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Abstract

The main goal of this thesis is to develop tools that enable us to study the convergence of
minimizers of functionals defined on point clouds towards minimizers of equivalent function-
als in the continuum; the point clouds we consider are samples of a ground-truth distribution.
In particular, we investigate approaches to clustering based on minimizing objective function-
als defined on proximity graphs of the given sample. Our focus is on functionals based on
graph cuts like the Cheeger and ratio cuts. We show that minimizers of these cuts converge as
the sample size increases to a minimizer of a corresponding continuum cut (which partitions
the ground-truth distribution). Moreover, we obtain sharp conditions on how the connectivity
radius can be scaled with respect to the number of sample points for the consistency to hold.
We provide results for two-way and for multi-way cuts. The results are obtained by using
the notion of Γ-convergence and an appropriate choice of metric which allows us to compare
functions defined on point clouds with functions defined on continuous domains.
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Chapter 1

Introduction

With the boom of machine learning and data analysis during the last decades, new opportu-
nities for research in fields like statistics, computer science and mathematics have emerged.
Strong theoretical results in these areas are important as they support the development of new
and better procedures aiming to extract information from data. Many important applications
such us automated cancer detection or interpretation of economic data rely on such procedures.

The topic of this thesis lies at the intersection of calculus of variations, geometric mea-
sure theory, optimal transportation and the applications of these areas to problems that arise
from data analysis, machine learning, and statistics. In particular, this work focuses on the
study of the convergence of solutions of minimization problems in random geometric graphs
towards solutions of analogous minimization problems in the continuum. The minimization
problems of interest in this thesis are those connected to important tasks in machine learning
like clustering and specifically graph-based clustering procedures.

In the context of data analysis, the goal of understanding the behavior of graph-based min-
imization problems in the large sample limit, can be interpreted as studying consistency of
the procedures obtained by solving the minimization problems at the discrete level: such pro-
cedures should converge as the number of samples goes to infinity to a ground-truth limiting
procedure. In my opinion, the most important contribution of this work is that of creating a
framework where different tools from mathematical analysis can be combined, thus making
it possible to study in a rigorous setting problems arising from statistics and machine learn-
ing. This work shows that modern analytical techniques can be used to obtain strong results
on classic questions in those fields. The specific results that are presented in this thesis on
consistency of graph cuts are one example of the application of such mathematical tools.

Graph cuts

In general, when given a data cloud, the goal is to extract information from it. Mathematically
speaking, a data cloud is a point cloud in some high-dimensional Euclidean space, which
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2 CHAPTER 1. INTRODUCTION

is obtained by sampling some underlying ground-truth probability distribution. One way to
extract information from the data is to study different geometrical and topological structures
of the cloud; these structures are thought of as best approximations to those of the ground-truth
which one is trying to recognize. For example, one may want to identify meaningful groups
among the data points in order to get an idea of the global organization of the ground-truth
distribution; this is the goal of one of the fundamental tasks in data analysis and machine
learning known as clustering.

Regardless of the approach used to clustering, a partition of a point cloud into clusters
should capture the idea that points in each of the groups in the partition are more similar
among themselves than with points in other groups. Some of the popular clustering algorithms
include those based on graph cuts [59,45,63,9], of centroid type like k-means [44], relaxations
of normalized cuts like spectral clustering [72], and of agglomeration type (or hierarchical
type) [75].

In this work we consider graph-based procedures to clustering. These procedures rely
on creating a graph out of the data cloud by connecting nearby points. This allows one to
leverage the geometry of the data set and obtain high quality clustering. So, given a data cloud
V := {x1, . . . ,xn} we construct a similarity graph induced by the distance between the points.
Typically, the graphs constructed are an instance of geometric graphs, where a length scale ε
is chosen so that points within distance ε are connected by an edge which is given significant
weight. With the graph structure at hand, the basic desire to obtain clusters which are well
separated leads to the introduction of objective functionals which penalize the size of cuts
between clusters.

Definition 1.0.1. Let G = (V,W ) be a weighted undirected graph. For a given subset Y ⊆V ,
the graph cut between Y and its complement Y c is given by

Cut(Y,Y c) := ∑
xi∈Y

∑
x j∈V\Y

Wi j.

The cut between Y and its complement measures the level of interaction between both sets.
From that point of view, if the task at hand was to partition the point cloud V into two clusters,
then one possible approach to obtain such partition could be to consider the minimization
problem

Minimize Cut(Y,Y c) over all nonempty Y � V . (1.1)

This approach is natural, simple and computationally efficient (due to its connection to the
max-flow problem). Nevertheless it has important disadvantages, the principal being its sen-
sitivity to outliers. The desire to have clusters of meaningful size and for approaches to be
robust to outliers leads to the introduction of ”balance” terms. The generic balanced graph cut
minimization problem takes the form

Minimize
Cut(Y,Y c)
Bal(Y,Y c)

:=
∑xi∈Y ∑x j∈Y c Wi j

Bal(Y,Y c)
over all nonempty Y � V , (1.2)
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where Bal(Y,Y c) is a balanced term which penalizes the asymmetry in size of Y and its com-
plement. Well-known balance terms include

BalR(Y,Y c) = 2|Y ||Y c| and BalC(Y,Y c) = min(|Y |, |Y c|), (1.3)

where for Y ⊆ V , |Y | represents the ratio between the number of points in Y and the number
of points in V . The balance terms in (1.3) correspond to Ratio Cut [42,45,72,73] and Cheeger
Cut [9, 30, 32] respectively. For the remainder we will always consider the balance terms
associated to either Cheeger or Ratio cut, but we remark that a variety of other balance terms
have appeared in the literature in the context of two-class and multi-class clustering [22, 45].
We refer to a pair {Y,Y c} that solves (1.2) as an optimal balanced cut of the graph. Note that
a given graph G = (V,W ) may have several optimal balanced cuts (although generically the
optimal cut is unique).

We are also interested in multi-class balance cuts. Specifically, in order to partition the set
V into R≥ 3 clusters, we consider the following ratio cut functional

Minimize
(Y1,...,YR)

R

∑
r=1

Cut(Yr,Y c
r )

|Yr|
, Yr ∩Ys = /0 if r �= s,

R�

r=1
Yr = V. (1.4)

The previous functional is the prototypical multi-class balance cut we consider in the remain-
der.

Continuum partitioning

Having defined the notion of balanced cuts in a discrete setting, we now consider the analogous
notion in the continuum. Let D ⊆ Rd be a bounded, connected, open domain and let ν be a
probability measure on D with positive density ρ > 0. A balanced domain-cut problem takes
the form

Minimize
Per(A;ρ2)

Balρ(A,Ac)
, A⊆ D with 0 < ν(A) < 1. (1.5)

where Ac = D\A. Just as the graph cut term Cut(Y,Y c) in (1.2) provides a weighted (by W )
measure of the boundary between Y and Y c, the cut term Per(A;ρ2) for a domain denotes a
ρ2−weighted area of the boundary between the sets A and Ac. If ∂DA := ∂A∩D (the boundary
between A and Ac) is a smooth curve (in 2d), surface (in 3d) or manifold (in 4d+) then we
define

Per(A;ρ2) :=
�

∂DA
ρ2(x) dS(x). (1.6)

For our results and analysis we need the notion of continuous cut which is defined for sets with
less regular boundary. We present the required notions of geometric measure theory in Section
4.1 and the rigorous and mathematically precise formulation of problem (1.5) in Section 5.2 .
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If ρ(x) = 1 then Per(A;ρ2) simply corresponds to arc-length (in 2d) or surface area (in
3d). In the general case, the presence of ρ2(x) in (1.6) indicates that the regions of low density
are easier to cut, so ∂DA has a tendency to pass through regions in D of low density. As in the
graph case, we consider balance terms

Balρ(A,Ac) = 2|A||Ac| and Balρ(A,Ac) = min(|A|, |Ac|), (1.7)

which correspond to weighted continuous equivalents of the Ratio Cut and the Cheeger Cut.
In the continuum setting |A| stands for the total ν-content of the set A, that is,

|A| = ν(A) =
�

A
ρ(x) dx. (1.8)

We refer to a pair {A,Ac} that solves (1.5) as an optimal balanced cut of the domain.
In a similar fashion, the continuum equivalent of the multiway cut problem (1.4) reads

Minimize
(A1,...,AR)

R

∑
r=1

Per(Ar;ρ2)
|Ar|

, Ar ∩As = /0 if r �= s,
R�

r=1
Ar = D. (1.9)

Consistency of partitioning of data clouds

To introduce the questions we will answer in this thesis and give an idea of the type of
theoretical results that are going to be established, let us assume that a given data cloud
Vn = {x1, . . . ,xn} in Rd is obtained by sampling some density ρ . In Figure 1.1 below, a data
cloud sampled from the uniform distribution on the domain D appearing in the background is
illustrated. By selecting the parameter ε , an associated geometric graph is then constructed
by connecting two points with an edge provided the points are within distance ε from each
other. The resulting graph is illustrated in Figure 1.2. Finally, we consider the corresponding
Cheeger cut problem and its solution is presented in Figure 1.3. This solution was obtained by
using a recent set of algorithms [25, 62, 26] which perform well in practice.

Figure 1.1: A sample of n = 120
points.

Figure 1.2: Geometric graph with ε =
0.3.
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Figure 1.3: Minimizer of Cheeger
cut.

Figure 1.4: Minimizer of continuous
Cheeger cut problem.

We also consider the continuous version of the Cheeger cut problem using constant ρ . The
solution to the continuous Cheeger cut problem is illustrated in Figure 1.4. Now we observe
that despite the fact that the solutions of the discrete and continuous problems are of different
nature (one is discrete the other one is continuous), at first glance one can say that they resem-
ble each other. Motivated by this observation, we ask the following questions. First, in what
sense (what topology or metric) are the solutions close? Second, can we actually prove that op-
timal graph cuts converge to optimal domain cuts as the number of data points increases? and
related to this last question, how does the construction of the graph, i.e., how does the choice
of ε , influence or guarantee such convergence? The previous questions motivated the results
that are presented in this manuscript. Note that from a statistical point of view, the previous
questions can be interpreted as asking about consistency of graph cut clustering procedures in
the large sample limit.

We remark that an important consideration when investigating consistency of optimal cuts
of the graph is how the graphs on Vn are actually constructed. In simple terms, when building
a graph on Vn one sets the length scale εn such that edges between vertices in Vn are given
significant weights if the distance of points they connect is εn or less. In some way this sets
the length scale over which the geometric information is averaged when setting up the graph.
Taking smaller εn is desirable because it is computationally less expensive and gives better
resolution, but there is a price. Taking εn small increases the error due to randomness and
in fact if εn is too small the resulting graph may not represent the geometry of D well and
consequently the discrete graph cut may be very far from the desired one. We determine
precisely how small εn can be taken for the consistency to hold. We obtain consistency results
both for two-way and multiway cuts.

Informal statement of (a part of) the main results. Consider d ≥ 2 and assume the
continuum balanced cut (1.5) has a unique minimizer {A,Ac}. Consider εn > 0 such that
limn→∞ εn = 0 no faster than an explicit (to be determined) rate. Then almost surely the min-
imizers, {Yn,Y c

n }, of the balanced cut (1.2) of the graph Gn , converge to {A,Ac}. Moreover,
after appropriate rescaling, almost surely the minimum of problem (1.2) converges to the mini-
mum of (1.5). The result also holds for multiway cuts. That is the minimizers of (1.4) converge
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towards minimizers of (1.9).
We remark that, despite the fact that for a general graphs the problems (1.2) and (1.4)

are NP hard, in practice when the graph is obtained by sampling from a measure ν as above,
such minimization problems can be effectively approached [23, 24]. In fact, by choosing an
appropriate initialization, the algorithms (see [23, 24]), give very good results in clustering
real-world data.

Background on consistency of clustering algorithms and related
problems

Consistency of clustering algorithms has been considered for a number of approaches. Pol-
lard [57] has proved the consistency of k-means clustering. Consistency for a class of single
linkage clustering algorithms was shown by Hartigan [43]. Arias-Castro and Pelletier have
proved the consistency of maximum variance unfolding [7]. Consistency of spectral clustering
was rigorously considered by von Luxburg, Belkin, and Bousquet [71]. These works show
the convergence of all eigenfunctions of the graph Laplacian for fixed length scale εn = ε
which results in the limiting (as n→ ∞) continuum problem being a nonlocal one. Belkin and
Niyogi [13] consider the spectral problem (Laplacian eigenmaps) and show that there exists
a sequence εn → 0 such that in the limit the (manifold) Laplacian is recovered, however no
rate at which εn can go to zero is provided. Consistency of normalized cuts was considered by
Arias-Castro, Pelletier, and Pudlo [8] who provide a rate on εn → 0 under which the minimiz-
ers of the discrete cut functionals minimized over a specific family of subsets of Vn converge
to the continuum Cheeger set. Our work improves on [8] in several ways. We minimize the
discrete functionals over all discrete partitions on Vn as it is considered in practice and prove
the result for the optimal, in terms of scaling, range of rates at which εn → 0 as n→ ∞.

There are also a number of works which investigate how well the discrete functionals
approximate the continuum ones for a particular function. Among them are works by Belkin
and Niyogi [14], Giné and Koltchinskii [37], Hein, Audibert, von Luxburg [46], Singer [61]
and Ting, Huang, and Jordan [68]. Maier, von Luxburg and Hein [51] considered pointwise
convergence for Cheeger and normalized cuts, both for the geometric and kNN graphs and
obtained a range of scalings of graph construction on n for the convergence to hold. While
these results are quite valuable, we point out that they do not imply that the minimizers of
discrete objective functionals are close to minimizers of continuum functionals.

Setup and main results

We consider the sample Vn = {x1, . . . ,xn} consisting of i.i.d. random points drawn from an
underlying ground-truth measure ν supported on D. We assume that D is a bounded, open
set with Lipschitz boundary and that ν has continuous density ρ which is bounded below and
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above by positive constants, that is, we assume that there exists λ ≥ 1 such that

1
λ
≤ ρ(x)≤ λ , ∀x ∈ D. (1.10)

In general, a geometric graph induced by the point cloud Vn is constructed as follows.
Let η : Rd → [0,∞) be a radially symmetric, radially decreasing kernel decaying to zero at a
sufficiently fast rate. For a specified ε > 0, for all i, j ∈ {1, . . . ,n} we let the weight between
xi and x j be given by

Wi j := η
�

xi−x j

ε

�
. (1.11)

To be more precise on the assumptions we impose on the kernel η , let us denote by ηηη :
[0,∞)→ [0,∞) its radial profile, that is we consider ηηη such that η(x) = ηηη(|x|). We assume:

(K1) ηηη(0) > 0 and ηηη is continuous at 0.

(K2) ηηη is non-increasing.

(K3) The integral
� ∞

0 ηηη(r)rddr is finite.

We note that the class of admissible kernels is broad and includes both Gaussian kernels and
discontinuous kernels like one defined by ηηη of the form ηηη = 1 for 0 ≤ t ≤ 1 and ηηη = 0 for
t > 1. We remark that the assumption (K3) is equivalent to imposing that the surface tension

ση :=
�

Rd
η(h)|h1|dh, (1.12)

where h1 is the first coordinate of vector h, is finite. We also remark that in (1.12), one can
replace h1 by h · e for any fixed e ∈ Rd with norm one; this because η is radially symmetric.

After setting the assumptions on the kernel η , we turn our attention to the following: as
one is considering functions supported on the graphs (characteristic functions of subsets of
Vn), the issue is how to compare them with functions in the continuum setting, and how to
compare functions defined on different graphs. We introduce the T Lp spaces to answer that
question.

First, let us denote by νn the empirical measure associated to the data points x1, . . . ,xn, that
is

νn :=
1
n

n

∑
i=1

δxi . (1.13)

The issue is then how to compare functions in L1(D,νn) with those in L1(D,ν). More gener-
ally, we consider how to compare functions in Lp(D,µ) with those in Lp(D,θ) for arbitrary
Borel probability measures µ , θ on D and arbitrary p ∈ [1,∞). We set

T Lp(D) := {(µ, f ) : µ ∈Pp(D), f ∈ Lp(D,µ)},
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where Pp(D) denotes the set of Borel probability measures on D with integrable p-moment.
We use P(D) to denote the set of all Borel probability measures on D.

For (µ, f ) and (ν ,g) in T Lp we define the distance

dT Lp((µ, f ),(ν ,g)) := inf
π∈Γ(µ,ν)

���

D×D
|x− y|p + | f (x)−g(y)|pdπ(x,y)

� 1
p

where Γ(µ,θ) is the set of all couplings (or transportation plans) between µ and θ , that is,
the set of all Borel probability measures on D×D for which the marginal on the first variable
is µ and the marginal on the second variable is θ . As discussed in Section 2.2, dT Lp is a
transportation distance between graphs of functions.

The T Lp topology provides a general and versatile way to compare functions in a discrete
setting with functions in a continuum setting. To give a more intuitive interpretation of the
convergence in T Lp, we make use of its characterization in Proposition 2.2.13. Suppose that
ν ∈Pp(D) is as before, and let νn be the empirical measure associated to the sample x1, . . . ,xn
drawn from ν . Let un ∈ Lp(D,νn) and u ∈ Lp(D,ν). Given a sequence of transportation maps
{Tn}n∈N, where for each n ∈ N νn is the push forward of ν by Tn, such that

�

D
|Tn(x)− x|pdν(x)→ 0, as n→ ∞, (1.14)

the statements (νn,un)
T Lp
−→ (ν ,u) as n → ∞ and un ◦ Tn

Lp(D,ν)−→ u as n → ∞ are equivalent.
The previous characterization allows us to think of T Lp convergence as convergence of a sort
of extrapolation of un towards u in the Lp(D,ν) sense. Indeed, note that for every n, the
transportation map Tn induces a partition of the domain D into n regions with the same ν-
measure, as well as it induces a matching between those regions and the points x1, . . . ,xn.
Intuitively, condition (1.14) guarantees that each region is matched to a nearby data point. The
function un ◦Tn supported on D, can then be thought as an extrapolation of the function un in
the sense that the value of un at some point xi is the value of the function un ◦Tn on a region
which is near the point xi.

Finally, it is worth remarking that T Lp convergence reduces to more common ways of
comparing functions at the discrete level with functions at the continuum level in some settings.
For example if the discrete set consisted of points arranged on a regular grid in D, then the
standard way [28, 69, 21], to compare functions at the discrete level with functions at the
continuum level is to identify functions at the discrete level with piecewise constant functions
on the domain D. This is achieved by assigning values on grid cells to be the value at the
appropriate grid points. The resulting extensions can then be compared using the usual Lp

metric. The notion of convergence induced by such procedure is equivalent to the convergence
in T Lp due to Proposition 2.2.13.

Having introduced the T Lp metric, we now have all the necessary ingredients to formulate
in a theorem the observations we made about the behavior of optimal balanced cuts of the
graph when n→ ∞.
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Theorem 1.0.2 (Consistency of two-class cuts). Let D ⊂ Rd, d ≥ 2 be an open, bounded,
connected set with Lipschitz boundary. Let ν ∈ P(D) be a probability measure on D with
continuous density ρ , which is bounded from below and above by positive constants. Let
{εn}n∈N be a sequence of positive numbers converging to 0 and satisfying

lim
n→∞

(logn)3/4

n1/2
1
εn

= 0 if d = 2,

lim
n→∞

(logn)1/d

n1/d
1
εn

= 0 if d ≥ 3.

(1.15)

Let x1, . . . ,xn, . . . be a sequence of i.i.d. random points chosen according to distribution ν
on D and let Vn = {x1, . . . ,xn}. Let Gn = (Vn,Wn) denote the graph whose edge weights are
defined as in (1.11), where we assume the kernel η satisfies conditions (K1)-(K3). Finally, let
{Y ∗n ,Y ∗n

c} denote any optimal balanced cut of Gn (solution of problem (1.2)). If {A∗,A∗c} is the
unique optimal balanced cut of the domain D (solution of problem (5.11)) then with probability
one the sequence {Y ∗n ,Y ∗n

c} converges to {A∗,A∗c} in the T L1-sense. If there is more than one
optimal continuum balanced cut (5.11) then {Y ∗n ,Y ∗n

c} converges along a subsequence to an
optimal continuum balanced cut.

Additionally, with probability one, Cn, the minimum balance cut of the graph Gn (the
minimum of (1.2)), satisfies

lim
n→∞

Cn

n2εd+1
n

= σηC , (1.16)

where ση is the surface tension associated to the kernel η defined in (1.12) and C is the
minimum of (1.5).

In order to prove Theorem 1.0.2, we have to introduce some ideas and establish several
preliminary results. In fact, we will not be able to prove Theorem 1.0.2 until we have in-
troduced and established the required foundations in Chapters 2, 3, 4 and the beginning of
Chapter 5. Nevertheless, to get us started in the development of these ideas, let us first observe
that the solution to problem (1.2) is unchanged if the functional to be minimized is multiplied
by a positive quantity. Having limits as n → ∞ in mind, we first consider a rescaled version
of the cut functional as well as we extend the notion of perimeter to functions on the graphs
taking real values.

Definition 1.0.3. Let Gn = (Vn,Wn) be a weighted graph with weights given by (1.11). Given
a function un : Vn → R, we define its graph total variation as

GTVn,εn(un) :=
1

n2εd+1
n

n

∑
i, j

Wi j|un(xi)−un(x j)|.

Also, we define the graph perimeter of a subset Y ⊆Vn by

Pern,εn(Y ) := GTVn,εn(1Y ) =
2

n2εd+1
n

Cut(Y,Y c),



10 CHAPTER 1. INTRODUCTION

which is simply a rescaled version of Cut(Y,Y c).

As mentioned previously, the problem of minimizing (1.2) can then be rewritten as

Minimize
Pern,εn(Y )
Bal(Y,Y c)

over all nonempty Y � V . (1.17)

Now, note that roughly speaking Theorem 1.0.2 says that with probability one, the min-
imizers of (1.17) converge in a suitable sense to minimizers of problem (1.5) and that the
minimum in (1.17) converges to a constant multiple of the minimum of problem (1.5). Look-
ing at the functionals to be minimized in (1.17) and (1.5), a connection between Pern,εn (the
graph perimeter) and Per(·;ρ2) (the weighted perimeter in the continuum) should be expected.
The relevant question is if the functional Pern,εn approximates Per(·;ρ2) in a suitable sense,
noting that the sense in which we would like Pern,εn to approximate Per(·;ρ2) should guaran-
tee the convergence of minimizers in Theorem 1.0.2. An example of a notion of convergence
of functionals that will not guarantee the consistency in Theorem 1.0.2 is that of pointwise
convergence. For the sake of simplicity let us assume that ηηη is of the form ηηη = 1 for 0≤ t ≤ 1
and ηηη = 0 for t > 1, that D is the unit box (0,1)d and that ρ is constant. As discussed in
Chapter 7, for a fixed measurable subset A ⊆ D, Pern,εn(A∩Vn) is a consistent estimator of
the relative perimeter Per(A) of A, provided that 1

n2/(d+1) � εn � 1. In particular, pointwise
convergence holds even for εn decaying at a faster rate than the connectivity rate for random
geometric graphs (see [56, 39, 41]) which is O

�
(log(n))1/d

n1/d

�
.

For the highly disconnected graphs that can be obtained by choosing 1
n2/(d+1) � εn �

(log(n))1/d

n1/d , (and for which the pointwise convergence still holds), it is clear that Theorem 1.0.2
will not hold, as in that case the minimum of the graph cut problem will be zero for all large
enough n, whereas the minimum of the domain cut problem will be positive.

Thus instead of focusing on the notion of pointwise convergence, we focus on a different
type of convergence for functionals which is better suited for studying the convergence of min-
imizers in Theorem 1.0.2. Introduced by De Giorgi in the 70’s, the notion of Γ-convergence
is appropriate as it gives precise and sufficient conditions under which minimizers of a se-
quence of functionals converge to minimizers of a limiting functional. Used in the context of
deterministic variational problems in diverse fields like phase transitions [3,53,52] and homog-
enization [19,33,20], this notion of convergence has a natural extension to random functionals
like the balance graph cut obtained from random points. In Section 1.1, we review some basic
facts about Γ-convergence, as well as we introduce the proper extension to problems where
there is randomness involved.

In Section 6.1 we show that the graph total variation approximates in the Γ-convergence
sense (with respect to the T L1-metric) the weighted total variation TV (·;ρ2), which for smooth
functions u : D→ R is given by

TV (u;ρ2) :=
�

D
|∇u|ρ2(x)dx,
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and in general defined by

TV (u;ρ2) = sup
��

D
udiv(φ)dx : (∀x ∈ D) |φ(x)| ≤ ρ2(x) , φ ∈C∞

c (D : Rd)
�

, (1.18)

see Section 4.1. We also show that the graph perimeter Γ-converges in the T L1-metric to the
weighted perimeter Per(·;ρ2) which for sets A ⊆ D with regular boundary is given by (1.6)
and for general measurable sets A⊆ D is given by

Per(A;ρ2) = TV (1A;ρ2).

More precisely the following holds.

Theorem 1.0.4 (Γ-convergence of GTVn,εn). Let D ⊂ Rd, d ≥ 2, be an open, bounded, con-
nected set with Lipschitz boundary. Let ν ∈P(D) be a probability measure on D with continu-
ous density ρ , which is bounded from below and above by positive constants. Let x1, . . . ,xn, . . .
be a sequence of i.i.d. random points chosen according to distribution ν on D. Let {εn}n∈N be
a sequence of positive numbers converging to 0 and satisfying

lim
n→∞

(logn)3/4

n1/2
1
εn

= 0 if d = 2,

lim
n→∞

(logn)1/d

n1/d
1
εn

= 0 if d ≥ 3.

(1.19)

Assume the kernel η satisfies conditions (K1)-(K3). Then, GTVn,εn , defined in Definition
1.0.3, Γ-converge to σηTV (·;ρ2) as n → ∞ in the T L1 sense, where ση is given by (1.12)
and TV (·;ρ2) is the weighted total variation functional defined in (1.18).

Corollary 1.0.5 (Γ-convergence of Pern,εn). Under the assumptions of Theorem 1.0.4, with
probability one the following statement holds: for every A ⊆ D measurable, there exists a
sequence of sets {Yn}n∈N with Yn ⊆Vn such that,

1Yn
T L1
−→ 1A

and
limsup

n→∞
GTVn,εn(1Yn)≤ ση Per(A;ρ2).

We also establish the following compactness result.

Theorem 1.0.6 (Compactness of GTVn,εn). Under the assumptions of Theorem 1.0.4, the fol-
lowing statement holds with probability one: every sequence {un}n∈N with un ∈ L1(D,νn) ( νn
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is given by (1.13)) and with uniformly bounded L1(D,νn) norms and graph total variations,
GTVn,εn is relatively compact in T L1. More precisely, with probability one, if

sup
n∈N

�un�L1(D,νn) < ∞,

and
sup
n∈N

GTVn,εn(un) < ∞,

then {un}n∈N is T L1-relatively compact.

In order to understand the role that the parameter εn has in the convergence of GTVn,εn

toward the total variation in the continuum, it is important to observe that in order to recover the
geometric information of the underlying ground-truth distribution, the graph (Vn,Wn) should
have information on a larger scale than that on which the randomness of the problem operates.
This implies understanding the spatial difference between the underlying distribution ν and
the empirical measure νn associated to the data points. The way we measure such spatial
difference between ν and νn is by finding the best way to match regions in the domain D with
the data points, so that the maximum distance an arbitrary point in the underlying domain D
has to travel to meet its matched data point is minimal. Let us outline the proof of Theorem
1.0.4 and make precise the way the spatial difference between ν and νn is measured.

The idea is to first introduce the functional TVε(·;ρ) : L1(D,ν)→ [0,∞) given by,

TVε(u;ρ) :=
1
ε

�

D

�

D
ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy, (1.20)

which serves as an intermediate object between the functionals GTVn,εn and TV (·;ρ2). Here
and in the remainder, ηε(x− y) = 1

εd η
� x−y

ε
�
. It is important to observe that the argument of

GTVn,εn is a function un supported on the data points, whereas the argument of TVε(·;ρ) is an
L1(D,ν) function; in particular a function defined on D. The functional TVε(·;ρ) is a non-
local functional, where the term non-local refers to the fact that differences of a given function
on a ε-neighborhood are averaged, which contrasts the local approach of averaging derivatives
of the given function. Non-local functionals have been of interest in the last decades due to
their wide range of applications which includes phase transitions, image processing and PDEs.
From a statistical point of view, for a fixed function u : D→ R, TVεn(u;ρ) is nothing but the
expectation of GTVn,εn(u). On the other hand, the functionals TVε(·;ρ) are relevant for our
purposes because as ε → 0 not only they approximate TV (·;ρ2) in a pointwise sense, but
they also approximate it in the Γ-convergence sense. More precisely the following result is
established in Section 4.2.

Proposition 1.0.7. Consider an open, connected, bounded domain D in Rd with Lipschitz
boundary. Let ρ : D→ R be continuous and bounded below and above by positive constants
and consider the measure dν := ρdx. Le {εk}k∈N be a sequence of positive numbers con-
verging to zero. Then, {TVεk(·;ρ)}k∈N (defined in (1.20)) Γ-converges with respect to the
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L1(D,ν)-metric to σηTV (·;ρ2), where ση is defined in (1.12) and TV (·;ρ2) is defined in
(1.18). Moreover, the functionals {TVεk(·;ρ)}k∈N satisfy the compactness property, with re-
spect to the L1(D,ν)-metric. That is, every sequence {uk}k∈N with uk ∈ L1(D,ν) for which

sup
k∈N

||uk||L1(D,ν) < ∞, sup
k∈N

TVεk(uk;ρ) < ∞,

is precompact in L1(D,ν). Finally, for every u ∈ L1(D,ν)

lim
n→∞

TVεk(u;ρ) = σηTV (u;ρ2). (1.21)

As observed earlier, the argument of GTVn,εn , is a function un supported on the data points,
while the argument of TVεn(·;ρ) is an L1(D,ν) functional. For a function un defined on Vn, the
idea is to associate an L1(D,ν) function ũn which approximates un in the T L1-sense and is such
that TVεn(ũn;ρ) is comparable to GTVn,εn(un). The purpose of doing this is to use Proposition
1.0.7. We construct the approximating function ũn by using transportation maps (i.e. measure
preserving maps) between the measure ν and νn. More precisely, we set ũn = un ◦Tn where Tn
is a transportation map between ν and νn which moves mass as little as possible. The estimates
on how far the mass needs to be moved were known in the literature when ρ is constant and
when the domain D is the unit cube (0,1)d (see [49, 64, 66, 67] for d = 2 and [60] for d ≥ 3).
In [36] these estimates are extended to general domains D and densities ρ satisfying (1.10).
We present the proofs of the following result in Chapter 3.

Proposition 1.0.8. Let D⊆Rd be a bounded, connected, open set with Lipschitz boundary. Let
ν be a probability measure on D with density ρ : D→ (0,∞) satisfying (1.10). Let x1, . . . ,xn, . . .
be i.i.d. samples from ν . Let νn be the empirical measure associated to the n data points. Then,
for any fixed α > 2, except on a set with probability O(n−α/2), there exists a transportation
map Tn : D→ D between the measure ν and the measure νn (denoted Tn�ν = νn) such that

||Tn− Id||L∞(D) ≤C






ln(n)3/4

n1/2 , if d = 2,

ln(n)1/d

n1/d , if d ≥ 3,

where C depends only on α , D, and λ (see 1.10).

The rates presented in the previous Theorem are optimal as discussed in Chapter 3. From
the previous result, Chebyshev’s inequality and the Borel-Cantelli lemma one obtains the fol-
lowing rate of convergence of the ∞-optimal transportation distance between the empirical
measures νn and the measure ν .

Proposition 1.0.9. Let D be an open, connected and bounded subset of Rd which has Lip-
schitz boundary. Let ν be a probability measure on D with density ρ satisfying (1.10). Let
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x1, . . . ,xn, . . . be a sequence of independent samples from ν and let νn be the associated em-
pirical measures (1.13). Then, there is a constant C > 0 such that with probability one, there
exists a sequence of transportation maps {Tn}n∈N from ν to νn (Tn�ν = νn) and such that:

if d = 2 then limsup
n→∞

n1/2�Id−Tn�∞

(logn)3/4 ≤C (1.22)

and if d ≥ 3 then limsup
n→∞

n1/d�Id−Tn�∞

(logn)1/d ≤C. (1.23)

As shown in Section 5.2, Proposition 1.0.7 and Proposition 1.0.9 are at the backbone of
Theorem 1.0.4. Schematically,

TVε(·;ρ) Γ−→σηTV (·;ρ2) in L1 + Proposition 1.0.9 =⇒GTVn,εn
Γ−→σηTV (·;ρ2) in T L1.

We note that the statement TVεn(·;ρ) Γ−→ σηTV (·;ρ2) is a purely analytic, purely determin-
istic fact. Proposition 1.0.9, on the other hand contains all the probabilistic estimates needed
to establish all the results in this work. Such estimates in particular provide the constraints on
the parameter εn in Theorem 1.0.4. It is worth observing that Proposition 1.0.9 is a statement
that only involves the underlying measure ν and the empirical measure νn, and that in partic-
ular it does not involve estimates on the difference between the functional TVεn(u;ρ) and the
functional GTVn,εn(u) for u belonging to a small (in the sense of VC-dimension) class of func-
tions. In other words our estimates are related to the domains where the functions are defined
(discrete/continuous) and not to the actual values of functions defined on those domains. The
results from Theorem 1.0.4, Corollary 1.0.5 and Theorem 1.0.6 can then be put together to
prove Theorem 1.0.2 in Section 5.2 thus establishing the consistency of optimal graph cuts in
the two-class setting.

We take our analysis of consistency of graph cuts one step further in order to include the
multi-way cut case. In Chapter 6 we establish the following analogue to Theorem 1.0.2.

Theorem 1.0.10. Let domain D, measure ν , kernel η , sequence {εn}n∈N, sample points
{xi}i∈N, and graph Gn satisfy the assumptions of Theorem 1.0.2. Let (Y ∗n

1, . . . ,Y ∗
n
R) denote

any optimal balanced cut of Gn, that is a minimizer of (1.4). If (A∗1, . . . ,A
∗
R) is the unique

optimal balanced cut of D (i.e. minimizer of (1.9)) then with probability one the sequence
(Y ∗n

1, . . . ,Y ∗
n
R) converges to (A∗1, . . . ,A

∗
R) in the T L1-sense. If the optimal continuum balanced

cut is not unique then the convergence to a minimizer holds along subsequences. Additionally,
Cn, the minimum of (1.4), satisfies

lim
n→∞

Cn

n2εd+1
n

= σηC ,

where ση is the surface tension associated to the kernel η and C is the minimum of (1.9).
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The proof of Theorem 1.0.10 involves modifying the geometric measure theoretical results
used to prove Theorem 1.0.2. This leads to a longer and more technical proof than the proof
of Theorem 1.0.2, but the overall spirit of the proof remains the same in the sense that the
Γ-convergence plays the leading role.

The overall organization of this manuscript is as follows. In Section 1.1 we give a short
background on Γ-convergence. In Chapter 2, we give some background on optimal transporta-
tion, we introduce the T Lp spaces and prove some of their properties. In Chapter 3 we establish
the results that quantify the convergence of empirical measures towards their underlying dis-
tribution in the ∞-transportation distance, that is, we establish Proposition 1.0.8. In Chapter
4 we start by defining rigorously the weighted total variation in the continuum and after that
we prove Theorem 1.0.7 which establishes the Γ-convergence of the non-local functionals
TVε(·;ρ). In Chapter 5 we use the metric defined in Chapter 2, and the results from Chapter
3 and Chapter 4 to establish the variational convergence of the graph total variation towards
the weighted total variation in the continuum, that is, we prove Theorem 1.0.4, Corollary 1.0.5
and Theorem 1.0.6; from those results we establish consistency of Cheeger and Ratio graph
cuts (Theorem 1.0.2). In Chapter 6 we establish consistency of multiway cuts i.e. Theorem
1.0.10. Finally, in Chapter 7, we investigate the pointwise convergence of the graph perimeter
and show that such notion of convergence is inadequate to investigate the consistency of graph
based clustering procedures like Cheeger and ratio cuts as explained earlier. This last chapter
is independent of the rest of the chapters of this manuscript and is included with the intention
of contrasting the notion of Γ-convergence and that of pointwise convergence.

1.1 Background on Γ-convergence

We recall and discuss the notion of Γ-convergence. In the literature Γ-convergence is defined
for deterministic functionals (see [33], [19] for extensive exposition of properties and applica-
tions of Γ-convergence). Nevertheless, the objects we are interested in are random and thus
we decided to introduce this notion of convergence in this non-deterministic setting.

Let (X ,dX) be a metric space and let (Ω,F,P) be a probability space. Let Fn : X ×Ω →
[0,∞] be a sequence of random functionals.

Definition 1.1.1. The sequence {Fn}n∈N Γ-converges with respect to the metric dX to the de-
terministic functional F : X → [0,∞] as n → ∞ if with P-probability one all of the following
conditions hold simultaneously:

1. Liminf inequality: For every x ∈ X and every sequence {xn}n∈N converging to x,

liminf
n→∞

Fn(xn)≥ F(x).

2. Limsup inequality: For every x ∈ X there exists a sequence {xn}n∈N converging to x
satisfying

limsup
n→∞

Fn(xn)≤ F(x).
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We say that F is the Γ-limit of the sequence of functionals {Fn}n∈N (with respect to the metric
dX ).

In the previous definition, it is important to highlight the way the quantifiers are considered,
as it is in this way that one guarantees that all the relevant properties obtained from the Γ-
convergence in the deterministic setting continue to hold in the random setting.

Remark 1.1.2. In most situations one does not prove the limsup inequality for all x ∈ X di-
rectly. Instead, one proves the inequality for all x in a dense subset X � of X where it is somewhat
easier to prove, and then deduce from this that the inequality holds for all x ∈ X. To be more
precise, suppose that the limsup inequality is true for every x in a subset X � of X and the set
X � is such that for every x ∈ X there exists a sequence {xk}k∈N in X � converging to x and such
that F(xk)→ F(x) as k→∞, then the limsup inequality is true for every x ∈ X. It is enough to
use a diagonal argument to deduce this claim. This property is not related to the randomness
of the functionals in any way.

Definition 1.1.3. We say that the sequence of nonnegative random functionals {Fn}n∈N sat-
isfies the compactness property if with P-probability one, the following statement holds: any
sequence {xn}n∈N bounded in X and for which

sup
k∈N

Fn(xn) < +∞,

is relatively compact in X.

Remark 1.1.4. The boundedness assumption of {xn}n∈N in the previous definition is a neces-
sary condition for relative compactness and so it is not restrictive. Once again we also remark
the way the quantifiers are considered.

The notion of Γ-convergence is particularly useful when the functionals {Fn}n∈N satisfy
the compactness property. This is because it guarantees that with P-probability one, mini-
mizers (or approximate minimizers) of Fn converge to minimizers of F and it also guarantees
convergence of the minimum energy of Fn to the minimum energy of F (this statement is made
precise in the next proposition). This is the reason why Γ-convergence is said to be a varia-
tional type of convergence. The next proposition can be found in [19,33]. We present its proof
for completeness and for the benefit of the reader. We also want to highlight the way this type
of convergence works as ultimately this is one of the essential tools used to prove the main
theorems of this paper.

Proposition 1.1.5. Let Fn : X ×Ω→ [0,∞] be a sequence of random nonnegative functionals
which are not identically equal to +∞, satisfying the compactness property and Γ-converging
to the deterministic functional F : X → [0,∞] which is not identically equal to +∞. If it is true
that with P-probability one, there is a bounded sequence {xn}n∈N satisfying

lim
n→∞

�
Fn(xn)− inf

x∈X
Fn(x)

�
= 0, (1.24)
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then, with P-probability one the following statement holds

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F(x). (1.25)

Furthermore, every bounded sequence {xn}n∈N in X satisfying (1.24) is relatively compact and
each of its cluster points is a minimizer of F. In particular, if F has a unique minimizer, then
a bounded sequence {xn}n∈N satisfying (1.24) converges to the unique minimizer of F.

Proof. Consider Ω� a set with P-probability one for which all the statements in the definition of
Γ-convergence together with the statement of the compactness property hold. We also assume
that for every ω ∈Ω�, there exists a bounded sequence {xn}n∈N satisfying (1.24). We fix such
ω ∈Ω� and in particular we can assume that Fn is deterministic for every n ∈ N.

Let {xn}n∈N be a sequence as the one described above. Let x̃ ∈ X be arbitrary. By the
limsup inequality we know that there exists a sequence {x̃n}n∈N with x̃n → x̃ and such that

limsup
n→∞

Fn(x̃n)≤ F(x̃).

By (1.24) we deduce that

limsup
n→∞

F(xn) = limsup
n→∞

inf
x∈X

Fn(x)≤ limsup
n→∞

Fn(x̃n)≤ F(x̃), (1.26)

and since x̃ was arbitrary we conclude that

limsup
n→∞

Fn(xn)≤ inf
x∈X

F(x). (1.27)

The fact that F is not identically equal to +∞ implies that the term on the right hand side
of the previous expression is finite and thus limsupn→∞ Fn(xn) < +∞. Since the sequence
{xn}n∈N was assumed bounded, we conclude from the compactness property for the sequence
of functionals {Fn}n∈N that {xn}n∈N is relatively compact.

Now let x∗ be any accumulation point of the sequence {xn}n∈N ( we know there exists
at least one due to compactness), we want to show that x∗ is a minimizer of F . Working
along subsequences, we can assume without the loss of generality that xn → x∗. By the liminf
inequality, we deduce that

inf
x∈X

F(x)≤ F(x∗)≤ liminf
n→∞

F(xn). (1.28)

The previous inequality and (1.26) imply that

F(x∗)≤ F(x̃),

where x̃ is arbitrary. Thus, x∗ is a minimizer of F and in particular infx∈X F(x) = minx∈X F(x).
Finally, to establish (1.25) note that this follows from (1.27) and (1.28).
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Chapter 2

The T Lp spaces

In this chapter we introduce a metric which allows us to compare functions defined on a dis-
crete set with functions defined on a continuous domain. The idea is to regard these objects as
elements of the same metric space. Let us describe how this is achieved. For arbitrary Borel
probability measures ν and µ on D, let us denote by L1(D,ν) and by L1(D,µ) their corre-
sponding L1-spaces. Given u ∈ L1(D,ν) and v ∈ L1(D,µ), we can regard them as elements
(ν ,u) and (µ,v). Now, suppose that there is a map T : D→D that pushes forward the measure
µ into the measure ν , in such a way that on average the difference |T (x)− x| is as ”small” as
possible . Then the map T induces a function û := u ◦T ∈ L1(D,µ) which can be compared
to v using the L1(D,µ) metric. A possible way to compare the functions u and v is then to
determine how far is µ from ν (measured by using the ”best” T as described above) and how
far is û from v using the L1(D,µ) distance. See Figure 2.1 below.

Figure 2.1: T L1 space seen as a formal fiber bundle

In general a map T : D → D like the one described above does not exist, but we remark

19
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that the notion of transportation map is generalized by that of transportation plan. In this
way one can make the previous discussion rigorous. We first introduce some notions and
ideas from optimal transportation and then we introduce the so called T Lp-spaces. Their name
comes from the fact that their metric can be regarded as extending the Lp convergence by using
transportation maps/plans.

2.1 Background on transportation theory

Let D be an open domain in Rd . We denote by B(D) the Borel σ -algebra of D and by P(D)
the set of all Borel probability measures supported on D. Given 1≤ p < ∞, we define Pp(D)
to be the set of Borel probability measures supported on D with finite p-moment, that is,
µ ∈P(D) belongs to Pp(D) if

�

D
|x|pdµ(x) < ∞. (2.1)

The p-OT distance between µ, µ̃ ∈Pp(D) (denoted by dp(µ, µ̃)) is defined by:

dp(µ, µ̃) := min

���

D×D
|x− y|pdπ(x,y)

�1/p

: π ∈ Γ(µ, µ̃)

�
, (2.2)

where Γ(µ, µ̃) is the set of all couplings between µ and µ̃ , that is, the set of all Borel prob-
ability measures on D×D for which the marginal on the first variable is µ and the marginal
on the second variable is µ̃ . The elements π ∈ Γ(µ, µ̃) are also referred as transportation
plans between µ and µ̃ . When p = 2 the distance is also known as the Wasserstein distance.
The existence of minimizers, which justifies the definition above is deduced using the direct
method of the calculus of variations (see [70]).

If D is a bounded open subset of Rd (as will be assumed often in the remainder) condition
(2.1) is automatically satisfied for all µ ∈ P(D) and from this we conclude that Pp(D) =
P(D). Moreover, the boundedness of D also implies that convergence in OT-metric is equiv-
alent to weak convergence of probability measures. For details see for instance [5, 70] and the
references therein. In particular, in that case, µn

w−→ µ (to be read µn converges weakly to µ)
if and only if for any 1≤ p < ∞ there is a sequence of transportation plans between µn and µ ,
{πn}n∈N, for which:

lim
n→∞

��

D×D
|x− y|pdπn(x,y) = 0. (2.3)

Boundedness of D implies that (2.3) is equivalent to limn→∞
��

D×D |x− y|dπn(x,y) = 0. We
say that a sequence of transportation plans, {πn}n∈N (with πn ∈ Γ(µ,µn)), is stagnating if it
satisfies the condition (2.3). We remark that if D is bounded, it is straightforward to show that
a sequence of transportation plans is stagnating if and only if πn converges weakly in the space
of probability measures on D×D to π = (id× id)�µ .
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Given a Borel map T : D → D and µ ∈P(D) the push-forward of µ by T , denoted by
T�µ ∈P(D) is given by:

T�µ(A) := µ
�
T−1(A)

�
, A ∈B(D).

From the previous definition, it follows that for any Borel function ϕ : D → R the following
change of variables in the integral holds:

�

D
ϕ(x)d(T�µ)(x) =

�

D
ϕ(T (y))dµ(y). (2.4)

We say that a Borel map T : D → D is a transportation map between the measures µ ∈
P(D) and µ̃ ∈ P(D) if µ̃ = T�µ . We associate a transportation plan πT ∈ Γ(µ, µ̃) to the
transportation map T by:

πT := (Id×T )�µ, (2.5)

where (Id×T ) : D→ D×D is given by (Id×T )(x) = (x,T (x)). Note that for any c ∈ L1(D×
D,B(D×D) ,πT ) �

D×D
c(x,y)dπT (x,y) =

�

D
c(x,T (x))dµ(x). (2.6)

It is well known that when the measure µ ∈Pp(D) is absolutely continuous with respect
to the Lebesgue measure, the problem on the right hand side of (2.2) is equivalent to:

min

���

D
|x−T (x)|pdµ(x)

�1/p

: T�µ = µ̃

�
, (2.7)

and when p is strictly greater than 1, the problem (2.2) has a unique solution which is in-
duced (via (2.5)) by a transportation map T solving (2.7) (see [70]). In particular we conclude
that when D is bounded and the measure µ ∈P(D) is absolutely continuous with respect to
the Lebesgue measure, then µn

w−→ µ as n → ∞ is equivalent to the existence of a sequence
{Tn}n∈N of transportation maps, (Tn�µ = µn) such that:

�

D
|x−Tn(x)|pdµ(x)→ 0, as n→ ∞. (2.8)

We say that a sequence of transportation maps {Tn}n∈N is stagnating if it satisfies (2.8).
We consider now the notion of inverse of transportation plans. For π ∈ Γ(µ, µ̃), the inverse

plan π−1 ∈ Γ(µ̃,µ) of π is given by:

π−1 := s�π, (2.9)

where s : D×D→ D×D is defined as s(x,y) = (y,x). Note that for any c ∈ L1(D×D,π):
�

D×D
c(x,y)dπ(x,y) =

�

D×D
c(y,x)dπ−1(x,y).



22 CHAPTER 2. THE T LP SPACES

We now consider the notion of composition of transportation plans. Let µ, µ̃, µ̂ ∈P(D).
The composition of plans π12 ∈Γ(µ, µ̃) and π23 ∈Γ(µ̃, µ̂) was discussed in [5][Remark 5.3.3].
In particular there exists a probability measure πππ on D×D×D such that the projection of πππ
to first two variables is π12, and to second and third variables is π23. We consider π13 to be the
projection of πππ to the first and third variables. We will refer to π13 as a composition of π12 and
π23 and write π13 = π23 ◦π12. Note π13 ∈ Γ(µ, µ̂).

So far we have considered the p-OT distance for 1 ≤ p < ∞, we now consider the case
p = ∞. Assume that D is a bounded open subset of Rd . Then,

d∞(µ, µ̃) := inf{esssupπ{|x− y| : (x,y) ∈ D×D} : π ∈ Γ(µ, µ̃)} , (2.10)

defines a metric on P(D), which is called the ∞-transportation distance. A natural question
that arises from the connection between transportation maps and transportation plans when 1≤
p < ∞ is the following: in the definition of d∞(µ, µ̃) can we restrict our attention to couplings
induced by transportation maps?. The answer to this question is affirmative in case the measure
µ is absolutely continuous with respect to the Lebesgue measure. In fact, this is one of the
results in [29], where it is proved that there exists solutions to the problem (2.10) which are
∞-cyclically monotone, that provided µ �L d , happen to be induced by transportation maps.
In the remainder we consider µ taken to be dµ = ρdx, where ρ is bounded above and below
by positive constants and so in this setting the results in [29] can be stated as follows: if
µ(D) = µ̃(D), then there exists a transportation map T ∗ : D→D with T ∗� µ = µ̃ and such that

d∞(µ, µ̃) = �T ∗ − Id�L∞(D). (2.11)

The question of uniqueness of the optimal transportation map T ∗, although interesting on its
own, is not of importance for the results we present in the remainder. Nevertheless, it is worth
mentioning that if µ̃ is concentrated on finitely many points then, the transportation map T ∗

for which (2.11) holds is unique; this is the content of Theorem 5.4 in [29]. In particular, if µ̃ is
taken to be µn, where µn is the empirical measure associated to data points x1, . . . ,xn sampled
from µ , then the uniqueness of the optimal transportation map is guaranteed.

We remark that for any transportation map Tn between µ and µn it holds that

d∞(µ,µn)≤ �Tn− Id�L∞(D).

Thus, we can estimate d∞(µ,µn) by estimating the right hand side of the previous expression
for some Tn.

2.2 The T Lp spaces and properties

In this section D denotes an open and bounded domain in Rd . Consider the set

T Lp(D) := {(µ, f ) : µ ∈P(D), f ∈ Lp(D,µ)}.
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Note that this definition is consistent with the definition given in the introduction given that
boundedness of D implies Pp(D) = P(D).

For (µ, f ) and (ν ,g) in T Lp we define dT Lp((µ, f ),(ν ,g)) by

dT Lp((µ, f ),(ν ,g)) = inf
π∈Γ(µ,ν)

���

D×D
|x− y|p + | f (x)−g(y)|pdπ(x,y)

�1/p

. (2.12)

Here we should understand Lp(D,µ) as the set of equivalence classes of µ-measurable func-
tions which are identified when they agree except on a set with µ-measure zero. Neverthe-
less, it is well known that for a µ-measurable function f , we can always find an equivalent
function f̃ which is Borel measurable. In the remainder, we implicitly assume that when we
take f ∈ Lp(D,µ) we are considering f as a Borel measurable function. In this way we can
take compositions with other Borel functions without having measurability issues. The only
potential issue that may arise from doing this is the ambiguity when choosing the Borel repre-
sentative. However, in our context such issue will not arise as the next lemma shows.

Lemma 2.2.1. Let µ,ν ∈P(D) and suppose that T : D→D is a Borel map such that T�µ = ν .
Let f ,g : D→R be two Borel measurable functions such that f = g ν-a.e. Then, f ◦T = g◦T ,
µ a.e.

Proof. We may assume that f = g except on a set B ∈B(D) with ν(B) = 0. Now, note that
0 = ν(B) = µ

�
T−1(B)

�
. Hence f ◦T and g◦T are equal except on the set T−1(B) which has

µ-measure zero.

Remark 2.2.2. We remark that formally T Lp is a fiber bundle over P(D). Namely if one
considers the Finsler (Riemannian for p = 2) manifold structure on P(D) provided by the
p−OT metric (see [1] for general p and [5, 54] for p = 2) then T Lp is, formally, a fiber
bundle. See Figure 3.1 for an illustration.

In order to prove that dT Lp is a metric, we remark that dT Lp is actually equal to a trans-
portation distance between graphs of functions. To make this idea precise we consider the
map

(µ, f ) ∈ T Lp �−→ (Id× f )�µ ∈Pp(D×R),

which allows us to identify an element (µ, f )∈ T Lp with a measure in the product space D×R
whose support is contained in the graph of f .

For γ, γ̃ ∈Pp(D×R) let dp(γ, γ̃) be given by

(dp(γ, γ̃))p = inf
π∈Γ(γ,γ̃)

��

(D×R)×(D×R)
|x− y|p + |s− t|pdπ((x,s),(y, t)).

Remark 2.2.3. We remark that dp is a distance on Pp(D×R) and that it is equivalent to the
p-OT distance dp introduced in Section 2.1 (the domain being D×R). Moreover, when p = 2
these two distances are actually equal.
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Using the identification of elements in T Lp with probability measures in the product space
D×R we have the following.

Proposition 2.2.4. Let (µ, f ),(ν ,g) ∈ T Lp. Then, dT Lp((µ, f ),(ν ,g)) = dp((µ, f ),(ν ,g)).

Proof. To see this, note that for every π ∈ Γ((µ, f ),(ν ,g)), it is true that the support of π is
contained in the product of the graphs of f and g. In particular, we can write

��

(D×R)×(D×R)
|x− y|p + |s− t|pdπ((x,s),(y, t)) =

��

D×D
|x− y|p + | f (x)−g(y)|pdπ̃(x,y),

(2.13)
where π̃ ∈Γ(µ,ν). The right hand side of the previous expression is greater than dT Lp((µ, f ),(ν ,g)),
which together with the fact that π was arbitrary allows us to conclude that dp((µ, f ),(ν ,g))≥
dT Lp((µ, f ),(ν ,g)). To obtain the opposite inequality, it is enough to notice that for an arbi-
trary coupling π̃ ∈ Γ(µ,ν), we can consider the measure π := ((Id× f )× (Id×g))�π̃ which
belongs to Γ((µ, f ),(ν ,g)). Then, equation (2.13) holds and its left hand side is greater than
dT Lp((µ, f ),(ν ,g)). The fact that π̃ was arbitrary allows us to conclude the opposite inequal-
ity.

Remark 2.2.5. Proposition 2.2.4 and Remark 2.2.3 imply that (T Lp,dT Lp) is a metric space.

Remark 2.2.6. We remark that the metric space (T Lp,dT Lp) is not complete. To illustrate
this, let us consider D = (0,1). Let µ be the Lebesgue measure on D and define fn+1(x) :=
sign(sin(2nπx)) for x ∈ (0,1). Then, it can be shown that dT Lp((µ, fn),(µ, fn+1)) ≤ 1/2n.
This implies that the sequence {(µ, fn)}n∈N is a Cauchy sequence in (T Lp,dT Lp). However, if
this was a convergent sequence, in particular it would have to converge to an element of the
form (µ, f ) (see Proposition 2.2.13 below). But then, by Remark 2.2.10, it would be true that

fn
Lp(D,µ)−→ f . This is impossible because { fn}n∈N is not a convergent sequence in Lp(D,µ).

Remark 2.2.7. The completion of the metric space (T Lp,dT Lp) is the space (Pp(D×R),dp).
In fact, in order to show this, it is enough to show that T Lp is dense in (Pp(D×R),dp).
Since the class of convex combinations of Dirac delta masses at points in D is dense in
(Pp(D×R),dp), it is enough to show that every convex combination of Dirac deltas can
be approximated by elements in T Lp. So let us consider δ ∈Pp(D×R) of the form

δ =
m

∑
i=1

li

∑
j=1

ai jδ(xi,ti
j)
,

where x1, . . . ,xn are n points in D; t j
i ∈R ; ai j > 0 and ∑m

i=1 ∑li
j=1 ai j = 1. Now, for every n∈N

and for every i = 1, . . . ,m choose rn
i > 0 such that for all i: B(xi,rn

i ) ⊆ D and for all k �= i,
B(xi,rn

i )∩B(xk,rn
k) = /0 and such that (∀i) rn

i ≤ 1
n .
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For i = 1, . . . ,m consider yi,n
1 , . . . ,yi,n

li a collection of li points in B(xi,rn
i ). We define the

function fn : D→ R given by fn(x) = t j
i if x = yi,n

j for some i, j and fn(x) = 0 if not.
Finally, we define the measure µn ∈P(D) by

µn =
m

∑
i=1

li

∑
j=1

ai jδyi,n
j
.

It is straightforward to check that (µn, fn)
dp−→ δ .

Remark 2.2.8. Here we make a connection between T Lp spaces and Young measures. Con-
sider a fiber of T Lp over µ ∈P(D), that is, consider

T Lp�µ := {(µ, f ) : f ∈ Lp(µ,D)} .

Let Proj1 : D×R �→ D be defined by Proj1(x, t) = x and let

Pp(D×R)�µ :=
�

γ ∈Pp(D×R) : Proj1�γ = µ
�

.

Thanks to the disintegration theorem (see Theorem 5.3.1 in [5] ), the set Pp(D×R)�µ
can be identified with the set of Young measures (or parametrized measures), with finite p-
moment which have µ as base distribution (see [27, 55]). It is straightforward to check that
Pp(D×R)�µ is a closed subset (in the dp sense) of Pp(D×R). Hence, the closure of T Lp�µ
in Pp(D×R) is contained in Pp(D×R)�µ , that is,

T Lp�µ ⊆Pp(D×R)�µ .

In general the inclusion may be strict. For example if we let D = (−1,1) and consider µ = δ0 to
be the Dirac delta measure at zero, then it is straightforward to check that T Lp�µ is actually
a closed subset of Pp(D×R) and that T Lp�µ� Pp(D×R)�µ . On the other hand, if the
measure µ is absolutely continuous with respect to the Lebesgue measure, then the closure of
T Lp�µ is indeed Pp(D×R)�µ . This fact follows from Theorem 2.4.3 in [27]. Here we present
a simple proof of this fact using the ideas introduced so far. Note that it is enough to show that
T Lp�µ is dense in Pp(D×R)�µ . So let γ ∈Pp(D×R)�µ . By Remark 2.2.7, there exists a
sequence {(µn, fn)}n∈N ⊆ T Lp such that

(µn, fn)
dp−→ γ.

In particular,

µn
dp−→ µ.

Since µ is absolutely continuous with respect to the Lebesgue measure, it follows from the
discussion in Section 2.1 that for every n ∈ N there exists a transportation map Tn : D → D
with Tn�µ = µn, such that

�

D
|x−Tn(x)|pdµ(x) = (dp(µ,µn))p → 0, as n→ ∞.
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On the other hand, the transportation map Tn induces the transportation plan πTn ∈ Γ(µ,µn)
defined in (2.5). Hence,

(dp((µ, fn ◦Tn),(µn, fn)))p = (dT Lp((µ, fn ◦Tn),(µn, fn)))p

≤
�

D×D
|x− y|pdπTn(x,y)+

�

D×D
| fn ◦Tn(x)− fn(y)|pdπTn(x,y)

=
�

D
|x−Tn(x)|pdµ(x).

From the previous computations, we deduce that (dp((µ, fn ◦Tn),(µn, fn))→ 0 as n→ ∞, and

thus (µ, fn ◦ Tn)
dp−→ γ . This shows that T Lp�µ is dense in Pp(D×R)�µ , and given that

Pp(D×R)�µ is a closed subset of Pp(D×R), we conclude that T Lp�µ = Pp(D×R)�µ .

Remark 2.2.9. If one restricts the attention to measures µ,ν ∈P(D) which are absolutely
continuous with respect to the Lebesgue measure then

inf
T : T�µ=ν

��

D
|x−T (x)|p + | f (x)−g(T (x))|pdµ(x)

� 1
p

majorizes dT Lp((µ, f ),(ν ,g)) and furthermore provides a metric (on the subset of T Lp) which
gives the same topology as dT Lp . The fact that these topologies are the same follows from
Proposition 2.2.13.

Remark 2.2.10. One can think of the convergence in T Lp as a generalization of weak conver-
gence of measures and of Lp convergence of functions. That is {µn}n∈N in P(D) converges
weakly to µ ∈P(D) if and only if (µn,1) T Lp

−→ (µ,1) as n → ∞, which follows from the fact
that on bounded sets p-OT metric metrizes the weak convergence of measures [5], and that
for µ ∈ P(D) a sequence { fn}n∈N in Lp(D,µ) converges in Lp(D,µ) to f if and only if
(µ, fn)

T Lp
−→ (µ, f ) as n→ ∞. The last fact is established in Proposition 2.2.13.

We wish to establish a simple characterization for the convergence in the space T Lp. For
this, we need first the following two lemmas.

Lemma 2.2.11. Let µ ∈P(D) and let πn ∈ Γ(µ,µ) for all n ∈ N. If {πn}n∈N is a stagnating
sequence of transportation plans, then for any u ∈ Lp(D,µ)

lim
n→∞

��

D×D
|u(x)−u(y)|pdπn(x,y) = 0.

Proof. We prove the case p = 1 since the other cases are similar. Let u ∈ L1(D,µ) and let
{πn}n∈N be a stagnating sequence of transportation maps with πn ∈ Γ(µ,µ). Since the prob-
ability measure µ is inner regular, we know that the class of Lipschitz and bounded functions
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on D is dense in L1(D,µ). Fix ε > 0, we know there exists a function v : D → R which is
Lipschitz and bounded and for which

�

D
|u(x)− v(x)|dµ(x) <

ε
3
.

Note that
��

D×D
|v(x)− v(y)|dπn(x,y)≤ Lip(v)

��

D×D
|x− y|dπn(x,y)→ 0, as n→ ∞.

Hence we can find N ∈ N such that if n≥ N then
��

D×D |v(x)− v(y)|dπn(x,y) < ε
3 . Therefore,

for n≥ N, using the triangle inequality, we obtain
��

D×D
|u(x)−u(y)|dπn(x,y)≤

��

D×D
|u(x)− v(x)|dπn(x,y)

+
��

D×D
|v(x)− v(y)|dπn(x,y)+

��

D×D
|v(y)−u(y)|dπn(x,y)

=2
�

D
|v(x)−u(x)|dµ(x)+

��

D×D
|v(x)− v(y)|dπn(x,y) < ε.

This proves the result.

Lemma 2.2.12. Suppose that the sequence {µn}n∈N in P(D) converges weakly to µ ∈P(D).
Let {un}n∈N be a sequence with un ∈ Lp(D,µn) and let u ∈ Lp(D,µ). Consider two sequences
of stagnating transportation plans {πn}n∈N and {π̂n}n∈N (with πn, π̂n ∈ Γ(µ,µn)). Then:

lim
n→∞

��

D×D
|u(x)−un(y)|pdπn(x,y) = 0 ⇔ lim

n→∞

��

D×D
|u(x)−un(y)|pdπ̂n(x,y) = 0 (2.14)

Proof. We present the details for p = 1, as the other cases are similar. Take π̂−1
n ∈ Γ(µn,µ) the

inverse of π̂n defined in (2.9). We can consider πππnnn ∈P(D×D×D) inducing a composition
π̂−1

n ◦ πn of the transportation plans πn and π̂−1
n ( see Section 2.1). In particular π̂−1

n ◦ πn ∈
Γ(µ,µ). From

��

D×D
|un(y)−u(x)|dπn(x,y) =

���

D×D×D
|un(y)−u(x)|dπππn(x,y,z),

and
��

D×D
|un(z)−u(y)|dπ̂n(y,z) =

��

D×D
|un(y)−u(z)|dπ̂−1

n (y,z)

=
���

D×D×D
|un(y)−u(z)|dπππn(x,y,z),
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and after using the triangle inequality, we deduce
����
��

D×D
|un(y)−u(x)|dπn(x,y)−

��

D×D
|u(z)−un(y)|dπ̂n(y,z)

����

≤
���

D×D×D
|u(z)−u(x)|dπππn(x,y,z) =

��

D×D
|u(z)−u(x)|dπ̂−1

n ◦πn(x,z).
(2.15)

Finally note that :
��

D×D
|x− z|dπ̂−1

n ◦πn(x,z)≤
��

D×D
|x− y|dπn(x,y)+

��

D×D
|y− z|dπ̂n(z,y)→ 0,

as n→ ∞. We conclude that the sequence
�

π̂−1
n ◦πn

�
n∈N is stagnating and thus from Lemma

2.2.11 we can deduce that
��

D×D |u(z)− u(x)|dπ̂−1
n ◦ πn(x,z) → 0 as n → ∞. By (2.15) we

conclude that:

lim
n→∞

����
��

D×D
|un(y)−u(x)|dπn(x,y)−

��

D×D
|un(z)−u(y)|dπ̂n(y,z)

���� = 0.

This implies the result.

Proposition 2.2.13. Let (µ, f ) ∈ T Lp and let {(µn, fn)}n∈N be a sequence in T Lp. The fol-
lowing statements are equivalent:

1. (µn, fn)
T Lp
−→ (µ, f ) as n→ ∞.

2. µn
w−→ µ and for every stagnating sequence of transportation plans {πn}n∈N (with πn ∈

Γ(µ,µn)) ��

D×D
| f (x)− fn(y)|p dπn(x,y)→ 0, as n→ ∞. (2.16)

3. µn
w−→ µ and there exists a stagnating sequence of transportation plans {πn}n∈N (with

πn ∈ Γ(µ,µn)) for which (2.16) holds.

Moreover, if the measure µ is absolutely continuous with respect to the Lebesgue measure, the
following are equivalent to the previous statements:

4. µn
w−→ µ and there exists a stagnating sequence of transportation maps {Tn}n∈N (with

Tn�µ = µn) such that
�

D
| f (x)− fn (Tn(x))|p dµ(x)→ 0, as n→ ∞. (2.17)

5. µn
w−→ µ and for any stagnating sequence of transportation maps {Tn}n∈N (with Tn�µ =

µn) (2.17) holds.
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Proof. By Lemma 2.2.12, statements 2. and 3. are equivalent. In case µ is absolutely contin-
uous with respect to the Lebesgue measure, we know that there exists a stagnating sequence
of transportation maps {Tn}n∈N (with Tn�µ = µn). Considering the sequence of transporta-
tion plans {πTn}n∈N (as defined in (2.5)) and using (2.6) we see that 2., 3., 4., and 5. are all
equivalent. We prove the equivalence of 1. and 3.

(1.⇒ 3.) Note that dp(µ,µn)≤ dT Lp ((µ, f ) ,(µn, fn)) for every n. Consequently dp(µ,µn)→
0 as n→∞ and in particular µn

w−→ µ as n→∞. Furthermore, since dT Lp ((µ, f ) ,(µn, fn))→ 0
as n→ ∞, there exists a sequence {π∗n}n∈N of transportation plans (with π∗n ∈ Γ(µ,µn)) such
that:

lim
n→∞

��

D×D
|x− y|pdπ∗n (x,y) = 0,

lim
n→∞

��

D×D
| f (x)− fn(y)|pdπ∗n (x,y) = 0.

{π∗n}n∈N is then a stagnating sequence of transportation plans for which (2.16) holds.
(3.⇒ 1.) By hypothesis and using the fact that D is bounded, we can find a sequence of

transportation plans {πn}n∈N with πn ∈ Γ(µ,µn) such that:

lim
n→∞

��

D×D
|x− y|pdπn(x,y) = 0

and
lim
n→∞

��

D×D
| f (x)− fn(y)|pdπn(x,y) = 0.

We deduce that limn→∞ dT Lp ((µ, f ),(µn, fn)) = 0.

Definition 2.2.14. Suppose {µn}n∈N in P(D) converges weakly to µ ∈P(D). We say that
the sequence {un}n∈N (with un ∈ Lp(D,µn)) converges in the T Lp sense to u ∈ Lp(D,µ), if
{(µn,un)}n∈N converges to (µ,u) in the T Lp metric. In this case we use a slight abuse of

notation and write un
T Lp
−→ u as n→∞. Also, we say the sequence {un}n∈N (with un ∈Lp(D,µn))

is relatively compact in T Lp if the sequence {(µn,un)}n∈N is relatively compact in T Lp.

Remark 2.2.15. Thanks to Proposition 2.2.13 when µ is absolutely continuous with respect to
the Lebesgue measure un

T Lp
−→ u as n→ ∞ if and only if for every (or one) {Tn}n∈N stagnating

sequence of transportation maps (with Tn�µ = µn) it is true that un ◦Tn
Lp(D,µ)−→ u as n → ∞ (

this in particular implies the last part of Remark 2.2.10). Also {un}n∈N is relatively compact
in T Lp if and only if for every (or one) {Tn}n∈N stagnating sequence of transportation maps
(with Tn�µ = µn) it is true that {un ◦Tn}n∈N is relatively compact in Lp(D,µ).

In the light of Proposition 2.2.13 and Remark 2.2.8, we finish this section by illustrating
a further connection between Young measures and the T Lp space and also, we provide a ge-
ometric characterization of Lp-convergence. These connections follow from Theorem 2.4.3
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in [27], nevertheless, we decided to present them in the context of the tools and results pre-
sented in this section. Let us consider µ to be the uniform distribution on D. The set Lp(D,µ)
can be identified with the fiber T Lp�µ in a canonical way:

f ∈ Lp(D,µ) �→ (µ, f ) ∈ T Lp�µ .

Thus, we can endow Lp(D,µ) with the distance dT Lp . Note that by Remark 2.2.10, the topolo-
gies in Lp(D,µ) generated by dT Lp and || · ||Lp(D,µ) are the same. However, Remark 2.2.6
implies that dT Lp and the distance generated by the norm || · ||Lp(D,µ) are not equivalent. Note
that the space Lp(D,µ) endowed with the norm || · ||Lp(D,µ) is a complete metric space. On
the other hand, by Remark 2.2.8, the completion of Lp(D,µ) endowed with the metric dT Lp is
Pp(D×R)�µ with dp as distance. This is a characterization for the class of Young measures
with finite p-moment, namely, they can be interpreted as the completion of the space Lp(D,µ)
endowed with the metric dT Lp . Regarding the geometric interpretation of Lp-convergence, we
have the following.

Corollary 2.2.16. Let µ be the uniform distribution on D. Let { fn}n∈N be a sequence in
Lp(D,µ) and let f ∈ Lp(D,µ). Then, { fn}n∈N converges to f in Lp(D,µ) if and only if the
graphs of fn converge to the graph of f in the p-OT sense.

Proof. From Remark 2.2.10, the sequence { fn}n∈N converges to f in Lp(D,µ) if and only if
the sequence {(µ, fn)}n∈N converges to (µ, f ) in T Lp. This implies the result, because T Lp

distance is equivalent to the p-OT distance defined on Pp(D×R) (see Proposition 2.2.4 and
Remark 2.2.3).



Chapter 3

Rate of convergence of empirical
measures in ∞-transportation distance

Let ν ∈P(D) be absolutely continuous with respect to the Lebesgue measure and let x1, . . . ,xn
be i.i.d. samples from ν . We let νn be the empirical measure

νn :=
1
n

n

∑
i=1

δxi .

A classical result in probability theory is that νn converges weakly to ν as n→ ∞ with prob-
ability one. In particular, with probability one, for any sequence of functions {un}n∈N with
un ∈ Lp(D,νn) and for u ∈ Lp(D,ν), the statement un

T Lp
−→ u is equivalent to the statement

un ◦Tn
Lp(D,ν)−→ u for all ( or one) stagnating sequence of transportation maps {Tn}n∈N. In this

section we construct a special sequence of transportation maps {Tn}n∈N with Tn�ν = νn that in
addition of being stagnating satisfies the stronger condition ||Id−Tn||L∞(D) → 0 as n→∞ with
an explicit rate of convergence. Based on the discussion in Section 2.1 this is connected to the
problem of determining how fast d∞(ν ,νn) approaches zero as n→ ∞. Convergence in T Lp is
then equivalent to convergence in Lp after composing with these special transportation maps.
In short, the main goal of this chapter is to establish Proposition 1.0.8, which can be rephrased
as finding the rate of convergence of d∞(ν ,νn) as n→ ∞.

One of the main steps in the proof of Proposition 1.0.8 consists on establishing estimates
on the ∞-transportation distance between two measures which are absolutely continuous with
respect to the Lebesgue measure and whose densities are bounded from above and below by
positive constants. We prove the following result which is of interest on its own.

Proposition 3.0.17. Let D ⊂ Rd be a bounded, connected, open set with Lipschitz boundary.
Let ν1,ν2 be measures on D of the same total mass: ν1(D) = ν2(D). Assume the measures
are absolutely continuous with respect to the Lebesgue measure and let ρ1 and ρ2 be their
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densities. Furthermore assume that for some λ ≥ 1, for all x ∈ D

1
λ
≤ ρi(x)≤ λ for i = 1,2. (3.1)

Then, there exists a constant C(λ ,D) depending only on λ and D such that for all ν1, ν2 as
above

d∞(ν1,ν2)≤C(λ ,D)�ρ1−ρ2�L∞(D).

We use this result in proving Proposition 1.0.8.

3.1 Background

Before studying the rate of convergence of d∞(ν ,νn), it is worth presenting the rates on the p-
OT distance between ν and νn for 1≤ p < ∞. In fact, from the work of Dudley [35] it follows
for 1 ≤ p < ∞ and d ≥ 3 and under rather general conditions on ν (weaker than the ones
assumed in Proposition 1.0.8) that the expected p-transportation distance between a measure
ν and the empirical measure νn scales as n−1/d , that is,

dp(ν ,νn)∼ n−1/d for d ≥ 3.

Ajtai, Komlós, and Tusnády in [2] showed optimal bounds on the p-OT distance, for 1 ≤
p < ∞, between two empirical measures sampled from the Lebesgue measure on a square. That
is they showed that if x1, . . . ,xn, · · · ∈ (0,1)2 and y1, . . . ,yn, · · · ∈ (0,1)2 are two independent
samples and µn = 1

n ∑n
i=1 δyi , while νn is as before, then the minimum over all permutations π

of {1, . . . ,n} satisfies

min
π

1
n

n

∑
i=1

|xπ(i)−yi| ≤C

�
lnn
n

with probability 1−o(1). They introduced the technique of obtaining probabilistic estimates
by dyadically dividing the cube into 2k subcubes, obtaining a matching estimate at the fine level
and estimating the transformations needed to bridge different scales to obtain an upper bound
on the total distance. The proof of Proposition 1.0.8 also relies on a similar decomposition
of the domain. Dobrić and Yukich [34], Talagrand [64] and Talagrand, Yukich, [65], Bolley,
Guillin, and Villani [17], Boissard [16], and others later refined these results and obtained
more precise information on the distribution of the p-OT distance between a measure on a
cube and the empirical measure.

For the ∞-transportation distance obtaining estimates is more delicate, since almost all of
the mass needs to be matched within the desired distance to obtain the bound. Furthermore the
optimal scaling itself has a logarithmic correction compared to the case 1≤ p < ∞. The optimal
scaling in dimension d = 2, for ν being the Lebesgue measure, was obtained by Leighton and
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Shor [49]. They consider i.i.d random samples x1, . . . ,xn distributed according to the Lebesgue
measure and points y1, . . . ,yn on a regular grid. They showed that there exist c > 0 and C > 0
such that with very high probability:

c(lnn)3/4

n1/2 ≤min
π

max
i

|xπ(i)−yi| ≤
C(lnn)3/4

n1/2 , (3.2)

where π ranges over all permutations of {1, . . . ,n}. In other words, when d = 2, with high
probability the ∞-transportation distance between the measure µn and the measure νn is of
order (lnn)3/4

n1/2 . We remark that the ∞-transportation distance in this context is also known as the
min-max matching distance. Also, it is worth remarking that the discrete matching presented
above implies the estimates on the distance between νn and ν when D = (0,1)2 and ν is the
Lebesgue measure.

For d ≥ 3, Shor and Yukich [60] proved the analogous result on (0,1)d with ν being the
Lebesgue measure. They showed that there exist c > 0 and C > 0 such that with very high
probability:

c(lnn)1/d

n1/d ≤min
π

max
i

|xπ(i)−yi| ≤
C(lnn)1/d

n1/d . (3.3)

The result in dimension d≥ 3 is based on the matching algorithm introduced by Ajtai, Komlós,
and Tusnády in [2]. For d = 2 the AKT scheme still gives an upper bound, but not a sharp one.
As remarked in [60], there is a crossover in the nature of the matching when d = 2: for d ≥ 3,
the matching length between the random points and the points in the grid is determined by the
behavior of the points locally, for d = 1 on the other hand, the matching length is determined by
the behavior of random points globally, and finally for d = 2 the matching length is determined
by the behavior of the random points at all scales. At the level of the AKT scheme this means
that for d ≥ 3 the major source of the transportation distance is at the finest scale, for d = 1 at
the coarsest scale, while for d = 2 distances at all scales are of the same size (in terms of how
they scale with n). The sharp result in dimension d = 2 by Leighton and Shor required a more
sophisticated matching procedure; an alternative proof was provided by Talagrand [64] who
also provided more streamlined and conceptually clear proofs in [66, 67].

In this chapter we extend the previous results to general domains and general densities. It
is worth remarking that the method used in [66,67] to prove the matching results in dimension
d = 2 are adaptable to general domains and general densities. On the other hand the method
in [60], although it shares some similarities with the method we consider in this chapter, is
not directly adaptable to the case of general domains and general densities. We use a dyadic
decomposition similar to the one introduced by Ajtai, Komlós, and Tusnády (also used by
Shor and Yukich). However the fact that we adjust the densities and not the geometry of the
subdomains makes it easier to handle general densities.
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3.2 The matching results for (0,1)d

The first goal of this section is to prove Proposition 3.0.17 for D = (0,1)d . In order to do this
we need a few preliminary lemmas.

Lemma 3.2.1. Let Q ⊆ Rd be a rectangular box (rectangular parallelepiped). Let Q1,Q2 be
the rectangular boxes obtained from Q by bisecting one of its sides. Let ρ : Q → (0,∞) be
given by

ρ(x) :=
�

c1, if x ∈ Q1,
c2, if x ∈ Q2,

where c1,c2 > 0 are such that 1 = c1
2 + c2

2 . Denote by ν the measure with dν = ρ(x)dx and let
ν0 be the Lebesgue measure restricted to Q. Then,

d∞(ν0,ν)≤ L
2

����
ν(Q1)
ν0(Q1)

−1
���� ,

where L is the length of the side of Q bisected to generate Q1 and Q2.

Proof. Without the loss of generality we can assume that Q = [0,L]× Q̂ where Q̂ is a d−
1 dimensional rectangular box. Thus Q1 = [0, L

2 ]× Q̂ and Q2 = [L
2 ,L]× Q̂. Note that the

condition 1 = c1
2 + c2

2 is equivalent to ν(Q) = ν0(Q). Let us introduce auxiliary functions
h(t) = c11[0, L

2 ](t)+c21( L
2 ,L](t) and f (t) = 1[0,L](t). For t ∈ [0,L] let F(t) =

� t
0 ds = t and H(t) =

� t
0 h(s)ds, that is,

H(t) :=
�

c1t if 0≤ t ≤ L
2 ,

c1
2 L+ c2(t− L

2 ) if L
2 ≤ t ≤ L.

A direct computation shows that

H−1 ◦F(t) :=

�
t

c1
if 0≤ t ≤ c1L

2 ,
t

c2
+ L

2 (1− c1
c2

) if c1L
2 ≤ t ≤ L.

Notice that the map T1 := H−1 ◦F is a transportation plan between the measures dt and h(t)dt.
Therefore, T = T1× Id−1 is a transportation plan between ν0 and ν .

A direct computation shows that

|T (x)− x| = |H−1 ◦F(x1)− x1| ≤
L
2
|c1−1|,

for all x ∈ Q. Since c1 = ν(Q1)
ν0(Q1)

, we conclude from the previous inequality that:

�T − Id�L∞(Q) ≤
L
2

����
ν(Q1)
ν0(Q1)

−1
���� ,

which implies the result.
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Lemma 3.2.2. Let ρ : (0,1)d → (0,∞) be integrable and let ν be the measure given by dν =
ρdx. Let a =

�
(0,1)d ρ(x)dx and denote by ν0 the measure on (0,1)d given by dν0 = adx. Then,

d∞(ν0,ν)≤ C(d)
a
�a−ρ�L∞((0,1)d),

where C(d) is a constant that depends on d only.

Proof. First, note that although the ∞-transportation distance was defined only for probability
measures, it can be defined in the obvious way for finite measures with the same total mass.
Moreover, since d∞ measures the maximum transportation travelled when coupling two mea-
sures, the d∞ distance does not change under rescaling of total mass. In particular, for ν0 and
ν as in the statement, it follows that

d∞(ν0,ν) = d∞

�
1
a

ν0,
1
a

ν
�

.

From the previous identity, we conclude that it is enough to prove the result for a = 1.
Consider first the case that �1−ρ�L∞((0,1)d) < 1/2.

Step 1. For every k ∈N we consider a partition of [0,1]d into a family Gk of 2k rectangular
boxes. The boxes are constructed recursively. Let G0 = {(0,1)d}. Given the collection of
boxes Gk, the collection of rectangular boxes Gk+1 is obtained by bisecting each of the rectan-
gular boxes belonging to Gk through one of their longest sides. We note that all boxes in Gk
have volume 1

2k and have the same diameter (which depends only on k and d).
Consider ρ0 := 1 and for all k > 0 and all Q ∈ Gk let:

ρk(x) :=
1

ν0(Q)

�

Q
ρ(z)dz =

ν(Q)
ν0(Q)

for all x ∈ Q. (3.4)

Let νk be the measure on (0,1)d with density ρk. The assumption �1−ρ�L∞((0,1)d) < 1
2 implies

1
2 ≤ ρ ≤ 3

2 and consequently for all k, 1
2 ≤ ρk ≤ 3

2 .
Note that for all Q ∈ Gk and all j ≥ k, ν j(Q) = νk(Q) = ν(Q). We denote by νk�Q, the

restriction of the measure νk to Q. The relation of ν to νk on Q is similar to the one of ν to ν0
on (0,1)d , only that the scale is smaller. We show that estimates on ∞-transportation distance
on the finer scale lead to the desired estimates on the macroscopic scale. Note that

d∞(νk,νk+1)≤ max
Q∈Gk

d∞(νk�Q,νk+1�Q), (3.5)

and that
d∞(νk,ν)≤ max

Q∈Gk
d∞(νk�Q,ν�Q)≤ max

Q∈Gk
diam(Q)≤ C

2k/d , (3.6)

where C is a constant only depending on d.
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Step 2. Let Q ∈ Gk and let Q1,Q2 ∈ Gk+1 be the two sub-boxes of Q. Then, νk(Q1) =
1
2 νk(Q) and ν0(Q1) = 1

2 ν0(Q). It follows from (3.4) that

|ν(Q1)−νk(Q1)| ≤ |ν(Q1)−ν0(Q1)|+ |ν0(Q1)−νk(Q1)|

= �ρ−1�L∞((0,1)d)ν0(Q1)+
����
1
2

ν0(Q)− 1
2

νk(Q)
����

≤ �ρ−1�L∞((0,1)d)ν0(Q1)+
1
2
�ρ−1�L∞((0,1)d)ν0(Q)

= 2�ρ−1�L∞((0,1)d)ν0(Q1).

Therefore,

|ν(Q1)−νk(Q1)|
νk(Q1)

≤
2�ρ−1�L∞((0,1)d)ν0(Q1)

ν0(Q1)/2
= 4�ρ−1�L∞((0,1)d). (3.7)

Step 3. For a fixed cube Q ∈ Gk, denote the value of ρk in Q by b. Then,

d∞(νk�Q,νk+1�Q) = d∞

�
1
b

νk�Q,
1
b

νk+1�Q

�
.

By Lemma 3.2.1 and by (3.7) we have

d∞

�
1
b

νk�Q,
1
b

νk+1�Q

�
≤ 1

2k/d

����
ν(Q1)
νk(Q1)

−1
����

≤ 4
2k/d �ρ−1�L∞((0,1)d).

From (3.5) and the previous inequality it follows that for every k ∈ N

d∞ (νk,νk+1)≤
4

2k/d �ρ−1�L∞((0,1)d).

Choose k̃ such that 2−k̃/d ≤ �ρ−1�L∞ . From the previous inequality and (3.6) we deduce that

d∞(ν0,ν)≤
k̃−1

∑
k=0

d∞(νk,νk+1)+d∞(νk̃,ν)

≤ 4�ρ−1�L∞((0,1)d)

k̃−1

∑
k=0

1
2k/d +C

1
2k̃/d

≤C(d)�ρ−1�L∞((0,1)d),

(3.8)

which shows the desired result.

We now turn to case �ρ−1�L∞((0,1)d) ≥ 1/2. The desired estimate follows from

d∞(ν0,ν)≤ diam((0,1)d) =
√

d ≤ 2
√

d�1−ρ�L∞((0,1)d).

In conclusion taking the larger of the constants of the cases above, C = max{C(d),2
√

d},
provides the desired estimate.
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Proof of Proposition 3.0.17 for D = (0,1)d. Suppose first that �ρ1− ρ2�L∞((0,1)d) ≤ 1
2λ . Let

g(x) = ρ1(x)−ρ2(x)+ 1
λ . Note that g≥ 0 and that

ρ1 =
�

ρ2−
1
λ

�
+g,

ρ2 =
�

ρ2−
1
λ

�
+

1
λ

.

By (2.11) and by Lemma 3.2.2, there exists a transportation map T between the measures gdx
and 1

λ dx such that

�T − Id�L∞((0,1)d) ≤ λC(d)
����g− 1

λ

����
L∞((0,1)d)

= λC(d)�ρ1−ρ2�L∞((0,1)d).

Note that
γ := (Id× Id)�

�
ρ2−

1
λ

�
dx+(Id×T )�gdx ∈ Γ(ν1,ν2).

Moreover for γ-a.e. (x,y) ∈ (0,1)d× (0,1)d ,

|x− y| ≤ λC(d)�ρ1−ρ2�L∞((0,1)d).

Thus,
d∞(ν1,ν2)≤ λC(d)�ρ1−ρ2�L∞((0,1)d).

To get our estimate in case �ρ1−ρ2�L∞ > 1
2λ note that:

d∞(ν1,ν2)≤ diam((0,1)d) =
√

d ≤ 2λ
√

d�ρ1−ρ2�L∞((0,1)d).

Remark 3.2.3. Note that from the previous proof, Proposition 3.0.17 is true for any domain
D of the form D = (a1,b1)× ·· · × (ad ,bd). To deduce this fact, it is enough to consider a
translation and rescaling of the coordinate axes to transform the rectangular box D into the
unit box (0,1)d and then use Proposition 3.0.17 for the unit cube.

3.2.1 The matching results for (0,1)d: d ≥ 3

Now we prove Proposition 1.0.8 for D = (0,1)d when d ≥ 3. To achieve this it is useful to
consider a partition of the cube (0,1)d into rectangular boxes analogous to the ones used in the
proof of Lemma 3.2.2. The main difference is that we divide rectangular boxes into sub-boxes
of the same ν-measure, instead of the same Lebesgue measure.

Let ρ : (0,1)d → (0,∞) be a density function satisfying 1/λ ≤ ρ ≤ λ . For every k ∈ N
we construct a family Fk of 2k rectangular boxes which partition the cube (0,1)d with each
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rectangular box having ν-volume equal to 1
2k and aspect ratio (ratio between its longest side

and its shortest side) controlled in terms of λ . We let F0 = {(0,1)d}. For k = 1 we construct
rectangular boxes Q1 and Q2 by bisecting one of the sides (say the one lying on the first
coordinate) of the cube (0,1)d using the measure ν . That is, we define Q1 := (0,a)× (0,1)d−1

and Q2 := [a,1)× (0,1)d−1 where a ∈ (0,1) is such that νQ1 = 1/2ν(Q) . Recursively, the
collection of rectangular boxes at level k + 1 is obtained by bisecting, according the measure
ν , each rectangular box from level k through one of its longest sides.

Lemma 3.2.4. The aspect ratio of every rectangular box in Fk is bounded by 2λ 2.

Proof. We show that for every k ∈ N, every rectangular box in Fk has aspect ratio less than
2λ 2. The proof is by induction on k.

Base Case: At level k = 1 we consider Q1 = (0,a)× (0,1)d−1, a chosen so that ν(Q1) =
1/2. Note that the aspect ratio of Q1 is equal to 1/a. Notice that,

1
2

=
�

Q1

ρ(x)dx≤ aλ .

From this we conclude that the aspect ratio of Q1 is no larger than 2λ and in particular no
larger than 2λ 2. By symmetry, the aspect ratio of Q2 is no larger than 2λ 2.

Inductive Step. Suppose that the aspect ratio of every rectangular box in Fk is bounded
by 2λ 2. Let Q be a rectangular box in Fk+1. Note that Q is obtained by bisecting (using the
measure ν) the longest side of a rectangular box Q� ∈Fk. Without the loss of generality we can
assume that Q� = [a1,b1]× [a2,b2]×·· ·× [ad ,bd ] and that Q = [a1,c]× [a2,b2]×·· ·× [ad ,bd ],
where a1 < c < b1. If (a1,c) is not the smallest side of Q then the aspect ratio of Q is no
greater than the aspect ratio of Q� and hence by the induction hypothesis is less than 2λ 2. If
on the other hand (a1,c) is the smallest side of Q then we let (ai,bi) be the longest side of Q;
the aspect ratio of Q is then equal to bi−ai

c−a1
. Since (a1,b1) is the longest side of Q̃, we have:

bi−ai

c−a1
=

b1−a1

c−a1

bi−ai

b1−a1
≤ b1−a1

c−a1
.

Finally, since

ν(Q) =
1
2

ν(Q̃),

we deduce that

(c−a1)λ ≥
1

2λ
(b1−a1).

This implies the desired result.

The proof of Proposition 1.0.8 requires estimating how many of the sampled points fall in
certain rectangles. These estimates rely on two concentration inequalities for binomial random
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variables, which we now recall. Let Sm ∼ Bin(m, p) be a binomial random variable, with m
trials and probability of success for each trial of p. Chernoff’s inequality [31] states that

P
�����

Sm

m
− p

����≥ t
�
≤ 2exp(−2mt2). (3.9)

Bernstein’s inequality [15], which is sharper for small values of p gives that

P
�����

Sm

m
− p

����≥ t
�
≤ 2exp

�
−

1
2 m2t2

mp(1− p)+ 1
3 mt

�
. (3.10)

Proof of Proposition 1.0.8 for D = (0,1)d when d ≥ 3. Step 1. Let ρ0 := ρ and let µ0 := ν .
For every Q ∈Fk, consider

ρk(x) :=
νn(Q)
ν(Q)

ρ(x) =
νn(Q)
2−k ρ(x) for all x ∈ Q. (3.11)

Let µk be the measure with density ρk. Note that for all Q ∈ Fk, and all j ≥ k, µ j(Q) =
µk(Q) = νn(Q). Since by construction ν(Q) = 2−k, nνn(Q) is a binomial random variable
with n trials and probability of success for each trial of p = 2−k. Fix α > 2 and let

kn := log2

� n
10α lnn

�
.

Consider k ∈ N with k ≤ kn. Using Bernstein’s inequality (3.10) with t = p
2 we obtain

P
�����νn(Q)− 1

2k

����≥
1

2k+1

�
≤ 2exp

�
−

1
2 · 1

4 n2 p2

np(1− p)+ 1
3 · 1

2 np

�

≤ 2exp
�
− 1

10
np

�

≤ 2exp
�
− 1

10
n

10α lnn
n

�

= 2n−α .

(3.12)

Since the probability of the union of events is less or equal to the sum of the probability of the
events, we obtain

P
�

max
Q∈Fk

����νn(Q)− 1
2k

����≥
1

2k+1

�
≤ 2k2n−α .

Summing over all k ≤ kn, we deduce that with probability at least 1−n−α/2,

1
2λ

≤ ρk ≤
3λ
2

on (0,1)d , (3.13)

for every k ≤ kn.
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Let Q∈Fk and let Q1,Q2 ∈Fk+1 be the sub-boxes of Q. Let m = nνn(Q). Since ν(Q1) =
2−(k+1) = 1

2 ν(Q) then, m νn(Q1)
νn(Q) ∼ Bin(m, 1

2) given νn(Q). Using Chernoff’s bound (3.9) and
(3.12), we deduce that

P
�����

νn(Q1)
νn(Q)

− 1
2

����≥
�

α2k lnn
n

�
≤ 4n−α .

Using the previous inequality, (3.11) and a union bound, we conclude that

P
�

sup
x∈(0,1)d

����
ρk+1(x)
ρk(x)

−1
����≥ 2

�
α2k lnn

n

�
≤ 2k4n−α .

Summing over all k ≤ kn, we deduce that with probability at least 1−n−α/2,

sup
x∈(0,1)d

����
ρk+1(x)
ρk(x)

−1
����≤ 2

�
α2k lnn

n
(3.14)

for every k ≤ kn.
Notice that for all Q ∈Fk, and all j ≥ k, µ j(Q) = µk(Q) = νn(Q). Then,

d∞(µk,µk+1)≤ max
Q∈Fk

d∞(µk�Q,µk+1�Q), (3.15)

and
d∞(µk,νn)≤ max

Q∈Fk
d∞(µk�Q,νn�Q)≤ max

Q∈Fk
diam(Q)≤C(λ )

1
2k/d , (3.16)

where C(λ ) is a constant only depending on λ ; the last inequality in the previous expression
obtained from Lemma 3.2.4 and from the fact that ν(Q) = 2−k.

Using estimates (3.13) and (3.14)

�ρk−ρk+1�L∞((0,1)d) ≤ �ρk�L∞((0,1)d)

����
ρk+1

ρk
−1

����
L∞((0,1)d)

≤ 2λ
�

α2k lnn
n

�1/2

,

with probability at least 1− n−α/2. Hence from Lemma 3.2.4 and Remark 3.2.3, we deduce
that for all Q ∈Fk

d∞(µk|Q,µk+1�Q)≤C(λ ,d)diam(Q)
�

α2k lnn
n

�1/2

≤C(λ ,d)
1

2k/d

�
α2k lnn

n

�1/2

.

Using (3.15) and the previous inequalities, we conclude that except on a set with probabil-
ity O(n−α/2), for every k = 0, . . . ,kn

d∞(µk,µk+1)≤C
1

2k/d

�
2k lnn

n

�1/2

,
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for some constant C depending only on λ , α and d. From the triangle inequality and (3.16),
we obtain

d∞(ν ,νn)≤
kn

∑
k=1

d∞(µk−1,µk)+d∞(µkn ,νn)

≤C

�
kn

∑
k=1

1
2k/d

�
α2k lnn

n

�1/2

+
(lnn)1/d

n1/d

�

≤C

��
lnn
n

�1/2 kn

∑
k=1

2k(1/2−1/d) +
(lnn)1/d

n1/d

�
.

Given that d ≥ 3, the term ∑kn
k=1 2k(1/2−1/d) is O(1) and thus the previous expression is

O( (lnn)1/d

n1/d ). In summary, except on a set with probability O(n−α/2)

d∞(ν ,νn)≤C
(lnn)1/d

n1/d ,

where C is a constant that depends on α , λ and d only.

3.2.2 The matching results for (0,1)2

Now we prove Proposition 1.0.8 for D = (0,1)2. We actually state and prove a stronger result
which is in agreement with the result by Talagrand in [66]. The improvement with respect to
the statement of Proposition 1.0.8, has to do with the speed of decay of the tail probability of
the transportation distance. Proposition 1.0.8 is an immediate consequence of the following.

Proposition 3.2.5. Suppose that ρ : (0,1)2 → (0,∞) is a density function satisfying

1
λ
≤ ρ ≤ λ (3.17)

for some λ > 1. Let x1, . . . ,xn be i.i.d samples from ρ and denote by νn the empirical measure

νn :=
1
n

n

∑
i=1

δxi .

Then, there is a constant L > 0 depending only on λ , such that except on a set with probability
Lexp(−(lnn)3/2/L), we have

d∞(ν ,νn)≤ L
(lnn)3/4

n1/2 .
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In order to match the empirical measure νn with the measure ν , we consider a partition of
(0,1)2 into n rectangles Q1, . . . ,Qn, each of which has ν-measure equal to 1/n. We then look
for a bijection between the set of points x1, . . . ,xn and the set {Q1, . . . ,Qn}, in such a way that
every data point is matched to a nearby rectangle. Note however, that in order to guarantee
that all points within a rectangle are close to the corresponding data point we should be able
to control the diameter of all the Qis. This is is important since we want to obtain estimates
on d∞(ν ,νn). With a slight modification to the construction preceding Lemma 3.2.4 we obtain
the following.

Lemma 3.2.6. Let ρ : (0,1)2 → (0,∞) be a density function satisfying (3.17), and let ν be
the measure dν = ρdx. Then, for any n ∈ N there exists a collection of rectangles {Qi : i =
1, . . . ,n} that partitions [0,1]2, such that the aspect ratio of all rectangles is less than 3λ 2 and
their volume according to ν is 1/n. In particular, for every Qi

diam(Qi)≤
C(λ )√

n
, (3.18)

where C(λ ) is a constant only depending on λ .

The task now is to show that with high probability we can indeed find a matching between
the points x1, . . . ,xn and the rectangles Q1, . . . ,Qn, in such a way that every point is close to
its matched rectangle. When ρ ≡ 1, the previous statement is directly related to the result of
Leighton and Shor [49]. The proof of Leighton and Shor depends on discrepancy estimates
over all regions R formed by squares from a suitable regular grid G� defined on D. By dis-
crepancy we mean the difference between ν(R) and νn(R) for a given region R. Obtaining a
uniform bound on the discrepancy over all regions R can be interpreted as obtaining proba-
bilistic estimates on the supremum of a stochastic process indexed by the mentioned class of
regions R. A conceptually clear and efficient proof of this matching result, based on obtaining
upper bounds of stochastic processes, was presented by Talagrand [66, 67]. In order to prove
Proposition 1.0.8 we follow the framework of Talagrand and start by stating a general result on
obtaining bounds on the supremum of more general stochastic processes (Section 1 in [66]).

Let (Y,d) be an arbitrary metric space. For n ∈ N define,

en(Y,d) = infsup
y∈Y

d(y,Yn),

where the infimum is taken over all subsets Yn of Y with cardinality less than 22n . Let {An}n∈N
be a sequence of partitions of Y . This sequence of partitions is called admissible if it is increas-
ing (in the sense that for every n, An+1 is a refinement of An) and it is such that the cardinality
of An is no bigger than 22n . For a given y ∈ Y and {An}n∈N admissible, An(y) represents the
unique set in An containing y. For an α > 0, consider

γα(Y,d) = infsup
y∈Y

∑
n≥0

2n/α diam(An(y)),
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where diam(An(y)) represents the diameter of the set An(y) using the distance function d and
where the infimum is taken over all {An}n∈N admissible sequences of partitions of Y . With
these definitions we can now state Theorem 1.2.9 in [66].

Lemma 3.2.7. Let Y be a set and let d1,d2 be two distance functions defined on Y . Let {Zy}y∈Y
be a stochastic process satisfying: for all y,y� ∈ Y and all u > 0

P
�
|Zy−Zy� | ≥ u

�
≤ 2exp

�
−min

�
u2

d2(y,y�)2 ,
u

d1(y,y�)

��
, (3.19)

and also E[Zy] = 0 for all y ∈ Y . Then, there is a constant L > 0 large enough, such that for
all u1,u2 > 0

P(sup
y∈Y

|Zy−Zy0 | ≥ L(γ1(Y,d1)+ γ2(Y,d2))+u1D1 +u2D2)≤ Lexp(−min
�

u2
2,u1

�
), (3.20)

where D1 = 2∑n≥0 en(Y,d1) and D2 = 2∑n≥0 en(Y,d2).

One of the consequences of the previous lemma is the following: in order to prove a tail
estimate of the supremum of the stochastic process {Zy}y∈Y , like the one in (3.20), one needs
to do two things. First, estimate the quantities γ1(Y,d1), γ2(Y,d2), D1 and D2. Note that
these quantities depend only on the distances d1,d2 and hence are not a priori related to the
process {Zy}y∈Y . Secondly, relate the stochastic process {Zy}y∈Y with the distances d1,d2 by
establishing condition (3.19).

We are now ready to prove Proposition 3.2.5. As mentioned earlier, this result is an adap-
tation of the proof by Talagrand of Leighton and Shor theorem. We sketch some of the main
steps in the proof by Talagrand and give the details on how to generalize it to non-constant
densities.

Proof of Proposition 3.2.5 . In what follows L > 0 is a constant that may increase from line to
line.

Discrepancy estimates. Let l1 be the largest integer such that 2−l1 ≥ (lnn)3/4
√

n . Consider G
to be the regular grid of mesh 2−l1 given by

G =
�
(x1,x2) ∈ [0,1]2 ; 2l1x1 ∈ N or 2l1x2 ∈ N

�
. (3.21)

A vertex of the grid G is a point (x1,x2) in [0,1]2 such that 2l1x1 ∈ N and 2l1x2 ∈ N. A square
of the grid G is a square of side length equal to 2−l1 and whose edges belong to G. The edges
are included in the squares.

For a given vertex w of G and a given integer k, consider C (w,k) the set of simple closed
curves that lie on G which contain the vertex w and have length l(C) ≤ 2k. Note that every
closed simple curve C in R2 divides the space into two regions, one of which is bounded.
We call this set the interior of the curve C and we denote it by C◦. For C,C� ∈ C (w,k) set
d1(C,C�) = 1 if C �= C� and d1(C,C�) = 0 if C = C�. Also set d2(C,C�) =

√
n�χC◦ −χC�◦�L2(D).
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Claim 1: For a given vertex w of G and a given integer k with k≤ l1 +2, there exists L > 0
large enough such that with probability at least 1−Lexp(−(lnn)3/2/L)

sup
C∈C (w,k)

|∑
i≤n

(χC◦(xi)−ν(C◦)) | ≤ L2k√n(lnn)3/4. (3.22)

To prove the claim, the idea is to study the supremum of the stochastic process {ZC}C∈C (w,k)
where

ZC :=
1
L ∑

i≤n
(χC◦(xi)−ν(C◦)) .

For fixed C,C� ∈ C (w,k) one can write the difference ZC−ZC� as

ZC−ZC� = ∑
i≤n

Zi,

where Zi = 1
L (χC◦(xi)−χC�◦(xi)−ν(C◦)+ν(C�◦)). The random variables {Zi}i≤n are inde-

pendent and identically distributed with mean zero, they satisfy |Zi| ≤ 2
L and furthermore, their

variance σ2 is bounded by

σ2 ≤ 1
L2 E

�
|χC◦(xi)−χC�◦(xi)|2

�
≤ λ

L2 �χC◦ −χC�◦�2
L2(D).

Using Bernstein’s inequality and choosing L > 0 to be large enough, we obtain

P(|ZC−ZC� | ≥ u)≤ 2exp

�
− u2

n�χC◦ −χC�◦�2
L2(D) +u

�
= 2exp

�
−min

�
u2

d2(C,C�)2 ,
u

d1(C,C�)

��
.

In the proof of proposition 3.4.3 in [66], the estimates γ1(C (w,k),d1)≤L2k√n, γ2(C (w,k),d2)≤
L2k√n(lnn)3/4, D1 ≤ 2(k + l1 +1) and D2 ≤ L2k+1√n are established. Setting u1 = (lnn)3/2

and u2 = (lnn)3/4 one can use Lemma 3.2.7 (with Y = C (w,k), d1, d2 as above and y0 = {w})
to prove the claim.

Considering all possible vertices w of G and all possible integers k with−l1 ≤ k≤ l1 +2. It
is a direct consequence of Claim 1 above that with probability at least 1−Lexp(−(lnn)3/2/L),

sup
C

|∑
i≤n

(χC◦(xi)−ν(C◦)) | ≤ Ll(C)
√

n(lnn)3/4, (3.23)

where the supremum is taken over all C closed, simple curves on G. See the proof of Theorem
3.4.2 in [66]. We denote by Ωn the event for which (3.23) holds.

Enlarging Regions. Consider an integer l2 with l2 < l1. We consider G� the grid defined as
in (3.21) but with mesh size 2−l2 . Note that in particular G� ⊆G. Let R be a union of squares of
the grid G�. One can define R� to be the region formed by taking the union of all the squares in
G� with at least one side contained in R. With no change in the proof of Theorem 3.4.1 in [66],
it follows from the discrepancy estimates obtained previously that in the event Ωn one has

ν(R�)≥ νn(R) (3.24)
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for all regions R formed with squares from G�, provided that 2−l2 ≥ 26L√
n (lnn)3/4.

What this is saying is that given the discrepancy estimates obtained previously, in the event
Ωn, for any region R formed by taking the union of squares in G�, one can enlarge R a bit to
obtain a region R� in such a way that the area of the enlarged region R� according to ν is greater
than the area of the original region R according to νn. It is worth remarking that the restriction
to the number 2−l2 (the mesh size of G�), for this to be possible, coincides with the scaling for
the transportation cost we are after.

Matching between rectangles and data points. We choose l2 to be the largest integer
satisfying 2−l2 ≥ 26L√

n (lnn)3/4. Consider {Q1, . . . ,Qn} the rectangles constructed from Lemma

3.2.6. For i ∈ {1, . . . ,n} let Bi =
�

j ≤ n : dist(xi,Q j)≤ 2
√

2 ·2−l2
�

.
Claim 2: In the event Ωn, there is a bijection π : {1, . . . ,n}→ {1, . . . ,n} with π(i) ∈ Bi for

all i.
By Hall’s marriage Theorem, to prove this claim it is enough to prove that for every I ⊆

{x1, . . . ,xn}, the cardinality of ∪i∈IBi is greater than the cardinality of I. Fix I ⊆ {1, . . . ,n} and
denote by RI the region formed with the squares of G� that contain at least one of the points
xi with i ∈ I. Now, take J =

�
j ≤ n : Q j ∩ (RI)� �= /0

�
, then, J ⊆ ∪i∈IBi. From the properties

of the boxes Qi and from (3.24) it follows that #∪i∈I Bi ≥ #J = nν(∪ j∈JQ j)≥ nν((RI)�)≥ #I.
This proves the claim.

Finally, we construct a transportation map Tn between ν and νn. Indeed, for x in Qi, set
Tn(x) = Xπ−1(i). From the properties of the boxes Qi, it is straightforward to check that Tn�ν =

νn and that �Tn− Id�L∞(D) ≤ L (lnn)3/4
√

n due to the estimate on the diameter of the rectangles Qi

in (3.18).

3.3 The matching results for general D

The goal of this section is to prove the optimal bounds on matching for all open, connected,
bounded domains D with Lipschitz boundary. In order to achieve this, we first prove Proposi-
tion 3.0.17 for general domains D. It is useful to consider first a class of domains D which are
well partitioned.

Definition 3.3.1. Let D ⊆ Rd. We say that D satisfies the (WP) property with k polytopes if
D is an open, bounded and connected set and is such that there exists a finite family of closed
convex polytopes {Ai}k

i=1 covering D and satisfying: For all i, j = 1, . . . ,k

1. int(Ai)∩D �= /0.

2. If i �= j then int(Ai)∩ int(A j) = /0.

3. Ai∩D is bi-Lipschitz homeomorphic to a closed cube.
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The class of domains satisfying the (WP) property is convenient for our purposes for two
reasons. The first one because as we see below, in order to prove the matching results for
sets with the (WP) property, we can use induction on the number of polytopes. The second
reason, has to do with the fact that the class of sets which are well partitioned contains the
class of open, bounded, connected domains with smooth boundary. This is the content of the
next proposition.

Proposition 3.3.2. Let D ⊆ Rd be an open, bounded and connected domain with smooth
boundary. Then, D satisfies the (WP) property with k polytopes for some k ∈ N.

Proof. Consider D to be a bounded open set with smooth boundary. For ε > 0 we denote by
∂εD the set of points x∈Rd with d(x,∂D)≤ ε . The fact that ∂D is a smooth compact manifold
implies that there exists 0 < ε0 < 1 such that for every x ∈ ∂ε0D there is a unique point P(x) on
∂D closest to x. Furthermore the function P : x ∈ ∂2ε0D �→ P(x) is smooth.

For a given z ∈ ∂D we let�nz be the unit outer normal vector to ∂D at the point z. The fact
that ∂D is a smooth manifold in Rd also implies that the outer unit normal vector field changes
smoothly over ∂D.

We consider the signed distance function to ∂D, g : ∂2ε0D−→ R

g(y) :=

�
dist(y,∂D), if y ∈ Dc

−dist(y,∂D), if y ∈ D.
(3.25)

This function is smooth and its gradient is given by

∇g(y) =�nP(y). (3.26)

We remark that for every y ∈ ∂ε0D, g(y) = |y−P(y)| if y �∈D and g(y) =−|y−P(y)| if y ∈D.
For a fixed 0 < ε < ε0 consider the family of open balls

�
B(x,ε2)

�
x∈∂D. This is an open

cover of the set ∂D which is compact. Hence, there exists a finite subcover
�

B(x1,ε2), . . . ,B(xN ,ε2)
�

of ∂D. To fix some notation, we let �ni be the vector �nxi and we let Ti be the tangent plane to
∂D at the point xi. Let V1, . . .VN be the Voronoi cells induced by the points x1, . . . ,xN ; that is,
we let Vi be the set

Vi :=
�

y ∈ Rd : |xi− y| ≤ |x j− y|, ∀ j �= i
�

.

Note that for every t ∈ [−ε,ε] we have P(xi + t�ni) = xi. In particular,

|xi + t�ni− xi| < |xi + t�ni− x j|, (3.27)

for every j �= i. Consider x̃i to be the point x̃i :=− ε
2�ni +xi and let T +

i := ε�ni +Ti, T−i := ε�ni +Ti
be the planes parallel to Ti passing though the points ε�ni + xi and −ε�ni + xi respectively. We
denote by Si the closed strip delimited by the planes T +

i and T−i and let Ai := Vi ∩ Si. See
Figure 3.1.
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We first want to show that the region Ai is contained in a circular cylinder whose axis is
the line passing through the point xi with direction �ni and whose radius is small compared to
ε . To achieve this, for a point y ∈ Rd denote by yi the projection of y along the line passing
through xi with direction�ni.

Claim 1: For all 0 < ε < ε0
2 small enough, y ∈ Ai implies that |y− yi| ≤ 4ε3/2.

To prove the claim suppose for the sake of contradiction that there is y ∈ Ai with |y−yi| ≥
4ε3/2. Since y ∈ Si, in particular |yi−xi| = dist(yi,∂D)≤ ε . Consider a point ỹ in the segment
[y,yi] such that 4ε3/2 ≥ |ỹ− yi| ≥ 3ε3/2. Then |ỹ− xi| ≤ |ỹ− yi|+ |yi− xi| < 4ε3/2 + ε < 2ε
if ε is small enough. Thus |ỹ−P(ỹ)| < 2ε . Note also that y ∈ Ai and yi ∈ Ai (from (3.27)).
Since the set Ai is convex, we conclude that ỹ ∈ Ai. To get to a contradiction we want to
show that |ỹ− xk| < |ỹ− xi| for some k; this would imply that ỹ �∈Vi which indeed would be a
contradiction given that ỹ ∈ Ai.

Note that P(ỹ) ∈ B(xk,ε2) for some k. Thus

|ỹ− xk|2 ≤ (|ỹ−P(ỹ)|+ |P(ỹ)− xk|)2

= |ỹ−P(ỹ)|2 +2|ỹ−P(ỹ)| · |P(ỹ)− xk|+ |P(ỹ)− xk|2

≤ |ỹ−P(ỹ)|2 +4ε3 + ε4.

(3.28)

Furthermore, note that

|ỹ− xi|2 = |yi− xi|2 + |ỹ− yi|2

= g(yi)2 + |ỹ− yi|2

= g(ỹ)2 +g(yi)2−g(ỹ)2 + |ỹ− yi|2

≥ |ỹ−P(ỹ)|2−|g(yi)2−g(ỹ)2|+ |ỹ− yi|2.

(3.29)

Since g is smooth in ∂ε0D, there exists M such that M ≥ �D2g(x)� for all x ∈ ∂ε0D. By
(3.26), the gradient of the signed distance function g at the point yi is equal to�ni. Since ỹ− yi
is orthogonal to �ni, by Taylor expansion |g(ỹ)− g(yi)| = |g(ỹ)− g(yi)−Dg(yi) · (ỹ− yi)| ≤
M|ỹ− yi|2. Thus |g(ỹ)2−g(yi)2| = |g(ỹ)−g(yi)| · |g(ỹ)+g(yi)| ≤ 3Mε|ỹ− yi|2. Using (3.29)
we deduce that

|ỹ− xi|2 ≥ |ỹ−P(ỹ)|2 +(1−3Mε)|ỹ− yi|2.

Therefore for small enough ε > 0

|ỹ− xi|2 ≥ |ỹ−P(ỹ)|2 +5ε3.

Combining the previous inequality with (3.28) we deduce that |ỹ− xi| > |ỹ− xk|. This proves
the claim.

Consider the circular cylinder whose axis is the line passing through the point xi with
direction �ni and whose radius is 4ε3/2. We let C+

i be the portion of the cylinder contained in
Si.
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By (3.27) we can find a circular cylinder of smaller radius, whose axis is the same as that
of C+

i , but such that the portion of it contained in Si, denoted by C−i , satisfies:

C−i ⊆ Ai ⊆C+
i .

See Figure 3.1.

D

C+
iC−i

T−i

T +
i

Si xi

�ni

x̃i

Ai

Figure 3.1: Close-up of a piece of the boundary of D

Claim 2. Let 0 < ε < ε0
2 be small enough. Then, there exists a map Φi : Ai ∩D → Ai

which is a bi-Lipschitz homeomorphism. In particular, since Ai is a closed convex body with
nonempty interior, we conclude that Ai∩D is bi-Lipschitz homeomorphic to the unit cube.

To prove the claim fix ε > 0 so that in particular the conclusions from Claim 1 hold. From
the bound on the second derivative of g and since the radius of C+

i is 4ε3/2, we deduce that
there exists a universal constant L > 0 such that

|�nz−�ni| ≤ Lε3/2, ∀z ∈ ∂D∩Ai, (3.30)

due to the fact that Ai ⊆C+
i .

We now turn to constructing the bi-Lipschitz mapping between D∩Ai and Ai. We do that
by linear mappings along rays emanating from x̃i. Consider S d−1 the set of all unit vectors in
Rd . For�n ∈S d−1 define s�n and t�n by

s�n := sup
�

s > 0 : x̃i + s�n ∈ D∩Ai
�

,

t�n := sup{t > 0 : x̃i + t�n ∈ Ai} .

Since C−i ⊆ Ai ⊆C+
i , we deduce that both functions �n ∈S d−1 �→ s�n and �n ∈S d−1 �→ t�n

are bounded above and below by positive constants.
Now, note that for every�n ∈S d−1, we have s�n ≤ t�n. Moreover, by (3.30) and the fact that

Ai ⊆C+
i , we deduce that if s�n < t�n then

|�ni−�n| ≤ Lε3/2,
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where L is a universal constant which is not necessarily the same as in (3.30). In particular, by
choosing ε to be small enough we can assume that if s�n < t�n then, the ray starting at x̃i with
direction �n only intersects ∂D∩Ai at one point. This fact, together with the smoothness of
the outer normal vector field implies that the map �n ∈S d−1 �→ s�n is Lipschitz. On the other
hand, since the set Ai is a convex set with piecewise smooth boundary ( a convex polytope),
we deduce that the function�n ∈S d−1 �→ t�n is Lipschitz as well.

Consider the map Φi : D∩Ai → Ai defined as follows. Set Φi(x̃i) = x̃i. For x ∈ D∩Ai,
x �= x̃i we can write x = x̃i + s�n, for some�n ∈S d−1 and for some 0 < s≤ s�n; we let Φi(x) be

Φi(x) := x̃i +
st�n
s�n

�n.

Since both functions�n ∈S d−1 �→ s�n and�n ∈S d−1 �→ t�n are bounded above and below by
positive constants and are Lipschitz, we deduce that the map Φi is a bi-Lipschitz homeomor-
phism between D∩Ai and Ai. This proves the claim.

Claim 3. For any ε < 1 it holds that ∂D∩ (Vi \Si) = /0. To prove this claim, assume for the
sake of contradiction that there exists x∈ ∂D∩(Vi\Si). Since x �∈ Si, it follows that |x−xi| ≥ ε .
On the other hand, given that x ∈ ∂D, we know there exists k such that x ∈ B(xk,ε2). Since
ε < 1, we deduce that |x− xk| < |x− xi| and thus x �∈Vi. This is a contradiction.

Now we have all the ingredients needed to prove Proposition 3.3.2. Indeed, take ε > 0
small enough so that all of the conclusions of all the previous claims hold. From Claim 3, we
deduce that every Vi can be partitioned into three convex polytopes. One which intersects ∂D,
namely Ai =Vi∩Si and other two polytopes, one which is contained in int(Dc) and another one
contained in D. We denote the later one by Âi. We consider the family

�
A1, Â1, . . . ,AN , ÂN

�
of

convex polytopes. This family covers D and is such that properties (1) and (2) from Definition
3.3.1 are satisfied. Moreover, given that Âi ⊆ D and given that Âi is convex, we deduce that
Âi satisfies property (3) automatically, since all closed convex bodies with piecewise smooth
boundary are bi-Lipschitz homeomorphic. Finally, Claim 2 implies that property (3) holds for
each of the Ai. All together this implies that D satisfies the (WP) property.

We now prove a lemma that prepares the ground for an inductive argument to be used in
the proof of the matching results for domains with the (WP) property.

Lemma 3.3.3. Suppose that D is a domain which satisfies hypothesis (WP) with k polytopes
(k > 1). Let {Ai}k

i=1 be associated polytopes. Then there exists j such that D� := D \ A j is
connected.

Proof. We say that Al ∼Am if relint(∂Am)∩relint(∂Al)∩D �= /0, where relint(∂Ai) is the union
of the relative interiors of the facets of Ai ( (d−1)-dimensional faces). This relation induces
a graph G = (V,E) where the set of nodes V is the set of polytopes Ai and where an edge
between Am and Al (m �= l) belongs to the graph if and only if Am ∼ Al . We claim that G is a
connected graph.
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Indeed, consider m �= l. We want to show that there exists a path in the graph G connecting
Am with Al . For this purpose consider x ∈ int(Am)∩D and y ∈ int(Al)∩D. Denote by C
the union of all the ridges ((d− 2)-dimensional faces) of all the polytopes Ai. Given that C
is the union of finitely many (d− 2)-dimensional objects in Rd , we conclude that D \C is a
connected open set and as such it is path connected. Since x ∈ int(Am)∩D and y ∈ int(Al)∩D,
in particular x,y ∈ D\C and so there exists a continuous function γ : [0,1]→ D\C such that
γ(0) = x and γ(1) = y. Let Ai0 ,Ai1 , . . . ,AiN be the polytopes visited by the path γ in order of
appearance; this list satisfies Ais �= Ais+1 for all s, Ai0 = Am and AiN = Al . Now, note that for
any given s, the path γ intersects ∂Ais ∩∂Ais+1 at a point which belongs to the relative interior
of a facet (d− 1 dimensional face) of Ais and of Ais+1 ; this because γ lies in D \C. From this
fact we conclude that Ais ∼ Ais+1 and hence there is a path in G connecting Am and Al . This
proves that G is connected.

From the fact that G is connected, we deduce that it has a spanning tree G�. That is, there
exists a subgraph G� of G which is a tree and includes all of the vertices of G. Let A j be a leave
of the spanning tree G�. It is now straightforward to show that A j is the desired polytope from
the statement.

Remark 3.3.4. Consider D and A j as in the statement of Lemma 3.3.3. Then D� := D \A j
satisfies the property (WP) with (k−1) polytopes and D�� := D∩A j satisfies the property (WP)
with one polytope.

Let A j be the polytope as in statement of Lemma 3.3.3. Note that there exists i �= j such
that relint(∂Ai)∩ relint(∂A j)∩D �= /0; we denote this polytope by Ã j. Let x̃ ∈ relint(∂ Ã j)∩
relint(∂A j)∩D. Note that necessarily F := relint(∂ Ã j)∩ relint(∂A j) is contained in a hyper-
plane and hence we can consider e a unit vector which is orthogonal to F . Take r > 0 such that
B(x̃,r)⊆ int((Ã j ∪A j)∩D). Let z1 := x̃ + re and let z−1 := x̃− re. Without loss of generality
we can assume that z1 ∈ int(Ã j). Denote by C1 the set of points of the form tz1 + (1− t)y
where t ∈ [0,1] and y ∈ B(x̃,r)∩F , similarly, denote by C−1 the set of points of the form
tz−1 +(1− t)y where t ∈ [0,1] and where y ∈ B(x̃,r)∩F . Let z−1/2 := x̃− r

2 e and consider the
set C−1/2 defined analogously to the way C1 and C−1 are defined. We can think of C1 and C−1
as gates connecting the sets D� = D \A j and D�� = D∩A j. We illustrate the construction on
Figures 3.2 and 3.3.

We claim that there is a function ψ : D�� ∪C1 → D�� which is a bi-Lipschitz homeomor-
phism. In fact, for a given point y ∈ F ∩B(x̃,r) consider the line with direction e passing
through the point y. This line intersects ∂C1, at the points y and y1, it intersects ∂C−1 at the
points y and y−1 and finally it intersects ∂C−1/2 at the points y and y−1/2. We set ψ(y1) := y,
ψ(y) := y−1/2 and ψ(y−1) := y−1. On the segments [y−1,y], [y,y1] we define ψ to be continu-
ous and piecewise linear. In this way we define ψ for all points in C1∪C−1. Finally, set ψ to
be the identity on D�� \C−1. It is straightforward to check that ψ constructed in this way is a
bi-Lipschitz homeomorphism.

Now we are ready to prove Proposition 3.0.17 for general domains.
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D

D��

x̃Ã j
A j

Figure 3.2: Polytope A j with neighbor Ã j.

C1 C- 1
2

C-1
x̃z1 z-1

e

y1 y y−1

� �

Figure 3.3: Gate, enlarged.

Proof of Proposition 3.0.17. Step 1: Instead of proving the result for domains as in the state-
ment, we first prove the result for domains D satisfying the (WP) property. The proof is by
induction on the number of polytopes k.

We remark that the constant D(d,λ ) may change (increase) from line to line in the proof.
Base case. Suppose k = 1. In this case there exists ψ : D→ [0,1]d a bi-Lipschitz homeo-

morphism between D and the unit box. We use the map ψ to obtain measures ν̃1, ν̃2 on (0,1)d

by setting
ν̃i := ψ�νi for i = 1,2.

Using the fact that ψ is bi-Lipschitz, we can use the change of variables formula to deduce
that ν̃1 and ν̃2 are absolutely continuous with respect to the Lebesgue measure with densities

ρ̃i(y) = ρi(ψ−1(y))|det(Jψ−1(y))| for i = 1,2.

Here, Jψ−1 represents the Jacobian matrix of ψ−1.
Using the fact that ψ is bi-Lipschitz, we deduce that

1
λ̃
≤ ρ̃1, ρ̃2 ≤ λ̃

where λ̃ = max{Lip(ψ)d ,Lip(ψ−1)d}. By Proposition 3.0.17 applied to the unit cube,

d∞(ν̃1, ν̃2)≤C(λ̃ ,d)�ρ̃1− ρ̃2�L∞((0,1)d).

Consequently,

d∞(ν1,ν2)≤ Lip(ψ−1)d∞(ν̃1, ν̃2)≤C�ρ̃1− ρ̃2�L∞((0,1)d) ≤C�ρ1−ρ2�L∞(D).

for some constant C depending on λ and D only.
Inductive Step. Suppose that for any domain in Rd satisfying the (WP) property with

(k−1) polytopes the proposition is true. Let D be a domain satisfying the (WP) property with
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k polytopes and let ρ1,ρ2 : D→ (0,∞) be functions as in the statement. By relabeling the func-
tions if necessary, we can assume without loss of generality that

�
D� ρ1(x)dx−

�
D� ρ2(x)dx≥ 0,

where D� is as in Remark 3.3.4. Since there is more mass in D� according to ν1 than according
to ν2, we decide to transfer this excess of mass from the set D� to the set D��. To achieve this,
we first move the excess of mass on D� to the gate C1, so that we can subsequently move it to
the set D��. In mathematical terms, we consider an intermediate distribution dν̃1 = ρ̃1dx where

ρ̃1(x) :=






ρ2(x) if x ∈ D� \C1,

βρ1(x) if x ∈C1,

ρ1(x) if x ∈ D��,

and where

β =
�

D�(ρ1(x)−ρ2(x))dx+
�

C1
ρ2(x)dx

�
C1

ρ1(x)dx
;

the idea is to compare ν1 with ν̃1 and then compare ν̃1 with ν2.
First, note that there is a λ � > 1 depending only on λ and D such that

1
λ �
≤ ρ1, ρ̃1 ≤ λ �.

Since by construction ν1(D�) = ν̃1(D�), we use Remark 3.3.4 and the induction hypothesis to
conclude that:

d∞(ν1�D� , ν̃1�D�)≤C(λ �,D�)�ρ1− ρ̃1�L∞(D�) = C(λ ,D)�ρ1− ρ̃1�L∞(D�),

where ν1�D� denotes the measure ν1 restricted to D� and ν̃1|D� the measure ν̃1 restricted to
D�; notice that we can write C(λ �,D�) = C(λ ,D) because λ � depends on λ and D only. An
immediate consequence of the previous estimate is that

d∞(ν1, ν̃1)≤C(λ ,D)�ρ1− ρ̃1�L∞(D). (3.31)

Given the definition of β , it is straightforward to show that

�ρ1− ρ̃1�L∞(D) ≤C(λ ,D)�ρ1−ρ2�L∞(D)

for some constant C(λ ,D) only depending on D and λ . The previous inequality combined
with (3.31) gives:

d∞(ν1, ν̃1)≤C(λ ,D)�ρ1−ρ2�L∞(D).

Now we compare ν̃1 with ν2. First of all note that ν̃1(D��1) = ν2(D��1) , where D��1 := D�� ∪C1.
From the discussion proceeding Remark 3.3.4 we know that D��1 is bi-Lipschitz homeomorphic
to the set D�� which in turn is bi-Lipschitz homeomorphic to the unit box. Thus, D��1 is bi-
Lipschitz homeomorphic to the unit box and hence proceeding as in the base case, we conclude
that

d∞(ν̃1�D��1 ,ν2�D��1 )≤C(λ ,D)�ρ̃1−ρ2�L∞(D��1)
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and consequently
d∞(ν̃1,ν2)≤C(λ ,D)�ρ̃1−ρ2�L∞(D).

A straightforward computation shows that �ρ̃1− ρ2�L∞(D) ≤ C(λ ,D)�ρ1− ρ2�L∞(D) and
thus

d∞(ν̃1,ν2)≤C(λ ,D)�ρ1−ρ2�L∞(D).

Using the previous inequality, (3.31) and the triangle inequality we obtain the desired
result.

Step 2: Now consider an open, connected bounded domain D with Lipschitz boundary.
By Remark 5.3 in [12] there exists an open set D̃ with smooth boundary which is bi-Lipschitz
homeomorphic to D. In particular D̃ is bounded and connected. By propositions 3.3.2 and
Step 1, the result holds for D̃. Proceeding as in the base case in Step 1 and using the fact that
D and D̃ are bi-Lipschitz homeomorphic we obtain the desired result.

Now we are ready to prove Proposition 1.0.8.

Proof of Proposition 1.0.8 . Let us consider the function φ : N→ (0,∞), which is given by

φ(n) =






(lnn)1/d

n1/d , if d ≥ 3
(lnn)3/4

n1/2 , if d = 2.
(3.32)

Step 1. We first prove the result for domains D satisfying the (WP) property. The proof
is by induction on k, the number of polytopes used in the definition of the property (WP). In
what follows C may change from line to line, but always represents a constant that depends
only on λ and D. Furthermore, since the probability that a sample point belongs to a boundary
of one of the k polytopes is zero, we assume without the loss of generality that no sample point
belongs to the boundary of any of the polytopes considered.

Base Case. Suppose that D is a domain satisfying property (WP) with one polytope. Then,
D is bi-Lipschitz homeomorphic to the unit box. That is, there exists a bi-Lipschitz mapping
ψ : D → [0,1]d . Given a density ρ : D → (0,∞) satisfying (1.10), we define measure ν̃ on
(0,1)d to be the push-forward of ν by ψ:

ν̃ := ψ�ν .

Given the i.i.d. random points x1, . . . ,xn on D distributed according to ν we note that

X̃i = ψ(xi) for i = 1, . . . ,n

are i.i.d random points on (0,1)d distributed according to ν̃ .
As in the proof of Proposition 3.0.17 we use the fact that ψ is bi-Lipschitz to deduce that

ν̃ has a density ρ̃ satisfying
1
λ̃
≤ ρ̃ ≤ λ̃
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where λ̃ = λ max{Lip(ψ)d ,Lip(ψ−1)d}. From Proposition 1.0.8 applied to the unit cube, we
know that for α > 2, except on a set with probability O(n−α/2),

d∞(ν̃ , ν̃n)≤Cφ(n),

which implies
d∞(ν ,νn)≤ Lip(ψ−1)d∞(ν̃ , ν̃n)≤Cφ(n).

where C only depends on λ , D and α .
Inductive Step. Suppose that the theorem is true for any domain in Rd satisfying the (WP)

property with k−1 polytopes. Let D be a domain satisfying the (WP) property with k polytopes
and let ρ : D→ (0,∞) be a density function satisfying (1.10). Consider ρ̃n : D→D the density
function given by

ρ̃n(x) =






νn(D�)
ν(D�) ρ(x), if x ∈ D�

νn(D��)
ν(D��) ρ(x), if x ∈ D��,

(3.33)

where D� and D�� are as in Remark 3.3.4. Let ν̃n be the measure dν̃n = ρ̃ndx and note that
νn(D�) = ν̃n(D�) and νn(D��) = ν̃(D��). Also, notice that

�ρ− ρ̃n�L∞(D) ≤C|νn(D�)−ν(D�)|, (3.34)

for some constant C that depends only on λ and D.
To give some probabilistic estimates on |νn(D�)− ν(D�)|, we use Chernoff’s inequality

(3.9) to conclude that

P
�
|νn(D�)−ν(D�)| >

�
α lnn

n

�
≤ 2n−2α . (3.35)

Denote by Ωn the event in which |νn(D�)− ν(D)| ≤
�

α lnn
n . By (3.34) and Proposition

3.0.17 (from its proof, it holds for well partitioned domains), given Ωn we have:

d∞(ν , ν̃n)≤C
(lnn)1/2

n1/2 . (3.36)

We use the fact that νn(D�) = ν̃n(D�) and νn(D��) = ν̃n(D��) to estimate d∞(ν̃n,νn). Indeed, by
the induction hypothesis, given the event Ωn, with probability at least 1− cn−α/2

d∞(ν̃n�D� ,νn�D�)≤Cφ(n) and d∞(ν̃n�D�� ,νn�D��)≤Cφ(n).

In case the previous inequalities hold we conclude that

d∞(ν̃n,νn)≤max{d∞(ν̃n�D� ,νn�D�),d∞(ν̃n�D�� ,νn�D��)} ≤Cφ(n).
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Thus, given Ωn, with probability at least 1− cn−α/2

d∞(ν̃n,νn)≤Cφ(n).

From the previous discussion, (3.35) and (3.36) we conclude that with probability at least
1− cn−α/2,

d∞(ν ,νn)≤Cφ(n)+C
(lnn)1/2

n1/2 ≤Cφ(n).

Step 2. To prove the theorem for an arbitrary open, connected, bounded domain D with
Lipschitz boundary it is enough to notice that by Remark 5.3 in [12] there exists an open set D̃
with smooth boundary which is bi-Lipschitz homeomorphic to D. In particular D̃ is bounded
and connected. By Proposition 3.3.2 the result holds for D̃ by Step 1. Proceeding as in the
base case in Step 1 and using the fact that D and D̃ are bi-Lipschitz homeomorphic we obtain
the desired result.
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Chapter 4

Total variation in the continuum

In this chapter, the goal is to present the rigorous definition of weighted total variation and
establish Proposition 1.0.7. We remark that when ρ is constant, the proof of the Γ-convergence
part of Proposition 1.0.7 may be found in the Appendix of [4] in case D is a convex set, and
in [58] for a general domain D satisfying the assumptions in the statement. In case ρ is not
constant the results are obtained in a straightforward way by adapting the arguments presented
in [58]. For the compactness statement of the proof new arguments were required, due to the
presence of domain boundary and lack of L∞-control. Part of the proof on compactness in [4]
is used. As a corollary, we show that if one considers only functions uniformly bounded in
L∞(D), the compactness holds for open and bounded domains D regardless of the regularity
of its boundary.

4.1 Weighted total variation

Let D be an open subset of Rd and let ψ : D→ (0,∞) be a continuous function. Consider the
measure dν(x) = ψ(x)dx. As done in the previous chapters, we denote by L1(D,ν) the L1-
space with respect to the measure ν and by || · ||L1(D,ν) its corresponding norm ; and we restrict
the use L1(D) in the special case ψ ≡ 1 and in that case || · ||L1(D) represents its corresponding
norm. With a slight abuse of notation, we often replace ν by ψ in the previous expressions;
for example we use L1(D,ψ) to represent L1(D,ν).

Following Baldi, [10], for u ∈ L1(D,ψ) define

TV (u;ψ;D) = sup
��

D
udiv(φ)dx : (∀x ∈ D) |φ(x)| ≤ ψ(x) , φ ∈C∞

c (D : Rd)
�

(4.1)

the weighted total variation of u in D with respect to the weight ψ . When D is clear from
the context, we write TV (u;ψ) instead of TV (u;ψ;D). We denote by BV (D;ψ) the set of
functions u ∈ L1(D,ψ) for which TV (u;ψ) < +∞. When ψ ≡ 1 we omit the dependence
on ψ and write BV (D) and TV (u). Finally, for measurable subsets E ⊆ D, we define the

57
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weighted perimeter in D as the weighted total variation of the characteristic function of the
set, i.e., Per(E;ψ) = TV (1E ;ψ).

Throughout the paper we restrict our attention to the case where D is a bounded set and ψ
is bounded from below and from above by positive constants. Occasionally we use D to be the
Rd in which case we explicitly state that the functions we consider are defined on Rd . Finally,
in most of the remainder we consider ψ = ρ2, where ρ is continuous and bounded below and
above by positive constants, and occasionally we consider ψ ≡ 1 in which case as explained
above we write TV (·) instead of TV (·;1).

Remark 4.1.1. If D is a bounded open set and ψ is bounded from above and below by positive
constants, the sets L1(D) and L1(D,ψ) are equal and the norms || · ||L1(D) and || · ||L1(D,ψ) are
equivalent. Also, it is straightforward to see from the definitions that in this case BV (D) =
BV (D;ψ).

Remark 4.1.2. If u ∈ BV (D;ψ) is smooth enough (say for example u ∈ C1(D)) then the
weighted total variation TV (u;ψ) can be written as

�

D
|∇u(x)|ψ(x)dx.

If E is a regular subset of D, then Per(E;ψ) can be written as the following surface integral,

Per(E;ψ) =
�

∂E∩D
ψ(x)dS(x).

One useful characterization of BV (D;ψ) is provided in the next proposition whose proof
can be found in [10].

Proposition 4.1.3. Let u ∈ L1(D,ψ), u belongs to BV (D;ψ) if and only if there exists a finite
positive Radon measure |Du|ψ and a |Du|ψ -measurable function σ : D→ Rd with |σ(x)| = 1
for |Du|ψ -a.e. x ∈ D and such that ∀φ ∈C∞

c (D,Rd)
�

D
udiv(φ)dx =−

�

D

φ(x) ·σ(x)
ψ(x)

d|Du|ψ(x).

The measure |Du|ψ and the function σ are uniquely determined by the previous conditions and
the weighted total variation TV (u;ψ) is equal to |Du|ψ(D).

We refer to |Du|ψ as the weighted total variation measure (with respect to ψ) associated to
u. In case ψ ≡ 1, we denote |Du|ψ by |Du| and we call it the total variation measure associated
to u.

Using the previous definitions one can check that σ does not depend on ψ and that the
following relation between |Du|ψ and |Du| holds

d|Du|ψ(x) = ψ(x)d|Du|(x). (4.2)
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In particular,
TV (u;ψ) =

�

D
ψ(x)d|Du|(x). (4.3)

The function σ(x) is the Radon–Nikodym derivative of the distributional derivative of u (
denoted by Du) with respect to the total variation measure |Du|.

Since the functional TV (·;ψ) is defined as a supremum of linear continuous functionals
in L1(D,ψ), we conclude that TV (·;ψ) is lower semicontinuous with respect to the L1(D,ψ)-

metric (and thus L1(D)-metric given the assumptions on ψ). That is, if un
L1(D,ψ)−→ u as n→ ∞,

then
liminf

n→∞
TV (un;ψ)≥ TV (u;ψ). (4.4)

We finish this section with the following approximation result.

Proposition 4.1.4. Let D be an open and bounded set with Lipschitz boundary and let ψ : D→
R be a continuous function which is bounded from below and from above by positive constants.
Then, for every function u∈ BV (D,ψ) there exists a sequence {un}n∈N with un ∈C∞

c (Rd) such

that un
L1(D)−→ u and

�
D |∇un|ψ(x)dx→ TV (u;ψ) as n→ ∞.

Proof. Using the fact that D has Lipschitz boundary and the fact that ψ is bounded above and
below by positive constants, Theorem 10.29 in [50] implies that for any u ∈C∞(D)∩BV (D)

there exists a sequence {un}n∈N ⊆C∞
c (Rd) with un

L1(D)−→ u and with
�

D |∇u−∇un|ψ(x)dx→ 0
as n→∞. Using a diagonal argument we conclude that in order to prove Proposition 4.1.4 it is
enough to prove that for every u ∈ BV (D) there exists a sequence {un}n∈N ⊆C∞(D)∩BV (D)

with un
L1(D)−→ u and with

�
D |∇un|ψ(x)dx→ TV (u;ψ) as n→ ∞.

Step 1: If ψ is Lipschitz this is precisely the content of Theorem 3.4 in [10].
Step 2 If ψ is not necessarily Lipschitz we can find a sequence {ψk}k∈N of Lipschitz

functions bounded above and below by the same constants bounding ψ and with ψk � ψ . In
fact, it is straightforward to verify that the functions

ψk(x) := sup
y∈D

ψ(y)− k|x− y|

satisfy the above conditions. Using Step 1, for a given u ∈ BV (D) and for every k ∈ N we

can find a sequence {un,k}n∈N with un,k
L1(D)−→ u and with

�
D |∇un,k|ψk(x)dx → TV (u;ψk) as

n → ∞. By (4.3) and by the dominated convergence theorem we know that TV (u;ψk) =�
D ψk(x)d|Du|(x)→

�
D ψ(x)d|Du|(x) = TV (u;ψ) as k → ∞. Therefore, a diagonal argument

allows us to conclude that there exists a sequence {kn}n∈N with the property that, un,kn

L1(D)−→ u
and

�
D |∇un|ψkn(x)dx→ TV (u;ψ) as n→∞. Taking un := un,kn and using the fact that ψ ≤ψkn

we obtain:

limsup
n→∞

�

D
|∇un(x)|ψ(x)dx≤ lim

n→∞

�

D
|∇un(x)|ψkn(x)dx = TV (u;ψ).
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Since un
L1(D)−→ u, the lower semicontinuity of TV (·,ψ) implies that liminfn→∞

�
D |∇un(x)|ψ(x)dx≥

TV (u;ψ). The desired result follows.

4.2 Γ-convergence of non-local total variation TVε(·;ρ)

In this section we prove the Γ-convergence of the nonlocal functionals TVε(·;ρ) to the weighted
total variation TV (·;ρ2). We recall that

TVε(u;ρ) =
1
ε

�

D

�

D
ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy,

where η satisfies conditions (K1)-(K3) in the introduction. We adopt the following notation: ε
is a short-hand notation for εk where {εk}k∈N is an arbitrary sequence of positive real numbers
converging to zero as k → ∞. Limits as ε → 0 simply mean limits as k → ∞ for every such
sequence. The next lemma follows ideas present in [58, 18].

Lemma 4.2.1. Let D be a bounded open subset of Rd and let ρ : D→R be a Lipschitz function
that is bounded from below and from above by positive constants. Suppose that {uε}ε>0 is a
sequence of C2-functions such that

sup
ε>0

�
||∇uε ||L∞(Rd) + ||D2uε ||L∞(Rd)

�
< ∞. (4.5)

If ∇uε
L1(D)−→ ∇u for some u ∈C2(Rd), then

lim
ε→0

TVε(uε ;ρ) = ση

�

D
|∇u(x)|ρ2(x)dx. (4.6)

Proof. Step 1: For an arbitrary function w ∈C2(Rd) we define

Hε(w) =
1
ε

�

D

�

D
ηε(x− y)|∇w(x) · (y− x)|ρ(x)ρ(y)dydx.

First we show that
lim
ε→0

|TVε(uε ;ρ)−Hε(uε)| = 0. (4.7)

For this purpose, note that by Taylor’s theorem and by (4.5), for x,y ∈ D x �= y and ε > 0
����
uε(x)−uε(y)

|x− y| − ∇uε(x) · (y− x)
|x− y|

����≤ ||D2uε ||L∞(Rd)|x− y| ≤C|x− y|,
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where ||D2uε ||L∞(Rd) denotes the L∞ norm of the Hessian matrix of the function uε and C is a
positive constant independent of ε . Using this inequality and a simple change of variables we
deduce

|TVε(uε ;ρ)−Hε(uε)| ≤
C Vol(D)||ρ||2L∞(D)

ε

�

|h|≤γ
ηε(h)|h|2dh

= C Vol(D)||ρ||2L∞(D)

�

|ĥ|≤ γ
ε

εη(ĥ)|ĥ|2dĥ,

where γ denotes the diameter of the set D. Finally, using assumption (K3) on the kernel η , it
is straightforward to deduce that the last term in the previous expression goes to zero as ε goes
to zero, and thus we obtain (4.7).

Step 2: Now, for w ∈C2(Rd) consider

H̃ε(w) =
1
ε

�

D

�

x+h∈D
ηε(h) |∇w(x) ·h|ρ2(x)dhdx. (4.8)

We claim that
lim
ε→0

��Hε(uε)− H̃ε(uε)
�� = 0. (4.9)

Indeed, using the fact that ρ is Lipschitz,

��Hε(uε)− H̃ε(uε)
��≤ 1

ε

�

D

�

x+h∈D
ηε(h) |∇uε(x) ·h| |ρ(x+h)−ρ(x)|ρ(x)dhdx

≤
||∇uε ||L∞(Rd) Lip(ρ)||ρ||L∞(D)

ε

�

D

�

x+h∈D
ηε(h)|h|2dhdx

≤
||∇uε ||L∞(Rd) Lip(ρ)||ρ||L∞(D) Vol(D)

ε

�

|h|<γ
ηε(h)|h|2dh,

where as in Step 1 γ denotes the diameter of the set D. The last term in the previous expression
goes to zero as ε goes to zero (as in Step 1).

Step 3: We claim that

lim
ε→0

1
ε

�

D

�

x+h∈Rd\D
ηε(h) |∇uε(x) ·h|ρ2(x)dhdx = 0. (4.10)

Note that,

1
ε

�

D

�

x+h∈Rd\D
ηε(h) |∇uε(x) ·h|ρ2(x)dhdx

≤ ||∇uε ||L∞(Rd)||ρ||2L∞(D)

�

D

�

x+ε ĥ∈Rd\D
η(ĥ)|ĥ|dĥdx.

Using (4.5) and assumption (K3) on η , we deduce that the right hand side of the previous
inequality goes to zero as ε goes to zero, thus implying (4.10).
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Step 4: Using steps 1, 2, and 3 in order to obtain (4.6) it is enough to prove that

lim
ε→0

1
ε

�

D

�

Rd
ηε(h)|∇uε(x) ·h|ρ2(x)dhdx = ση

�

D
|∇u|ρ2(x)dx. (4.11)

Note that using the change of variables ĥ = h
ε and the isotropy of the kernel η we deduce

1
ε

�

D

�

Rd
ηε(h)|∇uε(x) ·h|ρ2(x)dhdx =

�

D

��

Rd
η(ĥ)|∇uε(x) · ĥ|dĥ

�
ρ2(x)dx

= ση

�

D
|∇uε(x)|ρ2(x)dx.

Taking ε to zero in the previous expression we obtain (4.11), and consequently (4.6).

Proof of Proposition 1.0.7. Let us first start showing the Liminf inequality.

Case 1: ρ is Lipschitz. Consider an arbitrary u ∈ L1(D,ρ) and suppose that uε
L1(D,ρ)−→ u as

ε → 0. Recall that given the assumptions on ρ this is equivalent to uε
L1(D)−→ u as ε → 0. We

want to show that liminfε→0 TVε(uε ;ρ)≥ σηTV (u;ρ2). Without the loss of generality we can
assume that {TVε(uε ;ρ)}ε>0 is bounded.

The idea is to reduce the problem to a setting where we can use Lemma 4.2.1 (see [58,18]).
The plan is to first regularize the functions uε to obtain a new sequence of functions

�
uε,δ

�
ε>0

(δ > 0 is a parameter that controls the smoothness of the regularized functions). The point is
that regularizing does not increase the energy in the limit, while it gains the regularity needed
to use Lemma 4.2.1.

To make this idea precise, consider J : Rd → [0,∞) a standard mollifier. That is, J is a
smooth radially symmetric function, supported in the closed unit ball B(0,1) and is such that�
Rd J(z)dz = 1. We set Jδ to be Jδ (z) = 1

δ d J
� z

δ
�
. Note that

�
Rd Jδ (z)dz = 1 for every δ > 0.

Fix D� an open domain compactly contained in D. There exists δ � > 0 such that D�� =�
x∈D� B(x,δ �) is contained in D. For 0 < δ < δ � and for a given function w ∈ L1(D) we define

the mollified function wδ ∈ L1(Rd) by setting wδ (x) =
�
Rd Jδ (x− z)w(z)dz =

�
Rd Jδ (z)w(x−

z)dz where we have extended w to be zero outside of D. The functions wδ are smooth, and

satisfy wδ
L1(D�)−→ w as δ → 0, see for example [50]. Furthermore

∇wδ (x) =
�

Rd
∇Jδ (z)w(x− z)dz =

1
δ

�

Rd

1
δ d ∇J

� z
δ

�
w(x− z)dz. (4.12)

By taking the second derivative, it follows that there is a constant C > 0 (only depending on
the mollifier J) such that

||∇wδ ||L∞(Rd) ≤
C
δ
||w||L1(D) and ||D2wδ ||L∞(Rd) ≤

C
δ 2 ||w||L1(D). (4.13)
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Since uε
L1(D)−→ u as ε → 0 the norms ||uε ||L1(D) are uniformly bounded. Therefore, taking w = uε

in inequalities (4.13) and setting uε,δ = (uε)δ , implies

sup
ε>0

�
||∇uε,δ ||L∞(Rd) + ||D2uε,δ ||L∞(Rd)

�
< ∞.

Moreover, using (4.12) to express ∇uε,δ and ∇uδ , it is straightforward to deduce that
�

D�

��∇uε,δ (x)−∇uδ (x)
��dx≤ C

δ

�

D
|uε(x)−u(x)|dx.

for some constant C independent of ε . In particular,
�

D�
��∇uε,δ (x)−∇uδ (x)

��dx→ 0 as ε → 0
and hence we can apply Lemma 4.2.1 (taking D to be D�) to infer that

lim
ε→0

1
ε

�

D�

�

D�
ηε(x− y)|uε,δ (x)−uε,δ (y)|ρ(x)ρ(y)dxdy

= ση

�

D�
|∇uδ (x)|ρ2(x)dxdy.

(4.14)

To measure the approximation error in the energy, we set

aε,δ =
1
ε

�

D��

�

D��

�

Rd
Jδ (z)ηε(x− y)|uε(x)−uε(y)|(ρ(x)ρ(y)−ρ(x+ z)ρ(y+ z))dzdxdy,

and estimate

TVε(uε ;ρ)≥ 1
ε

�

D��

�

D��
ηε(x− y)|uε(x)−uε(y)|ρ(x)ρ(y)dxdy

=
1
ε

�

D��

�

D��

�

Rd
Jδ (z)ηε(x− y)|uε(x)−uε(y)|ρ(x)ρ(y)dzdxdy

= aε,δ +
1
ε

�

D��

�

D��

�

Rd
Jδ (z)ηε(x− y)|uε(x)−uε(y)|ρ(x+ z)ρ(y+ z)dzdydx

≥ aε,δ +
1
ε

�

D�

�

D�

�

Rd
Jδ (z)ηε(x̂− ŷ)|uε(x̂− z)−uε(ŷ− z)|ρ(x̂)ρ(ŷ)dzdŷdx̂

≥ aε,δ +
1
ε

�

D�

�

D�
ηε(x̂− ŷ)

����
�

Rd
Jδ (z)(uε(x̂− z)−uε(ŷ− z))dz

����ρ(x̂)ρ(ŷ)dŷdx̂

= aε,δ +
1
ε

�

D�

�

D�
ηε(x̂− ŷ)|uε,δ (x̂)−uε,δ (ŷ)|ρ(x̂)ρ(ŷ)dŷdx̂,

where the second inequality is obtained using the change of variables x̂ = x+z , ŷ = y+z, z = z
together with the choice of δ and δ �; Jensen’s inequality justifies the third one. This chain of
inequalities and (4.14) imply that

liminf
ε→0

TVε(uε ;ρ)≥ liminf
ε→0

aε,δ +ση

�

D�
|∇uδ (x)|(ρ(x))2dx. (4.15)
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We estimate aε,δ as follows

|aε,δ | ≤
2||ρ||L∞(D)

ε

�

D��

�

D��

�

Rd
Jδ (z)ηε(x− y) |uε(x)−uε(y)| |ρ(x)−ρ(x+ z)|dzdxdy

≤
2δ ||ρ||L∞(D) Lip(ρ)

ε

�

D��

�

D��

�

Rd
Jδ (z)ηε(x− y) |uε(x)−uε(y)|dzdxdy

=
2δ ||ρ||L∞(D) Lip(ρ)

ε

�

D��

�

D��
ηε(x− y) |uε(x)−uε(y)|dxdy.

Since we had assumed that {TVε(uε ;ρ)}ε>0 is bounded, and also that ρ is bounded from below
by a positive constant, we conclude from the previous inequalities that liminfδ→0 liminfε→0 aε,δ =
0 and thus, by (4.15),

liminf
ε→0

TVε(uε ;ρ)≥ ση liminf
δ→0

�

D�
|∇uδ |(ρ(x))2dx.

Given that uδ
L1(D�)−→ u as δ → 0, we can use the lower semicontinuity of the weighted total

variation, (4.4), to obtain

liminf
ε→0

TVε(uε ;ρ)≥ ση liminf
δ→0

�

D�
|∇uδ |(ρ(x))2dx≥ ση |Du|ρ2(D�). (4.16)

Given that D� was an arbitrary open set compactly contained in D, we can take D� � D in the
previous inequality to obtain the desired result.

Case 2: ρ is continuous but not necessarily Lipschitz. The idea is to approximate ρ from
below by a family of Lipschitz functions {ρk}k∈N. Indeed, consider ρk : D→ R given by

ρk(x) := inf
y∈D

ρ(y)+ k|x− y|. (4.17)

The functions ρk are Lipschitz functions which are bounded from below and from above by the
same constants bounding ρ from below and from above. Moreover, given that ρ is continuous,
for every x ∈ D, ρk(x)� ρ(x) as k→ ∞.

Let u ∈ L1(D) and suppose that uε
L1(D)−→ u. Since ρk is Lipschitz, we can use Case 1 and

the fact that ρk ≤ ρ to conclude that

liminf
ε→0

TVε(uε ;ρ)≥ liminf
ε→0

TVε(uε ;ρk)≥ σηTV (u;ρ2
k ). (4.18)

Using (4.3) and the monotone convergence theorem, we see that:

lim
k→∞

TV (u;ρ2
k ) = lim

k→∞

�

D
ρ2

k (x)d|Du|(x) =
�

D
ρ2(x)d|Du|(x) = TV (u;ρ2).

Combining with (4.18) yields the desired result.
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Now we turn our attention to the Limsup inequality.
Case 1: ρ is Lipschitz. We start by noting that since ρ : D→ Rd is a Lipschitz function,

there exists an extension (that we denote by ρ as well) to the entire Rd which has the same
Lipschitz constant as the original ρ and is bounded below by the same positive constant. In-
deed, the extended function ρ : Rd →R can be defined by ρ(x) = infy∈D ρ(y)+Lip(ρ)|x−y|,
where Lip(ρ) is the Lipschitz constant of ρ .

To prove the limsup inequality we show that for every u ∈ L1(D,ρ):

limsup
ε→0

TVε(u;ρ)≤ σηTV (u;ρ2). (4.19)

It suffices to show (4.19) for functions u∈BV (D) (if the right hand side of (4.19) is +∞ there is
nothing to prove). Since D has Lipschitz boundary, for a given u ∈ BV (D) we use Proposition
3.21 in [6] to obtain an extension û ∈ BV (Rd) of u to the entire space Rd with |Dû|(∂D) = 0.
In particular from (4.2) we obtain

|Dû|ρ2 (∂D) = 0. (4.20)

We split the proof of (4.19) in two cases:
Step 1: Suppose that η has compact support, i.e. assume there is α > 0 such that if |h| ≥ α

then η(h) = 0. Let Dε :=
�

x ∈ Rd : dist(x,D) < αε
�

. For u ∈ BV (D), Theorem 3.4 in [10]
and our assumptions on ρ provide a sequence of functions {wk}k∈N ∈C∞(Dε)∩BV (Dε) such
that as k→ ∞

wk
L1(Dε )−→ û and

�

Dε
|∇wk(x)|ρ2(x)dx→ |Dû|ρ2(Dε). (4.21)

For every k ∈ N

TVε(wk;ρ) =
1
ε

�

D

�

D∩B(y,αε)
ηε(x− y)|wk(x)−wk(y)|ρ(x)ρ(y)dxdy

=
1
ε

�

D

�

B(y,αε)
ηε(x− y)

����
� 1

0
∇wk(y+ t(x− y)) · (x− y)dt

����ρ(x)ρ(y)dxdy

≤ 1
ε

�

D

�

B(y,αε)

� 1

0
ηε(x− y)|∇wk(y+ t(x− y)) · (x− y)|ρ(x)ρ(y)dtdxdy

≤
�

Dε

�

|h|<α

� 1

0
η(h)|∇wk(z) ·h|ρ(z− tεh)ρ(z+(1− t)εh)dtdhdz

=
�

Dε

�

|h|<α
η(h)|∇wk(z) ·h|ρ(z)2dhdz+aε,k

= ση

�

Dε
|∇wk(z)|(ρ(z))2dz+aε,k,

where the last inequality is obtained after using the change of variables (t,y,x) �→ (t,h,z),
h = x−y

ε and z = y+ t(x− y), noting that the Jacobian of this transformation is equal to εd and
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that the transformed set D is contained in Dε . The last equality is obtained thanks to the fact
that η is radially symmetric. Finally the aε,k are given by

aε,k =
�

Dε

�

|h|<α

� 1

0
η(h)|∇wk(z) ·h|

�
ρ(z− tεh)ρ(z+(1− t)εh)−ρ(z)2�dtdhdz.

Since ρ : Rd → R is Lipschitz and since it is bounded below by a positive constant, it is
straightforward to show that there exists a constant C > 0 independent of ε and k for which

aε,k ≤Cε
�

Dε
|∇wk(x)|ρ2(x)dx.

Using (4.21) in particular we obtain that vk
L1(D)−→ u as k → ∞. This together with continuity

of TVε(·;ρ) with respect to L1-convergence implies that TVε(wk;ρ)→ TVε(u;ρ) as k → ∞.
Therefore, from the previous chain of inequalities and from (4.21) we conclude that

TVε(u;ρ)≤ ση |Dû|ρ2(Dε)+ limsup
k→∞

aε,k ≤ ση |Dû|ρ2(Dε)+Cε|Dû|ρ2(Dε). (4.22)

Using (4.20), we deduce limε→0 |Dû|ρ2(Dε)= |Dû|ρ2(D)= |Dû|ρ2(D)= TV (u;ρ2)< ∞. Com-
bining with (4.22) implies the desired estimate, (4.19).

Step 2: Consider η whose support is not compact. The needed control of η at infinity is
provided by the condition (K3). For α > 0 define the kernel ηα(h) := η(h)χB(0,α)(h), which
satisfies the conditions of Step 1. Denote by TV α

ε (·;ρ) the nonlocal total variation using the
kernel ηα . For a given u ∈ BV (D)

TVε(u;ρ) = TV α
ε (u;ρ)+

1
ε

�

D

�

{x∈D : |x−y|>αε}
ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy.

The second term on the right-hand side satisfies:

1
ε

�

D

�

{x∈D : |x−y|>αε}
ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy

=
1
ε

�

D

�

{x∈D : |x−y|>αε}
ηε(x− y)|û(x)− û(y)|ρ(x)ρ(y)dxdy

≤ ||ρ||2L∞(D)

�

|h|>α
η(h)|h|

�

Rd

|û(y)− û(y+ εh)|
ε|h| dydh

≤ ||ρ||2L∞(D)|Dû|(Rd)
�

|h|>α
η(h)|h|dh,

where the first inequality is obtained using the change of variables h = x−y
ε and the second

inequality obtained using Lemma 13.33 in [50]. By Step 1 we conclude that:
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limsup
ε→∞

TVε(u;ρ)≤ limsup
ε→∞

TV α
ε (u;ρ)+ ||ρ||2L∞(Rd)|Dû|(Rd)

�

|h|>α
η(h)|h|dh

≤ σηα TV (u;ρ2)+ ||ρ||2L∞(Rd)|Dû|(Rd)
�

|h|>α
η(h)|h|dh.

Taking α to infinity and using condition (K3) on ηηη (see introduction) implies (4.19).
Case 2: ρ is continuous but not necessarily Lipschitz. The idea is to approximate ρ from

above by a family of Lipschitz functions {ρk}k∈N. Consider ρk : D→ R given by

ρk(x) := sup
y∈D

ρ(y)− k|x− y|. (4.23)

The functions ρk are Lipschitz functions which are bounded from below from and above by the
same constants bounding ρ from below and from above. Moreover, given that ρ is continuous,
it is simple to verify that for every x ∈ D, ρk(x)� ρ(x) as k→ ∞.

As in Step 1, it is enough to consider u ∈ BV (D) and prove that:

limsup
ε→0

TVε(u;ρ)≤ σηTV (u;ρ2).

The proof of the limsup inequality in Case 1 and the fact that ρ ≤ ρk imply that

limsup
ε→0

TVε(u;ρ)≤ limsup
ε→0

TVε(u;ρk)≤ σηTV (u;ρ2
k ). (4.24)

By the dominated convergence theorem,

lim
k→∞

TV (u;ρ2
k ) = lim

k→∞

�

D
ρ2

k (x)d|Du|(x) =
�

D
ρ2(x)d|Du|(x) = TV (u;ρ2).

Combining with (4.24) provides the desired result.

Remark 4.2.2. Note that using the liminf inequality and the proof of the limsup inequality we
deduce the pointwise convergence of the functionals TVε(·;ρ); namely, for every u∈ L1(D,ρ):

lim
ε→0

TVε(u;ρ) = σηTV (u;ρ2).

Compactness

The only remaining point left to be proved from Proposition 1.0.7 is compactness. We first
establish it for regular domains D and then extend it to more general ones.

Lemma 4.2.3. Let D be a bounded, open, and connected set in Rd, with C2-boundary. Let
{vε}ε>0 be a sequence in L1(D,ρ) such that:

sup
ε>0
�vε�L1(D,ρ) < ∞,
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and

sup
ε>0

TVε(vε ;ρ) < ∞. (4.25)

Then, {vε}ε>0 is relatively compact in L1(D,ρ).

Proof. Note that thanks to assumption (K1), we can find a > 0 and b > 0 such that the function
η̃ηη : [0,∞)→ {0,a} defined as η̃ηη(t) = a for t < b and η̃ηη(t) = 0 otherwise, is bounded above
by ηηη . In particular, (4.25) holds when changing η for η̃ and so there is no loss of generality
in assuming that ηηη has the form of η̃ηη . Also, since ρ is bounded below and above by positive
constants, it is enough to consider ρ ≡ 1.

We first extend each function vε to Rd in a suitable way. Since ∂D is a compact C2

manifold, there exists δ > 0 such that for every x ∈ Rd for which d(x,∂D) ≤ δ there exists
a unique closest point on ∂D. For all x ∈U := {x ∈ Rd : d(x,D) < δ} let Px be the closest
point to x in D. We define the local reflection mapping from U to D by x̂ = 2Px− x. Let ξ be
a smooth cut-off function such that ξ (s) = 1 if s≤ δ/8 and ξ (s) = 0 if s≥ δ/4. We define an
auxiliary function v̂ε on U , by v̂ε(x) := vε(x̂) and the desired extended function ṽε on Rd by
ṽε(x) = ξ (|x−Px|)vε(x̂).

We claim that:

sup
ε>0

1
ε

�

Rd

�

Rd
ηε(x− y)|ṽε(x)− ṽε(y)|dxdy < ∞. (4.26)

To show the claim we first establish the following geometric properties: Let W := {x∈Rd\D :
d(x,D) < δ/4} and V := {x ∈ Rd\D : d(x,D) < δ/8}. For all x ∈W and all y ∈ D

|x̂− y| < 2|x− y|. (4.27)

Since the mapping x �→ x̂ is smooth and invertible on W , it is bi-Lipschitz. While this would be
enough for our argument, we present an argument which establishes the value of the Lipschitz
constant: for all x,y ∈W

1
4
|x− y| < |x̂− ŷ| < 4|x− y|. (4.28)

By definition of δ the domain D satisfies the outside and inside ball conditions with radius δ .
Therefore if x ∈W and z ∈ D

����z−
�

Px+δ x−Px
|x−Px|

�����≥ δ .

Squaring and straightforward algebra yield

|z−Px|2 ≥ 2δ (z−Px) · x−Px
|x−Px| . (4.29)
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For x ∈W and y ∈ D, using (7.20) we obtain

|y− x̂|2−|y− x|2 = |y−Px+(x−Px)|2−|y−Px− (x−Px)|2

= 4(y−Px) · (x−Px)≤ 2
δ
|y−Px|2 |x−Px|

≤ 1
2
|y−Px|2 ≤ |y− x|2 + |x−Px|2 ≤ 2|y− x|2.

Therefore |y− x̂|2 ≤ 3|y− x|2, which establishes (4.27).
For distinct x,y ∈W using (7.20), with z = Py and with z = Px, follows

|x− y| ≥ (x− y) · Px−Py
|Px−Py| = (x−Px− (y−Py)+Px−Py) · Px−Py

|Px−Py|

≥ |Px−Py|− 1
2δ

(|x−Px| |Py−Px|+ |y−Py| |Py−Px|)

≥ |Px−Py| 3
4
.

Therefore

|x̂− ŷ| = |2Px− x+2Py− y| ≤ 2|Px−Py|+ |x− y| ≤
�

8
3

+1
�
|x− y| ≤ 4|x− y|.

Since the roles on x,y and x̂, ŷ can be reversed it follows that |x−y| ≤ 4|x̂− ŷ|. These estimates
establish (4.28).

We now return to proving (4.26). For ε small enough,
1
ε

�

Rn\D

�

D
ηε(x− y)|ṽε(x)− ṽε(y)|dxdy =

1
ε

�

V

�

D
ηε(x− y)|v̂ε(x)− v̂ε(y)|dxdy

=
1
ε

�

V

�

D
ηε(x− y)|vε(x̂)− vε(y)|dxdy

≤ 4d

ε

�

V

�

D
η4ε(x̂− y)|vε(x)− vε(ŷ)|dxdy

≤ 16d

ε

�

D

�

D
η4ε(z− y)|vε(x)− vε(z)|dzdy,

where the first inequality follows from (4.27) and the second follows from the fact that the
change of variables x �→ x̂ is bi-Lipschitz as shown in (4.28). Also,

1
ε

�

Rd\D

�

Rd\D
ηε(x− y)|ṽε(x)− ṽε(y)|dxdy

=
1
ε

�

W

�

W
ηε(x− y)|ξ (x)v̂ε(x)−ξ (y)v̂ε(y)|dxdy

≤1
ε

�

W

�

W
ηε(x− y)|ξ (x)−ξ (y)||v̂ε(x)|dxdy

+
1
ε

�

W

�

W
ηε(x− y)|v̂ε(x)− v̂ε(y)||ξ (y)|dxdy.
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Note that for all x �= y, ηε (x−y)
ε ≤ b

|x−y|ηε(x− y). Therefore:

1
ε

�

W

�

W
ηε(x− y)|ξ (x)−ξ (y)||v̂ε(x)|dxdy≤ b

�

W

�

W
ηε(x− y)

|ξ (x)−ξ (y)|
|x− y| |v̂ε(x)|dxdy

≤ bLip(ξ )
�

W

�

W
ηε(x− y)|v̂ε(x)|dxdy

≤ 4d bLip(ξ )�vε�L1(D),

where we used (4.28) and change of variables to establish the last inequality. Also,

1
ε

�

W

�

W
ηε(x− y)|v̂ε(x)− v̂ε(y)||ξ (y)|dxdy≤ 4d

ε

�

W

�

W
η4ε(x̂− ŷ)|v̂ε(x)− v̂ε(y)|dxdy

≤ 43d

ε

�

D

�

D
η4ε(x− y)|vε(x)− vε(y)|dxdy.

The first inequality is obtained thanks to the fact that |ξ (y)| ≤ 1 and (4.28), while the second
inequality is obtained by a change of variables.

Using that
�

D

�

D
η4ε(x− y)|vε(x)− vε(y)|dxdy≤ 4d

�

D

�

D
ηε(x− y)|vε(x)− vε(y)|dxdy

by combining the above inequalities we conclude that

sup
ε>0

1
ε

�

Rd

�

Rd
ηε(x− y)|ṽε(x)− ṽε(y)|dxdy

≤C sup
ε>0

��

D

�

D
ηε(x− y)|vε(x)− vε(y)|dxdy+�vε�L1(D)

�
< ∞.

Using the proof of Proposition 3.1 in [4] we deduce that the sequence {ṽε}ε>0 is relatively
compact in L1(Rd) which implies that the sequence {vε}ε>0 is relatively compact in L1(D).

Remark 4.2.4. We remark that the difference between the compactness result we proved above
and the one proved in Proposition 3.1 in [4] is the fact that we consider functions bounded
in L1, instead of bounded in L∞ as was assumed in [4]. Nevertheless, after extending the
functions to the entire Rd as above, one can directly apply the proof in [4] to obtain the
desired compactness result.

Now we are ready to establish the compactness from Proposition 1.0.7.

Proof of Proposition 1.0.7 (Compactness). Suppose {uε}ε>0 ⊆ L1(D) is as in the statement.
As in Lemma 4.2.3, we can assume that ρ ≡ 1. By Remark 5.3 in [12], there exists a bi-
Lipschitz map Θ : D̃ → D where D̃ is a domain with smooth boundary. For every ε > 0
consider the function vε := uε ◦Θ and set η̂ηη(s) := ηηη (Lip(Θ) s), s ∈ R.
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Since Θ is bi-Lipchitz we can use a change of variables, to conclude that there exists a
constant C > 0 (only depending on Θ) such that:

�

D̃
|vε(x)|dx≤C

�

D
|uε(y)|dy,

and

C
�

D

�

D
ηε(x− y) |uε(x)−uε(y)|dxdy≥

�

D̃

�

D̃
ηε (Θ(x)−Θ(y)) |vε(x)− vε(y)|dxdy

≥
�

D̃

�

D̃
η̂ε(x− y) |vε(x)− vε(y)|dxdy.

The second inequality using the fact that η is non-increasing (assumption (K2)). We conclude
that the sequence {vε}ε>0 ⊆ L1(D̃) satisfies the hypothesis of Lemma 4.2.3 (taking ηηη = η̂ηη).
Therefore, {vε}ε>0 is relatively compact in L1(D̃), which implies that {uε}ε>0 is relatively
compact in L1(D).

Corollary 4.2.5. Let D be a bounded, open, and connected set in Rd. Suppose that the se-
quence of functions {uε}ε>0 ⊆ L1(D,ρ) satisfies:

sup
ε>0
�uε�L1(D,ρ) < ∞,

sup
ε>0

TVε(uε ;ρ) < ∞.

Then, {uε}ε>0 is locally relatively compact in L1(D,ρ).
In particular if

sup
ε>0
�uε�L∞(D) < ∞,

then, {uε}ε>0 is relatively compact in L1(D,ρ).

Proof. If B is a ball compactly contained in D then the relative compactness of {uε}ε>0 in
L1(B,ρ) follows from Lemma 4.2.3. We note that if compactness holds on two sets D1 and D2
compactly contained in D, then it holds on their union. Therefore it holds on any set compactly
contained in D, since it can be covered by finitely many balls contained in D.

The compactness in L1(D,ρ) under the L∞ boundedness follows via a diagonal argument.
This can be achieved by approximating D by compact subsets: Dk ⊂ D, D = ∪kDk, and using
the fact that limk→∞ supε>0 �uε�L1(D\Dk,ρ) = 0.
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Chapter 5

Γ-convergence of graph total variation
and its implications

In this chapter we establish Theorem 1.0.2. A few remarks help clarify the hypotheses and
conclusions of Theorem 1.0.2. The scaling condition εn� (logn)pd n−1/d (where p2 = 3/4 and
pd = 1/d for d ≥ 3) comes directly from the existence of transportation maps from Proposition
1.0.9. This means that εn must decay more slowly than the maximal distance a point in D has to
travel to match its corresponding data point in Vn. In other words, the similarity graph Gn must
contain information on a larger scale than that on which the intrinsic randomness operates.
Additionally, we must remark that the conclusion of the theorem still holds if the partitions
{Y ∗n ,Y ∗n

c} only approximate an optimal balanced cut, that is, if the energies of {Y ∗n ,Y ∗n
c} satisfy

lim
n→∞

�
Cut(Yn

∗,Y ∗n
c)

Bal(Y ∗n ,Y ∗n c)
−min

Y�Vn

Cut(Y,Y c)
Bal(Y,Y c)

�
= 0.

As seen from the proof of Theorem 1.0.2 in Section 5.2, this follows from Proposition 1.1.5.
It is also important to remark the optimality of scaling of εn for d ≥ 3. In fact, if d ≥ 3 then

the rate presented in the statement of Theorem 1.0.2 is sharp in terms of scaling. Namely for
D = (0,1)d , ν being the Lebesgue measure on D and η compactly supported, it is known from
graph theory (see [39,41,56]) that there exists a constant c > 0 such that if εn < c (logn)1/d

n1/d then
the weighted graph associated to (Vn,Wn) is disconnected with high probability. The resulting
optimal discrete cuts have zero energy, but may be very far from the optimal continuum cuts.

In case d = 2 on the other hand, the connectivity threshold for a random geometric graph is
εn = c log(n)1/2

n1/2 , which is below the rate for which we can establish the consistency of balanced
cuts. Thus, an interesting open problem is to determine if the consistency results are still
valid when the parameter εn is taken below the rate log(n)3/4

n1/2 we obtained the proof for, but
above the connectivity rate. In particular we are interested in determining if connectivity is the
determining factor in order to obtain consistency of balance graph cuts.

73
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As stated in the Introduction, before we establish Theorem 1.0.2, we first prove Theorem
1.0.4, Corollary 1.0.5 and Theorem 1.0.6. We rely on the results established in the previous
chapters.

5.1 Γ-convergence of GTVn,εn

In this section we present the proof of Theorem 1.0.4.

Proof of Theorem 1.0.4. We use the sequence of transportation maps {Tn}n∈N from Proposi-
tion 1.0.9. Let ω ∈Ω be such that (1.22) and (1.23) hold in cases d = 2 and d ≥ 3 respectively.
By Proposition 1.0.9 the complement in Ω of such ωs is contained in a set of probability zero.

Step 1: Suppose first that ηηη is of the form ηηη(t) = a for t < b and ηηη = 0 for t > b, where
a,b are two positive constants. Note it does not matter what value we give to ηηη at b. The
key idea in the proof is that the estimates from Proposition 1.0.9 on transportation maps imply
that the transportation happens on a length scale which is small compared to εn. By taking a
kernel with slightly smaller ’radius’ than εn we can then obtain a lower bound, and by taking
a slightly larger radius a matching upper bound on the graph total variation.

Liminf inequality: Assume that un
T L1
−→ u as n→ ∞. Since Tn�ν = νn, using the change of

variables (2.4) it follows that

GTVn,εn(un) =
1
εn

�

D×D
ηεn (Tn(x)−Tn(y)) |un ◦Tn(x)−un ◦Tn(y)|ρ(x)ρ(y)dxdy. (5.1)

Note that for Lebesgue almost every (x,y) ∈ D×D

|Tn(x)−Tn(y)| > bεn ⇒ |x− y| > bεn−2�Id−Tn�L∞(D). (5.2)

Thanks to the assumptions on {εn}n∈N ((1.22) and (1.23) in cases d = 2 and d ≥ 3 respec-
tively), for large enough n ∈ N:

ε̃n := εn−
2
b
�Id−Tn�L∞(D) > 0.

By (5.2), for large enough n and for almost every (x,y) ∈ D×D,

ηηη
�
|x− y|

ε̃n

�
≤ ηηη

�
|Tn(x)−Tn(y)|

εn

�
.

Let ũn = un ◦Tn. Thanks to the previous inequality and (5.1), for large enough n

GTVn,εn(un)≥
1

εd+1
n

�

D×D
ηηη

�
|x− y|

ε̃n

�
|ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy

=
�

ε̃n

εn

�d+1

TVε̃n (ũn;ρ) .
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Note that ε̃n
εn
→ 1 as n→ ∞ and that un

T L1
−→ u implies ũn

L1(D,ρ)−→ u as n→ ∞. We deduce from
Proposition 1.0.7 that liminfn→∞ TVε̃n (ũn;ρ)≥ σηTV (u;ρ2) and hence:

liminf
n→∞

GTVn,εn(un)≥ σηTV (u;ρ2).

Limsup inequality: By Remark 1.1.2 and Proposition 4.1.4, it is enough to prove the limsup
inequality for Lipschitz continuous functions u : D → R. Define un to be the restriction of u

to the first n data points x1, . . . ,xn. The fact that u is Lipschitz implies that un
T L1
−→ u. Now,

consider ε̃n := εn + 2
b�Id−Tn�L∞(D) and let ũn = un ◦Tn. Then note that for Lebesgue almost

every (x,y) ∈ D×D

ηηη
�
|Tn(x)−Tn(y)|

εn

�
≤ ηηη

�
|x− y|

ε̃n

�
.

Then for all n

1
ε̃d+1

n

�

D×D
ηηη

�
|Tn(x)−Tn(y)|

εn

�
|ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy

≤ 1
ε̃n

�

D×D
ηε̃n (x− y) |ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy.

(5.3)

Also

1
ε̃n

����
�

D×D
ηε̃n(x− y)(|u(x)−u(y)|− |u◦Tn(x)−u◦Tn(y)|)ρ(x)ρ(y)dxdy

����

≤ 2
ε̃n

�

D×D
ηε̃n(x− y)|u(x)−u◦Tn(x)|ρ(x)ρ(y)dxdy

≤
2C Lip(u)||ρ||2L∞(D)

ε̃n

�

D
|x−Tn(x)|dx,

(5.4)

where C =
�
Rd η(h)dh. The last term of the previous expression goes to 0 as n→ ∞, yielding

lim
n→∞

1
ε̃n

��

D×D
ηε̃n(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy

−
�

D×D
ηε̃n(x− y)|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

�
= 0.

Since εn
ε̃n
→ 1 as n→ ∞, using (5.3) we deduce :

limsup
n→∞

GTVn,εn(un) = limsup
n→∞

1
ε̃d+1

n

�

D×D
ηηη

�
|Tn(x)−Tn(y)|

εn

�
|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

≤ limsup
n→∞

1
ε̃n

�

D×D
ηε̃n(x− y) |u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

= limsup
n→∞

TVε̃n(u;ρ) = σηTV (u;ρ2),
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where the last equality follows from the last part of Proposition 1.0.7.
Step 2: Now consider ηηη to be a piecewise constant function with compact support, satis-

fying (K1)-(K3). In this case ηηη = ∑l
k=1 ηηηk for some l and functions ηηηk as in Step 1. For this

step of the proof we denote by GTV k
n,εn

the total variation function on the graph using ηηηk.

Liminf inequality: Assume that un
T L1
−→ u as n→ ∞. By Step 1:

liminf
n→∞

GTVn,εn(un) = liminf
n→∞

l

∑
k=1

GTV k
n,εn

(un)

≥
l

∑
k=1

liminf
n→∞

GTV k
n,εn

(un)≥
l

∑
k=1

σηk TV (u;ρ2) = σηTV (u;ρ2).

Limsup inequality: By Remark 1.1.2 it is enough to prove the limsup inequality for u :
D→ R Lipschitz. Consider un as in the proof of the limsup inequality in Step 1. Then

limsup
n→∞

GTVn,εn(un) = limsup
n→∞

l

∑
k=1

GTV k
n,εn

(un)

≤
l

∑
k=1

limsup
n→∞

GTV k
n,εn

(un)≤
l

∑
k=1

σηk TV (u;ρ2) = σηTV (u;ρ2).

Step 3: Assume ηηη is compactly supported and satisfies (K1)-(K3).
Liminf Inequality: Note that there exists an increasing sequence of piecewise constant

functions ηηηk : [0,∞) → [0,∞) (η from Step 2 is used as ηk here), with ηηηk � ηηη as k → ∞
a.e. Denote by GTV k

n,εn
the graph TV corresponding to ηηηk. If un

T L1
−→ u as n → ∞, by Step 2

σηk TV (u;ρ2)≤ liminfn→∞ GTV k
n,εn

(un)≤ liminfn→∞ GTVn,εn(un) for every k ∈N. The mono-
tone convergence theorem implies that limk→∞ σηk = ση and so we conclude that σηTV (u;ρ2)≤
liminfn→∞ GTVn,εn(un).

Limsup inequality: As in Steps 1 and 2 it is enough to prove the limsup inequality for u
Lipschitz. Consider un as in the proof of the limsup inequality in Steps 1 and 2. Analogously
to the proof of the liminf inequality, we can find a decreasing sequence of functions ηηηk :
[0,∞)→ [0,∞) (of the form considered in Step 2), with ηηηk � ηηη as k → ∞ a.e. Proceeding
in an analogous way to the way we proceeded in the proof of the liminf inequality we can
conclude that limsupn→∞ GTVn,εn(un)≤ σηTV (u;ρ2).

Step 4: Consider general ηηη , satisfying (K1)-(K3). Note that for the liminf inequality we
can use the proof given in Step 3. For the limsup inequality, as in the previous steps we can
assume that u is Lipschitz and we take un as in the previous steps. Let α > 0 and define
ηηηα : [0,∞) → [0,∞) by ηηηα(t) := ηηη(t) for t ≤ α and ηηηα(t) = 0 for t > α . We denote by
GTV α

n,εn
the graph total variation using ηηηα . Then

GTVn,εn(un) = GTV α
n,εn

(un)+
1

εd+1
n

�

|Tn(x)−Tn(y)|>αεn

ηηη
�
|Tn(x)−Tn(y)|

εn

�

|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy.
(5.5)
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Let us find bounds on the second term on the right hand side of the previous equality
for large n. Indeed since for almost every (x,y) ∈ D×D it is true that |x− y| ≤ |Tn(x)−
Tn(y)|+2�Id−Tn�L∞(D) and |Tn(x)−Tn(y)| ≤ |x−y|+2�Id−Tn�L∞(D) we can use the fact that
�Id−Tn�L∞(D)

εn
→ 0 as n→ ∞ to conclude that for large enough n, for almost every (x,y) ∈D×D

for which |Tn(x)−Tn(y)| > αεn it holds that |x− y| ≤ 2|Tn(x)−Tn(y)| and |Tn(x)−Tn(y)| ≤
2|x− y|. We conclude that for large enough n

1
εd+1

n

�

|Tn(x)−Tn(y)|>αεn

ηηη
�
|Tn(x)−Tn(y)|

εn

�
|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

≤
||ρ||2L∞(D)

εd+1
n

�

|x−y|>αεn/2
ηηη

�
|x− y|

2εn

�
|u◦Tn(x)−u◦Tn(y)|dxdy

≤
2Lip(u)||ρ||2L∞(D)

εd+1
n

�

|x−y|>αεn/2
ηηη

�
|x− y|

2εn

�
|x− y|dxdy.

To find bounds on the last term of the previous chain of inequalities, consider the change of
variables (x,y) ∈ D×D �→ (x,h) where x = x and h = x−y

2εn
, we deduce that:

2
εd+1

n

�

|x−y|>αεn/2
ηηη

�
|x− y|

2εn

�
|x− y|dxdy≤C

�

|h|> α
4

η(h)|h|dh,

where C does not depend on n or α . The previous inequalities, (5.5) and Step 3 imply that

limsup
n→∞

GTVn,εn(un)≤ limsup
n→∞

GTV α
n,εn

(un)+Lip(u)||ρ||2L∞(D)C
�

|h|> α
4

η(h)|h|dh

≤σηα TV (u;ρ2)+Lip(u)||ρ||2L∞(D)C
�

|h|> α
4

η(h)|h|dh.

Finally, given the assumption (K3) on η , sending α to infinity we conclude that

limsup
n→∞

GTVn,εn(un)≤ σηTV (u;ρ2).

We now present the proof of Theorem 1.0.6 on compactness.

Proof of Theorem 1.0.6. Assume that {un}n∈N is a sequence of functions with un ∈ L1(D,νn)
satisfying the assumptions of the theorem. As in Lemma 4.2.3 and the compactness part of
Proposition 1.0.7 without loss of generality we can assume that ηηη is of the form ηηη(t) = a if
t < b and ηηη(t) = 0 for t ≥ b, for some a and b positive constants.

Consider the sequence of transportation maps {Tn}n∈N from Proposition 1.0.9. Since
{εn}n∈N satisfies (1.19), estimates (1.22) and (1.23) imply that for Lebesgue a.e. z,y ∈ D
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with |Tn(z)−Tn(y)| > bεn it holds that |z−y| > bεn−2�Id−Tn�L∞(D). For large enough n, we

set ε̃n := εn−
2�Id−Tn�L∞(D)

b > 0. We conclude that for large n and Lebesgue a.e. z,y ∈ D:

ηηη
�
|z− y|

ε̃n

�
≤ ηηη

�
|Tn(z)−Tn(y)|

εn

�
.

Using this, we can conclude that for large enough n:

1
εd+1

n

�

D

�

D
ηηη

�
|z− y|

ε̃n

�
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy

≤ 1
εd+1

n

�

D

�

D
ηηη

�
|Tn(z)−Tn(y)|

ε̃n

�
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy

= GTVn,εn(un).

Thus

sup
n∈N

1
εd+1

n

�

D

�

D
ηηη

�
|z− y|

ε̃n

�
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy < ∞.

Finally noting that ε̃n
εn
→ 1 as n→ ∞ we deduce that:

sup
n∈N

1
ε̃n

�

D

�

D
ηε̃n (z− y) |un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy < ∞.

By Proposition 1.0.7 we conclude that {un ◦Tn}n∈N is relatively compact in L1(D) and hence
{un}n∈N is relatively compact in T L1.

We now prove Corollary 1.0.5 on the Γ-convergence of graph perimeter.

Proof of Corollary 1.0.5. Note that if {Yn}n∈N is such that Yn ⊆ {x1, . . . ,xn} and 1Yn
T L1
−→ 1A

as n → ∞ for some A ⊆ D, then the liminf inequality follows automatically from the liminf
inequality in Theorem 1.0.4. The limsup inequality is not immediate, since we cannot use the
density of Lipschitz functions as we did in the proof of Theorem 1.0.4 given that we restrict
our attention to characteristic functions.

We follow the proof of Proposition 3.5 in [28] and take advantage of the coarea formula
of the energies GTVn,εn . Consider a measurable subset A of D. By the limsup inequality
in Theorem 1.0.4, we know there exists a sequence {un}n∈N (with un ∈ L1(D,νn)) such that

un
T L1
−→ 1A and limsupn→∞ GTVn,εn(un)≤ σηTV (1A;ρ2). It is straightforward to verify that the

functionals GTVn,εn satisfy the coarea formula:

GTVn,εn(un) =
� ∞

−∞
GTVn,εn(1{un>s})ds.
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Fix 0 < δ < 1
2 . Then in particular:

� 1−δ

δ
GTVn,εn(1{un>s})ds≤ GTVn,εn(un).

For every n there is sn ∈ (δ ,1− δ ) such that GTVn,εn(1{un>sn}) ≤
1

1−2δ GTVn,εn(un). Define

Aδ
n := {un > sn}. It is straightforward to show that 1Aδ

n

T L1
−→ 1A as n→∞ and that limsupn→∞ Pern,εn(Aδ

n )≤
1

1−2δ ση Per(A;ρ2). Taking δ → 0 and using a diagonal argument provides sets {An}n∈N such

that 1An
T L1
−→ 1A as n→ ∞ and limsupn→∞ Pern,εn(An)≤ ση Per(A;ρ2).

Remark 5.1.1. There is an alternative proof of the limsup inequality above. It is possible
to proceed in a similar fashion as in the proof of the limsup inequality in Theorem 1.0.4. In
this case, instead of approximating by Lipschitz functions, one would approximate 1A in T L1

topology by characteristic functions of sets of the form G = E ∩D where E is a subset of Rd

with smooth boundary. As in the proof of Theorem 1.0.4, the key is to show that for step kernels
(ηηη(t) = b if 0≤ t < a and zero otherwise)

lim
n→∞

GTVn,εn(1G) = TV (1G;ρ2).

To do so one needs a substitute for estimate (5.4). The needed estimate follows from the
following estimate: For all G as above, there exists δ such that for all n for which ||Id−
Tn||L∞(D) ≤ δ ,

�

D
|1G(x)−1G(Tn(x))|dx≤ 4Per(E) ||Id−Tn||L∞(D).

This estimate follows from the fact that if 1G(x) �= 1G(Tn(x)) then d(x,∂E) ≤ |x−Tn(x)| and
the fact that, for δ small enough, |{x ∈ Rd : d(x,∂E) < δ}| ≤ 4Per(E)δ , which follows from
Weyl’s formula [74] for the volume of the tubular neighborhood. Noting that the perimeter of
any set can be approximated by smooth sets (see Remark 3.42 in [6]) and using Remark 1.1.2
we obtain the limsup inequality for the characteristic function of any measurable set.

5.1.1 Extension to different sets of points

Consider the setting of Theorem 1.0.4. The only information about the points xi that the proof
requires is the upper bound on the ∞-transportation distance between ν and the empirical
measure νn. Theorem 1.0.9 provides such bounds when xi are i.i.d. distributed according to
ν . Such randomness assumption is reasonable when modeling randomly obtained data points,
but in other settings points may be more regularly distributed and/or given deterministically.
In such setting, if one is able to obtain tighter bounds on transportation distance this would
translate into better bounds on εn in Theorem 1.0.4 for which the Γ-convergence holds.
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That is, if x1, . . . ,xn, . . . are the given points, let νn still be 1
n ∑n

i=1 δxi . If one can find
transportation maps Tn from ν to νn such that

limsup
n→∞

n1/d�Id−Tn�L∞(D)

f (n)
≤C (5.6)

for some nonnegative function f : N→ (0,∞) then Theorem 1.0.4 would hold if

lim
n→∞

f (n)
n1/d

1
εn

= 0.

We remark that f must be bounded from below, since for any collection V = {x1, . . . ,xn}
in D, supy∈D dist(y,V )≥ cn−1/d and thus n1/d�Id−Tn�∞ ≥ c.

One special case is when D = (0,1)d , ν is the Lebesgue measure and x1, . . . ,xn, . . . is a
sequence of grid points on diadicaly refining grids. In this case, (5.6) holds with f (n) = 1 for
all n and thus Γ-convergence holds for εn → 0 such that limn→∞

1
n1/dεn

= 0. Note that our results
imply Γ-convergence in the T L1 metric, however in this particular case, this is equivalent to
the L1 -metric considered in [28] and [21] where for a function defined on the grid points we
associate a function defined on D by simply setting the function to be constant on the grid
cells. This follows from Proposition 2.2.13.

5.2 Consistency of Cheeger and ratio graph cuts

We note that convergence in T L1 was only defined for functions, and thus it is important to
clarify what is meant by T L1-convergence for partitions. In fact, when defining a notion of
convergence for sequences of partitions {Y n

1 , . . . ,Y n
R}, we need to address the inherent ambi-

guity that arises from the fact that both {Y n
1 , . . . ,Y n

R} and {Y n
P(1), . . . ,Y

n
P(R)} refer to the same

partition for any permutation P of {1, . . . ,R}. Having the previous observation in mind, the
convergence of partitions is defined in a natural way.

Definition 5.2.1. The sequence {Y n
1 , . . . ,Y n

R}n∈N, where {Y n
1 , . . . ,Y n

R} is a partition of Vn, con-
verges in the T L1-sense to the partition {A1, . . . ,AR} of D, if there exists a sequence of permu-
tations {Pn}n∈N of the set {1, . . . ,R}, such that for every r ∈ {1, . . . ,R},

1Y n
Pn(r)

T L1
−→ 1Ar , as n→ ∞.

We start the proof of Theorem 1.0.2 by showing that (1.5) actually has a minimizer. The
first step is to reformulate (1.5) in a way that allows us to handle the balance term. We extend
the balance term to arbitrary functions u ∈ L1(D,ν):

BR(u) =
�

D
|u(x)−meanρ(u)|ρ(x) dx and BC(u) = min

c∈R

�

D
|u(x)− c|ρ(x) dx, (5.7)
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where meanρ(u) denotes the mean/expectation of u(x) with respect to the measure dν = ρdx.
From here on, we use B to represent either BR or BC depending on the context. We have the
relations (see (1.3))

BR(1A) = BalR(A,Ac), BC(1A) = BalC(A,Ac), (5.8)

for every measurable subset A of D. We also consider normalized indicator functions 1̃A given
by

1̃A :=
1A

B(1A)
, A⊆ D,

and consider the set

Ind(D) :=
�

u ∈ L1(ν) : u = 1̃A for some measurable set A⊆ D with B(1A) �= 0
�

. (5.9)

Then for u = 1̃A ∈ Ind(D)

TV (u;ρ2) = TV (1̃A;ρ2) = TV
�

1A

B(1A)
;ρ2

�
=

TV (1A;ρ2)
B(1A)

=
2Per(A;ρ2)
Bal(A,Ac)

. (5.10)

Thus, we deduce that problem (1.5) is equivalent to :

Minimize E(u) :=

�
TV (u;ρ2) if u ∈ Ind(D)
+∞ otherwise.

(5.11)

Before we show that the above problem actually has a minimizer we need the following lemma.

Lemma 5.2.2. (i) The balance functions B are continuous in L1(D,ν).

(ii) The set Ind(D) is closed in L1(D,ν).

Proof. Let us start by proving (i). We first consider the balance term BC(u) that corresponds
to the Cheeger Cut. Suppose that uk → u in L1(D,ν), and let ck,c∞ denote medians of uk and
u respectively. By definition, ck and c satisfy

ck ∈ argmin
c∈R

�

D
|uk(x)− c| ρ(x) dx, c∞ ∈ argmin

c∈R

�

D
|u(x)− c| ρ(x) dx.

This implies that �

D
|uk(x)− ck|ρ(x) dx≤

�

D
|uk(x)− c|ρ(x) dx

for any c ∈ R, so that in particular we have
�

D
|uk− ck|ρ(x) dx−

�

D
|u− c∞| ρ(x) dx

≤
�

D
|uk− c∞|ρ(x)dx−

�

D
|u− c∞|ρ(x)dx≤

�

D
|uk−u|ρ(x)dx = �uk−u�L1(D,ν).
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Exchanging the role of uk and u in this argument implies that the inequality
�

D
|u− c∞|dρ−

�

D
|uk− ck|ρ(x)dx≤

�

D
|u−uk|ρ(x)dx≤ �uk−u�L1(D,ν)

also holds. Combining these inequalities shows that |B(uk)−B(u)| ≤ �uk− u�L1(D,ν) → 0 as
desired. Now consider the balance term BR(u) that corresponds to the ratio Cut. For the ratio
cut, the inequality ||a|− |b|| ≤ |a−b| immediately implies

����
�

D
|uk−meanρ(uk)|ρ(x)dx−

�

D
|u−meanρ(u)|ρ(x)dx

����

≤
�

D
|uk−u|ρ(x)dx+

�

D
|meanρ(uk)−meanρ(u)|ρ(x)dx

≤
�

D
|uk−u|ρ(x)dx+ |meanρ(uk)−meanρ(u)|.

Since uk → u in L1(D,ν) we have that meanρ(uk)→meanρ(u) and therefore |B(uk)−B(u)| ≤
�uk−u�L1(D,ν) + |meanρ(uk)−meanρ(u)| → 0 as desired.

In order to prove (ii) suppose that {uk}n∈N is a sequence in Ind(D) converging in L1(D,ν)
to some u ∈ L1(D,ν), we need to show that u ∈ Ind(D). By (i) we know that B(uk)→ B(u)
as k → ∞. Since uk ∈ Ind(D), in particular B(uk) = 1. Thus, B(u) = 1. On the other hand,
uk ∈ Ind(D) implies that uk has the form uk = αk1Ak . Since this is true for every k, in particular
we must have that u has the form u = α1Afor some real number α and some measurable subset
A of D. Finally, the fact that B is 1-homogeneous implies that 1 = B(u) = αB(1A). In particular
B(1A) �= 0 and α = 1

B(1A) . Thus u = 1̃A with B(1A) �= 0 and hence u ∈ Ind(D).

Lemma 5.2.3. Let D and ν be as stated at the beginning of this section. There exists a mea-
surable set A⊆ D with 0 < ν(A) < 1 such that 1̃A minimizes (5.11).

Proof. The statement follows by the direct method of the calculus of variations. Since the
functional is bounded from below it suffices to show that it is lower semicontinuous with
respect to the L1(D,ν) norm and that a minimizing sequence is precompact in L1(D,ν). To
show lower semi-continuity it is enough to consider a sequence un = 1An ∈ Ind(D) converging
in L1(D,ν) to u∈ L1(D,ν). From Lemma 5.2.2 it follows that u∈ Ind(D) and hence u = 1̃A for
some A with B(A) > 0. Therefore 1An → 1A as n→ ∞ in L1(D,ν). The lower semi-continuity
then follows from the lower semi-continuity of the total variation (4.4), the continuity of B
and the fact that since B(1A) > 0, 1/B(1An)→ 1/B(1A) as n→ ∞. The precompactness of any
minimizing sequence of (5.11) follows directly from Theorem 5.1 in [10], which completes
the proof.

The next step in the proof of Theorem 1.0.2 is to reformulate problem 1.2 in a similar way
to the way we reformulated 1.5. For un ∈ L1(D,νn), we define

Bn
R(un) :=

�

D
|un(x)−meann(un)|dνn(x) and Bn

C(un) := minc∈R

�

D
|un(x)− c|dνn(x).

(5.12)
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Here meann(un) =
�

D un(x)dνn(x). A straightforward computation shows that for Yn ⊆Vn

Bn
R(1Yn) = BalR(Yn,Y c

n ), Bn
C(1Yn) = BalC(Yn,Y c

n ). (5.13)

From here on we write Bn to represent either Bn
R or Bn

C depending on the context. Given Yn⊆Vn
with Bn(1Yn) �= 0, the normalized indicator function 1̃Yn(x) is defined by

1̃Yn(x) = 1Yn(x)/Bn
C(1Yn) or 1̃Yn(x) = 1Yn(x)/Bn

R(1Yn).

Note that Bn(1̃Yn) = 1. We also restrict the minimization of En(u) to the set

Indn(D) := {un ∈ L1(D,νn) : un = 1̃Yn for some Yn ⊆Vn with Bn(1Yn) �= 0}. (5.14)

Now, suppose that un ∈ Indn(D), i.e. that un = 1̃Yn for some set Yn with Bn(1Yn) > 0. Using
(5.8) together with the fact that GTVn,εn is one-homogeneous implies, as in (5.10)

GTVn,εn(un) =
2

n2εd+1
n

Cut(Yn,Y c
n )

Bal(Yn,Y c
n )

. (5.15)

Thus, the minimization problem

Minimize En(un) :=

�
GTVn,εn(un) if un ∈ Indn(D)
+∞ otherwise.

(5.16)

is equivalent to the balanced graph-cut problem (1.2) on the graph Gn = (Vn,Wn) constructed
from the first n data points.

Now, note that

u∗n(x) := 1̃Y ∗n (x), u∗∗n (x) := 1̃Y ∗n c(x) minimize En(un) over all un ∈ L1(D,νn), (5.17)

and that

u∗(x) := 1̃A∗(x), u∗∗(x) := 1̃A∗c(x) minimize E(u) over all u ∈ L1(D,ν). (5.18)

We show that the approximating functionals En Γ-converge to σηE in the T L1-sense. In
Lemma 5.2.6 we establish that u∗n and u∗∗n exhibit the required compactness. Thus, they must
converge toward the normalized indicator functions u∗ and u∗∗ up to relabeling (see Proposi-
tion 1.1.5). If {A∗,A∗c} is the unique minimizer of 1.5, the convergence of the whole sequence
follows. The convergence of the partition {Y ∗n ,Y ∗n

c} toward the partition {A∗,A∗c} in the sense
of Definition 5.2.1 is a direct consequence. The convergence (1.16) follows from (1.25) in
Proposition 1.1.5.
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Γ-convergence

Proposition 5.2.4. (Γ-Convergence) Let the domain D, measure ν , kernel η , sequence {εn}n∈N,
sample points {xi}i∈N, and graph Gn satisfy the assumptions of Theorem 1.0.2. Let En be as
defined in (5.16) and E as in (5.11). Then

En
Γ−→ σnE with respect to T L1 metric as n→ ∞.

We leverage Theorem 1.0.4 to prove this claim. We first need a preliminary lemma which
allows us to handle the presence of the additional balance terms in (5.16) and (5.11).

Lemma 5.2.5. (i) If {un}n∈N is a sequence with un ∈ L1(D,νn) and un
T L1
−→ u for some

u ∈ L1(D,ν), then Bn(un)→ B(u).

(ii) If un = 1̃Yn , where Yn ⊂Vn, converges to u = 1̃A in the T L1-sense, then 1Yn converges to
1A in the T L1-sense.

Proof. To prove (i), suppose that un ∈ L1(D,νn) and that un
T L1
−→ u. Let us consider {Tn}n∈N

a stagnating sequence of transportation maps between ν and {νn}n∈N. Then, we have un ◦

Tn
L1(D,ν)−→ u and thus by (i), we have that B(un ◦Tn)→ B(u). To conclude the proof we notice

that B(un ◦Tn) = Bn(un) for every n. In fact, by the change of variables (2.4) we have that for
every c ∈ R �

D
|un(x)− c|dνn(x) =

�

D
|un ◦Tn(x)− c|dν(x). (5.19)

In particular we have Bn
C(un) = BC(un ◦Tn). Applying the change of variables (2.4), we obtain

meann(un) = meanρ(un ◦Tn) and combining with (5.19) we deduce that Bn
R(un) = BR(un ◦Tn).

The proof of (ii) is straightforward.

Now we turn to the proof or Proposition 5.2.4.

Proof of Proposition 5.2.4. Liminf Inequality. For arbitrary u ∈ L1(D,ν) and arbitrary se-

quence {un}n∈N with un ∈ L1(D,νn) and with un
T L1
−→ u, we need to show that

liminf
n→∞

En(un)≥ σηE(u).

First assume that u ∈ Ind(D). In particular E(u) = TV (u;ρ2). Now, note that working along
a subsequence we can assume that the liminf is actually a limit and that this limit is finite
(otherwise the inequality would be trivially satisfied). This implies that for all n large enough
we have En(un) < +∞, which in particular implies that En(un) = GTVn,εn(un). Theorem 1.0.4
then implies that

liminf
n→∞

En(un) = liminf
n→∞

GTVn,εn(un)≥ σηTV (u;ρ2) = σηE(u).
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Now let as assume that u �∈ Ind(D). Let us consider a stagnating sequence of transportation

maps {Tn}n∈N between {νn}n∈N and ν . Since un
T L1
−→ u then un ◦Tn

L1(D,ν)−→ u. By Lemma 5.2.5
, the set Ind(D) is a closed subset of L1(D,ν). We conclude that un ◦Tn �∈ Ind(D) for all large
enough n. From the proof of Lemma 5.2.5 we know that Bn(un) = B(un ◦Tn) and from this
fact, it is straightforward to show that un ◦Tn �∈ Ind(D) if and only if un �∈ Indn(D). Hence,
un �∈ Indn(D) for all large enough n and in particular liminfn∈N En(un) = +∞ which implies
that the desired inequality holds in this case.

Limsup Inequality. We now consider u ∈ L1(D,ν). We want to show that there exists a

sequence {un}n∈N with un ∈ L1(D,νn) such that un
T L1
−→ u and

limsup
n→∞

En(un)≤ σηE(u).

Let us start by assuming that u �∈ Ind(D). In this case E(u) = +∞. From Theorem 1.0.4 we

know there exists at least one sequence {un}n∈N with un ∈ L1(D,νn) such that un
T L1
−→ u. Since

E(u) = +∞, the inequality is trivially satisfied in this case.
On the other hand, if u ∈ Ind(D), we know that u = 1̃A for some measurable subset A of D

with B(1A) �= 0. By Theorem 1.0.5, there exists a sequence {Yn}n∈N with Yn ⊆ Vn, satisfying

1Yn
T L1
−→ 1A and

limsup
n→∞

GTVn,εn(1Yn)≤ σηTV (1A;ρ2). (5.20)

Since 1Yn
T L1
−→ 1A Lemma 5.2.5 implies that

Bn(1Yn)→ B(1A). (5.21)

In particular Bn(1Yn) �= 0 for all n large enough, and thus we can consider the function un :=

1̃Yn ∈ Indn(D). From (5.21) it follows that un
T L1
−→ u and together with (5.20) it follows that

limsup
n→∞

GTVn,εn(un) = limsup
n→∞

1
Bn(Yn)

GTVn,εn(1Yn)≤
1

B(1A)
σηTV (1A;ρ2) = σηTV (u;ρ2).

Since, un ∈ Indn(D) for all n large enough, in particular we have GTVn,εn(un) = En(un) and
also since u∈ Ind(D), we have E(u) = TV (u;ρ2). These facts together with the previous chain
of inequalities imply the result.

Compactness

Lemma 5.2.6 (Compactness). Any subsequence of {u∗n}n≥1 or {u∗∗n }n≥1 of minimizers of En
(defined in (5.17) and (5.18)) has a further subsequence that converges in the T L1-sense.



86 CHAPTER 5. Γ-CONVERGENCE OF GTVn,εn AND ITS IMPLICATIONS

Proof. Let u∗n,u∗∗n denote minimizing sequences. Thanks to Theorem 1.0.6, to show that any
subsequence of u∗n has a convergent subsequence, it suffices to show that both

limsup
n→∞

GTVn,εn(u
∗
n) < +∞ (5.22)

limsup
n→∞

�u∗n�L1(νn) < +∞, (5.23)

hold. From the Γ-convergence established in Proposition 5.2.4 and from the proof of Propo-
sition 1.1.5 it follows that (5.22) is satisfied for both minimizing sequences. Recall that
u∗n = 1Y ∗n /Bn(1Y ∗n ) and that u∗∗n = 1Y ∗c

n /Bn(1Y ∗c
n ), where Y ∗n denotes an optimal balanced cut.

To show (5.23), consider first the balance term that corresponds to the Cheeger Cut. Define
a sequence vn as follows. Set vn := u∗n if |Y ∗n | ≤ |Y ∗c

n | and vn = u∗∗n otherwise. It then follows
that

�vn�L1(νn) =
min{|Y ∗n |, |Y ∗c

n |}
min{|Y ∗n |, |Y ∗c

n |} = 1.

Also, note that GTVn,εn(vn) = GTVn,εn(u∗n). Thus (5.22) and (5.23) hold for vn, so that any

subsequence of vn has a convergent subsequence in the T L1-sense. Let vnk
T L1
−→ v denote a con-

vergent subsequence. Now observe that by construction vnk minimizes Enk for every k. Thus,
it follows from Proposition 5.2.4 and general properties of Γ-convergence (see Proposition
1.1.5), that v minimizes E and in particular v is a normalized characteristic function, that is,

v = 1A/B(1A) for some A⊆ D with B(1A) �= 0. Since Bnk(1Y ∗nk
) = Bnk(1Y ∗c

nk
), vnk

T L1
−→ v implies

that
1

Bnk(Y ∗nk
)
→ 1

B(A)
.

Therefore, for large enough k we have

�u∗nk
�L1(D,νnk ) ≤

1
Bnk(Y ∗nk

)
≤ 2

B(A)

and
�u∗∗nk

�L1(D,νnk ) ≤
1

Bnk(Y ∗c
nk

)
=

1
Bnk(Y ∗nk

)
≤ 2

B(A)
.

We conclude that �u∗nk
�L1(D,νnk ) and �u∗∗nk

�L1(D,νnk ) remain bounded, so that both minimizing
subsequences satisfy (5.23) and (5.22) simultaneously. This yields compactness in the Cheeger
Cut case.

Now consider the balance term B(u) = BR(u) that corresponds to the Ratio Cut. Define
a sequence vn := u∗n −meann(u∗n), and note that GTVn,εn(vn) = GTVn,εn(u∗n) since the total
variation is invariant with respect to translation. It then follows that

�vn�L1(D,ν) =
�

D
|u∗n(x)−meanρ(u∗n)|ρ(x) dx = B(u∗n) = 1.
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Thus the sequence {vn}n∈N is precompact in T L1. Let vnk
T L1
−→ v denote a convergent sub-

sequence. Using a stagnating sequence of transportation maps {Tnk}k∈N between ν and the

sequence of measures {νnk}k∈N, we have that vnk ◦Tnk

L1(D,ν)−→ v. By passing to a further subse-
quence if necessary, we may assume that vnk ◦Tnk(x)→ v(x) for ν-almost every x in D.

For any such x, we have that either Tnk(x) ∈ Y ∗nk
or Tnk(x) ∈ Y ∗c

nk
so that either

vnk ◦Tnk(x) =
1

2|Y ∗nk
| or vnk ◦Tnk(x) =− 1

2|Y ∗c
nk

| .

Now, by continuity of the balance term, we have

B(v) = lim
k→∞

Bnk(vnk) = 1,

and also
meanρ(v) = lim

k→∞
meannk(vnk) = 0.

In particular the measure of the region in which v is positive is strictly greater than zero, and
likewise the measure of the region in which v is negative is strictly greater than zero. It follows
that both |Y ∗nk

| and |Y ∗c
nk

| remain bounded away from zero for all k sufficiently large. As a
consequence, the fact that

�u∗nk
�L1(D,νnk ) =

1
2|Y ∗c

nk
| , �u∗∗nk

�L1(D,νnk ) =
1

2|Y ∗nk
| ,

implies that both (5.22) and (5.23) hold along a subsequence, yielding the desired compact-
ness.

Conclusion of the proof of Theorem 1.0.2

Proof of Theorem 1.0.2. From Proposition 1.1.5, we know that any limit point of {u∗n}n∈N (in
the T L1-sense) must equal u∗ or u∗∗. As a consequence, for any subsequence u∗nk

that con-

verges to u∗ we have that 1Y ∗nk

T L1
−→ 1A∗ by Lemma 5.2.5, while 1Y ∗nk

T L1
−→ 1A∗c if the subsequence

converges to u∗∗ instead. Moreover, in the first case we would also have 1Y ∗c
nk

T L1
−→ 1A∗c and in

the second case 1Y c
nk

T L1
−→ 1A∗ . Thus in either case we have

�
Y ∗nk

,Y ∗c
nk

� T L1
−→ {A∗,A∗c} .

Thus, for any subsequence of {Y ∗n ,Y ∗c
n }n∈N it is possible to obtain a further subsequence con-

verging to {A∗,A∗c}, and thus the full sequence converges to {A∗,A∗c}.
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Chapter 6

Consistency of multiway balanced cuts

In this chapter we establish Theorem 1.0.10. Overall, its proof follows similar arguments to the
ones in the proof of Theorem 1.0.2, where the notion of Γ-convergence plays the leading role.
Just as what we did in the two-class case, we reformulate both the balanced graph-cut prob-
lem (1.4) and the analogous balanced domain-cut problem (1.9) as equivalent minimizations
defined over spaces of functions and not just spaces of partitions or sets.

We let Bn(un) := meann(un) for un ∈ L1(D,νn) and B(u) := meanρ(u) for u ∈ L1(D,ν),
to be the corresponding balance terms. Given this balance terms, we let Indn(D) and Ind(D)
be defined as in (5.14) and (5.9) respectively. We can then let the sets Mn(D) and M (D)
to consist of those collections U = (u1, . . . ,uR) comprised of exactly R disjoint, normalized
indicator functions that cover D. The sets Mn(D) and M (D) are the multi-class analogues of
Indn(D) and Ind(D) respectively. Specifically, we let

Mn(D) =

�
(un

1, . . . ,u
n
R) : un

r ∈ Indn(D),
�

D
un

r (x)u
n
s (x) dνn(x) = 0 if r �= s,

R

∑
r=1

un
r > 0

�
,

(6.1)

M (D) =

�
(u1, . . . ,uR) : ur ∈ Ind(D),

�

D
ur(x)us(x) dν(x) = 0 if r �= s,

R

∑
r=1

ur > 0

�
.

(6.2)

Note for example that if U = (u1, . . . ,uR) ∈ M (D), then the functions ur are normalized
indicator functions, ur = 1Ar/|Ar| for 1 ≤ r ≤ R, and the orthogonality constraints imply that
{A1, . . . ,AR} is a collection of pairwise disjoint sets (up to Lebesgue-null sets). Additionally,
the condition that ∑R

r=1 ur > 0 holds almost everywhere implies that the sets {A1, . . . ,AR} cover
D up to Lebesgue-null sets.

With these definitions at hand, we may follow the same argument in the two-class case to

89
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conclude that that the minimization

Minimize En(Un) :=

�
∑R

r=1 GTVn,εn(un
r ) if Un ∈Mn(D)

+∞ otherwise
(6.3)

is equivalent to the balanced graph-cut problem (1.4), while the minimization

Minimize E(U ) :=

�
∑R

r=1 TV (ur;ρ2) if U ∈M (D)
+∞ otherwise

(6.4)

is equivalent to the balance domain-cut problem (1.9).
At this stage, the proof of Theorem 1.0.10 is completed by following the same steps as in

the two-class case. In particular we want to show that En defined in (6.3) Γ-converges in the
T L1-sense to σηE, where E is defined in 6.4. That is, we want to prove the following.

Proposition 6.0.7. (Γ-Convergence) Let the domain D, measure ν , kernel η , sequence {εn}n∈N,
sample points {xi}i∈N, and graph Gn satisfy the assumptions of Theorem 1.0.2. Consider the
functional En as in (6.3) and the functional E as in (6.4). Then

En
Γ−→ σnE with respect to (T L1)R metric as n→ ∞.

That is

1. For any U ∈ (L1(D,ν))R and any sequence Un ∈ (L1(D,νn))R that converges to U in
the T L1 sense,

E(U )≤ liminf
n→∞

En(Un). (6.5)

2. For any U ∈ (L1(D,ν))R there exists at least one sequence Un that both converges to
U in the T L1-sense and also satisfies

limsup
n→∞

En(Un)≤ E(U ). (6.6)

In the above, (T L1)R := T L1×·· ·×T L1 (R times). (L1(D,ν))R is defined analogously.

Remark 6.0.8. We remark that all the types of convergence for vector-valued functions are to
be understood as component-wise convergence in the corresponding topology. This helps us
clarify the way the T L1 -convergence is considered in Proposition 6.0.7.

Moreover, we establish the corresponding compactness.

Proposition 6.0.9 (Compactness). Any subsequence of {U ∗
n }n≥1 of minimizers to (6.3) has a

further subsequence that converges in the T L1-sense.
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In order to establish Proposition 6.0.7 however, there is an extra difficulty in relation to
the equivalent result in the two class case which has to do with the following. In Remark
5.1.1 we use an approximation of arbitrary sets with sets that have smooth boundary and
whose perimeter approximates that of the original set. This is done in order to establish the
Γ-convergence of the graph perimeter. Such approximation is a classical result in geometric
measure theory (see [6, 50]). To establish Proposition 6.0.7, it would be desirable to have
a similar approximation procedure. The problem is that when one considers a partition of
a domain into three or more sets, triple junctions appear, implying that it is not possible to
approximate an arbitrary partition with partitions that consist of sets with smooth boundary.
Moreover, there is a priori no obvious way to find a ”smoother” partition, which approximates
the original partition, and recovers the perimeter of the sets that form the original partition.
For this reason the first step in order to establish Proposition 6.0.7, and ultimately Theorem
1.0.10, is to provide such approximation step. In Section 6.2 we establish Proposition 6.0.7
and Proposition 6.0.9.

6.1 Density of partitions consisting of piecewise smooth sets

Definition 6.1.1. We say that an open and bounded set A ⊆ Rd has piecewise (PW) smooth
boundary if its boundary is a subset of the union of finitely many d−1-dimensional manifolds
embedded in Rd. Finally, we say that {A1, . . . ,AR} is a partition of D induced by piecewise
smooth sets, if Ar = Qr∩D where for all r, Qr is a subset of Rd with piecewise smooth boundary
such that

|D1Qr |ρ2(D) = 0.

In the above and throughout this section, we assume that ρ : D→ R has been extended to
a lower semicontinuous function ρ : Rd → R which is bounded above and below by the same
constants bounding ρ . This can be achieved for example by setting ρ ≡ 1

λ on Rd \D. In this
section we write the dependence of the weighted total variation in terms of the set D or Rd as
in (4.1).

We show that for any U = (1̃A1 , . . . , 1̃AR) where each of the sets Ar has finite perime-
ter, there exists a sequence

�
Um = (1̃Am

1
, . . . , 1̃Am

R
)
�

m∈N, where each of the Um is induced by
piecewise smooth sets, and such that for every r ∈ {1, . . . ,R}

1Am
r

L1(D,ν)−→ 1Ar ,

and
lim

m→∞
TV (1Am

r ;ρ2;D) = TV (1Ar ;ρ2;D).

Note that by establishing the existence of such approximating sequence, it immediately
follows that Um →U in (L1(D,ν))R and that limm→∞ E(Um) = E(U ) ( by continuity of the
balance terms). The approximation can be obtained from the Appendix in [11]. Here we
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present our own construction which relies on a simple observation (Lemma 6.1.2 below) and
the usual mollification-truncation argument (see Section 13.6 in [50]).

Lemma 6.1.2. Let {A1, . . . ,AR} denote a collection of open and bounded sets with smooth
boundary in Rd that satisfy

H
d−1(∂Ar ∩∂As) = 0 , ∀r �= s, (6.7)

where H d−1 denotes the (d−1)-dimensional Hausdorff measure. Let D denote an open and
bounded set. Then there exists a permutation π : {1, . . . ,R}→ {1, . . . ,R} such that

TV (1Aπ(r)\
�R

s=r+1 Aπ(s)
;ρ2;D)≤ TV (1Aπ(r) ;ρ2;D), ∀r ∈ {1, . . . ,R} .

Proof. The proof is by induction on R. Base case: Note that if R = 1 there is nothing to prove.
Inductive Step: Suppose that the result holds when considering any R− 1 sets as described
in the statement. Let A1, . . . ,AR be a collection of sets as in the statement. By the induction
hypothesis it is enough to show that we can find r ∈ {1, . . . ,R} such that

TV (1Ar\
�

s�=r As ;ρ2;D)≤ TV (1Ar ;ρ2;D). (6.8)

To simplify notation, denote by Γr the set ∂Ar and define ars as the quantity

ars :=
�

Γr∩(As\
�

k �=r,k �=s Ak)∩D
ρ2(x) dH

d−1(x).

Hypothesis (6.7) and the smoothness of the sets Ar imply that the equality

TV (1Ar\
�

s�=r As ;ρ2;D) =
�

Γr∩(
�

k �=r Ak)c∩D
ρ2(x) dH

d−1(x)+ ∑
s: s �=r

asr (6.9)

holds for every r ∈ {1, . . . ,R} , as does the inequality

TV (1Ar ;ρ2;D)≥
�

Γr∩(
�

k �=r Ak)c∩D
ρ2(x) dH

d−1 + ∑
s: s�=r

ars. (6.10)

If TV (1Ar\
�

s �=r As ;ρ2;D) > TV (1Ar ;ρ2;D) for every r then (6.10) and (6.9) would imply that

∑
s: s�=r

asr > ∑
s: s�=r

ars, ∀r,

which after summing over r would imply

R

∑
r=1

∑
s: s�=r

asr >
R

∑
r=1

∑
s: s�=r

ars =
R

∑
r=1

∑
s: s �=r

asr.

This would be a contradiction. Hence there exists at least one r for which (6.8) holds.
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Lemma 6.1.3. Let D denote an open, bounded domain in Rd with Lipschitz boundary and let
(Q1, . . . ,QR) denote a collection of R bounded and mutually disjoint subsets of Rd that satisfy

(i) TV (1Qr ;ρ2;Rd) < +∞ , (ii) |D1Qr |ρ2(∂D) = 0 and (iii) D⊆ ∪R
r=1Qr.

Then there exists a sequence of mutually disjoint sets {Am
1 , . . . ,Am

R} with piecewise smooth
boundaries which cover D and satisfy

1Am
r

L1(Rd)−→ 1Qr and lim
m→∞

TV (1Am
r ;ρ2;D) = TV (1Qr ;ρ2;D) (6.11)

for all 1≤ r ≤ R.

Proof. Let {γk}k∈N denote some sequence of positive reals converging to zero and

Jk(x) :=
1
γd

k
J
�
|x|
γk

�
, J ≥ 0, J ∈C∞

c ([0,1]),
�

Rd
J(x)dx = 1,

a corresponding sequence of positive, radially symmetric mollifiers. Let Dk := {x ∈ Rd :
dist(x,D) < γk} denote the open γk-neighborhood of the domain D. For each k ∈ N and each
Qr in the collection let

uk
r := Jk ∗1Qr

denote a smoothed version of the characteristic function.
For any test function Φ ∈C1

c (D : Rd) with |Φ(x)| ≤ ρ2(x), we have
�

D
uk

r div(Φ(x)) dx =−
�

Dk

1Qr div(Jk ∗Φ(y)) dy≤ |D1Qr |ρ2(Dk).

The equality follows from the symmetry of Jk and the fact that Jk ∗Φ has support within Dk
while the inequality follows from the fact that |Jk ∗Φ| ≤ ρ2 so it produces an admissible test
function in the definition of the total variation. As a consequence,

limsup
k→∞

TV (uk
r ;D)≤ limsup

k→∞
|D1Qr |ρ2(Dk) = |D1Qr |ρ2(D) = |D1Qr |ρ2(D)

due to the second assumption in the statement of the lemma. The fact that uk
r

L1(Rd)−→ 1Qr com-
bines with the lower-semicontinuity of the total variation to imply

TV (1Qr ;ρ2;D)≤ liminf
k→∞

TV (uk
r ;ρ2;D)≤ limsup

k→∞
TV (uk

r ;ρ2;D)≤ TV (1Qr ;ρ2;D).

In other words, these sequences satisfy

uk
r

L1(Rd)−→ 1Qr , TV (uk
r ;ρ2;D)→ TV (1Qr ;ρ2;D), 0≤ uk

r(x)≤ 1 ∀x ∈ Rd .
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The (uk
1, . . . ,u

k
R) also satisfy one additional property that will prove useful: there exists a

constant α > 0 so that

Σk(x) :=
R

∑
r=1

uk
r(x)≥ α > 0 for all x ∈ D.

To see this, note that the fact that D is an open and bounded set with Lipschitz boundary
implies that there exists a cone C ⊆Rd with non-empty interior, a family of rotations {Rx}x∈D
and ζ > 0 such that for every x ∈ D,

x+Rx(C∩B(0,ζ ))⊆ D.

The fact that J is radially symmetric then implies that for every x ∈ D,
�

D
Jk(x− y)dy≥

�

x+Rx(C∩B(0,ζ ))
Jk(x− y)dy =

�

C∩B(0,ζ )
Jk(y)dy =

�

C∩B(0, ζ
γk

)
J(y)dy≥ α > 0

for some positive constant α . The summation Σk(x) of all uk
r therefore satisfies the pointwise

estimate

Σk(x) :=
R

∑
r=1

uk
r(x) =

�

Rd
Jk(x− y)

R

∑
r=1

1Qr(y) dy≥
�

D
Jk(x− y)dy≥ α

for all x ∈ D as claimed.
Step 1: Now, for each uk

r and each t ∈ (0,1) consider the superlevel set

Qk
r(t) :=

�
uk

r > t
�

.

The first claim is that, for any fixed t in (0,1), the characteristic function 1Qk
r(t) converges in

L1(Rd) to the characteristic function of the original set. To see this, note that

Qk
r(t)\Qr ⊂

�
|uk

r −1Qr | ≥ t
�

.

By Chebyshev’s/Markov’s inequality, if Ld denotes Lebesgue measure in Rd then

Ld(Qk
r(t)\Qr)≤Ld

��
|uk

r −1Qr | > t
��

≤ 1
t
�uk

r −1Qr�L1 → 0.

In a similar fashion,

Ld(Qr \Qk
r(t))≤Ld

��
|uk

r −1Qr | ≥ (1− t)
��

≤ 1
1− t

�uk
r −1Qr�L1 → 0.
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As a consequence, it follows that
�

Rd
|1Qk

r(t)−1Qr | dx = Ld(Qk
r(t)\Qr)+Ld(Qr \Qk

r(t))→ 0

as claimed.
Step 2: The next claim is that there exists a set T ⊂ (0,1) of full Lebesgue measure

with the following property: if t ∈ T then Qk
r(t) has a smooth boundary for all k and all sets

(Qk
1(t), . . . ,Q

k
R(t)) in the collection. To see this, note Sard’s lemma (see for example [50])

implies that for any fixed k ∈ N the set Qk
r(t) has smooth boundary up to an exceptional set

Tk,r ⊂ (0,1) of Lebesgue measure zero. Now define the set T as

T = (0,1)\
∞�

k=1

R�

r=1
Tk,r.

Note that T has full measure since a countable union of Lebesgue-null sets has measure zero.
If t ∈ T then it does not lie in any of the exceptional sets, meaning that for each k and each r
the set Qk

r(t) has a smooth boundary.
Step 3: We use a diagonal argument to construct an approximating sequence of partitions

that are not necessarily disjoint, but satisfy the hypotheses of Lemma (6.7).
For the set Q1, Step 1 and lower semi-continuity of the total variation imply that for all

t ∈ (0,1)
TV (1Q1 ;ρ2;D)≤ liminf

k→∞
TV (1Qk

1(t)
;ρ2;D).

On the other hand, Fatou’s lemma combined with the co-area formula imply
� 1

0
liminf

k→∞
TV (1Qk

1(t)
;ρ2;D) dt ≤ lim

k→∞

� 1

0
TV (1Qk

1(t)
;ρ2;D) dt = lim

k→∞
TV (uk

1;ρ2;D) = TV (1Q1 ;ρ2;D).

In other words,
TV (1Q1 ;ρ2;D)≤ liminf

k→∞
TV (1Qk

1(t)
;ρ2;D)

and � 1

0
liminf

k→∞
TV (1Qk

1(t)
;ρ2;D) dt = TV (1Q1 ;ρ2;D),

which imply
liminf

k→∞
TV (1Qk

1(t)
;ρ2;D) = TV (1Q1 ;ρ2;D)

almost everywhere. In particular, there exists a t1 ∈ T with 0 < t1 < α/R and a subsequence
{km}m∈N with the property that

∂Qkm
1 (t1) is smooth ∀m, lim

m→∞
TV (1Qkm

1 (t1)
;ρ2;D) = TV (1Q1 ;ρ2;D), 1Qkm

1 (t1)
L1(ν)−→ 1Q1 .

(6.12)
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We now pass to the set Q2. As ∂Qkm
1 (t1) is smooth and bounded for all m, it has zero

Lebesgue measure for all m in particular. As ukm
2 is smooth, Lemma 2.95 in [6] implies that

H
d−1

�
∂Qkm

1 (t1)∩∂Qkm
2 (t)

�
= 0

for almost every t ∈ (0,1). Let T2,m denote the mth exceptional set for which this property
does not hold. Define the set

T2 := T \
∞�

m=1
T2,m,

which has full Lebesgue measure. By definition, if t ∈ T2 then ∂Qkm
2 (t) is smooth for all m

and
H

d−1
�

∂Qkm
1 (t1)∩∂Qkm

2 (t)
�

= 0

for all m as well. Along the subsequence {km}, the lower semi-continuity property still holds,

TV (1Q2 ;ρ2;D)≤ liminf
k→∞

TV (1Qnk
2 (t);ρ2;D),

as does the argument based on Fatou’s lemma and the co-area formula. In particular, there ex-
ists a further subsequence {kml}l∈N and a t2 ∈T2 with 0 < t2 < α/R so that (6.12) holds along
this subsequence. The analogous properties hold for the sets {Q

kml
2 (t2)} as well. Moreover, the

relation
H

d−1
�

∂Q
kml
1 (t1)∩∂Q

kml
2 (t2)

�
= 0

also holds along this subsequence. By extracting (R− 2) more subsequences in this way, we
obtain a subsequence taht we denote simply by km of the original sequence together with a
sequence of sets Qkm

r (tr) with 0 < tr < α/R that satisfy

∂Qkm
r (tr) is smooth ∀m, lim

m→∞
TV (1Qkm

r (tr)
;ρ2;D) = TV (1Qr ;ρ2;D), 1Qkm

r (tr)
L1(ν)−→ 1Qr ,

H
d−1

�
∂Qkm

r (tr)∩∂Qkm
s (ts)

�
= 0 (6.13)

for all m and all r �= s.
Step 4: We now use the sets constructed in the previous step and lemma 6.1.2 to complete

the proof. Let Qm
r := Qkm

r (tr). We claim that the sets (Qm
1 , . . . ,Qm

R ) cover D as well. To see
this, suppose there exists

x ∈ D\
�

R�

r=1
Qm

r

�
.

This would imply that ukm
r (x)≤ tr for all r by definition. In turn,

Σkm(x)≤
R

∑
r=1

tr < α,
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which contradicts the estimate on Σkm obtained earlier. Due to (6.13) and Lemma 6.1.2, for
each m ∈ N there exists a permutation πm : {1, . . . ,R}→ {1, . . . ,R} with the property that

TV
�
1Am

r ;ρ2;D
�
≤ TV (1Qm

r ;ρ2;D)

for all 1≤ r ≤ R, where Am
r denotes the set

Am
r := Qm

r \
R�

s=π−1
m (r)+1

Qm
πm(s).

Each Am
r has a piecewise smooth boundary for all m due to the fact that each Qm

r has a smooth
boundary. The disjointness of (Q1, . . . ,QR) combines with the L1-convergence of 1Qm

r to 1Qr

to show that

1Am
r

L1(Rd)−→ 1Qr

as well. This combines with lower semi-continuity of the total variation to imply

TV (1Qr ;ρ2;D)≤ liminf
m→∞

;TV
�
1Am

r ;ρ2;D
�

≤ limsup
m→∞

TV
�
1Am

r ;ρ2;D
�
≤ limsup

m→∞
TV (1Qm

r ;ρ2;D) = TV (1Qr ;ρ2;D).

Finally, noting that

D⊂
R�

r=1
Qm

r =
R�

r=1
Am

r

and that the Am
r are pairwise disjoint yields the claim.

To complete the construction we intended at the beginning at this section, we we need to
verify the hypotheses (i− ii) of the previous lemma. This is the content of our final lemma.

Lemma 6.1.4. Let D be an open bounded domain with Lipschitz boundary and let {A1, . . . ,AR}
denote a disjoint collection of sets that satisfy

Ar ⊆ D and TV (1Ar ;ρ2;D) < ∞.

Then, there exists a disjoint collection of bounded sets (Q1, . . . ,QR) that satisfy Qr ∩D = Ar
together with the properties

(i) TV (1Qr ;ρ2;Rd) < +∞ and (ii) |D1Qr |ρ2(∂D) = 0.

Proof. The proof follows from Remark 3.43 in [6] (which with minimal modifications applies
to total variation with weight ρ2).
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6.2 Γ-convergence

Let us first establish Proposition 6.0.7. We start with a Lemma which is the multi-class ana-
logue of Lemmas 5.2.2 and 5.2.5 combined.

Lemma 6.2.1. (i) If Uk →U in (L1(D,ν))R then B(uk
r)→ B(ur) for all 1≤ r≤ R. (ii) The set

M (D) is closed in L1(D,ν). (iii) If {Un} is a sequence with Un ∈ (L1(νn))R and Un
T L1
−→U

for some U ∈ (L1(D,ν))R, then Bn(un
r ) → B(ur) for all 1 ≤ r ≤ R. (iv) If un = 1̃Yn , where

Yn ⊂Vn, converges to u = 1̃A in the T L1-sense, then 1Yn converges to 1A in the T L1-sense.

Proof. Statements (i), (iii) and (iv) follow directly from the proof of Proposition 5.2.5. In
order to prove the second statement, suppose that a sequence {Uk}k∈N in M (D) converges to
some U in (L1(D,ν))R. We need to show that U ∈M (D). First of all note that for every

1≤ r≤ R, uk
r

L1(D,ν)−→ ur. Since uk
r ∈ Ind(D) for every k ∈N, and since Ind(D) is a closed subset

of L1(D,ν) (by Proposition 5.2.5), we deduce that ur ∈ Ind(D) for every r.
The orthogonality condition follows from Fatou’s lemma. In fact, working along a subse-

quence we can without the loss of generality assume that for every r, uk
r → ur for almost every

x in D. Hence, for r �= s we have

0≤
�

D
ur(x)us(x)dν(x) =

�

D
liminf

k→∞
(uk

r(x)u
k
s(x))dν(x)≤ liminf

k→∞

�

D
uk

r(x)u
k
s(x)dν(x) = 0.

Now let us write uk
r = 1Ak

r
/B(1Ak

r
) and ur = 1Ak

r
/B(1Ar). As in the proof of Proposition

(5.2.5) we must have B(1Ak
r
)→ B(1Ar) as k→ ∞. Thus, for almost every x ∈ D

R

∑
r=1

ur(x) = lim
k→∞

R

∑
r=1

uk
r(x)≥ lim

k→∞
min

r=1,...,R

1
B(1Ak

r
)

= min
r=1,...,R

1
B(1Ar)

> 0.

Proof of Proposition 6.0.7. Liminf inequality. The proof of (6.5) follows the approach used

in the two-class case. Let Un
T L1
−→ U denote an arbitrary convergent sequence. As M (D) is

closed, if U /∈M (D) then as in the two-class case, it is easy to see that Un /∈Mn(D) for all n
sufficiently large. The inequality (6.5) is then trivial in this case, as both sides of it are equal
to infinity. Conversely, if U ∈M (D) then we may assume that Un ∈Mn(D) for all n, since
only those terms with Un ∈Mn(D) can contribute non-trivially to the limit inferior. In this
case we easily have

liminf
n→∞

En(Un) = liminf
n→∞

R

∑
r=1

GTVn,εn (un
r )≥

R

∑
r=1

liminf
n→∞

GTVn,εn(u
n
r )

≥ ση
R

∑
r=1

TV (ur;ρ2) = σηE(U ).
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The last inequality follows from Theorem 1.0.4. This establishes the first statement in Propo-
sition 6.0.7.

Limsup inequality. We now turn to the proof of (6.6), Borrowing terminology from the
Γ-convergence literature, we say that U ∈ (L1(D,ν))R has a recovery sequence when there
exists a sequence Un ∈ (L1(νn))R such that (6.6) holds. To show that each U ∈ (L1(ν))R has a
recovery sequence, we first remark that we can assume that E(U ) < ∞ and that due to Remark
1.1.2 and the results from Section 6.1, we can assume that U is of the form (u1, . . . ,uR),
where ur = 1̃Ar and where the partition {A1, . . . ,AR} is induced by piecewise smooth sets
(Ar = D∩Qr).

Let c0 := max{B(1A1), . . . ,B(1AR)} denote the size of the largest set in the collection. The
fact that E(U ) < ∞ then implies

TV (1Ar ;ρ2)≤ c0 TV (ur;ρ2)≤ c0

R

∑
r=1

TV (ur;ρ2) < ∞,

so that all sets {A1, . . . ,AR} in the collection defining U have finite perimeter. Addition-
ally because U ∈M (D) implies that any two sets Ar,As with r �= s have empty intersection
up to a Lebesgue-null set, we may freely assume without the loss of generality that the sets
{A1, . . . ,AR} are mutually disjoint.

Let Y n
r = Ar ∩Vn denote the restriction of Ar to the first n data points. We consider the

transportation maps {Tn}n∈N from Proposition 1.0.9. We let Ar
n be the set for which 1An

r =
1Y r

n ◦Tn.
We first notice that the fact that Qr has a piecewise smooth boundary in Rd and the fact

that ||Id−Tn||L∞(D) → 0, imply that

�1An
r −1Ar�L1(D,ν) ≤C0(Qr) ||Id−Tn||L∞(D), (6.14)

where C0(Qr) denotes some constant that depends on the set Qr. This inequality follows from
the formulas for the volume of tubular neighborhoods (see [74]). In particular, note that by
the change of variables (2.4) we have, |Y n

r | = |An
r | → |Ar| as n → ∞, so that in particular we

can assume that |Y n
r | �= 0. We define un

r := 1Y n
r /|Y n

r | as the corresponding normalized indicator
function. We claim that Un := (un

1, . . . ,u
n
R) furnishes the desired recovery sequence.

To see that Un ∈ Mn(D) we first note that each un
r ∈ Indn(D) by construction. On the

other hand, the fact that {A1, . . . ,AR} forms a partition of D implies that {Y n
1 , . . . ,Y n

R} defines
a partition of Vn. As a consequence,

En(Un) =
R

∑
r=1

GTVn,εn(u
n
r )

by definition of the En functionals.
Using (6.14), we can proceed as in Remark 5.1 5.1.1. In particular, we can assume that η

has the form η(z) = a for z < b and η(z) = 0 otherwise. We set ε̃n := εn + 2
b ||Id−Tn||L∞(D).
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Recall that by assumption ||Id−Tn||∞ � εn, and thus ε̃n is a small perturbation of εn. As in
the proof of Theorem 1.0.4, we have

εd+1
n

ε̃d+1
n

GTVn,εn(1Y n
r )≤ TVε̃n(1An

r ;ρ).

A straightforward computation shows that there exists a constant K0 such that

|TVε̃n(1An
r ;ρ)−TVε̃n(1Ar ;ρ)| ≤ K0

ε̃n
�1An

r −1Ar�L1(D,ν) ≤ K0C0(Qr)
||Id−Tn||L∞(D)

ε̃n
.

Since εn
ε̃n
→ 1, the previous inequalities imply that

limsup
n→∞

GTVn,εn(1Y n
r )≤ limsup

n→∞
TVε̃n(1An

r ;ρ) = limsup
n→∞

TVε̃n(1Ar ;ρ).

Finally, from (1.21) we deduce that

limsup
n→∞

TVε̃n(1An
r ;ρ)≤ σηTV (1Ar ;ρ2),

and thus we conclude that limsupn→∞ GTVn,εn(1Ar) ≤ σηTV (1Ar ;ρ2). As a consequence we
have

limsup
n→∞

GTVn,εn(u
n
r ) = limsup

n→∞

GTVn,εn(1Y n
r )

Bn(1Y n
r )

≤ ση
TV (1Ar ;ρ2)

B(1Ar)

for each r, by continuity of the balance term. From the previous computations we conclude
that En(Un)→ E(U ), and from 6.14, we deduce that Un → U in the T L1-sense, so that Un
does furnish the desired recovery sequence.

Having Proposition 6.0.7, Proposition 6.0.9 can be obtained by similar arguments to the
ones we used in the two-class case. With Proposition 6.0.7 and Proposition 6.0.9, the argu-
ments presented in Section 5.2 can be adapted in a straightforward way to complete the proof
of Theorem 1.0.10.



Chapter 7

Pointwise convergence of graph
perimeter

The purpose of this chapter is to present some results on the pointwise convergence of the
graph perimeter towards continuous perimeter. For simplicity we consider D = (0,1)d and ρ ≡
1. Moreover, the graph Gn based on x1, . . . ,xn uniformly distributed on (0,1)d is constructed
using the kernel ηηη which is given by ηηη(t) = 1 if 0≤ t ≤ 1 and ηηη(t) = 0 if t > 1. We let σd be
the surface tension associated to this kernel, which is found to be

σd :=
2sd−2

(d +1)(d−1)
(7.1)

where sd−2 is the area of the d− 2-dimensional unit sphere (the boundary of the unit ball in
Rd−1). In figure 7.1 below we illustrate how random geometric graphs are used to estimate
the perimeter with respect to D of a fixed set Q. Throughout this section, we use Pern,εn(Q) to
represent Pern,εn(Q∩Vn).

We show the following.

Theorem 7.0.2. Let p≥ 1 and and let Q⊆D be a set with finite perimeter. Assume εn → 0 as
n→ ∞. Then

E(|Pern,εn(Q)−E(Pern,εn(Q))|p)≤C ( f (n))p (7.2)

where

f (n) :=






1√
nεn

if 1
n1/d ≤ εn

1
nε(d+1)/2

n
if 1

n2/(d+1) ≤ εn ≤ 1
n1/d .

(7.3)

and where C = C(p,Q) is a constant that depends only on p and the perimeter Per(Q) of Q.
In particular, if n−

2
(d+1) � εn � 1, then

Pern,εn(Q)→ σd Per(Q), almost surely as n→ ∞.

101
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Graph cut with n = 60 and ε = 0.15. Graph cut with n = 200 and ε = 0.1.

Figure 7.1: The graph perimeter is the appropriately rescaled number of edges between Q and
Qc. The red line represents the boundary of Q in D

Note that E(Pern,εn(Q)) = Perεn(Q) = TVεn(1Q). Thus, the last part of the previous theorem
follows from (1.21), the moment estimates (7.2), Markov’s inequality, and the Borel-Cantelli
lemma which imply that

Pern,εn(Q)−E(Pern,εn(Q))→ 0 a.s.

We note that this a.s. convergence holds for rather sparse graphs. Namely the typical
degree of a node is αdnεd , where αd is the volume of the unit ball in d dimensions. When
n−

2
(d+1) � εn � n−

1
d the a.s. convergence holds, while the average degree of a vertex converges

to zero. The convergence is still possible because the expected number of edges crossing
∂DQ = ∂Q∩D goes to infinity. The relevant point is that the pointwise convergence holds
for very sparse graphs, where consistency of optimal balanced cuts on the graphs towards an
optimal domain cut is impossible.

After finding moment estimates for Pern,εn(Q), we concentrate on finding explicit esti-
mates for |Perεn(Q)−σd Per(Q)|, that is we find bias estimates. To obtain these estimates we
assume that Q is a set with smooth relative boundary. It proves straightforward to check that
|Perεn(Q)−σd Per(Q)| = O(εn) for general subsets Q⊆ [0,1]d with smooth relative boundary.
We show in Section 7.2 that the error is actually quadratic in εn

|E(Pern,εn(Q))−σd Per(Q)| = |Perεn(Q)−σd Per(Q)| = O(ε2
n ) (7.4)

under the extra condition that Q⊂⊂ D.

Lemma 7.0.3. Let Q be a set with smooth boundary, such that dist(Q,∂D) > 0. Then

Perε(Q) = σd Per(Q)+O(ε2). (7.5)
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Combining the bias and variance estimates allows us to obtain the rates of convergence for
the error |Pern,εn(Q)−σd Per(Q)|. In particular we estimate the ”standard deviation”

std(n) := E
�
(Pern,εn(Q)−σd Per(Q))2�1/2

,

which we may quantify precisely by using the variance-bias decomposition

std2(n) = Var(Pern,εn(Q))+(E(Pern,εn(Q))−σd Per(Q))2 .

Using the special case p = 2 of Theorem 7.0.2 to estimate for the variance and using Lemma
7.0.3 to estimate the bias we obtain the following.

Theorem 7.0.4. Let Q ⊂ D be an open set with smooth boundary such that Q ⊂⊂ (0,1)d.
Assume that n−

2
d+1 ≤ εn� 1. Consider f (n) defined via (7.3). Then, the error of approximating

σd Per(Q) by Pern,εn(Q) satisfies

std(n) = O( f (n)+ ε2
n ).

In general, if Q⊆ D is an open set with smooth boundary such that ∂Q\[0,1]d �= /0, then

std(n) = O( f (n)+ εn).

7.1 Moment estimates

We establish Theorem 7.0.2. In order to understand the asymptotic behavior of the graph
perimeter Pern,εn(Q) for fixed Q, we first define a symmetric kernel φε : D×D→ (0,∞) by

φε(x,y) =
1{|x−y|≤ε}

εd+1 |1Q(x)−1Q(y)|.

Using the kernel φεn , we can then write Pern,εn(Q) as

Pern,εn(Q) =
2

n(n−1)εd+1
n

n

∑
i=1

n

∑
j=i+1

φεn(xi,x j), (7.6)

which is a U-statistic in the terminology of Hoeffding [47].
Let us first note that Hoeffding’s decomposition theorem for U-statistics of order two (see

[48]) implies that Pern,εn(Q) can be written as:

Pern,εn(Q)−Perεn(Q) = 2Un,1 +Un,2, (7.7)
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where Un,1 is a U-statistic of order one ( just a sum of centered independent random variables)
and Un,2 is a U-statistic of order two which is canonical or completely degenerate (see [48]).
In order to define the variables Un,1 and Un,2, let us introduce the functions

φ̄ε(x) :=
�

D
φε(x,z)dz, x ∈ D,

gn,1(x) := φ̄εn(x)−Perεn(Q), x ∈ D, (7.8)
gn,2(x,y) := φεn(x,y)− φ̄εn(x)− φ̄εn(y)+Perεn(Q), x,y ∈ D.

With the previous definitions, we can now define

Un,1 =
1
n

n

∑
i=1

gn,1(xi),

Un,2 =
2

n(n−1) ∑
1≤i< j≤n

gn,2(xi,x j).
(7.9)

We remark that
�

D gn,1(z)dz = 0 and that
�

D gn,2(x,z)dz for all x ∈ D. Because of this, Un,1
and Un,2 are said to be canonical statistics of order one and two respectively (see [48]). Now,
Bernstein’s inequality [15] implies that

E(|Un,1|p)≤
Cp

np max
�

Ap
n,1,B

p
n,1

�
, (7.10)

where
An,1 := ||gn,1||L∞(D), Bn,1 :=

√
n||gn,1||L2(D). (7.11)

and Cp is a universal constant. See also [38] for a slight generalization of the previous result.
On the other hand some of the moment estimates in [38] for canonical U-statistics of order

two can be used to prove that

E(|Un,2|p)≤
Cp

n2p max
�

Ap
n,2,B

p
n,2,C

p
n,2

�
, (7.12)

where

An,2 := ||gn,2||L∞(D), Bn,2 := n||gn,2||L2(D), (Cn,2)2 := n||
�

D
g2

n,2(·,y)dy||L∞(D). (7.13)

and Cp is a universal constant. From the decomposition (7.7) it follows that for p≥ 1

E(|Pern,εn(Q)−Perεn(Q)|p)≤Cp(E(|Un,1|p)+E(|Un,2|p)).

Thus in order to obtain the moment estimates for Pern,εn(Q) in Theorem 7.0.2, we focus on
finding estimates for the quantities in (7.11) and (7.13).
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We first compute the moments of Un,1 and so we start computing the quantities An,1 and
Bn,1 from (7.11). Denote by Tε the ε-tube around ∂Q, that is, consider the set

Tε :=
�

x ∈ Rd : dist(x,∂Q)≤ ε
�

. (7.14)

We also consider the half tubes T−ε and T +
ε ,

T−ε := {x ∈ Q : dist(x,∂Q)≤ ε} , T +
ε := {x ∈ Qc : dist(x,∂Q)≤ ε} . (7.15)

With these definitions it is straightforward to check that

φ̄εn(x) =






|Bd(x,εn)∩Q|/εd+1
n if x ∈ T +

εn
,

|Bd(x,εn)∩Qc|/εd+1
n if x ∈ T−εn

,

0 if x �∈ Tεn .

(7.16)

Since |Bd(x,εn)∩Q| and |Bd(x,εn)∩Qc| are bounded by αdεd
n , where αd is the volume of the

d-dimensional unit ball, we deduce that

An,1 = O
�

1
εn

�
.

In order to compute the quantity Bn,1 we use the following lemma.

Lemma 7.1.1. Let p≥ 1 and let Q⊆ D, be a set with finite perimeter. Then, for all ε > 0 we
have

�

D
φ̄ p

ε (x)dx≤
α p−1

d σd

ε p−1 Per(Q).

Proof. The proof follows the same argument used to establish the limsup inequality in Propo-
sition 1.0.7 or Theorem 6.2 in [4]. We assume that dist(Q,∂D) > 0. We remark that a slight
modification of the argument we present below proves the result in the general case and hence
we omit the details.

First we prove that for any function u : Rd → [0,1] with u ∈W 1,1(Rd)∩C∞(Rd) and for
all ε > 0 we have

�

Rd

��

Rd

1|x−y|≤ε

εd+1 |u(y)−u(x)|dy
�p

dx≤
α p−1

d σd

ε p−1

�

Rd
|∇u(x)|dx, (7.17)

Inequality (7.17) follows from
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�

Rd

��

Rd

1|x−y|≤ε

εd+1 |u(y)−u(x)|dy
�p

dx =
1
ε p

�

Rd

��

Bd(0,1)
|u(x+ εh)−u(x)|dh

�p

dx

≤
α p−1

d
ε p

�

Rd

�

Bd(0,1)
|u(x+ εh)−u(x)|pdhdx≤

α p−1
d
ε p

�

Rd

�

Bd(0,1)
|u(x+ εh)−u(x)|dhdx

=
α p−1

d
ε p−1

�

Rd

�

Bd(0,1)

����
� 1

0
∇u(x+ tεh) ·hdt

����dhdx≤
α p−1

d
ε p−1

�

Rd

�

Bd(0,1)

� 1

0
|∇u(x+ tεh) ·h|dt dhdx

=
α p−1

d
ε p−1

� 1

0

�

Bd(0,1)

�

Rd
|∇u(x) ·h|dxdhdt =

α p−1
d

ε p−1

� 1

0

�

Rd
|∇u(x)|

�

Bd(0,1)

����
∇u(x)
|∇u(x)| ·h

����dhdxdt

=
α p−1

d σd

ε p−1

�

Rd
|∇u(x)|dx,

where in the first equation we used the change of variables h = x−y
ε , in the first inequality we

used Jensen’s inequality and in the second inequality the fact that u takes values in [0,1].
Now, for any set Q ⊆ D as in the statement, we can find a sequence of functions {uk}k∈N

with uk : Rd → [0,1] , uk ∈W 1,1(Rd)∩C∞(Rd) and such that

uk
L1(Rd)−→ 1Q, lim

k→∞

�

Rd
|∇uk(x)|dx = Per(Q). (7.18)

Such sequence can be obtained for example with the aid of standard mollifiers (see Theorem
13.9 in [50] for example). It follows from (7.17) and from (7.18) that

�

Rd

��

Rd

1|x−y|≤ε

εd+1 |1Q(y)−1Q(x)|dy
�p

dx≤
α p−1

d σd

ε p−1 Per(Q).

Finally, notice that

�

D
φ̄ p

ε (x)dx =
�

Rd

��

Rd

1|x−y|≤ε

εd+1 |1Q(y)−1Q(x)|dy
�p

dx≤
α p−1

d σd

ε p−1 Per(Q).

Using the previous lemma with p = 2 we deduce that
�

D φ̄ 2
εn

(x)dx = O
�

1
εn

�
, and since

�

D
g2

n,1(x)dx =
�

D
φ̄ 2

εn
(x)dx− (Perεn(Q))2 ,

we conclude that

Bn,1 = O
��

n
εn

�
.
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From the previous computations, we deduce that

E(|Un,1|p)≤C max

�
1

npε p
n ,

,
1

np/2ε p/2
n

�
,

where C may depend on the set Q through its perimeter and p. If 1
n2/(d+1) ≤ εn, so that in

particular 1
nεn

is o(1), then

E(|Un,1|p)≤
C

np/2ε p/2
n

. (7.19)

Now we turn to the task of obtaining moment estimates for Un,2. We estimate the quantities
An,2, Bn,2 and Cn,2 from (7.13). Let us start by estimating An,2. Note that for any (x,y)∈D×D,
φ̄εn(x) and φ̄εn(y) are of order 1

εn
and that Perεn(Q) is of order one. Thus, it is clear from the

definition of gn,2 in (7.8) that

An,2 = O
�

1
εd+1

n

�
.

On the other hand, a direct computation allows us to deduce that for every x ∈ D,
�

D
g2

n,2(x,y)dy =
�

D
φ 2

εn
(x,y)dy− φ̄ 2

εn
(x)+2θnφ n(x)

−2
�

D
φεn(x,y)φ̄εn(y)dy+

�

D
φ̄ 2

εn
(y)dy−θ 2

n

=
1

εd+1
n

φ̄εn(x)− φ̄ 2
εn

(x)+2θnφ n(x)

−2
�

D
φεn(x,y)φ̄εn(y)dy+

�

D
φ̄ 2

εn
(y)dy−θ 2

n ,

(7.20)

where we are using θn := Perεn(Q). From this, it follows that

Cn,2 = O
��

n
εd+2

n

�
.

Finally, upon integration of (7.20) and direct computations, we obtain

||gn,2||2L2(D) =
θn

εd+1
n

−2
�

D
φ̄ 2

εn
(y)dy+θ 2

n ,

which implies that

Bn,2 = O

�
n

ε(d+1)/2
n

�
.

Thus, from (7.12) we deduce that

E(|Un,2|p)≤ Kp max

�
1

n2pε p(d+1)
n

,
1

npε p(d+1)/2
n

,
1

n3p/2ε p(d+2)/2
n

�
,
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where Kp depends on the set Q through its perimeter. Hence, if 1
n2/(d+1) ≤ εn, we have

E(|Un,2|p)≤
Kp

npε p(d+1)/2
n

. (7.21)

Combining (7.19) and (7.21) and using the canonical decomposition (7.7), we obtain (7.2).

7.1.1 Sharpness of the rate for pointwise convergence

A very simple argument shows that the rates for εn that guarantee the almost sure convergence
of the graph perimeter to the actual perimeter in Theorem 7.0.2 are optimal in terms of scaling.

In fact, suppose n2εd+1
n = o(1) and let en denote the random variable that counts the num-

ber of edges that cross the interface between Q and its complement. In other words, we define

en := εd+1
n

n

∑
i=1

n

∑
j=i+1

φεn(xi,x j).

As a consequence, if Q has finite perimeter then we have

Perεn,n(Q) =
2

n(n−1)εd+1
n

en, E(en) =
n(n−1)εd+1

n
2

Perεn(Q). (7.22)

Note that en takes integer values in the range {0,1, . . . ,N} for N = n(n−1)/2, so that

E(en) =
N

∑
k=1

kpn
k pn

k := P(en = k).

The fact that pn
0 + · · ·+ pn

N = 1 implies

E(en) =
N

∑
k=1

kpn
k ≥

N

∑
k=1

pn
k = (1− pn

0).

In particular, from (7.22) and (1.21) we deduce that if n2εd+1
n → 0 and Q has finite perimeter

then
(1− pn

0)≤ E(en) = o(1).

On the other hand, note that for any given γ > 0 it is true that Pern,εn(Q) > γ implies that
en �= 0. In turn

P(Pern,εn(Q) > γ)≤ P(en �= 0) = 1− pn
0 = o(1).

We conclude that if n2εd+1
n → 0 then Perεn,n(Q) converges in probability to zero. Therefore, if

Q has a non-zero, finite perimeter then Perεn,n(Q) does not converge to σd Per(Q) in probability
(nor almost surely, either).
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7.2 Bias estimates

The bias estimates are obtained by a series of computations whose starting point is writing
Perε(Q) in terms of an iterated integral, the outer one taken over the manifold ∂Q and the
inner one taken along the normal line to ∂Q at an arbitrary point x ∈ ∂Q. Such computations
show that the first order term of Perεn(Q) on εn vanishes.

Given that we assume Q ⊂⊂ (0,1)d and Q has smooth boundary, we conclude that its
perimeter can be written

Per(Q) =
�

∂Q
dH

d−1 = H
d−1(∂Q).

Additionally, for all ε ≤ δ := dist(Q,∂D) we have that

Perε(Q) =
2

εd+1

�

Q
|Bd(x,ε)∩Qc| dx,

where Bd(x,r) denotes the ball of radius r in Rd centered at x and Qc denotes the complement
of Q in all of space. Moreover, since ∂Q is a compact smooth manifold, we can assume without
the loss of generality ( by taking ε small enough) that for every x ∈ Tε there is a unique point
P(x) in ∂Q closest to x. Furthermore, we can assume that the map P is smooth. We may
further write

Perε(Q) =
2

εd+1

�

T−ε
|Bd(x,ε)∩Qc| dx,

where T−ε is defined in (7.15). This reformulation makes it natural to write the previous integral
as an iterated integral; the outer integral is taken over the manifold ∂Q and the inner integral
is taken along the normal line to ∂Q at an arbitrary point x along the boundary.

To make this idea precise, we first let N(x) denote the outer unit normal to ∂Q at x ∈ ∂Q
and then consider the transformation (x, t) ∈ ∂Q× (0,1) �→ x− tεN(x) for all ε sufficiently
small. The Jacobian of this transformation equals ε det(I + tεSx), where Sx denotes the shape
operator (or second fundamental form) of ∂Q at x, see [40] for instance. For all ε sufficiently
small, we may therefore conclude that

1
ε

�

T−ε
|Bd(x,ε)∩Qc| dx =

�

∂Q

�� 1

0
|Bd(x− tεN(x),ε)∩Qc|det(I + tεSx) dt

�
dH

d−1(x).

As a consequence, we also have that

Perε(Q) =
2
εd

�

∂Q

�� 1

0
|Bd(x− tεN(x),ε)∩Qc|det(I + tεSx) dt

�
dH

d−1(x). (7.23)

With the expression (7.23) in hand, we may now proceed to establish (7.5) by expanding
Perε(Q) in terms of ε and appealing to some elementary computations that show that the first
order term in ε vanishes.
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For a fixed x ∈ ∂Q, we first wish to understand the behavior of the function

gx(ε) :=
1
εd

�� 1

0
|Bd(x− tεN(x),ε)∩Qc|det(I + tεSx) dt

�

for ε in a neighborhood of zero. Without loss of generality, we may assume that x = 0, that
N(x) = ed and that around x the boundary ∂Q coincides with the graph x̂ = (x1, . . . ,xd−1) �→
(x̂, f (x̂)) ∈ Rd of a smooth function f (x̂) that satisfies both f (0) = 0 and ∇ f (0) = 0 simulta-
neously. By symmetry of the shape operator Sx, there exists an orthonormal basis for Rd−1

(where we identify Rd−1 with the hyperplane {(x̂,xd) : xd = 0}) consisting of eigenvectors of
the shape operator. We let v1, . . . ,vd−1 denote the eigenvectors of Sx and κ1, . . . ,κd−1 the cor-
responding eigenvalues ( also known as principal curvatures). In particular, whenever �x̂� ≤ ε
we have that

f (x̂) =
1
2

d−1

∑
i=1

κi�x̂,vi�2 +O(ε3), (7.24)

where curvatures κi = κi(x) and the O(ε3) error term can be uniformly bounded.
With these reductions in place, we first define u(ŷ) :=

�
ε2−�ŷ�2 and then let

h(ŷ, t;ε) :=






2u(ŷ) if f (ŷ)+ εt <−u(ŷ),
u(ŷ)− εt− f (ŷ) if −u(ŷ)≤ f (ŷ)+ εt ≤ u(ŷ),
0 otherwise.

A direct calculation then shows that

|Bd(x− tεN(x),ε)∩Qc| =
�

Bd−1(0,ε)
h(ŷ, t;ε) dŷ, (7.25)

and an application of (7.24) shows that h(ŷ, t;ε) = 2
�

ε2−�ŷ�2 only if

�ŷ�2 = ε2−O(ε4) and u(ŷ) = O(ε2).

It therefore follows that
�

Bd−1(0,ε)∩{ f (ŷ)+εt<−u(ŷ)}
h(ŷ, t;ε) dŷ≤ O(ε2)

�

Bd−1(0,ε)∩{�ŷ�≥
√

ε2−O(ε4)}
dŷ = O(εd+3).

We then let Aε
t denote the set Aε

t := {ŷ ∈ Bd−1(0,ε) : −u(ŷ) ≤ f (ŷ)+ εt ≤ u(ŷ)} and use the
previous estimate in (7.25) to uncover

|Bd(x− tεN(x),ε)∩Qc| =
�

Bd−1(0,ε)∩Aε
t

u(ŷ)− εt− f (ŷ) dŷ+O(εd+3). (7.26)

We may then note that

det(I + εtSx) = (1+ tεκ1) . . .(1+ tεκd−1) = 1+ tεHx +O(ε2),
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where Hx := ∑d−1
i=1 κi represents the mean curvature. Using this fact in (7.26) then yields

gx(ε) =
1
εd

� 1

0

��

Bd−1(0,ε)∩Aε
t

u(ŷ)− εt− f (ŷ) dŷ
�

(1+ tεHx) dt +O(ε2).

Now let f ε(z) := 1
ε f (εz) and define the corresponding subset Cε

t of (0,1)×Bd−1(0,1) as

Cε
t :=

�
(t,z) ∈ Bd−1(0,1) :−

�
1−�z�2 ≤ f ε(z)+ t ≤

�
1−�z�2

�
,

then make the change of variables ŷ = εz to see that

gx(ε) =
�

Cε
t

��
1−�z�2− t− f ε(z)

�
(1+ tεHx) dzdt +O(ε2).

Recalling (7.24) shows that

f ε(z) =
ε
2

d−1

∑
i=1

κi�z,vi�2 +O(ε2), (7.27)

which then allows us to obtain an expansion of gx(ε) in terms of ε according to the relation

gx(ε) =
�

Cε
t

��
1−�z�2− t

�
dtdz

+ ε
�

Cε
t

�
tHx(

�
1−�z�2− t)− 1

2

d−1

∑
i=1

κi�z,vi�2
�

dtdz+O(ε2). (7.28)

The bias estimate (7.5) then directly follows after computing each of these terms individually.
We begin by considering the first term in the expansion, i.e.

I :=
�

Cε
t

��
1−�z�2− t

�
dtdz.

Given ε > 0 and z ∈ Bd−1(0,1) define c(z) := max{−
�

1−�z�2 − f ε(z),0} and C(z) :=
min{

�
1−�z�2− f ε(z),1}, so that we may easily write

I =
�

Bd−1(0,1)
(C(z)− c(z))

��
1−�z�2−C(z)+ c(z)

2

�
dz.

As the set where c(z) �= 0 has measure at most O(ε2), we easily conclude that

I =
�

Bd−1(0,1)
C(z)

��
1−�z�2−C(z)

2

�
dz+O(ε2).
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If C(z) = 1 then
�

1−�z�2− C(z)
2 = 1

2(1−�z�2)+O(ε2) as well. In any case, it follows that

I =
1
2

�

Bd−1(0,1)
(1−�z�2) dz+O(ε2) =

σd

2
+O(ε2). (7.29)

We now proceed to compute the second term in the expansion

II := Hx

�

Cε
t

�
t
�

1−�z�2− t2
�

dtdz = Hx

�

Bd−1(0,1)
C2(z)

��
1−�z�

2
−C(z)

3

�
dz+O(ε2)

and the third term in the expansion

III :=
1
2

d−1

∑
i=1

κi

�

Cε
t

�z,vi�2 dtdz =
1
2

d−1

∑
i=1

κi

�

Bd−1(0,1)
�z,vi�2C(z) dz+O(ε2)

in a similar fashion. We always have C(z) =
�

1−�z�2 +O(ε), so that

II =
Hx

6

�

Bd−1(0,1)
(1−�z�2)3/2 dz+O(ε) =

Hxvol(S d−2)
6

� 1

0
(1− r2)3/2rd−2 dr +O(ε).

(7.30)

The third term follows similarly by appealing to spherical coordinates, in that we have

III =
1
2

d−1

∑
i=1

κi

�

Bd−1(0,1)

�
1−�z�2�z,vi�2 dz+O(ε)

=
Hxvol(S d−2)

2(d−1)

� 1

0

�
1− r2rd dr +O(ε) = II+O(ε)

thanks to an integration by parts in the final term. We therefore have that I = σd/2 + O(ε2)
and II− III = O(ε), so that gx(ε) = σd/2+O(ε2) and

Perε(Q) = 2
�

∂Q
gx(ε) dH

d−1 = σd Per(Q)+O(ε2)

as desired.
We may also show that when Q is a fixed ball, say Q = Bd(xc,

1
3) for xc ∈Rd the center point

of [0,1]d , that the absolute value of the difference between Perε(Q) and σd Per(Q) remains
bounded from below by cε2 for c > 0 some positive constant. The proof proceeds similarly to
the proof of the bias estimate above. In particular, this shows that the bound in Lemma 7.0.3
is optimal in terms of scaling for general sets with smooth boundary.
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[34] V. Dobrić and J. E. Yukich. Asymptotics for transportation cost in high dimensions. J.
Theoret. Probab., 8(1):97–118, 1995.

[35] R. M. Dudley. The speed of mean Glivenko-Cantelli convergence. Ann. Math. Statist,
40:40–50, 1968.

[36] Nicolás Garcı́a Trillos and Dejan Slepčev. On the rate of convergence of empirical mea-
sures in ∞-transportation distance. to appear in Canad. J. Math., 2015.
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[56] Mathew Penrose. A strong law for the longest edge of the minimal spanning tree. Ann.
Probab., 27(1):246–260, 1999.

[57] David Pollard. Strong consistency of k-means clustering. The Annals of Statistics,
9(1):135–140, 1981.

[58] Augusto C. Ponce. A new approach to Sobolev spaces and connections to Γ-convergence.
Calc. Var. Partial Differential Equations, 19(3):229–255, 2004.

[59] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[60] P. W. Shor and J. E. Yukich. Minimax grid matching and empirical measures. Ann.
Probab., 19(3):1338–1348, 1991.

[61] A. Singer. From graph to manifold Laplacian: the convergence rate. Appl. Comput.
Harmon. Anal., 21(1):128–134, 2006.

[62] Arthur Szlam and Xavier Bresson. A total variation-based graph clustering algorithm for
cheeger ratio cuts. UCLA CAM Report, pages 1–12, 2009.

[63] Arthur Szlam and Xavier Bresson. Total variation and cheeger cuts. In Johannes Fnkranz
and Thorsten Joachims, editors, ICML, pages 1039–1046. Omnipress, 2010.

[64] M. Talagrand. The transportation cost from the uniform measure to the empirical measure
in dimension ≥ 3. Ann. Probab., 22(2):919–959, 1994.

[65] M. Talagrand and J. E. Yukich. The integrability of the square exponential transportation
cost. Ann. Appl. Probab., 3(4):1100–1111, 1993.



118 BIBLIOGRAPHY

[66] Michel Talagrand. The generic chaining. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.

[67] Michel Talagrand. Upper and lower bounds of stochastic processes, volume 60 of Mod-
ern Surveys in Mathematics. Springer-Verlag, Berlin Heidelberg, 2014.

[68] Daniel Ting, Ling Huang, and Michael I Jordan. An analysis of the convergence of graph
Laplacians. In Proceedings of the 27th International Conference on Machine Learning,
2010.

[69] Yves van Gennip and Andrea L. Bertozzi. Γ-convergence of graph Ginzburg-Landau
functionals. Adv. Differential Equations, 17(11-12):1115–1180, 2012.

[70] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics. Ameri-
can Mathematical Society, 2003.

[71] U. von Luxburg, M. Belkin, and Bousquet O. Consistency of spectral clustering. The
Annals of Statistics, 36(2):555–586, 2008.

[72] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[73] Yen-Chuen Wei and Chung-Kuan Cheng. Towards efficient hierarchical designs by ra-
tio cut partitioning. In Computer-Aided Design, 1989. ICCAD-89. Digest of Technical
Papers., 1989 IEEE International Conference on, pages 298–301. IEEE, 1989.

[74] Hermann Weyl. On the Volume of Tubes. Amer. J. Math., 61(2):461–472, 1939.

[75] Rui Xu and D. Wunsch, II. Survey of clustering algorithms. Trans. Neur. Netw.,
16(3):645–678, May 2005.


	Introduction
	Background on -convergence

	The TLp spaces
	Background on transportation theory
	The TLp spaces and properties

	Rate of convergence of empirical measures in -transportation distance
	Background
	The matching results for (0,1)d
	The matching results for (0,1)d: d 3
	The matching results for (0,1)2

	The matching results for general D

	Total variation in the continuum
	Weighted total variation
	-convergence of non-local total variation TV(; )

	-convergence of GTVn,n and its implications
	-convergence of GTVn, n
	Extension to different sets of points

	Consistency of Cheeger and ratio graph cuts

	Consistency of multiway balanced cuts
	Density of partitions consisting of piecewise smooth sets
	-convergence

	Pointwise convergence of graph perimeter
	Moment estimates
	Sharpness of the rate for pointwise convergence

	Bias estimates 


