovery method described in Section 5.4 to subsequently perform TOF

ranging was implemented.
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A.4.3 Summary and Possible Improvements

This generation first introduced and validated slot-level time synchronization via BLE between

the beacon infrastructure and the mobile devices. This eliminated the previous requirement of

encoding transmitter IDs into the ultrasound signal and hence simplified the demodulator and

reduced its power consumption on the mobile devices. Power consumption on this generation

was still fairly high and it could not be powered off of batteries for long-term installations. The

addition of the BLE daughter board added complexity and increased power requirements. With

the introduction of the multi-mode 802.15.4 and BLE CC2650 SOC, the Atmel SOC and the

CC2640 would be replaced by a single CC2650 SOC in future generations. This generation

placed 1st in Infrastructure Based Localization category in the 2015 Microsoft Indoor Localiza-

tion Competition [23].

A.5 Generation 3a

A.5.1 Hardware

Generation 3a marks a major change to the ALPS beacons, while still being compatible with

the network master from the previous generations (Figure A.6). Generation 3a beacons fea-

tured an energy harvesting, embedded hardware platform as can be seen in Figure A.11 and

Figure A.12(b). The platform was designed to have a low enough power consumption so that it

can be powered using a small solar cell, harvesting energy from artificial or natural light sources

(see Section 3.8). This allows for a flexible installation at a low cost, since the beacons do not

need to be connected to AC wall power, which is often difficult to access at ceiling mounting

locations. The harvested energy is buffered in three ultra low self discharge NiMH batteries with

2000mAh each, which have a high cycle lifetime of 2000 cycles and retain 70% of their charge

after ten years.
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Figure A.11: Generation 3a ALPS beacon architecture

The beacons featured a single PCB design, which uses a TI CC2650 multi-standard BLE and

802.15.4 SOC with a 32-bit ARM Cortex M3 core connected to a 192kHz audio codec (running

at 48kHz), a MEMS microphone expansion port and a low cost piezo ultrasound speaker (<

$1), connected to a Class D piezo speaker amplifier to receive and transmit ultrasound signals

respectively. The 802.15.4 radio mode is used for time synchronization and communication with

the network master, while the BLE radio mode is used to time synchronize the mobile devices

coarsely to the ultrasound transmission cycle. The piezo speaker amplifier contains an on-board

DC-DC boost converter which supplies more voltage than in previous generations to better drive

the piezo speaker, which improves the range of the system and also features a more advanced,

lower power modulation scheme that increases the transmission efficiency. An 8MBit flash chip

stores firmware updates as well as configuration settings. The hardware is housed in an off-the-

shelf enclosure (Figure A.12(a)) that is tripod mountable with custom cutouts and an integrated

battery compartment. The beacons also feature a Decawave DWM1000 UWB ranging module

(see Section 2.4.4) for inter-beacon ranging and future tag tracking.
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A.5.2 Software

With the introduction of the CC2650 SOC an entirely new firmware had to be developed for this

generation. The beacons ran TI-RTOS [31], but unlike the BLE daughter board of generation

2c (Section A.4.2), did not run a BLE stack. Instead, the advertisement packets necessary for

the slot-level TDMA time synchronization were transmitted via direct commands to the radio.

The beacon software application was segmented into multiple tasks (generally one per peripheral

e.g. radio, audio, flash memory, etc.), which run at different priority levels and can be preempted.

Since the CC2650 features a DMA controller, the CPU could run other tasks while audio is being

played back. As opposed to older generations, the ultrasound waveforms were generated on the

fly using ARM’s CMSIS DSP library [3] instead of being externally generated and loaded into

flash.

The application running on the phone remained largely identical to that of generation 2c

(Section A.2.2).

A.5.3 Summary and Possible Improvements

This generation included major changes that drastically reduced a beacon’s power consumption

to be able to run on solar power. The lower power SOC and more efficient piezo speaker am-

plifier account for most of the power savings. The new speaker was not compatible with the

omnidirectional horn of previous generations, but provided an adequate directionality to be used

without one if the beacons were placed at strategic locations in the target environment (mostly

corners). While the overall cost of the beacons is higher than previous generations, the ability to

harvest solar power instead of needing to run wires drastically reduces installation cost, which is

by far the highest expense in an ALPS deployment.
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Figure A.12: Generation 3a ALPS beacon hardware
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A.6 Generation 3b

Generation 3b is the most recent generation of the ALPS platform and is described in Sections

3.2-3.5. Further pictures of this generation of beacons can be seen in Figures A.13-A.15 below.

Figure A.13: Generation 3b ALPS beacon with tile ceiling clip mount
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Figure A.14: Generation 3b ALPS beacon with magnetic mount
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Figure A.15: Generation 3b ALPS beacon with magnetic mount top view
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Gen. Description Notable Features
1 Proof-of-concept with off-the-shelf audio

components
• Tight beacon time synchronization via shared clock of 10 channel DAC

• < $2 off-the-shelf piezo speakers

2a First embedded beacon generation with
wireless time synchronization between bea-
cons

• Embedded beacons and network master with 8-bit AVR processor

• Wireless beacon time synchronization via 802.15.4

• Ribbon tweeter with wide horizontal beam pattern

2b Improved embedded beacon generation
with omnidirectional speaker horn

• Embedded beacons and network master with 8-bit AVR processor

• Wireless beacon time synchronization via 802.15.4

• RF amplifier for improved range

• SoC with larger memory capacity for storing longer ultrasound signals

• Audio codec with integrated amplifier

• < $2 off-the-shelf piezo speakers

• Speaker horn for omnidirectional ultrasound dispersion

• Microphone for inter-beacon ranging

2c Like generation 2b, but with BLE and bat-
tery powered

• Embedded beacons and network master with 8-bit AVR processor

• Wireless beacon time synchronization via 802.15.4

• RF amplifier for improved range

• BLE time synchronization with receivers to determine beacon IDs via daughter board

• SoC with larger memory capacity for storing longer ultrasound signals

• < $2 off-the-shelf piezo speakers

• Audio codec with integrated amplifier

• Speaker horn for omnidirectional ultrasound dispersion

• Microphone for inter-beacon ranging

• Battery powered

3a All new embedded beacon generation with
32-bit ARM processor, BLE and energy
harvesting

• Embedded beacons and network master with 32-bit ARM Cortex M3 processor

• Multirole 802.15.4 and BLE radio on single SoC

• Wireless beacon time synchronization via 802.15.4

• BLE time synchronization with receivers to determine beacon IDs

• Drastically improved power consumption for battery operation with solar energy harvesting

• < $1 off-the-shelf piezo speakers

• Piezo speaker amplifier for improved range

• UWB ranging capability on beacons and Network Master/Plug Forwarders

• Network Master/Plug Forwarders with RF amplifier for improved range

• Network Master/Plug Forwarders can be plugged directly into AC outlet

3b Like generation 3a, but with four speaker
array

• Embedded beacons and network master with 32-bit ARM Cortex M3 processor

• Multirole 802.15.4 and BLE radio on single SoC

• Wireless beacon time synchronization via 802.15.4

• BLE time synchronization with receivers to determine beacon IDs

• Drastically improved power consumption for battery operation with solar energy harvesting

• < $1 off-the-shelf piezo speakers

• Piezo speaker amplifiers for improved range

• Four speakers powered by two audio channels for improved coverage and AOA measurement

• UWB ranging capability on beacons and Network Master/Plug Forwarders

• Network Master/Plug Forwarders with RF amplifier for improved range

• Network Master/Plug Forwarders can be plugged directly into AC outlet

Table A.1: ALPS platform generations and features
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