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Abstract

As robots become increasingly available and capable, there has been an increased interest in
having robots continue to perform autonomously over time despite changes in their environment.
This thesis introduces several algorithms for localization of autonomous mobile robots in real
human environments with the goal of having them autonomously deployed over extended periods
of time.

Monte Carlo Localization with Sampling-Importance Resampling (MCL-SIR) is commonly
used for indoor mobile robot localization, with the frequently prescribed suggestion of increas-
ing the number of particles to increase accuracy or robustness. Furthermore, most variants of
MCL-SIR sample from the odometry model of a robot, which are far less accurate than modern
range sensors. We address both these challenges by introducing Corrective Gradient Refinement
(CGR), which, instead of relying on more particles, does more with fewer particles. In particular,
it uses the analytically computed state space derivatives of the observation likelihood function to
refine the proposal distribution, thus improving the accuracy as well as robustness while requir-
ing fewer particles than MCL-SIR. For robots equipped only with inexpensive depth cameras, we
introduce the Fast Sampling Plane Filtering algorithm to extract dominant planar features from
observed depth images, to use with CGR.

Going beyond MCL, we recognize that human environments have objects that are either
permanent, like walls, movable, like tables and chairs, or moving, like humans. We introduce
Episodic non-Markov Localization, which reasons about the nature of such observations, and
accounts for correlations between observations even if they are of unmapped objects, to provide
location estimates that are accurate globally with respect to the long-term features, as well as
locally, with respect to the short-term features. By examining the short-term features detected
by the robot over multiple deployments, the robot is further able to build a Model-Instance map
of its environment, reasoning about the shapes or models of common movable objects separately
from the specific occurrences or instances.

We extensively demonstrate the accuracy and robustness of the localization algorithms intro-
duced in this thesis over a “1000km Challenge”: to deploy a team of robots, over multiple floors
of multiple buildings, spanning a duration of a few years. We present quantitative and qualitative
results from the 1000km Challenge, and the data collected in the process.
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Chapter 1

Introduction

We seek the ultimate goal of having ever-present autonomous mobile robots in our everyday
human environments, performing user-requested tasks on demand. In order to be able to mean-
ingfully perform user-requested tasks, autonomous mobile robots need to be able to reliably
localize and navigate in the environment.

A mobile robot relies on observations of its surroundings, estimates of its ego-motion, and an
internal model or map of the environment, to reason about its location in the environment. The
problem of mobile robot localization thus involves reasoning about how the actual observations
of the environment relate to the map, how to incorporate the estimates of ego-motion with updates
based on the observations, and how to reason about the uncertainty in the location estimates due
to imperfect sensing and ego-motion estimates, and limited observability of the environment.

Human environments exhibit significant variations in the types of objects that are observable
to robots. Office corridors may have abundant visible permanent features and few moving or
movable objects. Open areas, like atria and cafés, have numerous moving obstacles like humans,
carts and other robots, as well as movable objects, like chairs, tables and bins. Such fine details,
like the exact placements of chairs, tables, trash cans, planters, and other movable objects, are
impossible to know for the entire environment, for arbitrary times. Therefore, in this thesis we in-
troduce a map representation that ignores fine details: the map will represent only the permanent
features in the environment as a set of lines, which we term a vector map representation.

Human environments also change over time. The exact locations of movable objects vary
continuously, and in general, such variations are not periodic. Thus, it is impossible to predict
what the state of the environment will be like in the future, based on its present and past states.
This is the challenge in long-term deployments of mobile robots: the environment is bound to
change, and the robot must remain robust and accurate in its localization even when the objects
that it observes move in unpredictable ways over time. Long-term deployments are thus in stark

1
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contrast to short-term deployments, where a robot may capture an instantaneous snapshot of the
state of the environment, and may assume that all its observations will be explainable by the
instantaneous snapshot.

To date, considerable work has been done on mobile robot localization, and the approaches
proposed commonly assume the Markov independence of the observations: that given a map of
the environment and an estimate of the robot’s location, all the observations of the robot can be
explained by the map, and are thus independent of past observations. Such approaches are thus
broadly categorized under the heading of Markov Localization. However, as we have observed,
human environments change over time, and a robot’s observation of movable objects will not
always match the map. Therefore, in this thesis we propose to relax the assumption of the
Markov independence of observations, and introduce non-Markov Localization, which explicitly
reasons about the correlations between observations from different time-steps due to the presence
of unmapped, movable objects in the environment.

This thesis thus culminates in the introduction of a vector map-based non-Markov localiza-
tion algorithm for the long-term deployments of autonomous mobile robots. However, in the
process, we also made significant contributions to the map representations for mobile robot lo-
calization, and introduced several variants to Markov Localization. In particular, driven by the
need to accurately and robustly localize a mobile robot while simultaneously minimizing the
computational requirements of localization, we introduced algorithms to efficiently reason with
depth image observations, to efficiently and accurately update location estimates, and to utilize
different sensor modalities. Therefore, the contributions of the thesis include several complete
localization algorithms that are suited to human environments.

1.1 Thesis Question

This thesis seeks to answer the question,

How can a robot with sensor limitations robustly and accurately estimate its loca-
tion while deployed over extended periods of time in a real-world varying human

environment?

Sensor limitations are inherent to robot design, since long-range, wide field-of-view, low-
noise sensors are expensive. Therefore, localization algorithms on deployed robots need to ap-
propriately handle the uncertainty and errors arising from the inexpensive sensors at hand.

Localization algorithms need to be robust to unexpected sequences of observations, action
uncertainty, as well as changes in the environment. Furthermore, they need to maintain accurate
location estimates of the robot in order to effectively perform tasks.
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We seek to investigate localization algorithms that in particular can robustly and accurately
localize autonomous robots deployed over extended periods of time, extending over years of
deployments. Such deployments would be in real-world varying human environments, char-
acterized by a variety of operating conditions, moving objects, and frequent changes to the envi-
ronment.

While this thesis introduces algorithms for long-term deployments of mobile robots in vary-
ing environments, the same algorithms are equally applicable for short-term deployments, or
deployments in static environments. Furthermore, the algorithms introduced will be empirically
evaluated using data collected from several different types of robots, both indoors and outdoors.

1.2 Approach

The thesis question is investigated from a number of fronts, tackling the localization problem in
a number of different approaches.

Mobile robot localization is a well-researched problem, and there currently exist many pro-
posed algorithmic solutions. Nearly all such algorithms are variants of Markov Localization [35].
Markov Localization assumes that given a map of the environment and the latest pose estimate,
observations made by a robot are independent of the past observations. This assumption of
Markov independence between observations provides tractability to online localization algo-
rithms, and has experimentally been shown to be largely successful. Therefore, in this thesis
we first explore extensions to Markov Localization with the goal of developing accurate, ro-
bust localization algorithms for use in human environments with limited movable or unmapped
objects.

We investigate a 2D vector map representation of the environment, where features such as
walls are represented as 2D line segments. We develop an observation likelihood model to effi-
ciently predict the observable features of a map given a robot pose estimate by a novel analytic
ray-casting algorithm. The observation likelihood function can thus be analytically computed,
along with its state space derivatives. By using these analytically computed state space deriva-
tives of the observation likelihood function, we develop an algorithm aimed to reduce the compu-
tational requirements of Monte Carlo Localization (MCL) by using fewer samples, but refining

the samples to better account for the observations.

The next challenge we explored is that of localization using the recently introduced inexpen-
sive depth cameras. Laser rangefinders have long been accepted as the de-facto sensors of choice
for mobile robot localization, but they are expensive and do not provide feedback of the world in
3D. Recently, a number of depth cameras, like the Microsoft Kinect sensor and the PrimeSense
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Sensor, has become available at less than one tenth the cost of the cheapest laser rangefinders,
which makes them economically attractive as robot sensors. However, there are challenges to
using depth cameras for mobile robot localization. Depth cameras typically generate volumi-
nous data that cannot be processed in its entirety in real time for localization. Furthermore,
inexpensive depth cameras have a much narrower field of view, shorter range, and are noisier
compared to laser rangefinders. We tackle these challenges in a two-fold approach: We first in-
troduce a novel plane filtering algorithm that samples the depth image to produce a set of points
corresponding to planes, along with the plane parameters (normals and offsets). The volume of
data to be processed is thus significantly reduced, and non-planar objects in the scene, which are
unlikely to correspond to the map, are filtered out. We then introduce an observation model in
our localization algorithm that matches the plane filtered points to the existing 2D vector maps.
The two main objectives in developing these new algorithms are speed and reuse. The plane
filtering algorithm that we introduce is capable of running orders of magnitude faster than the
sensor actually provides frames, thus minimizing latency and computational requirements. By
re-using the same 2D vector map representation, our overall localization algorithm still retains
its benefits: fast analytic evaluations of the observation likelihood function, and its state space
gradients.

Using the localization algorithms developed thus far, we successfully deployed our robots,
across multiple floors and multiple buildings to perform user-requested tasks. The CoBots suc-
cessfully traversed hundreds of kilometers in our indoor environments, to a large degree thanks
to their robust localization algorithms. However, part of the success was due to the scope of the
deployments. Deployments rarely extended to open areas where moving and movable objects
comprised the majority of the robots’ observations. We quickly realized that in order to be able
to successfully deploy the robots in environments that exhibited significant changes over time,
the localization algorithms would have to reason better about the unexpected observations.

Previous approaches to robot localization in changing environments built new updated maps
of the environment. We sought an alternate solution that did not rely on accurate up to date
maps, but instead reasoned about whether the observations of the robot arose from long-term,
short-term, or dynamic features. We introduce the long-term features as the unchanging parts
of the environment, like the walls and columns; the short-term features as the movable objects
like chairs, which would change locations over time, but might be perceived to be static by the
robot for a short period of time; and dynamic features as moving objects, which the robot would
perceive as actively changing locations across time steps. By accounting for the correlations
between observations and the map due to long-term features, between observations from different
time steps due to short-term features, and between consecutive poses due to robot odometry,
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the robot could use all its observations, both expected and unexpected, to better estimate its
location in a varying environment. Since this approach involves explicit correlations between
observations from different time steps, it is inherently non-Markovian in nature, and we explore
a few strategies to limit the history, or episodes of such non-Markov observations.

This thesis includes extensive experimental evaluation of the localization algorithms devel-
oped. We demonstrate the robots performing tasks in a variety of environments, over a time pe-
riod spanning four years, and using the different localization algorithms developed in this thesis.
The latest approach, Episodic non-Markov Localization, is capable of handling wide variations
in the environment, while the Markov localization variants are less successful in open areas, but
are still successful for robot deployments in areas with little or no variations over time.

The robots, which we use for the experimental results in this thesis, are the CoBots, or Collab-

orative Robots. The CoBots are custom-built robots1 with four-wheel omnidirectal drive bases
and off-the-shelf tablet computers as the computational platforms to run all the algorithms nec-
essary for them to operate autonmously. We have four CoBots in total, shown in Figure 1.1,
which were used for the experiments in this thesis including the 1000km Challenge. The CoBots
are primarily service mobile robots, and perform user-requested tasks allocated by a Multi-agent
Pickup and Delivery Planner with Transfers [25], and interact with humans in the environment
for Symbiotic Autonomy [73].

Figure 1.1: CoBots 1, 2, 3 and 4, which were used for the experiments in the thesis.

1Thanks to Mike Licitra (mikelicitra@gmail.com) who designed and built the robots.

mailto:mikelicitra@gmail.com
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1.3 Contributions

The key contributions of this thesis are as follows.

MCL-CGR for accurate and robust localization with low computational cost in indoor
human environments with limited variations over time. We introduce Monte-Carlo Local-
ization with Corrective Gradient Refinement (MCL-CGR) to use an analytic sensor likelihood
function with a vector map representation of the environment. Instead of directly using sam-
ples from the odometry model of the robot as the proposal distribution of MCL, MCL-CGR first
refines the samples using the analytically computed state space gradients of the observation like-
lihood function before using them as the proposal distribution for MCL. This results in more
efficient sampling of the robot’s localization belief by sampling sparsely along directions of low
uncertainty, while densely sampling along directions of high uncertainty. We experimentally
show that MCL-CGR thus has greater localization accuracy, lower variance, and lower com-
putational requirements than Monte-Carlo Localization with Sampling-Importance Resampling
(MCL-SIR).

FSPF for plane-filtering of depth images, and FSPF-MCL-CGR for localization with in-
expensive depth cameras in human indoor environments with limited variations over time.
We introduce the Fast Sampling Plane Filtering (FSPF) algorithm that samples the depth image
to produce a set of points corresponding to planes, along with the plane parameters (normals
and offsets). We then introduce an observation model that matches the plane filtered points to
the existing 2D vector maps. Finally, we use MCL-CGR to localize the robot using the plane
filtered points. We experimentally demonstrate that a robot with an inexpensive depth camera
running MCL-CGR with FSPF to accurately and robustly localize it in common office environ-
ments with comparable results to localization using MCL-CGR and the much more expensive
laser rangefinders.

EnML for accurate and robust localization in varying environments with many mov-
ing objects and frequent changes. We introduce Episodic non-Markov Localization (EnML)
to localize a robot in environments with many dynamic and movable objects. EnML classifies
observations into long-term, short-term, and dynamic features. Long-term features are matched
with the permanent map, and provide global, absolute localization corrections, while short term
features observed from different time steps provide local, relative localization corrections. The
Varying Graphical Network (VGN), a novel graphical model that we introduce, is used to keep
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track of correlations between successive poses based on odometry, between pairs of poses from
short-term features, and between each pose and the map from long-term features. We introduce
a cost function representation of the belief to efficiently compute the maximum likelihood es-
timate of the robot’s location by performing non-linear least-squares optimization of the cost
function. We demonstrate EnML accurately and robustly localizing robots even in environments
which differ substantially from the map due to unexpected observations of dynamic and movable
objects.

Extensive experimental results of over 1000km traversed by robots using the proposed
localization algorithms. We present results from continual deployments of four robots, CoBots
1-4 in real academic buildings at Carnegie Mellon University. The robots were deployed in
multiple buildings, over multiple floors, and exposed to a variety of indoor environments.

1.4 Reading Guide to the Thesis

Figure 1.2 presents an overview of the chapters of the thesis, and the outline below summarizes
the chapters:

Chapter 2 - Background and Related Work We define the problem of mobile robot local-
ization and the terms used. We discuss previous work in a number of areas including Markov
Localization, simultaneous localization and mapping, the data association problem, localization
and mapping approaches for varying environments, and autonomous service mobile robots.

Chapter 3 - Sensors and Sensor-Specific Maps We describe the sensors that we shall use:
WiFi, laser rangefinders, depth cameras, and wheel encoders for odometry. We introduce the
algorithms for processing sensor data including plane filtering and obstacle scan generation.
Furthermore, we introduce the sensor-specific map representations that will be used by the lo-
calization algorithms introduced in subsequent chapters: a topological graph representation for a
WiFi map, and a vector map representation for range sensors.

Chapter 4 - Markov Localization We introduce several extensions of Markov localization.
First, we introduce Corrective Gradient Refinement, which takes into account the state space
derivatives of the observation likelihood functions to refine the proposal distributions of particle
filters. We also introduce a projected 3D point cloud model to use depth cameras for localization
by extracting planes from observed depth images and relating them to the vector map. Next, we
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introduce a WiFi localization algorithm that uses a constrained particle filter to localize a robot
on a WiFi map. Finally, we present the tradeoffs in accuracy and robustness between each of
these algorithms across different types of environments.

Chapter 5 - Episodic non-Markov Localization We introduce an approach to localization
that classifies observations into long-term, short-term, and dynamic features, and represents the
varying correlations between such observations from different time steps with a new graphical
model, the Varying Graphical Network. We introduce the concept of episodes to reason about the
history of observations that will be required to be maintained in order to correctly update the be-
lief. Representing the belief in terms of a cost function, we introduce the complete Episodic non-
Markov Localization algorithm that maintains the belief of localization over the latest episode of
observations, while explicitly reasoning about correlations between observations from different
time steps due to unexpected observations that are not explained by a long-term static map.

Chapter 6 - Updating Maps We present algorithms to update maps in varying environments
by processing observations from logs across multiple robot deployments. We present how a robot
may model the environment in 3D using a compact 3D polygon map by mapping the dominant
planes observed. Furthermore, we present how a robot may reason about movable objects by
Model-Instance Object Mapping, which separately reasons about the shapes of common objects
from the duplicate instances of the objects observed at different locations.

Chapter 7 - The 1000Km Challenge We present experimental results of the localization al-
gorithms introduced, over deployments with multiple robots, in multiple buildings, and spanning
four years of deployments.

Chapter 8 - Conclusion and Future Work We conclude the dissertation with a summary of
its contributions, and expected directions of future work leading from this thesis.

Chapter A - Maintaining Perpetual Deployability of Mobile Robots The thesis further in-
cludes an appendix, which desribes the procedures, automation, and methodology involved in
ensuring that all the robots remain functional all the time.
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Figure 1.2: Organization of the chapters in the thesis.
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Chapter 2

Background and Related Work

The field of localization and mapping for robots is vast - many approaches have been proposed,
using various sensors, observation models, map features, and update algorithms. This chapter is
not intended to be an exhaustive review of all existing localization and mapping algorithms. In
this chapter we review the background related to this thesis, and detail select relevant approaches.

Suppose a robot makes observations of the environment, S = {s1, . . . sn} and accumulates
robot odometry U = {u1, . . . un} over n time-steps t1 . . . tn. We follow the convention that
at time ti, observation si is made, and odometry ui indicates relative motion of the robot from
timestep ti−1 to ti. Given a prior map of the environment M , the problem of mobile robot
localization is then stated as estimating the probability distribution over the robot pose at the
latest time step xn, or the “belief” Bel,

Bel(xn) = P (xn|s1, . . . sn, u1, . . . un, x0, . . . xn−1,M). (2.1)

This equation is general to all localization algorithms, assuming only that there exists a prior
map environment M .

2.1 Markov Localization

Markov Localization [35] makes two independence assumptions in order to simplify the compu-
tation of the belief:

1. Markov independence of odometry: Given the estimate of the robot pose xn−1 and the
latest odometry un, the estimate of xn is independent of past pose estimates x0, . . . xn−2

11
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and odometry u1, . . . un−1, so that

P (xn|s1, . . . sn−1, u1, . . . un, x0, . . . xn−1,M)

= P (xn|xn−1, un). (2.2)

2. Markov independence of observations: Given the estimate of robot pose xn, observa-
tion sn is independent of past pose estimates x0, . . . xn−1, observations s1, . . . sn−1 and
odometry u1, . . . un, so that

P (sn|s1, . . . sn−1, u1, . . . un, x0, . . . xn,M)

= P (sn|xn,M). (2.3)

Using the Markov assumptions and applying Bayes rule, the recursive update of the belief
simplifies to (see [37] for a complete derivation),

Bel(xn) =

ηP (sn|xn,M)

∫
P (xn|xn−1, un)Bel(xn−1)dxn−1, (2.4)

where η is a normalizing constant. Figure 2.1 shows the dynamic Bayesian network (DBN) for
Markov localization. Based on this DBN, for the “prediction” step (before sn becomes available)
the Markov blanket [70] of xn consists of un (which is observed) and xn−1 (estimated by the
belief Bel(xn−1)). For the “update” step, the Markov blanket of sn consists of xn (estimated by
the predict step), un (which is observed), xn−1 (estimated by the belief Bel(xn−1)) and the map
M (which is known). Thus the belief update for Bel(xn) does not require storing the history of
observations and states prior to tn−1.

��
��
u1 ��
��
un−1 ��
��
un

��
��
x0 ��
��
x1 ��
��
xn−1 ��
��
xn

��
��
s1 ��
��
sn−1 ��
��
sn

�� ��Map

? ? ?
- - - -- p p p

? ? ?

6 6 6

Figure 2.1: Dynamic Bayesian network for Markov localization.
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By varying the belief representation, the map representation, how the update steps are com-
puted, and what sensors are used, numerous variants of Markov localization have been proposed.
The belief could be represented by Position Probability Grids [35], Partially Observable Markov
Decision Processes (POMDPs) [48], Normal distributions [52], or discrete samples called “par-
ticles” in Monte Carlo Localization [29].

2.2 Extensions to Monte Carlo Localization

Monte Caro Localization (MCL) [29] has been shown to be effective at localizing a robot in a
number of scenarios. However, one limitation of MCL is that it requires a very large number
of particles to simultaneously accurately and robustly track the location of a robot. Several
extensions to MCL have therefore been proposed to improve its accuracy while using fewer
particles, by better accounting for the observations during the sampling step of MCL.

KLD-Sampling [36] adapts the number of samples based on the Kullback-Liebler Distance
between the belief and the posterior, thus reducing the computational requirements when the
belief accurately models the posterior, and increasing the number of particles when the posterior
distribution is likely to spread out. However, this approach does not refine the samples based on
observations, but only varies the number of samples.

Sensor Resetting Localization (SRL) [50] takes into account mismatch between observations
and the belief by drawing samples from the observation model, p(st|xt) to incorporate into the
belief. However, this assumes that the observation model can be sampled efficiently over the
map, which may not be possible (e.g., for observation models of laser rangefinder scans on a
map).

Monte Carlo Markov Chain (MCMC) [57, 43] based approaches, and in particular, the Hybrid
Monte Carlo (HMC) filter [31, 23] have been shown to be successful at maintaining the belief
with small sample sets, even in large dimensional state spaces. In the HMC filter, the posterior
p(xt|s1:t, u1:t−1) is modeled as a hypothetical potential energy termE = − log(p(xt|s1:t, u1:t−1)),
and for each sample xit, a Markov Chain (MC) is evolved using Hamiltonian dynamics over the
Hamiltonian H = E + K where K is the potential energy of the sample, K = 1

2
ẋT ẋ. The

disadvantages of this method are that it is slow (the MCMCs requires a minimum number of steps
of evolution before they reach equilibrium), and it assumes that the state space gradient of the
full posterior, δ

δx
p(xt|s1:t, u1:t−1) can be computed, which is often impossible or computationally

infeasible.

The Auxiliary Particle Filter (APF) [71] improves the proposal distribution by “simulating”
the evolution of the samples xit using the observation st to generate a new sampling xit− , which is
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then used to generate samples xit using the motion model. Since the simulation step is performed
prior to applying the motion model, the simulation model must account for the motion model as
well.

In FastSLAM 2.0 [60], the proposal distribution is refined by linearizing the observation
model with respect to pose and landmark locations, and then performing a single EKF-like update
step. The GMapping [41] algorithm refines its proposal distribution by sampling the observation
likelihood around every particle, and fitting a Gaussian to the sampled points. The proposal
distribution is then updated using this Gaussian estimate.

2.3 Simultaneous Localization and Mapping

So far we have assumed that a map M of the environment exists, and is used for robot localiza-
tion. This map could be built by collecting sensory data and batch processing it offline, or (as
is more common in recent work) online on the robot while simultaneously tracking the location
of the robot on the map. “Simultaneous Localization And Mapping” (SLAM) is the problem of
building a map M while concurrently maintaining a belief of the robot’s trajectory x0, . . . xn.

The DBN for SLAM with a static map is similar in structure to that of Markov localization.
The difference is that in Markov localization, the map M is known and only the latest pose
estimate xn is updated at every step, but in SLAM the mapM is unknown a priori, and is updated
at every step, along with the full history of pose estimates x0, . . . xn. Despite the updates to the
history of pose estimates, the model is still Markovian: it is assumed that were xn−1 and un

accurately known, xn would be independent of all other prior states and observations, and that
were xn and M accurately known, observation sn would be independent of all other prior states
and observations. Bailey and Durant [4, 32] review some of the popular approaches to SLAM.
Pose graph SLAM [88] frames the SLAM problem as a graph optimization problem where robot
poses are represented as nodes on a graph, and edges joining the nodes indicate relations between
them based on odometry or observation matching. “Factor Graphs” [30] offer an alternative
representation of the correlations between the pose history and the map in SLAM, replacing
measurements by “factor nodes”. Some approaches split up the SLAM problem into algorithms
for building a pose graph (e.g., by scan matching [67, 54]) and algorithms for efficiently updating
and optimizing the pose graph by iterative non-linear optimization [68].
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2.4 The Data Association Problem

Whether localizing a robot on a pre-built map or building a map while concurrently localizing
the robot online, the robot needs to reason about which parts of its observations correspond to
which parts (or features) of the map, or which parts of its latest observation match which parts of
past observations. This is called the “Data Association” problem. Suppose the map M consists
of m features, and observation si for timestep ti has ni features. The total possible number of
feature pair associations that need to be considered for timestep ti are m× ni. For time-steps t0
to ti, the total combination of possible associations is

∏j=i
j=0m×nj , which is O((m×N)i) where

N is the maximum number of features in any observation sj . Given the exponential nature of
the number of the space of possible data associations, it is infeasible for any algorithm to reason
about all possible associations. There are three most commonly used approximations to the data
association problem that are most commonly used by localization and mapping algorithms today:

1. Nearest Neighbor: For every feature in si, the single feature from M that is closest to it
is chosen as its match.

2. Individual Compatibility: For pose xi, the uncertainty in xi is used to compute a matching
threshold for each feature independently in si. All matches to features in si from M within
the corresponding thresholds are considered.

3. Joint Compatibility: For pose xi, the uncertainty in xi is used to compute a joint matching
threshold for all features in si considered jointly. The joint threshold is then used to assign
matches to the features in si from M .

The nearest neighbor test is the simplest to perform, since it does not require the compu-
tation of any uncertainty estimates. The individual compatibility test requires computation of
covariances between xi and individual features from si, and the joint compatibility test requires
computation of the joint covariance between xi and all features in si. An algorithm for recovering
the exact covariance matrix for compatibility tests is discussed in [46]. The joint compatibility
test is implemented most commonly in a branch and bound algorithm [61].

Due to the computational cost of the joint compatibility test, in practice it is rarely used for
online algorithms. Instead, either the nearest neighbor or individual compatibility tests are per-
formed online to reason about local data associations, and periodic “loop closure” checks are
performed to reason about global data associations. “Scan matching” [54] is a widely used algo-
rithm for loop closure detection using rangefinder sensors. Scan matching estimates the optimal
relative pose between pairs of arbitrary rangefinder scans by aligning the pair for maximum over-
lap. Visual features extracted from color images may also be used for loop closure detection [28].
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2.5 Non-Markov Nature of Observations

In reality, neither the odometry nor the observations of a robot deployed in a real environment
are truly Markovian. In a human environment, as shown in Figure 2.2, observations made by
the robot include parts that do indeed correspond to the map, but also include moving objects
(e.g., humans and other robots) and movable objects (e.g., tables, chairs, recycling bins) that
change locations on a daily basis. Since Markov localization assumes that observations corre-
spond only to features from a static map, unexpected observations of static objects will cause
two potential problems:

1. If there are no locations on the map that match the observations, the localization algorithm
will be unable to track the location of the robot with low uncertainty.

2. If the observations of movable objects coincidentally match a feature on the map (e.g., if
the robot matches an observed flower pot to a pillar on the map), then the localization
algorithm will estimate the pose of the robot incorrectly and with overconfidence.

If unexpected observations are explicitly removed from the computation of the belief by filtering
the observations [35], then the incorrect and overconfident estimation of pose will be less likely,
but the uncertainty of the robot’s location will still grow.

Figure 2.2: Non-Markov nature of robot observations, shown by plotting laser rangefinder obser-
vations over multiple time steps, and registered by non-Markov localization to a static map (blue
lines). The observations include observations that can be explained by the map (orange points),
observations that can be explained by movable, but currently static objects like the potted plant
and doors(purple points), and moving objects like humans(green points). The robot trajectory is
plotted in gray.
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2.6 Varying Environments

We introduce the existing related work and contrast it with the proposed approach, by introducing
a varying human environment test scenario. Suppose a robot is operating in an open area, and
makes the following sequence of observations:

1. Monday, t0: The robot observes two cylindrical shaped objects, although the map only has
a single pillar near that location.

2. Monday, t1: The robot observes more of the cylindrical objects.

3. Monday, t2: The robot observes a wall beyond the two cylindrical objects.

4. Tuesday, t3: The robot again observes two cylindrical objects, but with different relative
locations.

5. Wednesday, t4: The robot yet again observes two cylindrical objects with new relative
locations.

In this scenario, one of the observed cylindrical objects is an unmapped planter, while the other
is a pillar that exists on the robot’s map. At time-steps t0, t3 and t4, the robot is unable to
discern which of the cylindrical objects is the planter and which the pillar, due to its initial pose
uncertainty. We now discuss how selected approaches in related work address this scenario.

2.6.1 Dynamic Pose Graph SLAM

The approach of Dynamic Pose Graph SLAM (DPG-SLAM) [91] is a long-term variant of pose
graph SLAM intended to maintain an up-to date map of a changing environment. In addition to
the usual pose nodes in pose graph SLAM, DPG-SLAM also maintains indicators for every node
to indicate parts of the observations from that node as being “static”, “added”, or “removed”.
The indicators for every node are updated after every pass of the robot through the environment.
At any given time the latest estimate of the map, called the “active map”, can be recovered
by transforming the static and new observations from every pose node to the global reference
frame as related by the poses of the nodes. The “dynamic map”, indicating the changes to the
environment is similarly recovered by transforming the new and outdated observations from
every node to the global reference frame.

In the test scenario, from time-steps t0 to t2, the observations corresponding to the planter are
added to both the active as well as dynamic map as “added” observations. The responsibility of
disambiguating the pillar from the planter would borne by pose graph SLAM, but the assignment
would not be revisited in future, since existing edges in the pose graph are considered static. The
wall and pillar are labelled “static” as their observations have not changed, and hence are only
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part of the active map. In t3, the older observations of the planter are labeled as “removed”,
and the new observations labelled as “added”. The same procedure is performed at t4, thus
maintaining an up to date estimate of the map. However, at t3 and t4, the observations of the
planter are treated entirely independently of the older observations of the planter from time-steps
t0 to t2.

2.6.2 Independent Markov Chain Occupancy Grid Maps

Saarinen at al. [78] model a dynamic environment as an occupancy grid with associated inde-
pendent Markov chains (iMac) with every cell on the grid. Each independent Markov Chain
models the transition probabilities of the associated cell for transitioning from unoccupied to oc-
cupied, and vice-versa. The iMac occupancy grid thus models the environment by learning the
probabilities of each cell remaining occupied vs. unoccupied.

The iMac occupancy grid of the test scenario would add new occupancy values to the grid
from time-steps t0 to t2 for the planter. The classification of which cylindrical observation cor-
responded to the planter would be performed once, and would not be re-evaluated again in case
of inconsistencies. From time-steps t3 onwards, the iMac occupancy grid would update the
transition probabilities of each individual cell covered by the planter locations to indicate that
those cells are likely to transition from unoccupied to occupied as well as vice-versa. The cells
occupied by the walls and pillar would be updated to indicate being occupied and having low
probabilities of transitioning to being unoccupied. Since each cell in the iMac occupancy grid is
considered independently, the planter would not be considered as a whole movable object.

2.6.3 Temporary Maps

The approach of “Temporary Maps” [58] models the effect of temporary objects by performing
local SLAM, using the latest global map estimate as an initial estimate for the local map. Using
these locally static maps, they perform localization with a particle filter.

In the test scenario, the approach of temporary maps would start off with a global map with
the walls and the pillar, and as it performed local SLAM during time-steps t0 to t2, it would add
the planter to the local map. However, the problem of disambiguating the pillar from the planter
would not be revisited. In time-steps t3 and t4 it would again perform local SLAM using the
last mapped location of the planter as initial estimates, subsequently removing the old mapped
locations of the planter and adding the new locations of the planter.
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2.6.4 Dynamic Maps

Dynamic Maps [7] extends SLAM and maintains estimates of the map over several timescales.
In order to accommodate changes on the order of different timescales, the approach of Dynamic
Maps maintains recency weighted samples of the map at several timescales simultaneously. The
state of the environment is saved as multiple local maps at all predefined timescales. During
deployments, the robot picks the local map for its current location from that timescale that best
matches its present observations.

The approach of dynamic maps in the test scenario would start out with an initial global map
consisting of only the walls and the pillar. From time-steps t0 to t2 it would add new samples of
the locations of the planter to the maps at different timescales. Between the time-steps t0 to t4
the problem of disambiguating the pillar from the planter would be visited only once for every
time a sample were added. In subsequent time-steps, for localization, the algorithm would select
that past map sample that best matched the latest observations. Since the location of the planter
changes on a daily basis, the algorithm would be likely to select samples from the maps with the
timescale closest to a day. Thus, to account for the locations of temporary objects, the algorithm
would require sufficient samples of all possible combinations of locations of all the temporary
objects in the environment.

2.6.5 Patch Maps

To account for changes to the environment due to movable objects, one proposed approach main-
tains multiple maps of the different possible states of the environment [83]. The resulting set of
local maps representing observed configurations of the environment is termed a “patch-map”. As
the robot localizes in the environment it reasons about the probability of each local patch map as
best representing the state of the environment.

In the test scenario, from time-steps t0 to t2 the approach of Patch Maps would create a new
patch map with the observed location of the planter. At time steps t3 onwards the algorithm would
create new patch maps with the new locations of the planter. The problem of disambiguating the
planter from the pillar would be addressed once for every time a new patch map were created.
When localizing the robot using past patch maps, the robot would be able to account for the
observations of the planter if it had previously created a patch map with the same location of
the planter. If there were additional movable objects, the number of patch maps required to
represent the possible states of the environment would grow exponentially with the number of
such movable objects.
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2.6.6 Hierarchical Object Maps

Recognizing that many objects in indoor human environments are of similar shapes, the approach
of hierarchical object maps [2] assumes certain classes of shapes of objects that are matched to
observed unmapped objects. When unmapped objects are observed and added to the occupancy
grid map, the hierarchical algorithm estimates which class the object is most likely to belong to,
and then finds the optimal parameters of the object class to best fit the size and orientation of the
observed object.

In the test scenario, for each time that the robot encountered the planter object in a new
location, the approach of object maps would select that object class that best matched the planter,
and would estimate its size. Thus it would be able to reason about subsequent observations of the
different sides of the planter on the same day. However, the approach of hierarchical object maps
does not address the uncertainty in resolving which observed cylinder was the planter and which
the pillar - it would assign the pillar to the closest observation, and not revisit the assignment
even if the subsequent observation of the wall did not match the map.

2.6.7 Detection and Tracking of Moving Objects

An alternate view of a dynamic environment is to partition the static elements from the non-
static elements, and consider each set separately. The approach of Simultaneous localization and
mapping with detection and tracking of moving objects (SLAM + DTMO) [92] is an example of
such an algorithm. SLAM + DTMO does not distinguish between LTFs and STFs, but actively
tracks DFs while maintaining a map of the environment as the union of LTFs and STFs.

In the test scenario, the approach of SLAM + DTMO would update the map with the new
location of the planter every time it encountered it at a new location. SLAM + DTMO would
additionally segment out observed moving objects like humans and would avoid adding them to
the map.

2.6.8 Mapping of Objects

There have been a few approaches to detecting movable objects in the environment. Recog-
nizing that many objects in indoor human environments are of similar shapes, the approach of
hierarchical object maps [2] assumes certain classes of shapes of objects that are matched to ob-
served unmapped objects. The Robot Object Mapping Algorithm [16] detects moveable objects
by detecting differences in the maps built by SLAM at different times. Detection and Track-
ing of Moving Objects [92] is an approach that seeks to detect and track moving objects while
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performing SLAM. Relational Object Maps [53] reasons about spatial relationships between ob-
jects in a map. Bootstrap learning for object discovery [59] is similar to the “model” part of our
work on Model-Instance Object Mapping (Chapter 6.2) in that it builds models of unmapped ob-
jects, but does not reason about instances. Generalized Approach to Tracking Movable Objects
(GATMO) [38] is an approach to tracking the movements of movable objects that is similar to
our work in that it models movable objects. Our work however, further tracks every observed
instance of the movable objects, thus allowing it to reason about the most likely poses of objects.

2.7 Autonomous Service Mobile Robots

There have been a number of autonomous service mobile robots deployed in real indoor human
environments, which we review here. Shakey the robot [64] was the first robot to actually per-
form tasks in human environments by decomposing tasks into sequences of actions. Rhino [18],
a robot contender at the 1994 AAAI Robot Competition and Exhibition, used SONAR readings
to build an occupancy grid map, and localized by matching its observations to expected wall
orientations. Minerva [85] served as a tour guide in a Smithsonian museum. It used laser scans
and camera images along with odometry to construct two maps, the first being an occupancy
grid map, the second a textured map of the ceiling. For localization, it explicitly split up its
observations into those corresponding to the fixed map and those estimated to have been caused
by dynamic obstacles. Xavier [49] was a robot deployed in an office building to perform tasks
requested by users over the web. Using observations made by SONAR, a laser striper and odom-
etry, It relied on a Partially Observable Markov Decision Process (POMDP) to reason about the
possible locations of the robot, and to reason about the actions to choose accordingly. Robox [81]
was a team of autonomous robots deployed at the Swiss National Exhibition Expo.02 to act as
tour guides for visitors. The Robox robots operated in an exhibition area of size 315m2 and
localized using geometric features extracted from laser rangefinder scans matched to a vector
map. A number of robots named Chips, Sweetlips and Joe Historybot [65] were deployed as
museum tour guides at the Carnegie Museum of Natural History, Pittsburgh Pennsylvania. Ar-
tificial fiducial markers were placed in the environment to provide accurate location feedback
for the robots. The PR2 robot at Willow Garage [69] has been demonstrated over a number of
“milestones” where the robot had to navigate over 42 km and perform a number of manipulation
tasks. The PR2 used laser scan data along with Inertial Measurement Unit (IMU) readings and
odometry to build an occupancy grid map using GMapping [42], and then localized itself on
the map using KLD-sampling [36]. The RoboCup@Home [90] is a special competition league
in the annual RoboCup event, where robots are evaluated over challenges involving navigating
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in realistic human environments, manipulating everyday objects, and interacting with humans
while performing various tasks.

2.8 Contrast with Related Work

With the preceeding review of the state of the art in mobile robot localization and mapping
algorithms, we now contrast our work with the related work, highlighting the key contributions
of the thesis.

2.8.1 Corrective Gradient Refinement

Table 2.1 contrasts the features of our approach, Corrective Gradient Refinement (CGR) [8] with
the related work. KLD-Sampling varies the number of samples, but does not directly refine
the locations of the existing particles in the particle filter. SRL requires a global estimate of
the observation likelihood function. HMCs knowledge of the gradients of the full posterior,
which is not available in most robot localization problems. APFs similarly require knowledge
of the gradient, or predicted evolution of the motion model, which is not available in most robot
localization problems. FastSLAM and GMapping both refine the proposal districution of their
particle filters, but FastSLAM assumes a linear model of the gradients, while GMapping fits a
Gaussian to the local samples to perform such refinement. CGR, in contrast:

1. Is analytic in nature since it uses a vector map,

2. Assumes no prior model for the local distribution of the observation likelihood function,

3. Actively refines the location estimates of the particles,

4. Is independent of the gradients of the motion model and the posterior, and

5. Does not require any global computations of the observation likelihood function.

2.8.2 Episodic non-Markov Localization

Table 2.2 contrasts the features of our approach, Episodic non-Markov Localization (EnML) [14]
with the related work. Markov Localization assumes a static world and does not account for ob-
servations of unmapped objects. DPG-SLAM does not reason about movable objects or the
difference between permanant and short-term objects. iMac maps explicitly reason about mov-
able objects and, but treat permanent objects similarly to movable objects. Temporary maps
reasons about, and distinguishes movable objects from permanent objects, but is a stochastic
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ANA MF RL IND NG
KLD [36] x x
SRL [50] * x x x
HMC [31, 23] * x x x
APF [71] x x x x
FastSLAM 2.0 [60] x x x
GMapping [41] x x x
CGR x x x x x

Table 2.1: Comparison of CGR with Related Work, highlighting whether each algorithm: is
analytic (ANA), model-free (MF), refines locations (RL), is independent of gradients of motion
model and posterior (IND), and requires no global computations (NG). The applicability of a
feature for an algorithm is indicated by a ‘x’, while a ‘*’ indicates that the feature depends on
the implementation.

algorithm based on Mont-Carlo Localization. Dynamic maps maintains an up-to-date map con-
sistent with the perceived changes in the environment, but does not distinguish permanent from
movable objects. SLAM+DTMO attempts to map the static state of the environment, and does
not distinguish permanent from movable objects. None of the above approaches revise their data
associations in light of newer observations. EnML, in contrast:

1. accounts for observations of unmapped objects,

2. explicitly reasons about observations as arising from long-term, short-term, or dynamic
features,

3. uses the short-term features for relative corrections while simulatenously using the long-
term features for global corrections,

4. does not require any up-to-date maps and reasons in real-time about observations of un-
mapped objects,

5. is a deterministic algorithm, and

6. revises the observation classifications whenever new data is available.
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UNM DLS MOV NUM DET RDA
Markov Localization [35] x *
DPG-SLAM [91] x x
iMac Maps [78] x x
Temporary Maps [58] x x x x
Dynamic Maps [7] x x
SLAM+DTMO [92] x *
EnML x x x x x x

Table 2.2: Comparison of EnML with Related Work, highlighting whether each algorithm: uses
unmapped objects for location estimation (UNM), distinguishes long-term from short-term ob-
jects (DLS), explicitly reasons about observations of movable objects (MOV), does not need
update-to-date maps (NUM), is deterministic (DET), and revises data associations (RDA). The
applicability of a feature for an algorithm is indicated by a ‘x’, while a ‘*’ indicates that the
feature depends on the implementation.



Chapter 3

Sensors and Sensor-Specific Maps

In this thesis we shall introduce localization algorithms that use a number of different sensors,
including wheel odometry, laser rangefinders, depth cameras, and WiFi signal strength. Each
of these sensors has its own strengths and limitations, and are processed differently by the lo-
calization algorithms. This chapter introduces the specifications and constraints of the different
types of sensors used in this thesis. We further introduce algorithms to efficiently process the
sensor data to be usable for mobile robot localization. We also introduce the sensor-specific map
representations that will be used along with the sensors in the rest of the thesis.

3.1 Odometry

Wheel odometry is important for robot localization, expecially in indoor environments since
there exist featureless stretches like corridors, along which odometry is the only source of infor-
mation available to localize a robot. Furthermore, odometry provides a prior for correspondence
matching between sensor observations and the map. We view wheel encoders as sensors, and in
this section, we review the computation of robot odometry from individual wheel encoders.

We assume that the robot has two or more identical wheels of radius rw, arranged radially
about the center of the robot, at a distance Rw from the center such that the face of each wheel is
perpendicular to the radial direction. The robot coordinate reference frame is arranged such that
the local x axis points forward on the robot, and the y axis points to the left of the robot. The
direction of rotation of each wheel is considered positive for counter-clockwise rotation about
the radial vector from the center of the robot to the wheel, in accordance with the right-hand
rule. Let there be nw wheels in total, where wheel i is arranged with its axis at an angle θi to the
robot coordinate frame, and the encoder-reported rate of rotation of the wheel is ėi. Note that
this is not the only form of wheel arrangement found on mobile robots: there are other forms,

25



26 CHAPTER 3: SENSORS AND SENSOR-SPECIFIC MAPS

like the four-wheel steered form, but we do not encounter such forms among the robots used in
this thesis.

There are two types of wheel configurations that we encounter in the experimental robot data
presented in this thesis: the two wheel diff-drive configuration, and the four-wheel omnidirec-
tional drive configuration. A diff-drive robot has two wheels, with wheel 0, the left wheel at
θ0 = 90◦ and wheel 1, the right wheel at θ1 = −90◦. The CoBots have four omnidirectional
wheels, arranged symmetrically about the robot with the first wheel at θ0 = 45◦. Thus, given
the wheel configuration of the robot and the encoder rates, the velocity (vx, vy, vr) of the robot is
computed as

vx =
rw
∑

i ėi cos(θi)

nw
(3.1)

vy =
rw
∑

i ėi sin(θi)

nw
(3.2)

vr =
rw
∑

i ėi
Rwnw

. (3.3)

The infinitesimal robot odometry (δx, δy, δr) is given by

δx =
rw
∑

i δei cos(θi)

nw
(3.4)

δy =
rw
∑

i δei sin(θi)

nw
(3.5)

δr =
rw
∑

i δei
Rwnw

. (3.6)

Here, δei is the infinitesimal encoder increment observed. In practice, the infinitesimal changes
are measured as increments over successive time periods of constant duration, which is 50ms for
the CoBots. Thus, if the robot has the pose x, y, θ in global coordinates, the odometry updated
pose x†, y†, θ† for odometry δx, δy, δθ is given by

x† = x+ δx cos(θ)− δy sin(θ) (3.7)

y† = y + δx sin(θ) + δy sin(θ) (3.8)

θ† = θ + δθ. (3.9)
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Sensor Range
(m)

FoV (◦)
Accuracy

(mm)
Refresh

Rate (Hz)
Cost

(USD)
Hokuyo URG-04lx
laser rangefinder

4 240 10 10 1,995

Hokuyo UTM-30lx
laser rangefinder

30 270 30 40 4,975

SICK LMS100 laser
rangefinder

20 270 30 50 5,776

SICK LMS500 laser
rangefinder

80 190 35 25-75 7,018

Microsoft Kinect /
Primesense depth
sensor

5 57× 43 40 30 96

Mesa Imaging SR4000
depth sensor

5 43.6×34.6 5 10-30 4,295

Table 3.1: Specifications for some commonly used range sensors for autonomous robots.

3.2 Range Sensors

Range sensors provide distance measurements to observable objects placed in the sensing area.
SONAR sensors, laser rangefinders, and depth cameras are among the most commonly used
range sensors for robots. Out of these sensors, in this thesis we shall restrict our use to laser
rangefinders and depth cameras.

There are several factors involved in selecting an appropriate range sensor for an autonomous
robot, including cost, maximum range, accuracy, refresh rate, field of view, and operating envi-
ronment. Table 3.1 lists some common range sensors used on autonomous mobile robots and
their specifications. Except for the cost of the sensor, the range and field of view of a sensor have
the greatest impact on the accuracy and robustness of mobile robot localization.

The two types of range sensors used in this thesis are short-range laser rangefinders and
depth cameras. Laser rangefinders have wider fields of view and greater sensing range than
depth cameras, but are limited to sensing in a single plane. Depth cameras on the other hand
sense the world in 3D, and generate a far greater volume of data. For comparison, the Hokuyo
URG-04lx laser rangefinder generates 6.8K 2D points per second, whereas the Microsoft Kinect
Sensor generates 9.2M 3D points per second. The proceeding sections discuss the characteristics
of each of the two in detail.



28 CHAPTER 3: SENSORS AND SENSOR-SPECIFIC MAPS

3.2.1 Laser Rangefinders

Laser Rangefinders (LRfs) provide range measurements along rays spaced at equidistant angular
increments around the sensor. LRfs usually have a wide field of view of at least 180◦. The
sensor data returned from an LRf is a fixed size list of range values, where the size of the list
is determined by the field of view and the angular resolution of the sensor. As Table 3.1 shows,
there is a wide variation in the range, field of view, accuracy and refresh rate among different
models of LRfs, with a corresponding variation in the cost of the sensors.

The accuracy of LRfs is affected by a number of factors, including the reflectivity and po-
larizing nature of the surfaces of the objects being observed, the ambient light, and the presence
of transparent, reflecting, or refracting objects in the pathway of the laser beam from the sensor.
Since these factors are dependent on the specific environment and conditions of operation of the
sensor, there is a corresponding wide variation in the accuracy of sensing.

LRfs provide an array of nR range readings SR = {ri}i=1:nR which are the range readings
observed at the corresponding angles Sθ = {θi}i=1:nR . Given these range readings, we can
construct a 2D point cloud SP2D

= {pi}i=1:n2D
where each point pi is reconstructed as

pi = ri(cos(θi), sin(θi)). (3.10)

3.2.2 Depth Cameras

Depth cameras provide depth images as observations, where each pixel value in the images
corresponds to the observed depth from the camera along the ray passing through that pixel.
This depth information, along with the camera intrinsics (horizontal field of view ΩH , vertical
field of view ΩV , image width w and height h in pixels) can be used to reconstruct a 3D point
cloud. Let the depth image of size w × h pixels provided by the camera be I , where I(ζ) is
the depth of a pixel at location ζ = (i, j). Note that the pixel value I(ζ) is the depth, not the
range at the pixel location ζ . This is true for depth cameras that operate on disparity, like the
Microsoft Kinect sensor, which we use in this thesis. Other depth cameras return the range for the
pixel values instead of their depth. The corresponding 3D point s = (sx, sy, sz) is reconstructed
using the depth value I(ζ) as sx = I(ζ)

(
j

w−1
− 0.5

)
tan
(

ΩH
2

)
, sy = I(ζ)

(
i

h−1
− 0.5

)
tan
(

ΩV
2

)
,

sz = I(ζ).

There exist depth cameras with different sensing technologies. The Microsoft Kinect and
Primesense sensors use disparity matching of a known, projected infrared pattern to compute the
depth at every pixel. These sensors generate depth images at a resolution of 640×480 pixels at a
frame rate of 30fps. The Mesa Imaging time-of-flight (ToF) sensors, on the other hand, compute
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the time of flight of light pulses from every pixel in the image to compute the depth value at the
pixel. The resultant depth images have a resolution of 176× 144 pixels at a frame rate of 30fps.
The disparity based depth cameras, compared to the ToF depth cameras, have lower accuracy
and suffer from degradation of sensitivity with depth, but are substantially cheaper: USD 90 for
the Microsoft Kinect, compared to USD 4,295 for the Mesa Imaging SR4000.

3.3 Processing Depth Images

The recent availability of inexpensive depth cameras, like the Microsoft Kinect, the Asus Xtion
and the Primesense sensor, has made available dense 3D point clouds, which were previously
only accessible using much more expensive sensors like time-of-flight cameras or scanning 3D
laser rangefinders. We are interested in using these depth cameras for ground based indoor mo-
bile robots. We consider mobile robots with limited on-board computational power, and address
two immediate challenges to using the depth cameras for mobile robot localization and naviga-
tion:

1. Depth cameras typically generate voluminous data that cannot be processed in its entirety
in real time for localization (e.g., the Microsoft Kinect sensor produces 9.2 million 3D
pts/sec, compared to the 6800 2D pts/sec of the Hokuyo URG-04lx laser rangefinder).

2. Given that we already have existing 2D maps of our indoor environments, the observed 3D
point clouds should be matched with the 2D maps.

We tackle both these challenges. We first introduce the Fast Sampling Plane Filtering (FSPF)
algorithm that samples the depth image to produce a set of points corresponding to planes, along
with the plane parameters (normals and offsets). The volume of data to be processed is thus
significantly reduced, addressing the first challenge with the additional advantage that non-planar
objects in the scene, which are unlikely to correspond to map features are filtered. We then
address the second challenge later in Chapter 4.2.2 by introducing an observation model in our
localization algorithm that matches the plane filtered points to the lines in the 2D maps, making
it possible to reuse our existing 2D maps. This approach of using the plane-filtered point cloud
for mobile robot localization is in contrast to, and more effective than (as we shall show in
Chapter 4.2.3) down-projecting the 3D point cloud and binning it to simulate a conventional
laser rangefinder. Our combined approach interestingly uses only the depth image and does not
require the RGB images, thus eliminiating any possible privacy issues that might arise in the use
and logging of RGB camera images.
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Algorithm 1 Fast Sampling Plane Filtering
1: procedure PLANEFILTERING(I)
2: SP ← {} . Plane filtered points
3: SR ← {} . Normals to planes
4: SO ← {} . Outlier points
5: n← 0 . Number of plane filtered points
6: k ← 0 . Number of neighborhoods sampled
7: while n < nfilt ∧ k < nneighbor do
8: k ← k + 1
9: ζ0 ← (rand(0, h− 1), rand(0, w − 1))

10: ζ1 ← ζ0 + (rand(−g, g), rand(−g, g))
11: ζ2 ← ζ0 + (rand(−g, g), rand(−g, g))
12: Reconstruct s0, s1, s2 from ζ0,ζ1,ζ2

13: r = (s1−s0)×(s2−s0)
||(s1−s0)×(s2−s0)|| . Compute plane normal

14: z̄ = s0z+s1z+s2z
3

15: w′ = w∆
z̄

tan(ΩH)
16: h′ = h∆

z̄
tan(ΩV )

17: [numInliers, ŜP , ŜR]←RANSAC(ζ0, w
′, h′, nlocal, εplane)

18: if numInliers > αinnlocal then
19: Add ŜP to SP
20: Add ŜR to SR
21: numPoints← numPoints + numInliers
22: else
23: Add ŜP to SO
24: end if
25: end while
26: return SP , SR, SO
27: end procedure

3.3.1 Fast Sampling Plane Filtering

FSPF takes the depth image I as its input, and creates a list SP of 3D points, a list SR of cor-
responding plane normals, and a list SO of outlier points that do not correspond to any planes. Al-
gorithm 1 outlines the plane filtering procedure. It uses the helper subroutine [numInliers, ŜP , ŜR]←
RANSAC(ζ0, w

′, h′, nlocal, εplane), which performs the classical RANSAC algorithm over the
window of size w′ × h′ around location ζ0 in the depth image, and returns inlier points and
normals ŜP and ŜR respectively, as well as the number of inlier points found. The configuration
parameters required by FSPF are listed in Table 3.2.

FSPF proceeds by first sampling three locations ζ0,ζ1,ζ2 from the depth image (lines 9-11).
The first location ζ0 is selected randomly from anywhere in the image, and then ζ1 and ζ2 are
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Parameter Value Description
nfilt 2000 Maximum total number of filtered points
nneighbor 20000 Maximum number of neighborhoods to sample
nlocal 80 Number of local samples
g 60 Neighborhood for global samples (in pixels)
∆ 0.5m Plane size in world space for local samples
εplane 0.02m Maximum plane offset error for inliers
αin 0.8 Minimum inlier fraction to accept local sample

Table 3.2: Configuration parameters for FSPF

Figure 3.1: Fast Sampling Plane Filtering in a scene with a cluttered desktop. The complete 3D
point cloud is shown on the left, the plane filtered points and the corresponding normals on the
right. The table clutter is rejected by FSPF while preserving the large planar elements like the
monitors, the table surface, the walls and the floor.

selected from a neighborhood of size g around ζ0. The 3D coordinates for the corresponding
points s0, s1, s2 are then computed (line 12). A search window of width w′ and height h′ is
computed based on the mean depth (z-coordinate) of the points s0, s1, s2 (lines 14-16) and the
minimum expected size ∆ of the planes in the world. Local RANSAC is then performed in the
search window. If more than αinnlocal inlier points are produced as a result of running RANSAC
in the search window, then all the inlier points are added to the list SP , and the associated normals
(computed using a least-squares fit on the RANSAC inlier points) to the list SR. This algorithm
is run a maximum of mmax times to generate a list of maximum nfilt 3D points and their corre-
sponding plane normals. Figure 3.1 shows an example scene with the plane filtered points and
their corresponding plane normals.
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Algorithm 2 Obstacle Scan Generation
1: procedure GENRATEOBSTACLESCAN(S)
2: SN [j]←∞∀j ∈ [0, nN ]
3: for all si ∈ S do
4: if szi < εN then
5: continue
6: end if
7: θ ← atan2(syi , s

x
i )

8: r ← (sxi
2 + syi

2)
1
2

9: j ← floor

(
nN

θ−ΩN
2

ΩN

)
10: SN [j]← min(SN [j], r)
11: end for
12: return SN
13: end procedure

3.3.2 Obstacle Scan

In addition to plane filtering by FSPF, depth images observed by the robot are also processed to
generate an Obstacle Scan SN . The obstacle scan is a list of nN entries, where value SN [i] is the
distance of the closest obstacle along the ray from the robot in the direction of ΩN

(
i
nN
− 1

2

)
.

The obstacle scan thus has a format identical to a laser rangefinder scan: it covers an angular field
of view ΩN with nN bins, thus providing an angular resolution of ΩN

nN
. The obstacle scan is used

for safe navigation of the mobile robot, to avoid obstacles in its path, and also for localization
using Episodic non-Markov Localization (Chapter 5). Algorithm 2 lists the algorithm to generate
the obstacle scan SN given a set of 3D points S. Elements si = [sxi , s

y
i , s

z
i ] ∈ S are 3D points in

the reference frame of the robot drawn from the set of points SP
⋃
SR
⋃
SO generated by FSPF.

Note that these points may be generated from multiple depth cameras on the robot, but are used
to generate a single, combined obstacle scan. Figure 3.2 shows an example obstacle scan in a
scene including a table and four chairs.

3.4 WiFi Signal Strength Sensing

With the increasing prevalence of wireless LAN, “WiFi” in indoor environments, signal strength
sensing of WiFi has recently emerged as an inexpensive sensing mode for localization. Office
environments frequently deploy “Infrastructure Mode” WiFi networks, which advertise the net-
work using a Service Set ID (SSID) (e.g., “CMU-Secure” at Carnegie Mellon University) over
multiple stations called Access Points (APs). The SSID is a human-readable text string used



3.4 WIFI SIGNAL STRENGTH SENSING 33

(a) (b)

Figure 3.2: Obstacle scan generated from a depth image: The full 3D point cloud (a) and (b) the
sampled points (shown in color), along with the obstacle scan(red boxes). The robot location is
marked by the axes.

by end users to identify which network they are connecting to. APs are WiFi network radios
distributed over the building, to provide even radio coverage everywhere. Each AP has a unique
ID called the Base Service Set ID (BSSID), which is a 48-bit integer that is unique among all
APs, across all networks and all manufacturers in the world. End-users usually select the SSID
of the network that they wish to connect to, and the computer’s operating system and network
card driver automatically polls for a list of APs in range, and selects the best AP to connect to.

In order for a robot to use WiFi signal strengths as sensing for localization, the robot must
be able to query all APs in range. In our work we use the Wireless Tools For Linux 1 to perform
these queries. The result of such queries is a list of APs observed, with the following fields per
AP:

1. SSID: The SSID of the network that the AP provides access to.

2. BSSID: The unique BSSID of the AP

3. RSSI: The received radio signal strength of the last radio packet received from the AP

4. Age: The age in seconds, of the radio packet last received from the AP

Given these entries per AP observed, the robot can construct a WiFi map of the environment, and
use the observations and the map to localize in the building.

1http://wireless.kernel.org/

http://wireless.kernel.org/
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3.5 Map Representations

Map representations are crucial to the accuracy, robustness, and computational complexity of
mobile robot localization algorithms. We introduce here the two map representations that we use
with the localization algorithms in this thesis: the Vector Map representation, and the Graph-
WiFi Map representation.

3.5.1 Vector Maps

The most common map respresentation for robot localization using range sensors is the occu-
pancy grid map [33]. An occupancy grid map discretizes the world into grid cells and assigns
an occupancy value to each cell to indicate whether that cell in the world is occupied by an ob-
stacle, or is free space. The map representation directly affects the computational complexity of
correlating actual observations to the map. This correlation is evaluated by performing a ray cast

from the robot’s location estimate in the map. The result of the ray cast is the expected range
reading for each observation angle from the robot’s range sensor. In this thesis we use a map
representation called the vector map, which instead models only the permanent features of the
environment as a set of line segments, and which, as we shall show, can be used to efficiently
compute ray casts analytically.

The vector map Mvector is a set of s 2-dimensional line segments li corresponding to all the
permanent features like walls in the environment: Mvector = {li}i=1:s. Such a representation may
be acquired by mapping (e.g., [94]) or (as in our case) taken from the blueprints of the building.
The reason we use a vector map for localization is three-fold:

1. A vector map allows higher precision than an occupancy grid map, in a more compact
representation.

2. Ray casts can be performed analytically on a vector map, and thus are much faster than ray
casts on an occupancy grid map.

3. The gradients of the observation model (which are required for the localization algorithms
introduced later) can be computed analytically on a vector map.

Given a vector map, to compute the observation likelihoods based on observed planes, the
first step is to estimate which lines on the map are likely to be observed (the scene lines), given
the pose estimate of the robot. This ray casting step is analytically computed using the vector
map representation.

The procedure to analytically generate a ray cast at location x given the map Mvector is out-
lined in Algorithm 3. The returned result is the scene lines L: a list of non-intersecting, non-
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occluded line segments visible by the robot from the location x. This algorithm calls the helper
procedure TrimOcclusion(x, l1, l2, L) that accepts a location x, two lines l1 and l2 and a list of
lines L. TrimOcclusion trims line l1 based on the occlusions due to the line l2 as seen from the
location x. The list L contains lines that yet need to be tested for occlusions by l2. There are in
general 4 types of arrangements of l1 and l2, as shown in Figure 3.3:

1. l1 is not occluded by l2. In this case, l1 is unchanged.

2. l1 is completely occluded by l2. l1 is trimmed to zero length by TrimOcclusion.

3. l1 is partially occluded by l2. l1 is first trimmed to a non occluded length, and if a second
disconnected non occluded section of l1 exists, it is added to L.

4. l1 intersects with l2. Again, l1 is first trimmed to an non occluded length, and if a second
disconnected non occluded section of l1 exists, it is added to L.

Algorithm 3 Analytic Ray Cast Algorithm
1: procedure ANALYTICRAYCAST(Mvector, x)
2: L̂←Mvector

3: Sort L̂ in order of angle subtended from x
4: L← {}
5: for li ∈ L̂ do
6: for lj ∈ L do
7: TrimOcclusion(x, li, lj, L̂)
8: end for
9: if ||li||> 0 then . li is partly non occluded

10: for lj ∈ L do
11: TrimOcclusion(x, lj, lj, L̂)
12: end for
13: L← L ∪ {li}
14: end if
15: end for
16: return L
17: end procedure

The analytic ray casting algorithm (Algorithm 3) proceeds as follows: A list L̂ of all possible
lines is made from the map Mvector. Every line li ∈ L̂ is first trimmed based on occlusions by
lines in the existing scene list L (lines 6-8). If at least part of l1 is left non occluded, then the
existing lines in L̂ are trimmed based on occlusions by li (lines 10-12) and li is then added to the
scene list L. The result is a list of non occluded, non-intersecting scene lines in L.

Given the list of non occluded, non-intersecting scene lines in L, to compute correspondences
between observed points and the lines in L, the line segments in L are sorted in order of their
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x

Figure 3.3: Line occlusion cases. Line l1 is being tested for occlusion by line l2 from location x.
The occluded parts of l1 are shown in green, and the visible parts in red. The visible ranges are
bounded by the angles demarcated by the blue dashed lines.

angle relative to the robot’s location x. Note that the angles subtended by every line segment
in L is unique and non-overlapping, since the line segments in L are non-intersecting and non-
occluding from the robot’s location. The correspondence of an observed point s is then found
by computing the angle θs subtended by s from the robot location x, and searching for that line
segment in L that has an angular extent that θs falls within. Since the lines in L have been sorted
in order of their angles, and since the angles subtended by the line segments are not overlapping,
this search takes at best O(1) time if using a hash table lookup without any collisions, and at
worst O(log(nL)) time if using binary search over the list of nL sorted line segments in L.

3.5.2 Graph-WiFi Maps

We denote the WiFi map of the building as Mwifi, with Mwifi = 〈Vwifi, Ewifi, Awifi,W ,Σwifi〉
where Vwifi is a set of vertices, Ewifi a set of edges to connect them, and Awifi the set of WiFi
access points in the environment. W and Σwifi are matrices representing the WiFi signal strength
means and standard deviations across the map. Each vertex v ∈ Vwifi corresponds to a unique
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location in the building. Edges e = 〈va, vb,Γ〉, e ∈ Ewifi indicate that there is a navigable path
between vertices va and vb. For every edge, the width of the corridor in that section and the length
of the edge are represented as Γ = 〈width, length〉. Element i, j of W is the mean WiFi signal
strength (in dBm) of access point aj as measured from vertex vi. Similarly, element i, j of Σwifi

is the observed standard deviation of the WiFi signal strength of access point aj as measured
from vertex vi.

Matrices W and Σwifi are enumerated during the Learning Phase, which needs to be per-
formed once. The Learning Phase starts with a manual definition of a “skeleton graph” of the
map, where the longest straight line segments in the building are defined as the edges of the
skeleton graph. Once the learning phase is done, a path is planned to traverse every edge of the
skeleton graph. The robot then follows this path, and along each edge, it stops at regularly inter-
spaced sample locations of a user-defined maximum spacing, and defines a new vertex. Thus,
each edge of the skeleton graph is split up into multiple smaller edges. At each sample location
(which is also a vertex in the newly generated complete graph), the robot collects WiFi signal
strength readings for a pre-determined (and user-defined) duration. During this process, the robot
uses odometry alone for estimating its localization, and errors in localization are corrected man-
ually using a graphical user interface. Thus, the skeleton graph is used to generate the complete
graph, and the matrices W and Σwifi are populated.

3.6 Summary

In this chapter we presented the tradeoffs in different forms of sensing, and the format of the
data generated by the different sensors. We introduced the Fast Sampling Plane Filtering (FSPF)
algorithm to generate plane-filtered point clouds from depth images, and an algorithm to generate
Obstacle Scans from depth images. We further introduced graph-WiFi maps, and vector map
representations, along with the analytic ray cast algorithm to efficiently evaluate correspondences
between observations and the vector map.
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Chapter 4

Markov Localization

In this chapter, we present a number of variants of Markov Localization for mobile robots. We
first review particle filters for mobile robot localization. Next, we introduce Corrective Gradi-
ent Refinement (CGR), which improves upon Monte Carlo Localization by using the gradients
of the observation likelihood function to improve the samples in the proposal distribution of a
particle filter. CGR can use either points observed by a laser rangefinder, or plane-filtered points
generated by FSPF (Chapter 3.3.1) along with robot odometry to localize a robot on a vector map
(Chapter 3.5.1). We further introduce a WiFi signal strength based localization algorithm using
a graph-based WiFi map (Chapter 3.5.2). Finally, we compare localization using the different
variants of Markov Localization introduced in this chapter, highlighting the tradeoffs in accuracy
and robustness in different indoor environments.

4.1 Particle Filters for Mobile Robot Localization

Bayesian filters are used to track the probability distribution of a d-dimensional state variable
x ∈ Rd over time given the history of observations s1:t and control inputs u1:t−1. The result-
ing probability distribution of x is called the belief, Bel(xt) = p(xt|y1:t, u1:t−1). The belief is
recursively updated using the equation

Bel(xt) = ηp(yt|xt)
∫
p(xt|xt−1, ut−1)Bel(xt−1)dxt−1. (4.1)

Particle filters, and in particular, Monte Carlo Localization (MCL)[29] represent the belief
by a set of weighted samples, or “particles,” Bel(xt) = {xit, wit}i=1:m, where xit is the state of
the particle i at time t and wit its associated weight. Recursive updates of the particle filter can
be implemented via a number of methods, notably among which is the sampling/importance

39
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resampling method (SIR) [79]

In MCL-SIR, m samples xit− are drawn with replacement from the prior belief Bel(xt−1)

proportional to their weights wit−1. These samples xit− are used as priors to sample from the
motion model of the robot p(xt|xt−1, ut−1) to generate a new set of samples x̂it that approximates
p(xt|xt−1, ut−1)Bel(xt−1). The samples x̂it are called the “proposal distribution”. Importance
weights for each sample x̂it are then computed as

wit =
p(st|x̂it)∑
i p(st|x̂it)

. (4.2)

Here, the term p(st|x̂it) is computed by the “observation model”, which computes the probability
of making the observation st at location x̂it. Finally, samples xit are drawn from the proposal
distribution x̂it proportional to the importance weights wit. The location hypotheses in a particle
filter are thus updated iteratively as follows:

1. Predict: Samples from the previous time step, xit−1 are propagated through the robot’s
motion model p(xt|xt−1, ut−1) to generate proposal distribution samples xit.

2. Update: The observation model is then used to compute weights for each sample in the
proposal distribution using Equation 4.2.

3. Resample: The posterior distribution is then estimated by samples xit, drawn from the
proposal distribution x̂it proportional to the importance weights wit.

With this general background of particle filters for mobile robot localization, we now look at the
variants that we introduced.

4.2 Corrective Gradient Refinement for Localization

Particle filters have proven to be successful at state estimation and tracking for non-parametric
stochastic processes. However, for every particle filter implementation, the mantra to reach
higher accuracy has traditionally been “add more particles.” This approach does work, but the
required number of particles scales exponentially with the number of dimensions. Therefore,
significant work (as discussed in Chapter 2) has gone into developing algorithms that work with
fewer particles but do more with the same particles, such that the desired accuracy is still met.

In this thesis we introduce one such novel algorithm, Corrective Gradient Refinement (CGR),
which reduces the required number of particles for a particle filter by using the gradients of the
observation model. This results in more efficient sampling of the robot’s localization belief by
sampling less along directions of low uncertainty given an observation, while densely sampling
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along directions of high uncertainty. For example, if the LIDAR scans of the robot detect parallel
walls, there will be fewer samples in the direction perpendicular to the walls (the direction of low
uncertainty), and more samples parallel to the walls (the direction of high uncertainty).

We apply Corrective Gradient Refinement to the task of indoor mobile robot localization with
point cloud sensors. By point cloud sensors, we refer to sensors that generate 2D or 3D points
corresponding to the surfaces of detected obstacles. We use both a 2D LIDAR scanner and a 3D
Microsoft Kinect sensor to generate point clouds. Although MCL-SIR (Chapter 4.1) is largely
successful, several issues may still create problems:

1. Observations could be “highly peaked,” i.e. p(st|xit) could have very large values for a very
small subspace ε ⊆ Rd and be negligible everywhere else. In this case, the probability of
samples xi overlapping with the subspace ε is diminishingly small.

2. If the posterior is no longer being approximated well by the samples xi, recovery is only
possible by chance, if the motion model happens to generate new samples that better over-
lap with the posterior.

3. The required number of samples necessary to overcome the aforementioned limitations
scales exponentially in the dimension of the state space.

The Corrective Gradient Refinement (CGR) algorithm, which we introduce, addresses these
problems in a computationally efficient manner. It refines samples locally to better cover neigh-
boring regions with high observation likelihood, even if the prior samples had poor coverage of
such regions. Since the refinement takes into account the gradient estimates of the observation
model, it performs well even with highly peaked observations. Thus, CGR tracks the location
of the robot with fewer particles than MCL-SIR, although for the task of global localization, the
number of particles would still have to be scaled up as in the case of MCL-SIR to cover the entire
map. We formulate the gradient estimates of the observation model in a manner that allows an-
alytical computation of the gradient using a vector map. We show experimentally that CGR has
higher accuracy and lower variance across trials than MCL-SIR. Furthermore, for the same level
of desired accuracy, CGR requires far fewer particles than MCL-SIR for localization tracking.

4.2.1 The Corrective Gradient Refinement Algorithm

The CGR algorithm iteratively updates the past beliefBel(xt−1) using observation st and control
input ut−1 to estimate the latest belief Bel(xt) as follows:

1. Predict: Samples of the beliefBel(xt−1) are evolved through the motion model, p(xt|xt−1, ut−1)

to generate a first stage proposal distribution q0.
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2. Refine: Samples of q0 are “refined” in r iterations (which produce intermediate distribu-
tions qi, i ∈ [1, r − 1]) using the gradients δ

δx
p(st|x) of the observation model p(st|x).

3. Update: Samples of the last generation proposal distribution qr and the first stage pro-
posal distribution q0 are sampled using an acceptance test to generate the final proposal
distribution q.

4. Resample: Samples xit of the final proposal distribution q are weighted by corresponding
importance weights wit, and resampled with replacement to generate Bel(xt).

We now explain the four steps of the CGR algorithm in detail.

The Predict Step

Let the samples of the past belief, Bel(xt−1) be given by xit−1. These samples are then evolved
using the motion model of the robot to generate a new set of samples q0 =

{
xiq0

}
i=1:m

as
xiq0 ∼ p(xt|xit−1, ut−1). This sample set q0 is called the first stage proposal distribution, and
takes time complexity O(m) to compute.

The Refine Step

The Refine step is central to the CGR algorithm. It corrects sample estimates that contradict
the observations (e.g., when the LIDAR scan shows the robot to be in the center of the corridor,
but the sample is closer to the left wall). This results in the CGR algorithm sampling less along
directions that have low uncertainty in the observation model while maintaining samples along
directions of high uncertainty.

For the CGR algorithm, estimates of the first order differentials (the gradients) of the obser-
vation model, δ̂

δx
p(st|x) must to be computable. Given these gradients, the Refine step performs

gradient descent for r iterations, generating at iteration i the i-th stage proposal distribution.
Algorithm 4 outlines the Refine step.

Performing multiple iterations of gradient descent allows the estimates of the gradients of
the observation model to be refined between iterations, which results in higher accuracy. The
computation time required for the Refine step scales as O(rm). In general, smaller values of the
step size η, paired with larger values of r result in higher accuracy.

The Refine step performs rm total iterations, each of which requires the computation of
the gradient of the observation model. Therefore, the time complexity of the refine step is
O(rmf(. . .)) where f is a function that depends on the observation model.

To generate the final distribution q, Samples xiqr from the r-th stage distribution are proba-
bilistically chosen over the corresponding samples xiq0 of the first stage distribution proportional
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Algorithm 4 The Refine step of CGR

1: Let q0 =
{
xjq0

}
j=1:m

2: for i = 1 to r do
3: qi ← {}
4: for j = 1 to m do
5: xj

qi
← xj

qi−1 + η
[
δ̂
δx
p(st|x)

]
x=xj

qi−1

6: qi ← qi ∪ xj
qi

7: end for
8: end for

to the value of the acceptance ratio ρi, as:

ρi = min

{
1,
p(st|xiqr)
p(st|xiq0)

}
(4.3)

This acceptance test allows the algorithm to probabilistically choose samples that better
match the observation model p(st|x). If the Refine step does not produce samples with higher ob-
servation likelihood than the samples in the first stage distribution, the final proposal distribution
q will have a mixture of samples from q0 and qr. Furthermore, if the Refine step results in most
samples having higher observation likelihood than the samples in the first stage distribution, the
final proposal distribution q will consist almost entirely of samples from qr.

Samples from the final proposal distribution q thus generated are weighted by importance
weights, and resampled to compute the latest belief Bel(xt) in the Update step. The acceptance
test step has time complexityO(m) since it reuses the cached values of the observation likelihood
computed on the first and last iterations of the Refine step.

The Update Step

The importance weights for the CGR algorithm are different from those of the MCL-SIR algo-
rithm, since in the CGR algorithm, the proposal distribution q is not the same as the samples of
the motion model. To derive the expression for the importance weights of the CGR algorithm,
we first factor out the belief update (Equation 4.1) as:
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Bel(xt) ∝ p(st|xt)p(xt|ut−1, Bel(xt−1)) (4.4)

p(xt|ut−1, Bel(xt−1)) =∫
p(xt|xt−1, ut−1)Bel(xt−1)dxt−1 (4.5)

The proposal distribution from which the belief Bel(xt) is computed, is q. Hence, the (non-
normalized) importance weights wit for samples xit in q are given by:

wit =
p(st|xit)p(xit|ut−1, Bel(xt−1))

q(xit)
(4.6)

In this expression, p(st|xit) is computed using the observation model, and the remaining two
terms p(xit|ut−1, Bel(xt−1)) and q(xit) are computed by kernel density estimates at the locations
xit using the samples from q0 and q for support of the kernel density respectively. Since the
importance weight accounts for the motion model (from the term p(xit|ut−1, Bel(xt−1))) as well
as the refined proposal distribution (q(xit)), the CGR algorithm avoids “peak following” behavior
which contradict the motion model.

The Resample Step

The samples in q are resampled in proportion to their importance weights using low variance
resampling [87] to obtain the samples of the latest belief, Bel(xt). The update step has time
complexity O(m2). It is quadratic in the number of particles since it requires computation of
kernel density functions.

Thus, given the motion model p(xt|xt−1, ut−1), the observation model p(st|x), the gradients
of the observation model δ

δx
p(st|x) and the past belief Bel(xt−1), the CGR algorithm computes

the latest belief Bel(xt). Adding the runtime of all the steps together, the CGR algorithm is per-
formed in O (rmf(. . .) +m2) time. The formulation of the observation model and its gradients
is the subject of the next Section.

4.2.2 Vector Map Observation Models

We are interested in localizing an indoor mobile robot using the CGR algorithm applied to point
cloud sensors and a vector map Mvector (Chapter 3.5.1) Using the vector map, we develop an
observation model for 2D point clouds and projected 3D point clouds.
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2D Point Cloud Observation Model

The 2D point cloud observation model is used for sensors like a planar LIDAR scanner, which
generate point clouds in 2D space.

Let the 2D point cloud generated by the sensor (e.g., 2D LIDAR scanner) be denoted by the
set of 2D points SP2D

= {pi}i=1:n2D
. Without loss of generality, we assume that the origin of

the sensor coincides with the origin of the robot. Let the observation be s = SP2D
, and the pose

of the robot x be given by x = {xl, xθ} where xl is the 2D location of the robot, and xθ its
orientation angle. The observation likelihood p(y|x) is then computed as follows:

1. For every point pi in SP2D
, line li (li ∈Mvector) is found by ray casting such that the ray in

the direction of pi − xl and originating from xl intersects li before any other line.

2. The perpendicular distance di of pi from the (extended) line li is computed.

3. The total (non-normalized) observation likelihood p(y|x) is then given by:

p(SP2D
|x) =

n∏
i=1

exp

[
− d2

i

2fΣS
2

]
(4.7)

Here, ΣS is the standard deviation of the distance measurements of a single ray, and f (where
f > 1) is a discounting factor to discount for the correlation between rays. The gradient of the
observation model is therefore given by:

δ

δx
p(SP2D

|x) = −p(SP2D
|x)

fΣS
2

n∑
i=1

[
di
δdi
δx

]
(4.8)

The term δdi
δx

in this equation has two terms, corresponding to the translation component δdi
δxl

and
the rotational component δdi

δxθ
. These terms are computed by rigid body translation and rotation of

the point cloud P respectively. Due to errors in the pose of the robot, the point to line correspon-
dences may be incorrect for some points, which would lead to errors in the gradient estimate.
Hence, some estimated outlier rejection is necessary before evaluating Equation 4.8 for all the
points. Outlier rejection is performed by two checks:

1. If the distance di is greater than a threshold εdist, the corresponding point pi is rejected.

2. If the angle between the line joining successive points pi, pi+1 and either of the correspond-
ing lines li, li+1 is greater than a threshold εang, then the points pi, pi+1 are rejected.

Performing the ray cast operation from the estimated pose takes time O(s + n), and the
computation of the observation likelihood and gradients is O(n). So the total complexity for the
observation model is f(s, n) = O(s+ n). Hence the complexity of vector-based 2D point cloud
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localization with CGR is O (rm(s+ n) +m2). In comparison, the time complexity of MCL-
SIR using a vector map is O (m+m · (s+ n)). Thus, for the same number of particles, CGR
is generally slower than MCL-SIR. However, since CGR-localization provides greater accuracy
than MCL-SIR, it can be run with far fewer particles, as we will demonstrate experimentally.

Projected 3D Point Cloud Observation Model

For localization using depth cameras, we use the FSPF-generated plane filtered point cloud SP
and the corresponding plane normal estimates SR (Chapter 3.3.1). Since the map Mvector on
which the robot is localizing is in 2D, the 3D filtered point cloud SP and the corresponding
plane normals SR are first projected onto 2D to generate a 2D point cloud S ′P along with the
corresponding normalized normals S ′R. Points that correspond to ground plane detections are
rejected at this step. The projected 3D point cloud S ′P is then treated identically to the 2D point
cloud, and its observation likelihood and space gradients are computed using the 2D point cloud
observation model.

4.2.3 Experimental Results

Our experiments were performed on our custom built omnidirectional indoor mobile robot CoBot,
which is equipped with a Hokuyo URG-04LX planar LIDAR scanner (which produces 2D point
clouds) and a Microsoft Kinect sensor (which produces 3D point clouds). We separately evalu-
ated CGR using the 2D point cloud model, and CGR with the projected 3D point cloud model.

CGR with 2D Point Cloud Model

We ran a series of experiments to compare the performance of the CGR algorithm with the MCL-
SIR algorithm and to test the effectiveness of the CGR algorithm alone over extended periods
of time. The MCL-SIR algorithm was implemented using the same map representation and
observation models as those used for the CGR algorithm. The only difference is that for the
MCL-SIR algorithm, there were no refine step, and the usual MCL-SIR update equations were
used.

In the first series of experiments, we logged sensor data while driving the robot around the
map, traversing a path 374m long. The environment is the 7th floor of the Gates-Hillman Center
at Carnegie Mellon Univrsity. As in a typical human office environment, there were a few un-
mapped objects in the environment like tables, chairs, planters, and trash cans. There was also
regular human traffic in the corridors, acting as dynamic obstacles in the path of the robot. The
true robot location was manually annotated by aligning the sensor scans to the map. This data
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Figure 4.1: The offset (a) and angular (b) errors from the true robot locations for the MCL-SIR
and CGR algorithms

was then processed offline with varying number of particles to compare success rates, accuracy
and run times for CGR as well as MCL-SIR. At the beginning of every trial, the particles were
randomly initialized with errors of up to ±4m and ±40◦. The number of particles m was varied
from 2 to 302, with 80 trials each for CGR and MCL-SIR for each value of m. The values of f
(the observation discount factor) and r (the number of iterations in the Refine step) were 2000

and 3 respectively for all trials. The step size η used was 0.1. The logged data was replayed
offline for MCL-SIR and MCL-CGR for 100 times per approach, with a unique random seed
each time.

Accuracy Figure 4.1 shows the mean localization errors for the two algorithms for different
numbers of particles. Both graphs show that localization using CGR is consistently more accu-
rate than when using MCL-SIR. In particular, localizing using CGR with 20 particles has smaller
mean errors than localizing using MCL with even 200 particles.

Another advantage of the CGR algorithm over MCL-SIR is that the CGR algorithm has lower
variance across trials. Figure 4.2 shows the 70% confidence interval sizes for the two algorithms,
for different numbers of particles. The variance across trials is consistently smaller for the CGR
algorithm.

Success Rates A trial was counted as being “successful” if the estimated end location was
within 1m of the true robot location and if the error at every time step was less than 1m. Fig-
ure 4.3 shows the success rates of the CGR and MCL-SIR algorithms for varying numbers of
particles.
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Figure 4.2: The size of the 70% confidence intervals for the offset (a) and angular (b) errors for
the MCL-SIR and CGR algorithms

 

 

CGR

MCL-SIR

S
u
cc
es
s
R
a
te

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Figure 4.3: Success rates of the CGR and MCL-SIR algorithms

Computational Tradeoffs Figure 4.4 shows the computational tradeoff for running CGR and
MCL-SIR as a scatter plot of the localization offset error and the average run time of the complete
belief update. Different data points represent different numbers of particles. This figure indicates
that for any desired maximum computational runtime, CGR provides lower mean localization
errors than MCL-SIR.

CGR with projected 3D Point Cloud Model

We evaluated the performance of our depth camera based localization and navigation algorithms
over two sets of experiments. The first set of experiments compare our approach using FSPF
CGR localization to three other approaches that use the Kinect for localization by simulating laser
rangefinder scans from the Kinect sensor. The second set of long run trials test the effectiveness
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Figure 4.4: Tradeoff between mean localization offset error and normalized computational run
times.

of our complete localization and navigation system over a long period of time.

To compare the accuracy in localization of the different approaches using the Kinect, we also
used a Hokuyo URG-04LX 2D laser rangefinder scanner as a reference. The autonomous long
run trials were run using the Kinect alone for localization and navigation. All trials were run
single threaded, on a single core of an Intel Core i7 950 processor.

Comparison of FSPF to Simulated Laser Rangefinder localization We compared our ap-
proach using FSPF CGR localization to the following three other CGR based laser rangefinder lo-
calization algorithms where the data from the Kinect sensor was used to simulate laser rangefinder
scans:

1. Extracting a single raster line from the Kinect depth image, reconstructing the correspond-
ing 3D points, and then down-projecting into 2D to generate the simulated laser rangefinder
scans. We call this approach the Kinect-Raster (KR) approach.

2. Randomly sampling locations in the Kinect depth image, and using the corresponding 3D
points to simulate the laser rangefinder scan. We call this approach the Kinect-Sampling
(KS) approach.

3. Reconstructing the full 3D point cloud from the entire Kinect depth image, and using all
these points to generate the simulated laser rangefinder scan. We call this approach the
Kinect-Complete (KC) approach.

In each of these cases, we used simulated laser rangefinder readings with the CGR algorithm for
localization.

For estimating the error in localization using the Kinect, we used the localization estimates
produced by the laser rangefinder CGR localization algorithm for reference. In the KR, KS
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Figure 4.5: Combined traces of all successful trials of all approaches: green (KR), red (KS), blue
(KC) and black (FSPF). FSPF CGR localization is seen to have the least variation across trials.

and KC approaches, the simulated laser rangefinder scan had a simulated angular range of 180◦

and an angular resolution of 0.35◦, although only part of this scan was populated with useful
information due to the limited angular field of view of the Kinect. The number of points sampled
in the KS approach was limited to 2000 points, the same as the number of plane filtered points
generated by FSPF.

We recorded a log with odometry and data from the Kinect sensor and the laser rangefinder
while traversing a path consisting of corridors as well as open areas with unmapped obstacles.
There was significant human traffic in the environment, with some humans deliberately blocking
the path of the robot. This log was replayed offline for the different localization approaches, run-
ning 100 times per approach, with randomly added 20% noise to the odometry data. Figure 4.5
shows the combined traces of the localization estimates for all the successful trials of each of the
approaches. A trial was said to be “successful” if the error in localization was less than 1m at
every time-step of the trial.

Figure 4.7 shows a cumulative histogram of the error in localization using the different ap-
proaches. The FSPF approach has significantly less error than the other three approaches. Fig-
ure 4.6 shows the cumulative failure rate as a function of the elapsed run time. The FSPF ap-
proach has a 2% failure rate at the end of all the trials, whereas all the other approaches start
failing after around 20s into the trials. The KR, KS, and KC approaches have total failure rates
of 82%, 62% and 61% respectively. The abrupt increase in failures around the 20s mark corre-
sponds to the time when the robot encounters unmapped objects in the form of humans, tables
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Figure 4.7: Cumulative histogram of errors in localization of the different approaches. For each
point (x, y) on the curves, the y value indicates the fraction of time that the algorithm had an
error less than the x value.

and chairs in an open area.

To compare the execution times, we kept track of the time taken to process the Kinect depth
images (including disk access times), and calculated the ratio of these execution times to the
duration of the trials. These values are indicative of the mean CPU processing load on the robot.
The values for the different algorithms were 0.01%, 3.6%, 56.6% and 16.3% for the KR, KS,
KC, and FSPF approaches respectively.

Insights into Experimental Results We have shown that CGR-FSPF is both more accurate
as well as more robust compared to CGR with random sampling (KR), scan extraction (KS), or
even using the complete point cloud (KC). We provide here some insights into these results.

The Kinect depth sensor, as described in Chapter 3.2, has a very limited field of view. There-
fore, when humans in the environment walking into the path of the robot, they occlude the sen-
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sor’s view of map features. Given that all the algorithms compared here are variants of Markov
Localization, observations are either evaluated to match the map, or ignored as not matching the
map. Therefore, for the robot’s localization estimates to be robust to observations of unmapped
objects, the localization algorithm needs to correctly reject observations that do not match the
map while still accepting observations that do match the map. The approaches of localizing us-
ing random sampling, scan extraction, and the complete point cloud all rely exclusively on outlier
rejection (Chapter 4.2.2) to reject observations that do not match the map.

However, observations that do not match the map, like humans, chairs, planters, and trash
cans are all non-planar objects. FSPF thus effectively ignores all such observations by filtering
them out since they are non-planar. Therefore, CGR-FSPF is especially robust to observations of
unmapped objects since FSPF efficiently rejects such observations, making it more robust than
the alternative approaches.

4.3 Graph-Map WiFi Localization

With the increasing prevalence of wireless LAN, “WiFi,” considerable work has been done on
using signal strength measurements from WiFi access points for localization. Approaches based
on wireless signal strength propagation models have been proposed [80], but due to the complex
interactions of WiFi signals in particular in indoor environments, data-driven signal map based
methods have been found more suitable [66]. WiFi-based localization has been shown to be
successful in different scenarios [3, 20, 34, 95] in terms of its ability to support humans or robots
to identify their locations. We present a WiFi signal strength based localization algorithm that
uses a parametric graph based representation of the environment, similar to [34]. In our case, the
graph is composed of the discrete points for which we collect the WiFi signal strengths, and the
observation model as well as the location hypotheses are constrained to lie strictly on the graph.

4.3.1 WiFi Observation Model and Constrained Particle Filter

Our WiFi Localization algorithm uses Monte Carlo Localization as reviewed earlier to maintain
a set of hypotheses of the robot location in real time. As part of the particle filter, we need an
observation model which can be used to calculate the probability of making a particular signal
strength measurement S at a location x, P (S|x).



4.3 GRAPH-MAP WIFI LOCALIZATION 53

The WiFi Observation Model

The WiFi signal strength mean and standard deviations of every access point are measured from
each vertex v ∈ Vwifi. Using this data, we model the WiFi signal strength mean and standard
deviation as being piecewise linear along the graph, with Gaussian noise. Let x be a location
on the edge e (e = 〈vi, vj,Γ〉) of the graph, between vertices vi and vj . Let vi = 〈xi〉, vj =

〈xj〉. Let W x denote the vector of mean signal strengths of every access point as seen from
location x. The component W x

k of vector W x is the mean WiFi signal strength of access point
ak (ak ∈ Awifi) as seen from location x. Similarly, let Σwifi

x denote the standard deviations of
the signal strengths of each access point as seen from location x, with Σwifi

x
k being the standard

deviation of the signal strength of access point ak as seen from location x. Hence, the linearly
interpolated mean signal strengths vector W x = [W x

1 . . .W
x
|Awifi|], and the standard deviations

vector Σwifi
x = [Σwifi

x
1 . . .Σwifi

x
|Awifi|] at location x are given by:

W x
k =

‖x− xj‖W ik + ‖x− xi‖W jk

‖xi − xj‖
(4.9)

Σwifi
x
k =

‖x− xj‖Σwifiik + ‖x− xi‖Σwifijk

‖xi − xj‖
(4.10)

During the operation of the robot, let S = [S1 . . . S|Awifi|] be a WiFi signal strength observa-
tion set, where Si is the measured WiFi signal strength of access point i. Hence, the probability of
making this observation S from a location x, ignoring unobserved access points (i.e. Si : Si = 0)
is given by:

P (S|x) =

i=|Awifi|∏
i=1,Si 6=0

(
2ε√

2πdxi
exp

(Si −W x
i )

2

2(Σwifi
x
i )

2

)
(4.11)

With this estimate of the observation model P (S|x) and the motion model of the robot
P (xt|xt−1, ut−1), the localization belief of the robot can be recursively updated with a particle
filter.

Constrained Particle Filter

Chapter 4.1 reviewed the implementation of a particle filter. For robot localization using WiFi
sensing, we use the observation model introduced in the previous section. We further make one
modification to the particle filter. After the update step but before the resample step of the particle
filter, we introduce an additional “Constrain” step. The constrain step ensures that the location
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Algorithm 5 ‘Constrain’ Algorithm

1: for i = 1 to |P| do
2: Let pi = 〈epi, di, oi, xi, yi, θi, wi, wci〉
3: fr ← di/(length of edge epi)
4: if fr > 1− thresh or fr < thresh then
5: Find edge e best associated with pi
6: if e! = epi then
7: epi ← e
8: Calculate new di
9: oi ← 0

10: end if
11: end if
12: widthi ← width of edge epi
13: if |oi|> widthi then
14: wci ← wi ∗ exp(−(abs(oi)− widthi/2)2)
15: else
16: wci = wi
17: end if
18: end for
19: Renormalize weights wci

hypotheses do not violate the graph constraints of the Mwifi, in particular the widths and lengths
of the edges. Algorithm 5 outlines the Constrain step. Here, the thresh term is a threshold term,
which is set to 0.1.

After every Update step, the particles are resampled using Sensor Resetting Localization
(SRL) [51], subject to a maximum Nmax and minimum Nmin number of particles. Algorithm 6
implements this.

To infer the location of the robot based on the particles pit, we perform K-Means clustering
of the particles by modifying the algorithm of [17] to take into account the constrained weights
wci of the particles. The reported location of the robot is then the location of the cluster with the
largest weight. During this inference step, we also estimate the “uncertainty” (σ) of the location
hypothesis as the weighted standard deviation of all the particles in the cluster with the maximum
weight. The “confidence” (c) of the location estimate is estimated as the weight of the cluster
with the maximum weight.

To infer the orientation of the robot, we use a mixture of dead reckoning with global wall
orientation data, similar to the method described in [86]. The property θi of each particle pi is
allowed to evolve using the robot’s motion model when no wall is detected by the robot. When
walls are detected by the robot (using the LIDAR sensor), the property θi of every particle pi is
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Algorithm 6 ‘Resample’ Algorithm

1: N ← 0
2: Sort Particles pi in increasing order of wci
3: for i = 1 to |P| do
4: Let pi = 〈epi, di, oi, xi, yi, θi, wi, wci〉
5: if wci < wcmin then
6: N ← N + 1
7: end if
8: end for
9: N ← N + |P|∗min(Nmax|P| ,max(Nmin|P| , wcsum/κ))

10: for i = 1 to N do
11: Draw (xi, yi) with probability P (S|xi, yi)
12: wci ← P (S|xi, yi)
13: wi ← P (S|xi, yi)
14: oi ← 0
15: Find edge e best associated with pi
16: calculate di for particle pi on edge e
17: end for

updated using global wall orientation information and the location of the particle.

Experimental Evaluation

We evaluate the performance of our WiFi localization algorithm based on a number of parame-
ters.

Convergence In this test, the robot was stopped at 20 randomly chosen locations on the map,
and the particles initialized with equal weights randomly distributed across the map. Figure 4.8
shows a plot of the mean uncertainty σ in localization with time. It took a mean of 8s for the
location uncertainty to converge to less than 1m.

Accuracy In this test, the robot was again stopped at 20 randomly chosen locations on the map,
and the particles initialized with equal weights randomly distributed across the map. The location
estimates were allowed to converge till the uncertainty of localization σ stopped decreasing. The
reported location estimates were then compared to the ground truth. Table 4.1 sums up the results
of this test.

“Incidental” Observations While the robot is performing various tasks, it is reasonable to
expect that it would drop WiFi Signal Strength readings from some access points. We wish to
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Figure 4.8: Uncertainty σ vs. t: Convergence of Location Estimates. Black, solid: Mean of all
trials. Grey, dotted: Individual trials.

Value Mean Minimum Maximum
Localization Error 0.7m 0.2m 1.6m
Localization Uncertainty 0.6m 0.2m 0.9m
Convergence Time 11s 7.4s 16.5s

Table 4.1: Accuracy of WiFi Localization

investigate the impact of dropped signals on the localization accuracy in this experiment. To
do so, the robot is stopped at a fixed location on the map, and is allowed to collect at least
one signal strength measurement from all WiFi access points in range. Next we selectively and
deliberately drop signal strength measurements from all permutations of the access points to
simulate dropped signals. Figure 4.9 shows the results of this test. A total of 15 access points
were accessible from the location, and even with 9 dropped signals (6 visible access points), the
mean error in localization is less than 2m.
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Figure 4.9: Localization Error vs. Number of visible Access Points
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4.3.2 Experimental Results

Our WiFi localization and navigation algorithms were tested using CoBot, deployed on the third
floor of Wean Hall at Carnegie Mellon University.

Parameters of The Tests and Test Methodology

The graph representation of the map built during the Learning Phase had 223 vertices and 222
edges. There were a total of 106 unique WiFi access points. The particle filter used 500 particles
that were initialized with random orientations and locations, and equal weights.

In order to test the localization and navigation system, we ran a series of experiments, each of
which were conducted as follows. At the start of each experiment, a list of 12 random locations
over the map were generated such that no two successive locations were from the same corridor,
and the robot had to autonomously navigate to these locations sequentially.

Results

Each experiment lasted for an average of 28 minutes, and covered an average distance of 818
meters. In total, this experiment was repeated 8 times, adding up to over 3.5 hours of robot nav-
igation time, and a total path length of over 6.5 km. Out of these runs, for 2 of these runs, while
the robot navigated between these locations, its true location was manually recorded periodically
to use as ground truth for comparison with the localization estimates.
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Figure 4.10: Trace of the path traversed by the robot

Figure 4.10 shows a trace of the path followed by the robot during one of the experiments.
This trace was reconstructed using the localization estimate of the WiFi localization algorithm.
Figure 4.11 shows the evolution of the robot’s uncertainty σ over the first ten minutes of this
experiment. During all the 8 experiments, the robot encountered a total of 33 action failures,
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Figure 4.12: Cumulative histogram of localization error

but autonomously recovered from all of them. Figure 4.12 shows a cumulative histogram of the
location accuracy of the robot for the 2 experiments with the manually annotated ground truth
data. The robot’s localization error is a mean of 1.2m, and the error is less than 1.8m for greater
than 80% of the time. It is worth noting that while the robot is in motion, the localization has
more errors compared to when the robot was stopped. This can be attributed to odometry errors,
latency in signal strength readings, and unobserved signal strengths.

4.4 Multi-Sensor Localization for Diverse Environments

In order to overcome individual sensor limitations, a number of algorithms for mobile robot
localization have been proposed, which fuse multiple sensor feeds. There are a number of ap-
proaches to sensor fusion [47] for robot localization, including merging multiple sensor feeds at
the lowest level before being processed homogeneously, and hierarchical approaches to fusing
state estimates derived independently from multiple sensors.

In this chapter, we present an approach that instead of merging sensor feeds into a single al-
gorithm, selects one out of a set of localization algorithms, each of which independently process



4.4 MULTI-SENSOR LOCALIZATION FOR DIVERSE ENVIRONMENTS 59

different sensory feeds [13]. The selection is driven by the results of evaluating the performance
of the individual algorithms over a variety of indoor scenarios that the mobile robot will en-
counter over the course of its deployment. We use three localization algorithms, each using a
different sensor: a laser rangefinder based localization algorithm that uses a Corrective Gradi-
ent Refinement [8] particle filter, a depth camera based localization algorithm [11], and a WiFi
localization algorithm that is a cross between two previously demonstrated approaches [10, 34].
Algorithm selection [72] is a general problem that has been applied to problems like SAT solv-
ing [93], and spawned the field of “meta-learning” [82]. Here we apply the problem of algorithm
selection to the problem of mobile robot localization.

By running each localization algorithm independently, we can decide to pick one over the
others for different scenarios, thus avoiding the additional complexity of fusing dissimilar sen-
sors for a single algorithm. To determine which algorithm is most robust in which scenario, we
collected sensor data over the entire map, and evaluated each of the algorithms (with respect to
ground truth) over the map and over multiple trials. This data is used to determine which algo-
rithm is most robust at every location of the map. Additionally, by comparing the performance
of the algorithms while the robot navigates in corridors and while it navigates in open areas, we
show that different algorithms are robust and accurate for different locations on the map.

4.4.1 Multi-Sensor Localization

We use three sensors for localization - a laser rangefinder, a depth camera, and the WiFi re-
ceived signal strength indicator (RSSI). Each sensor, along with robot odometry, is processed
independently of the others. For the laser rangefinder, we use a Corrective Gradient Refinement
(CGR) [8] based particle filter. The depth camera observations are processed by the Fast Sam-
pling Plane Filtering [11] algorithm to detect planes, which are then matched to walls in the map
to localize the robot using a CGR particle filter. The WiFi RSSI values observed by the robot are
used for localization using a Gaussian Processes-Learned WiFi Graph. This WiFi localization
algorithm combines the strengths of graph-based WiFi localization [10] with Gaussian Processes
for RSSI based location estimation [34].

WiFi localization using a graph based WiFi map [10] provides fast, accurate robot localiza-
tion when constrained to a graph. In this approach, the mean and standard deviations of WiFi
RSSI observations are approximated by linear interpolation on a graph. This leads to a computa-
tionally efficient observation likelihood function, with the computation time of each observation
likelihood being independent of the number of training instances. The disadvantage is that to
construct the WiFi graph map, the robot needs to be accurately placed at every vertex location of
the graph to collect WiFi RSSI training examples.
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RSSI based localization using Gaussian Processes [34], on the other hand, does not require
training observations from specific locations. Given an arbitrary location x∗ and the covariance
vector k∗ between the training locations and x∗, the expected mean µx∗ and variance is given by,

µx∗ = kT∗ (K + σ2
nI)−1y (4.12)

σ2
x∗ = k(x∗, x∗)− kT∗ (K + σ2

nI)−1k∗. (4.13)

Here, σ2
n is the Gaussian observation noise, y the vector of training RSSI observations, and

k(·, ·) the kernel function used for the Gaussian Process (most commonly a squared exponential).
The drawback with this approach is that the computational complexity for Eq.4.12-4.13 grows
quadratically with the number of training examples, which is more than 100, 000 per access
point for our single floor map. Our approach combines the advantages of both algorithms while
overcoming each of their limitations. In our approach, training examples are first collected across
the map while driving the robot around (not from any specific locations). Next, using Gaussian
Processes, the WiFi mean and variance for the nodes of a WiFi Graph (with regularly spaced
sample locations on the map) are learned offline. Once the WiFi graph is learned, WiFi mean
and variance at locations during run time are estimated by bicubic interpolation across nodes of
the graph.

4.4.2 Comparing Localization Algorithms

To evaluate the robustness of the different localization algorithms over a variety of environ-
ments, we collected laser scanner, depth camera, and WiFi sensor data while our mobile robot
autonomously navigated around the map. The navigation trajectory covered each corridor mul-
tiple times, and also covered the open areas of the map. The sensor data thus collected was then
processed offline for 100 times by each of the algorithms (since the algorithms are stochastic
in nature), and the mean localization error across trials evaluated for each sensor. Figure 4.13
shows the errors in localization when using the three different sensors. It is seen that in corridors,
the laser rangefinder based localization algorithm is the most accurate, with mean errors of a few
centimeters. The depth camera (Kinect) based localization has slightly higher errors of about ten
centimeters while the robot travels along corridors. The WiFi localization algorithm consistently
had errors of about a meter across the map.

We then ran additional trials in a large open area of the map. In these trials, the robot started
out from the same fixed location, and was manually driven around the open area. The robot was
then driven back to the starting location, and the error in localization noted. Figure 4.14a shows
part of such a trajectory as the robot was driven around the open area. This was done 20 times
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(a) (b) (c)

Figure 4.13: Errors in localization using (a) a laser rangefinder, (b) the Kinect, and (c) WiFi,
while autonomously driving across the map. The error in localization for every true location of
the robot is coded by color on the map. All units are in meters.

for each localization algorithm, and the combined length of all the trajectories was over 2Km,
with approximately 0.7Km per algorithm. Figure 4.14b shows a histogram of the recorded errors
in localization at the end of the driven trajectories for each localization algorithm. Table 4.2
tabulates the minimum, maximum, and median errors for the different algorithms. It is seen
that the laser rangefinder has the smallest minimum error during trajectories that the algorithm
tracked successfully, but also has the largest maximum error for trajectories that the algorithm
failed to track. The WiFi localization algorithm, however, was consistently able to track the
robot’s trajectory for every trial, with a median error of less than a meter.

Laser Rangefinder Kinect WiFi
Min Error 0.01 0.17 0.20
Max Error 14.77 3.47 1.88

Median Error 1.83 1.08 0.76

Table 4.2: Errors in localization while using laser rangefinder, Kinect, and WiFi while driving
the robot in the open area

4.5 Summary

In this chapter, we introduced two new variants to Markov Localization: Corrective Gradient
Refinement (CGR), and Graph-Map WiFi localization. For CGR, we introduced two observation
models, one for planar laser rangefinders, one for depth cameras with plane-filtered 3D points
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Figure 4.14: Trials in the open area: (a) part of a test trajectory of the robot, and (b) histogram
of errors in localization across trials for each algorithm.

generated by FSPF (Chapter 3.3.1). We presented experimental results of localization using the
algorithms introduced. Finally, we compared the tradeoffs in localization accuracy in different
areas using the different algorithms, and showed that the different algorithms complement each
other in terms of accuracy and robustness in different scenarios.



Chapter 5

Episodic Non-Markov Localization

Human environments, particularly indoor ones, have elements of permanence - the architectural
structure of a building is unlikely to change over time. However, such environments also include
movable and moving objects. Movable objects like furniture and doors appear static, but are
likely to be moved around frequently.

We introduce a novel localization algorithm that explicitly reasons about observations of non-
mapped objects without saving locally static maps. We call this “non-Markov localization” be-
cause it relaxes the Markov assumption that observations are independent given the map, which
is the central assumption of Markov localization. Episodic non-Markov localization maintains a
belief of the history of pose estimates of the robot over “episodes” of observations of unmapped
objects. For every time-step, it classifies observations into those arising from the map (“Long
Term Features” (LTFs)), from unmapped static objects (“Short Term Features” (STFs)), or from
moving objects (“Dynamic Features” (DFs)). Observations made from LTFs are matched to a
static map, while correlations between observations from STFs at different time steps are com-
puted. The belief is framed in terms of a cost function over odometry observations, observations
of LTFs related to the static map, and correlations between observations of STFs from differ-
ent time steps. The maximum likelihood estimate of the belief is incrementally computed over
successive steps by functional non-linear least-squares (NLLS) optimization over the cost func-
tion. The cost function representation of the belief is distinct from other belief representations
such as Particle Filters [29], Extended Kalman Filters (EKFs) and Unscented Kalman Filters
(UKFs) [45], and Partially Observable Markov Decision Processes (POMDPs) [48]. As we shall
show, the cost function representation allows Episodic non-Markov Localization to tractably
compute the maximum likelihood estimate of the belief even over long episodes, which would
not have been possible using particle filters, EKFs, UKFs, or POMDPs.

63
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5.1 The Varying Graphical Network Representation

To represent the varying nature of this problem, we introduce a new graphical model, the “Vary-
ing Graphical Network” (VGN). As in a dynamic Bayesian network (Chapter 2.1), a VGN in-
cludes certain periodically repeating nodes and edges that do not change with the belief. We
term these the non-varying nodes and edges. A VGN includes two additional structural elements:
varying nodes and varying edges. The presence and structure of the varying nodes and varying
edges are not known a-priori, and are estimated jointly with the belief. Since the estimates of
the structure may change with the belief, the structure is likely to change as new observations
become available.

VGNs provide an accurate representation for non-Markov localization. The presence of LTFs
and their relations to the map, and the correlations between successive poses of the robot due to
odometry observations are encoded by the non-varying edges and nodes. The presence of STFs
and DFs is encoded by the presence of associated varying nodes. The correlations between STFs
observed at different time-steps is encoded by the varying edges. Figure 5.1 shows an example
instance of a VGN for non-Markov localization.

Figure 5.1: An example instance of a Varying Graphical Network (VGN) for non-Markov local-
ization. The non-varying nodes and edges are denoted with solid lines, and the varying nodes
and edges with dashed lines. Due to the presence of short term features (STFs) and dynamic
features (DFs), the structure is no longer periodic in nature. The exact structure of the graph will
depend on the STFs and DFs present.

The varying structure of the VGN, including the varying nodes consisting of the STFs and
DFs and the varying edges indicating correlations between STFs and observations, is not enu-
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merable a priori since there is no way of predicting beforehand the state of the unmapped static
and dynamic objects in an environment. The structure of the VGN is dependent on the exact
locations of the STFs, the trajectories of the DFs, and from which poses of the robot’s trajectory
the STFs and DFs are visible. The STFs and DFs cannot, in general, be added to the map since
for any pose in the world, the robot will encounter different STFs and DFs at different times.

In order to explicitly account for the effect of the past robot pose estimates x1:n on future
observations and pose estimates, we solve for the belief over the complete history of robot poses,
Bel(x1:n). The dimension of the state space of the belief over the complete history of robot poses
x1:n is dn, where d is the dimension of the state space of each pose xi. For ground robots, d = 3,
corresponding to the Cartesian coordinates of the robot location, and the robot angle. Due to the
prohibitively large state space, we concentrate on evaluating the belief in the neighborhood of its
maximum likelihood estimate (MLE). The MLE of the belief is given by x∗1:n such that

x∗1:n = arg max
x1:n

(Bel(x1:n)). (5.1)

Since the VGN for non-Markov localization has no predefined structure, it might seem that
computation of the belief would require storing the complete history of all states and observations
since the robot was turned on. However, in practice this is not necessary, as we shall now show.

5.2 Episodes in Non-Markov Localization

Suppose there exists a time step ti such that all observations and state estimates made after ti,
given xi, are independent of all prior observations and state estimates:

P (x1:n|x0, s1:n, u1:n,M) =

P (x1:i|x0, s1:i, u1:i,M)× P (xi+1:n|xi, si+1:n, ui+1:n,M). (5.2)

This conditional independence implies that there are no STF observations after ti that corre-
spond to STF observations before ti. In such a case, the history of states and observations prior
to ti, called the “episode” t0:i−1, can be discarded when estimating Bel(xi:n) over the episode
ti:n. We assume such episode-boundary time-steps like ti exist, allowing real-time non-Markov
localization with limited computational resources. Episode-boundary time-steps frequently oc-
cur in practice when a robot either does not observe any STFs for one or more time-steps, or if
all the STFs prior to the episode-boundary are unrelated to the STFs after, for example when a
robot leaves one room and enters another through a doorway. Figure 5.2 shows an example VGN
near an episode boundary, highlighting the absence of any varying edges crossing the episode
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boundary.

Figure 5.2: An example VGN demonstrating the presence of an episode in non-Markov local-
ization. Note the absence of any varying edges that cross the red line indicating the episode
boundary. Hence the pose xi is an episode boundary, where all previous poses up to xi−1 are in
the previous episode, and poses xi and later are in the latest episode. Observations si−1 and older
thus no longer need to be stored.

A special case of such a transition is when the robot does not encounter any STFs or DFs for
a sequence of time steps from ti to tj , so that

P (x1:n|x0, s1:n, u1:n,M) =P (x1:i|x0, s1:i, u1:i,M)×
k=j∏
k=i+1

P (xk|xk−1, uk, sk,M)×

P (xj+1:n|xj, sj+1:n, uj+1:n,M). (5.3)

In this case, from ti to tj , the Markov assumptions hold, and Markov localization can be used
during this sequence.

Thus, the history of observations and state estimates of the robot can be divided into multiple
episodes such that only observations and state estimates of the latest episode need be considered
to estimate the latest robot pose xn.

For the rest of this chapter, to simplify notation, we will refer to observations of LTFs, STFs,
and DFs directly as LTFs, STFs, and DFs, respectively, with the understanding that henceforth
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they refer to the observations, not the actual objects that cause them.

5.3 Classification of Observations

For every time-step, the structure of the VGN, based on the classification of the observations into
LTFs, STFs and DFs, is re-evaluated prior to updating the MLE of the belief. In this work the
sensor we use is a laser rangefinder, so each observation si is a set of ni 2D points si = {pij}j=1:ni

observed by the robot. We represent the pose xi of the robot on the map at time-step i as an affine
transform Ti that consists of a 2D rotation followed by a 2D translation. The affine transform Ti

is computed from the latest esimate of the pose xi for all poses in the latest episode except for the
newset pose xn. For xn, the corresponding affine transform Tn is estimated by forward-predicting
pose xn−1 using odometry observations un. Thus, for every 2D point pij observed by the robot
in its own reference frame, the corresponding location of the point in the global reference frame
of the map is given by Tipij . Each point pij has to be classified as an LTF or as an STF or as
a DF, and depending on its classification, results in addition of varying edges to the VGN for
non-Markov localization. Figure 5.3 demonstrates the steps in the classification of observations
in an example with two poses.

5.3.1 Classification of Long-Term Features

We use a vector map (Chapter 3.5.1) representation Mvector = {li}1=1:s for the permanent map,
consisting of a set of s line segments li. To evaluate which of the observed points pik are LTFs,
an analytic ray cast(Chapter 3.5.1) is performed from the latest MLE of xi. The result of the
analytic ray cast is a mapping from pij → lj ∈ Mvector, indicating that the line segment lj from
map Mvector is the most likely line in the map to be observed by the point pij . Let dist(p, l)

denote the perpendicular distance of point p from the line segment l where both p and l are in the
reference frame of the map. The observation likelihood P (pij|Ti,Mvector) of the point pij is then
given by

P (pij|xi,Mvector) = exp

(
−

dist(Tip
i
j, lj)

2

Σs

)
, (5.4)

where Σs is the scalar variance of observations, which depends on the accuracy of the sensor
used. Thus, given the location of the observed points in the reference frame of the map, obser-
vations are classified as LTFs if the observation likelihood of the point given the map is greater
than a threshold, P (pij|xi,Mvector) > εLTF. Observed points pij that satisfy this condition are
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(a)

(b)

(c) (d)

Figure 5.3: An example of classification of observations by EnML from two poses. The robot
poses are shown as blue triangles, and the observations are shown as dots. Observations from
two poses (a) are first independently compared to the vector map to find LTF observations. The
remaining non-LTF observations (b) are aligned (c) with the last pose prior, and (d) matching
observations are classified as STFs. The remaining observations are classified as DFs.
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classified as LTFs, and those that do not are classified as non-LTFs. The set LTFi ⊆ si denotes
the set of points in si that have been classified as LTFs, and LTFi the set of points that have been
classified as non-LTFs. The sets LTFi and LTFi are thus given by

LTFi =
{
pij ∈ si|P (pij|xi,Mvector) > εLTF

}
, (5.5)

LTFi = si \ LTFi. (5.6)

5.3.2 Classification of Short-Term Features

Observed points that are classified as non-LTFs could potentially be STFs. To check if an ob-
served point pij ∈ LTFi is an STF, it is compared to all non-LTF points observed prior to time-
step i to check if they correspond to observations of the same point. Given a point pij ∈ LTFi

observed at time-step i and another point plk ∈ LTFl observed at a previous time-step l, the prob-
ability that both the observations correspond to the same point is given by the STF observation
likelihood function,

P (pij, p
l
k|xi, xl) = exp

(
−
||Tipij − Tlplk||2

Σs

)
(5.7)

where Σs is the scalar variance of observations. Therefore, a non-LTF point pij ∈ LTFi is
classified as an STF if there exists a point plk ∈ LTFl from a time-step l, l < i such that
P (pij, p

l
k|xi, xl) > εSTF:

STFi =
{
pij ∈ LTFi|∃plk ∈ LTFl : P (pij, p

l
k|xi, xl) > εSTF

}
. (5.8)

To speed up the correspondence check, points pij ∈ si from every observation si are stored in
KD-trees [6]. The STF observation likelihood function for a pair of matching STF observations
pij and plk introduces a correlation between observations si and sl since pij ∈ si and plk ∈ sl.
For every such pair of matching STF observations, the VGN of non-Markov localization thus
includes a varying node representing the unmapped static object observed as STFs at different
time-steps, and a pair of varying edges joining the varying node and each of the observations si
and sl.

5.3.3 Classification of Dynamic Features

Observations that are classified as neither LTFs nor STFs correspond to objects that were ob-
served at one particular location for only one particular time-step, and were not observed at any
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other time-step at the same location. This implies that these objects are not static, and hence their
observations are classified as DFs, DFi = si\LTFi\STFi. In this work, we do not actively track
DFs, so the correlations between observations due to DFs are not used to further refine the belief.
However, points that are classified as DFs in one pose, at one iteration of the EnML update may
subseqently be matched with points observed at future poses, at which time they will become
STFs.

5.4 Cost Function Representation of Belief

As has been described earlier in Chapter 5.1, the state space of the belief in EnML is dn, where
d is the dimension of the state space of each pose, and n is the number of poses in the latest
episode. There are two challenges to maintaining the belief as thus described:

1. The dimensionality of the state space is considerably larger than for other localization
algorithms. For example, for a ground robot, while the state space of other localization
algorithms is 3 dimensional (x, y, rotation), for an episode length of 10 poses EnML has a
state space of 30 dimensions.

2. The dimensionality of the state space is variable for EnML. The dimensions of the state
space of EnML increases as new poses are added to the latest episode, and decreases when
a new episode boundary is discovered, resulting in the latest episode being shortened.

Due to these challenges, commonly used belief representations such as Particle Filters, EKFs,
UKFs, and POMDPs are ill-suited to being used for EnML. Particle filters and POMDPs are
particularly poor choices for the belief representation of EnML since the number of particles
required by particle filters, and the size of the POMDP, both scale exponentially with the di-
mensions of the state space. To tractably estimate the MLE of the belief in EnML, we therefore
introduce a cost function representation of the belief. The components of cost function represen-
tation, as we shall present, relate directly to the different terms in the expression of the belief, and
the MLE can be tractably estimated by functional non-linear least-squares (NLLS) optimization
of the cost function.

We now examine the form of the belief in EnML. The belief is given by

Bel(x1:n) = P (x1:n|x0, s1:n, u1:n,M). (5.9)

Applying Bayes’ rule and separating out the terms involving sensing and odometry, we get

Bel(x1:n) ∝ P (s1:n|x1:n,M)P (x1:n|x0, u1:n). (5.10)
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Note that the odometry observations are independent at each step, so the pose update terms are
independent of each other, resulting in

Bel(x1:n) ∝ P (s1:n|x1:n,M)
i=n∏
i=1

P (xi|xi−1, ui). (5.11)

Each observation si is either a laser rangefinder scan, or a depth camera obstacle scan. Therefore,
si is a set of multiple points. Furthermore, these points could be from Long-Term Features,
Short-Term Features, or Dynamic Features:

si = sLTF
i ∪ sSTF

i ∪ sDF
i (5.12)

Exploiting the fact that different classes of observations (LTFs, STFs and DFs) are independent
of each other, the belief for Episodic non-Markov Localization thus becomes:

Bel(x1:n) ∝ P (sLTF
1:n |x1:n,M)P (sSTF

1:n |x1:n)P (sDF
1:n|x1:n)

i=n∏
i=1

[P (xi|xi−1, ui)] (5.13)

We do not track DFs, so the terms involving DFs are ignored and assumed to be take on a constant
value. The observations of LTFs, given the pose estimate and the map, are independent of each
other, and the observations of different STFs are independent of each other as well, resulting in,

Bel(x1:n) ∝
i=n∏
i=1

[
P (sLTF

i |xi,M)
]
P (sSTF

1:n |x1:n)
i=n∏
i=1

[P (xi|xi−1, ui)] (5.14)

∝ P (sSTF
1:n |x1:n)

i=n∏
i=1

[
P (sLTF

i |xi,M)P (xi|xi−1, ui)
]

(5.15)

∝
i=m∏
j=1

[
P (s

STFj
1:n |x1:n)

] i=n∏
i=1

[
P (sLTF

i |xi,M)P (xi|xi−1, ui)
]
. (5.16)

Note that in this expression, there are two parts: the first part consists of a product of m terms
P (s

STFj
1:n |x1:n) corresponding to the observation of STFs, and the second part consists of a product

of n terms P (sLTF
i |xi,M)P (xi|xi−1, ui). The first part consists of the terms that arise from

the varying nodes and varying edges of the Varying Graphical Network, while the second part
consists of the terms that arise from the repeating nodes and repeating edges of the Varying
Graphical Network.
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Recall from Equation 5.1 that we wish to compute the Maximum Likelihood Estimate (MLE)
x∗1:n such that

x∗1:n = arg max
x1:n

(Bel(x1:n)) (5.17)

= arg max
x1:n

(
i=m∏
j=1

[
P (s

STFj
1:n |x1:n)

] i=n∏
i=1

[
P (sLTF

i |xi,M)P (xi|xi−1, ui)
])

. (5.18)

To estimate the MLE of the belief, we first convert the belief from a probability distribution
representation to a cost function representation C such that

Bel(x1:n) = P (x1:n|x0, s1:n, u1:n,M)

∝ exp(−C(x1:n|x0, s1:n, u1:n,M)). (5.19)

The cost function C consists of a sum of m sub-cost functions cSTF
j corresponding to the STF

terms P (s
STFj
1:n |x1:n), n sub-cost functions cLTF

i corresponding to the LTF terms P (sLTF
i |xi,M),

and n sub-cost functions codom
i corresponding to the odometry terms P (xi|xi−1, ui). The com-

plete expression for C is thus given by

C(x1:n|x0, s1:n, u1:n,M) =

j=m∑
j=1

(
cSTF
j (s1:n|xi:n)

)
+

i=n∑
i=1

(
cLTF
i (si|xi,M) + codom

i (xi|xi−1, ui)
)
. (5.20)

The MLE is therefore computed by minimizing the cost function as

x∗1:n = arg min
x1:n

(C(x1:n|x0, s1:n, u1:n,M)) . (5.21)

There are two important properties of the cost-function representation of the belief that make
it a better representation for computing the MLE rather than the probability distribution respre-
sentation.

Quadratic Nature of Sub-Cost Functions An important property of the sub-cost functions
that we exploit is that they are all purely quadratic in form. The quadratic forms of the sub-cost
functions are introduced in the next section. Since all the sub-cost functions are purely quadratic,
Equation 5.21 can be solved by functional non-linear least-squares (NLLS) optimization.
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Numerical Stability The sub-cost functions scale as the log of the probability values of the
corresponding terms in the belief, and are thus less affected by numerical precision errors. Fur-
thermore, the sub-cost values are added instead of multiplied, as in the case of probability values,
thus further avoiding numerical precision errors.

Before we proceed to present the forms of the sub-cost functions, we first summarize here
the steps we took in deriving a cost-function form of the belief.

1. The belief is first factored into the odometry and sensing terms (Equation 5.10).

2. The sensing terms are further factorized into terms corresponding to the STFs and LTFs (Equa-
tion 5.13).

3. The LTF and odometry terms are decomposed into independent terms for each pose (Equa-
tion 5.16).

4. The belief is then represented in terms of a cost function, with each independent term in
the belief corresponding to a sub-cost function (Equation 5.20).

5. The MLE is then computed by functional NLLS optimization of the cost function (Equa-
tion 5.21).

The computation of each individual sub-cost function is the subject of the next section.

5.5 Computation of Sub-Cost Functions

The sub-cost functions are computed and stored as function objects [5], not as function values,
thus allowing the arg min over C to be computed in real time by non-linear optimization of cost
functions expressed as function objects [1]. Since the optimizer performs algorithmic differenti-
ation [40] of the function objects, it provides the same accuracy as symbolic optimization, with
much lower computational requirements.

The odometry sub-cost function codom
i relating poses xi and xi−1 with observed odometry ui is

given by

codom
i = (xi − xi−1 − ui)TΣ−1

o (xi − xi−1 − ui) (5.22)

where xi denotes the vector representation of pose xi, and Σo is the covariance on odometry
based on the motion model of the robot.

The sub-cost function for LTFs for pose i, cLTF
i depends on the observations of LTFs sLTF

i ∈ si
made at time-step ti. Let there be m LTF observations in sLTF

i , and for each point pji ∈ sLTF
i , j ∈

[1,m], let the corresponding line segment in the vector map Mvectorbe lj ∈ Mvector. Let dist p, l
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indicate the perpendicular distance of point p from line segment l. The LTF sub-cost function for
pose i is then given by

cLTF
i =

j=m∑
j=1

[
dist(Tip

j
i , lj)

2

Σs

]
, (5.23)

where Ti denotes the affine transform for pose xi as described in Chapter 5.3, and Σs is the
variance of the range sensor.

Let STF j consist of a pair of points from poses i and k, with point pi ∈ sSTF
i being the point

from pose i and point pk ∈ sSTF
k from pose k. The sub-cost function cSTF

j is then given by

cSTF
j =

||Tipi − Tkpk||2

Σs

. (5.24)

Note that all the sub-cost functions (Equations 5.22, 5.23, 5.24) are purely quadratic in form, as
required for non-linear least-squares optimization as described in Chapter 5.4.

5.6 Structure Analysis

Thus far we have introduced the EnML algorithm as agnostic of the algorithm that performs the
non-linear functional optimization of the cost function C. In principle, any general non-linear
optimization algorithm may be used to solve Equation 5.21 to estimate the MLE x∗1:n. We use the
Ceres-Solver [1] to solve Equation 5.21 using the Levenberg-Marquardt (LM) [55, 56] algorithm
with Sparse Normal Cholesky [21] as the linear solver. In this section, we examine the structure
of EnML from the view of the non-linear solver solving Equation 5.21, how the concept of
episodes in the VGN translates to the solutions of the non-linear solver, and how the structure of
the problem relates to SLAM and Markov localization.

The cost function C can be re-cast as

C(x1:n) =
1

2
||F (x1:n)||2. (5.25)

This construction is possible because all of the sub-cost functions ci (Equations 5.22, 5.23, 5.24)
that comprise C as C =

∑
i(ci) are of the form ci = aTΣa. Therefore, the corresponding entries

in F would be Σ−
1
2 a. In this form, Equation 5.21 is rephrased as

x∗1:n = arg min
x1:n

1

2
||F (x1:n)||2. (5.26)
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The solution to this equation is thus a non-linear least squares optimization. Global solutions to
this equation are computationally intractable due to the presence of local minima arising from
non-linearities in the arguments a for each sub-cost function ci. However, the local optimum
may be found in the neighborhood of an initial estimate. For EnML, the initial estimate for the
solution of x∗1:n is taken from the last estimates of x∗1:n−1 and the odometry-predicted estimates
of xn.

Non-linear least-squares solutions to Equation 5.26 by LM are computed iteratively, with
each iteration updating x∗ by ∆x, where ∆x is the solution of the equation

JTJ∆x = JTF. (5.27)

Here, J is the Jacobian of F , the elements of which are given by

Jij(x) =
δFi
δxj

(x). (5.28)

The matrix JTJ is called the information matrix I. The solution to Equation 5.27 may be found
by inverting the information matrix, although in practice alternative solutions like the QR de-
composition or LU decomposition of I yield more numerically stable as well as computationally
efficient solutions, in particular for sparse matrices. The structure of the information matrix I,
as we shall show, indicates the correlations between the poses of the robot in the EnML episode.
We shall also show that the computational complexity of EnML scales from being comparable
to Markov Localization in the absence of short-term features, to being comparable to pose graph
SLAM when only short-term features are visible.

We present here a simple scenario of EnML running on a robot. Figure 5.4 shows a robot
navigating in an environment with four static unmapped objects. There are six poses of the robot
over time, and at each pose the robot observes one or more of the unmapped objects, as well as
part of the static map. Thus, in this scenario, there would be 15 sub-cost functions: 5 sub-cost
functions co1 − co5 for the odometry between successive poses, 4 sub-cost functions for the STFs
cSTF

0 − cSTF
3 , and 6 sub-cost functions cLTF

0 − cLTF
5 for the LTFs from each pose.

The structure of the Jacobian and the information matrix is thus as shown in Table 5.1. There
are several interesting features about the structure of the information matrix. It is sparse and
nearly block-diagonal with two major blocks x0:2 × x0:2 and x3:5 × x3:5. In fact, the only non-
block diagonal elements arise from the relation between x2 and x3 due to the odometry sub-cost
functions. Note also that in this scenario, x3 would be an episode boundary: all the observations
of STFs at and after pose x3 are independent of the STFs observed before x3. This is not just
coincidence. The existence of episode boundaries enforce this almost block-diagonal structure to
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Figure 5.4: An example robot scenario running EnML. There are 6 poses x0 − X5 denoted by
the triangular robot markers, along with the maximum sensor range denoted by the translucent
orange semicircles. There are four STFs, STF0 − STF3, shown by the green circles. The long-
term static map is shown by the blue lines.

the information matrix by virtue of the fact that except for odometry, correlations between poses

arise only from STFs, and by definition, no such correlations may cross the episode boundary.
This nearly block-diagonal structure has a particularly simple sub-solution. Consider the infor-
mation matrix I as composed of blocks A,B,C,D such that

I =

[
A B

BT D

]
, (5.29)

A = JT0:14,0:2J0:14,0:2, (5.30)

B = JT0:14,0:2J0:14,3:5, (5.31)

D = JT0:14,3:5J0:14,3:5. (5.32)

Here, the notation Ja:b,c:d refers to the sub-matrix of J consisting of rows a to b and columns c to
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d. The information matrix I may then be inverted by the matrix block-inversion formula,

I−1 =

[
A B

BT D

]−1

(5.33)

=

[
S−1
D −A−1BS−1

A

−D−1BTS−1
D S−1

A ,

]
(5.34)

where SA and SD are the Schur complements of A and D respectively, given by

SA = D −BTA−1B, (5.35)

SD = A−BD−1BT . (5.36)

Let the only non-zero element in the lower left corner of B be given by b. We now investigate
the structure of SA.

x0 x1 x2 x3 x4 x5

co1 x x . . . .
co2 . x x . . .
co3 . . x x . .
co4 . . . x x .
co5 . . . . x x
cSTF

0 x x x . . .
cSTF

1 x x . . . .
cSTF

2 . . . x x x
cSTF

3 . . . x x x
cLTF

0 x . . . . .
cLTF

1 . x . . . .
cLTF

2 . . x . . .
cLTF

3 . . . x . .
cLTF

4 . . . . x .
cLTF

5 . . . . . x

x0 x1 x2 x3 x4 x5

x0 x x x . . .
x1 x x x . . .
x2 x x x x . .
x3 . . x x x x
x4 . . . x x x
x5 . . . x x x

Table 5.1: The structure of the Jacobian (left) and the information matrix (right) for EnML in the
example robot scenario. Non-zero entries are marked with a ’x’, while zero entries are marked
with a ’.’.
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SA = D −

 0 0 b

0 0 0

0 0 0

A−1

 0 0 0

0 0 0

b 0 0

 (5.37)

= D − b2

 0 0 1

0 0 0

0 0 0


 A−1

00 A−1
01 A−1

02

A−1
10 A−1

11 A−1
12

A−1
20 A−1

21 A−1
22


 0 0 0

0 0 0

1 0 0

 (5.38)

= D − b2

 A−1
20 A−1

21 A−1
22

0 0 0

0 0 0


 0 0 0

0 0 0

1 0 0

 (5.39)

= D − b2

 A−1
22 0 0

0 0 0

0 0 0

 (5.40)

Hence the computation of the Schur complements SA, SD are trivial single-operation computa-
tions, given A−1 and D−1. Furthermore, for cases where b2 << D00, the Schur complement
may be approximated as SA ≈ D, further simplifying the inversion of I. The most computa-
tionally expensive operations in the inversion of I are therefore the computations of A−1 and
D−1, which can be computed independently of each other. Thus, across an episode boundary,

the computations of the inverse of the dominant sub-matrices of I, S−1
D ≈ A−1 and S−1

A ≈ D−1,

are independent of each other.

We next examine the example scenario if the robot did not have a static map. We call this
the “no-map” example scenario. The three linear features that would otherwise have been con-
sidered LTFs would instead be considered by EnML to be STFs. The associated cost functions
are denoted by cSTF

4 , cSTF
5 , cSTF

6 . The Jacobian and information matrix for the no-map example
scenario are thus listed in Table 5.2. Note that the LTF cost functions are zero for all the poses.
Alternatively, if the robot were running pose graph SLAM (e.g., [68]), all the features, including
what EnML considered to be STFs and LTFs would be considered landmark features, and give
rise to correlations between the poses. The corresponding Jacobian and information matrix are
thus shown in Table 5.3. Note that the structure of the information matrix is identical between
EnML in the no-map scenario, and that of SLAM. Thus, in the absence of a static map, the struc-

ture of the information matrix, and hence the computational complexity of EnML is identical to

that of pose graph SLAM.

Finally, we consider the case where the STFs are not present in the example scenario. This
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x0 x1 x2 x3 x4 x5

co1 x x . . . .
co2 . x x . . .
co3 . . x x . .
co4 . . . x x .
co5 . . . . x x
cSTF

0 x x x . . .
cSTF

1 x x . . . .
cSTF

2 . . . x x x
cSTF

3 . . . x x x
cSTF

4 x x . . . .
cSTF

5 . x x x x .
cSTF

6 . . . . . x
cLTF

0 . . . . . .
cLTF

1 . . . . . .
cLTF

2 . . . . . .
cLTF

3 . . . . . .
cLTF

4 . . . . . .
cLTF

5 . . . . . .

x0 x1 x2 x3 x4 x5

x0 x x x . . .
x1 x x x x x .
x2 x x x x x .
x3 . x x x x x
x4 . x x x x x
x5 . . . x x x

Table 5.2: The structure of the Jacobian and the information matrix for EnML in the no-map
example robot scenario.

is a scenario perfect for Markov localization. There would be no sub-cost functions of EnML
for STFs, and the corresponding Jacobian and information matrix for EnML would thus be as
given in Table 5.4. Note here that the information matrix is tridiagonal in nature, thus allowing
efficient inversion of I by the tridiagonal matrix algorithm in O(n) operations for n poses, just
like Markov Localization, since Markov Localization operates at each pose independently of the
others. Thus, in the absence of short-term features, the computational complexity of EnML is

similar to that of Markov Localization.
Thus, the computational complexity of EnML scales from being comparable to Markov Lo-

calization in the absence of short-term features, to being comparable to pose graph SLAM when
only short-term features are visible.

5.7 Results

We present two sets of experiments to evaluate the performance of episodic non-Markov localiza-
tion and compare it with alternative approaches to robot localization in varying environments.1

1 The authors would like to thank Gian Diego Tipaldi and Daniel Meyer-Delius for sharing the Freiburg-
Parkinglot dataset, and Tom Duckett for sharing the Örebro-Longterm dataset.
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x0 x1 x2 x3 x4 x5

co1 x x . . . .
co2 . x x . . .
co3 . . x x . .
co4 . . . x x .
co5 . . . . x x
cl0 x x x . . .
cl1 x x . . . .
cl2 . . . x x x
cl3 . . . x x x
cl4 x . . . . .
cl5 . x x x x .
cl6 . . . . . x

x0 x1 x2 x3 x4 x5

x0 x x x . . .
x1 x x x x x .
x2 x x x x x .
x3 . x x x x x
x4 . x x x x x
x5 . . . x x x

Table 5.3: The structure of the Jacobian matrix and the information matrix for pose graph SLAM
in the example robot scenario.

5.7.1 Freiburg-Parkinglot Dataset

We compared localization using our approach to localization using Temporary Maps [58] and
RBPFs with dynamic occupancy grids [89] by running episodic non-Markov localization on
the Freiburg-Parkinglot dataset collected on an outdoor robot driven around a parking lot at
University of Freiburg [89]. This dataset consists of 12 runs in an outdoor parking lot over the
course of the day totaling over 5.8 km traversed and presents a challenging environment where
there are very few permanent features and many changes over the course of the day due to the
arrival and departure of cars in the lot. For every run, a ground truth estimate was determined
independently of the other runs by running static SLAM offline with manual corrections. To run
episodic non-Markov localization on the Freiburg-Parkinglot dataset we extracted the dominant
linear features from the results of running SLAM on run 01 of the dataset. This map was then
used as the static map for all subsequent runs.

As a baseline, the ground truth maps for each of the runs were used along with Monte-
Carlo Localization to localize the robot for every run. Table 5.5 lists the errors in localization
with respect to ground truth for localization using the baseline (MCL-GT), Monte-Carlo Local-
ization using a static map (MCL-S), Temporary Maps [58] (MCL-TM), RBPFs with dynamic
occupancy grids [89] (RBPF), and episodic non-Markov localization (EnML). The entries for
MCL-GT, MCL-S, MCL-TM and RBPF are reproduced from the results of [89]. Episodic non-
Markov localization has smaller localization errors for every run compared to the other online
algorithm including MCL-S, MCL-TM and RBPF and even outperforms the Monte-Carlo Local-
ization baseline (MCL-GT) for some of the runs. Furthermore, as a deterministic algorithm, our
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x0 x1 x2 x3 x4 x5

co1 x x . . . .
co2 . x x . . .
co3 . . x x . .
co4 . . . x x .
co5 . . . . x x
cLTF

0 x . . . . .
cLTF

1 . x . . . .
cLTF

2 . . x . . .
cLTF

3 . . . x . .
cLTF

4 . . . . x .
cLTF

5 . . . . . x

x0 x1 x2 x3 x4 x5

x0 x x . . . .
x1 x x x . . .
x2 . x x x . .
x3 . . x x x .
x4 . . . x x x
x5 . . . . x x

Table 5.4: The structure of the Jacobian and the information matrix for EnML in the all-mapped
example robot scenario.

approach does not have any variance in localization over different runs with the same log, unlike
the stochastic algorithms(MCL-S, MCL-TM, RBPF) which exhibit variance across trials [89].
Figure 5.5 shows the trajectory of the robot during run 11 of the Freiburg-Parkinglot dataset, as
estimated by episodic non-Markov localization and compared to ground truth.

Figure 5.6 shows two selected snapshots of episodic non-Markov localization running on the
Freiburg-Parkinglot dataset. The snapshots show the classification of the observations as origi-
nating from LTFs, STFs and DFs. The snapshots demonstrate episodic non-Markov localization
correctly identifying the parked cars as STFs and the pedestrian and moving car as DFs.

5.7.2 Örebro-Longterm Dataset

We ran episodic non-Markov localization on the Örebro-Longterm dataset, which has previ-
ously been used to empirically evaluate localization using Dynamic Maps [7], and Dynamic
Pose Graph SLAM [91]. This dataset was collected over a span of five weeks by driving a robot
around an office-like environment, covering a total distance of 9.6 km.

As in the previous experiment, we estimated the static long-term map by running SLAM on
the first run. Figure 5.7 shows the traces of the robot as estimated using episodic non-Markov
localization over all the runs. Despite the changes in the environment over the five-week period,
our approach was successfully able to localize the robot without having to maintain up-to-date
maps of the environment. This experiment demonstrates that even in a varying environment,
using only a static map of LTFs, episodic non-Markov localization is successfully able to localize
a robot without having to maintain maps of the exact state of the environment.
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Run Length MCL-GT MCL-S MCL-TM RBPF EnML
01 503.33 0.04 0.18 0.25 0.09 0.015
02 497.74 0.03 0.18 0.16 0.08 0.018
03 496.25 0.04 0.09 0.63 0.05 0.016
04 487.80 0.02 0.08 0.63 0.04 0.018
05 494.78 0.02 0.06 0.51 0.03 0.024
06 489.89 0.02 0.09 0.21 0.02 0.024
07 488.10 0.02 0.07 0.44 0.03 0.023
08 488.39 0.02 0.09 0.59 0.02 0.022
09 479.84 0.02 0.07 0.49 0.03 0.026
10 484.06 0.02 0.09 0.32 0.03 0.036
11 484.88 0.03 0.10 0.47 0.05 0.037
12 479.97 0.03 0.15 0.23 0.06 0.048

Total 5875.0 0.03 0.10 0.41 0.04 0.025

Table 5.5: Localization Squared Errors (m2) for the Freiburg-Parkinglot Dataset

5.7.3 Deployments of the CoBots

Episodic non-Markov Localization has been deployed on all the CoBots over part of the 1000km Chal-
lenge (Chapter 7), and has been used to localize the robots in many different environments span-
ning multiple floors across multiple buildings. We present here some selected results, and the
impact of using EnML over the robot deployments.

Two floors in our environment, GHC4 and GHC5 are particularly challenging for autonomous
robots deployed over long periods of time. These floors have significant pedestrian traffic, being
on the ground level and connecting different parts of the campus. GHC4 has an atrium with
several unusual large movable lounge chairs which obstruct the robot’s view of the walls. GHC5
has large areas with tiles which provide for very poor robot odometry due to wheel slippage.
Due to these challenges, prior to the introduction of EnML, the deployments of the CoBots in
GHC4 and GHC5 were severely limited - the robots frequently required operator intervention
as they got lost or uncertain of their localization. However, since January 2014 when EnML
was deployed on the robots, they have been deployed successfully without trouble. Table 5.6
shows the marked difference in the scope of deployments of the CoBots in these challenging
areas using CGR (Chapter 4.2.1) and after deploying EnML. While EnML contributed to 68.1%

of the total autonomous distance traversed by the CoBots over the 1000km Challenge, on the
GHC4 and GHC5 floors, EnML contributed over 93% of the autonomous distance traversed.
The disproportionatley large contributions of EnML to the distances traversed by the CoBots on
GHC4 and GHC5 are entirely due to the inreased reliability and robustness of localization of the
robots in the presence of the abundant moving and movable objects on those floors.
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Figure 5.5: The trajectory of the robot during run 11 of the Freiburg-Parkinglot dataset, as es-
timated by episodic non-Markov localization (red trace), and compared to ground truth (dashed
black trace). The LTFs, STFs and DFs classified by episodic non-Markov localization are drawn
as orange, purple, and green points, respectively.

Floor CGR EnML EnML Fraction (%)
GHC4 6.4km 88.1km 93.2
GHC5 3.0km 42.9km 93.5
All 320.9km 685.2km 68.1

Table 5.6: The contribution of EnML to the deployment of the CoBots on two challenging floors,
GHC4 and GHC5. Over 93% of the distance traversed by the CoBots on GHC4 and GHC5 were
with EnML, while only 68.1% of the distance traversed over the entire 1000km Challenge over
all floors were with EnML.

Figure 5.8 shows some snapshots of EnML running on the CoBots while deployed on GHC4,
at different times of the year. Note that the STFs are ad different positions over the different
deployments. Figure 5.9 shows two examples of EnML accounting for large unmapped features,
a wooden panel of lockers, and the walls of the helix in the Gates-Hillman Center.

5.8 Summary

In this chapter, we introduced a representation of the world that classifies observations as arising
from long-term features, short-term features, or dynamic features. We introduced a graphical
model called the Varying Graphical Network (VGN) to represent correlations between observa-
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(a) (b)

Figure 5.6: Non-Markov localization on run 12 of the Freiburg-Parkinglot dataset showing a) a
pedestrian and b) a moving car in the parking lot amidst static parked cars. LTFs are plotted in
orange, STFs in purple, and DFs in green. The robot’s location is shown by the orange marker
and its trajectory as grey lines. Both images are 35m wide.

tions from different time steps due to the different classes of observations. We further introduced
the Episodic non-Markov Localization (EnML) algorithm that explicitly reasons about the dif-
ferent classes of observations to maintain accurate location estimates of the robot even in the
presence of observations of unexpected objects and the absence of observations of the static
map. We explored the structure of EnML, and thus compared its computational complexity to
SLAM and Markov Localization. Finally, we presented results of running EnML on several
datasets and comparing its results to alternate approaches.
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Figure 5.7: Combined traces of localization using episodic non-Markov localization on all runs
of the Orëbro-Longterm dataset. The traces are color-coded by time, from blue (oldest) to red
(newest).
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(a)

(b)

(c)

Figure 5.8: Snapshots of EnML running in the GHC4 atrium on different days. The trajectory of
the robot over the episode is shown in grey, along with the covariance elipses. LTF observations
are shown as orange points, STF observations as purple points, and DF observations as green
points. The long-term static map is shown as blue lines. Note the different placements of the
STFs in the different runs, in particular the lounge chairs at the lower end. All images are 26m
wide.
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(a) (b)

Figure 5.9: Snapshots of EnML running on GHC5, showing unmapped features that are (a) the
walls of the helix ramp, and (b) a wooden panel of lockers. LTF observations are shown as
orange points, STF observations as purple points, and DF observations as green points. The
long-term static map is shown as blue lines.
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Chapter 6

Updating Maps

As robots are deployed over extended periods of time, the sensor logs collected over the deploy-
ments may be processed to better understand the changes in the environment. In this chapter, we
present two algorithms to update maps over time: Updating Plane-Polygon maps, and Model-
Instance Object Mapping.

6.1 Updating Plane-Polygon Maps

With the availability of low-cost depth cameras, such as the Microsoft Kinect sensor, there has
been renewed interest in building 3D models of indoor environments. Much of the current work
towards the goal of 3D mapping (e.g., [44, 62, 63]) has focused on generating detailed, dense 3D
models of environments. However, typical indoor environments consist of large planar features
that could instead be used to build simplified models of indoor environments at a fraction of the
memory requirements of dense 3D models. Hence, we are interested in modeling such indoor
environments by extracting the dominant planar features as a Plane-Polygon Map [12]. Such
an approach is similar in spirit to that of 2D Vector Maps (Chapter 3.5.1) in that the dominant
planar features in the 3D Plane-Polygon Map, just like the line segments in the Vector Maps,
correspond to the permanent features in the environment. Just as the Vector Maps ignore fine
details of movable objects, the Plane-Polygon Maps omit detailed 3D models of movable objects.

Mapping of planar features could be performed as a post-processing step by mesh simplifica-
tion [24] of a detailed 3D model. Insdtead we introduce an incremental, on-line technique where
for every observed depth image, only planar regions are extracted to be merged into the model
of the environment. Our approach consists of the following steps:

1. For every observed depth image, compute polygons to best approximate the dominant
planes in that image.

89
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2. Find correspondences between the polygons in the current image with the polygons in the
current plane-polygon map.

3. Iteratively merge corresponding polygons from successive images, thus growing the plane-
polygon map.

Our approach uses the Fast Sampling Plane Filtering (FSPF) algorithm (Chapter 3.3.1), which
extracts points belonging to local neighborhoods of planes from depth images, even in the pres-
ence of clutter. Given the FSPF generated neighborhoods of local planar points, the algorithm
first computes the plane parameters of each neighborhood by eigenvector decomposition of the
scatter matrix, and then construct a convex hull over the points to define the polygon boundary.
The scatter matrix for each polygon is stored in a decoupled manner which, as we shall show, al-
lows us to merge polygons over successive observations and compute the least square fit over all

observed points over time without having to explicitly maintain a list of them. We introduce an
image render based ray-casting method for determining correspondences between the polygons
observed in the latest depth image, to the polygons in the plane-polygon map. Polygons in the
latest depth image that do not correspond to any existing polygons in the plane-polygon map are
added as new polygons to the map.

6.1.1 Plane Polygon Construction and Merging

Given an observed raw depth image I , the FSPF algorithm returns a plane filtered point cloud P
of n 3D points that belong to local planes and a list R of the associated plane normals.

Polygon Construction

From the plane filtered point cloud P , the Plane-Polygon Mapping algorithm merges local neigh-
borhoods of points to form local convex polygons. A convex polygon is denoted by the tuple
c = {SL, nS, ψ, ν, b1, b2, B} where SL is the set of 3D points used to construct the convex poly-
gon, nS the number of points in SL, ψ the centroid of the polygon, ν the normal to the polygon
plane, b1 and b2 the 2D basis vectors on the plane of the polygon and B the set of 3D points that
define the convex boundary of the polygon. Given a neighborhood of plane filtered 3D points
SL, the Plane-Polygon Mapping algorithm constructs a convex polygon c as follows:

1. The polygon centroid ψ as ψ = 1
nS

∑
pi∈SL pi.

2. The scatter matrix χ of the points in SL as χ =
∑

pi∈SL (pi − ψ)(pi − ψ)T .

3. The normal ν as then the eigenvector of χ corresponding to its smallest eigenvalue.



6.1 UPDATING PLANE-POLYGON MAPS 91

4. The orthogonal basis vectors that span the plane, b1 and b2 as the remaining two eigenvec-
tors of χ.

5. The boundary set B found using Graham scan [39] over the points of SL projected onto
the plane.

We assume the pose of the depth camera sensor has already been registered with respect to a
global reference frame. Such registration could be done (for example) using one of the variants of
iterative closest point (ICP) based approaches [76]. After pose registration, in order to construct
a meaningful geometric representation of a scene, it is necessary to merge the observed polygons
from multiple scenes to form a single, “global scene”, which the the Plane-Polygon Mapping
algorithm does in two steps:

1. Correspondence Matching: Polygons in the latest frame are matched to polygons in the
global scene.

2. Polygon Merging: Matched polygons are merged to update the plane parameters and the
convex hull of the polygons in the scene.

Correspondence Matching

Given a set Mpolygon =
{
pMi
}

of polygons that represent the plane-polygon map constructed so
far and the set O =

{
pOj
}

of observed polygons in the latest depth image, the correspondence
matching problem is to find out which polygons pOj in the current depth image overlap with
which polygons pMi in the map. In our approach, we solve this problem using ray casting:

1. A unique color is assigned to each polygon pMi in the map Mpolygon.

2. A virtual camera with the same optical parameters (pixel size, field of view) as the actual
depth camera is set up at the location found by pose registration.

3. The color-coded polygons are then rendered to an image as viewed by the virtual camera.

4. The pixel location of each plane filtered point in the depth image is then used to look up the
color of the corresponding pixel in the rendered image, thus indicating the map polygon
corresponding to that point.

Figure 6.1 shows the steps of the correspondence matching procedure with plane-polygon maps.

The image rendering step, when performed using OpenGL and accelerated by an nVidia
GeForce GTX 560 GPU, runs at an average of 3800 frames per second. After estimating obser-
vation to map polygon correspondences, these correspondences are further checked to ensure that
matched polygons have an offset distance of less than εdist, and that the angle difference between
their normals is at most εang. εdist and εang are configurable parameters, and in our experiments
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Figure 6.1: Correspondence matching: Polygons in the plane-polygon map are uniquely color-
coded (a), and from the perspective of a virtual camera (b) rendered in an image (c). Correspon-
dences of pixels in the observed depth image (d) are then determined by inspecting the color of
the same pixel in the rendered image.

are set to 0.01m and 1.0◦ respectively. Observed polygons pOj that do not correspond to any map
polygon are assumed to be new polygons, and added to the map Mpolygon without merging with
any existing polygon.

Polygon Merging

When merging the latest depth image observation with the map built so far, the polygons ex-
tracted from the latest depth image need to be merged with the corresponding polygons in the
map built so far. The problem of polygon merging is thus: given two convex polygons c1, c2, we
wish to construct a merged polygon cm using the 3D points from both planes c1 and c2.

A naı̈ve approach to merging polygons c1 = {S1
L, n

1
S, ψ

1, ν1, b1
1, b

1
2, B

1} and
c2 = {S2

L, n
2
S, ψ

2, ν2, b2
2, b

2
2, B

2} to form merged polygon cm = {SmL , nmS , ψm, νm, bmm, bm2 , Bm}
is to combine the 3D points as SmL = S1

L

⋃
S2
L and then compute all other polygon parameters

from SmL . In practice, this is infeasible since it requires a complete history of all 3D points ever
observed to be maintained and the amount of available memory is finite.

It is, however, possible to perform polygon merging without maintaining a complete history
of all observed 3D points by in a manner analogous to the parallel computation of covariance
matrices [19]. Scatter matrices from two different polygons cannot be directly combined due
to the coupling in χ between the points pi and the centroid. However, χ1 may be decoupled as
χ1 = χ1

1 − n1
Sχ

1
2 where χ1

1 depends on the 3D points in S1
L, and χ1

2 on the centroid ψ1. χ1
1 and
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χ1
2 are then given by χ1

1 =
∑
p1
i p

1
i
T and χ1

2 = ψ1ψ1T . Given the centroids ψ1 and ψ2 of the two
polygons, the centroid ψm of the merged polygon is computed as their weighted mean. Thus,
the matrix χm2 of the merged polygon can be computed from ψm and the scatter matrix of the
combined polygon is given by χm = χ1

1 + χ2
1 + nmS χ

m
2 .

Therefore, the matrix χ1 along with centroid ψ and the number of points n is sufficient for
merging polygons based on the complete history of observed 3D points, and the individual 3D
points no longer need to be maintained for each polygon.

One implementation detail remains: to ensure numerical stability over time, the algorithm
performs the eigenvector decomposition on the normalized matrix 1

nS
χ, and maintains normal-

ized matrices 1
nS
χ1 instead of χ1.

The convex boundary point set Bm of the merged polygon is computed by running Gra-
ham scan on the union of the points from the boundary point sets B1 and B2 of the constituent
polygons.

The complete set of steps of our Plane-Polygon Mapping algorithm are thus:

1. Compute centroid ψm

2. Compute scatter matrix χm

3. Compute normal νm and basis vectors bm1 , b
m
2 by eigenvector decomposition of χm

4. Compute boundary point setBm using Graham scan on plane projected points fromB1
⋃
B2

The merged polygons in the map are thus updated using all observed points so far that corre-
spond to them.

6.1.2 Experimental Results

We perform two sets of experiments to demonstrate the computational efficiency and effective-
ness of FSPF and the polygon merging algorithms. First, we collect data for a controlled scene
with and without clutter, with ground truth. This ground truth data evaluates the accuracy of the
merged polygons, both with respect to the observed depth image, as well as with respect to the
measured ground truth. We then test the FSPF and polygon merging algorithms on a set of real
indoor scenes.

Ground Truth Comparison

We construct a scene with planar features (Figure 6.2a) including planes at various angles and
different levels of occlusion. We then record depth image data from the scene and built a map
of the scene using our algorithm. The errors in raw observation are evaluated by comparing
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(a) (b)

(c) (d)

Figure 6.2: Ground truth in a clutter-free scene: (a) RGB Image of the scene, (b) The map
built by the polygon extraction and merging algorithm, (c) Errors between points in depth image
compared to ground truth, and (d) compared to built map. Errors are indicated in color, ranging
from green (0m) to red (0.04m).

the reconstructed 3D points with the ground truth values. We refer to this error comparison
as the “point to ground truth” (PG) error. Figure 6.2c shows the point to ground truth errors in
observation for different parts of the image. Figure 6.2b shows the map of polygons reconstructed
from the scene. Except for the top surfaces of the two boxes on the right, all the dominant planes
in the image are extracted by the algorithm. Figure 6.2d shows the errors between the 3D points
reconstructed from the depth image and the built map. We refer to this error comparison as the
“point to map” (PM) error.

To evaluate the accuracy of the polygons in the built map, points on the polygons are uni-
formly sampled at intervals of 0.5cm, and these 3D points are compared to the ground truth.
We refer to this error comparison as the “map to ground truth” (MG) error. Figure 6.3 shows a
cumulative histogram of the three error comparisons.

We next evaluate the effect on the error in polygon map building due to the presence of
clutter in the scene. Figure 6.4a shows a controlled scene with added objects of clutter. Fig-
ure 6.4c shows that the point to ground truth error is noticeably large in the regions of the scene
corresponding to the objects of clutter. Figure 6.4d shows that the built map(Figure 6.4b) has
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Figure 6.3: Cumulative histogram of errors in mapping the clutter-free scene: (PG) depth image
vs. ground truth, (PM) depth image vs. built map and (MG) built map vs. ground truth.

lower errors than the point to ground truth case, but parts of the scene are unmapped. In spite of
the local occlusions due to clutter on the boxes, the surfaces of the boxes are still reconstructed
by the FSPF and polygon merging algorithms, and as Figure 6.5 shows, the polygons that are
constructed in the scene are still observed to have a maximum error of 2cm.

(a) (b)

(c) (d)

Figure 6.4: Ground truth in a scene with clutter: (a) RGB Image of the scene , (b) The map
built by the polygon extraction and merging algorithm, (c) Errors between points in depth image
compared to ground truth, and (d) compared to built map.
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Figure 6.5: Cumulative histogram of errors in mapping the scene with clutter: (PG) depth image
vs. ground truth, (PM) depth image vs. built map, and (MG) built map vs. ground truth

Real World Scene Tests

We test the FSPF and Plane-Polygon Mapping algorithms on data collected from 5 scenes that
we select as representative of our environment. At each scene, the Kinect sensor is kept static,
so no pose update is necessary. For each scene, the polygons from 15 consecutive frames are
merged to generate a set of polygons that represent the entire scene. Figure 6.6 shows the scenes
and the processed output from each scene, while Table 6.1 summarizes the output and processing
times for the algorithms for each scene. The sampling efficiency for each scene is computed as
the ratio of the mean number of plane filtered points per frame to the mean sampled locations
per frame. The FSPF run time is per frame, and the polygon merge processing time is for all the
polygons per frame.

Scene 1 has three boxes in the corner of a room. The merged scene polygons correctly include
all the planes in the scene except two (the tops of the boxes on the left and center). Scene 2 is set
in a corridor, and lacks clutter. The merged scene polygons correctly include all the polygons in
the scene near the Kinect. Scene 3 is set in an open area next to a staircase. The merged scene
polygons include the ground polygon, the side of the staircase, and the overhanging staircase.
Scenes 4 and 5 show work areas with chairs and tables. Despite the clutter, all table surfaces
are correctly identified among the merged scene polygons. Scene 5 had a toy chair on top of the
table, and the merged scene includes its corresponding polygons as well.

Scene Merged Plane Filtered Sampled Points Sampling Efficiency Polygons FSPF Run Polygon Merge
Scene Polygons Points Per Frame Per Frame (%) Per Frame Time (ms) Time (ms)

1 14 2002 5434 36.84 71 1.86 0.37
2 5 2006 8620 23.28 81 1.66 0.71
3 3 2001 11009 18.18 82 2.06 0.38
4 14 2004 8260 24.27 70 1.39 1.12
5 7 2001 6861 19.17 67 1.66 0.95

Table 6.1: Results of planar polygon mapping from test scenes
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 6.6: Test scenes 1-5 (top to bottom). First column shows the RGB image of the scene,
second column the depth image, third column the plane filtered points (orange points) and poly-
gons (lilac) for a single depth image frame, fourth column the polygons generated by merging
15 consecutive processed depth image frames. Columns 2 and 3 include overlays of the raw 3D
point cloud (translucent white) for reference.
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6.2 Model-Instance Object Mapping

Robots deployed in human environments frequently encounter movable objects like tables and
chairs. These movable objects pose a challenge for the long-term deployment of robots since
they obstruct features of the map, and are difficult to map persistently. Areas where the majority
of the observations of the robot are of unmapped objects are especially challenging, making it
harder for a robot to accurately estimate its location globally.

We propose an approach to modelling a changing environment by separating the models of
the movable objects from their distribution of poses in the environment. This proposed approach
is borne of the realization that movable objects in human environments are often different in-
stances of the same type of object. Furthermore, even though movable objects do move around,
they still tend to be situated in roughly the same locations. For example, a work chair will most
likely be observed in front of its accompanying work desk, even if the exact location of the chair
might change over time. Our proposed approach, Model-Instance Object Mapping [15], models
the objects independently of their instances in the environment. Each Model thus represents a
unique type of object, while Instances represent the different copies of it that are observed. Ob-
served short-term features, as classified by Episodic non-Markov Localization (EnML) (Chap-
ter 5), are first clustered into separate point clouds for each object instance. An occupancy grid is
built for each object instance, and are then compared in pairs to form a directed object similarity
graph. Common object models are then detected by looking for strongly connected components
in the graph.

EnML estimates the robot’s pose, as well as the pose of the unmapped STFs over each
episode. EnML does not maintain a persistent history or database of the STFs that have been
observed in the past. However, in a real human environment, the set of movable objects observ-
able by a robot in a given area is finite, and the rest of this section is devoted to building models
of these STFs, and estimating their pose distributions in the world. EnML provides (aside from
the poses of the robot) a set SSTF of all the points corresponding to STFs observed in the world
during the robot’s deployment, and the corresponding poses XSTF of the robot from where the
points were observed. Figure 6.7 shows an example set SSTF of STFs as detected by EnML.

6.2.1 Finding Object Instances

The first step to building models of the objects is to cluster the observed points. The goal of
this step is, given SSTF (the set of points in global coordinates corresponding to STFs) and
XSTF (the set of poses of the robot from which points in SSTF were observed), to form clusters
S̃ = {s̃i}i=1:n where each cluster s̃i is a non-overlapping subset of SSTF, and every point in s̃i
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Figure 6.7: Step 1 of Model-Instance Object Mapping: Observations SSTF classified as Short-
Term Features (purple) by Episodic non-Markov Localization are extracted.

is within a distance of εcluster of at least one other point in s̃i. Here, εcluster is a configurable
parameter that determines how close two objects can be, in order to be considered to be part of
the same object. Note that each cluster s̃i may contain points observed from different poses of
the robot, as long as they are spatially separated by at most εcluster from other points in the cluster.
We use the point cloud clustering algorithm from [77] for this step, with a distance threshold of
εcluster = 3cm. Figure 6.8 shows the clusters that were extracted from the example set SSTF of
Figure 6.7

Figure 6.8: Step 2 of Model-Instance Object Mapping: Observations SSTF are clustered into set
S̃ = {s̃i}i=1:n. Each distinct cluster is denoted by its cluster index. Note that points in SSTF that
were sparsely distributed and not within distance εcluster of other points have been discarded.

For each cluster s̃i, we build an occupancy grid [33] map mi from the observed points to
model the shape of the object. Algorithm 7 lists the algorithm to build an occupancy grid map m
given cluster c, the associated set of poses x, and the width w and height h of the cluster. The grid
map m and occupancy counts nm are first initialized to zero matrices. For every pixel location
ζ , for every observation that was made at that location, the occupancy value m(ζ) and observa-
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tion count n(ζ) are both incremented. For every pixel location ζ that is observed to be vacant
by observing a point beyond it, the observation count is incremented without incrementing the
occupancy value. Finally, the occupancy value at every pixel location is normalized by the ob-
servation count for that pixel. Figure 6.9 shows three example occupancy grid maps constructed
from the clusters of Figure 6.8.

Algorithm 7 Build Object Model

1: procedure BUILDOBJECTMODEL(c, x, w, h)
2: m← w × h zero matrix
3: n← w × h zero matrix
4: for each pixel ζ in m do
5: for each point p in c, pose o in x do
6: if p is observed at pixel ζ then
7: m(ζ)← m(ζ) + 1
8: n(ζ)← n(ζ) + 1
9: else if ζ is between p and o then

10: n(ζ)← n(ζ) + 1
11: end if
12: end for
13: end for
14: for each pixel ζ in m do
15: m(ζ)← m(ζ)/n(ζ)
16: end for
17: return m
18: end procedure

Figure 6.9: Step 3 of Model-Instance Object Mapping: Each object instance is used to build an
occupancy grid model, and three such example models are shown here.

6.2.2 Building Object Models

In human environments, and in particular in office environments, movable objects frequently
occur as multiple instances of the same model. For example, in a common study area, there
may be many chairs, but there will likely be either a single, or a small number of types of
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chairs. Hence, given the occupancy grid maps mi for each object instance observed, there may
be multiple instances of the same model of object, and the subject of the next section is on how
to find these common object models.

As a robot encounters different instances of the same object model, it is likely to observe
them at different locations and rotations. Furthermore, due to the presence of other objects, they
may be partially occluded. Therefore, before comparing the models of different instances, we
first align pairs of objects. For a given relative transform T = {δx, δy, δθ} between the centroids
of two object instances mi and mj , we define an alignment objective function FAlign,

FAlign(mi,mj, T ) =
∑
ζ∈mi

mi(ζ)mj(T × ζ) (6.1)

computed over all pixel locations ζ in mi. Given this alignment object function, the optimal
alignment T ∗ij between object instances mi and mj is defined as

T ∗ij = arg max
T

FAlign(mi,mj, T ). (6.2)

This optimal alignment is found by exhaustive search over all possible relative transforms within
a search window δx||< ∆t, ||δy||< ∆t, ||δθ||< ∆θ.

Given an optimal alignment T ∗ij between object instances mi and mj , we define a similarity
metric FSimilar to compare the object instances:

FSimilar(mi,mj, T
∗
ij) =

∑
ζ∈mi Iεocc(mi(ζ))Iεocc(mj(T

∗
ij × ζ))∑

ζ∈mi Iεocc(mi(ζ))
. (6.3)

Here, Iεocc(·) is the thresholded indicator function that returns 1 when the value passed to it is
greater than the threshold εocc. Note thatFSimilar is not a symmetric metric : FSimilar(mi,mj, T

∗
ij) 6=

FSimilar(mj,mi, T
∗
ji). This is because the similarity metric is computed over all pixel locations ζ

in the first object instance mi, and the two object instances need not necessarily be of the same
size. Furthermore, the similarity metric returns values in the range 0 ≤ FSimilar ≤ 1. Given two
object instances mi and mj , and a similarity threshold ∆Similar, mi is classified as being similar
to mj if

FSimilar(mi,mj, T
∗
ij) ≥ ∆Similar. (6.4)

Similarity comparisons between pairs of objects thus depend on two parameters, εocc and ∆Similar.
εocc serves as an outlier rejector, ignoring low occupancy values in the object instance models,
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while ∆Similar serves as a confidence threshold.

To determine the values of εocc and ∆Similar to be used, we hand-labelled similarity compar-
isons between 25 object instances. Next, for several values of εocc, we varied ∆Similar to evaluate
the precision and recall of the similarity classification. Figure 6.10 shows the precision-recall
curves for the different values of εocc. The values εocc = 0.05 and ∆Similar = 0.7 yield a precision
as well as recall of 90%, and we use these values for the subsequent sections.

Figure 6.10: Precision-recall curves for object similarity classification between pairs drawn from
25 objects, compared to hand-labeled classification.

Figure 6.11 shows sample results of alignment and similarity comparison between four ob-
jects. Each object is classified as being similar to itself as expected, while different instances of
the same model (instances 1 and 2, and instances 3 and 4) are correctly aligned and classified
as being similar. Objects 1 and 2 were doors, and objects 3 and 4 were two instances of the
same type of chair observed by the robot. Note that object instances 1 and 2, as shown by their
occupancy grids, were observed in different poses, but still aligned correctly with respect to each
other.

The similarity metricFSimilar is used to build a directed similarity graphGsimilar = 〈Vsimilar, Esimilar〉
where vertices vi ∈ Vsimilar denote the object instances the corresponding object instances mi,
and directed edges ek ∈ Esimilar indicate similarities between object instances. The presence of
an edge ek : vi → vj denotes that object instance mi, corresponding to vertex vi, is similar to
object vj , as evaluated by Equation 6.4. Given this directed similarity graph Gsimilar, we find sets
of object instances corresponding to the same object model by computing the strongly connected
components of Gsimilar. Let Λ = {λi}i=1:nΛ

be the set of Ns strongly connected components
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Object 1 Object 2 Object 3 Object 4

Object 1 Similar Similar

Object 2 Similar Similar

Object 3 Similar Similar

Object 4 Similar Similar

Figure 6.11: Alignment and similarity comparison grid between four object instances. The top
row and left-most column show the occupancy grids of the object instances. In each cell, the
instance corresponding to the row is drawn in red, and the optimal alignment T∗ of the instance
corresponding to the column is drawn in green. Similarity matches are labelled in each cell.

extracted from graph Gsimilar. Each strongly connected component si thus corresponds to a com-
mon model that is shared by the object instances represented by the vertices in si. Figure 6.12
shows an example similarity graph constructed by comparing the observed object instances of
Figure 6.8.

6.2.3 Updating the Model-Instance Map across Deployments

So far we have focussed on how common models, detected as strongly connected components
si, are extracted from the observations of STFs during a single deployment log of the robot.
However, as a lifelong learning algorithm, Model-Instance Object Mapping needs to reason about
the persistence of object models and their instances across all deployments of the robot. In this
section we present how models si from the latest deployment of the robot are merged with older
persistent models pj from all past deployments of the robot. observed.
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Figure 6.12: Step 4 of Model-Instance Object Mapping: Every object instance is compared to
every other object instance, and a similarity graph is constructed by connecting nodes (repre-
senting object instances) by directed edges to indicate similarity between them. Note that in this
example, there are two strongly connected components, and hence the Model-Instance Object
Mapping algorithm will find two common object models.

Persistent models pj , just like models si, include a common occupancy grid model of the
object, and a list of poses of the observed instances of the object. For the first deployment
of the robot, the list of persistent objects is empty, and thus all models si are saved as unique
persistent objects. For every subsequent deployment, every model si is aligned (Equation 6.2)
and compared to every persistent model pj using the similarity metric FSimilar (Equation 6.3).
For each object si, every persistent object pj that satisfies the similarity test of Equation 6.4
bidirectionally is declared to be of the same model. All such sets of objects that are declared to be
of the same model are then merged. Note that this merging step also attempts to merge persistent
objects that were previously distinct, but which are determined to be bidirectionally similar to
a newly observed object. This procedure for updating and merging persistent objects preserves
the property that all instances of that object form a strongly connected component. Figure 6.13
shows the pose instances of an example persistent object, as extracted from the similarity graph
of Figure 6.12, which was constructed by comparing the object instances of Figure 6.8.

Figure 6.13: Step 5 of Model-Instance Object Mapping: Poses for every instance of one example
persistent objects are visualized here by duplicating the model of the persistent object at the poses
of the instances on the map.
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6.2.4 Results

We have been deploying our robot, CoBot in an actual office environment since 2011, and have
gathered extensive logs of the robot’s deployments (Chapter 7). We processed a subset of the
logs thus gathered between the January and April of 2014, in one of the floors in our building,
through the Object-Instance Mapping algorithm. There were 133 such deployments in total, over
the course of which the robot traversed a total distance of more than 55km. We present here the
resultant Model-Instance map thus learned.

There were a total of 2526 objects observed, out of which there were 221 unique object
models discovered. Out of the 221 unique object models, 50 had 2 or more observed instances.
Table 6.2 lists the distribution of the frequency of the unique object models. The most commonly
observed object model is that of doors, and the algorithm detected 1440 instances of them. Fig-
ure 6.14 shows the poses of the doors that were detected by Model-Instance Object Mapping
without any supervision. The algorithm correctly detected all the doors in the environment, and
also catalogued all the observed poses of the doors observed. From the figure, it is easy to discern
the opening edges of the doors. Figure 6.15 shows some of the most commonly observed object
models and their instances.

Num Instances 1 2-5 6-10 11-20 21-40 41-80 81-160 161-1440
Num Objects 171 25 11 2 5 4 1 2

Table 6.2: Frequency counts of the unique object models discovered. The first row lists the range
of the number of instances, and the second row lists the number of objects that were discovered
within that range of instances.

6.3 Summary

In this chapter we presented algorithms for updating maps over time, and in particular an al-
gorithm to update planar polygon maps, and the Model-Instance Object Mapping algorithm to
model the shapes of commonly observed movable objects and their observed instances. We
presented results of running the planar polygon map update in some example scenes, and Model-
Instance Object Mapping over logs gathered over the duration of a month.
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Figure 6.14: The most commonly observed object, doors, as discovered by Model-Instance Ob-
ject Mapping. Our algorithm correctly detected all the doors in the environment without any
supervision.
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Figure 6.15: Some examples of objects discovered by Model-Instance Object Mapping: (from
top to bottom) a round planter, a commonly found chair, a square planter, and trashcans in the
kitchen area. The first column shows a photograph of the object, the second column shows the
occupancy grid model built, and the third column shows the instances that were observed for
each object model, across all the deployments. Note that instances of these objects were detected
at multiple locations, but only one location is shown for each object here.
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Chapter 7

The 1000km Challenge

This thesis introduced a number of new algorithms and representations for mobile robot local-
ization, belief representation, map representation, as well as observation models for different
sensors. To demonstrate the robustness and accuracy of localization using these contributions, a
few years ago, we proposed the 1000km Challenge.

The 1000km Challenge: Demonstrate, on a team of deployed autonomous mobile robots, in
multiple real-world human environments, the robustness and accuracy in localization over long-
term deployments spanning multiple years and covering a total distance of more than 1000km1

over all such deployments.

The challenge is formulated to have the following properties:

1. Robustness and accuracy: To concretely evaluate the robustness and accuracy of the
localization algorithms.

2. Multiple real-world human environments: To be performed in real environments, so as
to expose the localization algorithms to a potential wide variation in environments.

3. Long-term deployments: To be performed over deployments spanning multiple years,
thus exposing the localization algorithms to the variations that would normally occur in
real human environments over such a time-span.

4. Team of autonomous robots: To be performed collectively by multiple robots, each with
its own unique sensing abilities.

The 1000km Challenge was started on May 17, 2011 and completed on November 18, 2014.
In this chapter, we present the scope of the deployments of the 1000km Challenge , the data
collected, and corresponding quantitative and qualitative results.

11000km is 621.37 miles

109
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7.1 The Scope of Deployments

The robots used in the 1000km Challenge are the CoBots (Chapter 1.2). Since September 2011,
four CoBots have been autonomously performing various tasks for users on multiple floors of our
buildings, including escorting visitors, transporting objects, and engaging in semi-autonomous
telepresence. The CoBots vary in their sensing capabilities. CoBots 1, 2 and 3 have a short-range
laser rangefinder, the Hokuyo URG-04lx (Chapter 3.2). All the CoBots have one forward-facing
depth camera, the Microsoft Kinect. The forward-facing depth camera is also used for human
detection [22] in addition to sensing for localization and obstacle avoidance. CoBots 2 and 4,
in addition to the forward-facing depth camera have a second depth camera each. On CoBot 2
the second depth camera is placed low near the base, and facing upwards, allowing the robot to
perceive tall chairs and tables. On CoBot 4 the second depth camera is mounted high on the
robot and facing downwards, allowing the robot to detect small obstacles in its path.

The robots have been deployed on several buildings, including the Gates-Hillman Centers
(GHC) and Newell-Simon Hall (NSH) at Carnegie Mellon University, and The Center for Urban
Science and Progress at New York University (NYU). There are 12 floors in total across all the
buildings that the CoBots have been deployed on, including floors 3-9 in GHC, 1-4 in NSH, and
floor 19 in NYU.

Occupants of the buildings may schedule tasks for the CoBots from our online scheduling in-
terface [27], shown in Figure 7.1. Additionally, the robots may also be interrupted by bystanders,
who can then schedule tasks on the robot directly using the on-board scheduling interface [84],
shown in Figure 7.3. The task scheduler assigns and distributes the user-requested tasks among
the deployed robots, taking into account transfers between the robots [25]. In addition to user-
requested tasks, when the robots do not have any pending tasks, they perform self-assigned tasks
commanding the robots to visit randomly chosen locations along the navigable paths in the build-
ings.

The CoBots navigate through the environment unchaperoned and largely unmonitored. The
robots exhibit symbiotic autonomy, as they autonomously seek human assistance to perform
tasks [74, 75] that involve manipulation, since the CoBots do not have manipulators. Execution
monitoring scripts on the robot track the task execution progress and send email to the admin-
istrators in the rare cases when it needs assistance. Figure 7.4 shows one such email, where the
robot had waited for more than 5 minutes for human help at the elevators. When required, CoBot
developers can use the web-based remote monitoring and telepresence interface of CoBot [26],
shown in Figure 7.2, to inspect the state of the robot and remotely send it commands.

Over the course of their regular deployments, the CoBots traverse the public areas in the
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Figure 7.1: The CoBot task scheduling website. Users may select from a drop-down list of tasks,
shown in the inset.

building, encountering varied scenarios (Figure 7.5), and yet accurately reach task locations (Fig-
ure 7.6). Using localization alone, the robot is repeatably and accurately able to slow down
before traversing bumps on the floor (Figure 7.5c), stop at the right location outside offices (Fig-
ure 7.6a-b) and the kitchen (Figure 7.6c), as well as autonomously get on and off the elevators
in the building (Figure 7.6d). There are areas in the building where the only observable long-
term features are beyond the range of the robot’s sensors, requiring the robot to navigate these
areas using only the short-term features as reasoned by EnML (Chapter 5). For safe navigation,
the CoBots have to detect tall chairs and tables undetectable to the laser rangefinder sensors but
visible to the depth cameras. Despite these challenges, the CoBots remain autonomous in our
environment, and rarely require human intervention.

7.2 Data Collected

During every deployment, the CoBots log the following data streams:

1. The drive commands sent to the motors at 20Hz

2. Software exceptions (if any) from all nodes running on the robot

3. Operator interventions (if any) using the on-board touch-screen as well as the remote telep-
resence controls on the website

4. Humans detected by the depth cameras at 10Hz

5. Joystick commands received

6. Localization estimates at 20Hz
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Figure 7.2: The CoBot remote telepresence website, which administrators can use to remotely
monitor and control the robots.

7. Odometry feedback from the wheel encoders at 20Hz

8. StarGazer observations when received

9. Navigation status, including planned path and current command at 20Hz

10. Laser rangefinder scans at 10Hz

11. Obstacle scans computed using the depth cameras at 30Hz

12. Raw depth images from the depth cameras, at a reduced frame rate of 0.1Hz

All data streams are logged at the rates that they are generated, except for the raw depth images,
which are logged only at a reduced frame rate of 0.1Hz to keep the log file sizes manageable.
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Figure 7.3: The on-board CoBot task scheduling interface. Bystanders may use this interface on
the robot’s touch-screen to schedule tasks locally on the robots.

Figure 7.4: An example email from CoBot4, asking for assistance.

Figure 7.7 shows the progress of the 1000km Challenge as a graph of the cumulative distance
traversed by the robots over time. CoBot2, as the most sensor-rich robot, as well as the primary
test and development platform, initially accounted for a large share of the total autonomous
distance traversed, but CoBot3 and CoBot4 have been deployed more extensively, and over more
extended deployments more recently. Figure 7.8 shows the combined traces of all the locations
visited by all the CoBots over all the maps. The 1000km Challenge has resulted in the collection
of over 168GB of compressed data logs. Table 7.1 lists the cumulative contents of all the logs,
and Table 7.2 and Table 7.2 list the contributions to the 1000km Challenge per robot. Note that
the different robots have uneven deployments due to the variations in their availability: the robots
were completed at different times, and were otherwise occupied for other research. Figure 7.8
shows the combined traces of the paths traversed by the CoBots on the different floors. The
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(a) (b) (c) (d)

Figure 7.5: Localization and navigation in varied scenarios, including (a) in an open area with
glass walls, (b) while crossing a bridge, (c) slowing down to cross a bump, and (d) negotiating a
sharp turn.

CoBots visited different floors with different frequencies, as listed in Table 7.3. Complete sensor
logs collected by the CoBots over the 1000km Challenge are available online at http://www.
cs.cmu.edu/˜coral/cobot/data.html

Property Value
Duration 1279.5 h
Distance traversed 1006.1 km
Deployments 3199
Laser rangefinder scans 42,815,389
Depth camera obstacle scans 54,932,523

Table 7.1: Cumulative totals from the data logs collected from all the CoBots over the
1000km Challenge.

7.3 Quantitative Results

We evaluated the error in the localization estimates over the 1000km Challenge by two methods:
comparison to scan matching, and comparison to sparse ground truth.

http://www.cs.cmu.edu/~coral/cobot/data.html
http://www.cs.cmu.edu/~coral/cobot/data.html
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(a) (b) (c) (d)

Figure 7.6: Reliable robot positioning at task locations, including (a) outside an office door, (b)
at a transfer location, (c) at the kitchen, and (d) while taking the elevator.

Figure 7.7: The progress of the 1000km Challenge as a stacked cumulative graph. The contri-
butions of the CoBots1, 2, 3 and 4 are represented by the areas shaded in blue, red, yellow and
green, respectively.

7.3.1 Accuracy Compared to Scan Matching

There are locations in the environment where there exist abundant full-rank long-term map fea-
tures such that the robot’s location may be uniquely determined by scan matching [67]. We
call these locations “Landmark Checkpoints”. Corridor intersections are good examples of some
Landmark Checkpoints. We use these Landmark Checkpoints to process the deployment logs
offline and estimate the localization errors of the CoBots. The scan matching algorithm is a com-
putationally intensive operation, since it is evaluated over all possible locations and orientations
in a 2m × 2m search window at a a resolution of 0.02m and 5◦. Therefore the scan matching
can only be performed offline for the evaluation of localization accuracy. From the deployment
logs, at every instant that a CoBot estimated that it was near a Landmark Checkpoint, the last
observed laser rangefinder scan or depth image obstacle scan (depending on what was available
on that particular CoBot) is used to estimate the instantaneous most probable location of the
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Figure 7.8: Combined traces of the paths traversed by the CoBots over the 1000km Challenge:
(from left to right, top to bottom) NYU19, GHC3, GHC4, GHC5, GHC6, GHC7, GHC8, GHC9,
NSH1, NSH2, NSH3, and NSH4. Locations on the map are color-coded by the frequency of
visits, varying from dark blue (least frequently visited) to red (most frequently visited). Since
the CoBots visited each floor a different number of times, the color scales are different for each
floor.
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Robot Distance (km)
CoBot1 36.6
CoBot2 548.2
CoBot3 205.1
CoBot4 216.1

Table 7.2: Distances traversed by each robot during the 1000km Challenge

Floor Deployments
GHC3 15
GHC4 158
GHC5 50
GHC6 315
GHC7 2135
GHC8 150
GHC9 164
NSH1 9
NSH2 6
NSH3 9
NSH4 80
NYU19 108

Table 7.3: Breakup of the times each floor was visited by the CoBots during the 1000km Chal-
lenge

CoBot by scan matching. When the robots are deployed, they do not slow down or stop specif-
ically at the Landmark Checkpoints: the online localization and navigation algorithms are even
unaware of the locations of the Landmark Checkpoints. By comparing the instantaneous most
probable location computed by scan matching to the localization estimates of the robot from the
deployment log, we estimate the error in localization at that particular instant.

Table 7.4 lists the localization errors evaluated by scan matching at Landmark Checkpoints
on the different maps. There are 167 LandMark Checkpoints in total over all the floors. Maps
NSH1-4, GHC3 and NYU19 have been omitted since there were insufficient Landmark Check-
points encountered on those maps. Figure 7.9 shows the histograms of errors in localization
computed by scan matching at the Landmark Checkpoints. Figure 7.10 shows scatter plots of the
errors of the robot localization estimates relative to the corresponding Landmark Checkpoints,
for each of the different maps. Figure 7.11 shows a similarly computed scatter plot of the local-
ization errors combined for all the maps.
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Map Samples Mean error (m) Median error (m) Std. Dev. (m)
GHC4 294 0.165 0.104 0.159
GHC5 218 0.132 0.101 0.113
GHC6 669 0.105 0.075 0.113
GHC7 6626 0.132 0.083 0.140
GHC8 527 0.107 0.055 0.145
GHC9 806 0.136 0.080 0.164

Table 7.4: Localization accuracy evaluated by scan matching at Landmark Checkpoints for the
different maps over the course of the 1000km Challenge.

GHC4 GHC5

GHC6 GHC7

GHC8 GHC9

Figure 7.9: Histogram of scan matching errors on each floor during the 1000km Challenge
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GHC4 GHC5

GHC6 GHC7

GHC8 GHC9

Figure 7.10: Scatter plots of localization errors evaluated by scan matching during the
1000km Challenge
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Figure 7.11: Scatter plots of localization errors over all maps during the 1000km Challenge

7.3.2 Accuracy Compared to Sparse Ground-Truth

CoBot2 and CoBot3 are equipped with Hagisonic StarGazer2 sensors, which detect StarGazer
marker patterns mounted on the ceiling and provide relative locations of detected markers with
respect to the sensor. Each StarGazer marker consists of four or more retro-reflective dots ar-
ranged on a 4 × 4 grid. The absence or presence of specific dots on the grid encodes a unique
ID number for each marker. We have 46 StarGazer markers placed on the ceiling throughout
the Gates-Hillman Center to provide sparse ground-truth location estimates. The locations of the
markers were tabulated manually by measuring their locations relative to nearby map features.
While providing absolute ground truth information, the StarGazer markers have a few known
limitations:

1. The marker locations were tabulated manually, and are subject to human placement and
measurement errors.

2. The StarGazer sensor reports observed markers at 5Hz, along with some processing la-
tency. The location estimates of the robot would thus differ when the robot is moving.

3. The StarGazer sensor assumes it is always parallel to the markers, but the sensor would in
practice tilt with the acceleration and deceleration of the robot.

When a CoBot detects a StarGazer marker, the localization estimates are compared to the
global location of the observed StarGazer marker to compute the error in localization. Fig-

2http://eng.hagisonic.kr/cnt/prod/prod010102?uid=11&cateID=2

 http://eng.hagisonic.kr/cnt/prod/prod010102?uid=11&cateID=2
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ure 7.12 shows the histograms of errors in localization evaluated by sparse ground truth, and
Table 7.5 lists the mean, median and standard deviations of errors for the different maps.

Map Samples Mean error (m) Median error (m) Std. Dev. (m)
GHC4 7656 0.352 0.343 0.218
GHC5 5123 0.394 0.400 0.181
GHC6 1235 0.296 0.314 0.122
GHC7 17489 0.368 0.341 0.190
GHC8 50 0.234 0.167 0.185
GHC9 276 0.464 0.402 0.232

Table 7.5: Localization accuracy by sparse ground truth for the different maps over the course of
the 1000km Challenge.

7.3.3 Robustness

While deployed, the CoBots log the operator interventions provided. To gauge the real-world
robustness of our localization algorithms, we count the number of times operator interventions
were required to reset localization while the robot was operating autonomously. Table 7.6 lists the
number of times operator interventions were required for all the deployments for each map during
the 1000km Challenge. More than 93% of the deployments proceeded without any localization
interventions, and there were no deployments with more than three interventions.

Interventions
Map 0 1 2 3 > 3
GHC3 14 1 0 0 0
GHC4 126 31 0 1 0
GHC5 44 6 0 0 0
GHC6 290 21 3 1 0
GHC7 2047 77 9 2 0
GHC8 140 9 1 0 0
GHC9 156 8 0 0 0
NSH1 7 2 0 0 0
NSH2 4 0 1 1 0
NSH3 8 1 0 0 0
NSH4 66 13 0 1 0
NYU19 101 7 0 0 0
Total 3003 176 14 6 0

Table 7.6: Operator interventions over the 1000km Challenge, listed as the number of deploy-
ments with 0, 1, 2, 3, and > 3 interventions per deployment, for each map.
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GHC4 GHC5

GHC6 GHC7

GHC8 GHC9

Figure 7.12: Histogram of errors evaluated by sparse ground truth on each map
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GHC4 GHC5

GHC6 GHC7

GHC8 GHC9

Figure 7.13: Scatter plots of localization errors evaluated by sparse ground truth during the
1000km Challenge
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Over the duration of the 1000km Challenge, Corrective Gradient Refinement (Chapter 4.2.1)
was used for localization between September 2011 and January 2014, while Episodic non-
Markov Localization (Chapter 5) was used February 2014 onwards. Table 7.7 compares the
mean distance traversed by the robot between interventions, for each map, when using CGR,
and when using EnML for localization. The mean distance traversed between interventions is
significantly higher for EnML than for CGR, thus demonstrating the higher reliability of EnML
for localization in real-world human environments. Note that the maps GHC3, GHC5, NSH1,
NSH2, NSH3 and NYU19 are omitted from this analysis since we have insufficient data for both
algorithms to compare the mean distance between interventions.

CGR EnML
GHC4 0.62 4.42
GHC6 8.61 9.48
GHC7 5.58 9.02
GHC8 6.04 19.36
GHC9 5.33 20.05
NSH4 0.56 2.65
All 4.79 8.13

Table 7.7: Mean distance (in km) traversed between interventions using CGR and EnML per
map over the 1000km Challenge.

We also logged how far the robots traversed autonomously before operator interventions were
required. As listed in Table 7.6, there were 196 deployments with one ore more deployments. For
those deployments, Figure 7.14 shows a histogram of how far the robot traversed autonomously
before the first operator intervention. We noticed that most of the interventions were required
shortly after the robot started moving, within the first 0.5km. This is largely due to the operator
providing inaccurate localization initialization at the beginning of the deployments. Furthermore,
of the 26 instances where two successive operator interventions were required, Figure 7.15 shows
a histogram of how far the robot traversed autonomously between successive operator interven-
tions. Again, it is seen that the vast majority of successive interventions happen before the robot
traverses more than 0.5km after the first intervention. This is because when an intervention is re-
quired, in many cases it is hard even for the operator to correcly re-initialize the robot’s location,
thus requiring further interventions shortly thereafter.
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Figure 7.14: Histogram of the distance traversed by the robot before the first operator interven-
tion, in terms of the percentage of the number of times that operator interventions were required
in a deployment.

Figure 7.15: Histogram of the distance traversed by the robot between successive operator inter-
ventions, in terms of the percentage of the number of times that more than one operator interven-
tion was required in a single deployment.
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7.4 Lessons Learned

The continued deployments of the CoBots provide us with valuable insights into the limita-
tions and challenges of deploying service mobile robots in real human environments. We list
the lessons learned under the sub-categories of Sensors, Localization, Navigation and System
Integration.

7.4.1 Sensors

As mentioned earlier in Chapter 7.1, the different CoBots are equipped with different sensor
combinations.Due to the variations in the sensing abilities, the different CoBots vary in their
ability to handle different types of environments.

With the upward-facing depth camera, CoBot2 is well-suited for deployments in areas with
tall chairs and tables. CoBot4, with its downward-facing depth camera, is capable of detecting
small obstacles on the ground, like laptop power adapters or cables.

The laser rangefinder, with its larger field of view than the depth cameras, make CoBot1,
CoBot2 and CoBot3 better adapted to deployments in open areas where the only observable
features are often far off to the side of the robot instead of within the narrow field of view of the
depth cameras.

Neither the laser rangefinder, nor the depth camera sensors on the CoBots, are rated for use
in direct sunlight. As a result, occasionally, when the CoBots encounter direct bright sunlight,
they detect false obstacles and the obstacle avoidance algorithm brings the robots to a stop.

7.4.2 Localization

The sensors used for localization on the CoBots have limited sensing range (Chapter 3.2), and
cannot observe the entire length of the hallway that the CoBot is in, for most of the time. There-
fore, it is up to the localization algorithms to reason about the uncertainty parallel to the direction
of the hallway. This is in stark contrast to a scenario where a robot with a long-range sensor (like
the SICK LMS-200 laser rangefinder, with a maximum range of 80m) is able to observe the en-
tire length of every hallway (the longest hallway in the GHC building is about 50m in length),
and hence is able to accurately compute its location with a single reading. The decision to use
inexpensive short-range sensors is motivated by cost, since our goal included deploying several
CoBots, and by the goal to investigate algorithms robust to sensor limitations. Despite the limi-
tation of the sensor range, the CoBots repeatedly stop at exactly the right destination locations in
front of office doors, and always follow the same path down hallways (when there are no obsta-
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cles). In fact, in a number of hallways, the repeated traversal of the CoBots along the exact same
paths has worn down tracks in the carpets.

As presented in Chapter 7.3.3, Episodic non-Markov Localization has dramatically increased
the robustness in localization of the CoBots, and has further permitted deployments in challeng-
ing areas like the floors GHC4 and GHC5, where most of the observations made by the robots
consist of movable objects.

7.4.3 Navigation

In our experiences with extended deployment of the CoBots, we have come to realize that a
conservative approach to navigation is more reliable in the long term as compared to a more un-
constrained and potentially hazardous approach. In particular, the obstacle avoidance algorithm
uses a local greedy planner, which assumes that paths on the navigation graph will always be
navigable, and can only be blocked by humans. As a result, the planner will not consider an
alternative route if a corridor has a lot of human traffic, but will stop before the humans and ask
to be excused. Furthermore, due to the virtual corridors, the robot will not seek to side-step ob-
stacles indefinitely. While this might result in longer stopped times in the presence of significant
human traffic, it also ensures that the robot does not run into invisible obstacles in the pursuit of
open paths. Although there exist many hallways with glass walls, the robot has never come close
to hitting them, thanks to its reliable localization and virtual corridors.

One drawback of the constrained navigation is that if the localization estimates are off by
more than half the width of a corridor intersection (which is extremely rare, but has occurred),
the obstacle avoidance algorithm will prevent the robot from continuing, perceiving the corner
of the walls at the intersection as an obstacle in its path. In such circumstances, issuing a remote
command to the robot (via its telepresence interface) to turn and move to the side is sufficient for
the robot to recover its localization (by observing the true locations of the walls), and hence the
navigation as well.

7.4.4 System Integration

As described in Appendix A, CoBots rely on significant automation in order to ensure continued
reliable operation. During deployments, the CoBots are accessible remotely via a telepresence
interface that allow members of the research group to examine the state of the robot from the
lowest (sensor) levels to the highest (task execution) levels. When a CoBot is blocked for task
execution due lack of human responses to interaction, it automatically sends and email to the
research group mentioning its latest location estimate, task status, and reason for being blocked.
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The ability of the CoBots to proactively email for assistance when required has proven to be
invaluable on a few unexpected occasions. In one such case, one building occupant was annoyed
by the noise of the robots passing by his office, and sought to stop the robot by trapping it by
placing cardboard boxes around it. The robot detected that its path was blocked from all sides,
and emailed the developers for assistance. Since then, we have limited the maximum speed of
the robots while passing by that office, in order to reduce its noise.

We are currently at the point where the physical intervention required to manually unplug the
charger from the robot is the bottleneck in deploying the CoBots. Therefore we are exploring
designs for an automatic charging dock that will be robust to small positioning errors of the robot,
durable in order to withstand thousands of cycles per year, and yet be capable of transferring
sufficient power to charge the robot base as well as the laptop at the same time.

7.5 Summary

In this chapter we presented the results of running the CoBots during the 1000km Challenge,
spanning deployments over several years in varied environments across multiple floors and build-
ings. Despite variations and changes in the environments, the robots successfully autonomously
traversed all the public areas over the years of deployments of the robots. We further presented
quantitative results of the localization accuracy and robustness over the course of all their de-
ployments, and discussed lessons learned.



Chapter 8

Conclusion and Future Work

In this chapter we summarize the contributions of the thesis, discuss some possible avenues for
future work, and conclude with a brief summary of the thesis.

8.1 Contributions

The key contributions of this thesis are as follows.

MCL-CGR for accurate and robust localization with low computational cost in indoor hu-
man environments with limited variations over time. We introduced Monte-Carlo Local-
ization with Corrective Gradient Refinement (MCL-CGR) to use an analytic sensor likelihood
function with a vector map representation of the environment. We experimentally showed that
MCL-CGR has greater localization accuracy, lower variance, and lower computational require-
ments than MCL-SIR.

FSPF for plane-filtering of depth images, and FSPF-MCL-CGR for localization with inex-
pensive depth cameras in human indoor environments with limited variations over time.
We introduced the Fast Sampling Plane Filtering (FSPF) algorithm that samples the depth image
to produce a set of points corresponding to planes, along with the plane parameters (normals
and offsets). We then introduced an observation model that matches the plane filtered points to
the existing 2D vector maps. Finally, we used MCL-CGR to localize the robot using the plane
filtered points. We experimentally demonstrated that a robot with an inexpensive depth camera
running MCL-CGR with FSPF to accurately and robustly localize it in common office environ-
ments with comparable results to localization using MCL-CGR and the much more expensive
laser rangefinders.
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EnML for accurate and robust localization in varying environments with many moving
objects and frequent changes. We introduced Episodic non-Markov Localization (EnML) to
localize a robot in environments with many dynamic and movable objects. We introduced the
Varying Graphical Network (VGN), a novel graphical model to keep track of correlations be-
tween successive poses based on odometry, between pairs of poses from short-term features, and
between each pose and the map from long-term features. We introduced a cost function rep-
resentation of the belief to efficiently compute the maximum likelihood estimate of the robot’s
location by performing non-linear least-squares optimization of the cost function. We experi-
mentally demonstrated that EnML is able to localize accurately and reliably even in challenging
varying environments, and performs favorably compared to alternative approaches.

Plane-Polygon Map Update and Model-Instance Object Mapping to updated maps with
sensor logs gathered over extended deployments We introduced the Plane-Polygon Map up-
date algorithm to build and update sparse 3D maps by extracting the dominant planar features of
the environment. The Plane-Polygon Map thus constructed are considerable more compact than
alternative, high-resolution 3D maps. We further introduced Model-Instance Object Mapping,
an approach that reasons about the shapes, or models of objects independently of their observed
copies, or instances. Model-Instance Object Mapping detects models as well as the instances of
commonly observed movable objects in an entirely unsupervised manner. We demonstrated the
effectiveness of Model-Instance Object Mapping by presenting the learnt models and their in-
stances from sensor logs of deployments of the robots autonomously traversing more than 55km.

Extensive experimental results of over 1000km traversed by robots using the proposed
localization algorithms. We presented results from continuous deployments of four robots,
CoBots 1-4 in real academic buildings at Carnegie Mellon University as well as New York Uni-
versity. The robots were deployed in multiple buildings, over multiple floors, and exposed to a
variety of indoor environments. Unchaperoned and unmonitored, they successfully completed
numerous tasks over their deployments, while maintaining accurate location estimates using the
algorithms presented in this thesis. We contributed data analysis along multiple dimensions,
including data visualization, evidence of algorithm correctness, and statistics of performance.
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8.2 Future Work

We introduced Episodic non-Markov Localization as an approach to reason about the nature of
the observations made by a robot, in terms of the permanence of the objects being observed.
There are several possible interesting areas of future work that are possible by extending EnML
and relaxing its assumptions. Ideally, a long-term localization algorithm would not only reason
about the nature of its observations, it should also build its maps of such expected observa-
tions over time without requiring an initial map estimate. Such an approach would be similar to
SLAM in that it would result in building a map, but different in that not every observation would
be added to the map, in particular when multiple observations contradict each other. Tracking
dynamic features, which EnML currently does not do, is another logical next step. Accounting
for Joint compatibility, and revisiting conflicting data associations would make EnML more ro-
bust to initial localization and data association errors. Finally, as an eventual goal, an approach to
Generalized Perception should reason about object detection, tracking and mapping at the same
level as mobile robot localization.

Extending EnML to initialize and build long-term maps Currently, EnML requires an initial
estimate of the long-term static map of the environment. Extending EnML to be able to robustly
generate its own initial estimate of the long-term static map would require reasoning about loop
closures with observations of only short-term features. In the absence of any long-term features
(as would be the case if EnML had no initial long-term static map), the episodes would span
the fill duration of the initial deployment of the robot, thus requiring computationally efficient
ways of optimizing over the Variable Graphical Network. Furthermore, building a long-term
static map would require intelligent conflict resolution between observations when the robot
observes movable objects at different locations at different times, requiring the robot to reason
about objects necessarily being short-term features if the space occupied by them was previously
observed to be vacant.

Tracking dynamic features in EnML There has been some work in tracking moving objects
while performing SLAM [92]. Such tracking of moving objects could also be performed by
EnML. Tracking moving objects would allow EnML to better hypothesize about the expected
observations arising from moving objects in future time-steps, thus further improving its data
associations and consequently its location tracking.

Joint compatibility for correspondence matching in EnML Joint compatibility is inherently
computationally expensive, since it involves reasoning about the exponential number of possible
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data association pairings. However, using a strict bounding threshold in Joint Compatibility with
Branch and Bound (JCBB) [61] could potentially allow EnML to reason about a limited number
of most likely alternate data associations. This would lead to increased robustness of location
tracking in the presence of poor initial estimates.

Generalized Perception Currently robots perform object detection and tracking independently
from localization. Fruthermore, there are even specialized detectors for certain classes of objects
like humans or doors. Ideally, the information extracted from object detection and tracking
could better guide localization by reasoning about whether a particular object is likely to be a
long-term feature, short-term feature or dynamic feature. For example, a table is more likely to
be an short-term feature than an long-term feature, and a human is likely to be a dynamic feature.
The location estimates of such a generalized perception algorithm would, in return, aid in better
tracking of objects.

8.3 Summary

This thesis introduced several new map representations, observation models, and mobile robot
localization algorithms. We introduced a vector map representation, and the analytic ray cast
algorithm to efficiently compute observation likelihood models on the vector map. We intro-
duced the Fast Sampling Plane Filtering algorithm that processes depth images to extract planar
features from them even in the presence of clutter. We developed the Corrective Gradient Re-
finement algorithm that used the vector map representation to analytically refine the proposal
distributions of particle filters used for localization user laser range finders or depth cameras
processed by FSPF, thus resulting in more accurate and robust location estimates while requir-
ing fewer particles than MCL-SIR. We introduced Episodic non-Markov Localization to reason
about observations arising from long-term, short-term, or dynamic features, and thus explicitly
reason about correlations between observations of unmapped objects from different time steps.
We presented algorithms for updating planar polygon maps, as well as a Model-Instance map
representation of movable objects in the environment. Finally, we presented extensive results
from the 1000km Challenge, demonstrating the accuracy and robustness of the localization al-
gorithms over robot deployments in real human environments spanning multiple buildings and
several years.



Appendix A

Maintaining Perpetual Deployability of
Mobile Robots

This thesis introduced a number of theoretical contributions to mobile robot localization that
have enabled the long term deployment of the CoBots in increasingly challenging environments.
The 1000km Challenge demonstrated the accuracy and robustness of our algorithms over ex-
tensive deployments. However, on a scale of experiments this large, spanning multiple years,
multiple robots, and multiple buildings, algorithms alone are not enough to maintain perpetual
deployability. The goal of this chapter is to try to explain some of the ingredients of the secret
sauce that enabled us to have the CoBots be perpetually deployable.

While there are specific techniques that we used for the individual components of the robot,
a common theme is to keep it as simple as possible. A non-functional system requires signifi-
cantly more knowledge and insight than building the same system. Therefore, the cleverer that a
designer attempts to be while designing a system, the more frustrating it is to debug the overly
clever system. In contrast, if the system is bare minimal, and designed in the simplest manner
possible to get the task done, the simpler it will be to understand and debug.

A.1 Software Architecture

The software architecture on the CoBots is designed to be modular and easily extensible. Fig-
ure A.1 shows the software architecture on the CoBots. There are multiple software nodes, in-
cluding the robot hardware drivers, localization, navigation, the graphical user interface, the task
planner, the server interface, and the scheduling server. All software nodes except the schedul-
ing server run on the onboard computer on the CoBots. The scheduling server runs on a central
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off-board server. The software nodes communicate with each other using ROS1. There are two
forms of inter-node communications: topics and services. Topics are data streams, which may
have multiple publishers and multiple subscribers. Services are one-to-one interfaces for sending
dedicated commands from one node to another. The services on the CoBots include odometry,
laser rangefinder scans, depth image obstacle scans, filtered point clouds, robot location esti-
mates, and drive commands.

Figure A.1: CoBot Software Architecture. Software nodes, including the robot hardware drivers,
localization, navigation, the graphical user interface, the task planner, the server interface, and the
scheduling server send and recieve data via multiple topics (columns on the left). The different
software nodes send control commands to each other via services (arrows on the right).

Due to the modular nature of the software architecture, it is easy to add and remove function-
ality to the CoBots. For example, the localization software node may be running EnML (Chap-

1http://www.ros.org

http://www.ros.org
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ter 5) or CGR (Chapter 4.2.1) interchangeably, and the rest of the software is agnostic to exactly
which algorithm is running, since software nodes communicate via the pre-defined topics.

A.2 Software Automation

A number of steps involved in maintaining the deployability of a mobile robot can be automated,
including the software startup, log collection and management, and maintaining the source code
on the robots.

A.2.1 Startup Automation

Starting up and deploying a mobile robot involves a long sequence of steps that quickly becomes
tedious when deploying the robot frequently. To make it as easy as possible to deploy the robot,
we created startup scripts to automate the robot startup process as well as run diagnostics checks
once started up to detect startup failures. The startup script is launched from a one-touch icon on
the desktop of the robot’s touch-screen tablet, thus allowing deployers to start up the robot with
a single press of a button. The startup script performs the following tasks:

1. Detect the robot type from the configuration file, and select the appropriate set of sensors
and software nodes to launch.

2. Load the configuration files specific to the robot and publish the parameters for all software
nodes.

3. Enumerate all connected USB devices, and auto-detect which USB device corresponds to
which expected sensor.

4. When multiple sensors are detected, distinguish between them by their serial number, and
load their specific calibration files.

5. Start up all sensor drivers with command-line parameters specifying the automatically
detected port numbers of the devices.

6. Start up all software nodes.

7. Check for internet connectivity to the central scheduling server, and attempt to restart
internet connection if necessary.

8. Check that all sensors are publishing at the expected rates.

9. Check if the depth sensors detect the ground plane at the location expected by their extrin-
sic calibration.
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If any of the startup steps fail, the startup is terminated, and a spoken error message played
on the robot’s computer speakers describes what the cause of the failure was. An example such
error could be “The Kinect is not publishing at the expected rate”, or “Failed to auto-detect the
laser rangefinder.”

A.2.2 Log Management Automation

The CoBots record logs during every deployment, collecting over a Gigabyte of sensor data per
hour of deployment. The volume of data logs thus generated would understandably be challeng-
ing to manage manually. Instead, on every robot, we have nightly log management scripts which
perform the following tasks at 4AM everyday:

1. Compress every data log

2. Transfer the compressed data logs to the central server

3. If the data logs transferred successfully, delete the logs from the robot.

Once the data logs have all been transferred to the central server, they are further processed on
the server by a separate log processing script running on the server. This log processing script
performs the following tasks at 5AM everyday:

1. Compute the total autonomous distance traversed for each deployment

2. Generate a synopsis image plotting the trajectory of the robot over the deployment

3. Compute localization errors over the deployments using StarGazer observations as well as
scan matching (Chapter 7.3)

4. Extract the locations and times of operator interventions, if any, during the deployments

5. Convert the data logs into a standard format such that it may be readily shared with re-
searchers

6. Generate synopses of the deployments including the tasks performed and sensor data
logged

7. Email a synopsis (Figure A.2) of the deployments to the developer

Occasionally a robot may fail to transfer its logs automatically, if it has a poor wireless internet
connection. In such a case, an error log is locally saved, and the deployer may check the logs
and transfer them manually later.

The vast majority of the data logs collected by the CoBots are automatically managed by
the log management scripts presented here without any developer intervention. Occasionally
the developer may refer to the email synopses and inspect specific logs in case of an unusual
occurrence, for example unusually long deployments.
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Figure A.2: A synopsis email generated by the nightly processing script running on the central
server, summarizing the results of processing the deployment logs from the previous day.
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A.3 Log Explorer

Continuously deploying the CoBots quickly generates Gigabytes of data logs, which are hard
to search through and process in order to answer simple queries like “How often did the robots
visit the 4th floor in Newell-Simon Hall?”, or “How much distance has CoBot3 traversed since
24th October 2013 on the 6th floor of Gates-Hillman Center?” To address this, we developed
a web-based Log Explorer interface to be able to browse through the data logs collected so far,
and to answer simple deployment-related queries 2. The Log Explorer has three components:
a log to database importer, the website server, and the client-side Log Explorer website. The
log to database importer processes all the deployment logs and imports their summaries into an
SQL database for fast query and retrieval. The website server runs a Django-based interface
to respond to queries from clients with summaries of logs extracted from the database using
the client’s search queries. The client-side Log Explorer website, shown in Figure A.3, provides
user-selectable query fields, which can be used to query the server. Once the server responds with
the list of the summaries of the matching deployment logs, the Log Explorer website tabulates a
list of the deployments and graphically shows the cumulative distances traversed by the CoBots
over those deployments, their durations, as well as the latest progress of the 1000km Challenge.
The user may also select any of the entries in the list of deployments to view detailed information
about that deployment, as shown in Figure A.4.

A.4 Source Code Management

As a research platform, the CoBots undergo software updates daily, as contributed by researchers
working on different aspects of the autonomous service mobile robot problem. Hence, it is a
continual challenge to ensure that code updates do not break core functionality of the CoBots.
To help maintain a working code-base, we follow a number of code management procedures.

Code Version Control We use a Subversion3 repository to track changes to the code-base.
While distributed version control systems like Git and Mercurial are popular in the larger commu-
nity, in our experience Subversion works better for large teams of developers with a wide variety
of skill levels. On other projects like the CMDragons RoboCup Small Size Soccer team [9] we
have observed that inexperienced developers are easily bewildered by the branching and merging
procedures that are inevitable with distributed version control systems. Another useful feature of

2Thank you to Michael Murphy (mjmurphy@andrew.cmu.edu) for developing the log explorer.
3https://subversion.apache.org/

mailto:mjmurphy@andrew.cmu.edu
https://subversion.apache.org/


A.4 SOURCE CODE MANAGEMENT 139

Figure A.3: The Log Explorer website, showing (top to bottom) a graph of the cumulative au-
tonomous distance traversed by all the robots over time, the search query filters, and the deploy-
ment log results from the query.
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Figure A.4: Log Explorer website showing details of a singe deployment log
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Subversion, which we rely on, is that every subdirectory in the repository is a valid repository in
itself, which permits user access control down to individual sub-parts of the repository.

Redmine Interface In addition to Subversion, we use Redmine 4 to browse through changesets
committed to the repository. Redmine allows a web-browser based interface to inspect change-
sets, the committing developers, and visual diffs of the changes made. It also provides an in-
terface to query changesets to specific subdirectories in the repository. This interface has been
invaluable for tracing down origins of bugs and to perform code reviews. The Redmine interface
additionally provides a wiki system for documentation, which we use to document the usage pro-
cedures of the different software blocks of CoBot, and also usage procedures for the hardware.

Development and Testing When new changes are made to the CoBot source code they are
first tested in simulation. The simulator replaces the hardware drivers of the CoBots, but all
the remaining software nodes, including localization and navigation, run exactly as if they were
executing on the CoBot. CoBot developers use the simulator to verify that the robot can still
successfully perform user-requested tasks as expected after changes are made to the source code.

The 5-Minute Demo Policy We strive to maintain a “5-Minute Demo” policy in the CoBot lab,
where the robots should always be in a state to be started up for a live demo within 5 minutes’
warning. While it is understandable that the demo may not include the most experimental fea-
tures, we still strive to be able to give a demo of the research of our last submitted publications.
Having the 5-Minute Demo policy has allowed us to give demos to a large number of announced
as well as unannounced visitors, and it also reinforces the confidence of the CoBot researchers in
the deployability of the robots, thus making it easier for them to collect real world experimental
data for their research with minimal setup time.

The Save The Robots Fund Despite the best efforts of the CoBot researchers, occasionally
mistakes are made which result in longer down-times of the robots, be it due to discharged
batteries, broken builds, or sensor misalignments. We keep a tally of the number of times each
researcher is responsible for the downtime of the robot. After a researcher is responsible for five
such incidents, he or she is expected to treat the remaining researchers to dinner. The tally is thus
appropriately titled the “Save The Robots Fund”, and is shown in Figure A.5.

4http://www.redmine.org/

http://www.redmine.org/
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Figure A.5: The Save The Robots Fund
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