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Abstract	
	

Phishing	attacks	target	individuals	or	organizations	to	steal	information	

(such	as	credentials)	or	plant	malware	to	gain	broader	access	to	IT	systems.	This	

thesis	applies	research	on	vigilance,	people’s	ability	to	detect	anomalies	for	a	

sustained	period,	to	phishing	risk.	I	(1)	measure	the	human	component	of	phishing	

susceptibility,	(2)	evaluate	the	validity	of	that	measurement,	and	(3)	demonstrate	an	

approach	for	applying	those	measurements	to	risk	analysis	and	evaluating	

behavioral	interventions.		

I	quantify	human	performance	using	signal	detection	theory	(SDT)	for	a	

detection	task	(deciding	whether	a	message	is	phishing)	and	a	behavior	task	

(deciding	what	to	do	about	a	message).	As	applied	to	phishing,	SDT	distinguishes	

between	users’	ability	to	tell	the	difference	between	phishing	and	legitimate	emails	

(called	sensitivity,	or	d’)	and	bias	toward	identifying	uncertain	emails	as	phishing	or	

legitimate	(called	response	bias,	or	c).	I	find	that	users	do	not	sufficiently	

compensate	for	their	limited	detection	ability	when	choosing	behaviors,	despite	

incorporating	confidence	in	their	ability	and	their	assessment	of	the	consequences	

of	errors	into	their	decisions.		

I	find	similar	results	in	an	initial	convenience	(mTurk)	sample	and	a	

community	sample	(enrolled	in	the	Security	Behavior	Observatory	(SBO)	study).	I	

find	weak	evidence	for	external	validity	of	these	tasks,	given	no	relationship	

between	performance	in	the	experiment	and	negative	computer	security	outcomes	

in	real	life	(e.g.	visits	to	malicious	URLs	or	presence	of	malicious	files).	These	results	
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prompt	discussion	of	the	challenges	of	comparing	behavior	in	laboratory	and	

complex	real-world	settings.	

Lastly,	I	create	an	analytic	model	for	evaluating	anti-phishing	behavioral	

interventions	in	the	face	of	random	and	spear	phishing	attacks.	Our	results	suggest	

the	value	of	focusing	on	more	susceptible	users,	particularly	when	defending	against	

random	attacks.	This	recommendation	applies	even	when	the	ability	to	identify	poor	

detectors	is	imperfect.	

Overall,	this	thesis	bridges	the	vigilance	and	computer	security	literature	to	

improve	measurement	of	phishing	susceptibility	and	show	the	value	of	assessing	

behavioral	interventions	in	terms	of	signal	detection	theory.	 	
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 Introduction	1.
	

As	declared	in	a	recent	presidential	executive	order,	“the	cyber	threat	to	

critical	infrastructure	continues	to	grow	and	represents	one	of	the	most	serious	

national	security	challenges	we	must	confront”	(Exec.	Order	13636,	2013).	Given	

that	cyber	threats	may	exploit	technical	vulnerabilities	(e.g.	insufficient	internal	

network	partitions),	organizational	weaknesses	(e.g.	being	understaffed),	and	

human	shortcomings	(e.g.	biases	in	judgment)	–	it	is	important	to	study	the	full	

socio-technical	system	(Apt	et	al.,	2004;	Apt	et	al.,	2006).	Although	cybersecurity	is	

addressed	through	people,	process,	and	technology	improvements,	less	progress	

has	been	made	in	the	‘people’	domain.	As	a	result,	human	behavior	is	typically	the	

weakest	part	of	a	cybersecurity	strategy.	The	research	addresses	a	growing	need	to	

integrate	human	judgment	and	decision-making	in	cybersecurity	(Boyce,	2011;	

Proctor	&	Chen,	2015).	

Phishing	attacks	target	individuals	or	organizations	to	steal	information	

(such	as	credentials)	or	plant	malware	to	gain	broader	access	to	IT	systems.	This	

thesis	applies	research	on	vigilance,	the	study	of	people’s	ability	to	detect	changes	in	

stimuli	over	time,	to	phishing	risk.	After	a	literature	review	(Chapter	2),	I	develop	a	

task	to	measure	the	human	component	of	phishing	susceptibility	(Chapter	3),	which	

I	administer	to	a	convenience	sample	(Chapter	3)	and	a	community	sample	(Chapter	

4),	comparing	task	and	real-world	performance.	Using	human	performance	

estimates	from	these	studies,	I	develop	and	apply	a	model	for	assessing	the	benefit-

cost	of	implementing	interventions	for	users	of	varying	vulnerability	(Chapter	5).	I	

conclude	by	examining	the	scientific	and	practical	implications	of	this	work	
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(Chapter	6).	Except	for	the	literature	review	and	conclusion,	the	chapters	are	

written	as	self-contained	articles	designed	for	separate	publication.	As	a	result,	this	

introductory	is	brief.		

1.1.	Thesis	Overview	

The	objective	of	this	research	is	to	reframe	phishing	detection	as	a	vigilance	

task	and	draw	parallels	to	the	long	history	of	research	on	vigilance.	I	propose	and	

evaluate	measuring	phishing	susceptibility	and	the	effect	of	behavioral	

interventions	using	classical	signal	detection	theory	(SDT).	As	applied	to	phishing,	

SDT	distinguishes	between	users’	ability	to	tell	the	difference	between	phishing	and	

legitimate	emails	(called	sensitivity,	or	d’)	and	bias	toward	identifying	uncertain	

emails	as	phishing	or	legitimate	(called	response	bias,	or	c).		

In	Chapter	3,	I	measure	phishing	susceptibility	for	two	interrelated	tasks,	

detection	and	behavior,	in	an	online	experiment.	I	manipulate	three	task	variables:	

(1)	which	task	comes	first,	detection	or	behavior	(Experiment	1);	(2)	whether	

participants	perform	both	tasks	(Experiment	1)	or	just	one	(Experiment	2)	and	(3)	

whether	participants	are	told,	or	must	infer,	the	base	rate	of	phishing	messages.		

In	Chapter	4,	I	use	a	correlational	study	to	assess	the	validity	of	the	

experimental	measurement	from	Chapter	3.	Using	participants	and	data	from	the	

Security	Behavior	Observatory	(SBO),	I	evaluate	(1)	face	validity	by	replicating	

experimental	tasks	from	Chapter	3	in	a	community	sample,	(2)	construct	validity	by	

assessing	the	correlation	with	the	Security	Behavior	Intentions	Scale	(SeBIS)	

(Egelman	&	Peer,	2015),	and	(3)	predictive	validity	by	comparing	experimental	
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performance	to	adverse	outcomes	experienced	by	users’	on	their	home	systems,	

namely,	visits	to	malicious	websites	and	presence	of	malicious	files.	

In	Chapter	5,	I	develop	and	deploy	risk-analytic	simulations	to	estimate	the	

value	of	behavioral	interventions	for	users	with	different	ability	levels.	These	

models	(1)	identify	which	users	are	most	susceptible,	(2)	assess	the	relative	risk	due	

to	the	most	susceptible	users,	(3)	estimate	the	benefit-cost	of	behavioral	

interventions	targeting	users	of	varying	ability,	and	(4)	the	sensitivity	to	random	

versus	spear	phishing.	The	parameters	in	these	models	are	estimated	with	values	

taken	from	the	research	literature	(for	the	effectiveness	of	interventions)	and	from	

our	behavioral	experiments	(for	individual	differences	in	performance).	

1.2.	Contributions	of	Thesis	

In	summary,	this	thesis	shows	the	applicability	of	vigilance	research	as	a	

framework	for	understanding	phishing	susceptibility	and	evaluating	anti-phishing	

behavioral	interventions,	while	extending	that	literature	in	this	distinctive	domain	–	

which	involves	an	intellectually	demanding	task,	done	concurrently	with	users’	

main	task	(unlike,	say,	baggage	screening,	where	detecting	deception	is	the	primary	

task).	From	a	scientific	perspective,	I	contribute	to	the	understanding	of	how	task	

factors	(as	defined	by	the	vigilance	literature)	influence	phishing	susceptibility	

(Chapter	3).	From	a	practical	perspective,	I	show	that	measuring	phishing	

vulnerability	in	terms	of	signal	detection	theory	paints	a	clearer	picture	of	the	

interaction	between	user	vulnerability,	effectiveness	of	interventions,	and	types	of	

threats	(Chapter	5).	However,	efficiently	measuring	phishing	susceptibility	in	terms	

of	SDT	is	still	a	challenge	worthy	of	future	research	(Chapter	4).		 	
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 Background	2.
	

This	chapter	summarizes	research	related	to	(1)	vigilance	and	(2)	phishing	

attacks.	

2.1.	Vigilance	

First	systematically	studied	by	Norman	Mackworth	(1948),	vigilance	refers	

to	the	ability	to	remain	alert	in	order	to	detect	small	changes	or	rare	stimuli	over	

time.	Both	psychologists,	who	are	interested	in	the	nature	of	attention,	and	human	

factors	researchers,	who	are	interested	in	its	implications	for	system	design,	study	

vigilance.	In	this	thesis,	I	propose	framing	the	detection	of	phishing	emails	as	a	

vigilance	task,	given	the	need	for	sustained	attention	over	time.	

Vigilance	has	been	studied	with	respect	to	air-traffic	controllers,	industrial	

quality	control,	nuclear	plant	operators,	and	other	monitoring/inspection	tasks	in	

military,	medical,	and	industrial	systems	(Warm,	Parasuraman	&	Matthews,	2008).	

Mackworth’s	(1948)	initial	studies	had	the	practical	purpose	of	determining	the	

optimal	watch	length	for	airborne	radar	operators	engaged	in	submarine	detection.	

All	vigilance	tasks	involve	searching	for	a	signal,	the	event	of	interest,	amidst	noise	

consisting	of	unimportant	events.	Mackworth	developed	the	famous	Clock	test	in	

which	participants	pressed	a	response	key	when	an	anomaly	was	observed.	The	test	

used	a	clock	with	one	hand	and	no	markings.	The	anomaly	(or	signal)	was	when	the	

clock	hand	moved	the	distance	of	2	seconds,	rather	than	1	second	(noise).	He	

observed	a	phenomenon	termed	vigilance	decrement,	where	performance	sharply	

decreases,	begin	as	soon	as	5	minutes	into	the	task.		
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2.1.1.	Measuring	Vigilance	

At	present,	most	vigilance	research	quantifies	performance	in	terms	of		

signal	detection	theory	(SDT)	(Green	&	Swets,	1966).	SDT	distinguishes	between	

users’	ability	to	tell	the	difference	between	a	signal	and	noise	(called	sensitivity,	or	

d’)	and	bias	toward	identifying	uncertain	stimuli	as	signals	or	noise	(called	response	

bias,	or	c).	SDT	has	been	used	in	a	wide	variety	of	contexts,	including	baggage	

screening	(Wolfe	et	al.,	2013),	sexual	intent	(Farris	et	al.,	2008),	medical	decision-

making	(Mohan	et	al.,	2012),	environmental	risk	perception	(Dewitt	et	al.,	2015),	

and	phishing	detection	(Kaivanto	2014;	Kumaraguru	et	al.	2010;	Mayhorn	&	Nyeste,	

2012;	Sheng	et	al.,	2010;	Welk	et	al.,	2015).	SDT	is	superior	to	other	types	of	

assessment,	such	as	accuracy,	because	it	accounts	for	the	tradeoff	between	hits	

(correctly	identifying	a	signal	as	a	signal)	and	false	alarms	(incorrectly	identifying	

noise	as	a	signal)	(see	Table 2-1).	Maximizing	accuracy	need	not	maximize	utility	

(Lynn	&	Barret,	2014;	Lynn	et	al.,	2015).	For	example,	an	individual	could	perceive	

all	emails	as	phishing	emails,	which	would	maximize	their	probability	of	detecting	

phishing	emails	(one	possible	definition	of	accuracy).	However,	this	would	render	

email	a	useless	form	of	communication,	which	would	not	maximize	utility	–	unless	

any	missed	phishing	attacks	could	bring	down	a	system.		

Table	2-1.	SDT	performance	measures	for	phishing	detection.	

	 	 Response	
	 	“Signal”	 “Noise”	

Stimulus	 Signal		 Hit	 Miss	
Noise		 False	Alarm	 Correct	Rejection	

	
SDT	assumes	that	both	signals	(e.g.	phish)	and	noise	(e.g.	legitimate	emails)	

can	be	represented	as	distributions	of	stimuli	that	vary	on	a	decision	variable	(e.g.	
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suspiciousness).	Both	performance	parameters	are	defined	in	Figure 2-1.	The	further	

apart	the	distributions,	the	greater	the	sensitivity	or	d’.	The	response	bias,	c,	reflects	

how	biased	users	are	toward	treating	a	stimulus	as	signal	or	noise.	It	is	measured	by	

how	far	their	decision	threshold	is	from	the	intersection	of	the	two	distributions.	A	

negative	response	bias	(c	<	0)	reflects	a	tendency	to	call	uncertain	stimuli	signals,	

whereas	a	positive	response	bias	(c	>	0)	reflects	the	opposite.	The	parameters	are	

calculated	based	on	the	observed	hits	(H)	and	false	alarms	(FA):	

𝑑! = Φ!! 𝐻 −Φ!! 𝐹𝐴 	

𝑐 = −
Φ!! 𝐻 +Φ!! 𝐹𝐴

2 	

where	Φ!!	represents	the	z-transformation	to	convert	probabilities	to	z-scores.	

Here,	d’	is	the	difference	between	the	hits	and	false	alarms	rates	and	c	is	the	

negative	mean	of	the	hit	and	false	alarm	rates	(Macmillan	&	Creelman,	2004).	

	

Figure	2-1.	Signal	detection	performance	parameters.	

Signal	detection	theory	(SDT)	makes	assumptions	about	the	nature	of	

perception,	with	the	most	common	being	(1)	normality,	(2)	equal	variance,	and	(3)	
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static	d’	and	c.	Although	these	assumptions	are	theoretically	motivated,	they	also	

make	the	calculations	more	tractable.	Each	is	discussed	in	more	detail	below.	

For	sensory	stimuli,	such	as	visual	or	auditory	stimuli,	there	is	often	both	

theoretical	and	empirical	justification	for	using	Normal	distributions.	For	example,	

when	testing	perception	of	auditory	stimuli,	tones	might	be	random	draws	from	a	

Normal	distribution.	In	addition	to	the	method	presented	above,	SDT	parameters	

can	be	estimated	using	regression,	where	a	link	function	is	used	to	identify	

predictors	of	the	unobserved	probability	for	the	binary	observed	outcomes.	

Generally,	SDT	uses	a	probit	link	function,	which	gives	the	same	results	as	the	

equations	above	(Knoblauch	&	Maloney,	2012).	Several	statistical	tests	exist	to	

assess	the	appropriateness	of	these	functions.	However,	all	have	very	low	power,	so	

a	null	result	does	not	necessarily	indicate	that	the	function	is	inappropriate	(Hosmer	

et	al.,	1997).	In	the	present	research,	given	the	lack	of	evidence	otherwise,	I	assume	

that	phishing	and	legitimate	emails	are	drawn	from	a	Normal	distribution	of	

“suspiciousness”	where	phishing	emails	are	more	suspicious	than	legitimate	emails	

on	average	(see	Figure 2-1).	If	this	assumption	does	not	hold,	the	estimates	of	d’	and	

c	may	be	biased,	with	the	direction	dependent	on	the	shape	of	the	true	distribution.	

Signal	detection	theory	also	assumes	that	perception	of	the	noise	and	signal	

stimuli	have	equal	variance.	From	a	theoretical	perspective,	this	implies	that	

individuals	are	equally	able	to	perceive	both	kinds	of	stimuli	and	it	is	the	existence	
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of	noise,	rather	than	a	feature	of	the	signal,	that	leads	to	imperfect	detection.	In	

order	to	test	for	the	equal	variance	assumption,	we	can	examine	the	ROC	curve1.		

If	the	ROC	curve	is	symmetric	(or	slope	=	1,	when	plotted	with	inverse	normal	

coordinates),	equal	variance	holds.	An	asymmetric	ROC	curve	indicates	that	some	

assumption	is	violated,	but	not	which	one	(DeCarlo,	1998).	If	the	equal	variance	

assumption	is	violated,	the	model	is	nonlinear	(DeCarlo,	2010;	Knoblauch	&	

Maloney,	2012).		

Phishing	detection	could	be	construed	in	two	ways.	One	interpretation	is	that	

equal	variance	holds	because	users	make	mistakes	in	both	directions	because	most	

emails	contain	some	combination	of	the	cues	associated	with	phishing	emails.	A	

second	interpretation	is	that	equal	variance	is	violated	because	phishing	emails	are	

specifically	designed	to	mimic	legitimate	emails,	so	we	would	expect	the	perception	

of	phishing	emails	to	have	higher	variance.	I	test	this	assumption	in	the	appendix	for	

Chapter	3	(and	find	that	equal	variance	holds	most	of	the	time).	

Finally,	SDT	assumes	that	all	noise	is	associated	with	the	overlapping	

distributions	of	stimuli.	This	assumes	that	individuals	have	a	static	d’	and	c	across	

trials	under	the	same	conditions.	However,	in	reality,	we	might	expect	someone’s	

attention	to	waver	or	be	inconsistent	across	trials.	In	Chapter	3,	I	test	for	signs	of	

                                                
 
1	On	an	ROC	curve,	the	distance	of	the	curve	from	the	diagonal	is	described	by	d’	while	the	
position	of	a	point	on	the	curve	is	described	by	c.	To	draw	an	ROC	curve,	it	is	necessary	to	
collect	data	with	at	least	two	different	decision	thresholds	(c).	This	can	be	achieved	by	
either	(1)	using	a	manipulation	to	shift	c,	such	as	changing	the	payoffs	or	base	rate,	or	(2)	
using	confidence	ratings	(Yonelinas	&	Parks,	2007).	In	most	cases,	it	is	easiest	to	construct	
an	ROC	curve	with	confidence	ratings.	This	approach	assumes	that	each	point	on	the	
confidence	scale	reflects	a	different	c.	The	curve	formed	by	these	points	is	the	ROC	curve.	An	
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vigilance	decrement	by	calculating	d’	and	c	separately	for	the	first	and	second	half	of	

stimuli	(and	find	no	evidence	of	d’	and	c	systematically	changing	over	the	course	of	

the	experiment).	

2.1.2.	Predicting	Vigilance	

Researchers	have	found	that	vigilance	performance	can	be	influenced	by	

task,	environmental	and	individual	factors,	as	well	as	the	interactions	between	them	

(Ballard,	1996).	Figure 2-2	highlights	factors	that	have	been	found	to	influence	

vigilance,	and	which	could	also	be	relevant	for	phishing	detection.	The	factors	are	

discussed	in	greater	detail	in	the	following	sections.	

	

Figure	2-2.	Vigilance	performance	is	influenced	by	task,	environment	and	individual	
factors.	

2.1.2.1.	Task	Factors	

For	complex	tasks,	performance	can	be	influenced	by	the	base	rate,	payoffs,	

and	similarity	of	stimuli	(Lynn	&	Barrett,	2014).	In	general,	people	are	more	likely	to	
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identify	a	stimulus	as	noise	for	low	base-rate	events,	where	it	is	unlikely	to	be	a	

signal	(Lynn	&	Barrett,	2014;	Maddox,	2002;	Navalpakkam	et	al.,	2009;	Wolfe	et	al.,	

2007).	Conversely,	people	are	more	likely	to	identify	a	stimulus	as	a	signal	when	

missing	a	signal	is	costly	and	a	false	alarm	is	less	costly	(Lynn	&	Barrett,	2014;	

Maddox,	2002;	Navalpakkam	et	al.,	2009).	In	detection	tasks	without	a	clear	payoff	

structure,	participants	typically	try	to	maximize	accuracy	(Maddox,	2002).	In	

addition,	people	are	able	to	adapt	their	decision-making	strategy	when	similarity	is	

high	(and	the	difference	between	signals	and	noise	is	very	low)	(Lynn	&	Barrett,	

2014).	High	similarity	may	arise	from	perceptual	factors	(e.g.	uncertainty	about	the	

difference	between	signals	and	noise),	as	well	as	environmental	ones	(e.g.	

navigating	a	dimly	lit	room)	

However,	not	all	of	these	factors	influence	performance	equally.	In	studies,	

people	are	more	sensitive	to	the	signal	base	rate	than	to	the	payoffs	(Maddox,	2002;	

Navalpakkam,	Koch,	&	Perona,	2009).	One	explanation	is	that	the	base	rate	is	

typically	more	observable	than	payoffs,	so	people	are	better	able	to	respond	to	it.	In	

studies	where	people	receive	feedback,	payoffs	are	more	influential	(Navalpakkam,	

Koch,	&	Perona,	2009).	

An	intervention	called	“signal	injection	and	performance	feedback”	has	been	

found	to	be	an	effective	intervention	for	improving	vigilance	for	sonar	

watchstanding	(Mackie	et	al.,	1994),	baggage	security	screening	(Wolfe	et	al.,	2007;	

Wolfe	et	al.,	2013),	and	medical	diagnosis	(Birdwell	&	Wolfe,	2013).	In	this	type	of	

intervention,	signals	are	artificially	injected	throughout	the	task	(to	increase	the	

base	rate)	and	detectors	are	given	feedback	to	indicate	whether	or	not	they	
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correctly	detected	the	signal.	For	example,	Wolfe	et	al.	(2007;	2013)	found	that	

exposing	baggage	screeners	to	brief	bursts	of	training	at	a	high	base	rate	with	full	

feedback	improved	detection	after	they	returning	to	the	real	world	of	a	low	base	

rate	without	feedback.	Injecting	signals	artificially	increases	the	base	rate	and	

feedback	makes	that	increase	observable,	leading	people	to	adopt	a	lower	c	and	

perceive	more	stimuli	as	signals	(Goodie	&	Fantino,	1999;	Kluger	&	DeNisi,	1996).	

2.1.2.2.	Environmental	Factors	

In	general,	environmental	factors	add	stress,	which	interferes	with	

performance	in	detection	tasks.	For	complex	cognitive	tasks,	white	noise	tends	to	

reduce	performance	regardless	of	volume,	while	findings	for	intermittent	noise	(e.g.	

music	or	voices)	are	inconsistent.	Performance	is	also	reduced	in	the	presence	of	

uncomfortable	ambient	conditions,	such	as	extreme	hot	and	cold	temperatures	

(Ballard,	2008).	Some	variables	may	have	a	physiological	effects;	for	example,	there	

is	evidence	that	vigilance	is	reduced	after	lunch	(Smith	&	Miles,	2007).		

In	some	cases,	the	vigilance	task	itself	is	structured	in	ways	that	impose	

stress,	reducing	performance.	For	example,	in	many	environments,	alarms	are	used	

to	attract	the	attention	of	an	operator	to	an	anomaly.	This	is	particularly	common	

for	complex	systems,	where	humans	cannot	simultaneously	monitor	all	

components.	However,	most	alarm	systems	are	not	designed	from	a	human	factors	

perspective	and	may	reduce	attention	without	providing	useful	diagnostic	

information	(Stanton,	Booth,	&	Stammers,	1992).	For	example,	in	complex	systems	

alarms	may	be	correlated,	so	that	many	alarms	go	off	at	once	if	an	event	occurs	

(Perrow,	2011).	Thus,	it	is	possible	that,	for	phishing	detection,	warnings	may	have	
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a	counter-intuitive	effect,	which	increases	stress	and	reduces	overall	performance	

(e.g.	by	increasing	false	alarms).	

2.1.2.3.	Individual	Factors	

Individual	factors	found	to	affect	performance	include	experience,	

personality	and	demographics.	Individuals	with	more	experience	tend	to	have	a	

similar	d’	as	novices,	but	vary	in	terms	of	c.	In	air-traffic	control,	experienced	

individuals	have	a	lower	c,	suggesting	that	they	fear	misses	more	than	false	alarms	

(Bisseret,	1981).	The	same	effect	was	observed	in	a	hazardous	driving	simulation	

(Wallis	&	Horswill,	2007).	However,	expertise	had	little	effect	in	the	context	of	

detecting	cyber	attacks	(Ben-Asher	&	Gonzalez,	2015).	Personality	has	tended	to	

have	a	weak	relationship	to	vigilance	performance.	However,	personality	may	be	

correlated	to	sensitivity	to	stress,	which	may	reduce	performance	(Shaw	et	al.,	

2010).	Performance	may	also	be	sensitive	to	affective	state	(i.e.	feelings	of	happiness	

or	sadness).	For	example,	experiencing	unpleasant	affect	increased	attention	to	the	

base	rate	(Lynn	et	al.,	2012).	In	terms	of	demographics,	vigilance	tends	to	decrease	

with	age	and	there	is	little	evidence	of	systematic	gender	effects	(Ballard,	1996).		

2.2.	Phishing	Attacks	

Phishing	is	among	the	top	cyberattack	vectors	(Symantec,	2016;	Verizon,	

2016).		These	attacks	seek	to	trick	users	into	thinking	an	email	or	website	is	

legitimate,	hoping	to	convince	them	to	divulge	sensitive	information	(e.g.,	

usernames,	passwords,	credit	card	numbers)	or	inadvertently	install	malware,	by	

clicking	on	malicious	links	or	attachments.	Spear	phishing	attacks	use	personal	
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information	(e.g.	known	contacts,	industry	language,	victims’	names)	to	design	more	

realistic	and	persuasive	messages.	Depending	on	the	level	of	deception	involved,	it	

can	be	difficult	to	screen	such	messages	automatically.	As	a	result,	human	judgment	

plays	a	role	in	all	cybersecurity	systems	and,	by	many	accounts,	is	its	weakest	link	

(Boyce	et	al.,	2011;	Cranor,	2008;	Hong,	2012;	Proctor	&	Chen,	2015;	Werlinger	et	

al.,	2009).		Below,	we	describe	(a)	how	phishing	works,	(b)	phishing	susceptibility,	

and	(c)	anti-phishing	interventions.	

2.2.1.	How	Phishing	Works	

A	typical	phishing	attack	has	4	steps	(summarized	in	Figure	2-3).	First,	

attackers	plan	and	set-up	the	attack.	Second,	victims	receive	a	malicious	email.	

Third,	victims	fall	for	the	message	and	take	the	suggested	action	(e.g.,	clicking	on	the	

link	or	attachment,	providing	their	credentials).	Lastly,	the	attackers	monetize	the	

information	they	received.		We	review	these	steps	in	greater	detail	below.	The	

present	research	focuses	on	phishing	emails,	but	attacks	may	occur	over	instant	

messenger,	social	media,	VOIP,	or	text	message	(Symantec,	2016).	Although	the	

technical	details	of	how	to	execute	these	attacks	vary,	the	principles	remain	the	

same.			
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Figure	2-3.	Actions	required	for	a	successful	attack	by	both	attackers	and	victims. 

The	planning	and	set-up	of	an	attack	vary	widely.	Attackers	range	in	terms	of	

skill	and	resources,	from	a	disgruntled	employee	to	a	highly	organized	and	well-

funded	nation	state.	Attackers	must	generate	persuasive	emails,	a	malicious	website	

to	steal	information	(or	disguise	malware	in	an	attachment),	and	ensure	that	all	the	

stolen	information	is	properly	stored	to	monetize	later.	As	phishing	has	increased,	

so	have	efforts	towards	automation,	which	have	decreased	the	amount	of	technical	

knowledge	required.	It	is	possible	to	purchase	“phishing	kits”	that	provide	all	of	the	

code	and	materials	needed	to	launch	a	large-scale	phishing	attack.	Some	of	these	

kits	are	even	available	for	free,	although	most	free	kits	have	backdoors	in	place	to	

steal	information	from	novice	attackers	(Cova,	Kruegel	&	Vigna,	2008).	In	addition,	

attackers	must	gather	email	addresses	of	potential	victims.	Email	address	can	be	

purchased	in	bulk	from	underground	markets	(Franklin	et	al.,	2007),	stolen	directly,	

or	collected	in	a	simple	web	search.		

Second,	users	receive	phishing	emails.	However,	not	all	emails	that	attackers	

send	ultimately	reach	victims.	Spam	filters	block	emails	based	on	their	content	and	

blacklists	of	known	malicious	URLs.	For	example,	terms	like	“viagra”	and	“click	
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here”	would	arouse	suspicion.	Most	spam	filters	examine	the	ratio	of	suspicious	to	

total	text	to	determine	whether	an	email	is	legitimate.	Attackers	attempt	to	evade	

spam	filters	by	generating	new	URLs	and	avoiding	generic	text	(Moore	&	Clayton,	

2007).	In	addition	to	bypassing	the	spam	filter,	attackers	must	ensure	that	their	

malicious	website	is	not	blocked.	A	group	called	the	“rock-phish	gang”	evaded	this	

issue	by	continuously	generating	new	domains	that	redirect	to	each	other	(Moore	&	

Clayton,	2007).	

Third,	users	fall	for	the	attack.	The	success	of	phishing	attacks	can	be	

explained	in	part	by	dual-process	theory,	which	posits	that	humans	have	two	

systems	of	reasoning:	System	1,	which	makes	quick	intuitive	judgments,	and	System	

2,	which	makes	conscious	deliberate	judgments	(Kahneman,	2011;	Sloman,	1996).	

Attackers	design	phishing	emails,	in	terms	of	content	and	aesthetics,	to	encourage	

System	1,	rather	than	System	2,	processing.	In	the	email	and	website,	attackers	

invoke	urgency	cues	in	both	the	subject	and	the	main	text,	threaten	penalties	for	

inaction,	use	believable	senders,	and	use	visual	cues	such	as	company	logos	to	

encourage	victims	to	have	an	affective	response	and	use	System	1	(Wang	et	al.,	

2009;	Wang	et	al.,	2012;	Wright	et	al.,	2009).	An	example	of	a	phishing	email,	using	

the	cues	discussed	above,	is	shown	in	Figure 2-4.		

Lastly,	attackers	monetize	attacks.	Sensitive	information	(e.g.	credit	card	

numbers,	credentials,	contact	information,	account	information)	can	be	bought	and	

sold	in	underground	markets	(Franklin	et	al.,	2007).	Alternatively,	the	information	

gained	in	a	phishing	attack	may	be	the	first	step	in	a	larger	orchestrated	attack.	

However,	not	all	attacks	are	driven	by	financial	motivation.	A	phishing	attack	may	
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also	be	used	to	cause	embarrassment	or	damage	reputation,	which	may	have	

financial	consequences	for	the	victim,	but	does	not	provide	financial	reward	for	the	

attacker.	

	

Figure	2-4.	Example	phishing	email.	
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2.2.2.	Phishing	Susceptibility	

Observational	and	laboratory	studies	suggest	that	the	factors	that	influence	

phishing	susceptibility	roughly	parallel	the	factors	identified	in	the	vigilance	

literature.	However,	little	phishing	susceptibility	research	has	focused	on	task	

factors,	such	as	base	rate,	payoffs	and	similarity.	Studies	have	asked	about	phishing	

detection	in	different	ways,	with	some	directly	asking	whether	an	email	or	website	

is	phishing	and	others	asking	what	action	would	be	performed.	However,	no	studies	

have	directly	compared	these	types	of	tasks.	Chapter	3	of	this	thesis	addresses	this	

question,	calling	the	former	“detection”	and	the	latter	“behavior.”	Different	types	of	

phishing	attacks,	for	example	spear	phishing,	may	increase	the	similarity	between	

phishing	and	legitimate	emails,	which	reduces	detection	performance.		

One	environmental	factor	relevant	to	phishing	detection	is	what	other	tasks	

individuals	are	performing.	Users	who	receive	many	emails	and	check	their	email	as	

a	habit,	without	much	conscious	effort,	are	more	vulnerable	(Vishwanath	et	al.,	

2011;	Vishwanath,	2015).	So	are	users	who	multi-task	while	checking	their	emails	

or	work	under	strict	deadlines,	which	encourage	a	cursory	review	of	emails.	

Platforms	such	as	mobile	devices,	which	offer	weaker	security	and	reduced	access	to	

cues,	may	also	increase	phishing	susceptibility.	

Wright	&	Marett	(2010;	Wright	et	al.,	2009)	divide	individual	factors	into	

dispositional	and	experiential	ones.	In	terms	of	dispositional	factors,	users	who	are	

willing	to	invest	cognitive	effort	and	tend	to	be	suspicious	are	less	susceptible	

(Pattinson	et	al.,	2012;	Sheng	et	al.,	2010;	Welk	et	al.,	2015;	Wright	&	Marett,	2010).	

For	experiential	factors,	general	familiarity	with	computers	and	computer	security	
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is	associated	with	lower	susceptibility	(Pattinson	et	al.,	2012;	Sheng	et	al.,	2010;	

Vishwanath	et	al.,	2011).	Phishing	messages	use	deceptive	and	persuasive	

messaging	to	victimize	users	by	imposing	a	sense	of	urgency,	using	social	cues	(e.g.	

spoofing	a	known	contact)	and	invoking	authority	(Butavicious	et	al.,	2015;	Dhamija	

et	al.,	2006;	Luo	et	al.,	2013).	However,	knowledge	and	experience	moderate	the	

effects	of	those	cues	(Wang	et	al.,	2012).	These	factors	can	also	interact	with	

demographic	factors;	for	example,	women	tend	to	have	less	computer	knowledge	

and	younger	people	tend	to	be	less	risk-averse,	both	of	which	may	make	them	more	

vulnerable	(Sheng	et	al.,	2010).	

2.2.3.	Anti-Phishing	Interventions	

We	can	distinguish	technical	and	behavioral	interventions	to	reduce	phishing	

risk.	Technical	interventions	aim	to	either	reduce	user	exposure	to	phishing	or	

reduce	the	value	of	phishing	attacks	by	making	passwords	less	valuable	(Hong,	

2012;	Purkait,	2012).	System	administrators	can	reduce	user	exposure	to	phishing	

emails	by	using	spam	filters,	which	divert	phishing	emails	before	users	see	them.	

Browsers	employ	blacklists,	which	block	known	malicious	websites.	However,	these	

interventions	may	inadvertently	increase	susceptibility	by	artificially	reducing	the	

perceived	base	rate	of	phishing.	If	users	see	fewer	malicious	emails	or	do	not	realize	

that	they	clicked	on	a	malicious	website	because	of	an	uninformative	error	message,	

then	they	may	rationally	adjust	their	response	bias	(c)	to	account	for	the	low	base	

rate.	Alternatively,	users	may	believe	they	have	nothing	to	fear	because	their	

machine	is	protecting	them.	In	reality,	blacklists	and	spam	filters	are	far	from	

perfect	(Sheng	et	al.,	2009).	In	addition,	it	is	possible	to	make	passwords	less	
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valuable	by	employing	two-factor	authentication,	which	requires	a	physical	device	

such	as	a	cell	phone	in	addition	to	a	password,	and	password	managers,	which	

reduce	the	use	of	the	same	password	across	multiple	websites.	Evaluating	the	

benefits	of	such	interventions	requires	quantitative	estimates	of	users’	performance,	

the	topic	of	this	dissertation.	

From	a	vigilance	perspective,	we	can	classify	behavioral	interventions	as	

those	that	primarily	serve	to	change	d’	or	c.	Interventions	that	increase	attention	or	

effort	increase	d’.	Parsons	et	al.	(2015)	observed	that	telling	users	that	they	were	

being	evaluated	on	their	phishing	detection	ability	(priming)	increased	their	

sensitivity	(measured	as	A’)	without	changing	response	bias	(measured	as	B”).	

Sheng	et	al.	(2007)	developed	a	game	called	Anti-Phishing	Phil	to	teach	users	how	to	

identify	phishing	emails	in	a	fun	and	engaging	way.	In	pre-	and	post-tests,	this	

intervention	increased	d’,	likely	because	users	were	better	able	to	pay	attention	to	

the	correct	cues.	However,	although	no	change	in	c	was	observed	in	a	laboratory	

setting,	c	increased	in	a	field	trial	(Kumaraguru	et	al.,	2010).	

Signal	injection	and	performance	feedback	has	also	been	an	effective	

intervention	in	the	context	of	phishing.	Kumaraguru	et	al.	(2010)	developed	an	

intervention	called	“embedded	training,”	which	sends	fake	phishing	emails	to	users.	

If	they	fall	for	fake	attacks	and	click	the	link	or	open	the	attachment,	they	receive	

feedback	in	the	form	of	training	about	phishing	emails.	This	represents	partial,	

rather	than	full,	feedback	since	users	do	not	receive	feedback	on	all	emails	(which	

would	be	unrealistic,	given	that	most	emails	are	legitimate	and	the	feedback	can	be	

distracting)	(Smillie	et	al.,	2013).	Kumaraguru	et	al.	(2010)	found	that	embedded	
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training	increased	d’	and	decreased	c	to	reduce	overall	phishing	susceptibility.	In	a	

simulation	combining	SDT	and	prospect	theory,	Kaivanto	(2014)	found	that	one	of	

the	most	effective	levers	for	behavioral	interventions	is	increasing	the	perceived	

base	rate.	

In	general,	warnings	tend	to	reduce	c	without	changing	d’	(Kumaraguru	et	al.,	

2010).	Egelman	et	al.	(2008)	found	that	79%	of	participants	heeded	active	anti-

phishing	browser	warnings	that	required	acknowledgement	before	proceeding	to	

the	webpage.	For	passive	warnings,	users	are	easily	incentivized	to	ignore	security	

advice	to	accomplish	whatever	task	is	at	hand	(Christin	et	al.,	2011;	Herley,	2009;	

Herley,	2014).	In	addition,	warnings	may	be	less	effective	if	they	do	not	align	with	

users’	mental	models	(Bravo-Lillo	et	al.,	2011).	For	example,	novice	computer	users	

tend	to	rely	on	cues	related	to	the	“look	and	feel”	of	an	email	or	website	rather	than	

to	more	informative	technical	indicators,	such	as	the	URL	(Downs	et	al.,	2006).	A	

warning	that	alters	the	“look	and	feel”	of	a	website	may	be	more	persuasive	

(Egelman	et	al.,	2008).	Warnings	that	are	distinctive	and	clearly	state	that	there	is	a	

phishing	risk,	rather	than	some	general	problem,	are	more	effective	(Carpenter	et	

al.,	2013;	Egelman	et	al.,	2008).		

The	vigilance	literature	suggests	that	it	is	not	sufficient	to	simply	teach	users	

about	phishing	risks.	Given	the	low	base	rate	and	convoluted	payoffs	of	phishing	

attacks,	users	will	rationally	adopt	a	bias	toward	perceiving	emails	as	legitimate.	

However,	institutions	can	shift	the	landscape	via	interventions	such	as	embedded	

training	to	help	ensure	that	users	appreciate	and	act	on	the	risk.	This	thesis	bridges	
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the	vigilance	and	phishing	susceptibility	literatures	to	improve	the	quantification	of	

phishing	susceptibility	and	identify	effective	behavioral	interventions.	
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 Quantifying	Phishing	Susceptibility	for	Detection	3.
and	Behavior	Decisions	

3.1.	Introduction	

		 Phishing	is	among	the	top	cyber	attack	vectors	(Symantec,	2016;	Verizon,	

2016)	threatening	individuals,	corporations,	and	critical	infrastructure	(Wueest,	

2014).		These	attacks	seek	to	trick	users	into	thinking	an	email	or	website	is	

legitimate,	hoping	to	convince	them	to	divulge	usernames	and	passwords,	or	

inadvertently	install	malware	by	clicking	on	malicious	links	or	attachments.	

Depending	on	the	level	of	deception	involved,	it	can	be	difficult	to	screen	such	

messages	automatically.	As	a	result,	human	judgment	plays	a	role	in	all	

cybersecurity	systems	and,	by	many	accounts,	is	its	weakest	link	(CERT,	2013;	

Cranor,	2008).		

We	use	signal	detection	theory	(SDT)	methods	to	assess	phishing	

vulnerability	by	treating	phishing	detection	as	a	vigilance	task	(Mackworth,	1948;	

See	et	al.,	1995;	Warm	et	al.,	2008).	SDT	has	been	used	in	a	wide	variety	of	contexts,	

including	baggage	screening	(Wolfe	et	al.,	2013),	sexual	intent	(Farris	et	al.,	2008),	

medical	decision-making	(Mohan	et	al.,	2012),	environmental	risk	perception	

(Dewitt	et	al.,	2015),	and	phishing	detection	(Kaivanto,	2014;	Kumaraguru	et	al.,	

2010;	Mayhorn	&	Nyeste,	2012;	Sheng	et	al.,	2010;	Welk	et	al.,	2015).	By	quantifying	

performance,	SDT	offers	metrics	for	analyzing	system	vulnerability,	as	well	as	for	

designing	and	evaluating	interventions	to	reduce	it,	such	as	training,	incentives,	and	

task	restructuring	(Mumpower	&	McClelland,	2014;	Swets	et	al.,	2000).	Such	
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research	meets	a	growing	need	to	integrate	human	decision-making	and	perceptual	

ability	into	cybersecurity	systems	(Boyce,	2011;	Proctor	&	Chen,	2015).		

The	premise	of	SDT	is	the	need	to	separate	users’	sensitivity	or	d’	(i.e.,	their	

ability	to	tell	whether	an	email	is	phishing)	from	their	response	bias	or	c	(i.e.,	their	

tendency	to	treat	an	email	as	phishing)	(Macmillan	&	Creelman,	2004).	Accuracy	

measures	such	as	the	number	or	proportion	of	successful	phishing	attacks	are	

incomplete	because	they	ignore	other	objectives,	such	as	opening	legitimate	emails	

promptly.	SDT	accommodates	the	inevitable	tradeoff	between	hit	rates	(H,	correctly	

identifying	a	signal)	and	false	alarm	rates	(FA,	incorrectly	identifying	noise	as	

signals).		

	The	present	study	demonstrates	a	procedure	for	estimating	individual	users’	

sensitivity	and	response	bias	for	phishing,	in	examining	performance	on	two	

interrelated	tasks:	(a)	detection,	deciding	whether	an	email	is	legitimate	and	(b)	

behavior,	deciding	what	to	do	with	an	email.	Unlike	many	signal	detection	tasks,	

where	the	contingent	behavior	is	straightforward	(e.g.,	rescreening	detected	bags	

entails	minimal	costs	for	false	positives;	Wolfe	et	al.,	2007),	with	phishing,	detection	

and	behavior	decisions	are	not	uniquely	coupled.	For	example,	not	falling	for	a	

phishing	email	might	reflect	discrimination	or	disinterest.	As	a	result,	we	study	

detection	and	behavior	separately	in	order	to	assess	their	respective	contributions	

to	vulnerability.		

Because	behavior	has	more	immediate	consequences	than	detection,	we	

expected	greater	caution	with	behavior	(Lynn	&	Barrett,	2014).	However,	we	had	no	

reason	to	expect	differences	in	sensitivity,	unless	the	more	immediate	consequences	
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of	the	behavior	task	elicit	greater	effort,	revealing	discrimination	ability	not	tapped	

by	detection.		

3.1.1.	Factors	that	Influence	Signal	Detection	Estimates	

	Previous	signal	detection	research	has	identified	a	variety	of	task,	individual,	

and	environmental	variables	that	can	affect	performance	(Ballard,	1996).	Here,	we	

study	behavior	as	a	function	of	participants’	awareness	of	two	such	variables:	(a)	

signal	base	rate	(i.e.,	how	frequently	the	signal	appears)	and	(b)	costs	for	correct	

and	incorrect	choices	(Coombs,	Dawes	&	Tversky,	1970;	MacMillan	&	Creelman,	

2004).	These	variables	have	typically	had	effects	consistent	with	rational	decision-

making.	For	example,	people	are	more	likely	to	identify	a	stimulus	as	noise	for	low	

base-rate	events,	where	it	is	unlikely	to	be	a	signal.	Conversely,	people	are	more	

likely	to	identify	a	stimulus	as	a	signal	when	missing	a	signal	is	more	costly	and	a	

false	alarm	is	less	costly	(Lynn	&	Barrett,	2014;	Maddox,	2002;	Navalpakkam	et	al.,	

2009).		

The	base	rate	and	costs	are	related	to	response	bias	in	the	following	

equation,	combining	Eq	6.4	in	Coombs,	Dawes	&	Tversky	(1970)	and	Eq.	2.6	in	

MacMillan	&	Creelman	(2004):	

𝑃 𝑥 𝑠
𝑃 𝑥 𝑛 ≥

1− 𝑝
𝑝

𝐶!" + 𝐶!"
𝐶! + 𝐶!

= 𝛽 = 𝑒!!! 	

The	first	term	is	the	likelihood	ratio	of	a	stimulus	being	a	signal	(s)	or	noise	(n);	p	is	

the	base	rate	of	the	signal;	the	bracketed	term	is	the	cost	ratio,	incorporating	the	

cost	of	false	alarms	(FA),	true	negatives	(TN),	misses	(M),	and	hits	(H);	and	𝛽	is	a	

measure	of	bias	related	to	c	and	d’	(as	seen	in	the	final	term).	When	the	likelihood	
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ratio	is	greater	than	𝛽,	an	observer	should	treat	the	stimulus	as	a	signal.	Assuming	

that	d’	remains	constant	with	changes	in	task,	c	should	respond	to	changes	in	p	and	

the	cost	ratio	(Lynn	&	Barrett,	2014).	We	consider	both	task	features	in	the	study	

design.	

3.1.1.1.	Signal	base	rate	

		 Due	to	the	volume	of	legitimate	email	traffic	and	the	use	of	automatic	

screening	programs,	phishing	emails	typically	have	a	low	base	rate	(<	1%)	

(Symantec,	2016;	Verizon,	2016).	In	the	context	of	baggage	screening,	Wolfe	et	al.	

(2007)	describe	a	prevalence	effect,	whereby	users	are	biased	toward	identifying	

stimuli	as	noise	when	there	is	a	low	base	rate,	leading	to	low	hit	and	false	alarm	

rates.	The	demands	of	experimental	research	typically	lead	to	tasks	with	artificially	

high	base	rates	(e.g.,	Mohan	et	al.,	2012)	in	order	to	keep	costs	down	and	

participants	engaged.	Participants	are,	however,	typically	not	told	the	base	rate,	

leaving	it	unclear	whether	they	assume	a	low	base	rate	(as	in	their	lives)	or	a	much	

higher	one	due	to	the	experimental	context	(“they	wouldn’t	ask	me	to	look	for	

phishing	emails,	if	they	weren’t	going	to	present	them	fairly	often”).	They	may	also	

infer	the	base	rate	based	on	their	intuitions	regarding	whether	experimental	stimuli	

are	signals	or	noise	(Wolfe	et	al.,	2007).	Here,	we	examine	the	effects	of	explicitly	

informing	participants	that	the	phishing	base	rate	is	50%.	If	participants	who	

receive	no	notice	infer	a	50%	base	rate,	then	notification	should	have	little	effect.	If	

they	infer	a	lower	base	rate,	then	their	c	should	be	much	higher,	indicating	less	

caution	regarding	attacks.		
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3.1.1.2.	Costs	

	 The	consequences	of	successful	phishing	can	vary	widely	across	domains.	

The	cost	of	failed	detection	could	be	very	high,	as	with	critical	infrastructure	(e.g.,	an	

electrical	grid	blackout),	or	fairly	low,	as	with	a	personal	laptop	(e.g.,	an	annoying	

virus).	Often,	users	have	little	direct	guidance	about	those	consequences,	beyond	

general	cautionary	messages	(Carpenter,	Zhu	&	Kolimi,	2014).	They	may	also	have	

limited	opportunities	to	learn	from	experience,	as	when	time	separates	the	attack	

and	its	damage	or	when	users	provide	portals	to	attack	distant	targets.	Incentives	

may	also	be	misaligned,	as	when	individuals	bear	the	costs	of	avoidance	actions,	

while	the	benefits	accrue	to	the	system	(e.g.,	Herley	(2009)	discusses	rational	

rejection	of	security	advice).		

	 In	detection	tasks	without	a	clear	payoff	structure,	participants	typically	try	

to	maximize	accuracy	(Maddox,	2002),	which	would	produce	c	=	0	(at	a	50%	base	

rate).	However,	phishing	avoidance	is	an	everyday	task.	In	order	to	capture	

participants’	natural	cost	expectations,	as	best	we	could,	we	did	not	impose	a	cost	

structure,	but	compared	c	for	the	detection	and	behavior	tasks,	expecting	less	

caution	for	the	former,	with	its	reduced	costs.	Within	each	task,	we	expected	

individual	participants’	c	values	to	be	correlated	with	their	judgments	of	the	

consequences	of	falling	for	a	phishing	attack.	For	the	participants	notified	of	the	

50%	base	rate,	we	assume	that	𝛽	equals	the	cost	ratio.	If	the	base	rate	notification	

condition	has	no	effect,	we	can	make	the	same	assumption	for	the	participants	

without	the	notice.	If	the	costs	of	hits	(correctly	identifying	phishing	emails)	and	

true	negatives	(correctly	identifying	legitimate	emails)	are	minimal,	then	𝛽	>	1	(and	
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hence	c	>	0),	implies	a	cost	ratio	with	lower	costs	for	misses	and	greater	costs	for	

false	alarms.	Thus,	participants	who	judge	the	consequences	of	misses	to	be	worse	

should	have	𝛽	<	1	and	a	negative	(or	more	cautious)	c.		

3.1.2.	Factors	that	Influence	Phishing	Susceptibility	

	 	Individuals’	performance	reflects	both	their	ability	and	how	well	they	apply	

it.	In	order	to	disrupt	that	application,	attackers	choose	cues	designed	to	evoke	

heuristic	thinking	and	reduce	systematic	processing.	For	recipients	who	stop	to	

examine	messages,	and	possess	requisite	knowledge	or	experience,	potentially	

useful	cues	include	the	sender,	embedded	URLs,	grammar,	spelling,	sense	of	

urgency,	and	subject	line.	Studies	have,	indeed,	found	less	susceptibility	among	

individuals	who	pay	greater	attention	to	message	cues,	invest	more	cognitive	effort,	

have	more	knowledge	and	experience,	and	are	more	suspicious	(Luo	et	al.,	2013;	

Mayhorn	&	Nyeste,	2012;	Pattinson	et	al.,	2012;	Sheng	et	al.,	2010;	Vishwanath	et	al.,	

2011;	Wang	et	al.,	2012;	Welk	et	al.,	2015;	Wright	et	al.,	2009;	Wright	&	Marett,	

2010).	Rather	than	manipulate	message	features	in	order	to	determine	participants’	

sensitivity	to	them,	we	use	naturalistic	stimuli,	meant	to	capture	everyday	co-

variation	among	the	cues.	We	assess	participants’	overall	feeling	for	their	

discrimination	ability	by	eliciting	their	confidence	in	their	judgment,	expecting	more	

confident	participants	to	be	more	knowledgeable,	although	not	perfectly	calibrated	

(Dhamija	et	al.,	2006;	Lichtenstein	&	Fischhoff,	1980;	Sheng	et	al,	2007).	We	also	use	

a	measure	of	dispositional	suspiciousness,	expecting	those	higher	on	that	trait	to	

perceive	worse	consequences	and	be	more	cautious,	but	not	to	differ	in	their	

discrimination	ability.		
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3.1.3.	Aim	of	Study	

We	(1)	demonstrate	an	approach	applying	SDT	to	phishing	detection,	(2)	

with	two	interrelated	tasks,	detection	and	behavior	in	response	to	phishing;	and	(3)	

manipulating	three	task	variables:	(a)	which	task	comes	first,	detection	or	behavior	

(Experiment	1);	(b)	whether	participants	perform	both	tasks	(Experiment	1)	or	just	

one	(Experiment	2)	and	(c)	whether	participants	are	told,	or	must	infer,	the	base	

rate	of	phishing	messages.	For	each	stimulus,	we	measure	participants’	(a)	

confidence,	(b)	judgments	of	consequences,	and	(c)	response	time.		

3.2.	Method	

3.2.1.	Sample	

	We	recruited	participants	from	U.S.	Amazon	Mechanical	Turk	(mTurk),	a	

crowd-sourced	digital	marketplace	often	used	for	behavioral	research	(Paolacci,	

Chandler	&	Ipeirotis,	2010).	Although	mTurk	samples	are	not	representative	of	the	

general	U.S.	population,	they	are	more	varied	than	convenience	samples	like	

university	students	(Crump,	McDonnell	&	Gureckis,	2013;	Mason	&	Suri,	2012).	

mTurk	studies	often	recruit	some	participants	who	click	through	tasks	without	

performing	them	or	perform	multiple	tasks	simultaneously,	devoting	limited	

attention	to	each	(Downs	et	al.,	2010).	As	a	result,	we	use	attention	checks	to	

measure	participants’	engagement.	This	research	complied	with	the	American	

Psychological	Association	Code	of	Ethics	and	was	approved	by	the	Institutional	

Review	Board	at	Carnegie	Mellon	University.	Informed	consent	was	obtained	from	

each	participant.	
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3.2.2.	Design	

	 	Following	the	scenario-based	design	of	Kumaraguru	et	al.	(2010)	and	

Pattinson	et	al.	(2012),	participants	reviewed	emails	of	a	fictitious	persona.	To	

reduce	participant	burden	and	study	costs,	phishing	emails	appear	at	a	high	base	

rate	(50%),	relative	to	real-world	settings	(<1%).	We	randomly	assigned	

participants	to	conditions	created	by	crossing	three	task	variables:	(1)	task	order	

(Experiment	1	only),	(2)	task	type	(Experiment	2	only),	and	(3)	notification	of	base	

rate.		

3.2.3.	Stimuli	

Participants	reviewed	emails	on	behalf	of	Kelly	Harmon,	an	employee	at	the	

fictional	Soma	Corporation,	about	whom	they	received	a	brief	description.	Phishing	

emails	were	adapted	from	public	archives	and	descriptions	in	news	articles.	Each	

contained	one	or	more	of	the	following	features	often	associated	with	phishing:	(1)	

impersonal	greeting,	(2)	suspicious	URLs	with	a	deceptive	name	or	IP	address,	(3)	

unusual	content	based	on	the	ostensible	sender	and	subject,	(4)	requests	for	urgent	

action,	and	(5)	grammatical	errors	or	misspellings	(Downs	et	al.,	2006).	The	URL	

was	the	most	valid	cue	for	identifying	a	phishing	email.	Legitimate	emails	were	

adapted	from	personal	emails	and	example	emails	on	the	Internet,	leading	to	some	

phishing	cues	appearing	in	legitimate	emails	(e.g.,	misspelling).	Figure 3-1	shows	a	

phishing	email.	We	randomized	the	use	of	personal	greetings	across	all	emails,	but	

did	not	systematically	vary	other	cues.	All	stimuli	mimicked	the	Gmail	format.	
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Figure	3-1.	A	phishing	email	with	all	5	cues.	

3.2.4.	Measures	

	Before	viewing	the	stimuli,	participants	saw	one	of	two	messages	regarding	

the	base	rate:	(1)	“Approximately	half	of	the	emails	are	phishing	emails”	or	(2)	

“Phishing	emails	are	included”	(notification	of	base	rate).	In	Experiment	1,	

participants	answered	the	following	questions	for	each	email:	(1)	“Is	this	a	phishing	

email?”	(Yes/No)	(detection);	(2)	“What	would	you	do	if	you	received	this	email?”,	

with	multiple-choice	options	from	Sheng	et	al.	(2010)	(behavior);	(3)	“How	

confident	are	you	in	your	answer?”	(50-100%)	(confidence);	and	(4)	“If	this	was	a	

phishing	email	and	you	fell	for	it,	how	bad	would	the	consequences	be?”	(1=	not	bad	

at	all;	5=very	bad)	(perceived	consequences).	Experiment	2	randomly	assigned	

participants	to	answer	either	question	1	or	2,	rather	than	both.	

To	calculate	d’	and	c,	the	behavior	decisions	were	converted	to	binary	data.	

Responses	of	“click	link”	and	“reply,”	the	two	actions	that	could	expose	users	to	

negative	consequences,	were	interpreted	as	indicating	that	participants	saw	the	

message	as	“legitimate”;	all	other	responses	were	categorized	as	“phishing.”	
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We	included	4	attention	checks.	At	the	beginning,	two	multiple-choice	questions	

asked	about	the	task	description:	(1)	“Where	does	Kelly	Harmon	work?”	and	(2)	

“What	is	a	phishing	email?”	Embedded	in	the	task	were	two	email	stimuli	used	as	

attention	checks:	(3)	“If	you	are	reading	this,	please	answer	that	this	is	a	phishing	

email”	and	(4)	“If	you	are	reading	this,	please	answer	that	this	is	NOT	a	phishing	

email.”	Many	participants	saw	the	“legitimate”	stimulus	check	as	suspicious,	and	

identified	it	as	phishing,	thereby	failing	the	check	(44	for	Experiment	1	and	33	for	

Experiment	2).	Therefore,	we	removed	it	from	the	analysis.	Attention	was	measured	

as	a	binary	variable	based	on	the	first	3	checks.	Rather	than	removing	participants	

who	failed	checks,	we	used	attention	as	a	predictor	in	the	regression	analyses	

(below).	We	found	similar	results	(see	Appendix	A)	when	excluding	the	10	

participants	who	failed	two	of	three	additional	attention	checks:	illogical	response	

(e.g.,	clicking	the	link	on	an	email	identified	as	phishing),	spending	less	than	10	

seconds	on	more	than	one	email	and	d’	<	0.			

We	measured	the	time	spent	on	the	phishing	information	(phish	info	time)	and	

emails	(median	time/email).	We	used	gender,	age	and	education	to	measure	

demographic	differences.	(See	Appendix	A	for	details	on	treatment	of	these	

variables.)	

3.2.5.	Signal	Detection	Theory	Analysis	

	SDT	assumes	that	both	signals	(phishing)	and	noise	(legitimate	emails)	can	

be	represented	as	distributions	of	stimuli	that	vary	on	the	decision	variable	(here,	

having	properties	of	phishing	emails).	The	further	apart	the	distributions,	the	

greater	the	sensitivity	or	d’.	The	response	bias,	c,	reflects	how	biased	users	are	
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toward	treating	a	stimulus	as	signal	or	noise.	It	is	measured	by	how	far	their	

decision	threshold	is	from	the	intersection	of	the	two	distributions.	A	negative	

response	bias	(c	<	0)	reflects	a	tendency	to	call	uncertain	stimuli	signals.	With	

phishing	as	the	signal,	negative	values	of	c	reflect	a	tendency	to	call	uncertain	

messages	phishing,	indicating	greater	aversion	to	misses	(treating	phishing	

messages	as	legitimate)	than	to	false	alarms	(treating	legitimate	messages	as	

phishing).		

We	estimated	the	SDT	parameters	by	assuming	the	signal	and	noise	

distributions	were	Gaussian	with	equal	variance	(Lynn	&	Barrett,	2014).	To	

accommodate	cases	where	participants	identified	all	stimuli	correctly	or	incorrectly,	

producing	hit	(H)	or	false	alarm	(FA)	rates	of	0	or	1,	a	log-linear	correction	added	

0.5	to	the	number	of	hits	and	false	alarms	and	1	to	the	number	of	signals	(phishing	

emails)	or	noise	(legitimate	emails)	(Hautus,	1995).	Thus:	

H	=	(hits	+	0.5)/(signals	+	1)	

FA	=	(false	alarms	+	0.5)/(noise	+	1)	

d’	=	z(H)	–	z(FA)	

c	=	-0.5(z(H)	+	z(FA))	

3.3.	Experiment	1	

3.3.1.	Procedure	

	Participants	received	information	about	phishing	and	then	evaluated	40	

emails.	The	information	was	the	PhishGuru	comic	strip	from	Kumaraguru	et	al.	

(2010).	It	noted	that	attackers	can	forge	senders	and	warned,	“don’t	trust	links	in	an	
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email.”	For	the	email	evaluation	task,	participants	examined	19	legitimate	emails,	19	

phishing	emails,	and	2	attention	check	emails.	For	each	email,	participants	

performed	the	detection	and	behavior	tasks,	then	assessed	their	confidence	in	their	

judgments	and	the	perceived	consequences	if	the	email	was	phishing.	The	order	of	

the	emails	was	randomized	for	each	participant.	The	order	of	the	detection	and	

behavior	task	was	randomized	across	participants.	

3.3.2.	Sample	

	Of	the	162	participants	who	started	the	experiment,	152	finished.	They	were	

paid	$5.	According	to	self-reports,	58%	were	female	and	45%	had	at	least	a	

Bachelor’s	degree.	The	mean	age	was	32	years	old,	with	a	range	from	19	to	59.		

Of	the	152	participants,	15	failed	at	least	one	attention	check.	For	the	

scenario	checks,	3	failed	the	work	question	and	9	the	phishing	question.	For	the	

stimuli	check,	5	failed	the	“phishing”	version.	They	spent	a	minute	or	two	(Mdn	=	

0.95	min,	M	=	3.2	min,	SD	=	11.5	min)	on	the	phishing	information	and	just	under	a	

minute	per	email	(Mdn	=	43	sec,	M	=	52	sec,	SD	=	38	sec),	with	a	median	overall	time	

of	40	minutes.		

3.3.3.	Results	&	Discussion	

3.3.3.1.	Phishing	detection	performance.		

	We	estimated	d’	and	c	for	the	detection	and	behavior	tasks	separately,	denoted	by	
subscripts	D	and	B,	respectively.		 	
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Table 3-1	shows	aggregate	performance.	Figure 3-2	shows	individual	

performance.	Additional	analysis	found	that	d’	and	c	were	constant	over	the	course	

of	the	experiment	(i.e.,	no	learning	occurred,	see	Appendix	A	for	details).	We	also	

estimated	the	area	under	the	curve	(AUC)	for	the	individual	ROC	curves,	which	is	

comparable	to	d’,	and	𝛽,	which	is	a	function	of	d’	and	c.	Closer	inspection	(detailed	in	

Appendix	A)	suggests	that	some	participants	in	both	tasks	appeared	to	treat	misses	

and	false	alarms	as	equally	costly	(𝛽	=	1),	effectively	making	accuracy	their	criterion.	

In	the	behavior	task,	most	participants	appeared	to	minimize	misses	(𝛽! 	<	1).	

However,	their	thresholds	varied	widely	for	the	detection	task,	with	most	aiming	to	

minimize	false	alarms	(𝛽!	>	1).	As	expected,	average	perceived	consequences	was	

negatively	correlated	with	both	𝛽! ,	r(150)	=	-0.26,	p	=	.001,	and	𝛽! ,	r(150)	=	-0.25,	p	

=	.002,	indicating	that	participants	who	perceived	worse	consequences	had	lower	

implicit	cost	ratios.	Participants	with	a	higher	𝛽!	also	had	higher	𝛽! ,	r(150)	=	0.36,	p	

<	.001.	

	 Detection	task.	Participants’	mean	sensitivity	(d’D	=	0.96)	indicated	modest	

detection	ability.	Their	mean	response	bias	(cD	=	0.32)	meant	that	they	had	to	be	

somewhat	suspicious	before	treating	a	message	as	phishing.	These	parameters	are	

equivalent	to	a	miss	rate	of	44%	and	a	false	alarm	rate	of	24%	--	both	of	which	

would	be	punishingly	high	for	many	computer	systems.	As	seen	in	Figure 3-2a,	both	

parameters	varied	considerably	across	participants.	Some	had	d’D	<	0,	meaning	they	

consistently	misidentified	stimuli.	Most	had	positive	cD	values.	Such	variability	

suggests	that	a	system’s	vulnerability	might	be	very	different	depending	on	whether	
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it	was	determined	primarily	by	the	average	user,	the	worst	user	(in	terms	of	d’	or	c),	

or	the	best	user	(as	a	sentinel	for	problems).	

	 Behavior	task.	When	asked	how	they	would	respond	to	each	email,	

participants	demonstrated	lower	sensitivity	(d'	=	0.39),	along	with	a	bias	toward	not	

clicking	on	links	(c	=	-0.54).	This	combination	is	equivalent	to	a	miss	rate	of	28%	

and	a	false	alarm	rate	of	61%,	also	punishingly	high	for	many	systems.	Figure 3-2b	

shows	the	variability	in	individual	performance.	Performance	on	the	two	tasks	was	

correlated.	Participants	with	a	high	d’	in	the	detection	task	tended	to	also	have	a	

higher	d’	for	the	behavior	task,	r(150)	=	0.61,	p	<	.001.	The	same	was	true	for	

response	bias,	r(150)	=	0.66,	p	<	.001.	

	 Figure 3-3a	shows	responses	on	the	behavior	task,	based	on	whether	the	

participant	judged	a	message	to	be	phishing	or	legitimate	in	the	detection	task.	

Although	participants	sometimes	acted	cautiously	with	messages	that	they	

perceived	as	legitimate	(e.g.,	checking	the	link	or	sender),	they	rarely	chose	to	“click	

link	or	open	attachment”	for	emails	they	perceived	as	phishing.	Figure 3-3b	shows	

these	actions	as	a	function	of	whether	the	messages	were	actually	legitimate	or	

phishing.	Given	participants’	imperfect	detection	ability,	behaviors	consistent	with	

their	beliefs	sometimes	led	to	inappropriate	actions.	Thus,	despite	the	bias	toward	

not	clicking	on	links	revealed	in	cB,	participants	still	succumbed	to	many	phishing	

attacks.	They	knew	what	to	do	with	legitimate	and	phishing	emails,	just	not	which	

they	were	facing.	
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Table	3-1.	SDT	Performance	Parameter	Estimates	

	 Detection	Task	 Behavior	Task	 	
	Experiment	1	

M	(SD)	
Experiment	2	

M	(SD)	
Experiment	1	

M	(SD)	
Experiment	2	

M	(SD)	
Typical		
Range	

d’	 0.96	(0.64)	 0.98	(0.80)	 0.39	(0.50)	 0.41	(0.54)	 0	to	4	
c	 0.32	(0.46)	 0.30	(0.44)	 -0.54	(0.66)	 -0.75	(0.73)	 -2	to	2	
AUC	 0.71	(0.12)	 0.70	(0.14)	 0.66	(0.12)	 0.66	(0.12)	 0.5	to	1	
𝛽	 1.59	(1.13)	 1.73	(1.49)	 0.88	(0.56)	 0.95	(0.43)	 0	to	10	
H	 0.56	(0.19)	 0.57	(0.19)	 0.72	(0.21)	 0.79	(0.16)*	 0	to	1	
FA	 0.24	(0.16)	 0.25	(0.18)	 0.61	(0.21)	 0.65	(0.25)	 0	to	1	
Accuracy	 0.67	(0.11)	 0.67	(0.13)	 0.56	(0.08)	 0.43	(0.09)***	 0	to	1	
Note:	Significant	difference	between	Experiment	1	and	2	based	on	two-sided	t-test	
where	*p	<.05,	***p<.001	
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Figure	3-2.	Individual	variation	for	detection	and	behavior	tasks	in	Experiment	1	
and	2.	The	dotted	lines	denote	the	mathematical	bounds	for	performance	with	a	
false	alarm	or	miss	rate	of	0%.	
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Figure	3-3.	Proportion	of	behavior	based	on	(a)	perceived	and	(b,	c)	actual	type	of	
email.	
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3.3.3.2.	Regression	analysis	

Table 3-2	and	Table 3-3	show	multivariate	linear	regression	models	

predicting	individual	participants’	d’	and	c	between-subjects.	Model	1	considers	the	

two	between-subjects	experimental	task	variables:	(1)	notification	of	base	rate	and	

(2)	task	order.	Model	2	adds	participants’	other	responses:	attention,	phishing	

information	time,	median	time	per	email,	mean	confidence,	and	mean	perceived	

consequences.	Model	3	adds	the	three	demographic	measures:	age,	gender,	and	

college	degree.	Given	the	number	of	statistical	tests	(11),	we	use	alpha	=	.01	as	the	

threshold	for	significance	and	include	tests	at	the	alpha	=	.05	level,	for	the	reader’s	

convenience.	

	Model	1:	Manipulated	between-subject	variables.	Whether	participants	

performed	the	detection	or	the	behavior	task	first	did	not	predict	d’	or	c	for	either	

task,	nor	did	whether	they	received	explicit	notification	of	the	base	rate,	p's	>	.01.		

	 Model	2:	Responses	to	stimuli.	Participants	who	failed	the	attention	checks	

had	lower	sensitivity	on	the	detection	task,	but	were	no	different	on	the	other	

performance	parameters.	Thus,	users	who	paid	less	attention	also	exhibited	lower	

discrimination	ability,	but	did	not	differ	in	how	cautiously	they	acted,	given	their	

perceptions.	Time	spent	on	the	phishing	information	was	not	correlated	with	d’	or	c,	

for	either	task.	Participants	who	spent	more	time	per	email	were	less	likely	to	click	

on	links	(i.e.,	lower	cB),	but	were	no	different	on	the	other	parameters.	The	median	

time	spent	on	each	email	was	uncorrelated	to	confidence	and	perceived	

consequences,	p	>	.05.			
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Table	3-2.	Regression	models	for	d’	(Experiment	1).	

	 Detection	Task	 Behavior	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	 B	(SE)	 B	(SE)	 B	(SE)	 	B	(SE)	 B	(SE)	 B	(SE)	
Intercept	 0.91	(0.09)***	 -2.12	(0.67)**	 -1.32	(0.98)	 	0.34	(0.07)***	 -1.28	(0.56)*	 -0.09	(0.83)	
Knowledge	of	base	rate	 0.07	(0.10)	 0.04	(0.10)	 0.02	(0.10)	 	0.11	(0.08)	 0.10	(0.08)	 0.10	(0.08)	
Task	order	(detection	=	1)	 0.02	(0.10)	 0.08	(0.10)	 0.04	(0.10)	 	0	(0.08)	 -0.01	(0.08)	 -0.05	(0.09)	
Attention	(pass	=	1)		 	 0.52	(0.18)**	 0.49	(0.18)**	 	 	 0.15	(0.15)	 0.12	(0.15)	
log(Phish	info	time)	 	 0.05	(0.04)	 0.05	(0.04)	 	 	 -0.03	(0.04)	 -0.03	(0.03)	
Median	time/email	 	 0.40	(0.22)	 0.48	(0.23)*	 	 	 0.04	(0.18)	 0.17	(0.19)	
Average	confidence	 	 2.45	(0.65)***	 2.23	(0.67)**	 	 	 1.34	(0.55)*	 1.11	(0.57)	
Average	perceived	
consequences	 	 0.07	(0.08)	 0.08	(0.08)	 		 0.09	(0.06)	 0.11	(0.06)	

log(Age)	 	 	 -0.22	(0.21)	 	 	 	 -0.33	(0.17)	
Gender	(male	=	1)	 	 	 0.11	(0.10)	 	 	 	 0.06	(0.09)	
College	(college	degree	=	1)	 	 	 0.19	(0.10)	 	 	 	 0.10	(0.09)	
N	 152	 142	 142	 	152	 142	 142	
Adjusted	R2	 -0.01	 0.15	 0.16	 	0	 0.03	 0.05	
F		 0.24	 4.43***	 3.71***	 		 0.84	 1.59	 1.68	
Notes:	*p<.05	**p<.01	***p<.001	 	 	 	 	 	 	
Confidence	was	evaluated	from	0.5-1	and	perceived	consequences	were	evaluated	
from	1-5.	
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Table	3-3.	Regression	models	for	c	(Experiment	1).	

	
	 Detection	Task	 Behavior	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	 B	(SE)	 B	(SE)	 B	(SE)	 	B	(SE)	 B	(SE)	 B	(SE)	
Intercept	 0.32	(0.07)***	 -0.43	(0.47)	 0.06	(0.70)	 	-0.67	(0.10)***	 -0.64	(0.59)	 0.10	(0.87)	
Knowledge	of	base	rate	 0.03	(0.07)	 0.01	(0.07)	 0.01	(0.07)	 	0.16	(0.11)	 0.12	(0.09)	 0.13	(0.09)	
Task	order	(detection	=	1)	 -0.04	(0.07)	 -0.01	(0.07)	 -0.01	(0.07)	 	0.12	(0.11)	 0.11	(0.09)	 0.11	(0.09)	
Attention	(pass	=	1)	 	 0.08	(0.13)	 0.08	(0.13)	 	 	 -0.19	(0.16)	 -0.19	(0.16)	
log(Phish	info	time)	 	 0.01	(0.03)	 0.01	(0.03)	 	 	 0	(0.04)	 0.01	(0.04)	
Median	time/email	 	 0.03	(0.15)	 0.10	(0.16)	 	 	 -0.79	(0.19)***	 -0.70	(0.20)***	
Average	confidence	 	 1.68	(0.46)***	 1.81	(0.48)***	 		 2.34	(0.58)***	 2.38	(0.59)***	
Average	perceived	
consequences	 	 -0.24	(0.05)***	 -0.24	(0.05)***	 	 	 -0.43	(0.07)***	 -0.42	(0.07)***	

log(Age)	 	 	 -0.17	(0.15)	 	 	 	 -0.22	(0.18)	
Gender	(male	=	1)	 	 	 -0.13	(0.07)	 	 	 	 -0.14	(0.09)	
College	(college	degree	=	1)	 	 	 0.02	(0.07)	 	 	 	 -0.13	(0.09)	
N	 152	 142	 142	 	 152	 142	 142	
Adjusted	R2	 0	 0.18	 0.18	 	0.01	 0.37	 0.39	
F		 0.25	 5.34***	 4.16***	 		 1.57	 13.02***	 9.85***	
Notes:	*p<.05	**p<.01	***p<.001	 	 	 	 	 	 	
Confidence	was	evaluated	from	0.5-1	and	perceived	consequences	were	evaluated	from	1-5.	 	
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	 	For	the	detection	task,	participants’	sensitivity	was	positively	correlated	

with	their	confidence,	consistent	with	having	some	metacognitive	ability	(i.e.,	

knowing	how	much	they	know).	Participants	who	were	more	likely	to	treat	emails	

as	legitimate	(i.e.,	higher	cD)	also	tended	to	be	more	confident.	Participants	who	saw	

more	severe	consequences	were	less	likely	to	identify	emails	as	legitimate,	but	had	

no	different	sensitivity.	For	the	behavior	task,	participants	who	were	more	likely	to	

click	on	links	(i.e.,	higher	cB)	tended	to	be	more	confident	and	perceive	fewer	

consequences.	We	observed	no	differences	in	terms	of	sensitivity.		

	 Model	3:	Demographics.	No	demographic	variable	was	a	significant	

predictor	of	d’	or	c,	for	either	task,	p	>	.01.		 	

For	both	tasks,	d’	and	c	were	unrelated	to	whether	participants	were	notified	

of	the	base	rate	or	which	task	they	completed	first.	Notification may have had no 

effect because participants who received no notice assumed a base rate close to 50% 

(because it was an experiment), or because those who received notice did not (or could 

not) incorporate the stated base rate in their responses given that there was no feedback 

(Goodie & Fantino, 1999; Newell & Rakow, 2007). Task	order	might	have	had	no	

effect	because,	once	participants	performed	both	tasks	on	a	few	stimuli,	the	two	

merged	in	their	minds.	Experiment	2	examines	this	possibility,	as	well	as	replicating	

the	study	as	a	whole,	by	having	each	participant	perform	just	one	task.		
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3.4.	Experiment	2	

3.4.1.	Procedure	

	Experiment	2	repeats	the	procedure	of	Experiment	1,	except	that	

participants	were	randomly	assigned	to	perform	either	the	detection	or	the	

behavior	task.		

3.4.2.	Sample	

	One	hundred	participants	completed	the	online	experiment,	with	52	

performing	the	detection	task	and	48	the	behavior	task.	Participants who had 

completed Experiment 1 were not eligible for Experiment 2 (and were screened using 

mTurk qualifications). They	were	paid	$5.	The	median	time	spent	was	30	minutes.	

According	to	self-reports,	48%	were	female	and	40%	had	at	least	a	Bachelor’s	

degree.	The	mean	age	was	33	years	old,	with	a	range	of	19	to	60.		

Of	the	100	participants,	9	failed	at	least	one	attention	check.	For	the	scenario	

checks,	1	participant	failed	the	work	question	and	4	the	phishing	question.	Four	

failed	the	stimulus	check.	Presumably	because	participants	only	completed	one	task,	

the	median	time	per	email	was	lower	(Mdn	=	29	sec,	M	=	43	sec,	SD	=	49	sec),	t(183)	

=	2.87,	p	=	.005.	There	was	no	significant	difference	in	time	spent	on	the	phishing	

information,	p	>	.05.		

3.4.3.	Results	&	Discussion	

	 In	Experiment	2,	participants	explicitly	performed	only	one	of	the	two	tasks.	
As	seen	in		 	



	

 
	

45	

Table 3-1	and	Figure 3-2,	performance	was	remarkably	similar	to	Experiment	1,	where	

participants	performed	both.	Two-sided	t-tests	found	no	significant	differences	(p	>	

.05)	between	the	studies,	in	sensitivity,	response	bias,	confidence,	or	perceived	

consequences.	Appendix	A	provides	additional	detail.	

	 One	possible	explanation	for	the	similarity	of	the	results	in	the	two	

experiments	is	that	people	implicitly	make	a	detection	decision	when	making	a	

behavioral	choice,	and	vice	versa.	As	a	result,	the	second	task	is	there	implicitly,	

even	when	not	performed	explicitly.	If	so,	then	the	similarity	of	the	results	suggests	

the	robustness	of	performance	on	these	tasks,	which	was	also	unaffected	by	the	

order	in	which	they	were	performed	and	whether	the	base-rate	was	stated.	The	few	

differences	between	the	experiments,	reported	in	Appendix	A,	were	in	whether	

coefficients	in	the	regressions	were	above	or	below	statistical	significance	(with	the	

signs	being	consistent).		

3.5.	General	Discussion	

	SDT	disentangles	and	quantifies	sensitivity	and	response	bias.	Here,	we	

apply	it	to	distinguishing	phishing	emails	from	legitimate	ones,	looking	separately	at	

detection	(is	this	message	phishing?)	and	behavior	(how	will	you	respond	to	it?),	

building	on	previous	research	(Kumaraguru	et	al,	2010;	Pattinson	et	al.,	2012;	Sheng	

et	al.,	2010;	Vishwanath	et	al.,	2011;	Wright	&	Marett,	2010).	After	reviewing	

phishing	information,	participants	evaluated	40	email	messages	on	behalf	of	a	

fictitious	recipient.	For	each	message,	they	expressed	their	confidence	in	their	

evaluation	and	rated	the	severity	of	the	consequences	if	the	email	was	phishing.	

Experimental	manipulations	varied	whether	the	detection	and	behavior	tasks	were	
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performed	together	or	separately,	which	was	done	first	(when	together),	and	

whether	the	50%	base	rate	of	phishing	messages	was	stated	explicitly.	

Our	results	suggest	four	primary	findings.	First,	participants’	behavior	almost	

always	reflected	appropriate	or	cautious	actions,	given	their	detection	beliefs	

(Figure 3-3).	However,	their	imperfect	detection	ability	meant	that	such	

conditionally	appropriate	behavior	still	allowed	many	successful	phishing	attacks.	

Thus,	it	appears	that	users	have	learned	what	to	do	about	phishing,	but	not	when	to	

do	it.		

Second,	the	two	tasks,	deciding	whether	a	message	is	legitimate	and	what	to	

do	about	it,	are	naturally	intertwined.	In	Experiment	1,	performance	on	the	two	

tasks	was	correlated,	such	that	participants	who	had	a	higher	d’	for	one	also	had	

higher	d’	for	the	other.		Moreover,	performance	was	the	same,	whichever	task	was	

completed	first,	suggesting	that	the	two	could	not	be	separated.	Experiment	2	found	

similar	performance	with	participants	who	explicitly	performed	just	one	of	the	

tasks.	Given	how	intertwined	the	two	tasks	seem	to	be,	interventions	that	address	

one	might	naturally	address	the	other.	An	intervention	that	succeeded	in	separating	

them	might	improve	detection,	by	focusing	users	on	that	task	before	moving	on	to	

behavior,	and	improve	behavior,	by	allowing	time	to	reflect	on	the	limits	to	their	

detection	ability.	However,	as	Herley	(2009,	2014)	observed,	slowing	the	process	

degrades	the	user	experience,	hence	might	be	rejected,	even	if	that	is	just	what	users	

need.	

Third,	the	differences	between	cD	and	cB	suggest	that	participants	used	

different	decision	strategies	for	the	two	tasks.	SDT	research	has	found	that	
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participants’	response	bias	(c)	is	sensitive	to	both	the	base	rate	and	the	costs	of	

correct	and	incorrect	choices.	The	present	results	suggest	that	all	participants	

assumed	roughly	the	same	(50%)	base	rate.	Stating	that	rate	explicitly	made	no	

difference	in	either	experiment,	nor	was	there	evidence	of	learning	over	the	course	

of	the	experiment.	Therefore,	differences	in	c	can	be	attributed	to	differences	in	

perceived	costs.	Although	the	experiment	imposed	no	actual	costs,	participants	

might	reasonably	have	imported	cost	expectations	from	their	everyday	lives.		

Responses	to	the	detection	task	indicated	that	most	participants	treated	false	

alarms	as	more	costly	than	misses	(𝛽	>	1),	whereas	the	ratio	was	reversed	for	the	

behavior	tasks	(𝛽	<	1).	Wickelgren	(1977)	shows	how,	even	when	payoffs	are	clear,	

people	may	lack	the	feedback	needed	to	estimate	how	well	they	are	achieving	their	

desired	tradeoffs.	Thus,	our	estimates	of	response	bias	represent	the	tradeoffs	that	

participants	achieved,	and	not	necessarily	those	that	they	intended.	To	the	extent	

that	these	estimates	capture	participants’	actual	preferences,	they	suggest	users	

engage	in	relatively	lax	screening	for	detection,	in	contrast	to	more	rigorous	

evaluation	for	behavior.		

	 Fourth,	individual	performance	varies	widely,	for	both	d’	and	c.	In	the	

regression	analyses,	the	most	consistent	predictors	were	participants’	confidence	in	

their	ability	and	perception	of	the	consequences.	Confidence	was	strongly	related	to	

d’	for	the	detection	task,	more	weakly	for	the	behavior	task	–	consistent	with	the	

common	result	that	confidence	is	positively,	but	imperfectly,	correlated	with	

knowledge	(Fischhoff	&	MacGregor,	1986;	Lichtenstein	&	Fischhoff,	1980;	Moore	&	

Healy,	2008;	Parker	&	Stone,	2014).	For	both	tasks,	more	confident	individuals	had	
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higher	values	of	c,	hence	were	more	willing	to	treat	messages	as	legitimate.	

Participants	who	saw	greater	consequences	had	lower	values	of	c,	hence	were	less	

willing	to	treat	messages	as	legitimate,	a	result	found	in	other	studies	of	phishing	

detection	(Sheng	et	al.,	2010;	Welk	et	al,	2015;	Wright	&	Marett,	2010).	In	future	

research,	better	measurement	of	perceived	consequences	might	improve	these	

predictions	and	clarify	the	causal	relationship	between	caution	and	confidence.		

	 Future	research	using	SDT	also	offers	the	possibility	of	assessing	the	effects	

of	interventions	that	might	affect	both	d’	and	c,	such	as	brief	training	exercises	at	a	

high	base	rate	with	full	feedback	(Kaivanto,	2014;	Wolfe	et	al.,	2007;	2013),	phishing	

detection	games	(Kumaraguru	et	al.,	2010;	Sheng	et	al.,	2010;	Welk	et	al.,	2015),	and	

communicating	cost	information	(Davinson	&	Sillence,	2010;	Hardee;	Mayhorn	&	

West,	2006).	That	research	could	also	examine	the	effects	of	targeting	users	who	

pose	the	greatest	threat	to	system	performance	(Egelman	&	Peer,	2015),	such	as	

those	identified	here	with	d’	<	0	–	indicating	no	detection	ability	or	even	systematic	

confusion.		

	 The	patterns	observed	in	these	two	experiments	were	robust	across	three	

manipulations	that	could,	plausibly,	have	affected	them,	namely,	notifying	

participants	of	the	base	rate,	separating	the	detection	and	behavior	tasks,	and	

varying	their	order.	Although	that	robustness	increases	confidence	in	these	

patterns,	we	would	hesitate	to	generalize	the	performance	estimates	observed	here	

beyond	the	present	experimental	setting.	Speculatively,	sensitivity	might	be	better	

or	worse	with	individuals’	personal	emails,	found	in	a	more	familiar	context,	but	

also	amidst	the	distractions	of	everyday	life,	where	monitoring	phishing	is	a	
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secondary	task.	Indeed,	performance	here	might	be	a	best-case	scenario,	with	

phishing	the	primary	task	and	a	high	base	rate	of	signals	(Wolfe	et	al.,	2007).	

Nonetheless,	performance	here	was	still	imperfect,	with	evidence	suggesting	that	

participants	were	trying:	attention	checks,	orderly	regression	results,	robustness	of	

replication,	and	differential	responses	to	the	detection	and	behavior	tasks	that	

plausibly	reflect	real-world	sensitivity.		

	 Overall,	participants	exhibited	cautious,	informed	behavior.	However,	their	

detection	ability	was	sufficiently	poor	that	their	behavior	could	imperil	computer	

systems	dependent	on	this	human	element.	Based	on	these	results,	two	promising	

places	for	system	operators	to	focus	are	helping	users	to	understand	the	

consequences	of	successful	phishing	attacks	and	the	validity	of	the	signal	sent	by	

their	own	feelings	of	confidence.
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 Comparing	Phishing	Vulnerability	in	the	Lab	to	4.
Real	World	Outcomes	

	

4.1.	Introduction	

Translating	human	behavior	from	the	laboratory	to	the	real	world	is	

complex.	When	in	a	laboratory	environment,	participants	know	that	they	are	being	

observed	and	may	shift	their	behavior	to	better	align	with	(or	perhaps	frustrate)	the	

perceived	research	goals	(Orne,	1962).	In	the	real	world,	those	potential	pressures	

are	lacking,	but	other	varied,	possibly	unknown	and	unmeasured,	variables	may	

influence	behavior.	When	measuring	human	behavior	in	either	context,	researchers	

must	establish	the	validity	of	their	measurement	procedures.	Three	forms	of	validity	

are	commonly	considered,	face	validity,	in	the	sense	that	a	measure	looks	like	the	

phenomenon	that	it	is	claimed	to	measure;	construct	validity,	which	assesses	

whether	a	measure	is	correlated	to	other,	theoretically	related	measures;	and	

predictive	validity,	whether	a	measure	predicts	the	behavior	that	it	is	claimed	to	

measure	(Cronbach	&	Meehl,	1955).		

Here,	we	assess	the	validity	of	our	experimental	measures	of	phishing	

detection	with	users	from	the	Security	Behavior	Observatory	(SBO),	a	field	study	

gathering	detailed	data	on	a	community	sample	of	computer	users’	security	habits	

over	time	(Forget	et	al.,	2014).		Specifically,	we	(1)	assess	face	validity	by	examining	

the	generality	of	our	experimental	results	with	this	community	population	(vs.	

Amazon	mTurk);	(2)	evaluate	the	construct	validity	of	those	results,	by	comparing	

them	with	the	Security	Behavior	Intentions	Scale	(SeBIS)	(Egelman	&	Peer,	2015);	

and	(3)	evaluate	the	predictive	validity	of	those	measures	by	comparing	them	to	
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real-world	negative	outcomes,	as	reflected	in	malicious	URLs,	malware,	and	

malicious	files	observed	on	users’	home	computers.	However,	as	described	below,	

the	relationship	between	susceptibility	to	phishing	attacks	and	evidence	of	the	

security	lapses,	as	measured	by	the	SBO	measures,	is	not	straightforward.		

4.1.1.	Home	Computer	Security	

Maintaining	security	on	a	home	computer	is	difficult.	Home	users	often	don’t	

know	which	security	practices	are	most	important	(Ion	et	al.,	2015)	and	may	have	

beliefs	that	conflict	with	common	security	advice	(Camp,	2009;	Wash,	2010;	Wash	et	

al.,	2015).	Users	are	expected	to	keep	their	system	(individual	software	programs	as	

well	as	operating	system)	up	to	date,	avoid	suspicious	links	and	attachments	(e.g.	

phishing	attacks),	choose	secure	passwords	and	install	security	programs	(e.g.	

antivirus).	Many	struggle	to	follow	all	these	recommendations,	despite	best	

intentions.	

At	the	same	time,	cyber	attacks	are	becoming	more	varied	and	pervasive	

(Symantec,	2016;	Verizon,	2016).	For	example,	phishing	attacks	are	no	longer	

limited	to	email,	but	may	occur	over	instant	messenger,	social	media,	or	text	

messages	(Symantec,	2016).		There	are	products	to	help	protect	users.	For	example,	

email	providers	use	spam	filters,	browsers	employ	blacklists	to	block	malicious	

websites	(Sheng	et	al.,	2009b)	and	anti-virus	programs	block	and	delete	malicious	

files	and	software.	In	some	cases,	this	requires	user	engagement,	for	example,	users	

must	update	their	anti-virus	program.	In	other	cases,	such	as	browser	blacklists,	

users	have	no	control.		
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As	with	any	threat,	negative	computer	security	outcomes	are	related	to	

exposure	as	well	as	vulnerability.	Thus,	unsophisticated	or	careless	users	may	

escape	harm	if	they	use	their	computers	little	or	avoid	dangerous	situations	–	

perhaps	as	a	result	of	recognizing	their	limits.	Conversely,	knowledgeable	users	may	

ward	off	a	high	proportion	of	attacks,	yet	still	succumb	if	they	use	their	computers	

heavily	or	are	a	valuable	target,	subject	to	particularly	effective	attacks	(such	as	

spear	phishing).	Research	on	phishing	susceptibility	suggests	that	individuals	with	

higher	computer	literacy	are	less	susceptible	to	phishing	attacks	(Sheng	et	al.,	2010;	

Wright	&	Marrett,	2010),	which	may	be	strongly	enough	correlated	to	frequency	of	

computer	use	(Appel,	2011)	to	overcome	the	increased	opportunities	to	succumb.	

However,	research	on	the	SBO	data	suggests	that	security	engagement,	as	measured	

in	user	interviews,	is	not	a	good	predictor	of	security	outcomes	(Forget	et	al.,	2016).	

In	the	studies	that	follow,	we	first	ask	whether	SBO	participants	perform	

similarly	to	mTurk	participants	on	the	phishing	detection	experiment	studied	in	

Chapter	3.	Next,	we	compare	performance	on	the	experimental	tasks	with	an	

individual	difference	measure	of	security	awareness,	the	Security	Behavior	

Intentions	Scale	(SeBIS)	(Egelman	&	Peer,	2015).	Finally,	we	assess	whether	

experimental	performance	correlates	with	measures	of	real-world	vulnerability	

available	in	the	SBO,	considering	as	best	we	can	the	potential	confounds	described	

above.		
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4.2.	Method	

4.2.1.	Sample	

SBO	participants	were	recruited	from	Pittsburgh-area	participant	pools	and	

predominantly	include	retirees	and	college	students.	Participants	agreed	to	have	the	

SBO	software	installed	on	their	personal	computers,	which	collects	data	on	

browsing,	installed	applications,	processes,	network	connections,	events,	and	more.	

Active	SBO	participants,	who	contributed	more	than	a	week’s	worth	of	data	between	

October	2015	and	February	2016,	were	recruited	to	participate	in	the	phishing	

detection	experiment.	In	addition	to	their	monthly	compensation	for	the	SBO,	each	

participant	received	$20	upon	completing	the	phishing	detection	experiment.	For	

participants	who	did	not	start	the	experiment,	we	sent	1	reminder.	For	participants	

who	started,	but	did	not	finish	the	experiment,	we	sent	2-3	reminders.	

Ultimately,	we	recruited	132	SBO	participants	to	participate	in	the	phishing	

detection	experiment.	Of	those,	121	started	the	survey	and	98	finished,	for	a	74%	

response	rate.	We	excluded	5	participants	who	had	less	than	7	days	of	data	in	the	

SBO	database.	The	final	sample	represents	44%	of	all	the	SBO	participants	

(including	inactive	participants)	at	that	time.	As	shown	in	Table 4-1,	the	SBO	sample	

was	older,	t(130)	=	4.32,	p	<	.001,	and	had	a	higher	proportion	of	college-educated	

individuals,	t(214)	=	3.16,	p	=	.002,	than	the	mTurk	sample	in	Chapter	3.	There	was	

no	difference	in	terms	of	gender,	𝛼	=	.05.	Older	participants	tended	to	be	more	

educated,	in	part	because	some	of	the	younger	participants	were	in	college	(thus	

had	not	yet	completed	their	degree),	r(95)	=	0.33,	p	=	.001.	The	SBO	sample	

resembled	the	SBO	population	on	these	variables.	
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Table	4-1.	Comparison	of	mTurk	and	SBO	demographics.		

Variable	 mTurk	 SBO	Sample	 All	SBO	
Female	 58%	 60%	 61%	

Bachelors+	 45%	 63%	 58%	
Age	 32	[19,	59]	 41	[19,	81]	 46	[19,	87]	
N	 151	 93	 213	

4.2.2.	Phishing	Detection	Experiment	(Laboratory)	

We	measured	phishing	detection	ability	using	signal	detection	theory	(SDT)	

(Chapter	3).	Signal	detection	theory	is	a	method	for	distinguishing	between	users’	

ability	to	tell	the	difference	between	phishing	and	legitimate	emails	(sensitivity	or	

d’)	and	bias	toward	identifying	uncertain	emails	as	phishing	or	legitimate	(response	

bias	or	c).	We	followed	the	scenario-based	design	of	Kumaraguru	et	al.	(2010)	and	

Pattinson	et	al.	(2012),	with	participants	reviewing	emails	of	a	fictitious	persona.	

Participants	received	information	about	phishing	and	then	evaluated	40	emails.	

Phishing	emails	appeared	in	our	lab	experiment	at	a	high	base	rate	(50%),	relative	

to	real-world	settings	(<1%),	in	order	to	reduce	participant	burden.	The	information	

was	the	PhishGuru	comic	strip	from	Kumaraguru	et	al.	(2010).		

We	used	the	same	measures	described	in	Chapter	3,	repeated	here	for	

completeness.	Before	viewing	the	emails,	participants	saw	one	of	two	messages	

regarding	the	base	rate:	(1)	“Approximately	half	of	the	emails	are	phishing	emails”	

or	(2)	“Phishing	emails	are	included”	(notification	of	base	rate).	For	each	email,	

participants	answered	the	following	questions:	(1)	“Is	this	a	phishing	email?”	

(Yes/No)	(detection);	(2)	“What	would	you	do	if	you	received	this	email?”,	with	

multiple-choice	options	from	Sheng	et	al.	(2010)	(behavior);	(3)	“How	confident	are	

you	in	your	answer?”	(50-100%)	(confidence);	and	(4)	“If	this	was	a	phishing	email	
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and	you	fell	for	it,	how	bad	would	the	consequences	be?”	(1=	not	bad	at	all;	5=very	

bad)	(perceived	consequences).	We	also	measured	attention	(binary	measure	based	

on	3	questions:	“where	does	Kelly	Harmon	work?”,	“what	is	a	phishing	email?”,	and	

an	email	that	said	“If	you	are	reading	this,	please	answer	that	this	is	a	phishing	

email.”),	the	time	spent	on	the	phishing	information	(phish	info	time),	and	median	

time	spent	on	each	email	(median	time/email).	We	also	collected	demographic	

information	on	gender,	age,	and	education.	

We	estimated	four	phishing	detection	performance	measures:	(1)	detection	

sensitivity	(d’D),	the	ability	to	tell	the	difference	between	phishing	and	legitimate	

emails;	(2)	detection	response	bias	(cD),	bias	toward	identifying	an	email	as	phishing	

(negative	c)	or	legitimate	(positive	c);	(3)	behavior	sensitivity	(d’B),	the	ability	to	

distinguish	between	when	to	click	on	links	and	when	not	to;	and	(4)	behavior	

response	bias	(cB),	measure	of	bias	toward	clicking	on	links	(positive	c)	or	not	

(negative	c).	

4.2.3.	Security	Behavior	Intentions	Scale		

At	a	separate	time	in	a	separate	study,	84	participants	completed	the	Security	

Behavior	Intentions	Scale	(SeBIS)	(Egelman	&	Peer,	2015).	The	SeBIS	has	four	

subscales:	device	securement,	password	generation,	proactive	awareness,	and	

updating.	In	total,	it	has	16	statements	rated	on	a	Likert	scale	from	1	(Never)	to	5	

(Always).	The	proactive	awareness	subscale	includes	5	statements	specifically	

related	to	assessing	links,	such	as	“when	someone	sends	me	a	link,	I	open	it	without	

first	verifying	where	it	goes”	(reverse	coded)	and	“I	know	what	website	I’m	visiting	

based	on	its	look	and	feel,	rather	than	by	looking	at	the	URL	bar”	(reverse	coded).	
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Low	scores	on	the	proactive	awareness	subscale	suggest	users	do	not	pay	close	

attention	to	URLs	and	were	related	to	impulsivity,	risk-taking,	and	dependence	(i.e.	

relying	on	other	people),	which	is	consistent	with	the	phishing	detection	literature	

(Egelman	&	Peer,	2015).	Egelman,	Harbach	&	Peer	(2016)	also	found	that	

performance	on	the	proactive	awareness	scale	was	correlated	with	ability	to	detect	

a	phishing	website	in	a	laboratory	environment	without	priming	(i.e.	being	told	that	

they	were	being	tested	on	their	ability	to	detect	phishing	websites).	The	only	way	to	

detect	that	it	was	a	phishing	website	was	to	look	at	the	URL.	Although	only	22	of	718	

participants	correctly	identified	the	phishing	website,	their	proactive	awareness	

scores	were	significantly	higher	than	those	of	the	rest	of	the	sample	(Egelman,	

Harbach	&	Peer,	2016).	

4.2.4.	Behavioral	Outcomes	(Real	World)	

We	expect	users	who	are	more	susceptible	to	phishing	to	experience	more	

negative	outcomes	in	real	life.	Phishing	and	malware	are	increasingly	intertwined	

(Sheng	et	al.,	2009a),	so	we	measured	3	negative	outcomes	related	to	phishing	

susceptibility	in	the	SBO	dataset:	(1)	visits	to	malicious	URLs,	(2)	installed	malware,	

and	(3)	presence	of	malicious	files.	Malicious	URLs	were	identified	using	the	Google	

Safe	Browsing	data	set	for	both	the	browser	(Internet	Explorer,	Chrome,	or	Firefox)	

and	network	packet	data.	Due	to	technical	limitations	for	browser	extensions,	we	

were	unable	to	collect	data	from	other	popular	browsers,	such	as	Microsoft	Edge.	

The	network	packet	data	include	all	HTTP	traffic	for	each	webpage,	while	the	

browser	data	only	records	the	webpage	URL.	The	average	webpage	has	

approximately	100	http	requests	for	the	html,	CSS,	images,	ads,	multimedia,	
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JavaScript,	Flash	and	other	files	that	form	a	single	webpage	(HTTP	Archive,	2016).	In	

addition,	http	requests	can	be	made	from	non-browser	applications,	such	as	Spotify	

music	streaming.	We	identified	malware	via	Should	I	Remove	it?	

(shouldiremoveit.com)	and	malicious	files	via	VirusTotal	(virustotal.com).	Malicious	

files	were	identified	across	the	entire	machine,	while	malware	was	limited	to	

installed	applications.	We	assessed	each	outcome	as	a	binary	variable	(i.e.	1	=	

outcome	observed	at	least	once	and	0	=	no	outcome	observed),	rather	than	a	

continuous	one	(i.e.,	number	of	negative	outcomes)	due	to	the	high	number	of	

participants	who	had	no	negative	outcome	(i.e.	have	never	visited	a	malicious	

website	or	have	no	malware)	and	the	unreliability	of	some	of	the	count	data	(Long,	

1997).		

To	assess	predictive	validity,	we	performed	logistic	regression,	employing	a	

likelihood	ratio	test	to	test	the	degree	to	which	users’	signal	detection	parameter	

estimates	improved	model	fit	for	predicting	each	outcome.	We	followed	the	logistic	

model	construction	strategy	outlined	in	Hosmer,	Lemeshow	&	Sturdivant	(2013)	to	

identify	appropriate	behavioral	predictors	to	describe	the	variation	in	the	outcomes.		

They	recommend	identifying	potential	predictors,	performing	univariate	analysis	to	

identify	ones	related	to	the	outcomes,	and	eliminating	unrelated	variables	from	the	

regression	analysis.	The	potential	predictors	are	described	in	Sections	4.2.4.1	and	

4.2.4.2.	

4.2.4.1.	Browsing	predictors	

We	identified	potential	predictors	related	to	browsing	exposure	and	

vulnerability.	We	expected	users	with	higher	browsing	exposure	to	be	more	likely	to	
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visit	malicious	URLs	in	both	the	browser	and	network	packet	data.	We	identified	3	

variables	to	describe	exposure,	which	were	calculated	separately	for	the	browser	

and	network	packet	data	to	account	for	the	differing	scale.	These	include	counts	of	

(1)	total	URLs/day,	(2)	unique	URLs/day,	and	(3)	domains/day.	Each	count	per	day	

only	included	active	days.	Days	where	the	computer	was	not	used	or	data	were	not	

recorded	(e.g.	on	a	vacation)	were	not	included	in	the	count	of	days.	We	aimed	to	

measure	browsing	vulnerability	in	terms	of	counts	of	clicked	email	links/day.	We	

expected	users	who	click	on	more	links	in	emails	to	be	more	likely	to	visit	a	

malicious	URL.	We	assess	this	in	2	ways,	(1)	URL	tracking,	for	URLs	that	include	

“mail”	or	“email”	after	=,	&,	or	?	(excluding	email	domains),	and	(2)	source	data,	

where	the	source	URL	is	an	email	domain	and	the	destination	is	not	–	which	does	

not	capture	links	clicked	from	an	email	client,	such	as	Outlook).	For	the	network	

packet	data,	we	were	only	able	to	use	the	tracking	method,	because	source	data	

were	unavailable.	In	addition,	for	the	browser	data,	we	assessed	visits	to	malicious	

URLs	as	a	function	of	browser.	Most	browsers	block	access	to	known	malicious	

URLs,	but	vary	in	terms	of	how	long	that	takes,	which	may	or	may	not	be	before	a	

user	clicks	on	the	link.	Internet	Explorer	is	best	at	blocking	malware,	but	Chrome	

tends	to	block	malicious	URLs	faster	(Abrams	et	al.,	2014;	Drake	et	al.,	2011;	Sheng	

et	al.,	2009b).	

4.2.4.2.	Software	predictors	

We	also	identified	potential	predictors	related	to	software	exposure	and	

vulnerability.	We	expected	users	with	higher	software	exposure	to	be	more	likely	to	

have	malware	and	malicious	files.	We	measured	software	exposure	as	a	count	of	
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total	software,	excluding	updates,	installers,	and	language	packages.	We	also	aimed	

to	measure	software	vulnerability	with	3	variables,	(1)	delayed	software	updates,	(2)	

days	since	Windows	update,	and	(3)	third-party	anti-virus	(AV).	Delayed	software	

updates	is	a	count	of	outdated	versions	of	popular	software	including	Adobe	Flash,	

Adobe	Reader,	Java,	Internet	Explorer,	Chrome,	and	Firefox	and	ranges	from	0	to	6.	

A	program	was	considered	outdated	if	the	user	was	not	using	the	latest	version	the	

day	after	it	was	released.	Days	since	Windows	update	is	a	count	of	days	since	a	

Windows	update	was	installed.	This	measure	does	not	capture	why	users	waited	to	

install	updates	(e.g.	users	who	actively	delayed	updates	vs.	those	had	not	been	

prompted	because	their	computer	had	been	off).	

For	third-party	AV,	we	assigned	a	binary	variable	where	1	=	running	AV	and	

0	=	no	AV.	An	AV	program	was	considered	“running”	if	it	was	in	use	for	>	7	days,	

updating	without	update	errors,	and	scanning.	In	some	cases,	it	was	impossible	to	

know	if	an	AV	program	met	all	of	these	criteria	because	the	data	were	not	logged	or	

the	log	was	not	informative.	In	those	cases,	we	used	the	available	subset	of	these	

criteria.	Thus,	we	assumed	the	AV	was	running	unless	there	was	evidence	

otherwise.	Table 4-2	summarizes	the	AV	status	of	the	users	in	the	sample.	We	were	

able	to	examine	the	logs	for	McAffee,	Malwarebytes,	Webroot,	Avast,	Norton,	

Kaspersky,	and	AVG	to	assess	time.	The	median	was	168	days	in	use	(M	=	221,	SD	=	

237).	We	were	unable	to	assess	updating	for	Avast	and	unable	to	assess	scanning	for	

McAfee,	Avast,	and	AVG.		
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Table	4-2.	Number	of	users	with	each	AV	and	AV	status.	

Anti-Virus	Program	 Installed	 Log	 Updating	
Update	
Errors	 Scanning	 Detections	

Windows	Defender	 NA	 79	 79	 48	 57	 20	
McAfee	 27	 48	 16	 3	 Unclear	 Unclear	
Malwarebytes	 24	 23	 23	 9	 18	 2	
Webroot	 9	 9	 9	 2	 9	 6	
Avast	 7	 9	 Unclear	 Unclear	 Unclear	 Unclear	
Norton	 18	 2	 2	 2	 2	 2	
Kaspersky	 6	 2	 2	 2	 2	 1	
AVG	 2	 1	 1	 1	 Unclear	 Unclear	
Verizon	Internet	Security	
Suite	

4	 NA	 NA	 NA	 NA	 NA	

LiveUpdate	 2	 NA	 NA	 NA	 NA	 NA	
Avira	 2	 NA	 NA	 NA	 NA	 NA	
PCKeeper		 2	 NA	 NA	 NA	 NA	 NA	
Trend	Micro	Titanium	
Internet	Security	

2	 NA	 NA	 NA	 NA	 NA	

Optimo	System	Security	
Suite	

1	 NA	 NA	 NA	 NA	 NA	

STOPzilla	 1	 NA	 NA	 NA	 NA	 NA	
Zemana	AntiMalware	 1	 NA	 NA	 NA	 NA	 NA	
No	Third-Party	AV	 19	 NA	 NA	 NA	 NA	 NA	
	

4.2.5.	Study	Design	

In	this	study,	we	(1)	replicated	experimental	results	from	Chapter	3	in	a	

community	population,	(2)	evaluated	construct	validity	via	correlation	with	SeBIS,	

and	(3)	evaluated	predictive	validity	using	data	from	the	SBO	(as	just	described).	

For	each	outcome,	we	used	a	likelihood	ratio	test	to	compare	the	goodness	of	fit	for	

logistic	regression	models	with	and	without	each	of	the	SDT	measures.	The	

likelihood	ratio	test	is	the	most	powerful	test	of	the	null	hypothesis	that	the	SDT	

measure	does	not	increase	the	likelihood	of	the	data	given	the	SDT	measure.	

To	reduce	bias	and	increase	transparency,	we	preregistered	the	logistic	

regression	models	(without	SDT	measures)	at	the	Open	Science	Framework	(see	

Appendix	B.1)	before	combining	the	SBO	and	experimental	data	(Miguel	et	al.,	2014;	
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Nosek	&	Lakens,	2014).	The	analysis	reported	here	differs	from	the	proposed	

analysis	reported	in	the	preregistration	due	to	acquiring	more	SBO	data	in	the	

interim.	Once	we	began	the	analysis,	and	saw	the	structure	of	the	data,	we	were	able	

to	improve	it	by	(1)	eliminating	repetitive	measures	(e.g.	counts	of	unique	domains	

and	counts	of	social	media	domains),	(2)	implementing	an	automated	process	for	

identifying	malware,	rather	than	relying	on	manually	coded	items,	and	(3)	adding	

malicious	files	as	an	outcome	variable.	We	believe	that	these	refinements	were	

implied	by	the	registered	analysis	plan,	although	not	all	were	stated	explicitly.	

4.3.	Results	

4.3.1.	Comparison	of	Experimental	Results	

Of	the	93	SBO	participants,	16	failed	at	least	1	of	the	3	attention	checks.	Users	

who	failed	the	attention	checks	were	not	excluded	from	the	sample	because	

attention	was	not	a	significant	predictor	of	performance	in	the	regression	analysis.	

Proportionally,	slightly	more	SBO	participants	failed	the	attention	checks	than	did	

mTurk	participants	(17%	vs.	10%),	𝜒!(1)	=	3.85,	p	=	.05.	The	median	time	to	

complete	the	experiment	was	47	minutes,	including	breaks	(M	=	59	min,	SD	=	2,400	

min).	SBO	participants	spent	more	time	per	email,	SBO	=	0.94	minutes	(M	=	1.13,	SD	

=	0.72)	vs.	mTurk	=	0.48	minutes	(M	=	0.53,	SD	=	0.24),	Z	=	11850,	p	<	.001	in	a	

Wilcoxon	signed-rank	test.	Within	the	SBO	sample,	older	participants	spent	more	

time	per	email,	r(90)	=	0.46,	p	<	.001.	SBO	participants	spent	less	time	on	the	

phishing	information,	SBO	=	0.74	minutes	(M	=	1.16,	SD	=	1.79)	vs.	mTurk	=	0.95	

minutes	(M	=	3.17,	SD	=	11.51),	Z	=	5018,	p	=	.02	in	a	Wilcoxon	signed-rank	test.	
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There	were	no	significant	differences	between	the	mTurk	and	SBO	samples	

on	any	performance	parameters,	on	either	the	detection	or	the	behavior	task,	

𝛼 = .05.	Table 4-3	shows	the	mean	statistics	for	the	signal	detection	parameters	and	

for	accuracy.	Figure 4-1	shows	the	distribution	of	d’	and	c.		There	was	no	evidence	of	

learning	over	the	course	of	the	experiment,	as	d’	and	c	were	equal	when	calculated	

separately	for	the	first	and	second	half	of	the	emails.	

We	also	replicated	the	regression	analysis	to	determine	which	factors	predict	

phishing	detection	performance.	Figure 4-2	plots	the	regression	coefficients	for	each	

predictor	for	both	the	community	(SBO)	and	mTurk	samples	(with	full	statistics	in	

the	Appendix	B.2).	In	general,	the	community	sample’s	coefficients	have	larger	

confidence	intervals,	due	to	the	lower	sample	size),	but	overlap	with	the	mTurk	

coefficients.	There	are	2	primary	differences	between	the	community	and	mTurk	

samples.	First,	confidence	was	not	a	significant	predictor	of	c	for	the	SBO	sample,	

even	though	there	was	no	difference	in	mean	confidence	in	the	two	samples,	M	=	

0.86	(SD	=	0.08)	for	SBO	and	mTurk,	alpha	=	.05.	Second,	age	and	college	have	a	

bigger	effect	in	the	SBO	sample,	perhaps	due	to	the	higher	variance.	

Table	4-3.	SDT	Performance	Parameter	Estimates.		

	 Detection	Task	 Behavior	Task	 	
	 mTurk	

M	(SD)	
SBO	
M	(SD)	

mTurk	
M	(SD)	

SBO	
M	(SD)	

Typical		
Range	

Sensitivity	(d’)	 0.96	(0.64)	 0.96	(0.66)	 0.39	(0.50)	 0.42	(0.52)	 0	to	4	
Response	bias	(c)	 0.32	(0.46)	 0.20	(0.51)	 -0.54	(0.66)	 -0.62	(0.57)	 -2	to	2	
Accuracy	 0.67	(0.11)	 0.67	(0.11)	 0.56	(0.08)	 0.57	(0.09)	 0	to	1	
Note:	No	significant	difference	between	mTurk	and	SBO	based	on	t-test,	𝛼	=	.05.	
Reported	mTurk	results	are	from	Chapter	3.	
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Figure	4-1.	Plot	of	d’	vs.	c	for	each	task	and	sample.		
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Figure	4-2.	Comparison	of	regression	coefficients	with	95%	confidence	intervals	
(CI)	for	(a)	detection	d’,	(b)	detection	c,	(c)	behavior	d’,	and	(d)	behavior	c.	Results	
are	reported	in	a	table	in	Appendix	B.2.		
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4.3.3.	Construct	Validity	

	 We	assessed	construct	validity	via	the	correlation	between	the	detection	and	

behavior	SDT	parameters	with	an	existing	scale	for	measuring	the	same	construct:	

the	awareness	subscale	of	SeBIS.	Only	one	of	the	four	SDT	parameters,	c	on	the	

behavior	task,	was	correlated	with	the	proactive	awareness	subscale,	r(82)	=	-0.29,	

p	=	.008.	None	of	the	other	SDT	parameters	had	a	correlation	greater	than	0.20	(see	

Appendix	B.2).		

4.3.4.	Predictive	Validity	

	 For	ease	of	explication,	we	report	tests	of	predictive	validity	for	the	behavior	

task.	Results	for	the	detection	task	are	included	in	Appendix	B.2.	In	general,	the	

findings	for	the	detection	task	were	the	same	as	the	behavior	task	and	any	

differences	are	noted	in	the	text.		

4.3.4.1.	Browsing	model	

Browser	sensors.	Browser	data	were	available	for	86	of	the	SBO	users.	Most	

used	Internet	Explorer	(66/86	=	77%),	followed	by	Chrome	(29/86	=	34%)	and	

Firefox	(12/86	=	14%).	Some	used	multiple	browsers,	so	the	percentages	do	not	

sum	to	100%.	In	total,	9	(10%)	had	visited	a	malicious	URL.	Proportionally,	more	

Firefox	users	had	visited	malicious	URLs	(3/12	=	25%)	than	Chrome	(4/29	=	14%)	

or	Internet	Explorer	users	(2/66	=	3%).		

Table 4-4	shows	descriptive	statistics	for	variables	measured	in	the	browser	

data.	Following	Homser	et	al.	(2013),	we	performed	univariate	analysis	between	

each	of	these	variables	and	whether	users	had	visited	a	malicious	URL,	as	indicated	
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by	the	browser	data.	Among	these	potential	covariates,	only	domains/day	was	

related	to	the	outcome	variable,	visits	to	malicious	URLs.	It	was,	therefore,	included	

in	the	regression	model	using	a	log	transformation	to	normalize	the	observations	

(see	Appendix	B.2	for	detail).	Table 4-5	shows	the	regression	analysis	for	the	

browser	data,	predicting	visits	to	malicious	URLs.	Log(domains/day)	was	the	only	

significant	predictor.	Thus,	users	who	visit	more	domains	are	more	likely	to	have	

visited	a	malicious	URL.	As	seen	in	the	likelihood	ratio	tests	for	models	2-4	in	Table	

4-4,	users’	signal	detection	parameter	estimates	do	not	improve	the	model	fit,	singly	

or	together.		

Network	packet	sensor.	We	also	assessed	visits	to	malicious	URLs	in	the	

network	packet	data.	As	seen	in	Table 4-4,	there	is	much	more	network	packet	data	

than	browser	data,	which	were	available	for	92	of	the	93	participants.	This	is	

because	the	network	packet	data	include	all	http	traffic,	which	encompasses	all	of	

the	files	required	to	load	each	webpage.	There	are	more	active	days	observed	for	the	

network	packet	data,	and	http	requests	can	be	made	from	other	programs	besides	a	

browser	(e.g.	Spotify	music	streaming).		

For	31	of	these	93	users	(33%),	the	network	packet	data	indicates	they	

visited	a	malicious	URL.	Table 4-4	summarizes	the	potential	covariates.	Univariate	

analysis	suggested	that	total	URLs/day,	unique	URLs/day,	and	domains/day	were	

related	to	having	visited	a	malicious	URL	at	least	once.	We	then	computed	a	factor	

analysis,	which	revealed	that	these	covariates	loaded	on	one	factor,	alpha	=	0.79.	We	

called	this	factor	browsing	intensity	and	used	a	log	transformation	to	normalize	it	

(see	Appendix	B.2	for	details).	We	then	used	that	factor	score	in	the	regression	



	

 
	

68	

model	and	likelihood	ratio	tests	reported	in	Table 4-6.	Model	1	shows	that	users	

with	higher	browsing	intensity	were	more	likely	to	have	visited	a	malicious	URL	in	

the	network	packet	data.	In	addition,	there	was	an	effect	for	gender,	whereby	men	

were	more	likely	to	visit	malicious	URLs.	In	the	likelihood	ratio	test	for	models	2-4,	

users’	signal	detection	parameter	estimates	did	not	further	improve	the	model	fit.	

Table	4-4.	Descriptive	statistics	and	factor	analysis	for	the	browser	and	network	
packet	sensor	covariates.		

	 Browser	Sensor	 Network	Packet	Sensor	
	

Median	
Mean	
(SD)	 Median	

Mean	
(SD)	 Loading	

Active	Days	 40	 67	
(76)	 70	 85	

(63)	 NA	

Total	URLs/		
Active	Day	 22	 56	

(90)	 1,500	 2,600	
(3,600)	 0.73	

Unique	URLs/	
Active	Day	 9	 23	

(32)	 670	 990	
(1,000)	 1	

Domains/	
Active	Day	 5	 5.7	

(4.4)	 42	 52	
(37)	 0.54	

Clicked	Email	Links/	
Active	Day	(tracking)	 0	 0.5	

(1.0)	 0	 0.4	
(2.0)	 -	

Clicked	Email	Links/	
Active	Day	(source)	 0	 0.8	

(2.1)	 NA	 NA	 NA	

%	of	Total	Variance	 	 	 	 	61%	
Cronbach's	Alpha	 	 	 	 	0.79	
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Table	4-5.	Logistic	regression	models	and	likelihood	ratio	test	(LRT)	for	browser	
data	and	behavior	task	SDT	parameters.		

	 Model	1	 Model	2	 Model	3	 Model	4	
(Int)	 -5.91**		

(1.90)	
-5.82**		
(1.92)	

-6.47**		
(2.06)	

-6.43**		
(2.14)	

Behavior	d'	 	-0.24		
(0.86)	

	-0.06		
(0.89)	

Behavior	c	 	 	-0.81	
(0.72)	

-0.80	
(0.74)	

log(Domains/day)	 1.94*	
(0.76)	

1.97*		
(0.77)	

1.92*		
(0.76)	

1.93*		
(0.77)	

Age	 0.01		
(0.02)	

0.01	
(0.03)	

0.01		
(0.03)	

0.01		
(0.03)	

Male	 0.75	
(0.78)	

0.77		
(0.78)	

0.90	
(0.80)	

0.90	
(0.81)	

College	 -1.11	
(0.91)	

-1.15	
(0.92)	

-0.88	
(0.93)	

-0.89	
(0.95)	

X2	(LRT)	 11.76*	 0.08	 1.28	 1.29	
	

Table	4-6.	Logistic	regression	models	and	likelihood	ratio	test	(LRT)	for	network	
packet	data	and	behavior	task	SDT	parameters.		

	 Model	1	 Model	2	 Model	3	 Model	4	
(Int)	 -10.57***		

(2.84)	
-10.53***		
(2.83)	

-10.57***		
(2.83)	

-10.53***		
(2.83)	

Behavior	d'	 	-0.33	
(0.55)	

	-0.33	
(0.55)	

Behavior	c	 	 	0.09		
(0.50)	

0.11	
(0.50)	

log(Browsing	Intensity)	 1.36***		
(0.38)	

1.39***	
(0.38)	

1.37***		
(0.38)	

1.39***		
(0.38)	

Age	 -0.03		
(0.02)	

-0.03		
(0.02)	

-0.03		
(0.02)	

-0.03		
(0.02)	

Male	 1.48**	
(0.54)	

1.49**	
(0.55)	

1.46**	
(0.55)	

1.47**	
(0.55)	

College	 0.20	
(0.60)	

0.17		
(0.61)	

0.20		
(0.61)	

0.16		
(0.61)	

X2	(LRT)	 28.71***	 0.36	 0.03	 0.41	
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4.3.4.2.	Software	model	

Malware.	Most	users	had	the	Windows	10	operating	system	(53/92	=	58%),	

followed	by	Windows	8	(22/92	=	24%),	Windows	7	(14/92	=	15%),	and	Windows	

Vista	(3/92	=	3%).	45	of	the	92	(47%)	with	installed	software	data	had	malware.	

Malware	(as	defined	by	the	ShouldIRemoveIt.com	dataset)	was	observed	on	

machines	across	all	operating	systems,	with	no	obvious	pattern.	For	each	operating	

system,	approximately	half	of	the	users	had	malware.	

Table 4-7	shows	descriptive	statistics	for	all	potential	software	covariates.	

Univariate	analysis	revealed	that	total	software	and	delayed	software	updates	were	

related	to	malware.	However,	the	factor	analysis	suggested	that	these	variables	

were	weakly	related	(alpha	=	0.40).	When	included	in	the	regression	model	

separately,	delayed	software	updates	were	insignificant,	so	it	was	removed	from	the	

model.	Total	software	was	normalized	using	a	log	transformation.	Users	who	

installed	more	software	were	more	likely	to	have	malware	on	their	machine.	As	

seen	in	Table 4-8	(model	1),	this	variable	predicted	malware.	The	signal	detection	

parameter	estimates	(models	2-4)	did	not	improve	the	model	fit.		

Malicious	files.	Most	users	(84/93	=	90%)	have	malicious	files	on	their	

machine	(as	defined	by	the	VirusTotal	dataset).	In	the	regression	model,	we	used	the	

same	predictors	as	the	malware	model,	reported	in	Table 4-7.	The	regression	model	

and	likelihood	ratio	tests	are	reported	in	Table 4-9.	Users	who	have	installed	more	

software,	as	measured	by	software	load,	were	significantly	more	likely	to	have	

malicious	files	on	their	machine.	The	signal	detection	parameter	estimates	(models	

2-4)	did	not	improve	the	model	fit.	
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Table	4-7.	Descriptive	statistics	and	factor	analysis	for	software	covariates.		

	 Median	 Mean	(SD)	 Loading	
Total	Software	 244	 342	(316)	 0.5	
Delayed	Software	Updates	 2	 2	(1)	 0.5	
Anti-Virus	(binary)	 0	 0.34	(0.48)	 -	
Days	Since	OS	Update	 71	 59	(34)	 -	
%	of	Total	Variance	 	 	 25%	
Cronbach's	Alpha	 	 	 0.40	

	

Table	4-8.	Logistic	regression	models	and	likelihood	ratio	test	(LRT)	for	malware	
outcome	and	behavior	task	SDT	parameters.	

	 Model	1	 Model	2	 Model	3	 Model	4	
(Int)	 -5.98***		

(1.68)	
-5.91***		
(1.71)	

-5.99***		
(1.68)	

-5.93***		
(1.71)	

Behavior	d'	 	-0.10		
(0.46)	

	-0.09		
(0.46)	

Behavior	c	 	 	-0.07	
(0.43)	

-0.06	
(0.44)	

log(Total	Software)	 1.00**		
(0.31)	

1.00**	
(0.31)	

0.99**		
(0.31)	

0.99**		
(0.31)	

Age	 0		
(0.01)	

0	
(0.01)	

0	
(0.01)	

0	
(0.01)	

Male	 0.05	
(0.48)	

0.07	
(0.48)	

0.06	
(0.48)	

0.07	
(0.48)	

College	 0.57	
(0.52)	

0.55		
(0.53)	

0.57		
(0.53)	

0.56		
(0.53)	

X2	(LRT)	 15.74**	 0.05	 0.03	 0.07	
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Table	4-9.	Logistic	regression	models	and	likelihood	ratio	tests	(LRT)	for	malicious	
files	outcome	and	behavior	task	SDT	parameters.		

	 Model	1	 Model	2	 Model	3	 Model	4	
(Int)	 -6.50		

(3.58)	
-6.70		
(3.79)	

-6.36		
(3.48)	

-6.65		
(3.71)	

Behavior	d'	 	-1.78	
(1.02)	

	-1.59	
(1.04)	

Behavior	c	 	 	-1.28	
(1.16)	

-0.90	
(1.22)	

log(Total	Software)	 2.31**		
(0.79)	

2.73**		
(0.89)	

2.17**		
(0.76)	

2.58**		
(0.87)	

Age	 -0.04		
(0.03)	

-0.05		
(0.03)	

-0.04		
(0.03)	

-0.05		
(0.03)	

Male	 -0.72	
(0.89)	

-0.73	
(0.93)	

-0.75	
(0.91)	

-0.64	
(0.94)	

College	 -0.93	
(1.19)	

-1.41	
(1.28)	

-0.89	
(1.20)	

-1.29	
(1.29)	

X2	(LRT)	 22.79***	 3.53	 1.42	 4.12	

4.4.	Discussion	

In	this	study,	we	(1)	replicated	the	experimental	tasks	from	Chapter	3	in	a	

community	population	(participants	in	the	SBO),	as	a	reflection	of	face	validity	

(having	no	reason	to	expect	differences);	(2)	evaluated	construct	validity	using	

SeBIS;	and	(3)	evaluated	predictive	validity	using	real	world	outcomes	observed	in	

the	SBO.		

Regarding	face	validity,	we	found	very	similar	performance	in	the	community	

sample	as	in	the	convenience	(mTurk)	samples.	Community	participants	tended	to	

take	longer	than	mTurk	users	to	complete	the	laboratory	tasks,	but	still	performed	

similarly.	They	spent	less	time	on	the	informational	material	about	phishing.	The	

community	sample	was	older,	on	average,	and	within	it,	older	participants	tended	to	

take	longer	per	email	and	have	a	lower	d’	and	c	for	the	detection	task.	This	was	

somewhat	unexpected,	since	mTurk	users	are	generally	perceived	as	more	tech-
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savvy	than	a	community	population.	However,	these	results	are	consistent	with	the	

general	finding	that	mTurk	samples	perform	similarly	to	community	samples	on	

psychological	tests	(Paolacci,	Chandler	&	Ipeirotis,	2010).	

Regarding	construct	validity,	we	found	that	the	behavior	response	bias	(c)	

was	related	to	the	construct	of	proactive	security	awareness,	as	represented	in	the	

SeBIS	subscale.	Users	with	a	lower	c,	hence	less	inclined	to	click	on	links	in	emails,	

tended	to	score	higher	on	that	subscale,	which	measures	attention	to	URLs	based	on	

self-reports,	rather	than	observed	behavior	in	an	experimental	setting.	If	those	self-

reports	are	valid,	then	users	who	report	paying	more	attention	to	the	URL	should	

perform	better	on	both	the	detection	and	behavior	experimental	tasks.	However,	

Chapter	3	found	that	people	use	somewhat	different	decision-making	strategies	on	

the	two	tasks.	For	detection,	participants	tended	to	have	a	positive	c	in	order	to	

reduce	the	frequency	of	falsely	identifying	legitimate	emails	as	phishing.	For	the	

behavior	task,	it	was	reversed,	such	that	participants	tended	to	have	a	negative	c	in	

order	to	reduce	the	frequency	of	falsely	identifying	phishing	emails	as	legitimate.	

The	regression	analysis	reported	in	Chapter	3	suggest	that	perceived	consequences	

of	phishing	attacks	had	a	bigger	effect	for	behavior	decisions.		

Regarding	predictive	validity,	we	found	no	evidence.	The	SDT	parameters	on	

the	experimental	task	were	not	significant	predictors	for	any	of	the	4	real-world	

outcomes	captured	in	the	SBO	data:	visits	to	malicious	URLS	in	browser	and	

network	packet	data,	malware,	and	malicious	files.	However,	the	4	measures	of	

negative	experience	were	sufficiently	robust	that	they	could	be	predicted.	All	were	

positively	related	to	active	computer	use,	whether	measured	by	their	amount	of	
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web	browsing	or	installed	software.	Thus,	it	is	unclear	why	the	ability	to	identify	

suspicious	messages	in	our	experimental	task	did	not	translate	to	an	ability	to	

identify	similar	suspicious	messages	in	real	life	and	thereby	avoid	negative	

outcomes.	Broadly,	there	are	four	potential	interpretations	of	our	results:	(1)	the	

experimental	task	does	not	evoke	actual	behavior	with	respect	to	phishing;	(2)	the	

experimental	task	evokes	actual	behavior	but	in	an	environment	that	lacks	

ecological	validity,	in	the	sense	of	differing	fundamentally	from	that	experienced	by	

SBO	users;	(3)	the	SBO	measures	are	confounded	by	other	aspects	of	users’	complex	

real-world	experience,	or	(4)	the	measures	are	noisy	enough	not	to	reveal	the	

underlying	correlations.	

The	possibility	that	the	experiment	does	not	measure	phishing	susceptibility	

(1)	seems	unlikely	given	that	the	results	of	the	experiment	are	in	line	with	other	

research	measuring	phishing	susceptibility.	Moreover,	performance	on	the	task	

shows	expected	correlations	with	other	variables	-	better	performance	is	associated	

with	greater	knowledge,	confidence,	and	intentions.		

The	lack	of	ecological	validity	seems	more	plausible.	One	potentially	

unrepresentative	feature	of	the	experimental	task	is	that	it	has	a	50%	base	rate	of	

phishing	emails,	much	higher	than	in	everyday	life.	Wolfe	et	al.	(2007)	found	that	

artificially	high	base	rates	decrease	c,	but	have	no	effect	on	d’.	A	second	feature	of	

the	experimental	task	is	explicitly	asking	participants	to	evaluate	each	email	as	

phishing	(and	explaining	what	phishing	is),	thereby	priming	users	to	detect	them.	

Research	by	Parsons	et	al.	(2015)	suggests	that	explicitly	mentioning	phishing	

artificially	increases	d’,	but	has	no	effect	on	c.	Together,	these	studies	suggest	that	
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our	estimates	of	performance	are	overall	better	than	what	would	be	expected	in	real	

life.	However,	there	is	no	evidence	to	suggest	that	this	would	influence	the	relative	

performance	of	users.	If	these	aspects	of	the	experimental	design	influence	all	users	

similarly,	then	the	correlations	across	measures	should	be	preserved.	That	is,	we	

would	not	expect	users	who	are	bad	at	detecting	phishing	in	real	life	to	be	better	at	

it,	in	this	artificial	environmental,	than	users	who	are	good	at	detecting	phishing	in	

real	life.		

The	complexity	of	real-world	environments	(for	SBO	users,	among	others)	

complicates	the	relationship	between	individuals’	general	propensities	(which	d’	

and	c	attempt	to	measure)	and	their	actual	experiences.	As	seen	here,	bad	

experiences	(in	the	sense	of	visiting	suspicious	URLs	and	having	malicious	files)	are	

strongly	related	to	the	amount	of	exposure	(in	the	sense	of	browsing	intensity	and	

software	load).	Perhaps	individuals’	opportunity	for	trouble	swamps	their	ability	

(d’)	or	propensity	(c)	to	avoid	it.		Participants’	rate	of	bad	experiences	may	also	be	

related	to	the	protection	afforded	by	their	system	and	their	attractiveness	as	targets	

for	attackers.	That	vulnerability	is	partially	determined	by	users	(hence	related	to	

their	abilities)	and	partly	by	others	(e.g.	browser	blacklists).	Unfortunately,	even	

with	the	rich	SBO	data	set,	we	lacked	the	complete	picture	needed	to	sort	out	these	

relationships.	The	SBO	includes	some	data	on	browser	warnings,	but	there	are	very	

few	observations.	As	described	in	the	methods	section,	we	were	unable	to	measure	

anti-virus	events	for	all	anti-virus	software.	Some	of	those	programs,	particularly	

free	versions,	do	not	record	logs.	Others	have	poor	documentation.	Of	those	that	do	

provide	logs,	we	observed	few	detections	(see	Table 4-2).	Given	that	AV	use	did	not	
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predict	the	presence	of	malicious	files	and	the	low	number	of	observed	detections	

compared	to	observed	malicious	files,	it	is	possible	that	few	users	in	the	SBO	sample	

are	able	to	effectively	operate	their	AV	program.		

Finally,	the	SBO	measures	are	noisy,	as	would	be	expected	from	real-world	

observation.	There	are	cases	where	data	are	missing	(e.g.	a	sensor	breaks	or	is	

turned	off)	or	ambiguous	(multiple	people	using	the	same	computer).	As	a	partial	

check	on	one	potential	source	of	noise,	we	repeated	the	analysis	excluding	

computers	with	multiple	users,	but	the	results	did	not	change.	

Overall,	there	was	weak	evidence	to	support	the	validity	of	the	behavior	task,	

but	the	results	were	largely	inconclusive.	Validating	scales	using	this	type	of	real	

world	data	is	complex	and	it	is	difficult	to	discern	measurable	relationships.	In	the	

next	section,	we	provide	recommendations	for	validating	scales	using	this	type	of	

novel	real-world	data.	

4.4.1.	Recommendations		

Based	on	this	work,	we	have	4	primary	recommendations	for	validating	

performance	tests,	like	our	experimental	tasks,	using	real-world	data,	like	that	

provided	by	SBO:	

1. To	the	extent	possible,	measure	performance	on	tasks	that	are	(a)	as	directly	

related	to	the	focal	outcome	as	possible	and	(b)	that	rely	on	human	ability	

without	intervening	technology.		

2. Triangulate	using	multiple	data	sources	(e.g.	assessing	both	browser	and	

network	packet	data),	with	an	understanding	of	their	respective	strengths	
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and	weaknesses.	For	example,	there	is	more	network	packet	data,	but	

browser	data	better	reflects	URLs	that	users	choose	to	click.	

3. Consider	the	temporal	sequence	of	events,	such	as	how	periods	without	AV	

protection	affect	the	risk	of	acquiring	malicious	files.	The	present	analysis	

largely	ignored	this	aspect,	which	may	have	contributed	to	the	inconclusive	

nature	of	the	evidence.	

4. Create	and	register	an	analysis	plan	in	advance.	Document	deviations	in	

terms	that	clarify,	as	best	possible,	whether	they	are	in	the	spirit	of	the	plan,	

responding	to	unanticipated	data	structures.	Doing	so	reduces	the	risk	of	

capitalizing	on	chances	and	missing	design	features	that	might	have	

improved	data	quality	and	relevance.	



	

 
	

78	

	 	



	

 
	

79	

 Benefit-Cost	of	Improving	Human	Detection	of	5.
Phishing	Attacks:	Fixing	the	Weakest	Links	

	

5.1.	Introduction	

Most	cyber	attacks	begin	with	a	successful	phishing	attack	via	email,	or	

increasingly,	social	media	websites	(Symantec	Corporation,	2016;	Verizon,	2016).	

Phishing	(or	social	engineering)	attacks	aim	to	gather	information	or	trick	users	into	

inadvertently	installing	malware,	which	allows	hackers	to	access	networks.	Often,	

attackers	mass-email	employees,	gathering	information	from	out-of-office	replies	

and	bounce	notices,	as	well	as	whatever	information	users	are	tricked	into	

providing.	This	information	can	then	be	used	to	design	attacks,	called	spear	

phishing,	that	use	personal	information	(e.g.	known	contacts,	industry	language,	

victims’	names)	to	design	more	realistic	and	persuasive	messages.	When	successful,	

phishing	attacks	can	provide	hackers	with	wide	access	to	an	organization’s	network.		

At	present,	many	firms	are	trying	to	reduce	phishing	vulnerability,	as	evidenced	by	

the	market	for	anti-phishing	training	and	analytics	(e.g.	PhishMe,	ThreatSim,	

Wombat	Security).		

When	employing	such	behavioral	interventions,	organizations	want	to	

ensure	that	they	are	allocating	resources	cost-effectively.	Previous	research	has	

found	that	users’	phishing	susceptibility	varies	widely	(Pattinson	et	al.,	2012).	Here,	

we	create	a	risk	model	to	evaluate	the	relative	benefit-cost	of	interventions	for	

subgroups	with	varying	phishing	vulnerability.	The	model	considers	(1)	the	

identification	of	poor	detectors,	(2)	the	contribution	of	poor	detectors	to	overall	
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system	vulnerability,	and	(3)	the	benefit-cost	of	interventions	targeting	poor	

detectors.		

5.1.1.	Modeling	Phishing	Risk		

Cybersecurity	risk	(R)	is	conventionally	defined	as	a	function	of	threat	(T),	

vulnerability	(V)	,	and	impact	(I)	(NIST,	2012).	In	this	formulation,	impact	is	the	cost	

of	a	successful	attack	in	terms	of	money,	reputation,	productivity,	or	safety.	The	

probability	(P)	of	a	successful	attack	is	a	function	of	threats	and	vulnerabilities.	

Threats	include	malicious	attacks	by	internal	and	external	actors	(e.g.	phishing)	as	

well	as	errors	(e.g.	accidentially	publishing	private	information).	Vulnerabilities	are	

human,	organizational,	or	technical	weaknesses	that	can	be	exploited	by	an	

adversary	(e.g.	zero-day	vulnerability)	(Sun	et	al.,	2006;	Werlinger	et	al.,	2009).	

These	elements	are	related	symbolically		by	the	following	equations:	

R	=	I*P	

P	=	F(T,	V)	

It	is	typically	impossible	to	estimate	the	absolute	value	of	R.	Most	notably,	the	

threat	is	unknown	and	perhaps	varying	–	in	part,	as	a	function	of	adversaries’	

perceptions	of	the	vulnerabilities	and	targets’	responses	to	them.	Generally,	an	

organization	cannot	control	threats,	but	must	rely	on	legal	and	political	authorities	

for	protection.	It	can,	however,	try	to	reduce	the	impact	of	attacks	(e.g.	through	

network	segmentation	or	limiting	permissions	across	the	network)	or	its	

vulnerability	(e.g.	through	behavioral	interventions).	As	a	result,	formal	analyses	are	

most	useful	for	comparing	the	relative	risk	of	alternative	system	designs,	attempting	

to	reduce	vulnerability,	while	assuming	that	the	threat	is	constant.	The	class	of	
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model	developed	here	provides	a	way	to	evaluate	the	relative	vulnerability	of	

alternative	behavioral	interventions.	It	considers	both	the	variability	in	user	

performance,	offering	the	possibility	of	focusing	resources	on	the	poorest	detectors,	

and	the	variability	in	the	effectiveness	of	behavioral	interventions,	for	phishing	and	

related	tasks.	Section	5.1.2	reviews	the	evidence	on	both	forms	of	variability,	

translating	it	into	analytic	terms.		

5.1.2.	Accounting	for	Human	Variability		

Managing	phishing	risks	is	an	example	of	what	human	factors	(or	

ergonomics)	researchers	call	vigilance	tasks,	ones	in	which	individuals	must	

monitor	their	environment	for	a	specific	signal.	Mackworth	(1948)	first	studied	

vigilance	in	order	to	determine	the	optimal	watch	length	for	airborne	radar	

operators	to	maximize	accuracy	in	submarine	detection.	

Since	then,	vigilance	research	has	identified	task,	individual,	and	

environmental	variables	that	can	affect	performance	(Ballard,	1996).	Task	factors	

include	base	rate,	payoffs,	and	similarity	of	stimuli	(Lynn	&	Barrett,	2014).	People	

are	less	likely	to	identify	a	signal	when	there	is	a	low	base	rate,	the	cost	of	missing	a	

signal	is	low,	the	cost	of	a	mistaking	noise	for	a	signal	is	high,	or	there	is	very	little	

difference	between	the	signal	and	noise	(e.g.	navigating	a	dimly	lit	room).	Individual	

factors	include	experience,	personality,	and	demographics.	People	are	less	likely	to	

identify	a	signal	correctly	when	they	are	less	experienced,	more	impulsive,	older,	or	

less	intelligent	(Ballard,	1996).	Environmental	factors	reduce	performance	by	

increasing	stress,	such	as	uncomfortable	ambient	conditions	(e.g.	noise	or	

temperature,)	and	workload	(Ballard,	1996).	The	wide	range	of	shaping	factors	
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suggests	that	we	should	expect	variation	in	performance	both	within	and	between	

users	(e.g.	even	highly	trained	users	might	occasionally	be	distracted	and	fall	for	

phishing	attacks).	In	the	following	sections,	we	discuss	human	variability	in	terms	of	

susceptibility	to	attacks	and	ability	to	change	via	behavioral	interventions.	

5.1.2.1.	Variability	in	Phishing	Susceptibility		

Following	vigilance	research,	we	conceptualize	human	phishing	vulnerability	

in	signal	detection	theory	(SDT)	terms,	using	sensitivity	(d’)	and	response	bias	(c)	

(Macmillan	&	Creelman,	2004).	Sensitivity	(d’)	refers	to	users’	ability	to	distinguish	

between	signal	and	noise,	here,	phishing	and	legitimate	emails.	Larger	values	of	d’	

indicate	greater	discrimination	ability.	Response	bias	(c)	refers	to	users’	tendency	to	

treat	an	email	as	phishing	or	legitimate,	when	translating	their	uncertain	beliefs	into	

actions.	When	c	is	0,	users	show	no	bias.	When	c	is	negative,	users	are	biased	toward	

treating	emails	as	phishing	and,	when	c	is	positive,	users	are	biased	toward	treating	

emails	as	legitimate.		

As	with	vigilance	research,	phishing	detection	research	has	found	that	

vulnerability	(i.e.,	d’	and	c)	can	be	influenced	by	task,	individual,	and	environmental	

factors	(Ballard,	1996;	Vishwanath	et	al.,	2011;	Wright	&	Marett,	2010).	For	task	

factors,	Chapter	3	found	that	users	were	less	discriminating	and	more	cautious	(i.e.,	

lower	d’	and	c)	when	asked	to	choose	an	action	(e.g.	click	the	link)	rather	than	

simply	characterize	an	email	as	phishing	or	not,	likely	because	the	perceived	

consequences	(or	payoffs)	were	higher	for	actions.	In	addition,	users	who	perceived	

worse	consequences	of	phishing	were	more	cautious	(lower	c).	Providing	

information	about	the	base	rate	of	phishing	emails	in	the	test	set	had	no	effect	on	
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performance.	Wolfe	et	al.	(2007)	did	find	sensitivity	to	base	rates,	in	the	context	of	

baggage	screening,	in	studies	that	manipulated	the	base	rate	(rather	than	just	told	

people	about	it).	Spear	phishing	could	be	construed	as	a	form	of	similarity,	which	

reduces	d’.		

For	individual	factors,	Wright	&	Marett	(2010)	distinguish	between	

experiential	and	dispositional	variables.	In	terms	of	experience,	users	with	more	

computer	knowledge	tend	to	be	less	vulnerable	(Pattinson	et	al,	2012;	Sheng	et	al.,	

2010;	Vishwanath	et	al.,	2011;	Wang	et	al.,	2012).	In	terms	of	disposition,	users	who	

are	more	impulsive	(Pattinson	et	al.,	2012)	and	trusting	(Welk	et	al.,	2015)	tend	to	

be	more	susceptible,	whereas	those	who	are	risk-averse	(Sheng	et	al.,	2010)	tend	to	

be	less	susceptible.	These	individual	factors	can	interact	with	demographic	factors;	

for	example,	women	tend	to	have	less	computer	knowledge	and	younger	people	

tend	to	be	less	risk-averse,	both	of	which	may	make	them	more	vulnerable	(Sheng	et	

al.,	2010).		

Environmental	factors,	such	as	workload	and	time	pressure,	increase	stress,	

which	may	increase	vulnerability.	For	example,	users	who	receive	many	emails	and	

check	their	email	as	a	habit,	without	much	conscious	effort,	are	more	vulnerable	

(Vishwanath	et	al.,	2011;	Vishwanath,	2015).	Similarly,	users	who	multi-task	while	

checking	their	emails	or	work	under	tight	time	deadlines,	encouraging	cursory	

review	of	emails,	might	be	more	vulnerable.		

At	present,	a	common	way	for	organizations	to	evaluate	phishing	

susceptibility	is	via	“embedded	training”	model:	sending	fake	phishing	emails	to	

employees,	observing	who	clicks	on	the	links,	and	(potentially)	providing	remedial	
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treatment	(Kumaraguru	et	al.,	2010).	An	alternative	strategy	is	to	use	an	

independent	measure	of	phishing	susceptibility	to	identify	users	needing	extra	

training	or	protection.	Tests	of	computer	security	knowledge	or	attitudes	(e.g.	

Egelman	&	Peer,	2015)	might	guide	such	targeting.	We	have	also	developed	a	test	of	

phishing	susceptibility	that	system	operators	might	employ	(Chapter	3).	It	

characterizes	vulnerability	in	terms	of	d’	and	c,	thereby	providing	parameter	

estimates	for	risk	analyses.	The	next	section	summarizes	evidence	regarding	the	

effectiveness	of	interventions	that	might	be	administered	to	some	(or	all)	of	a	

system’s	users	based	on	their	performance.	

5.1.2.2.	Effectiveness	of	Anti-Phishing	Interventions	

Vigilance	researchers	have	long	been	interested	in	improving	the	detection	of	

low	base-rate	phenomena.	Typically,	these	are	high	consequence	events	(e.g.	

diagnosing	cancer,	detecting	an	enemy	submarine,	avoiding	phishing	links)	where	

the	cost	of	missing	an	event	is	high,	but	it	is	also	impossible	to	treat	every	case	as	an	

impending	disaster	(because	signals	are	so	infrequent).	For	example,	one	cannot	tell	

people	that	they	have	cancer	based	on	weak	signals,	just	to	ensure	that	all	cases	are	

caught	(Welch,	Schwartz	&	Woloshin,	2011).	Similarly,	it	is	not	realistic	to	treat	a	

large	portion	of	emails	as	phishing,	as	that	would	interfere	with	users	primary	work	

duties.	Given	how	few	emails	are	phishing,	the	warnings	might,	at	some	point	be	

ignored	(Wickens	et	al.,	2009).			

In	vigilance	research,	most	interventions	focus	on	task	or	individual	factors.	

For	example,	in	the	context	of	baggage	screening	for	airport	security,	Wolfe	et	al.	

(2007)	found	that	exposing	operators	to	brief	bursts	of	training	at	a	high	base	rate	
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with	full	feedback	reduced	response	bias	(c),	even	after	returning	to	a	real	world	

with	a	low	base	rate	without	feedback.	This	suggests	that	regularly	performing	such	

training	might	encourage	observers	to	maintain	a	low	c	despite	the	low	base	rate	

(Wolfe	et	al.,	2013).	With	air-traffic	control,	Bisseret	(1981)	observed	that	more	

experienced	controllers	had	a	lower	c	than	new	recruits,	but	there	was	little	

difference	in	terms	of	d’.	Such	results	suggest	that	experience	can	reduce	the	

perceived	costs	of	false	alarms	and	encourage	reporting.		

For	phishing	detection,	common	behavioral	interventions	include	embedded	

training	(feedback	on	misses),	warnings	(about	known	risks),	and	education	

(ranging	from	information	to	games).	Most	studies	have	measured	performance	in	

terms	of	accuracy	(i.e.,	the	number	of	successful	attacks	in	some	period	of	

observation).	However,	accuracy	conflates	d’	and	c.	Accuracy	could	be	increased	

through	better	discrimination	or	more	cautious	decision	rules.	In	one	of	the	few	

studies	measuring	phishing	detection	performance	in	signal	detection	theory	terms,	

Kumaraguru	et	al.	(2010)	found	that	embedded	training	increased	d’	and	decreased	

c.	Embedded	training	is	similar	to	the	intervention	tested	by	Wolfe	et	al.	(2007),	but	

includes	feedback	only	on	false	negatives,	cases	where	phishing	attacks	are	missed.		

Interventions	that	increase	attention	or	effort	have	sometimes	been	found	to	

increase	d’.	For	example,	Parsons	et	al.	(2015)	found	that	telling	users	that	they	

were	being	evaluated	for	their	phishing	detection	ability	increased	their	d’	without	

changing	their	c.	Wolfe	et	al.	(2013)	observed	an	increase	in	d’	during	the	high	base	

rate	training	trials.	However,	unlike	the	sustained	decrease	observed	with	c,	d’	

returned	to	the	previous	value	immediately	after	the	training.	One	possible	
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explanation	is	that	screeners	could	not	sustain	the	heightened	level	of	attention	that	

they	mustered	during	the	training	trials.	

Table 5-1	and	Figure 5-1	summarize	studies	of	behavioral	interventions	that	

reported	results	in	SDT	terms.	They	were	identified	by	using	the	joint	search	terms	

of	"signal	detection	theory"	and	“behavioral	intervention”	in	Google	Scholar,	which	

produced	76	papers.	We	identified	an	additional	65	papers	using	the	joint	search	

terms	“signal	detection	theory,”	“phishing,”	and	“experiment.”	We	then	eliminated	

papers	that	did	not	report	empirical	evidence	of	evaluating	a	behavioral	

intervention,	reported	in	SDT	terms.	That	left	seven	studies	in	four	articles.	

Figure 5-1	contrasts	d’	and	c	for	these	studies,	before	and	after	the	

intervention.	In	this	small	sample	of	studies,	the	interventions	were	more	effective	

at	improving	d’	for	phishing	detection	(black	circles),	compared	to	the	other	

contexts	(blue	squares),	while	having	similar	effects	on	c.	For	improving	d’,	the	most	

effective	intervention	was	embedded	training.	For	decreasing	c,	a	burst	of	high	base	

rate	training	with	feedback	was	most	effective.	Few	studies	reported	individual	

variation	in	intervention	effectiveness.	However,	given	the	heterogeneity	of	baseline	

performance	(Chapter	3),	it	seems	plausible	that	interventions	might	not	influence	

all	users	equally.	Our	risk	analysis	allows	for	this	possibility.	
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Table	5-1.	Effectiveness	of	interventions	in	the	literature.	

Reference	 Intervention	 Task		 ∆ d’		 ∆	c		
Kumaraguru	et	al.	
(2010)	

Educational	
materials	

Phishing	detection	 0.62	 -0.54	

Kumaraguru	et	al.	
(2010)	

Embedded	training	
(PhishGuru)	

Phishing	detection	 1.73	 -0.52	

Kumaraguru	et	al.	
(2010)	

Game	in	lab		
(Anti-Phishing	Phil)	

Phishing	detection	 1.09	 0.00	

Kumaraguru	et	al.	
(2010)	

Game	in	field		
(Anti-Phishing	Phil)	

Phishing	detection	 0.97	 0.37	

Ben-Asher	&	
Gonzalez	(2015)a	

Expertise	 Network	attacks	 0.07	 0.06	

Wolfe	et	al.		
(2007)a	

Burst	of	high	base	
rate	with	feedback	

Baggage	screening	 -0.49	 -0.95	

Bisseret	(1981)b	 Experience	 Air	traffic	control	 0.02	 -0.18	
	 	 Average	Effect	Size	 0.57	 -0.25	

a	Reported	hit	and	false	alarm	rates,	converted	to	d’	and	c	
b	Reported	as	𝛽	and	converted	to	c	where	𝑐 = ln 𝛽 /𝑑!	
Note:	See	Stanislaw	&	Todorov	(1999)	for	more	details	on	calculation	of	SDT	
parameters.	

	

	

Figure	5-1.	Average	change	in	(a)	d’	and	(b)	c	for	various	behavioral	interventions.	

Although	the	vulnerability	of	a	system	is	determined	by	its	users’	d’	and	c,	

system	operators	may	be	concerned	about	the	realized	number	of	successful	

attacks.	That	rate	will	partially	determine	the	total	cost	to	their	system	from	such	



	

 
	

88	

attacks	and	the	appropriate	investment	in	their	reductions.	We	assess	performance	

in	terms	of	the	number	of	successful	phishing	attacks	(out	of	100).	Figure 5-2	shows	

performance	for	different	values	of	d’	and	c.	When	c	is	negative	and	d’	is	high,	the	

risk	is	low	(blue).	When	c	is	positive	and	d’	is	low,	the	risk	is	high	(red).	As	seen	in	

the	figure,	users	can	have	the	same	number	of	successful	attacks	with	varying	SDT	

parameters.	For	example,	a	user	with	d’	=	1.25	and	c	=	0.31	has	the	same	number	of	

successful	attacks	as	a	user	with	d’	=	0	and	c	=	-0.32.		

The	black	circles	in	Figure 5-2	show	the	vulnerability	associated	with	each	

individual	participant	in	Chapters	3	and	4,	as	determined	by	their	d’	and	c	values	

(for	the	behavior	task,	which	more	closely	captures	the	actions	affecting	system	

performance,	than	does	the	detection	task).	The	risk	model	in	the	next	section	

assesses	the	value	of	behavioral	interventions	for	users	at	different	vulnerability	

levels	(analogous	to	the	color	bands	in	Figure 5-2).	It	defines	benefits	in	terms	of	

reduced	vulnerability	(i.e.,	a	lower	rate	of	successful	attacks)	and	costs	in	terms	of	

those	associated	with	any	increased	rate	of	false	alarms,	which	reduce	users’	ability	

to	do	their	jobs	(and	might	reduce	the	effectiveness	of	the	intervention	over	time),	

as	well	as	the	costs	of	services	for	implementing	behavioral	interventions.		
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Figure	5-2.	Number	of	successful	phish	out	of	100	(denoted	by	color)	as	a	function	of	
d’	and	c.	Observations	from	Chapters	3	and	4	are	plotted	in	black.	Risk	is	high	when	
d’	is	low	and	users	are	biased	toward	clicking	on	links	in	emails	(positive	c).	

	 The	model	recognizes	the	natural	variation	in	phishing	susceptibility,	as	well	

as	the	fact	that	users	can	have	the	same	level	of	vulnerability	for	different	reasons	

(i.e.,	combinations	of	d’	and	c),	as	seen	in	Figure 5-2.	Interventions	have	different	

effects	on	the	two	SDT	parameters	(Table 5-1).	As	a	result,	they	can	have	different	

effects	on	the	vulnerability	of	users	with	the	same	performance.	We	use	a	simulation	

to	(1)	describe	poor	detectors,	defined	as	the	bottom	10%	of	users;	(2)	determine	

the	cumulative	contribution	of	those	poor	detectors	to	overall	system	vulnerability,	

and	(3)	compare	the	benefit-cost	of	behavioral	interventions	when	focused	on	poor	

detectors	or	all	users.	
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5.2.	Method	

5.2.1.	Overview	of	Risk	Simulation	

The	present	model	simulates	the	effect	of	behavioral	interventions	on	users’	

phishing	susceptibility	for	two	different	types	of	attacks:	random	(with	no	special	

recognition	of	the	target)	and	spear	phishing	(with	some	personal	information).	As	

depicted	in	Figure 5-3,	in	each	iteration	of	the	model,	we	first	generate	a	sample	of		

individuals	with	varying	vulnerability,	defined	by	d’	and	c,	drawn	from	the	

distribution	of	empirical	estimates	in	Chapter	3	&	4	(Step	A).	We	then	estimate	each	

user’s	initial	(or	baseline)	performance,	in	terms	of	the	number	of	phishing	emails	

that	they	fall	for	(misses)	and	the	number	of	legitimate	emails	that	they	mistake	for	

phishing	(false	alarms)	(Step	B).	For	each	user,	we	sample	an	intervention	from	a	

Normal	distribution	defined	by	the	literature	review	(of	both	phishing	and	non-

phishing	interventions)	in	Table 5-1	(Step	C).	That	distribution	is	used	to	reflect	the	

variability	in	the	effects	of	these	interventions	on	individual	users	(which	is	not	

routinely	reported	in	studies).	We	then	recalculate	that	user’s	d’	and	c,	

incorporating	the	intervention’s	effects	(Step	D).		

In	Steps	B	and	D,	we	estimate	vulnerability	separately	for	two	types	of	

attacks,	random	and	spear	phishing.	The	ability	to	detect	random	phishing	attacks	is	

determined	by	the	users’	initial	d’	and	c	as	well	as	the	effects	of	any	intervention.	

Because	spear	phishing	emails	are	specifically	designed	to	look	like	legitimate	

emails,	users	have	a	lower	sensitivity	(d’).	The	extent	of	that	reduction	in	d’	depends	

on	how	well	the	spear	phishing	email	is	crafted.	As	a	placeholder	for	empirical	

estimates,	the	model	uses	a	difficulty	factor,	f,	ranging	from	0,	for	a	spear	phishing	
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attack	that	is	impossible	to	detect,	to	1,	for	one	that	is	no	more	difficult	than	a	

random	phishing	attack	to	detect.	In	the	simulations	reported	here,	the	value	for	f	is	

sampled	from	a	uniform	distribution	over	[0,1].	

We	assess	performance	on	each	simulated	email	as	a	draw	from	a	Bernoulli	

distribution	with	some	probability,	where	𝑃! 	is	the	probability	of	falling	for	a	

phishing	email	and	𝑃!"	is	the	probability	of	mistaking	a	legitimate	email	for	

phishing.	This	procedure	is	repeated	for	each	email,	both	phishing	and	legitimate,	

that	a	user	receives.	In	the	simplest	scenario	(i.e.,	no	interventions	or	spear	phishing	

attacks),	𝑃!is	a	function	of	initial	vulnerability	(d’	and	c):	

𝑃! = 1−Φ 0.5𝑑! − 𝑐 	

where	Φ	represents	a	standard	Normal	distribution	that	converts	a	z-score	to	a	

probability	(Macmillan	&	Creelman,	2004).	In	a	scenario	with	an	intervention	having	

estimated	impacts	∆!! 	and	∆! ,	and	a	spear	phishing	difficulty	factor	f,	𝑃! 	is:	

𝑃! = 1−Φ 0.5 𝑑! + ∆!! 𝑓 − 𝑐 + ∆! 	

These	variables	are	summarized	in	Table 5-2,	along	with	the	basis	of	the	

parameter	values	used	in	the	simulation.	We	report	users’	vulnerability	(i.e.,	their	

probability	of	falling	for	a	phishing	attack,	𝑃!)	by	decile	to	faciliate	comparison	

between	low	and	high	performing	users.	Users	in	a	low	decile	have	a	high	

probability	of	falling	for	attacks,	while	users	in	a	high	decile	have	a	low	probability	

(in	effect,	going	down	and	to	the	right	in	Figure 5-2).	We	assume	a	1%	base	rate,	so	

for	every	phishing	email,	there	are	99	legitimate	emails.	We	estimate	false	alarms	

per	user	as	𝑃!":	

𝑃!" = Φ −0.5 𝑑! + ∆!! − 𝑐 + ∆! 	
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We	report	performance	(or	phishing	accuracy)	in	terms	of	the	rate	of	phishing	

emails	that	are	missed.	High-performing	users	fall	for	many	attacks,	while	low-

performing	users	fall	for	few.	We	make	a	distinction	between	expected	vulnerability	

(estimated	probability	based	on	d’	and	c)	and	observed	performance	(simulated	as	

draws	from	a	Bernoulli	distribution)	in	order	to	emphasize	that,	in	this	procedure,	

observations	may	not	perfectly	reflect	reality	(as	defined	by	d’	and	c).	

We	use	a	Monte-Carlo	simulation	to	incorporate	uncertainty	by	assigning	a	

distribution	to	each	parameter.	The	results	represent	the	outcome	of	1,000	

iterations,	each	involving	100	phishing	attacks	against	100	users	with	a	1%	base	

rate.	We	compare	different	scenarios	in	terms	of	their	benefit-cost	(or	net	benefit),	

as	described	in	the	following	section.		

	

Figure	5-3.	High	level	diagram	of	model.	
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Table	5-2.	Model	Inputs.	

Inputs	 Value	 Description	
Difficulty	
factor		

f	~	U(0,1)	 For	random	phishing	attacks,	f	=	1.	For	spear	
phishing	attacks,	f	ranges	from	f	=	0,	which	
eliminates	d’,	to	f	=	1,	which	preserves	it.	

Sensitivity		 d’	~	N(0.4,	0.5)	 Estimated	from	experimental	data	(Chapters	3	&	
4)	

Response	
bias	

c	~	N(-0.6,	0.65)	 Estimated	from	experimental	data	(Chapters	3	&	
4)	

Effect	on	d’	 ∆!!~		
N(0.57,	0.76)	

The	mean	and	standard	deviation	was	
determined	based	on	the	literature	review	(see	
Table 5-1).		

Effect	on	c	 ∆!~	
N(-0.25,	0.45)	

The	mean	and	standard	deviation	was	
determined	based	on	the	literature	review	(see	
Table 5-1).	

	

5.2.2.	Benefit-Cost	Analysis		

Benefit-cost	analysis	is	a	systematic,	analytical	approach	for	assessing	trade-

offs	between	options	(Lave,	1996).	We	use	this	technique	to	estimate	the	difference	

between	the	benefits	and	costs	of	anti-phishing	interventions.	We	account	for	both	

the	direct	cost	of	the	intervention	(e.g.	usage	fees,	lost	time	and	productivity)	as	well	

as	any	indirect	costs	arising	from	behavior	change	(e.g.	increased	false	alarms).	In	

this	case,	behavior	change	is	measured	as	the	difference	in	the	number	of	successful	

attacks	and	false	alarms.	When	that	change	is	negative,	an	intervention	reduced	

successful	attacks	and	false	alarms,	giving	it	net	benefits.		

The	cost	of	successful	attacks	could	be	as	low	as	the	cost	of	changing	a	

compromised	password	or	as	high	as	a	high	profile	data	breach.	The	cost	of	a	false	

alarm	could	be	as	low	as	typing	a	URL	into	a	browser	(rather	than	clicking	on	the	

link)	or	as	high	as	a	lost	business	opportunity.	We	assume	that	probabilities	are	not	

uniform	across	the	range	of	possible	impacts,	but	that	high	cost	events	are	rare.	
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Therefore,	we	model	the	costs	of	attacks	and	false	alarms	with	a	lognormal	

distribution,	which	has	a	long	positive	tail	to	accommodate	those	rare,	high-cost	

events.	Table 5-3	summarizes	these	assumptions.	Appendix	C	presents	descriptive	

statistics	for	each	input.	

Table	5-3.	Summary	of	assumptions	for	benefit-cost	analysis.	

	 Cost	 Benefit	 Value	 Source	
Attack	 Additional	

successful	
attacks	

Avoided	
attacks	

1,800*	
LogNormal	
(0,1)	

Cyveillance	(2015)	

False	Alarm	 Additional	false	
alarms	

Avoided	
false	
alarms	

LogNormal	
(0,2)	

	

Intervention	 Cost	of	
implementation;	
Lost	productivity	

N/A	 U(1,10);	
U(10,100)	

Ponemon	(2016);	
Range	accounts	for	time	
spent	on	intervention	
(1-60	minutes),	
frequency	(1-52	
times/year),	and	
hourly	wage	for	
professionals	($20-
50).	

	

5.3.	Results	&	Discussion	

The	results	are	presented	in	three	sections.	Section	5.3.1	compares	observed	

performance	and	expected	vulnerability.	Section	5.3.2	assesses	the	cumulative	

vulnerability	by	decile	of	users’	vulnerability.	Section	5.3.3	examines	the	costs	and	

benefits	of	behavioral	interventions	for	different	deciles	of	users.	

5.3.1.	Measurement	of	Vulnerability	

This	section	compares	observed	performance	to	expected	phishing	

vulnerability,	(𝑃!),	in	order	to	identify	the	characteristics	of	poor	detectors.	We	
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define	a	distribution	of	users,	characterized	by	their	relative	proficiency	as	detectors	

(in	deciles),	as	potential	targets	of	selective	interventions.	We	use	the	values	of	

sensitivity	(d’)	and	response	bias	(c)	observed	in	Chapter	3	and	4,	taking	the	

behavior	task	(rather	than	the	detection	task)	because	it	is	closer	to	users’	actual	

tasks.		

Figure 5-4a	shows	the	performance	of	users	(in	terms	of	phishing	accuracy,	

defined	as	the	percent	of	phishing	emails	avoided)	at	each	vulnerability	decile.	The	

means	are	monotonically	related,	by	definition.	Their	slope	proves	to	be	relatively	

linear	for	the	highest	deciles	(with	the	fewest	successful	attacks).	However,	they	

spread	out	for	the	lowest	deciles,	suggesting	the	potential	value	of	targeting	the	

poorest	detectors.	The	estimates	in	Figure 5-4a	assume	the	precision	that	comes	

with	a	test	using	100	phishing	emails.	Tests	with	fewer	data	points	will	be	more	

weakly	related	to	vulnerability.	Figure 5-4b	and	Figure 5-4c	show	the	deciles	of	

vulnerability	as	a	function	of	each	of	the	two	SDT	parameters	separately.	As	would	

be	expected,	users	in	the	10th	decile	have	relatively	high	d’	and	negative	c,	while	

users	in	the	1st	decile	have	a	low	d’	and	positive	c.	For	each	decile,	there	is	a	wider	

range	for	d’	than	c,	as	reflected	in	a	stronger	correlation	between 𝑃! 	and	c,	r(98)	=	

0.91,	p	<	.001,	than	with	d’,	r(98)	=	-0.38,	p	<	.001.	This	suggests	that	c	is	a	more	

influential	parameter	than	d’	for	interventions	(across	all	users).		
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Figure	5-4.	Decile	of	probability	of	falling	for	an	attack	as	a	function	of	(a)	
performance	(accuracy)	for	100	phishing	emails,	(b)	sensitivity	and	(c)	response	
bias.		

5.3.2.	Cumulative	Vulnerability	by	Decile	

	 Second,	we	assess	cumulative	vulnerability	by	decile,	as	a	basis	for	evaluating	

the	potential	benefit	of	prioritizing	poor	detectors	for	behavioral	interventions.	

Figure 5-5a	translates	the	estimates	of	Figure 5-4a	into	cumulative	distribution	

curves	for	the	percentage	of	successful	attacks.	The	black	circles	show	these	

estimates	for	random	phishing	attacks,	where	the	bottom	10%	of	users	account	for	

26%	of	the	total	number	of	successful	attacks.	The	blue	triangles	are	for	spear	

phishing	attacks,	which	reduce	d’,	where	the	bottom	10%	of	users	account	for	24%	

of	successful	attacks.	The	two	curves	are	similar,	despite	the	greater	difficulty	of	

distinguishing	spear	phishing	attacks,	because	of	the	relatively	weak	relationship	

between	d’	and	vulnerability	(Figure 5-4b).	Figure 5-5b	shows	the	necessarily	similar	

pattern	for	the	number	of	successful	attacks.			
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Figure 5-5b	shows	the	number	of	successful	attacks	by	decile.	The	total	

number	of	successful	attacks	is	higher	for	spear	than	for	random	phishing	attacks.	

This	is	particularly	noticeable	for	high	decile	users,	who	fall	for	few	random	attacks.	

In	contrast,	low	decile	users	fall	for	both	types	of	attacks	equally.	Thus,	spear	

phishing	may	be	of	particular	concern	for	interventions	targeting	high	decile	users.	

In	summary,	poor	detectors	(bottom	10%)	account	for	a	disproportionate	share	of	

an	organization’s	overall	vulnerability	for	both	random	and	spear	phishing.	This	

suggests	that	it	may	be	worthwhile	to	focus	intervention	resources	on	poor	

detectors.	This	question	is	addressed	in	Section	5.3.3.		

Figure	5-5.	Cumulative	(a)	percent	and	(b)	total	number	of	successful	attacks	(i.e.	
performance)	per	vulnerability	decile	for	1	attack	on	1,000	users.	The	error	bars	are	
+/-	2	standard	deviations.	

5.3.3.	Benefit-Cost	Analysis	of	Behavioral	Interventions		

Third,	we	evaluate	the	benefit-cost	(or	net	benefit)	of	behavioral	

interventions.	The	benefits	of	an	intervention	are	determined	by	the	net	reductions	
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in	the	numbers	of	successful	attacks	and	of	legitimate	emails	mistaken	as	phishing	

(false	alarms).	The	costs	of	an	intervention	include	those	associated	with	its	

implementation	(e.g.	fees,	lost	productivity)	and	any	additional	successful	attacks	

and	false	alarms	that	it	unintentionally	creates	(e.g.	by	increasing	trust	in	spam	

filters,	which	do	not	completely	protect	users).	We	first	report	results	from	a	Monte-

Carlo	simulation	varying	the	type	of	attack	on	the	net	benefit	of	an	intervention	

when	administered	to	users	in	each	decile.	We	then	report	a	sensitivity	analysis	

examining	the	influence	of	our	assumptions.	As	before,	estimates	of	baseline	

performance	are	from	the	behavior	group	in	Chapters	3	and	4.	Estimates	of	

intervention	effects	are	taken	from	Table 5-2.	Estimates	of	costs	are	from	Table 5-3.	

Figure 5-6	shows	the	net	benefit	of	interventions,	using	these	estimates,	when	

applied	to	users	in	each	decile,	for	random	and	spear	phishing	attacks.	Given	the	

fixed	costs	of	the	intervention	(per	user),	the	net	benefits	are	much	greater	for	users	

in	the	lower	deciles,	who	contribute	a	disproportionate	share	of	the	system’s	

vulnerability	(Figure 5-5).	However,	some	benefit	exists	even	with	the	best	

detectors.	For	low	decile	users,	the	net	benefit	is	somewhat	greater	for	random	

attacks	because	they	are	easier	to	detect,	so	that	interventions	have	a	larger	effect.	

Because	low	decile	users	fall	for	more	attacks	overall,	the	difference	is	larger.	For	

high	decile	users,	the	net	benefit	is	slightly	greater	for	spear	phishing	attacks	

because	they	are	more	likely	to	be	successful	than	a	random	attack	(Figure 5-5b).	

Therefore,	any	benefit	from	an	intervention	is	more	likely	to	be	realized.	For	

random	attacks,	the	mean	net	benefit	is	$580,000	(SD	=	$220,000)	for	users	in	the	

1st	performance	decile,	or	20%	of	the	total	net	benefit	of	a	system-wide	program.	It	
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is	$56,000	(SD	=	$50,000)	for	users	in	the	10th	decile,	or	just	2%	of	the	total	net	

benefit.	For	spear	phishing	attacks,	the	mean	net	benefit	is	$440,000	(SD	=	

$180,000)	for	users	in	the	1st	performance	decile,	or	18%	of	the	total	benefit.	For	

users	in	the	10th	decilie,	the	mean	net	benefit	is	$60,000	(SD	=	$48,000)	or	2%	of	the	

total	net	benefit.	Ultimately,	the	net	benefit	is	positive	(above	the	dotted	line	in	

Figure 5-6),	under	most	conditions	for	all	users.	The	next	section	investigates	the	

effects	of	sensitivity	analyses,	varying	model	parameters.	

	

Figure	5-6.	Benefit-cost	per	decile	of	performance	where	scenarios	above	the	0	line	
have	positive	net	benefit.		

5.3.3.1.	Sensitivity	Analysis	

Table 5-4	shows	the	sensitivity	of	our	estimates	to	varying	each	parameter	in	

the	model	independently,	for	users	in	each	decile,	as	a	percent	change	from	baseline	
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performance	(without	the	intervention).	Each	row	represents	a	parameter	that	was	

varied.	The	baseline	assumptions	are	the	mean	inputs	from	the	Monte	Carlo	model.	

The	worst	and	best	scenario	assumptions	are	either	the	minimum	or	maximum	

inputs	from	the	Monte	Carlo	model	or	other	values	of	interest	as	noted	in	the	text	

below.	The	first	column	in	Table 5-4	provides	the	baseline	assumptions,	yielding	a	

net	benefit	of	$610,000	for	the	1st	decile	and	$63,000	for	the	10th	decile.	Since	the	

results	are	reported	in	terms	of	percent	change	of	net	benefit	from	the	baseline,	

cases	where	is	is	less	than	-100%	(bolded	in	Table 5-4)	are	where	the	benefit-cost	

crosses	0.	

Row	1	shows	the	effects	of	varying	the	mean	sensitivity	(d’)	of	users	across	

the	nominal	range	of	d’	(0	to	3).	The	baseline	scenario	used	0.4,	the	mean	d’	

observed	in	the	behavior	task	for	Chapters	3	and	4.	When	the	initial	mean	d’	of	users	

was	very	poor	(d’	=	0),	high	decile	users	benefited	from	an	intervention	more	than	

low	decile	users	because	they	could	be	more	responsive	(since	they	already	had	

some,	rather	than	no,	ability	to	detect	phishing	emails.	Even	with	the	strongest	of	

interventions,	low	decile	users’	d’	still	reflected	weak	discrimination.	When	the	

initial	mean	d’	of	users	was	very	high	(d’	=	3),	interventions	had	limited	net	benefit	

for	high	decile	users,	who	were	already	able	to	almost	perfectly	distinguish	between	

phishing	and	legitimate	emails.	

Row	2	varies	the	mean	response	bias	(c)	of	users	across	the	nominal	range	of	

c	(-2	to	2).	The	baseline	scenario	used	-0.6,	the	mean	c	observed	in	the	behavior	task	

for	Chapters	3	and	4.	At	the	worst-case	value,	where	users	were	very	incautious	(c	=	

2),	the	benefits	were	much	greater	for	high	decile	users.	Low	decile	users	were	so	
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incautious	to	begin	with	(at	the	baseline	value)	that	the	intervention	still	left	them	

falling	for	many	attacks.	At	the	best-case	value,	where	users	were	already	very	

cautious	(c	=	-2),	the	intervention	had	little	net	benefit	for	all	users.	

Rows	3	and	4	show	the	results	of	sensitivity	analyses	varying	the	

effectiveness	of	interventions.	The	worst-case	values	were	chosen	to	represent	

interventions	that	not	only	failed,	but	backfired,	significantly	reducing	d’	or	

increasing	c	(∆!! 	=	-1,	∆! 	=	1).	They	had	net	costs	(rather	than	benefits).	The	best-

case	values	were	chosen	to	represent	very	effective	interventions,	decreasing	or	

increasing	d’	and	c	by	1.	They	led	to	increased	net	benefits	over	baseline.	

Interventions	that	increased	d’	(∆!! 	=	1)	provided	greater	net	benefit	for	all	users,	

compared	to	the	baseline.	Interventions	that	decreased	c	(∆! 	=	-1)	increased	net	

benefit	for	low	decile	users,	but	decreased	net	benefit	for	high	decile	users	(due	to	

increased	false	alarms).	Thus,	interventions	must	be	careful	to	not	induce	unwanted	

behavior	by	reducing	detection	performance	(by	decreasing	d’	or	increasing	c)	or	

increasing	false	alarms	(by	decreasing	c	too	much	for	high	decile	users).	

The	final	three	rows	vary	the	financial	costs	of	successful	attacks,	false	

alarms	and	interventions.	We	assessed	the	worst	and	best	values	used	in	the	Monte	

Carlo	model	(except	for	the	worst	intervention	cost,	a	$10,000	intervention	was	not	

used	in	the	Monte	Carlo	model,	but	represents	the	minimum	cost	for	the	net	benefit	

to	be	negative).	Very	expensive	attacks	(e.g.	costing	$200,000/user	affected)	and	

false	alarms	(e.g.	costing	$100,000	per	email)	make	any	behavioral	interventions	

seem	extremely	cost-effective	since	interventions	generally	reduce	successful	

attacks	and	false	alarms.	However,	these	types	of	events	are	unusual,	so	they	
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provide	little	guidance.	If	there	is	no	cost	of	an	attack,	there	is	little	net	benefit,	

except	from	avoided	false	alarms.	If	there	is	no	cost	of	a	false	alarm,	the	net	benefit	

does	not	change	from	the	baseline,	suggesting	that	the	vast	majority	of	the	

estimated	net	benefit	can	be	attributed	to	avoided	attacks.	The	cost	of	the	

intervention	would	outweigh	the	benefits	for	high	decile	users	when	it	approaches	

$10,000	per	person.	These	results	are	summarized	in	Table 5-4.	

Table	5-4.	Percent	change	of	mean	benefit-cost	for	random	attacks	from	the	baseline	
scenario	(reported	for	the	1st	and	10th	decile).		

5.4.	Conclusion	

	 In	this	study,	we	used	a	Monte	Carlo	model	to	assess	the	value	of	

implementing	anti-phishing	behavioral	interventions	under	a	wide	range	of	

scenarios.	First,	we	identified	poor	detectors,	defined	here	as	the	bottom	10%	(or	1st	

decile).	Second,	we	assessed	the	cumulative	vulnerability	due	to	poor	detectors.	

Lastly,	we	performed	benefit-cost	analyses	and	assessed	the	sensitivity	our	our	

estimates	to	modeling	assumptions.	Overall,	this	work	suggests	that	it	is	beneficial	

to	(re)allocate	resources	to	poor	detectors	to	reduce	their	susceptibility.	An	

Parameter	 Baseline		
	

Worst	
	

1st		
B	-	C	

10th		
B	-	C	

Best	
	

1st		
B	-	C	

10th		
B	-	C	

1.	Mean	d’		 0.4	 0	 -4%	 43%	 3	 -46%	 -85%	
2.	Mean	c	 -0.6	 2	 -97%	 820%	 -2	 -51%	 -98%	
3.	Effect	on	d’		 0.57	 -1	 -170%	 -290%	 1	 46%	 64%	
4.	Effect	on	c		 -0.25	 1	 -170%	 -73%	 -1	 92%	 -75%	
5.	Cost	of	
Attack	

$3,000	 $0	 -99%	 -94%	 $200,000	 6,500%	 6,100%	

6.	Cost	of	FA	 $7	 $0	 -1%	 -9%	 $100,000	 18,000%	 100,000%	
7.	Cost	of	
Intervention	

$60	 $10,000	 -16%	 -160%	 $10	 -1%	 0%	

1st	B	-	C	 $610,000	 	 	 	 	 	 	
10th	B	-	C	 $63,000	 	 	 	 	 	 	
Note:		Each	parameter	is	varied	independently	while	the	other	parameters	are	held	at	the	baseline	
value.	Cases	where	the	change	in	net	benefit	is	less	than	-100%	(bolded)	are	where	the	benefit-cost	
crosses	0.	
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organization	can	do	this	by	targeting	poor	detectors	(if	measurement	is	sufficiently	

precise	to	identify	them),	using	interventions	that	disproportionately	improve	the	

performance	of	poor	detectors,	or	using	interventions	that	affect	all	users	equally	

(accepting	the	risk	that	high	decile	users	may	have	more	false	alarms).	Our	three	

primary	findings	are:		

	 First,	poor	detectors	tend	to	have	both	low	d’	and	high	c	(indicating	that	they	

treat	most	emails	as	legitimate).	Between	those	two	parameters,	c	is	much	more	

closely	related	to	vulnerability,	suggesting	that	interventions	should	focus	on	c.	In	

order	to	assess	performance,	system	operators	must	collect	data	on	how	users	treat	

phishing	emails.	Due	to	the	random	nature	of	susceptibility	to	phishing	emails,	it	is	

difficult	to	distinguish	between	users	who	are	bad	at	detecting	phishing	emails	

because	they	have	high	vulnerability	or	seem	bad	at	detecting	phishing	emails	

because	they	are	unlucky	without	sufficient	data	points.	The	more	data	they	collect,	

the	closer	performance	is	to	true	vulnerability.		

Second,	by	definition,	poor	detectors	create	a	disproportionate	amount	of	the	

overall	risk.	The	simulation	estimates	just	how	great	that	share	is.	Under	the	model	

assumptions,	it	is	quite	large,	suggesting	the	potential	value	of	targeting	them.	Spear	

phishing	attacks	are	more	difficult	for	all	users	to	detect.	However,	the	difference	is	

only	observable	for	high	decile	users	since	they	fall	for	so	few	attacks.	Low	decile	

users	fall	for	random	and	spear	phishing	attacks	equally.	This	suggests	that	high	

decile	users	may	benefit	from	interventions	specifically	related	to	spear	phishing.		

Third,	the	benefit-cost	analysis	suggests	the	value	of	focusing	resources	on	

the	more	susceptible	users	–	although	under	the	baseline	conditions,	there	is	net	
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benefit	for	almost	all	users.	The	parameter	estimates	here	were	drawn	from	direct	

observation	(Chapter	3	and	4),	the	research	literature,	or	assumptions	about	normal	

organizational	conditions.	For	the	conditions	that	they	describe,	the	net	benefit	is	

much	higher	for	low	decile	than	high	decile	users.	Interventions	may	have	a	negative	

net	benefit	if	they	increase	false	alarms	(beyond	the	benefit	of	avoided	attacks)	or	

inadvertently	decrease	d’	or	increase	c.	For	example,	a	spam	filter	might	increase	c	if	

users	believe	that	they	don’t	need	to	watch	out	for	phishing	emails	because	the	

spam	filter	will	catch	them.	

This	research	has	several	limitations.	One	is	that	the	costs	of	behavioral	

interventions	are	not	fully	modeled.	For	example,	we	do	not	account	for	such	

qualitative	costs	as	annoying	employees.	In	a	study	of	phishing	using	social	

connections,	Jagatic	et	al.	(2007)	faced	a	strong	backlash	for	using	people’s	real	

names	as	the	senders	of	the	fake	phishing	emails.	An	organization	could	face	similar	

issues	when	attempting	to	train	users	to	detect	such	attacks.	Caputo	et	al.	(2014)	

report	that	some	of	their	users	felt	ashamed	about	clicking	on	the	embedded	

training.	Users	may	also	be	annoyed	if	the	intervention	is	time-consuming	or	boring	

(Herley,	2014).	Similarly,	there	may	be	benefits,	such	as	increased	reporting	of	

phishing	emails,	that	we	do	not	quantify.	Also,	as	noted,	the	behavioral	estimates	

were	from	performance	on	an	experimental	task,	rather	than	actual	experience.		

Future	work	could	explore	alternative	ways	of	modeling	spear	phishing.	

Here,	we	model	it	as	a	reduction	in	d’	based	on	the	vigilance	concept	of	similarity	

(Lynn	&	Barrett,	2014).	Kaivanto	(2014)	modeled	spear	phishing	using	a	parameter	

called	“match	quality,”	a	binary	factor	that	indicated	a	reduced	d’	rather	than	a	
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random	reduction,	as	modeled	here.	However,	it	is	possible	that,	in	some	settings,	

spear	phishing	messages	may	influence	c,	for	example,	by	creating	a	sense	of	

urgency	or	tapping	into	human	emotions,	such	as	greed	(Vishwanath	et	al.,	2011).	

This	may	motivate	a	user	to	perceive	the	email	as	legitimate	even	if	they	wouldn’t	

normally.		

Overall,	these	analyses	suggest	that	the	net	benefit	may	be	maximized	when	

behavioral	interventions	approach	users	differently	based	on	their	vulnerability.	

Low	decile	users	may	benefit	most	from	interventions	designed	to	reduce	their	

response	bias	(c).	High	decile	users	are	more	at	risk	for	spear	phishing	because	it	

undermines	their	otherwise	low	susceptibility.	The	same	intervention	may	not	help	

both	of	these	types	of	users.	There	is	already	interest	in	the	security	community	in	

tailoring	behavioral	interventions	to	improve	security	(Egelman	&	Peer,	2015).	

However,	one	of	the	main	challenges	is	predicting	which	kind	of	a	user	a	particular	

individual	is.		

A	second	challenge,	which	was	beyond	the	scope	of	this	study,	is	determining	

which	interventions	are	effective	for	which	users.	At	present,	most	studies	report	

the	average	improved	performance	for	their	intervention.	However,	it	may	be	useful	

to	report	the	average	improvement	per	decile	to	better	understand	the	interaction	

between	changes	in	d’	and	c.	It	may	be	more	cost-effective	to	use	behavioral	

interventions	that	have	the	largest	effect	size	for	low	decile	users,	even	if	there	is	a	

cost	to	giving	the	intervention	to	high-decile	users	who	won’t	benefit	much.	
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 Conclusions	6.
6.1.	Approach	

This	thesis	bridges	the	vigilance	and	computer	security	literatures,	in	order	

to	improve	the	measurement,	management,	and	understanding	of	phishing	

susceptibility.	I	extended	previous	research	(Kumaraguru	et	al.,	2010)	applying	

signal	detection	theory	(SDT)	to	phishing	susceptibility	with	a	combination	of	

experiments,	correlational	analysis,	and	simulations.		

In	Chapter	2,	I	summarized	relevant	research	on	vigilance	and	phishing.	

Vigilance	is	the	ability	to	remain	alert	in	order	to	detect	small	changes	or	rare	

stimuli	over	time	(Mackworth,	1948).	Researchers	have	found	that	vigilance	

performance	can	be	influenced	by	task,	environmental	and	individual	factors	

(Ballard,	1996),	which	roughly	parallels	the	factors	identified	in	the	phishing	

susceptibility	literature.	Although	many	researchers	have	studied	individual	and	

environmental	factors	that	influence	phishing	susceptibility	(Pattinson	et	al.,	2012;	

Sheng	et	al.,	2010;	Vishwanath	et	al.,	2011;	Welk	et	al.,	2015;	Wright	&	Marett,	

2010),	less	work	has	been	done	on	task	factors.	This	work	aims	to	address	this	gap	

and	show	the	value	of	framing	phishing	detection	as	a	vigilance	task.		

In	Chapter	3,	I	measured	phishing	susceptibility	for	two	interrelated	tasks,	

detection	(“is	this	a	phishing	email?”)	and	behavior	(“what	would	you	do	if	you	

received	this	email?”),	in	an	online	experiment.	I	manipulated	three	task	variables:	

(1)	which	task	comes	first,	detection	or	behavior	(Experiment	1);	(2)	whether	

participants	perform	both	tasks	(Experiment	1)	or	just	one	(Experiment	2)	and	(3)	

whether	participants	are	told,	or	must	infer,	the	base	rate	of	phishing	messages.		
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In	Chapter	4,	I	assessed	the	validity	of	the	experimental	measurement	from	

Chapter	3.	Using	participants	and	data	from	the	Security	Behavior	Observatory	

(SBO),	an	existing	effort	to	measure	computer	users’	security	habits	over	time	

(Forget	et	al.,	2014),	I	evaluated	(1)	face	validity	by	repeating	the	experimental	

tasks	from	Chapter	3	with	a	community	sample,	(2)	construct	validity	by	correlating	

SDT	parameter	estimates	with	scores	on	the	Security	Behavior	Intentions	Scale	

(SeBIS)	(Egelman	&	Peer,	2015),	and	(3)	predictive	validity	by	comparing	

experimental	performance	to	adverse	outcomes	experienced	by	users	on	their	home	

systems,	namely,	visits	to	malicious	websites	and	presence	of	malicious	files.	

In	Chapter	5,	I	used	a	risk-analytic	simulation	to	estimate	the	value	of	

behavioral	interventions	for	users	of	varying	vulnerability.	These	analyses	(1)	

identified	which	users	were	most	vulnerable,	(2)	assessed	the	relative	risk	

attributed	to	the	most	vulnerable	users,	(3)	estimated	the	benefit-cost	of	behavioral	

interventions	by	vulnerability	level,	and	(4)	evaluated	sensitivity	to	random	versus	

spear	phishing.		

6.2.	Findings		

	 In	Chapter	3,	I	found	that	users	employed	much	more	cautious	decision-

making	strategies	for	the	behavior	task	than	for	the	detection	task.	On	average,	

users	had	a	lower	d’	and	c	for	the	behavior	task	than	for	the	detection	task.	

However,	users	still	fell	for	phishing	attacks,	suggesting	they	did	not	sufficiently	

compensate	for	their	limited	detection	ability,	despite	showing	some	sensitivity	to	

the	extent	of	that	ability	(as	expressed	in	their	confidence	judgments)	and	their	

assessment	of	the	consequences	of	misses.	Individual	performance	varied	widely,	
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but	group-level	performance	on	the	laboratory	experiment	was	robust	across	

experimental	conditions.	There	was	no	effect	for	changing	the	order	of	the	tasks,	

whether	participants	performed	one	task	or	both,	or	whether	they	received	

notification	of	the	base	rate.	These	patterns	suggest	the	generalizability	of	results	

across	laboratory	settings.	In	addition	it	may	be	possible	to	design	interventions	

focused	on	users’	confidence	and	perceptions	of	consequences.		

In	Chapter	4,	there	was	evidence	to	support	the	validity	of	the	behavior	task,	

but	the	results	were	largely	inconclusive.	The	experimental	findings	from	Chapter	3	

generalized	to	the	community	population	and	exhibited	the	same	variance	in	

individual	ability.	The	tendency	to	not	click	on	links	(negative	behavior	c)	was	

correlated	with	a	validated	scale	of	security	behavior	intentions	(SeBIS),	providing	

some	evidence	of	construct	validity.	This	suggests	that	participants	who	reported	

looking	at	the	URL	before	clicking	on	a	link	(SeBIS)	tended	not	to	click	on	links	in	

emails	(behavior	c).	There	was	no	evidence	of	predictive	validity,	in	that	there	was	

no	relationship	between	performance	on	the	experiment	and	real	world	outcomes,	

including	visits	to	malicious	URLs	and	presence	of	malicious	files.	I	provided	

recommendations	for	validating	scales	using	this	type	of	novel	real-world	data.	

In	Chapter	5,	I	showed	the	value	of	assessing	phishing	susceptibility	in	terms	

of	SDT	to	design	better	behavioral	interventions.	I	found	that	the	most	susceptible	

users	had	a	positive	c	and	low	(although	variable)	d’.	In	addition,	they	represented	a	

disproportionate	amount	of	overall	phishing	risk	for	both	random	and	spear	

phishing	attacks.	In	a	Monte-Carlo	model,	benefit-cost	analysis	indicated	that	the	net	

benefit	of	behavioral	interventions	was	much	higher	for	more	susceptible	users.	
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However,	the	net	benefit	of	interventions	for	the	least	susceptible	users	was	still	

positive	under	most	conditions.	Overall,	this	work	suggested	that	the	system-level	

net	benefit	may	be	maximized	when	behavioral	interventions	approach	users	

differently	based	on	their	true	vulnerability.		

6.3.	Scientific	Contributions	

In	summary,	this	thesis	shows	the	applicability	of	vigilance	research	as	a	

framework	for	understanding	phishing	susceptibility	and	evaluating	anti-phishing	

behavioral	interventions,	while	extending	that	literature	in	this	distinctive	domain	–	

which	involves	an	intellectually	demanding	task,	done	concurrently	with	users’	

main	task	(unlike,	say,	baggage	screening,	where	detecting	deception	is	the	primary	

task).	Vigilance	research	has	identified	task,	environmental	and	individual	factors	

that	can	affect	detection	ability	(Ballard,	1996).	This	thesis	primarily	contributed	to	

understanding	of	task	factors.	In	Chapter	3,	I	evaluated	the	nature	of	the	task	

(detection	versus	behavior),	payoffs	(or	perceived	consequences),	and	information	

about	the	base	rate.	Within	subjects,	users	used	much	more	cautious	decision-

making	strategies	(lower	d’	and	c)	for	the	behavior	task,	where	the	consequences	of	

falling	for	an	attack	are	much	more	salient,	in	order	to	reduce	misses	at	the	cost	of	

increasing	false	alarms.	Between	subjects,	users	who	perceived	worse	consequences	

of	falling	for	an	attack	were	also	more	cautious	(as	measured	by	a	lower	c).	Our	

experimental	manipulation	of	base	rate	information	had	no	effect,	suggesting	

robustness	across	experimental	designs.	Our	results	were	robust	across	different	

populations	(community	vs.	mTurk	populations	assessed	in	Chapter	4)	and	
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experimental	manipulations	(e.g.	performing	the	detection	and	behavior	tasks	

individually	rather	than	together	in	Chapter	3).		

Future	research	should	refine	a	method	of	evaluating	phishing	susceptibility	

in	terms	of	SDT.		This	may	involve	measuring	susceptibility	at	a	more	realistic	base	

rate.	To	reduce	cost,	it	may	be	worthwhile	to	investigate	how	low	the	base	rate	of	

phishing	emails	needs	to	be	to	reflect	true	vulnerability.	For	example,	a	base	rate	of	

20%	may	be	sufficiently	low	to	induce	measurable	changes	in	response	bias	(c).		

In	terms	of	improving	anti-phishing	interventions,	future	research	could	

evaluate	other	ways	to	influence	task	factors,	which	have	been	effective	at	

improving	vigilance	in	other	contexts	(Wolfe	et	al.,	2007).	For	example,	embedded	

training	uses	partial	feedback	so	users	only	reassess	their	decision	strategy	when	

they	fall	for	a	fake	phishing	email.	It	may	be	effective	to	send	congratulatory	

messages	to	users	who	do	not	fall	for	the	fake	phishing	email	in	order	to	maintain	

their	low	c.	In	addition,	it	may	be	illuminating	to	assess	other	interventions	in	terms	

of	SDT.	For	example,	warning	messages	that	include	sanitized	phishing	emails	may	

increase	awareness	of	the	base	rate	of	phishing	(decrease	c),	but	may	also	provide	

less	interaction	for	the	user	(lower	magnitude	of	effect)	and	may	inappropriately	

increase	trust	in	technical	defenses,	such	as	the	spam	filter	(increase	c).			

6.4.	Practical	Contributions	

I	also	showed	how	SDT	parameters	can	be	used	to	evaluate	(and	design)	anti-

phishing	interventions,	in	the	context	of	a	quantitative	risk	analysis.	I	created	a	

model	that	quantified	the	benefit-cost	of	changing	users’	behavior	as	a	function	of	

their	initial	vulnerability	to	answer	the	following	question:	how	does	the	wide	range	
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of	user	vulnerability	interact	with	(a)	the	effectiveness	of	an	intervention	and	(b)	

the	type	of	attack?	

I	found	that	users	of	different	vulnerabilities	(as	assessed	by	d’	and	c)	were	

affected	differently	by	interventions.	In	general,	the	net	benefit	was	much	higher	for	

users	who	were	more	vulnerable.	However,	an	intervention	that	helps	more	

vulnerable	users	(e.g.	by	causing	a	large	decrease	in	c)	could	reduce	the	already	

small	net	benefit	for	less	vulnerable	users	by	increasing	their	likelihood	of	

perceiving	legitimate	emails	as	phishing	(and	reducing	their	productivity).	In	

addition,	I	found	that	the	benefit-cost	of	interventions	for	less	vulnerable	users	

increased	slightly	when	it	helped	them	avoid	spear	phishing	attacks,	which	are	

harder	to	detect.	This	did	not	hold	for	more	vulnerable	users,	who	fell	for	fewer	

random	phishing	attacks	after	an	intervention,	but	still	struggled	to	avoid	spear	

phishing	attacks.	Together,	these	results	suggest	that	measuring	phishing	

vulnerability	in	terms	of	signal	detection	theory	paints	a	clearer	picture	of	the	

interaction	between	user	vulnerability,	effectiveness	of	interventions,	and	types	of	

threats.	

However,	measuring	phishing	susceptibility	in	terms	of	SDT	is	still	a	

challenge.	In	Chapter	4,	I	was	unable	to	conclusively	validate	the	measurement	

method	used	in	Chapter	3.	The	complexity	of	the	real	world,	where	technology	and	

user	ability	interact	to	protect	(or	threaten)	computer	security,	inhibited	my	ability	

to	measure	a	relationship	between	performance	in	the	laboratory	study	and	real	

world	outcomes	(such	as	visits	to	malicious	URLs	and	presence	of	malicious	files).	In	

this	situation,	it	is	possible	a	laboratory	measurement	may	be	more	useful	for	
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describing	human	vulnerability	than	what	happens	in	the	real	world,	which	will	

often	be	confounded	by	other	variables.		

Future	work	could	address	this	question	by	comparing	measurement	of	

vulnerability	in	an	embedded	(field)	versus	laboratory	setting.	Embedded	

measurement	is	limited	by	the	frequency	of	phishing	emails,	so	it	may	take	a	long	

time	to	collect	enough	data	to	assess	vulnerability.	However	laboratory	settings	lack	

the	ecological	validity	of	a	user’s	real	inbox.	Understanding	the	differences	in	how	

these	methods	bias	measurement	has	implications	for	the	evaluation	of	

interventions	and	assessment	of	real-time	vulnerability	for	risk	analysis.	Embedded	

measurement	may	be	more	useful	for	the	former	than	the	latter.	

This	work	also	has	implications	for	the	design	of	behavioral	interventions.	

Chapters	4	and	5	suggest	that	interventions	that	decrease	c	(how	suspicious	an	

email	must	be	to	avoid	clicking	on	the	link	or	attachment)	may	be	more	effective	

than	ones	that	increase	d’	(ability	to	discern	the	difference	between	phishing	and	

legitimate	emails).	The	results	of	Chapter	3	indicate	that	behavior	c	is	negatively	

correlated	with	time	spent	on	each	email	and	perceived	consequences,	as	well	as	

being	positively	correlated	with	confidence.	Future	work	should	investigate	the	

causal	relationships	between	these	variables	to	identify	potential	interventions.	

In	addition,	this	work	suggests	an	alternate	explanation	for	how	embedded	

training	works.	Rather	than	expecting	users	to	show	continuous	improvement,	

operators	should	expect	all	users	to	fall	for	the	fake	phishing	emails	occasionally.	

These	failures	need	not	indicate	that	their	ability	to	identify	phishing	emails	(or	d’)	

is	deficient.	Rather,	it	could	reflect	users’	expected	sensitivity	to	perceived	changes	
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in	base	rate.	If	they	don’t	notice	any	phishing	emails	for	an	extended	period	of	time,	

they	could	rationally	adjust	their	criteria	(or	c)	for	how	suspicious	an	email	must	be	

to	avoid	clicking	on	the	link.	Fake	phishing	emails	(via	embedded	training)	may	

serve	to	readjust	the	perceived	base	rate	as	needed	to	maintain	desired	

performance.	If	users	never	fall	for	fake	phishing	emails,	that	could	mean	that	(a)	

the	emails	are	too	easy	to	detect,	(b)	the	emails	are	not	providing	any	additional	

information	about	the	task	(e.g.,	information	about	the	base	rate),	or	(c)	the	user	has	

a	very	negative	c	and	avoids	clicking	on	most	links	and	attachments.		

6.5.	Policy	Implications	

Industry	and	government	stakeholders	are	broadly	interested	in	measuring	

phishing	susceptibility,	implementing	effective	anti-phishing	interventions,	and	

assessing	phishing	risk.	I	identify	three	potential	audiences	for	this	research	

including	(a)	corporate	security	officers,	(b)	government	regulators,	and	(c)	anti-

phishing	companies.	

Corporate	security	officers	should	employ	anti-phishing	interventions	for	all	

employees.	Chapter	5	shows	that	under	the	assumptions	of	our	risk	model,	the	

benefits	of	anti-phishing	interventions	exceed	the	costs	for	all	users,	regardless	of	

vulnerability,	under	most	conditions.	This	recommendation	might	no	longer	hold	in	

cases	where	the	probability	of	a	high-consequence	false	alarm	(ignoring	a	legitimate	

email	because	it	is	perceived	as	phishing)	is	sufficiently	high	to	outweigh	the	

probability	of	a	high-consequence	phishing	attack.	This	can	be	out-sourced	to	anti-

phishing	companies	or	provided	in-house.	Interventions	that	improve	knowledge	of	

phishing	cues	(i.e.	increase	d’)	may	not	be	sufficient	to	encourage	cautious	decision	
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strategies	(i.e.	lower	c).	Given	the	strong	positive	correlation	between	c	and	

vulnerability	observed	in	Chapter	5,	it	may	be	more	important	to	reduce	c	than	

increase	d’.	

In	many	industries,	such	as	critical	infrastructure,	cybersecurity	practices	are	

regulated	to	some	extent.		Often	that	regulation	involves	voluntary	guidelines,	

rather	than	mandatory	rules,	such	as	the	North	American	Electric	Reliability	

Corporation’s	Critical	Infrastructure	Protection	standards	(NERC	CIP).	In	both	

settings,	there	is	increased	interest	in	risk-based,	rather	than	checklist,	evaluations	

of	compliance.	Such	analyses	might	require	quantitative	estimates	of	phishing	

susceptibility.	SDT	provides	such	estimates,	making	the	essential	distinction	

between	users’	abilities	(d’)	and	their	decision	rules	(c).		These	two	aspects	of	

performance	are	conflated	in	measures	that	consider	solely	the	number	of	

successful	attacks.	How	any	intervention	affects	each	aspect	is	an	empirical	

question,	which	might	be	addressed	by	repeated	assessment	before	and	after	an	

intervention	(or	over	the	course	of	time,	as	users	acquire	experience	or	adversaries	

change	their	tactics).	How	these	estimated	effects	should	be	incorporated	in	system	

design	is	an	analytical	question,	which	I	addressed	in	the	risk	assessment	of	Chapter	

5.		

I	found	only	weak	correlations	between	performance	on	the	empirical	test	

and	real-world	performance,	as	reflected	on	the	Security	Behavior	Observatory	

(SBO),	perhaps	the	most	intense	record	of	user	behavior	to	date.	As	discussed	in	

Chapter	4,	it	is	unclear	what	those	weak	correlations	say	about	the	external	validity	

of	the	experimental	test	for	the	specific	vulnerabilities	available	in	the	rich	SBO	
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record,	given	the	difficulty	of	extracting	a	clear	signal.	These	results	pose	a	need	for	

future	research	and	a	challenge	for	regulators	to	decide	how	to	evaluate	users,	

systems,	and	interventions.		

Anti-phishing	companies	(or	internal	units)	may	choose	(or	be	required)	to	

describe	their	products	(e.g.	embedded	training)	in	vigilance	terms,	in	order	to	

design	interventions	that	best	suit	specific	systems.	For	example,	vigilance	research	

suggests	that	changes	in	c	last	longer	than	changes	in	d’	(Wolfe	et	al.,	2013).	

Therefore,	it	may	be	more	correct	to	describe	embedded	training	as	increasing	the	

perceived	base	rate	(which	reduces	c),	rather	than	improving	users’	ability	to	detect	

phishing	emails.	In	addition,	there	may	be	a	market	for	personalized	interventions,	

which	might	predict	how	often	to	send	embedded	training	or	vary	the	difficulty	(e.g.	

random	vs.	spear	phishing)	of	the	fake	phishing	emails.	

As	phishing	risk	evolves,	I	anticipate	a	need	for	more	tools	to	measure,	

manage,	and	understand	phishing	susceptibility.	This	thesis	shows	that	vigilance,	in	

terms	of	phishing	detection	as	well	as	other	contexts,	provides	particularly	valuable	

tools.	
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A. Chapter	3	Appendix	
 

The data, R code, and materials for this study are available at https://osf.io/7bx3n/. 

A.1.	Supporting	SDT	Analysis	

A.1.1.	ROC	Curves	

		
Figure	A-1.	ROC	curves	for	the	(a)	detection	task	and	(b)	behavior	task.	The	solid	
black	line	shows	the	average	ROC	curve	across	all	judgments.	The	grey	lines	show	
each	individual	curve.	Performance	on	both	tasks	was	approximated	by	an	equal-
variance	Gaussian	model.	

Responses	on	the	behavior	task	were	scored	on	an	ordinal	scale	to	calculate	area	
under	the	curve	(AUC).	The	actions,	ordered	from	the	most	used	for	legitimate	
emails	to	most	often	used	for	phishing	emails,	were:	(1)	click	link	or	open	
attachment,	(2)	reply,	(3)	ignore	or	archive,	(4)	check	link,	(5)	check	sender,	(6)	
delete,	and	(7)	report	as	spam.	This	order	best	reflects	how	participants	used	the	
multiple-choice	options.	Any	“other”	responses	were	scored	as	one	of	these	options	
based	on	the	explanations	that	participants	provided	in	the	free-text	box	to	calculate	
d’	and	c.	This	ensured	that	responses	from	participants	who	misunderstood	the	
options	were	correctly	interpreted.	Any	responses	that	did	not	fit	into	the	pre-
existing	categories	remained	coded	as	“other”.	Two	coders	(one	author	and	one	
unaffiliated	individual)	independently	coded	the	items.	The	inter-rater	reliability	
was	82%.	Where	the	coders	disagreed,	a	third	unaffiliated	coder	independently	
coded	the	items	and	the	author-coder	reconciled	the	coding.	The	table	below	
summarizes	the	results	of	the	recoding	for	Experiment	1.	
	
Individuals’	performance	on	the	detection	and	behavior	tasks	was	strongly	
correlated	for	AUC,	r(150)	=		0.83,	p	<	.001.	
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Table	A-1.	Recoding	of	“other”	responses	for	behavior	task.	

Action	 Times	Recoded	
Click	link	or	attachment	 22	

Reply	 4	
Ignore	 5	
Other	 30	
Delete	 3	

Check	sender	 97	
Check	link	 217	

Report	as	spam	 29	
Total	 407	

	

A.1.2.	Detection	vs.	Behavior	Beta	

	

Figure	A-2.	Behavior	vs.	detection	beta	for	participants	who	(a)	received	the	50%	
base	rate	notification	and	(b)	were	left	to	infer	the	base	rate.	There	is	little	
difference	between	the	base	rate	notification	conditions.	Participants	tended	to	have	
a	Behavior	Beta	<	1,	but	there	was	more	various	for	the	Detection	Beta.	Individuals’	
performance	on	the	detection	and	behavior	tasks	was	correlated,	r(150)	=		0.36,	p	<	
.001.	
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A.1.3.	Justification	of	Discrete	Choice	Model	

	
Figure	A-3.	A	comparison	of	discrete	choice	models	for	the	detection	task.	The	
Normal	model	is	most	parallel	to	the	diagonal	–	suggesting	it	best	fits	the	data.	

	
Figure	A-4.	A	comparison	of	discrete	choice	models	for	the	behavior	task.	The	
Normal	model	is	most	parallel	to	the	diagonal	–	suggesting	it	best	fits	the	data.	
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A.2.	Supporting	Experiment	1	Analysis	

A.2.1.	Pearson	Correlations	
	
Simple	Pearson	correlations	are	reported	below	for	the	regression	analysis.	
	
Table	A-2.	Pearson	correlations	for	Experiment	1	(N=152).	

	
1	 2	 3	 4	 5	

1.	Detection	d'	 1	
	 	 	 	2.	Detection	c	 0.01	 1	

	 	 	3.	Behavior	d'	 0.61***	 -0.09	 1	 	 	
4.	Behavior	c	 -0.20*	 0.66***	 -0.08	 1	 	
5.	Attention	(1=pass)	 0.26**	 0.18*	 0.12	 0.06	 1	
6.	log(Phish	info	time)	(min)	 0.18*	 0.01	 -0.01	 -0.08	 0.10	
7.	Median	time/email	(min)	 0.15	 -0.02	 0.01	 -0.32***	 -0.01	
8.	Mean	confidence	 0.32***	 0.28***	 0.22**	 0.26***	 0.09	
9.	Mean	perceived	consequences	 0.05	 -0.35***	 0.07	 -0.47***	 -0.06	
10.	log(Age)	 -0.07	 -0.18*	 -0.16*	 -0.32***	 -0.08	
11.	Gender	(1=male)	 0.13	 -0.05	 0.09	 0	 -0.03	
12.	College	(1=college	degree)	 0.12	 -0.03	 0.07	 -0.12	 -0.01	
*p<.05	**p<.01	***p<.001	 	 	 	 	 	
	

	
6	 7	 8	 9	 10	 11	

1.	Detection	d'	
	 	 	 	 	

	
2.	Detection	c	

	 	 	 	 	
	

3.	Behavior	d'	 	 	 	 	 	 	
4.	Behavior	c	 	 	 	 	 	 	
5.	Attention	(1=pass)	

	 	 	 	 	
	

6.	log(Phish	info	time)	(min)	 1	
	 	 	 	

	
7.	Median	time/email	(min)	 0.16	 1	

	 	 	
	

8.	Mean	confidence	 0.06	 -0.06	 1	
	 	

	
9.	Mean	perceived	consequences	 0.11	 0.10	 -0.04	 1	

	
	

10.	log(Age)	 0.08	 0.35***	 -0.16*	 0.21**	 1	 	
11.	Gender	(1=male)	 0	 -0.01	 0.23**	 -0.09	 -0.21**	 1	
12.	College	(1=college	degree)	 0.09	 -0.02	 -0.04	 0.09	 0.12	 -0.03	
*p<.05	**p<.01	***p<.001	 	 	 	 	 	 	
	
Data	plots	are	included	below	to	assess	outliers	and	transformations	used	in	the	
regression	analysis.	
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A.2.2.	Transformations	

	
Figure	A-5.	Q-Q	plot	of	dependent	variables.	No	transformation	is	needed	to	assume	
normality.	



	

 
	

130	

	
Figure	A-6.	Boxplots	and	Q-Q	plots	for	the	phish	info	time	and	median	email	time.	A	
log	transformation	was	used	for	the	phish	info	time	due	to	the	high	skew	and	
existence	of	outliers.	
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Figure	A-7.	Q-Q	plots	for	confidence	and	perceived	consequences.	No	
transformations	were	needed.	

	
Figure	A-8.	Boxplot	and	Q-Q	plot	for	age.	A	log	transformation	was	used.	
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A.2.3.	Learning	Analysis	

Table	A-3.	Detection	and	behavior	d’	and	c	for	the	first	vs.	second	half	of	Experiment	
1.	There	were	no	significant	differences,	which	suggests	that	no	learning	occurred.	

	 Detection	Task	 Behavior	Task	
	 First	Half	
M	(SD)	

Second	Half	
M	(SD)	

First	Half	
M	(SD)	

Second	Half	
M	(SD)	

d’	 0.93	(0.77)	 0.94	(0.80)	 0.40	(0.60)	 0.36	(0.69)	
c	 0.31	(0.51)	 0.29	(0.49)	 -0.49	(0.66)	 -0.51	(0.65)	

	

A.2.4.	Alternate	Attention	Check	

We found similar results when excluding the 10 participants who failed 2 of 3 additional 
attention checks: spending less than 10 seconds on more than one email, illogical 
responses (e.g., clicking the link on an email identified as phishing) and d’ < 0. We 
would expect attention to occasionally wander so we only excluded participants who 
failed more than 1 type of test. The estimate of 10 seconds was based on the time it took 
to scroll down and click responses in each question.  
 
In total, 44 participants spent less than 10 seconds on at least 2 emails, 9 made illogical 
choices for at least 1 email, and 28 had a negative detection or behavior d’. Of the 10 
excluded participants, all failed the timing test (for 1 to 33 messages), 5 made illogical 
choices, and 7 had negative d’. There were no significant differences in the regression 
analysis, reported below. 
 
Table	A4.	Regression	analysis	excluding	participants	that	failed	alternate	attention	
checks.	

 d’ c 

 
Detection 

B (SE) 
Behavior 
B (SE) 

Detection 
B (SE) 

Behavior 
B (SE) 

Intercept -1.21 (1.05) 0.09 (0.87) 0.57 (0.72) 0.25 (0.93) 
Knowledge of base rate -0.03 (0.10) 0.07 (0.09) 0.04 (0.07) 0.18 (0.09) 
Task order (detection = 1) 0.03 (0.10) -0.03 (0.09) -0.01 (0.07) 0.13 (0.09) 
Attention (pass = 1)  0.46 (0.22)* 0.11 (0.18) -0.03 (0.15) -0.21 (0.19) 
log(Phish info time) 0.07 (0.04) -0.01 (0.04) -0.01 (0.03) 0 (0.04) 
Median time/email 0.39 (0.25) 0.08 (0.21) 0.05 (0.17) -0.69 (0.22)** 
Average confidence 2.37 (0.73)** 1.20 (0.61) 1.34 (0.50)** 2.26 (0.65)*** 
Average perceived consequences 0.06 (0.08) 0.08 (0.07) -0.25 (0.06)*** -0.43 (0.07)*** 
log(Age) -0.24 (0.21) -0.35 (0.17) -0.16 (0.15) -0.23 (0.19) 
Gender (male = 1) 0.10 (0.11) 0.05 (0.09) -0.09 (0.08) -0.12 (0.10) 
College (college degree = 1) 0.19 (0.11) 0.09 (0.09) 0 (0.07) -0.15 (0.09) 
N 134 134 134 134 
Adjusted R2 0.12 0.03 0.16 0.38 
F  2.84** 1.40 3.49*** 9.18*** 
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A.3.	Supporting	Experiment	2	Analysis	

Table	A-4.	Regression	models	for	d’	(Experiment	2).		

	 Detection	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	

	 B	(SE)	 B	(SE)	 B	(SE)	 	
Intercept	 0.97	(0.16)***	 -2.02	(1.38)	 -3.46	(2.14)	 	
Knowledge	of	base	rate	 0.02	(0.23)	 0	(0.24)	 0.01	(0.26)	 	
Attention	(pass	=	1)		 	 0.39	(0.45)	 0.50	(0.48)	 	
log(Training	time)	 	 0.03	(0.10)	 0.02	(0.11)	 	
Median	time/email	 	 1.38	(0.77)	 0.97	(0.86)	 	
Average	confidence	 	 3.21	(1.55)*	 3.34	(1.58)*	 	
Average	perceived	payoffs	 	 -0.17	(0.18)	 -0.24	(0.19)	 	
log(Age)	 	 	 0.49	(0.50)	 	
Gender	(male	=	1)	 	 	 -0.14	(0.25)	 	
College	(college	degree	=	1)	 	 	 -0.01	(0.26)	 	
N	 52	 47	 47	 	
Adjusted	R2	 -0.02	 0.11	 0.07	 	
F		 0.01	 1.94	 1.41	 		
	

	 Behavior	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	 B	(SE)	 B	(SE)	 B	(SE)	
Intercept	 0.48	(0.11)***	 -1.45	(1.13)	 -1.70	(1.72)	
Knowledge	of	base	rate	 -0.15	(0.16)	 -0.18	(0.17)	 -0.22	(0.17)	
Attention	(pass	=	1)		 	 -0.25	(0.29)	 -0.33	(0.31)	
log(Training	time)	 	 -0.13	(0.09)	 -0.14	(0.09)	
Median	time/email	 	 0.32	(0.26)	 0.45	(0.28)	
Average	confidence	 	 1.94	(1.16)	 2.37	(1.22)	
Average	perceived	payoffs	 	 0.08	(0.13)	 0.09	(0.13)	
log(Age)	 	 	 -0.04	(0.38)	
Gender	(male	=	1)	 	 	 0.20	(0.18)	
College	(college	degree	=	1)	 	 	 -0.23	(0.19)	
N	 48	 47	 47	
Adjusted	R2	 0	 0.01	 -0.01	
F		 0.97	 1.07	 0.93	
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Table	A-5.	Regression	models	for	c	(Experiment	2).		

	 Detection	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	

	 B	(SE)	 B	(SE)	 B	(SE)	 	
Intercept	 0.34	(0.08)***	 0.01	(0.76)	 -0.48	(1.17)	 	
Knowledge	of	base	rate	 -0.08	(0.12)	 -0.04	(0.13)	 0.01	(0.14)	 	
Attention	(pass	=	1)		 	 -0.12	(0.25)	 -0.12	(0.26)	 	
log(Training	time)	 	 -0.03	(0.06)	 -0.02	(0.06)	 	
Median	time/email	 	 -0.44	(0.42)	 -0.57	(0.47)	 	
Average	confidence	 	 1.35	(0.85)	 1.28	(0.86)	 	
Average	perceived	payoffs	 	 -0.17	(0.10)	 -0.18	(0.11)	 	
log(Age)	 	 	 0.11	(0.27)	 	
Gender	(male	=	1)	 	 	 0.06	(0.13)	 	
College	(college	degree	=	1)	 	 	 0.18	(0.14)	 	
N	 52	 47	 47	 	
Adjusted	R2	 -0.01	 0.09	 0.07	 	
F		 0.42	 1.74	 1.36	 		
*p<.05	**p<.01	***p<.001	 	 	 	 	 	
	

	 Behavior	Task	

	

Model	1:	
Task	

Manipulations		

Model	2:	
Stimuli	
Variables	

Model	3:	
Individual	
Variables	

	 B	(SE)	 B	(SE)	 B	(SE)	
Intercept	 -0.80	(0.14)***	 -0.40	(1.29)	 1.14	(1.94)	
Knowledge	of	base	rate	 0.11	(0.21)	 0.08	(0.19)	 -0.01	(0.19)	
Attention	(pass	=	1)		 	 -0.66	(0.33)	 -0.62	(0.35)	
log(Training	time)	 	 0.01	(0.10)	 0	(0.10)	
Median	time/email	 	 -0.69	(0.30)*	 -0.61	(0.32)	
Average	confidence	 	 1.64	(1.34)	 1.87	(1.38)	
Average	perceived	payoffs	 	 -0.24	(0.14)	 -0.24	(0.14)	
log(Age)	 	 	 -0.47	(0.43)	
Gender	(male	=	1)	 	 	 -0.10	(0.20)	
College	(college	degree	=	1)	 	 	 -0.31	(0.22)	
N	 48	 47	 47	
Adjusted	R2	 -0.02	 0.27	 0.28	
F		 0.28	 3.77**	 2.96**	
*p<.05	**p<.01	***p<.001	 	 	 	 	 	
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A.4.	Stimuli	

Table	A-6.	Phishing	cues	used	in	stimuli.	

Phishing	Cue	 Example	
impersonal	greeting	 Dear	Webmail	user	
suspicious	URL	 sonna.com/helpdesk/message-429	
unusual	
communication	

I've	shared	a	document	with	you.	It's	not	an	attachment	--	
it's	stored	on-line	at	Google	Drive.	

request	for	urgent	
action	

Password	will	expire	in	4	days	

grammatical	errors	
or	misspellings	

View	the	new	mail	interface,	its	easy	to	access,	simply	log	on	
with	your	correct	email	and	password	to	see	new	site.		

	
Table	A-7.	Summary	of	emails.	

Ques.	 Phish	 Subject	 Sender	
1	 0	 eBay	Reset	Your	Password	 eBay	<ebay@ebay.com>	
2	 1	 IT-Helpdesk	Service	 IT	Help	Desk	<helpdesk@soma.com>	
3	 1	 Password	will	expire	in	4	days	 IT	Help	Desk	<helpdesk@soma.com>	
4	 0	 Soma	Account	Deactivation	 IT	Help	Desk	<helpdesk@soma.com>	
5	 1	 Access	New	Interface	 IT	Help	Desk	<helpdesk@soma.com>	
6	 1	 Alumni	Panel?	 Karen	Laurel	<karen.laurel@gmail.com>	
7	 1	 Attention	 Tom	Daniels	<tdaniels@soma.com>	
8	 1	 Customer	Alert	 Capital	One	<capitalone@gmail.com>	
9	 0	 Activate	a	new	feature	in	your	

account	
Paypal	<paypal@e.paypal.com>	

10	 0	 Annual	Report	 Mark	Hous	(via	Google	Drive)	
<mhous@gmail.com>	

11	 0	 Data	Tracking	Article	 Ben	Farm	<bfarm@soma.com>	
12	 0	 Google	Apps	@	Soma	Storage	

Increase	
IT	<it@soma.com>	

13	 1	 Cyber	Security	Awareness	Month:	
Take	Security	101	

Mary	Ann	Bane	<mabane@soma.com>	

14	 1	 Double	Frequent	Flyer	Miles!	 Customer	Appreciation	<cust@boa.com>	
15	 1	 Invitation	to	connect	on	Linkedin	 Linkedin	<member@linkedin.com>	
16	 0	 Important	–	eBay	Password	Reset	

Required	
eBay	<eBay@reply1.ebay.com>	

17	 0	 IMPORTANT	MESSAGE	FROM	
HEALTH	SERVICES	

Health	Services	<hs-noreply@soma.com>	

18	 0	 Important	Phishing	Notice	–	Please	
Read	

Mary	Ann	Bane	<mabane@soma.com>	

19	 0	 Kelly,	people	are	looking	at	your	
Linkedin	profile	

Linkedin	<messages-
noreply@linkedin.com>	

20	 0	 New	voicemail	from	(724)	970-8435	
at	12:27	PM	

Google	Voice	<voice-noreply@google.com>	

21	 1	 (no	subject)	 Carlos	Saborio	Villalta	
<carlossaboriovillalta@gmail.com>	

22	 1	 SomaTRAK	Update	 HR	<hr@soma.com>	
23	 0	 Scanned	Document	From	

PRINT4.SOMA.COM	
PRINT4-SOMA	<print4@soma.com>	
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24	 0	 TurboTax	Notice:	Your	Privacy	
Statement	

TurboTax	Team	
<TurboTax@turbotax.intuit.com>	

25	 0	 Update	your	Business	Info	with	SCHS	 Peggy	Bittner	<bittner@schs.org>	
26	 0	 UPS	Ship	Notification,	Tracking	

Number	1Z4531280357253423	
UPS	Quantum	View	<auto-
notify@ups.com>	

27	 0	 USAID	Job	Openings	 Jenna	Martin	<jennam@gmail.com>	
28	 1	 UNICSID	VACANCY	NEWSLETTER	 George	Lancy	<George.lancy@un-icsid.org>	
29	 1	 UPS	Shipment	Authorization	 UPS	<auto-notify@ups.com>	
30	 1	 ***	Urgent	Notification	***-	

499348210	
Security	<security@bankofireland.com>	

31	 1	 Webmail	Alert	Notice	 IT	<it@soma.com>	
32	 1	 Weekly	Meeting	Agenda	–	URGENT	 Mark	Hous	(via	Google	Drive)	

<mhous@gmail.com>	
33	 0	 WorldPay	CARD	transaction	

Confirmation	
Shopper	<shopper@worldpay.com>	

34	 0	 Your	credit	card	is	about	to	expire	 Netflix	<info@mailer.netflix.com>	
35	 0	 Your	receipt	No.130086326136	 iTunes	Store	<do-not-reply@itunes.com>	
36	 1	 Your	Apple	ID	was	disabled	 Apple	<accounts@apple.com>	
37	 1	 Your	Email	Account	 IT	Help	Desk	<helpdesk@soma.com>	
38	 1	 Your	Salary	Raise	Confirmation	 Matt	Henn	<mhenn@soma.com>	
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B. Chapter	4	Appendix	
 

The data and R code for this study are available at https://osf.io/hwjmn/. 
 

B.1.	Preregistration	Document2	
	
1.	INTRODUCTION	
We	have	demonstrated	a	method	for	measuring	users’	vulnerability	to	phishing	
attacks	in	a	scenario-based	online	experiment	(Canfield,	Fischhoff	&	Davis,	2016;	
following	Kumaraguru	et	al.,	2010).	Specifically,	we	used	signal	detection	theory	
(SDT)	to	disentangle	users’	ability	to	distinguish	between	phishing	and	legitimate	
emails	(discrimination	ability	or	d’)	and	tendency	to	classify	emails	as	phishing	or	
legitimate	(decision	threshold	or	c)	for	both	detection	and	behavior	decisions.	Users	
with	a	high	d’	are	better	able	to	distinguish	between	phishing	and	legitimate	emails.	
Users	with	a	positive	c	are	biased	toward	believing	emails	are	legitimate,	while	the	
inverse	is	true	for	negative	c.	This	work	suggests	that	although	users	tend	to	choose	
cautious	behaviors,	they	aren’t	able	to	sufficiently	compensate	for	poor	detection	
ability.	However,	this	work	is	limited	to	a	laboratory	environment	and	lacks	the	
complexity	of	real	world	data.	Thus	it	is	unclear	to	what	degree	these	parameters	
explain	actual,	rather	than	theoretical,	phishing	risk.	
	
The	Security	Behavior	Observatory	(SBO)	is	an	existing	effort	to	gather	ecologically	
valid	data	on	users’	security	habits	over	time	(Forget	et	al.,	2014).	Participants	agree	
to	have	software	installed	on	their	personal	computers,	which	collects	data	on	
browsing,	installed	applications,	processes,	network	connections,	and	events.	We	
propose	comparing	performance	on	our	phishing	detection	experiment	to	
behavioral	measures	from	the	SBO.	This	will	serve	to	validate	our	measurement	of	
phishing	risk.		
	
1.1.	AIMS	
We	have	two	primary	aims	for	this	study:	

1. Replicate	Chapter	3	with	a	non-mTurk	sample.	
2. Assess	construct	validity	of	Chapter	3	SDT	measures.	

	

                                                
 
2	This	document	details	my	data	analysis	approach	before	I	combined	the	SBO	and	
experimental	data	sets.	This	serves	to	clearly	distinguish	hypothesis	generation	from	
hypothesis	testing	(Miguel	et	al.,	2014;	Nosek	&	Lakens,	2014).	Sarah	Pearman	performed	
the	mapping	between	the	SBO	and	experimental	data	sets.	I	had	no	access	to	the	
information	(participant	emails)	needed	to	combine	the	datasets.	Once	the	experimental	
data	set	was	added	to	the	SBO	database,	the	mapping	was	added.	This	occurred	post	
preregistration	(3/29/2016).	The	preregistration	is	at	the	Open	Science	Framework	
(osf.io/uagmc)	and	currently	under	embargo.	
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We	expect	that	users	who	have	more	negative	behavioral	outcomes	(e.g.	more	
malware,	more	visits	to	phishing	domains)	will	have	a	lower	d'	and	higher	c	for	both	
detection	and	behavior	tasks.	We	will	test	this	by	looking	at	the	simple	association	
between	these	behavioral	outcomes	and	the	SDT	measures,	as	well	as	how	these	
SDT	measures	improve	the	fit	of	a	multiple	regression	model	predicting	those	
outcomes.	
	
2.	METHOD	
2.1.	SAMPLE	
We	recruited	participants	from	the	Security	Behavior	Observatory	(SBO)	study	
(Forget	et	al.,	2014)	to	perform	a	phishing	detection	experiment.	The	SBO	
participants	are	primarily	college	students	and	retired	people	in	the	Pittsburgh	area.	
Participants	opt-in	to	the	SBO	study	and	are	aware	that	their	computer	use	is	being	
monitored.	Therefore,	we	should	address	concerns	about	opt-in	bias	and	Hawthorne	
Effect.	Each	participant	was	paid	$20	to	complete	the	phishing	detection	
experiment.	
	
2.2.	DESIGN	
To	replicate	Chapter	3,	SBO	participants	performed	the	phishing	detection	
experiment.	Participants	reviewed	emails	of	a	fictitious	person	to	judge	whether	or	
not	each	email	was	phishing	(detection	task)	and	what	action	they	would	perform	
on	the	email	(behavior	task).		No	changes	were	made	to	the	experimental	design,	
but	the	individual	difference	questions	asked	at	the	end	of	the	experiment	were	
modified.	For	each	participant,	we	used	SDT	to	estimate	d’	and	c.			
	
To	assess	construct	validity,	we	used	the	SDT	estimates	to	predict	negative	real	
world	outcomes.	For	each	SBO	participant,	we	assessed	2	negative	outcomes,	
existence	of	malicious	software	and	visits	to	malicious	websites.	For	each	outcome,	
we	first	measure	the	simple	relationship	between	the	outcome	and	the	SDT	measure	
using	logistic	regression.	Then	we	use	a	likelihood	ratio	test	to	compare	the	
goodness	of	fit	for	models	with	and	without	the	SDT	measures.		
	
2.3.	MEASURES	
2.3.1.	PHISHING	DETECTION	MEASURES	
We	have	five	phishing	detection	performance	measures	from	the	experiment:	

1. Detection	d’:	measure	of	ability	to	tell	the	difference	between	phishing	and	
legitimate	emails.	

2. Detection	c:	measure	of	bias	toward	identifying	an	email	as	phishing	
(negative	c)	or	legitimate	(positive	c).		

3. Behavior	d’:	measure	of	ability	to	distinguish	between	when	to	click	on	links	
and	when	not	to.	

4. Behavior	c:	measure	of	bias	toward	clicking	on	links	(positive	c)	or	not	
(negative	c).	

5. λ	or	P(click|”legit”):	percent	of	times	that	users	click	on	links	that	they	
perceive	as	legitimate.	This	is	a	potential	alternative	to	using	behavior	d’	and	
behavior	c	in	risk	analysis.	
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We	changed	the	individual	difference	measures	from	Chapter	3	to	account	for	
additional	sources	of	variance.	Table	1	describes	potential	covariates	from	these	
data.	If	significantly	related,	these	variables	will	be	added	to	a	second	stage	of	
validation	models.	
	
Table	B-1.	Self-reported	covariates	from	phishing	detection	experiment.	

Covariate	 Definition	 Hypothesis	
Age	of	
computer	

	

Reported	in	years	 +	 Users	who	have	older	computers	
have	more	malware.	

Total	email	
load	

Average	emails	per	day	 +	 Users	who	get	more	emails	have	
visited	more	phishing	websites.	

Self-reported	
behavior	

Frequency	of	email,	social	
media,	instant	messenger,	
software	downloads	

+	 Users	who	report	being	more	
active	have	visited	more	phishing	
websites	and	have	more	malware.	

	
2.3.2.	SBO	MEASURES	
The	SBO	measures	are	based	on	behavior	recorded	by	the	SBO	software	on	
participants’	personal	computers.	These	measures	only	record	activity	on	a	
particular	computer,	which	may	not	reflect	all	of	an	individual’s	activity	(e.g.	if	they	
have	a	separate	work	computer).		
	
For	another	study	using	SBO	data,	participants	were	asked	to	complete	the	Security	
Behavior	Intention	Scale	(Egelman	&	Peer,	2015).	The	SeBIS	has	four	subscales	
including	device	securement,	password	generation,	proactive	awareness,	and	
updating.	We	included	this	self-reported	scale	in	our	replication	and	validation	
analysis.	
	
2.3.2.1.	BROWSING	VARIABLES	
To	assess	browsing,	we	used	data	from	2	separate	sensors,	browsers	(Internet	
Explorer,	Chrome,	and	Firefox)	and	network	packets.	Browser	sensors	capture	web	
browsing.	The	network	packet	sensor	captures	all	http	traffic,	which	includes	ads	
and	images	separately	from	websites.		
	
The	outcome	variable	for	browsing	is	Phish	Visits,	which	is	a	count	of	how	many	
known	phishing	domains	are	visited	on	each	user’s	computer.	Known	phishing	
domains	were	identified	using	the	Google	Safe	Browsing	dataset.	This	is	a	count	
rather	than	normalized	across	time	(e.g.	phish	visits/month)	to	facilitate	
interpretation.	For	example,	for	phish	visits/month,	it	is	difficult	to	account	for	
periods	of	high	vs.	low	usage	(e.g.	the	start	of	the	school	year	or	if	someone	goes	on	
vacation).	
	
Potential	browsing	covariates	are	summarized	in	Table	2.	In	addition,	we	expect	
both	Click	Email	Links	to	be	positively	correlated	with	λ,	meaning	that	users	who	
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click	on	links	from	email	will	click	on	more	links	that	they	perceive	to	be	legitimate	
in	the	experiment.	
	
	

Table	B-2.	Browsing	Covariates.	

Covariate	 Definition	 Hypothesis	
Days	in	
Study	

max(Sensor	Time)	–	min(Sensor	Time)	 +	 Users	who	have	been	
in	the	study	longer	
have	visited	more	
phishing	websites.	

Total	
Browsing	

Count	of	URLs	visited		 +	 Users	who	have	visited	
more	websites	have	
visited	more	phishing	
websites.	

Unique	
Browsing	

Count	of	unique	URLs	visited	(excluding	
URLs	that	were	visited	multiple	times)	

+	 Users	who	have	visited	
more	unique	websites	
have	visited	more	
phishing	websites.	

Unique	
Domains	

Count	of	unique	domains	visited	 +	 Users	who	have	visited	
more	unique	domains	
have	visited	more	
phishing	websites.	

Social	Media	
Use	

Count	of	social	media	domains	visited:	
Facebook,	Twitter,	LinkedIn,	Google+,	
Tumblr,	Pinterest,	Instagram,	and	
Reddit	

+	 Users	who	visit	more	
social	media	domains	
have	visited	more	
phishing	websites.	

Click	Email	
Links	
(track)	

Count	of	links	clicked	from	email.	This	
count	URLs	that	have	built-in	tracking	
to	determine	that	they	came	from	email	
(i.e.	links	that	include	“mail”	or	“email”	
after	=,	&,	or	?,	excluding	email	
domains).		

+	 Users	who	click	on	
links	from	email	that	
use	tracking	are	more	
likely	to	have	visited	
phishing	websites.		

Click	Email	
Links	
(source)	

Count	of	links	clicked	from	webmail.	
This	counts	URLs	where	the	source	URL	
is	an	email	domain	and	the	destination	
is	not.	This	does	not	capture	links	
clicked	from	an	email	client	(e.g.	
Outlook).	

+	 Users	who	click	on	
links	from	webmail	are	
more	likely	to	have	
visited	phishing	
websites.	

Note:	Where	possible,	each	variable	was	estimated	from	both	the	browser	and	
network	packet	sensors.	
	
2.3.2.2.	SOFTWARE	VARIABLES	
The	outcome	variable	for	software	is	malicious	software.	We	used	two	measures	to	
distinguish	between	malicious	and	suspicious	software.	Malware	is	a	count	of	
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known	malicious	programs	on	each	user’s	computer.	Suspicious	Software	is	a	count	
of	suspicious	programs	on	each	user’s	computer.	All	malware	is	suspicious	but	not	
all	suspicious	programs	are	malware.	Suspicious	programs	have	a	broader	
definition	that	includes	adware.		
	
Each	piece	of	installed	software	was	coded	by	hand	to	indicate	if	it	was	malicious	or	
suspicious	(up	to	October	2015	data)	using	shouldiremoveit.com.	At	present,	only	
43%	of	the	observed	software	has	been	coded.	We	are	currently	developing	an	
automated	process	for	identifying	malware	and	suspicious	software.	Once	complete,	
we	expect	to	have	more	observations	of	malware	and	suspicious	software.	
	
Potential	software	covariates	are	summarized	in	Table	3.	Although	it	is	unintuitive,	
we	expect	security	software	to	be	positively	correlated	with	malware	for	several	
reasons.	First,	more	security	software	does	not	make	a	computer	more	secure.	For	
example,	installing	more	than	one	third-party	anti-virus	can	reduce	the	
effectiveness	because	of	conflicts	between	the	anti-virus	programs.	Second,	some	
security	software	is	actually	malware.	Third,	users	who	have	more	malware	in	the	
first	place	may	choose	to	install	more	security	software	in	an	attempt	to	fix	their	
computer.	As	a	result,	security	software	may	be	reactive,	rather	than	proactive.	
	
Table	B-3.	Software	Covariates.		

Covariate	 Definition	 Hypothesis	
Total	
Software	

Count	of	installed	software	 +	 Users	who	have	
more	installed	
software	have	
more	malware.	

Security	
Software	

Count	of	security	software.	Security	
software	includes	anti-virus,	password	
managers,	security-related	browser	
toolbars,	and	anti-theft	programs.		

+	 Users	who	install	
more	security	
software	have	
more	malware.	

3rd	Party	AV		 Binary	indicator	of	single	3rd	party	anti-
virus	installed	(recommended	best	practice)	

-	 Users	with	single	
3rd	party	AV	have	
less	malware.	

Delayed	
Software	
Updates	

Count	of	outdated	versions	of	popular	
software:	Adobe	Flash,	Adobe	Reader,	Java,	
Internet	Explorer,	Chrome,	and	Firefox	

+	 Users	who	delay	
updating	popular	
software	have	
more	malware.	

Days	Since	
Windows	
Update	

Days	since	Windows	update	was	installed.	
This	does	not	capture	why	users	waited	to	
install	updates	(e.g.	users	who	delayed	
updates	vs.	had	not	been	prompted	yet	if	
computer	was	off).		

+	 Users	who	delay	
updating	
Windows	have	
more	malware.	

	
2.4.	ANALYSIS	
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In	this	section,	we	distinguish	between	the	analysis	used	for	(1)	replicating	Chapter	
3,	(2)	building	a	model	from	the	SBO	data,	and	(3)	assessing	construct	validity.	
	
	
2.4.1.	REPLICATION	
We	repeated	the	SDT	calculations	and	regression	analysis	from	Chapter	3.	For	each	
individual,	we	estimated	the	SDT	parameters	by	assuming	the	signal	and	noise	
distributions	were	Gaussian	with	equal	variance	and	using	a	log-linear	correction	
(Hautus,	1995;	Lynn	&	Barrett,	2014):	

d’	=	z(H)	–	z(FA)	
c	=	-0.5(z(H)	+	z(FA))	

where	
H	=	(hits	+	0.5)/(signals	+	1)	

FA	=	(false	alarms	+	0.5)/(noise	+	1)	
	
We	assessed	the	effect	of	personal	greeting	using	a	multilevel	model	and	tested	the	
other	hypotheses	using	multivariate	linear	regression.	In	this	study,	we	added	total	
email	load	and	SeBIS	scores	to	the	regression.		
	
2.4.2.	SBO	MODEL	CONSTRUCTION	
In	order	to	assess	construct	validity,	we	constructed	models	for	the	browsing	and	
software	outcomes.	We	constructed	the	models	using	all	of	the	available	SBO	data	
and	then	refined	them	with	the	subset	that	performed	the	phishing	detection	
experiment.	We	used	the	strategy	outlined	in	Hosmer,	Lemeshow	&	Sturdivant	
(2013).	This	involves	the	following	steps:	

1. Perform	univariate	analysis	of	each	IV	using	a	chi-square	test	for	categorical	
variables	and	two-sample	t-test	for	continuous	variables.	All	variables	with	a	
p	<	.25	are	identified	as	viable	covariates.	The	threshold	of	.25	was	
determined	by	Mickey	and	Greenland	(1989),	who	show	that	this	threshold	
ensures	that	no	important	variables	are	eliminated	at	this	initial	step.	

2. Perform	factor	analysis	to	assess	combining	variables.	
3. Identify	necessary	transformations	and	link	function	for	linear	relationships	

using	GAM	and	Stukel’s	test.	
4. Fit	multivariate	model	and	eliminate	variables	that	are	not	significant.	Test	

improved	model	fit	using	likelihood	ratio	test.	Check	that	none	of	the	
coefficients	have	dramatically	changed.	

5. If	relevant,	check	for	significant	interactions.	
6. Assess	calibration	of	final	model.	

	
2.4.3.	VALIDITY	
We	evaluated	4	SBO	outcomes	including	(1)	phish	visits	in	browser	data,	(2)	phish	
visits	in	network	packet	data,	(3)	installed	malware,	and	(4)	installed	suspicious	
software.	For	each	SBO	outcome	variable,	we	used	a	logistic	regression	model	due	to	
the	high	number	of	participants	who	have	a	0	outcome	(i.e.	have	never	visited	a	
malicious	website	and	have	no	malware)	(Long,	1997).	For	each	outcome,	we	
measured	the	simple	relationship	with	the	SDT	measure.	Then	we	used	a	likelihood	
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ratio	test	to	compare	the	goodness	of	fit	for	models	with	and	without	the	SDT	
measures.	The	likelihood	ratio	test	is	the	most	powerful	test	of	the	null	hypothesis	
that	the	SDT	measure	does	not	increase	the	likelihood	of	the	data	given	the	SDT	
measure.	
	
3.	RESULTS	
Results	are	reported	where	the	SBO	and	experimental	data	sets	were	analyzed	
separately.	The	combined	analysis	will	be	performed	post-preregistration.	The	SBO	
data	changes	over	time	as	more	data	is	collected.	The	final	data	analysis	will	be	
preformed	on	the	most	recent	database.	
	
3.1.	SAMPLE	
We	recruited	132	participants	to	participate	in	the	phishing	detection	experiment.	
Of	those,	121	participants	started	the	survey	and	98	finished,	giving	a	74%	response	
rate.	According	to	two-sample	t-tests,	the	SBO	sample	is	significantly	more	
educated,	t(214)	=	3.16,	p	=	0.002,	and	older,	t(130)	=	4.32,	p	<	0.001,	than	the	
mTurk	sample.	
	
Of	the	98	participants,	71	failed	at	least	one	attention	check.	Of	those,	12	
participants	failed	one	of	the	direction	checks	and	69	failed	one	or	both	of	the	email	
stimuli	checks.	However,	no	participants	were	removed	for	performance	on	the	
attention	checks	because	attention	was	not	a	significant	predictor	in	the	regression	
analysis.	This	means	that	there	were	no	significant	differences	in	performance	
between	participants	who	did	and	did	not	fail	the	attention	checks,	which	suggests	
that	the	checks	did	not	measure	attention.	Therefore,	we	are	investigating	other	
variables,	such	as	time	per	stimuli	and	patterns	of	responses	to	assess	attention.	
	
Table	B-4.	Comparison	of	mTurk	and	SBO	samples.		

Variable	 mTurk	Sample	 SBO	Sample	 All	SBO	
Gender	 58%	Female	 60%	Female	 61%	Female	
Education	 45%	Bachelors+	 64%	Bachelors+	 58%	Bachelors+	

Age	 32	[19,	59]	 40	[19,	81]	 46	[19,	87]	
N	 151	 98	 213	

	
3.2.	REPLICATION	
Not	reported	in	preregistration.	
	
3.3.	SBO	MODEL	CONSTRUCTION	
3.3.1.	BROWSING	MODEL	CONSTRUCTION	
In	the	browsing	data,	7	participants	visited	a	malicious	domain	in	the	browser	data	
and	22	participants	visited	a	malicious	domain	in	the	network	packet	data.	The	
outcomes	of	the	two	sensors	are	weakly	correlated	so	it	does	not	make	sense	to	
combine	them.	Therefore,	we	performed	separate	regressions	for	each	sensor.		
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Study	Time	was	not	correlated	with	phishing	visits	for	the	browser	and	network	
packet	data.	Therefore	it	was	excluded	from	the	analysis.	We	were	unable	to	
perform	univariate	analysis	due	to	the	low	number	of	observed	phishing	visits.	
According	to	the	factor	analysis	reported	in	Table	5,	all	of	the	remaining	browsing	
covariates	load	on	a	single	factor	called	Browsing	Intensity.		The	logistic	regression	
is	reported	in	Table	6.	Browsing	Intensity	was	a	significant	predictor	for	the	
network	packet	sensor	data,	but	not	browser	data.	Figure	1	shows	the	predicted	
probability	of	having	visited	a	malicious	URL,	given	the	browsing	intensity.	
	
Table	B-5.	Factor	analysis	for	browsing	variables.	The	factor	analysis	is	reported	
separately	for	the	browser	and	network	packet	sensors.	Browsing	Intensity	is	a	
linear	combination	of	all	of	the	browsing	variables	for	each	sensor.		

	 Browser	Sensor	 Network	Packet	Sensor	
Unique	Browsing	 0.99	 0.91	
Total	Browsing	 0.97	 0.84	
Click	Links	(track)	 0.89	 0.32	
Unique	Domains	 0.87	 0.94	
Social	Media	Use	 0.51	 0.64	
Click	Links	(source)	 0.26	 N/A	
%	of	Total	Variance	 0.63	 0.59	
Cronbach's	Alpha	 0.89	 0.84	

	

Table	B-6.	Logistic	model	for	browsing	variables.	Browsing	intensity	requires	a	log	
transformation	to	meet	the	assumption	of	linear	parameters.	Browsing	intensity	is	
not	a	significant	predictor	for	the	browser	sensor,	likely	due	to	insufficient	
observations	of	phish	visits.	The	odds	ratio	measures	the	change	in	the	odds	of	the	
outcome	from	a	1-unit	change	in	the	predictor.	For	the	network	packet	data,	a	1-unit	
increase	in	log(Browsing	Intensity)	increases	the	odds	of	visiting	a	phishing	URL	by	
1.23	times.	

	 Browser	Sensor	 Network	Packet	Sensor	
	 B	(SE)	 OR	 B	(SE)	 OR	

(Intercept)	 -5.7	(2.1)**	 	-8.84	(2.47)***	 	
log(Browsing	Intensity)	 0.43	(0.24)	 1.27	 0.66	(0.21)**	 1.23	
N	 64	 	 96	 	
Note:	B	=	Beta	(regression	coefficient),	SE	=	Standard	error,	OR	=	Odds	ratio	
*p	<	.05,	**p<.01,	***p<.001	
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Figure	B-1.	Predicted	probability	of	visiting	a	phishing	website	(line)	plotted	on	top	
of	observations	(points)	vs.	log(Browsing	Intensity).	

3.3.2.	SOFTWARE	MODEL	CONSTRUCTION	
In	the	software	data,	26	participants	had	malware	and	44	had	suspicious	software	
installed	on	their	computer.	Since	malware	is	a	subset	of	suspicious	software,	it	is	
more	enlightening	to	analyze	them	separately.		
	
Univariate	and	multivariate	analysis	indicated	that	Days	Since	Windows	Update	and	
3rd	Party	AV	did	not	predict	whether	or	not	users	had	malware	or	suspicious	
software	on	their	computer.	Therefore,	those	variables	were	excluded	from	the	
logistic	model.		
	
According	to	the	factor	analysis	reported	in	Table	7,	it	is	appropriate	to	combine	the	
three	remaining	variables,	Total	Software,	Security	Software,	and	Delayed	Software	
Updates,	into	a	single	factor	called	Software	Load.	Participants	with	high	Software	
Load	tended	to	have	more	software	installed	on	their	computer,	including	more	
security	software,	and	delay	software	updates	on	popular	software.		In	the	logistic	
regression	analysis	reported	in	Table	8,	participants	with	a	higher	software	load	
were	significantly	more	likely	to	have	malware	and	suspicious	software	on	their	
computer.	Figure	2	shows	the	predicted	probability	of	having	malware	or	suspicious	
software,	given	the	software	load.		
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Table	B-7.	Factor	analysis	for	software	variables.	These	variables	were	combined	to	
form	the	Software	Load	variable.	

	 Factor	1	
Total	Software	 0.69	
Delayed	Software	Updates		 0.56	
Security	Software	 0.49	
%	Variance	 0.34	
Cronbach’s	Alpha	 0.6	

	
Table	B-8.	Logistic	regression	of	malware	and	suspicious	software.	The	odds	ratio	
measures	the	change	in	the	odds	of	the	outcome	from	a	1-unit	change	in	the	
predictor.	Here,	Software	Load	is	scaled	so	that	1-unit	=	10-units.	An	odds	ratio	of	1	
suggests	that	there	is	little	effect	from	a	10-unit	increase	in	Software	Load.	However,	
the	effect	is	multiplicative	so	a	100-unit	increase	in	Software	Load	increases	the	
odds	of	having	malware	or	suspicious	software	by	2.72.	

	 Malware	 Suspicious	Software	
	 B	(SE)	 OR	 B	(SE)	 OR	

(Intercept)	 -2.27	(0.46)***	 	-1.56	(0.43)***	 	
Software	Load	(by	10s)	 0.1	(0.03)***	 1.03	 0.12	(0.03)***	 1.03	
N	 96	 	 96	 	
Note:	B	=	Beta	(regression	coefficient),	SE	=	Standard	error,	OR	=	Odds	ratio	
*p	<	.05,	**p<.01,	***p<.001	

	
	

	
Figure	B-2.	Predicted	probability	of	having	malware	or	suspicious	software	(line)	
plotted	on	top	of	observations	(points)	vs.	Software	Load.		
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3.4.	VALIDITY	
To	assess	whether	the	SDT	parameters	improve	the	fit	of	the	models,	we	will	
perform	a	likelihood	ratio	test	comparing	the	models	in	Table	9	with	the	nested	
models	shown	in	Tables	6	and	8.	We	will	compare	the	results	for	d’	with	AUC	(area	
under	the	curve),	an	alternate	discrimination	measure	based	on	the	ROC	curve.	
	
Table	B-9.	Example	logistic	regression	for	SBO	and	SDT	data.	This	regression	will	be	
repeated	for	each	of	the	four	outcome	variables,	(1)	phish	visits	in	browser	data,	(2)	
phish	visits	in	network	packet	data,	(3)	installed	malware,	and	(4)	installed	
suspicious	software.	First,	we	will	measure	the	simple	relationship	for	each	model	
by	excluding	Factor	1.	Then	we	will	perform	the	models	described	below.	Factor	1	
will	be	log(browsing	intensity)	for	the	network	packet	data	and	software	load	for	
the	software	data.	There	is	no	Factor	1	for	the	browser	data.	

	Model	
1:	d'D	

Model	
2:	cD	

Model	
3:	d'B	

Model	
4:	cB	

Model	
5:	λ	

Model	6:	
Full	

Model	7:	
Full	(λ)	

Intercept	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	
d'D	 B	(SE)	 	 	 	 	B	(SE)	 B	(SE)	
cD	 	B	(SE)	 	 	 	B	(SE)	 B	(SE)	
d'B	 	 	B	(SE)	 	 	B	(SE)	 	
cB	 	 	 	B	(SE)	 	B	(SE)	 	
λ	 	 	 	 	B	(SE)	 	 B	(SE)	

(Factor	1)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	
N	 X	 X	 X	 X	 X	 X	 X	
Note:	This	analysis	will	be	performed	post-preregistration		
B	=	beta,	the	estimated	coefficient,	SE	=	standard	error	of	beta	
Alpha	=	.01	
	
4.	DISCUSSION	
If	none	of	the	SDT	parameters	predict	the	SBO	outcomes,	there	are	four	primary	
explanations:	

1. SDT	parameters	do	not	measure	phishing	susceptibility:	participants	may	
pay	attention	to	different	cues	in	the	experiment	than	in	real	life	because	of	
the	constrained	context	and	training.	We	can	evaluate	whether	training	time	
is	significant	(it	was	not	for	the	mTurk	sample),	use	total	email	as	a	predictor	
(since	people	who	get	more	email	may	be	more	rushed	or	more	
knowledgeable),	and	code	responses	on	how	they	identify	phishing	emails	in	
real	life	vs.	in	the	experiment.	

2. SDT	measurement	is	imprecise:	participants	may	not	be	good	at	the	
experimental	task	or	not	try	hard	because	it	is	unusual,	tedious,	or	boring.	
We	can	test	for	vigilance	decrement	(decreased	performance	over	time)	and	
use	the	attention	checks.	

3. SBO	outcomes	are	not	related	to	phishing	susceptibility:	the	behavioral	
outcomes	may	be	primarily	from	other	vectors		(e.g.	downloading	software,	
social	media,	instant	message)	or	participants	may	fall	for	phishing	attacks	
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on	other	devices	(e.g.	phone).	In	the	experiment,	we	ask	about	the	frequency	
of	these	activities.	

4. SBO	measurement	is	imprecise:	the	data	may	be	missing	(e.g.	sensor	breaks	
or	is	turned	off,	participant	primarily	uses	different	computer)	or	noisy	
(multiple	people	using	the	same	computer).	In	the	experiment,	we	ask	if	
participants	have	turned	off	browser	extensions	and	if	other	people	use	their	
computer.	

If	the	SDT	parameters	predict	phish	visits,	this	suggests	that	the	experiment	is	truly	
measuring	people’s	phishing	susceptibility.	If	the	SDT	parameters	predict	malware,	
this	may	imply	that	the	experiment	is	measuring	people’s	ability	to	detect	
suspiciousness	on	the	Internet	in	general,	rather	than	being	limited	to	detecting	
phishing	emails.	
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B.2.	Supporting	Analysis	

Table	B-10.	Comparison	of	linear	regression	analysis	of	sensitivity	(d’)	for	mTurk	
and	community	samples.	

	 mTurk	 Community	(SBO)	
	 Detection	 Behavior	 Detection	 Behavior	
	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	

Intercept	 -1.32	(0.98)	 -0.09	(0.83)	 -0.97	(0.92)	 0.61	(0.77)	
Knowledge	of	base	rate	 0.02	(0.10)	 0.10	(0.08)	 -0.22	(0.14)	 0.05	(0.12)	
Task	order	(detection	=	1)	 0.04	(0.10)	 -0.05	(0.09)	 0.15	(0.14)	 -0.14	(0.12)	
Attention	(pass	=	1)		 0.49	(0.18)**	 0.12	(0.15)	 0.33	(0.19)	 0.07	(0.16)	
log(Phish	info	time)	 0.05	(0.04)	 -0.03	(0.03)	 0.02	(0.07)	 0.07	(0.06)	
Median	time/email	 0.48	(0.23)*	 0.17	(0.19)	 0.23	(0.11)*	 -0.13	(0.09)	
Average	confidence	 2.23	(0.67)**	 1.11	(0.57)	 3.46	(0.87)***	 0.71	(0.73)	
Average	perceived	consequences	 0.08	(0.08)	 0.11	(0.06)	 0	(0.10)	 0	(0.08)	
log(Age)	 -0.22	(0.21)	 -0.33	(0.17)	 -0.40	(0.19)*	 -0.16	(0.16)	
Gender	(male	=	1)	 0.11	(0.10)	 0.06	(0.09)	 -0.09	(0.15)	 0.15	(0.12)	
College	(college	degree	=	1)	 0.19	(0.10)	 0.10	(0.09)	 -0.03	(0.16)	 -0.18	(0.13)	
N	 142	 142	 84	 84	
Adjusted	R2	 0.16	 0.05	 0.14	 0.05	
F		 3.71***	 1.68	 2.37*	 1.40	

	

Table	B-11.	Comparison	of	linear	regression	analysis	of	response	bias	(c)	for	mTurk	
and	community	samples.	

	 mTurk	 Community	(SBO)	
	 Detection	 Behavior	 Detection	 Behavior	
	 B	(SE)	 B	(SE)	 B	(SE)	 B	(SE)	

Intercept	 0.06	(0.70)	 0.10	(0.87)	 1.31	(0.62)*	 -0.08	(0.81)	
Knowledge	of	base	rate	 0.01	(0.07)	 0.13	(0.09)	 0	(0.10)	 0.07	(0.13)	
Task	order	(detection	=	1)	 -0.01	(0.07)	 0.11	(0.09)	 0.18	(0.10)	 0.12	(0.13)	
Attention	(pass	=	1)	 0.08	(0.13)	 -0.19	(0.16)	 0.07	(0.13)	 -0.13	(0.17)	
log(Phish	info	time)	 0.01	(0.03)	 0.01	(0.04)	 0.04	(0.05)	 0	(0.06)	
Median	time/email	 0.10	(0.16)	 -0.70	(0.20)***	 0.13	(0.08)	 -0.10	(0.10)	
Average	confidence	 1.81	(0.48)***	 2.38	(0.59)***	 0.62	(0.59)	 0.93	(0.77)	
Average	perceived	consequences	 -0.24	(0.05)***	 -0.42	(0.07)***	 -0.24	(0.07)***	 -0.20	(0.09)*	
log(Age)	 -0.17	(0.15)	 -0.22	(0.18)	 -0.38	(0.13)**	 -0.18	(0.16)	
Gender	(male	=	1)	 -0.13	(0.07)	 -0.14	(0.09)	 0.05	(0.10)	 0.11	(0.13)	
College	(college	degree	=	1)	 0.02	(0.07)	 -0.13	(0.09)	 0.39	(0.11)***	 0.18	(0.14)	
N	 142	 142	 84	 84	
Adjusted	R2	 0.18	 0.39	 0.27	 0.07	
F		 4.16***	 9.85***	 4.12***	 1.63	
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Table	B-12.	Descriptive	statistics	for	validity	analysis.	

	 Mean	 SD	 Med	 Min	 Max	 N	
SeBIS	 3.3	 0.52	 3	 2	 5	 83	
SeBIS	–	Device		 3.14	 1.28	 3	 1	 5	 83	
SeBIS	–	Password		 3.05	 0.79	 3	 1	 5	 83	
SeBIS	–	Proactive	Awareness	 3.53	 0.66	 4	 2	 5	 83	
SeBIS	–	Update		 3.44	 0.82	 3	 1	 5	 83	
Days	in	SBO	Study	 230	 170	 180	 15	 658	 93	
Active	Days	(browser)	 67	 76	 40	 1	 438	 86	
Total	URLs/Day	(browser)	 56	 90	 22	 0	 531	 68	
Unique	URLs/Day	(browser)	 23	 32	 9	 0	 151	 68	
Domains/Day	(browser)	 6	 4.4	 5	 1	 32	 86	
Clicked	Email	Links/Day	via	tracking	(browser)	 0.5	 1	 0	 0	 5	 68	
Clicked	Email	Links/Day	via	source	(browser)	 0.8	 2	 0	 0	 13	 68	
Active	Days	(network	packet)	 85	 63	 70	 1	 347	 92	
Total	URLs/Day	(network	packet)	 2,600	 3600	 1500	 6	 27,225	 92	
Unique	URLs/Day	(network	packet)	 990	 1000	 670	 4	 5,215	 92	
Domains/Day	(network	packet)	 52	 37	 42	 3	 216	 92	
Clicked	Email	Links/Day	via	tracking	(network	packet)	 0.4	 2	 0	 0	 19	 92	
Total	Software	 342	 320	 240	 15	 1,573	 92	
Vulnerable	Software	 2	 1.2	 2	 0	 5	 93	
AV	(binary)	 0.34	 0.48	 0	 0	 1	 93	
Last	Windows	Update	(days)	 59	 34	 71	 0	 180	 93	
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Table	B-13.	Pearson	correlations.		

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
1.	Malicious	URL	(br)	 1	 0.23	 0.11	 -0.06	 0.04	 -0.17	 0.07	 -0.12	 0.19	 -0.03	
2.	Malicious	URL	(NP)	 0.23	 1	 0.05	 0.08	 -0.02	 -0.04	 0.07	 0.05	 0.06	 -0.11	
3.	Malware	 0.11	 0.05	 1	 0.16	 -0.15	 -0.13	 -0.05	 -0.06	 -0.13	 -0.02	
4.	Malicious	Files	 -0.06	 0.08	 0.16	 1	 -0.1	 -0.17	 -0.08	 -0.19	 -0.07	 0.14	
5.	Detection	d’	 0.04	 -0.02	 -0.15	 -0.1	 1	 0.23	 0.53	 0.03	 0.31	 0	
6.	Detection	c	 -0.17	 -0.04	 -0.13	 -0.17	 0.23	 1	 0.02	 0.6	 -0.03	 -0.43	
7.	Behavior	d’	 0.07	 0.07	 -0.05	 -0.08	 0.53	 0.02	 1	 0.17	 0.07	 -0.01	
8.	Behavior	c	 -0.12	 0.05	 -0.06	 -0.19	 0.03	 0.6	 0.17	 1	 0.07	 -0.3	
9.	Confidence	 0.19	 0.06	 -0.13	 -0.07	 0.31	 -0.03	 0.07	 0.07	 1	 0.2	
10.	Perceived	Consequences	 -0.03	 -0.11	 -0.02	 0.14	 0	 -0.43	 -0.01	 -0.3	 0.2	 1	
11.	Male	 0.13	 0.31	 0.01	 -0.18	 -0.02	 0.15	 0.14	 0.19	 0.05	 -0.2	
12.	Age	 -0.08	 -0.13	 0.17	 -0.01	 -0.15	 -0.16	 -0.21	 -0.16	 0.11	 0.15	
13.	College	 -0.14	 -0.12	 0.09	 -0.17	 -0.08	 0.21	 -0.19	 0.02	 0.07	 -0.02	
14.	SeBIS	 -0.27	 0	 -0.05	 0.07	 0.02	 -0.2	 0.02	 -0.26	 0.11	 0.34	
15.	Device	Subscale	 -0.23	 0.03	 -0.06	 0.11	 -0.11	 -0.12	 -0.02	 0.03	 -0.01	 0.24	
16.	Password	Subscale	 -0.31	 -0.13	 0.07	 -0.05	 0.02	 -0.13	 -0.14	 -0.25	 -0.11	 0.2	
17.	Proactive	Awareness	Subscale	 -0.07	 0.02	 -0.02	 0.01	 0.1	 -0.07	 0.13	 -0.28	 0.16	 0.18	
18.	Update	Subscale	 0.1	 0.09	 -0.09	 0.06	 0.13	 -0.18	 0.09	 -0.25	 0.3	 0.15	
19.	Time	in	Study	 -0.08	 -0.01	 0.32	 0.21	 -0.13	 -0.15	 -0.12	 -0.07	 0.07	 0.02	
20.	Active	Days	(br)	 0.26	 0.16	 0.25	 0.04	 -0.03	 -0.29	 0.11	 -0.18	 0.06	 0.07	
21.	Total	URLs/Day	(br)	 0.18	 0.11	 0.14	 -0.08	 -0.14	 -0.21	 -0.08	 -0.15	 0.1	 0.14	
22.	Unique	URLs/Day	(br)	 0.21	 0.09	 0.11	 -0.19	 -0.11	 -0.16	 -0.05	 -0.11	 0.14	 0.12	
23.	Domains/Day	(br)	 0.35	 0.18	 -0.19	 0.09	 0.22	 -0.01	 0.18	 -0.02	 0.28	 -0.04	
24.	Click	Links	via	Tracking	(br)	 0.21	 0.03	 0.14	 -0.05	 -0.27	 -0.38	 -0.04	 -0.21	 0.15	 0.16	
25.	Click	Links	via	Source	(br)	 0.24	 -0.16	 0	 -0.27	 0.01	 -0.05	 0.01	 -0.02	 0.07	 0.08	
26.	Active	Days	(NP)	 -0.06	 0.22	 0.17	 0.2	 0.04	 -0.15	 0.15	 -0.04	 0.01	 0.02	
27.	Total	URLs/Day	(NP)	 0.09	 0.35	 0.21	 0.04	 -0.02	 -0.11	 0.11	 -0.11	 -0.02	 -0.01	
28.	Unique	URLs/Day	(NP)	 0.3	 0.37	 0.08	 0.01	 0.02	 -0.04	 0.12	 -0.09	 0.05	 -0.14	
29.	Domains/Day	(NP)	 0.23	 0.2	 -0.03	 -0.12	 0.15	 0.03	 0.12	 -0.03	 0.07	 -0.02	
30.	Click	Links	via	Source	(NP)	 0.34	 0.13	 0.15	 0.04	 -0.19	 -0.06	 -0.11	 -0.21	 -0.22	 -0.28	
31.	Total	SW	 0.03	 0.1	 0.31	 0.26	 -0.11	 -0.18	 -0.05	 -0.22	 0.02	 -0.12	
32.	Vulnerable	SW	 -0.15	 -0.01	 0.12	 0.15	 0	 -0.15	 -0.02	 0.06	 0	 0.11	
33.	AV	 0.08	 -0.09	 -0.02	 -0.07	 0.12	 0.06	 0.23	 -0.12	 -0.09	 0.01	
34.	Days	Since	Windows	Update	 -0.03	 -0.06	 0.14	 -0.01	 -0.09	 -0.02	 -0.1	 0.08	 0.05	 -0.07	

	
Correlations	>	0.3	are	bolded.	 	
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	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	

1.	Malicious	URL	(br)	 0.13	 -0.08	 -0.14	 -0.27	 -0.23	 -0.31	 -0.07	 0.1	 -0.08	 0.26	 0.18	 0.21	
2.	Malicious	URL	(NP)	 0.31	 -0.13	 -0.12	 0	 0.03	 -0.13	 0.02	 0.09	 -0.01	 0.16	 0.11	 0.09	
3.	Malware	 0.01	 0.17	 0.09	 -0.05	 -0.06	 0.07	 -0.02	 -0.09	 0.32	 0.25	 0.14	 0.11	
4.	Malicious	Files	 -0.18	 -0.01	 -0.17	 0.07	 0.11	 -0.05	 0.01	 0.06	 0.21	 0.04	 -0.08	 -0.19	
5.	Detection	d’	 -0.02	 -0.15	 -0.08	 0.02	 -0.11	 0.02	 0.1	 0.13	 -0.13	 -0.03	 -0.14	 -0.11	
6.	Detection	c	 0.15	 -0.16	 0.21	 -0.2	 -0.12	 -0.13	 -0.07	 -0.18	 -0.15	 -0.29	 -0.21	 -0.16	
7.	Behavior	d’	 0.14	 -0.21	 -0.19	 0.02	 -0.02	 -0.14	 0.13	 0.09	 -0.12	 0.11	 -0.08	 -0.05	
8.	Behavior	c	 0.19	 -0.16	 0.02	 -0.26	 0.03	 -0.25	 -0.28	 -0.25	 -0.07	 -0.18	 -0.15	 -0.11	
9.	Confidence	 0.05	 0.11	 0.07	 0.11	 -0.01	 -0.11	 0.16	 0.3	 0.07	 0.06	 0.1	 0.14	
10.	Perceived	Consequences	 -0.2	 0.15	 -0.02	 0.34	 0.24	 0.2	 0.18	 0.15	 0.02	 0.07	 0.14	 0.12	
11.	Male	 1	 -0.12	 0.02	 0.19	 0.21	 -0.02	 0.01	 0.23	 -0.04	 0.01	 -0.13	 -0.09	
12.	Age	 -0.12	 1	 0.37	 0.02	 -0.33	 0.14	 0.27	 0.22	 0.46	 0.33	 0.08	 0.14	
13.	College	 0.02	 0.37	 1	 0.02	 -0.1	 0.09	 0.09	 0.06	 0.09	 -0.07	 -0.07	 -0.01	
14.	SeBIS	 0.19	 0.02	 0.02	 1	 0.65	 0.59	 0.57	 0.52	 0.03	 -0.14	 -0.18	 -0.19	
15.	Device	Subscale	 0.21	 -0.33	 -0.1	 0.65	 1	 0.11	 -0.06	 0.07	 -0.16	 -0.38	 -0.12	 -0.17	
16.	Password	Subscale	 -0.02	 0.14	 0.09	 0.59	 0.11	 1	 0.29	 0.12	 0.14	 0.08	 -0.09	 -0.12	
17.	Proactive	Awareness	Subscale	 0.01	 0.27	 0.09	 0.57	 -0.06	 0.29	 1	 0.34	 0.05	 0.08	 -0.2	 -0.15	
18.	Update	Subscale	 0.23	 0.22	 0.06	 0.52	 0.07	 0.12	 0.34	 1	 0.16	 0.14	 0.07	 0.11	
19.	Time	in	Study	 -0.04	 0.46	 0.09	 0.03	 -0.16	 0.14	 0.05	 0.16	 1	 0.58	 0.14	 0.24	
20.	Active	Days	(br)	 0.01	 0.33	 -0.07	 -0.14	 -0.38	 0.08	 0.08	 0.14	 0.58	 1	 0.29	 0.32	
21.	Total	URLs/Day	(br)	 -0.13	 0.08	 -0.07	 -0.18	 -0.12	 -0.09	 -0.2	 0.07	 0.14	 0.29	 1	 0.96	
22.	Unique	URLs/Day	(br)	 -0.09	 0.14	 -0.01	 -0.19	 -0.17	 -0.12	 -0.15	 0.11	 0.24	 0.32	 0.96	 1	
23.	Domains/Day	(br)	 0.13	 -0.19	 -0.06	 -0.12	 -0.02	 -0.38	 -0.06	 0.2	 -0.22	 -0.1	 0.22	 0.22	
24.	Click	Links	via	Tracking	(br)	 -0.11	 0.29	 0	 -0.1	 -0.13	 -0.09	 -0.05	 0.13	 0.14	 0.18	 0.72	 0.7	
25.	Click	Links	via	Source	(br)	 -0.22	 0.11	 0.16	 -0.17	 -0.16	 -0.15	 0.01	 0	 0.07	 0	 0.47	 0.53	
26.	Active	Days	(NP)	 -0.17	 0.17	 -0.2	 0.02	 -0.17	 0.13	 0.18	 0	 0.53	 0.45	 0.06	 0.06	
27.	Total	URLs/Day	(NP)	 0.01	 0.1	 -0.13	 -0.11	 -0.16	 -0.03	 -0.07	 0.08	 0.09	 0.28	 0.56	 0.46	
28.	Unique	URLs/Day	(NP)	 0.17	 0.13	 -0.14	 -0.12	 -0.23	 -0.17	 0.03	 0.24	 0.14	 0.29	 0.25	 0.28	
29.	Domains/Day	(NP)	 0.2	 -0.02	 -0.04	 -0.06	 -0.06	 -0.09	 -0.04	 0.09	 -0.24	 -0.05	 0.17	 0.18	
30.	Click	Links	via	Source	(NP)	 0.11	 0.12	 -0.12	 -0.1	 -0.17	 -0.06	 -0.03	 0.12	 0.21	 0.33	 0	 0	
31.	Total	SW	 0.04	 0.2	 -0.02	 -0.09	 -0.32	 0.06	 0.05	 0.21	 0.47	 0.41	 0.11	 0.14	
32.	Vulnerable	SW	 -0.07	 -0.03	 -0.01	 0.05	 0.1	 0.19	 -0.1	 -0.14	 0.35	 0.11	 -0.17	 -0.14	
33.	AV	 0.01	 0.25	 0.08	 0.05	 -0.15	 0.07	 0.16	 0.18	 0.08	 0.13	 -0.07	 -0.05	
34.	Days	Since	Windows	Update	 -0.07	 0.27	 -0.08	 -0.12	 -0.27	 -0.08	 0.13	 0.07	 0.36	 0.17	 0.15	 0.12	

	
	

	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	
1.	Malicious	URL	(br)	 0.35	 0.21	 0.24	 -0.06	 0.09	 0.3	 0.23	 0.34	 0.03	 -0.15	 0.08	 -0.04	
2.	Malicious	URL	(NP)	 0.18	 0.03	 -0.16	 0.22	 0.35	 0.37	 0.2	 0.13	 0.1	 -0.01	 -0.09	 -0.04	
3.	Malware	 -0.19	 0.14	 0	 0.17	 0.21	 0.08	 -0.03	 0.15	 0.31	 0.12	 -0.02	 0.09	
4.	Malicious	Files	 0.09	 -0.05	 -0.27	 0.2	 0.04	 0.01	 -0.12	 0.04	 0.26	 0.15	 -0.07	 0.35	
5.	Detection	d’	 0.22	 -0.27	 0.01	 0.04	 -0.02	 0.02	 0.15	 -0.19	 -0.11	 0	 0.12	 -0.01	
6.	Detection	c	 -0.01	 -0.38	 -0.05	 -0.15	 -0.11	 -0.04	 0.03	 -0.06	 -0.18	 -0.15	 0.06	 -0.13	
7.	Behavior	d’	 0.18	 -0.04	 0.01	 0.15	 0.11	 0.12	 0.12	 -0.11	 -0.05	 -0.02	 0.23	 -0.06	
8.	Behavior	c	 -0.02	 -0.21	 -0.02	 -0.04	 -0.11	 -0.09	 -0.03	 -0.21	 -0.22	 0.06	 -0.12	 -0.17	
9.	Confidence	 0.28	 0.15	 0.07	 0.01	 -0.02	 0.05	 0.07	 -0.22	 0.02	 0	 -0.09	 -0.1	
10.	Perceived	Consequences	 -0.04	 0.16	 0.08	 0.02	 -0.01	 -0.14	 -0.02	 -0.28	 -0.12	 0.11	 0.01	 0.07	
11.	Male	 0.13	 -0.11	 -0.22	 -0.17	 0.01	 0.17	 0.2	 0.11	 0.04	 -0.07	 0.01	 -0.07	
12.	Age	 -0.19	 0.29	 0.11	 0.17	 0.1	 0.13	 -0.02	 0.12	 0.2	 -0.03	 0.25	 0.27	
13.	College	 -0.06	 0	 0.16	 -0.2	 -0.13	 -0.14	 -0.04	 -0.12	 -0.02	 -0.01	 0.08	 -0.08	
14.	SeBIS	 -0.12	 -0.1	 -0.17	 0.02	 -0.11	 -0.12	 -0.06	 -0.1	 -0.09	 0.05	 0.05	 -0.12	
15.	Device	Subscale	 -0.02	 -0.13	 -0.16	 -0.17	 -0.16	 -0.23	 -0.06	 -0.17	 -0.32	 0.1	 -0.15	 -0.27	
16.	Password	Subscale	 -0.38	 -0.09	 -0.15	 0.13	 -0.03	 -0.17	 -0.09	 -0.06	 0.06	 0.19	 0.07	 -0.08	
17.	Proactive	Awareness	Subscale	 -0.06	 -0.05	 0.01	 0.18	 -0.07	 0.03	 -0.04	 -0.03	 0.05	 -0.1	 0.16	 0.13	
18.	Update	Subscale	 0.2	 0.13	 0	 0	 0.08	 0.24	 0.09	 0.12	 0.21	 -0.14	 0.18	 0.07	
19.	Time	in	Study	 -0.22	 0.14	 0.07	 0.53	 0.09	 0.14	 -0.24	 0.21	 0.47	 0.35	 0.08	 0.36	
20.	Active	Days	(br)	 -0.1	 0.18	 0	 0.45	 0.28	 0.29	 -0.05	 0.33	 0.41	 0.11	 0.13	 0.17	
21.	Total	URLs/Day	(br)	 0.22	 0.72	 0.47	 0.06	 0.56	 0.25	 0.17	 0	 0.11	 -0.17	 -0.07	 0.15	
22.	Unique	URLs/Day	(br)	 0.22	 0.7	 0.53	 0.06	 0.46	 0.28	 0.18	 0	 0.14	 -0.14	 -0.05	 0.12	
23.	Domains/Day	(br)	 1	 0.1	 0.17	 -0.25	 0.23	 0.45	 0.62	 -0.05	 -0.03	 -0.09	 -0.02	 -0.22	
24.	Click	Links	via	Tracking	(br)	 0.1	 1	 0.51	 0.05	 0.41	 0.31	 0.1	 0.09	 0.17	 -0.17	 -0.07	 0.18	
25.	Click	Links	via	Source	(br)	 0.17	 0.51	 1	 -0.08	 0.1	 0.18	 0.16	 0.02	 0.02	 -0.21	 0.1	 -0.02	
26.	Active	Days	(NP)	 -0.25	 0.05	 -0.08	 1	 0.22	 0.13	 -0.31	 0.03	 0.26	 0.18	 0.26	 0.32	
27.	Total	URLs/Day	(NP)	 0.23	 0.41	 0.1	 0.22	 1	 0.73	 0.41	 0.23	 0.2	 -0.11	 0.05	 0.06	
28.	Unique	URLs/Day	(NP)	 0.45	 0.31	 0.18	 0.13	 0.73	 1	 0.59	 0.49	 0.29	 -0.11	 0.05	 -0.05	
29.	Domains/Day	(NP)	 0.62	 0.1	 0.16	 -0.31	 0.41	 0.59	 1	 -0.01	 -0.07	 -0.21	 -0.08	 -0.25	
30.	Click	Links	via	Source	(NP)	 -0.05	 0.09	 0.02	 0.03	 0.23	 0.49	 -0.01	 1	 0.27	 -0.06	 0.14	 0.06	
31.	Total	SW	 -0.03	 0.17	 0.02	 0.26	 0.2	 0.29	 -0.07	 0.27	 1	 0.25	 0.05	 0.33	
32.	Vulnerable	SW	 -0.09	 -0.17	 -0.21	 0.18	 -0.11	 -0.11	 -0.21	 -0.06	 0.25	 1	 -0.09	 0.07	
33.	AV	 -0.02	 -0.07	 0.1	 0.26	 0.05	 0.05	 -0.08	 0.14	 0.05	 -0.09	 1	 0.22	
34.	Days	Since	Windows	Update	 -0.22	 0.18	 -0.02	 0.32	 0.06	 -0.05	 -0.25	 0.06	 0.33	 0.07	 0.22	 1	
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Figure	B-3.	GAM	plot	of	predictor	for	browser	and	network	packet	data	with	and	
without	log	transformation.	In	both	cases,	the	log	transformation	makes	the	data	
more	linear.	
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Figure	B-4.	GAM	plot	of	predictor	for	malware	and	malicious	file	outcomes	with	and	
without	log	transformation.	In	both	cases,	the	log	transformation	makes	the	data	
more	linear.	
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Figure	B-5.	Plots	of	each	real	world	outcome	with	simple	regression	model	
(excluding	signal	detection	parameters	and	demographics).	
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Table	B-14.	Logistic	regression	models	and	likelihood	ratio	test	(LRT)	for	each	
outcome.	The	predictor	was	the	same	as	the	behavior	task	models	reported	in	the	
main	text	(Tables	4-4,4-5,4-7	and	4-8).		

	 Malicious	URLs	
(browser)	

Malicious	URLs	
(network	packet)	

Malware	 Malicious	
Files	

(Int)	 -5.54**	
(1.98)	

-10.50***	
(2.87)	

-5.37**	
(1.75)	

-5.04	
(3.84)	

Detection	d'	 -0.12	
(0.68)	

-0.29	
(0.45)	

-0.33	
(0.37)	

-1.15	
(0.86)	

Detection	c	 -1.04	
(0.84)	

-0.53	
(0.56)	

-0.57	
(0.58)	

-0.80	
(1.35)	

Predictor	 1.93*	
(0.83)	

1.42***	
(0.39)	

0.98**	
(0.31)	

2.49**	
(0.89)	

Age	 0	
(0.03)	

-0.04*	
(0.02)	

0	
(0.02)	

-0.05	
(0.03)	

Male	 0.93	
(0.82)	

1.55**	
(0.56)	

0.05	
(0.48)	

-1.02	
(0.99)	

College	 -0.69	
(0.99)	

0.43	
(0.65)	

0.74	
(0.57)	

-1.18	
(1.30)	

X2	(LRT)	 2.10	 1.63	 2.41	 2.69	
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C. Chapter	5	Appendix	
 

The R code for this study is available at https://osf.io/2f3yh/. 

	
Figure	C-1.	Validation	of	simulated	sample	by	comparing	it	to	empirical	estimates.	

	
Table	C-1.	Descriptive	statistics	for	model	inputs.	

	
d’	 c	 Delta	d’	 Delta	c	

Cost	of	
Attack	

Cost	of	
FA	

Cost	of	
Training	

Min	 -0.72	 -2.11	 -2.67	 -1.41	 18	 0	 12	
Q1	 -0.02	 -1.17	 0.05	 -0.36	 920	 0.26	 38	
Median	 0.30	 -0.56	 0.57	 -0.16	 1,800	 1	 59	
Mean	 0.33	 -0.66	 0.57	 -0.16	 3,000	 7.4	 60	
Q3	 0.71	 -0.17	 1.08	 0.03	 3,500	 3.9	 82	
Max	 1.54	 0.75	 3.97	 1.15	 260,000	 88,000	 110	

	
	


