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Abstract

Many problems in signal processing, machine learning and computer vision can be solved by learning

low rank models from data. In computer vision, problems such as rigid structure from motion have been

formulated as an optimization over subspaces with fixed rank. These hard -rank constraints have traditionally

been imposed by a factorization that parameterizes subspaces as a product of two matrices of fixed rank.

Whilst factorization approaches lead to efficient and kernelizable optimization algorithms, they have been

shown to be NP-Hard in presence of missing data. Inspired by recent work in compressed sensing, hard-rank

constraints have been replaced by soft-rank constraints, such as the nuclear norm regularizer. Vis-à-vis

hard-rank approaches, soft-rank models are convex even in presence of missing data: but how is convex

optimization solving a NP-Hard problem?

This thesis addresses this question by analyzing the relationship between hard and soft rank constraints in

the unsupervised factorization with missing data problem. Moreover, we extend soft rank models to weakly

supervised and fully supervised learning problems in computer vision. There are four main contributions of

our work:

(1) The analysis of a new unified low-rank model for matrix factorization with missing data. Our model

subsumes soft and hard-rank approaches and merges advantages from previous formulations, such as efficient

algorithms and kernelization. It also provides justifications on the choice of algorithms and regions that

guarantee convergence to global minima.

(2) A deterministic “rank continuation” strategy for the NP-hard unsupervised factorization with miss-

ing data problem, that is highly competitive with the state-of-the-art and often achieves globally optimal

solutions. In preliminary work, we show that this optimization strategy is applicable to other NP-hard prob-

lems which are typically relaxed to convex semidefinite programs (e.g., MAX-CUT, quadratic assignment

problem).

(3) A new soft-rank fully supervised robust regression model. This convex model is able to deal with

noise, outliers and missing data in the input variables.

(4) A new soft-rank model for weakly supervised image classification and localization. Unlike existing

multiple-instance approaches for this problem, our model is convex.

Keywords: Computer vision, Machine learning, Low-rank matrices, Convex optimization, Bilinear fac-

torization, Augmented lagrange multiplier method, Image classification and localization, Weakly-supervised

classification, Robust regression, Structure from motion.



Resumo

Vários problemas de processamento de sinal, aprendizagem automática e visão computacional podem ser

resolvidos pela representação dos dados observados por matrizes low-rank. Particularmente na área da visão,

problemas como structure from motion são formulados como problemas de optimização restrita a subespaços

de rank fixo. Estas restrições são tradicionalmente impostas por uma factorização expĺıcita dos subespaços,

como um produto bilinear de duas matrizes. Embora desta imposição estrita das restrições de rank resultem

algoritmos eficientes e com possibilidades de kernelização, os problemas de optimização resultantes desta

modelação são NP-Hard quando sujeitos a omissões nos dados de entrada.

Motivados pelo progresso na área de compressed sensing, as restrições estritas têm vindo a ser substitúıdas

por uma imposição relaxada, que adiciona à função de custo regularizadores como a norma nuclear. Em

contraste com os modelos estritos, estes modelos são computacionalmente complexos, mas convexos mesmo

na presença de dados parciais: mas como podem problemas NP-Hard ser resolvidos através da optimização

convexa?

A presente tese visa abordar esta questão através da análise da relação entre os modelos estritos e

relaxados, quando aplicados ao problema da factorização matricial com dados parciais. Adicionalmente, são

propostos dois modelos relaxados para aprendizagem com supervisão fraca e total, aplicados ao problema da

classificação de objectos e cenário em imagens. Os resultados podem ser sumarizados em quatro contribuições:

(1) A proposta e análise de um modelo unificado para o problema da factorização matricial low-rank com

dados parciais. Este modelo engloba os modelos estritos e relaxados e apresenta vantagens de ambos, como

a eficiência e a kernelização. O modelo permite ainda justificar os algoritmos utilizados e define regiões que

garantem a convergência para mı́nimos globais.

(2) Uma estratégia determińıstica para optimização do problema da factorização com dados parciais, que

demonstra resultados competitivos com as soluções existentes na literatura, alcançando o óptimo global com

frequência. São ainda apresentados resultados preliminares que sugerem a aplicabilidade desta estratégia

a problemas combinatóricos reformulados como programas semi-definidos positivos com restrições de rank

(e.g., MAX-CUT, QAP).

(3) Um modelo relaxado de regressão e classificação robusta. Este modelo convexo é resiliente ao rúıdo,

outliers e dados parciais nos dados de entrada.

(4) Um modelo relaxado para classificação e localização de objectos com supervisão fraca.

Palavras chave: Visão computacional, Aprendizagem automática, Matrizes de baixo rank, Optimização

convexa, Factorização bilinear, Método ALM, Classificação e localização de imagens, Classificadores com

supervisão fraca, Regressão robusta, Structure from motion.
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Chapter 1

Introduction

1.1 The role of rank

The computer vision research area stands presently in an exciting time, with the ubiquity of imaging sensors

in DSLRs, cellphones and laptops. Together with the advent of large computing power and global internet

connectivity, these factors have eased the restrictions that limited amounts of data impose on the statistical

learning of visual models, turning the so-called curse of dimensionality into a blessing of dimensionality [1].

Nonetheless, this new paradigm comes with its unique set of challenges: first, scalable algorithmic solutions

are needed to harness this data, which cannot be stored or processed in a single computer; second, models

that enforce Occam’s razor’s notion of simplicity become of utmost importance, so as to preserve model

interpretability and avoid the risk of overfitting.

In this thesis, we study the topic of complexity penalization for visual learning tasks through rank

minimization models. The use of rank criteria has been pervasive in computer vision applications as a mean

of exploiting physical constraints of a model [2, 3, 4] or to minimize its complexity, be it in degrees of

freedom [5] or in data redundancy [6, 7]. All these problems are directly or indirectly related to the problem

of recovering a rank-k matrix Z (see footnote1 for notation) from a corrupted data matrix X, by minimizing

min
Z

f(X− Z)

subject to rank(Z) = k,

(1.1)

1 Bold capital letters denote matrices (e.g., D). All non-bold letters denote scalar variables. dij denotes the scalar in the
row i and column j of D. 〈d1,d2〉 denotes the inner product between two vectors d1 and d2. ||d||22 = 〈d,d〉 =

∑
i d

2
i denotes

the squared Euclidean Norm of the vector d. tr(A) =
∑

i aii is the trace of A. ‖A||2F = tr(A>A) =
∑

ij a
2
ij designates the

squared Frobenius Norm of A. ||A||∗ =
∑

i σi designates the nuclear norm (sum of singular values σi) of A. � denotes the
Hadamard or element-wise product. ⊗ denotes the Kronecker product. IK ∈ RK×K denotes the identity matrix. diag(X) is
the vector of the diagonal elements of X. Diag(X) is a matrix containing only the diagonal elements of X.
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where f(·) denotes a loss function. Due to its intractability, the hard -rank constraint in (1.1) has typically

been imposed by the inner dimensions of a bilinear factorization Z = UV>, as

min
U,V

f(X−UV>). (1.2)

The factorization approach in (1.2) has been popularized in computer vision by the seminal work on structure

from motion of Tomasi and Kanade [2]. Since then, it has been applied to many problems, including non-

rigid and articulated structure from motion, as well as photometric stereo [8] and motion segmentation [4],

or even classification [9, 10, 11]. It has been shown that when the loss function f(·) is the Least-squares

loss, i.e., f(X−UV>) = ‖X−UV>‖2F , then (1.2) does not have local minima and also that a closed form

solution can be obtained via the Singular Value Decomposition (SVD) of X [12].

Unfortunately, this bilinear factorization approach has several caveats: The Least-squares loss is highly

susceptible to outliers; also, the presence of missing data in X results in local minima. Outliers can be

addressed with robust loss functions [7, 13] and optimal algorithms exist when missing data follows a Young

diagram pattern [14]. However, missing data in computer vision typically exhibits random or band patterns,

and factorization with missing data has been shown to be an NP-Hard problem [15], where many state-

of-the-art algorithms fail to even reach good local optima [16]. For this reason, the optimization of (1.2)

remains an active research topic, with many works focusing on algorithms that are robust to initialization [3,

13, 17, 18, 19, 20], initialization strategies [21], or incorporating additional problem constraints to achieve

better optima [8].

Recently, Candés and Recht [22] have stated that minimizing the rank function – under broad conditions

of incoherence, i.e., the unalignment of the singular vectors with the canonical axis – can be achieved by its

convex surrogate, the nuclear norm. Initially proposed by Fazel [23], the nuclear norm permeated through

many of the aforementioned computer vision problems such as structure from motion [17, 24, 25, 26], Robust

PCA [6] and motion segmentation [27]. Here, the soft-rank regularization provided by the nuclear norm

replaces the hard-rank constraints in the factorization approach of (1.2), by minimizing instead

min
Z

f(X− Z) + λ‖Z‖∗, (1.3)

where λ is a trade-off parameter between the error and the low-rank regularization induced by the nuclear

norm ‖Z‖∗, the sum of singular values of Z. We provide a simple intuition as to why the nuclear norm is in

fact the largest possible convex underestimator of the rank function, as proved by [28]: Since the singular

2
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Figure 1.1: Comparison of Nuclear and Frobenius norms as function of one single unknown entry z3,2 for
the matrix in (1.4).

values of matrices are always positive, the nuclear norm can be interpreted as an `1-norm of the singular

values. Under this interpretation, one can easily identify it as the convex envelope of the rank function,

which is the cardinality (or `0-norm) of the singular values. To further understand why the singular value

sparsity induced by the nuclear norm is important, let us consider completing the matrix

Z =




1 1

1 1

1 ?



, (1.4)

where only one entry z3,2 is unknown such that the resulting rank is the smallest possible. The results shown

in Figure 1.1 plot the nuclear norm and Frobenius norm of Z for all possible completions in a range around

the value that minimizes its rank z3,2 = 1. In this case, the sparsity induced by the nuclear norm (`1-norm

on the singular values) yields the optimal solution for Z with singular values σ = [2.4495 0], a rank-1 matrix.

In opposition, the Frobenius Norm (`2-norm of singular values) will set the entries to zero, thus leading to a

solution with singular values σ = [2.1358 0.6622], a rank-2 matrix. This key difference can be attributed to

the fact that completing a matrix under the rank or nuclear norm favors the interaction between rows and

columns to find a global solution, while the Frobenius norm treats each entry in the matrix independently

(recall that ‖Z‖2F =
∑
ij z

2
ij).

Contrary to hard-rank models, soft-rank regularization models have further extended the use of low-rank

priors to many applications where the rank is not known a priori : colorization [29], subspace alignment [30]
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and clustering [31], segmentation [32], texture unwarping [33], camera calibration [34], tag refinement [35, 36],

background modeling [6, 18] and tracking [37]. Soft-rank regularizers such as the nuclear norm or the max

norm have also been proposed in machine learning as good regularizers for classification [38]. Specifically,

they has surfaced as a way to penalize complexity in image classification and regression tasks [11, 35, 39, 40,

41, 42, 43, 44], to reduce model degrees of freedom [45, 46, 47, 48], or to share properties among different

classifiers [5, 47, 49].

Despite their convexity and theoretical results for the choice of λ [50], nuclear norm models such as the

one in (1.3) also suffer from several drawbacks. On the one hand, it is unclear how to impose a certain rank

in Z: we showed in [51] that adjusting λ such that Z has a predetermined rank typically provides worse

results than imposing this rank directly as in (1.2). Also, the inability to access the factorization of Z in (1.3)

hinders the use of the “kernel trick” in classification and component analysis methods, and hence disallows

for non-linear kernel extensions [52]. On the other hand, (1.3) is a Semidefinite Program (SDP). Current

off-the-shelf SDP optimizers only scale to hundreds of variables, not amenable to the high dimensionality

feature inputs typically found in computer vision problems. Several works [22, 50, 53, 54, 55, 56] ameliorate

this issue by exploiting the fact that the proximal operator of the nuclear norm

arg min
Z

‖X− Z‖2F +
1

2
‖Z‖∗, (1.5)

has a closed form solution based on singular value thresholding. However, they still perform a SVD of Z

in each iteration. Other approaches incrementally optimize (1.3) using gradient methods on the Grassmann

manifold [57, 58, 59]. However, they rely on a rank selection heuristic, which fails when data is not missing

at random. Zaid et al. [60] decompose the nuclear norm into a surrogate infinite-dimensional optimization,

but their coordinate descent only applies to smooth losses f(·). Thus, nuclear norm approaches are currently

unsuitable for handling dense, large scale datasets.

1.2 Main contributions

In summary, the main result of this thesis is that soft rank nuclear norm models can be reformulated

as hard rank factorization models through the variational definition of the nuclear norm. While the

variational definition was previously known in the literature [18, 61], we are the first to propose a unification

of soft and hard-rank approaches in computer vision under one formulation.

Several implications stem from the unification of soft and hard-rank models, as we are able to analyze

the conditions under which both approaches are equivalent: for soft models, we bring advantages such as
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scalability and kernelization, and show their limitations on problems where the output rank is predetermined.

For hard models, we propose a deterministic “rank continuation” strategy for the NP-Hard factorization

problem that avoids local optima in a significant number of cases when the rank is known a priori. We

extend this strategy to the case of Binary Quadratic Problems such as the Quadratic Assignment Problem,

which can be reformulated as rank-1 problems.

Additionally, we propose new soft-rank models for visual weakly supervised learning and fully supervised

learning, two settings with different levels of information in the training data they are provided.

First, we study the problem of weakly supervised multi-label image classification, where images have

been labeled with several present classes but their location in the image is not known. For this problem,

we propose a convex matrix completion model specifically tailored to visual data. We also provide two

alternative algorithms for optimizing this model as well as their convergence proofs. Our model can easily

cope with labeling errors and missing data, background noise and partial occlusions. Moreover, it allows

for learning latent individual representations for all classes in the dataset. Thus, we can recover localization

information without the need for fully supervised training data with localization information. Experimental

validation on several datasets shows that our method outperforms state-of-the-art classification algorithms,

while effectively capturing each class appearance.

Second, a fully supervised robust regression model, which learns a direct association from data to labels.

For this case, we develop the theory of Robust Regression (RR). This framework applies to a variety of

problems in computer vision including robust linear discriminant analysis, regression with missing data,

and multi-label classification. Our framework is both convex and able to explicitly deal with missing data

and outliers in the data. These advantages are contrary to existing discriminative methods, which fail to

account for outliers that are common in realistic training sets due to occlusion, specular reflections or noise.

Several synthetic and real examples with applications to head pose estimation from images, image and video

classification and facial attribute classification with missing data are used to illustrate the benefits of RR.

5



1.3 Organization

The remainder of this thesis is organized as follows.

• In Chapter 2, we show that nuclear norm (soft rank) formulations can be reformulated as factoriza-

tion (hard rank) formulations and unify them in a single model. We propose an augmented lagrange

multiplier algorithm to solve the unified model and show that this equivalence result makes the kernel-

ization of some nuclear norm models trivial. We then split the use of soft and hard-rank models into

two regions of our unified model: when rank is known a priori or when rank is known to be low but

not precisely known. This work has been published in [51].

• In Chapter 3, we propose two new soft-rank models for visual learning tasks such as object classification,

detection, by exploiting the fact that data is known to be low-rank but it’s specific rank is not known

beforehand. This chapter contains work published in [44, 62, 63, 64].

• In Chapter 4 we focus on problems where rank is predetermined or known a priori. We show the

limitations of soft rank models on these problems, and present “rank continuation”, a deterministic

strategy that empirically attains good solutions in the problems of factorization and graph matching.

This chapter contains work published in [51] and extended in [65].

• Our conclusions and possible directions for future work are presented in Chapter 5. There, we also

restate our major contributions and discuss their current limitations.

6



Chapter 2

Relation between soft and hard-rank constraints

in low rank models

2.1 Definition and unification of soft and hard-rank models

As mentioned in Chapter 1, finding models that favor low rank solutions is an essential tool for solving

computer vision and machine learning problems: low rank representations allow for reducing degrees of

freedom, exploiting redundancy, and enforcing simplicity when representating shape, appearance or motion.

There are two main approaches for imposing low-rank, which we will formally define as hard-rank and

soft-rank models.

Definition 1 (Hard-rank models). Optimization models that aim to recover a rank-k matrix Z ∈ RM×N

from a data matrix X ∈ RM×N according an error function f(·), as

min
Z

f(X− Z)

subject to rank(Z) = k.

(2.1)

This constraint is typically directly imposed on the solution by optimizing a bilinear product Z = UV> and

specifying the inner dimensions of this product as k, as

min
U,V

f(X−UV>). (2.2)
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Definition 2 (Soft-rank models). Optimization models that aim to recover a rank-k matrix Z ∈ RM×N

from a data matrix X ∈ RM×N according an error function f(·), and a low-rank solution is sought. Thus,

the problem is regularized by adding to the cost function a regularizer such as the nuclear norm, as

min
Z

f(X− Z) + λ‖Z‖∗. (2.3)

In this chapter, we show that nuclear norm (soft rank) formulations can be reformulated as factorization

(hard rank) formulations and thus unify them in a single model. Let us start by considering the nuclear

norm problem in (2.3) with convex f(·): without loss of generality, we can rewrite (2.3) as the SDP [66]

min
Z,B,C

f(X− Z) +
λ

2
(tr(B) + tr(C))

subject to Q =




B Z

Z> C


 � 0.

(2.4)

For any positive semidefinite matrix Q, we can write Q = RR> for some R. Thus, we can replace matrix

Q in (2.4) by

Q =




B Z

Z> C


 =




U

V



[

U> V>
]
, (2.5)

where U ∈ RM×r, V ∈ RN×r and r ≤ min(N,M) upper bounds rank(Z). Merging (2.5) into (2.4) yields

Definition 3 (Unified model).

min
U,V

f(X−UV>) +
λ

2

(
‖U‖2F + ‖V‖2F

)
, (2.6)

where the SDP constraint was dropped because it is satisfied by construction. This reformulation seems

counterintuitive, as we changed the convex problem in (2.3) into a non-convex one, which may be prone to

local minima (e.g., in the case of missing data under the least-squares loss [15]). However, we show that

the existence of local minima in (2.6) depends only on the dimension r imposed on matrices U and V. We

extend the analysis of Burer and Monteiro [67] to prove that:

8



Theorem 1. Let f(X−Z) be convex in Z and Z∗ be an optimal solution of the convex nuclear norm model

in (2.3) for a given λ and let rank(Z∗) = k∗. Then, any solution Z = UV> of (2.6) with r ≥ k∗ is a global

minima solution of (2.3).

Theorem 1 (which we prove in Appendix A) immediately allows us to draw one conclusion: By application

of the variational property of the nuclear norm [66],

‖Z‖∗ = min
Z=UV>

1

2

(
‖U‖2F + ‖V‖2F

)
, (2.7)

many soft-rank models can be reformulated into hard-rank models. That is, the factorization and the nuclear

norm models in (2.2) and (2.3) are special cases of (2.6). Fig. 2.1 illustrates the result of Theorem 1 in a

synthetic case. We plot the output rank of Z = UV> in (2.6) as a function of λ for a random 100 × 100

matrix X with all entries sampled i.i.d. from a Gaussian distribution N (0, 1), no missing data and f(·) is

the least squares loss ‖X − Z‖2F : the factorization approach in (2.2) corresponds to the case where λ = 0

and r is fixed, whilst the nuclear norm in (2.3) outputs an arbitrary rank k∗ as a function of λ (the black

curve). According to Theorem 1, for any r ≥ k∗ (white area), optimizing (2.6) is equivalent to (2.3). On the

other hand, when r < k∗ (grey area), the conditions of Theorem 1 are no longer valid and thus (2.6) can be

prone to local minima.

A special case of Theorem 1 has been used to recommend the use of nuclear norm approaches in the

machine learning community by Mazumder et al. [61]. However, their analysis is restricted to the least-

squares loss and the case where the rank is not known a priori (i.e., white area of Fig. 2.1). Our analysis

instead extends to other convex loss functions and is motivated by the observation that many computer vision

problems live in the grey area of Fig. 2.1. That is, their output rank k is predetermined by a domain-specific

constraint (e.g., in Structure from Motion k = 4 [2]).

The visual interpretation of Theorem 1 in Fig. 2.1 shows two clear regions of operation of our unified

model. As such, for the remainder of this thesis, we will consider the use of soft and hard-rank models as

two separate regions of our unified model: when rank is known a priori or when rank is known to be low but

not precisely known. We advocate the use of our unified model in (2.6) for both cases over the typical soft

and hard-rank models, based on two arguments:

When the output rank is unconstrained (white area of Fig. 2.1) soft-rank models should be used,

but we can always choose r ≥ k∗ such that (2.6) provides equivalent results to (2.3). Using the result in

Theorem 1 and the analysis of Burer and Monteiro [67], we propose an ALM algorithm in Section 2.2 using
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Figure 2.1: Region of equivalence between factorization (2.6) and nuclear norm approaches (2.3) for a
100 × 100 random matrix and least-squares loss. When factorization is initialized in the white area, it is
equivalent to the result obtained with the nuclear norm (black line). When the rank is known a priori,
directly imposing r = k in the factorization approach of (2.6) (gray area) is less prone to local minima than
the unregularized problem (2.2) and provides better results than selecting λ in the nuclear norm model (2.3)
such that the output rank is k.

the unified model in (2.6) that has the scalability advantages of factorization approaches, yet it is guaranteed

to attain the global optima of the original nuclear norm model. Also, we show that this equivalence result

makes the kernelization of some nuclear norm models trivial in Section 2.3. In Chapter 3, we propose several

new soft-rank models for visual learning tasks and show our unified model is faster than state-of-the-art

algorithms for optimizing nuclear norm models.

When the output rank is known a priori (gray area of Fig. 2.1) hard-rank models should be

used, but optimizing (2.6) is preferable to (2.2) and (2.3). As we will show in Chapter 4, optimizing (2.6)

is less prone to local minima than the unregularized problem (2.2). On the other hand, selecting λ in the

nuclear norm model (2.3) such that the output rank k is the desired value typically leads to worse results

than directly imposing r = k in (2.6). Based on this analysis, we propose in Sec. 4.1 a “rank continuation”

strategy, and empirically show it is able to attain global optimality in several scenarios.

2.2 An ALM algorithm for the unified model

Nuclear norm models have extended the use of low-rank priors to many applications where Z is low rank but

its exact value is not known a priori [34, 44, 50]. In this section, we propose an algorithm for solving (2.6)

and show that its complexity is lower than proximal methods [53] for optimizing the nuclear norm model in

10



(1.3). For the remainder of this section, we focus our attention in the LS loss

f(W � (X− Z)) = ‖W � (X− Z)‖2F =
∑

ij

(wij(xij − zij))2, (2.8)

and the L1 loss

f(W � (X− Z)) = ‖W � (X− Z)‖1 =
∑

ij

|wij(xij − zij)|, (2.9)

where W ∈ RM×N is a positive weight matrix that can be used to denote missing data (i.e., wij = 0). We

note, however, that the results in Theorem 1 also apply to many other losses such as the Huber [13, 24] and

hinge loss [11, 42].

One important factor to take into account when optimizing (2.6) for the LS and L1 losses is that when

either U or V is fixed, the remaining part of (2.6) becomes convex, even in presence of a missing data pattern

specified by W. However, it has been reported that pure alternation approaches for this problem are prone

to flatlining [3, 16, 19]. For smooth losses such as the LS, this can be circumvented by performing gradient

steps jointly in U,V [19]. Alternatively, we propose an Augmented Lagrange Multiplier (ALM) method for

two reasons: 1) Theorem 1 and the analysis in [67] can be used to prove our ALM’s convergence to global

optima of (1.3) when r ≥ k∗, and 2) its applicability to the non-smooth L1 norm. Let us rewrite (2.6) as

min
Z,U,V

f(W � (X− Z)) +
λ

2

(
‖U‖2F + ‖V‖2F

)

subject to Z = UV>,

(2.10)

and its corresponding augmented lagrangian as

min
Z,U,V,Y

f(W � (X− Z)) +
λ

2

(
‖U‖2F + ‖V‖2F

)

+ 〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2F ,

(2.11)

where Y are Lagrange multipliers and ρ is a penalty parameter to improve convergence [53]. This method

exploits the fact that the solution for each subproblem in U,V,Z can be efficiently solved in closed form.

For U and V, the solution is obtained by equating the derivatives of (2.11) in U and V to 0. For known U

and V, Z can be updated by solving

min
Z

f(W � (X− Z)) +
ρ

2
‖Z−

(
UV> − ρ−1Y

)
‖2F , (2.12)
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which can be done in closed form by the element-wise shrinkage operator Sµ(x) = max (0, x− µ), as

Z = W �
(
X− Sρ−1(X−UV> + ρ−1Y)

)

+ W � (UV> − ρ−1Y),

(2.13)

for the L1 loss, or

Z = W �
(

1

2 + ρ

(
2X + ρ(UV> − ρ−1Y)

))

+ W � (UV> − ρ−1Y),

(2.14)

for the LS loss. Here, wij = 1,∀ijwij 6= 0 and 0 otherwise. The resulting algorithm is summarized in

Alg. 1 and its full derivation is presented in Sec. 2.2.1. Contrary to pure alternated methods, our numerical

experiments show that this method is not prone to flatlining due to the joint optimization being gradually

enforced by the lagrange multipliers Y.

Algorithm 1 ALM method for optimizing (2.6)

Input: X,W ∈ RM×N , params µ, λ, initialization of ρ
while not converged do

while not converged do

Update U = (ρZ + Y) V
(
ρV>V + λIr

)−1

Update V = (ρZ + Y)
>

U
(
ρU>U + λIr

)−1

Update Z via (2.13) for L1 loss or (2.14) for LS loss
end while
Y = Y + ρ(Z−UV>)
ρ = min (ρµ, 1020)

end while
Output: Complete Matrix Z = UV>

Assuming without loss of generality that X ∈ RM×N and M > N , we have that exact state-of-the-

art methods for SVD (e.g., Lanczos bidiagonalization algorithm with partial reorthogonalization) take a

flop count of O(MN2 + N3). The most computational costly step in our ALM method are the matrix

multiplications in the update of U and V, which take O(MNr+Nr2) if done naively. Given that typically

k∗ ≤ r � min(M,N) and k∗ can be efficiently estimated [68], Alg. 1 provides significant computational cost

savings when compared to proximal methods which use SVDs [53].

We note that there are several recent results in optimization which tackle the complexity issue of SVDs

in proximal methods for the nuclear norm. For instance, there has been recent work on online methods for

factorization [69], as well as randomized or incremental SVDs [70]. Also, when using a projected sub-gradient

method one can easily avoid the cost of SVD using a polar decomposition of the variable Z which can be

obtained by Halley’s method [66]. If the singular values are away from zero, this is much faster than the
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original SVD algorithm. Also, there are approaches that minimize models for RPCA in linear time. For

instance, [71] solve an initial smaller problem of the dimension of the rank r and then calculate the remainder

of the matrix using projections based on the calculated singular vector estimates. However, our result is

still relevant in this case for solving the initial problem, as the rank r may still be a large number even

if considerably smaller than the matrix dimensions min(M,N). Moreover, our result allows very scalable

solutions recently obtained for factorization methods (e.g., [72]) to be applied to nuclear norm models by

resorting to its variational definition.

2.2.1 Full derivation of Algorithm 1

We provide the full derivation of Alg. 1 in this section. Let us start by transforming the problem

min
U,V

‖W � (X−UV>)‖1 +
λ

2

(
‖U‖2F + ‖V‖2F

)
, (2.15)

into the equivalent problem

min
Z,U,V

‖W � (X− Z)‖1 +
λ

2

(
‖U‖2F + ‖V‖2F

)

subject to Z = UV>,

(2.16)

and write its augmented lagrangian function, as

min
Z,U,V

L = ‖W � (X− Z)‖1 +
λ

2

(
‖U‖2F + ‖V‖2F

)
+

〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2F ,

(2.17)

where Y ∈ Rd×n is a Lagrange multiplier matrix, and ρ is a penalty parameter [53]. We solve (2.17) by an

iterative Gauss-Siedel method on Z,U,V, solved by the subproblems

Z(k+1) = arg min
Z
L(Z(k),U,V,Y, ρ) (2.18)

U(k+1) arg min
U
L(Z,U(k),V,Y, ρ), (2.19)

V(k+1) = arg min
V
L(Z,U,V(k),Y, ρ), (2.20)
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where k is the index of iterations. At iteration k = 0, the entries of variables U,V,Z are initialized i.i.d.

from a standard normal distribution and Y, ρ are initialized as

Y(0) = 0 (2.21)

ρ(0) = 10−5 (2.22)

After initialization,(2.18)-(2.20) are solved sequentially until convergence. In the following subsections, we

will derive the solutions of each of these subproblems.

After each Gauss-Siedel convergence, the Lagrange Multiplier matrix Y is updated by a gradient ascent

step

Y(k+1) = Y(k) + ρ(k)(Z−UV>), (2.23)

where the penalty variable ρ is updated by the expression

ρ(k+1) = µρ(k), (2.24)

and µ > 1 is a constant. A larger µ imposes stronger enforcement of the constraint Z = UV>, therefore

faster convergence of the outer loop, but may result in poor performance of the inner Gauss-Siedel loop and

vise versa. In our experiments, we chose µ = 1.05.

Solving for U Fixing Z and V, the subproblem (2.19) is reduced to the problem

L(U) ∝ λ

2
‖U‖2F + 〈Y,Z−UV>〉+

ρ

2
‖Z−UV>‖2F , (2.25)

whose closed-form solution can be obtained by equating the derivative of (2.25) to 0, resulting in

U = (ρZ + Y) V
(
ρV>V + λIr

)−1
(2.26)

Solving for V Fixing Z and U, the subproblem (2.20) is reduced to the problem

L(V) ∝ λ

2
‖V‖2F + 〈Y,Z−UV>〉+

ρ

2
‖Z−UV>‖2F , (2.27)
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whose closed-form solution can be obtained by equating the derivative of (2.27) to 0, resulting in

V = (ρZ + Y)
>

U
(
ρU>U + λIr

)−1
(2.28)

Solving for Z Fixing U, V, the cost function of subproblem (2.18) can be rewritten in an equivalent

problem

min
Z

‖W � (X− Z)‖1 +
ρ

2
‖Z−

(
UV> − ρ−1Y

)
‖2F , (2.29)

which can be done in closed form from the fact that 0 is in the expression of the subdifferential of (2.29).

Using the element-wise shrinkage operator Sµ(x) = max (0, x− µ), this condition can be written as

Z = W �
(
X− Sρ−1(X−UV> + ρ−1Y)

)

+ W � (UV> − ρ−1Y),

(2.30)

where wij = 1,∀ijwij 6= 0, and 0 otherwise.

Stopping criteria For the outer loop in Alg. 1 in the main paper, the iteration is not terminated until the

equality constraint Z = UV> is satisfied up to a given tolerance. In our experiments, we used ‖Z−UV>‖F ≤

10−9‖W�M‖F . For the inner loop, since the global optimum solution is found for (2.18)-(2.20), the objective

function monotonically decreases. As such, in our experiments the stopping criteria for the inner Gauss-Siedel

loop combines two items:

1. Small decrease of L(·): ‖L(·)(k)−L(·)(k−1)‖
‖L(·)(k−1)‖ ≤ 10−10;

2. Maximum number of iterations is reached: 5000.

2.3 Kernelization of nuclear norm methods

An important implication of Theorem 1 of Section 2 is that in (2.6) we can solve (1.3) with access to U,V.

This has one immediate implication: we can exploit the kernel trick in nuclear norm models by resorting

to their equivalent factorized formulation, which makes kernel extensions straightforward. For example, we

show in Sec. 2.3 an example extension for Robust LDA [44].

Kernelization of PCA

When using our unified model (2.6), the kernelization of PCA follows trivially from the classical technique,

by replacing covariance matrices by their kernel versions. Moreover, it is interesting to note that the regu-

larization terms imposed by the nuclear norm in (2.6) correspond to the terms λIr in the solutions for U,V
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in Alg. 1. This gives interpretability to the “trick” of adding such terms in component analysis techniques

to ensure proper conditioning of the inverse when the approximated covariance matrices U>U and V>V

are singular due to the small sample size problem [52], as it can be interpreted as a soft rank regularization

being applied to the component analysis model.

Kernelization for RLDA

In this section, we illustrate kernelization for the case of Robust LDA. Let X ∈ RD×N be a matrix where

each column is a vectorized data sample from one of C classes. D denotes the number of features and N

the number of samples. G ∈ RN×C is an indicator matrix such that gij = 1 if xi belongs to class j, and 0

otherwise. LDA can then be formulated as [52],

min
U,V

‖(G>G)−
1
2 (G−UV>X)‖2F (2.31)

Note that in this case of an L1 robust function such as in [44], selecting the rank in U,V will not yield an

eigen-problem as the LS loss case, but instead a problem which may contain several local minima. Therefore,

it is best to use the soft regularization instead, as

min
Z

‖(G>G)−
1
2 (G− ZX)‖1 + λ‖Z‖∗ (2.32)

The analysis provided in our paper allows us to reformulate (2.32) as

min
U,V

‖(G>G)−
1
2 (G−UV>X)‖1 +

λ

2

(
‖U‖2F + ‖V‖2F

)
, (2.33)

Having access to factors U,V and using the Mercer theorem [73], we can express V as a linear combination

of the data, as

V = Xα, (2.34)

which yields

min
U,α

‖(G>G)−
1
2 (G−Uα>X>X)‖1+

λ

2

(
‖U‖2F + tr(α>X>Xα)

)
,

(2.35)

Since X always appears in a dot product X>X in (2.35), we can easily replace it by a kernel matrix, thus

allowing for non-linear extensions of this method.
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Chapter 3

Using soft-rank models when rank is not known a priori

As seen in Chapter 1, soft-rank models have extended the use of low-rank priors to many applications where

the rank is not known a priori. In particular, soft-rank regularizers such as the nuclear norm or the max

norm have been proposed in machine learning as good regularizers for classification [38]. These have surfaced

as a way to penalize complexity in image classification and regression tasks [11, 35, 39, 40, 41, 43], to reduce

model degrees of freedom [45, 46, 47, 48], for recovering localization cues from classification [39, 42], or to

share properties among different classifiers [5, 47, 49]. In this chapter, we describe our model contributions

to these visual learning tasks, split by their level of supervision. To summarize, the main contributions of

this chapter are threefold:

• In Sec. 3.1, we propose a new nuclear norm model for fully supervised robust regression, which learns

a direct association from data to labels. This convex framework applies to a variety of problems in

computer vision including robust linear discriminant analysis, regression with missing data, and multi-

label classification. Several synthetic and real examples with applications to head pose estimation from

images, image and video classification and facial attribute classification with missing data are used to

illustrate the benefits of RR. This work was published in [44] and currently under review in a journal

submission.

• In Sec. 3.2, we propose a new nuclear norm model for weakly supervised image classification, where

images have been labeled with several present classes but their location in the image is not known. We

cast the problem under a matrix completion transduction model, which is able to classify and localize

images. Unlike existing discriminative methods, our model is convex and is robust to labeling errors,

background noise and partial occlusions. We propose a Fixed-Point Continuation (FPC) algorithm for

solving matrix completion and prove its the convergence in Appendix B. FPC algorithms for matrix
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Figure 3.1: Predicting the yaw angle of the monkey head from image features. Note the image features
(image pixels) contain outliers (hands of the monkey). (Left) Standard regression: projects a partially
occluded frontal face image directly onto the head pose subspace and fails to estimate the correct yaw angle;
(Right) Robust regression removes the intra-sample outlier and projects only the cleaned input image without
biasing the yaw angle estimation.

completion had been proposed previously in the literature, but their convergence had not been proven

to extend to constrained problems. Experimental validation on several datasets shows that our method

outperforms state-of-the-art classification algorithms, while effectively capturing each class appearance.

This work was originally published in [62] and extended in [63].

• In Sec. 3.3, we analyze the application of the unified model proposed in Chapter 2 to unsupervised

learning tasks such as background subtraction, using a Robust PCA model. Experiments show that

the ALM method proposed in Chapter 2 is both faster and more accurate than state-of-the-art nuclear

norm algorithms for this task.

3.1 Fully supervised learning as a robust regression problem

Linear and non-linear regression models have been applied to solve a number of computer vision problems

(e.g., classification [74], pose estimation [75]). Although widely used, a major drawback of existing regression

approaches is their lack of robustness to outliers and noise, which are common in realistic training sets due to

occlusion, specular reflections or image noise. To better understand the lack of robustness, we consider the

problem of learning a linear regressor from image features X to pose angles Y (see Fig. 3.1) by minimizing

min
T
‖Y −TX‖2F . (3.1)
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In the training stage, we learn the mapping T, and in testing we estimate the pose by projecting the features

xte of the test image, Txte.

Standard regression, Eq. (3.1), is optimal under the assumption that the error, E = Y−TX, is normally

distributed. The Least Squares (LS) estimate is the most efficient unbiased estimate of T in presence of

Gaussian noise. This is the well known Gauss-Markov theorem [76]. However, a small number of gross

outliers can arbitrarily bias the estimate of the model’s parameters (T). It is important to notice that in

training and testing X is assumed to be noise free. However, a single outlier in either training or testing

can bias the projection because LS projects the data directly onto the subspace of T. The dot product of

xte with each row of T (i.e., Txte) can be largely biased by only a single outlier. For this reason, existing

discriminative methods lack robustness to outliers.

The problem of robustness in regression has been studied thoroughly in statistics, and the last decades

have witnessed a fast paced development of the so-called robust methods (e.g., [77, 78, 79]). For instance,

M-estimators [77] assume the error has a heavy tail and typically re-weight the whole sample inversely

proportional to it using different influence functions. That is, some robust approaches minimize a weighted

regression
∑n
i=1 wi‖yi−Txi‖22, where wi weighs the whole sample. Other robust approaches replace the sum

(or the mean) by a more robust measure such as the median (e.g., least median of squares) [80] or trimmed

mean (e.g., least trimmed square) [78]. However, all of the aforementioned traditional robust approaches for

regression differ from the problem addressed in this chapter in two ways: (1) these approaches do not model

the error in X but in Y−TX, (2) they mostly consider sample-outliers (i.e., the whole image is an outlier).

This work proposes an intra-sample robust regression (RR) method that explicitly accounts for outliers in

X. Our work is related to errors in variables (EIV) models (e.g., [81, 82, 83]). However, unlike existing EIV

models, RR does not require a prior estimate of the noise and all parameters are automatically estimated.

In addition to reducing the influence of noise and outliers in regression, we extend RR to be able to

deal with missing data in regression, wherein some elements of X are unknown. This is a common issue

in computer vision applications, since unknown elements typically correspond to unobserved local image

features. Surprisingly, this problem has been relatively unexplored in the computer vision literature. We

illustrate the power of RR in several computer vision tasks including head pose estimation from images,

facial attribute detection with missing data and robust LDA for multi-label image classification.

3.1.1 Related work

Extensive literature exists on robust methods for regression. Huber [77] introduced M-estimation for regres-

sion, providing robustness to sample outliers. Rousseeuw and Leroy proposed Least Trimmed Squares [78],
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which explicitly finds a data subset that minimizes the squared residual sum. Parallel to developments in

the statistics community, the idea of subset selection has also flourished in many computer vision applica-

tions. Consensus approaches such as RANSAC [84] (and its Maximum Likelihood (ML) and M-estimator

variants [85, 86]) randomly subsample input data to construct a tentative model. Model parameters are

updated when a new configuration produces smaller inlier error than its predecessors. In spite of accurate

parameter estimates, even in the presence of several outliers, these methods heavily rely on the assumption

that model generation from a data subset is computationally inexpensive and inlier detection can be done

adequately. Moreover, the aforementioned methods do not tackle intra-sample outliers, i.e., partial sample

corruptions.

To deal with noise in the variables, Error-In-Variable (EIV) approaches have been proposed, see [82] for

an overview. However, existing EIV approaches rely on strong parametric assumptions for the errors. For

instance, orthogonal regression assumes that the variance of errors in the input and response variables are

identical [87] or their ratio is known [88]. Under these assumptions, orthogonal regression can minimize the

Gaussian error orthogonal to the learned regression vectors. Grouping-based methods [89] assume that errors

are respectively i.i.d. among the input and response variables, so that one can split the data into groups and

suppress the errors by computing differences of the group sum, geometric means or instrument variables.

Moment-based methods [90] learn the regression by estimating high-order statistics, i.e., moments, from i.i.d.

data. Likelihood-based methods [83] learn a reliable regression when the input and response variables follow

a joint, normal and identical distribution. Total Least Square (TLS) [82] and its nonlinear generalization [91]

solve for additive/multiple terms that enforce the correlation between the input and response variables. TLS-

based methods relax the assumption in previous methods to allow correlated and non-identically distributed

errors. Nevertheless, they still rely on parametric assumptions on the error. Unfortunately, in typical

computer vision applications, errors caused by occlusion, shadow and edges seldom fit such distributions.

Although regression and classification are single-handled by our framework, several authors have ad-

dressed solely the issue of robust classification. The majority of these methods can be cast as robust

extensions of Fisher/Linear Discriminant Analysis (FDA/LDA), where the empirical estimation of the class

mean vectors and covariance matrices are replaced by their robust counterparts such as MVE estimators [92],

MCD estimators [93] and S-estimators [94, 95]. In machine learning, several authors [96, 97] have proposed

a worst-case FDA/LDA by minimizing the upper bound of the LDA cost function to increase the separation

ability between classes under unbalanced sampling. As in previous work on robust regression, these methods

are only robust to sample-outliers.
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Our work is more related to recent work in computer vision. Fidler and Leonardis [98] robustify LDA

for intra-sample outliers. In the training stage, [98] computed PCA on the training data, replaced the minor

PCA components by a robustly estimated basis, and combined the two basis into a new one. Then, the

data was projected onto the combined basis and LDA is computed. During testing, [98] first estimates the

coefficients of a test data on the recombined basis by sub-sampling the data elements using [99]. Finally, the

class label of the test data is determined by applying learned LDA on the estimated coefficients. Although

outliers outside of the PCA subspace can be suppressed, [98] does not address the problem of learning LDA

with outliers in the PCA subspace of the training data. Zhu and Martinez [100] proposed learning a SVM

with missing data and robust to outliers. In [100], the possible values for missing elements are modeled

by a Gaussian distribution, and such that for each class, the input data with all possible missing elements

spans an affine subspace. The decision plane of the robustified SVM jointly maximizes the between-class

margin while minimizing the angle between the decision plane and the class-wise affine subspaces. However,

[100] requires the location of the outliers to be known. In contrast to previous works, our RR enjoys several

advantages: (1) it is a convex approach; (2) no assumptions, aside from sparsity, are imposed on the outliers,

which makes our method general; (3) it automatically cleans the intra-sample outliers in the training data

while learning a classifier.

3.1.2 Robust Regression (RR)

Let X ∈ Rdx×n be a matrix containing n dx-dimensional samples possibly corrupted by outliers. Formally,

X = D + E, where D ∈ Rdx×n is matrix containing the underlying noise-free component and E ∈ Rdx×n

models all noise including outliers. In regression problems, one learns a mapping T from X to an output

Y ∈ Rdy×n. The outliers or the noise-free component D are unknown, so existing methods use X in the

estimation of T. In presence of outliers, this results in a biased estimation of T. Our RR solves this problem

by explicitly decomposing X into D + E, and only computing T using the clean free data D. RR solves the

following optimization problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ rank(D) + λ‖E‖0

s.t. X = D + E, D̂ = [D; 1T ], (3.2)

where W ∈ Rdy×dy is a diagonal matrix that weights the output dimensions, T ∈ Rdy×(dx+1) is the regression

matrix (the extra dimension is for the regression bias term). η and λ are scalars that weight the first and

third term in Eq. (3.2) respectively. RR explicitly avoids projecting the outlier matrix E to the output space
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by learning the regression T only from the augmented noise-free data D̂ = [D; 1T ] ∈ R(dx+1)×n. Observe

that there are infinite possible decompositions of X into D and E, so RR adds the second and third terms

in Eq. (3.2) to constrain the possible solutions. The second term constrains D to lie in a low-dimensional

subspace, which is a good prior for naturally occurring data [52]. The third term encourages E to be sparse.

It is important to notice that RR is different from cleaning the data using RPCA and then computing

LS-regression on the clean data, because RR cleans the input data X = D + E in a supervised manner;

that is, the data D will preserve the subspace of X that is maximally correlated with Y. For this reason,

the outlier component E computed by RR is able to correct outliers both inside and outside the subspace

spanned by D (see the experiment in section 3.1.6).

The original form of RR, Eq. (3.2), is cumbersome to solve because the rank and cardinality operators

are non-convex, so these operators are respectively relaxed to their convex surrogates: the nuclear norm and

the `1-norm. Using this relaxation Eq. (3.2) is rewritten as

Definition 4 (Robust regression model).

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D; 1T ]. (3.3)

This problem can be efficiently optimized using an Augmented Lagrange Muliplier (ALM) technique,

wherein Eq. (3.3) is rewritten as

min
T,D,D̂,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1 (3.4)

+〈Γ1,X−D−E〉+
µ1

2
‖X−D−E‖2F

+〈Γ2, D̂− [D; 1T ]〉+
µ2

2
‖D̂− [D; 1T ]‖2F ,

where Γ1 ∈ Rdx×n and Γ2 ∈ R(dx+1)×n are Lagrange multiplier matrices, and µ1 and µ2 are the penalty

parameters. For each of the four matrices {T,D, D̂,E} to be solved in Eq. (3.4), the cost function is convex

if the remainder three matrices are kept fixed. Details of the ALM method to minimize Eq. (3.4) are given

in Alg. 2.
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3.1.3 Robust LDA: extending RR for classification

Classification problems can be cast as a particular case of binary regression, where each sample in X belongs

to one of c classes. The goal is then to learn a mapping from X to labels indicating the class membership of the

data points. LDA learns a linear transformation that maximizes inter-class separation while minimizing intra-

class variance, and typical solutions are based on solving a generalized eigenvalue problem. However, when

learning from high-dimensional data such as images (n < dx), LDA typically suffers from the small sample

size problem. While there are several approaches to solve the small sample size problem (e.g., regularization),

a more fundamental solution is to relate the LDA problem to a reduced-rank LS problem [101]. LS-LDA [101]

directly maps X to the class labels by minimizing

min
T

∥∥∥(YYT )−1/2(Y −TX)
∥∥∥

2

F
, (3.5)

where Y ∈ Rc×n is a binary indicator matrix, such that yij = 1 if xj belongs to class i, otherwise yij = 0 . The

normalization factor W = (YYT )−1/2 compensates for different number of samples per class. T ∈ Rc×dx is

a reduced rank regression matrix, which typically has rank c−1 (if the data is centered). After T is learned,

a test datum xte ∈ Rdx×1 is projected by T onto the c dimensional output space spanned by T, then the

class label of the test data xte is assigned to its maximum value or using k-NN if one wishes an additional

degree of nonlinearity.

When X is corrupted by outliers, Eq. (3.5) suffers from the same bias problem as standard regression.

RR, Eq. (3.3), can be directly applied to Eq. (3.5), yielding

Definition 5 (Robust LDA model).

min
T,D,E

η

2

∥∥∥(YYT )−1/2(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D; 1T ]. (3.6)

This Robust LDA formulation can be easily solved as a special case of RR (Alg. 2).

3.1.4 Robustness in testing data

In the previous sections, we have assumed that the training set was corrupted by outliers and noise. Similarly,

the test data might contain outliers, and as in the case of training, RR removes outliers before projection.
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Algorithm 2 ALM algorithm for solving RR Eq. (3.3)

Input: X, Y, parameters η (a positive scalar weights term
∥∥∥W(Y −TD̂)

∥∥∥2
F

), λ (a positive scalar weights term ‖E‖1), ρ (a positive

scalar for updating the Lagrange coefficients), γ (a positive scalar for regularizing the solution to T).

Initialization:D(0) = X, D̂(0) = [D(0); 1T ], E(0) = X−D(0), T(0) = (D̂(0)(D̂(0))T + γIdx+1)−1Y(D̂(0))T ;

Lagrange Multiplier Initialization: Γ
(0)
1 = X

‖X‖2
,Γ

(0)
2 = D(0)

‖D(0)‖2
,µ

(0)
1 = dn

4 ‖X‖1 , µ
(0)
2 = dn

4 ‖D(0)‖1.

while

∥∥∥X−D(k)−E(k)
∥∥∥
F

‖X‖F
> 10−8 and

∥∥∥D̂(k)−[D(k);1T ]
∥∥∥
F∥∥∥D̂(k)

∥∥∥
F

> 10−8 do

Assuming W = diag{wii}, update T(k+1) = [t1, t2, · · · , tc], where ti = w2
ii(w

2
iiD̂

(k+1)(D̂(k+1))T + γId)−1yi(D̂
(k))T , and γ

regularizes the scale of ti.

Update D̂(k+1) =
[
η(T(k))TWTWT(k) + µ

(k)
2 Id

]−1 [
η(T(k))TWTY − Γ

(k)
2 + µ

(k)
2 [D(k); 1T ]

]
;

Update D(k+1) = D1/β(Z(k+1)), where Z(k+1) = 1
β

(
Γ
(k)
1 + µ

(k)
1

(
X− E(k)

)
+
[
Γ
(k)
2 + µ

(k)
2 D̂(k)

]
(1:dx,·)

)
, and β = µ

(k)
1 + µ

(k)
2 ;

Update E(k+1) = S
λ/µ

(k)
1

(
X−D(k) + Γ

(k)
1 /µ

(k)
1

)
;

Update Γ
(k+1)
1 = Γ

(k)
1 + µ

(k+1)
1 (X−D(k+1) − E(k+1))

Γ
(k+1)
2 = Γ

(k)
2 + µ

(k+1)
2 (D̂(k+1) − [D(k+1); 1T ])

µ
(k+1)
1 = ρµ

(k)
1

µ
(k+1)
2 = ρµ

(k)
2

end while
Output: T, D, E

Algorithm 3 ALM algorithm for cleaning the test data Eq. (3.8)

Input: Xte ∈ Rdx×nte , D ∈ Rdx×n, parameters λ (a positive scalar weights term ‖E‖1, which is determined in training) and ρt (a
positive scalar for updating the Lagrange coefficients).

Initialization:Z
(0)
te = 0n×nte , where its element z

(0)
te (i, j) = 1 if i = argmini{dist (xte(j),di)}i=1,··· ,nj = 1, · · · , nte; E

(0)
te =

Xte −DZ
(0)
te ;

Lagrange Multiplier Initialization: Γ
(0)
te =

Xte
‖Xte‖F

,µ
(0)
te = dn

4 ‖Xte‖1.

while

∥∥∥∥Xte−DZ
(k)
te −E

(k)
te

∥∥∥∥
F

‖Xte‖F
> 10−8 do

Update S(k+1) = Z
(k)
te − 1

βte

(
−DTΓ(k) + µ

(k)
te DT

[
DZ

(k)
te − (X− E

(k)
te )

])
, where βte = µ

(k)
te ‖DTD‖2F ;

Update Z
(k+1)
te = D1/β(S(k+1));

Update E
(k+1)
te = S

λ/µ
(k)
te

(
Xte −DZ

(k)
te + Γ

(k)
te /µ

(k)
te

)
;

Update Γ
(k+1)
te = Γ

(k)
te + µ

(k)
te (X−DZ

(k+1)
te − E

(k+1)
te ), µ

(k+1)
te = ρtµ

(k)
te ;

end while
Output: Zte, Ete
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Let us refer to Xte ∈ Rdx×nte as a set of test samples (nte samples), and Yte ∈ Rdy×nte the estimated label,

the subscript te denote the test data. Observe that this is a non-trivial problem because the test label matrix

Yte is not available to provide the supervised information.

Consider Eq. (3.3) without the first supervised term,

min
Dte,Ete

‖Dte‖∗ + λ ‖Ete‖1 (3.7)

s.t. Xte = Dte + Ete,

where Dte ∈ Rdx×nte is the cleaned test data, Ete ∈ Rdx×nte is the noise/outlier matrix, and λ is the positive

scalar determined in training (see Eq. (3.3)).

Eq. (3.7) is convex and equivalent to the nuclear norm RPCA model in [50]. However, RPCA is an

unsupervised technique and it can only clean the outliers/noise that are orthogonal to Xte. We will refer to

this noise as out-of-subspace noise. If we are interested in removing the error within the subspace of Xte, this

can be done by using the cleaned training data D. In the training stage, D is optimized to have maximum

correlation with the output labels Y. Our assumption is that the clean test data can be reconstructed as

local combinations of the training data, that is Dte = DZte, where Zte ∈ Rn×nte . In order to make the

combination locally compact, we regularize the combination coefficient Zte by minimizing its nuclear norm

[102]. The resulting objective function becomes

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (3.8)

s.t. Xte = DZte + Ete,

where the weight λ
‖D‖∗ in front of ‖Ete‖ is used to keep the original balance between ‖Ete‖ and ‖Dte‖ =

‖DZte‖ in Eq. (3.7). Directly applying the ALM to solve Eq. (3.8) is a challenging task because we cannot

apply the standard Singular Value Thresholding (SVT) operators on Zte. Observe that the term DZte is

not the standard formulation to be solved with SVT. We followed the idea of [103], and linearized the term

DZte before the standard SVT operation. Alg. 3 describes the optimization strategy. After solving (3.8), the

regression or classification output for Xte is computed as Yte = T[DZte; 1
T ]. In the case of classification,

Yte is typically used as decision values (for computing AUROC), or to produce binary class labels using the

k-nearest-neighbor method.
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3.1.5 Robust regression with missing data

Robust regression Eq. (3.3) can be easily extended to handle missing elements in the input data matrix X.

From now on, we will refer to this problem as “RR-Missing”.

Let Ω be the index set of observed elements in X, and PΩ be the projection operator from the matrix

space to the support of observed elements. The RR-Missing solves the following problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1 (3.9)

s.t. PΩ(X) = PΩ(D + E), D̂ = [D; 1T ],

The algorithm for solving Eq. (3.9) is similar to Eq. (3.3). After solving Eq. (3.9), the missing elements in

X are filled by the values in D.

As in the case of RR, the test data with missing elements can be cleaned similarly to section 3.1.4 by

solving

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (3.10)

s.t. PΩ(Xte) = PΩ(DZte + Ete).

After solving Eq. (3.10), the regression/classification output for Xte is computed as Yte = T[DZte; 1
T ]. The

extension of RR-Missing to RLDA-Missing is straightforward.

3.1.6 Experimental Results

This section compares our RR methods against state-of-the-art approaches on four experiments for regression

and classification.

The first experiment uses synthetic data to compare with existing approaches and illustrate how existing

robust regression methods cannot remove outliers that lie in the subspace of the data. The second experiment

applies RR to the problem of head pose estimation from partially corrupted images. The third experiment

reports comparisons of RR against state-of-the-art multi-label classification algorithms on the MSRC, Me-

diamill and TRECVID2011 databases. The fourth experiment illustrates the application of RR-Missing to

predict facial attributes.
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Table 3.1: Relative Absolute Error (RAE) and its standard deviation for output Yte and regression matrix
T on synthetic data (10 repetitions).

RAET RAEY

LSR 0.269± 0.121 0.035± 0.012
GLasso 0.269± 0.121 0.035± 0.012

RANSAC 0.256± 0.133 0.036± 0.013
TLS 0.269± 0.121 0.925± 0.136

RPCA+LSR 0.464± 0.030 0.051± 0.006
RR 0.035± 0.015 0.015± 0.006

Robust regression (RR) on synthetic data

This section illustrates the benefits of RR in a synthetic example. We generated 200 three-dimensional

samples, where the first two components were generated from a uniform distribution between [0, 6], and the

third dimension is 0. In Matlab notation, D = [6 ∗ rand(2, 200); 0T ], X = D + E, Y = T∗[D; 1T ], where

D ∈ R3×200 is the clean data. T∗ ∈ R3×4 is randomly generated and used as the true regression matrix. The

error term, E ∈ R3×200, is generated as follows: for 20 random samples, we added random Gaussian noise

(∼ N (0, 1)) in the second dimension, this simulates in-subspace noise. Similarly, for another 20 random

samples, we added random Gaussian noise (∼ N (0, 1)) in the third dimension, this simulates noise outside

the subspace. The output data matrix is generated as Y = T∗[D; 1T ] ∈ R3×200. Fig. 3.2 (a) shows the

clean data D with blue “o”s, and the corrupted data X with black “×”s. For better visualization, we only

showed 100 randomly selected samples. The black line segments connect the same samples before (D) and

after corruption (X). The line segments along the vertical direction are the out-of-subspace component of

E = X−D, while the horizontal line segments represent the in-subspace component of E.

We compared our RR with five state-of-the-art methods: (1) Standard least-squares regression (LSR), (2)

GroupLasso (GLasso) [104], (3) RANSAC [84], (4) Total Least Square (TLS) [105] that assumes the error in

the data is additive and follows a Gaussian distribution, (5) RPCA+LSR, which consists of first performing

RPCA [50] on the input data, and then learning the regression on the cleaned data using standard LSR.

The LSR learns directly the regression matrix T using the data X. The other methods (2)-(5) re-weight

the data or select a subset of the samples input data X before learning the regression. We randomly select

100 samples for training and the remaining 100 data points for testing. Both the training and testing sets

contain half of the corrupted samples. Fig. 3.2(b-f) visualizes the results of the regression for the different

methods. Fig. 3.2(b) shows the results of TX, once T is learned with GLasso. GLasso learns a sparse

regression matrix that re-weights the input data along dimensions, but it is unable to handle within sample

outliers. Observe how the samples are far away from the original clean samples. Fig. 3.2(c) shows the subset

of X selected by RANSAC. Although we optimized RANSAC’s testing sample size to obtain the best testing
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Figure 3.2: (a) Original and corrupted 3D synthetic dataset. Black lines connect data points before (D)
and after corruption (X). (b)-(e) show the input data processed by several baselines, and (f) shows that RR
removes the in-subspace outliers.

error measures by RAE, many of the corrupted data points are still identified as inliers. Fig. 3.2 (d) shows

results obtained by TLS, where TLS only partially cleaned the corrupted data because the synthesized error

cannot be modeled by an isotropic Gaussian distribution. Fig. 3.2 (e) shows results obtained by the method

RPCA+LSR, that first computes RPCA to clean the data and then LSR. The data cleaned by RPCA [50],

DRPCA, is displayed with red “o”s. Because DRPCA is computed in an unsupervised manner, only the out-

of-subspace error (the vertical lines) can be discarded, while the in-subspace outliers can not be corrected.

Finally, Fig. 3.2 (f) shows the result of RR. The clean data DRR is denoted by red“o”s. Observe that our

approach is able to clean both the in-subspace outliers (the horizontal lines) and out-of-subspace (the vertical

lines). This is because our method computes jointly the regression and the subspace estimation.

We also computed the error for the regression matrix T∗ (the first two columns) and the testing error

for Yte on the 100 test samples. Table 3.1 compares the mean regression error measured by the Relative

Absolute Error (RAE) between the true labels Yte ∈ R3×100 and the estimated labels Ỹte. RAET =

‖T̃(:,1:2)−T∗(:,1:2)‖F
‖T∗(:,1:2)‖F and RAEY = ‖Ỹte−Yte‖F

‖Yte‖F . The information in the third column of T∗ is excluded in

generating Y = T[D; 1T ]. Therefore, we dismiss this column when evaluating RAET. As shown in Table

3.1, RR produces the smallest estimation error for both T∗ and Yte among the five compared methods,

while GroupLasso, RANSAC and RPCA+LSR produce small improvements over standard LSR due to their
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limitation to deal with both the in-subspace and out-of-subspace corruptions.

Figure 3.3: Projection of face images (the gray “·”s)in the output space Y = [cos(θ), sin(θ)] by LSR, TLS,
RPCA+LSR and Robust Regression(RR). The red “×”s denote the ground truth location for pose angles
θ =[−90◦, −75◦, −60◦, −45◦, −15◦, 0◦, 15◦, 45◦, 60◦, 75◦, 90◦] in the output space.

Pose estimation as a RR problem

This section illustrates the benefit of RR in the problem of head pose estimation. We used a subset of

CMU Multi-PIE database [106] that contains 1721 face images from 249 subjects in session 1. The face

regions are detected automatically using the OpenCV 1 face detector. The detected faces cover 11 head

poses θ =[−90◦, −75◦, −60◦, −45◦, −15◦, 0◦, 15◦, 45◦, 60◦, 75◦, 90◦] each with a random lighting direction.

Each image is cropped around the face region and resized to 51× 61. We vectorized the images into a vector

of 51 × 61 = 3111 dimensions in the matrix X ∈ R3111×1721 and the yaw angles of the images are used as

the output data Y = [cos(θ), sin(θ)] ∈ R2×1721. See Fig. 3.4 for examples of cropped images.

Similar to the previous section, we have compared RR with five methods to learn a regression from the

image X to the yaw angle Y: (1) LSR, (2) GLasso [104], (3) RANSAC [84], (4) TLS and (5) RPCA+LSR. For

a fair comparison, we randomly divided the 249 subjects into 5 folds and performed 5-fold cross-validation,

at each cross-validation train on 1 fold and test on the remaining 4. Parameters of interest in methods (2)-(4)

were selected by performing grid search over the 5-fold cross-validation. The performance of the compared

methods is measured with the averaged angle error.

Table 3.2 summarizes the results of methods (1)-(4) and RR. The LSR method produced the largest

angle error with the increasing percentage of outliers. RANSAC produced comparable error as standard

LSR, indicating that RANSAC is unable to select a subset of “inliers” to robustly estimate the regression

matrix. RPCA+LSR produced relatively larger yaw angle error. This is because RPCA is unsupervised and

lacks the ability to preserve the discriminative information in X that correlates with the angles Y. RR got

1http://opencv.willowgarage.com/wiki/
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(a) Input images X at different pose angles (b) Decomposition of images in (a) as X = DTLS + ETLS

by TLS

(c) Decomposition of images in (a) as X = DRPCA +
ERPCA by RPCA

(d) Decomposition of images in (a) as X = DRR +ERR by
RR.

Figure 3.4: Decomposition of input images in (a) by (b) TLS, (c) RPCA and (d) RR. Robust regression
(RR) cleans most facial details and only preserves the correlated with pose angles.

Table 3.2: Comparison of yaw angle error and standard deviation for six methods on a subset of CMU
Multi-PIE database [106].

LSR GLasso RANSAC TLS RPCA+LSR RR
7.3o ± 6.1o 7.1o ± 5.9o 7.3o ± 6.2o 11.7o ± 10.1o 10.8o ± 9.7o 5.1o ± 4.6o

the smallest error among all the compared methods.

To further illustrate how RR differs from TLS and RPCA+LSR, Fig. 3.4 visualizes the decomposition

of training images by RR (i.e., X = DRR + ERR), by TLS (i.e., X = DTLS + ETLS) and by RPCA (i.e.,

X = DRPCA + ERPCA), for the same input images. Images under pose angles contains person-specific

features e.g., glasses at −30◦ and long dark hair at 30◦ (see Fig. 3.4(a)). Fig. 3.4(b)-(c) show that both TLS

and RPCA are able to remove some of the edges. While RR (Fig. 3.4(d)) preserves much less personal facial

details in DRR than TLS (DTLS) and RPCA (DRPCA) (especially images under pose −30◦ and 30◦). With

less facial details and more dominant profiles, the regression trained on DRR (as in RR) is able to model

higher correlation with the pose angles than using DRPCA.

Fig. 3.3 visualizes the differences among LSR, TLS, RPCA+LDA and RR on both training (the 1st

row) and testing images (the 2nd row). We projected the face images (the gray “·”s) into the output space

Y = [cos(θ), sin(θ)] using the discussed four methods (one column each). The red “×”s denote the ground

true location for pose angles. The projections (the gray “·”s) produced by LSR, TLS and RPCA+LDA are

far from the ideal outputs (the red “×”s). RR (the 4th column) is the method that improves the correlation

between inputs (the gray “·”s) and the outputs (the red “×”s), therefore is more robust than LSR, TLS and

RPCA+LSR in estimating the pose angles.
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Figure 3.5: Decomposition of downsampled test images Xte in the AR face database [107]. Left: Experiments
on original images (0% corruption). Right: Experiments on synthetically corrupted images (5% corruption).
(a) Input test images; (b) Reconstructed test images (XZSRC) and the outliers (Xte −XZSRC) by Sparse
Representation for Classification (SRC) [108], where X is the training images and ZSRC is the sparse coeffi-
cient for the test images Xte; (c) Reconstructed test images (DZRLDA) and the outliers (Xte−DZRLDA) by
Robust LDA (RLDA), where D is the cleaned training images by solving Eq. 3.6, and ZRLDA is the RLDA
coefficient computed by Eq. 3.8. Observe that RLDA cleaned more intra-sample outliers and reconstruct
more facial details than SRC.

Robust LDA (RLDA) for face recognition

This section evaluates our Robust LDA (RLDA) method for face recognition with synthetically corrupted

images.

We used the AR database [107]. There are over 4, 000 frontal face images of 126 subjects under illumi-

nation change, expressions, and facial disguises. 26 pictures were taken for each subject and organized in

two sessions. In the experiment, we used the cropped and aligned face images provided in [107]: 50 male

subjects and 50 female subjects. For each subject, 13 images from Session 1 were used for training, and the

rest 13 images from Session 2 for testing. Each image was cropped and resized to 165× 120 and converted

to gray-scale (see the first row on the left of Fig. 3.5 for examples). To evaluate robustness of algorithms, we

randomly corrupted the image by replacing image pixels using black squares (see the first row on the right

half of Fig. 3.5 for examples).

We followed the settings in [108], and used two types of features that produced the highest performance

of Sparse Representation for Classification (SRC) in [108]: (1) Downsampled face: downsample the cropped
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images by 1/6, and vectorize a downsampled image into a 540 dimensional vector; (2) Laplacian face:

compute Laplacian face features [109] on the original 165 × 120 image and select the top 540 components.

Fig. 3.5 illustrates decomposition of downsampled test images Xte (a) in the AR face database [107] by SRC

and our Robust LDA (RLDA) approach. The Left part of Fig. 3.5: Experiments on original images (0%

corruption). The Right part of Fig. 3.5: Experiments on synthetically corrupted images(5% corruption).

Using SRC [108] (Fig. 3.5(b)), the test images were reconstructed as (XZSRC), where X is the training

images and ZSRC is the sparse coefficient. The outliers was then computed as (Xte − XZSRC). Observe

that SRC produced little outliers. This is because both the training and testing images of the same subject

contain similar expression, illumination, glasses and scarf. SRC computed the sparse representation of test

images Xte using similar training images in X. Fig. 3.5(c) shows the reconstructed test images (DZRLDA)

and the outliers (Xte − DZRLDA) by RLDA, where D is the cleaned training images by solving Eq. 3.6,

and ZRLDA is the RLDA coefficient obtained by Eq. 3.8. Note different to SRC, our RLDA approach used

the cleaned training images D instead of the original training images X. We can see from Fig. 3.5(c) that

RLDA cleaned more intra-sample outliers and reconstruct more facial details than SRC.

In Table 3.3, we compared face recognition accuracy of linear SVM, SRC and RLDA using the both

the downsampled images and the Laplacian face as classification features. As shown in the first row (0%)

in Table 3.3 , RLDA produced the higher accuracy than SRC and SVM on downsampled images, and

comparable accuracy to SRC on Laplacian features. From the 2nd to 4th row, with the higher corruption,

all methods showed lower accuracy. Furthermore, because the Laplacian features were not computed in the

robust manner, under high corruptions (the 3rd to 4th row in Table 3.3), the results with Laplancian features

were worse than RLDA with the downsampled images. Comparing to SVM and SRC, RLDA showed the

best robustness for it consistently produced the best results.

Table 3.3: Face recognition accuracy on AR face database [107] under synthetic corruption. The percentages
in the brackets denotes the portion of images covered by the synthetic squares. Higher value indicates better
performance. Best results are in bold.

%-pixel corruption 1-NN SVM SRC RLDA
Downsample (0%) 68.5% 76.4% 88.0% 89.8%

Laplacian (0%) 90.8% 80.6% 94.7% 94.8%
Downsample (5%) 33.7% 64.7% 80.8% 85.1%

Laplacian (5%) 54.5% 74.5% 71.7% 77.2%
Downsample (20%) 9.7% 44.5% 67.5% 72.4%

Laplacian (20%) 47.8% 67.9% 63.6% 64.9%
Downsample (40%) 7.4% 35.5% 52.9% 61.4%

Laplacian (40%) 33.7% 56.5% 48.2% 51.4%
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RLDA for object classification, action recognition and video indexing

This section evaluates our Robust LDA (RLDA) method on two multi-label and one multi-class classification

tasks: object categorization on the MSRC dataset, action recognition in the MediaMill dataset and event

video indexing on the TRECVID 2011 dataset. Each dataset corpus and features is described below:

MSRC Dataset (Multi-label)2 has 591 photographs (see Fig. 3.6(a)) distributed among 21 classes,

with an average of 3 classes per image. We mimic [74] and divide each image into an 8×8 grid and calculate

the first and second order moments for each color channel on each grid in the RGB space. This results in a

384 dimensional vector, which we use to describe each image.

Mediamill Dataset (Multi-label) [110] consists of 43907 sub-shots (see Fig. 3.6(c)) divided in 101

classes. We followed [74] and eliminated classes containing fewer than 1000 samples, leaving 27 classes.

Then, we randomly selected 2609 sub-shots such that each class has at least 100 labeled data points. Each

image was therefore characterized by a 120-dimensional feature vector, as described in [110].

PASCAL VOC 2007 Dataset (Multi-label) consists of 9963 images labeled with at least one of 20

classes, split into trainval and test sets. We used state of the art features obtained from Overfeat, a

Convolutional Neural Network trained on ImageNet [111]. We rescaled every image to 221× 221 pixels and

obtained a single 4096 dimensional feature vector as the output from layer 22 of the network for every image

in the dataset.

TRECVID 2011 Dataset (Multi-class)3 consists of video data in MED 2010 and the development

data of MED 2011, totaling 9822 video clips belonging exclusively to one of 18 classes. We first detected

100 shots for each video and then used their center frames as keyframes. We described each keyframe using

dense SIFT descriptors. From these, we learned a 4096 dimension Bag-of-Words dictionary. Each video was

represented by a normalized histogram of all of its feature points. We used a 300 core cluster to extract the

SIFT features, which took about 1500 CPU hours in total. In the experiment, we randomly split the dataset

into two subsets: 3122 entries for training and 6678 for testing.

We compared RLDA to the state of the art approach for Multi-Label LDA (MLDA) [74], and to Robust

PCA [50] followed by traditional LDA (RPCA+LDA). For control, we also compare to LDA, PCA+LDA

(preserving 99.9% of energy) and a linear one-vs.-all SVM.

For the classic LDA-based testing procedure, one first projects the test points using the learned T

from training; then for each projected test sample, we find the k-nearest-neighbor (kNN) from the training

samples projected by T; finally, we select the class label from the class labels of k-neighbors by majority

2http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
3http://www-nlpir.nist.gov/projects/tv2011/
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(a)

(b)

(c)

Figure 3.6: Multi-label datasets for object recognition and action classification. Example images in (a)
MSRC and (b) PASCAL VOC 2007 , and (c) example keyframes in Mediamill.
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voting. However, this procedure is not appropriate in our evaluation for two reasons: (1) it’s not fair to

use a fixed k for classes with different number of samples, e.g., samples per class are in [19, 200] for MSRC,

[100, 2013] for Mediamill; (2) kNN introduces nonlinearity to the LDA-based classifiers, which is unfair to

linear SVM. For these reasons, we use Area Under Receiver Operating Characteristic (AUROC) as our

evaluation metric. AUROC summarizes the cost/benifit ratio over all possible classification thresholds. We

report the average AUROC (over 5-fold Cross Validation) for each method under their best parameters in

Table 3.4. In the MSRC dataset results in Table 3.4, LDA performs the worst since it’s most sensitive to

the noise in data. SVM performs better than PCA+LDA and RPCA+LDA. Our method (RLDA) leads to

significant improvements over the others due to its joint classification and data cleaning (for both Gaussian

and sparse noise in the input). For Mediamill, LDA is just slightly worse than PCA+LDA and RPCA+LDA

due to the low noise level in the data. In this case, RLDA does not “over-clean” the data, and performs

similar to PCA+LDA and RPCA+LDA. In the PASCAL VOC 2007 dataset results, performance increases

become less accentuated, with baseline methods yielding good performance due to the recent advances in

representation provided by Overfeat [111]. MLDA, on the other hand, results in a poorer score because it

heavily relies on the normalization based on inter-class correlations.

Table 3.4: AUROC for Multi-label Object (MSRC), Action (Mediamill) and Image (Pascal VOC) classifica-
tion. Higher value indicates better performance. Best results are in bold.

Database LDA SVM PCA+LDA MLDA RPCA+LDA RLDA
MSRC 0.65 0.79 0.76 0.63 0.75 0.83

Mediamill 0.77 0.64 0.77 0.67 0.77 0.76
Pascal VOC2007 0.92 0.90 0.92 0.79 0.87 0.94

To test our method in a large scale dataset, we run experiments on the TRECVID2011 dataset. We

used the Minimum Normalized Detection Cost (MinNDC), the evaluation criteria for MED 2010 and MED

2011 challenges, as suggested by NIST. Fig. 3.7 shows that RLDA achieved the best class-wise MinNDC

for 9 out of 18 classes over other linear methods, i.e., LDA/MLDA, SVM and RPCA+LDA. Note because

the classes are mutually exclusive, MLDA is identical to LDA. SVM is heavily affected by outliers for the

“Wedding Ceremony”, “Getting a vehicle unstuck” and “Making a sandwich” cases. For some classes, LDA

and RPCA+LDA are similar or better than RLDA. We believe this is due to: (1) the data features computed

by Bag-of-Words model smoothed/regularized some outliers; (2) the nonlinear nature of the classification

task. Therefore some error patterns modeled by LDA and RPCA enhanced their discriminative ability. Nev-

ertheless, among all linear algorithms, our method (RLDA) obtains the best average MinNDC. In addition,

to show how nonlinearity affects the performances, we compared the kernelized version of the LDA (KLDA),

RPCA+LDA (KRPCA+KLDA) and RLDA (KRDA). Here we apply the homogeneous kernel maps tech-
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nique [112] to obtain a three order approximation of the χ2 kernel. Other more accurate approximations are

possible [113]. Fig. 3.7 shows that KRDA still obtains better results, 9 out of 18 best class-wise MinNDC

and best average MinNDC over all classes.

Figure 3.7: MinNDC results for Media Event Detection on TREC2011. Lower value indicates better
performance. Best results are in bold.

RLDA with missing data

This section illustrates the use of RLDA-Missing to perform attribute classification on the PubFig database [114].

We predict 7 facial attributes (Gender, Asian, White, Indian, Black, Glasses and Beard/Mustache) from fa-

cial features. That is, we formulate the facial attribute detection as a multi-label classification problem, each

image has 7 attribute labels, where a binary indicator vector yi ∈ R7×1, such that yij = 1 if xi belongs to

class j otherwise yij = 0 (j = 1, · · · , 7). In testing (see section 3.1.4), a testing data point xte is cleaned

to produce dte and the indicator vector yte = T[dte; 1] ∈ R7, which then is used as decision values (for

computing AUROC), or produces binary class labels using the k-nearest-neighbor method.

To train our facial attribute detector, we used training images from the PubFig database that have

been labeled with 49 landmarks and images from Multi-PIE database [106] that have been labeled with 68

landmark points. This is a challenging problem because the regressor will have input features of different

dimensions. In this section we will show how RR is able to merge information from these two databases to

get improved results on estimating facial attributes.

The PubFig database [114] consists of 58, 797 images of 200 people collected from the internet. Classifiers

will be trained to recognize these facial attributes from image features. The images in the PubFig database are

taken in completely uncontrolled situations with non-cooperative subjects. Thus, there are large variations
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in pose, lighting, expression, occlusion, scene and camera parameters. These imaging conditions pose great

difficulties in classifying the facial attributes. Besides the PubFig database, we also used 5683 face images

from the Multi-PIE database. These images include all 249 subjects under the frontal lighting and yaw angle

between −45◦ and +45◦.

Given the images that have been labeled with the seven attributes, we compute the image features as

follows. First, we used the supervised descent method [115] to detect 49 facial landmarks in the PubFig

database. Second, we compute a 8-dimensional Histogram of Gradient (HoG) vector around each facial

point, (the size of each pixel block is 1/6 of the length of the nose). Finally, we concatenate all the point

HoGs to form a 8× 49 = 392-dimensional feature vector for the image. See Fig. 3.8 for an example. In the

case of the Multi-PIE images, faces have been manually labeled and we proceed as before and extract a 544

feature vector, see Fig. 3.8 (b).

Figure 3.8: Training RLDA-Missing classifier on a concatenated data matrix X consisting data from the (a)
PubFig database (49 facial points detected) and (b) the MultiPIE database (68 facial points detected). In
the original concatenated matrix “X” (c), observe that the data block of PubFig contains missing elements.
In the clean/filled data matrix “D” (d), the missing elements are automatically filled. In testing, we only
use the PubFig part of D to clean the testing data.

As a baseline experiment, we applied the RLDA proposed in section 3.1.3, using only data from the
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Table 3.5: AUROCs of facial attribute classification on the PubFig data. Each row contains results using
different method and training data, as specified in the first column ”Methods: training data”. Higher value
indicates better performance. Best results are in bold.

Methods: training data \ Attributes Gender Asian White Indian Black Glasses Beard Average
RLDA: PubFig (49pts) only 0.92 0.50 0.60 0.50 0.72 0.77 0.68 0.67

RLDA:PubFig (49pts)&MPIE (49pts) 0.90 0.62 0.57 0.60 0.69 0.76 0.70 0.69

LDA-missing[116]: PubFig (49pts)&MPIE(68pts) 0.82 0.57 0.54 0.59 0.61 0.78 0.67 0.65
RLDA-missing: PubFig (49pts)&MPIE(68pts) 0.91 0.66 0.70 0.56 0.69 0.81 0.71 0.72

PubFig database. In this experiment, we perform grid-search for RR parameters (η and λ) with a 4-fold

cross validation. At each trial of cross-validation we left one fold (50 persons) out for testing, and the rest

three folds (images of 150 persons) for training. The averaged AUROCs over 4-fold cross-validation are

reported at the optimal parameters (Table. 3.5 the “PubFig only” row). We added data from MultiPIE

database to conduct a“PubFig&MultiPIE” experiment. At each trial of cross-validation we added the 5683

MultiPIE images (544-dimensional features) to the 3 PubFig training folds (392-dimensional features). The

544 − 392 = 52-dimensional unavailable features in the PubFig dataset are considered as missing data (see

Fig. 3.8 (c) for the concatenated training data matrix “X”). We train RLDA with missing data as in

section 3.1.5, the missing elements in “X” is filled in the cleaned/filled training data the “D” (Fig. 3.8

(d)). Finally in testing, we only used the PubFig part of “D” to clean the testing data (the remaining 1

PubFig fold). All quantitative results are shown in Table. 3.5. In addition to the “PubFig only” baseline,

we added one more baseline “PubFig (49pts)&MPIE (49pts)” by using features from the 49pts that are

common to both datasets. We also implemented the discriminatively trained LDA for missing data in

[116], a standard LDA-based approach for missing data. The approach used the same missing training data

as RLDA-missing, and the results were reported in Table. 3.5 (”LDA-missing”). Comparing to the two

baseline methods (“RLDA: PubFig only” and ”RLDA: PubFig (49pts)&MPIE (49pts)”), our RLDA-missing

approach have additional 52-dimensional features learned from the MultiPIE data. Comparing to “LDA-

missing” [116], our approach does not rely on explicit assumption on the missing values. “LDA-missing”

[116] explicitly models the missing values by Gaussian distribution, whereas the missing elements in this

experiment are structured (blocked). As shown in Table. 3.5, our RLDA-missing produced improved results

in both class-wise and average AUROCs.

3.2 Weakly supervised learning as a matrix completion problem

Most methods for visual recognition are fully supervised in nature, as they make use of bounding boxes

or pixelwise segmentations to locate objects of interest. A major limitation of these approaches, however,

is that the location for objects of interest has to be known in the training images, usually in the form of
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Figure 3.9: In a weakly-supervised method for multi-label image classification, the training set images (a)
are labeled with the objects that are present but their location in the image is unknown. Given unseen test
images (b), our method is able to classify which classes are present in the image and segment the image into
regions that correspond to the classes.

himg = ↵ · hcow + � · hgrass + � · hbg

Figure 3.10: The left image represents the original training image that has been labeled with the words
grass and cow. Our algorithm decomposes the histogram of this image as a linear combination of two
class histogram basis (cow, grass) plus another histogram hbg modeling errors and the background. Class
localization can be visualized on the image by interpreting each histogram as a probability distribution of
which words belong to the class.

bounding boxes or a full-blown pixelwise segmentation. While efforts have been made to provide datasets

with this information [117, 118], manual labeling is still labor intensive, subjective and an error prone process.

Moreover, it has been shown that manual segmentations are not necessarily the optimal spatial enclosure

for object classifiers [119]. To cope with an increasing number of concepts and larger scale datasets, there

has been an increased interest in transitioning away from these fully supervised approaches.

Weakly-supervised algorithms [119, 120, 121, 122] relieve the labeling burden by learning from labels

with less information. Figure 3.9 illustrates this setting and the problem we address in this section: given

a weakly-labeled training set (Figure 3.9(a)), we segment and label new test images (Figure 3.9(b)). To

solve this problem, we propose to cast it under a matrix completion framework. Several Multiple Instance

Learning (MIL) methods [119, 123, 124, 125, 126, 127, 128] have been proposed in the literature for solving

this type of weakly supervised learning problem. However, existing MIL methods have four major drawbacks:

(1) The MIL problem is usually cast as a NP-hard binary quadratic problem. Consequently, most existing

algorithms to solve MIL are highly sensible to initialization. (2) The extension of MIL to the multi-label case

is not trivial. Current multi-label MIL approaches [124, 125, 126] heavily rely on an explicit enumeration
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of instances, which are then solved by single class MIL or Multi-label learning. (3) They lack robustness to

outliers. Recall from Section 3.1 that most discriminative approaches project data directly onto linear or

non-linear spaces [119, 123, 127]. Thus, a single outlier can bias the solution, severely degrading classification

performance. (4) It is unclear how existing MIL approaches can be extended to use partial information, such

as incomplete label assignments or missing feature descriptions.

We observe that the image classification and localization problem has more structure than what’s ex-

ploited by MIL problems. MIL approaches consider images as bags with many instances denoting possible

regions of interest. Instead, we make use of the additive property of histogram representations such as Bag

of Words (BOW) [129]: the histogram of an entire image is a sum of the histogram information of all of its

subparts (see Figure 3.10). By using this property, image classification can be posed as a low-rank matrix

completion problem, since class histograms are shared across images, and the number of class histograms is

small compared to the number of images. Contrary to typical MIL approaches, our matrix completion model

is convex. Figure 3.11 illustrates the main idea in this section. Each column of Zobs has a concatenation

of the labels (1 if the class is present and zero otherwise) and the histogram htri for one training image

(Figure 3.11 (a)). In the test set (Figure 3.11 (b)), labels are unknown and denoted as question marks (?).

Our method fills the unknown entries and corrects known features and labels such that Z has the smallest

rank possible. It can also infer the feature descriptor of a particular class (Figure 3.11 (c)). This is achieved

by looking for the unknown histograms whose label vector denotes the presence of only this class. In doing

so, we obviate the need for training with precise localization or expensive combinatorial MIL models, as

required by previous methods.

3.2.1 Related work

Since the seminal work of Barnard and Forsyth [130], many researchers have addressed the problem of

associating words to images. Image semantic understanding is now typically formulated as a multi-label

problem. In this setting, each image may be simultaneously assigned to more than one class. This is

an important difference from multi-class classification, where classes are assumed to be independent and

mutually exclusive. While multi-label can trivially be handled in multi-class approaches by dropping the

mutual exclusivity constraint, Desai et al. [131] have shown the need to model object interactions. Therefore,

many multi-class techniques such as SVM and LDA have been modified to make use of label correlations

to improve multi-label classification performance [132]. In these approaches, localization is achieved by

detection, using e.g., a sliding window. This is, however, at the expense of a fully supervised training set

where localization is known a priori.
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Figure 3.11: Our weakly supervised classification algorithm works by completing a matrix Zobs as shown
above, where the question marks denote unknown entries. We complete this matrix such that it can be
factorized into a low rank matrix Z and an error matrix E. This ensures that background distributions and
feature/label outliers are captured in E, since they increase the rank of Z. In the training submatrix (a),
the ith column concatenates the image histogram htr

i with its respective {0, 1} label assignments. Note that
a partially labeled example such as the second training image (a) is trivially handled by our framework. In
the test submatrix (b), the jth column is a concatenation of histogram htst

j with unknown assignments. In
this transductive setting, the statistics of the test set are also used in the learning. By completing (c), we
obtain a representative histogram for each class, in spite of their co-occurrence in the images.

Several researchers have addressed the problem of classifying an image and providing precise class lo-

calization. Deselaers et al. [133] used a CRF to learn new class appearances from previously known ones

obtained with supervised training. Blaschko et al. [134] learned a supervised structured output regression

where the outputs are coordinates of a bounding box enclosing the object. Jamieson et al. [122] associated

configurations of SIFT features to captions. Tighe and Lazebnik [135] proposed lazy learning for large scale

image parsing.

Alternatively to these approaches, Multiple Instance Learning (MIL) has surfaced as a reliable framework

for performing learning in the presence of unknown latent factors. First proposed in [136], this class of

learning problems extends the typical classification setting to the case where labels are no longer applied

individually, but to multi-sets or “bags”: a bag is labeled positive if at least one of its instances is positive

and negative if none of its constituents are. In computer vision, this framework has been used for weakly

supervised learning tasks such as learning deformable part models [127] and to explicitly model the relations

between labels and specific regions of the image, as initially proposed by Maron and Lozano-Perez [137].

This method allows for the localization and classification tasks to benefit from each other, thus reducing

noise in the corresponding feature space and making the learned semantic models more accurate [39, 119,

123, 124, 125, 126, 138]. Although promising, the MIL framework is combinatorial, so several approaches

have been proposed to avoid local minima and deal with the prohibitive number of possible subregions in an

image. Zha et al. [125] made use of hidden CRFs while Vijayanarasimhan et al. [126] recurred to multi-set
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kernels to emphasize instances differently. Yang et al. [123] exploited asymmetric loss functions to balance

false positives and negatives. These methods, however, require an explicit enumeration of instances in the

image. This is usually obtained by breaking images in a small fixed number of segments or applied in settings

where detectors perform well, such as the problem of associating faces to captioned names [139]. On the

other hand, to avoid explicitly enumerating the instances, Nguyen et al. [119] coupled constraint generation

algorithms with a branch and bound method for fast localization. This is also seen in the negative data-

mining process of [127]. Yakhnenko et al. [39] proposed a MIL algorithm of linear complexity in the number

of instances by using a non-convex Noisy-Or model. Multi-task learning has also been proposed as a way to

regularize the MIL problem to avoid local minima due to many available degrees of freedom. In this setting,

the MIL optimization is jointly learned with a fully supervised task [138].

To the best of the authors’ knowledge, the only work modeling MIL as a convex problem is by Li and

Sminchisescu [128]. They replace the classifier loss and the non-convex constraints on the positive bags

by convex alternatives (f-divergence family loss and class likelihood ratios for each instance). They show

promising results over standard MIL formulations as the ratio of positive instances in positive bags increase.

Unfortunately, this is not the setting in image classification, as the percentage of possible negative bounding

boxes in an image largely exceeds that of the positives. This work can also relate to Latent Semantic Analysis,

as the low rank justifications provided in Sec. 3.2.2 are similar in nature to the ones provided for subspaces

obtained from document-term matrices. Bosch et al. [140] provided preliminary results that visual words

associated with high probability to a given category can provide cues for localization.

3.2.2 Matrix completion for multi-label classification of visual data

This subsection describes the main contributions of this section: We start by presenting the use of matrix

completion for general classification tasks. Then, we describe its use for weakly supervised multi-label image

classification and localization.

Classification as a matrix completion problem

In a supervised setting, a classifier learns a mapping W : X → Y between the space of features X and the

space of labels Y. This learning is done from a dataset of N training tuples (xtri ,y
tr
i ) ∈ RD × RK , where

D is the feature dimension and K the number of classes. In particular, linear classifiers minimize a loss l(·)

between the output space and the projection of the input space, as

minimize
W,b

N∑

i=1

l


ytri , [W

> b]




xtri

1





 , (3.11)
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where parameters W ∈ RD×K and b ∈ RK×1 describe the class decision boundaries. After the training stage,

these parameters are used to estimate unknown labels for test samples ytstj from their feature descriptors

xtstj . This is typically done independently for each test entry, as

ytstj = [W> b]




xtstj

1


 . (3.12)

In this section, we formulate the problem of jointly classifying M test samples as one of matrix completion.

For this purpose, let us define the feature matrices Xtr ∈ RD×N and Xtst ∈ RD×M . These matrices

respectively collect in each column feature vectors for N training and M test samples. Without loss of

generality, the linear model assumed in (3.12) can be written in matrix form. Specifically, it states that

Ytr ∈ RK×N , the matrix concatenating the labels for all training images, can be obtained by the linear

combination

Ytr = [W> b]




Xtr −Etr
X

1>


−Etr

Y , (3.13)

where EY
tr and EX

tr denote errors in the known labels and features, respectively. The test labels Ytst ∈

RK×M are obtained as

Ytst = [W> b]




Xtst −Etst
X

1>


 , (3.14)

with no error in the labels since they are unknown. Concatenating labels and features in (3.13) and (3.14)

in one matrix yields

Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

Etr
X Etst

X

0>




= Zobs −E, (3.15)

where Zobs ∈ R(K+D+1)×(M+N) holds all observed entries (with Ytst unknown) and E is a matrix of errors,

also unknown. Note that according to (3.13) and (3.14), the matrix Z defined in (3.15) is rank deficient.

That is, the rows comprising the labels are linearly dependent on the feature rows. In the absence of error

(E = 0), the input matrix Zobs is also low rank, as

rank(Z) = rank(Zobs) = rank







Xtr Xtst

1>





 . (3.16)
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In this case, we observe that (3.13) becomes

Ytr = [W> b]




Xtr

1>


 , (3.17)

and thus the Ytst in (3.14) does not increase the rank of Z, since

Ytst = [W> b]




Xtst

1>


 . (3.18)

Using this result, Goldberg et al. [49] suggested that unknown test labels in Ytst can be recovered by

completing these entries such that the rank of Z is minimized. This can be written as

minimize
Ytst

rank(Z)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



.

(3.19)

In practice E 6= 0, so we modify (3.19) to include (3.15). To avoid trivial solutions, we penalize errors with

a loss l(·), as

minimize
Ytst,EtrY ,EX

rank(Z) + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>



,

(3.20)

where λ is a tradeoff parameter and EX = [Etr
X Etst

X ]. We discuss the choices of loss functions l(·) in detail

in Sec. 3.2.2.

Since the rank is a highly non-convex and non-differentiable function, it is nontrivial to minimize. There-
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fore, we relax (3.20) by using its convex envelope, the nuclear norm. Therefore, we rewrite (3.20) as

minimize
Ytst,EY

tr,EX
‖Z‖∗ + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>




. (3.21)

There are three fundamental advantages in casting a general classification problem as the matrix com-

pletion in (3.21). First, it bypasses the estimation of the model parameters W and b. This allows our

formulation to estimate errors in the features EX . Parametric models that estimate W and b (such as linear

regression or SVMs) do not model this error, and thus implicitly assume EX = 0. Note that the product

W>EX in (3.13) will result in a non-convex problem when both W and EX are considered as optimization

variables, whereas our model (3.21) is convex. Second, errors and missing data in features and labels are

estimated jointly. Third, we minimize the rank of Z, containing training and test samples. This transductive

setting allows the model to leverage the statistics of the test set.

Adding robustness into matrix completion

In practical applications, we have several sources of errors in the features (e.g., changes in pose, illumination,

background noise) and missing data in the training samples (e.g., missing labels), which will translate into

nonzero error matrices in the models of (3.15) and (3.35). We account for these possible violations by allowing

the matrix Z in (3.21) to deviate from the original data matrix. The resulting optimization problem finds

the best label assignment Ytst and error matrices EX = [EXtr EXtst ] ,EY tr such that the rank of Z is

minimized, as

minimize
Ytst,EY tr ,EX

µ‖Z‖∗ + lx(EX) + λly(Etr
Y )

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>



.

(3.22)

Here, distortions of Z from known labels and features are penalized according to ly(·) and lx(·), respectively.

The parameters λ, µ are positive trade-off weights between better feature adaptation and label error correc-

tion. We rewrite (3.22) by defining sets ΩX and ΩY of known feature and label entries and ZY ,ZX ,Z1 as

45



0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

l y(z
,1

)

 

 
Log loss (  = 1)
Gen. Log loss (  = 3)
Gen. Log loss (  = 30)
Hinge loss

Figure 3.12: Comparison of Generalized Log loss with Log loss (γ = 1).

the label, feature and last rows of Z, as

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

lx(zij , z
obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to Z1 = 1>

, (3.23)

where the constraint that Z1 be equal to one is necessary for dealing with the bias b in (3.13). The model

in (3.23) can be solved using Fixed Point Continuation [55], described in Sec. 3.2.3.

In [49], lx(·) was defined as the least squares error and ly(·) a log loss to emphasize the error on entries

switching classes as opposed to their absolute numerical difference. We note that in this model (MC-1), the

log loss in ly(·), albeit asymmetric, incurs in unnecessary penalization of entries belonging to the same class

as the original entry (see Figure 3.12). Therefore, we generalize this loss to a smooth approximation of the

Hinge loss, controlled by a parameter γ. For labels {−1, 1}, we have

ly(zij , z
obs
ij ) =

1

γ
log(1 + exp (−γzobsij zij)), (3.24)

and for the case of labels {0, 1}, we have

ly(zij , z
obs
ij ) =

1

γ
log
(
1 + exp

(
−γ(2zobsij − 1)(zij − zobsij )

))
. (3.25)
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Also, in the bag of words model, visual data are encoded as histograms. In this setting, (3.23) is inadequate

as it introduces negative values to the histograms in ZX . Thus, we replace the least-squares penalty in lx(·)

by a χ2 distance,

χ2(zj , zj0) =

F∑

i=1

χ2
i (zij , z

obs
ij ) =

F∑

i=1

(
zij − zobsij

)2

zij + zobsij
. (3.26)

and constrain all feature vectors to be positive

Definition 6 (MC-Pos model).

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to ZX ≥ 0

Z1 = 1>,

(3.27)

or in the Probability Simplex P

Definition 7 (MC-Simplex model).

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to ZX ∈ P

Z1 = 1>,

(3.28)

depending on whether we wish to perform normalization on the data or not. Observe that for the presented

losses lx(·) and ly(·), (3.23) and (3.28) are both convex in their domains.
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3.2.3 Fixed point continuation (FPC) for MC-Pos/MC-Simplex

Albeit convex, the nuclear norm makes (3.27) and (3.28) not smooth. Since nuclear norm problems are

naturally cast as Semidefinite Programs, existing interior point methods are inapplicable due to the large

dimension of Z. Thus, several methods have been devised to efficiently optimize this problem class [22, 53,

54, 55, 56, 57, 58]. The FPC method [55], in particular, consists of a series of gradient descent updates

h(·) = I(·)− τg(·) with step size τ and gradient g(·) as

g(zij) =





λ
|ΩY |

−zobsij
1+exp (γzobsij zij)

if zij ∈ ΩY ,

1
|ΩX |

z2ij+2zijz
obs
ij −3zobsij

2

(zij+zobsij )2
if zij ∈ ΩX ,

(3.29)

and 0 otherwise. These steps are alternated with a shrinkage operator Sν(·) = max (0, · − ν) on the singular

values of the resulting matrix, to minimize its rank. Provided h(·) is non-expansive, FPC converges to

the optimal solution for the unconstrained problem. FPC was originally devised in [55] for unconstrained

problems and extended in [49] to solve the formulation MC-1 (3.23) by adding a projection step. However,

its convergence to the global optima of the problem was only empirically verified. In Appendix B, we

prove the convergence of FPC for (3.23), (3.27), (3.28) using the fact that projections onto convex sets are

non-expansive.

Key to the feasibility of FPC is an efficient way to project Z onto the constraint sets in (3.27) and (3.28).

While for MC-Pos (3.27) the non-negative orthant projection is done by setting negative components to

zero, efficiently projecting onto the probability simplex in MC-Simplex (3.28) is not straightforward. By

exploring the dual of the projection problem we obtain a closed form, cf. [62, 141]. The algorithms are

summarized in Alg. 4 and we prove their convergence in Appendix B. The computational bottleneck is the

computation of the SVD of Z. State-of-the-art methods for SVD (e.g., Lanczos bidiagonalization with partial

reorthogonalization) take a flop count of O((K +D + 1)(M +N)2 + (M +N)3).

3.2.4 Low-rank assumption for histograms in image classification

In spite of justifying the applicability of matrix completion as a generic classification framework, the expla-

nation provided by Goldberg et al. [49] described in Sec. 3.2.2 only spans the row space of Z. In this section,

we provide an alternative explanation for the low rank of Z in (3.15), based instead on its column space. Let

us assume the case when histograms are used as feature vectors. Note that several popular techniques for

obtaining global representations of images in computer vision, such as Bag of Words or HOG, fall under this

assumption. Let hi denote such a histogram representation for image i. In this case, the feature submatrix
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Algorithm 4 FPC for MC-Pos (3.27) and MC-Simplex (3.28)

Input: Initial Matrix Zobs, known entries sets ΩX ,ΩY
Initialize Z as the rank-1 approximation of Zobs

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = Z− τg(Z)
Shrink 1: A = UΣV>

Shrink 2: Z = USτµ(Σ)V>

Project ZX : ZX = max (ZX ,0) for (3.27)
Project ZX onto the probability simplex P for (3.28)
Project Z1: Z1 = 1>

end while
end for

Output: Complete Matrix Z

X = [Xtr Xtst] in (3.15) contains one histogram per column, as

X =

[
htr1 · · · htrN htst1 · · · htstM

]
. (3.30)

One property of image histograms is that they can be represented by a sum of the histograms of its segments.

We consider these latent histograms as Ck ∈ RD×Nk , the Nk canonical histogram representations for class

k. Therefore, we have that the histogram of image i can be written as a sum of class representatives Ck

weighted by coefficients ak,i ∈ RNk×1, as

hi =
∑

k

Ckak,i + EXi, (3.31)

where EXi collects errors (e.g., words in the background that do not pertain to any class). If we concatenate

the representatives Ck in the matrix

C =

[
C1 C2 · · · CK

]
, (3.32)

and collect weights ak,i in a matrix A we can write (3.30) as

X = CA + EX . (3.33)
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Additionally, since we postulated each ckj as belonging to only class k, the correspondent label matrix for

C is given by

YC =

[
e11
>
N1

· · · eK1>NK

]
, (3.34)

where ei denotes the ith canonical vector. Merging (3.30) and (3.34), we obtain the data matrix Zobs in (3.15)

as

Zobs =




YC

C


A +




EY

EX


 = Z + E, (3.35)

the sum of a low rank component matrix Z with an error matrix E. A close inspection of (3.35) allows us to

state that Zobs is low rank also due to its column space, in absence of background noise, since class histograms

are shared across images and therefore
∑
kNk < N + M . Additionally, it allows for the observation that

the appearance of individual classes can be recovered from a multi-label dataset by estimating C. In this

chapter, we assume that for localization purposes, each class can be well represented by a single histogram.

In this case, (3.34) becomes YC = IK , and therefore our approach can obtain an estimate of C by completing

in Zobs the features correspondent to the canonical labels (see Figure 3.11 (c)). By directly estimating C,

we are able to recover the appearance of each class and thus provide the localization for each concept in

the images. This is done despite the weakly supervised setting and bypassing the combinatorial nature of

searching for bounding boxes such as in MIL problems. Also, note that this assumption is not used in the

classification, where our algorithm estimates class subspace dimensions automatically.

Low rank assumption validation

We empirically validated the low-rank assumption that histograms of objects of the same class share a low-

dimensional subspace in two multi-label datasets, MSRC4 and SIFTFlow [142]. We constructed a bag of

words representation for the MSRC dataset, which consists of 591 real world images distributed among 21

classes, with an average of 3 classes present per image. To replicate the setup of [125, 126], we dismissed

the classes void, mountain and horse. To obtain a bag of words (BOW) descriptor, we clustered texton filter

responses [143] obtained from all three CIELab color channels into a codebook by applying k-means to a

random subset of 40, 000 descriptors. In this model [129], images are encoded as histograms representing

the distribution of the 400 words from the codebook. Then, using the ground truth segmentation labeling,

we collected feature matrices X1 by concatenating all the histograms of the same class. We compared these

with feature matrices X2 of the same dimension with an equal amount of elements from all classes (including

4http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Figure 3.13: Comparison of singular value distribution of matrices X1 with histograms of the same class
(solid) versus corresponding matrices X2 of the same dimension with an equal amount of histograms from
all classes (dashed) for different classes on the MSRC dataset.

elements from the class of X1). In order to compare the singular value distribution of these matrices, we

normalized them so columns have unit `2 norm. Then, we measured their nuclear norm ratio (NNR), defined

as

NNR(X1,X2) =
‖X1‖∗
‖X2‖∗

. (3.36)

This measure provides an empirical validation of our assumption and is linked to what our model is optimizing

and is an indirect measure of the rank of a matrix. Results on Table 3.6(a) show that for all classes in the

MSRC dataset, we obtained a NNR lower than 1. An assignment of test entries to incorrect class labels

yields a higher nuclear norm of Z, thus validating our model. For visualization, we plot the singular value

distribution of X1 and corresponding X2 for some classes in the dataset (Figure 3.13).

It might be argued that explanation of (3.35) only holds when the columns dominate the estimate of

the rank, i.e., rank(

[
Xtr Xtst

]
) ≤ N + M ≤ F . However, we also validated this hypothesis in the case

when the feature dimension F is smaller than the number of images N +M in the dataset. Since there are

only 591 images in the MSRC dataset and some classes exhibit a small number of exemplars, we validated

this assumption in the larger scale SIFTFlow dataset [142]. This dataset is a collection of 2, 688 images

distributed among 33 classes. Following [142], we extracted a dense HoG feature map [144] from every image

in the dataset and built a BoW codebook of 200 words. We collected the histograms for all the 25, 758

ground truth segments in the dataset according to their class label. Then, we calculated the distribution of

singular values for matrices X1 as aforementioned, for all classes with more than 200 samples in the dataset.

We compared the NNR of the matrices X1 with matrices X2 of the same dimension comprised by an equal

amount of elements from all classes. Results in Table 3.6(b) corroborate the MSRC dataset results, showing
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Table 3.6: Nuclear norm ratios (NNR) for all classes in the MSRC dataset (a) and for all classes which have
more than 200 segments in the SIFTflow dataset (b).

(a) MSRC dataset.

Class NNR
building 0.8595

grass 0.6987
tree 0.8325
cow 0.9092

sheep 0.7653
sky 0.4530

aeroplane 0.7831
water 0.8224
face 0.6622
car 0.8392

bicycle 0.6525
flower 0.8741
sign 0.9491
bird 0.8793
book 0.9217
chair 0.9397
road 0.7070
cat 0.8402
dog 0.8420

body 0.9465
boat 0.9123

(b) SIFTflow dataset.

Class NNR
building 0.9074

tree 0.8620
car 0.8989
sky 0.8455

window 0.7513
mountain 0.8657

road 0.8568
person 0.8673
plant 0.8655

sidewalk 0.9038
rock 0.8728
door 0.6554
sea 0.6073
field 0.7719
sign 0.9098
grass 0.8181

streetlight 0.9439
river 0.8719

balcony 0.7458

our assumption is also valid when the feature dimensions are smaller than the number of images.

3.2.5 Comparison to other subspace techniques

It is important to note that many standard dimensionality reduction techniques such as PCA and LDA have

been robustified by using a nuclear norm penalization typically coupled with an `1 error function [44, 145].

The differences and similarities between the method presented in Section 3.2.2 and these techniques can be

analyzed if one interprets (3.27),(3.28) as forms of PCA with missing data. Our method can be seen as an

extension of Robust PCA in two ways: 1) it includes labels as additional “features” in the data samples 2)

it penalizes label and features errors with different losses lx and ly.

A comparison between the behavior of PCA, LDA, RPCA [145], RLDA [44] and our method in the

presence of noise can be seen in Figure 3.14. We generated a two-class dataset of 2, 000 500-dimensional

vectors. The positive and negative classes (resp.) have 1, 000 samples of the form −1500 and 1500 (resp.).

We refer to this as clean data. The first two principal components of this clean data are in Figure 3.14(a).

Then, we added to the clean data noise sampled from a Normal distribution with zero mean and standard

deviation 20I500×500. We plot the two principal components data in Figure 3.14(b). Note that PCA does

not recover the underlying structure of the clean data due to the significant amount of noise.

In this example, because the data does not have outliers and the noise does not follow a Laplacian

distribution, the `1 error function assumed by RPCA [145] is not able to clean the noisy data (Figure 3.14(c)).

Similarly, augmenting the space by adding the labels as an additional dimension does not help since for
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RPCA the errors in features and labels are weighted equally. In both these cases, the output of RPCA

(Figure 3.14(c)) is similar to the one obtained by regular PCA (Figure 3.14(b)). LDA (Figure 3.14(d)) is

able to find a projection which classifies most of the points correctly. However, observe that it fails to clean the

data, which results in several misclassified points on the class boundary. Our matrix completion approach, in

turn, balances a trade-off between correcting the data points, correcting the labels and minimizing the rank.

Therefore, it is able to correct the feature data (Figure 3.14(e)) by giving more weight to the information

on the labels. This capability of correcting the errors in features is only matched by our work in Robust

LDA [44], which achieved the result in Figure 3.14(f). While this method has the advantage of obtaining an

explicit transformation from the feature to the label space, the matrix completion has the ability to clean

the test data during training.

3.2.6 Experimental results

This section presents the evaluation of the algorithms MC-Pos (3.27) and MC-Simplex (3.28) in several tasks.

In Sec. 3.2.6, we evaluated the classification and localization performance of our method on the CMU-Face

dataset [119] (a two-class problem). Second, we evaluated the performance of our method for multi-label

classification in the MSRC and PASCAL VOC2007 datasets. Lastly, we also perform an experiment for

localization in MSRC.

Parameters

For MC-Pos, MC-Simplex and MC-1, the values considered for parameter tuning were γ ∈ [1, 30], λ ∈

[10−4, 102]. The continuation steps require a decreasing sequence of µ, which we chose as µk = 0.25µk−1,

stopping when µ = 10−9. We used µ0 = 0.25σ1, where σ1 is the largest singular value of Zobs, with unknown

entries set to zero. Convergence was defined as a relative change in the objective function smaller than

10−2. In a transduction setting, since the task is to classify an already known test set, one could choose

the parameters which perform best on the final test set. However, to be fair to other baselines, we tuned

the parameters in a cross validation setting. As such, the results reported are for the choice of parameters

which, from the aforementioned ranges, yielded the best average result on all the validation sets provided by

cross-validation. The results reported for the SVM baselines were obtained using libSVM, with parameter

C ∈ [10−6, 106].

Classification and localization on a two-class problem

In this experiment, we tested the classification performance of our method in a two-class classification

problem. We used the CMU Face dataset [146], which consists of 624 images of 20 subjects. All subjects are
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(b) PCA of noisy data
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(c) RPCA [145] of noisy data
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(e) PCA of MC-1 (λ = 100)
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(f) RLDA [44] of noisy data

Figure 3.14: Comparison of results obtained for two-class classification of the random dataset in 3.2.5. Unlike
others, the error correction in Robust LDA (f) and Matrix Completion (e) allow for recovery of the original
data.
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captured with varying expression and poses, with and without sunglasses. Figure 3.15 shows examples of

our positive (wearing sunglasses) and negative class (not wearing sunglasses). We have two goals: First, we

want to build a classifier that, given a new face image, determines whether the subject is wearing sunglasses

or not. Second, Nguyen et al. [119] argue that better results are obtained when the classifier training is

restricted to the region that has the discriminative information (e.g., the glasses region in this case). They

propose using a Multiple Instance Learning framework (MIL-SegSVM) that localizes the most discriminative

region in each image while learning a classifier to discriminate between classes. We show how our method

is also able to estimate the histogram of the discriminative region (i.e., sunglasses) and localize it in the

training and test set.

To allow for direct comparison, we used the setup and features of [119]: Our training set is built using

images of the first 8 subjects (126 images with sunglasses and 128 without), leaving the remainder for

testing (370, equally split among the positive and negative classes). We represented each image with the

BoW model by extracting 10, 000 SIFT features [147] at random scales and positions and quantizing them

onto a 1, 000 visual codebook, obtained by performing hierarchical k-means clustering on 100, 000 features

randomly selected from the training set. For the first part of the experiment, we compared the results of

our classifier to what is obtained using several methods: (1) SVM-Img: a Support Vector Machine (SVM)

trained using the entire image, (2) SVM-FS: an SVM trained using a manually labeled discriminative region

(in this case, the region of the glasses), (3) MIL-SegSVM: a MIL SVM method proposed by [119]. For

MC-1, MC-Pos and MC-Simplex, we proceeded as follows: we built Z with the label vector and the BoW

histograms of each entire image and left the test set labels Ytst as unknown entries. For the MC-Simplex

case, we further preprocessed Z by dividing each histogram in ZX by its sum.

The performance, measured using the area under ROC curve (AUROC), is shown in Table 3.7. These

results indicate both the fully supervised (SVM-FS) and the MIL approach (MIL-SegSVM) are more ro-

bust to the noise introduced by non-discriminative parts of the images, when compared to training without

localization (SVM-Img). However, this is done at either the cost of labeling efforts or by iteratively approx-

imating the solution of the MIL problem, an integer quadratic problem. The matrix completion approaches

(MC-1, MC-Pos, MC-Simplex), in turn, are able to surpass these classification scores by solving a convex

minimization.

Beyond improving the classification performance, our algorithm is able to localize the discriminative

region of interest (the sunglasses region, in this dataset). Recall that the error EX removes the portion of

the histogram introduced by the non-discriminative regions of the image. To illustrate this property, after
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(a) (b)

Figure 3.15: Example images of the CMU-Face dataset. (a) shows the positive class (wearing sunglasses)
and (b) shows the negative class (no sunglasses).

Figure 3.16: A sliding window search shows that histograms corrected by MC-Pos (3.27) are most similar to
the discriminative region of the eyes in the images.

we run the matrix completion classification, we obtain the most discriminative bounding box for all images

in the dataset. For each image i in the dataset, we searched for the bounding box that best matches the

features of the i-th column of the completed matrix zX
i = hi − eX

i (recall Figure 3.11). We use a sliding

window detector varying scale and position using the size criteria in [119] and measure similarity using the χ2

distance. The results are shown in Figure 3.16 for MC-Pos (similar results were obtained with MC-Simplex).

Similarly to MIL-SegSVM, which used a linear SVM score for the subwindow search, our methods correctly

localized the eyes region, that discriminates between the classes. Note that MC-1 does not allow to pursue

localization of the class representative since it may introduce negative numbers in the histograms.

Table 3.7: AUROC result comparison for the CMU Face dataset.
Method AUROC

SVM-Img [119] 0.90
SVM-FS [119] 0.94

MIL-SegSVM [119] 0.96
MC-1 [49] 0.96
MC-Pos 0.97

MC-Simplex 0.96
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Table 3.8: Classification performance in multi-label datasets.

(a) 5-Fold cross validation
average AUROC comparison
for image classification tasks
on MSRC dataset.

Method Image
MSK-MIL[126] 0.90
ML-MIL [125] 0.90
DMIML-`2 [39] 0.91

MC-1 [49] 0.91
MC-Pos 0.95

MC-Simplex 0.92
Linear SVM 0.89

(b) Mean Average Precision classification task re-
sult comparison in the PASCAL VOC 2007 chal-
lenge for two sets of features.

Method mAP BoW mAP Overfeat
INRIA Genetic 0.48 –

MC-1 [49] 0.48 0.73
MC-Pos 0.50 0.73

MC-Simplex 0.50 0.72
Linear SVM 0.49 0.73

Classification in multi-label datasets

In this experiment, we ran our method on two multi-label datasets: MSRC and PASCAL VOC 2007. The

MSRC dataset consists of 591 photos distributed among 21 classes, with an average of 3 classes present per

image. We mimicked the setup of [125, 126] and used as features histograms of textons [143]. Then, we

obtained a 400 word codebook by applying k-means clustering to a random subset of 40, 000 descriptors.

In this task, all training images are labeled with one or several classes, and the goal is to label the

test images. Observe that the test image can have several labels (i.e., it’s a multi-label classification task).

We proceeded as in the experiment described in Sec. 3.2.6. We compared MC-Pos and MC-Simplex with

MC-1 and several state-of-the-art multi-label MIL approaches: Multiple Set Kernel MIL (MSK-MIL) by

Vijayanarasimhan and Grauman [126], Multi-label Multiple Instance Learning (ML-MIL) by Zha et al. [125],

Discriminative Multiple Instance Multiple Label model by Yakhnenko and Honavar [39]. We also compared

to a one-vs-all linear SVM.

The obtained average AUROC classification scores on the test set using 5-fold cross validation are shown in

Table 3.8(a). Results show that our methods outperformed MC-1, thus showing the improvement introduced

by the additional constraints and improved loss functions. Moreover, they outperformed results given by

state-of-the-art MIL techniques, including the non-linear classifier MSK-MIL. This can be explained by the

fact that MIL methods select regions from images to be the positive examples for a class while learning that

class boundary. Since possible regions are enumerated by a segmentation algorithm, it is not guaranteed they

match exactly the ground truth segmentation. The feature error correction in MC-Pos and MC-Simplex does

not require this segmentation step and thus allows for superior results in this weakly supervised multi-label

scenario.

We also tested our method in the PASCAL VOC 2007 dataset. This dataset consists of 9963 images

labeled with at least one of 20 classes, split into trainval and test sets. We used the same features as
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the winning approach (INRIA Genetic) [117]. This method achieved a mean average precision (mAP) of

0.542. Given that it is a non-linear fusion method, we compare to its simplest feature setting to ensure a fair

comparison. We represented each image by extracting dense SIFT features [147] and quantizing them onto

a 4, 096 dimension codebook, built by k-means clustering on features randomly selected from the training

set followed by `2 normalization, as implemented in VlFeat [148]. INRIA Genetic reports a mAP of 0.48 for

these features. Results in Table 3.8(b) show increased performance for the same features compared to the

state of the art circa 2007.Furthermore, we tested using state of the art features obtained from Overfeat, a

Convolutional Neural Network trained on ImageNet [111]. We rescaled every image to 221× 221 pixels and

obtained a single 4096 dimensional feature vector as the output from layer 22 of the network for every image

in the dataset. Our independent testing corroborates the results obtained in [149], and the difference to Bag

of Words models shows the impressive boost in recognition research in the past 6 years. From these tests,

we can conclude Matrix Completion classifiers obtain performances comparable to a linear SVM classifier,

while being more versatile in allowing for missing data, as well as noise in labels and features. Moreover,

our approach is able to tackle multi-label classification directly and can be useful for object localization, as

shown in the following sections.

Localization in a multi-label dataset

In this section, we propose an alternative exploratory paradigm for the association of labels to regions in the

image. The purpose of the method presented herein is not to provide competitive state-of-the-art results for

semantic segmentation, but merely to build a working prototype that builds on the histogram representatives

naturally obtained by our method, and discuss its advantages and current limitations. Recall that in the

two-class example of Sec. 3.2.6, we used each corrected histogram in the training and test set to localize the

bounding box containing the most discriminative region. In the multi-label case, however, several classes

coexist in one image. Since corrected histograms contain a mixture of classes, they can’t be used for class

localization in the images.

One possible approach to solve this problem is to pre-segment the test images and use the learned class

models to classify each region individually. However, this approach has several drawbacks: 1) having to

select a fixed number of segments, 2) the segments are obtained through only texture and color cues, so they

might not match the ground truth regions of the classes, and 3) contextual information between segments

is lost, which results in poorer classification performance when compared to the classifiers learned on the

entire image.

We propose an alternative method that does not suffer from these drawbacks, by explicitly recovering
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(c) Over-segmentation

(d) Efficient Region Search (ERS)

(b) Class representative

(a) Input image

Figure 3.17: Illustration of our method for Matrix Completion localization.

representative histograms for each class. We proceeded as in 3.2.6, but padded the matrix Z with 21 extra

columns where the labels are the identity and the features are unknown, to recover one representative his-

togram per class (see Figure 3.11(c)). Observe that we do not require segmentation for this classification.

For each class in an image (Figure 3.17 (a)), we plot a heatmap of which words belong to the class using its

respective histogram (Figure 3.17(b)). Then, we oversegmented each image using the hierarchical segmenta-

tion of Arbelaez et al. [150] (Figure 3.17(c)). We used code provided by the authors and set the parameter

boundary segmentation scale to k = 0.1. Last, in order to get the localization for a class in an image, we

used the class histograms and the obtained segments for that image as the input to the Efficient Region

Search (ERS) method of Vijayanarasimhan and Grauman [151]. ERS selects a group of connected segments

(Figure 3.17(d) that maximizes a detection score as measured by an SVM classifier. Since the output of our

algorithm is a probability map, we emulated the SVM weight vector by using the class representative sub-

tracted by its mean. We show qualitative results of this approach on Figure 3.2.6 for independent recovery

of classes in the same image. The failures of our approach can be generally attributed to one of two cases:

class confusion in both the classification and the fact that ERS is applied individually to each class (Figure

3.19(a)); the fact that the solution obtained by ERS is by design a single contiguous region (Figure 3.19(b)).

59



Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(a)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sign

Cat

Flower

Building

Flower

Chair

Aeroplane

Sign

Saturday, January 12, 13

(b)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(c)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(d)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, November 4, 12

(e)

Figure 3.18: Histograms corrected by our method in the MSRC dataset preserve semantic meaning. The
input image is shown in (a). The heatmap generated by the class representative histogram is shown in (b).
ERS [151] uses the heatmap in (b) and the over segmentation in (c) to produce the segmentation in (d). (e)
shows some multi-label segmentation results.

Cow

Sky

Grass

(a) Class confusion and ERS is not multi-label. Top: Sky,
Middle: Grass, Bottom: Cow Thin objects

ERS selects contiguous regions

(b) ERS result is a contiguous region

Figure 3.19: Multi-label segmentation failure cases. Left: Original Image. Middle: Heatmap generated by
the class representative histogram. Right: Segmentation obtained by ERS with class representatives.
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3.3 Unsupervised learning as a robust PCA problem

In this section, we analyze the application of the unified model proposed in Chapter 2 to Robust PCA, an

example of an unsupervised learning tasks where label information is not available. We use Robust PCA for

the task of background subtraction, which aims to recover a low-rank data matrix Z from a data matrix X,

as

Definition 8 (Robust PCA model).

min
Z

‖X− Z‖1 + λ‖Z‖∗, (3.37)

As seen in Chapter 2, by using a bilinear factorization of Z = UV>, the robust PCA model can be

equivalently written as (recall (2.6))

min
U,V

‖X−UV>‖1 +
λ

2

(
‖U‖2F + ‖V‖2F

)
. (3.38)

We show the ALM algorithm proposed in Sec. 2.2 is both faster and more accurate than state-of-the-art

nuclear norm algorithms for this problem.

3.3.1 Experimental results

In this section, we validated the lower computational complexity of the algorithm proposed in Sec. 3.3,

when the output rank is not known a priori. We compared to state-of-the-art nuclear norm and Grassmann

manifold methods: GRASTA [59], PRMF [18] and RPCA-IALM [53] in a synthetic and real data experiment

for background modeling. We use implementations provided in authors’ websites for all baselines. For all

experiments, we fix µ = 1.05 initialize ρ = 10−5 in Alg. 1. All experiments were run in a desktop with a 2.8

GHz Quad-core CPU and 6 GB RAM.

Synthetic data We mimicked the setup in [53] and generated low-rank matrices X = UV>. The entries

in U ∈ RM×r,V ∈ RN×r with M = N and each element sampled i.i.d. from a Gaussian distribution N (0, 1).

Then, we corrupted 10% of the entries with large errors uniformly distributed in the range [−50, 50]. The

error support was chosen uniformly at random. Like [53], we set λ =
√
N and use the L1 loss. We varied the

dimension N and rank r and measured the algorithm accuracies, defined as ‖Z−X‖2‖X‖2 , and the time they took to

run. The results in Table 3.9 corroborate experimentally the complexity analysis of the algorithm performed
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Table 3.9: Performance comparison of state-of-the-art methods for Robust PCA. Time is in seconds. Error
has a factor of 10−8.

Matrix RPCA-IALM [53] GRASTA [59] PRMF [18] Ours
N r Error Time Error Time Error Time Error Time

100 3 1.4872 0.3389 226.46 1.7656 3338.7 0.4704 0.5286 0.1734
200 5 1.5599 2.3575 241.99 2.7282 2687.5 1.0382 0.7182 0.5739
500 10 3.2595 10.501 263.55 9.5399 1692.4 6.2480 0.1273 3.2373
1000 15 0.3829 44.111 286.17 23.535 1145.8 30.441 0.0701 14.339
2000 20 0.6212 196.89 329.11 83.010 808.20 126.95 0.0308 60.658
5000 25 0.2953 1840.0 379.94 507.57 504.08 1307.4 0.0589 556.21

in Sec. 2.2: as N grows significantly larger than r, the smaller runtime complexity of our method allows for

equally accurate reconstructions in a fraction of the time taken by RPCA-IALM. While PRMF and GRASTA

are also able to outperform RPCA-IALM in time, these methods achieve less accurate reconstructions due

to their alternated nature and sampling techniques, respectively.

Real data Next, we compared these methods on a real dataset for background modeling. Here, the goal is

to obtain the background model of a slowly moving video sequence. Since the background is common across

many frames, the matrix concatenating all frames is a low rank matrix plus a sparse error matrix modeling

the dynamic foreground.

We followed the setup of [18] and used the Hall sequence5. This dataset consists of 200 frames of video

with a resolution of 144 × 176, and we set the scope of the virtual camera to have the same height, but

half the width. We simulated a camera panning by shifting 20 pixels from left to right in frame 100 to

simulate a dynamic background. Additionally, we randomly dropped 70% of the pixels. We proceeded as

in the previous synthetic experiment. Fig. 3.20 shows a visual comparison of the reconstruction of several

methods. Results corroborate the experiment in Tab. 3.9 and show that the lower accuracies of GRASTA

and PRMF yield noisier reconstructions than our method.

5http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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Figure 3.20: Results for background modeling with virtual pan. The first row shows the known entries used
for training in frames 40, 70, 100, 130, 170, 200. The remaining rows show the results obtained by PRMF,
GRASTA and our method, respectively.

63



64



Chapter 4

Optimizing hard-rank models

when rank is known a priori

In Chapter 3, we have focused in soft-rank models and showed that these provide a useful technique where a

low-rank solution is sought but its rank is not predetermined. However, many problems in computer vision

involve the recovery of shape, appearance or motion representations with a predetermined rank k. Since the

recovery of these representations is done from data which is noisy and only partially observed [2, 4, 8], this

problem is typically modeled as:

Definition 9 (Rank-k factorization with missing data). Optimization models that aim to recover a rank-k

factorization UV> ∈ RM×N from a data matrix X ∈ RM×N with missing entries, as

min
Z

‖W � (X−UV>)‖2F , (4.1)

where W ∈ RM×N is a positive weight matrix that can be used to denote missing data (i.e., wij = 0), and

the rank-k is specified by the inner dimensions of the product UV>.

Unfortunately, (4.1) is an NP-Hard problem where many state-of-the-art algorithms even fail to reach

good local minima [15, 16]. For this reason, the optimization of (4.1) remains an active research topic, with

many work focusing on algorithms that are robust to initialization [3, 8, 17, 18] or initialization strategies [21].

Buchanan et al. [19] show that alternated minimization algorithms are subject to flatlining and propose a

Newton method to jointly optimize U and V. Okatani et al. [20] show that a Wiberg marginalization

strategy on U or V is very robust to initialization. However, its high memory usage makes it impractical
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for medium-size datasets. These methods have also been extended to handle outliers [3, 7, 13]. Ke and

Kanade [13] suggest replacing the LS error with the L1 norm, minimized by alternated linear programming.

Similarly to the LS case, Eriksson et al. [3] show this approach is subject to flatlining and propose a Wiberg

extension for L1. Wiberg methods have also been extended to arbitrary loss functions by Strelow [72], but

exhibit the same scalability problems as its LS and L1 counterparts. The addition of additional problem

specific constraints e.g., orthogonality of U, has also been shown to help algorithms in attaining better

minima in structure from motion [8, 17]. However, these methods are not generalizable to several other

computer vision problems which are modeled as low-rank factorization problems [8, 9, 10, 11].

In this Chapter, we show that recent soft rank models (recall (2.3)),

min
Z

‖W � (X− Z)‖2F + λ‖Z‖∗, (4.2)

are inept to solve problems with a specific predetermined rank-k constraint. To understand why this is the

case, let us consider the example of rank-k factorization of a matrix X under the LS loss with no missing

data (i.e., W = 1M1>N ). For this case, both (4.1) and (4.2) have closed form solutions in terms of the SVD of

X = UΣV
>

, i.e., UV> = UΣ1:kV
>

and Z = USλ
2
(Σ)V

>
. In the case of noisy data, while the former yields

the optimal rank-k reconstruction, we need to tune λ in the latter such that σk+1 = 0. If the λ required

to satisfy this constraint is high, it may severely distort the non-zero singular values σ1:k, resulting in poor

reconstruction accuracy.

Instead, we argue for using our regularized unified model (recall (2.6))

min
U,V

‖W � (X− Z)‖2F +
λ

2

(
‖U‖2F + ‖V‖2F

)
. (4.3)

While the analysis in Chapter 2 shows that rank restrictions typically lead to local minima when missing data

are present, this problem is exacerbated when regularization is not used (i.e., λ = 0): in addition to gauge

freedom1, it is clear that not all weight matrices W admit a unique solution [19]. As an extreme example, if

W = 0, any choice of U and V yields the same (zero) error. Thus, the unregularized factorization in (4.1)

will be more prone to local minima than its regularized counterpart (4.3). The two arguments presented

against (4.1) and (4.2) provide an argument for choosing our unified model (4.3) and a general guideline for

choosing λ: it should be selected as non-zero to ameliorate the local minima problem of (4.1), but small

enough such that the first r singular values are not distorted. Moreover, the result in Theorem 1 of Chapter 2

1for each solution UV>, any solution (UR)(R−1V>) where R ∈ Rr×r is an invertible matrix will provide an equal cost.
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Figure 4.1: Illustration of our proposed rank continuation procedure. Starting with a full rank matrix, we
solve the problem and obtain a solution of rank k∗. Under these conditions, Theorem 1 guarantees the our
ALM convergens to the global solution and is equivalent to the convex problem. Then we solve a sequence
of problems of decreasing rank and initialized with the solution of the previous problem, until the desired
rank r is attained.

that our model is equivalent to the convex nuclear norm model in (4.2) when k is selected to be big enough

allows us to provide a deterministic sequence of initializations for this problem. To summarize, the main

contributions of this chapter are:

• In Sec. 4.1, we propose a “rank continuation” deterministic optimization scheme for the NP-Hard

factorization problem that avoids local optima in a significant number of cases. This work has been

published in [51].

• In Sec. 4.2, we extend the “rank continuation” to the problem of optimizing binary quadratic problems

and show an application example for finding correspondences in pairs of images using a max cut

formulation. This is currently under review in a journal submission.

4.1 Rank continuation for matrix factorization

Given that for any fixed λ, as shown in Theorem 1 of Chapter 2, (4.3) always has a region with no local

minima, we propose the following “rank continuation” strategy: we initialize (4.3) with a rank r ≥ k∗ matrix

(i.e., white region of Fig. 2.1, where this problem is equivalent to its convex counterpart), to guarantee

its convergence to the global solution. Note that in the absence of an estimate for k∗, we can always use

r = min(M,N). Then, we use this solution as initialization to a new problem (4.3) where the dimensions r

of U,V,Σ are decreased by one, until the desired rank is attained. This reduction can be done by using an

SVD projection. This approach is summarized in Alg. 5 and illustrated in Fig. 4.1. Note this is similar in

philosophy to [152] but significantly different in the problem being solved and the continuation path used.

Rank continuation provides a deterministic optimization strategy that empirically is shown to find good

optima, compared to other baseline algorithms for this family of problems. In particular, we show in the
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Algorithm 5 Rank continuation

Input: X,W ∈ RM×N , output rank k, parameter λ, an optional estimate of the output rank k∗ of (1.3)
Initialize U,V randomly, with k∗ ≤ r ≤ min (M,N)
Solve for Z in (4.3) with Alg. 1
for r = rank(Z)− 1, . . . , k do

SVD: Z = UΣV
>

Rank reduce: Ur = UΣ
1
2
1:r, V>r = Σ

1
2
1:rV

>

Solve Z in (4.3) with initialization Ur,Vr using Alg. 1
end for

Output: Complete Matrix Z with rank k

experimental section that global minima of (4.3) are achieved with this strategy in several cases.

4.1.1 Experimental results

In this section, we empirically validated the “rank continuation” strategy proposed in Sec. 4.1, in several

synthetic and real data problems where the output rank is known a priori. We compared our method to

state-of-the-art factorization approaches: the damped Newton in [19], the LRSDP formulations in [153] and

the LS/L1 Wiberg methods in [3, 20]. Following results reported in the detailed comparisons of [3, 16, 17,

19, 20, 72], we dismissed alternated methods due to their flatlining tendency. To allow direct comparison

with published results [17, 19, 20, 153], all methods solved either (4.1) or (4.3) without additional problem

specific constraints and we fixed λ = 10−3. For control, we also compared to two nuclear norm baselines:

NN-SVD, obtained by solving (4.2) with the same λ used for other models and projecting to the desired

rank with an SVD; NN-λ, obtained by tuning λ in (4.2) so the desired rank is obtained.

Synthetic data

We assessed the convergence performance of our continuation strategy using synthetic data. We performed

synthetic comparisons for two loss choices: LS loss f(·) = ‖W � (X − Z)‖2F and the L1 loss f(·) = ‖W �

(X− Z)‖1.

For the LS loss, we generated rank-3 matrices X = UV>. The entries in U ∈ R20×3,V ∈ R25×3 were

sampled i.i.d. from a Gaussian distribution N (0, 1) and Gaussian noise N (0, 0.1) was added to every entry of

X. For the L1 loss, we proceeded as described for the LS case but additionally corrupted 10% of the entries

chosen uniformly at random with outliers uniformly distributed in the range [−2.5, 2.5]. We purposely kept

the synthetic experiments small, due to the significant memory requirements of the Wiberg algorithms. We

varied the percentage of known entries and measured the residual over all observed entries, according to the

optimized loss function. We chose this measure as it allows for direct comparison between unregularized

and regularized models. We ran damped Newton, LRSDP and Wiberg methods 100 times for each test with
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Figure 4.2: Comparison of convergence to empirical global minima (Min) for the LS and L1 losses in synthetic
data. The minima are found as the minimum of all 100 runs of all methods for each test.

random initializations.

Fig. 4.2 shows the results for the LS and L1 loss cases. We show two representatives cases for the

percentage of known entries (75% and 35%, the breakdown point for L2-Wiberg methods), both for missing

data patterns at random (M.A.R.) and with a pattern typical of SfM matrices (Band), generated as in

[20]. The theoretical minimum number of entries to reconstruct the matrix is the same as the number of

parameters minus factorization ambiguity Mr+ (N − r)(r+ 1), which for this case is 29.6% [20]. We verified

the behavior of all methods when more than 40% of the entries are known is similar to the result shown for

75%.

For the LS case, results in Fig. 4.2(a) show that our deterministic continuation approach always reaches

the empirical optima (found as the minimum of all runs of all methods), regardless of the number of known

entries or pattern of missing data. Note the minimum error is not zero, due to the variance of the noise. As

reported previously [16, 17, 20], we observe that L2-Wiberg is insensitive to initialization for a wide range of

missing data entries. However, we note that its breakdown point is not at the theoretical minimum of 35%,

due to the lack of regularization. The LRSDP method for optimizing (4.3) outperforms the Wiberg method

in this region, suggesting that similar convergence properties of the Wiberg can be obtained without its use

of memory. The baseline NN-SVD performed poorly, showing that the estimation of the nuclear norm fits

information in its additional degrees of freedom instead of representing it with the true rank.

NN-λ, on the other hand, oversmooths the cost function which might destroy the error function landscape,

as is the case for L1 error or when few known entries are available. A visualization of this over-smoothing
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can be seen in Fig. 4.3, where we reproduce the setup of [15] and plot the landscape of the cost function of

(4.3) for a factorization of a 3 × 3 data matrix (i.e., W = [1 0 1; 0 1 1; 1 1 1],X = [1 100 2; 100 1 2; 1 1 1])

for r = 1 and several values of λ spanning the grey and white areas in Fig. 2.1. From the figure, it can

be seen that while convexifying the landscape is appealing for minimization purposes, some global minima

might disappear. For the value of λ chosen, however, it seems we benefit from this smoothing without

destroying the global minima landscape. This can be seen in Fig. 4.4(a), where we ran Algorithm 1 100

times with random initialization for a 20× 25 rank-3 matrix with 50% missing entries generated with band

pattern as described in the beginning of this section. For each rank, we plotted the minima attained by the

algorithm, and compared it with the path obtained by rank continuation. In this figure, it can be seen that

1) regularized model exhibits a smaller spread in the number of local minima, and 2) the algorithms directly

enforcing the solution converge to several local minima with higher cost, whereas rank continuation attains

the correct solution in the final stage. One explanation for why rank continuation attains the optima is that

the subspace of rank 3 is contained in the one obtained in the convex problem, i.e., the solution obtained when

initializing Z with full rank. This can be seen in Fig. 4.4(b), where we measured the Normalized Subspace

Inclusion (NSI) [154] between the column subspaces Ui obtained in each rank step i of the continuation (the

row subspaces exhibit the same behavior).

NSI(Zi,Zj) =
trace(U>i UjU

>
j Ui)

min(i, j)
(4.4)

For the L1 loss case, results in Fig. 4.2(b) show that our continuation strategy no longer attains the

empirical optima. We note that this is not surprising since the problem of factorization with missing data is

NP-Hard. However, its deterministic result is very close to the optima. Our continuation method regained

empirical optimality when only 2% of outliers were present in the data, suggesting a dependency on the

noise for the L1 case. In this case, our performance is comparable to what is obtained with the L1-Wiberg

algorithm [3] on average. Thus, continuation is a viable alternative to the memory expensive Wiberg method.

Real data

Next, we assessed the results of our continuation approach in real data sequences. We used four popular

sequences2: a) Dino, for affine SfM; b) Giraffe, for non-rigid SfM, and c) Face and d) Sculpture, both

photometric stereo sequences. Their details are summarized in Table 4.1. The dimension of these datasets

make the usage of the Wiberg algorithms [3] prohibitive in our modest workstation, due to their memory

requirements. For the Sculpture dataset, we treated as missing all pixels with intensity greater than 235 or

2http://www.robots.ox.ac.uk/˜abm/
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Figure 4.3: Visualization of the cost function in (4.3) for a rank-1 3 × 3 matrix X for several values of λ,
showing the several local minima existing in the original problem, and that the smoothing induced by the
nuclear norm convexifies the problem but its global optima may not necessarily coincide with the original
problem’s position.
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Figure 4.4: Intuition behind Rank Continuation. (a) Visualization of minima attained for 100 random
runs of Alg. 1 for a rank-3 25 × 20 matrix X with and without regularization λ shows the several local
minima existing in the cost function landscape, and that the smoothing induced by the nuclear norm allows
for avoiding some of these. The rank continuation (solid) attains the global optima in the last rank. (b)
Normalized Subspace Inclusion index NSI(Zi,Zj) measured between the subspaces for each solution step in
the continuation for a rank-3 25 × 20, showing the desired rank-3 subspace is included in the one obtained
for the convex region (20).
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Table 4.1: Real datasets for problems with known output rank-k.
Dataset Size Output rank k Known entries

Dino 319× 72 4 28%
Giraffe 240× 167 6 70%
Face 2944× 20 4 58%

Sculpture 26260× 46 3 41%

lower than 20 (e.g., in Fig. 4.6(b), the yellow and purple+black masks, resp.). All other datasets provide

W.

Table 4.2 shows a comparison of average error over all observed entries for the continuation proposed in

Alg. 5 and several methods, according to the loss functions L1/LS. “Best” denotes the best known result in

the literature. As explained in Sec. 4.1, we observe that nuclear norm regularized approaches NN-SVD and

NN-λ result in bad approximations when a rank restriction is imposed. This can be seen by the high values

of λ that have to be used to obtain the desired rank in the variation plots of 4.7. Similar to the results in the

synthetic tests, our method always attained or outperformed the state-of-the-art result for the LS loss. The

convergence studies in [19, 20] performed optimization on the first three datasets several times with random

initializations, so their reported results are suspected by the community to be the global optima for these

problems. At the cost of solving several rank constrained problems, our method consistently attains these

results in a deterministic fashion, as opposed to state-of-the-art methods which get stuck in local minima

several times. As a control experiment, we also ran our continuation strategy for the unregularized case

(λ = 0) on the Dino sequence with LS loss, which resulted in a RMSE of 1.2407. We attribute this to the

fact that this case is more prone to local minima, as mentioned in Sec. 4.1.

For the L1 loss, continuation outperforms the state-of-the art in all datasets. It might be argued that

problem specific constraints are required to obtain clean reconstructions, but we reiterate the importance

of escaping local minima. While there are certainly degenerate scenarios which can only be solved with

such constraints [155], Alg. 1 (and consequently, Alg. 5) can be trivially extended to handle such cases. For

example, the projection step on U for SfM in [8] can be added to Alg. 1 or the problem can be reformulated

as a different SDP [153] with a rank constraint, which can be tackled by our continuation strategy in Alg. 5.

4.2 Rank continuation for binary quadratic problems

In this Section, we show that the rank continuation strategy devised in Section 4.1 can be applied as a black

box optimization strategy in problems where a rank constraint exists. One special case of rank constrained

problems are binary quadratic problems (BQPs), where we wish to recover a binary vector x that maximizes
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(a) Input (b) Best L2 [19]

(c) RL1NN [17] (d) Continuation

Figure 4.5: Structure from motion Dino sequence. Our L1 continuation method (d) is less prone to local
minima and thus can get appealing reconstructions without the use of the additional orthogonality constraints
in (c).

(a) Input (b) Mask (c) NN-λ (d) NNSVD (e) Ours

Figure 4.6: Results for frame 17 of the sculpture sequence for photometric stereo. While (c) smooths out
the image and (d) fails to reconstruct it, our continuation approach (e) is able to obtain reconstructions that
preserve finer details, such as the imperfections on the cheek or chin.
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Figure 4.7: Region of equivalence between factorization (4.3) and nuclear norm approaches (4.2) for several
real matrix factorization with missing data datasets using the least-squares loss.

Table 4.2: Comparison of LS/L1 average error over all observed entries for structure from motion and
photometric stereo datasets. State-of-the-art results in best column have been reported in [8, 17, 19, 156]

Dataset f(·) Best NN-λ NN-SVD Ours

Dino
LS 1.0847 6.1699 35.8612 1.0847
L1 0.4283 7.6671 80.0544 0.2570

Giraffe
LS 0.3228 0.4370 0.6519 0.3228
L1 – 1.8974 11.0196 0.2266

Face
LS 0.0223 0.0301 0.0301 0.0223
L1 – 0.0287 0.6359 0.0113

Sculpt
LS 24.6155 44.5859 31.7713 22.8686
L1 17.753 21.828 33.7546 12.6697

a pairwise cost given by a matrix C, as

max
x

x>Cx

subject to x ∈ {−1, 1}
(4.5)

Eq. (4.5) is a special case of a rank constrained model since we can rewrite it without any loss of generality,

by lifting the variable product xx> to a new matrix X, as

max
X

trace(C>X)

subject to diag(X) = 1,

X � 0,

rank(X) = 1.

(4.6)

While important optimization results exist for special cases of these problems — e.g., they become

globaly solvable when C is submodular [157] — the binary constraint in (4.5) makes this general problem

NP-Hard and thus intractable in high dimensionality settings. These models are very common in computer
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vision for problems including partitioning and grouping [158]. In fact, graph cuts [157] and Markov Random

Fields [159, 160] approaches are the cornerstone to many computer vision algorithms, such as computing

depth fields, regularizing image segmentation, or graphical model inference in object classification.

There are two main approaches for solving general large scale BQPs in computer vision: Semidefinite

programming (SDP) approaches, obtained by dropping the rank constraint in (4.6), and spectral approaches3.

SDP approaches, in particular, work by relaxing intricate constraints of the problem into convex sets in

higher-dimensional spaces. Thus, they can been used to obtain upper bounds for combinatorial problems.

In fact, these SDP relaxations have been shown to provide better bounds than spectral approaches for many

combinatorial problems [158, 162, 163]. Moreover, spectral methods cannot handle inequality constraints,

which are necessary in formulations such as segmentation with priors (i.e., biased normalized cuts [164]).

However, three problems remain with SDP approaches. First, they are impaired by the speed of numerical

solvers for this problem class. Although off-the-shelf interior point methods can solve SDPs in polynomial

time, for many relaxations the exponent in the polynomial complexity bounds is too high for scaling to

the large problem sizes typically found in computer vision. Recently, there have been efforts made in the

direction of finding scalable and fast approaches for solving this family of SDP problems [165]. However, the

effort of obtaining faster algorithmic solutions typically results in bounds that are not as tight as the original

SDP formulations. Bie and Cristianini [162] have shown that spectral and SDP relaxations have a continuum

of models in between them, and proposed a cascade of relaxations tighter than spectral and looser than SDP.

Second, while provable tight bounds have been discovered for specific problems such as the max cut problem,

no general result exists on the tightness of bounds when using SDP reformulations for general BQPs. Several

efforts have been made in the literature to further tighten the bounds provided by SDP for many problems

by adding additional constraints, but often at the cost of exacerbating its scalability problems. Third, the

feasible set of the SDP relaxation is convex but not polyhedral, so it is not guaranteed to return a solution

in the initial binary domain. Thus, algorithms using these bounds have to rely on postprocessing rounding

procedures such as randomized rounding [163], voting schemes or totally unimodular LP projections [166],

whose choice varies according to the problem.

Instead of performing the standard SDP relaxation, we note that the low-rank+SDP formulation in (4.6)

has a striking similarity to the formulations of (1.2) and the low-rank SDP models of [67]. The surprising

results of [67] allow for the feasibility of large scale SDP problems of this class, by resorting to a factorization

model akin to (4.1). Moreover, the deterministic rank continuation strategy we proposed in Sec. 4.1 for

3as can be seen in [161], the “recipe” for obtaining spectral relaxations is to interpret the binary reformulation in (4.5) as
‖x‖22 = 1 and reformulate the problem as a generalized eigenvalue problem.
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the NP-Hard factorization problem that avoids local optima in a significant number of cases is extendable

to this family of problems. That is, we propose to solve a sequence of problems that start in a SDP

relaxation and gradually decrease the solution rank until they reach a rank-1 problem, which guarantees

a binary solution for (4.5). We show experimentally in Sec. 4.2.1 that this continuation strategy avoids

local optima in a significant number of cases, akin to the results obtained for the factorization problem

described in Sec. 4.1.1. Thus, we believe that rank continuation can be extended to a generic black box

optimization strategy for many NP-Hard problems of interest in the computer vision domain that can be

formulated as rank constrained problems. Contrary to algorithms designed specifically for each problem, our

approach covers graph-optimization problems, unsupervised and supervised classification tasks, and inference

on Markov random fields without depending on specific assumptions or problem formulations. For instance,

image segmentation using normalized cuts [167], matching using the quadratic assignment problem [168],

and solving Markov Random Fields have all been formulated as low-rank SDP problems (cf., [162, 169, 170],

respectively).

To exemplify how rank continuation problems can be applied to BQPs, let us consider the graph problem

below.

Graph Matching

Figure 4.8: Example application for a graph matching BQP: finding correspondences between two figures.
Adapted from [168].

One BQP problem of interest in computer vision is that of finding correspondences between two images

(see Fig. 4.8): in this graph matching problem, each image has a graph of m and n nodes representing

interest points, and the goal is to match nodes across images using their similarities and also their shape
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relationships with neighboring points (modeled as edges on each graph) [168]. This can be given by the

formulation

max
x∈{0,1}mn

k>x + αx>Kx

subject to
∑

i

xij = 1, ∀1, . . . ,m

∑

j

xij ≤ 1, ∀1, . . . , n

(4.7)

which maximizes the point similarities kij of matched pairs and also the edge similarities Kij,kl between the

graphs in both images. In this formulation, the element xij is 1 if the node i on image 1 is to be matched

to node j on image 2 and 0 otherwise. By defining K̂ as

K̂ =




0 0.5k>

0.5k αK


 (4.8)

and following the “recipe” mentioned in Sec. 4.2, we lift the binary variable x to a higher dimensional variable

X̂ =




1 x>

x xx>


 (4.9)

and rewrite (4.7) as

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1,

2Diag(X̂) = X̂1,: + X̂>:,1,

Hdiag(X) = 1m,

X̂ � 0,

rank(X̂) = 1,

(4.10)

where H = Im ⊗ 1>n , and X̂1,: corresponds to MATLAB notation and denotes the first column of X̂.

The feasible set of the SDP relaxation of (4.10) obtained by dropping the rank constraint is convex

but not polyhedral. It contains the set of matrices corresponding to the permutations xx>. But the SDP

relaxation solutions discussed above can contain many points not in the affine hull of the constraint set. In

particular, it can contain matrices with nonzeros in positions that are zero in the affine hull of the constraint
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set. So we add additional constraints corresponding to these zeros, which results in

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1

2Diag(X̂) = X̂1,: + X̂>:,1

Hdiag(X) = 1m

X�M = 0

X̂ � 0,

rank(X̂) = 1,

(4.11)

where M = Im ⊗ (1>n 1n − In) + (1>m1m − Im)⊗ In is the “gangster operator”4. The latter rank constraint

in (4.11) can be dropped to form an SDP, as

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1

2Diag(X̂) = X̂1,: + X̂>:,1,

Hdiag(X) = 1m,

X�M = 0,

X̂ � 0.

(4.12)

If the optimizer of (4.12) has rank 1, then it is guaranteed to be the optimal result for the original

problem (4.7). For the majority of cases, however, the result of (4.12) has higher rank, and thus it is used

as an upper bound for (4.7) in the input to a heuristic randomized rounding algorithm [163].

However, the rank of the resulting SDP has been shown to provide useful information when computing

bounds [171] or providing strategies for minimization [152]. In fact, if we examine the equivalent reformulation

of (4.11) in the light of the observations in Chapter 2, it is clear that BQPs are a special case of rank

constrained problems. Thus, the rank continuation proposed in Sec. 4.1 is directly applicable to this problem

class. After reformulating the original BQP as an equivalent low-rank formulation, we can solve it by a

sequence of problems starting with a convex problem (4.12) and decreasing the rank until a rank 1 problem

4M is known in the literature as the “gangster operator” since it shoots holes (zeros) in X. We note that additional
constraints can be introduced to tighten the bounds obtained by the SDP, as in [67, 165, 171], but this incurs in even more
scalability problems as the number of constraints increase.
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is achieved. In Sec. 4.2.1, we show that the rank continuation strategy performs competitvely (and even

outperforms in some cases) state-of-the-art algorithms specifically designed for graph matching.

4.2.1 Experimental results

In this section, we compare our rank continuation with SDPCut and several rounding methods, as well as

state of the art methods for approximating SDPs in the BQP graph problem of Graph Matching.

Graph Matching

This section reports experimental results on two datasets (one synthetic and one real) and compares our

method against the state-of-the-art algorithm for graph matching in computer vision [168]. As a baseline,

we also compared to spectral matching [172] and the use of the minimization algorithm with the rank-1

constraint directly imposed in [67] with a random initialization (sdplr1).

This experiment performed a comparative evaluation of four algorithms on randomly synthesized graphs

following the experimental protocol of [168]. For each trial, we constructed two identical graphs, G1 and G2,

each of which consists of 10 inlier nodes and later we added outlier nodes to both graphs. For each pair of

nodes, the edge is randomly generated according to the edge density parameter ρ ∈ [0, 1]. Each edge in the

first graph was assigned a random edge score distributed uniformly and the corresponding edge in the second

graph is perturbed by adding a random Gaussian noise N (0, σ2). The node-affinity was set to zero. We

tested the performance of GM methods under three parameter settings. For each setting, we generated 100

different pairs of graphs and evaluated the average accuracy, obtained by comparing the resulting matrix x

with ground truth, and objective ratio w.r.t. to FGM, by computing the cost function in the original model

of (4.7) using the obtained x for each method. In the first setting (Fig. 4.9 left), we increased the number of

outliers from 0 to 10 while fixing the noise to zero and considering only fully connected graphs (i.e., ρ = 1).

In the second case (Fig. 4.9 middle), we perturbed the edge weights by changing the noise parameter σ from

0 to 0.2, while fixing the number of outliers to 0 and ρ = 1. In the last case (Fig. 4.9 right), we verified the

performance of matching sparse graphs by varying ρ from 1 to 0.3.

Under varying parameters, it can be observed that in most cases, our method achieves state-of-the-art

performance in terms of both accuracy and objective ratio, being comparable to FGM [168]. We note that

there are cases when FGM achieves higher accuracies. This occurs for results which have a smaller cost

function than the one obtained by continuation. This can be attributed to the fact that the optimization

problem in (4.7) does not model the rigid matching problem entirely, since rigid motion requires higher order

constraints instead of the second order constraints imposed by the model [173].
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Figure 4.9: Accuracy and objective function result for the graph matching problem of (4.7) in synthetic
data for rank continuation (RC), spectral matching (SM), Burer and Monteiro [67] (sdplr1) and Factorized
graph matching [168] (FGM). Notice that a ratio bigger than 1 means RC obtains a higher cost function
than that of the baseline (FGM). Left: varying number of outliers with no noise and fully connected graphs.
Middle: varying edge deformation by changing the noise parameter σ from 0 to 0.2, with zero outliers and
fully connected graphs. Right: varying edge sparsity with zero outliers and no noise.
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Additionally, we compared these methods in a real image sequence. The CMU house image sequence is

commonly used to test the performance of graph matching algorithms (see(Fig. 4.10)). This dataset consists

of 111 frames of a house, each of which has been manually labeled with 30 landmarks. We used Delaunay

triangulation to connect the landmarks. The edge weights are computed as the pairwise distance between

the connected nodes, as in [168]. We tested the performance of all methods as a function of the separation

between frames. We matched all possible image pairs, spaced exactly by 0 : 10 : 90 frames and computed

the average matching accuracy and objective ratio per sequence gap. We tested the performance of graph

matching methods under two scenarios. In the first case (Fig. 4.11 left) we used all 30 nodes (i.e., landmarks)

and in the second one (Fig. 4.11 right) we matched sub-graphs by randomly picking 25 landmarks from each

graph. It can be observed that in the first case, FGM, sdplr1 and our method obtained perfect matching

of the original graphs. As some nodes became invisible and the graph got corrupted (Fig. 4.11 right), the

performance of all the methods degrades. However, our method consistently achieved the best maximum in

the objective function.

The results show that rank continuation outperforms all baselines and performs comparably and in some

cases better than FGM, which is considered the state-of-the-art for this problem. We note that this algorithm

is sophisticated in its use of the specific structure of the graph matching problem, whereas our strategy is

general for rank constrained problems.
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(a) (b)

(c)

Figure 4.10: An example pair of frames (0 and 99) of the House dataset. An example pair of frames with
the correspondence generated by FGM [168], where the blue lines indicate incorrect matches.
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Figure 4.11: Accuracy and objective function value results for the graph matching problem of (4.7) in the
CMU House dataset for each baseline (frame distance) using rank continuation (RC), spectral matching
(SM), Burer and Monteiro [67] (sdplr1) and Factorized graph matching [168] (FGM). Left: Full data used
(30 landmarks). Right: results of randomly picking 25 landmarks on each frame.
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Chapter 5

Thesis conclusions and future work

5.1 Major contributions

In our works [44, 51, 62, 63, 64, 174], we answered questions that we summarize below:

Rank continuation, unified model and algorithms The theoretical results and algorithms presented

in Chapter 2 show that future work in factorization algorithms should optimize the presented unified model,

since it subsumes and inherits benefits of both traditional factorization and the nuclear norm regularized

approaches. Based on this analysis, in Chapter 4 we proposed a deterministic “rank continuation” strategy

that outperforms state-of-the-art factorization approaches in several computer vision applications with out-

liers and missing data. Preliminary results show that this strategy is also generalizable for binary quadratic

problems such as the quadratic assignment problem. In Chapters 2 and Section 3.2, we have presented Aug-

mented Lagrange Multiplier and Fixed-Point Continuation methods to optimize nuclear norm problems and

have studied their convergence properties. An alternative method for incremental nuclear norm optimization,

not included in this thesis, can be found in [174].

Robust regression We addressed the problem of robust discriminative learning, and presented a convex

formulation for Robust Regression (RR). Our approach jointly learns a regression, while removing the outliers

that are not correlated with labels or regression outputs. We illustrated the benefits of RR in several computer

vision problems including facial attribute detection, head pose estimation, and image/video classification.

We showed that by removing outliers, our methods consistently learn better representations and outperform

state-of-the-art methods in both the linear and kernel spaces (using homogeneous kernel maps). Finally,

our approach is general and can be easily applied to robustify other subspace methods such as partial least

square or canonical correlation analysis.
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Weakly supervised image classification and localization using matrix completion We formulated

the weakly-supervised image classification as a low-rank matrix completion problem. Compared to previous

work, our proposed framework has three advantages: (1) Unlike existing solutions based on multiple-instance

learning methods, our model is convex. (2) Unlike existing discriminative methods, our algorithm is robust

to labeling errors, background noise and partial occlusions. (3) Our method can be used for semantic

segmentation, despite its weakly-supervised training set, where class locations are unknown. Experimental

validation on several datasets showed that our method outperforms state-of-the-art classification algorithms,

while effectively capturing each class appearance and allowing for their localization in images.

5.2 Limitations and future work

At the time of writing of this thesis, some questions still remain open. We provide a summary of these below:

Applications of classification with missing data The robust regression and matrix completion meth-

ods proposed in Chapter 3 can naturally deal with missing data in the training set. We presented one possible

application when merging two different datasets where only a subset of features are common (e.g., color and

BW images). However, classifying with missing data has more domains of application. For instance, it

may also be applicable in secure multi-party classification tasks, as one might be interested in learning from

a collective dataset of medical data, where each party only releases a subset of descriptors to protect the

privacy of its patients’ data [175]. Alternatively, it could provide an additional framework for multi-view

learning [176].

Can matrix completion localization be extended to multiple exemplars? One caveat of the lo-

calization method presented in Sec. 3.2.6 is that only one representative descriptor can be recovered for each

class. At the moment, it is unclear for multi-modal class distributions, which direction the algorithm picks

or how to extend matrix completion to provide a subspace to represent the class. A partial answer to this

is provided in our work [64], where we provide space-time localization of human actions in video by using

a union of subspace clustering approach. As an extension of a component analysis technique, this matrix

completion classifier should also be kernelized by either the use of homogeneous kernel maps or the results in

Sec. 2.3, to couple the feature error correction and the use of non-linear techniques into a single framework.

How do distributed alternatives for matrix factorization with constraints compare to Wiberg?

Our work has shown that, for the factorization problem, ALM is a strong contender in terms of attaining

global minimum solutions. However, one problem with this framework is its inability to tackle very large

scale datasets, such as the ones in [72, 177]. While there has been a surge of research in distributed algorithms

86



for ALM [178] and parallel implementations for matrix completion using stochastic gradient descent [61],

further investigation is required to compare these models to recent work in Wiberg algorithms, which look

very promising in terms of its applicability to large-scale problems [72].

Why does Rank Continuation work and are there faster alternatives? One explanation for why

the rank continuation presented in Chapter 4 attains good optima is that the solution subspace of rank-k is

contained in the one obtained in the convex problem, i.e., the one obtained when initializing Z with full rank.

The original convex solution containing the desired subspace opens the potential for more efficient ways to

select the desired subspace from the former, rather than having to run multiple iterations of the algorithm

with decreasing rank. One potential solution would be to tackle the problem as a combinatorial problem,

similarly to [179], but formulating it as a selection problem from the basis obtained in Z and potentially

exploiting totally unimodularity in order to obtain a solution from convex programming, as done in [180].

Can Rank problems help explain/improve deep neural nets? Recently, there has been a surge of

impressive results in the area of object classification, provided by features learned by deep neural networks.

However, one problem these approaches currently face is the fact that the neural network topology has to

be configured manually. While insights exist on how to perform this task [181], it still mainly is done by a

process of trial and error, and due to the large size of these networks [111, 182], at the expense of a significant

use of computation power.

We notice that in the past, component analysis techniques have been related to neural networks and this

connection has been used to explain the inexistence of local minima in the principal component analysis

factorization cost function [12], which enabled for least square based algortihms which enabled the use of

this technique in very large datasets [52]. Since early termination been shown to enforce sparsity in the

networks and can be seen as a connection to l1-normalization [183] (early stopping is also a known trick

in l1-minimization norma algorithms for obtaining sparse solutions) and since linear auto-encoder networks

can be shown to be equivalent to a hard-rank matrix factorization model (PCA), we wonder if by modeling

auto-encoders as a rank problem and replacing them with soft-rank regularizers could help in automatically

discovering good topologies.

Can rank continuation be extended to cardinality problems? In Sec. 4.2, we showed that the

strategy devised for matrix factorization with missing data problems can be extended to Binary Quadratic

Problems which can be reformulated as SDP problems with a rank constraint. Since the nuclear norm (the

sum of the singular values) can be seen as an `1-norm in the matrix domain, one could potentially extend

our findings to LASSO-like problems, comprised by an error function and an `1-norm regularization together
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with a cardinality constraint, as

min
x

‖y − x‖22 + λ‖x‖1

subject to card(x) = k

(5.1)

These models are used in dictionary learning [184] and regression problems. Decimation algorithms with

cardinality constraints are also especially important in computer vision for the simplification of noisy meshes

of regular structures obtained from multi-view stereo pipelines [185], as is the case of buildings in e.g., google

street view. One might extend the strategy of rank continuation to cardinality problems of (5.1), by solving

initially the convex `1 problems (dropping the cardinality constraint) and then a sequence of problems with

decreasing cardinality constraints. Furthermore, the existing study of parameters in LASSO problems and

the connections of this problem to its matrix counterpart in [186] could yield important insights about the

parameter λ in nuclear norm regularized problems.
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Appendix A

Proof of equivalence between LR-SDP

and nuclear norm models

To show this, we first note that (2.6) uses the variational formulation of the nuclear norm in (2.7), and

that [61] showed the following result:

Lemma 2. For any Z ∈ RM×N , the following holds: If rank(Z) = k∗ ≤ min (M,N), then the minimum of

(2.7) is attained at a factor decomposition Z = UM×k∗V>N×k∗ .

This result allows us to prove the desired equivalence:

Proof. Applying Lemma 2, we can reduce (2.6) to

min
U,V

f(X−UV>) + λ‖UV>‖∗

= min
Z,rank(Z)=k∗

f(X− Z) + λ‖Z‖∗

= min
Z

f(X− Z) + λ‖Z‖∗.

(A.1)
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Appendix B

Proof of convergence of MC-1/Pos/Simplex

This appendix proves the convergence of FPC in Alg. 4 by the fact that projections onto Convex sets are

non-expansive; thus, the composition of gradient, shrinkage and projection steps is also non-expansive. Since

the problem is convex, a unique fixed point exists in its optimal solution.

Lemma 3. The gradient operator h(·) for (3.24), (3.25), (3.26) is non-expansive for step sizes τ ∈ [0,min ( 4|ΩY |
λγ , τX |ΩX |)].

Proof. These values are obtained from (3.29) by noting the gradient of the Log loss function is Lipschitz

continuous with L = 0.25 and choosing τX such that the χ2 error, for the Non-Negative Orthant, is Lipschitz

continuous with L = 1.

Lemma 4. Let pC(·) be a projection operator onto any given convex set C. It follows that pC(·) is non-

expansive and ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖ iff pC(Z)− pC(Z∗) = Z− Z∗.

Proof. For non-expansiveness, [187, Prop. 3.1.3] states that

‖pC(Z)− pC(Z∗)‖2F ≤ 〈pC(Z)− pC(Z∗),Z− Z∗〉. (B.1)

Applying the Cauchy-Schwarz inequality to (B.1) yields

‖pC(Z)− pC(Z∗)‖F ≤ ‖Z− Z∗‖F . (B.2)
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For the equivalence part, let us write

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F =

‖pC(Z)− pC(Z∗)‖2F + ‖Z− Z∗‖2F (B.3)

−2〈pC(Z)− pC(Z∗),Z− Z∗〉,

where the inner product can be bounded by (B.1), yielding

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F ≤ ‖pC(Z)− pC(Z∗)‖2F (B.4)

+‖Z− Z∗‖2F − 2‖pC(Z)− pC(Z∗)‖2F .

Since our hypothesis ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖, (B.4) is

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F ≤ 0, (B.5)

from which we conclude an equality is in place.

Theorem 5. Let Z∗ be an optimal solution to (3.27) or (3.28). Then Z is also an optimal solution if

‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ = ‖Z− Z∗‖. (B.6)

Proof. By non-expansiveness of operators pC(·), Sν(·) and h(·) (Lemma 4 and [55, Lemmas 1,2]), we can

write

‖Z− Z∗‖ = ‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ ≤

≤ ‖Sν(h(Z))− Sν(h(Z∗))‖ ≤ (B.7)

≤ ‖h(Z)− h(Z∗))‖ ≤ ‖Z− Z∗‖,

so we conclude the inequalities are equalities. Using the second part of the Lemmas, we get

pC(Sν(h(Z∗)))− pC(Sν(h(Z))) =

= Sν(h(Z∗))− Sν(h(Z)) = h(Z∗)− h(Z) = Z− Z∗.
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Since Z∗ is optimal, by the projected subgradient method and [55, Corollary 1], we have that

pC(Sν(h(Z∗))) = Z∗ =⇒ pC(Sν(h(Z))) = Z, (B.8)

from which we conclude Z is an optimal solution to (3.23).

Theorem 6. A sequence {Zk} generated by Alg. 4 converges to Z∗, an optimal solution of (3.27) ( (3.28),

resp.).

Proof. We can use the same rationale as in [55, Theorem 4], once we note the non-expansiveness of pC(·),

Sν(·) and h(·) ensures the composite operator pC(Sν(h(·))) is also non-expansive. Therefore, the sequence

{Zk} lies in a compact set and must have a limit point, which we define as Ẑ = limk→∞ Zk. Also, for any

solution Z∗ ∈ Z∗, we have

‖Zk+1 − Z∗‖ = ‖pC(Sν(h(Zk)))− pC(Sν(h(Z∗)))‖ ≤

≤ ‖Sν(h(Zk))− Sν(h(Z∗))‖ ≤ (B.9)

≤ ‖h(Zk)− h(Z∗))‖ ≤ ‖Zk − Z∗‖,

so we conclude the sequence {‖Zk −Z∗‖} is monotonically non-increasing and culminates in any limit point

Ẑ, i.e.,

lim
k→∞

‖Zk − Z∗‖ = ‖Ẑ− Z∗‖. (B.10)

On the other hand, by the continuity of pC(Sν(h(·))), we have that the image of Ẑ is

pC(Sν(h(Ẑ))) = lim
k→∞

pC(Sν(h(Zk))) = lim
k→∞

Zk = Ẑ (B.11)

is also a limit point of {Zk}, yielding

‖pC(Sν(h(Ẑ)))− pC(Sν(h(Z∗)))‖ = ‖Ẑ− Z∗‖, (B.12)

from which we can recall Theorem 5.
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[169] C. Schellewald and C. Schnörr, “Probabilistic Subgraph Matching Based on Convex Relaxation,” in

EMMCVPR, 2005.

[170] P. H. S. Torr, “Solving markov random fields using semi definite programming,” in AISTATS, 2003.

[171] J. Peng, H. Mittelmann, and X. Li, “A new relaxation framework for quadratic assignment problems

based on matrix splitting,” Mathematical Programming Computation, vol. 2, no. 1, pp. 59–77, 2010.

[172] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using pairwise con-

straints,” in ICCV, 2005.

[173] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-based algorithm for high-order graph

matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp.

2383–2395, Dec 2011.

107

http://doi.acm.org/10.1145/227683.227684


[174] R. S. Cabral, J. P. Costeira, F. De la Torre, and A. Bernardino, “Fast incremental method for matrix

completion: an application to trajectory correction,” in ICIP, 2011.
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