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Abstract 

This dissertation focuses on (river) forecasting, but also includes a study on stormwater treatment. 

Using forecasts for decision-making is complicated by their inherent uncertainty. An interview-based 

study qualitatively and a survey empirically investigate forecast use in emergency management. 

Emergency managers perceive uncertainty as a given rather than as a problem. To cope with the 

uncertainty, decision-makers gather as much information as possible; forecasts are only one piece of 

information among many. For decision-making, emergency managers say that they rely more on 

radar than on river forecasting. However, forecasts play an important role in communication with 

the public, because they are the official interpretation of the situation. Emergency managers can add 

a lot of value to those forecasts by combining them with local knowledge, but might not do so 

because of accountability concerns. Forecasts must have value to emergency managers, because 

those with more work experience rely more on them than those without.  

Another study further develops the application of quantile regression to generate 

probabilistic river forecasts. Compared to existing research, this study includes a larger number of 

river gages; includes more independent variables; and studies longer lead times. Additionally, it is the 

first to apply this method to the U.S. American context. It was found that the model has to be 

customized for each river gage for extremely high event thresholds. For other thresholds and across 

lead times, a one-size-fits-all model suffices. The model performance is robust to the size of the 

training dataset, but depends on the year, the river gage, lead time and event threshold that are being 

forecast. 

An additional study considers the robustness of stormwater management to the amount of 

runoff. Impervious surfaces, such as roads and parking lots, can increase the amount of runoff and 

lead to more pollution reaching streams, rivers, and lakes. Best Management Practices (BMPs) 
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reduce the peak discharge into the storm sewer system and remove pollutants such as sediments, 

phosphorus and nitrogen from the stormwater runoff. Empirically, it is found that BMP 

effectiveness decreases sooner, steeper and deeper with increasing sizes of storm events than 

assumed in current computer models. 
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INTRODUCTION 

Weather forecasts are intended to provide their users lead time to prepare for the weather events to 

come. In the case of emergency managers, weather forecasts can give the opportunity to evacuate 

hazardous areas, prepare equipment to be able to respond quickly or to protect or to move valuable 

property before a severe weather event hits. 

 In practice, a number of factors impact to what extent this lead time can actually be utilized. 

First, there are the characteristics of the forecast itself. Forecast errors are inevitable and increase 

with lead time and infrequency of the expected event. Additionally, the forecasts have to be released 

in time and cover the areas that presently are in danger. Frequent changes in the predicted event 

magnitude and timing can inhibit efficient preparation activities. Second, the forecast user has to be 

able of making use of the lead time that the forecast potentially could provide. (S)he needs to be 

capable of understanding the forecast and applying it to the situation and tasks at hand. Additionally, 

the emergency manager has to have access to resources to implement appropriate preparation 

activities. Third, there are social considerations to take into account. Emergency managers possess 

an abundance of local knowledge that forecasts, e.g., from the National Weather Service, are not 

able to capture. While the emergency managers make his/her own assessment of the situation, the 

forecast serves as a standard. This standard informs the emergency managers’ assessment, but gains 

renewed importance in terms of accountability if there is controversy after the event, e.g., the media 

looking for a scapegoat for things that have gone wrong. This dissertation sheds light on these three 

factors.  

1.1. River Forecasts 

Large forecast providers such as the National Weather Service (NWS) have an extensive 

infrastructure in place to collect data, compute forecasts and to distribute them. For example, in the 
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case of river-stage forecasts, a relatively small branch of the NWS, thirteen river forecast centers 

(RFCs) across the nation compute the forecasts and forward them to one of the ~120 Weather 

Offices which then publish them through a variety of channels.  

 The obstacles to utilize the lead time that forecasts provide also apply to river-stage 

forecasting. Most importantly however, the NWS does not routinely publish any information about 

the expected forecast error for their short-term river-stage forecasts (for the next few days and 

hours). While no such case for short-term weather forecasts has been documented in the literature, 

other types of deterministic forecasts have certainly led to dangerous and expensive 

misunderstandings. The most prominent example is Grand Forks, ND. In April 1997, the people of 

that town along the Red River prepared their city for the forecasted river crest without 

understanding the uncertainty inherent in the NWS Outlook (seasonal forecast) on which they relied 

(Pielke, 1999; Morss, 2010). Even though the relative error turned out to be less than the average 

relative error, because of the lack of preparedness, the flood damage amounted to between $1 and 2 

billion with many people blaming the NWS. According to Pielke (1999), the officials as well as the 

public “misused” the forecast by assuming that the forecast would be correct; often claiming that 

they would have made different decisions, if they had been aware of the potential forecast error. 

 In recent years, the research community and NWS have been engaged in a number of 

projects to improve their river-stage forecast products. The following developments are the most 

relevant to this dissertation: First, there has been an effort to verify the forecasts (e.g., Demargne et 

al., 2009; NOAA, 2006). While the hydrological and hydraulic models have been thoroughly 

calibrated and verified for decades, verification of the forecasts themselves was not possible because 

they were not being archived.1 As Welles et al. (2007) demonstrated, this forecast verification is 

                                                 
1 If they were archived at all, they were often saved as maps or graphics which are much more 
difficult to analyze than the underlying text files.  
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highly desirable. They found that forecast in Oklahoma (1993-2002) and along the Missouri River 

(1983-2002) did better than the persistence forecast2 for only one day of lead time for above-flood 

stage water levels and up to three days of lead time for below-flood stage water levels. Additionally, 

they reported that the forecast skill had not improved in the past ten to twenty years, despite various 

updates in the forecasting process (Welles et al., 2007). While verification metrics are a measure of 

uncertainty that would be valuable for the forecast user, i.e., the public, it seems as if the NWS’ 

River Forecast Verification Plan is mainly an internal effort to produce more accurate forecasts 

(NOAA, 2006).  

Second, ensemble forecasting is slowly being implemented, so that the forecast uncertainty 

resulting from the major sources of uncertainty can be communicated to the user. This is done by 

running the forecast models several times with different input values. Together the output of these 

runs can be used as an uncertainty estimate (National Weather Service, 2012). So far, ensemble 

forecasting is only being used for seasonal forecasts in some RFCs with rather poor visualization 

(see figures in Study 3 for illustration). Ensemble forecasting has not been implemented for short-

term weather forecasts yet, but that is planned as part of the implementation of the Advanced 

Hydrologic Prediction Service (NOAA, 2001).  

Third, there have been a limited number of studies to make the forecasts more user-friendly. 

Such efforts include studying which pieces of information should be part of the forecast to facilitate 

decision-making. For example, Verkade and Werner (2011) find based on an hydro-economic 

expected annual damage model that probability forecasts lead to a lower residual flood risk than 

deterministic forecasts. Another effort is formatting forecasts in a way that the inevitable forecast 

                                                 
2 A persistence forecast assumes that the water level is going to stay the same as the water level on 
the day when the forecast is published.  
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uncertainty is better understood. For example, Leedal et al. (2010) proposes methods to visualize the 

uncertainty associated with simulations of river levels in the United Kingdom.  

1.2. Forecasts in Emergency Management 

Studying the use of forecasts in emergency management is difficult, because of a number of reasons. 

No town is like another; different regions are subject to different weather hazards; each state has 

different regulations. Emergencies themselves are difficult to study, because they are usually unique 

in nature and there is often no control group. Additionally, the decision-making process during an 

emergency is usually not recorded, because it takes valuable time away from preventing damage and 

bringing people to safety. Consequently, it is often difficult to determine afterwards what 

consideration led to which decision, and whether that was a good decision. Unsurprisingly, this field 

is still very much subject to research. 

 As outlined above, there is a trend in the industry towards probabilistic forecasts. From an 

engineer’s or scientist’s perspective, those should be better than the deterministic ones, because they 

better describe the “true” weather conditions. But do such technically more sophisticated forecasts 

lead to better decisions?  

Using forecasts for decision-making is a true case of decision-making under uncertainty, 

regardless of whether forecasts are deterministic or probabilistic. People consciously and 

unconsciously cope with this uncertainty in various ways. For example, Morss (2010) finds that 

experience drives expectations and therefore preparations for extreme weather events such as 

floods. If the event deviates from previous ones, people are often caught off-guard (e.g., 

representative, availability, and anchoring heuristics; Tversky, Kahnemann, 1974). The devastating 

flood at Grand Forks, ND, mentioned earlier, is such an example (Pielke, 1999; Morss, 2010).  
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 Including the forecast uncertainty in the published forecast could be a solution to prevent 

misunderstandings that have occurred with deterministic forecasts. Morss et al. (2010) find in a 

survey of the general U.S. public, that most people are aware of the uncertainty in weather forecasts 

and can adequately interpret probabilistic forecasts. Nonetheless, people take action at different 

probability thresholds (Morss et al., 2010). Emergency managers develop methods to cope with such 

uncertainty. For example, they gather many types of information to triangulate their expectations or 

choose products that are less uncertain (Baumgart et al., 2007). But only about 30% of all courses 

that emergency managers take cover weather-related topics, even though just under 80% of all 

emergencies are caused by the weather (Weaver et al., 2014).  

1.3. Overview Dissertation 

 This dissertation adds three studies to the efforts to extract greater value from (river) 

forecasts in emergency management. Two of the studies focus on river forecasting; one study is also 

applicable to other severe weather events. A fourth study on removing pollutants from urban 

stormwater was included to add to the portfolio of analytical skills. 

The purpose of the first study is to better understand the role of (river) forecasts in 

emergency management. It consists of seventeen in-person interviews with emergency managers in 

Pennsylvania, Oklahoma, and Arkansas including questions on training, daily routine, emergency 

operations, forecasts, and forecast uncertainty. Rather than being end-users, emergency managers 

disseminate the forecasts to the fire, police and city departments, industry and the residents who 

then take action. In summary, all of the fifteen emergency managers who used river forecasts were 

well aware of the often substantial forecast uncertainty. For this reason, they rely mostly on radar 

that informs them of precipitation upstream and on real-time gage data to judge the situation. Even 

though they might not fully trust the published NWS forecasts themselves, they tend to disseminate 
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them to the public without adding their interpretations because of a number of concerns. Although 

they hold back their own interpretation of uncertainty, the emergency managers translate the 

forecast to local circumstances, suggest actions to take, and use their local network and reputation to 

make people act. A number of measures are identified without which replacing deterministic with 

probabilistic forecasts is unlikely to improve emergency responses.  

The second study is an empirical extension of the first study. In an online survey, ca. 200 

emergency managers from across the U.S. answered questions about the past and intended forecast 

use, perceived limitations, their attitude towards forecasts and their jobs, social norms and subjective 

numeracy. This study included river floods, flash floods, tornadoes, hurricanes, ice and snow storms 

and heat waves. Work experience turns out to be the best predictor of the extent to which an 

emergency manager relies on forecasts and recorded weather data. Regarding the use of forecasts 

only, the attitude towards the weather information and having received instructions on using 

weather information were significant predictors. Perceived unavailability for the area, insufficient 

information and irregular release times and a preventive mindset tend to decrease the reliance on 

recorded weather data. 

The third study is of a more technical nature. Currently, the NWS publishes their short-term 

river-stage forecasts (for the next few days and hours) without any uncertainty information. With the 

intention to devise a computationally cheap remedy, this study applies quantile regression (QR) to 

river-stage forecasts in order to generate probabilistic forecasts for events, defined by water levels 

exceeding certain thresholds. Earlier implementations of QR used the forecast itself as the only 

independent variable, focused on few stations in the United Kingdom, and hours of lead time 

(Weerts et al., 2011; López et al., 2014). This study extends the method to a larger number of river 

gages in the U.S. American context, i.e., to 82 river gages of North Central River Forecast Center; 
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includes more independent variables and a larger dataset; and studies up to four days of lead time. It 

was found that the model has to be customized for each river gage for extremely high event 

thresholds. For other thresholds and across lead times, a one-size-fits-all model suffices. 

Additionally, the approach was tested for robustness. Forecast quality does not depend on the size 

of the training dataset, but on the year, the river gage, lead time and event threshold that are being 

forecast.  

A fourth study deals with hydrology and uncertainty as well, but it is unrelated to 

forecasting. Instead, the study focuses on methods to remove pollutants from urban stormwater. 

Impervious surfaces, such as roads and parking lots, can increase the amount of runoff and lead to 

more pollution reaching streams, rivers, and lakes. Best Management Practices (BMPs) reduce the 

peak discharge into the storm sewer system and remove pollutants such as sediments, phosphorus 

and nitrogen from the stormwater runoff. Bioretentions, dry and wet ponds, porous pavement, and 

many others collect the runoff and reduce the concentrations of sediments and nutrients with 

varying effectiveness. Empirically, it is found that BMP effectiveness decreases sooner, steeper and 

deeper with increasing runoff volume than assumed in current computer models.  
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STUDY 1  

How can probabilistic short-term river forecasts be designed to be useful 

for emergency management?3 

Abstract 

The National Weather Service (NWS) is developing probabilistic short-term river forecasts (up to 

five days ahead). Little has been done to understand how the reported uncertainties will be used by 

decision makers such as disaster responders. If this is to happen, NWS needs to understand its 

clients. For this study, seventeen emergency managers were interviewed and asked to describe their 

use of river forecasts. Rather than being end-users, emergency managers disseminate the forecasts to 

the fire, police and city departments, industry and the residents who then need to take action.  

All of the fifteen emergency managers who used river forecasts were well aware of the often 

substantial forecast uncertainty. For this reason, they rely mostly on radar that informs them of 

precipitation upstream and on real-time gage data to judge the situation. Even though they might 

not trust NWS forecasts themselves, they disseminate them to the public without adding their 

interpretations of them because of a number of concerns. Although they hold back their own 

interpretation of uncertainty, the emergency managers translate the forecast to local circumstances, 

suggest actions to take, and use their local network and reputation to make people act. A number of 

measures are identified without which publishing forecast uncertainty alone is unlikely to improve 

emergency responses.  

Keywords: National Weather Service, forecasts, river, uncertainty, emergency management 

                                                 
3 A version of this chapter has been accepted by the Bulletin of the American Meteorological Society 

(BAMS) in August 2014.  
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1. Introduction 

The twelve River Forecast Centers (RFCs) of the National Weather Service (NWS) perform a large-

scale, technically-sophisticated effort to publish river forecasts for ~4,000 river gauges in the U.S. 

The National Hydrologic Warning Council (2002) has conservatively estimated that short-term 

weather forecasts (up to five days) reduce the average annual flood loss by $433 million (2000 cost 

levels, excluding saved lives), which is 10% of the actual flood damage. However, four 

characteristics of the system undermine the practical value of these short-term weather forecasts.  

First, because of the data sparseness inherent to flood prediction, above-flood stage errors 

(e.g., root mean squared error) of several feet are not uncommon for short-term weather forecasts 

(Welles et al. 2007, Pielke 1999). This has been the case for decades (Welles et al. 2007). Second, this 

uncertainty is not being communicated by the NWS. The published short-term weather forecasts do 

not include an uncertainty range, an indication of historical average error, or any similar measure of 

uncertainty (Figure 1). Third, it is extremely difficult for the forecast user to estimate the expected 

forecast error themselves. Because of the infrequency of floods, most people cannot draw on 

experience to quantify the errors. Additionally, the uncertainty in river forecasts is complex. The 

expected absolute error (e.g., in feet) increases with forecast length and with water level. Longer 

forecasts are more uncertain. People do not seem to be aware that forecasts predicting high river 

stages – when forecasts are needed most – are subject to more uncertainty than forecasts predicting 

low river stage (Morss & Wahl 2007). Fourth, the RFCs have little contact with the end-users. The 

RFCs rarely receive feedback on how well their products serve their clients’ purposes, because the 

~120 NWS Weather Forecast Offices (WFOs) rather than the RFCs officially publish the forecast.4 

In short, what Parker & Handmer observed in 1998 still seems true today: “Prediction agencies have 

                                                 
4 The RFCs’ “guidance” product (rather than the official forecasts by the WFOs) is also published 
on the RFCs’ websites. 
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often simply ‘assumed’ that their forecasts are conveyed to those at risk, that local needs are met and 

that appropriate adaptive behavior ensues.” 

  

Figure 1: Example of a National Weather Service river stage forecast. Forecast for the Monogahela 

River at Elizabeth Lock and Dam, PA on 12/05/2013. The blue, thick line stands for the observed 

river stage height in the past few days. The purple dotted line represents the river forecast in six-

hour intervals for the next few days. Action, minor flood and moderate flood stage indicate the 

different degrees of calamity. The forecast is also available in table and other formats and over the 

radio. In all versions, any measure of uncertainty or forecasting errors is omitted. RFCs have started 

or are planning to include such information. In this case, the river crested on 12/7 at 22.30pm at 

17.98 feet. Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=pbz&gage=elzp1  

It is likely that the above issues lead to a reduced usefulness and consequently reduced use of 

river forecasts. Deterministic forecasts have certainly led to dangerous and expensive 

misunderstandings. In April 1997, people in Grand Forks ND prepared their city for the forecasted 

river crest without understanding the uncertainty inherent in the NWS Outlook (seasonal forecast) 

on which they had relied. Even though the relative error turned out to be less than the average 

relative error, because of the lack of preparedness, the flood damage amounted to between $1 and 2 

billion with many people blaming the NWS. According to Pielke (1999), the officials as well as the 
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public “misused” the forecast by assuming that the forecast would be correct; often claiming that 

they would have made different decisions if they had been aware of the potential forecast error.  

1.1. Objectives 

Over the past 15 years, the NWS recognized this problem and is developing probabilistic short-term 

river forecasts (e.g., NWS 2011). Probabilistic seasonal river forecasts, called “outlooks,” are already 

being communicated, while short-term river forecasts are still in development. The substantial body 

of literature on the communication of uncertainty suggests that this will not be an easy endeavor. 

This article adds to this effort by examining what role river forecasts and their inherent uncertainty 

play in the work of one group of NWS clients, emergency managers5(EMs), who use short-term 

river forecasts to prepare their jurisdiction for an approaching flood. Based on in-depth interviews 

with EMs, this article investigates how short-term river forecasts that include uncertainty 

information (such as probabilistic forecasts) would serve EMs and what NWS can additionally do to 

make this innovation a success. The first part of the article describes the emergency managers and 

their profession. The second part investigates whether EMs use river forecasts, whether they 

understand the forecast uncertainty and how they cope with that uncertainty. In the third part, the 

role that EMs play in the dissemination of forecast information to the actual decision-makers, e.g., 

house owners and companies, is outlined. 

1.2. Sample group 

After contacting 45 emergency managers (EMs), seventeen in-person interviews with EMs in towns 

along rivers in Pennsylvania (7), Oklahoma (7) and Arkansas (3) were conducted and their 

recordings transcribed. The interviews were conversations averaging 50 minutes that were semi-

                                                 
5 Sometimes also called “emergency management coordinator”, “emergency management director” 
or similar. 
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structured using prepared questions on training, daily routine, emergency operations, forecasts and 

forecast uncertainty. The interviews give an impression of the reality on the ground, but are not 

representative of the entire U.S. The experiences of EMs in jurisdictions along the Mississippi, 

where floods can be anticipated weeks in advance, are likely to be very different from those 

presented here. Quotes in italics from the interviews will illustrate the observations and arguments 

made in this article. Each section ends with a recommendation printed in bold.  

Conservatively estimated, the interviewed EMs had an average work experience of twelve 

years. Four of them were not paid for their efforts as EM, seven were full-time emergency managers. 

For the remaining six, emergency management was an extra hat that they wear as part of their full-

time profession. Three of the seventeen EMs were female; fifteen were responsible for a town or 

borough and two for a county. 

Sixteen out of seventeen interviewed EMs knew the NWS website and how to access the 

river forecast through various channels. Fifteen interviewees made use of the forecast, only two had 

trouble describing it.  

2. What do emergency managers do? Who are they? 

“One thing to understand about emergency management, it is more an idea than it is a fact. If you tell me you 

are a fire fighter out in California, I generally know what you do. If you say, I am a cop in Arizona, I 

generally know what you do. If you tell me, I’m emergency management from Iowa, I know you probably have 

something with communications; you definitely have something with plans. But what else you do…” 

Each state makes their own requirements for emergency managers. Each political 

subdivision of the Commonwealth of Pennsylvania and in the state of Arkansas (i.e., counties and 

municipal governments) and each incorporated jurisdiction in Oklahoma is required to have an 

emergency management program (Pennsylvania’s Emergency Management Services Code, 35 Pa. C. 
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S. Section 7501; Ark. Code 12-75-118; Oklahoma Statues – Title 63 Public Health and Safety Section 

63-683.11A). To get a feel for numbers, there are 67 counties and 2,563 municipalities in 

Pennsylvania.6 Oklahoma’s Department of Emergency Management lists 285 emergency managers 

for 76 counties.7 Arkansas consists of 75 counties with ~500 municipalities.8 In practice, an EM’s 

job description does not only vary widely from state to state but also from municipality to 

municipality. 

A Pennsylvanian EM succinctly summed the three core features of an emergency 

management program: 

“There has to be a plan, there has to be a person, and there has to be a place.” 

2.1. Person 

2.1.1. Qualifications 

 Every state draws up its own qualification system, so that it is hard to judge if Pennsylvania, 

Oklahoma and Arkansas are representative. The only overview of which I am aware dates from 1990 

(International Association of Emergency Management, 1990), long before recent agenda forming 

events like 9-11 and Hurricane Katrina had happened.9 However, there are certainly states that 

require EMs to have fewer qualifications than the states described below. Alabama, for example, 

                                                 
6 E.g., Pennsylvania Department of Community & Economic Development. Local Governments Online. 
URL [accessed 02/11/2014]: http://www.newpa.com/get-local-gov-support/local-governments-
online 
7 Oklahoma Department of Emergency Management. Oklahoma Emergency Management Contacts. URL 
[accessed 02/11/2014]: 
http://www.ok.gov/OEM/Publications_&_Forms/Oklahoma_Emergency_Management_Contacts
/index.html 
8 County and Municipal Information & Services. URL [accessed 02/11/2014]: 
http://local.arkansas.gov/index.php 
9 In 1990, the International Association of Emergency Managers (IAEM) concluded among other 
things that 39 U.S. states had “no state mandated minimum qualification requirements for local 
emergency management coordinators” (IAEM 1990). While this is not representative anymore, it 
does shed a light on the circumstances under which some of today’s traditionally long-serving EMs 
have been appointed to their jobs. 
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does not require EMs to attend any classes or training, but puts a financial incentive on following a 

very thorough certification program.  

In the studied three states, aspirant emergency managers do not need any prior experience in 

the field. To qualify for the job in Pennsylvania, the “coordinator [of emergency management] shall 

be professionally competent and capable of planning, effecting coordination among operating 

agencies of government and controlling coordinated operations by local emergency preparedness 

forces” (35 Pa. C.S. §7502d).  In Oklahoma, an “emergency management director” has to hold U.S. 

citizenship, a high school diploma or equivalent, a valid Oklahoma driver license, and a social 

security number. Additionally, he/she cannot have been convicted of a felony in Oklahoma (63 O.S. 

§63-683.11B). Arkansas asks for no prerequisites but requires like all three states that a public safety 

officer has not engaged in subversive acts against the U.S., did not advocate forceful change of the 

constitutional form of the federal or state government, and did not try to overthrow the government 

(Ark. Code 12-75-126). In all three states, EMs have to complete between 13 (Oklahoma) and 25 

(Pennsylvania) FEMA courses within one to three years of their appointment. Additionally, they 

have to regularly attend conferences or workshops.10 

                                                 
10 In Pennsylvania, EMs are required to obtain “Basic Certification” within one year and “Advanced 
Certification” within three years of their appointment (35 Pa. C.S. §7502e). The Basic Certification 
can be obtained by completing a prescribed set of classes with the Federal Emergency Management 
Association (FEMA) and the Pennsylvania Emergency Management Association (PEMA), and 
attending three quarterly training sessions annually. The Advanced Certification mainly consists of 
following an extra set courses that brings the total number of courses to 21 (local EM) and 25 
(county EM) respectively (PEMA Directive D2011-02).  In Oklahoma, the EM has to complete 
basic emergency management training within a year of appointment. It consists of four courses 
regarding the National Incident Management System (NIMS) established by U.S. Department of 
Homeland Security and seven FEMA Independent-Study courses (Oklahoma Department of 
Emergency Management 2009). In Arkansas, local “emergency managers” need to complete three 
FEMA courses within three months of their appointment, another three within six months, an 
additional eleven within twelve months, four NIMS courses within 24 months and an additional five 
elective FEMA courses within 36 months. Annually, they have to either attend the Arkansas 
Emergency Management Conference or Mid-Year Workshop (Arkansas Department of Emergency 
Management 2014). 
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  Like most states, Pennsylvania, Arkansas and Oklahoma do not specify whether the EM has 

to be paid or full-time. There is a trend to professional full-time emergency management because 

more colleges are now offering emergency management degrees. This trend is partly motivated by 

FEMA’s Emergency Management Higher Education Program established in 1994. It seems to be 

the perception of the interviewed EMs that an increasing number of full-time emergency managers 

is also caused by the influx of federal money since the terrorist attacks in 2001 and the advent of the 

Department of Homeland Security (e.g., Federal Preparedness (Non-Disaster) Grants). Traditionally, 

a (retiring) police or fire chief has been named the local emergency coordinator. Subsequently, these 

professions have had a considerable influence on emergency management. In our sample, seven 

EMs had a background as fire fighters, policemen or in EMS. The others came from wide variety of 

professions: librarian, coal miner, oil worker, veterinarian, military, industrial safety, banker. Three 

EMs had a college degree in emergency management.  

2.1.2. Mindset  

The EMs’ mindsets are as similar as their backgrounds are different. Especially in small 

towns, EMs are local people, deeply rooted in their community who stay on the job for decades. 

The following quotes illustrate both points: 

“Because my city is in jeopardy, my citizens are in jeopardy. And yes, I look at them as mine. … These are 

the citizens I go to church with … and I see in WalMart.” 

“The adrenaline thing is a big deal, there is a lot of influence from police and fire. …  It’s people that care. 

[EMs] are a caring group of people that are involved in this… They want to help people and they want to 

help you. They want me to succeed.” 
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2.2. Plan and other tasks 

The only task that all EMs have in common is that they write and maintain emergency operation 

plans (35 Pa. C.S. §7503; 63 O.S. §63-683.11B; Ark. Code 12-75-118). Additionally, they take care of 

the communication between the various emergency services (fire, police, EMS etc.), city officials and 

whoever else is involved in emergency management in their jurisdiction. Beyond these shared 

characteristics, the EMs’ task is to do everything that “does not fit nicely into the fire department or EMS.” 

During disasters, EMs mainly coordinate and improvise: 

“You know, if the police comes to the scene they bring guns, firemen bring fire trucks, the emergency manager 

brings a phonebook.” 

“You need to get over there in a boat … I don’t have a boat, but I will find a boat.” 

2.3. Place and other resources 

EMs in Pennsylvania are required (35 Pa. C.S. §7503) and EMs in Arkansas are authorized (Ark. 

Code 12-75-118) to have a physical space, the Emergency Operations Center or Public Safety 

Communications Center, where they can gather anybody who is involved in an emergency 

operation. Other than that, their resources vary wildly. On the one end, one interviewed EM just 

had his phone as his only resource and annually put in $2,000 of his own money. On the other end, 

an EM a few miles away had his own fortified office, staff, jeeps, trailers and boats.  

3. How does the inherent uncertainty in river forecasts affect their use by 
emergency managers? 

3.1. Uncertainty in Forecasts 

The interviewed EMs were very well aware of the uncertainty in river forecasts. Through the daily 

use of rain and temperature forecasts, they have often experienced the limits of weather forecasts in 

general (comparable to findings for the general public: Morss et al. 2010a, Morss et al. 2008). EMs 
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with flood experience also encountered different forms and degrees of uncertainty in river forecasts 

first-hand as the following quotes show: 

“The river forecasts are unpredictable. … Sometimes they are close, sometimes they are way off.” 

- Underprediction 

 “During the 2007 flood, their first forecast was 19 feet. We went 10 feet above that…” 

“There have been a couple of times, when I called [NWS] and said, ‘My river is on flood stage and I don’t 

see nothing on the website about it.’” 

- Overprediction 

“They usually overpredict, they usually predict it to be higher than it ever reaches.” 

As the next few quotes indicate, the uncommunicated uncertainty in river forecasts severely 

limits their value, i.e., providing lead time and informing what crest level to prepare for. All of the 

interviewed EMs stated that they normally start taking substantial measures only when they (or their 

monitoring crewg) see the water rising with their own eyes.  

 “…until the water actually comes and you know which way it’s going to go and what floods, you cannot take 

specific measures.” 

“… with the topography of the area, with the hills and valleys, lead time really… you cannot rely on [the 

lead time].” 

In practice, the interviewed EMs make very little use of the lead time that short-term 

weather forecasts provide. This is not surprising given that interviewed EMs only had a very 

superficial understanding of the weather-related products and forecasts. Participants of the OKFirst 

program11 in Oklahoma were a notable exception. Through this program, EMs receive training and 

                                                 
11 Brief Overview from the OK-First website: “OK-First is an outreach project of the Oklahoma 
Climatological Survey (OCS) and Oklahoma Mesonet. It provides training and real-time weather 
data to public safety officials for use in weather-impacted situations. OK-First training and data are 
provided at no cost to qualified applicants in Oklahoma. As of Spring 2012, more than 500 trained 
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real-time weather data for weather-related decisions from the Oklahoma Climatological Survey and 

Oklahoma Mesonet. EMs in other states mostly rely on the several hundred courses offered by 

FEMA`s training facility, the Emergency Management Institute (EMI). Since the National Weather 

Service Community Preparedness Program became part of FEMA at its creation in 1979, the NWS 

seems to be involved with the courses at EMI only by exception. The 2014 course catalog lists only 

one course that is co-taught by NWS staff (FEMA 2014).12 

Of the EMI courses offered in 2014, ten have the words “forecast,” “National Weather 

Service” or “weather” in their course description13 (FEMA 2014). Another three focus on flood 

response (rather than floodplain management and flood insurance). Of those thirteen, only 

Pennsylvania requires all EMs to have completed course “IS-0271 Anticipating Hazardous Weather 

and Community Risk” within three years of their appointment. County EMs additionally have to 

take “G-271 Hazardous Weather and Flooding Preparedness” (Oklahoma Department of 

Emergency Management 2009). Arkansas Department of Emergency Management (ADEM) does 

not require any of those thirteen courses, but names three as electives for the Advanced Professional 

                                                                                                                                                             
public safety officials in and around Oklahoma participate in the program. OK-First operates with 
substantial funding support from the Oklahoma Department of Public Safety.” URL [accessed 
January 22nd, 2014]: http://okfirst.mesonet.org/about.php   
12 Only EMI course in the 2014 course catalog that is jointly taught by Emergency Management and 
NWS staff (FEMA 2014): G0365 WEM: Partnerships for Creating and Maintaining Spotter Groups 
13

 EMI courses in the 2014 course catalog that have the words “National Weather Service”, “forecast” or “weather” 

in their course description or that focus on flood response (cursive font) (FEMA 2014): 

- E0102 Science of Disaster 

- IS-0247.a Integrated Public Alert and Warning System 

- IS-0271.a Anticipating Hazardous Weather and Community Risk, 2
nd

 Edition 

- IS-323 Earthquake Mitigation Basics 

- IS-0324.a Community Hurricane Preparedness 

- G0270.3 Expedient Flood Training 

- G0271 Hazardous Weather and Flood Preparedness 

- G0272/L0098 Warning Coordination 

- G0361 Flood Fight Operations 

- G0363/L3011 Hurricane Readiness for Coastal Communities 

- G0365 WEM: Partnerships for Creating and Maintaining Spotter Groups 

- L0320/L0324 Hurricane Preparedness for Decision-Makers 

V0007 Virtual Tabletop Exercise: Flood 
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Series and the Emergency Manager Certification Program that it recommends EMs to follow 

(ADEM 2014). None of the thirteen courses appears in Oklahoma’s basic training plan, but many 

EMs there voluntarily participate in OKFirst. Asked about that program, they very much 

appreciated being taught not only how to read but also how to interpret weather radar so that they 

could decide whether it was justified to evacuate a ballgame; something on which they had not 

received instructions before the advent of OKFirst.  

In the interviews, especially fire and policemen had trouble coming up with ideas how to 

make use of lead time, likely because they are used to dealing with disasters that occur with little or 

no warning: 

“I’m not sure if [more lead time] would change much to be truthful.”  

“People that did not know what to do died [in that flood] …. So the biggest part of these things is [by the 

time] the fire guys get to your house, you may be dead.” 

While state emergency management associations (EMAs) need to ensure that every 

EM receives basic instruction in the use of forecasts in emergency response, the NWS needs 

to ascertain that the uncertainty in deterministic and probabilistic forecasts are covered in 

an applied “boots-on-the-ground” manner in the relevant courses, e.g., by developing 

course material or co-teaching courses.  

3.2. Coping with Uncertainty in Forecasts 

Even though they are not explicitly aware of it, the interviewed EMs use a number of strategies to 

cope with the uncertainty in river forecasts, which are described in the following. 

3.2.1. Extensive information collection 

The interviewed EMs appreciated any kind of information that they can get about approaching 

weather events such as floods. Especially in small towns, it seems as if many of the EMs soak in all 
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of the information they can possibly get – even if it does not directly relate to the decisions at hand 

– to get an idea what is going on in their community. In their mind, the weather situation is an 

integral part of the state that their community is in and cannot be separated from any other on-going 

activities. For example, one EM appreciated being notified that airplanes on a nearby airport were 

being de-iced, even though the decision at hand was whether the local Santa Claus-party should take 

place given the winter weather. This reflects the attitude that EMs consider their job to be caring for 

a community as a whole rather than just ensuring safety. While not all gathered information is 

relevant, the value of gathering extra information should not be underestimated, Morss (2010b) 

observes that the most important decisions in successful flood fights were decisions to gather more 

information, e.g., using monitoring crews.  

EMs retrieve information from a wide variety of sources: NWS publications, personnel, local 

media, and the personal network. One EM mentioned the importance of his personal network to 

find out what is happening: 

“…  I have an uncle who lives 30 miles west. He will call or somebody else’s brother-in-law lives up north 

60 miles and he will call “We have 6 inches of rain.” … So normally, through the channels of families and 

business … the information trickles in from one way or the other. “ 

Exploiting personal networks for information is not exclusive to EMs; other NWS clients employ 

the same strategy. For example, Rayner et al. (2005) tells of a water supply operations manager who 

relies on a brother-in-law 60 miles away for information about weather conditions.  

The NWS and state EMAs need to (jointly) offer hotlines or mentoring networks 

where EMs can discuss the correct interpretation of forecast uncertainty. If EMs cannot reach 

an expert when they face uncertainty (e.g., because of jammed phone lines), they are likely to satisfy 

their need for information through more ad hoc sources. In the interviews, nine out of seventeen 
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EMs explicitly mentioned how much they appreciated having a close relationship with NWS 

personnel: 

“Because we have that relationship I am able to pick up the phone and call them. And they won’t talk down 

to me. … I make them look good, they make me look good; it is a partnership. And it has been wonderful 

when we can work together.” 

3.2. Making their own estimates 

Using their local knowledge and the gathered information, EMs make their own interpretation of 

the information they have collected. One EM describes it as follows: 

 “I would have … to see what is going on on the radar and see where the rain is falling to say… I give 

[NWS] 75% probability that [the forecasted water level]is going to happen.” 

Although the NWS forecast is only one piece in the EMs’ information puzzle, it is a very 

important piece because it is the official interpretation of the situation at hand. It serves the EMs as 

a standard to build on and with which to compare their own interpretations. Nonetheless, especially 

the less experienced EMs refrain from making uncertainty estimates, effectively ignoring its 

existence by considering the forecast to be perfectly correct: 

“But try to analyze [the forecast]… that is not what our job is.” 

When floods occur, EMs gain experience to cope with uncertainty by trial-and-error, incurring 

potentially unnecessary damages, as the following quote illustrates: 

“What I wasn’t doing, and that is kind of my own fault, thinking, yeah, it is pouring rain here, but what is 

it doing up above?” 

Even though the EMs are aware of the uncertainty in forecasts and can explain its causes, 

none of the interviewed EMs – not even those with flood experience –  was able or willing to 

quantify a representative forecast error: 
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“I couldn’t tell you. … It does vary a little bit. But 1 to 5 feet difference, I couldn’t tell you.” 

To prevent EMs from ignoring uncertainty, the deterministic forecasts need some 

uncertainty information such as the historical forecast error or at least a prominent note that 

uncertainties exist. To facilitate EMs in making their own estimate, both deterministic and 

probabilistic forecasts in any format need a description of the main sources of uncertainty 

(e.g., temperature development with regard to snow melt, dam gate operations or expected 

rainfall upstream). This way, it will be easier for EMs to combine the forecast information 

with the other information that they have collected. 

3.2.2 Using observed conditions rather than forecasts 

As another coping mechanism, EMs try to use the weather information that has the least 

uncertainty, i.e., measured data. Rather than the river forecast, EMs use a combination of observed 

stage heights and weather radar. If the river water levels are high or rising and the radar indicates 

that more rain is to be expected upstream, they know that they are likely to experience problems 

with the river. Further, the river forecast is updated too irregularly, and the forecasted crests levels 

vary too much to base decisions on. Additionally, its uncertainty is less intuitive than that of weather 

radar. The precipitation observed upstream is only published a day later and therefore those data are 

much less useful than the weather radar. The quotes below illustrate the discussion above. 

 “When there is a flood forecast, certainly we are on alert. But I spend as much time driving down to the 

creek as I do listen to the forecast.” 

“The forecast can change normally every hour. Sometimes during an event, it may change every half hour.” 

“The NSW puts out their temperature forecast at 9.45am and 4.45pm. … The river forecast people put up 

forecasts whenever they want to. There is no set time. So I tell my [town’s] people … that we are expecting 

flooding. ‘Stay tuned to the NOAA weather radio. …  I don’t have the latest information but you can stay 
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updated, because I might be gone for an hour or two on a delivery and they put out a new forecast and I am 

not aware of it.’” 

In short, because of their inherent uncertainty, river forecasts are in a poor competitive 

position when compared with other NWS products. This finding is consistent with Rayner et al’s 

(2005) observation that water resource managers tend to rely heavily on observed information from 

monitoring groups while ignoring model results.  

Before starting to publish probabilistic short-term river forecasts, NWS needs to 

consider which purpose those forecasts serve today and how that is likely to change once 

they introduce uncertainty information. It seems possible that EMs would still prefer using 

weather radar and observed river stage heights to plan their emergency operations, because 

communicating uncertainty does not reduce it.  For example, offering a description of the situation 

(e.g., how much more rain would have to fall upstream to cause serious flooding) and the sources of 

uncertainty would make the forecast more salient for EMs who make their own estimates of the 

situation.  

3.2.3 Broader Context 

Zooming out, the uncertainty in weather and river forecast is not the uncertainty that EMs are 

most concerned about. Cascading events such as clogged stormwater drainages (e.g., by a 

skateboard), medical needs of evacuees, hazmat spills, river traffic such as recreational boating and 

loaded barges, drinking water and utility outages, and snakes cause EMs the worst surprises: 

“Usually, what is unexpected is when the infrastructure fails or collapses.” 

 “It sounds stupid, but [lack of air conditioning] is a thing that can make a small emergency a big 

emergency.” 

Morss (2010b) describes a particularly turbulent situation: “In Fort Collins, in the trailer park area 

alone, emergency responders had to handle a water rise of 1.7 m (5 ft) in 3 min, three trailers on fire, 
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162 people in imminent danger requiring rescue, a building explosion, and derailment of a train that 

included a car carrying chlorine gas, with no advance notice.”  

4. What do the emergency managers do with the forecasts? 

It is a mistake to think that EMs are the decision-makers and, therefore, end-users of the weather 

and river forecasts. Depending on the jurisdiction, roads are closed by the Public Works department; 

fire or police chiefs coordinate rescuing activities; the mayor signs off evacuations; etc. Citizens are 

responsible for their own property; even evacuation is usually optional for the individual. Ultimately, 

every person, including operators and owners of industries and businesses, are responsible for their 

own safety.  

 “I call them [at the power plant], we let them listen to the briefing, and they make their own decision based 

on the information they are getting.”  

 “Would I tell everybody to evacuate? No, I would not. I would say, here is the information, and it would 

probably come across very not nice. … Make your own [#!°&%] decision.“ 

Rather than making the decisions, the EMs act as an invaluable link in the dissemination of the 

NWS forecasts. Their three main tasks are to alert decision-makers to the situation, to interpret the 

forecast for them and to motivate them to take action. Each will be discussed in detail in the 

following.  

4.1. Alerting People 

First, EMs constantly keep an eye on the weather situation at all times and alert decision-makers (i.e., 

department heads, police and fire chiefs, city officials, and the citizens) if they think a critical 

situation is approaching. The following quotes describe how much EMs add to the dissemination of 

forecast information: 
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“We would be the receptor of … information that comes in … We bring in all the decision makers, city 

manager, public works director, fire, police and have them coordinate and get them working as a team.” 

“…  I will make sure it is in the newspaper. I will make sure it is on the radio. I will make sure that TV 

can tell people. …” 

“We rely on every type of social media you can. Peer notification is a major player.” 

“We try to use the radio, we are starting to use a little bit of social media, it is a real struggle getting that 

through the City, to agree to social media, but it is going to be effective.” 

To alert every person at risk, EMs have to navigate various obstacles, which the NWS could not 

overcome. This underlines the importance of the EMs as messengers of the NWS. 

- Long chain of communication: 

“We go to [our] boss, who is the public safety director and we say, “This is the information; what do you 

want us to do?” [The public safety director] is the one that is final, for anything that is major … because he 

goes and talks to the mayor.” 

- Unsuccessful communication to key decision makers: 

 “All you could see was a window of the attic, where these people had fled to and some were on the roof. 100 

some people. One of them was our mayor. “ 

- Difficulty reaching minorities:  

“ 25% of my population would be considered Spanish-speaking. And the radio and TV stations are now 

carrying both Mexican-speaking channels. But they don’t give local weather. … I have no circulated Spanish 

paper to put the information in.” 

Given these obstacles, the NWS needs to make sure that their forecast is formatted in 

such a way as to assure that it does not get diminished, distorted or becomes straight-out 

wrong as it travels through a variety of channels from the forecasting center, along the Weather 

Office, through the emergency manager to the decision-maker.  
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Particularly, the formatting of forecasts should not only ensure that users understand 

them correctly, but also that they disseminate them correctly as well. This is especially salient 

because ideally EMs should convey the risk to the public in non-technical terms (Perry & Nigg 1985). 

Consequently, EMs do not only have to understand the rather technical forecast and its uncertainty, 

but also translate it into non-technical language. This will be especially difficult once uncertainty 

information is included in the forecasts. 

When confronted with uncertainty in probabilistic forecasts, EMs are likely to pass the 

uncertainty information on to the public. Several studies have shown that unless it is done well 

uncertainty and complexity can be a major obstacle for effective risk communication (e.g., Covello 

& Sandman 2001). It is therefore crucial that EMs learn in FEMA courses such as “G-272 

Warning Coordination” and “G-289 Public Information Officer Awareness” how to 

communicate uncertainty to the general public.  

4.2.Interpreting the Forecast 

Second, EMs add local information to the forecasts that the NWS cannot provide. EMs often know 

the town well enough to translate river stage heights into which places will flood. Additionally, many 

EMs have to interpolate between river gages because there is no gage close to their jurisdiction. The 

quotes below show two examples of assessing the situation.  

“When the foam is on the middle of the river, it is coming up … If I see big trees coming down, I know it is 

a lot water. If I don’t see big trees, well, it is not a lot water.” 

“[If River A] isn’t up and the [River B] is down … and the gates at the] Lake [are] closed, then I think it 

is going to go away. Or I tell [the public], see [River A] is continuing to flood, it crests up there, 12 hours 

later it crests down here. Same for [River B] … If I get both crests here at the same time, I have a problem. 

If this one is gone before this one gets there, then there is not a lot of current.” 
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As described above, based on additional information and experience, EMs will make an intuitive 

assessment if the river forecast is likely to be correct. While the interviewed EMs share their 

assessment of the situation and their concerns regarding the official forecast with the other people in 

the emergency operations center, they will only repeat the official, published forecast information to 

the citizens. The following quotes demonstrate these two types of dissemination.  

- Communication to people in the emergency operations center 

“So I put ... all together and then I have another briefing [for my staff]. ‘Guys, this is the information I have: 

It appears as if it is going to come up another couple of feet. But it might not.’ That is a guessing game for 

floods.” 

“Last thing that you want is that your boss, the city manager, is being caught off guard. … And so it is like 

if I know this and I give it to you, then you know it, too. So it is accountability.” 

- Communication to citizens and businesses 

“Whatever they [at NWS] tell me, I take what they say and act accordingly. I don’t take a chance of saying 

maybe it’s wrong. I can’t do that.” 

“If I start putting out my own forecasts, if I start telling people what I think… and then I’m wrong. And 

I… is the city responsible or liable?” 

“Do you tell them, ‘The forecast is 19 feet, but in the past it’s been 10 feet above that?’” – 

“I’m not going to. No. … Even though I know. … The less I say, the better off I am, because the media 

will come to haunt me.” 

There are three possible explanations as to why EMs are hesitant to share their assessment of 

the situation with the public: 1) They do not want to risk liability issues for themselves or their 

employer; 2) they fear that they will be held accountable, for example by the media or their 

superiors; or 3) they might not feel sufficiently confident enough about their judgment.  



 

 
31 

 

The EM’s reasoning seems to be that, if the EMs only pass on the official NWS information, 

then the citizens and businesses will ultimately be responsible. However, if the EM interprets the 

forecast (i.e., assesses its uncertainties) and people act accordingly, the EM feels responsible for 

some or all of the damage. Consistently, it has been claimed that the NWS simply provides the users 

with what they want: a point estimate without any information of uncertainty (Morss & Wahl 2007) 

that – at least superficially – frees the decision-maker of the uncertainty inherent in the forecast.  

When asked, most EMs did not know what the legal situation exactly was, but as the quotes 

above illustrate, they were worried about it. It seems unlikely but not impossible that EMs or their 

employers could be held liable for voicing interpretations of NWS forecasts in public. Describing 

lawsuits against weather forecasters, Klein and Pielke (2002a) explain that the Federal Tort Claim 

Act (FTCA) protects the federal government against such claims, because forecasting falls under the 

discretionary function exception.14 Most states have a similar immunity statue (Swanson 2000). 

Discussing private sector forecasts, Klein and Pielke (2002b) cannot find any published court 

decisions where a weather forecaster was held liable for publishing inaccurate forecasts. Based on 

court decision in other fields, Klein and Pielke (2002b) conclude that forecasters are unlikely to be 

held liable, but that “predictions containing false statements of fact that do not have a reasonable 

basis and that were made with an intent to deceive, manipulate, or defraud, or with reckless 

indifference, will result in liability”. Swanson (2000) writes that “in virtually most statues granting 

immunity, immunity is not available if the death, injury, and damages are the result of willful 

misconduct, gross negligence, wanton disregard, or bad faith on the part of the actor.” 

                                                 
14 To establish if this exception applies, the U.S. Supreme Court’s decision in U.S. v. Gaubert 
established a two-part test in 1991. According to Klein and Pielke (2002a): “The first part examines 
whether the challenged conduct involves an element of judgment or choice. If so, the second part of 
the test examines whether the judgment is the type meant to be shielded by the discretionary 
function exception which depends on whether the challenged conduct is susceptible to policy 
analysis.” 
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The authors could only find one lawsuit where a county emergency management was sued in 

connection with weather forecasts. In 1989, 30 students were injured or killed when a wall at an 

elementary school collapsed because of a tornado or strong winds. The relatives of the deceased 

sued among others the county for failing to warn the school, even though NWS had published a 

tornado watch (not warning). In 1992, the Appellate Division of the Supreme Court of the State of 

New York ruled in Litchhult v. Reiss15 that the county was not liable because “the County's plan in this 

respect falls squarely within the definition of a discretionary act because it requires an analysis of a 

situation and a decision about whether notification is warranted. …  The County had to exercise its 

discretion in determining whether evacuation or other extreme measures would be taken in a similar 

manner as if a tornado warning had been issued.”  

Thus, the case history does not give the EMs much reason to worry about liability. However, 

Klein and Pielke (2002b) warn that there is a large gray area in cases when “the forecast may have 

been made in good faith, [but] it strayed from established professional standards” that define 

reasonable care. As long as professional standards regarding dissemination of weather 

forecasts have not been defined for EMs, they will remain reluctant to voice their own 

assessment of the situation in public. Additionally, it is important that the NWS and FEMA 

together evaluate the legal aspects of using forecasts. Most importantly, EMs need to be 

informed regarding their legal situation to reduce their current concerns.16 

EMs and NWS would benefit if NWS published uncertainty information as part of the 

forecast.  Not only would that decrease the (already low) probability of liability claims against NWS. 

                                                 
15 Case Citation: Lichult v. Reiss 183 A.D.2d 1067 (N.Y. App Div. 1992). URL: 
http://scholar.google.com/scholar_case?case=9093875182234136223&q=weather+%22emergency
+manager%22&hl=en&as_sdt=6,39 (Accessed 03/04/2014) 
16 According to Nicholson (2006), the liability issues tend to be neglected in emergency management. 
Regulations differ between jurisdictions and type of employment (professional or volunteer). The 
legal background gets little attention in the education of EMs (Nicholson 2006), contributing to their 
risk-averse behavior (i.e., assuming the forecasts are correct at all times) in decision-making. 
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If uncertainty information was published by a federal authority such as NWS, EMs would feel more 

confident in a legal sense to communicate the uncertainty to the decision-makers, such as home-

owners.  

4.3.Motivating People to Take Action 

Third, the EMs motivate people to take action. Even though EMs might hold back their own 

interpretation of the situation in public, the EMs do try to suggest actions to the public. Indirectly 

they assist people to cope with uncertainty this way: 

 “We may make phone calls to certain hospitals and ball parks and things like that. ‘This is the time you 

probably need to pull people off the field’; things like that.”  

False positives – a consequence of uncertainty – are a major reason why EMs often have a hard 

time waking people from their lethargy:  

“They have heard [a severe weather warning] so much, that it doesn’t really… they are expecting me as a 

government official to take them by the hand and take them to the cellar when they need to go to the cellar.” 

In this context, it is most important that EMs enjoy authority, especially in closely-knit 

communities. Through their profession and mindset, they often have a strong and dense personal 

network. In tornado alley, the EMs and the communities have been through many critical situations 

together so that there is a high degree of respect for the EMs. The following quotes illustrate how 

EMs use their reputation to make people move.  

 “I just call. ‘Hey, we are going to flash flood.’ … That is all I have to say to them. That is called the 

personal touch. “  

“What I normally tell them is, … ‘I want to get a good look of you before I leave, because later on when I 

am called to identify you, I want to know who you are.’ And most times they leave when you tell them that.” 



 

 
34 

 

Through their connectedness to the people exposed to flooding, the EMs have the ability to 

prevent decision makers to become paralyzed when faced with uncertainty.  

4.4. Summary 

The three tasks EMs perform (alerting, interpreting and motivating) add substantial value to the 

river forecast produced by the NWS. Particularly, EMs already and with some additional measures 

could even more facilitate decision makers in coping with uncertainty. This article points to many 

ways in which NWS can assist their clients to make the most out of their river forecasts, particularly 

once they include uncertainty information. Most importantly, NWS and FEMA would both 

benefit from integrating the valuable expertise of EMs in forecast dissemination. It would 

increase the impact of the forecasts and provide emergency responses with better 

information.  

5. Conclusions 

One academic commented somewhat indignantly on our findings that emergency managers seemed 

to be very unprofessional. Yes, they are. In small-town America, the EMs are often volunteers. 

Indeed, emergency management is not the main profession of most EMs. Certainly, for all of them 

interpreting weather information is only one of innumerous tasks. Many emergencies are not even 

weather-related. But EMs are experts of the local circumstances and in a position to add great value 

to the NWS products before they reach the decision makers. NWS could reap substantial benefits 

from getting to know EMs better.  

This study clearly shows that NWS is taking the right steps by planning to include uncertainty 

information in short-term river forecasts. Without it, decision-makers are unlikely to make decision-

makers aware of uncertainties, which has led to insufficient emergency responses in the past. But as 

it is already the case with deterministic forecasts, simply providing (uncertainty) information to 
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decision-makers does not automatically result in adequate decisions in emergency management. 

There are a number of things NWS in cooperation with FEMA and state EMAs can do to 

significantly increase the utility of its current and future river forecast products: 

- Consider what impact publishing uncertainty information will have on the function of a river 

forecast in an emergency operation. As of today, river forecasts mainly play a role for 

accountability but are not really used to plan emergency operations; largely because of 

potentially large, unpredictable forecast errors.  

- Clarify the impact of river forecasts on accountability and liability considerations of local 

EMs. Potentially, a (locally perceived) shift of accountability could occur if the NWS started 

publishing probabilistic short-term river forecasts.  

- Consider the EMs as an integral part of the forecast dissemination. The EMs are the ones 

who bring the forecast to the attention of decision-makers, often interpret it for them, and 

motivate them to take action.  

- Format forecasts so that people not only understand the forecast, but also share information 

with others correctly. Sharing information on uncertainty is likely to be more difficult than 

sharing a single-point forecast.  

- Provide personal assistance in cases where EMs have trouble interpreting uncertainties. If 

experts are not available for clarification of the forecast when faced with uncertainty, this 

gap will undoubtedly be filled in by other, more ad hoc sources of information.  

- Amend EMs’ trainings, workshops and conference presentations on NWS products with 

explanations on how to utilize those to in crisis situations. Additionally, provide training on 

how to make decisions under uncertainty and how to communicate uncertainties to the 

public. Otherwise, uncertainty can lead to inaction. Interactive small-scale case studies, e.g., a 

local ballgame, seem to work best.  
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STUDY 2 

Use of Weather Forecasts in Emergency Management: 

An Application of the Theory of Planned Behavior17 

 

Abstract 

Many factors affect the extent to whcih forecasts inform emergency responses.  In a survey based on 

the Theory of Planned Behavior (Ajzen, 2006), we asked 207 U.S. American emergency managers 

(EMs) about (1) their past and intended future use of short-term weather forecasts and recorded 

weather data; (2) the perceived limitations of the forecasts and recorded weather data; (3a) their 

attitude towards the usefulness of such weather information; (3b) their attitude towards their job and 

toward uncertainty; (4) perceived social norms; and (5) self-assessed numeracy. We find that work 

experience is the best predictor of the extent to which an emergency manager relies on forecasts and 

recorded weather data. Those with a positive attitude towards the weather information and who had 

received instructions on using weather information relied to a larger extent on forecasts. Perceived 

unavailability for the area, insufficient information and irregular release times, and a mindset 

favoring prevention over reaction tend to decrease the reliance on recorded weather data.  

 

Keywords: Emergency managers, forecasts, weather, Theory of Planned Behavior 

  

                                                 
17 In fall 2014, a version of this chapter will be submitted to the Bulletin of the American 
Meteorological Society (BAMS). 
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1. Introduction 

The purpose of forecasts is to provide their users with lead time to prepare for the events to come. 

In the case of emergency managers (EMs), weather forecasts can give the opportunity to evacuate 

hazardous areas, prepare equipment to be able to respond quickly or to protect or move valuable 

property before a severe weather event hits.  

Studying the use of forecasts in emergency management is difficult: no town is like another; 

different regions are subject to different weather hazards, and each state has different regulations. 

Natural emergencies themselves are difficult to study, because they are usually unique with no 

control group. Additionally, the reasoning behind decisions during an emergency is usually not 

recorded, because it takes valuable time away from preventing damage and bringing people to safety. 

Consequently, it is often difficult to determine afterwards what consideration led to which decision, 

and whether that was a good decision. Unsurprisingly, the literature on forecast use in decision-

making mainly consists of case studies and a few surveys.  

1.1. Forecast Use 

A much discussed case study is that of Grand Forks, ND, during the Red River Flood in 1997, 

where despite a good forecast there was ~$1 to 2 billion in flood damage, because the decision-

makers did not realize how much uncertainty was associated with the forecast. Even though 

emergency responders took into account some uncertainty, the people of Grand Forks could not 

imagine such a devastating flood. Instead, they anchored their expectations on the much more 

manageable, predicted crest level which was more in accordance with their past experiences (Pielke, 

1999; Morss and Wahl, 2007).  

Besides the Red River flood in 1997, Morss (2010) describes two more cases: a flash flood in 

Fort Collins, CO in July 1997, and a flash flood in Pescadero Creek Basin, CA in February 1998. 
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Comparing these cases, it can be concluded that experience greatly drives expectations and therefore 

preparations. If the event deviates from previous ones, people are often caught off-guard (e.g., 

representative, availability, and anchoring heuristics; Tversky, Kahnemann, 1974). Forecasts seem to 

reinforce this process, by not providing what-if scenarios to make people think outside their 

experience. A successful forecast can help to manage expectations and to guide further information 

collection by smartly placing monitoring crews (Morss, 2010).  

There are a few empirical studies on forecast use in decision-making. Morss et al. (2010) find 

in a survey of the general U.S. public, that most people associate uncertainty with weather forecasts 

and can sufficiently interpret probabilistic forecasts. However, people decide to take action at 

different probability thresholds. Empirically, Demuth et al. (2011) show that the frequency with 

which the general public obtains weather forecasts depends on what they are used for, their attitude 

towards the forecast (i.e., importance of and confidence in the information), the accuracy of the 

forecast,18 gender, age, and how long they have lived in the area. In a laboratory study in which 

emergency managers from Oklahoma worked through a simulation of a severe storm, Baumgart et 

al. (2007) find that emergency managers highly value many kinds of weather information during all 

stages of a storm. In the simulation, radar products and (storm) spotters’ observations were used 

frequently and evaluated as very valuable. In their descriptive framework, the authors illustrate that 

emergency managers interact with the NWS at different stages of an emergency; this interaction is 

two-way in many cases (Baumgart et al., 2007). Additionally, Baumgart et al. (2007) find that more 

experienced emergency managers use weather forecast products more frequently.   

In a previous interview-based study (Study 1), we find that forecast use is driven by more 

factors than the desire to have the adequate information to make good decisions, i.e., to make use of 

                                                 
18 When the error in Probability of Precipitation (PoP) forecasts was higher, people tended to 
consult it more often. The error in the maximum temperature forecast was not a significant predictor 
(Demuth et al., 2011). 
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the lead time that a forecast potentially provides. For actual decision-making, emergency managers 

seem to rely much more on radar and observations on the ground, because they were acutely aware 

of the uncertainty associated with NWS forecasts. Forecasts seem to be used to communicate with 

the public, because they represent the official assessment of the situation.  

1.2. Theory of Planned Behavior 

When using forecasts to prepare for weather-related events, emergency managers consider a number 

of things: their evaluation of the forecast, the social repercussions they might face, if they do or do 

not use them, etc. (Study 1). The Theory of Planned Behavior (TPB) captures all of these 

components.  

 

Figure 2: Framework of the Theory of Planned Behavior (Ajzen 2006) 

 Ajzen (2006), who originally proposed TPB, summarized its components as shown in Figure 

2. The dependent variable is a human behavior, in this case the use of forecasts and recorded 

weather data to prepare for weather-related events. According to TPB, three types of considerations 

combine to influence the agent’s behavioral intention. First, there are behavioral beliefs that inform 
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the agent’s attitude towards a behavior, e.g., whether it is beneficial for them. Second, the agent 

considers normative beliefs held by others, informing the agent’s subjective norm on whether (s)he 

should behave in a certain way. Third, the agent accounts for all factors that might help or hinder 

the considered behavior, determining whether the agent believes that (s)he has enough control to 

carry out the planned actions. Depending on the true extent to which the agent has control over 

his/her actions, these intentions result in the studied behavior (Ajzen, 2006). In a more 

mathematical notation, TPB can be summarized as shown in Equation 1. 

Equation 1: Theory of Planned Behavior 

Behavior ~Intention =  f(Attitude, Social Norms, Perceived Control) 

 TPB has been widely used in public health and social science and found to be valid for a 

range of actual behaviors and intentions, e.g., to undergo genetic tests (Wolff et al., 2011), to buy a 

home (Cohen et al., 2009), and pedestrians violating traffic rules (Moyano Diaz, 2002). By the end of 

1997, Armitrage and Connor (2001) were already able to base their meta-analysis on 185 

independent TPB studies.  

 TPB has also been applied to weather forecasts. Together, Artikov et al. (2006) and Hu et al. 

(2006) investigated, why U.S. farmers do not  use climate forecasts more despite the continuous 

improvement of such forecasts. This study investigated multiple dimensions by asking the same 

questions side-by-side for current and recent-past weather/climate conditions, short-term weather 

forecasts and long-term forecasts. Giving the descriptive results of this study, Hu et al. (2006) report 

that the perceived utility of the forecasts was low (attitude) and that some social groups – especially 

crop consultants and spouses – are perceived to support the farmers’ use forecasts (social norms). 

Additionally, farmers worried about the reliability of the forecast provider, which constitutes a 

perceived obstacle (control beliefs).  
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Artikov et al. (2006) ran four regressions on the data described by Hu et al. (2006). The 

regressions revealed that the attitude indicating the perceived utility of the forecasts was the best 

predictor of actual forecast use. Social norms also were a significant predictor of forecast use. 

Furthermore, the authors suggest that changing the farmers’ attitude is likely to increase forecast use 

more than addressing technical limitations of the forecast. In addition to the traditional TPB model, 

financial ability and motivation was also included in the model as a measure of “actual control” (see 

Figure 2). This variable clarified the effect of attitude and norms on the behavior.  

2. Method 

In the current study, a survey for emergency managers was devised to assess the four components of  

the TPB for two types of weather information: 1) observed weather conditions of the past few days 

and hours (recorded weather data), and 2) short-term weather forecasts for the next few days and 

hours; similar to the survey among farmers by to Hu et al. (2006) and Artikov et al. (2006). 

Furthermore, the questions to assess numeracy on the Subjective Numeracy Scale constructed by 

Fagerlin et al. (2007) were added to the survey. Each component is discussed in more detail in the 

following sections. The complete questionnaire can be found in the appendix.  

2.1. Dependent Variable – Past Behavior/Intentions 

“How much did you rely on NWS data to make any of the following decisions or carry out any of the 

following actions?” 

The dependent variable in this study is the use of recorded weather data and short-term weather 

forecasts by emergency managers in the past and future. In this study, it is not possible to measure 

the intentions first and the actual behavior a few months later, as is done in most TPB studies. 

Consequently, the intentions cannot serve as an independent variable in the regression model with 

the actual behavior as the dependent variable, as is conventionally done.  
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To make the survey salient to more emergency managers, six hazards were included in the 

study: Flash flooding, river flooding, hurricanes, tornadoes, heat waves, and snow and ice storms. 

The participating emergency managers were asked to select the one hazard that they found most 

difficult to respond to in the last ten years and subsequently answered the questions about forecast 

use for that hazard.  

 Use of weather information was operationalized by asking how much the emergency 

manager relied on recorded weather data and short-term weather forecasts for a range of decisions 

and actions, such as alerting citizens, alerting colleagues, and opening shelters.  

2.2. Perceived Control: Limitations of Weather data 

“Please rate how much the following factors have limited your reliance on NWS data when responding to 

events.” 

The variable pertaining to perceived control in this study deviates somewhat from those in other 

TPB studies. In the case of weather information, it did not make much sense to ask how much 

control the EM feels (s)he has over actually relying on such data. It seemed unlikely that anyone 

would order the EM what to do, just as it seems impossible for an EM to estimate how much the 

unique circumstances of each emergency have influenced or will influence his reliance on forecasts. 

Instead, the survey assessed the perceived limitations of the weather information. Potentially, this 

could lead to an overlap with the attitude towards the data.  

To assess perceived behavioral control, the emergency managers were asked to judge the 

extent to which characteristics such as the accuracy of the recorded weather data and short-term 

weather forecasts, the availability for their area, irregular release times, etc. limited the reliance on 

such products.  
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 A distinction can be made between self-efficacy (i.e., one’s own ability to do something) and 

behavioral control (i.e., external factors hindering the agent). In their meta-analysis, Armitrage and 

Connor (2001) found evidence that self-efficacy performs as well in in predicting intentions and 

behavior as perceived behavioral control. Therefore, we additionally asked the participants assess 

their own ability to understand the weather information and to apply it to the situation at hand 

limited their use of weather information (self-efficacy). 

2.3. Social Norms 

“Please rate how much the following groups expect you to rely on NWS data when responding to an event.” 

“Please rate how much you worry about criticism from the following groups when responding to an event.” 

In an earlier, interview-based study (Study 1), we find that emergency managers consider the 

reactions of the public and the media and other types of accountability when responding to weather-

related events. In such considerations, the weather forecast is seen as the official interpretation of 

the situation and therefore more readily shared than the emergency manager’s own assessment, even 

though the latter likely includes much valuable local information.  

 To assess these sorts of social pressures, the emergency managers were asked to what extent 

a variety of groups – such as colleagues, elected officials, and residents – would want them to rely on 

recorded weather data and short-term weather forecasts respectively. Additionally, it was asked to 

what extent the emergency managers worry about being criticized by each of these groups.  

 If groups, whose criticism matters to emergency managers, would want the emergency 

manager to rely on recorded weather data and/or short-term weather forecasts, it is expected that 

the emergency manager would use such weather information more.  
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2.4. Attitude 

The emergency managers’ attitude was assessed in two ways. First, their attitude towards the weather 

data and forecasts themselves was assessed. The emergency managers were asked to what extent 

they agreed or disagreed with statements such as “I would recommend other emergency managers to rely on 

weather data.” or “Relying on weather data has resulted in better decisions.”   

 Second, the participants were questioned about their job attitude. The underlying thought is 

that many emergency managers are or have been fire fighters or paramedics at some point. In those 

jobs, they were primarily drilled to respond to ,rather than to prepare for, crises. It is thus 

conceivable that they would make less use of forecasts because they are not as familiar with the 

opportunities that lead time provided by forecasts presents. The participants were asked, to what 

extent they agreed or disagreed with statements such as “It is my job to respond to weather-related events 

rather than to prepare for them.” and “It is my job to rescue rather than to protect people.” 

Compared to responding to an emergency, preparing for it requires coping with uncertainty. 

After all, beforehand it is still unknown how an emergency will evolve. To capture this, three 

questions covering the EMs’ attitude towards uncertainty are in the attitude section. These include 

statements such as “I routinely think in what-if scenarios when responding to events.” and “A critical situation 

can develop in so many different ways, it is difficult to determine appropriate actions.” 

2.5. Subjective Numeracy Scale 

In surveys, numeracy is usually assessed by asking people mathematical questions. When they 

encounter such questions, people often feel judged and tend to quit the survey. Additionally, it 

cannot be assured that participants do not use calculators or seek help from others when conducting 

a survey online or over the telephone. To address this problem, Fagerlin et al. (2007) developed and 

Zikmund-Fisher et al. (2007) validated the Subjective Numeracy Scale (SNS). In an empirical study, 
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they selected eight of originally 49 questions that best correlate with established objective numeracy 

scales. Four of those eight questions assess the ability to conduct mathematical operations, e.g., 

calculating a 15% tip. The other four questions ask participants, whether they prefer numbers or 

percentages over words, etc. SNS has been applied in a number of studies (e.g., Hess et al., 2011; 

Paolacci et al., 2010; Hawley et al., 2008), mainly in the health sector and the risk communication 

field. Thus, it is possible to compare emergency managers’ subjective numeracy to that of other 

(professional) groups.  

2.6. Demographics 

Lastly, the survey assessed a number of demographic factors pertaining to their job as emergency 

manager, their professional background, their education and training. Cohen et al. (2009) mentions 

that demographic variables are seldom included in TPB studies,19 but they find them to be among 

the best predictors for the intention to buy a home and the actual purchase.    

2.7. Hypothesis 

It is hypothesized that EMs rely more on the recorded weather data and short-term weather 

forecasts, if – compared to their colleagues – they think the following: 

- Evaluate the studied weather information as more helpful for decision-making (attitude) 

- Perceive those products to have less limitations and who think to have the ability to use 

them (perceived behavior control, self-efficacy) 

- Put a greater emphasis on protecting than rescuing and are more confident in coping with 

uncertainty (job attitude) 

                                                 
19 According to Cohen et al. (2009), the main reason for not including demographic variables in TPB 
studies is the fact that many studies are done among college undergraduates who exhibit little 
demographic variety.  
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- Experience more social pressure to rely on weather information (social norms) 

- Have a higher self-assessed numeracy 

2.8. Sample 

The components of the Theory of Planned Behavior, as described above, were assessed in a survey 

distributed online20 in April and May 2014 to emergency managers throughout the United States. 

Please see the appendix for the full questionnaire.  

The survey was sent out through a variety of channels. The International Association of 

Emergency Managers (IAEM) published the survey call in their weekly newsletter that reaches 

~10,000 emergency management professionals. Additionally, the survey call was posted to the 

discussion boards of the six LinkedIn-groups for emergency management professionals.21 

Furthermore, the survey call was sent to all email addresses of emergency managers available on the 

websites of each state’s emergency management associations (EMA), the emergency management 

departments of each state’s administration and – if existing – the professional organization in each 

state. The number of email addresses retrieved on those websites was ca. 2,000.  

 It is difficult to estimate how many emergency managers received the survey calls. The above 

mentioned LinkedIn groups and newsletter are also frequented by emergency management 

professionals that are not emergency manager responsible for an U.S. American jurisdiction. Thus, 

they do not belong to the target group of this survey. Additionally, it is unknown how many of the 

email addresses online are up-to-date and/or are checked regularly. Consequently, a survey response 

rate is difficult to calculate.  

                                                 
20 Qualtrics was used to build and distribute the online survey.  
21 LinkedIn groups to which the survey call has been posted: Crisis, Emergency & Disaster Recovery 
Professionals; Emergency Management Professionals; Disaster & Emergency Management; Disaster 
Researchers and Disaster Management Professionals; Emergency Management and Homeland 
Security Professionals; International Association of Emergency Managers.  
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Only U.S. emergency managers who are older than 18 years could participate. As an 

incentive a raffle in which four participants won a $50 voucher for their favorite store was added to 

the survey.  

3. Results 

In the following, the answers to the various survey components are first described. Second, the 

results of the regression models based on the Theory of Planned Behavior are reported.  

3.1. Descriptive Results 

3.1.1. Demographics 

In total, 363 emergency managers (EMs) started and 207 completed the survey.22 Most participants 

were county EMs (127) working full-time (152), and had 5-10 years of work experience as an EM. 

Given that most were between 51 and 60 years old, it is likely that this job is their second career. 

Indeed, 101 of the participants are either professional fire fighters (65), paramedics (23), policemen 

(10) or in the military (3). Another 67 are volunteers in one of these functions (11, 8, 20, and 28 

respectively). Figure 4 shows the distributions of these characteristics. EMs from all over the U.S 

(Figure 3). participated, with especially many from Florida (30), Kansas (24), and North Dakota (14). 

Twelve states are not represented.23 Three-quarters of the participants (152) were male.  

                                                 
22 Most participants dropped out when encountering the first large matrix table asking them to how 
much the relied on recorded weather data and short-term weather forecasts for a number of 
decisions. 
23 The twelve states that are not represented are: Connecticut, Delaware, Idaho, Maine, Maryland, 
Montana, New Hampshire, New Mexico, North Carolina, Rhode Island, Vermont, and West 
Virginia. 
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Figure 3: Geographic position of survey participants, color-coded by hazard. 

  

 

 
 

 

Figure 4: Histograms showing the distribution of the participants' age, work experience, 

jurisdiction, highest completed level of education, kind of emergency management training and 

professional background. 
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Of the 207 participating emergency managers, 48 have attended college, 57 graduated from 

college and 63 earned a Master degree. To become an EM, the vast majority has followed courses, 

trainings and workshops (186). Thirty have a college degree related to emergency management; 58 

have professional degree; five were self-taught. While our finding that 84% have had weather 

instructions at some point sounds reassuring, this has to be qualified by the fact that only 31% of 

courses that EMs take pertain to weather-related events, while 78% of the emergencies faced by 

EMs are actually caused by weather (Weaver et al., 2014).  

When compared to the demographic study of emergency managers by Weaver et al. (2014), 

our convenience sample seems to be representative of the profession. Of Weaver et al.’s 1,058 

participants, 81% were male and 72% older than 45 years. Fischer (1996) reports that the typical 

local emergency management association director participating in his study was 50 years old and had 

14 years of work experience in the field. As in our sample, a high percentage (78%) of Weaver’s 

respondents was college-educated. There seems to be a clear trend to more education. According to 

Fischer (1996), EMs’ highest education was typically a few completed colleges courses. In our and 

Weaver’s (2014) sample, there were much more EMs with college or even graduate degrees. 

Additionally, Weaver et al. (2014) found that younger EMs tend to have a higher education. In 

contrast, EMs with a lower education tend to have more experience in other emergency response 

professions (Weaver et al., 2014). In our sample, 49% had such prior experience, compared to 69% 

in theirs.  

The survey asked which type of weather event had led to the most difficult situation for the 

EMs. Weaver et al. (2014) report that 78% of disasters that EMs faced in the past were weather-

related, while EMs anticipate that to be 63% in the future. With 20 to 25 EMs selecting each hazard, 

our survey answers are uniformly distributed across flash floods, river floods, tornadoes and 

hurricanes. Only snow and ice storms and heat wave stand out for being experienced as very 
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difficult respectively very often and not often. Only four EMs selected heat waves, and as many as 

45 selected winter storms as the most difficult hazard (see Figure 5). Of the respondents, 22% did 

not regard any of these six natural hazards as the most difficult and selected “None of the Above”. 

Those EMs only answered the questions on job attitude, subjective numeracy and demographics. 

Accordingly, 162 EMs were asked the questions regarding weather information.  

 

Figure 5: Distribution of hazards that were 

perceived most difficult to respond to in the past ten 

years. 

3.1.2. Dependent Variable – Past Behavior/Intentions 

“How much did you rely on NWS data to make any of the following decisions or carry out any of the 

following actions?” 

The dependent variable in this study is the usefulness of the forecast to make different decisions. We 

asked how much EMs relied on recorded weather data or short-term weather forecast for different 

decisions, and how much they intended to rely on those in the future. 

As Table 2 shows, significant percentages reported either recorded weather data or short-

term weather forecast to be inapplicable to determine where and when to deploy storm spotters, 

when to initiate evacuation and when to open shelters. EMs used this kind of information least to 

decide when to deploying storm spotters, which is an activity to gather more data. Of the EMs that 

did use the data to support their decisions, more than half relied relatively much on forecasts (scores 
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4-5). Again, the only exception is deploying storm spotters, where 40% of the participants rely much 

on recorded weather data and forecasts to make decisions.In all cases, EMs intend to rely on 

recorded weather data and forecasts in the future.  

A Multivariate Analysis of Variance (MANOVA) was used to determine, whether the 

reliance differs across hazards and the type of data. As expected, that perceived usefulness depends 

on the hazard (F =46.2, p<0.001), whether recorded weather data or forecasts are concerned (F 

=57.9, p<0.001), and whether the past or intended behavior is studied (F =28.3, p<0.001). Since this 

is the dependent variable, the correlations with demographic data will be discussed later on.  

Additionally, it was asked which type of data EMs would prefer, if they only could have one. 

Overwhelmingly, across all hazards, the participants opted for the forecast (Table 1). Presumably, 

they reckon that they could get to know the weather of the past few days somehow, but would have 

a much harder time making projections for the future.  

Table 1: Percentage of EMs who prefer either recorded weather data 

or short-term weather forecasts, if they only could have one. 

 Recorded weather data Short-term weather forecast N 

Flash Flood 10.7 89.3 28 

River Flood 16.7 83.3 30 

Tornado 7.1 92.9 28 

Hurricane 0.0 100.0 27 

Winter 8.9 91.1 45 

Heat 0.0 100.0 4 

All 8.6 91.4 162 
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Table 2: Extent to which survey participants relied on the four types of weather data: Past behavior and intended behavior regarding 

recorded weather data and short-term weather forecasts. In percentages.  

 
 Past Use – Recorded 

weather data 

 
 

Intended Use – Recorded 

weather data 

 
 

Past Use – Short-term 

weather forecast 

 
 

Intended Use – Short-term 

weather forecast  

 

% 
 

NA 
Low 

(1-2) 

Neut. 

(3) 

High 

(4-5) 
N 

 
NA 

Low 

(1-2) 

Neut. 

(3) 

High 

(4-5) 
N 

 
NA 

Low 

(1-2) 

Neut. 

(3) 

High 

(4-5) 
N 

 
NA 

Low 

(1-2) 

Neut. 

(3) 

High 

(4-5) 
N 

Deploy 

storm 

spotters 

 

43.8 17.5 8.8 30.0 160 

 

28.3 16.4 19.5 35.8 159 

 

36.5 12.8 10.3 40.4 156 

 

28.2 12.8 15.4 43.6 156 

Activate 

EOC 

 

5.0 16.9 16.9 61.3 160 

 

3.8 11.4 16.5 68.4 158 

 

5.7 8.9 5.7 79.6 157 

 

3.2 4.5 5.1 87.3 157 

Determine 

event 

location 

 

1.9 10.1 20.8 67.3 159 

 

1.9 11.3 16.4 70.4 159 

 

1.3 3.2 9.6 86.0 157 

 

0.6 3.8 8.9 86.6 157 

Warn 

public 

 

3.8 13.9 15.8 66.5 158 

 

4.5 10.2 12.7 72.6 157 

 

5.1 1.3 8.3 85.3 156 

 

4.5 3.2 5.7 86.6 157 

Track the 

event 

progress 

 

0.6 9.4 17.6 72.3 159 

 

1.9 8.2 16.4 73.6 159 

 

1.9 5.1 11.5 81.5 157 

 

1.3 3.8 9.6 85.3 156 

Initiate 

evacuat. 

 

25.3 13.9 13.9 46.8 158 

 

12.6 14.5 20.1 52.8 159 

 

25.6 10.3 10.9 53.2 156 

 

14.1 8.3 12.2 65.4 156 

Open 

shelters 

 

14.6 16.6 21.0 47.8 157 

 

9.6 15.3 17.8 57.3 157 

 

13.4 11.5 14.6 60.5 157 

 

10.2 7.6 12.1 70.1 157 
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3.1.3. Perceived Behavior Control: Limitations of Weather data 

“Please rate how much the following factors have limited your reliance on NWS data when responding to 

events.” 

In this survey, the component of the Theory of Planned Behavior called Perceived Behavior Control 

is represented by the EMs’ perceived limitations of the recorded weather data and the short-term 

weather forecast. 

Table 3: Survey answers how much various issues limited the extent to which EMs relied on weather 

data in percent. Values in bold were pre-set to be not applicable.  

% 
Recorded weather data   Short-term weather forecast  

Not 

applicable 

Little 

(1-2) 

Somewhat 

(3) 

Much 

(4-5) 
N 

 Not 

applicable 

Little 

(1-2) 

Somewhat 

(3) 

Much 

(4-5) 
N 

Inaccurate forecast of 

event magnitude 
     

 
9.9 41.7 23.2 25.2 151 

Frequent changes to 

forecast of event 

magnitude 

     

 

10.8 44.6 18.9 25.7 148 

Inaccurate forecast of 

event timing 
     

 
10.7 45.3 19.3 24.7 150 

Frequent changes to 

forecast of event 

timing 

     

 

11.5 48.0 16.9 23.6 148 

Receiving 

information too 

late to be useful 

6.9 43.8 30.0 19.4 160 

 

4.5 55.4 14.6 25.5 157 

Information 

unavailable for 

your area 

14.5 45.3 20.1 20.1 159 

 

12.0 48.1 15.8 24.1 158 

Insufficient/irrelevant 

information 
9.4 54.1 18.9 17.6 157 

 
7.1 55.8 18.6 18.6 156 

Irregular information 

release times 
8.9 55.4 22.3 13.4 162 

 
7.6 55.7 20.3 16.5 158 

Your ability to apply 

the information to 

the emergency 

response 

6.5 51.6 20.3 21.6 153 

 

3.8 54.8 15.9 25.5 157 

Your ability to 

understand the 

information 

8.6 58.6 15.1 17.8 152 

 

5.2 61.9 12.3 20.6 155 
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More than half of the respondents felt little to no limitations for most of the characteristics. 

They were slightly less positive about receiving the information in a timely fashion and it being 

available for their area. This is true for both recorded weather data and short-term weather forecasts. 

Regarding recorded weather data, EMs felt that their ability to apply the information to the 

emergency response and the unavailability of the information for their area were the most hindering 

characteristics. These issues were important for relying on forecasts, too. But the frequent changes 

of the forecasted event magnitude, the inaccuracy of the forecast magnitude, and the inaccurate 

forecasted timing were perceived to be most hindering when wanting to rely on short-term weather 

forecasts. Unsurprisingly, the participating EMs felt that the characteristics of the short-term 

weather forecast were somewhat more limiting than those of the recorded weather data.  

  

Figure 6: Survey answers to what extent EMs are satisfied with the recorded weather data and short-

term weather forecasts by the NWS. 

Additionally, we asked how satisfied the participants are with the data from the NWS. As 

Figure 6 indicates, ca. 75% EMs were very or extremely satisfied. A larger percentage was extremely 

satisfied with the short-term weather forecasts than with the recorded weather data, even though 
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forecasts come with much more uncertainty than recorded weather data. Equally many people were 

more satisfied with the forecast than with the recorded data (see Figure 7). 

 

Figure 7: Distribution of participants that were more satisfied with one type of weather informationt 

than with the other. 

 A MANOVA revealed that the perceived limitation of the weather forecasts differs by 

hazard (F=4.4, p=0.001), jurisdiction (F=6.9, p<0.001), work experience (F=8.3, p<0.001), the 

highest completed level of education (F=22.9, p<0.001), and whether recorded weather data or 

forecasts are concerned (F=105.2, p<0.001). Additionally, having a background as fireman (F=13.0, 

p<0.001) or paramedic (F=4.0, p=0.007) also makes a statistical difference. 

3.1.4. Social Norms 

“Please rate how much the following groups expect you to rely on NWS data when responding to an event.” 

“Please rate how much you worry about criticism from the following groups when responding to an event.” 

The questions about social norms assess the extent to which the EMs feel pressure from their 

surroundings to rely on recorded weather data and short-term weather forecasts. Table 4 shows that, 

EMs seem to overwhelmingly think that the people around them expect them to rely on both 
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forecasts and recorded weather data. For forecasts, EMs think that locals such as EM colleagues, city 

employees, elected officials, and residents want them to rely on forecasts more than others. For 

recorded data, that distribution is relatively flat. In both cases, EMs most often judge the training 

and workshop instructors, government officials and the NWS as not applicable; presumably, because 

they miss local knowledge. Nonetheless, these groups have the most knowledge about forecasts.  

Table 4: Survey answers to what extent EMs think that a variety of social groups wants them to rely 

on either of the two types of weather data. In percent. 

% 
Recorded weather data   Short-term weather forecast  

Not 

applicable 

Little 

(1-2) 

Somewhat 

(3) 

Much 

(4-5) 
N 

 Not 

applicable 

Little 

(1-2) 

Somewhat 

(3) 

Much 

(4-5) 
N 

Local and regional 

emergency 

management 

colleagues 

1.2 2.1 16.9 78.8 160  0.6 1.9 9.5 88.0 158 

City employees  3.8 6.3 15.7 74.2 159  3.2 3.8 8.9 84.2 158 

Elected officials  3.8 5.7 15.1 75.5 159  3.2 3.2 9.5 84.2 158 

NWS employees 14.5 3.8 15.7 66.0 159  15.5 3.2 11.6 69.7 155 

Employees of 

government 

agencies  

11.3 8.8 23.9 56.0 159  10.7 5.7 21.4 62.3 159 

Training/workshop 

instructors 
20.8 11.9 18.9 48.4 159  21.0 12.1 16.6 50.3 157 

Residents 2.5 4.4 16.4 76.7 159  3.8 3.2 11.5 81.4 156 

The Media 3.7 5.6 21.7 68.9 161  3.8 6.3 17.7 72.2 158 

The general public 2.5 6.2 13.7 77.6 161  2.5 3.8 11.3 82.4 159 

Family & Friends 4.4 3.8 18.1 73.8 160  5.0 4.4 12.6 78.0 159 

 

The second set of questions on social norms asked how much EMs worried about being 

criticized by each social group (Table 5). The opinions of their emergency management colleagues, 

employees of the NWS and of government agencies are most valuable to EMs; probably, EMs judge 

these groups to be most competent in working with such data. The answers regarding all other 
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groups have bimodal distributions. That bimodal distribution is mirrored for groups representing 

officials as compared to groups representing the public.  

Table 5: Survey answers to what extent EMs worry about being criticized by a variety of social 

groups. In percent. (N=162) 

 Not 

applicable 

Little  

(1-2) 

Somewhat 

(3) 

Much  

(4-5) 

Local and regional 

emergency management 

colleagues 

3.1 24.7 26.5 45.7 

City employees  1.2 39.5 17.3 42.0 

Elected officials  1.2 53.1 13.0 32.7 

NWS employees 4.9 17.9 35.2 42.0 

Employees of 

government agencies  
3.7 24.1 29.6 42.6 

Training/workshop 

instructors 
11.1 16.7 38.3 34.0 

Residents 0.6 58.6 9.3 31.5 

The Media 0.6 44.4 15.4 39.5 

The general public 0.6 59.3 9.3 30.9 

Family & Friends 2.5 42.0 20.4 35.2 

 

Multiplying the expectations with the values associated with groups results in the overall 

impact of each social group. Table 6 ranks the groups by their influence. Training and workshop 

instructors seem to have the least influence on the EMs’ perception whether they should rely on 

recorded weather data and forecasts. The opinions of their colleagues at the emergency department 

and in the town hall in general are most relevant to the EMs. This is followed by NWS employees, 

the media, and family and friends. Therefore, managing the use of weather data is probably most 

effectively done through peer education and with direct contacts between EMs and the NWS. 

Probably, it is the local knowledge that makes these opinions more valuable than the views of 

workshop and training instructors. Additionally, Morss et al. (2005) mention that practitioners prefer 
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to talk to people with whom they have had long-term relationships when seeking scientific 

information.  

Table 6: Ranking of most influential groups for recorded weather data and short-term weather 

forecasts 

Overall Impact 

Recorded weather data 

 Overall Impact 

Short-term weather forecast 

Local and regional emergency 

management colleagues 

 Local and regional emergency 

management colleagues 

City employees (for example, city 

departments, fire, police, EMS) 

 City employees (for example, city 

departments, fire, police, EMS) 

Employees of the National 

Weather Service 

 Employees of the National 

Weather Service 

The Media  Family & Friends 

Family & Friends  The Media 

Employees of government 

agencies (for example, Army 

Corps of Engineers, FEMA) 

 Employees of government 

agencies (for example, Army 

Corps of Engineers, FEMA) 

Elected Officials  Elected Officials 

Residents  The general public 

The general public  Residents 

Training/workshop instructors  Training/workshop instructors 

 

 

Last, the survey asked to what extent EMs value the opinion of others in general (Table 7). 

Most EMs, 60.7%, agreed that taking into account the expectations of others is useful. Additionally, 

it was asked whether the participants worry about liability when responding to emergencies. The 

vote is less clear, featuring a bimodal distribution. While 17.9% are undecided, 34.0% disagree and 

29.0% agree that they are concerned about liability. In any case, a substantial 37.6% worry about 

liability.  
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Table 7: Survey answers to what extent EMs agree or disagree with two statements about valuing the 

opinion of others and worrying about liability. (N=162) 

 
Strongly 

Disagree 
Disagree Undecided Agree 

Strongly 

Agree 

In general, taking into account the expectations of 

others is useful when responding to an event. 
3.1 9.9 9.9 60.5 16.7 

I worry about potential or possible liability claims 

made against me or my employer when responding 

to an event.  

10.5 34.0 17.9 29.0 8.6 

  

 A MANOVA indicates that the type of hazard (F=11.3, p<0.001), the jurisdiction (F=5.8, 

p<0.001), the work experience (F=3.0, p=0.019), the highest completed level of education (F=2.5, 

p=0.023), and a background in the military (F=7.0, p=0.008), as a fireman (F=2.3, p=0.050) and 

paramedic (F=3.1, p=0.079) make a statistical difference in the overall impact of the social groups.  

3.1.5. Attitude: Weather Information 

The questions about the benefits using NWS weather data received overwhelmingly positive 

answers, for both recorded weather data and short-term weather forecasts (see Table 8). Across all 

questions, more than 80% agreed or strongly agreed that using NWS was beneficial in various ways. 

The one exception is the question about whether these data were the most important source of 

information. In that case, EMs agreed or strongly agreed with that statement regarding recorded 

weather data (60%) and forecasts (70%).  

 A MANOVA indicated that the beneficial perception of the weather information depends 

on hazard (F=7.1, p<0.001), the EMs’ jurisdiction (F=8.1, p<0.001), the work experience (F=3.3, 

p=0.011), the highest completed level of education (F=4.3, p<0.001), and whether recorded weather 

data or forecasts were concerned (F=12.0, p<0.001). Additionally, the professional background has 
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a statistically significant impact: Fire fighter (p=9.5,  p<0.001), policeman (F=4.5, p=0.004), 

paramedic (F=3.5, p=0.016), and military (F=0.5, p<0.001). 

Table 8: Answers to questions about the benefits of using weather data in percent. The right side of 

the table (agree/strongly agree) corresponds with a positive attitude towards using weather data. 

For the question with the minus in front, the scale is reversed. (N=153) 

% 
Recorded weather data   Short-term weather forecast  

Disagree 

(1-2) 

Undecided 

(3) 

Agree 

(4-5) 
N 

 Disagree 

(1-2) 

Undecided 

(3) 

Agree 

(4-5) 
N 

Using NWS data to respond to 

events has resulted in better 

decisions/actions. 

5.0 11.2 83.9 161  2.6 2.6 94.9 156 

NWS data is the most 

important source of 

information for responding to 

events.  

15.6 24.4 60.0 160  12.9 16.8 70.3 155 

(-) Relying to NWS data to 

respond to events can be 

harmful.  

78.9 11.2 9.9 161  79.5 7.7 12.8 156 

I would recommend other 

emergency managers to rely on 

NWS data to respond to 

events.  

1.9 16.8 81.4 161  0.6 11.5 87.8 156 

NWS data gives me confidence 

in my decisions/actions during 

responses to events.  

5.0 13.0 82.0 161  11.3 12.3 86.4 154 

3.1.6. Attitude: Job 

The job attitude was assessed to figure out, whether emergency managers had a more preventive or 

responsive mindset. It is hypothesized that intensive forecast use does not match well with a 

responsive mindset. A majority (65.7%) views their job to protect rather than to rescue citizens. 

They are divided on the question, whether they are supposed to prevent or to respond to hazardous 

situations. A slight majority votes for the latter (51.7%), see Table 9. EMs are divided in their 

attitude towards uncertainty. Those questions feature bipolar distributions. Between 57% and 72% 
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(strongly) disagrees that uncertainty hinders them in their work. Morss et al. (2005) explain that 

“practitioners often deal with uncertainty by finding the best information they can quickly and easily 

obtain and interpret, making the decision require for the moment, and moving on.” [Emphasis added.] 

EMs might simply experience uncertainty not as a problem but as a daily given.  

Table 9: Answers to job attitude questions in percent. For the questions with the minus in front, the 

left side corresponds with a preventive mindset. For the other questions, the scale is reversed. 

(N=207) 

% 
Strongly 

Disagree 
Disagree Undecided Agree 

Strongly 

Agree 

It is my job to prevent rather than to respond to 

hazardous situations. 
13.5 38.2 13.0 29.0 6.3 

It is my job to protect rather than to rescue citizens. 5.3 17.9 11.1 50.2 15.5 

(-) I pay more attention to the current situation and 

less to possible sequences of events when making a 

plan to respond to an event.  

15.0 57.0 12.6 14.5 1.0 

I routinely think in what-if scenarios when 

responding to events. 
0.0 2.9 3.4 57.0 36.7 

(-) Not knowing what will happen during an event 

makes it difficult for me to respond.  
10.6 46.4 10.6 27.1 5.3 

(-) A critical situation can develop in so many 

different ways, it is difficult to determine appropriate 

actions.  

6.8 53.6 13.0 25.6 1.0 

 

Table 10: Binary question to assess whether EMs react intuitively to emergencies. (N=207) 

When faced with a critical situation, I 

consider all facts, figures, and 

different scenarios and weigh my 

options before I take action.  

71% 

When faced with a critical situation, I 

know what to do, when I see what 

is going on around me, and hear 

what is happening.  

29% 
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Additionally, we posed the binary question, whether EMs react rather intuitively or whether 

they deliberately consider the information and options they have before taking action (Table 10).Of 

the 207 participants, 29% assessed themselves as responding intuitively. 

Using a hypothetic tornado case study, Weaver et al. (2014) found that many EMs decide to 

react very late. For example, 22.2% would only come into action by the time that the tornado has 

already caused damage, while 30.3% would initiate a full response after the Doppler radar has 

confirmed a tornado 30 minutes away (Weaver et al., 2014). Combining these results with ours, it 

seems that EMs do distinguish themselves from professions like fire fighters and paramedics in the 

sense that they rather protect than rescue people, i.e., EMs try to get people out of harm’s way 

beforehand. However, they do not see themselves as having to prevent hazardous situations. That 

might explain the late responses found by Weaver et al. (2014). Maybe, EMs simply regard 15 

minutes as enough to reach a tornado shelter. Any damage prevention beyond that might fall outside 

the perceived scope of the EMs’ task. Given that EMs do not seem to experience uncertainty as 

seriously hindering their work, the late response might also be meant to reduce the number of false 

alarms. In a previous study (Study 1), we found that EMs do choose the weather information with 

the least uncertainty in them. But apparently, a majority does not think that uncertainty prevents 

them from acting.   

 A MANOVA indicated, that the most concerning hazards make a difference as to how EMs 

view their job (F=6.7, p<0.001). It was hypothesized that a background in some other emergency 

response profession might impact the understanding of the job as well. This is indeed the case for 

policemen (F=8.1, p<0.001), fire fighters (F=12.2, p<0.001), and EMs associated with the military 

(F=8.4, p<0.001), but not for paramedics.  
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3.1.7. Subjective Numeracy 

The first four subjective numeracy questions asked for the participants’ confidence in working with 

fractions and percentages. This was measured on a scale from 1 (not at all confident) to 6 (very 

confident). The remaining four questions asked for the preference for words or numbers. The scale 

goes from 1 (preference for words) to 6 (preference for numbers).  

 The results are summarized in Table 11. The participants were confident that they can work 

with fractions and percentages (average 4.8) and clearly preferred numbers (average 4.7). The only 

question pertaining to fractions (“How good are you at working with fractions?”) received the 

lowest average score (4.2), indicating that that EMs feel more comfortable working with percentages 

than with fractions. While EMs generally seem to prefer numbers over words, they do slightly less so 

when talking to people directly (rather than reading the information.) That question received the 

lowest average score for that set of questions (4.4). The highest average score was for the most 

general question, whether numerical information is generally useful.  

 When comparing these scores with the values that Fagerlin et al. (2007) report in their paper 

that introduces the subjective numeracy scale (SNS), EMs score considerably higher than the 287 

respondents recruited from a Veterans Affairs hospital waiting room (see comparison in Table 11). 

Fagerlin et al. (2007) report that these participants had lower numeracy skills than their university 

participants (4.1 vs. 4.6), but they do not report the latter score per question. Another study 

(N=318) – comparing the recruiting techniques on Mechanical Turk, at university and on internet 

boards –  found an average subjective numeracy of 4.35, 4.17, and 4.25 respectively (Paolacci et al., 

2010). Zikmund-Fisher et al. (2007) reported a median subject numeracy of 4.2 and 4.5 in studies of 

996 and 1270 people recruited online by a professional company. The large percentage of male EMs 
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is the most prominent difference between our participants and those in the literature. In any case, 

EMs’ subjective numeracy is well above average. 

 An MANOVA analysis was done to identify any demographic factors correlated to 

numeracy. Work experience, age, emergency management education, and background in other 

emergency-related profession all did not correlate with subjective numeracy. Only the highest level 

of education did (F=5.12, p<0.001), as illustrated by Figure 8. 

 

 

Figure 8: Relationship between subjective numeracy and the highest completed level of education. 
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Table 11: Survey answers numeracy including the correlation to objective numeracy and comparison to results reported in Fagerlin et al. 

(2007). (N=207) 

Fraction & Percentages   Numbers vs. words  

Question 
Average/ 

St.Dev 

Average 

Veterans* 

Corr. 

obj. 

num.* 

 

Question 
Average/ 

St.Dev 

Average 

Veterans* 

Corr. 

obj. 

num.* 

1. How good are you at 

figuring out how much a 

shirt will cost, if it is 25% 

off? 

5.1 / 1.0 4.6 0.73 

 

5. When reading the newspaper, how helpful do you 

find tables and graphs that are parts of a story? 
4.6 / 1.1 3.8 0.57 

2. How good are you at 

working with percentages? 
4.9 / 1.1 3.6 0.80 

 
6. When people tell you the chance of something 

happening, do you prefer that they use words (for 

example, "it rarely happens") or numbers (for example, 

"there's a 1% chance")? 

4.4 / 1.3 3.5 0.56 

3. How good are you at 

calculating a 15% tip? 

5.0 / 

1.0 
4.2 0.76 

 
7. When you hear a weather forecast, do you prefer 

predictions using percentages (for example, “there will 

be a 20% chance of rain today”) or predictions using 

only words (e.g., “there is a small chance of rain 

today”)? 

4.8 / 1.2 3.1 0.61 

4. How good are you at 

working with fractions? 
4.2 / 1.4 3.7 0.72 

 
8. How often do you find numerical information to be 

useful in your daily life? 
5.1 / 0.9 4.2 0.51 

 

Average 

 

4.8 
 

 
 

 

Average 

 

4.7 
 

 

Scale: 1 (Not at all good) – 6 (Very good) 
  Scale: 1 (Prefer words/Numbers not useful) – 6 (Prefer numbers/Numbers are 

useful) 

 

*As reported by Fagerlin et al. (2007) 
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3.2. Inferential Results 

3.2.1. Principal Component Analyses 

To reduce the number of variables, principle component analysis (PCA) was run for each of the 

components of the Theory of Planned Behavior in order to aggregate their items into single 

variables. Based on the screeplot, the eigenvalues and non-trivial factor loadings, the best number of 

components to be included in the regressions was determined. Prior to the PCA, the variables were 

normalized. The question “Relying to NWS data to respond to events can be harmful.” was excluded from 

the PCA for attitude towards the weather information, because it correlates poorly with the other 

questions about attitude towards the weather information. It was the only one in that set of 

questions that was worded negatively.  

Table 12: Results of Principal Component Analysis for each of the variables of the 

Theory of Planned Behavior. 

  Number 

of  

questions 

Number of  

components 

% 

cumulative 

 variance 

Dependent Variable 
Past Behavior – Recorded weather 

data 

7 
1 53.9 

 Past Behavior – Forecasts 7 1 44.2 

 Intentions – Recorded weather data 7 1 50.1 

 Intentions - Forecasts 7 1 55.1 

Social Norm Recorded weather data 10 2 58.3 

 Forecasts 10 2 57.5 

Perceived Behavioral 

Control 
Recorded weather data 

10 
3 81.4 

 Forecasts 10 3 80.5 

Data Attitude Recorded weather data 4 1 69.3 

 Forecasts 4 1 67.6 

Job Attitude - 6 2 51.2 

Numeracy - 8 2 63.6 

Total Indep.   10  
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Table 12 shows the result. The chosen components cover only relatively small amounts of 

the variance. Only for perceived behavior control (i.e., the limitations of the weather data) do the 

components include more than 80% of the variance.  

In all conducted PCAs, the first component (called “General Component” hereafter) is a 

combination of the underlying variables with almost equal weights. As can happen with highly 

correlated variables, the weights of the first component are negative; the first component of job 

attitude being the only exception. Therefore, in the regression, a negative coefficient for job attitude 

and demographic variables indicates a stronger reliance on the type of weather data in question.  

 Social norms, planned behavioral control and job attitude have more than one component. 

The second component of social norms “Officials vs. Public” contrasts EM colleagues, NWS and 

government employees, and training instructors against the public, such as residents and the media. 

For perceived behavioral control, the second component “Information quality” has positive weights 

for inaccuracy of and often changes to event magnitude and timing. The third PBC component 

stresses the two questions pertaining to self-efficacy for recorded data “REC_User Abilities” and 

forecast dissemination for short-term forecasts “FCST_Dissemination”. The second component of 

the job attitude “Mindset vs. uncertainty” contrasts the questions on a preventive versus a 

responsive mindset with those on coping with uncertainty. The second component of numeracy 

“Preference vs. Confidence” sets the preference for numbers or words apart from the confidence in 

working with fractions and percentages. The loadings for all components can be found in the 

appendix.  

3.2.2. Correlations among TPB variables 

As the TPB suggests, past behavior and intended future behavior are indeed strongly correlated; 

r=0.77 and r=0.72 for recorded weather data and forecasts respectively.  
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The relatively low correlations between the variables themselves, at most exceeding r=0.3, 

indicate that the TPB variables do measure very different aspects of recorded weather data and 

forecast use. However, some interesting correlations do exist. Overall perceived limitation 

(Perceived Limitations General) is enhanced by lower subjective numeracy (Numeracy General). 

Data attitude and overall subjective numeracy (Numeracy General) correlates with the overall social 

norms (Social Norms General, Officials vs. Public), indicating that the EMs might be reflecting 

some of their own perception onto others, e.g., they might (unconsciously) assume that others think 

similar to themselves. The attitude towards the data (Data Attitude) is clearly driven by the ability to 

understand and apply the data, its timeliness, availability for the area, regular releases and sufficient 

information (Information Quality) in the case of recorded weather data and perceived limitations 

overall (Perceived Limitations General) for forecasts.  

For forecasts, a more preventive mindset (Job Attitude General, Mindset vs. Uncertainty) 

correlates with more pressure by social norms (Social Norms General). Possibly, the perceived 

expectations of others to rely on forecasts lead to the EMs adopting such a mindset.   

For recorded weather data, EMs with a high subjective numeracy (Numeracy General) 

perceived fewer limitations (Perceived Limitations General). Using recorded weather data for 

emergency response requires some extrapolation of those data somewhat into the future, as it only 

describes the past. Possibly, EMs with a higher subjective numeracy feel more confident in doing 

this. Additionally, preferring numbers over of words (or having less confidence in working with 

fraction and percentages) (Preference vs. Mindset) correlates with a higher perception of the data 

being unavailable for the area, receiving it too late, having insufficient information and irregular 

release times (or having more confidence in the ability to understand and apply the information) 

(User Ability). 
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Table 13: Intercorrelations between TPB variables for recorded weather data. 

RECORDED  

WEATHER 

DATA 

Past 

Behavi. 
Intent. 

Gen. 

Soc. N. 

Officials 

vs. Publ. 

Gen. 

Data Att. 

Gen. 

Perc. L. 

Info. 

Quality 

User 

Abilities 

Gen. 

Num. 

Pref. vs. 

Confid. 

Gen. 

Job. Att. 

Mind. vs. 

Uncert. 

Past Behav.  1.0            

Intent.  0.77***  1.0           

Gen. Soc. N  0.32*** 0.28***  1.0          

Officials vs. Public  0.01  0.06 -0.02  1.0         

Gen. Data Att.  0.26*** 0.32*** 0.31*** -0.01   1.0        

Gen. Perc. Lim. -0.05 -0.06  0.10 -0.23*** -0.09  1.0       

Information Quality -0.07 -0.06 -0.14*  0.00 -0.22*** -0.01  1.0      

User Abilities  0.07  0.09 -0.06  0.06  0.09 -0.02 -0.03  1.0     

Gen. Num.  0.00 -0.04 -0.11  0.07  0.01 -0.21*** -0.12 -0.03  1.0    

Preference vs. 

Confidence 
-0.04 -0.05  0.12 -0.09  0.03 -0.10 -0.02  0.15*  0.00  1.0   

Gen. Job. Att.  0.06  0.17  0.12  0.08  0.10 -0.07  0.04  0.01  0.08 -0.02  1.0  

Mindset vs. Uncertainty -0.01  0.05 -0.06 -0.02  0.16**  0.07  0.13  0.14* -0.12 -0.08  0.00  1.0 

P-value:       ***  - <0.01;       **  - 0.05;       *  - 0.1 
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Table 14: Intercorrelations between TPB variables for short-term weather forecasts. 

WEATHER 

FORECASTS 

Past 

Behavi. 
Intent. 

Gen. Soc. 

N. 

Officials 

vs. Public 

Gen. 

Data Att. 

Gen. 

Perc. L. 

Info. 

Quality 

Dis- 

semin. 

Gen. 

Num. 

Pref. vs. 

Confid. 

Gen. Job. 

Att. 

Mind. vs. 

Uncert. 

Past Behav.  1.0            

Intent.  0.72***  1.0           

Gen. Soc. N  0.25*** 0.27***  1.0          

Officials vs. 

Public 
-0.12 -0.05  0.01  1.0         

Gen. Data Att. 0.30*** 0.41*** 0.17** -0.04  1.0        

Gen. Perc. 

Lim. 
-0.06 -0.05  0.03 -0.16* -0.25***  1.0       

Info. Quality  0.04  0.09 -0.01 -0.09  0.01  0.01  1.0      

Dissemination  0.11  0.07 -0.09  0.08  0.09 -0.02 -0.01  1.0     

Gen. Num. -0.07 -0.08 -0.07  0.11  0.09 -0.14 -0.10  0.04  1.0    

Preference vs. 

Confidence 
-0.01 -0.11  0.09 -0.10 -0.02 -0.09  006  0.01  0.00  1.0   

Gen. Job. Att. -0.07  0.10  0.13*  0.06  0.05 -0.12  0.03 -0.04  0.08 -0.02 1.0  

Mindset vs. 

Uncertainty 
-0.05  0.10  0.14*  0.02  0.11  0.01  0.09  0.09 -0.02 -0.08  0.00 1.0 

P-value:       ***  - <0.01;       **  - 0.05;       *  - 0.1 
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For recorded weather data, feeling confident about coping with uncertainty (Mindset vs. 

Uncertainty) is positively related to feeling more able to understand and apply the data (User 

Ability).  

3.2.3. Regressions  

In total, four regression models were built: one for past and intended future behavior for each 

recorded weather data and short-term weather forecasts. To reduce the numbers of variables, in a 

previous step, we tested which demographic variables are relevant. This turned out to be work 

experience, the type of hazard and EM education “Other.” For the short-term weather forecasts, 

weather instruction and a police background were also added to the models. All other demographic 

variables were excluded from the four main models. Multicollinearity was not a problem, because 

the variance inflation factors for all independent variables in the regression models are between 1.0 

and 1.5.   

 The regression results in Table 16 and Table 17 show that, generally, the models for short-

term weather forecasts were able to explain more variance than those for the recorded weather data. 

Similarly, the models perform better for intended future behavior than for past behavior.  

Work experience and type of hazard 

Work experience and the hazard “Snow and Ice Storm” are the dominant variables for recorded 

weather data. Apparently, EMs rely less on recorded weather data for winter storms than for other 

hazards. Supporting this finding, Steward et al. (2004) found that forecasts do not include pavement 

temperature, which is a critical variable for decisions about icing and snow removal. Hence, thruway 

supervisers have to make their own estimate or act intuitively (Stewart et al., 2004).  

Confirming the findings of Baumgart et al. (2007), people with less than one year of work 

experience rely very much less on weather information. Especially those with 5-10 years or more 
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than 20 years tend to rely more on recorded weather data than others. This supports Pielke’s and 

Conant’s (2003) opinion that “weather forecasts have value not because they are by any means 

perfect, but because the vast experience of users of those predictions fosters the incorporation of 

them into the decision routines.” While work experience would be regarded positive in this context, 

Morss (2010) reports that expectations are often anchored to past experiences which can lead to 

inadequate emergency responses.  

TPB variables 

For past behavior the perceived limitations – as opposed to self-efficacy – (User Ability), and for 

intended future behavior the confidence to cope with uncertainty (Mindset vs. Uncertainty) are 

significantly positively correlated with reliance on recorded weather data. However, compared to the 

demographic variables their weight is rather small. A possible explanation is that using recorded 

weather data requires the ability to extrapolate the data somewhat and the confidence to do so, given 

the uncertainty of the future.  

 For forecast data, having received weather instructions and being a policeman by profession 

weigh into the regression considerably besides work experience and type of hazard. Work experience 

has a heavier influence on past behavior than on intention for the future. Having work experience 

apparently leads to a heavier reliance on forecasts. People with work experience of 5-10 years rely on 

forecasts most. Not having received weather instructions is related with much less reliance on the 

forecast. Last, EMs who are simultaneously policemen by profession, i.e., wear two hats in their job, 

tend to rely less on forecasts.  

For forecasts, more variables of the Theory of Planned Behavior are statistically significant 

than for recorded weather data, most notably the data attitude. Having a positive attitude leads to a 

stronger reliance on forecasts. For past behavior, perceived higher social expectations (Social Norm 
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General) resulted in higher reliance on the forecast. Additionally, EMs who perceived unavailability 

for the area, insufficient information, irregular lead times and receiving the forecast too late 

(Dissemination) as more of a problem, relied on forecasts less. This confirms the finding that 

perceived limitations of the forecast – rather than self-efficacy – influenced the use of recorded 

weather data and forecasts in the past, but does not inform intentions for the future.  

For intended future behavior, additionally, the overall subjective numeracy (Numeracy 

General) is statistically significant. Feeling more confident in this regard seems to be related with a 

stronger intention to rely on forecasts in the future.  

The picture changes considerably, when demographic variables are not included in the 

regressions. Then, social norms (Social Norm General) and data attitude are the driving factors for 

both recorded weather data and forecasts (Figure 9). These two variables are precisely the ones that 

Artikov et al. (2006) found to be significant predictors for the use of climate forecasts by farmers. A 

possible interpretation is, that work experience translates to the EMs having learned to listen to their 

social surroundings and having experienced the benefits of using such data to inform their decisions. 

Supporting this finding, Golden and Adams (2000) report that “close coordination among Weather 

Forecast Offices, local media, and local/state emergency management offices” is a major contributor 

to successful tornado warnings. Artikov et al. (2006) offer a slightly different interpretation. They 

think that farmers might decide whether to use climate forecasts after consulting others or might 

simply do what everyone else around them does. This could also be the case for EMs. For example, 

Morss and Ralph (2007) found that EMs find personal relationships with forecasters very important, 

when faced with a critical situation.  

Studying the correlations among the TPB variables showed that both social norms and data 

attitude correlate with each other and the perceived limitations of the weather information (Figure 
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9). Given that that perceived limitations are related to both social norms and data attitude, it seems 

plausible that EMs reflect their own perception of the weather information onto their social 

surroundings, when answering the survey questions. At the end of the causal chain, subjective 

numeracy is correlated to the perceived limitations of recorded weather data and more weakly with 

those of forecasts (Figure 9). But it is also possible that a positive attitude of the social surrounding 

influence the EMs’ attitude towards and perception of the limitation of the data. Not taking into 

account social norms and numeracy, Demuth et al. (2011) found that perceptions of the forecasts 

(i.e., the perceived importance of NWS information, and confidence in the forecasts) are significant 

predictors of the frequency with which the public consults weather forecasts. Additionally, the 

general public seems to obtain forecasts more often when the forecast error (i.e., the actual error, 

rather than the perceived limitations as measured in our study) is larger (Demuth et al., 2011).  

 

Figure 9: Correlations in the Theory of Planned Behavior model when including when including 

demographic data (black) and excluding it (red).  
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Table 15: Boxplot and scatterplots of the most relevant variables in the four regression models: Work 

experience, having received weather instructions, social norms, perceived limitations of and attitude 

towards recorded weather data and short-term weather forecasts, job attitude, type of hazard, and 

numeracy.  

Work Experience Having received weather instructions 

 
 

Social Norms: General Data Attitude 
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Perceived Limitations:   

REC_User ability, FCST_Dissemination 
Numeracy General 

  

Job Attitude: General Hazard 

  

Police Background  
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Table 16: Regression results based on PCA for recorded weather data with and without demographic 

variables. 

 Past 

Behavior 
 

Intended Future 

Behavior 
 Past Behavior 

Intended Future 

Behavior 

 Coef SE  Coef SE   Coef SE  Coef SE  

Intercept 2.43 1.10 * 2.64 1.47 .  -0.10 0.16  -0.10 0.17  

PBC              

   General -0.08 0.08  -0.08 0.08   -0.05 0.08  -0.05 0.09  

   Info. Quality -0.10 0.11  -0.07 0.11   -0.06 0.11  -0.04 0.12  

   User Ability 0.17 0.15 * 0.16 0.16   -0.16 0.15  0.16 0.16  

Social Norms              

   General 0.20 0.09  0.14 0.09   0.28 0.09 ** 0.22 0.09 * 

   Officials vs. 

Public 
0.07 0.14  0.16 0.15  

 
0.06 0.14  0.12 0.15  

Data Attitude 0.07 0.11  0.18 0.11   0.15 0.11  0.24 0.11 * 

Job Attitude              

   General 0.10 0.12  0.26 0.12 *  0.06 0.12  0.21 0.12 . 

   Mindset vs. 

Uncertainty 
-0.05 0.15  -0.004 0.16  

 
-0.02 0.15  0.11 0.16  

Numeracy              

   General -0.02 0.04  -0.11 0.09   -0.002 0.09  -0.05 0.09  

Prefer. vs. 

Confidence 
-0.04 0.14  -0.01 0.14  

 
-0.15 0.14  -0.08 0.15  

Hazard              

   River Flood 0.08 0.51  0.13 0.56         

   Tornado -0.20 0.55  -01.8 0.59         

   Hurricane 0.30 0.57  0.52 0.61         

   Winter Storm 1.41 0.50 ** 1.11 0.54 *        

   Heat Wave -1.0 0.99  0.26 1.03         

Work Exp.              

    1-5 years -2.72 1.11 * -2.97 1.42 *        

    5-10 years -3.04 1.11 ** -3.63 1.43 *        

    10-20 years -3.03 1.15 ** -3.02 1.44 *        

    > 20 years -3.24 1.14 ** -3.59 1.45 *        

EM Educ.  

   Other 
0.57 0.59  1.83 0.61 ** 

 
      

R2  0.32   0.35    0.16   0.19  

Adjusted R2  0.20   0.27    0.09   0.13  

P-Value <0.001  <0.001   0.013  0.003  

Significance:     ***  -  0.001;      **  -  0.01:     *  -  0.05;       .  -  0.1 
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Table 17: Regression results based on PCA for short-term forecasts with and without demographic variables.  

 
Past Behavior  

Intended Future 

Behavior 
 Past Behavior 

Intended Future 

Behavior 

 Coef SE  Coef SE   Coef SE  Coef SE  

Intercept 2.87 0.89 ** 1.05 0.97   -0.10 0.15  -0.04 0.17  

PBC              

   General -0.06 0.06  -0.06 0.07   -0.03 0.07  0.02 0.07  

   Info. Quality 0.04 0.13  0.02 0.14   0.03 0.13  0.06 0.15  

   User Ability 0.27 0.15 . -0.01 0.17   0.21 0.15  0.02 0.18  

Social Norms              

   General 0.12 0.07 . 0.12 0.08   0.17 0.07 * 0.19 0.09 * 

   Officials vs. Public -0.06 0.12  0.17 0.12   -0.10 0.12  0.02 0.14  

Data Attitude 0.19 0.09 * 0.43 0.10 ***  0.27 0.09 ** 0.46 0.10 *** 

Job Attitude              

   General -0.15 0.10  0.15 0.11   -0.16 0.11  0.08 0.12  

   Mindset vs. Uncertainty -0.05 0.13  0.02 0.14   -0.11 0.13  0.05 0.16  

Numeracy              

   General -0.06 0.07  -0.18 0.08 *  -0.04 0.07  -0.08 0.08  

Prefer. vs. Confidence -0.10 0.12  -0.21 0.13   -0.11 0.12  -0.27 0.14 . 

Hazard              

   River Flood 0.01 0.44  1.10 0.48 *        

   Tornado -0.18 0.45  0.41 0.49         

   Hurricane -0.31 0.51  0.53 0.54         

   Winter Storm 0.48 0.43  1.14 0.47 *        

   Heat Wave          Significance  

Work Exp.          *** - 0.001  

    1-5 years -3.41 0.92 *** -2.24 1.00 *    ** - 0.01  

    5-10 years -3.67 0.91 *** -2.5 0.99 *    * - 0.05  

    10-20 years -3.03 0.94 ** -1.6 1.03     . - 0.10  

    > 20 years -3.37 0.94 *** -1.82 1.02 .        

EM Education  

   Other 
0.50 0.53  1.92 0.57 * 

 
      

Weather Instructions             

   No -0.21 0.46  -0.90 0.51 .        

   Cannot remember 2.81 0.93 ** 2.23 1.02 *        

Police              

    Volunteer -0.10 0.63  -0.82 0.8         

    Retired 0.23 0.47  0.61 0.51         

    Professional 1.47 0.42 *** 1.43 0.47 **        

R2 (Adj. R2) 0.44 (0.30)  0.54 (0.43)   0.18 (0.11)  0.26 (0.20)  

P-Value <0.001  <0.001   0.011  <0.001  
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4. Discussion  

The most consistent predictor of how heavily an EM relies on recorded weather data and short-term 

weather forecasts is work experience. The strongest difference in data used exists between EMs 

having less than a year of work experience and those having more than that. Similarly, Baumgart et 

al. (2007) found that EMs with more work experience tend to make use of weather information 

more frequently.  

 Compared to work experience, the variables of the Theory of Planned Behavior (TPB) have 

a much weaker correlation to the reliance on weather information. Armitrage and Connor (2001) 

found in their analysis of 185 studies that TPB accounted on average for 21% of the variance in self-

reported behavior and 39% in intention, but those studies did not include demographic variables. 

Applying TPB to reliance on recorded weather data and forecasts yielded lower values.24 When 

trying to explain the frequency with which the general public obtains forecasts using slightly 

different variables, Demuth et al. (2011) were likewise able to only explain 22% of the variance. 

There are several reasons why our TPB model does not explain more of the variance.   

Most importantly, the variables have been constructed by applying principal component 

analysis (PCA) to the original survey questions. PCA was necessary to reduce the number of 

variables, given the limited amount of data points. However, the choice of components cumulatively 

did not add up to much more than 50% of the variance for all TPB variables, except for perceived 

limitations (see Table 12). Consequently, a lot of the information inherent to the survey data would 

only be available with a much larger sample size. 

Second, conventional linear regression might not be the best mathematical method. 

Generally, some question, whether survey answers on a Likert Scale can be treated as interval data in 

                                                 
24 The intercorrelations between the variables are low as well when compared to the averages 
reported by Armitrage and Connor (2001) in their meta-analysis.  
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order to subject them to principal component analyses and linear regressions. Given that those 

survey answers are really ordinal data, correspondence analysis and logit regression should be used 

instead. In those analyses, each answer option is treated as a binary variable. Thus, a question with 

an answer scale from one to five becomes four variables instead of one. However, such a large 

number of variables cannot be accommodated by a dataset consisting of 207 participants. Therefore, 

in this case, the only choice is to revert to principal component analysis and conventional linear 

regression.  

The limited amount of variance that the regression models are able to explain is most likely 

due to the highly variable nature of emergencies. As mentioned in the introduction, each emergency 

response is unique and the response highly dependent on the context. In a previous study, we found 

that often cascading events, such as collapsing infrastructure during a flood, are the most trying 

challenges for emergency responders (Study 1).  

 In the traditional configuration of the TBP model – without demographic variables – social 

norms and the attitude towards the weather information are the main predictors. In contrast, 

Armitrage & Connor (2001) report that in other TPB studies social norms are the weakest predictor 

of intentions, and thus behavior. They attribute this to poor measurement of the variable and advise 

a multi-item measurement. Additionally, including measures of attitude strength has been suggested 

to increase the predictive power of attitudes (Armitrage, Connor, 2001). Both was done for social 

norms in this study. We asked how much EMs worry about being criticized by social groups, and a 

variety of social groups were included. This could explain the relative success of social norm as a 

predictor in the regression models excluding demographic factors. The strong performance of social 

norms and attitude as predictors could also explain the weak performance of the perceived 

limitations (Armitrage, Connor, 2001). This seems indeed to be the case, because perceived 

limitations correlate with social norms and data attitude in our study.  
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 An important limitation of this study is that we do not exactly know, which specific weather 

information EMs were thinking of when answering the survey. For example, does an EM facing a 

flood understand a “short-term weather forecast” to be the predictions by the NWS river forecast 

center or the radar? To make the survey relevant for as large a number of EMs as possible, it was 

necessary to include different hazards in the survey. While it is interesting to know, how forecast use 

varies across hazards, it was not possible to specifically ask for the weather information that are 

available for each hazard. The study would then have become too multi-dimensional. Therefore, 

only conclusions on a level higher than specific NWS products are possible.  

5. Conclusion 

Work experience was found to be the best predictor of whether an emergency manager relied on 

recorded weather data and short-term weather forecasts in the past or intends to do so in the future. 

Additionally, those products were relied on less for ice and snow storm than for other weather-

related hazards. If work experience really is the main factor driving the reliance on recorded weather 

data and forecasts, emergency management training leaves needs to be improved significantly. 

Especially, since 84% of the participants had received instructions on how to use these products at 

some point.  

 Comparatively, the TPB variables weigh in significantly less. For the use of the recorded 

weather data and forecasts in the past, perceived limitations of those products – rather than the 

ability of the EM to understand and apply them – lead to less reliance on those types of data. For 

forecasts, the data attitude is the strongest TPB predictor for both past and future. For past behavior 

social norms, and for intentions for the future numeracy is slightly relevant. EMs who feel confident 

in dealing with uncertainty (job attitude) have stronger intentions to use recorded weather data in the 

future.  
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When demographic variables are excluded, as is done in most TPB studies (Cohen et al., 2009), 

social norms and data attitude become the two dominant predictors for recorded weather data and 

short-term weather forecasts for both past behavior and future intentions. It is possible that work 

experience results in learning to appreciate these types of weather information for decision-making 

and to listen to the people around the EM. Social norms and data attitude are correlated to the 

perceived limitations of the forecast, which is turn are correlated to subjective numeracy. However, 

it cannot be determined which direction the causality goes. 

Turning to the TPB variables themselves, it was found that EMs rely little on recorded weather 

data and forecasts to determine when and where to deploy storm spotters and on recorded weather 

data when to initiate evacuations. Storm spotters are a way to gather more data early on. But 

apparently, it is not so much a worrying forecasts that informs this decision.  

To use recorded weather data, the inability to apply information to the emergency response, the 

unavailability of the data for the area, and receiving the data too late are perceived to be most 

limiting. The former could be addressed by emphasizing the use of recorded weather data more in 

instruction sessions. For forecasts, the inaccuracy of and frequent changes to event timing and 

magnitude are perceived to be the greatest obstacles. This confirms that uncertainty limits the use of 

forecasts in practice.  

Social pressure to rely on the studied weather information seems to come mainly from peers and 

those who possess local knowledge: EM colleagues, other city employees and NWS employees. 

Training and workshop instructors are least influential, probably because of the limited relevance to 

local circumstances. Therefore, localized training and peer education seem to be the most promising 

way to increase the value of weather information for decision-making. The EMs would appreciate it, 

because they have an overwhelmingly positive attitude towards those products. The fact that 75% 

were very or extremely satisfied indicates that EMs are unlikely to take initiative themselves.  
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One-third of the EMs thought that they tend to act intuitively rather than considering all facts 

and figures extensively. A majority of 65.7% prioritized protecting citizens. This distinguishes EMs 

from professions such as fire fighters and paramedics. But slightly more than half thought that it was 

not their task to prevent hazardous situations. This is not surprising since three-quarters of the 

participants have a background in another emergency response profession. Consequently, there 

could be much room for improvement to make the most use of the lead time that forecasts provide. 

Especially, since uncertainty was not considered much of a problem for planning an emergency 

response by about two-thirds of the participants (57-72%).  

Compared to the participants in previous studies that included the subjective numeracy scale by 

Fagerlin et al. (2007), the EMs assessed their numeracy much higher. Generally, they feel more 

confident in working with percentages then with fractions. Additionally, they tend to prefer numbers 

over text, unless it is in a conversation with someone.  

Reflecting on the Theory of Planned Behavior itself, a distinction between perceived behavioral 

control (i.e., external factors limiting a behavior) and self-efficacy (i.e., internal factors limiting a 

behavior) was found to be valuable.   
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STUDY 3 

Performance and Robustness of Probabilistic River Forecasts Computed 

with Quantile Regression based on Multiple Independent Variables in the 

North Central U.S.A.25 

Abstract 

This study further develops the method of quantile regression (QR) to predict exceedance 

probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for 

which the National Weather Service’s North Central River Forecast Center issues forecasts daily, 

this is the first QR application to U.S. American river gages. Archived forecasts for lead times up to 

six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as 

the only independent variable (Weerts et al., 2011; López et al., 2014). This study adds the rise rate 

of the river stage in the last 24 and 48 hours and the forecast error 24 and 48 hours ago to the QR 

model. Including those four variables significantly improved the forecasts, as measured by the Brier 

Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already 

delivered high reliability. Combining the forecast with the other four variables results in much less 

favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, 

but on the year, the river gage, lead time and event threshold that are being forecast. We find that 

each event threshold requires a separate model configuration or at least calibration.  

Keywords: River forecasts, quantile regression, probabilistic forecasts, robustness 

  

                                                 
25 In August 2014, a version of this chapter was submitted to Hydrology and Earth System Sciences, 
an Open Access journal.   
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1. Introduction 

River-stage forecasts are inherently uncertain. The past has shown that unfortunate decisions have 

been made in ignorance of the potential forecast errors (e.g., Pielke, 1999; Morss, 2010). As of today, 

the National Weather Service does not routinely publish uncertainty information along with their 

short-term river-stage forecast (Figure 10). Only two long-term NWS river forecasts are 

probabilistic, i.e., quantify uncertainty: an exceedance curve for a period of three month and bar 

plots for each week of a three months period, see Figure 11 and Figure 12. These graphs can be 

used to determine with which probability each river stage will be exceeded in those weeks or three-

months period. Although the short-term weather forecasts for the next few days are much used to 

prepare for flood events, they have remained deterministic,26 as shown in Figure 10.27 

4  

Figure 10: Deterministic short-term weather forecast in six hour intervals as published by the NWS 

for Hardin, IL on 24 April 2014. 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 

                                                 
26 Two forecasts are published. The first (non-QPF) does not take any precipitation into account. 
The second (QPF) includes the precipitation forecast for the next 12 hours. This is the only way for 
the user to infer some sort of uncertainty.  
27 The deterministic forecasts are also available as text or tables. 
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Figure 11: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Exceedance curve for three months period. (Not available for Hardin, IL). 

Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 

 

Figure 12: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Bar plot for each week of a three months period. (Not available for Hardin, 

IL). Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 
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NWS is currently developing and implementing ensemble forecasting to quantify some of 

the uncertainty of river-stage forecasts probabilistically (NWS, 2012; NOAA, 2001). The kinds of 

short-term probabilistic forecast products and visualizations that NWS envisions have not been 

made public yet.  

This paper further develops the method by Weerts et al. (2011). An important difference is 

that we predict the probabilities that flood stages are exceeded rather than uncertainty bounds, 

because the former are more relevant to decision-making. In an attempt to balance missed alarms 

and false alarms, decision-makers are likely to resort to the best estimate (i.e., the deterministic 

forecast) rather than basing actions on the 75th or 90th confidence interval. Additionally, predicting 

the probability of an event corresponds with other forecasts with which users have much 

experience, e.g., the probability of precipitation. Morss et al. (2010) found in a survey of the general 

U.S. public that most people are able to base decisions on those forecasts.  

Weerts et al. (2011) achieved impressive results in estimating the 50% and 90% confidence 

interval of river-stage forecasts in England and Wales using QR based on two years of archived 

river-stage forecasts. To our knowledge, this paper is the first application of this method to the U.S. 

American context. Additionally, we are fortunate to have much larger dataset, consisting of archived 

forecasts for 82 river gages covering 11 years available. 

In this paper, the QR method is applied to the U.S. American context using the 82 river 

gages of the North Central River Forecast Center (NCRFC).28 The method is further developed by 

demonstrating the benefit – measured by an increase in Brier Skill Score (BSS) –  of including the 

rise rates of water levels in past hours and the past forecast errors as independent variables into the 

quantile regression. For extremely high water levels the variable combination has to be customized 

                                                 
28 As of spring 2014, the NCRFC does not publish any sort of probabilistic forecasts.  
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for each river gage. For those, sets of few independent variables work best. Variable combinations 

for other event thresholds should include as many dependent variables as possible. Using the same 

combination for all of them works satisfactorily. Furthermore, it is found that the forecast – the only 

independent variable in the original QR method – is difficult to combine with the other dependent 

variables. Last, the method is shown to be robust to the size of the training dataset. However, the 

forecast performance does vary significantly across locations, lead times, water levels, and forecast 

year. 

1.1. NWS River Forecasting 

The National Weather Service (NWS) issues river-stage forecasts for ~4,000 river gages every day. 

In emergency management, which is the focus of this paper, usually short-term river-stage forecasts 

are used.29 Such daily published forecasts predict the stage height in six-hour intervals for up to five 

days ahead (20 6-hour intervals).30 When floods occur and increased information is needed, the local 

river forecast center (RFC) can decide to publish river-stage forecasts more frequently and for more 

locations.  

The models used by the NWS to predict stage heights are numerical hydraulic models that 

simulate the river discharges in each watershed. Each river-stage forecast is the product of at least as 

many models as there are watersheds upstream; often in the hundreds. Welles et al.  (2007) provides 

a detailed description of the forecasting process. 

                                                 
29 Like in Grand Forks, ND long-term forecasts are only used for emergency management along 
rivers where the high discharges are dominated by snowmelt.  
30 The river-stage forecasts are produced by one of NWS’ thirteen river forecasts centers (RFCs). 
Every morning the forecasts are forwarded to one of NWS’s 122 local weather forecast offices 
(WFOs), who then disseminate the information to the public through a variety of media channels or 
by issuing warnings. 
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The published short-term weather forecasts are deterministic, see Figure 10. The only way 

that users can get a sense of the uncertainty is by comparing the quantitative precipitation forecast 

(QPF ) with the non-QPF forecast. The QPF-forecast includes the precipitation predicted for the 

next 12 hours and zero precipitation for the forecasts beyond 12 hours31. The non-QPF forecast 

assumes no precipitation. Combined, these two forecasts give an idea of how much difference (a 

short period of) precipitation would make for the stage height in the river. The non-QPF serves as a 

reasonable lower bound; however, the QPF forecast is not an upper bound (i.e., precipitation could 

exceed the forecast values). 

1.2. Uncertainty and Error in River-Stage Forecasts 

The error framework for river-stage forecasts by Leahy et al. (2007) summarizes the major sources 

of error for river-stage forecasts, see Figure 13. Much of the uncertainty is exogenous to the models. 

The main model inputs are precipitation forecasts and observations. Those forecasts are significantly 

uncertain themselves, and only the forecast for the next 12 hours is taken into account. Additionally, 

the grid size of those prediction models does not match the watersheds, but is much larger. Another 

major source of uncertainty stems from the rating curves needed to translate the output of the river 

forecast models discharge to water level (Leahy et al., 2007). Especially in the case of high stage 

heights, those rating curves add much uncertainty. Sedimentation decreases the accuracy of the 

rating curves as well. The RFCs often receive only half-yearly rating curve updates from institutions 

like U.S. Geological Survey (USGS). Furthermore, Arkansas-Red Basin River Forecast Center 

(ABRFC) estimates that dam operators stick to their stated operations schedules only 65-70% of the 

time. This means that that RFC effectively lacks correct input data for their models one third of the 

                                                 
31 This practice differs from RFC to RFC and also over time. For the ABRFC Welles et al. (2007) 
report: ~1993-1994: zero QPF; ~1995-2000 24hr QPF for first 24hrs, zero QPF beyond 24hrs; 
~2001-2003 12hr QPF for first 12hrs, zero QPF beyond 12hrs. 
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time. Finally, high water levels only occur infrequently. The part of the model used for high water 

levels has thus been built on much fewer data points than the one for low stage heights. With rising 

stage heights the models are thus increasingly “flying blind,” resulting in increasing uncertainty. 

Ensemble forecasting, being developed and implemented by the NWS, considers the 

uncertainty in the input data. Post-processing the data, as is done in this paper, takes into account all 

sources of uncertainty. 

For users, forecasts are most important in extreme situations, such as droughts and floods. 

Due to their infrequency and the subsequent scarcity of data, forecasts have larger errors where 

accuracy has the most value. Additionally, users might only experience such an event once or twice 

in their lifetime, so that they have no experience to what extent they can rely on deterministic 

forecasts in such situations. Given the many sources and complexity of uncertainty and the lacking 

user experience, it is easy to see how forecast users find it difficult to estimate the forecast error. 

 

 

Parameter errors 

Model (structural) errors 

 

Model 

Forecast rainfall errors 

Measured rainfall errors 

 

Inputs 

Height measurement errors 

Rating curve errors 

 

Output 

Figure 13: Error framework for river-stage forecasting by Leahy et al. (2007). 
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2. Method 

The use of quantile regression to quantify the error distribution of river-stage forecasts has first been 

presented by Weerts et al. (2011) for river catchments in the England and Wales. In this paper, we 

use substantially more data and further develop Weerts’ original method in three ways: a) by 

including additional variables instead of using only the forecast itself as an independent variable; b) 

by testing the robustness of the method across locations, lead times, event thresholds, forecast years, 

and the size of training dataset; c) by estimating the more decision-relevant probability of exceeding 

flood stages rather than confidence bounds. To develop the different configurations of quantile 

regression and to compare their performance, the Brier Skill Score (BSS) is used. 

 In the following, the quantile regression itself, the proposed addition to the method, and the 

undertaken computations are explained.  

2.1.  Quantile Regression 

In the context of river forecasts, linear quantile regression has been used to estimate the distribution 

of forecast errors as a function of the forecast itself. Weerts et al. (2011) summarize this stochastic 

approach as follows:  

 “[It] estimates effective uncertainty due to all uncertainty sources. The approach is implemented as a 

post-processor on a deterministic forecast. [It] estimates the probability distribution of the forecast 

error at different lead times, by conditioning the forecast error on the predicted value itself. Once this 

distribution is known, it can be efficiently imposed on forecast values.” 

 Quantile Regression was first introduced by Koenker (2005; 1978). It is different from 

ordinary least square regression in that it predicts percentiles rather than the mean of a dataset. 

Koenker and Machado (1999, p. 1305) and Alexander et al. (2011) demonstrate that studying the 

coefficients and their uncertainty for different percentiles generates new insights, especially for non-
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normally distributed data. For example, using quantile regression to analyze the drivers of 

international economic growths, Koenker and Machado (1999) find that benefits of improving the 

terms of trade show a monotonously increasing trend across percentiles, thus benefitting faster-

growing countries proportionally more.  

In its original application to river forecasts by Weerts et al. (2011) the forecast values and the 

corresponding forecast errors are transformed into the Gaussian domain using Normal Quantile 

Transformation (NQT), as instructed by Bogner et al. (2011), to account for heteroscedasticity. 

Building on this study, López et al. (2014) compare different configurations of QR with the forecast 

as the only independent variable, including configurations omitting NQT. They find that no 

configuration was consistently superior for a range of forecast quality metrics (López et al., 2014). 

To be able to combine variables of different nature, we build a model based on untransformed 

variables. The reason to do so will be discussed and illustrated later (see Figure 21 and Figure 22).  

Using the transformed data, a quantile regression is run for each lead time and desired percentile 

with the forecast error as the dependent variable and the forecast and other variables as the 

independent variables.32 To prevent the quantile regression lines from crossing each other, a fixed 

effects model is implemented below a certain forecast value. Weerts et al. (2011) give a detailed 

mathematical description for applying QR to river forecasts. Mathematically, the approach is 

formulated as follows: 

Equation 2: Original QR implementation with NQT, with percentiles of the forecast error as the 

dependent variable and the only independent variable being the forecast itself, bot transformed into 

the normal domain. 

  ( )   ( )               ( )      

                                                 
32 As mentioned in Weerts et al. (2011), our quantile regression models have likewise a higher 
predictive capacity, if the forecast error rather than the forecast itself is used as the dependent 
variable.  
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Equation 3: QR implementation without NQT, with percentiles of the forecast error as the 

dependent variable and multiple independent variables.  

  ( )   ( )  ∑       ( )

 

 

    

with  Fτ(t)    – estimated forecast associated with percentile τ and time t 

 f(t)  – original forecast at time t  

Vi(t)  – the independent variable i (e.g., the original forecast) at time t 

Vi;NQT(t)           – the independent variable I transformed by NQT at time t 

ai,τ , bτ  – model coefficients 

 

The second part of the equations stands for the error estimate based on the quantile regression 

model for each percentile τ and lead time. In Equation 2, that was used in the original QR method 

proposed by Weerts et al. (2011), this estimation was executed in the Gaussian domain using only 

the forecast as independent variable.33 

2.2. Brier Skill Score 

The original QR implementation by Weerts et al. (2011) was evaluated by determining the fraction 

of observations that fell into the confidence intervals predicted by the QR model; i.e., ideally, 90% 

of the observations should be larger than the predicted 10th percentile for that day, and smaller than 

the predicted 90th percentile. López et al. (2014) used a number of metrics to assess model 

performance, e.g., the Brier Skill Score (BSS), the mean continuous ranked probability (skill) score 

(RPSS), the relative operating characteristic (ROC), and reliability diagrams to compare QR 

configurations.  

We use the Brier Skill Score to compare the different versions of the QR model proposed in 

this paper. We chose to optimize our QR models based on the BSS, first introduced by Brier (1950) 

                                                 
33 All quantile regressions were done using the command rq() in the R-package “quantreg” (Koenker, 
2013).  
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for two reasons. First, for decision-making the probability with which a certain water level, e.g., a 

flood stage, is exceeded is more useful than confidence intervals. Second, the Brier Score can be 

decomposed into two different measures of forecast quality (see Equation 4): Reliability and 

resolution. The third component is uncertainty, which is a hydrological characteristic inherent to the 

river gage. Thus, it is not subject to the forecast quality. Equation 4 gives the definition of the (de-

composed) Brier Score (e.g., Jolliffe and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009).34 

Equation 4: Brier Score; de-composed into three terms: reliability, resolution and uncertainty. 

   
 

 
∑   (    ̅ )

  
 

 
∑   ( ̅   ̅)   ̅(   ̅)

 

   

 

   

 
 

 
∑(     )

 

 

   

 

with  BS  – Brier Score 

 N – number of forecasts  

K  – the number of bins for forecast probability of binary event occurring on each day 

nk  – the number of forecasts falling into each bin 

ōk  – the frequency of binary event occurring on days in which forecast falls into bin k 

fk  – forecast probability 

ō  – frequency of binary event occurring 

ft – forecast probability at time t 

ot – observed event at time t (binary: 0 – event did not happen, 1 – event happened) 

The Brier Score pertains to binary events, e.g., the exceedance of a certain river stage or 

flood stage. Reliability compares the estimated probability of such an event with its actual frequency. 

For example, perfect reliability means that on 60% of all days for which it was predicted that the 

                                                 
34 Bröcker (2012) showed that the conventional decomposition of the Brier Score is biased for finite 
sample sizes. It systematically overestimates reliability, under- or overestimates resolution, and 
underestimates uncertainty. Several authors proposed less biased decompositions (e.g., Bröcker, 
2012; Ferro and Fricker, 2012). Additionally, Stephenson et al. (2008) proved that the Brier Score 
has two additional components when it is computed based on bins, as is usually done. Nonetheless, 
we chose to stick to the conventional decomposition and using bins, as implemented in the R-
package “verification” (NCAR-Research Applications Laboratory, 2014; Wilks, 1995) to ensure that 
our results can be readily compared to other studies like López et al. (2014). After all, the Score is 
mainly used to compare model configurations, rather than establishing the absolute performance of 
each model.  
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water level would exceed flood stage with a 60% probability, it actually does so. A forecast with 

perfect reliability would follow the diagonal in Figure 14, i.e., the area in Figure 14a representing 

reliability would equal zero (e.g., Jolliffe, Stephenson, 2012; “Brier Score,” 2014; WWRP/WGNE, 

2009). The configuration by López et al. (2014) performs well in terms of reliability. When estimating 

confidence intervals, Weerts et al. (2011) achieved good results especially for the more extreme 

percentiles (i.e., 10th and 90th).  

Figure 14: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e. performs better than 

random guessing, if it is inside the shaded area in the figure b. Ideally, the forecast would follow the 

diagonal (BSS=1). (Adapted from Wilson, n.d.; and Hsu, Murphy, 1986).  

Resolution pertains to how much better the forecast performs than taking the historical 

frequency (climatology) as a forecast. For example, for a gage where flood stage is exceeded on 5% 

of the days in a year, simply using the historical frequency as the forecast would mean forecasting 

that the probability of the water level exceeding flood stage is 5% on any given day (e.g., Jolliffe, 

Stephenson, 2012; “Brier Score,” 2014; WWRP/WGNE, 2009). In Figure 14, a forecast with good 
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resolution would be steeper than the dashed line that represents climatology, i.e., the area in Figure 

14a representing resolution would be maximized. In absolute terms, the resolution can never exceed 

the third term in Equation 3 representing the uncertainty inherent to the river gage. Through the 

resolution component, the Brier Score is related to the area under the relative operating 

characteristic (ROC) curve (for more detail, see Ideka et al., 2002). The latter likewise quantifies how 

much better a forecast is than random guessing in detecting a binary event; though unlike the Brier 

Score it focuses on the ratios of false and missed alarms (e.g., Jolliffe, Stephenson, 2012; “Brier 

Score,” 2014; WWRP/WGNE, 2009).  

A forecast possesses skill, i.e., performs better than random guessing or climatology, if it is 

inside the shaded area in Figure 14b. The Brier Skill Score (BSS) equals the Brier Score normalized 

by climatology to make the score comparable across gages with different frequencies of a binary 

event.35 The BSS can range from minus infinity to one. A BSS below zero indicates no skill; the 

perfect score is one (e.g. Jolliffe, Stephenson, 2012; “Brier Score,” 2014; WWRP/WGNE, 2009). 

2.3. QR with more than one variable 

Intuitively, more information should lead to better prediction of the distribution of the forecast 

error, because the regression models would be based on more data. The most obvious variables to 

include besides the forecast itself are the observed water level 24 and 48 hours ago, the observed rise 

in water level in the last 24 and 48 hours (called rise rate hereafter), the forecast error 24 and 48 

hours ago, or the time of the year, e.g., month or season. Other potential variables are the water 

levels observed up- and downstream at various times, the precipitation upstream of the catchment 

                                                 
35 All measures of forecast quality were computed using the R-package “verification” (NCAR, 2014). 
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area, and the precipitation forecast. However, these latter variables are much more difficult to gather 

because of the way data is archived at the National Climatic Data Center.36 

Table 18: Variable Combinations 

Combi fcst err24 err48 rr24 rr48  Combi fcst err24 err48 rr24 rr48 

1       16      

2       17      

3       18      
4       19      

5       20      
6       21      
7       22      

8       23      
9       24      
10       25      
11       26      

12       27      
13       28      
14       29      
15       30      
       31      

fcst = forecast; rr24, rr48 = rise rate in the past 24 and 48 hours;  

err24, err 48 = forecast error 24 and 48 hours ago 

 

 In preliminary trials on two case studies (gages HARI2 and HYNI2), it was found that 

season and months are not significant in quantile regression models to predict the quantiles of the 

forecast error. It was also found that the rise rates and the forecast errors are better predictors than 

the water levels observed in previous days. After all, the observed water levels are used to compute 

                                                 
36 For the North Central River Forecast Center (NCRFC), the river forecast and the observed water 
levels are saved in the same text product available at [accessed 6/4/2014]: 
http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX. (Station ID: 
KMSR, Bulletin ID: FGUS5). Requesting the corresponding precipitation and precipitation forecast 
requires an extensive effort or direct access to the database. 



 

 
103 

 

the rise rates and forecast errors, so that these latter variables include the information of the former 

variable.  

To determine which set of variables preforms best in generating probabilistic forecasts, all 31 

possible combinations of the forecast (fcst), the rise rate in the last 24 and 48 hours (rr24, rr48), and 

the forecast error 24 and 48 hours ago (err24, err48) were tested for 82 gages that the NCRFC issues 

forecasts for every morning (Table 18). Based on the Bier Skill Score, a metric of forecast quality 

explained below, it was determined which variable combination on average and most often leads to 

the best out-of-sample results for various lead times and water levels.  

2.4. Computations 

For each river gage and lead time, one QR model was trained on the first half of the dataset for each 

the following quantiles: [0.05, 0.1, 0.15, … , 0.85, 0.90, 0.95]. For the forecast published on each day 

in the verification dataset, i.e., the second half of the dataset, the water levels corresponding with 

these quantiles were predicted. Effectively, for each day, a probability distribution of water levels to 

expect is computed. Using linear interpolation,37 the probability with which various water levels, 

called event thresholds hereafter, will be exceeded was then calculated. After having repeated this 

procedure to determine the probabilities of exceeding those event thresholds for each day in the 

verification dataset, the BSS for each threshold was computed.38   

Analyses have been done for two sets of thresholds. First, the computation was done for the 

10th, 25th, 75th, and 90th percentile of observed water levels to study whether the various 

                                                 
37 Using the command approx(x, y, xout, yleft=1,yright=0,ties=mean) in the R-package “stats” (R Core 
Team, 2014).  
38 In this study, an event was defined as the river water level exceeding a certain water level. This is 
different from the conventional definition of an event, as the probability that the water level will be 
between for example the moderate and the major flood stage. The more binary definition of 
exceeding or not exceeding a certain water level seemed to be more relevant to real-life decision-
making.  
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combinations of variables perform equally well for high and low thresholds. Second, the analysis was 

repeated for the four flood stages (action stage, and minor, moderate, and major flood stage) of each 

gage, because those play an important role in flood response planning. 

This procedure is repeated for the 31 variable combinations (Table 18). The result is 31 BSSs for 

82 river gages for four different lead times (one to four days) and for different event thresholds (i.e., 

flood stages or percentiles of the observed water level). This set-up allows a thorough analysis of 

which sets of variables perform best under the various circumstances.  

2.5. Data 

All forecasts made by the North Central River Forecast Center (NCRFC) between May 1st, 2001 and 

December 31st, 2013 were available for analysis. In total, the NCRFC produces forecasts for 525 

gages (Figure 15). For 82 of those gages, forecasts have been published daily for a sufficient number 

of years, and are not inflow forecasts. The latter have been excluded from the forecast error analysis 

because they forecast discharge rather than water level. About half of the analyzed gages are along 

the Mississippi River. The Illinois River and the Des Moines River are two other prominent rivers in 

the region. The drainage areas of the 82 river gages average 61,500 square miles (minimum 200 

sq.miles; maximum 708,600 sq.miles). 

Two river gages serve as an illustration for the points made throughout this paper. Hardin, 

IL is just upstream the confluence of the Illinois River and the Mississippi River (Figure 15). 

Therefore, it probably experiences high water levels through backwatering, when the high water 

levels in the Mississippi River prevent the Illinois River from draining. Henry, IL is located ~200 

miles (~320 km) upstream of Hardin, having a difference in elevation of ~25 feet (~7.6 m). The 
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Illinois River is ~330 miles (~530 km) long,39 draining an area of ~13,500 square miles (~35,000 

km2) at Henry40 and ~28,700 square miles (~72,000 km2) at Hardin.41 

Figure 15: Portion of the North Central River Forecast Centers river gages with Henry (HYNI2) and 

Hardin (HARI2) indicated by the upper and lower red arrow respectively. Source: 

http://www.crh.noaa.gov/ncrfc/ 

3. Results 

3.1. Forecast error at NCRFC’s gages 

In general, the NCRFC’s forecasts are well calibrated across the entire dataset. The average error, 

defined as observation minus the forecast, is zero for most gages. For lead times longer than three 

days, a slight underestimation by the forecast is noticeable. By a lead time of 6 days this 

underestimation averages 0.41 feet only (Figure 16a, Table 19a). Extremely low water levels, defined 

as below the 10th percentile of observed water levels, are also well calibrated (Figure 16b, Table 19b). 

                                                 
39 Illinois Environmental Protection Agency: “Illinois River and Lakes Fact Sheets”, URL [accessed 
04/24/2014]: http://dnr.state.il.us/education/aquatic/aquaticillinoisrivlakefactshts.pdf 
40 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05558300&agency_cd=USGS 
41 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05587060&agency_cd=USGS 
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However, when considering higher water levels the picture changes.42 The underestimation becomes 

more pronounced, averaging 0.29 feet for three days of lead time and 1.14 feet for six days of lead 

time, when only observations exceeding the 90th percentile of all observations are considered (Figure 

16c, Table 19c).  

 

Figure 16: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level did 

not exceed the 10th percentile of observations; (c) error on days that the water level exceeded the 90th 

percentile of observations; (d) error on days that the water level exceeded minor flood stage.  

 

                                                 
42 The gages MORI2 and MMOI2 are upstream of a dam. It is likely that the forecasts performed so 
poorly there, because the dam operators deviated from the schedules that they provide the river 
forecast centers to base their calculations on.  
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Table 19: Error statistics for the forecast error a) of the whole dataset; b) on days that the water level 

did not exceed the 10th percentile of observations; c) on days that the water level exceeded the 90th 

percentile of observations; d) on days that the water level exceeded minor flood stage. 

Average errors  Lead Time 

of 82 gages Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

a) ALL OBSERVATIONS 

Minimum  -0.21 -0.08 -0.09 -0.07 -0.04 0.02 

Median 0.01 0.02 0.06 0.13 0.22 0.30 

Mean 0.01 0.04 0.10 0.18 0.30 0.41 

Maximum 0.19 0.21 0.76 1.65 2.62 3.47 

b) OBSERVATIONS < 10th PERCENTILE 

Minimum  -1.2 -0.35 -0.38 -0.41 -0.38 -0.39 

Median -0.03 -0.04 -0.05 -0.05 -0.04 -0.04 

Mean -0.06 -0.06 -0.06 -0.06 -0.05 -0.04 

Maximum 0.03 0.04 0.05 0.12 0.17 0.25 

c) OBSERVATIONS > 90th PERCENTILE  

Minimum  -0.11 -0.23 -0.31 -0.38 -0.38 -0.27 

Median -0.01 0.02 0.15 0.32 0.55 0.81 

Mean 0.01 0.09 0.29 0.55 0.82 1.14 

Maximum 0.34 1.01 3.12 5.13 6.81 8.56 

d) OBSERVATIONS > FLOOD STAGE 

Minimum  -0.20 -0.30 -0.44 -0.63 -0.78 -0.80 

Median -0.02 -0.03 0.22 0.45 0.78 1.10 

Mean 0.01 0.17 0.45 0.80 1.14 1.51 

Maximum 0.65 2.44 5.70 8.37 10.40 11.74 

 

When only looking at observations that exceeded the minor flood stages corresponding to 

each gage,43 the underestimation averages 0.45 feet for three days of lead time and 1.51 feet for 6 

                                                 
43 Flood stages are based on the damage done by previous floods. It depends on the context, e.g., the 
shape of the river bed and the development of the river shores, which water levels cause damage. 
Therefore, it depends on the river gage which percentiles of observed water levels the flood stages 
correspond with.  
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days of lead time (Figure 16d, Table 19d). However, some gages, such as Morris (MORI2), 

Marseilles Lock/Dam (MMOI2) – both on the Illinois River – and Marshall Town on the Iowa 

River (MIWI4) experience average errors of 5 to 12 feet for water levels higher than minor flood 

stage. 

3.2. Including more variables 

In total, the Brier Skill Score (BSS) for 31 variable combinations (Table 18) across various lead times 

and event threshold have been compared. Across 82 river gages, it has been analyzed (a) which 

combinations perform best and worst most often, and (b) which sets of variables deliver the best 

BSSs on average.  

3.2.1. Frequency Analysis 

For each lead time (i.e., one to four days) and various event thresholds (i.e., 10th, 25th, 75th, 90th 

percentiles as well as the four flood stages), we counted how often each variable combination 

resulted in the highest and the lowest BSS across the 82 river gages. Figure 17 shows that for water 

levels below the 50th percentile variable combinations with four or more variables return the best 

BSSs most often, while those with one and two variables perform worst most often. For thresholds 

higher than the 50th percentile the distributions gradually become more flat. For the 90th percentile, a 

clear trend is no longer detectable. The same set of histograms for the four flood stages (i.e., action, 

minor, moderate, and major) confirms this (Figure 18). Across lead times, there is a slight trend 

noticeable that single variables tend to be the worst combination more often for longer lead times. 

Thus, the further out one is forecasting, the more important it becomes to include more data in the 

model.   
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Figure 17: Histograms of variable combinations returning the best and worst Brier Skill Scores 

across 82 river gages. Each row of histograms refers to an event threshold defined as a percentile of 

the observed water levels, and each column to a lead time. The dotted vertical lines in the 

histograms distinguish variable combinations with different numbers of variables.  
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Figure 18: Histograms of variable combinations returning the best and worst Brier Skill Scores 

across 82 river gages. Each row of histograms refers to a flood stage, and each column to a lead time. 

The dotted vertical lines in the histograms distinguish variable combinations with different numbers 

of variables. 
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3.2.2. Best performing combinations on average 

For each river gage, the combinations have been ranked by BSSs. It was found that the more 

variables are included in a set, the higher that set of variables will rank on average (Figure 19). 

However, for extremely high water levels, this trend gradually reverses (Figure 20). For action stage44 

and minor flood stage,45 a slightly increasing trend is still visible. For moderate46 and major flood 

stage,47 combinations with fewer variables rank higher on average.  

Considering these findings and those of the frequency analysis earlier, the models for the 

various river gages can generally be based on the same variable combinations of four or more 

variables. But for extremely high water levels, a model specific to each river gage has to be built in 

order to achieve high BSSs. 

The combinations including the forecast (indicated by gray vertical lines in Figure 19 and 

Figure 20) perform less well than those that exclude it. Plotting the independent variables against the 

forecast error as the dependent variable makes the reason visible (Figure 21, Figure 22). Without a 

transformation into the normal domain, the forecast does not provide a lot of information for the 

QR model. In contrast, the other four variables do not lend themselves for linear quantile regression 

after performing NQT. Further research is necessary to reconcile these two types of variables. A 

possible solution could be to build QR models for subsets of the transformed dependent and 

independent variable.  

 

                                                 
44 Across the 82 stations, action stage corresponds with water levels between the 60th and 100th 
percentile. 
45 Across the 82 stations, minor flood stage corresponds with water levels between the 70th and 
100th percentile. 
46 Across the 82 stations, moderate flood stage corresponds with water levels between the 80th and 
100th percentile. 
47 Across the 82 stations, major flood stage corresponds with water levels between the 90th and 
100th percentile. 
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Figure 19: Average rank for each variable combination for one to four days of lead time and four 

percentiles of observed water levels. Vertical gray lines indicate variable combinations including 

the forecast. 
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Figure 20: Average rank for each variable combination for one to four days of lead time and four 

flood stages. Vertical gray lines indicate variable combinations including the forecast. 
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Figure 21: Independent variables plotted against the forecast error 

for Hardin IL with 3 days of lead time. First row: Forecast; second 

row: past forecast errors; third row: rise rates. 

 

Figure 22: Independent variables after transforming into the 

Gaussian domain plotted against the forecast error for Hardin IL 

with 3 days of lead time. First row: Forecast; second row: past 

forecast errors; third row: rise rates. 
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3.2.3. Brier Skill Score  

Including the rise rate and forecasts errors as independent variables into the QR model improves the 

Brier Skill Score (BSS) significantly. Figure 23 illustrates the BSS when using the model as originally 

introduced by Weerts et al. (2011). Using the best performing variable combination instead, gives an 

upper bound of the BSSs that can be achieved at best. This configuration increases the mean and 

decreases the standard deviation (Table 20, Figure 24). The performance improves most where all 

model configurations perform worst: at the 10th percentile.48 The decrease of the BSSs with lead time 

also becomes considerably less with this configuration. Additionally, an one-size-fits-all approach 

was tested to investigate, whether customizing the QR model to each river gage would be worth it. 

In this configuration, the rise rates in the past 24 and 48 hours and the forecast errors 24 and 48 

hours ago serve as the independent variables (combination 30). It was found that this approach 

returns only slightly worse results than working with the best performing configuration for each 

river gage (Figure 25, Table 20). Accordingly, the same variable combination can be used for all river 

gages.  

As shown in Figure 18, this last conclusion is not true for extremely high water levels. 

Including more variables does improve the BSSs considerably (Figure 26 and Figure 27; Table 20). 

However, for each river gage the best combination of variables needs to be identified separately. 

Because data to build models is scarce for extreme levels, the QR models all perform less well for 

each increase in flood stage. 

                                                 
48 Possibly, the models do not perform well for low percentiles, because the dependent variable – the 
forecast error – exhibits very little variance at those water levels, i.e., the average error is very small 
(Table 19).  
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Table 20: Mean and standard deviation three QR configurations: the original using the transformed forecast only as independent variable; 

the best performing combination for each river gage (upper performance limit); rise rates in the past 24 and 48 hours and the forecast errors 

24 and 48 hours ago as independent variable (one-size-fits-all solution).  

 Q10 Q25 Q75 Q90  Q10 Q25 Q75 Q90 

 Day 1  Day 2 

NQT-fcst 0.34 (0.52) 0.65 (0.36) 0.90 (0.07) 0.88 (0.08)  0.24 (0.57) 0.59 (0.35) 0.85 (0.10) 0.82 (0.12) 

Best combi.s 0.54 (0.34) 0.78 (0.18) 0.93 (0.05) 0.91 (0.06)  0.49 (0.36) 0.74 (0.19) 0.90 (0.05) 0.87 (0.07) 

Rise rate 24/48  

+error 24/48* 

0.49 (0.41) 0.77 (0.18) 0.92 (0.05) 0.93 (0.06)  0.42 (0.44) 0.73 (0.19) 0.90 (0.06) 0.86 (0.09) 

 Day 3  Day 4 

NQT-fcst 0.20 (0.61) 0.56 (0.33) 0.81 (0.10) 0.75 (0.15)  0.19 (0.55) 0.55 (0.31) 0.77 (0.13) 0.69 (0.18) 

Best combi.s 0.47 (0.37) 0.74 (0.17) 0.89 (0.05) 0.85 (0.09)  0.46 (0.37) 0.73 (0.18) 0.89 (0.05) 0.84 (0.09) 

Rise rate 24/48  

+error 24/48* 

0.40 (0.44) 0.72 (0.19) 0.88 (0.06) 0.84 (0.11)  0.39 (0.43) 0.71 (0.20) 0.88 (0.05) 0.82 (0.20) 

 Action Minor Moderate Major  Action Minor Moderate Major 

 Day 1  Day 2 

NQT-fcst 0.81 (0.27) 0.42 (1.12) 0.38 (1.02) -0.80 (2.07)  0.68 (0.59) 0.41 (0.90) 0.25 (1.2) -1.30 (1.96) 

Best combi.s 0.86 (0.26) 0.78 (0.27) 0.73 (0.24) 0.36 (0.66)  0.82 (0.29) 0.73 (0.28) 0.68 (0.24)  0.26 (0.67) 

 Day 3  Day 4 

NQT-fcst 0.67 (0.37) 0.37 (0.87) -0.09 (1.42) -1.69 (2.24)  0.62 (0.35) 0.22 (1.00) -0.07 (1.05) -1.52 (1.96) 

Best combi.s 0.81 (0.26) 0.71 (0.31)  0.64 (0.23)  0.19 (0.76)  0.79 (0.26) 0.69 (0.30)  0.60 (0.23)  0.13 (0.72) 

* Combination 30 
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Figure 23: Brier Skill Scores of the 

original QR model (i.e., using the 

transformed forecast as the only 

independent variable) for four lead times 

and percentiles of observed water levels. 

 

Figure 24: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using the best variable 

combination for each river gage as 

independent variables in the QR model. 

 

 

 

Figure 25: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using a one-size-fits-all approach 

(i.e., rr24, rr48, err24, err48) for the 

independent variables in the QR model. 
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Figure 26: Brier Skill Scores of the original QR model (i.e., using the 

transformed forecast as the only independent variable) for four lead 

times and flood stages. 

 

Figure 27: Brier Skill Scores for four lead times and flood stages of 

observed water levels using the best variable combination for each 

river gage as independent variables in the QR model. 
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 The fact that the Brier Score can be de-composed into reliability, resolution and uncertainty 

allows a closer look at which improvements are being achieved by including more variables. Figure 

28 shows that the original QR model configuration by Weerts et al. (2011) has high reliability (i.e., 

the reliability is close to zero). The Brier Score and the Brier Skill Score mainly improve when using 

rise rates and forecast errors as independent variables, because the resolution increases. The forecast 

quality improves along other dimensions as well, i.e., the areas under the ROC curves and the ranked 

probability skill score (RPSS) increase. The first weighs missed alarms against false alarms and has a 

perfect score equal to one. The latter is a version of the Brier Skill Score. While the Brier Skill Score 

pertains to a binary event, the RPSS can take into account various event categories. Its perfect score 

equals one (e.g., WWRP/WGNE, 2009). 
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Figure 28: Comparison of the original QR model (i.e., only transformed forecast as independent variables) and the one-size-fits-all 

approach (i.e., rise rates and forecast errors as independent variables) using various measures of forecast quality: Brier Score (BS), Brier 

Skill Score (BSS), Reliability (Rel), Resolution (Res), Uncertainty (Unc), Area under the ROC curve (ROCA), ranked probability score 

(RPS), ranked probability skill score (RPSS). Lead time: 3 days; 75th percentile of observation levels as threshold. The left figure zooms in 

on the right figure to make changes in reliability and resolution better visible.  
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3.3. Robustness 

The impact of the length of the training dataset on the model’s performance measured by the Brier 

Skill Score (BSS) was assessed for the one-size-fits-all QR model (i.e., rise rates and forecast errors as 

independent variables for all gages) for Hardin and Henry on the Illinois River. Each year between 

2003 and 2013 was forecast by models trained on one year  up to however many years of archived 

forecasts were available. Figure 29 and Figure 30 show that for those gages, it does not matter for 

the BSS how many years are included in the training dataset. That is good news, if stationarity 

cannot be assumed (Milly et al., 2007), a step-change in river regime has occurred, or forecast data 

have not been archived in the past. In those cases, only short training datasets are available. 

However, the BSS varies considerably for what year is being forecast. The forecast performance 

varies greatly, especially for the 10th and 25th percentile of observed water levels. It is likely, that a 

very large dataset, including more infrequent events, would improve these results. However, most 

river forecast centers only recently started archiving forecasts in a text-format, so that even having 

ten years’ worth of data is an exception.49 

 

                                                 
49 To illustrate that point, the National Climatic Data Center has archived data from 2001 onwards 
available in their HDSS Access System.  
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Figure 29: Brier Skill Score for various forecast years and various 

sizes of training dataset across different lead times (colors) and 

event thresholds (plots) for Hardin, IL (HARI2).  The filled-in end 

point of each line indicates the BSS for the forecast year on the x-

axis with one year in the training dataset. Each point further to the 

left stands for one additional training  year for that same forecast 

year. 

 

Figure 30: Brier Skill Score for various forecast years and various 

sizes of training dataset across different lead times (colors) and 

event thresholds (plots) for Henry, IL (HNYI2). The filled-in end 

point of each line indicates the BSS for the forecast year on the x-

axis with one year in the training dataset. Each point further to the 

left stands for one additional training  year for that same forecast 

year. 
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Figure 31: Geographical position of rivers. Colors indicate the regression coefficient of each station 

with the Brier Skill Score as dependent variable.  

 

Figure 32: Minimum (black) and maximum (red) Brier Skill Scores for various lead times and event 

thresholds across locations, size of training dataset and forecast years.  
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4. Conclusion 

In this study, quantile regression (QR) has been applied to estimate the probability of the river water 

level exceeding various event thresholds (i.e., 10th, 25th, 75th, 90th percentiles of observed water levels 

as well as the four flood stages of each river gage). This is the first study applying this method to the 

U.S. American context. Additionally, it further develops the method by including more independent 

variables and testing the method’s robustness across locations, lead times, event thresholds, forecast 

years and sizes of training dataset.  

Most importantly, it was found that including rise rates in the past 24 and 48 hours and the 

forecast errors of 24 and 48 hours ago as independent variables improves the performance of the 

QR model, as measured by the Brier Skill Score. Since the reliability was already high, the original 

QR method as proposed by Weerts et al. (2011), the new configuration mainly increases the 

resolution. 

 For extremely high water levels, the combinations of independent variables that perform best 

vary across stations. On those days, combinations of fewer variables perform better than those that 

include more. In contrast to these extremely high event thresholds, larger sets of variables work 

better than smaller ones for non-extreme and low event thresholds. Additionally, a one-size-fits-all 

approach (i.e. the rise rates and forecasts errors as independent variables) performs satisfactorily for 

those cases.  

The new independent variables – rise rates and forecast errors – do not combine well with 

forecast itself. The latter was the only variable included in the original QR configuration as studied 

by Weerts et al. (2011) and López et al. (2014). To account for heteroscedasticity, the forecast was 

transformed into the Gaussian domain. However, the rise rates and the forecast errors do not lend 

themselves for linear quantile regression after such a transformation. Therefore, it is difficult to 
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combine these two variables. A possible solution could be to build regression models for subsets of 

the transformed data. However, such an approach drastically decreases the amount of data available 

for each model.  

The proposed QR method is robust to the size of training dataset, which is convenient if 

stationarity cannot be assumed (Milly et al., 2007), a step-change in the river regime has occurred, or 

– as is the case for most river forecast centers – only recent forecast data have been archived. 

However, the performance of the method does depend on the river gage, the lead time, event 

threshold and year that are being forecast. This results in a very wide range of Brier Skill Scores. For 

the user, it is particularly difficult to know, how much to trust a forecast, if the performance depends 

so much on context. Likewise, this is case for the original QR configuration.  

As measured by the Brier Skill Score, the year 2012 was a relatively easy year to forecast, the year 

2008 a particularly difficult one. The proposed approach performs less well for longer lead times, for 

gages far upstream a river or close to confluences, for low event thresholds and extremely high ones. 

The model might be performing less well for low event thresholds, because the variance in the 

dependent variable – the forecast error – is smaller. After all, river forecasts have much smaller 

errors for lower water levels. In turn, for extremely high water levels, the scarcity of data decreases 

the model performance.  

Future Work 

The methods can be further developed in several ways to achieve higher Brier Skill Scores and more 

robustness. First, more independent variables can be added. Trials with a different method, 

classification trees, showed that the observed precipitation, the precipitation forecast (i.e., POP – 

probability of precipitation) and the upstream water levels significantly improve models. Presumably, 

this is the case, because the QPF-forecast includes the precipitation forecast only for the next 12 
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hours. However, currently, the precipitation data and forecasts can only be requested in chunks of a 

month, three chunks per day, from the National Climatic Data Center’s (NCDC) HDSS Access 

System.50 For a period of 12 years, requesting such data for several weather stations51 is obviously 

time-consuming. Upstream water levels can easily be included after manually determining the 

upstream gage(s) for each of the 82 NCRFC gages. To improve model performance at gages close to 

river confluences, the upstream water level of the gages on the joining river should be included as 

well.  

Different approaches of sub-setting the data to improve models results also warrant 

consideration. Particularly, clustering the data by variability seems promising. However, early trials 

indicated that this method is very sensitive to the training dataset. 

As mentioned above, the QR method works less well for low than for high event thresholds. 

Further study should investigate, why that is the case, and identify possible solutions. The current 

study focused on extremely high event thresholds, i.e., flood stages, but not on lower ones, i.e., 

below the 50th percentile of observed water levels. 

Last, the proposed method would need to be verified for gages for which the NCRFC does not 

publish daily forecasts. Ignorance of the uncertainty inherent in river forecasts have had some of the 

most unfortunate impacts on decision-making in Grand Forks, ND and Fargo, ND (Pielke, 1999; 

Morss, 2010). Both of those stages are discontinuously forecast NCRFC gages.  
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forecast bulletins. 
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STUDY 4 

Modeling the Effectiveness of Urban Best Management Practices for 

Stormwater Treatment as a Function of the Volume of Runoff52 

Abstract 

Impervious surfaces, such as roads and parking lots, can increase the volume of runoff and lead to 

more pollution reaching streams, rivers, and lakes. Best Management Practices (BMPs) reduce the 

peak discharge into the storm sewer system and remove pollutants such as sediments, phosphorus 

and nitrogen from the stormwater runoff. Bioretentions, dry and wet ponds, porous pavement, and 

many other methods collect the runoff and reduce the concentrations of sediments and nutrients 

with varying effectiveness. Numeric models to develop and assess plans to implement BMPs need to 

take into account the variation of BMP effectiveness with the volume of runoff (inch-acre) in order 

to estimate their performance under a range of different climate scenarios. Circumventing the lack 

of monitoring data, this study uses the Environmental Protection Agency’s (EPA) System for Urban 

Stormwater Treatment and Analysis IntegratioN Model (SUSTAIN) to run 22 years of weather data 

from the Patuxent River (Maryland) through six types of BMPs. It is found that BMP effectiveness 

decreases sooner, steeper and deeper with increasing sizes of storm events than assumed in current 

models. At a minimum, the resulting performance curves should differentiate between BMPs; 

ideally, also between landuses.  

Keywords: Best Management Practices, Stormwater, Climate Change, Storm Size, Return 

Frequency, Effectiveness 

                                                 
52 In fall 2014, a version of this chapter will be submitted to the journal Water Research.  
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1. Introduction 

Best Management Practices (BMPs) reduce the quantity and increase the quality of stormwater 

before it reaches larger water bodies such as rivers. Climate change is hypothesized to alter 

precipitation frequencies and intensities. BMP implementations plans need to be robust to this 

uncertain future; wisely chosen and dimensioned BMPs should not be overwhelmed by possible 

changes in precipitation event frequency and intensities.  

The Environmental Protection Agency (EPA) uses large numerical hydrological models to 

develop and assess BMP implementation plans (e.g., CBP, 2012). However, due to sparse 

monitoring data, the relationship between BMP effectiveness and storm size is only tentatively 

defined. Our understanding of effect of storm size on BMP effectiveness needs improvement  

before we can assess the impact of changing precipitation frequencies and intensities. This paper 

presents a numerical study of this relationship for six types of BMPs in order to improve the 

capability of hydrologic models to study the robustness of BMP implementation plans to climate 

change. The Patuxent watershed in Maryland with the hydrological model used there serves as a case 

study. 

1.1 Pollution in Stormwater Runoff as a Consequence of Urbanization 

Some watersheds, like the Patuxent in Maryland, experience increasing urbanization. While this 

happens on a small scale – development project by development project – the accumulated effects 

are large. One third of the pollutants in the largest estuary in the US, the Chesapeake Bay, comes 

from urban stormwater runoff (Maryland, 2007).  

Urbanization results in large impervious surfaces, such as roads and roofs, that reduce 

stormwater ground infiltration (Maryland, n.d.). When the stormwater cannot infiltrate in the soil, 

this has two effects. First, the peak discharge increases because more water flows into the sewage 
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system quicker, possibly overwhelming the storm sewers. The return frequency of peak runoff rates 

can increase by 6-18 times when an area undergoes development (Roesner et al., 2001). Second, the 

flowing water picks up many urban pollutants. Fertilizer and pesticides from lawns, oil and rubber 

from cars, trash and sediment are washed off with the runoff (Maryland, n.d.). Without measures 

being taken, more water with a higher concentration of pollutants will arrive in neighboring water 

bodies causing pollution that accumulates towards the downstream end of a watershed.  

1.2. Best Management Practices (BMPs) 

BMPs were first introduced to reduce the peak discharge into the storm sewers. Dry ponds were 

built to retain the water and release it gradually into the sewage system. For this reason, such ponds 

are one of the most common BMPs in the U.S. today. Later, environmental concerns led to the idea 

of Low Impact Development (LID). In LID, a building project should impose as little change as 

possible to the environment, including the hydrology (Dietz, 2008). Therefore, it became important 

to not only decrease the peak discharge of stormwater runoff, but to make sure that the runoff does 

not carry pollutants with it. This popularized “green” BMPs such as bioretentions, bio swales, 

infiltration trenches, etc., both reduce the volume and offer sedimentation, plant uptake and 

filtration as means to treat stormwater (e.g., the water is filtered when it infiltrates into the soil).  

Monitoring BMPs poses many challenges. Measuring the inflow, the amount of pollutants in the 

inflowing runoff, etc. is labor-intensive and the measurement technologies are vulnerable to weather 

and other circumstances. When data are collected, they often carry many caveats. Very small or large 

storms might fall outside the range of measuring equipment. Sample collection to determine the 

pollutant concentration in in- and outflow is tricky and the pollutants are not uniformly distributed 

throughout a sample. Lastly, BMP performance is heavily dependent on context and design, so that 

monitoring results are difficult to generalize (Jones et al., 2004). Given these difficulties, it is not 
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surprising that the BMP effectiveness data from the monitoring studies collected in the International 

Stormwater BMP Database (2013) are characterized by large uncertainties and only allow rough 

estimates, such as that a bioretention removes 80% of the phosphorus from the influent.  

1.3. BMP effectiveness as a function of storm size 

If climate change alters the frequency and intensity of precipitation events, then existing BMPs will 

have to cope with different amounts of water in the future. Intuitively, it is likely that the 

effectiveness of BMPs to remove pollutants from the runoff varies with the amount of inflowing 

runoff. BMPs like ponds might overflow, the vegetation that takes up pollutants in bioretentions 

might become saturated or filter layers might become clogged more rapidly.  

There are very few studies of BMP effectiveness as a function of storm size. To our 

knowledge, there is only one study that modeled pollutant removal in BMPs (Ackerman & Stein 

2008) and several others studying the discharge reduction for various storm sizes (Damodaram et al. 

2010, Heitz et al. 2000). 

Ackerman & Stein (2008) modeled a retention facility, a flow-through swale and a 

combination of those two with the predecessor of the software used in this study. Running the 

model with ten years of runoff data for two creeks in California, they found BMP effectiveness 

suffered during large storms and wet years. BMP effectiveness proved to be most sensitive to 

volumetric changes and loss rates. Changing the infiltration rate had a large effect, while altering the 

decay rate had a modest effect (Ackerman, Stein, 2008). Damodaram et al. (2010) implemented 

several scenarios of LIDs and conventional BMPs in a watershed model of their campus in Texas. 

Modeled LIDs and conventional BMPs included permeable pavements, rainwater harvesting, green 

roofs and detention ponds. They conclude that the infiltration-based LIDs are more successful than 

storage-based conventional BMPs in peak flow reduction during small storms. But for large storms 
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the conventional BMPs deliver better results. The authors recommend implementing a combination 

of LIDs and conventional BMPs (Damodaram, 2013). Heitz et al. (2000) used a computer model to 

determine rules for dimension ponds so that they achieve a pre-determined effectiveness. His study 

shows that a pond relative to its drainage area (a proxy for the volume of runoff reaching the pond) 

needs to increase to boost volume capture efficiency. Heitz was unable to specify the effect on 

pollutant removal but expects it to be non-linear (Heitz et al., 2000). 

There are many studies reporting monitoring results from BMPs all over the nation (e.g., as 

collected in the International Stormwater BMP database). However, only very few mention the 

relationship between storm size and BMP effectiveness. Barrett et al. (1998) monitored the removal 

of suspended solids in two vegetated swales along highways in Texas. Evaluating 34 storms, they did 

not find a relationship between storm size and removal rate. They hypothesize that either longer, 

larger storms result in similar water depths like small, intense storms or that pollutant removal 

occurs in the shallow parts of the swale where the water level does not vary much with storm size 

(Barrett et al., 1998). Li et al. (2009) monitored six bioretentions in Maryland and North Carolina for 

22-60 events over period of 10-15 months. They focused on the reduction of peak discharge rate 

and total amount of discharge. Based on a regression analysis, they concluded that peak rate 

reduction decreases for increasing rainfall depths and durations, while the reduction of the total 

amount of discharge is only affected by the rainfall depth (R2 > 0.41). Average daily temperature, 

rainfall intensity and antecedent dry weather period did not impact either of those two metrics 

(Carpenter, Kaluvakolanu, 2010).  Hunt & Winston (2010) found a strong correlation between storm 

size and percent peak flow reduction and percent volume reduction when monitoring level spreader 

– vegetated filter strips in North Carolina. They estimate that for storm events larger than 1.25 cm, 

the BMP effectiveness starts to decrease (Hunt et al., 2009).   
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Barber et al. (2003) ran tests in a physical model of an ecology ditch and used those test 

results to calibrate a computer model. They found that percent peak reduction and peak attenuation 

decrease with larger storm size. For storms larger than 1.27 cm (0.5 inch), the decrease seems to 

flatten. They suspect that soil water content drives this process.  

This literature review suggests that there is an agreement that BMP effectiveness decreases non-

linearly with storm size. However, the exact nature of this relationship is unknown for most BMPs 

and pollutants.  

2. Case Study: Upper Patuxent, Maryland 

The case study presented in this paper is the Upper Patuxent watershed (Figure 33). The Patuxent 

River is part of the Chesapeake Bay watershed. The Chesapeake Bay is the largest estuary in the U.S. 

Half of the water in the bay is freshwater coming from the rivers in the watershed, while the other 

half is saltwater from the Atlantic Ocean. Between 1950 and 2008, the population in the watershed 

doubled to 16.8 million. It is estimated to grow by 157,000 people per year (EPA Region 3, 2010).   

With its roughly 650,000 inhabitants – including those of Washington D.C. and Baltimore –  

the watershed of the Patuxent River is an especially densely populated part of the Chesapeake Bay 

watershed.  In Maryland, the Patuxent is the largest and longest river. This case study is based on 

data from four land segments in the Upper Patuxent Watershed.  
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Even though the pollutants loads in the Patuxent have been decreasing in the last several 

decades, 3.7 million pounds of nitrogen, ca. 280,000 pounds of phosphorus and ca. 130,000 tons of 

sediment reached the Patuxent in 2005. For nitrogen and phosphorus, urban areas are the major 

source (34% and 38% respectively), followed by agriculture (22% and 23%) and point sources (16% 

and 25%). Agriculture is the largest source of sediment, contributing 54%; 28% of the sediments 

originate from urban land uses (Maryland, 2007).  

2.1. Watershed Implementation Plans 

In the Chesapeake Bay, BMPs are implemented as part of Watershed Implementation Plans (WIPs). 

These plans are developed by states and districts to ensure that the water quality standards as 

Figure 33: Chesapeake Bay Watershed (left) and studied land segments in the Patuxent 

watershed (right). In the Phase 5 Watershed model, these land segments are known as A24003, 

A24027, A24031, and A24033.  Source left picture: EPA(2010): A Method to Assess Climate-
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required by the Clean Water Act and particularly the Total Mean Daily Loads (TMDLs) as set by 

Environmental Protection Agency (EPA) are met. TMDLs specify how much pollutants can be 

added to the water, before the water standard is compromised. WIPs determine which Best 

Management Practice will be constructed where to reduce the pollution in those runoffs. EPA 

reviews the draft WIPs and monitors the implementation of the finalized WIPs using two-year mile 

stones (EPA, 2013). 

The current TMDL for the Chesapeake Bay issued in December 2010 aims for a 25% load 

reduction in nitrogen to an annual load of 185.9 million pounds, 24% in phosphorus (12.5 million 

pounds) and 20% of sediments (6.45 billion pounds). Because urban runoff contributes a large share 

to the overall pollution, this translates to a reduction by 35% of the total nitrogen 36% of the total 

phosphorus in urban runoff (Geosyntec Consultants, 2012). To achieve the TMDL for the 

Chesapeake Bay jurisdictions across six states have established Watershed Implementation Plans 

(WIPs) that describe through which measure the “pollution diet” will be carried out (EPA, 2013). 

2.2. Models to develop and assess plans for BMP implementation 

As part of the Chesapeake Bay Program (CBP), EPA uses a hydrological model called Phase 

Watershed 5 Model to determine TMDL and BMP requirements and to assess WIPs. That model is 

based on the Hydrologic Simulation Program-Fortran (HSPF) model, first introduced in the 1960s. 

Wurbs (1997) succinctly summarizes the HSPF model developed by the E.P.A. as follows: 

“HSPF is a comprehensive package for simulation of watershed hydrology and water quality for both 

conventional and toxic organic pollutants. … The model uses information such as: the time history of 

rainfall, temperature and solar radiation; land surface characteristics such as land use patterns and soil 

properties; and land management practices to simulate the processes that occur in a watershed. Flow rates, 

sediment loads, and nutrient and pesticide concentrations are predicted for the watershed runoff. The model 
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uses these results, along with the input data characterizing the stream network and point source discharges to 

simulate instream processes. Model out includes a time history of water quantity and quality at all pertinent 

locations in the watershed/stream system. …” 

HSPF models are divided into land segments that determine the weather and runoff and 

river segments that collect the runoff from the land segments. Each land segment has different 

landuses, such as developed, agriculture, and forest.  It is a categorically segmented model, meaning 

that acres with the same land use in the same land segment are treated as one unit; even if they are 

topographically detached. 

In the Phase 5 Watershed model, the BMP effect is modeled as an end-of-pipe percent 

reduction of the pollutants in the runoff. The effectiveness of a BMP is specified (e.g. a bioretention 

removes 80% of the sediment in the runoff) as is the extent to which it is to be implemented in 

different land uses and land segment. After the runoff for each land segment’s land use has been 

computed and before it is forwarded to a river segment, the amount of pollutants in the runoff is 

reduced by the pre-determined percentage.  

As described above, there is reason to assume that the BMP effectiveness changes with the 

volume of runoff. In the CBP Phase 5 Watershed model that is defined by a Michaelis-Menten 

(MM) function. This function computes BMP effectiveness as a percentage of its given effectiveness 

as a function of return frequency. As an example, if a BMP has a target value of 80%, its actual 

effectiveness for any given day will be between 0% and 80% depending on the return frequency of 

the volume of runoff. In the model, this works as follows. The MM function computes a multiplier 

with the range [0, 1] as a function of the volume of runoff. The target value of the BMP (e.g. 80%) is 

then multiplied by that multiplier (resulting in actual effectiveness between 1*80%=80% and 
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0*80%=0%). The MM function is the one piece in the Phase 5 Watershed model to capture the 

effect of climate change on the performance of BMP implementation plans.  

The three parameters of the MM function (see Appendix for formula) have an easy-to-

understand meaning and have been assigned rather optimistic values in the current Phase 5 

Watershed model. The first parameter is the asymptote (Asymp), which stands for the effectiveness 

of the BMP in the worst case, i.e. during the largest storm. In the current CBP Phase 5 Watershed 

model that is assumed to be 20% of the given effectiveness. BMPs can thus never completely fail. 

Additionally, this asymptote is not reached until an volume of runoff reoccurring with a return 

period of much larger than 200 years; i.e. for an volume of runoff with the return period of 200 

years, the effectiveness is still 25% of the given BMP effectiveness.  

The second parameter (Thres)53 describes the threshold from which volume of runoff 

onwards, the BMP effectiveness starts to deteriorate. The default assumption in the Phase 5 

Watershed model for threshold is volume of runoff reoccurring with a frequency of five years. More 

than 99.9% of all days experience less rainfall, so that the MM function only applies to <0.01% of 

the data.  

The third parameter (HalfSat) is a sort of half time value that determines how steeply the curve 

drops towards the asymptote after the threshold. The default assumption is 17 years, meaning that 

the effectiveness is 60% of the given effectiveness during a storm with the return frequency of 17 

years. That is half way between maximum effectiveness and the asymptote.  

                                                 
53 Called MinFreq in the CBP Phase 5 Watershed model’s Hydro-Effect method.  
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Figure 34: Plot of Michaelis-Menten curve with the default values of its three parameters in the 

Phase 5 Watershed model: Asymp – Aysmptote (20%), Thres – Threshold (5 years), HalfSat – Half 

time value (17 years) 

2.3. Research Questions 

The research presented in this paper seeks to answer the following question: What is the best 

definition of the relationship between BMP effectiveness and the volume of runoff to be 

used in hydrological models such as the Chesapeake Bay Phase 5 Watershed model? 

A software package that numerically models the physical processes inside a BMP was used 

together with weather data from the Patuxent watershed to study the effect of storm size on the 

effectiveness of seven BMPs: Bioretention, porous pavement, wet pond, dry pond, extended dry 

pond, vegetated swale and infiltration trench.  
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3.  Method 

This research was carried out in three steps. First, the EPA software package SUSTAIN was used to 

model the physical processes inside the BMP. Second, the Michaelis-Menten (MM) curve was fit to 

the SUSTAIN output to refine the assumptions in the Phase 5 Watershed model. Third, we 

investigated how the parameters of the MM curve change across different BMPs, land segments and 

pollutants. Besides these steps, the following proposes changes to the MM curve to better capture 

the full spectrum of BMP effectiveness.   

3.1. Modeling and Optimizing BMPs 

The System for Urban Stormwater Treatment and Analysis IntegratioN Model (SUSTAIN) 

developed by EPA and TetraTech was used to model the physical process inside the BMPs. 

SUSTAIN’s Process Module “can evaluate management practices under an individual storm event 

and/or continuous storm conditions. Available BMP processes include weir and orifice functions to 

define surface capacity and control, swale characteristics, hydraulic transport, infiltration and 

saturation, underdrain, evapotranspiration, general pollutant removal and filtration through soil 

media” (Lai et al., 2007).  

For the years 1984-2005, the hourly surface runoff, the groundwater recharge volume and 

the pollutant loads were extracted from the CBP Phase 5 Watershed model to serve as input in the 

SUSTAIN model.  

The following seven BMPs were modeled using SUSTAIN’s templates: Bioretention, porous 

pavement, dry pond, extended dry pond, 54 wet pond, vegetated swale, and infiltration trench. Each 

BMP has been modeled for each time series separately.  Put differently, for each model run, it has 

                                                 
54 The extended dry pond was modeled with the same BMP template as the dry pond, but with 
higher target values for removal efficiency.  
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been assumed that there is only one land use and one BMP. For the lot-scale BMPs (bioretention, 

porous pavement) the size of that imaginary watershed was one acre, for the community-scale BMPs 

(remaining five) the imaginary watershed covered five acres.  

The dimensions of the BMPs were optimized to the runoff provided by each time series. In 

SUSTAIN’s optimization module each BMP was assigned target values for three pollutants: 

sediment, nitrogen and phosphorus. The target values are the average annual effectiveness of a BMP 

and have been taken from the CBP Phase 5 Watershed model. For each of the 14 time series, this 

module was then used to find the minimum length so that all three pollutant removal targets were 

met. The module minimizes the cost, which in this case effectively means minimizing the volume of 

the BMP (or surface in some cases, see Table A1).  

Afterwards, the pollutant loads in the water flowing in and out of the BMP were estimated 

using the SUSTAIN output. The hourly data were aggregated from midnight to midnight to get daily 

data points, because the Phase 5 Watershed model operates with a time step of one day. To compute 

the daily effectiveness for each pollutant the mass in the outflow was divided by the mass in the 

inflow.  

The return period of runoff was computed using the Log Pearson Type 3 distribution (Bobee, 

1975). For each of the 22 years, the maximum daily runoff was determined. For the log of those 22 

data points, the mean, standard deviation and skewness were calculated. Using those three statistical 

measures as the parameters for the Pearson Type 3 distribution, the return period for the log of each 

daily runoff was computed.  

Finally, a revised version of the Michaelis-Menten function (described below) was fit to the 

SUSTAIN output. To facilitate curve fitting, it was desirable to have as many data points as possible 

for each fit. Therefore, pervious (rpd, npd) and impervious (nid, rid) landuses each have been 
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lumped together. Additionally, the data for phosphorus and nitrogen removal were combined. 

Compared to sediment, those two pollutants undergo rather similar processes. Consequently, the 

data was stratified along those four dimensions into 112 subsets (2 land uses * 4 land segments * 6 

BMPs * 2 pollutants). The MM curve was fit to each of these subsets. The parameters of each fit can 

then be compared to the default assumptions in the Phase 5 Watershed model.  

3.2. Changes to the Michaelis-Menten curve as used in the Phase 5 

Watershed model 

In comparison to the conventional MM function, several changes were made to capture as much 

information from the SUSTAIN output as possible. These changes are described in the following.  

3.2.1. Performance curve as a function of runoff rather than return 

period 

In the CBP Phase 5 Watershed model, a MM curve describes the relationship between return 

frequency of the volume of runoff and the BMP effectiveness (called performance curve hereafter). 

As described above, the Log Pearson Type 3 distribution is used to compute the return frequency of 

various amounts of runoff. A mathematical constraint of this distribution is that the return period 

cannot be smaller than 1 year. However, in the Patuxent watershed more than 97.5% of the storm 

events are smaller than that. To not lose this information, it was decided to define the effectiveness 

as a function of the volume of runoff rather than the return period. Additionally, the runoff better 

reflects the characteristics of the land use and other climate characteristics such as temperature.  

3.2.2. Adjusted Multiplier 

In the current CBP Phase 5 Watershed model the threshold after which the BMP effectiveness starts 

dropping off is so high (runoffs with a return period of more than five years) that the maximum 
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effectiveness approximately equals the average effectiveness. There are so few days with an volume 

of runoff larger than the one occurring once in five years that they barely weigh into the average. In 

this case, it does not matter if the given target value is the maximum or average effectiveness. 

However, it is expected that effectiveness falls off sooner than the current threshold. Then the 

maximum effectiveness will not equal the average effectiveness anymore, especially for BMPs whose 

effectiveness drops off soon and steeply. This causes the following problem.  

When BMPs are monitored usually the average effectiveness is reported. It is therefore 

assumed that the given target values represent the average rather than the maximum effectiveness of 

a BMP. In the current CBP Phase 5 Watershed model, the multiplier computed by the MM function 

is constrained to a range [0; 1]. However, in cases where the maximum BMP effectiveness is higher 

than the average effectiveness, the multiplier will have to be larger than one. To cope with that, the 

multiplier has to be re-scaled by dividing it by the maximum of the multiplier, so that the adjusted 

multiplier never exceeds one.55  
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for 0 ≤ Eff ≤ 1 

3.2.3. Revised definition of Performance Curve 

The changes to the original MM curve described above result in the following revised definition of 

the MM curve: 

                                                 
55 Note, the adjusted multiplier in this study is different to the multiplier used in the Hydro-Effect 
Method in the current CBP Phase 5 Watershed model. That multiplier is the first half of the adjusted 
multiplier formula. 
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              0 ≤ Asymp ≤ 1; HalfSat > Thres 

for 0 ≤ Adj. Multiplier ≤ 1 

With: 

(Asymp, Thres, Halfsat)  – function parameters 

Runoff    – Volume of runoff (SURO) in 24 hours [in-acre] 

Multiplier    – Re-scaled multiplier of for BMP effectiveness [%] 

 

4. Results 

Here we discuss results, including the empirical relationship between BMP effectiveness and the 

volume of runoff and the parameters of that relationship. 

4.1. Effectiveness as a function of runoff 

When optimizing the BMP dimensions to achieve the given effectiveness, sediment removal was in 

all cases the determining factor. For nitrogen and phosphorus the achieved removal efficiencies are 

much larger than the target value.  

Table 21 shows the given target and the ranges of effectiveness in the SUSTAIN output for each 

BMP and pollutant. Either the modeling of processes in SUSTAIN does not capture reality well or 

the assumed target values exported from the CBP Phase 5 Watershed model are unrealistic for the 

Patuxent watershed.  

Figure 35 shows the scatterplots for four BMPs. As expected, the BMP effectiveness 

decreases for higher amounts of runoff. It is interesting to note, that some days record negative 
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BMP effectiveness. This could be an artifact of aggregating the data from midnight to midnight. If it 

rains late in the day, the pollutants stay in the BMP past midnight and are carried away the following 

day. On that day, it looks as if the effectiveness is negative because more pollutants are coming out 

of the BMP than entering it. When aggregating the data over a week (168 hours), the negative values 

indeed disappear (Figure 36, row 2). Additionally, it is noticeable that the steepness of the 

performance curve decreases. When the data are aggregated over a year, the performance curve 

becomes flat (Figure 36, row 3). Therefore, the BMP effectiveness is assessed to be independent of 

how much rain falls in a year.  

Table 21: Effectiveness target values and optimization results [Low, Mean, High]for each Best 

Management Practice and pollutant. The values denote the average annual effectiveness, i.e. the 

fraction of pollutants removed from the storm water.  

BMP Sediment Total Nitrogen Total Phosphorus 

 
Given average annual effectiveness 

SUSTAIN output: Effectiveness [Low, Mean, High] 

Bioretention 
0.80 

[0.81, 0.83, 0.90] 

0.75 

[0.84, 0.91, 0.96] 

0.70 

[0.83, 0.89, 0.94] 

Porous Pavement 
0.70 

[0.70, 0.73, 0.78] 

0.50 

[0.75, 0.85, 0.90] 

0.50 

[0.73, 0.79, 0.83] 

Extended Dry Pond 
0.60 

[0.60, 0.61, 0.62] 

0.20 

[0.67, 0.77, 0.84] 

0.20 

[0.64, 0.70, 0.75] 

Dry Pond 
0.10 

[0.10, 0.11, 0.13] 

0.05 

[0.22, 0.27, 0.31] 

0.10 

[0.14, 0.18, 0.22] 

Infiltration Trench 
0.95 

[0.95, 0.95, 0.97] 

0.8 

[0.96, 0.98, 0.99] 

0.85 

[0.95, 0.97, 0.98] 

Vegetated Swale 
0.70 

[0.70, 0.72, 0.78] 

0.45 

[0.78, 0.83, 0.86] 

0.45 

[0.74, 0.81, 0.78] 

Wet Pond 
0.60 

[0.61, 0.66, 0.84] 

0.20 

[0.64, 0.78, 0.86] 

0.45 

[0.63, 0.72, 0.85] 

SUSTAIN output:               (  
                             

                            
)  

Given average annual effectiveness taken from CBP Phase 5 Watershed model.  

Pollutant that determined BMP size is printed in bold.  
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Porous Pavement 

 

Bioretention 

 

Wet Pond 

 

Dry Pond 

 

Figure 35: Sediment removal for bio retention, porous pavement, wet and dry pond for impervious 

land use A24003, aggregated for 24 hours (1 day).  
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Wet Pond 

 

Dry Pond 

 

  

  

Figure 36: Sediment removal for wet and dry pond on regulated impervious developed land use 

A24003, aggregated for 48 hours (2 days), 168 hours (1 week), and 8760 hours (1 year) 
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4.2 Refined Michaelis-Menten curve 

The MM curve was fit to the SUSTAIN output per BMP, pollutant, land segment and land use. 

Figure 37 shows the revised MM curves for the developed impervious land use in one of the land 

segments. To be able to compare it to the default MM curve in the Phase 5 Watershed model, it has 

been plotted against the return period rather than the volume of runoff. Due the rescaling described 

earlier, the multiplier of the revised MM curve can exceed 1, so that the average annual effectiveness 

equals the BMP effectiveness observed in the field. In the following, each parameter of the MM-

curve will be discussed.  

 

Figure 37: Revised MM curves for several BMPs plotted against the return period. The "default" 

curve denotes the MM curve currently assumed in the Phase 5 Watershed model. The figure shows 

the MM curves for the regulated impervious developed land uses in land segment A24003 in the 

Upper Patuxent watershed.  
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4.1.1. Threshold 

In reality, the size of BMPs is usually chosen to be able to cope with a certain volume of runoff, e.g. 

for amounts of runoff with return periods of one to two years.56 The threshold volume, up to which 

which the BMP functions perfectly, should thus equal that design return period. In this study, the 

BMPs were dimensioned to achieve pollutant removal rates that have been observed in the field. 

The effectiveness of the modeled BMPs drops off much faster than assumed in the Phase 5 

Watershed model. For example, in land segment A24003, only the bioretention, the porous 

pavement, and the extended dry pond do not decline for runoffs occurring more often than once a 

year.57 In that land segment, all BMPs have started losing effectiveness for runoffs with a return 

period greater than 1.5 years. For impervious land uses, only infiltration ponds have a threshold 

larger than one year. That is also true, when averaging over both land uses, see Table 32 in the 

appendix.58 It is possible that the BMPs that were monitored in the field could cope with larger 

quantities of water, e.g. those occurring every one or two years. The quality of the effluent seems to 

start deteriorating earlier.  

4.1.2.  HalfSat (Steepness of MM-curve) 

The rate at which the BMP effectiveness decreases with an increasing return period is important 

information, if new BMP requirements are meant to be robust to climate change. In that case, BMPs 

whose effectiveness drops off more gradually with increasing amounts of runoff are the better 

                                                 
56 In Maryland, a BMP’s capacity has to be large enough to cope with 0.9-1 inch-acre of rainfall 
encompassing ca. 90% of the annual rainfall.  Schueler, T.R. and R.A. Claytor, Maryland Stormwater 
Design Manual. Maryland Department of the Environment. Baltimore, MD, 2000. 
57 That is probably also true for infiltration trench. Due to their high effectiveness, it was not 
possible to fit performance curves for infiltration trench in pervious land uses. They release effluents 
on too few days.  
58 For some land uses and BMPs the scatter plots were repeatedly too sparse to fit a performance 
curve, see Table 32. This skews the average.  
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choice. In this study, infiltration-based BMPs such as the bioretention, vegetated swale and 

infiltration trench are on average more robust to different storm sizes. They are followed by wet 

pond, extended dry pond and porous pavement. Conventional pond-based BMPs are least robust on 

average. They were originally not intended to improve water quality. So it is not surprising that they 

fare worst in terms of their effectiveness in improving water quality.  

4.1.3. Asymptote 

The asymptote is 0% in all cases. There is very little uncertainty around the asymptote, with three 

BMPs having a maximum asymptote as low as 10%. Consequently, the default assumption of a 

minimum effectiveness of 20% of the target value is too optimistic.  

4.2. Discussion Revised Michaelis-Menten Curve 

This case study shows that performance curves of BMPs are sensitive to context. How well the MM-

curve fits the data differs considerably for different BMPs, land uses and land segments.  

First, the steepness of the performance curves is heavily dependent on the annual average 

effectiveness of the BMPs. Due to their given target values, dry pond and infiltration trench were 

the least and most effective BMP respectively. Not by coincidence, their performance curves are the 

steepest and least steep respectively. For pervious land uses, it was not even possible to fit a MM-

curve through the infiltration trench data, because it functions so well that most runoffs do not lead 

to an effluent. This could be explained as follows. Larger storms with more runoff and pollutants 

will be a larger impact relative to its size on a small or not so effective BMP than on a larger or very 

effective BMP. Therefore, the performance curve of a small or ineffective BMP decreases quicker 

with larger amounts of runoff than the performance curve of a large or effective BMP. 
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Additionally, the MM-curves fit more or less well to different BMPs. It was not possible to 

fit a BMP curve through data for the dry pond for some impervious land uses. Its effectiveness 

declines too rapidly. When giving the dry pond less stringent effectiveness targets (Extended Dry 

Pond), its performance curve blends in with those of the other BMPs. But curve fitting for all three 

pond-based BMPs results on average in the largest root mean squared errors (RSMEs), suggesting 

that the MM-curve leaves space for improvement. The performance curves of the pond-based 

BMPs have different shapes, too. The wet pond’s performance, for example, looks much less 

convex than the performance curves of bioretention, porous pavement or infiltration trench. This 

could be due to the fact that the later three are infiltration-based BMPs. In contrast, the dry pond 

displays a sharply curved performance curve.  

The data are especially sparse in the tail with high amounts of runoff. The vegetated swale 

and also the bioretention have relatively wide tails, where few data points cover a large band width. 

For those BMPs, it is much less certain what the performance curve actually looks like in the tail.   

Second, the land segment matters as well. Out of the four modeled land segments, A24027 

seems to produce the least runoff. Therefore, in many model runs the BMPs did not release any 

effluent. Occasionally, this also happens for the pervious land uses in A24031. The resulting sparse 

scatterplots made it in many cases impossible to fit a performance curve through the data points. As 

a result, the RMSE for those land uses also have the larger average values than for the other two 

land uses.  

Third, it makes a difference for the shape of a performance curve, whether a BMP is placed 

in a previous or impervious land use. Pervious land uses produce less runoff because the stormwater 

gets the chance to infiltrate into the ground on its way to the next water body. The threshold after 

which BMP effectiveness starts dropping off is much larger in terms of return frequency on 



 

154 

 

pervious land uses than on impervious ones. The effectiveness drops off much less rapidly on 

impervious land uses, probably because an impervious land use produces proportionally more 

runoff for events with a larger return period. The larger threshold and steeper decline give 

performance curves on pervious land uses a more convex look.  

In reality, BMPs are built to serve the estimated percentage of the surface that is impervious. 

The rationale is that development converts pervious surfaces to impervious surfaces. In that 

rationale, pervious surfaces are assumed not to contribute to an increase in runoff or pollutant load. 

Obviously, that assumption is more valid for the quantity of runoff, but much less so for the quality 

of runoff. E.g., a lawn might be pervious, but due to fertilizer the runoff will contain much more 

pollutants. Additionally, perviousness comes in many degrees, so that the quantity of runoff from 

different pervious land uses is variable as well. This study shows that performance curves are 

dependent on the land use. It follows that it is important to study how much runoff of what quality 

will be captured when dimensioning a BMP.  

In its basic form, the Phase 5 Watershed model, cannot distinguish between all these 

different contexts. However, it does give the option to distinguish by BMP. This option should 

definitely be made use of. It would be impractical to assign performance curves to each land 

segment. In this case, it is wise to make conservative assumptions. As to land use, it would be worth 

to consider making the performance curve a function of runoff. Figure 38 demonstrates why. Like 

mentioned before, BMPs dimensions are based on the quantity of runoff rather than the return 

period. The BMPs are mainly dimensioned for the very frequent small runoffs, but are much less 

optimized to meet the demands of large runoffs. Yet, that is where the frequency distribution of the 

runoff from different land uses increasingly diverges. When performance curves are plotted as a 
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function of return frequency without distinguishing between different land uses, this information is 

lost.  

 

Figure 38: Difference in return period of stormwater runoff on pervious (rpd03) and impervious (rid) 

for developed land uses in the A24003 land segment in the Upper Patuxent watershed. 

 

A performance curve as a function of the volume of runoff makes the performance curve 

independent of the land use and dependent on the size of the BMP. Figure 39 shows that the 

threshold in terms of runoff is much higher for BMPs on impervious land uses, because the BMPs 

there are optimized to hold more water than those on pervious land uses.59  It is much easier to 

define the BMP effectiveness as a function of runoff and distinguish by BMP than accounting for all 

those different land uses (and land segments) by assigning them individual parameters for the MM 

curve.  

                                                 
59 Note, for the performance curves as a function of return frequency, the threshold for BMPs on 
impervious surfaces is lower than for the ones on pervious surfaces. Contrarily, when the 
performance curves is plotted as a function of the volume of runoff, the threshold for BMPs on 
impervious surfaces is higher than for the ones on pervious land uses.  
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Figure 39: Revised MM curves for several BMPs plotted against the volume of runoff. The figure 

shows the MM curves for the regulated impervious  and pervious (vague lines) developed land uses 

in land segment A24003. 

5. Caveats and Discussion 

5.1. Caveats 

Several differences between the BMPs modeled in this study and those implemented in reality exist. 

First, BMPs are almost always implemented in treatment trains. For example, there will first be a 

sedimentation pond to let the sediment settle before the runoff travels on to a BMP that excels in 

removing other pollutants, e.g. a bio retention. This optimizes efficiency, increases retention time 

and makes BMP maintenance easier. With the exception of BMPs solely meant to decrease the peak 

discharge into the stormsewer system, stand-alone BMPs as modeled in SUSTAIN are uncommon.  

Second, in SUSTAIN, the BMPs were sized to remove certain amounts of pollutants to replicate the 

given annual average effectiveness (target values) exported from the Phase 5 Watershed model. It 
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turned out that SUSTAIN could not replicate the given target values. Sediment was dominant for 

the dimensioning of all BMPs. Consequently, the BMPs’ effectiveness for phosphorus and nitrogen 

was (much) more favorable than the target value. Either the assumed target values are not valid for 

these land segments and land uses, or the SUSTAIN model does not capture all natural processes 

inside the BMP well. Third, this study and the Phase 5 Watershed model use 24 hours as time step 

rather than storm event as is done in many monitoring studies.  

5.2. Discussion 

Climate change affects the effectiveness of BMPs in much more ways than just the changing 

amounts of runoff. The effectiveness of “green” BMPs, for example, depends on the vegetation 

inside the BMP that slow down the flow and take up some of the pollutants. With a changing 

climate, the type of plants in the BMPs might change and with them the BMP’s effectiveness. 

Climate change might also affect how much water the soil can absorb, for example by changing soil 

properties such as the initial soil moisture content. BMPs depending on infiltration would then 

become more or less effective.  

The BMP effectiveness in this study and the Phase 5 Watershed model is quantified as a 

percentage reduction of pollutant load (lbs.). It depends on the amount of inflow how many pounds 

of pollutant mass such a percent reduction equals to. However, the capacity of a BMP to remove 

pollutants is a function of mass. It would be much more realistic to quantify the effectiveness as the 

amount of removed pollutant mass in pounds per square foot or cubic foot of BMP, so that it 

becomes independent of the amount of inflow. Strecker et al. (2008) list 15 detailed reasons why 

percent removal rates should not be used. They additionally suggest to take into account the effect 

on peak discharge rate and total volume of discharge. After all, BMPs do not only remove pollutants 

but also prevent urban flood problems (Strecker et al., 2000). EPA suggests taking basing BMP 
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effectiveness on three metrics: volume, total load and concentration (EPA, 2009).  Even though the 

problems with using percent pollutant removal rates have been discussed and alternatives have been 

suggested in numerous newsletters, technical bulletins, journals and on websites (e.g., Singelis & 

Kosco, 2008; Geosyntec Consultants, 2012; Schueler, 2011, Jones et al., 2007; Bahr et al., 2012), the 

conventions in the modeling world have apparently not changed yet. An influential model such as 

the HSPF-based Chesapeake Bay Program Phase 5 Watershed model still uses percent removal rates 

for BMP effectiveness.  

6. Conclusions 

A number of findings and recommendations come forth from this study: 

General 

- The BMP effectiveness should be expressed as a function of the volume of runoff rather 

than the return frequency thereof, as is done in the CBP Phase 5 Watershed model. This 

captures the differences between pervious and impervious land uses and between land 

segments with different rainfall regimes much better. Additionally, data for storms occurring 

more often than once a year can then be included in the model which is currently lost due to 

mathematical constraints. 

- The performance curves should at the very least be differentiated by BMP, ideally also by 

land use. The study clearly shows that each BMP performs differently under varying storm 

sizes and in different land segments and landuses. The fact that the rate at which the 

effectiveness decreases with larger amounts of runoff is a function of the BMP’s average 

annual effectiveness complicates matters.  

- Changing frequencies and intensities of storm events make it necessary to choose BMPs that 

are robust to those changes. The BMPs with the least steep decrease in effectiveness with 
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storm size are the infiltration-based BMPs. Pond-based BMPs fare less well. This is not 

surprising. Dry ponds, for example, were originally intended to reduce the quantity of 

stormwater flowing into the storm sewer, rather than improving the quality of the runoff. 

Upper Patuxent Watershed/Phase 5 Watershed model 

- BMP effectiveness drops sooner, deeper and on pervious land uses also steeper than 

assumed in the Phase 5 Watershed model. With the given target values, all BMPs except the 

infiltration trench are not maximally functioning for amounts of runoff occurring more 

often than once a year. Initially, the effectiveness drops off steeper than assumed in the 

Phase 5 Watershed model. But due to its convex character, the performance curve is less 

steep than assumed in the tail. There is very little uncertainty around the asymptote that the 

BMP effectiveness drops down to. For all BMPs, it is equal or close to 0% rather than 20% 

assumed in the Phase 5 Watershed model.   

- The MM curve, which is the current default function in the CBP Phase 5 Watershed model 

leaves much room for improvement. Especially, the MM-curve does not fit pond-based 

BMP very well.  

- There is a gap between the target values observed in the field and in the model. The BMPs 

in the model are much more efficient in removing nitrogen in phosphorus. It warrants 

further research, whether either the field monitoring and/or the model need improvement.  
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 CONCLUSION 

There is no doubt that adding uncertainty information to (river) forecasts will improve the product 

both technically and for decision-making. In the past, there have been cases, when decision-makers 

were not sufficiently aware of the uncertainty in forecasts. The most prominent example is the 

devastating flood in Grand Forks, ND in 1997 (Pielke, 1999). Precipitation forecasts, used by the 

general public, are already probabilistic. Morss et al. (2010) has shown that people are capable of 

interpreting those correctly.  

 In my thesis, I find that emergency managers are usually aware of the uncertainty in 

forecasts. They do not perceive this uncertainty as a major problem. Instead, emergency managers 

worry much more about the cascading events of critical situations. For example, failing air 

conditioning in a shelter during a heat wave or a skateboard stuck in a stormsewer during heavy 

rainfall make a tense situation a crisis.  

Work experience is the best predictor of how much emergency managers rely on forecasts 

and recorded weather data. Therefore, it must have a benefit for them. At least partially, it is a lack 

of early training that emergency managers learn of the benefits of forecasts on the job. I found some 

evidence that subjective numeracy influences of how useful emergency managers find the forecast in 

terms of accuracy, timeliness, etc. They then project that attitude onto the people around them. 

Work experience in turn seems to teach emergency managers the benefits of taking into account the 

the opinions of their emergency management and city hall colleagues. Peer-education seems to be a 

promising option to improve decision-making. 

Emergency managers cope with the uncertainty in forecasts by collecting large amounts of 

information and using weather information, such as radar, that are less uncertain. While the forecast 

is only one of many pieces of information, it does serve as a standard that is also communicated to 
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the public. The emergency managers may add local interpretation and instructions to the forecast, 

but they are reluctant to publish their judgment of the forecast uncertainty. They are concerned 

about what happens when their judgment is wrong. The history of law cases shows that it is unlikely 

that an emergency manager could (successfully) be sued for interpreting forecast uncertainty 

incorrectly. However, emergency managers are either not aware of this or are worried about the 

criticsm in tidely knit communities.  

 I conclude that forecast uncertainty is only likely to be communicated to the broader public, 

if it is included in the official forecast. This is important, because it is not the emergency manager 

who actually carries out preventive measures. Instead, the public and the city departments take 

action, e.g., evacuate, close off areas, and secure property.   

 While probabilisitic forecasts are beneficial, it is illusionary to think that they will 

automatically lead to better decision-making. People are often caught off guard when a crisis 

develops differently than those in the past. Heuristics like the anchoring, representativeness and 

availability heuristic help people making decisions in a complex world, but often serve them poorly 

in extreme situations (Tversky, Kahneman, 1974). This will remain the case with probabilistic 

forecasts. Therefore, emergency managers need to be trained in a “boots-on-the-ground” manner 

not only how to read probabilistic forecasts, but also how to base decisions one them. Then some of 

the mathematical benefits as computed by Verkade and Werner (2011) have a chance to materialize. 

I find that currently decision-making based on weather forecasts is insufficiently part of the standard 

curriculum for emergency managers. It also needs to be considered how the end users of any 

forecasts, the general public, will use probabilistic forecasts, when asked to heed the advice of 

authorities in critical situations.  While I have not studied this in my research yet, I think, that it 

makes a difference whether the uncertainty is communicated as a probability of exceeding some 
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threshold, as confidence bounds, or average forecast error. Last, attention has to be paid to 

accountability issues when substituting deterministic forecasts with probabilistic ones.  

 Turning to the technical aspects of river forecasts, I found that emergency managers 

perceive the inaccuracy of and frequent changes to event magnitude and timing as the most 

important obstacle for relying on forecasts (rather than their ability to interpret the forecast or the 

timely availability for the area). Probabilistic forecast thus really do address a problem. My 

experiments with quantile regression confirm for the U.S. American context, that probabilistic 

forecasts of good quality can be generated fairly easily by post-processing published forecasts. A 

major benefit of post-processing forecasts is that it captures uncertainty from all sources: exogenous 

and endogenous to the forecast model. Thus, an expensive overhaul of the entire forecasting system 

is unnecessary. Solutions as small as a smartphone application are conceivable, because the 

computational load is low. I found that a single model is sufficient to predict the probability of 

exceeding water levels, except extremely high ones. For flood stages, the model needs to be 

customized to the river gage in question.  

 There is still much room for improving the quantile regression approach to probabilistic 

river forecasts. The model does not perform well for lower water levels, and its performance is 

sensitive to river gage, forecast year, lead time, and event thresholds. River gages close to river 

confluences and far upstream are especially difficult to predict. Including more variables such as 

observed and forecast precipitation is an obvious way to improve the model. However, some 

variables are not easily combined in the linear version of the quantile regression model.  

 For a user of probabilistic forecasts it is difficult to base decisions on it, if the forecast 

performance is so senstivitive to the context. It is therefore necessary, that the performance record 
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of those forecasts is published alongside them; i.e., the uncertainty of probabilistic forecasts needs to 

be quantified as well.  
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Appendix – Study 2 

1. Questionnaire 

In the following, the survey questions for each component of the Theory of Planned Behavior are 

listed. For the sake of brevity, some of the survey infrastructure, e.g., the introduction text, has been 

omitted.60 The question texts are indicated by cursive font.  

1.1. Hazard Type 

The questionnaire starts off by making the participant choose one type of hazard. (S)he answers the 

questions for the chosen hazard.  

Which of the following hazards did you find most difficult to respond to as an emergency manager in the past 10 years 

(2004-2014)? (Select one answer.) 

 Flash flood 

 River flood 

 Tornado 

 Hurricane 

 Snow and Ice Storm 

 Heat Wave 

 None of the above61 

 

In which year, did this event occur? 

2014-2000 (drop-down box) 

1.2. Intention and Past Behavior 

The TPB components “Intention” and “Past Behavior” have the same answer options, but different 

questions.  

Past behavior: During the [event], how much did you rely on National Weather Service data to make any of the 

following decisions or carry out any of the following actions? 

Intentions: If an event like the[event] happened again in the near future, how much do you think would you rely on 

National Weather Service data to make any of the following decisions or carry out any of the following actions? 

                                                 
60 Please contact the author for a copy of the full questionnaire.  
61 If “None of the above” was selected, the participant was not shown the sections “Past Behavior & 
Intention” and “Perceived Control”.  

In the following, [event] will denote the combination of selected weather event and year.  

For example if “Heat Wave” and “2009” have been selected in the above questions:  

[event] = the 2009 Heat Wave 
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Please answer the questions for two types of data from the National Weather Service (NWS): 

1. Recorded weather data from the past few hours/days (observed conditions).  

2. Short-term weather forecasts for the next few hours/days 

The answer options are displayed in Table 22. 

 

If you could only have one, which type of data from the National Weather Service would you prefer to have when 

responding to events like [event]? 

 Recorded weather data (Past few hours/days) 

 Short-term weather forecasts (Newt few hours/days) 

1.3. Perceived Control 

Please rate how much the following factors have limited your reliance on National Weather Service data when 

responding to events like the [event]. 

Please answer the questions for two types of data from the National Weather Service (NWS): 

1. Recorded weather data from the past few hours/days (observed conditions).  

2. Short-term weather forecasts for the next few hours/days 

The answer options are displayed in Table 23. 

When thinking of responding to an event like the [event], how satisfied are you with the data from the National 

Weather Service? 

 
Extremely 

satisfied 

Very 

satisfied 

Somewhat 

satisfied 

Slightly 

satisfied 

Not at all 

satisfied 

Recorded weather 

data 

(Past few hours/days) 
     

Short-term weather 

forecasts 

(Next few hours/days) 
     

 

1.4. Social Norms 

Please rate how much the following groups expect you to rely on the National Weather Service data when responding to 

an event like the [event]? 

Please answer the questions for two types of data from the National Weather Service (NWS): 

1. Recorded weather data from the past few hours/days (observed conditions).  

2. Short-term weather forecasts for the next few hours/days 

The answer options are displayed in Table 24. 

Please rate how much you worry about criticism from the following groups when responding to an event like [event].  
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Please answer the questions for two types of data from the National Weather Service (NWS): 

3. Recorded weather data from the past few hours/days (observed conditions).  

4. Short-term weather forecasts for the next few hours/days 

 

 

 
Does not 

apply 

Very 

much - 1 
2 

Some- 

What - 3 

 

4 

Not at all 

- 5 

Local and regional emergency 

management colleagues 
      

City employees (for example, 

city departments, fire, police, 

EMS) 

      

Elected officials (for example, 

mayor, city council) 
      

Employees of the National 

Weather Service 
      

Employees of government 

agencies (for example, Army 

Corps of Engineers, FEMA) 

      

Training/workshop instructors       

Residents       

Friends & Family       

The media       

The general public       

As an emergency manager, to which degree do you agree or disagree with the following statements? 

 
Strongly 

Disagree 
Disagree Undecided Agree 

Strongly 

Agree 

In general, taking into account the 

expectations of others is useful when 

responding to an event. 

     

I worry about potential or possible liability 

claims made against me or my employer 

when responding to an event.  
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Table 22: Answer options for "Past Behavior" and "Intention" questions. 

 Recorded weather data 

(Past few hours/days) 

Short-term weather forecasts 

(Next few hours/days) 

 Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Determine where and when to deploy (storm) 

spotters 
            

Determine when notify other first responder or 

when to activate Emergency Operations Center 
            

Determine likely impact location of the event             

Decide when to warn public             

Track the progress of the event (for example, to 

protect first responders and predict damage) 
            

When to initiate evacuation             

When to open shelters             
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Table 23: Answer options for main "Perceived Control" question. 

 Recorded weather data 

(Past few hours/days) 

Short-term weather forecasts 

(Next few hours/days) 

 Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Receiving information too late to be useful             

Information unavailable in your area             

Insufficient/irrelevant information             

Irregular information release times             

Inaccurate forecast of event magnitude x            

Inaccurate forecast of event timing x            

Frequent changes to forecast of event 

magnitude 
x            

Frequent changes to forecast of event timing x            

Your ability to understand the information             

Your ability to apply the information to the 

emergency response 
            

 

 



 

174 

 

 

1.5. Attitude 

Thinking of responding to a weather-related crisis to what extent do you agree or disagree with the following 

statements? 

 
Strongly 

Disagree 
Disagree Undecided Agree 

Strongly 

Agree 

It is my job to prevent rather than to respond 

to hazardous situations. 
     

It is my job to protect rather than to rescue 

citizens. 
     

I pay more attention to the current situation 

and less to possible sequences of events when 

making a plan to respond to an event.  

     

Not knowing what will happen during an 

event makes it difficult for me to respond.  
     

I routinely think in what-if scenarios when 

responding to events. 
     

A critical situation can develop in so many 

different ways, it is difficult to determine 

appropriate actions.  

     

 

Which statement best characterizes your response to weather-related crises? (Select one.) 

 When faced with a critical situation, I consider all facts, figures, and different scenarios and weigh my options 

before I take action.  

 When faced with a critical situation, I know what to do when I see what is going on around me, and hear 

what is happening.  



 

175 

 

Table 24: Answer options for "Social Norms" question. 

 Recorded weather data 

(Past few hours/days) 

Short-term weather forecasts 

(Next few hours/days) 

 Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Does 

not 

apply 

Very 

much 

1 

 

 

2 

Some

what 

3 

 

 

4 

Not at 

all 

5 

Local and regional emergency management 

colleagues 
            

City employees (for example, city 

departments, fire, police, EMS) 
            

Elected officials (for example, mayor, city 

council) 
            

Employees of the National Weather Service             

Employees of government agencies (for 

example, Army Corps of Engineers, FEMA) 
            

Training/workshop instructors             

Residents             

Friends & Family             

The media             

The general public             
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Table 25: Answer options for "Attitude" component. 

 Recorded weather data 

(Past few hours/days) 

Short-term weather forecasts 

(Next few hours/days) 

 
Strongly 

Disagree 
Disagree 

Un-

decided 
Agree 

Strongly 

Agree 

Strongly 

Disagree 
Disagree 

Un-

decided 
Agree 

Strongly 

Agree 

Using NWS data to respond to events 

has resulted in better decisions/actions. 
          

NWS data is the most important source 

of information for responding to events.  
          

Relying to NWS data to respond to 

events can be harmful.  
          

I would recommend other emergency 

managers to rely on NWS data to 

respond to events.  

          

NWS data gives me confidence in my 

decisions/actions during responses to 

events.  
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Thinking of an event like [event], to what extent do you agree with the following statements? 

Please answer the questions for two types of data from the National Weather Service (NWS): 

1. Recorded weather data from the past few hours/days (observed conditions).  

2. Short-term weather forecasts for the next few hours/days 

The answer options are displayed in Table 25. 

1.6. Subjective Numeracy 

The Subjective Numeracy Scale has been developed by Fagerlin et al. (2007).  

For each of the following questions, please check the box that best reflects how good you are at doing the following 

things: 

 

Not at all 

good 

1 

2 3 4 5 

Extremely 

good 

6 

How good are you at working 

with fractions? 
      

How good are you at working 

with percentages? 
      

How good are you at calculating a 

15% tip? 
      

How good are you at figuring out 

how much a shirt will cost, if it is 

25% off? 

      

 

 

 

When reading the newspaper, how helpful do you find tables and graphs that are parts of the story? 

Not at all 

helpful 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

Extremely 

helpful 

6 

 

When people tell you the chance of something happening, do you prefer that they use words (for example, “it rarely 

happens”) or numbers (for example, “there is a 1% chance”)? 

Always prefer 

words 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

Always prefer 

numbers 

6 

 

When you hear a weather forecast, do you prefer predictions using percentages (for example, “there will be a 20% 

chance of rain today”) or predictions using only words (for example, “there is a small chance of rain today”)? 

Always prefer 

words 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

Always prefer 

percentages 

6 
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How often do you find numerical information to be useful in your daily life? 

Never 

1 

 

2 

 

3 

 

4 

 

5 

Very often 

6 

 

1.7. Demographics 

The following demographic information has been collected at the end of the survey:  

- Professional or volunteer position as emergency manager 

- First-responder background (e.g., policeman, fire fighter or paramedic) 

- Paid/unpaid emergency management position 

- Length of experience as emergency manager 
 

- Type jurisdiction (e.g., county, municipality, tribe) 

- Size jurisdiction (number of residents) 

- State 
 

- General level education 

- Type of emergency management education 

- Received instructions for use of forecasts 

- Gender 

- Age 

 

2. Principal Component Analysis – Loadings 

2.1. Dependent Variables  

Table 26: Component loadings for the four dependent variables. 

 

Past Behavior 

Recorded 

weather data 

Past 

Behavior 

Forecasts 

Intentions 

Recorded 

weather data 

Intentions 

Forecasts 

Determine where and when to deploy (storm) spotters -0.24 -0.17 -0.23 -0.19 

Determine when notify other first responder or when to 

activate Emergency Operations Center 
-0.41 -0.43 -0.41 -0.43 

Determine likely impact location of the event -0.42 -0.43 -0.41 -0.42 

Decide when to warn public -0.44 -0.44 -0.43 -0.42 

Track the progress of the event (for example, to protect 

first responders and predict damage) 
-0.41 -0.39 -0.39 0-41 

When to initiate evacuation -0.34 -0.33 -0.35 -0.35 

When to open shelters -0.35 -0.38 -0.38 -0.38 

Proportion of Variance 53.9% 44.1% 59.1% 55.1% 
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2.2. Perceived Limitations 

Table 27: Component loadings for perceived limitations. 

 

Recorded weather data  Short-term weather forecast  

Component 

1 

Component 

2 

Component 

3 
 Component 

1 

Component 

2 

Component 

3 

Inaccurate forecast of event 

magnitude 
-0.35 0.35 0.14  -0.34 0.33  

Frequent changes to forecast of 

event magnitude 
-0.34 0.38   -0.34 0.35 -0.26 

Inaccurate forecast of event 

timing 
-0.36 0.32 0.13  -0.36 0.30  

Frequent changes to forecast of 

event timing 
-0.35 0.34   -0.35 0.35 -0.23 

Receiving information too late 

to be useful 
-0.28 -0.32 0.18  -0.29 -0.21 0.32 

Information unavailable for 

your area 
-0.27 -0.37 0.24  -0.31 -0.20 0.37 

Insufficient/irrelevant 

information 
-0.31 -0.35 0.24  -0.32 -0.19 0.39 

Irregular information release 

times 
-0.29 -0.30 0.27  -0.36 0.12 0.24 

Your ability to apply the 

information to the 

emergency response 

-0.29 -0.19 -0.19  -0.27 -0.42 -0.50 

Your ability to understand the 

information 
-0.27 -0.20 -0.20  -0.26 -0.50 -0.42 

Proportion of Variance 46.6% 24.1% 11.8%  55.5% 14.9% 10.1% 

Cumulative Proportion 46.6% 69.7% 81.5%  55.5% 70.4% 80.5% 
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2.3. Social Norms 

Table 28: Component loadings for social norms. 

 

Recorded weather data  Short-term weather forecast 

Component 1 Component 2  Component 1 Component 2 

Local and regional emergency management colleagues -0.25 0.37  -0.23 0.35 

City employees  -0.32 0.14  -0.32 0.16 

Elected officials  -0.37 -0.11  -0.36 -0.13 

NWS employees -0.22 0.51  -0.22 0.51 

Employees of government agencies  -0.33 0.26  -0.33 0.30 

Training/workshop instructors -0.22 0.42  -0.21 0.43 

Residents -0.38 -0.36  -0.39 -0.35 

The Media -0.33 -0.16  -0.32 -0.19 

The general public -0.37 -0.36  -0.38 -0.34 

Family & Friends -0.33 -0.22  -0.34 -0.18 

Proportion of Variance 44.6% 13.7%  42.9% 14.5% 

Cumulative Proportion 44.6% 58.3%  42.9% 57.5% 

 

2.4. Job Attitude 

Table 29: Component loadings for job attitude. 

 
Component 

1 

Component 

2 

It is my job to prevent rather than to respond to hazardous situations. 0.50 0.47 

It is my job to protect rather than to rescue citizens. 0.47 0.46 

(-) I pay more attention to the current situation and less to possible sequences of events when 

making a plan to respond to an event.  
0.26 -0.31 

Intuitive vs. Analytical -0.39  

(-) Not knowing what will happen during an event makes it difficult for me to respond.  0.39 -0.51 

(-) A critical situation can develop in so many different ways, it is difficult to determine appropriate 

actions.  
0.41 -0.47 

Proportion of Variance 31.1% 20.1% 

Cumulative Proportion 31.1% 51.3% 
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2.5. Attitude Weather Data 

Table 30: Component loadings for attitude towards weather data. 

% Recorded weather 
data 

 
Short-term weather 

forecast 

Using NWS data to respond to events has resulted in better 

decisions/actions. 
-0.47  -0.49 

NWS data is the most important source of information for responding to 

events.  
-0.45  -0.45 

I would recommend other emergency managers to rely on NWS data to 

respond to events.  
-0.53  -0.53 

NWS data gives me confidence in my decisions/actions during responses to 

events.  
-0.54  -0.53 

Proportion of Variance 69.2%  67.6% 

 

2.6. Subjective Numeracy 

Table 31: Component loadings for subjective numeracy. 

 
Component 

1 

Component 

2 

1. How good are you at figuring out how much a shirt will cost, if it is 25% off? -0.43 -0.33 

2. How good are you at working with percentages? -0.45 -0.12 

3. How good are you at calculating a 15% tip? -0.44 -0.30 

4. How good are you at working with fractions? -0.39 -0.19 

5. When reading the newspaper, how helpful do you find tables and graphs that are parts of a story? -0.28 0.20 

6. When people tell you the chance of something happening, do you prefer that they use words (for 

example, "it rarely happens") or numbers (for example, "there's a 1% chance")? 
-0.23 0.60 

7. When you hear a weather forecast, do you prefer predictions using percentages (for example, 

“there will be a 20% chance of rain today”) or predictions using only words (e.g., “there is a small 

chance of rain today”)? 

-0.28 0.54 

8. How often do you find numerical information to be useful in your daily life? -0.25 0.26 

Proportion of Variance 45.1% 18.5% 

Cumulative Proportion 45.1% 63.6% 
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Appendix – Study 4 

1. Formulae used to compute pollutant loads in surface runoff 

For the years 1984-2005, the hourly continuous storm conditions for land segments A24003, 

A24027, A24031 and A24033 and the corresponding runoff for four land uses (rid, rpd, nid, npd)62 

in the Patuxent watershed were extracted from the CBP Phase 5 Watershed model. From those 

times series the surface outflow volume (SURO, [in-acre/time step]), the groundwater recharge 

volume (AGWO, [in-acre\time-step]) and the sediment load (SEDM, [tons/time step]) were directly 

used. The other pollutant loads were computed from the output with the following formulae: 

- Total Nitrogen: 

TOTN = NH3D + NH3A + NH3I + NH3C + NO3D + RORN + BODA x 0.0436 + PHYT 

x 0.0863 

TOTN = (SNH3+INH3+ANH3) + ( 0 ) + (DNH3 x 0.70) + (DNH3 x 0.30) + 

(SNO3+INO3+ANO3) + (DRON+SRON+IRON+ARON) + 

((DLON+SLON+ILON+ALON) x 22.95) x 0.0436 + ( 0 ) x 0.0863 

- Total Phosphorus:  

TOTP = PO4D + PO4A + PO4I + PO4C + RORP + BODA x 0.00603 + PHYT x 0.0119 

TOTP = (SPO4+IPO4+APO4) + ( 0 ) + (DPO4 x 0.70) + (DPO4 x 

0.30) + ((DRON+SRON+IRON+ARON) x 0.01384) + ((DLON+SLON+ILON+ALON) 

x 22.95 ) x 0.00603 + ( 0 ) x 0.0119 

 

                                                 
62 Land use definitions: rid – regulated impervious developed, nid – non-regulated impervious 
developed, rpd – regulated pervious developed, npd – non-regulated impervious developed. 
Impervious developed areas are roads, roofs, pavement, etc. Pervious developed areas are, for 
example, lawns. If a land use is classified as regulated, it is subject to the National Pollution 
Discharge Elimination System (NPDES) permits regulating stormwater discharges.  
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The gray components of the formulae were omitted, because only surface runoff was taken into 

consideration.  

These five components (SURO, AGWO, SEDM, TN, TP) were combined in one input file for 

SUSTAIN. In total 16 input files (4 land uses for 4 land segments) were created for each BMP.  

2. Derived Parameters for revised Michaelis-Mention curve 

The MM curve was fit to subset of the dataset, stratified by BMP, pollutant, land use and land 

segment. To facilitate curve fitting, it was desirable to have as many data points as possible for each 

fit. Therefore, pervious (rpd, npd) and impervious (nid, rid) have been lumped together. 

Additionally, the data for phosphorus and nitrogen removal was combined. Compared to sediment, 

those two pollutants undergo rather similar processes. Table 32 summarizes the resulting parameter 

ranges. The default value is the average of the parameter across the impervious land uses.63  

  

                                                 
63 Note that these parameters cannot be used in the Hydro-Method in the current CBP Phase 5 
Watershed model, because in this case the MM function describes a re-scaled multiplier for BMP 
effectiveness as a function of the volume of runoff rather than return frequency. 
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Table 32: Derived parameters for revised Michaelis-Menten curve. The average is based on 

impervious landuses only. The minimum and maximum in brackets are based on impervious and 

pervious land uses. 

 
Number of 

curves Average number of 

data points per curve 

Average 

RMSE 

Parameters for MM function:  

Default; [Low, High] 

BMP Imp* Perv* Asymp Thres Half Sat 

Bioretention 
6 4 6,372 0.05 0.0; [ 0.0, 

0.0 ] 

0.6; [ 0.4, 

0.7 ] 

3.1; [ 0.9, 

3.4 ] 

Dry Pond 
5 4 6,228 0.17 0.0; [ 0.0, 

0.0 ] 

0.0; [ 0.0, 

0.1 ] 

0.2; [ 0.1, 

0.2 ] 

Ext Dry Pond 
8 8 5,634 0.11 0.0; [ 0.0, 

0.0 ] 

0.3; [ 0.0, 

0.5 ] 

1.9; [ 0.4, 

3.6 ] 

Infiltration 

Trench 

8 0 7,863 0.02 0.0; [ 0.0, 

0.1 ] 

1.8; [ 1.6, 

2.1 ] 

3.6; [ 3.2, 

4.1 ] 

Porous 

Pavement 

6 4 6,373 0.06 0.0; [ 0.0, 

0.0 ] 

0.5; [ 0.4, 

0.6 ] 

1.8; [ 0.6, 

2.3 ] 

Vegetated Swale 
6 8 5,493 0.08 0.0; [ 0.0, 

0.1 ] 

0.1; [ 0.0, 

0.1 ] 

3.1; [ 0.8, 

4.4 ] 

Wet Pond 
8 4 6,360 0.17 0.0; [ 0.0, 

0.1 ] 

0.1; [ 0.0, 

0.3 ] 

1.7; [ 0.7, 

2.1 ] 

*The maximum number is 8 curves per land use. If the number is less than eight, it was not possible to fit a curve to do 

either data sparsity (esp. in pervious land uses) or form constraints of the MM-curve (esp. in impervious land uses).  
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