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Abstract 

The operation of our society depends heavily on infrastructure systems. To prevent 

failures and to reduce costs of maintenance, structural health monitoring (SHM) systems 

have been implemented on an increasing number of infrastructure systems. SHM systems 

have the potential to give reliable prediction of structural deterioration with less human 

safety risk and labor costs, and without interruption of normal operations.  

In the field of SHM, many techniques have been proposed in recent decades. Among 

these techniques, ultrasonic testing has been widely used for damage characterization in 

structures and materials. However, there remain many challenges in real-world SHM 

applications. For example, temperature variations can cause a significant decrease in 

performance of ultrasonic testing. Although there exist some temperature compensation 

techniques to improve the performance of ultrasonic testing under temperature variations, 

these techniques have their own limitations.  

This dissertation will focus on novel ultrasonic signal processing techniques for 

damage detection, quantification and temperature compensation. In Chapter 2, I will propose 

a modified optimal signal stretching (OSS) method and an singular value decomposition 

(SVD) method to solve the temperature compensation problem, where the OSS method (in its 

original form) failed to perform well for damage detection.  In Chapter 3, I will study the 

statistical orthogonal relationship between temperature-induced and damage-induced 

ultrasonic change signals. The orthogonal relationship can be used to explain why SVD 

performs well under varying temperature conditions and why it also has the potential (under 

some conditions) to be directly used for damage detection and quantification. In Chapter 4, I 
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will study the ultrasonic time-of-flight diffraction technique, which is used to quantify wall 

thickness loss of thick-walled aluminum tubes, because the conventional pulse-echo method 

did not perform well in my target application. In Chapter 5, I will propose a novel ultrasonic 

passband technique to quantify the alkali-silica reaction (ASR) caused cracking damage in 

concrete structures. This technique is based on the ultrasonic wave filtering effects of cracks 

in concrete. With the progress of ASR caused cracking damage in concrete, more high 

frequency components of ultrasonic waves are filtered out than low frequency components.  

The research work in this dissertation has the potential to help advance ultrasonic SHM 

techniques, to improve the real-world performance of ultrasonic SHM, to prevent failures of 

infrastructure systems, and to reduce the costs of maintenance if the proposed ultrasonic 

techniques can be implemented in real infrastructure systems in the future. However, some 

future work still needs to be done in order to implement the techniques studied in this 

dissertation in real-world applications. 
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Chapter	1 Introduction	

 Motivation 1.1

Our society depends heavily on civil infrastructure systems including, for example, oil 

and gas pipelines, water pipelines, roads, railways, bridges, dams, buildings, etc. Failures of 

infrastructure systems can cause fatalities, injuries, economic loss, and environmental 

disasters. For example, the Pipeline and Hazardous Materials Safety Administration 

(PHMSA), an agency within the United States Department of Transportation (DOT), lists the 

oil and gas pipeline incidents occurred in the United States between 1995 and 2014 as shown 

in Table 1-1 (PHMSA 2015). In those twenty years, the total number of oil and gas pipeline 

incidents is 10,848. These incidents caused 371 fatalities, 1,398 injuries and $6.3 billion 

economic loss. Here a pipeline incident is reported if any of the following occur: (1) 

explosion or fire not intentionally set by the operator; (2) release of five gallons or more of a 

hazardous liquid (any petroleum or petroleum product) or carbon dioxide; (3) fatality; (4) 

personal injury necessitating hospitalization; and (5) property damage, including cleanup 

costs, and the value of lost product, and the damage to the property of the operator or others, 

or both, estimated to exceed $50,000 (PHMSA 2011). 



	 2	

Table 1-1  The pipeline incidents listed by PHMSA (1995-2014) 

 

Regular inspection and maintenance is important for keeping infrastructure systems 

functioning properly and avoiding failures. More than $200 billion is spent on the 

maintenance of plant, equipment, and facilities each year in the United States (Giurgiutiu 

2007). These huge costs have become an increasing concern in structure inspection and 

maintenance.  

To prevent failures of infrastructure systems and to reduce the costs of maintenance, 

structural health monitoring (SHM) systems have been implemented on an increasing 

number of infrastructure systems. SHM systems are slowly growing to be standard 

requirements for modern high-cost infrastructure systems (Kołakowski 2007). In SHM 

systems, sensors are used to record signals, damage-sensitive features are extracted from the 
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recorded signals, and a specific criterion from statistical analysis is then used to determine 

the current state of system (Farrar and Worden 2007). SHM systems have the potential to 

give reliable prediction of structural deterioration with less human safety risk and lower labor 

costs, and without interruption of normal operation.  

 Introduction to Ultrasonic Structural Health Monitoring 1.2

In the field of SHM, many techniques have been proposed in recent decades for 

damage characterization in a variety of engineering structures and materials. According to 

the types of models used, SHM methods can be classified into two categories: model-based 

methods and data-driven methods.  

For model-based methods, physical models must be selected to model the structure, 

and the structural geometry and material properties must be known before the use of this 

method (Laory et al. 2011). In the calibration stage, model parameters are calculated using 

the data recorded before the structure is damaged. In the monitoring stage, new model 

parameters are recalculated using the new-coming data and then compared with those before 

damage to see if the new model parameters pass the predefined threshold or not. These 

methods are straightforward and easy to interpret, but sometimes it is expensive and difficult 

to build such physical models. 

For data-driven methods, statistical models are used to process the data collected from 

the structure so that the structural geometry and material properties are usually unimportant 

for these methods (Laory et al. 2011). Generally speaking, data-driven methods are not 
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structure-selective and therefore a method can be used on different types of structures. 

However, it is sometimes difficult to interpret the results from data-driven methods, 

especially for damage quantification. Because of the absence of physical models, calibration 

is necessary to interpret the output from data-driven methods.  

In this dissertation, I will investigate both model-based methods, such as the ultrasonic 

time-of-flight diffraction method and the ultrasonic passband method, and data-driven 

methods, such as the modified optimal signal stretching (OSS) method and the singular value 

decomposition (SVD) method.  

According to (Kołakowski 2007), ultrasonic testing is defined as “the interrogation of 

materials using stress waves of the frequency higher than 20 kHz. ” In ultrasonic testing, 

piezoelectric transducers are the most widely used transducers although other types of 

transducers are also available such as electromagnetic acoustic transducers (EMAT). 

Piezoelectric transducers are popular in SHM because they have good electromechanical 

properties, relatively low price, both actuating and sensing capabilities, wide measuring 

range, wide operating temperature, and so on (Kołakowski 2007). Details of piezoelectric 

materials and their actuating and sensing capabilities can be found in (Gautschi 2002).   

In ultrasonic SHM, the operating frequencies depend on the types of defects. 

Theoretically, the smallest defect size detectable is on the order of the wavelength. The high-

frequency ultrasonic waves are more sensitive to defects. However, the low-frequency 

ultrasonic waves can propagate deeper into the structure. Therefore, a compromise between 

sensitivity and monitoring range always exists in practice (Kołakowski 2007) and the 

operating frequency range should be selected based on specific applications.  
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Ultrasonic waves include ultrasonic bulk waves and ultrasonic guided waves. Bulk 

waves propagate in the bulk of the testing material away from the boundaries, although some 

boundary interactions such as reflection, refraction, and diffraction, might be involved. On 

the other hand, guided waves propagate in the testing material while guided by its boundaries. 

Bulk waves in isotropic materials are the longitudinal mode and the shear mode (the shear 

mode can be polarized horizontally or vertically). However, there are generally an infinite 

number of modes for guided waves due to the introduction of boundary conditions (Rose 

2004). Some guided wave problems are already solved such as Rayleigh, Lamb and Stonely 

waves (Rose 2004). The many guided wave modes typically cause complexity and limit the 

use of such waves for SHM. However, the diversity of ultrasonic wave types and modes also 

provides options for SHM because different types and modes of ultrasonic waves can have 

different sensitivities and other properties in different applications.  

Ultrasonic testing can be operated in three major scanning techniques – pulse echo 

technique, pitch-catch technique, and phased array technique. The pulse-echo technique 

utilizes the ultrasonic wave reflection phenomenon at the boundary of two different materials. 

At the boundary, only a portion of ultrasonic waves will be transmitted (refracted) into the 

other material, and the other portion of ultrasonic waves will be reflected back. The 

proportion of refraction and reflection depends on the acoustic impedance of the two 

materials and the angle of incidence (Kołakowski 2007). The pulse-echo technique receives 

the echoes reflected from material boundaries and determines the current structural state 

based on the time of arrival, amplitude, and shape of echoes. The pulse-echo technique 

requires only one transducer and requires access only to one surface of the testing structure. 

The pitch-catch technique utilizes one transducer as an emitter and another transducer as a 
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receiver. The pitch-catch technique is very flexible because the emitter and receiver can be 

placed anywhere on the same surface or on different surfaces, provided that the ultrasonic 

waves can be transmitted to the receiver from the emitter. The pitch-catch technique is 

especially useful for high-damping materials or materials with strong scattering effects, such 

as concrete, because echoes from an opposite surface may not always be obtainable. The 

pitch-catch technique is also widely used when a large monitoring area is required; an 

example would be damage detection on a pipe structure when the damage location is not 

known before the monitoring plan is implemented. The phased array technique is an 

advanced technique of ultrasonic testing that has wide applications. The phased array is an 

array of transducers placed at locations with certain patterns, and the capability of closely 

controlling the relative phases of the transducers. The controllable relative phases can 

produce a steerable, tightly focused, high-resolution ultrasonic beam. The phased array 

technique has advantages over conventional ultrasonic techniques including high inspection 

speed, flexible data processing capability, improved resolution, and electronic steering, but it 

has very demanding requirements regarding the electronic devices when compared with 

conventional ultrasonic techniques (Giurgiutiu 2007).  

Overall, ultrasonic testing has good sensitivity to a variety of defect types because of 

its wide operating frequency range, different types and modes, and can have large monitoring 

range due to the long propagating distance of ultrasonic waves. Other advantages of 

ultrasonic testing include safe operation conditions for the staff, relatively low cost of testing, 

and so forth (Kołakowski 2007). These advantages of ultrasonic testing make it attractive for 

SHM applications. 
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 Challenges 1.3

1.3.1 Environmental and Operational Conditions 

In current SHM techniques, most methods are sensitive to environmental and 

operational conditions (EOCs) such as temperature, pressure, and environmental noises. 

Sometimes, changes caused by temperature can be significantly larger than those caused by 

structural damage.  For example, Koo et al. (Koo et al. 2013) studied the monitoring data 

over a period of three years from the Tamar suspension bridge and they concluded that the 

bridge global deformation was mainly caused by the thermal expansion of the deck, main 

cables and additional stays, but not by the vehicle loading or wind. Catbas et al. (Catbas et al. 

2008) studied the longest cantilever truss bridge in the United States. They found the 

temperature could change between 15 F and 90 F during a one-year monitoring duration, and 

that this temperature variation caused a peak-peak strain differential that was ten times larger 

than that induced by the vehicle loading. The temperature has so significant an influence on 

structures that monitoring data collected with temperature variations must be processed 

carefully in order to have reliable monitoring results.  

For ultrasonic SHM, it is also well known that EOCs, e.g. temperature variations 

(Weaver and Lobkis 2000) and stress (Michaels et al. 2009), can change the propagating 

velocity of ultrasonic waves and thus alter the monitoring results if EOCs are not 

compensated properly. Among all factors, the temperature variations are most common in 

practical applications of SHM techniques based on ultrasonic waves. To eliminate or reduce 

the temperature effects, optimal baseline subtraction (OBS) and optimal signal stretch (OSS) 

(Croxford et al. 2010; Lu and Michaels 2005) methods are widely used in ultrasonic methods. 
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Singular value decomposition (Liu et al. 2015; Liu et al. 2012) and sparse representation of 

ultrasonic guided waves (Eybpoosh et al. 2015; Eybpoosh et al. 2015) can also perform well 

for damage detection or localization under temperature variations. 

In the OBS method, large sets of ultrasonic signals are recorded under different 

temperatures before structural damage, and these ultrasonic measurements are used to 

establish the baseline database. In order to compensate the temperature variations accurately, 

the database should be established with the temperature range sufficiently large to contain all 

possible temperature values to be encountered during monitoring. In the monitoring stage, 

the new measurement is compared to all the existing measurements in the database and the 

closest measurement in the database is selected for temperature compensation (Croxford et al. 

2007; Lu and Michaels 2005). However, temperature is a continuous variable, so it is 

impossible to include all the possible temperatures in the database, let alone other EOCs. In 

practice, the temperature interval in the database should be as small as possible when time, 

storage, computation and other costs are acceptable.  

The OSS method is another commonly used method for temperature compensation in 

ultrasonic SHM. In the OSS method, temperature changes are assumed to have 

(approximately) stretching or compressing effects on diffuse ultrasonic waves (Lu and 

Michaels 2005; Weaver and Lobkis 2000). Therefore, this method estimates an optimal 

stretching factor and then stretches the new-coming signal to match the baseline signal for 

temperature compensation. However, the stretching model can be applied only when the 

temperature variation is small and relatively uniform spatially (Fukuhara and Yamauchi 1993; 

Salama and Ling 1980). 
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A combination of OBS and OSS can overcome some of the disadvantages of the OBS 

and OSS methods to achieve larger temperature compensation range and smaller size of 

baseline database. The combination of OBS and OSS was successfully used in experiments 

to detect flaw types of notches and holes in an aluminum plate (Lu and Michaels 2005) and 

to detect and localize holes in the door of a commercial shipping container with a corrugated 

steel panel under varying temperature conditions (Clarke et al. 2010).  

1.3.2 Damage Quantification 

Ultrasonic techniques are widely used for SHM of various engineering structures. The 

goal of SHM is to characterize the health state of a target structure, and such a 

characterization can be done by answering the following research questions (Rytter 1993): 

(1) Is there any damage in the structure? 

(2) Where is the damage in the structure? 

(3) What kind of damage has occurred? 

(4) How severe is the damage? 

(5) How much useful life remains? 

Currently, most ultrasonic techniques focus on the first two research questions, i.e. 

damage detection and localization. The kinds of damage in a specific engineering structure 

can often be known by expert knowledge, and different monitoring schemes can be designed 

for specific damage types. However, the last two research questions cannot be easily 

answered and currently only a few methods are available to perform damage quantification to 
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some extent. Even when the available methods quantify damage, they typically apply only to 

simple structures with very specific damage types.  

For example, ultrasonic Lamb waves with a specific selected mode are used to detect 

damage in aircraft panels using the pulse-echo method (Yu et al. 2008) and the pitch-catch 

method (Ihn and Chang 2008). Various damage types, such as delamination, cracks and holes, 

in composite materials can also be successfully detected using ultrasonic techniques (Ihn and 

Chang 2008; Keilers and Chang 1995; Kessler et al. 2002; Wang and Chang 1999; Yu et al. 

2008). The ultrasonic A-scan technique is used to detect the corrosion or erosion pits on 

offshore risers, which connect the pipelines on the seabed with the pipe-work on the 

production platform. The reflected echoes appear clearly on A-scan results demonstrating the 

existence of corrosion pits, and they can clearly be differentiated from the echoes reflected 

back by welds (Edwards and Gan 2007).  

For damage localization, Michaels et al. (Michaels et al. 2008) applied time-of-arrival 

and time-difference-of-arrival algorithms to signals collected on aluminum plates using PZT 

transducer arrays, and showed that these two algorithms could both successfully locate 

drilled holes on aluminum plates. Harley et al. (Harley and Moura 2014) introduced a data-

driven matched field processing technique combining matched field processing with sparse 

wavenumber analysis to localize damage on aluminum plates. It was demonstrated that this 

technique could successfully localize two nearby drilled holes with much better accuracy 

than delay-based methods. Zhao et al. (Zhao et al. 2007) used pitch-catch ultrasonic signals, 

recorded from PZT discs, for damage localization on an aircraft wing in a laboratory 

environment. They developed a damage localization algorithm based on correlation analysis 

called RAPID (reconstruction algorithm for probabilistic inspection of defects) and showed 
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that this algorithm had good performance for simulated cracks and for corrosion damage 

localization. 

However, current ultrasonic methods can only quantify some specific damage types for 

simple structures. For example, the pulse-echo method is one of the most commonly used 

ultrasonic technique for wall thickness measurements for metal, plastic or glass (Lynnworth 

2013). However, in my work (to be discussed in Chapters 2 and 3) on thick-walled frac iron 

components (retired from real-work applications due to erosion damage), the pulse echo 

method did not perform well for detecting localized volume loss; the morphology of volume 

loss was irregular and reflected ultrasonic pulses away from the transducer, making it 

difficult to detect an echo. 

 Dissertation Outline 1.4

One of my research visions is to develop ultrasonic techniques to solve EOCs caused 

complexities for damage detection and quantification. In this dissertation, Chapter 2 and 

Chapter 3 fall into this research vision. In Chapter 2, I will propose a modified OSS method 

and an SVD method for the ultrasonic damage detection under temperature variations. In 

Chapter 3, I will study the orthogonal relationship between the temperature-induced and 

damage-induced ultrasonic change signals. The orthogonal relationship is helpful when 

interpreting the results from SVD and will also be helpful for direct damage detection and 

quantification under temperature variations. 
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Another of my research visions is to develop ultrasonic techniques to quantify damages 

for different specific structural applications. In this dissertation, Chapter 4 and Chapter 5 fall 

into this research vision. In Chapter 4, I will propose the ultrasonic time-of-flight diffraction 

technique to quantify thickness loss in thick-walled aluminum tubes. The ultimate goal of 

this part of my research is to provide reliable techniques to quantify erosion damage in thick-

walled frac iron components, where conventional ultrasonic pulse-echo method does not 

perform well. In Chapter 5, I will study the ultrasonic passband method to quantify ASR-

caused cracking damage in concrete.   
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Chapter	2 Detection	of	Volume	Loss	in	Thick-Walled	Components	

Using	Data-Driven	Methods	

 Introduction 2.1

In the field of oil and natural gas production, frac iron is used to inject, eject, and 

control the flow of fracture fluid in a natural gas well. Frac iron components include pup 

joints, plug valves, swivel joints, fittings and so on. These frac iron components carry 

abrasive fluid at very high pressure rated as much as 15000 psi (Haddad et al. 2011) and are 

vulnerable to various damages, such as erosion, corrosion and cracking. They are examined 

after each service to determine whether they can continue to be used in the future. Despite 

these examinations, components explode with some frequency and cause fatalities, injuries, 

economic loss, and environmental damage.  

The motivation of the research work in this chapter is to develop effective ultrasonic 

signal processing techniques to monitor the progress of erosion in frac iron components 

under EOCs. In this chapter, I will develop ultrasonic techniques to detect volume loss of an 

aluminum alloy tube instead of working directly on frac iron components. Aluminum alloy is 
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chosen for our laboratory study for ease of machining volume loss similar to the erosion 

damage of our practical interest. 

In this chapter, I will focus on data-driven methods to detect volume loss under varying 

temperature conditions. Data-driven methods are not sensitive to or specific to the structural 

geometry and material properties (Laory et al. 2011) and thus are more flexible for use on 

structures with complicated geometry like frac iron components. A method that is model-

based, called ultrasonic time-of-flight diffraction, will be studied in Chapter 4 for this same 

application.  

The structure of this chapter is organized as follows. In section 2.2, I will explain 

details of the experimental work for this chapter. In section 0, signal preprocessing 

procedures and OSS temperature compensation will be introduced for the damage detection 

purpose. The volume loss detection under varying temperature conditions will be discussed 

using the OSS method in section 2.5, using the modified OSS method in section 2.6, and 

using the SVD method in section 2.7. In sections 2.8 and 2.9, I will conclude and summarize 

the results in this chapter. 

 Experimental Design 2.2

This experiment is designed to study volume loss detection in thick-walled aluminum 

tubes using ultrasonic signal processing techniques. A thick-walled 6061 aluminum alloy 

tube with dimensions (O.D. x I.D. x length) of 4.00 x 2.00 x 3.15 inch (101.60 x 50.80 x 

80.01 mm) is used as the test specimen as shown in Figure 2-1, which has cross-sectional 
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dimensions closely comparable to frac iron elbows. Aluminum alloy is chosen for our 

laboratory study for ease of machining volume loss similar to the erosion damage of our 

practical interest. In this experiment, the ultrasonic transducers are Krautkramer probes from 

GE Inspection Technologies (product code: 113-241-591) with a specified center frequency 

of 0.98 MHz and a moderate bandwidth (@-6dB: ~70%). The two transducers are glued onto 

the specimen surface using cyanoacrylate adhesive with an included radial angle of 134.6º as 

shown in Figure 2-1(b).  

 

Figure 2-1 (a) The thick-walled aluminum tube and the transducers; (b) an illustration of 
possible wave paths 

An NI PXI-5421 arbitrary waveform generator is used to generate a Gaussian-

modulated sinusoidal pulse with peak-to-peak amplitude of 6.0 V at a center frequency of 1.0 

MHz as shown in Figure 2-2. An NI PXI-5122 digitizer is used to record ultrasonic signals 

both in one-transducer mode and in two-transducer mode, with a sampling rate of 20 MHz. 

The same transducer is used as the emitter and receiver when operating in one-transducer 

mode, whereas one transducer is used as the emitter and the other is used as the receiver in 

two-transducer mode. To improve the signal-to-noise ratio, in this experiment each recorded 

(a) (b) 
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ultrasonic signal is an average of 500 measurements, and each measurement (and therefore 

each averaged ultrasonic signal) has a duration of 0.2 ms. At each experimental step, 

ultrasonic signals are repeated 50 times with a 15 s interval between two consecutive signals. 

 

Figure 2-2  A Gaussian-modulated sinusoidal pulse 

Volume loss in the thick-wall aluminum tube specimen is introduced in the following 

procedure. The experiment is designed to have a total of 37 test steps, and a Bernoulli 

random number generator is used to designate each test step either as an incremental damage 

condition or a null (no damage) condition. The 37 test steps contain 18 damage steps and 19 

null steps produced from that random number generation process.  At a damage step, mass 

loss between 0.3 g and 0.5 g is machined on the inside of the tube using a Dremel sanding 

drum tool.  At a null step, no machining or other work is done to the specimen. The mass loss 

of the specimen at each step is plotted in Figure 2-3 and is listed in Table 2-1. The duration 

of each step consists of a fixed 40-minute interval required for processing and measurements, 

and a variable interval (the wait time in Table 2-1) corresponding to an exponentially 

distributed random variable with a mean of 40 minutes. The distribution of the variable 
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interval is shown in Figure 2-4 as a histogram. The whole experiment spanned 52.7 hours, 

and temperature varied throughout that test period. 

 

Figure 2-3  The mass loss of the thick-wall aluminum tube specimen at each test step 

 

 

Figure 2-4  The histogram of the wait time. The count is the number of test steps with a 
specific wait time interval 
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Table 2-1  The mass loss and wait time at each test step 

Test 

Step 

Wait Time 

(min) 

Mass Loss 

(g) 

Test 

Step 

Wait Time 

(min) 

Mass Loss 

(g) 

Test 

Step 

Wait Time 

(min) 

Mass Loss 

(g) 

1 34 0.00 14 175 0.00 27 15 0.36 

2 23 0.36 15 56 0.00 28 63 0.00 

3 22 0.50 16 27 0.00 29 61 0.28 

4 10 0.00 17 44 0.34 30 35 0.27 

5 30 0.39 18 19 0.45 31 73 0.30 

6 2 0.29 19 35 0.00 32 27 0.31 

7 39 0.40 20 10 0.00 33 38 0.00 

8 9 0.00 21 16 0.00 34 14 0.00 

9 3 0.00 22 43 0.44 35 45 0.00 

10 16 0.00 23 82 0.00 36 13 0.46 

11 3 0.00 24 171 0.44 37 49 0.32 

12 86 0.00 25 50 0.40    

13 18 0.37 26 21 0.00    

      Total: 1477 6.68 
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 Signal Preprocessing 2.3

Although the ultrasonic signals are recorded in both one-transducer mode and two-

transducer mode, only those from the one-transducer mode will be used for the study in this 

chapter. In this chapter, I will focus on data-driven methods. One of the advantages to using a 

data-driven method here is that ultrasonic waves can propagate circumferentially and sample 

the volume loss area repeatedly. Therefore, the circumferentially propagating ultrasonic 

waves can be very sensitive to damage in the form of volume loss. From this perspective, 

signals from one-transducer mode and two-transducer mode are similar, but the one-

transducer mode is preferred for the practical reason of system simplicity. 

2.3.1 Signal Filtering 

Figure 2-5 shows two recorded ultrasonic signals from one-transducer mode at test 

steps 3 and 4 both with the same cumulative mass loss of 0.86 g, because test step 4 is a null 

step. The first large-amplitude pulse in Figure 2-5(a) is the emitted pulse, and its amplitude in 

Figure 2-5(a) is clipped in order to image the subsequent pulse arrivals at a useful scale. 

Several back-wall (reflection) pulse echoes follow immediately after the emitted pulse. From 

these echoes, the longitudinal wave velocity can be calculated as roughly 6.27 mm/µs. Phase 

shifts caused by temperature variations can be seen in in Figure 2-5(b) and Figure 2-5(c).  

For purposes of damage detection, I do not make use of the emitted pulse and the 

following back-wall (reflected) echoes, so the segment of signal before 100µs is truncated. 

To prevent the sharp changes of signals caused by the signal truncation, a tapered cosine 
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window is added to signals after truncation by the Matlab function “tukeywin” with the first 

and last 0.25% of the samples equal to parts of a cosine. 

 

Figure 2-5  Two pulse-echo signals recorded at test steps 3 and 4 both with the same 
cumulative mass loss of 0.86 g (test step 4 is a null step); (a) the full record; (b) the 

118.5-120.5 µs segment; (c) the 188-195 µs segment 

2.3.2 Optimal Signal Stretching for Temperature Compensation 

In the experiment, the volume loss of the thick-wall aluminum tube was machined by a 

Dremel sanding drum tool. The heat produced in the machining procedure significantly 

increased the temperature of the tube, which dropped after the machining procedure. 

Temperature compensation is important for successful detection of the volume loss of the 

aluminum tube in this varying temperature condition.   

In this section, I will briefly discuss the optimal signal stretch (OSS) method for 

temperature compensation, and will use the OSS method as the baseline case for comparison 

in later sections of this chapter. The OSS method can be implemented in multiple ways with 
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different performance in robustness, precision and computational speed (Croxford et al. 2010; 

Harley and Moura 2012).  

In this dissertation, I will implement the OSS method using the scale transform. In this 

implementation, the optimal stretching factor estimate  between the baseline signal  

and a new signal  is defined as (Harley and Moura 2012), 

   (2-1) 

where the normalization factors are defined as,  

   (2-2) 

   (2-3) 

Then, the optimal stretch factor estimate can be simplified as, 

   (2-4) 

The stretching is energy-preserving because 

   (2-5) 
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stretching factor estimate (using scale transform), and the computational cost and 

resolution of this implementation, can be found in (Harley and Moura 2012).  

After the signal filtering procedure in section 2.3.1, a new arrival (signal) is stretched 

according to Eq. (2-1) to match the baseline signal. Figure 2-6 shows two signals before the 

OSS temperature compensation, and Figure 2-7 shows two signals after OSS temperature 

compensation. From Figure 2-6, the signals have significant phase shifts after a relatively 

small temperature change of 2.0 °C, whereas Figure 2-7 shows that the phase shifts are 

negligible after OSS temperature compensation. However, the phase shifts cannot be fully 

corrected after a relatively large temperature change of 8.0 °C as shown in Figure 2-8 and 

Figure 2-9.  

 

Figure 2-6  Two ultrasonic signals with a relative small temperature change of 2.0 °C but 
without volume loss before the OSS temperature compensation: (a) the 100.0-200.0 µs segment; 

(b) the 118.4-119.4 µs segment; (c) the 181.9-182.9 µs segment 
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Figure 2-7 Two ultrasonic signals with a relatively small temperature change of 2.0 °C, but 
without volume loss, after OSS temperature compensation: (a) the 100.0-200.0 µs segment; (b) 

the 118.4-119.4 µs segment; (c) the 181.9-182.9 µs segment 

 
Figure 2-8 Two ultrasonic signals with a relatively large temperature change of 8.0°C, 

but without volume loss, before OSS temperature compensation: (a) the 100.0-200.0 µs 
segment; (b) the 118.4-119.4 µs segment; (c) the 181.9-182.9 µs segment 
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Figure 2-9 Two ultrasonic signals with a relatively large temperature change of 8.0 °C, 
but without volume loss, after OSS temperature compensation: (a) the 100.0-200.0 µs 

segment; (b) the 118.4-119.4 µs segment; (c) the 181.9-182.9 µs segment 

The temperature changes in this experiment are in the range of about ±8 °C. 

Temperature changes are inferred from stretching factors, and the details about inference of 

temperature changes from stretching factors will be given in section 2.4.  

 Temperature Change Characterization  2.4

In this experiment, the temperature changes of the specimen were not directly 

measured. However, it is known that temperature changes are directly related to stretching 
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To demonstrate the direct relation between temperature changes and stretching factors, 

an additional experiment was carried out on the same specimen with the same transducer and 

experimental setups used in the experiment described in section 2.2. In this additional 

experiment, the ambient temperature was adjusted, and ultrasonic signals were recorded at 

five different ambient temperature levels using a thermometer with a precision of 0.1°C. To 

make the ambient temperature as close to the internal temperature of the specimen as 

possible, the ambient temperature was kept at each temperature level for five hours to 

stabilize the internal temperature of the specimen. The first two echoes from back-wall 

reflections are used to extract the stretching factors using Eq. (2-1), and subscript indices for 

both signals can range from 1 to 5 in Eq. (2-1). If the temperature change is positive when the 

ultrasonic signal pair (si(t), sj(t)) is used to calculate the stretching factor, the temperature 

change would be negative when the ultrasonic signal pair (sj(t), si(t)) is used to calculate the 

stretching factor. 

The relation between stretching factors and temperature changes in the additional 

experiment is shown in Figure 2-10. It is shown that the stretching factor is equal to 1 when 

there is no temperature change, and that stretching factors have a strong linear relationship 

with temperature change with R2 = 0.98. This strong linear relationship is consistent with that 

found in (Lu and Michaels 2005). The noise in the data is mainly from the temperature 

measurements and from the difference between the ambient temperature and the internal 

temperature of the specimen. This is the main reason that I prefer to use stretching factors to 

characterize the temperature changes. 
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Figure 2-10 Relation between stretching factors and temperature changes 

In order to use the data collected in the experiment in section 2.2, I must make an 

important assumption that the first two pulse echoes from back-wall reflections are not 

significantly affected by damage. This assumption is reasonable because the potential erosion 

damage location in frac iron components is foreseeable from the flow geometry, and the 

transducer location (where the through-thickness back-wall reflections occur) can be situated 

outside of that potential damage location. In oil and gas production, the flow direction is 

fixed, and therefore the particulate matter in the fluid will always impact the same general 

area when flowing through an elbow. Therefore, the erosion damage pattern is largely 

predictable; I observed the same erosion damage pattern in all four frac iron elbow specimens 

that I studied. (These four elbow specimens were retired from service because of the erosion 

damage, and our industrial partner transferred them to us for study in our lab.) The in-service 
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in Figure 2-1. If the transducer is located sufficiently distant from the erosion damage 

location as shown in Figure 2-1, the first two pulse echoes from back-wall reflection are not 

significantly affected by the erosion damage, because no damage is present on the through-

thickness path.  

To confirm the above assumption, I analyzed the 1850 ultrasonic signals collected from 

the experiment in section 2.2. First, a typical ultrasonic signal is shown in Figure 2-11(a). 

The segment of the signal between 32 and 48 µs corresponds to the first two pulse echoes 

from back-wall reflections and are shown in Figure 2-11(b). The segment of the signal 

between 150 and 166 µs corresponds to later arrivals and are shown in Figure 2-11(c). The 

first signal of the experiment was used as the baseline, and all other signals were stretched 

against that baseline. The correlation coefficients before stretching, the stretching factors, and 

the correlation coefficients after stretching are shown in Figure 2-12, using the signal 

segment between 32 and 48 µs for the stretching analysis, and are shown in Figure 2-13, 

using the signal segment between 150 and 166 µs for the stretching analysis.  

From Figure 2-12(c), the minimum correlation coefficient is 0.9993 after stretching, 

which is very close to 1. This indicates that the first two pulse echoes are not significantly 

affected by damage effects, as expected. From Figure 2-13(c), the minimum correlation 

coefficient is 0.9429, which is much less than that in Figure 2-12(c). This means that this 

segment of signal may be significantly affected by damage effects.  
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Figure 2-11 (a) A typical ultrasonic signal; (b) the first two pulse echoes from back-wall 
reflections; (c) some later arrivals of the ultrasonic signal 

  

Figure 2-12 Analysis using signals between 
32 and 48 µs corresponding to the first two 
pulse echoes: (a) correlation coefficients 
before stretching; (b) stretching factors; (c) 
correlation coefficients after stretching 

Figure 2-13 Analysis using signals between 
150 and 166 µs corresponding to later 
arrivals: (a) correlation coefficients before 
stretching; (b) stretching factors; (c) 
correlation coefficients after stretching 

From the discussion in this section, I conclude that there is a strong linear relationship 

between stretching factors and temperature changes, and that the first two pulse echoes are 
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not significantly affected by damage effects. Therefore, stretching factors extracted from the 

first two pulse echoes can be used to characterize the temperature changes in the thick-wall 

aluminum tube. 

 Detection of Volume Loss Using the OSS Method 2.5

2.5.1 MSE 

Defects in materials can cause shape distortion of the ultrasonic waveforms. A simple 

method for SHM is to record ultrasonic signals before damage (the baseline) and after 

damage (a new arrival), and then to examine the residuals obtained by subtracting the 

baseline from the new arrival. Further analysis of the residuals can be used to detect the 

damage, such as the mean squared errors (MSE) of residuals. If there are temperature 

variations, MSE should be calculated after performing temperature compensation. 

In this chapter, each test step in the experiment in section 2.2 is considered as an 

individual damage detection task. In the experiment, the 19 test steps with volume loss are 

labeled as 1, and the 18 test steps without volume loss are labeled as 0. MSE is then used as 

the predictor variable to predict whether or not volume loss is present. Here, MSE is defined 

as in Eq. (2-6). It is the mean squared residual signal, and the residual signal is the difference 

between the new arrival (after OSS temperature compensation) and the baseline signal. 

 𝑀𝑆𝐸! =  
1
𝑁 (𝑠! 𝑡 − 𝑠!!! 𝑡 )!

!

!!!

 (2-6) 
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where 𝑀𝑆𝐸!  is the 𝑀𝑆𝐸  at experimental step i, 𝑠! 𝑡  is the new arrival (after OSS 

temperature compensation) at step i, 𝑠!!! 𝑡  is the signal from test step i-1 (and the baseline 

signal for step i) and N is the signal length.  

2.5.2 Results and Discussions 

In this section, the logistic regression model is used as the classifier and MSE is used 

as the predictor variable. The measured data and the best fit of the logistic regression model 

are shown in Figure 2-14. The circles are those steps without volume loss and the crosses are 

those steps with volume loss. The dotted line is the best fit of the logistic regression model 

using all the data as training set. From this figure, the raw data are not well separated by the 

predictor variable MSE.  

 

Figure 2-14 Damage detection using the logistic regression model and using MSE as the 
predictor variable 
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prediction results. Usually, it can be selected as 0.5, and then the outputs greater than 0.5 

from logistic regression are labeled as steps with volume loss and the outputs less than 0.5 

are labeled as steps without volume loss. However, if the threshold is selected as a value 

greater than 0.5, there will be fewer Type I errors but more Type II errors. Similarly, if the 

threshold is selected as a value less than 0.5, there will be fewer Type II errors but more Type 

I errors. The selection of this threshold should reflect the tolerance level of Type I and Type 

II errors of users. 

 

Figure 2-15 Performance of the logistic regression model using MSE as the predictor 
variable at different threshold values. The black line is the F1 score at each threshold 

level. 

The performance of the logistic regression model using MSE as the predictor variable 

is shown in Figure 2-15 at different threshold levels, and the calculation of this performance 

uses leave-one-out cross validation. At each threshold level, the percentage of true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN) predictions are shown 

● ● ● ● ●

●

●

●
●

● ●
● ●

● ●

●

● ● ●

●

●0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Threshold

Pe
rfo
rm
an
ce

Votes TP TN FP FN



	 32	

separated in Figure 2-15. 1The black line is the F1 score at each threshold level to show the 

overall performance of the prediction model (Gao et al. 2015). In Figure 2-15, the highest F1 

score and accuracy are 0.78 and 0.82, respectively. These results are better than a random 

guess but far from satisfactory. 

 Detection of Volume Loss Using the Modified OSS Method 2.6

In the previous section 2.5, MSE after OSS temperature compensation was used for 

damage detection of volume loss in the thick-wall aluminum tube, but the performance was 

not satisfactory. The problem was that the OSS method could not fully correct the phase 

shifts and shape distortions caused by relatively large temperature changes as shown in 

Figure 2-8 and Figure 2-9 although it performed better when the temperature changes were 

relatively small as shown in Figure 2-6 and Figure 2-7. In this section, I will propose a 

modified OSS method to improve the performance for temperature compensation. 

2.6.1 The Modified OSS Temperature Compensation 

The idea of my modified OSS method is to calibrate the changes of a damage indicator 

(like MSE) that are caused by temperature changes, using data obtained when no change 

occurs in the damage. In my experiment, there were at least four segments in which no 

incremental volume loss occurred; for example, from test step 7 to 12, from test step 13 to 16, 

from test step 18 to 21, and from test step 32 to 35, as shown by the arrows in Figure 2-16. In 

                                                
1 F1 score is defined as 𝐹! = 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙, where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

and 𝑟𝑒𝑐𝑎𝑙𝑙 =  𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
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this section, the data from these four segments is used to study the changes in the MSE 

caused by temperature changes. 

 
Figure 2-16 The data used for training the modified OSS temperature compensation are from 

four segments of the experiment as shown by the arrows 

Figure 2-17 shows the relationship between MSE and temperature change, 

characterized by stretching factor, when there is no volume loss. Before OSS temperature 

compensation, MSE increases with the increase of temperature change, with a polynomial 

relationship as shown by the equation and R-squared in Figure 2-17(a). After OSS 

temperature compensation, the magnitude of MSE drops by an order of 102. However, the 

strong polynomial pattern still exists as shown in Figure 2-17(b), indicating that the OSS 

method cannot fully remove the temperature effects, and this polynomial pattern should be 

removed (compensated) in order to have better performance in damage detection.  
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Figure 2-17  MSE when there was no volume loss: (a) before OSS temperature compensation; (b) 
after OSS temperature compensation 

 

The procedure of the modified OSS temperature compensation is to carry out the 

temperature compensation in two phases. In the first phase, the OSS method is used on the 

experimental data for first-order temperature compensation, and the stretching factor is 

calculated between the baseline signal and the new arrival. In the second phase, the damage 

indicator (such as MSE) is calibrated based on the stretching factor calculated from the first 

phase, and then based on the trained model between the stretching factor and the damage 

indicator when there is no damage (after OSS temperature compensation) like the polynomial 

model shown in Figure 2-17(b). I call this temperature compensation strategy the modified 

OSS method because the first phase is the OSS method, and the second phase of this strategy 

is still based on the stretching factor from the OSS method. 
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2.6.2 Results and Discussions 

As in section 2.5.2, a logistic regression model is used as the classifier. The measured 

data and the best fit of the logistic regression model are shown in Figure 2-18. The circles are 

those steps without volume loss and the crosses are those steps with volume loss. The dotted 

line is the best fit from the logistic regression model using all the data as training set.  

 
Figure 2-18 Damage detection using the logistic regression model and using the modified MSE 

as the predictor variable 

The performance of the logistic regression model using the modified MSE as the 

predictor variable is shown in Figure 2-19 at different threshold levels, and the calculation of 

this performance uses leave-one-out cross validation. At each threshold level, the percentage 

of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

predictions are shown separated in Figure 2-19. The black line is the F1 score at each 

threshold level to shown the overall performance of the prediction model. In Figure 2-19, the 

highest F1 score and the accuracy are 0.94 and 0.95 respectively. 
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Figure 2-19 Performance of the logistic regression model using the modified MSE as predictor 

variable at different threshold values. The black line is the F1 score at each threshold level. 

 Detection of Volume Loss Using Singular Value Decomposition 2.7

2.7.1 Singular Value Decomposition 

Singular value decomposition (SVD) is closely related to principal component analysis 

(PCA).  They are so closely related to each other that they are often used interchangeably. 

According to Jolliffe (Jolliffe 2002), “Beltrami (1873) and Jordan (1874) independently 

derived the singular value decomposition (SVD) in a form that underlies PCA”, and the PCA 

technique was first given by Pearson (1901) and Hotelling (1933). However, these techniques 

were not extensively studied and used until the availability of digital computers for large-

scale problems. 
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Now, SVD and PCA techniques are widely used in a variety of engineering fields 

including face recognition (Zhang et al. 2005; Zhao et al. 1998), image compression (Bryt 

and Elad 2008; Clausen and Wechsler 2000), signal denoising (Jade et al. 2003; Jha and 

Yadava 2011; Zhang et al. 2010), etc. In the field of damage detection and structural health 

monitoring, SVD and PCA are extensively studied to reduce data dimension (Mujica et al. 

2008; Zang and Imregun 2001), to remove variations caused by environmental and 

operational conditions (Laory et al. 2011; Ruotolo and Surace 1999; Vanlanduit et al. 2005; 

Yan et al. 2005; Yan et al. 2005), and to extract damage sensitive feature for damage 

detection and clustering (Anton et al. 2009; Gharibnezhad et al. 2011; Mujica et al. 2011).  

For example, (Anton et al. 2009) present the promising application of PCA-based 

methods for the detection and localization of the corrosion damage at several different 

locations on aluminum plates. In this paper, PZT transducer patterns are very carefully 

designed and pitch-catch measurements of Lamb waves between selected transducer pairs are 

recorded for further analysis. The PCA-based methods are then used to detect and select the 

transducer pairs corresponding to the Lamb wave paths with corrosion damage. 

Cross et al. (Cross et al. 2012) proposed a novel method based on PCA, which can 

successfully detect damage under varying temperature conditions. In their experiment, two 

PZT transducers are placed on the opposite edges of a rectangular composite panel and Lamb 

waves are emitted from one transducer and received by the other under varying temperature 

in the chamber. A circular hole is drilled on a composite panel as the case for damage 

detection. In their method, signals with temperature variations before damage are used as 

baseline data, and the principal components are extracted from the baseline data. The largest 

variation in the data is caused by temperature change, so the first several principal 
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components are removed, and then some minor principal components are used for data 

detection. This novel application of PCA has the potential to detect damage under varying 

environmental and operational conditions. 

In earlier work at Carnegie Mellon, Liu et al. proposed a novel SVD technique  using 

ultrasonic guided waves to detect a mass scatterer on a pipe, both in the laboratory 

environment and under operational conditions (Liu et al. 2012; Liu et al. 2015; Liu et al. 

2012; Liu et al. 2013). The SVD technique can separate the damage effects and temperature 

effects into different singular values. By finding a specific pattern in the left singular vectors 

corresponding to damage effects, this SVD technique can achieve very good performance for 

mass scatterer detection, both in the laboratory environment and under operational conditions. 

Furthermore, this SVD technique can also be used for scatterer localization on pipes by using 

the corresponding right singular vectors (Liu et al. 2014). 

In most of these prior applications, the directions with large variations in the data are 

assumed to be important data structures containing useful information. On the other hand, the 

data structures along directions with small variations are assumed to be unimportant or 

caused by noise. Therefore, image compression, dimension reduction, and signal denoising 

are achieved by discarding singular values smaller than a given threshold.  

2.7.1.1 Principal Component Analysis (PCA) 

Assume a two-dimensional dataset with dimension of . In , each row 

represents an observation and each column represents a feature. Also assume that each 

feature has been mean normalized in . Then, the covariance matrix for the dataset  (an 

 m× n  matrix) is defined as follows, 

X  m× n X

X X
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                                                            (2.7) 

The covariance matrix is an matrix. The element is the dot 

product between the measurements of the ith feature and the measurements of jth feature. 

Since our data are preprocessed to have zero mean, is the covariance of the two 

features and is the covariance matrix. (If the data is not mean normalized, would not 

be the covariance matrix.)  

Large values in diagonal terms of are assumed to correspond to interesting structure 

in SVD or PCA analysis. On the other hand, large values in off-diagonal terms of  

correspond to high redundancy because a large off-diagonal term means one feature is well 

correlated to another.  

In PCA analysis, the goal is to find a linear transformation after which the interesting 

structure in the data is retained and the redundancy is removed. Define an  matrix , 

which transforms the matrix into , 

                                                                (2.8) 

Now, the goal is to find a transform matrix to make the covariance matrix 

 to be diagonal. This is because diagonal terms of a covariance matrix correspond 

to interesting structure, and off-diagonal terms correspond to redundancy in the data as stated 

earlier.  
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Note that to assure that is indeed the covariance matrix of , must have a 

zero mean. This can be proved as follows, 
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Now  can be rewritten as, 

                                 (2.11)                                                                            

To make diagonal, PCA assumes is an orthonormal matrix. From eigen analysis 

of linear algebra,
   

p1 p2 ! pn
⎡
⎣

⎤
⎦  are the eigenvectors of  and they are called principal 

components in PCA. The 1st principal component represents the direction with the greatest 

variance in the dataset , and similarly the ith principal component represents the direction 

with the ith greatest variance in the dataset while satisfying the constraint that the ith 

principal component must be orthogonal to the first i-1 principal components. The diagonal 

terms 
   

λ1 λ2 ! λn
⎡
⎣

⎤
⎦    of are the eigenvalues of , and these eigenvalues indicate the 

variances along those principal components. 
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2.7.1.2 Singular Value Decomposition (SVD) 

Let  the original dataset be an matrix. In , each row represents an observation 

and each column represents a feature. Assume each feature has been mean normalized in 

when SVD is performed in this dissertation, although the mean normalization is not 

necessary for general SVD analysis.  

The singular value decomposition (SVD) of the dataset is defined as, 

                                                           (2.13) 

where is the left singular vector matrix with the dimension of , 

is the diagonal singular value matrix with the dimension of  whose diagonal terms 

 are called singular values, and is the right singular vector matrix 

with the dimension of . Both the left and the right singular matrices are orthonormal 

matrices. The singular value matrix is sorted in descending order in the decomposition. 

Therefore, the 1st right singular vector represents the direction with the greatest variance in 

the dataset , and similarly the ith right singular vector represents the direction with the ith 

greatest variance in the dataset , while satisfying the constraint that the ith right singular 

vector must be orthogonal to the first i-1 right singular vectors. 

2.7.1.3 The Relationship between PCA and SVD 

In practice, singular value decomposition (SVD) and principal component analysis 

(PCA) are so intimately related to each other that they are often used interchangeably. Their 

relationship can be described by the following equations, 
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                                  (2.14) 

Then,  

                                                             (2.15) 

Comparing Eq. (2.15) to Eq. (2.7), the right singular vectors in SVD are exactly the 

principal components in PCA, and the singular values and the eigenvalues are related to each 

other according to the relationship when the dataset is mean normalized. 

2.7.2 Damage Detection Using SVD 

In this dissertation, SVD and PCA can be used interchangeably.  However, I prefer to 

use the term “SVD” because I will use left singular vectors, right singular vectors, and 

singular values explicitly. In PCA, the principal components, corresponding to the right 

singular vectors in SVD, and eigenvalues, equivalent to the singular values in SVD, are 

explicitly shown, but further processing is necessary after PCA to obtain the equivalents of 

the left singular values in SVD. 

2.7.2.1 Data Organization 

As mentioned earlier, 50 ultrasonic signals (each an average of 500) are recorded at 

each test step. Each signal with the length of 2000 is organized as a row vector in the data 

matrix X. For damage detection, data from two consecutive test steps is used, so there are 

100 ultrasonic signals corresponding to 100 rows in the data matrix X. In SVD, , 

where data matrix X has the dimension of 100x2000, the left singular vector matrix has the 

( )= = =T T T T T T T T TX X USV USV VS U USV VS SV

=T T TS S V (X X)V

2 /i imσ λ=
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dimension of 100x100, the singular value matrix has the dimension of 100x100, and the right 

singular matrix has the dimension of 2000x100. 

2.7.2.2 Feature Extraction from SVD 

In this section, I will discuss how the feature used for damage detection is extracted 

from SVD using statistical hypothesis testing. The results from SVD for a typical test step are 

shown in  Figure 2-20. In  Figure 2-20, a left singular vector and a right singular vector are 

plotted with red colors, and the specific meanings of this left singular vector and this right 

singular vector will be explained in the next section. 

The right singular vectors are the basis vectors of the decomposition of ultrasonic 

signals using SVD, similar to the sinusoidal basis functions for the Fourier transform. 

Therefore, the right singular vectors have the same signal length as the recorded ultrasonic 

signals, and the time scale of the right singular vectors also depends on the sampling rate, 

which is 20 GHz in our experiment, like the recorded ultrasonic signals. Here, I refer to this 

time scale as fast time (Liu et al. 2015).  

A left singular vector represents the relative weights of the corresponding right singular 

in the recorded ultrasonic signals. For example, the 1st  left singular vector represents the 

relative weights of the 1st  right singular vector in the decompositions of the 100 recorded 

ultrasonic signals. The 2nd  left singular vector represents the relative weights of the 2nd  right 

singular vector in the decompositions of the 100 recorded ultrasonic signals. Therefore, the 

length of left singular vectors is the same as the number of recorded ultrasonic signals in 

SVD, and this time scale depends on the time difference between ultrasonic signals, which is 

15 seconds in our experiment. Here, I refer to this time scale as slow time (Liu et al. 2015). 
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The left singular vectors represent the relative weights because both the left singular 

vectors and the right singular vectors are normalized to have a vector length of 1. The weight 

magnitude information is stored in the singular values. Therefore, the left singular vectors 

multiplied by corresponding singular values will be absolute weights.  

 

 Figure 2-20 The first 20 left singular vectors and right singular vectors from a typical 
test step  

 
Figure 2-21 Singular values from a typical test step 
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In this organization of experimental data, if there exists volume loss in a test step, there 

should be a left singular vector showing the pattern like a step function, as shown by the red 

colored left singular vector in  Figure 2-20(a). The red colored right singular vector in Figure 

2-20(b) is the right singular vector corresponding to the left one with red color. The “step” in 

the left singular vector should be exactly at the middle of the left singular vector in this data 

organization method. To find the step function corresponding to the volume loss, a statistical 

hypothesis testing technique is used.  

In this statistical hypothesis test, I suppose that a left singular vector 

𝑢! = [𝑢!!,… ,𝑢!
!
! ,𝑢!

!
!!!,…𝑢!!]!  consists of two independent random samples 𝑢!!,… ,𝑢!

!
!  and 

𝑢!
!
!!!,… ,𝑢!! corresponding to the ultrasonic signals recorded in the baseline step and the 

damage detection step, respectively. Here I denote 𝜇! and 𝜇! as the means of the first sample 

and second sample respectively. The null hypothesis and alternative hypothesis are: 

𝐻! ∶   𝜇! =  𝜇! 

𝐻! ∶   𝜇! ≠  𝜇! 

Then 𝑃!(𝜇! =  𝜇!), the probability that 𝜇! is equal to 𝜇! for the ith singular vector, 

shows the probability that the first sample and the second sample of a left singular vector are 

from the same distribution.  The hypothesis test is run through the first 20 left singular 

vectors at each test step to identify the left singular vector most likely caused by the damage 

effects. (I use the logarithm of the minimum probability log (𝑚𝑖𝑛!𝑃!(𝜇! =  𝜇!)) of each test 

step as the feature to predict if there is volume loss of the thick-wall aluminum tube.) Figure 

2-22 shows the hypothesis test result for one of the steps with damage. In this figure, 
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𝑃!(𝜇! =  𝜇!) is the minimum value among all 𝑃!(𝜇! =  𝜇!) for this test step, and therefore 

log (𝑃!(𝜇! =  𝜇!)) is used as the predictor variable for this test step. If 𝑚𝑖𝑛!𝑃!(𝜇! =  𝜇!) is 

used as the predictor variable, it will have similar performance in damage detection as the 

predictor variable log (𝑚𝑖𝑛!𝑃!(𝜇! =  𝜇!)). However, the predictor variable 𝑚𝑖𝑛!𝑃!(𝜇! =

 𝜇!) is heavily skewed towards the right hand side, so it might cause the damage detection 

algorithm to be less robust. Therefore, logarithm operator log (∙) is used here to correct the 

heavily skewed predictor variable distribution. 

 
Figure 2-22 The probability that the first half samples (corresponding to the baseline signals) 

and the second half samples (corresponding to the new signals) in a left singular vector are 
from the same distribution  

 

2.7.2.3 Results and Discussions 

In this section, the feature extracted from SVD is used as the predictor variable and a 

logistic regression model is used as the classifier. The measured data and the best fit of the 

logistic regression model are shown in Figure 2-23. The circles are those steps without 
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volume loss and the crosses are those steps with volume loss. The dotted line is the best fit 

from the logistic regression model using all the data as training set. In this figure, the data 

from different classes can be reasonably separated when using the feature extracted from 

SVD.  

 

Figure 2-23 Damage detection using the logistic regression model and using the feature 
from SVD as the predictor variable 

The performance of the logistic regression model using the feature from SVD as the 

predictor variable is shown in Figure 2-24 at different threshold levels, and the calculation of 

this performance uses leave-one-out cross validation. At each threshold level, the percentage 

of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

predictions are shown separated in Figure 2-24. The black line is the F1 score at each 

threshold level to shown the overall performance of the prediction model. In Figure 2-24, the 

highest F1 score and the accuracy are 0.94 and 0.95 respectively.  
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Figure 2-24 Performance of the logistic regression model using the feature from SVD as the 
predictor variable at different threshold values. The black line is the F1 score at each threshold 

level. 

 Comparison of the Three Different Methods 2.8

To compare the performance of the three different methods for detection of volume 

loss in the thick-wall aluminum tube, maximum F1 score, maximum accuracy and area under 

a ROC curve (AUC) are listed in Table 2-2 and the ROC curves are plotted in Figure 2-25. 

From these three measures, the SVD method and the modified OSS method have comparable 

performance although the SVD method is slightly better than the modified OSS method in 

terms of AUC. A higher AUC means the method is more robust in damage detection. Both 

the SVD method and the modified OSS method have much better performance than the OSS 

method in this experiment. 
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Table 2-2 Comparison of the performance of the three different methods 

 OSS Modified OSS OSS+SVD 

F1 score  0.78 0.94 0.94 

Accuracy  0.82 0.95 0.95 

AUC  0.79 0.92 0.96 

 

 

Figure 2-25 The ROC curves 

These results indicate that the OSS method alone is not good enough to give reliable 

temperature compensation when the temperature change is in the range of about ±8 °C, while 

the modified OSS method and the SVD method can achieve much better results in the same 

range of temperature change. However, the SVD method can perform well in a larger 

threshold range than the modified OSS method as shown in  Figure 2-19 and Figure 2-24 and 

in Table 2-2, so the SVD method is more robust in terms of threshold selection. 
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 Conclusion 2.9

In this chapter, the modified OSS method and the SVD method are proposed to detect 

volume loss in a thick-wall aluminum tube specimen under temperature variations, and the 

performance of these methods is compared with the regular OSS method. The regular OSS 

method did not perform well in my experiment because of the relative large temperature 

variations in the range of about ±8 °C. However,  the modified OSS method and the SVD 

method performed much better than the regular OSS method, as measured by F1 score, 

accuracy, and ROC. The SVD method can perform better than the regular OSS method 

because of its ability to separate the temperature effects from the damage effects. The 

modified OSS method can further remove the pattern between the stretching factor and the 

damage indicator, (MSE in this instance) so it can perform much better than the regular OSS 

method. 
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Chapter	3 Orthogonal	Relationship	between	Temperature-Induced	

and	Damage-Induced	Ultrasonic	Change	Signals	

 Introduction 3.1

In the earlier research work in our group, the SVD technique performed well for 

pipeline damage detection (Liu et al. 2015) and localization (Liu et al. 2015) with 

temperature variations. In those studies, the SVD technique was demonstrated to be able to 

somewhat separate the damage-induced ultrasonic change signals from ultrasonic baseline 

signals and from ultrasonic change signals caused by other factors. Therefore, the 

temperature effects and other effects could be removed by selecting a left singular vector and 

a right singular vector corresponding to damage using techniques such as statistical 

hypothesis testing. In SVD, left singular vectors are unit vectors that are orthogonal to each 

other as are the right singular vectors. Therefore, damage-induced change signals were 

inherently assumed to be orthogonal to change signals caused by other factors, e.g. 

temperature-induced change signals, in the SVD technique studied in (Liu et al. 2015)  and 

(Liu et al. 2015). However, the hypothesis of the orthogonal relationship between the 
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damage-induced change signals and the temperature-induced change signals was not directly 

studied in their earlier work. 

In my earlier work on the thick-walled aluminum tube experiments, I observed an 

interesting phenomenon that the vector length of the sum of temperature-induced and 

damage-induced change signals was always greater than the vector length of damage-induced 

change signals alone. If the orthogonal relationship between temperature-induced and 

damage-induced ultrasonic change signals exists, this phenomenon can then be explained 

because temperature-induced change signals will not cancel damage-induced change signals 

if they are orthogonal to each other. 

Therefore, the motivation of the research work in this chapter is to study the hypothesis 

of the orthogonal relationship and then use it to explain the above phenomena observed in 

our earlier work. I will also explain how the relationship could be potentially used for 

damage detection and quantification under temperature variations or other environmental and 

operational conditions (EOCs). 

This chapter is organized as following. The approximate orthogonal relationship 

between temperature-induced and damage-induced ultrasonic change signals will be studied 

and demonstrated in section 3.2. The potential underestimation in damage detection or 

quantification due to an approximate (but not exact) orthogonal relationship will be shown in 

section 3.3. The potential applications of the orthogonal relationship will be discussed in 

section 3.4. Finally, I will summarize the work in this chapter in section 3.5. 
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 Orthogonal Relationship between Temperature-Induced and Damage-3.2

Induced Ultrasonic Change signals 

In this chapter, I will use the data collected from the one-transducer mode in the 

experiment described in section 2.2 to study the hypothesis that temperature-induced and 

damage-induced ultrasonic change signals are orthogonal to each other. In that experiment, 

the temperature changes of the specimen are not directly measured. Instead, the temperature 

changes are characterized by stretching factors as discussed in section 2.4. 

3.2.1 Data Organization  

To study the relationship between ultrasonic baseline signals, temperature-induced 

change signals, and damage-induced change signals, I need to first extract the two types of 

change signals from the raw ultrasonic signals collected from the experiment. The raw 

ultrasonic signals can be treated as a superimposition of ultrasonic baselines, temperature-

induced change signals, and damage-induced change signals. The method to extract the two 

types of change signals is to find triplets, where a triplet is defined as an ultrasonic baseline 

signal (sb), an ultrasonic signal affected only by a temperature change (st), and an ultrasonic 

signal affected only by a damage change (sd) as shown in Figure 3-1. In this figure, all 

signals are represented as two-dimensional vectors although the real dimension should be the 

length of signals. Temperature-induced change signals (Δst) and damage-induced change 

signals (Δsd) can then be extracted by subtracting the baselines.  
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Figure 3-1 A triplet defined as an ultrasonic baseline signal (sb), an ultrasonic signal 

affected only by a temperature change (st), and an ultrasonic signal affected only by a 
damage change (sd) 

A random combination of three different signals from the 1850 raw ultrasonic signals 

may form a triplet but not necessarily; this is because when one signal is used as the baseline 

there might be both temperature effects and damage effects in the other two signals. The total 

number of potential triplets from the 1850 ultrasonic signals is on the order of 109, and it 

would take me a few months to examine all the possible triplets. For practical purposes, I use 

random sampling to find 10,000 qualified triplets for the analysis. In the random sampling, it 

is impossible to find two different ultrasonic signals with the exact same temperature, so 

when I claim that two signals share the same temperature or when I claim an ultrasonic signal 

is affected only by damage in the experiment, it means that the temperature difference 

between the two measurements is small enough that the stretching factor between the two 

signals is within the range of 1±2*10-5. 
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3.2.2 Resolution of Stretching Factors   

The threshold of 2*10-5 is the resolution achievable in stretching analysis considering 

the factors of stretching algorithm, instrument errors, and white noise. The stretching 

algorithm itself can achieve a resolution on the order of 10-6 in a simulation (Harley and 

Moura 2012). However, there are instrument errors in real signals, such as the errors caused 

by the function generator and digitizer across different signals, and there exists white noise in 

signals collected in the experiment. Both instrument errors and while noise will decrease the 

resolution of stretching factor achievable in analysis.  

A simple experiment was designed in order to determine the overall effects of 

stretching algorithm, instrument errors, and white noise. This experiment was carried out on 

the same specimen with the same transducer and experimental setups as in the experiment in 

section 2.2. In this experiment, 1000 ultrasonic signals were recorded with a time interval of 

12 seconds between signals, which is the minimum interval attainable with our data 

acquisition system. Then the i+1th signal was stretched against the ith signal to calculate the 

stretching factor using only the part of signal between 32 and 48 µs corresponding to the first 

two pulse echoes. Because no damage was introduced between signals and because I assume 

there were no significant temperature changes within the 12 seconds, deviations of stretching 

factor from 1 were considered errors caused by the stretching algorithm, instrument errors, 

and white noise.  

The histogram of stretching factors from this analysis is shown in Figure 3-2. From this 

figure, the maximum deviation from 1 is 2*10-5 among the 999 stretching factors, and 

therefore 2*10-5 is used as the resolution of our stretching analysis considering stretching 
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algorithm, instrument errors, and white noise. This resolution of stretching factors is 

conservative when using the maximum deviation as the estimate, especially considering that 

the temperature can have some minor changes within the 12 seconds and this temperature 

effects are also included in the maximum deviation. 

 

Figure 3-2  The histogram of stretching factors 

3.2.3 Results and Analysis 

From the 10,000 sampled triplets, temperature-induced change signals (Δst) and 

damage-induced change signals (Δsd) were extracted as described earlier, and their angles 

and correlation coefficients with the baseline signals were plotted in Figure 3-3 and Figure 

3-4 respectively. Here angles are defined as 𝜃 = cos!! !∙!
∥!∥!∥!∥!

, where u and v are two 

vectors and ∥∙∥! is the Euclidean norm of a vector.  

The angles and correlation coefficients have an approximate bilinear relationship in 
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and signals with temperature changes are proportionally delayed or advanced against the 

baseline signals. The variations, when there is no temperature change or the change is very 

small, are relatively large because of the small vector lengths of the temperature-induced 

change signals in the denominator.  

The angles and correlation coefficients have no clear pattern in Figure 3-4. The volume 

loss in the aluminum tube broadly scatters ultrasonic signals. Furthermore, scattered 

ultrasonic waves propagate along multiple complicated paths before they arrive at the 

transducer. Therefore, damage-induced ultrasonic change signals do not have a clear pattern 

like that caused by temperature changes, and the angles and correlation coefficients then have 

no clear pattern in Figure 3-4.  

  

Figure 3-3 Relationship between temperature-induced change signals and baseline 
signals: (a) correlation coefficients; (b) angles in degrees 
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 Figure 3-4 Relationship between damage-induced change signals and baseline signals: 
(a) angles in degrees; (b) correlation coefficients 

 

Figure 3-5 Relationship between temperature-induced and damage-induced ultrasonic change 
signals when the stretching threshold is 2*10-5: (a) angles in degrees; (b) correlation 

coefficients 

Figure 3-5 is a plot of angles and correlation coefficients between temperature-induced 

and damage-induced ultrasonic change signals. The color represents the angles in Figure 

3-5(a) and correlation coefficients in Figure 3-5(b). Figure 3-6 is a plot of Figure 3-5 with the 

temperature changes dropped, and Figure 3-7 is a plot of Figure 3-5 with the mass loss 

Mass Loss (g)
-5 0 5

An
gl

e 
in

 D
eg

re
es

75

80

85

90

95

100

105

110

Mass Loss (g)
-5 0 5

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Mass Loss (g)
-5 0 5

St
re

tc
hi

ng
 F

ac
to

r

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

0

20

40

60

80

100

120

140

160

180

Mass Loss (g)
-5 0 5

St
re

tc
hi

ng
 F

ac
to

r

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
(b) (a) 

(b) (a) 



	 59	

dropped. In these three figures, the threshold to define if two signals share the same 

temperature is 2*10-5 as discussed in section 3.2.2. 

 

Figure 3-6 Relationship between temperature-induced and damage-induced ultrasonic 
change signals with the temperature changes dropped when the stretching threshold is 

2*10-5: (a) angles in degrees; (b) correlation coefficients 

 

 

Figure 3-7 Relationship between temperature-induced and damage-induced ultrasonic 
change signals with the mass loss dropped: (a) angles in degrees; (b) correlation 

coefficients 
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In Figure 3-6, the angle varies around 90 degrees and the correlation coefficient varies 

around 0; both variations decrease with damage level, and tend to stabilize at a certain low 

level. This is because that the claimed damage-induced change signals contain some 

temperature-induced changes. When a claimed damage-induced change signal is extracted, 

the two ultrasonic signals used should share the same temperature but should have different 

mass loss. In reality, the same temperature is not achievable, and instead two ultrasonic 

signals recorded at temperatures close enough (the stretching factor between these two 

signals is less than a stretching threshold like 2*10-5 mentioned earlier in section 3.2.2) are 

used to extract the damage-induced change signal.  

If mass loss is relatively small, temperature-induced change signals in claimed 

damage-induced change signals will significantly influence angles or correlation coefficients 

between temperature-induced and claimed damage-induced ultrasonic change signals. 

However, if mass loss is large, temperature-induced changes in damage-induced change 

signals will have negligible influence on angles or correlation coefficients. This can be 

further verified by relaxing the threshold.  If the stretching threshold is relaxed to 8*10-5, the 

variations in Figure 3-8 and Figure 3-9 become much larger because the temperature-induced 

changes become greater in the claimed damage-induced change signals. The dotted 

horizontal lines represent the noise levels caused by instrument errors and white noise. The 

noise levels are calculated by replacing the damage-induced ultrasonic change signals with 

noise signals extracted from the experiment described in section 3.2.2.   

The variations of angles and correlation coefficients both stabilize at the noise levels. 

Therefore, if variations caused by temperature components in damage-induced change 

signals, instrument errors and white noises are excluded, the angles tend to approximate 90 
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degrees and the correlation coefficients tend to approximate 0, meaning that temperature-

induced and damage-induced ultrasonic change signals are approximately orthogonal to each 

other. The orthogonal relationship between temperature-induced and damage-induced 

ultrasonic change signals mainly originates from “randomness” in the damage-induced 

change signals. The “randomness” here means that scattered ultrasonic pulses do not have a 

clear pattern and are somewhat randomly scattered in ultrasonic signals.  

The angles and the correlation coefficients have no clear pattern in Figure 3-7. This 

also verifies the conclusion that the orthogonal relationship between temperature-induced and 

damage-induced change signals mainly originates from “randomness” in the damage-induced 

ultrasonic change signals, which is not present in the temperature-induced change signals. 

 
Figure 3-8 Relationship between temperature-induced and damage-induced change signals 

when the stretching threshold is 8*10-5: (a) angles in degrees; (b) correlation coefficients 
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Figure 3-9 Relationship between temperature-induced and damage-induced ultrasonic 
change signals with the temperature changes dropped when the stretching threshold is 

8*10-5: (a) angles in degrees; (b) correlation coefficients 

 Underestimation in Damage Detection or Quantification 3.3
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relationship is satisfied. Data used for this analysis is the same as that used in section 3.2. 

The ratios of mixed effects ∥ Δs! + Δs! ∥! to damage effects ∥ Δs! ∥! are shown in Figure 

3-10(a) for all the data and in Figure 3-10(b) for the data for which ∥ Δs! + Δs! ∥! are less 

than the damage effects ∥ Δs! ∥!. From Figure 3-10, most ratios are greater than 1. Only 

about 13.2% of the ratios are less than 1, and these ratios less than 1 show up only when the 

stretching factors are very close to 1. Even when the ratios are less than 1 they are not far 

from 1 because of no significant temperature changes in these cases. After the stretching 

factors are dropped from Figure 3-10(b), the ratios are plotted against the mass loss as shown 

in Figure 3-11. From Figure 3-11, the ratios are not significantly smaller than 1 unless there 

is no mass loss or the mass loss is very small.  

Overall, ∥ Δ𝑠! + Δ𝑠! ∥! can not be meaningfully less than ∥ Δ𝑠! ∥! as a percentage 

unless both temperature changes and mass loss are small. When both temperature changes 

and mass loss are small, absolute values of ∥ Δ𝑠! + Δ𝑠! ∥! and ∥ Δ𝑠! ∥! will be quite small. 

Therefore, the use of ∥ Δ𝑠! + Δ𝑠! ∥!for damage detection or quantification would not cause 

significant underestimation, no matter the temperature ranges and the damage ranges.  
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Figure 3-10 The ratios of mixed effects ∥ 𝛥𝑠! + 𝛥𝑠! ∥! to damage effects ∥ 𝛥𝑠! ∥!  (a) for 
all the data; (b) for the data for which mixed effects ∥ 𝛥𝑠! + 𝛥𝑠! ∥! are less than the 

damage effects ∥ 𝛥𝑠! ∥! 

 

 
Figure 3-11 The ratios of mixed effects ∥ 𝛥𝑠! + 𝛥𝑠! ∥! to damage effects ∥ 𝛥𝑠! ∥! for the 

data for which mixed effects ∥ 𝛥𝑠! + 𝛥𝑠! ∥! are less than the damage effects ∥ 𝛥𝑠! ∥! 
(stretching factors are not shown in this figure) 
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 Applications and Discussions 3.4

3.4.1 Application in SVD Damage Detection and Localization 

As mentioned at the beginning of this chapter, the SVD technique performed well for 

pipeline damage detection (Liu et al. 2015) and localization (Liu et al. 2015) with 

temperature variations in earlier research work in our group, but why the SVD technique 

performed well was not directly investigated. Now, the orthogonal relationship between 

temperature-induced and damage-induced ultrasonic change signals studied in section 3.2 

gives a direct explanation why the SVD technique can separate temperature effects from 

damage effects and can perform well for damage detection and localization. 

3.4.2 Application in MSE Damage Detection or Quantification  

In my earlier work on the thick-walled aluminum tube experiments, I observed an 

interesting phenomenon that the vector length of the sum of temperature-induced and 

damage-induced change signals was always greater than the vector length of damage-induced 

change signals alone. To be specific, Figure 3-12 shows the results from the MSE method for 

volume loss quantification. The data is from the experiment described in section 2.2. In the 

experiment, 50 signals are recorded at each test step, but only the first signal in each test step 

is used here. For the OSS temperature compensation, the signal from the first step is used as 

the baseline and all signals are stretched against the baseline. The stretching factors are 

shown in Figure 3-12(a), and the stretching factors fluctuate around 1 or the temperature 

fluctuates around the baseline temperature level. In the MSE method, the signal from the first 

step is used as the baseline to calculate the residuals for all other signals after the OSS 
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temperature compensation. MSEs are then calculated from the residuals and shown as red 

color circles in Figure 3-12(b). The results from the MSE method without temperature 

compensation are shown as blue color circles in Figure 3-12(b). 

In Figure 3-12(b), the MSE with OSS temperature compensation is the lower bound of 

the MSE without temperature compensation. The stretching factor crosses the baseline level 

multiple times as shown in Figure 3-12(a), but the blue curve is always above the red curve. 

The orthogonal relationship studied in section 3.2 can explain this phenomenon. The 

temperature-induced change signals can never cancel the damage-induced change signals if 

they are orthogonal to each other. Therefore, MSE without temperature compensation must 

be greater than the one with temperature compensation no matter the temperature is above or 

below the baseline level. 

It can also be concluded from Figure 3-12 that temperature compensation techniques 

are not necessary for damage detection and quantification in long-term structural health 

monitoring projects, as long as the temperature fluctuates around the baseline level and must 

cross the baseline level at least once per specified time period. The specified time period is 

the time resolution of the monitoring project. Some types of deterioration, like corrosion, 

erosion, and fatigue cracking, take decades to develop in infrastructure systems. Therefore, 

the time resolution of the monitoring project for these infrastructure systems are usually not 

very high, so the above requirement can be satisfied most of time. Even if not satisfied, the 

requirement can also be relaxed by using multiple baselines. With multiple baselines, the 

temperature only need to cross one of the baseline levels once per specified time period. 
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Figure 3-12 Quantification of volume loss in a thick-walled aluminum tube: (a) stretching 
factors; (b) results using MSE with or without the OSS temperature compensation 

 Conclusion 3.5

In this chapter, I studied the relationship between temperature-induced and damage-

induced ultrasonic change signals and conclude that they are approximately orthogonal to 

each other. The orthogonal relationship between temperature-induced and damage-induced 

ultrasonic change signals mainly originates from “randomness” in the damage-induced 

change signals. The “randomness” here means that scattered ultrasonic pulses do not have a 

clear pattern and are somewhat broadly scattered in ultrasonic signals.  

This orthogonal relationship explains why the SVD technique can separate damage 

effects from other effects, and function effectively for damage detection and localization in 

the earlier work in our group. Using this orthogonal relationship, temperature compensation 
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becomes unneccesary in principle for damage detection and quantification in long-term 

structural health monitoring projects under certain conditions. One advantage of this strategy 

is that it does not add significant system resources to store baselines (like in the optimal 

baseline selection method) or to stretch ultrasonic signal (like in the optimal signal stretching 

method) for structural health monitoring. Another potential advantage of this strategy over 

the optimal signal stretching method is that it is not strictly limited by the range of 

temperature changes. 
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Chapter	4 Ultrasonic	Time-of-Flight	Diffraction	for	Thickness	Loss	

Quantification	

 Introduction 4.1

It is often difficult to develop good physical models for structural health monitoring 

(SHM) of infrastructure systems. However, if a good physical model is available for a 

specific structure, in the author’s opinion the model-based method is preferable instead of 

data-driven methods because model-based methods are straightforward and easy to interpret. 

Furthermore, it might not be necessary to calibrate the model parameters in model-based 

methods, or at least it is relatively easier to carry out calibration experiments on real 

infrastructure systems because the calibration usually only involves the determination of 

some key parameters about the mechanical properties of materials and structural geometrical 

dimensions. 

In this chapter, our goal is to detect and quantify thickness loss of thick-walled 

aluminum tubes. The pulse-echo method is one of the most commonly used ultrasonic 

techniques for plate and pipe thickness measurement. However, the pulse-echo method did 
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not perform well to quantify the thickness loss of frac iron components retired from in-

service applications due to erosion damage. Figure 4-1 shows a typical frac iron elbow with 

erosion damage and the two pulse-echo measurement locations. Figure 4-2(a) shows the 

ultrasonic pulse-echo measurements at the location without erosion damage and Figure 4-2(b) 

shows another measurement at the location with erosion damage on the frac iron elbow. The 

thickness loss at the erosion spot is approximately 50% of the 22 mm wall thickness. The 

pulse-echo method did not perform well because the morphology of thickness loss was 

irregular and reflected ultrasonic pulses away from the transducer, making it difficult to 

detect an echo. 

  

Figure 4-1  (a) A frac iron elbow retired from in-service applications due to erosion damage 
at location shown by the red arrow. The green arrow shows a location without erosion 

damage; (b) the same frac iron elbow from a different perspective of view to show the inside 
erosion damage by the red arrow 

(b) (a) 
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Figure 4-2 Pulse echo measurements on a location (a) without erosion damage as shown by the 
green arrow in Figure 4-1; (b) with erosion damage as shown by the red arrows in Figure 4-1 

The time-of-flight diffraction technique was developed, by Silk and his co-workers at 

the National NDE center, starting in the early 1970s for detecting and sizing defects in the 

shell of the pressurized water reactor (PWR) pressure vessel. The origin and development of 

this technique were detailed in a series of publications by Silk and his co-workers on this 

topic (Silk 1979; Silk 1979; Silk 1982; Silk 1982; Silk 1984; Silk and Lidington 1975).  

The time-of-flight diffraction technique grew out of the difficulties encountered in 

defect sizing using the conventional pulse-echo method. The pulse-echo method assumes a 

specular reflection formed by the damage surface. However, a reasonable specular reflection 

is very rare in field applications. If the specular assumption is not satisfied, the pulse-echo 

method might not be able to detect the defects or the size of defect might not be estimated 

accurately. Furthermore, when the pulse-echo method is applied in an application with 
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randomly oriented defects, the scanning probe needs to be placed at different angles to find 

the specular reflection, and (many times), the sensitivity is still very low in these conditions. 

Scanning at different angles is not only inconvenient but also not available sometimes due to 

the constraints of the scanning surface in field applications (Charlesworth and Temple 2001).  

After the invention of the time-of-flight diffraction technique, it has become more and 

more popular in the field of NDE and it has been applied to some very complicated structure 

types. For example, this technique was applied to detect cracks in T-butt welds and the 

results showed sizing accuracy on the T-butt welds was comparable to that on simple plate-

like structures. In contrast, the accuracy from the pulse-echo method was insufficient for the 

same test conditions (Jessop and Mudge 1980). The time-of-flight diffraction was also used 

to study fatigue crack sizing on offshore structures, and in the experiment satisfactory defect 

sizing measurements were achieved in the underwater condition at laboratory facilities 

(Hawker et al. 1985; Newton et al. 1986). More examples about the applications of the time-

of-flight diffraction technique can be found in (Charlesworth and Temple 2001). 

This chapter is organized as follows. In section 4.2, the inductively coupling concept is 

discussed, and the experiment is then carried out in both wired setup and inductively coupled 

setup in section 4.3. The results of the ultrasonic time-of-flight diffraction for the thickness 

loss quantification of thick-walled aluminum tubes are presented in section 4.4. The research 

work in this chapter is then summarized in section 4.5. 
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 Inductively Coupled Ultrasonic Transducers 4.2

Most ultrasonic techniques for SHM and NDE are implemented using wired ultrasonic 

transducers. The electrical connection between the ultrasonic transducer and the cable is a 

weak point in a wired transducer design. Corrosion of connectors might be a serious problem 

in some long-term monitoring projects, especially where exposed to weather and to 

contamination (Greve et al. 2007). In recent years, wireless transducer techniques have been 

introduced to overcome these difficulties. However, this approach typically requires the 

transducer to have a power supply, usually a battery (Lynch 2007). It also typically requires 

the transducer to have reliable data processing and transmitting modules. These additional 

requirements result in significant system complexities (Cho et al. 2008; Lynch 2007). 

In earlier work at CMU, an inductively coupled transducer was developed, its electrical 

behavior was studied (Greve et al. 2007), and it was used to generate Lamb waves and 

longitudinal waves in plates by edge-mounted transducers for damage detection (Greve et al. 

2007; Greve et al. 2008; Zheng et al. 2008). This technique has also been investigated and 

used to detect delamination damage in carbon fiber composite material by other authors 

(Zhong et al. 2013). The inductively coupled transducer is inherently a wireless design, but it 

greatly simplifies the data transmission and power supply mechanisms by using inductive 

coupling when compared with other wireless designs. Overall, the inductively coupled 

transducer has advantages of no exposed electrical wiring and longer lifetime compared to 

wired transducers, and it has advantages of low cost and system simplicity compared to other 

wireless transducers. 
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The inductively coupled transducer concept is shown in Figure 4-3. A piezoelectric 

transducer is wired to the coil #1 winding on a ferrite core, and the coil #2 winding on 

another ferrite core is connected to a pulser or a digitizer depending on whether the 

transducer is used as a transmitter or a receiver. When the coil #2 receives a pulse from a 

pulser, the electric pulse is inductively coupled to the piezoelectric transducer and 

consequently the piezoelectric transducer will emit ultrasonic waves into the structure. 

Similarly, when the transducer receives ultrasonic waves and transforms the waves into 

electric pulses, the electric pulses will be inductively coupled back into coil #2 and received 

by the digitizer.  

I envision that the coil #1 can be encapsulated within the piezoelectric transducer. The 

transducer itself is then entirely passive and it can be mounted permanently onto the target 

structure. This transducer design should enable a long lifetime if the encapsulation is 

properly designed. I also envision that the pulser and receiver can be integrated into a 

handheld device, connected to a probe corresponding to coil #2, making it convenient to use 

this device to take pulse-echo measurements. If two probes are designed for the handheld 

device, with one probe connected to the pulser and the second probe connected to the 

digitizer, then the device can take pitch-catch measurements between two transducers 

mounted on the structure. 
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Figure 4-3  The concept of an inductively coupled transducer 

 Experimental Work 4.3

An experimental system for inductive coupling is built following the prototype shown 

in Figure 4-3 (Gong et al. 2015). The ferrite cores are PQ-26 type ASTM P7070 power 

ferrites with a center leg diameter of 12.0 mm, and each coil has 16-turn windings on its 

ferrite core. Figure 4-4 shows the two ferrite cores at the emitter end when they are facing 

each other, and the ferrite cores at the receiver end are designed to be the same.  The 

ultrasonic transducers are Krautkramer probes from GE Inspection Technologies (product 

code: 113-241-591) with a specified center frequency of 0.98 MHz and a moderate 

bandwidth (@-6dB: ~70%). An NI PXI-5421 arbitrary waveform generator is used to 

generate a Gaussian-modulated sinusoidal pulse signal with peak-to-peak amplitude of 6.0 V 

at a center frequency of 1.0 MHz. An NI PXI-5122 digitizer is used to record pitch-catch 
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measurements at a sampling rate of 20 MHz. To improve the signal-to-noise ratio, each 

recorded ultrasonic signal is an average of 500 measurements. Each ultrasonic signal has 

duration of 0.25 ms in the experiment. At each experimental step, ultrasonic signals are 

repeated 50 times with a 15 s interval between two consecutive signals. 

 

Figure 4-4  A pair of coils used in the experiment for inductive coupling 

In this study, the specimen is a thick-walled 6061 aluminum alloy tube with the 

dimensions (O.D. x I.D. x length) of 4.00 x 2.00 x 3.15 inch (101.60 x 50.80 x 80.01 mm) as 

shown in Figure 4-5. The outside and inside diameters are typical dimensions of a frac iron 

component. Aluminum alloy is chosen for our laboratory study for ease of machining a 

thickness loss similar to the erosion damage of practical interest. The two transducers are 

glued onto the specimen surface using cyanoacrylate adhesive with an included radial angle 

of 134.6º to take pitch-catch measurements as shown in Figure 4-5.  
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Figure 4-5  (a) The thick-walled aluminum tube and the transducers; (b) an illustration of 
possible wave paths 

 

In this experiment, six damage levels are introduced by cutting an elliptical damage 

profile; the damage runs the full-length of the specimen as shown in Figure 4-5.  The damage 

dimensions are listed in Table 4-1.  (I will relate ultrasonic measurements to the thickness 

loss; I will not address possible relationships to the damage width.) 

Table 4-1  The damage levels introduced to the aluminum specimen 

Damage Level Thickness Loss Approximate Damage Width 
(inch)          (mm) (inch)         (mm) 

0 0.00         0.0 0.0           0 

1 0.02         0.5 0.5          13 

2 0.04         0.9 0.6          15 

3 0.08         1.9 0.6          15 

4 0.10         2.6 0.6          15 

5 0.11         2.9 0.6          15 
 
 

(a) (b) 
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 Ultrasonic Time-of-Flight Diffraction for Thickness Loss 4.4

Quantification 

4.4.1 Ultrasonic Time-of-Flight Diffraction 

In this section, I will propose a novel method using diffracted ultrasonic longitudinal 

waves to characterize the thickness loss of the thick-walled aluminum tube (Gong et al. 

2015). As shown in Figure 4-5, when longitudinal waves propagate from emitter location A 

to receiver location C, the shortest path would be A-D-C. The leading pulse will travel along 

the path A-D-C, and that path will lengthen with damage depth at D. It is evident that 

longitudinal waves can travel from location A to location D, as indicated in Figure 4-5, but it 

is not that apparent that ultrasonic waves can change direction at D and continue toward C. 

This wave path can be explained by ultrasonic diffraction. In the Huygens-Fresnel principle, 

every point on a wavefront can be treated as a forward-propagating source of a spherical 

wave and the sum of secondary waves determines the form of the wave at any subsequent 

time (Fahy 2000).  In our case, when the wavefront propagates to D it can be treated as a 

forward propagating spherical wave source, with a subsequent shortest path to C. This can 

also explain why the leading pulse, corresponding to Pulse 1 in Figure 4-6, will be sensitive 

to damage and why I will study this pulse to characterize the thickness loss in our experiment. 

In this study, the angle of 134.6º is chosen to assure that no direct path exists between the 

two transducers so that the shortest path length A-D-C will change with damage depth at D. 

In field application, the location D can be estimated from knowledge of the flow conditions, 

and transducers can be placed correspondingly at locations A and C.  
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In our experiment, longitudinal waves are observed to reflect from inner and outer 

surfaces, and also to propagate around the tube in both circumferential directions and along 

multiple paths.  The experiment also shows that circumferentially propagating longitudinal 

waves have significant diffraction phenomenon, and the diffracted waves can be used for the 

quantification of volume loss. 

 
 

Figure 4-6  The signals received by the emitter and receiver in pulse-echo and in pitch-catch 
modes from wired transducers 

Figure 4-6 shows a pair of signals detected at the emitter (in pulse-echo mode) and the 

receiver (in pitch-catch mode), respectively, when the specimen is undamaged; the two 

signals are plotted with DC offset to eliminate overlap. From these two signals, it is 

determined that pulses 1 and 2 travel from emitter to receiver following paths A-D-C and A-

E-C (as denoted in Figure 4-5), respectively. From the pulse-echo signal, echoes from the 

back-wall reflections can be found clearly. Because no damage occurs at the emitter location, 

those echoes can be used to calculate the longitudinal wave velocity; in this case the wall 

thickness is 1.00 inch (25.40 mm) and the time-of-flight between the first two echoes is 8.10 
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µs, so the longitudinal wave velocity is calculated as 6.27 mm/µs. Here, the time-of-flight 

between the first two echoes is calculated using the pulse peak locations as labeled in Figure 

4-6. Then, the time reference point is calculated as 26.55 µs using the first echo peak location 

minus the time-of-flight between the first two echoes as indicated by the red line in Figure 

4-6. (This time reference point is not the absolute time zero point of the excitation signal, but 

it is a convenient reference for all time-of-flight calculations.) Using the time reference point, 

the times-of-flight for pulses 1 and 2 are determined from the pitch-catch signal, from which 

the travel distance is calculated and listed in Table 4-2. Geometric path lengths for A-D-C and 

A-E-C, before damage, are measured directly by calipers and are also listed in Table 4-2. The 

calculated travel distances compare reasonably well with the measured path lengths, 

supporting our conceptual model of the travel paths.  

Table 4-2  Comparison between calculated travel distances and measured path lengths 

 Calculated Travel Distance  
(mm) 

Measured Path Length  
(mm) 

Pulse 1  95.64 -- 

Path A-D-C  -- 97.87 

Pulse 2 165.25 -- 

Path A-E-C  -- 167.54 

 

4.4.2 Ultrasonic Signals from Wired Transducers and Inductively Coupled 

Transducers 

The experiment was implemented in both the wired setup and the inductively coupled 

setup, using the same transducers, function generator, and digitizer. Signals obtained from 

the inductively coupled setup are closely comparable to signals obtained from the wired 
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setup.  Figure 4-7(a) shows pitch-catch signals from the two different setups, and Figure 

4-7(b) and Figure 4-7(c) zoom in to compare the signals over short (10 µs) intervals. Except 

for some minor differences, the signals are closely comparable. Crosstalk occurs at roughly 

25 µs (when the function generator is operating, but before the ultrasonic pulse reaches the 

receiver) in the inductively coupled setup but not in the wired setup, as shown in Figure 

4-8(a). A constant time offset between the two signals is observed; it is shown early in the 

signal in Figure 4-8(b), and then 150 µs later, near the end of the signal, in Figure 4-8(c).  

 
Figure 4-7  (a) Pitch-catch signals from the two different setups; (b) the 70-80 µs 

segment of the pitch-catch signals; (c) the 220-230 µs segment of the pitch-catch signals 

 

The cross-correlation between the two signals is shown in Figure 4-8(a), indicating that 

the time offset between the two signals is roughly 0.10 µs, with a maximum correlation 

coefficient of 0.98. Figure 4-8(b) shows the residuals when the signal from the inductively 

coupled setup is subtracted from the signal from the wired setup, after adjustment for the 
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constant offset. Although minor differences exist when the signals from the wired setup and 

the inductively coupled setup are compared to one another, those differences do not affect 

damage detection performance.  

 
 

 
Figure 4-8  (a) Cross-correlation between the two pitch-catch signals in Figure 4-7(a); 

(b) the difference between the two pitch-catch signals in Figure 4-7(a) (after 
adjustment for constant offset) 

 

4.4.3 Temperature Compensation 

From section 4.4.1, the pulse echoes from back-wall reflections, Pulse 1, and Pulse 2 in 

Figure 4-6 are all longitudinal waves so that they have the same propagating velocity. In 

Chapter 2, it has been shown that the pulse echoes in this through-thickness path are not 

significantly affected by the volume loss because the echoes are geometrically remote from 

the volume loss. Therefore, the echoes from back-wall reflections can be used for 
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temperature compensation in this time-of-flight diffraction method. To be specific, velocity 

changes caused by temperature changes can be calculated from the echoes from back-wall 

reflections, and then velocity changes can be used to calculate the delays or advances of the 

first arrival at the receiver end caused by temperature changes. Figure 4-9 shows the 

temperature-caused ultrasonic wave velocity changes in my experiment.  

 

Figure 4-9 The wave velocity changes caused by temperature changes 

4.4.4 Influence of Damage Profiles 

Even if the damage-caused time delay of the first arrival can be exactly measured, the 

maximum damage depth can still not be determined exactly because of the influence of the 

damage profiles. The same maximum damage depth as shown in Figure 4-10 will cause 

different time delays of the first arrival due to the different damage profiles. The damage 

profile in Figure 4-10(a) corresponds to the greatest time delay and the damage profile in 

Figure 4-10(b) corresponds to the smallest time delay when the maximum damage depth is 
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fixed. Time delays from other damage profiles will fall between the greatest and smallest 

time delays corresponding to the profiles in Figure 4-10. Therefore, the time delay is 

bounded when the maximum erosion depth is fixed although the exact time delay is not know. 

Similarly, the maximum damage depth is bounded when the time delay is known, and the 

lower bound corresponds the damage profile in Figure 4-10(a) and the higher bound 

corresponds to the damage profile in Figure 4-10(b). 

 

Figure 4-10 Different damage profiles corresponding to: (a) erosion evenly distributed across 
the section; (b) a vertical crack with the same distance to Point A and Point C. The Point D is at 

the same location in (a) and (b), so the maximum damage depth is the same for the two 
different damage profiles. 

4.4.5 Results and Discussions 

The pitch-catch signal changes with damage level. The time delay of the diffracted 

ultrasonic leading pulse is used for thickness loss quantification, applying the cross-

correlation method to extract that time delay between damage levels, with a Hamming 

window to prevent sharp changes at the ends of signal. Figure 4-11 shows the leading pulses 

at the six different damage levels, which are labeled with the measured thickness loss. The 

original signals have a sampling rate of 20 MHz, so the time resolution will be 0.05 µs if the 

original signals are directly used in the cross-correlation. However, time delays at different 
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damage levels can be much smaller than 0.05 µs. Therefore, linear interpolation is applied to 

the original signals to improve the time resolution to 0.0005 µs for the cross-correlation 

calculation.  

 

 
Figure 4-11  The leading pulses with Hamming window at the different damage levels 

 

Figure 4-12 plots the thickness loss against the time delays of the leading pulse 

referenced to the no-damage signal for the wired transducers. The dotted black lines in this 

figure are the predicted lower and higher boundaries corresponding to the damage profiles 

shown in Figure 4-10. In Figure 4-12, the measured data points before temperature 

compensation are far from the predicted boundaries but those after temperature compensation 

are very close to the predicted boundaries. This indicates the temperature compensation 

method introduced in the section 4.4.3 performs well for the damage quantification using the 

ultrasonic time-of-flight diffraction method.  In Figure 4-12, the measured data points are not 

well bounded by the predicted boundaries even after temperature compensation. This is 
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probably because the predicted values do not consider the influence of instrument errors, 

environmental noise, or algorithm resolution, and because the temperature compensation 

method is not perfect. Overall, the time delay from the first arrival shows a monotonic 

relationship with the thickness loss indicating that the time-of-flight diffraction technique can 

quantify the thickness loss well for the wired transducers.  

 

 
Figure 4-12  The relationship between the time delay of the leading pulse and the 

erosion depth for wired transducers 

 

Figure 4-13 plots the thickness loss against the time delays of the leading pulse 

referenced to the no-damage signal for the inductively coupled transducers. Overall, the time 

delay from the first arrival shows a monotonic relationship with the wall thickness loss 

indicating that the time-of-flight diffraction technique can quantify the thickness loss well. In 

Figure 4-13, the measured data points before temperature compensation and after 

temperature compensation are very close to each other, indicating less temperature variations 
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for the measurements from the inductively coupled transducers. This is due to the 

experimental procedure. Temperature variations are mainly due to the heat generated by the 

machining of thickness loss, and the accelerated cooling procedure using ice. The signals 

from the wired transducers were recorded about three hours after the cooling procedure, and 

the signals from the inductively coupled transducers were recorded about six hours after the 

cooling procedure. Therefore, the temperature had not stabilized to room temperature when 

the signals were recorded from the wired transducers, but had more closely approached to 

room temperature when the signals were recorded from the inductively coupled transducers. 

Overall, the inductively coupled transducers and wired transducers have similar performance 

after temperature compensation, although the results are not exactly the same because of the 

experimental procedure.  

 

Figure 4-13 The relationship between the time delay of the leading pulse and the erosion depth 
for inductively coupled transducers 
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 Conclusion 4.5

In this chapter, ultrasonic time-of-flight diffraction is used to quantify the thickness 

loss in a thick-walled aluminum tube. The diffracted ultrasonic leading pulse in our 

experiment is shown to be very sensitive to thickness loss, and its time delay monotonically 

increases with the progress of the thickness loss. A temperature compensation technique 

based on echoes from back-wall reflections is developed and shows good temperature 

compensation performance. The effects of damage profiles are also discussed, which 

provides boundaries for the predictions from the time-of-flight diffraction.  

I also demonstrate that the inductively coupled transducers have the similar 

performance as that of the wired transducers in our experiments. The signals from these two 

different configurations are closely comparable to one another, and have equivalent 

performance in producing a monotonic relationship between thickness loss and delay in the 

arrival time of the leading pulse. In cases where transducers are to be permanently mounted 

on a structure, including in harsh environments, or in cases where wiring is a major expense, 

inductively coupled transducers are potentially excellent alternatives. 
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Chapter	5 Quantification	of	the	Alkali-Silica	Reaction	Damage	in	

Concrete	

 Introduction 5.1

2U. S. cement consumption (USGS 2003-2012) between 2003 and 2012 averaged 

100.0 million metric tons per year, with a standard deviation of 24.4 and with a maximum of 

129.8 in 2005.  Accordingly, roughly 700 million tons of concrete are constructed each year 

in the United States in the form of civil infrastructure and buildings. The alkali-silica reaction 

(ASR) occurs between reactive forms of silica in aggregates and alkalis in cement paste. The 

reaction product, an amorphous gel, absorbs moisture from the surrounding paste, expands 

and eventually cracks the aggregate then the paste. The reactivity is potentially harmful when 

it produces significant expansion.  

ASR caused cracking damage was first recognized about 75 years ago (Stanton 1940) 

and then was the subject of continued concern globally (Swamy 2002; Swamy and Al-Asali 

1988).  While most aggregate sources are not susceptible to ASR, reactive aggregates are 

                                                
2 Portions of this introduction are drawn from a proposal that I drafted and for which I provided all technical 
content, which was then edited by my research advisor. 
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nonetheless widespread and history is replete with cases of large-scale damage to major 

infrastructure and industry investments as reported by the Federal Highway Administration 

(Folliard et al. 2003). Because of the serious consequences and the widespread risk, research 

on methods for ASR damage detection has engaged researchers around the world and an 

excellent treatment can be found in a recent FHWA “Facts Book” (Thomas et al. 2013). 

Currently, it is a common practice to use ASTM C1260 (ASTM-C1260 2007)   and 

ASTM C1293 (ASTM-C1293 2008) to screen aggregates before the construction of 

important concrete structures to avoid potential ASR damage. Researchers (Cruz Carlos et al. 

2004; Ideker et al. 2012) have studied and compared the two methods and conclude ASTM 

C1293 is more realistic and representative of field conditions. However, these methods 

cannot be used to evaluate the status of existing structures.  

Non-destructive evaluation (NDE) techniques based on ultrasonic methods have been 

widely used by earlier researchers to evaluate the deterioration of concrete material as 

reflected in its overall material properties.  This is first exemplified (ASTM-C597 2009; 

Yaman et al. 2001) by measuring the ultrasonic pulse velocity (UPV) because it serves as an 

indicator of elastic modulus; our conventional engineering model of concrete behavior relates 

the elastic modulus to the compression strength. The UPV has been reported to decrease with 

the progress of ASR damage (Swamy and Al-Asali 1988). However, The UPV method has 

also been reported to be not as sensitive as other methods by other researchers (Saint-Pierre 

et al. 2007; Suaris and Fernando 1987) and our experience is consistent with this latter claim. 

The attenuation method is another well studied and widely accepted ultrasonic 

technique. The ultrasonic attenuation is caused by the scattering and absorbing effects of the 
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concrete. This method has been widely used to evaluate various properties of cement-based 

materials, such as grain size, air voids, and so forth (Ju et al. 2006; Nair et al. 1989).  It has 

also been shown to have the ability to detect ASR damage in concrete (Saint-Pierre et al. 

2007). However, moisture, coupling condition and other factors have very significant 

influence on attenuation measurements, cause large variations in the measured attenuation, 

and obscure the attenuation change caused by damage.  

In recent years, some nonlinear acoustic techniques have been used to detect damage in 

concrete and other building materials. When ultrasonic signals propagate through a nonlinear 

medium, higher order harmonics are generated. The nonlinear parameters based on the 

harmonics would trace the damage development in the medium since the damage would 

increase the nonlinearity of the medium. Nonlinear ultrasonic methods based on higher order 

harmonics have been used to detect damage in building materials (Matlack et al. 2012; Van 

Den Abeele et al. 2001; Walker 2011), including ASR damage (Chen et al. 2007).  

Alternately, the nonlinear interaction between a high frequency sinusoidal excitation signal 

and a low frequency structural vibration would produce a modulated signal. The nonlinear 

wave modulation spectroscopy (NWMS) measures the cross modulation amplitude to detect 

the damage in materials (Chen et al. 2009; Van Den Abeele et al. 2001).  The nonlinear 

resonance ultrasound spectroscopy (NRUS) (Payan et al. 2007) and the nonlinear impact 

resonance acoustic spectroscopy (NIRAS) (Chen et al. 2011) measure a nonlinear parameter 

by determining the relationship between the resonant frequencies and excitation levels, and 

then the nonlinear parameter is used to characterize concrete damage. The nonlinear 

ultrasonic techniques generally have demanding requirements for the testing system, and 

sometimes the results from nonlinear ultrasonic tests can not be easily interpreted. 
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In this chapter, I will present three ultrasonic methods to detect the existence of ASR 

caused cracking damage and to track its progress in concrete. In section 5.2, the experimental 

work will be detailed. In section 5.3, the three ultrasonic methods used for the detection of 

ASR caused cracking damage will be presented. The experimental results and discussions are 

shown in section 5.4. Finally, I will conclude this chapter in section 5.5. 

 Specimen Preparation 5.2

Three concrete specimens (No.1, No.2 and No.3) are cast with the size of 2.54 × 2.54 × 

28.58 cm (1 × 1 × 11.25 inch). For specimens No.1 and No.2, the coarse aggregate is crushed 

dolomitic limestone with a 1/2-inch nominal maximum size (Aggregate I). It is listed by the 

Pennsylvania Department of Transportation to have a 0.12% expansion in ASTM C1260. 

The fine aggregate is crushed sand from the same dolomitic limestone. For specimen No.3, 

the coarse aggregate is crushed sandstone with a 1/2-inch nominal maximum size (Aggregate 

II). This aggregate is listed by the Pennsylvania Department of Transportation to have a 0.53% 

expansion in ASTM C1260. The fine aggregate is non-reactive quartz sand. Type III high-

alkali cement from the Essroc Cement Plant in Nazareth, PA is used for all specimens. The 

equivalent alkali content of the cement is 1.1% by weight. All specimens have the same 

mixture proportion as Cement: Water: Coarse Aggregate: Fine Aggregate = 500: 235: 1058: 

693. 

The specimens are cured under moist conditions at room temperature and removed 

from molds after 24 hours. They are then kept in water for 28 days before test. Then, the 

lengths of specimens are measured using a length comparator with a precision of 0.000254 
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cm (0.0001 inch), and ultrasonic measurements are recorded for each specimen. All the 

above measurements under sound condition are used as baselines. Specimen No.1 is always 

kept in water at room temperature as a control, and specimens No.2 and No.3 are then 

immersed in 1N NaOH solution at 80℃ to accelerate ASR damage. The lengths and 

ultrasonic measurements are further recorded after immersion for 1, 2, 3, and 4 weeks for 

specimens No.1 and No.2. For specimen No.3, the tests last only for 2 weeks.  

 
Figure 5-1  Specimen expansions during the tests 

Figure 5-1 shows the specimen expansions. Specimen No.1 in water does not have 

detectable expansion, but specimens No.2 and No.3 immersed in NaOH solution show large 

expansions, indicating the existence of ASR damage. In specimen No.2, the crushed fine 

aggregate exposes reactive components to the alkalis more than in the case of the coarse 

aggregate, so the expansion and damage in specimen No.2 are mainly caused by the fine 

aggregate. On the other hand, the fine aggregate in specimen No.3 is not reactive, so the 

expansion and damage in specimen No.3 are dominated by coarse aggregate. This explains 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

Immersion Time (week)

Sp
ec

im
en

 L
en

gt
h 

Ex
pa

ns
io

n 
(%

)

 

 
No.1, Aggregate I, Water
No.2, Aggregate I, NaOH
No.3, Aggregate II, NaOH



	 94	

why specimen No.2 can have a larger expansion than specimen No.3 with more reactive 

coarse aggregate.  

 The Ultrasonic Test 5.3

In this section, I introduce the ultrasonic test and my three signal processing methods 

for ASR damage detection: attenuation spectrum method, ultrasonic passband method, and 

stretching factor method. 

In my ultrasonic test, two Krautkramer transducers from GE Inspection Technologies 

(product code: 113-241-591) are used with a specified center frequency of 0.98 MHz and a 

moderate bandwidth (bandwidth@-6dB: ~70%). A Ritec RPR-4000 high power pulser is 

used to generate a one-cycle sinusoidal signal with amplitude of roughly 150 V while 

sweeping the frequency from 200 kHz to 2.0 MHz in 50 kHz steps. An NI PXI-5122 digitizer 

is used to record the pitch-catch measurements through the 1 inch thickness of the specimens 

at a sampling rate of 20 MHz. Each signal has duration of 0.25 ms. Measurements are 

repeated five times at each of the three locations on each specimen. 

5.3.1 The Attenuation Spectrum Method	

The Ritec pulser in my tests can only generate single-frequency signals. Fortunately, 

the concrete-transducer is approximately a linear time invariant (LTI) system in a specific 

test cycle.  Therefore, I use the summation of excitations at single frequencies to approximate 

a wideband excitation, and the summation of corresponding responses to approximate a 
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wideband response. The attenuation spectrum in test cycle i is then defined as the magnitude 

of the transfer function (Saint-Pierre et al. 2007), 

 
| ( ( )) |

( )
| ( ( )) |
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A f
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=  (5-1) 

 

where f is the frequency, xi(t) and yi (t) are the wideband excitation and response 

respectively at test cycle i (i = 0, 1, 2, 3, or 4 in this dissertation).  

5.3.2 The Ultrasonic Passband Method	

In my tests, I anticipate that damage in concrete will cause more attenuation in the high 

frequency range than in the low frequency range. Then, I model the concrete-transducer 

system as a physical bandpass filter (Gong et al. 2014; Gong et al. 2014). To quantitatively 

describe the ultrasonic passband, a cumulative distribution function (CDF) at test cycle i is 

defined as, 
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where f0 and f1 are starting and ending frequencies in our tests, Ai (f) is the attenuation 

spectrum as defined in Eq. (5-1).  

In the ultrasonic passband method, the concrete damage is detected from changes in the 

ultrasonic passband in the frequency domain. In contrast, in attenuation spectrum or 
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attenuation methods (Saint-Pierre et al. 2007) the concrete damage is detected from changes 

in the signal amplitude. That is, the ultrasonic passband method utilizes relative attenuation 

information, while the attenuation spectrum or attenuation methods utilize absolute 

attenuation information. Consequently the ultrasonic passband method is unaffected by 

uniformly distributed attenuation that can be caused by changes in the coupling or other 

testing conditions.  

Although the CDF has been defined to describe the ultrasonic passband, it is not 

convenient to use the CDF to quantitatively show ultrasonic passband changes caused by 

damage especially when comparing ultrasonic passband changes for different materials.  

Therefore, I further define a quantity ( )CDF iΔ   to characterize ultrasonic passband changes 

with time. 

 1

0
0( ) ( ) ( )  

f

CDF if
i CDF f CDF f dfΔ = −∫   (5-3) 

 

where 0 ( )CDF f   is the CDF at test cycle 0, and ( )iCDF f  is the CDF at test cycle i. 

The quantity ( )CDF iΔ   calculates the area between the two CDF curves to show the changes. 

5.3.3 The Stretching Factor Method	

In my tests, it is found that the response signal is stretched by the ASR damage in 

concrete (Gong et al. 2014). The stretching effect is approximately modeled as 
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where yi(t) is the response signal at test cycle i, a is the stretching factor, b is a factor used to 

model the amplitude change, and t0 is the time zero point of the signal.  

The stretching model is not time invariant so that the time zero point is important for 

the analysis. Theoretically, the time zero point is at the beginning of the excitation. However, 

I cannot place it exactly because of noise and because of imprecision in the transition zone of 

the excitation signal.  

Here, I propose a method using signal processing to find stretching factors without 

knowing the time zero point of original signals. As mentioned earlier, the concrete-transducer 

can be modelled as a LTI system in a given test cycle 

 ( ) ( ) ( )i i iY j H j X jω ω ω=   (5-5) 

 

where ( )iX jω and ( )iY jω are Fourier transforms of xi(t) and yi(t) respectively, and 

( )iH jω  is the transfer function. Then, both sides of the Eq. (5-5) are convolved with ( )X jω∗ .  
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The signal zi(t) is the response corresponding to the input wi(t), which is clearly a real 

input beginning of a time zero point. If damage has a stretching effect on yi(t), it should also 

have the same effect on zi(t). Therefore, I use zi(t) instead of yi(t) for stretching analysis. 

 Results and Discussions	5.4

Typical attenuation spectra and CDF curves for specimen No.3 are shown in Figure 5-2 

and Figure 5-3, respectively. For each attenuation spectrum and each CDF curve, five 

independent measurements at the specific location are averaged and the error bars represent 

the standard deviations.  

 

Figure 5-2  The attenuation spectra for specimen No.3 

I expect greater attenuation with the progression of ASR damage. However, from 

Figure 5-2, the attenuation spectra are more complicated. First, the attenuation spectra do not 
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show consistent smaller magnitude after ASR damage. Second, there are large variations 

covering the magnitude decreases even if they exist. Therefore, the results from the 

attenuation spectra can be ambiguous and may not be able to detect existing ASR damage. 

On the other hand, it is clear from Figure 5-3 that CDF curves calculated from the 

relative attenuation show a consistent shift to lower frequency range with increasing ASR 

damage. Also, the error bars indicate that CDF curves have much smaller variations than the 

attenuation spectra.  

 

Figure 5-3  The CDF curves for specimen No.3 

Figure 5-4 shows ultrasonic passband changes ( )CDF iΔ  at three locations on each of the 

three specimens. For specimen No.1, ( )CDF iΔ  decreases with time. In other words, the 

ultrasonic passband moves towards the high frequency range with time. This can be 

explained by that the hydration reaction continues in sound concrete and transforms cement 

compounds into cement paste. The concrete will gain strength in this process, and the higher 
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quality of concrete at later time reduces the attenuation of high frequencies. For specimens 

No.2 and No.3, ( )CDF iΔ  increase with time. In other words, the ultrasonic passbands move 

towards the low frequency range with time. This can be interpreted as ASR damage causing 

high frequency components to diminish much than low frequency components. Therefore, 

the ultrasonic passband method can detect the ASR damage and track its progress well, 

whether ASR is dominated by fine aggregate or by coarse aggregate. 

 

Figure 5-4  The ultrasonic passband changes over time 

For the stretching factor method to improve consistently, I select the three signals with 

largest amplitudes from the five recorded in each test cycle; only 400 kHz signals are used 

for stretching analysis. In order to reduce errors caused by waveform distortions, the 

cumulative stretching factors are calculated based on the incremental stretching factors at 

each subsequent step. 
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In this chapter, I use the scale transform (Harley and Moura 2011) to extract stretching 

factors. In Figure 5-5, a typical pair of signals from specimen No.3 is shown to demonstrate 

the stretching effect. It is obvious that the two signals match each other much better after 

stretching. The maximum cross-correlation coefficient between the two signals is very close 

to 1.0 after the stretching is applied, so the stretching model in Eq. (5-4) can characterize the 

signal changes well. 

 
Figure 5-5  A typical pair of signals from specimen No.3 (a) before stretching;   (b) after 

stretching 

Figure 5-6 shows cumulative stretching factors at three locations on each of the three 

specimens. For specimen No.1, the signals are continuously compressed with time.  For 

specimen No.2 and No.3, the signals are continuously stretched with time. These results from 

stretching factor method are consistent with those from ultrasonic passband method. 

However, I notice that the results from stretching factor method might have larger variations 

among multiple locations especially for specimen No.3 in Figure 5-6.  
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Figure 5-6  The stretching factors 

 Conclusion 5.5

In this chapter, three ultrasonic methods are studied to detect ASR damage in concrete. 

The results from the attenuation spectrum (or attenuation methods) exhibit large variations 

caused by changes in the coupling and testing conditions, and hence these methods cannot 

detect the ASR damage in concrete without further analysis.  

In contrast, my test results with the ultrasonic passband method suggested that it can 

effectively detect the existence and track the progress of ASR caused cracking damage well 

when ASR caused cracking damage is present in either fine aggregate or in coarse aggregate. 

I hypothesize that the ultrasonic passband method is based on the ultrasonic wave filtering 

effects of cracks in concrete. With the develop of ASR damage in concrete, more high 

frequency components of ultrasonic waves are filtered out than low frequency components. 
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My results and analysis support that hypothesis. My test results further show that the 

stretching factor method can also detect the existence and track the progress of ASR damage, 

whether the ASR is dominated by the fine aggregate or the coarse aggregate. 
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Chapter	6 Major	Contributions	and	Future	Work	

 Major Contributions 6.1

This dissertation has been focusing on novel ultrasonic signal processing techniques for 

damage detection, quantification and temperature compensation. The major contributions 

achieved in this dissertation are summarized as following: 

• Novel ultrasonic signal processing techniques for temperature compensation in 

damage detection. In Chapter 2, in an application based  upon erosion loss in frac iron 

elbows physically simulated in laboratory studies of volume (mass) loss in a thick-

walled tube specimens, it is shown that the optimal signal stretching (OOS) method 

cannot work alone for damage detection when the temperature change is relatively 

large (±8 °C) and the mass loss is relatively small (0.3 - 0.5 g). The modified OSS 

method and the SVD method are proposed to compensate the temperature effects for 

volume loss detection, and they both perform well on the experimental data used in 

this dissertation.  
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• Orthogonal relationship between temperature-induced and damage-induced 

ultrasonic change signals. In Chapter 3, the approximate orthogonal relationship 

between temperature-induced and damage-induced ultrasonic change signals is 

studied and verified using the same dataset in Chapter 2. The orthogonal relationship 

can be used to explain why SVD works well under varying temperature conditions; 

the orthogonal relationship also has the potential to be directly used for damage 

detection and quantification under some conditions as discussed in section 3.4.2. 

• The ultrasonic time-of-flight diffraction for the quantification of wall thickness 

loss in thick-walled aluminum tubes. In Chapter 4, the ultrasonic time-of-flight 

diffraction technique is proposed to quantify the wall thickness loss of thick-walled 

aluminum tube specimens, and a temperature compensation technique for this 

application is also developed. In the experiment, the ultrasonic time-of-flight 

diffraction worked well, and the experimental results can well fit the theoretical 

results. 

• The ultrasonic passband technique for the quantification of alkali-silica reaction 

(ASR) caused cracking damage in concrete. In Chapter 5, a novel ultrasonic 

passband technique is proposed to quantify the alkali-silica reaction (ASR) caused 

cracking damage in concrete structures. This technique is based on the ultrasonic 

wave filtering effects of cracks in concrete. With the development of ASR damage in 

concrete, it is hypothesized that high frequency components of ultrasonic waves are 

filtered out more than low frequency components. In comparison to other methods, 

this technique overcomes the large variation problem of attenuation-based methods 

and the poor sensitivity problem of velocity change methods.  
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 Future Work 6.2

In this dissertation, some practical SHM problems have been studied, e.g. the frac iron 

erosion problem in oil and gas production and the alkali-silica reaction problem in concrete 

infrastructure systems. These studies have been focusing on novel ultrasonic signal 

processing techniques for damage detection, quantification and closely related temperature 

compensation topics. However, I have not assumed (and I do not suggest) that structural 

health monitoring problems can be fully solved using the techniques developed in this 

dissertation. The expectation of this dissertation is to push forward the state-of-the-art SHM 

techniques, and to provide some background for future research work by others.  

In Chapter 2, the damage detection problem on thick-walled aluminum tube specimens 

has been studied to provide some insights into the frac iron erosion problem in oil and gas 

production. However, extensive studies are still necessary to extend our techniques, 

developed on thick-walled aluminum tubes, to frac iron component monitoring in field 

applications. In practice, the frac iron components are much more complicated in terms of 

geometric shapes and damage morphology than the aluminum tubes used in our study, 

although our aluminum tubes  have cross-sectional dimensions closely comparable to those 

of exemplar frac iron components. Moreover, frac iron components operate in hash 

conditions, where the working pressure can be  as high as 15000 psi and fracking fluid flows 

through the components containing abrasive particles (Haddad et al. 2011). 

In Chapter 2, it is shown that the optimal signal stretching (OSS) method cannot work 

alone for damage detection when the temperature change is relatively large (±8 °C) and the 

mass loss is relatively small (0.3-0.5 g). Then the modified OSS method and the SVD 
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method are proposed to detect volume loss under temperature variations, and they both 

perform well on the data used in this thesis. However, extensive studies are still needed to 

know whether these techniques could apply to data collected on other structures under 

various conditions.  

In Chapter 3, the orthogonal relationship between temperature-induced and damage-

induced ultrasonic change signals is studied using the same dataset in Chapter 2 and potential 

applications are discussed. The orthogonal relationship is believed to originate from 

“randomness” in the damage-induced change signals. The “randomness” here means that 

scattered ultrasonic pulses do not have a clear pattern and are somewhat randomly distributed 

in ultrasonic signals. Then a hypothesis that the “randomness” depends on the geometric 

complexity of structures might be true. It is possible that the greater complexity 

(“randomness”) in ultrasonic signals occurs because the complicated geometric shapes create 

more possible wave paths. Therefore, the orthogonal relationship might be more obvious on 

complicated structures but less obvious on simple structures. Future work is needed to verify 

or deny this hypothesis. 

In Chapter 4, the case is similar to that Chapter 2 that the study has only been carried 

out on thick-walled aluminum tube specimens instead of frac iron steel components. 

Therefore, further studies are needed to extend the time-of-flight diffraction quantification 

technique developed on aluminum tubes to frac iron component monitoring in field 

applications. 

In Chapter 5, the novel ultrasonic passband technique is proposed to quantify the 

alkali-silica reaction (ASR) caused cracking damage in concrete structures. As a comparison, 
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this technique overcomes the large variation problem of attenuation-based methods and the 

poor sensitivity problem of velocity change methods. This ultrasonic passband technique 

might not be limited to ASR-caused cracking, and (in principle) it can probably apply to any 

SHM problems with distributed material damage. The ultrasonic passband technique can be a 

full model-based method if the filtering effects of cracking damage can be modeled, but such 

modeling of filtering effects (of cracking damage) will need rigorous research study in the 

future. 
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