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Abstract 

 
 Discrete choice models (DCMs) are used to forecast demand in a variety of 

engineering, marketing, and policy contexts, and understanding the uncertainty associated 

with model forecasts is crucial to inform decision-making. This thesis evaluates the 

suitability of DCMs for forecasting automotive demand. The entire scope of this 

investigation is too broad to be covered here, but I explore several elements with a focus 

on three themes: defining how to measure forecast accuracy, comparing model 

specifications and forecasting methods in terms of prediction accuracy, and comparing 

the implications of model specifications and forecasting methods on vehicle design. 

Specifically I address several questions regarding the accuracy and uncertainty of market 

share predictions resulting from choice of utility function and structural specification, 

estimation method, and data structure assumptions. 

I1 compare more than 9,000 models based on those used in peer-reviewed 

literature and academic and government studies. Firstly, I find that including more model 

covariates generally improves predictive accuracy, but that the form those covariates take 

in the utility function is less important. Secondly, better model fit correlates well with 

better predictive accuracy; however, the models I construct— representative of those in 

extant literature— exhibit substantial prediction error stemming largely from limited 

model fit due to unobserved attributes. Lastly, accuracy of predictions in existing markets 

is neither a necessary nor sufficient condition for use in design.  

                                                 

1 1st person singular is used for consistency throughout the abstract, introduction and conclusion, but all 
studies are based on published or working papers with co-authors who are named in the respective sections. 
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Much of the econometrics literature on vehicle market modeling has presumed 

that biased coefficients make for bad models. For purely predictive purposes, the 

drawbacks of potentially mitigating bias using generalized method of moments 

estimation coupled with instrumental variables outweigh the expected benefits in the 

experiments conducted in this dissertation. The risk of specifying invalid instruments is 

high, and my results suggest that the instruments frequently used in the automotive 

demand literature are likely invalid. Furthermore, biased coefficients are not necessarily 

bad for maximizing the predictive power of the model. Bias can even aid predictions by 

implicitly capturing persistent unobserved effects in some circumstances. 

Including alternative specific constants (ASCs) in DCM utility functions 

improves model fit but not necessarily forecast accuracy. For frequentist estimated 

models all tested methods of forecasting ASCs improved share predictions of the whole 

midsize sedan market over excluding ASC in predictions, but only one method results in 

improved long term new vehicle, or entrant, forecasts. As seen in a synthetic data study, 

assuming an incorrect relationship between observed attributes and the ASC for 

forecasting risks making worse forecasts than would be made by a model that excludes 

ASCs entirely. Treating the ASCs as model parameters with full distributions of 

uncertainty via Bayesian estimation is more robust to selection of ASC forecasting 

method and less reliant on persistent market structures, however it comes at increased 

computational cost. Additionally, the best long term forecasts are made by the frequentist 

model that treats ASCs as calibration constants fit to the model post estimation of other 

parameters. 
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1. Introduction and Motivation 

Vehicle demand forecasts play a critical role in the development and adoption of 

vehicle technologies. They inform policy such as in the development of the national 

Corporate Average Fuel Economy (CAFE) standards2 [1]; they support engineering 

design decisions such as how consumers view the tradeoff between performance and fuel 

economy [2,3]; and they serve as necessary components of broader energy models like 

those that estimate anticipated electricity or oil consumption [4–7]. 

The literature employs many methods to forecast vehicle demand. For example, 

Becker et al. [8] forecast new vehicle sales based on the Bass model [9], which predicts 

new technology diffusion based on maximum market size and the purchases of early 

adopters. The National Research Council’s 2008 and 2010 reports “Transitions to 

Alternative Transportation Technologies” [10,11] extend the forecasts from the Argonne 

VISION model [12], which is based on the Annual Energy Outlook [13], by changing 

input assumptions. Similarly, Balducci [14] explores the implications of future economic 

scenarios on the projections of Greene et al. [15] and the Department of Energy’s Plug-in 

Hybrid Electric Vehicle R&D Plan [16]. Zhang et al. [17] demonstrate an agent-based 

approach (in conjunction with a logit model) to study the diffusion of alternative fuel 

vehicles. 

Among the methods available for forecasting vehicle demand, discrete choice 

models (DCMs) are the most prevalent in the literature (most of the preceding methods 

named involve a DCM at least indirectly, see Appendix A for more detail). A key 

                                                 

2 CAFE standards are indirectly informed by a nested logit model. The fuel price and transportation 
demand of the CAFE analysis is based on the Annual Energy Outlook’s [112] National Energy Modeling 
System (NEMS) that uses a nested logit model in the Consumer Vehicle Choice Submodule (CVCS) [113]. 



4 
 

advantage of DCMs is the ability to map consumers’ preferences for attributes to product 

performance in the market. Furthermore, they can be used to evaluate potential market 

responses to changes in these attributes, which is especially important for product design 

decision making. Consumer usage and demographic information can be included for 

additional flexibility, and the models can be estimated on data at various levels of 

aggregation from individual level surveys to product annual sales data. 

The typical DCM form specifies utility uijt that consumer i	observes for product j 

in market t to be linear in parameters: 

 ijt jt it jt ijtu    x   (1) 

where βit is the vector of attribute preference coefficients for consumer i in market t, xjt is 

the vector of attribute values for product j	 observed by the researcher, ξjt is the 

alternative-specific constant (ASC) representing the average utility of the attributes of 

product j	unobserved by the researcher but known to consumers, and εijt is the consumer-

specific random error term representing variation in consumer utility for attributes (and 

other factors) unobserved by the researcher. Specific models vary in the way they 

represent the distribution of βit	over the population of consumers, the assumed correlation 

between xjt and ξjt, the functional form of the covariates, and the assumed distributional 

form of the error term εijt. 

I pose a general case developed by Fiebig et al. [18] and relate popular models in 

the automotive demand literature to special cases of this general model [18]. The 

subscript t in Eq. 1 is dropped for notational simplicity since this thesis does not address 

the evolution of preferences over time. The general case here models βi as being 

distributed over the population with both scale heterogeneity and taste heterogeneity: 
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  1i i i i i
            (2) 

where  is the individual-specific standard deviation of the error term εijt representing 

scale heterogeneity (in Eq. 1 the variance of εijt is normalized to 1), μ represents the mean 

taste parameter vector, ηi is a random vector representing the taste variation over the 

population of consumers, and γ is a parameter between 0 and 1 that determines the extent 

to which the model represents pure taste heterogeneity versus pure scale heterogeneity. 

Various restrictions of this model create special cases that are familiar in the literature 

(Table 1). 

DCM predictions for the market share of annual new vehicle purchases by 

powertrain vary wildly [4,5,8,14,15]. Forecast discrepancies can arise from many sources 

including noisy data, finite data, omitted variables, changes in preferences or market 

conditions between estimation and prediction, and misspecification of the choice process 

[19]. Model misspecification is virtually guaranteed in most revealed-preference 

contexts, and while some studies conduct sensitivity analyses with regards to input 

parameters [4,5,8,14,15], less well understood are the impacts of the inherent statistical 

properties of DCMs as they apply to engineering and policy decisions. There are many 

sources of forecast uncertainty, but most work only conducts sensitivity analyses for a 

few, discrete parameter inputs— like low, base, and high gas price scenarios— and 

represents the resulting share forecast uncertainty as respective point estimates. In 

contrast, this work propagates multiple sources of uncertainty— finite sample estimated 

coefficient variation, prediction of unobservable ASCs, utility function and structural 

specification— through to share forecasts and characterizes share predictions as 

distributions of potential outcomes rather than point estimates. 
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Little validation has been done with regards to the appropriateness of using DCMs 

for automotive demand forecasting (Frischknecht et al. [20] is an exception), and this has 

created a barrier for adoption by some communities, e.g. US emissions policy modelers 

[21]. The studies presented in this thesis are intended to advance validation efforts and 

address a broad need for investigation into the conditions under which DCMs are likely 

to make good or bad forecasts and market structures or time frames for which the models 

are more likely to be accurate versus misleading. 

The three studies examine a number of these and other DCM issues as they 

specifically apply to vehicle demand forecasting. The data used in the case studies is of a 

form frequently encountered by automotive demand researchers: revealed preference 

sales data at the aggregate market level with many observations (vehicles) per market 

relative to the number of markets (years) available, and the estimation and forecasting 

techniques are based on extant vehicle demand literature methods. 

The three studies cover various elements of three guiding research themes: (1) 

defining how to measure forecast accuracy (study 1); (2) comparing model specifications 

and forecasting methods in terms of prediction accuracy, e.g. utility function (study 1) 

and taste heterogeneity (study 3) specifications; and (3) comparing design implications of 

different model specifications and forecasting methods. For the third theme I focus on the 

implications of mitigating coefficient bias arising from endogeneity (study 2) and 

evaluating forecast accuracy for all vehicles versus new entrants only (study 1). 

In the first study (Chapter 2) I test 9,000 utility function specifications informed by 

the vehicle demand literature as well as logit, mixed logit, and nested logit structural 

specifications, and I evaluate models in terms of fit and forecast accuracy according to 
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several measures. In the second study (Chapter 3) I estimate a mixed logit model that 

includes an ASC in the utility function by maximum likelihood estimation (MLE) and 

generalized method of moments with IVs (GMM-IV), several techniques to predict future 

market ASCs are proposed, and the forecasts from models estimated by MLE-C with 

ASCs fit post estimation and GMM-IV with ASCs fit simultaneously are compared. In 

the third study (Chapter 4) I use Bayesian estimation to incorporate specification of the 

ASC as an estimation parameter with a full distribution of uncertainty and to enable 

estimation of a mixed logit model with correlated model coefficients as opposed to 

independent coefficients. 
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Table 1 — Discrete choice model forms 
     Estimation technique by ξ assumption 

Model βi 

Error term εijt 
distributional 
assumption 

Taste parameter 
heterogeneity specification

Estimated 
params. (excl. ξ) ξ=0  

0

Cov ,jt jt







x 0
  

0

Cov , M
jt jt







x 
 

Generalized 
multinomial 

logit1 
(G-MNL)  

... ...

1

i i

i

i i








 



 



 





 
1 0,  

~ 1,  
  

 Cov , , ,m n m n   
2,

, 

 
 

    

Hierarchical 
mixed logit 

(MIXL)2 ...
i i

i

 
 z

  


 EV1(0,1) 
(iid)  Cov , , ,m n m n    , ,    Bayes [61] Bayes [101]  

 MIXL3 

 i i     EV1(0,1) 
(iid) 

 Cov , , ,m n m n    ,    
Bayes 

[99,105] 

Bayes [103,104,109]

  

 Cov , 0, ,m n m n    ,    

MLE [20,59] 
Bayes [17,55] 

 
 

GMM [33,35–37,49,52–
54,58], MLE [47], Other [49]

 

Mixed 
probit i i     N(0,1) 

(iid) 

 Cov , , ,m n m n    ,     Bayes [100]  

 Cov , 0, ,m n m n    ,    
MLE [55] 

Bayes [102] 
  

Scaled 
MNL1 i i

   
1 0,

~ 1,  
 Cov , 0, ,m n m n    2 ,      

Nested logit /i q   

EV1(0,1) 

 Cov , 0,

, ,

ijt ikt

q rj G k G q r

  

   
0,m m    ,    

MLE [46] 
Other [50,62] 

Other [34,45] 

L i    EV1(0,1) 
(iid) 

0,m m      
MLE [40,55,57,59] 

Bayes [99] 

 

MLE [31,60] 
Other [96] 

Other [39] 

Notes: boxed cells indicate model, ξ assumption, and estimation method are included in a thesis study ( study 1,  study 2,  study 3); some DCM assumptions and models are excluded; “Other” 
estimation category may include expert elicitation, canned software, or two-staged least squares; Notation: μ is a vector of mean taste parameters, η~N(0,Σβ) is the residual taste heterogeneity 
controlling for scale, and σβ is the vector of diagonal elements of Σβ; ξ is the ASC, G represents a set of vehicles or nest, and λ is a vector of nest-specific parameters; Abbreviations: EV1=extreme 
value type 1, LN=lognormal, N=normal, iid=independently and identically distributed, MLE=Maximum Likelihood Estimation, GMM=Generalized Method of Moments 
1

 The distribution of need not be lognormal but cannot permit negative values of . Setting the mean of  equal to 1 is a standard normalization. [18] 
2∆ is a matrix relating consumer variables zi to βi, when an individual’s taste parameters follow a general individual-specific distribution (like ∆zi) the model is referred to as a mixture model 
3 When η is distributed according to a probability mass function rather than a continuous density function the mixed logit model is equivalent to the latent class model 
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2. Sensitivity of Vehicle Market Share Predictions to Discrete Choice 
Model Specification 

This first study covers all three major research themes: defining how to measure 

forecast accuracy, comparing model specifications and forecasting methods in terms of 

prediction accuracy, and comparing design implications of different model specifications 

and forecasting methods. We ask specific questions: How should we measure prediction 

accuracy, and do different measures lead to different conclusions about which models 

predict best? How widely do predictions vary for alternative model specifications? Which 

specifications have the best predictions, and how good are they? What are the 

implications for using choice models in design, particularly of new products? Of the 

assumptions and models in Table 1 this study assumes the alternative-specific constant 

(ASC) is equal to zero and specifies logit, nested logit, and mixed logit with independent 

coefficients models3. 

When design decisions are informed by consumer choice models, uncertainty in 

choice model predictions creates uncertainty for the designer. We investigate the 

variation and accuracy of market share predictions by characterizing fit and forecast 

accuracy of discrete choice models (DCMs) for the US light duty new vehicle market. 

Specifically, we estimate multinomial logit models for 9,000 utility functions 

representative of a large literature in vehicle choice modeling using sales data for years 

2004-2006. Each model predicts shares for the 2007 and 2010 markets, and we compare 

several quantitative measures of model fit and predictive accuracy. We find that (1) our 

                                                 

3 The study presented in this chapter has been completed and has appeared in the Journal of Mechanical 
Design [93]. In this chapter the use of first person plural includes coauthors Jeremy Michalek, Ross 
Morrow, and Yimin Liu. 
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accuracy measures are concordant: model specifications that perform well on one 

measure tend to also perform well on other measures for both fit and prediction. (2) Even 

the best DCMs exhibit substantial prediction error, stemming largely from limited model 

fit due to unobserved attributes. A naïve “static” model, assuming share for each vehicle 

design in the forecast year = share in the last available year, outperforms all 9,000 

attribute-based models when predicting the full market 1-year-forward, but attribute-

based models can predict better for 4-year-forward forecasts or new vehicle designs. (3) 

Share predictions are sensitive to the presence of utility covariates but less sensitive to 

covariate form (e.g. miles per gallons versus gallons per mile), and nested and mixed 

logit specifications do not produce significantly more accurate forecasts. This suggests 

ambiguity in identifying a unique model form best for design. Furthermore, the models 

with best predictions do not necessarily have expected coefficient signs, and biased 

coefficients could misguide design efforts even when overall prediction accuracy for 

existing markets is maximized. 

2.1 Introduction  

Design researchers have proposed a variety of methods to predict the influence of 

design decisions on firm profit as part of a broader effort to base design decisions 

explicitly on predictions of downstream consequences for the firm [22]. The majority of 

these methods apply discrete choice methods [23] to predict consumer choice as a 

function of product attributes and price. Such predictions are proposed as a way to guide 

or even optimize design decisions [20,24–31]. Application of choice models within 

design implicitly relies on accurate choice predictions [3,26]. Given the many sources of 

uncertainty in such models, however, Frischknecht et al. [20] question the suitability of 
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using choice models in a design context. At a minimum, researchers must be aware of the 

degree of prediction error and uncertainty when employing market models in design.  

Prediction error can arise from many sources, including noisy data, finite data, 

omitted variables, changes in preferences or market conditions between estimation and 

prediction, and misspecification of the choice process [19]. Recent design research has 

modeled some aspects of model uncertainty by posing distributions over model 

coefficients [3,26]. Following standard asymptotic results, coefficient distributions are 

most often assumed to be normal with mean vector and covariance matrix determined by 

properties of the log-likelihood function. However, model misspecification is virtually 

guaranteed in most revealed-preference contexts, given the complexity of human choice 

behavior for difficult decisions [32], and standard statistical results do not apply in such 

settings, nor are they comprehensive. Moreover, few applications of choice modeling in 

any field carefully analyze sensitivity of model fit or forecast accuracy using alternative 

utility specifications or error structures that might imply different design decisions. A 

realistic portrait of these aspects of predictive error cannot be captured in a fully 

generalizable way across product domains or contexts but can nevertheless be better 

understood via data-driven examination in the specific market of interest.  

We focus on the effect of model specification and characterize share prediction 

accuracy of multinomial logit models in an empirical study of recent new vehicle markets 

using revealed preference sales data. The automotive sector is among the most popular 

product domains for application of choice modeling in general [17,20,25,28–31,33–60] 

and in the design literature specifically [17,20,25,28–30,38,43,44,48,51]. Logit models, 

along with variants including nested and mixed logit models, represent the most popular 
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modeling approach by far. While stated choice methods fit to conjoint survey data are 

common [17,24,29,43,55–57], they measure hypothetical choices and generally must be 

calibrated to achieve a match with market sales data [41,61]. We focus here on choice 

models fit to aggregate market sales data [20,25,28,30,33–37,39,44,45,48–54,56,59,62].  

Given the importance of the vehicle choice application in the design literature and 

beyond, a better understanding and characterization of prediction accuracy in this domain 

and its implications for design is needed. We aim to address this need with an automotive 

case study by fitting a set of models representative of those in the literature to past 

vehicle sales data, using the resulting models to predict sales in later years, and assessing 

prediction accuracy.  

Our analysis is focused on the following research questions: 

(Q2.1) How should we measure prediction accuracy, and do different measures 

lead to different conclusions about which models predict best? 

(Q2.2) How widely do predictions vary for alternative model specifications? 

Which specifications have the best predictions, and how good are they? 

(Q2.3) What are the implications for using choice models in design, particularly 

of new products? 

The design literature has not yet investigated what measures of forecast accuracy 

exist or compared these measures to understand how they differ in characterizing 

accuracy, thus Q2.1. Q2.2 applies appropriate measures to the specific task in our case 

study. Q2.3 focuses on prediction accuracy for new vehicle designs, and we examine the 

relationship between accurate prediction in existing markets versus potential to predict 

response to new designs that deviate from market patterns (e.g. correlations with 
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unobserved attributes). We view design as primarily interested in the introduction of new 

products or (large) changes to product features, motivating a focus on new vehicles.  

2.2 Literature Review 

Broadly, there are two schools of research in the vehicle demand literature. The 

first is concerned foremost with predicting future vehicle demand shares, usually at an 

aggregate level like vehicle class or powertrain type, and often without transparency 

about the assumptions and models used to make the forecast. We henceforth refer to this 

type of literature as “forecasting”. The second school is interested in model construction 

and in vehicle and consumer attribute coefficient estimation especially as it pertains to 

willingness-to-pay and demand elasticity in past markets. We henceforth refer to this type 

of literature as “explanatory”. Appendix A compares publications of each type. 

Forecasting studies are conducted by private or government research entities or 

issued in report format from an academic research institute (see Appendix A). Reports are 

typically not peer reviewed and rarely contain a full mathematical description of the 

model, making it impossible to reproduce the model without additional information. 

Some reports include sensitivity cases formed with variations on model assumptions; for 

example, the EIA Annual Energy Outlook [5] contains base, low and high alternative 

vehicle future market share as a result of base, low and high future oil prices. This type of 

sensitivity only captures uncertainty about model input parameters and assumes that 

model specification and estimated coefficients are known. In practice, model 

specifications for choice contexts as complex as automotive purchases are always 

uncertain, and the relevant question is whether or not the model is sufficient for its 

intended function. 
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The forecasting literature is typically not used in engineering design models due 

to lack of transparency and documentation of data and modeling assumptions and lack of 

models that make predictions as a function of design variables. Rather, models from the 

explanatory literature are applied in a predictive context. 

The bulk of the new vehicle purchase demand literature is explanatory, conducted 

by academic researchers and published in peer-reviewed academic journals (see 

Appendix A). This literature extensively discusses model estimation and to a lesser 

degree model selection, including potential sources of error from model misspecification. 

Usually researchers compare the goodness of fit across several specifications in order to 

determine which model best represents a known, current reality. However, most of this 

literature does not attempt to make predictions about future vehicle market-share 

penetration or evaluate models with predictive capabilities in mind (Frischknecht et al. 

[20] is a rare exception). In general, models that fit the existing data best may not 

necessarily be the best at predicting counterfactuals: statistical models may be 

misspecified, containing systematic difference in prediction from true process (“bias”), or 

may be sensitive to overfitting noise in the data instead of signal  (“variance”) [63]. 

The earliest applications of economic models for overall automotive demand 

focused on macroeconomic variables and, as Train [64] highlights, only included price. 

These studies are referred to as aggregate studies because the level of granularity of 

predictions is at the whole market or vehicle class level as opposed to individual vehicle 

designs4. Disaggregate studies evolved to predict the number of vehicles an individual 

household would choose to own [64]. For example, Lave and Train [60] advanced this 

                                                 

4 We use the term “vehicle design” to refer to vehicle make-model. 
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work by proposing a disaggregate model of vehicle class purchase choice based on 

consumer characteristics and additional vehicle characteristics, such as fuel economy, 

weight, size, number of seats, and horsepower. A wide variety of models followed over 

the next three decades: Boyd and Mellman [59], who propose a random coefficient logit 

model adopted by others [31,44,51,65,66];  Berry et al. [58], who include an ASC in the 

utility function of a random coefficient demand model adopted by others [33,35,67,68];

 Brownstone and Train [55], who propose several choice model specifications 

using the results of a California conjoint study described in Bunch et al. [69] and adopted 

by others [70,71]; and Whitefoot and Skerlos [31], who investigate the effect of fuel 

economy standards on vehicle size and employ a logit model with coefficients drawn 

directly from the literature. Other new-vehicle purchase models include 

[40,42,45,47,50,56,57,72]. 

We use the preceding literature to inform comparison models of our creation; we 

do not recreate prior models exactly due to limited availability of data or specifics about 

estimation methods. Instead, we form a combinatorial set of utility specifications using 

covariate forms from these prior models, fit them all to a common data set, and test them 

all on a common prediction set. Table 2 summarizes the covariates used in past models 

and those adopted for our tests.  

2.3 Methods 

Our overall goals are to examine the robustness of multinomial logit model 

predictions over various utility function specifications and to compare the predictions 

across the structural specifications of logit, mixed logit, and nested logit (for brevity we 

refer to the multinomial logit model as “logit”). We identify a universe of covariates 

informed by the literature and form combinations of them such that we have defined all 
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possible linear utility function specifications from these covariates. We then estimate the 

logit coefficients on US consumer vehicle purchase data from 2004-2006 and predict 

market share for each of the vehicles in the US purchase data from 2007 and 2010. 

Using the measures described in Section 2.3.4, we rank the predictive accuracy 

across utility function specification for each of the measures. 

2.3.1 The Data Set 

Our data set draws vehicle attribute information from Ward’s Automotive Index 

[73] and aggregate US sales data from Polk [74] for vehicle sales during 2004-2007 and 

2010. Other studies have used a variety of data sources (including these) as well as stated 

preference surveys. We use 2004-2006 data for estimation because we expect three years 

of data to be sufficient to predict a successive year, and we predict 2007 and 2010 sales to 

examine the effects of different time horizons. We implicitly assume that all individuals 

who purchased a vehicle considered all of the other vehicles available in the same year 

and made a compensatory decision based on vehicle attributes. 

Our models consider only new vehicle buyers, thus there is no outside good 

(option to not purchase any vehicle). Inclusion of an outside good allows a choice model 

to endogenously determine market size. Excluding it models only share among the 

vehicles purchased, which is likely less sensitive to macroeconomic factors. There are 

many factors that drive share and are not included in our models, but we are interested in 

how well a modeler can predict when relying primarily on available vehicle attribute 

data. 

2.3.2 Model Specification 

 Each model uses the utility function:  
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where uij is the utility of vehicle design j for consumer i, xj is the attribute vector of 

vehicle j, β is the vector of model parameters to be estimated, and εij is an error term. 

Following standard assumptions, if εij is independently identically distributed (iid) and 

follows a type I extreme value distribution, then the probability Pj that a randomly 

selected consumer will choose vehicle j can be expressed as: 

 
 
 

'

'

1

exp

exp

j

j J

k
k

P







x

x




 (4) 

where J is the number of vehicle design options. This is the (multinomial) logit formula.  

While any choice of covariates x is possible in principle, we focus on 

combinations of covariates used in the prior literature. We survey the automotive demand 

literature to identify the universe of independent variables historically used in automotive 

DCMs (Appendix B). From this list of candidate covariates, we select a subset to define a 

manageable set of models. Many of the models in the literature include demographic or 

consumer usage covariates, but because Ward’s Automotive Index data [73] does not 

include individual-level choices, we ignore demographics. For some demographic 

information like gender or income an aggregate distribution over the US population is 

available, but because we do not know which consumers selected which vehicles, 

sampled consumer attributes are unlikely to accurately determine specific individuals’ 

sensitivity to vehicle attributes. We omit several variables because they are not available 

in our data sources:  
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 Indirect vehicle attributes like consumer reports ratings for handling and safety– 

These would be unknown at the time of prediction. 

 Vehicle and battery maintenance costs– These covariates are used primarily when 

predicting alternative vehicle share, and they will not vary substantially across 

conventional and hybrid powertrains. 

 Acceleration time (seconds)– We indirectly test inclusion of acceleration through 

functions of horsepower and weight. Note that horsepower/weight correlates well 

with 0-60mph acceleration time for cars well but poorly for trucks. 

 Range– This covariate is used primarily when predicting alternative vehicle share and 

will not vary substantially across conventional and hybrid powertrains. A related fuel 

economy covariate is included. 

 Top speed– We use an alternative measure of performance through horsepower and 

weight. 

 Number of seats– We use vehicle class, which is closely related to seating. 

 2-year retained value– Like the consumer rating data this would not be known at the 

time of prediction. 

 Attributes specific to alternative-vehicles (e.g. dummies for hybrid or electric power 

trains) – These are not relevant to our data set, which includes conventional vehicles 

and only a limited number of hybrid powertrains. 
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The highlighted covariates in Table 2 are those which remain after omitting 

demographic, usage, indirect, and unavailable attributes. Some studies group price and 

fuel economy variables into discrete levels of each rather than treating them as 

continuous variables. We consider all covariates (except for class and brand dummies) to 

be continuous variables because, unlike controlled conjoint experiments, the market data 

do not fit well into a small number of discrete levels. Price is always included as a 

covariate and can take any of the forms listed in Table 2; vehicle class dummies are also 

always included. The other highlighted covariates in Appendix B can take one of the 

forms listed in Table 2 or can be excluded from the utility function entirely (“excluded” 

option). Given these covariate options, there are 9,000 possible utility specifications for 

the logit model outlined in Table 2. Operating cost includes the macroeconomic variable 

Table 2 — Covariate forms tested in utility function specifications 
 Functional form options 
Covariate Option 0 Option 1 Option 2 Option 3 Option 4 

Price  price ($) price + op cost ln(price)  

Operating 
cost1 

Excl. fuel cost/mile miles/fuel cost miles/gallon gallons/mile 

Acceleration2 Excl. horsepower/weight (hp/wt) wt/hp exp(c1*(hp/wt)^c2) hp 
Size Excl. length width length-width length*width 
Style Excl. (length*width)/height    
Luxury Excl. dummy if air-conditioning 

is standard 
   

Transmission Excl. dummy if auto.  
transmission is standard 

   

Brand Excl. dummy for country of 
origin3 

dummy for 
brand4 

  

Vehicle class  dummies for vehicle class5    
1 Fuel cost is average annual gas price [115] in 2004 dollars, adjustment based on the Consumer Price Index 
[116] 
2 c1= -0.00275 and c2= -0.776 as in the EIA Annual Energy Outlook 2011 [5] 
3 Country of origin includes: United States, Europe, and Asia; excludes United States dummy for 
identification 
4 Brand includes: Acura, Audi, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, 
Hummer, Hyundai, Infiniti, Isuzu, Jaguar, Jeep, Kia, Land Rover, Lexus, Lincoln, Mazda, Mercedes, 
Mercury, Mitsubishi, Nissan, Oldsmobile, Pontiac, Porsche, Saab, Saturn, Scion, Subaru, Suzuki, Toyota, 
Volkswagen, Volvo; excludes Acura dummy for identification 
5 Class includes: Compact, midsize sedan, full size sedan, luxury sedan, SUV, luxury SUV, pickup, 
minivan, van, and sports; van is excluded for identification. 
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of retail gas price. Though we aim to exclude non-vehicle attributes, this covariate was 

particularly prevalent in the literature. Furthermore, while having more covariates cannot 

decrease best model fit on a given data set, that does not imply that more covariates will 

improve model forecast accuracy. In general, introducing more covariates introduces the 

risk of overfitting the estimation data.  

From the selected covariates, we assume that the utility function is linear in 

parameters (a standard assumption in the vast majority of logit model applications 

because it ensures that the log-likelihood function is concave [23]) and construct models 

using all possible linear combinations of covariates. 

Many of these covariates are correlated. Such correlations can induce bias in the 

estimated coefficients if not corrected [75]. However, while this presents difficulties in 

drawing inferences from the coefficients (e.g. willingness-to-pay) it does not necessarily 

affect the ability to make predictions from the model so long as the correlations in the 

training data would also be present in the prediction set. For vehicle markets, this is likely 

to hold for near-term predictions, though it may not hold for new designs that do not 

follow prior patterns in the marketplace. 

For illustration of this concept, suppose the true choice generator uses the utility 

function | ′ , and the designs in the market follow a pattern: ′  for 

∈ , ∈ , . Then for any coefficient vector :	 ,

| ′ ′ ′ 	 ′ | . Therefore, choice 

probabilities are identical for any  in the null space of A, and  is not identifiable: 

coefficient estimates  could be arbitrarily far from their true value  . Nevertheless, 

| | , so utility estimates (and therefore choice probabilities) can be correct 
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even for arbitrarily biased coefficients as long as the new designs follow the pattern in the 

marketplace ′ . If a new design deviates from the prior pattern ′ , utility 

(and therefore choice probabilities) may be biased: | ′ ′

′ ′ ′ ′ ′ ′ | ′ . 

Therefore, models that predict well overall may nevertheless have biased coefficients that 

predict poorly for new designs that deviate from the market pattern. We assess predictive 

accuracy for products in the marketplace and also examine variation in implications of 

coefficient estimates for new designs. 

2.3.3 Model Estimation 

The likelihood of the estimated parameters L is defined as the probability of 

generating the observed data given the estimated parameter values: 
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x  (5)  

where nk are the sales of vehicle k. The maximum likelihood estimator of the parameters 

		is the value of the vector that maximizes L. The monotonic transformation ln(L) is 

typically used as the objective function for computational benefit. For more detail on 

logit models and their estimation see Train [23]. 

The mixed logit, or random coefficients logit, model is similar to the logit model 

except the individual β’s are allowed to vary over the population to represent 

heterogeneous consumer preferences. In our case we assume that they are independently 

normally distributed: 

  ~ ,N      (6) 
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where Σ is a diagonal matrix, and the maximum likelihood estimation (MLE) procedure 

estimates the elements of μ and Σ using numerical integration [23]. This specification 

relaxes the independence from irrelevant alternatives (IIA) restriction for substitution 

patterns [23]. 

Our nested logit specification divides the vehicles into groups or nests by vehicle 

class and fits a logit model to each of the nests. We assume that the utility functional 

form is the same for each nest, but coefficients may differ across nests. For example, the 

β for price will be different for midsize cars than it is for pickups. However, within a nest 

β is fixed. A nested logit exhibits the IIA property for products within a nest, but relaxes 

the IIA restriction for products in different nests. 

As generalizations of the logit model, nested and mixed logit models will 

necessarily fit any set of estimation data at least as well as the logit. The mixed logit 

generalization of the logit model is even flexible enough to represent most random utility 

maximization models, given enough flexibility over the coefficient distribution [23]. 

However, nested and mixed logit models need not predict as well as logit models due to 

the potential for overfitting.  

2.3.4 Evaluation Measures 

After fitting each of the model specifications, we evaluate prediction error using 

likelihood measures, the Kullback-Leibler divergence (KL) [76], a cumulative 

distribution of error tolerance (CDFET), and the average share error (ASE), and we 

compare the goodness-of-fit using the above measures as well as the Akaike Information 

Criterion (AIC) [77] and the Bayesian Information Criterion (BIC) [78]. Each of these 
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measures is described below. We compare models selected as best by these measures to 

one another and to literature-informed benchmark models. 

Likelihood: Likelihood, defined in Eq. 5, and monotonic transformations of 

likelihood, such as log-likelihood ln(L) and average likelihood (L1/J, where J is the 

number of choices observed) measure the probability that the model would generate the 

data observed. When comparing two models for the same data set, the model with larger 

L is more likely to generate the data observed. 

Kullback-Leibler divergence: The KL divergence measures the difference 

between a predicted distribution and the true distribution  [79]. 

   s jJKL s ||p = ln sj j jj=1 Pj

 
 
 
 

   (7)  

where sj = nj/J is the market share of vehicle design j. The KL measure is also a 

monotonic transformation of L, thus L and KL will rank models identically, and 

maximizing likelihood is equivalent to minimizing KL (see Appendix C for proof). 

Average share error: ASE measures the average error in share predictions across 

the vehicle designs. 

 1
1

J s Pj jjJ
ASE =     (8) 

We report ASE as a summary statistic in Appendix D but do not use it as a basis 

for model selection because it does not holistically capture distribution divergence: It will 

not distinguish between models with large error for one vehicle alternative versus the 

same degree of error spread out among many vehicle alternatives. 

Error tolerance CDF: The cumulative distribution function (CDF) of Error 

Tolerance (CDFET) graphs the fraction of vehicles with absolute share prediction error, 
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|sj – Pj| for vehicle design j, less than a specified value. This measure, to our knowledge 

proposed here, evaluates a model in terms of error tolerance levels. We use absolute share 

error rather than relative error because relative error overemphasizes small prediction 

errors for vehicles with small market share. A CDFET is a more comprehensive 

description of model prediction error than likelihood measures because it characterizes 

the distribution of accuracy across the vehicle share predictions, rather than just how well 

a model predicts “on average”.  

Two additional measures apply only to assess fit with estimation data, not 

predictive accuracy [80]. 

Akaike information criterion: AIC is a variation of likelihood that attempts to 

penalize overfitting. 

  2 2AIC = ln L - k   (9) 

where k is the number of model parameters.  

Bayesian information criterion: BIC is similar to AIC but with a stronger penalty 

for an increasing number of covariates. 

    2 J kBIC = ln L - ln   (10) 

AIC and BIC can take on the value of any negative real number, have no 

standalone meaning, and are only useful as compared to other candidate models fit to the 

same data set. Larger values are preferred. Derivations and consistency proofs for the KL, 

AIC and BIC measures can be found in [80]. 

2.4 Results 

Of the 9,000 tested utility function specifications, for 8,993 (99.9%) the Knitro 

optimization algorithm for Matlab converged to likelihood-maximizing coefficients, and 
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the other seven failed to converge. Only the 8,993 models that successfully converged 

were considered as candidate models. The candidate models were ranked from best to 

worst on each measure. There were no two models with identical values for any measure 

(no ties). In the following results “best models” refer to the models ranked as number one 

for a given measure. 

2.4.1 Q2.1: Model and Evaluation Measure Comparison 

We refer to a model that most accurately predicts the in-sample estimation data 

according to a given measure as the “best estimative model”, and we refer to a model that 

most accurately predicts the out-of-sample prediction data as the “best predictive model”. 

The traditional goodness-of-fit measures— likelihood/KL and AIC/BIC— select the same 

best estimative model, and they also agree upon the specification of the best predictive 

model. The CDFET goodness-of-prediction measure selects distinct model specifications 

as the best predictive models dependent upon the desired error tolerance level (we test 

error tolerance levels of 25%, 50% and 75%). The three CDFET best predictive models 

are also distinct from the best estimative and predictive models under the AIC, BIC, and 

likelihood criteria. See Appendix D for selected model measure comparisons and 

coefficient estimates. 

Though the best likelihood/AIC/BIC estimative model is distinct from the best 

predictive model, the difference in form is small. They include the same covariates but in 

different forms (e.g. operating cost as miles/dollar as opposed to gallons/mile) with the 

exception of luxury and transmission which contribute little to utility relative to the 

contribution of the other attributes. 
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2.4.2 Q2.2: Model Accuracy 

Table 3 summarizes the average likelihood (AL) calculated on the prediction data 

set for select combinations of model specification (rows) and estimation/prediction data 

set scenarios (columns). We report the relative average likelihood (RAL) in Table 3 

defined as the average likelihood of the model divided by the average likelihood of an 

ideal aggregate model that predicts shares perfectly. The reason we report RAL instead of 

simply AL is because choice diversity in the data necessarily lowers the maximum 

attainable value of AL with any model. Thus RAL describes the amount of predictive 

power obtained by a particular model relative to the best possible predictive power that 

could be obtained with any aggregate model.  

Table 3 — Relative Average Likelihood (RAL) calculated on the prediction data set for select 
model specifications and data sets 

Scenario 1 2 3 4 5 6 

Estimation data 
2004-
2006 

2006 2007 
2004-
2006 

2004-
2006 

2004-
2006 

Prediction data 2007 2007 2007 2010 2007 2007 

Market 
Full 

market 
Full 

market 
Full 

market 
Full 

market 
Luxury 
sedan1 

New 
designs2

AL of ideal model (predicted shares=actual 
shares)  

0.0076 0.0076 0.0076 0.0080 0.0384 0.4610 

RAL of no info model 55.3% 55.3% 55.3% 43.6% 63.6% 93.2%

RAL of static model 88.3% 88.3% 88.3% 23.7% 73.3% 95.9%

RAL of class dummies only logit 65.9% 65.9% 65.9% 53.6% NA 95.0%

RAL of best fit logit model for L/AIC/BIC of 
estimation data  

76.4% 77.7% 81.7% 67.3% 73.3% 96.5%

RAL of logit model with greatest likelihood 
for prediction data 

79.0% 79.0% 81.7% 68.5% 87.9% 97.5%

RAL of mixed logit with best logit estimation 
fit covariates 

79.0% 79.0% 85.6% 67.3% 89.2% 97.0%

RAL of nested logit with best logit estimation 
fit covariates 

73.8% 72.4% 80.3% 64.8% NA 95.3%

1 Luxury sedan vehicles used for estimation and prediction 
2 Full market used for estimation, evaluation measures assessed for prediction of new vehicles only 
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The rows compare the predictive performance of the model that has the best 

predictions and the model that fit the estimation data best. Using each of the utility 

functions from the best estimative logit models, we fit additional mixed and nested logit 

models. Due to computational limitations, we did not run all 9,000 utility form 

combinations for the mixed and nested logit structural specifications. Rather we used the 

results from the logit model output to inform the selection of covariate form for the 

mixed and nested logit models. The “no info” row is calculated by assigning an equal 

share to all vehicles. The static model row assumes that shares in the prediction year are 

identical to the most recent share of the vehicle design available in the estimation data for 

all vehicle designs present in both the estimation and prediction data, and all new vehicle 

designs receive an equal proportion of the remaining share.  

Scenario 1 is our base case, where models are fit to sales in years 2004-2006 and 

used to predict 2007 sales. Scenario 2 uses only 2006 data to predict 2007, assessing 

sensitivity of predictions to the amount of data used for estimation. Scenario 3 fits the 

models directly to 2007 data, helping to identify the portion of prediction error that stems 

from model fit, rather than from changes over time. Scenario 4 uses 2004-2006 data to 

predict 2010 sales, assessing differences when predictions are made farther into the 

future. Scenario 5 assesses predicative accuracy for a single vehicle class5, rather than the 

entire market, and scenario 6 assesses only the predictive accuracy for new vehicle 

designs introduced in 2007. Comparisons can be made within each column to evaluate 

the prediction accuracy across model specifications for a given estimation/prediction data 

set. 

                                                 

5 This is distinct from the “class dummies only logit” which includes data for the entire market but uses 
only dummies representing each class as covariates 
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In scenarios 1-3, which predict the full 2007 market, the best predictive logit 

model predicts better than the best estimative model, the class dummies model does not 

predict as well as the models which contain vehicle attributes, and the no info model 

predicts worst, as expected. Nested logit predictions have lower average likelihood than 

logit, but mixed logit predictions have higher average likelihood6. That the nested logit 

does not predict better than the logit suggests that the relaxation of the IIA property 

among the nests selected does not improve prediction. Model predictions could 

potentially be improved further by exploring alternative parameter distributional forms 

such as multivariate normal with a full covariance matrix [18], although that introduces 

more potential for overfitting with aggregate sales data. We leave such explorations for 

future work. See Appendix E for mixed and nested logit coefficient estimates and 

Appendix F for actual versus predicted shares. 

In all three scenarios the static model outperforms all other models. Additionally, 

we see little difference in prediction quality between scenarios 1-3 when using the same 

model (compare across columns) compared to the difference due to model specification 

(compare down rows), even though the prediction set and estimation set are identical in 

scenario 3. Together, these results indicate that residual error in model fit is a major 

source of prediction error, and there is too much missing data or model misspecification 

in the attribute-based models to fit or predict the full market as well as the static model. 

Without data on missing covariates that influence choice, such as vehicle aesthetics, it is 

                                                 

6 A likelihood ratio test of the best logit and mixed logit models calculated on 2007 data suggests that there 
is sufficient evidence to reject the null hypothesis that the mixed logit model predicts significantly better at 
the α=0.10 level. 
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difficult to fully explain choice behavior at the vehicle design level with only the 

available covariates. 

However, Scenario 4 examines a longer time horizon and reveals that the static 

model has poor predictive capability when forecasting farther into the future. The 

attribute-based models attempt to capture consumer choice as a function of observable 

attributes plus random noise, but since not all attributes are observed, share is not fit 

perfectly. In contrast, the static model does not attempt to explain the reason for 

consumers’ choices but instead simply assumes consumers will make the same choices 

year after year. The static model does well for the 2007 forecasts because share for each 

vehicle model changes little from year to year, but over a longer time horizon vehicle 

designs change and new designs are added to the market (~37% of the vehicle designs 

sold 2010 did not appear in the 2004-2006 data). The static model has no information 

about these new designs, so it loses predictive capability, and over a longer prediction 

horizon the attribute-based models perform substantially better than the static model.  

Scenario 5 indicates that the attribute-based models also perform better than the 

static model in the luxury sedan class. The best class model is distinct for each class, 

though all class models include some form of all covariates with the exception of style 

and automatic transmission as standard. The average likelihood of 2007 class predictions 

increases when the best estimative class level model is fit to class data as opposed to the 

best estimative full market model fit to the full market data with the exception of midsize 

and sports cars (see Appendix G for table of class model specifications and model 

average likelihood comparison by class). 



30 
 

Figure 1a shows the CDFET for selected models of scenario 1. The x-axis is the 

absolute difference between the predicted share and the actual share, and the y-axis is the 

proportion of vehicle designs whose share prediction error is less than the corresponding 

value on the x-axis. For example, in Figure 1a point (0.25%, 0.7) indicates that 70% of 

the share predictions made by the best AIC/BIC/KL models deviate from the observed 

share by less than 0.25% (the average vehicle design share in this market is 0.42%).  

The worst models all perform similarly to one another in scenario 1 and lie on top 

of the class-only curve in Figure 1a (and are thus omitted for readability). While a model 

could plausibly be posed that predicts worse than the no-info model, we do not observe it 

in our utility specifications. The best models and worst models differ most noticeably in 

their omission of covariates. The best models include some form of almost every 

covariate, whereas the worst models omit covariates entirely. For example, the worst 

model as selected by the likelihood and AIC measures applied to the estimated data only 

contains the covariates price and class. Conversely, if we compare only models that 

contain some form of price, operating cost, acceleration, size covariates, and class and 

brand dummies (style, luxury and automatic transmission dummies could be excluded), 

then we see no practical difference in the predictive power of the best and worst models. 

No one covariate in isolation sets the best models apart from the worst models. A model’s 

predictive power thus appears to be robust to covariate form but sensitive to the exclusion 

of attributes. 
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2.4.3 Q2.3: Implications for Design 

Scenario 6 compares the best-predictive logit model for all vehicles to the model 

that best predicts the shares of the new vehicle designs introduced in 2007. The best new 

vehicle model is determined similarly to the best predictive logit model of scenarios 1-3 

by ranking the models on each of the measures; however, the measures in this case were 

calculated by treating each of the new vehicles individually and the holdover vehicles as 

 
(A) 

 
(B) 

 
Figure 1 — CDF of error tolerance for the best logit model specifications as measured by 

likelihood/KL and AIC/BIC measures on 2004-2006 sales estimation data and 2007 sales prediction 
data compared to alternative models (A) full market (B) new vehicle designs only
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an aggregated “other” share. (The “other” share is calculated as the sum of all holdover 

vehicle shares.) In contrast to scenario 1, the attribute-driven logit models of scenario 6 

have a higher likelihood than the static model, since the static model has no information 

about new designs. 

The CDFET of Figure 1b shows that at lower values of error tolerance the 

attribute-driven models are superior to the static model and that there is some difference 

in prediction quality between models that predict best for the whole market versus the 

new vehicle market. Overall, while the static model outperforms attribute-based models 

for near-term predictions, attribute-based models are needed for predicting the 

performance of new vehicle designs and for making longer-term predictions. Still, the 

degree of uncertainty and error in predictions for new designs may be too large to guide 

design choices appropriately in some contexts. 

Appendix D summarizes model coefficients for several specifications including 

the representative of models in the literature as well as best-fit and best estimative 

models. It is clear that different specifications lead to different inferences about the effect 

of attribute changes on choice. For instance, the utility function specifications based on 

Boyd and Mellman [59], Berry et al. [58], and Whitefoot and Skerlos [31] result in a 

coefficient for operating cost that suggests consumers prefer higher efficiency (longer 

range per unit cost or lower fuel consumption per unit distance) all else being equal, as 

expected. But the best-fit and best predictive models suggest that consumers prefer lower 

efficiency. This can happen because efficiency may serve as a proxy for unobserved 

variables (e.g. size, performance, or styling variables not captured in the data). While the 

latter models make better predictions for existing vehicle markets that follow established 
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patterns (attribute correlations), they could misguide design efforts that divert from 

established market patterns.  

2.5 Limitations 

Our investigation is a first step in a larger goal of characterizing the design 

impacts of choice prediction uncertainty. All of our models have error resulting from 

misspecification and missing information (as do all similar models in the literature that 

are based on market sales data rather than controlled experiments). For example, we do 

not have information on attributes that are important in some vehicle classes (like towing 

capacity for trucks), and we lack information and quantification of some key purchase 

drivers, such as aesthetics. We lack individual-level choice data with consumer 

covariates, such as demographics or usage variables [29], which can help explain choice 

behavior and improve predictions when predictions of future population covariates are 

available. Nevertheless, such limitations are common in choice models used to assess the 

vehicle market or guide design choices. Our study suggests that if models lack 

transparent quantifications of important determinants of product choices, designers 

should be cautious about basing design decisions on choice models. 

More research is needed to assess a wider scope of modeling alternatives. We did 

not consider ASCs – product-specific factors that proxy for omitted variables – and their 

use in prediction or design. ASCs can generate models that match estimation data shares 

exactly; however, they contain no information about specific unobserved product 

features, and they are unknown for any new product designs. We also ignore a major 

component of the new vehicle modeling literature: covariate endogeneity— a correlation 

between model covariates and the unobserved terms like error. Endogeneity implies that 

coefficients are biased and inconsistent if not properly estimated, typically requiring 
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instrumental variables techniques [23]. We also did not consider alternative estimation 

methods (e.g. Bayesian methods) and alternative heterogeneity specifications (e.g. latent 

class models, mixed logit model with joint parameter distributions, mixture models, and 

generalized logit models that account for scale and coefficient heterogeneity [18]).  

Our study uses random utility DCMs that treat consumers as observant rational 

utility maximizers with consistent preferences. While this is a popular approach to 

modeling consumer choice, important criticisms exist. For instance, preferences can 

evolve over time [41], changing with cultural symbolism [81] and/or social interactions 

[82]. The theory of construction of preference adapted to design by MacDonald et al. 

suggests that consumers’ preferences for attributes do not exist a-priori but are rather 

evaluated on a case-by-case basis [32]. Morrow et al. [30] suggest that vehicle choice 

behavior may be better represented by a “consider-then-choose” model [83] where 

consumers first screen out most alternatives using simple rules, subsequently maximizing 

utility over a smaller “consideration set” [84]. The potential value of this type of model is 

suggested here by the better performance of class-only models, a special case of the 

consider-then-choose model. More broadly, the Lucas critique warns against use of 

aggregated historical data to predict outcomes in counterfactual future scenarios [85].  

2.6 Conclusions 

While the topic of uncertainty associated with choice predictions is widely 

discussed in the design community (e.g. [3,24–26,32,44]), there is no current consensus 

as to what processes and measures best quantify model uncertainty. This gap motivated 

our first research question, Q2.1. We investigated several well-known measures of model 

performance evaluated on a prediction set. For the automotive case study examined, 

likelihood measures (and the rank-equivalent Kullback-Leibler divergence measure) tend 
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to identify the same top-ranked model as the penalized likelihood measures AIC and BIC 

do. While CDFET measures identify different top-ranked models, depending on the error 

tolerance selected, the resulting models share most covariates. Models that perform well 

on one measure tend to perform well on the other measures, and models that perform 

poorly on one measure also tend to perform poorly on the other measures. In other words, 

determination of the best models in our study did not depend strongly on potentially 

arbitrary selection of the measure used to evaluate predictive accuracy.  

Overall our results confirm several intuitive features of this application: attribute-

based models predict better than models with no information; models of a particular 

vehicle class typically make better predictions than models of the full market; including 

more covariates generally improves predictive accuracy; and better model fit correlates 

well with better predictive accuracy. The match between fit and predictive accuracy, 

suggesting no major overfitting issues, is particularly encouraging, since the modeler has 

access to choice data for estimation but not choice data in the counterfactual predictive 

context. These findings would have to be validated in other product domains on a case-

by-case basis. 

We also observe a number of less intuitive results that are relevant to design. 

First, the models we construct are fairly poor predictors of future shares. In our base 

scenario, our best predictive model has an average error of 0.24% (the average share of a 

vehicle design is 0.42%), which translates to an error of approximately 37,500 vehicles 

sold for the 2007 market. The limited predictive power of standard models on real data in 

a canonical product category suggests designers should apply DCMs cautiously, though 
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predictions may be substantially better in domains with fewer unobserved attributes or 

with conjoint data (where all attributes are observed).  

Second, we find that attribute-based models do not furnish the best predictions for 

short-run forecasts in stable market conditions: Attribute-based models estimated on 

2004-2006 data were outperformed in predicting 2007 shares by the “static” model that 

assumes no changes in shares. However, attribute-based models are superior to the static 

model when predicting new vehicles only, since the static model lacks information about 

new entrants. There are some intuitive reasons why the static model might perform better 

than attribute-based models for short term predictions of existing designs given relatively 

stable market conditions. First, the static model may implicitly capture effects related to 

omitted vehicle attributes neglected by attribute-based models. Second, the static model 

may predict well in the short-run simply because of “inertial” conditions specific to the 

automotive market, particularly multi-period production schedules and inventory build-

up that must ultimately be cleared over the short run using unobserved advertising and/or 

purchasing incentives.  

Third, while including an appropriate set of product attributes as model covariates 

is important to improving predictive accuracy, the form those covariates take in the utility 

function is less important in this application. This implies that it may be less important to 

test many variations of utility function covariate form when constructing a model, but it 

also means that any design decisions (e.g. design optimization results) that are not robust 

to variation in utility function covariate form may not be justified given the near 

equivalence of alternative covariate form in fit and prediction error with market data. If 

different utility specifications lead to different design decisions but the data cannot 
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discern which form best represents choices, then design decisions cannot be reliably 

based on any single specification.  

Finally, we observe that some of the models with the best predictive accuracy 

have coefficients with unexpected signs – likely biased due to correlation with 

unobserved attributes. Despite good prediction accuracy in existing markets, where 

attribute correlations are similar from year to year, these models may misguide design 

efforts if the designer makes changes that do not follow correlations in the marketplace. 

For example, the sign of the coefficient for the gallons per mile (gpm) attribute of the 

best predictive logit model is negative7, suggesting that consumers prefer lower fuel 

economy, all other attributes being equal. In fact, consumers may purchase vehicles with 

lower fuel economy because of other features of those vehicles unobserved by the 

modeler (e.g. size, performance, or styling attributes not captured in the model). The 

model predicts well if the new market retains such correlations, but a designer who 

lowers fuel economy alone is not likely to obtain the outcome predicted by the model. 

Thus, accuracy of predictions in existing markets is not a sufficient condition for use in 

design. 

To verify that our results are not specific to the 2004-2006 timeframe, we 

conducted a similar analysis with estimation data from years 1971-1973 and 1981-1983 

with prediction data from the respective 1 and 4 year forward markets. We find that our 

conclusions are generally robust to alternate timeframes: our accuracy measures are 

concordant; the best models exhibit substantial prediction error stemming from limited 

model fit; the static model outperforms the attribute-based models when predicting the 

                                                 

7 We reject the null hypothesis that the coefficient is equal to zero at the α=0.01 level for a two-sided t-test. 
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full market 1-year-forward but attribute-based models can predict better for 4-year-

forward forecasts or new vehicle designs; share predictions are sensitive to the presence 

of utility covariates but less sensitive to covariate form; nested and mixed logit 

specifications do not produce significantly more accurate forecasts; and the 1971-1973 

models with best predictions do not necessarily have expected coefficient signs (though 

1981-1983 models do). See Appendix H of the supplemental material for additional 

detail. 
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3. Improving Forecasts for Light-Duty Vehicle Demand: Assessing 
the Use of Alternative-Specific Constants for Endogeneity 

Correction versus Calibration 

This second study covers two of the major thesis research themes: comparing 

model specifications and forecasting methods in terms of prediction accuracy and 

comparing design implications of different model specifications and forecasting methods. 

We investigate the following research questions: How should modelers address the 

potential endogeneity between price and omitted variables when forecasting new vehicle 

market shares? Can alternative-specific constants (ASCs) improve forecast accuracy? 

How should estimates of past ASCs be used in future share forecasts? Of the assumptions 

and models in Table 1 this study examines the effects on estimated coefficients and share 

predictions when the ASC is assumed to be correlated with price (endogenous) as 

opposed to when it is treated as independent. We estimate mixed logit models with 

independent coefficients8. 

We investigate the implications of different approaches to incorporating ASCs in 

the product utility function on parameter recovery and forecast accuracy. We do so for a 

specific application, i.e. light-duty vehicle choices in the United States. Specifically, we 

estimate mixed logit models using both synthetic data and 2002-2006 US midsize sedan 

automotive sales data. We test two methods of incorporating ASCs: (1) a maximum 

likelihood estimator that computes ASCs post-hoc as model calibration constants (MLE-

C) and (2) a generalized method of moments estimator with instrumental variables 

(GMM-IV) that uses ASCs to account for price endogeneity.  

                                                 

8 This chapter is included in a working paper. In this chapter the use of first person plural includes 
coauthors Ross Morrow, Inês Azevedo, Elea Feit, and Jeremy Michalek. 
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From the synthetic data study we observe that MLE-C coefficient bias increases 

as the price-ASC correlation (endogeneity) increases, as expected. Given valid 

instruments, GMM-IV successfully mitigates this bias at the cost of larger parameter 

variance; but, given invalid instruments, GMM-IV exacerbates bias. One- and five-year 

MLE-C forecasts are as good as or better than GMM-IV forecasts regardless of 

instrument validity except when a high price-ASC correlation present in the estimation 

data is absent in the forecast data. 

In the market data study the GMM-IV model better predicts the 1-year-forward 

market (4% accuracy improvement over MLE-C), but the MLE-C model better predicts 

the 5-year-forward market (15% accuracy improvement over GMM-IV). Including an 

ASC in predictions by any of the methods proposed improves share forecasts, and 

assuming that the ASC of a new vehicle is most similar to the ASC of its closest 

competitor vehicle yields the best long term forecasts. We find evidence that the 

instruments most frequently used in the automotive demand literature are likely invalid. 

3.1 Introduction 

Discrete choice models (DCMs) are used to interpret and forecast product demand 

in a variety of contexts, and a popular application is the new vehicle sales market. In 

particular, the automotive literature employs DCMs to understand drivers of purchase 

behavior [34,37,39,46,53,60] and predict future vehicle market shares [4,5,14,15,50,86]. 

DCM specifications include popular multinomial logit, nested logit, mixed logit, and 

probit models [23], as well as variants of these models, such as the generalized 

multinomial logit model [18]. 

DCMs of product purchases are generally estimated using either stated choice 

data or revealed preference data. Stated choice data can be obtained from choice-based 
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conjoint experiments where the modeler selects a set of attributes that the respondent 

observes. These studies can avoid issues such as omitted variables, endogeneity, and 

multicollinearity. However, such studies typically rely on surveys that do not directly 

measure real purchase choices in a market context. In contrast, revealed preference data, 

often aggregate market sales data, measures real market purchases. Revealed preference 

studies have the limitation that buyers evaluate factors that are unobserved by the 

modeler or are difficult to represent mathematically (e.g. aesthetics). Also, attributes tend 

to be correlated among product alternatives in the marketplace (e.g. vehicles with luxury 

features routinely have higher prices), sometimes introducing multicollinearity [87]. 

Different sets of econometric assumptions are needed for the stated and revealed 

preference modeling approaches. In this work we focus on models constructed from 

revealed preference (sales) data. 

The number and nature of attributes considered by consumers in a vehicle 

purchase decision is sufficiently large and complex that any DCM posed will be missing 

information about some of the attributes that inform consumer choice. In order to address 

the utility not captured by explanatory variables, modelers may include an alternative-

specific constant (ASC) in the utility function. For example, following Train [60]: 

 ijt jt i jt ijtu    x    (11) 

where uijt is the utility consumer i derives from product j in market (year) t, xjt is a vector 

of attributes specific to product j in market t, βi is a vector of taste parameters for 

consumer i, ξjt is the ASC for product j in market t, and εijt is an idiosyncratic error term. 

Consumer-specific attributes like income or family size can also be included in the utility 
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function, but they are not in this study since we use aggregate data sets for which this 

information is not available. 

An interpretation of the ASC introduced into the automotive demand context by 

Lave and Train [60]9 and popularized by Berry et al. [58] is that it represents the mean 

cumulative effect of all product attributes that consumers use to evaluate a product but 

that are unknown to researchers. Alternative terms for the ASC when it is used to 

represent omitted variables include the unobservable [34,53,54,58,88], the unobserved 

product characteristic or attribute [36,49], market-level disturbance [52], and demand 

shock [33,35]. However, the ASC need not necessarily be viewed as a representation of 

unobserved attributes but rather can be included as purely mathematical construct to 

improve model fit [15,50] and sometimes referred to as a calibration constant [62]. 

In the literature, the treatment and interpretation of the ASC differs depending on 

whether the focus of the research is to forecast future vehicle demand shares (i.e. the 

“predictive” literature) or the focus is on measuring the importance of attributes to 

consumers (i.e. the “explanatory” literature), especially as it pertains to willingness-to-

pay and price elasticities of demand. The predictive literature generally obtains ASCs by 

estimating coefficients in a model that excludes the ASCs and then “calibrating” the 

model post hoc by choosing values for the ASCs so that the modified model-predicted 

shares of the estimation data match observed shares. In contrast, the explanatory literature 

is primarily concerned with coefficient estimation and thus views it as imperative to 

                                                 

9 Lave and Train [60] estimate a disaggregate model of vehicle choice in which all observed vehicle 
attributes are interacted with consumer attributes, e.g. income, so that the ASC is identical to the 
unobserved vehicle-specific utility. However, as in Train and Winston [47], the ASC refers to the mean 
utility derived from both the observed and unobserved vehicle attributes. In the aggregate demand model 
context here the ASC refers only to the unobserved portion of utility.  
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address potential sources of coefficient inconsistency— specifically price endogeneity 

[58]. Inconsistency arises if the ASC is correlated with an observed attribute. If the ASC 

is interpreted as a representation of aggregate utility from unobserved attributes, then it is 

plausible that observed and unobserved vehicle attributes (e.g. price and aesthetics) are 

correlated for markets in which prices are set by strategic firms, which would 

asymptotically bias10 the coefficient of the observed attribute away from the true value. 

Though the true population taste parameters are unknowable for real data, researchers 

have demonstrated that for models estimated on actual market data the price coefficient 

bias, measured as the difference between estimates when endogeneity is ignored versus 

when it is corrected for, is in expected directions [58,89,90]. The explanatory literature 

implements estimation techniques that mitigate endogeneity— typically using 

instrumental variables (IVs) and estimating the ASC simultaneously with the coefficients. 

There are drawbacks to mitigating coefficient bias with IVs. Model estimation is 

challenging in part because valid instruments are difficult to specify and impossible to 

verify as demonstrated by Rossi [91]. Valid instruments require that they are correlated 

with the endogenous observed vehicle attribute, uncorrelated with the unobserved 

attribute(s), and do not affect the dependent model variable (market share) except through 

the observed attributes [92]. Instruments that do not meet these conditions are termed 

invalid. Because these properties are difficult to satisfy in many situations, instrument 

selection is somewhat subjective and ad hoc, and, as we show, the “wrong” choices can 

                                                 

10 Methods that incorporate (valid) IVs result in estimators that are consistent— as the data sample size 
goes to infinity the expected value of the estimator converges to the true value of the parameters should 
they exist— but not unbiased in the sense that the sampling distribution of the estimator is centered on the 
true value of the parameters (also termed “finite sample bias”). In the literature discussed here “bias” is 
shorthand for “asymptotic bias” and is used interchangeably with “inconsistency.” [37] 
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generate worse models than ignoring endogeneity all together. Specifically, Rossi shows 

that invalid instruments can lead to coefficient estimates exhibiting larger bias than those 

obtained ignoring endogeneity [91]. Furthermore, a common estimation technique used 

to incorporate IVs (generalized method of moments or GMM) is known to be inefficient 

so that a large number of instruments are needed to obtain statistically significant 

coefficient estimates [92]. 

Even if valid instruments can be specified, asymptotically biased coefficients do 

not necessarily mean a model will predict poorly [63]. Particularly, biased models may 

predict future choices well in markets that have persistent patterns of endogeneity 

because bias may carry forward information about the connection between observed and 

omitted variables— a useful feature when the relationships that hold in the estimation 

data are also likely to be hold in the future [93]. In the case of automotive demand 

modeling, endogeneity comes from strategic pricing by firms that observe and account 

for demand for vehicle aspects not observed by the modeler. It is thus plausible that 

price-ASC correlation persists in future markets absent dramatic changes in market 

structure, raising doubts as to whether correcting for endogeneity is needed.  

This work is motivated by the preceding discussion and aims to answer the 

following three questions: 

(Q3.1) Should modelers address the potential endogeneity between price and 

omitted variables when forecasting new vehicle market shares?  

For contexts in which the source of endogeneity is likely to persist— e.g. mature 

product markets with relatively stable consumer preferences like the automotive 

market— models may be well served by calibration constants free from the problems 
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with specifying valid IVs. The main drawback of post-hoc ASC calibration is that it lacks 

the coherent theoretical grounding of the IV approach: the effect of missing attributes on 

choice is attributed to observed attributes when fitting the model, and the ASCs are added 

post hoc to “artificially” match observed shares. Forcing model predictions to match 

observations exactly guarantees overfitting— fitting the noise in the data— which should 

degrade forecast quality. This suggests that use of ASCs as calibration constants in 

forecasts should be approached with caution and motivates our second research question: 

 (Q3.2) Can ASCs improve forecast accuracy?  

Several studies implement methods to predict ASCs for out-of-sample alternatives 

[15,47,49,62], but neither the predictive nor explanatory literature suggests how to 

predict future values of the ASCs for products that do not appear in the estimation data. 

Furthermore, these prior studies represent predicted ASCs as point estimates without 

characterizing the implications of uncertainty in the value of ASCs for future alternatives. 

We propose four methods for forecasting ASCs when they are interpreted as representing 

the utility of unobserved vehicle characteristics and evaluate the resulting accuracy and 

uncertainty of predicted shares when ASCs are included in the utility function in order to 

investigate our third research question: 

 (Q3.3) Should estimates of past ASCs be used in future share forecasts? 

Our work examines the implications of including ASCs in DCMs in an 

automotive demand modeling context. Specifically we are interested in the implications 

of estimation and prediction techniques employed in the literature on forecast accuracy 

and uncertainty. Much of the literature relies on these models to inform analysis of 

vehicle design and policy, and these types of analyses often require forecasting. 



46 
 

The remainder of this paper is structured as follows: Section 3.2 reviews the 

literature on DCMs that employ ASCs with a focus on the automotive demand literature. 

Section 3.3 describes model specifications and estimation techniques. Section 3.4  

outlines the generation of a synthetic data set and the methods used to predict future 

ASCs as well as estimation and prediction results for the synthetic data set. Section 3.5 

extends the analyses to a case study on midsize sedan purchases for 2002-2006, 2007, 

and 2011. Section 3.6 discusses the studies’ results and challenges posed by estimating a 

model with IVs. Section 3.7 addresses the limitations, and section 3.8 concludes. 

3.2 Literature Review 

Table 4 compares automotive demand studies that use DCMs with ASCs and are 

estimated in a classical framework (as opposed to Bayesian). The explanatory literature 

primarily introduces or evaluates model estimation techniques, estimates coefficients to 

describe consumer preferences or firm behavior, or tests counterfactual policy scenarios 

and often reports willingness-to-pay or willingness-to-accept for different vehicle 

attributes. For some of these purposes no predictions are made, but counterfactuals are 

simulated; such simulations are typically in-sample. For such analyses there is often no 

need to determine ASCs, which are assumed identical to their estimated values. (Berry et 

al. [49] and Train and Winston [47] are exceptions.) The forecast literature primarily 

forecasts future market shares or tests counterfactual scenarios. Reviewing the literature 

summarized in Table 4 a major distinction between the two bodies of literature emerges. 

The explanatory literature estimates models by formal, econometric methods that often 

use IVs to obtain consistent coefficients, reducing or eliminating (asymptotic) coefficient 

bias and estimating ASCs concurrently with observed variable coefficients. The forecast 
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literature relies on expert opinion or historical coefficient estimates, calibrates ASCs post 

model estimation, and does not take additional steps to control for endogeneity. 

While there are many reasons to include ASCs in DCMs, they do present a 

practical problem in forecasting. Typically, researchers will assume that estimated values 

of the ASCs for a particular vehicle model carry forward from year to year, but when the 

forecast market includes new vehicles, an assumption must be made about the value of 

the ASC for that new vehicle. We review new vehicle ASC forecasting methods from the 

literature and use these to inform our proposed methods in sections 3.4 and 3.5. Four of 

the studies in Table 4 predict out-of-sample or new vehicle shares for which unknown 

ASCs must be generated or assumed. Berry et al. 2004 [49] predict in-sample shares for a 

counterfactual scenario, but they introduce two new vehicles into the data set. For the 

new vehicles, the ASCs are generated by averaging the estimated ASCs of the respective 

brand and class of the new vehicle. Train and Winston [47] forecast out-of-sample future 

market shares. They hold the ASCs of the observed products constant from the calibrated 

value and similarly to Berry et al. [49] generate new product ASCs by averaging over the 

estimated ASCs of the same class. Greene et al. [15] forecast out-of-sample shares for 

future markets in which the vehicle set is modified by introducing diesel and hybrid 

versions of vehicles in the estimation data set. They assume diesel and hybrid vehicles 

have identical ASCs to their conventional counterparts and hold the ASCs constant from 

the estimated values. Bunch et al. [62] forecast out-of-sample future market shares under 

alternative policies and assume that the vehicle set is unchanged from the estimation data. 

Similarly to Greene et al. [15], they hold future ASCs constant from the estimated values. 
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One of our model estimation techniques described in section 3.3 is based on the 

two-stage generalized method of moments with instrumental variables (GMM-IV) 

estimation implemented by Berry et al. [58] that is commonly referred to as “BLP”. 

Berry et al. [58] develop a technique to estimate joint models of supply and demand that 

include ASCs and IVs in a nonlinear DCM framework. This canonical study informs 

many of the studies in Table 4 [33–37,39,45,47,49,52–54] and Knittel and Metaxoglou 

[33] list BLP-type demand models in addition to the vehicle demand focused studies 

included here. We isolate the demand side model and ignore the supply side as described 

in Nevo [67] who provides a detailed econometric guide on the technical details of 

estimating a BLP-like model for interested readers. However, several recent studies have 

focused on the difficulties of estimating models with the BLP method. Knittel and 

Metaxoglou [33] find that for several combinations of algorithms and starting values the 

estimation routine results in specious convergences and convergences to several local 

minima; moreover they find that different local GMM-IV solutions have significantly 

different economic implications. Dubé et al. [35] find that loose convergence tolerance 

criteria on BLP’s nested fixed point iteration exacerbate coefficient bias and that 

reasonable estimation times often require a convergence criterion too loose for good 

estimates. They propose an alternative nonlinear programming formulation that we adopt 

here. Similarly Su and Judd [94] propose an alternative formulation of the BLP-style 

estimation procedure for more general strategic market models to avoid nested fixed 

point iteration. We discuss some other difficulties vehicle demand researchers are likely 

to encounter in section 3.6.3. 
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No studies in Table 4 conduct a formal statistical test regarding the 

appropriateness of the IVs, but two of the studies qualitatively address it. Allcott and 

Wozny [34] verify that their instruments should not be included as explanatory variables 

in the utility function, and Li et al. [39] estimate a model that implies inelastic price 

elasticities, suggesting that their BLP-like instruments are invalid. Though not included 

in Table 4 because the model is a linear regression (as opposed to a DCM), Jenn et al. 

[95] examine the effects of federal policies on hybrid vehicle sales and conduct a J 

Hansen test to verify that the model is not overspecified. 

Most of the studies in Table 4 estimate models on aggregate data only. As 

exceptions, [36,49,52,62] combine aggregate and disaggregate data, and [46,47,60,96] 

use disaggregate, household data only. 
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Table 4 — Automotive demand literature that includes an alternative-specific constant in the discrete choice model 
     Model purpose 

Study Year Specification1,2 Estimation3 Instruments4

Estimation 
technique or 

model  
proposal / 

investigation

Attribute 
valuation / 

market 
description

Counter-
factual / 
policy 

evaluation

Forecast 
future 
market 
shares 

Explanatory literature— ASC is estimated simultaneously with taste parameters 
Knittel and Metaxoglou [33] 2013 Mixed logit Two stage GMM BLP x    

Allcott and Wozny [34] 2012 Nested logit NFP + 2SLS Fuel price5  x   
Dubé et al. [35] 2012 Mixed logit Two stage GMM, GMM MPEC Synthetic6 x    

Beresteanu and Li [36] 2011 Mixed logit Two stage GMM Fuel price5    x  
Copeland et al. [37] 2011 Mixed logit Two stage GMM BLP  x   

Li et al. [39] 2011 Logit NFP + 2SLS BLP  x   
Vance and Mehlin [45] 2009 Nested logit NFP + 2SLS BLP   x  

Dasgupta et al. [46] 2007 Nested logit MLE None  x   
Train and Winston [47] 2007 Mixed logit Two stage MLE BLP  x   

Berry et al. [49] 2004 Mixed logit Two stage GMM7, Expert elicitation Price makeup/None x    
Petrin [52] 2002 Mixed logit Two stage GMM BLP x    
Sudhir [53] 2001 Mixed logit Two stage GMM BLP  x   

Berry et al. [54] 1999 Mixed logit Two stage GMM BLP   x  
Berry et al. [58] 1995 Mixed logit Two stage GMM BLP x    

Lave and Train [60] 1979 Logit MLE None  x   

Predictive literature— ASC is calibrated post-estimation of model taste parameters 
Whitefoot and Skerlos [49] 2012 Logit Literature informed None   x  

Bunch et al. [62] 2011 Nested logit Canned software None   x  
US EIA [5] 2011 Nested logit Expert elicitation None    x 

Greene et al. [50] 2005 Nested logit Expert elicitation None    x 
Greene et al. [15] 2004 Nested logit Expert elicitation None    x 

Unknown/other 
Choo and Mokhtarian [96] 2004 Logit Canned software None x

1More than one model may be specified, model listed is the discrete choice model or study focus relevant to this work; 2Mixed logits are independent mixed logits for all 
studies listed, logit is multinomial logit; 3GMM=generalized method of moments, MLE=maximum likelihood estimation, 2SLS=two staged least squares, NFP=nested fixed 
point, IV=instrumental variable; 4“BLP” refers to the instruments used in Berry et al. [58] or a similar variant; 5Allcott and Wozny [34] use the vehicle’s expected lifetime fuel 
costs (applicable when used vehicle sales are included in the model) and Beresteanu and Li [36] use fuel costs in other Metropolitan Statistical Areas (MSAs); 6Synthetic data 
study, instruments are generated; 7First stage of GMM inverts shares to obtain mean utility, three methods for mean utility parameters: expert elicitation, IV 
regression, regression assuming no endogeneity 
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3.3 Methods 

We are primarily interested in comparing the accuracy and uncertainty associated 

with forecasting using a random coefficients logit model with independent and normally 

distributed coefficients (“mixed logit” here for brevity) when potential endogeneity due 

to the correlation of the ASC with price is mitigated using IVs as opposed to when it is 

ignored. We estimate choice models using both maximum likelihood estimation with 

calibration (MLE-C) and GMM-IV methods, and we compare the out-of-sample market 

share predictions resulting from the two estimation methods under several proposed 

techniques for forecasting the new market ASCs. 

3.3.1 Choice Model 

The assumed utility function is linear in coefficients and includes an ASC ξ: 

 ijt jt i jt ijtu    x 
  (11) 

where uijt is the utility consumer i derives from product j in market (year) t, xjt is a vector 

of attributes specific to product j in market t, βi is a vector of taste parameters for 

consumer i, ξjt is the ASC for product j in market t, and εijt is an idiosyncratic error term. 

Note that we use the terms market and year interchangeably, although they have different 

implications in some contexts. We assume the attribute vector xjt for a given product to 

be similar but not necessarily constant over time or across markets. For example, the 

price or weight of a Ford Focus may vary slightly from year to year though it is still 

considered the same product11. 

                                                 

11 In the case study data the greatest year over year non-price attribute change is less than 15%. 
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We assume that the distribution of preferences is constant in time or across 

markets such that β is indexed only by i and not t. (This is a standard assumption in the 

vehicle demand literature. See Axsen et al. [36] for an exception.) If the coefficients are 

assumed to be independently and normally distributed: 

  ~ ,N     (12) 

where μ is a (K×1) mean vector and  is a (K×K) diagonal covariance matrix with (K×1) 

diagonal element vector σ2, then the portion of the utility function dependent on product 

attributes can be expressed as the sum of the deterministic mean utility common to all 

consumers and the stochastic consumer-specific utility: 

     ijt jt jt jt i ijtu      x x     (13) 

where νi is a (K×1) vector of independent standard normal random variables and the open 

circle ◦ is the Hadamard product (element-wise product). If εijt is assumed to follow an 

independent and identically distributed (iid) extreme value type I distribution, the 

probability Pijt of individual i selecting a product j in market t is then given by the logit 

probability: 
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jt jt jt i

ijt
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k J
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x x
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 (14) 

where J is the set of V distinct products observed across all markets and Jt is a subset of J 

containing the products that appear in market t. Our model considers only the set of 

consumers who purchase products, thus there is no outside good (option to not purchase 

any product). When an outside good is excluded, the choice probabilities (Eq. 14) are 
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invariant over uniform shifts in the ASCs. In order to enforce uniqueness of the ASCs we 

assume throughout (and constrain in estimation) ∑ 0		∀∈ .  

The share Pjt of product j in year t can be obtained by integrating over the 

consumer-specific stochastic utility: 
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 (15) 

where  is the multivariate standard normal density function, all ν are iid, and the 

integral is a K-dimensional integral. We approximate this integral using numerical 

integration with sample averages [23]. One hundred Halston draws of ν are used and held 

constant throughout estimation. As discussed in Dubé et al. [35], other integral 

approximation methods are available, but they are not the focus of this work. 

3.3.2 Estimation 

The choice of estimator is determined almost entirely by the assumptions 

regarding the endogeneity of price and the ASC. If it is assumed that price exogenous, 

then estimating the model in Eq. 15 excluding the ASC by MLE and then calibrating the 

ASCs post-hoc (MLE-C) should yield a consistent price coefficient estimate  (assuming 

all other attributes are also exogenous and there is no model misspecification). However, 

if it is assumed that price is endogenous, then GMM-IV is the estimation strategy 

preferred by the literature for incorporating IVs into the estimation routine in order to 

mitigate the potential price coefficient bias12. The presence of endogeneity (or 

                                                 

12 MLE methods can be used to incorporate IVs, however, GMM-IV is the most common estimation 
approach. Train and Winston [47] and is an exception. Park and Gupta [48] propose a method of estimating 
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assumption thereof) does not itself determine the estimator, but rather the techniques used 

to address endogeneity— in this case IVs— suggest one estimation method over the 

other. 

Maximum Likelihood with Post Hoc Calibration 

The likelihood at the estimated parameters L is defined as the probability of 

generating the observed data given the estimated parameter values: 

    
1

ˆ | kt

t

T
n

kt
t k J

L P
 

 
   

 
 X  (16) 

where X is the (VK) stacked matrix of transposed attribute vectors xjt for all products in 

all markets, nkt is the observed sales of product k in time t, T is the total number of 

markets, and Pjt in Eq. 15 is modified to exclude ξjt. The MLE estimator of the 

parameters  ′, ′ ′ is the value of the (2K1) vector that maximizes L. The 

monotonic transformation ln(L) is typically used as the objective function for 

computational benefit. The ASCs are “calibrated” [23] post-hoc by solving the system of 

equations: 

     ˆln , ln , ,

0,
t

jt t t jt t

kt
k J

P s j J t

t





  

 

X   (17) 

where ξt is the stacked vector of all ξjt in market t, Xt is the matrix of product attributes 

for all products in market t, sjt is the observed share of product j in market t, Pjt includes 

                                                                                                                                                 

observed coefficient parameters and the ASC simultaneously using MLE but do not use automotive data 
sets. 
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the ASC as written in Eq. 15, and  is the set of products in market t excluding one13. 

For more detail on mixed logit models and MLE-C see Train [23]. 

Generalized Method of Moments with Instrumental Variables 

For GMM-IV, following BLP [58] we specify the moment conditions: 

 0, ,jt jtE j t    z  (18) 

where zjt is an (L1) vector of instruments for product j in market t and 2  as a 

necessary condition for identification [37]. The choice of these instruments is determined 

by the modeler and is specific to the data. We describe the instruments used for the 

synthetic data example and the case study in their respective sections.  

Define ′, ′  and ξ as the stacked vector of ξjt for all products and markets. 

The GMM-IV estimator of the parameters is the value of the vector ,  that solves: 
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where Z is the (VL) matrix of stacked vectors for all ′ , W is an (LL) weighting 

matrix, T is the total number of markets, and  is defined in Eq. 15. We set 

 as used by Dubé et al. [35]14. Eq. 19 was not literally proposed by BLP [58], but 

it is a more recent interpretation of the model that has better statistical and computational 

                                                 

13 The exclusion of one ASC from each market is for computational purposes. The selection of which ASC 
to exclude (set to zero) in each market is arbitrary. 
14 Other choices of W or more instruments can improve the statistical efficiency of the estimator [37], 
though alternative formulations may be more computationally burdensome [35]. Nevo [67] argues in favor 
of the less efficient but less statistically burdensome weighting matrix used here for BLP type models. For 
logit and nested logit models with homoskedastic errors W=(Z′Z)-1 is the optimal weighting matrix [67]. 
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properties [35,94]. We further transform Eq. 19 to improve computational properties. See 

Appendix I for explicit formulation of the optimization problem provided to the solver. 

For more information on GMM estimation and IVs see Wooldridge [75].  

3.4 Simulation Study 

We begin our investigation of forecasting with ASCs using synthetic data sets. 

This allows us to evaluate the statistical properties of the predictions in a controlled 

setting for comparing model coefficients and predictions. We generate five years of 

estimation data and two years of prediction data representing 1-year- and 5-year-forward 

forecast horizons. Each year of data has 70 products with 40% year over year turnover 

(40% of products each year are newly introduced replacing 40% from the previous year). 

These parameters were chosen to closely mirror the structure of the real data in the case 

study. The estimation data is generated with low, base, and high price-ASC endogeneity 

and a mixed logit model is estimated by MLE-C and GMM-IV using valid and invalid 

instruments. The potential level of endogeneity and the validity of the instruments are 

both unknowns for real forecasting exercises, and we would like to know their possible 

implications. The prediction data is generated under two market futures— one for which 

the source of price-ASC endogeneity persists and one in which it does not. This is again 

unknown in forecasting. We compare the accuracy and uncertainty of predictions made 

by the MLE-C and GMM-IV estimated models. 

3.4.1 Synthetic Data Generation 

An initial market is assigned 70 products, each with a randomly generated price 

attribute p, a single non-price or “technology” attribute x (for simplicity), and an 

unobserved contribution to utility ξ that is correlated with prices. Instruments z are 
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generated simultaneously with the price and technology attributes so that we are able to 

specify any arbitrary correlation between them. 

The product attributes and instruments for year t=1 are generated by drawing from 

a multivariate normal distribution: 

        1 2 3, , , , , ~ , , ,jt jt jt jt jt jt xp x z z z N j t     0    (20) 

Exogenous attributes (meaning those uncorrelated with the ASC) and functions of 

the instruments in the case of nonlinear models can also be used as instruments [91]. We 

adopt this approach and generate additional instruments: 
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 (21)

 

Increasing numbers of instruments improve the efficiency of the estimator so that 

coefficient estimates are more likely to be statistically significant for a given data set. We 

generate the additional instruments as in Eq. 21 rather than drawing from the distribution 

of Eq. 20 for numerical reasons discussed following Eq. 23. 

Negative values of price are drawn under the specification in Eq. 20, but since 

only differences in utility between products (as opposed to absolute utility) affect the 

(mixed) logit probabilities when no outside good is included in the model, all prices 

could be trivially shifted upward by a constant so long as the population taste parameters 

are independent. We specify the data covariance matrix Σx to have the structure: 
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where ρξ is the price-ASC correlation that determines the presence and magnitude of 

price endogeneity, ρx is the correlation of price with the technology attribute, ρi is the 

correlation of price with each of the instruments, and ρz is the correlation of the ASC with 

each of the instruments (“IV-ASC correlation”). The covariance matrix Σx is by 

definition positive semi-definite and symmetric. We examine cases under the following 

correlations: 

 
0.1  0.4  0.7
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0.1,  0.4
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x i
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 (23) 

The three levels of ρξ represent the low, base, and high endogeneity cases 

respectively, and the two levels of ρz represent the valid and invalid instrument cases 

respectively. Specifying ρz equal to 0.4 results in invalid instruments because valid 

instruments must be uncorrelated with the ASC. The correlation levels were determined 

in large part by the restriction that the covariance matrix must be positive semi-definite 

and larger off-diagonal elements make this property more difficult to satisfy. Given this 

restriction, we jointly choose values for the ρ's that allow for the greatest difference in 

data scenarios. Setting ρξ equal to 0.4 versus 0.5, e.g., does affect the results of the 

estimation, but the general conclusions of the synthetic data study hold. The positive 

semi-definite restriction on the covariance matrix is also the motivation for drawing only 
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three instruments and generating others as functions of these basis instruments in Eq. 21; 

increasing the dimensions of the sparse matrix while adding off-diagonal non-zero 

elements further limits the maximum allowable magnitudes of the data correlations.  

Market shares are simulated for t=1 according to Eq. 15 with the specified values 

of the taste parameters: 

 1 1
,  

1 1
p p

x x

 
 

      
        
      

    (24) 

where μp and σp are the population mean and standard deviation of the price coefficient 

and μx and σx are the population technology attribute coefficients. 

To generate data for future markets in years t=2,3,4,5,6,11 we randomly select 28 

(40%) of the products from the prior year to be replaced and generate new product 

attribute, instrument, and ASC values as described for the base year t=1. Years 

t=1,2,3,4,5 comprise the estimation data set and years t=6,11 are the 1-year-forward and 

5-year-forward prediction data sets, respectively. Note that the generated ASC for a given 

product is held constant over all estimation and prediction data, consistent with the idea 

that it is an aggregate measure of unobserved attributes, but in our estimation procedures 

a year-specific ASC is estimated so that there are sufficient degrees of freedom to 

constrain predicted shares of the estimation data to equal observed shares exactly. The 

price and technology attribute for a given product are also held constant year over year. 

3.4.2 Estimation 

We estimate independent mixed logit models for 125 synthetic data sets generated 

by the process described in section 3.4.1 for each pairing of price-ASC and IV-ASC 

correlation levels. There are a total of six estimation cases (price correlation=10% (low), 
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40% (base), 70% (high) and instrument correlation=0% (valid) and 40% (invalid). For a 

given estimation case, the expected value of the coefficients is approximated by 

averaging over the 125 estimates. A coefficient’s bias is the deviation of its expected 

value (obtained here by estimating the model repeatedly for different simulated data sets) 

from the population parameters. The estimation routine successfully converged (exit flag 

of 0 using the Knitro solver for Matlab) for all 125 data sets for both the MLE-C and 

GMM-IV estimation methods. 

Figure 2 compares the distributions of estimates of the mean taste parameter price 

μp obtained by MLE-C estimation and GMM-IV estimation with valid and invalid 

instruments for the three levels of price-ASC endogeneity. The distributions represent the 

coefficients resulting from models fit to the 125 data sets excluding the least and greatest 

2.5% of estimates of each coefficient (120 total coefficient estimates are included in each 

box plot). The expected values of the estimated coefficient values are indicated by x’s, 

and the coefficient values from Eq. 24 used to generate the data (“true coefficients”) are 

represented by horizontal black lines. The distance between an x and a black line is the 

finite sample coefficient bias. The estimates of the mean taste parameter μx and the 

standard deviation of the taste parameters σ are presented in Appendix J. 

The bias of the price coefficient increases with endogeneity for the MLE-C 

estimator. The valid GMM-IV estimator successfully corrects for endogeneity (Figure 2) 

as expected, but the invalid GMM-IV estimator is more biased than the MLE-C 

estimator. The MLE-C estimates on average have a standard error on the order of 1e-4 

and the invalid GMM-IV estimates on average have standard error on the order of 1. So 

while the biased MLE-C price parameter estimates are less biased than those of the 
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GMM-IV estimates, the confidence intervals from MLE-C may be less likely to contain 

the truth (i.e. have worse coverage). 

 

We are interested in the accuracy of the ASCs in addition to the accuracy of the 

observed attribute coefficients because the ASCs may be used in counterfactuals or for 

forecasting. Figure 3 shows the distribution of error as the difference between the value 

of the ASCs obtained from MLE-C and valid GMM-IV estimation (A) and invalid 

GMM-IV estimation (B) and the actual ASCs, which are known from the synthetic data 

generating process. The box plots in Figure 3 include the ASC error from 125 estimated 

data sets for the valid instrument case excluding the least and greatest 2.5% of error 

differences. While both methods produce unbiased estimates of the ASC, the MLE 

estimator is more efficient, meaning that for any individual data set, the MLE estimator is 

(A) 
Figure 2 — The MLE-C estimator and invalid GMM-IV estimator exhibit bias that increases with 

price correlation whereas the valid GMM-IV estimator mitigates the endogeneity 
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likely to be closer to the truth than the GMM-IV estimator15. The relative efficiency of 

the MLE estimator as compared to the GMM-IV estimator diminishes as the endogeneity 

increases, but it is still more efficient even at 70% price endogeneity. This is anticipated 

as MLE-C utilizes all of the variation in the data, whereas GMM-IV does not [91]. 

 

3.4.3 Prediction 

The results of section 4.3.2 indicate that (1) the price coefficient estimated by 

MLE-C is inconsistent, but GMM-IV with valid instruments corrects for endogeneity and 

(2) that there is more variation in the observed coefficient and ASC GMM-IV estimates. 

We examine the implications of these differences on forecast accuracy by comparing the 

predictions of the estimated models by the two methods. If relationships that induce bias 

in the estimated coefficients persist in the prediction data, then models with biased 

coefficients need not predict any worse than models with unbiased coefficient estimates 

                                                 

15 The slight differences in MLE-C ASC error distributions across the valid and invalid instrument cases are 
due to the difference in the data generation matrix Σx when ξz=0 versus ξz=0.4. When instruments are 
invalid there is less overall unexplained variation in the generated estimation data. 

 
 (A) (B) 

Figure 3 — The GMM-IV estimator exhibits greater ASC error variance than the MLE-C 
estimator at low levels of correlation but the difference shrinks at greater price correlation levels 

when both valid (A) and invalid (B) instruments are used in GMM-IV estimation 
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[93]. However, if there are fundamental shifts in the structure of the data, then models 

with biased coefficients are expected to predict worse than models with unbiased 

coefficients. 

We estimate the model in Eq. 15 on the estimation data set using MLE-C and 

GMM-IV. The models are then used to forecast product market shares 1- and 5-years-

forward (including new entrants in the prediction data that are not in the estimation data). 

The  and  parameters are assumed constant across markets, however, the  and  

parameters are market (year) specific and thus a method for determining their values in 

the prediction years is needed. 

Since the ASCs are unobserved, we treat them as a random vector and compare 

the distribution of share forecasts resulting from different realizations of the ASCs. We 

are interested in two questions: 

 Is there a particular method of generating prediction ASCs that is more 

robust than the others (in the case that the ASCs represent constant 

unobserved attributes)? 

 How do the models and ASC forecasting methods compare across various 

estimation and prediction data correlation structures? 

Predicting ASCs 

We propose two non-parametric distributions for generating ASCs in the 

prediction data. For “incumbent” products, those in the prediction data that also appear in 

the estimation data, there are historical estimates of the ASC that may provide 

information on potential future ASCs if the ASCs do in fact represent unobserved 

attributes as they do in the synthetic data study. For new “entrant” products introduced in 
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or before the prediction years but after the estimation data years, there are no such 

historical estimated ASCs. As a result, the ASC forecasting methods we propose differ 

for incumbents and entrants. Table 5 describes these methods. 

  

Method 2 would not necessarily be expected to predict ASCs well since we have 

explicitly generated data in which xjt and ξjt are uncorrelated so the technology attribute x 

should not contain any information about ξ. We include this method primarily for 

comparison to the case study with real data in section 3.5. 

Forecasting shares 

We evolve each of the 125 estimation data sets once so that we have 125 pairs of 

estimation and prediction data sets. We make forecasts for 125 prediction data sets so that 

our prediction results are not sensitive to the random data generation process. For each of 

the 125 prediction data sets, we generate a Monte Carlo distribution of market share 

arising from the uncertainty of forecasting ASCs. One hundred vectors of ASCs for each 

prediction data set are drawn nonparametrically according to either method 1 or method 2 

as described in Table 5. ASCs are necessarily drawn independently from one another 

since there is no available information about their potential correlation structure. For each 

Table 5 — Description of ASC forecasting methods 
Method 

name 
Method qualitative description Method mathematical description 

Products appearing in the estimation set (incumbents) 

Incumbent 
For each product draw uniformly from the 
product’s estimated ASCs 

Draw ξj6 or ξj11 uniformly from 
{ξ=1,ξj2,ξj3,ξj4, ξj5} 

Products not appearing in estimation set (entrants) 
All 
(Method 1) 

Draw from uniformly from all estimated ASCs 
Draw ξj6 or ξj11 uniformly from ∀ ∈
, 1,2,3,4,5  

Nearest 
neighbor 
(Method 2) 

For each new product calculate the normalized 
vector distance of product observed attributes 
between the new product and each of the 
estimation data set products. Draw uniformly 
from the estimated ASCs of the observed 
product with the smallest vector distance 
(“nearest neighbor”) 

Draw ξj6 or ξj11 uniformly from 
{ξk*1,ξk*2,ξk*3,ξk*4,ξk*5} where ∗

∈ 	, , , , ,
∗ ∗  and 

∗  is the (K×1) vector of   normalized 
observed product attributes 
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draw of ASC we simulate a draw of share by integrating over taste heterogeneity as in 

Eq. 15. Thus for a given time frame (1-year- or 5-year-forward), estimation method 

(MLE-C or GMM-IV), and ASC forecasting method (method 1 or 2), 12,500 total share 

forecasts are made (125 prediction data sets × 100 ASC forecasts).  

These prediction methods are a departure from the literature that treats the ASCs 

as point estimates. Resende et al. [38] compare profit (as a function of market share) 

predicted by a mixed logit model and find that the optimal design of a new product is 

dependent on whether the expected value of profit— the mean of the Monte Carlo 

distribution of profit— or the point estimate of profit predicted by the expected value of 

the parameters is used in optimization. We argue that the expected value of share better 

characterizes future outcomes, and evaluate models on this forecast. However, while our 

prediction methods account for the uncertainty of forecasting future ASCs, they do not 

represent the statistical uncertainty of the observed attribute coefficients or estimated 

ASCs. Additional investigation would be needed to determine appropriate methods for 

doing so. 

Evaluating forecasts 

We compare the accuracy of the predictions using the relative average likelihood 

(RAL). The RAL is a monotonic transformation of the likelihood of the model share 

predictions LP divided by the likelihood of an ideal model LI that perfectly predicts the 

new shares: 

  
 

1/

P
1/

I

N

N

L
RAL

L
  (25) 



66 
 

where N is the number of choices observed. When comparing two models on the same 

data set, the model with a larger RAL is more likely to generate the observed data. Using 

RAL instead of likelihood is important because markets that have more diffuse choice 

probabilities will necessarily have lower likelihoods of ideal prediction. RAL normalizes 

for this effect and can be interpreted as the fraction of the total possible explanatory 

power a model obtains. RAL is a monotonic transformation of the Kullback-Leibler (KL) 

divergence if observed shares are assumed to accurately reflect the true choice 

probabilities [39]. 

Table 6 and Table 7 contain the mean of the RAL of expected shares across the 

125 prediction data sets calculated as: 
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where d indexes data sets, a indexes ASC draws, D=125, and A=100. Also included are 

the standard deviation of the RAL over the 125 data sets and a measure “# superior” that 

indicates the number of paired data sets for which the respective MLE-C or GMM-IV 

model had a greater RAL of expected share. 

In addition to predictions from the models using ASC methods 1 and 2, the tables 

include predictions for which an ASC is included in estimation (for GMM-IV) but no 

ASC is included in prediction for either incumbents or entrants (method 0), a “static” 

model that holds shares of observed products constant from the last year of the estimation 

data and divides the remaining share equally among the new products, and a “no info” 

model that assumes all entrant and incumbent products have equal shares in the 

prediction years. Shaded boxes indicate the greatest RAL, or “best” model, when 
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comparing across models for a given estimation data price correlation and time horizon. 

For parsimony we refer to models estimated using MLE-C and GMM-IV as “MLE-C 

models” and “GMM-IV models” respectively, though MLE-C and GMM-IV are 

estimation techniques not models in and of themselves. 

Tested cases 

We test four prediction cases. Prediction case 1 (“Base”, Table 6): the GMM-IV 

estimated model uses valid instruments and the price-ASC endogeneity present in the 

estimation data persists in the prediction data. Prediction case 2 (“Market shift”, Table 7): 

the price correlation ρξ is set to 0.1, 0.4, or 0.7 when generating the estimation data, but it 

is set to 0 when generating the prediction data so that price is no longer endogenous in 

the forecast years and the source of asymptotic coefficient bias disappears. Prediction 

case 3 (“invalid”, Appendix K): the GMM-IV estimated model uses invalid instruments 

and price-ASC endogeneity persists. Prediction case 4 (“entrants”, Appendix K): the 

shares are forecasted for all products, but shares of the incumbent products are included 

as a single lump sum in the RAL calculation. 

In the following discussion, we remark upon mean RAL comparisons between 

models and between ASC prediction methods for a given model. Many of the paired 

RAL differences are statistically significant16, even some as small as only 3%, but it is 

subjective as to whether or not this represents a practical difference in forecast accuracy 

between two sets. Our observations highlight the trends in the data rather than focus on 

the statistical significance of any individual pairing. 

 

                                                 

16 The test for significance is a two-sample t-test for equal means. 
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Table 7 — MARKET SHIFT case results shown 
include the mean and std. dev. of the RAL of expected 
share across 100 data sets for MLE-C and GMM-IV 

models and the number of data sets for which the 
MLE-C or GMM-IV model had a greater respective 

RAL (# superior) 
 1-year-forward 5-year-forward 

Meth. 
None 

0 
All  
1 

Neigh.
2 

None 
0 

All 
1 

Neigh.
2 

10% price-ASC correlation (ρξ)
MLE-C 69% 84% 74% 68% 69% 51% 

(std. dev.) (7%) (8%) (10%) (7%) (8%) (10%)
# superior 102 112 110 87 87 116 
GMM-IV 66% 75% 62% 66% 66% 39% 
(std. dev.) (8%) (12%) (15%) (9%) (9%) (13%)
# superior 23 13 15 38 38 9 

Static 66%   40%   
No info 38%   37%   

40% price-ASC correlation (ρξ)
MLE-C 68% 81% 72% 66% 67% 50% 

(std. dev.) (8%) (9%) (11%) (7%) (8%) (11%)
# superior 88 95 116 68 76 114 
GMM-IV 66% 73% 56% 65% 64% 38% 
(std. dev.) (9%) (13%) (16%) (8%) (9%) (13%)
# superior 37 30 9 57 49 11 

Static 62%   39%   
No info 40%   37%   

70% price-ASC correlation (ρξ)
MLE-C 67% 74% 68% 62% 62% 52% 

(std. dev.) (9%) (11%) (12%) (8%) (8%) (10%)
# superior 85 56 108 40 34 112 
GMM-IV 65% 73% 57% 65% 65% 41% 
(std. dev.) (9%) (13%) (17%) (9%) (9%) (14%)
# superior 40 69 17 85 91 13 

Static 58%   39%   
No info 42%     37%     

Table 6 — BASE case results shown include the mean 
and std. dev. of the RAL of expected share across 125 
data sets for MLE-C and GMM-IV models and the 

number of data sets for which the MLE-C or GMM-IV 
model had a greater respective RAL (# superior) 

 
 1-year-forward 5-year-forward 

Meth. 
None 

0 
All  
1 

Neigh.
2 

None 
0 

All 
1 

Neigh.
2 

10% price-ASC correlation (ρξ)
MLE-C 68% 85% 73% 68% 70% 53% 

(std. dev.) (7%) (8%) (12%) (8%) (9%) (11%)
# superior 106 114 110 94 103 113 
GMM-IV 65% 74% 59% 65% 65% 40% 
(std. dev.) (8%) (12%) (16%) (9%) (9%) (14%)
# superior 19 11 15 31 22 12 

Static 68%   42%   
No info 39%   39%   

40% price-ASC correlation (ρξ)
MLE-C 71% 86% 77% 71% 72% 55% 

(std. dev.) (7%) (8%) (10%) (7%) (7%) (9%) 
# superior 106 116 116 105 106 115 
GMM-IV 66% 72% 60% 66% 66% 41% 
(std. dev.) (8%) (14%) (16%) (7%) (8%) (13%)
# superior 19 9 9 20 19 10 

Static 71%   48%   
No info 44%   45%   

70% price-ASC correlation (ρξ)
MLE-C 81% 91% 85% 80% 81% 69% 

(std. dev.) (5%) (5%) (6%) (4%) (4%) (8%) 
# superior 124 124 119 121 124 121 
GMM-IV 72% 74% 68% 71% 71% 52% 
(std. dev.) (7%) (14%) (17%) (8%) (8%) (15%)
# superior 1 1 6 4 1 4 

Static 77%   56%   
No info 52%     54%     



69 
 

Is there a particular method of generating ASCs for forecasting that generates the 

best predictions? 

In the short term, 1-year-forward forecasts, including an ASC by method 1 

(drawing entrant ASCs from all product estimated ASCs) improves predictions over 

excluding the ASC entirely (method 0). In the long term and for entrant products, 

including an ASC by method 1 does not improve forecasts. Method 2, or nearest 

neighbor, improves MLE-C predictions in the short term but results in worse predictions 

for the long term. Method 2 is always worse than excluding ASCs for the GMM-IV 

model regardless of time horizon, endogeneity level, or market correlation structure as 

expected based on the structure of the synthetic data. 

How do the models compare across various estimation and prediction data 

correlation structures? 

As discussed previously, we use RAL as a metric of comparison across the 

models. 

Base case: MLE-C is better on average than GMM-IV for any of the ASC 

forecasting methods, and MLE-C is generally better than GMM-IV at predicting any 

given data set (comparing “# superior”). 

Market shift case: MLE-C is better on average than GMM-IV for short term and 

/or low price-ASC correlation forecasts, but as the time horizon increases or the market 

shift becomes more dramatic, the GMM-IV model is better on average since the biased 

MLE-C coefficients are detrimental to prediction. 

Invalid case: If invalid instruments are used in the GMM-IV model, we find that 

MLE-C predicts better on average than the best GMM-IV model. As the endogeneity 
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increases, the expected RAL difference between them decreases since the bias of the 

invalid GMM-IV coefficient aids in prediction for highly endogenous data. 

Entrant case: MLE-C is better on average than GMM-IV.  

Regardless of whether the price coefficient is biased, we find that the best 

attribute based models are at least as good as the naïve (static) model and always better 

than random guessing (no info), except when predicting the short term market with a 

GMM-IV model estimated using invalid instruments. 

The greatest discrepancy in prediction accuracy between the best MLE-C and 

GMM-IV models across the four prediction cases occurs when the GMM-IV model is 

estimated using invalid IVs. The MLE-C model is superior regardless of the level of 

endogeneity, and the penalty is steep at low endogeneity with an RAL difference of 

approximately 22%. Conversely, when the GMM-IV model does predict better than the 

MLE-C model in the high-endogeneity, market-shift case, there is only a 2% lift in RAL 

from the best MLE-C to the best GMM-IV forecast. This illustrates the greatest drawback 

to using GMM-IV in a forecasting scenario; it risks making far worse predictions for 

limited and unlikely upside (because valid IVs are difficult to specify [91]). 

3.5 Empirical Case Study 

We apply the same approach as described in section 3.4 to a real automotive sales 

data set in order to investigate the accuracy and uncertainty of vehicle demand. A mixed 

logit model is estimated by MLE-C and GMM-IV on US consumer new midsize sedan 

purchase data from 2002 through 2006 and then used to predict market shares for midsize 

sedans sold in the US during 2007 and 2011. The accuracy and uncertainty of the model 

forecasts are compared on the RAL measure. 
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3.5.1 Models and Data 

We define an independent random coefficient mixed logit model with a linear 

utility function including the covariates listed in Table 8 plus an ASC. The attributes 

capture vehicle price, operating cost, performance, size, and country of origin. This 

choice of covariates is loosely based on Haaf et al. [93] who compare the market share 

forecasts of 9,000 possible logit model specifications informed by the vehicle demand 

literature. They find that predictive accuracy is relatively invariant to the specific form of 

the covariates (e.g. gallons/mile versus miles/gallon), so long as each covariate is 

included, and prediction accuracy increases with additional covariates. We omit some 

covariates that were included in the models tested in Haaf et al. [93] due to the specific 

nature of the GMM-IV estimator. Dummies for A/C standard and automatic transmission 

are excluded because dummies increase the number of parameters to be estimated but 

cannot function as instruments, making it more difficult to meet the GMM-IV estimator 

requirement that there are more instruments than observed variable coefficients. We 

proxy dummies for brand (e.g. Honda, Ford, or Volkswagen) by dummies for producer 

firm geographic location (US, Europe, or Asia), reducing the number of dummies from 

23 to 2 (a dummy for US is omitted for identification). This reduces the number of 

parameters to be estimated as well as results in a statistically significant price coefficient 

for the estimated model. Additional discussion of parameter selection is included in 

Section 3.6.2. 

Our data set uses vehicle attribute information from Ward’s Automotive Index 

[40] and MSRP and aggregate sales data from Polk [41]. We implicitly assume that all 

individuals who purchased a vehicle in this class considered only and all of the other 

midsize sedans available in the same year and made a compensatory decision based on 
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vehicle attributes. Our models consider only new midsize sedan buyers, thus there is no 

outside good (option to not purchase any midsize sedan). GMM-IV estimation of the 

model on the full vehicle market would require more years of data (markets) than are 

available to us17.  

The choice of instruments is non-trivial and a subject of much study in the 

econometrics literature [37]. By definition they must be correlated with the endogenous 

variable (in this case price) and uncorrelated with the error (ASC) [37]. We specify 

instruments similar to those of BLP [58]: for a given vehicle, the IVs are the sum of each 

of the non-price attributes over all other vehicles in the market offered by the same firm 

as the given vehicle (excluding the given vehicle itself) and the sum of each of the 

attributes over all other vehicles in the market sold by the competitor firms. Berry et al. 

[58] argue that these IVs are correlated with the vehicle price but uncorrelated with the 

ASC because the firms observe the ASCs (it is only unobservable to the researcher) of all 

vehicles and set prices of their vehicles to be competitive while accounting for the utility 

derived from the ASCs. The ASC of a given vehicle, however, is not expected to be 

affected by the non-price attributes of competitors. These instruments are predicated on 

the interpretation of the ASC as a representation of aggregate unobserved vehicle 

attributes. 

In our formulation of the BLP instruments we exclude attributes that enter as 

dummies since instruments must exhibit sufficient variation. We also add functions of 

                                                 

17  We estimated several mixed logit model specifications on all 2004-2006 new vehicle sales (full market), 
but were unable to obtain a model with any statistically significant coefficients. 2002-2003 full market data 
was unavailable for the full market. 
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these instruments to satisfy the requirement that L ≥ 2K and to increase the efficiency of 

our GMM-IV estimator. The instruments are defined as: 
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where FOt is the set of vehicles made by the same firm in year t, FCt is the set of vehicles 

made by competitor firms in year t, and ∗  is the vector of attributes excluding price and 

dummies. For numerical purposes we normalize each instrument by dividing by the 

maximum value of that instrument occurring over all vehicles in all panel years in order 

to prevent an ill-conditioned weighting matrix W=(Z′Z). 

There are a total of six covariates: price, three exogenous non-dummy attributes, 

and two country dummies, yielding ten model parameters to be estimated (non-dummy 

covariates have mean and variance coefficient components) and 24 total instruments. 

3.5.2 Coefficient Estimates 

The model coefficients estimated by MLE-C and GMM-IV are shown in Table 8. 

The mean coefficient estimates are of the same sign (excepting the Asia location dummy) 

and same order of magnitude, though the only statistically significant difference between 

the two model mean coefficient estimates is on price18. The MLE-C estimated model 

                                                 

18 The asymptotic distribution of the difference of each mean coefficient is ,  
where s2 is the square of the standard error of the mean parameter estimate. For each mean coefficient we 
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coefficients indicate little taste heterogeneity in the population, but the GMM-IV 

estimated coefficients indicate larger taste heterogeneity. This suggests fundamentally 

different views of taste preference distribution for this data set. However, only the 

gallons/mile heterogeneity parameter is statistically significant between the two estimated 

models.

 

It is somewhat surprising that the MLE-C model indicates little taste 

heterogeneity in the population, and we take several steps in order to test the validity of 

our estimation results. First, we use 100 Halton draws of ν that are held constant 

throughout estimation in order to prevent simulation noise. Second, we perform multistart 

optimization with 100 mean taste parameter starting values drawn randomly from the 

interval [-10,10] and heterogeneity parameters drawn randomly from the interval [0,10]. 

                                                                                                                                                 

test the null hypothesis H0: μMLE=μGMM against HA: μMLE≠μGMM. We reject H0 at the α=0.1 for price only; 
for all other mean coefficients we do not reject H0. 

Table 8 — Coefficients for MLE-C and GMM-IV models 
estimated on 2002-2006 US midsize sedan new sales data 

 
Estimated population 

mean taste (μ) 
Estimated population 
taste heterogeneity (σ) 

 GMM-IV MLE-C GMM-IV MLE-C 
Price ($10,000) -1.1*** -0.5*** 0.0033 0.0039* 
(standard error) (0.3) (0.0) (2.1270) (0.0022) 

Gallons/mile (gal./100-mi.) -0.3 -1.1*** 0.9536** 0.0033* 
(standard error) (0.6) (0.0) (0.4414) (0.0018) 

Weight/horsepower (10 lbs/hp) -0.2** -0.1*** 0.0000 0.0003* 
(standard error) (0.1) (0.0) (0.2762) (0.0002) 

Length×width (100 ft2) 2.6 3.8*** 1.7229 0.0085* 
(standard error) (1.8) (0.0) (1.8169) (0.0047) 

Europe (dummy) -1.1** -1.1***   
(standard error) (0.5) (0.0)   
Asia (dummy) -0.1 0.3***   
(standard error) (0.3) (0.0)   

Note: US country dummy omitted for identification; zero estimates are zero to the precision 
shown but are not actually zero 
* = significant at the α=0.10 level 
**= significant at the α=0.05 level 
***= significant at the α=0.01 level 
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For 87/100 of the starting points the solver converged successfully and to the same 

objective function value and optimizer. Third, we check that the objective function is not 

flat in the neighborhood of the optimizer— the log likelihood is -4.52 × 107 at the 

optimizer versus -4.54 × 107 at more anticipated values of σ = 0.1. Fourth, the analytical 

hessian is provided to the solver, and the eigenvalues of the hessian calculated at the 

optimizer indicate that the convergence is not a specious result of derivatives that vanish 

near coefficient values of zero. Lastly, when the model is estimated on synthetic data 

with no price-ASC correlation, the routine successfully recovers the true heterogeneity 

coefficient values. Two studies from the literature also encounter difficulties with 

estimating heterogeneity parameters. Train and Winston [47] are unable to obtain 

statistically significant heterogeneity coefficient estimates when only the vehicle chosen 

by consumers (and not the specific choice set) is known. Berry et al. [49] report 

algorithm convergence issues when only one market (year) of data is used and suggest 

that sufficient variation of choice set across markets may enable successful estimation. 

The limited variation in choice set for our data set may be the cause of the unexpectedly 

small heterogeneity coefficient estimates. 

The standard errors for μ and σ are much larger for the GMM-IV estimated 

coefficients than for the MLE-C estimated coefficients. The GMM-IV is a less efficient 

estimator than MLE-C so we would expect the standard errors to be somewhat larger. 

That they are orders of magnitude larger is likely a result of the different estimation 

strategies for the ASC. There are an additional 339 parameters in the specification of the 

model estimated by GMM-IV over the model estimated by MLE since MLE-C ASC 

calibration is performed post the estimation of the observed attribute coefficients. If the 
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ASCs included in GMM-IV estimation are correlated with price (as we assume they are), 

then the collinearity may increase the standard errors [97].  

If we assume that the GMM-IV estimator successfully corrects for price-ASC 

endogeneity (which may not be true if the instruments are invalid), then the direction of 

the bias of the MLE-C price coefficient as compared to the GMM-IV coefficient estimate 

is reasonable since we would expect the ASC to encompass unobserved features that 

consumers are willing to pay a premium for, such as options packages. We treat the non-

price attributes as exogenous in our model since our focus is on price-ASC endogeneity 

(and this is common in the literature), but this is not likely to be true. If the non-price 

attributes are correlated with the ASC, then these coefficients will also be biased (and our 

instruments will be invalid). In automotive demand models this is virtually certain. Fuel 

economy, acceleration, weight, dimensions, and manufacturer geographic location are all 

likely to be strongly correlated with aesthetics and other unobserved or unquantifiable 

vehicle features, thus there should be nontrivial correlations between observed features 

and the ASC. 

3.5.3 Analyzing Estimated ASCs 

Figure 4a contains histograms of ASCs estimated by the two models. The ASCs 

have a non-normal distribution for both of the models according to a Jarque-Bera test 

conducted at the α=0.05 significance level. Figure 4b plots the MLE-C versus GMM-IV 

estimated ASCs. Points falling on the red diagonal line are estimated ASCs that are 

identical between the two models. There is dispersion of the points from the line, 

indicating that the models do not agree on the value of the ASCs, but there is no 
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indication that one model consistently under or over estimates them as compared to the 

other. 

 

In order to investigate the (possible) correlation between the ASCs and vehicle 

attributes we regress MLE-C and GMM-IV estimated ASCs on six sets of dependent 

variables. The estimated ASC is regressed on: (1) an intercept plus vehicle physical 

attributes (price, gallons/mile, weight/horsepower, and (length×width)), (2) brand 

dummies (e.g. Acura, Ford, etc.), and (3) a dummy variable for unique vehicles at the 

aggregate make-model level (a Toyota Camry and Toyota Camry Solara are both 

assigned a single ID representing a Toyota Camry). Though we do not include brand 

dummies in the estimated models of Table 8, we include them in the ASC regressions as 

covariates since ASCs and brand are likely related. Additional results for an MLE-C 

estimated model that includes brand dummies are presented in Appendix L. 

All three of these regressions yield at least 24% statistically significant 

coefficients for both MLE-C and GMM-IV estimated ASCs. This supports the use of 

observed vehicle characteristics in forecasting ASCs, particularly the methods used in 

 (A) (B) 
Figure 4 — The distribution of estimated ASCs for GMM-IV and MLE-C is non-normal and left 
skewed (A), but the MLE-C versus GMM-IV estimated ASCs (B) do not indicate that there is a 

systemic difference in their discrepancy 
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this case study. Additionally, that the GMM-IV estimated ASCs are statistically 

significantly correlated with non-price vehicle characteristics suggests that the BLP 

instruments were, for our data, invalid. 

Additional regressions, results and discussion are included in Appendix M. 

3.5.4 Prediction 

The coefficients estimated by MLE-C and GMM-IV are used to forecast the 2007 

and 2011 sales. In 2007, 33% of the midsize sedans were new (“entrants”, 23 out of 68 

did not appear in estimation data), and in 2011, 72% of the luxury sedans were new (34 

out of 47 did not appear in estimation data)19. We test four methods of predicting new 

product ASCs. Methods 1 and 2 are the same as described in Table 5 where method 1 

draws entrant ASCs from all estimated ASCs and method 2 draws entrant ASCs from 

estimated ASCs of the “nearest neighbor” vehicle. Additionally we introduce a third 

method in which entrant vehicle ASCs are drawn from the estimated ASCs of the same 

brand (“brand”), and a fourth method in which the ASCs are drawn from the estimated 

ASCs of other trim levels of the same vehicle make-model (“make-model’). If the entrant 

brand or vehicle make-model is not observed in the estimation data set (e.g. Dodge 

Caliber), then the entrant vehicle ASCs are drawn from all estimated ASCs as in method 

1. Method 3 is similar to that used in Berry et al. [49] and Train and Winston [47]. Both 

method 3 and method 4 are related to the interpretation of the ASC as a vehicle-specific 

fixed effect that represents aggregate unobserved attribute utility as opposed to a random 

error term, supported by the regressions of the estimated ASCs on vehicle attributes. 
                                                 

19 The high turnover is a result of our designation as to what constitutes a “new vehicle”. We 
consider make-models distinct at the trim level for different body styles (e.g. sedan versus wagon). As a 
result, several trims appear as “new” in the prediction data when only a subset of body styles is available in 
each year. 
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Method 2 assumes that the unobserved attributes represented by the ASC are 

related to the vehicle’s attributes and those of its competitor(s), which is an intuitive 

means for informing new product ASCs. However, this implies that the ASC is correlated 

with competitor non-price attributes, violating the assumption required for the BLP 

specification of instruments that for a given vehicle the sum of competitor attributes 

serving as instruments are uncorrelated with the ASC. Despite this issue we include 

results from prediction under this method because it is similar to an approach used in the 

literature and is tempting to researchers [49]. 

For each combination of the MLE-C and GMM-IV estimated models and four 

ASC generation methods, we draw 10,000 sets of ASCs for the predictive year vehicles. 

For each draw of ASCs we simulate a draw of shares by integrating over taste 

heterogeneity as in Eq. 15, generating a Monte Carlo simulation of predicted market 

shares. Forecast uncertainty is represented by the range of the 10,000 sets of share 

predictions, and our point estimate of share (“expected share”) is obtained by averaging 

over the draws of share. We report the RAL of the expected share predictions in Table 9. 

The following comparisons of ASC and model estimation methods are based on this 

measure where greater values of RAL indicate more accurate predictions. 

Two additional models are included in Table 9 for comparison purposes. The 

static model (“static”) holds shares of incumbent vehicles constant from the last year of 

observation in the estimation data and divides the remaining share equally among the 

entrant vehicles. The no info model (“no info”) assumes all vehicles have equal share in 

the prediction year. 



80 
 

 

Comparing the ASC generation methods in Table 9, method 4 forecasts best for 

both the MLE-C and GMM-IV methods for the 1-year-forward (“short term”) and 

method 2 forecasts best for the 5-year-forward (“long term”) time horizons. There are 

two important comparisons in the 5-year-forward forecasts. First, the no info model 

predicts better than the static model. Second, the best MLE-C model predicts much better 

than the no info model, but the best GMM-IV model has similar accuracy. The first 

comparison suggests than the market has changed sufficiently in composition such that 

competitor products have significantly altered the share of the incumbent products. The 

second comparison suggests that the underlying relationships in the data, like the 

correlation of the ASC and price, persist and to some degree are successfully captured by 

the MLE-C coefficients. 

We estimate a model that includes brand dummies by MLE-C and present the 

results in Appendix L. The MLE-C model predictions with no forecast ASCs are greatly 

improved by the inclusion of brand dummies as expected (2011 RAL of 51% for no-ASC 

brand dummy model versus 38% for no-ASC model that does not include brand 

Table 9 — RAL(E[share]) comparison of ASC forecasting methods for MLE-C and GMM-IV 
models estimated on 2002-2006 midsize sedan data and used to predict 2007 and 2011 midsize 

sedan market shares 
 1-year-forward (2007) forecasts 5-year-forward (2011) forecasts 

Method: 
No ASC 

0 
All 
1 

Near 
neighbor

2 
Brand

3 
Model 

4 
No ASC

0 
All 
1 

Near 
neighbor 

2 
Brand 

3 
Model 

4 
RAL of expected share 

MLE-C 45% 66% 61% 63% 66% 38% 42% 60% 37% 41% 
GMM-IV 34% 68% 64% 70% 70% 28% 33% 45% 34% 33% 

Static 68%         39%         
No info 32%         42%         

RAL of expected share— ENTRANTS ONLY  
MLE-C 91% 91% 84% 88% 91% 49% 50% 71% 43% 49% 

GMM-IV 86% 85% 81% 87% 88% 43% 43% 57% 43% 42% 
Static 87%         54%         

No info 87%         62%         
Note: highlighted cells indicate the most accurate model and ASC forecasting method for a given time 
period and method of calculating RAL 
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dummies). The model that includes brand dummies is superior to the model that excludes 

them and predicts ASCs by the brand method (method 3) but inferior to the model that 

predicts ASCs by the nearest neighbor method. These comparisons suggest that the brand 

dummies capture much— but not all— of the explanatory power of the ASCs and that the 

brand method of forecasting ASCs is unable to recover it. The advantage of explicitly 

including brand dummies over aggregating the utility contribution with other 

unobservable characteristics is that brand is observed in future markets so that the 

predicted brand utility contribution is not susceptible to changes in correlation between 

brand and the aggregate ASC. 

We suspect that the ASC is endogenous with the other vehicle physical attributes 

in addition to price. For the long term forecasts, method 2 is better than any of the other 

ASC prediction methods and better than omitting the ASC in prediction for both models. 

In the synthetic study, when, by design, the ASC was uncorrelated with the non-price 

attribute x, predicting the ASC by method 2 resulted in worse predictions than when no 

ASC was predicted by method 0. The regression of ASCs on vehicle physical 

characteristics also provide support for non-price attribute endogeneity with the ASC. 

This is in direct violation of the assumption for specification of valid instruments that 

non-dummy attributes and ASCs are uncorrelated, again implying that the instruments in 

this case study— used frequently in vehicle demand literature [37,39,45,47,52–54]— are 

invalid. 

Table 9 also contains the RAL for entrant products only. The shares are forecasted 

for all midsize sedans, but the shares of the incumbent products are included as a single 

lump sum in the RAL calculation. As for the whole market, method 4 is better in the 
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short term, but method 2 is better in the long term. In contrast to the whole market, the 

best GMM-IV attribute model does not predict better than the no info model in the long 

term. 

3.6 Discussion 

3.6.1 Lessons from the Simulation Study 

Much of the econometrics literature on vehicle market modeling has presumed 

that biased coefficients make for bad models. A main method proposed there, GMM-IV, 

does indeed eliminate coefficient bias in our synthetic data study when valid instruments 

are used. However, our synthetic data study also shows that correcting coefficient bias 

does not necessarily produce better forecasts. So long as the underlying source of the bias 

persists in the forward years, MLE with biased coefficients could result in forecasts at 

least as accurate as those made by GMM-IV’s unbiased coefficients.  

We find support for using ASCs in choice modeling when consistent coefficient 

estimates are required— e.g. when evaluating willingness-to-pay. However, the models 

that ignore ASCs entirely in prediction and estimation (MLE-C with no forecasted ASC) 

predict as well or better than the models that estimate ASCs simultaneously with other 

model parameters (GMM-IV). The MLE-C and GMM-IV models with no ASCs are more 

accurate than the static and no info model (guessing) for the 5-year-forward-forecasts, 

meaning attribute-based models yielded more accurate forecasts even if some portion of 

utility is unaccounted for. 

Invalidity of instruments is a significant issue for GMM-IV methods in practice 

because instrument validity is impossible to verify, and we find that using invalid 

instruments can potentially result in models with estimated coefficients exhibiting more 

bias than MLE-C that also make worse forecasts. For long term forecasts, the greatest 
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penalty for using invalid GMM-IV predictions as compared to MLE-C predictions was an 

RAL difference of 22% (10% price-ASC correlation case). The upside in the only 

prediction case for which the valid GMM-IV offered an advantage is a mere 2% (market 

shift case with 70% price-ASC correlation); the greatest penalty for estimating a model 

with invalid GMM-IV instruments was ~10x greater than the greatest reward for 

specifying valid GMM-IV instruments in the event a limited market scenario occurs.  

3.6.2 Lessons from the Empirical Case Study 

We first discuss the empirical case study as if the instruments are valid and then 

address the finding that our instruments are likely invalid.  

Table 9 shows that MLE-C without ASCs (i.e. just MLE) predicts better than 

GMM-IV without ASCs for both 1-year and 5-year forecasts, at least on the RAL metric. 

If the instruments are valid, we should expect a GMM-IV model without ASCs to have 

unbiased coefficients and thus better reflect choice tradeoffs among the observed 

attributes. That this model predicts worse than an MLE model, which we must assume 

has more biased coefficients than GMM-IV if the instruments are valid, suggests that 

there are omitted variables whose utility is correlated with prices. That the MLE-C model 

predicts better than the GMM-IV model for any ASC forecasting methods suggests that a 

biased coefficient is more useful for prediction than trying to capture unobserved utility 

with an ASC alone when this endogeneity persists. 

If that is true, do the ASCs improve the predictive performance of the GMM-IV 

model? The GMM-IV model forecasts are improved by adding ASCs forecasted by any 

method for both 1-year and 5-year forecasts. Thus adding ASCs to GMM-IV does result 

in a model that forecasts with unbiased coefficients and the influence of omitted 
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attributes. One consequence of this pertains to counterfactual experiments in the 

explanatory literature. Many papers do not forecast per se, but alter observed market 

conditions and simulate choice outcomes, market competition, and measure related 

changes in economic measures such as market power, consumer welfare, fleet fuel 

economy, etc [47,49,62]. The superiority of near-term forecasts in our study suggest that 

GMM-IV methods could perform well for counterfactual analysis, if the imposed changes 

in market structure do not change valuation of omitted attributes.  

When only forecast accuracy of entrants are evaluated, adding ASCs to the MLE-

C and GMM-IV models does not meaningfully improve predictions in the short term and 

predicts worse than random guessing for the 5-year-out time horizon for all but the 

“nearest neighbor” method. These observations lead us to propose that specifying a 

correct model for the relationship between the observed attributes and ASCs is difficult. 

Entrants may have an unobserved contribution to utility that is not captured well by 

historical data. In fact, it may be in automakers’ interests to introduce new vehicles with 

purposefully differentiated (or entirely new) unobserved attributes in order to engage in 

competitive new vehicle markets. So while the “nearest neighbor” method improves 

predictions for the data set and long term time horizon tested, this may not be true in 

future years, and falsely assuming this relationship persists results in worse predictions 

than excluding the ASC entirely (as seen in the synthetic data study). 

The preceding comments are premised on the assumption of instrument validity in 

GMM-IV. Validity of instruments can only be argued not proven [91], and our 

interpretation of ASCs as representations of unobserved attributes (consistent with both 

the explanatory and predictive bodies of literature) as well as the regressions of estimated 
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ASCs on product characteristics in section 3.5.3 suggests correlations with observations 

that conflict with IV assumptions. For our data set and choice of instruments, which are 

popular in the automotive demand literature, the presumably biased MLE-C coefficients 

were more useful for prediction than the GMM-IV coefficients. If the instruments are 

valid, then this suggests that bias can aid predictions by implicitly capturing persistent 

unobserved effects. If the instruments are invalid, then predictions are made worse by 

trying to mitigate the coefficient bias as opposed to ignoring it as under MLE-C. Other 

choices of instruments may yield different results— predictions from a model estimated 

using truly valid or better instruments may be superior to a model that ignores 

endogeneity. There is an inherent risk trade-off: attempting to specify valid instruments 

risks degrading forecasts if the instruments are invalid. 

3.6.3 Computational Issues 

The literature on GMM-IV methods has seen a recent focus on the challenges of 

estimating these types of models. Consistent with the studies discussed in section 3.2 

[33,35,94], we encountered several difficulties that we discuss here in order to illuminate 

technical drawbacks of using GMM-IV. General estimator issues are documented in the 

marketing and econometrics literature, but we focus on the types of data sets vehicle 

demand researchers are likely to encounter.  

Firstly, we found that the computation time required to estimate a model with 

GMM-IV was ~2.5x greater than with MLE-C. The GMM-IV optimization problem has 

nonlinear and computationally expensive share constraints that must be solved at each 

step, as opposed to only once at the end of the optimization routine as in MLE-C.  
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Secondly, the GMM-IV estimator is statistically (as opposed to computationally) 

inefficient relative to the MLE estimator, and it is difficult to specify a sufficient number 

of instruments for real aggregate data sets of the size and form seen here such that at least 

some of the coefficients (particularly price) are statistically significant. At least as many 

instruments as observed coefficients must be used for identification, and we found that at 

least twice as many instruments as coefficients were needed to ensure a significant 

estimate of the price coefficient when estimated on our data set. Though any function of 

the exogenous variables and base instruments can be used, instruments that are too 

collinear cause numerical difficulties. 

GMM-IV estimation was sensitive to the level of aggregation of the vehicle data. 

We were unable to obtain coefficient estimates when make-model sales were summed 

over trims.  

Table 10 summarizes the model characteristics from the synthetic and empirical 

case studies. These conclusions are most likely to apply to other products when (1) they 

are competing in mature markets (relatively constant year over year market shares and 

limited anticipated structural change), (2) there are a large number of products per market 

relative to the number of markets available for estimation, and (3) consumer taste 

preferences are stable. 
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3.7 Limitations of the Study 

Our investigation examines only a portion of the factors affecting vehicle demand 

prediction uncertainty, and our case study models have error resulting from 

misspecification and missing information (as do all models). We lack individual-level 

choice data with consumer covariates, such as demographics or usage variables [42], and 

are unable to quantify some key purchase drivers, such as aesthetics. We assumed that 

coefficient attributes are constant over time, i.e. that there are no changes in consumer 

valuation of attributes. The ASC is intended to capture commonly-held evaluations of 

unobserved attributes (in the GMM-IV estimated model) and/or other sources of error (in 

the MLE-C estimated model). However if we suspect that they are correlated with 

observed attributes other than price (and we do), our coefficient estimates for the 

observed attributes will be inconsistent.  

We restrict our study of demand forecasting to random utility DCMs that treat 

consumers as observant rational utility maximizers with consistent preferences that fully 

consider every option in the relevant market. Several studies offer critiques or alternative 

treatments such as preferences that evolve over time [36], incorporate cultural factors 

Table 10 — Comparison of MLE-C and GMM-IV properties and findings 

 MLE-C GMM-IV 

Willingness-
to-pay 

estimates 
Biased Can reduce bias given valid IVs 

Prediction 
More accurate in almost all 

cases tested 
Can be better for markets with high correlation and 

anticipated dramatic change given valid IVs 

Computation 
Concave NLP when utility 
is linear leading to global 

solution and fast estimation 

Nonlinear equality constraints lead to local minima, 
infeasible regions lacking gradient information toward 

the feasible domain, and potentially multiple local 
minima; slow and requires multi start 

ASC 
Calibration constant does 
not necessarily represent 

missing attributes 

Estimation parameter represents missing attributes as 
long as IVs are valid 
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[43,44], or are adapted to a specific choice situation [45,46]. Especially relevant to the 

data sources of this study, the Lucas critique warns against use of aggregated historical 

data to predict outcomes in counterfactual scenarios [47].  

We did not consider alternative estimation methods beyond MLE-C and GMM-

IV. For example, we do not consider Bayesian methods which estimate coefficients of the 

same model forms and are asymptotically equivalent to MLE [23], and thus if our MLE 

estimates are reasonably good we should not expect to see significantly different results 

with Bayesian methods. Nor did we investigate alternative heterogeneity specifications, 

e.g. latent class models, mixed logit model with joint parameter distributions, mixture 

models, and generalized logit models that account for scale and coefficient heterogeneity 

[18]. 

We assume in generating prediction ASCs that they are uncorrelated with one 

another, but this is a restrictive assumption. For GMM-IV estimation we specify a 

weighting matrix, W (Eq. 19) that is less efficient than other candidates. An alternative 

choice of W (e.g. the inverse of the covariance matrix of the moments W=(Z′ξξ′Z)-1) 

may lead to more accurate estimates for our finite data sample at increased computational 

cost, though Nevo [67] suggests that this is not a primary concern. 

3.8 Conclusion 

Including ASCs in product utility functions of DCMs improves model fit but not 

necessarily forecast accuracy. Our simulation study compares the estimation of a mixed 

logit model using MLE-C and GMM-IV methods to investigate the effects of mitigating 

the endogeneity of the price coefficient with the ASC on both the estimated model 

parameters as well as the accuracy of 1-year- and 5-year-forward forecasts. Several 

methods for forecasting ASCs are tested to determine the sensitivity of share predictions. 
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We propose these methods as this issue has not been addressed by the literature. We also 

examine an empirical case study, estimating mixed logit models on midsize sedan sales 

from 2002 through 2006 and predicting vehicle market shares in 2007 and 2011. 

Given the results of the synthetic data study and the case study, our 

recommendation is that researchers and practitioners primarily interested in vehicle 

demand forecasting exclude ASCs entirely and estimate the model using MLE. For 

purely predictive purposes, the drawbacks of GMM-IV— challenging model estimation 

and difficult instrument specification— outweigh the expected benefits of potentially 

mitigating price endogeneity.  
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4. A Comparison of Vehicle Market Share Forecasts from Bayesian 
and Frequentist Mixed Logit Models 

This third study covers two of the major research themes: comparing model 

specifications and forecasting methods in terms of prediction accuracy and comparing 

design implications of different model specifications and forecasting methods. We ask 

specific research questions: How should estimates of past alternative-specific constants 

(ASCs) be used in future share forecasts? How do the share forecasts compare when 

ASCs are treated as model parameters with full distributions of uncertainty rather than as 

calibration constants? Of the assumptions and models in Table 1 this study assumes the 

ASC is independent of price and compares the predictions made by mixed logit models 

with both independent and correlated coefficients20. 

We compare the implications on forecast accuracy and uncertainty when models 

are estimated on revealed preference, aggregate data sets by frequentist maximum 

likelihood estimation (MLE) methods to Bayesian-estimated models that permit greater 

structural flexibility. Models that include an ASC in the utility function are estimated on 

2002-2006 U.S. new midsize sedan sales and are used to predict market shares for the 

2007 and 2011 midsize sedan markets. 

We find that the increased structural flexibility of the mixed logit model with a 

full covariance matrix estimated by Bayesian methods does not result in meaningfully 

more accurate predictions. Treatment of the ASCs as model parameters rather than 

calibration constants improves short term predictions, but the best long term predictions 

are made by the MLE model. There is comparable uncertainty in forecasts from models 

                                                 

20 This chapter is included in a working paper. In this chapter the use of first person plural includes 
coauthors Elea Feit and Jeremy Michalek. 
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estimated by either method when ASCs are included in predictions, despite differences in 

their estimation treatment.  

4.1 Introduction 

Traditionally, discrete choice models (DCMs) have been estimated by frequentist 

methods, especially MLE and generalized method of moments (GMM). When an ASC is 

included, instrumental variables (IVs) are often introduced into GMM estimation in order 

to mitigate price-ASC endogeneity [33,35–37,49,52–54,58]. As Bayesian estimation has 

become more popular in marketing and statistics, it has also been adopted by automotive 

demand researchers [17,61,99–105]. Musalem et al. [106] outline four main advantages 

of Bayesian over classical techniques. Firstly, complex models with many parameters, 

e.g. mixed logit models with full coefficient covariance matrices and parametrically 

distributed ASCs, are conceptually simple to estimate. Secondly, obtaining distributions 

of functions of the estimated parameters, e.g. market shares, is straightforward. Thirdly, 

Bayes estimators allow researchers to obtain finite sample inferences about parameters 

directly rather than relying on asymptotic results. And lastly, auxiliary information, like 

expert knowledge, is easy to incorporate through the use of informative priors. 

We are interested in the accuracy and uncertainty of DCM automotive demand 

forecasts. We compare how the increased model flexibility resulting from the use of a 

Bayes estimator compares to more structurally restricted models estimated by frequentist 

MLE methods (MLE). Specifically we address:  

(Q4.1)  How do the accuracy and uncertainty of share predictions from a full 

covariance mixed logit model compare to an independent mixed logit model? 

(Q4.2) How do the share forecasts compare under the Bayesian versus frequentist 

treatment of ASCs? 



92 
 

The study proceeds as follows: section 4.2 contains a review of Bayesian-

estimated models in the automotive demand literature; section 4.3 describes the MLE and 

Bayesian estimation and prediction methods used in this study; section 4.4 presents the 

results of a case study that estimates mixed logit models using Bayesian and MLE 

techniques on 2002-2006 U.S. aggregate midsize sedan sales and predicts 2007 and 2011 

market shares; and section 4.6 concludes. 

4.2 Literature Review 

The application of Bayesian estimation methods to DCMs in the transportation 

domain is severely limited as compared to other fields [100], and Yonetani et al. [107] is 

the only study that forecasts future vehicle market shares. They predict 1-year-forward 

vehicle market shares and find that the model predicts well for 36/50 vehicle make-

models but ascribe the over/under prediction to predicted ASC inaccuracy and lack of 

data generally. To the authors’ knowledge this study is the only one that compares the 

accuracy and uncertainty of forecasts when using Bayesian estimation techniques on 

aggregate data sets to classically estimated model forecasts. 

A number of automotive demand studies have applied Bayesian estimation 

methods to DCMs (Table 11), though they are not concerned with forecasting. A mix of 

structural specifications appear in the Bayesian automotive demand literature with no 

dominant favorite: multinomial logit (“logit”) [99,101], independent mixed logit 

[17,107], correlated mixed logit21 [61,99,105], independent probit [102], and correlated 

probit [100]. Some studies include an ASC in the utility function [100,101,103,105,107] 

and others do not [17,61,99,102]. 

                                                 

21 “Correlated mixed logit” is used throughout to refer to a mixed logit model with correlated utility part-
worths such that the coefficient covariance matrix has non-zero off diagonal elements 
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Bayesian-estimated automotive demand DCMs are primarily estimated on 

disaggregate, stated preference data sets [17,61,99–105]. As exceptions Yonetani et al. 

[107] estimates a model on aggregate and revealed preference data, Daziano and Chiew 

[102] estimate a model on stated preference data using priors informed by revealed 

preference data, and Feit et al. [61] propose a method to combine disaggregate stated and 

revealed preference data. This study specifies a correlated mixed logit model and 

includes a parametrically distributed ASC estimated on aggregate, revealed preference 

data. (See Table 11 for a comparison of utility and structural specifications in the 

literature.) 

Yang et al. [108] propose the first estimation technique in a Bayesian framework 

for a mixed logit model that includes an ASC, which is the structural specification 

introduced by Berry et al. [58] (“BLP”). Yang et al. [108] illustrate the method on a 

disaggregate data set of household beer purchases. They warn that that classical 

estimators rely on asymptotic results, yet the data typically used in the model is a small 

sample for which the properties of the estimators are not well known. Though the total 

number of observations in a data set may be large— the number of annual new car 

purchases in the US over twenty years in the case of the Berry et al. [58]— it may be 

considered a small sample if there are many units (households) but only a few 

observations per unit [108]. 

Several studies have developed methods for Bayesian DCM estimation on 

aggregate data. Musalem et al. [106] and Jiang et al. [109] propose techniques for 

estimation of a demand model decoupled from a supply-side mode. Musalem et al. [106] 

augment the data with unobserved individual choices, treating the latent individual 
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choices as a distribution with parameters to be estimated. Romeo [110] employs data 

augmentation but estimates a joint model of supply and demand. Jiang et al. [109] 

propose an estimation method that avoids augmentation with contraction mapping as in 

BLP. 
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Table 11 — Bayesian-estimated DCM literature comparison 

Author Year Model structure1 Market structure 
A priori ASC 
distribution Product Data source Case study focus 

Jiang 
et al. [109] 

2009 Correlated MIXL Demand-side IID normal Canned tuna Aggregate Parameter and elasticity distributions 

Musalem 
et al. [106] 

2009 Correlated MIXL Demand-side 
Corr. multivariate 

normal 
Facial tissue Aggregate 

Parameter and elasticity distributions; out-
of-sample elasticity prediction 

Romeo [110] 2007 Correlated MIXL 
Demand-side, joint 

supply-demand 
IID inverted 

gamma2 
Bath tissue Aggregate Parameter and elasticity distributions 

Daziano [99] 2013 
MNL, 

corr. MIXL, 
semi-para. MIXL 

Demand-side No ASC Vehicles Disaggregate
Electric range willingness-to-pay and 

elasticity distributions 

Daziano and 
Achtnicht 

[100] 
2013 

Correlated mixed 
probit 

Demand-side Non parametric Vehicles Disaggregate
Parameter and market share distributions; 

counterfactual market shares 

Daziano and 
Bolduc [101] 

2013 MNL Demand-side 3 Point estimate Vehicles Disaggregate Counterfactual market shares 

Daziano and 
Chiew [102] 

2013 
Independent 
mixed probit 

Demand-side No ASC Vehicles Disaggregate
Electric range willingness-to-pay and 

elasticity distributions 
Zhang 

et al. [17] 
2011 

Independent 
MIXL 

Demand-side 3 No ASC Vehicles Disaggregate Optimize alternative fuel vehicle designs

Feit 
et al. [61] 

2010 Correlated MIXL Demand-side No ASC Vehicles Disaggregate
Parameter distributions and out-of-sample

market share predictions 
Ahn 

et al. [103] 
2008 

MIXL4 

 
Demand-side Multivariate normal Vehicles Disaggregate Counterfactual market shares 

Sonnier et al. 
[104] 

2007 MIXL4 Demand-side Multivariate normal Vehicles Disaggregate
Willingness-to-pay distributions; optimal 

vehicle price 
Train and 

Sonnier [105] 
2005 Correlated MIXL Demand-side No ASC Vehicles Disaggregate Parameter distributions 

Note: Papers may include more than one model or data set; characteristics listed are for case study or model most relevant to this paper 
1 MIXL=mixed logit, MNL=multinomial logit 
2
 Includes mathematical specifications for other correlation structures, but case study only includes results of independent ASCs 

3 DCM demand model is incorporated into larger model other than joint supply and demand 
4 Correlation structure not specified 
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4.3 Methods 

To address the questions posed in section 4.1 we compare the forecasts from 

Bayesian and MLE estimated models for independent and correlated mixed logit 

structural specifications that include an ASC in the utility function. We estimate the 

models on combined vehicle attribute information from Ward’s Automotive Index [73] 

and MSRP and aggregate sales data from Polk [74] for 2002-2006 US midsize sedans. 

We then compare the predictions of 2007 and 2011 US midsize sedan market shares to 

actual market shares in terms of accuracy and uncertainty. 

The utility function is given by: 

 ijt jt i jt ijtu    x   (28) 

where xjt is a (K×1) vector of attributes specific to product j in market (year) t, βi is a 

(K×1) vector of taste parameters for consumer i, ξjt is a random variable ASC 

representing the aggregate utility contribution of unobserved attributes of product j in 

market t, and εijt is an idiosyncratic error term. Note that we use the terms market and 

year interchangeably, though they have different implications in some contexts. We 

assume the attribute vector xjt for a given product to be similar but not necessarily 

constant in time or across markets. For example, the price or weight of a Ford Focus may 

vary slightly from year to year though it is still considered the same product22. 

We assume that the distribution of preferences is constant in time or across 

markets such that β is indexed only by i and not t. (This is a standard assumption in the 

vehicle demand literature. See Axsen et al. [41] for an exception.) The coefficients are 

assumed to follow a multivariate normal distribution: 
                                                 

22 In the case study data the greatest year over year non-price attribute change is less than 15%. 
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  ~ ,N     (29) 

where μ is a (K×1) mean vector and Σβ is a (K×K) covariance matrix. A general 

independent mixed logit specification Σβ has off-diagonal elements equal to zero and a 

(K×1) diagonal element vector σ2. In the case study, two dummy variables are assumed to 

be constant (homogenous) across the population and their corresponding diagonal 

elements in Σβ are 0. This is because MLE fails to converge to a reasonable solution 

when the dummy coefficients are permitted to vary over the population23. This is likely 

due to insufficient variation in the offered products and the resulting market shares across 

years so that this source heterogeneity is not well identified. In the correlated mixed logit 

case  is a full covariance matrix.  

If εijt is assumed to follow an independent and identically distributed (iid) extreme 

value type I distribution, the probability of individual i selecting a product j in market t is 

then given by the logit probability: 
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where J is the set of distinct products observed across all markets and Jt is a subset of J 

containing the products that appear in market t. We model product choice conditional on 

a consumer entering the market, thus we do not include an outside good in the model 

(option to not purchase any product).  

                                                 

23 The Knitro solver for Matlab converges with a  valid exit flag of zero, but with brand dummy μ and Σβ 
elements that are on the order of 100x larger than other coefficient estimates (all covariates are on the order 
of one) when they are not bounded in estimation. For bounded estimation they converge to the bounds. 
Though the estimation reaches a valid convergence, predictions from the resulting models are meaningless. 
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For aggregate data models, the share Pjt of product j in year t is typically obtained 

by numerical integration over population taste heterogeneity: 
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where f(◦) is the multivariate normal probability density function. 

 
4.3.1 Maximum Likelihood Estimation 

The model in Eq. 31 excluding the ASC can be estimated by MLE24 and the ASCs 

can be calculated post-hoc [23]. The likelihood of the estimated parameters L is defined 

as the probability of generating the observed data given the estimated parameter values: 

    2, |
1

T nktPkt
t k Jt

L
 
  
   

X   (32) 

where X is a (V×K) matrix of stacked transposed attribute vectors xjt for all products in all 

markets, V is the total number of vehicles across all years in the data set, nkt is the 

observed sales of vehicle k in time t, T is the total number of markets, and Pjt in Eq. 31 is 

modified to exclude ξjt. The MLE estimator of the parameters for the independent mixed 

logit model is the value of the (2K×1) vector that maximizes L. The monotonic 

transformation ln(L) is typically used as the objective function for computational benefit. 

The ASCs are calibrated post-hoc by solving the system of equations: 

                                                 

24 When the numerical integration is incorporated the more precise term is Simulated Maximum Likelihood 
Estimation (SMLE), though MLE is frequently used interchangeably in the literature. 
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where ξt is the stacked vector of all ξjt in market t, Xt is the matrix of product attributes 

for all products in market t, sjt is the observed share of product j in market t, Pjt includes 

the ASC as written in Eq. 31, and  is the set of products in market t excluding one. We 

constrain the ASCs so that they sum to zero for a given panel year since the utility of all 

vehicles can be shifted by an arbitrary constant if no outside good is present and the 

predicted shares will remain constant. For more detail on mixed logit models see Train 

[23]. 

4.3.2 Bayesian Estimation 

We follow the procedure for Bayesian estimation of a mixed logit model on 

aggregate data proposed by Jiang et al. 2009 [109]. Some details are omitted here for 

conciseness, and interested readers are referred to the source. A key difference between 

the Bayesian framework and the frequentist literature on choice models is the treatment 

of the ASC. Under the Bayesian framework, the ASCs are treated similarly to the 

observed attribute coefficients and assumed to follow an iid parametric distribution: 

 
 2~ 0,jt N 

 (34) 

That is, we assume that the ASCs are normally distributed across the population of 

vehicles. This additional assumption allows us to treat the ASCs as parameters in 

estimation. 

The likelihood is rewritten to include this assumption: 
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where Pt is the stacked vector of predicted market shares Pjt for market t, st is the stacked 

vector of observed market shares, and π is the joint conditional probability density. 

Under the Bayesian paradigm we specify priors on μ, Σβ, and τ2. These priors are 

typically specified as diffuse parametric distributions so that the likelihood will dominate 

the posterior, producing parameter estimates that are similar to MLE estimates. 

Following Jiang et al. [109] we specify independent priors as follows: 
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where μ0 and Vμ are the respective mean and variance of the prior distribution on 

population mean taste parameter μ, and v0 and  are the respective degrees of freedom 

and scaling parameter of as scaled inverse chi-squared distribution. 

The covariance matrix Σβ is reparameterized as Σβ=U′U where: 

 

11

22

1,

12 1

0

0 0

K K

KK

r
K

r

r

r

e r r

e

e

e



 
 
 
 
 
  

U =


 

  
  (37) 

with associated priors: 
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The vector r is the [K(K+1)/2 × 1] stacked vector of all r. We specify weakly 

informative priors so that the utility part-worth contributions are constrained to a 
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reasonable interval to prevent the algorithm from exploring infeasible regions. See 

Appendix O for further discussion of the priors. 

We want to express the posterior distribution of shares as a function of model 

parameters μ, r, and τ2. To do this we use the Change-of-Variables Theorem and define 

two additional quantities. Define J as the Jacobian of the predicted market shares at time t 

excluding one for identification (because an outside good is not included) with respect to 

vector ξt. Define function h: 

  , , ,jt t t tP h  X s    (39) 

so that predicted shares are a function of only the variable ξt conditional on values of μ, 

and Σβ and the data Xt and st. The function h can be inverted by the nested fixed point 

algorithm outlined in Berry et al. [58], and each resulting ξt can be shifted by a constant 

so that the vector sums to zero. The joint posterior distribution of the parameters is then: 
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The hybrid Markov-Chain Monte Carlo (MCMC) sampler proposed by Jiang et 

al. combines a Gibbs sampler to obtain draws of μ and τ2 from a univariate Bayes 

regression followed by a Random Walk (RW) Metropolis step to obtain r. See Appendix 

O for more detail on specification and the MCMC algorithm. 
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4.3.3 Prediction 

We estimate three models: (1) a Bayesian-estimated mixed logit model with a full 

covariance matrix (“Bayesian correlated model”), (2) a Bayesian-estimated mixed logit 

model with independent coefficients (“Bayesian independent model”), and (3) a 

maximum likelihood estimated mixed logit model with independent coefficients (“MLE 

model”). For each of these models we predict distributions of shares of the 1-year-

forward and 5-year-forward vehicle markets. We include cases in which an ASC is 

predicted for forward markets and in which all future ASCs are equal to zero. 

Bayesian methods account for uncertainty in parameters and forecasts with a 

posterior distribution for each parameter. For the Bayesian models, we use each of the 

estimation draws (excluding the burn-in) of μ, r and ξ to predict an implied posterior 

distribution of shares. In order to forecast shares we need draws of β and future ξ. 

Obtaining draws of β are straightforward: posterior draws of Σβ are calculated from 

draws of r, and then 100 posterior draws of β are taken from N(μ,Σβ). One hundred 

Halton draws from the standard normal distribution used to draw β are held constant 

throughout to eliminate sampling variation. 

Drawing ξ for the prediction data set is less straightforward. For incumbent 

vehicles, we have estimates of how consumers may value the utility contribution of the 

ASC if it is assumed to represent aggregate unobserved attributes, and we forecast 

incumbent ASCs based on past estimates. For products that are newly introduced in the 

prediction data sets (“entrants”) we propose four methods of forecasting ASCs described 

in Table 12. From the estimated ξ corresponding to each posterior draw of μ and r, we 

draw an ASC for each vehicle in the prediction data. In total there are 5 sets of 

predictions made (one for each of the entrant ASC prediction methods plus one in which 
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all prediction ASCs are set to zero), and each set contains 49,600 implied draws of share 

(from 50,000 model parameter posterior draws less 400 burn-in draws). Our forecast 

uncertainty is represented by the range of share predictions we obtain from these 49,600 

draws, and our point estimate for share is then obtained by averaging over the draws. 

For the MLE model, we forecast ASCs by taking 50,000 draws from the 

nonparametric distributions described in Table 12. However, unlike the Bayesian models, 

each of the 50,000 ASC draws are drawn from the same estimated ξ. For each of the 

50,000 forecast ASCs, we simulate a draw of share by integrating over taste 

heterogeneity (Eq. 31) using 100 Halton draws of βi from N(μ,σ2) where μ and σ2
 are the 

likelihood maximizing parameters from Eq. 35. Our forecast uncertainty is represented 

by the range of share predictions from the 50,000 draws of the ASC, and our point 

estimate for share is again obtained by averaging over the draws.  

 

Table 12 — Description of ASC forecasting methods 
Method 

name 
Method qualitative description Method mathematical description 

Products appearing in the estimation set (incumbents) 

Incumbent 
For each product draw uniformly from the 
product’s estimated ASCs 

Draw ξj6 or ξj11 uniformly from 
{ξ=1,ξj2,ξj3,ξj4, ξj5} 

Products not appearing in estimation set (entrants) 
All 

(Method 1) 
Draw from uniformly from all estimated ASCs 

Draw ξj6 or ξj11 uniformly from 
∀ ∈ , 1,2,3,4,5  

Nearest 
neighbor 

(Method 2) 

For each new product calculate the normalized 
vector distance of product observed attributes 
between the new product and each of the 
estimation data set products. Draw uniformly 
from the estimated ASCs of the observed 
product with the smallest vector distance 
(“nearest neighbor”) 

Draw ξj6 or ξj11 uniformly from 
{ξk*1,ξk*2,ξk*3,ξk*4,ξk*5} where ∗

∈ 	, , , , ,
∗ ∗  

and ∗  is the (K×1) vector of   
normalized observed product attributes 

Brand 
(Method 3) 

Draw from all estimated ASCs of vehicles of the 
same brand 

Draw  or  uniformly from 
, , , ,  where the 

superscript b indexes brand (Chevy, 
Ford, Toyota, etc.) 

Vehicle 
model 

(Method 4) 

Draw from all estimated ASCs of the same 
vehicle trim (e.g. a Toyota Camry and a Toyota 
Camry Solara are assigned the same aggregate 
vehicle model for prediction but ASCs are 
estimated as if they are distinct) 

Draw  or  uniformly from 
, , , ,  where the 

superscript m indexes vehicle make-
model 
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The accuracy of the predictions made by each model is compared using the 

relative average likelihood (RAL). The RAL is a monotonic transformation of the 

aggregate likelihood of the model share predictions LP divided by the likelihood of an 

ideal model LI that perfectly predicts the new shares: 
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  (41) 

where N is the number of choices observed. When comparing two models on the same 

data set, the model with a larger RAL is more likely to generate the data observed. Using 

RAL instead of likelihood is important because markets that have more diffuse choice 

probabilities will necessarily have lower likelihoods of ideal prediction. RAL normalizes 

for this effect, and can be interpreted as the fraction of the total possible explanatory 

power a model obtains. The RAL is calculated for each draw of share predictions to 

obtain a distribution of RAL (posterior distribution for the Bayesian models and a Monte 

Carlo distribution for the MLE model). 

4.4 Results 

4.4.1 Estimation Results 

We estimate the random coefficient mixed logit model with a linear utility 

function including the covariates listed in Table 13 plus an ASC. The attributes capture 

price, fuel economy, performance, size, and country of origin. This choice of covariates is 

loosely based on Haaf et al. [93] who compare the market share forecasts of 9,000 

possible logit model specifications informed by the vehicle demand literature and find 

predictive accuracy is insensitive to the form of the covariates (e.g. miles per gallon 

versus gallons per mile) so long as they are included in some form. We proxy dummies 
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for brand (e.g. Honda, Ford, or Volkswagen) by dummies for producer firm geographic 

location (Europe or Asia, US is excluded for identification) because the dummies for 

brand are not separably identifiable from the ASC in our data set. The posterior means 

and standard deviations of the mean taste parameter vector μ and taste heterogeneity 

parameter σ are shown in Table 13 for the Bayesian models, and the point estimates and 

standard errors of μ and σ for the MLE model are shown. The full estimated taste 

heterogeneity matrix Σβ for the Bayes correlated model is presented in Appendix P. 

Appendix Q contains select trace plots for the Bayesian estimation routine. 

The signs on the price, gallons/mile, and weight/horsepower coefficients for all 

three estimated models have intuitive signs, meaning consumers prefer vehicles with 

lower prices, greater fuel economy, and greater performance (HP/weight is a proxy), 

though the true values of the taste parameters for the population are unknown and could 

actually be positive. The three estimated models generally agree on coefficient sign and 

order of magnitude. 

Bayes and MLE methods are asymptotically equivalent, meaning that for a large 

amount of data they are expected to result in the same coefficient estimates for a given 

model specification. Despite similar structural specifications, our estimates of population 

mean taste parameter μ noticeably differ across models. These discrepancies occur for 

two reasons. Firstly, the ASCs are simultaneously estimated with the observed attribute 

coefficients for Bayesian estimation, but for MLE they are calibrated post-hoc; there are 

an additional 339 parameters in the specification of the model estimated by Bayesian 

methods over the model estimated by MLE. Secondly, our specification of the priors for 

the Bayesian models is not truly flat. Our data is not informative enough to entirely 
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overcome the effect of the priors so the Bayesian estimates are influenced by this extra 

information that is not included in MLE estimation. 

There is more uncertainty around the mean taste coefficients μ (and heterogeneity 

coefficients) under Bayesian estimation than under MLE estimation; the standard 

deviations of the posterior distribution of the coefficients in the Bayesian models are 

greater than the standard errors of the MLE model coefficients. The ASCs included in 

Bayesian estimation are likely correlated with price so that we are including an additional 

339 variables, and the collinearity may increase the posterior uncertainty. See a related 

frequentist argument in Greene [97]. Alternatively, if the sample size is too small then 

asymptotic standard errors for the MLE estimates may be in accurate. If price and ASC 

are correlated in the data, then both the Bayesian and MLE estimated price coefficients 

would be expected to exhibit bias due to endogeneity since no steps are taken to correct 

for it (e.g. incorporating instrumental variables (IVs)). 

The MLE-estimated heterogeneity parameters σ are substantially smaller than 

those estimated by Bayesian methods. The Bayesian estimates are likely influenced by 

the priors because the heterogeneity parameters are not well identified by the data (as 

discussed in Chapter 3) and our Bayesian priors are especially informative for the 

heterogeneity parameters (see Appendix O).  
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4.4.2 Prediction Results 

Table 14 contains the RAL of the expected share for each of the models and ASC 

forecasting methods. Also included are the RALs of a ”static” model that holds all shares 

constant from the last observed value in the estimation data set and divides the remaining 

market share equally across new products and a “no info” model that assigns all products 

an equal share (equivalent to random guessing). Highlighted cells indicate the attribute-

based model that predicts best for a given time period and ASC forecasting method. 

Table 13 — Bayes and MLE model coefficient estimates 
 Bayes full Bayes independent MLE 

 Mean Std. dev. Mean Std. dev. Mean Std. err. 
Mean taste parameters μ 

Price -1.0 0.2 -1.0 0.2 -0.5*** 0.001 
Gallons/mile -0.5 0.3 -0.6 0.3 -1.1*** 0.001 
Weight/HP -0.1 0.0 -0.1 0.0 -0.1*** 0.000 
Length × width 3.2 1.0 3.0 1.0 3.9*** 0.003 
Europe -1.9 0.9 -1.0 0.3 -1.1*** 0.002 
Asia 0.1 0.3 -0.1 0.2 0.3*** 0.001 

Heterogeneity taste parameters σ 
Price 0.310 0.120 0.290 0.080 0.003* 0.002 
Gallons/mile 0.730 0.280 0.580 0.220 0.003* 0.000 
Weight/HP 0.100 0.030 0.100 0.020 0.000* 0.080 
Length × width 2.090 0.540 1.560 0.730 0.009** 0.000 
Europe 1.660 0.550       
Asia 3.110 1.060         
Est. time (min.): 495  65  <1  
Note: US dummy omitted for identification; bolded coefficients indicate that 95% credible interval does 
not straddle zero; coefficients shown are zero to precision shown but not actually zero 
* Coefficient is significant at α=0.10 level 
** Coefficient is significant at α=0.05 level 
*** Coefficient is significant at α=0.01 level
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(Q4.1) How do the accuracy and uncertainty of share predictions from a full 

covariance mixed logit model compare to an independent mixed logit model? 

The Bayesian correlated and independent models predict similarly accurately for 

both 2007 and 2011 for all methods of ASC forecasting (RAL differences of only 1-3%). 

Both Bayesian models predict better than the MLE model in the short term, but the MLE 

model using the nearest neighbor ASC forecast method (method 2) forecasts best in the 

long term. When no ASC is included in prediction years, the MLE model predicts best, 

followed by the Bayesian correlated model, and then the Bayesian independent model. 

 (Q4.2) How do the share forecasts compare under the Bayesian versus MLE 

treatment of ASCs? 

The MLE model forecasts reflect uncertainty from forecasting ASCs only, 

whereas the Bayesian model forecasts additionally reflect the joint uncertainty in 

observed attribute coefficients and estimated ASCs. (The straightforward ability to 

incorporate the joint parameter estimation uncertainty is an advantage of Bayesian 

Table 14 — RAL(E[share]) comparison of ASC forecasting methods for Bayesian full and 
independent and MLE models estimated on 2002-2006 midsize sedan data and used to predict 

2007 and 2011 midsize sedan market shares 

 1-year-forward (2007) forecasts 5-year-forward (2011) forecasts 

Method: 

No 
ASC 

0 
All 
1 

Near 
neighbor

2 
Brand

3 
Model 

4 
No ASC

0 
All 
1 

Near 
neighbor 

2 
Brand 

3 
Model 

4 
RAL of expected share — RAL(E[P(β,ξ)]) 

Bayes full 41% 72% 68% 73% 74% 36% 42% 42% 41% 41% 
Bayes ind. 38% 71% 69% 71% 72% 35% 42% 41% 40% 41% 

MLE 45% 66% 61% 63% 66% 38% 42% 60% 37% 41% 
Static 68%         39%         

No info 32%         42%         
RAL of expected share ENTRANTS ONLY — RAL(E[P(β,ξ)]) 

Bayes full 90% 89% 83% 90% 91% 51% 54% 52% 53% 52% 
Bayes ind. 88% 88% 85% 88% 90% 50% 52% 51% 50% 52% 

MLE 91% 91% 84% 88% 91% 49% 50% 70% 43% 49% 
Static 87%         54%         

No info 87%         62%         
Note: highlighted cells indicate the most accurate model and ASC forecasting method for a given time 
period and means of calculating RAL 
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methods.)  Despite the additional sources of uncertainty in the Bayes model predictions, 

the overall share forecast uncertainty is comparable between the Bayes and MLE models 

since the majority of it results from forecasting ASCs. (See actual versus predicted share 

plots in Appendix R). Forecast accuracy of all models is improved by including an ASC 

in prediction years, but only the MLE model is improved enough by the forecast ASC to 

be superior to random guessing (no info model) in the long term. 

The MLE model is sensitive to choice of ASC forecasting method, but the Bayes 

models are not. This is a result of the parameter estimation uncertainty that is propagated 

to the Bayes model forecasts. The nearest neighbor ASC forecasting method introduces 

the least amount of uncertainty of all ASC forecasting methods, and the reduction in 

uncertainty has greater impact on share forecast uncertainty when it is not confounded by 

parameter estimation uncertainty as in the Bayes model forecasts. 

Table 14 also contains the RALs calculated on entrant vehicles only. For this 

calculation, all incumbent vehicle market shares are summed and represented as single 

“non-entrant” market share. The conclusions are similar to those of the full market, but 

Bayes model forecasts are relatively less superior than the MLE model forecasts in the 

short term. 

4.5 Discussion 

A correlated mixed logit did not meaningfully improve predictions relative to the 

independent mixed logit. Treating ASCs as model parameters in Bayesian estimation 

results in better short term forecasts than calibrating them post-hoc as in MLE estimation, 

but the best long term forecasts are made by the MLE model. 

If MLE and nearest neighbor forecasted ASCs yield the best long term expected 

forecasts, then should these be the estimation and ASC methods of choice for modelers? 
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Not necessarily. For this particular data set, vehicles’ observed characteristics are good 

indictors of what the aggregate utility value of their unobserved attributes is to 

consumers, but this need not be true. For example, an auto manufacturer may choose to 

differentiate a midsize sedan from the nearest competitor sedans through the unobserved 

attribute(s) for competitive purposes. In this case, the nearest neighbor method would be 

misleading in terms of determining entrant ASCs. For this data, the Bayesian model 

offers an advantage in that it is more robust to selection of ASC generating method, and 

less reliant on persistent market structures. If the brand method is used to forecast ASCs 

then the MLE model predicts worse than excluding an ASC entirely, though the 

difference is slight. 

The main disadvantage of the Bayesian estimator is the difficulty of 

implementation relative to the familiar and straightforward MLE estimator. There are 

only a handful of studies in the literature that address Bayesian estimation of a DCM on 

aggregate data sets, and it is a relatively new— and therefore untested— area of 

exploration with fewer resources for modelers who are not already experts in Bayesian 

statistics. Estimation takes much longer for data sets of the structure tested here (few 

markets with many products per market) by orders of magnitude over the MLE model 

(see Table 13). Our Bayesian estimator converged relatively quickly, so we could have 

made fewer draws and reduced the estimation run time, but this is not known a priori and 

it would still not approach the ~30 seconds the MLE estimator required. 

Table 15 summarizes the comparison of the estimators. 
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4.6 Conclusion 

Bayesian estimation enables modelers to estimate more flexible DCM structural 

specifications and to obtain distributions of functions of model parameters directly rather 

than relying on Monte Carlo sampling from asymptotic distributions. We use Bayesian 

estimation to fit both correlated mixed logit and independent mixed logit models and 

MLE to estimate an independent mixed logit model. The models are fit to 2002-2006 US 

new midsize sedan aggregate sales data and used to predict shares of the 2007 and 2011 

markets. Forecasts from the three estimated models are compared to investigate the 

effects on prediction accuracy and uncertainty of a more flexible structural specification 

(correlated mixed logit versus independent mixed logit) and richer description of the ASC 

(treatment as an estimation parameter with full distribution of uncertainty versus a post-

hoc calibration constant).  

The additional structural specification flexibility permitted by Bayesian 

estimation was not advantageous for prediction, but additional uncertainty from 

parameter estimation is more easily reflected in forecast share uncertainty. Aggregate 

data sets with limited variation in market shares— like the type used here— are not well 

Table 15 — Comparison of MLE and Bayes properties and findings 

 MLE Bayes 

Uncertainty 
No share uncertainty from observed 

coefficients; uncertainty equal to that of 
Bayes when predictive ASCs are included 

Share uncertainty from predictive ASCs 
greater than uncertainty from observed 

coefficients 

Prediction 
Most accurate long term expected share  

predictions given correct ASC forecasting 
method 

Most accurate for short term predictions 

Computation Fast estimation 
Longer estimation times; more difficult to 

implement than MLE methods 

ASC 
Performance relative to excluding ASC is 

sensitive to ASC forecasting method 

Robust to selection of ASC forecasting 
method; draws of predicted ASCs are made 

jointly with observed coefficient draws 
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suited to Bayesian estimation and we recommend modelers carefully evaluate the 

suitability of their data set.  
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5. Summary and Conclusions 

This thesis explores the use of discrete choice models (DCMs) for forecasting 

automotive demand with a focus on engineering and policy contexts. I address several 

questions regarding the accuracy and uncertainty of market share predictions resulting 

from choice of utility function and structural specification, estimation method, and data 

structure assumptions (i.e. endogeneity of price and the alternative-specific constant 

(ASC) and treatment of the ASC as a representation of unobserved vehicle attributes).  

The three studies address three major research themes: defining how to measure 

forecast accuracy, comparing model specification and forecasting methods in terms of 

prediction accuracy, and comparing design implications of different model specifications 

and forecasting methods. With regards to defining how to measure forecast accuracy, I 

find in study 1 that for the automotive case study examined, determination of the best 

models did not depend strongly on potentially arbitrary selection of the measure used to 

evaluate predictive accuracy. I pose the relative average likelihood (RAL) as an intuitive 

likelihood measure and use it primarily in further studies. I also find that better model fit 

correlates well with better predictive accuracy. The match between fit and predictive 

accuracy, suggesting no major overfitting issues, is particularly encouraging, since the 

modeler has access to choice data for estimation but not choice data in the counterfactual 

predictive context. 

I address the second research theme— comparing models and forecasting methods 

on their forecast accuracy— by examining utility function and structural specifications. I 

find in study 1 that including more covariates generally improves predictive accuracy. 

While including an appropriate set of product attributes as model covariates is important, 
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the form those covariates take (e.g. miles/gallon versus gallons/mile) in the utility 

function is less important in this application. 

Including ASCs in product utility functions of DCMs improves model fit but not 

necessarily forecast accuracy. In study 2, all proposed ASC prediction methods improve 

forecasts of the midsize sedan market over models that exclude ASCs entirely. However, 

in evaluating entrant vehicles, only the “nearest neighbor” ASC prediction method 

improves forecasts. If the relationships between observed attributes and ASCs change as 

product turnover from estimation to prediction data sets increases, forecasting ASCs by 

“nearest neighbor” is risky since falsely assuming this relationship may result in worse 

forecasts than excluding the ASC, as seen in the synthetic data study. Furthermore, my 

methods for forecasting ASCs rely on their estimated values, which is valid only if there 

is persistence in the utility of unobserved attributes. 

If the ASC is treated as a model parameter to be estimated complete with a full 

distribution of uncertainty, like under Bayesian estimation in study 3, then forecasting 

future ASCs generally improves long term expected share predictions relative to 

excluding the ASC from predictions. This treatment is also more robust to selection of 

ASC generating method and less reliant on persistent market structures. However, the 

best long term expected share predictions over all estimation and ASC forecasting 

methods are from the frequentist MLE estimated model that treats ASCs as post-model-

estimation calibration constants. 

I address the third research theme— comparing models and forecasting methods 

on their implications for design— in studies 1 and 2. In study 1 the limited predictive 

power of standard models on real data in a canonical product category suggests designers 
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should apply DCMs cautiously, though predictions may be substantially better in 

domains with fewer unobserved attributes or with conjoint data (where all attributes are 

observed).  

In study 2 GMM-IV methods are used in an effort to mitigate the potential 

endogeneity bias of the price coefficient when ASCs are included in the utility function. 

Inconsistent coefficients are of particular interest for designers since they affect estimates 

of consumer willingness-to-pay for vehicle attributes. I observe that the GMM-IV models 

based on invalid instruments did indeed predict worse than the MLE-C models in the 

synthetic data study, and there is evidence that commonly used instruments in real 

automotive demand models (e.g. instruments grounded in those of BLP) are invalid. 

Invalidity of instruments is a significant issue for GMM-IV methods in practice because 

instrument validity is impossible to verify. 

For purely predictive purposes, the drawbacks of GMM-IV— challenging model 

estimation and difficult instrument specification— outweigh the expected benefits of 

potentially mitigating price endogeneity. The risk of specifying invalid instruments is 

high, and my results suggest that unbiased coefficients are not necessary for maximizing 

the predictive power of the model. Bias can even aid predictions by implicitly capturing 

persistent unobserved effects in some circumstances. 

5.1 Contributions 

I assess and test classes of existing methods for forecasting automotive demand 

using DCMs in order to understand which methods are more theoretically grounded and 

which perform better in practice. 

Contributions from study 1 (Chapter 2) include an exhaustive evaluation of the 

utility function covariates found in the automotive demand literature and a comparison of 
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measures of model fit and prediction accuracy, including one proposed here, the 

cumulative distribution function of error tolerance (CDFET).  

Contributions from study 2 (Chapter 3) are two-fold. Firstly, the application of a 

canonical DCM estimation technique frequently used in automotive demand contexts 

(GMM-IV as proposed by Berry et al. [58]) is evaluated on its suitability for DCM 

models used to forecast. Secondly, I investigate whether ASCs should be interpreted as 

pure error terms or representations of unobserved vehicle attributes and propose several 

means for predicting future ASCs of vehicles not observed in the estimation data. 

The contribution from study 3 (Chapter 4) is primarily a comparison of the 

predictive accuracy when the ASC is treated as a parameter to be estimated complete 

with an uncertainty distribution as opposed to a point estimate in model estimation and 

prediction. I also compare the relative uncertainty in forecasts resulting from the use of 

frequentist (MLE) versus Bayesian estimators.  

5.2 Recommendations for Future Work 

For study 1, future work could include evaluating the sensitivity of predictions to 

inclusion of individual-level choice data with consumer covariates, such as demographics 

or usage variables, in the utility function and alternative structural specifications like 

latent class and generalized logit models. It would be interesting to extend the case study 

to include the design of an optimal vehicle under various utility function and structural 

specifications to better understand the implications of share prediction uncertainty on 

vehicle design decisions.  

Future work for study 2 includes estimating a model by MLE and incorporating 

IVs via a control function as in [47]. Ideally the case study would include not only 

prediction of future market shares but also prediction of market shares under 
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counterfactual scenarios. The unbiased coefficients of the GMM-IV estimator, if valid, 

may prove better for counterfactual forecasts than the MLE-C coefficients. 

Future work for study 3 could include the addition of IVs to evaluate their 

behavior in a Bayesian framework, but similar results to study 2 are anticipated. 

In addition to the study-specific future work, areas of exploration for DCM 

forecasting include alternative assumptions to treating consumers as observant rational 

utility maximizers with consistent preferences, consumer choice set definition, and longer 

forecast time horizons. Additional types and sources of data like disaggregate household 

purchase information and stated preference surveys in combination with revealed 

preference data may yield more accurate forecasts. The models tested here represent the 

demand-side of the market only, and incorporating a joint supply-side model may make 

the results of thesis more applicable to marketing researchers. 

This work forecasts shares under a multitude of DCM structures, but stops short 

of contextualizing those forecasts in terms of decision outcomes. Comparing the profit-

optimal design of a new vehicle predicted by models with different utility function or 

structural specifications as suggested in the future work of study 1 is one example. 

Recent federal vehicle emission legislation includes a regulatory impact analysis to 

evaluate manufacturer compliance implementation costs, likely vehicle pricing responses, 

and the resulting consumer welfare [111], and DCMs could be used to predict the 

downstream implications of market share distributions on these estimated costs and 

benefits. 
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7.1 Appendix A 
Comparison of predictive and explanatory vehicle demand literature 
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Lave and Train [60] 1979 x    x  x x x 
Boyd and Mellman [59] 1980    x x  x x x 
Berry et al. [58] 1995 x    x  x x x 
McCarthy [57] 1996 x    x  x x x 
Brownstone and Train [55] 1999 x    x  x x x 
Electric Power Research Institute [117] 2001   x  x    See note 2 
Dagsvik et al. [56] 2002  x   x  x  x 
Choo and Mokhtarian [96] 2004 x    x  x x x 
Oak Ridge National Laboratory [15] 2004  x    x x  x 
Greene et al. [50] 2005  x   x  x x x 
Electric Power Research Institute [4] 2007   x   x   See note 2 
Train and Winston [47] 2007 x    x  x x x 
Nat.’l Research Council, Nat.’l Academies [10] 2008   x   x    
Pacific Northwest National Laboratory [14] 2008  x    x   See note 3 
Center for Entrepreneurship and Technology [8] 2009 x     x    
Dagsvik and Liu [42] 2009  x   x  x x x 
Lin and Greene [86] 2009  x    x x See note 4 x 
Vance and Mehlin [45] 2009 x    x  x  x 
Frischknecht et al. [20] 2010 x    x  x x x 
Argonne National Laboratory [118] 2011  x   x  x  x 
Electric Power Research Institute [119] 2011   x   x    
Energy Information Administration [5] 2011  x    x x  x 
Musti and Kockelman [40] 2011 x    x  x x x 
Zhang et al. [17] 2011 x    x  x x x 
Whitefoot and Skerlos [31] 2012 x    x  x x x 

Note: 1.) Independent research agencies may receive government funding; 2.) Report indicates that model was “choice based market model” but is not explicit about model type; 3.) Model is an 
extension of the ORNL 2004 [15] report, so it is at least partially based on choice modeling but extension methodology is not explicitly described; 4.) Published in conference proceedings
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7.2 Appendix B 
Comparison of predictive and explanatory vehicle demand literature 

 

Table 17 — Literature demand covariates 
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price/ln(income)    x             
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income-price/month          x       

price/income x  x      x  x x     

(price/income)^2 x                

2 year retained value         x        

Operating cost                                 
fuel cost/mi 
(cost/km) x  x x  x x    x  x    
mi/fuel cost 
(km/cost)  x               

mpg (L/km)     x            

1/mpg         x x  x    x 

levels of mpg               x  
levels of 
miles/charge               x  

NPV of fuel savings        x         
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Demand covariates Lave 
1979 

Boyd 
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Berry 
1995 
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Vance 
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Maintenance cost                                 
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battery replacement $       x      x    
vehicle and battery 
maintenance $      x      x    
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hp (kw)    x     x x x      

hp/wt  x    x   x   x    x 
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f(hp/wt)             x    

known seconds     x            
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handling rating                 
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1/range      x x      x    

top speed   x  x  x          
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length    x             

width         x        

length-width         x        

length*width  x         x x    x 

(len*wid)^2-2*len*wid            x     

luggage space relative CV    x  x      x    

# of seats x         x       
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style: 
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luxury: noise rating                 
luxury: dummy A/C 
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safety: dummy crash-test 
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quality: consumer 
satisfaction rating   x             
quality: reliability 
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transmission: dummy 
auto is standard         x        

Manufacturer                                 
indicator of country of 
origin    x     x  x x     

indicator of firm    x     x        

Power train                                 
indicator for power 
source(s)  x  x     x  x x x x  
pollution relative to 
CV     x            

Vehicle class                                 
class indicator like 
compact, sedan, etc. x   x x x  x x  x x  x x  
sub class indicator like 
small, standard, luxury x     x           
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fraction vehicles equipped 
to be home or reserve 
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policy incentive (HOV 
lane exemption, rebate, 
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geographic location    x             

vehicle miles traveled x                
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age x  x x     x     x   

gender   x           x   

education x    x            
income (not interacted 
with price) x             x   
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Demand covariates Lave 
1979 

Boyd 
1980 

Berry 
1995 

Dags-
vik 

1996 

Mc-
Carthy 

1996 

Brown-
stone 
1999 

ORNL 
2004 

ANL 
2005 

Greene 
2005 

Train 
2007 

Dags-
vik 

2009
Vance 
2009 

Frischk
-necht 
2010 

EIA 
AEO 
2011 

Musti 
2011 

Zhang
2011

White-
foot 
2012 

Transaction                                 

search process    x     x        

financing         x        

Data source 
SP P RP SP SP SP RP 

RP/ 
SP RP SP SP RP RP N/A SP SP N/A 
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7.3 Appendix C 
The Kullback-Leibler and Equivalent Average Likelihood Measures will rank models 
identically 

Proof that KL is a monotonic transformation of likelihood: 
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7.4 Appendix D 

Estimated coefficients and evaluation measures for selected models with discussion 

For each of the covariates listed in Table D.1 a numerical value in the row 

indicates that the covariate was included in the utility function and the value is the 

coefficient estimate; the blank covariate rows for each model indicate that the covariate 

was not included in the specification. The “brand dummies included” row contains an “x” 

if the 36 brand dummies were estimated, but they are not listed for brevity. The 

magnitude of the covariates was generally on the order of one. All of the coefficients 

were statistically significant at the two-tailed α=0.01 level. 

Price- The price coefficients for all of the model specifications was negative as 

expected. 

Operating cost- One of the models returned a negative coefficient sign for 

“mi./fuel cost”. We would initially expect this coefficient to be positive, meaning 

consumers prefer greater values of the covariate or to be able to drive more miles for less 

money. However, the negative signs occur when the price form also includes the 
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operating cost. The operating cost coefficient acts as a modifier in this case, and the 

coefficients must be viewed together, not separately, for interpretation. 

The positive coefficient for “gal./mi.” in the case of the “Best AIC/BIC/KL 

predictive model” is also unexpected as it indicates that consumers prefer lower fuel 

economy. This is potentially related to consumer preference for larger cars, but we 

partially control for that with the inclusion of class dummies and a size covariate, both of 

which are present in this model. It also may be related to the preference for higher 

performance. We partly control for this with the inclusion of acceleration measures, but 

the simple hp/wt measures may not capture all performance issues important to the 

consumer that are negatively correlated with fuel economy (such as towing capacity, 0-

60mph acceleration time, 0-30mph time, 30-60mph time, top speed, all-wheel drive, etc.). 

Acceleration- All of the signs are as expected for all of the acceleration forms. 

Size- A size covariate is included in all but one of the best models. The positive 

sign indicates that consumers prefer larger cars when vehicle class is controlled for. 

Style- Larger values of the covariate represent cars which are relatively lower to 

the ground as compared to their footprint, e.g. a sports car would be expected to have a 

larger value of this covariate than a sedan. The best models give mixed estimations on the 

sign of the coefficient. 

Luxury (A/C dummy) and transmission (standard auto dummy)- When included 

these coefficients are small, though statistically significant, so the impact of either on the 

utility is minimal. 
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Manufacturer- All of the best models include the 36 brand dummies. Even AIC 

and BIC rank models with these additional covariates included despite the measures’ 

penalties for overfitting. 

Class- Class dummies were necessarily included in all of the model specifications, 

meaning there was no combination tested that did not include them. The van dummy was 

omitted for identification, so all of the class coefficient estimates represent the utility 

consumers derive from choosing a vehicle in the respective class over a van. For all of 

the best models, the coefficients are always positive, except for sports cars which 

presents with mixed signs across models. 
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Table 18 — Coefficient estimates for selected logit models 

    Literature informed models 

Best 
estimation 

set fit Best prediction set fit 

  Covariate units 
BM-A 

like 
BM-

B/C like 
BLP-
like 

Whitefoot-
like 

AIC/BIC/
KL/EAL 

AIC/BI
C/KL/E

AL 
CDFET 

25% 
CDFET 

50% 
CDFET 

75% 
Cost to consumer                     
PRICE                     

price 10k $ -0.39   -0.44     -0.42 -0.38  

price+$/50000mi 
10k $ +10k $/50k 

mi   -0.28   -0.46 -0.40   -0.19 
ln(price) ln(10k $)    -1.56         

Operating                     
$/mi $/10 mi             
mi/$ 10 mi/$    5.74  -7.02      
mpg 10 mi/gal 0.02           
gal/mi gal/10 mi     -41.22   50.67 -14.97 -19.41  

Performance                     
Acceleration                     

hp/wt hp/10 lbs    1.36 1.37     0.99  0.81 
wt/hp 10 lbs/hp -0.46 -0.40        -0.32  
f(hp/wt) exp(hp/wt)             
hp hp      0.00      

Size                     
Physical                     

length ft             
width ft        0.72    
length-width ft             
length*width 100 sq-ft    4.85 5.40 7.09   4.79 4.71  

Intangibles                     
Style                     

(length*width)/height 100-ft 21.69 21.97   -17.18 9.52   17.07 
Luxury                     

a/c std 1    0.09  0.00     -0.06 
Transmission                     

automatic std. 1      -0.03   -0.10 -0.07  
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    Literature informed models 

Best 
estimation 

set fit Best prediction set fit 

  Covariate units 
BM-A 

like 
BM-

B/C like 
BLP-
like 

Whitefoot-
like 

AIC/BIC/
KL/EAL 

AIC/BI
C/KL/E

AL 
CDFET 

25% 
CDFET 

50% 
CDFET 

75% 
Intangibles                     
Manufacturer                     

geographical (US, 
Asia, Europe)              
Europe 1             
Asia 1             
brand dummies 
included 1      x x x x x 

Class dummies                     
compact 1 -0.22 -0.53 1.01 0.99 2.48 1.32 1.72 1.66 0.15 
fullsize 1 -0.87 -1.20 0.73 0.40 1.81 0.53 0.92 0.84 -0.58 
luxury sedan 1 -1.09 -1.55 0.59 0.36 2.42 1.20 1.55 1.47 -0.18 
luxury SUV 1 0.49 0.31 1.06 1.14 1.43 0.83 1.22 1.15 0.52 
midsize 1 -0.15 -0.48 1.40 1.17 2.64 1.37 1.80 1.71 0.23 
minivan 1 0.00 -0.28 0.70 0.47 1.09 0.49 0.84 0.77 0.06 
pickup 1 0.59 0.45 1.18 1.10 1.61 1.25 1.26 1.24 0.72 
sports 1 -1.69 -2.08 0.18 0.03 1.58 -0.07 0.45 0.44 -1.57 
SUV 1 0.30 0.03 1.22 1.12 1.83 1.13 1.56 1.48 0.51 

Total number of covariates 13 12 14 13 52 49 50 50 49 
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Table 19 — Measures for selected logit models 

      Literature informed models 

Best 
estimation 

set fit Best prediction set fit 

Measure 

Min. value 
over all 
models 

Max. 
value over 
all models 

BM-A 
like 

BM-
B/C like 

BLP-
like 

Whitefoot
-like 

AIC/BIC/
KL/EAL 

AIC/BI
C/KL/E

AL 
CDFET 

25% 
CDFET 

50% 
CDFET 

75% 
ESTIMATION 
SET              

AIC (10e7) -5.2511 -4.9934 -5.1930 -5.1983 -5.1733 -5.1559 -4.9934 -5.0301 -5.0065 -5.0046 -5.0449 
BIC (10e7) -5.2511 -4.9934 -5.1930 -5.1983 -5.1733 -5.1559 -4.9934 -5.0302 -5.0065 -5.0046 -5.0449 
KL 0.1978 0.4587 0.4000 0.4053 0.3800 0.3624 0.1978 0.2350 0.2111 0.2092 0.2499 
EAL 0.0049 0.0064 0.0052 0.0052 0.0053 0.0054 0.0064 0.0061 0.0063 0.0063 0.0060 
ASE 0.0021 0.0031 0.0029 0.0029 0.0028 0.0028 0.0021 0.0023 0.0021 0.0021 0.0023 

PREDICTION 
SET              

KL 0.2416 0.4622 0.4204 0.4174 0.4144 0.4026 0.2661 0.2416 0.2603 0.2602 0.2655 
EAL 0.0048 0.0060 0.0050 0.0050 0.0050 0.0051 0.0058 0.0060 0.0059 0.0059 0.0058 
ASE 0.0024 0.0032 0.0030 0.0030 0.0031 0.0030 0.0025 0.0024 0.0025 0.0025 0.0025 
CDF cutoff              

Within 25% 0.0004 0.0010 0.0007 0.0007 0.0008 0.0007 0.0004 0.0004 0.0004 0.0004 0.0004 
Within 50% 0.0011 0.0023 0.0020 0.0020 0.0019 0.0017 0.0013 0.0013 0.0012 0.0011 0.0012 
Within 75% 0.0027 0.0042 0.0038 0.0038 0.0037 0.0037 0.0032 0.0030 0.0030 0.0029 0.0027 
Within 100% 0.0247 0.0377 0.0363 0.0362 0.0346 0.0345 0.0313 0.0285 0.0311 0.0309 0.0317 

1.) Boyd and Mellman A (BM-A) includes price, gal/mi, repair rating, (len+wid)/hei, hp/wt, noise rating and handling rating; Boyd and Mellman B (BM-B) includes price + fuel 
cost/50000 miles, repair rating, (len+wid)/hei, hp/wt, and noise rating, Boyd and Mellman C (BM-C) is the same as BM-B but also includes a handling rating; BLP includes a 
constant, ln(income-price), hp/wt, len*wid, a dummy for air conditioning as a standard feature, miles/fuel cost, and an alternative specific constant; Whitefoot includes price, 
gallons/mile, hp/wt, len*wid and an alternative specific constant 
2.) The AIC, BIC, KL, and EAL measures select the same model “best model” so they are included as one column in the table 
3.) All coefficients are statistically significant at the α=0.01 level 
4.) US geographical dummy is excluded for identification 
5.) Van dummy is excluded for identification 
6.) There are 36 brand dummies so for conciseness the coefficient estimates are not included in this table, but an "x" in the "brand dummies included" row indicates that they 
were estimated as part of the model; the Acura brand dummy is excluded for identification 
7.) The boxed measures indicate the measure value when it was the selection criterion for the model
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7.5 Appendix E 
Selected results from mixed and nested logit model estimation 

The evaluation measures are compared for logit, mixed logit, and nested logit 

models fit to 2004-2006 data and used to predict 2007 data. The columns designated 

“Est.” represent the model fit using the utility functional form from the logit model with 

the best AIC/BIC/KL measures calculated from the estimation data. Similarly, the 

columns designated “Pred.” represent the model fit using the utility functional form from 

the logit model with the best AIC/BIC/KL measures calculated from the prediction data. 

The “estimation set” measures are the measures evaluated for each model on the 2004-

2006 estimation data and the “prediction set” measures are the measures evaluated for 

each model on the 2007 prediction data. 

 

For the estimated coefficients shown, all models estimated use the utility function 

form from the best AIC/BIC/KL predictive model estimated on all 2004-2006 data, with 

a slight structural modification in the nested logit model. We have chosen the vehicle 

classes as the nests and they are incorporated by means of the λ parameter in Eq. 42 as 

opposed to representing them as class dummies in the utility function: 

Table 20 — Logit, mixed logit, and nested logit measure comparison 

  Logit Mixed logit Nested logit 

Measure Est. Pred. Est. Pred. Est. Pred. 
ESTIMATION SET            
AIC (10e7) -4.9934 -5.0301 -4.9601 -4.9677 -4.9925 -5.0360 
BIC (10e7) -4.9934 -5.0302 -4.9601 -4.9677 -4.9925 -5.0361 
KL 0.1978 0.2350 0.1641 0.1718 0.1969 0.2410 
EAL 0.0064 0.0061 0.0066 0.0065 0.0064 0.0061 
ASE 0.0021 0.0023 0.0018 0.0018 0.0021 0.0023 

PREDICTION SET      
KL 0.2661 0.2416 0.2426 0.2219 0.3057 0.2644 
EAL 0.0058 0.0060 0.0060 0.0061 0.0056 0.0058 
ASE 0.0025 0.0024 0.0023 0.0022 0.0027 0.0025 
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where j indexes the products, v is the observed utility of each product, the N represent 

nests, and the λ are the nest specific parameters to be estimated. In this formulation, no 

class needs to be excluded for identification. Any attribute coefficient for a given nest can 

be found by dividing the nominal mean nested logit coefficient in the table by the nest’s 

“class dummy”. This modified coefficient is comparable to the logit and mixed logit 

mean coefficients. 

 

Table 21 — Estimated coefficients for logit, mixed logit, and nested logit models 

  Logit Mixed logit Nested logit 

  Mean Mean St. dev. Nominal mean 
Physical attributes         
price+$/50000mi -0.40 -0.61 0.18 -0.59 
gpm 50.67 90.83 0.01* 87.68 
width 0.72 0.95 0.19 0.99 
(len.*wid.)/hei. 9.52 9.62 0.00* 11.37 

Class dummies  
  

 
compact 1.32 1.58 0.21 1.55 
fullsize 0.53 0.86 0.00* 1.30 
luxury sedan 1.20 -110.45 70.51 1.56 
luxury SUV 0.83 -2.68 3.46 1.39 
midsize 1.37 -1.87 4.83 1.63 
minivan 0.49 -67.25 52.15 1.22 
pickup 1.25 -20.75 22.46 1.42 
sports -0.07 -3.87 5.17 1.13 
SUV 1.13 1.00 1.16 1.39 
van    0.78 
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  Logit Mixed logit Nested logit 

  Mean Mean St. dev. Nominal mean 

Brand dummies  
  

 

Audi -1.30 -1.49 0.16 -1.96 
BMW 0.41 0.61 0.00* 0.47 
Buick 0.15 -0.15 0.92 0.03 
Cadillac -0.06 -0.10 0.00* -0.21 
Chevrolet 0.84 -2.65 6.25 1.04 
Chrysler 0.48 -0.86 2.06 0.51 
Dodge 0.71 -1.48 2.47 0.89 
Ford 1.23 1.26 0.04 1.57 
GMC 0.25 -0.06 0.61 0.29 
Honda 1.07 -11.91 10.84 1.40 
Hummer -0.31 -0.22 0.00* -0.56 
Hyundai 0.00** 0.26 0.00* -0.21 
Infiniti -0.41 -20.90 9.89 -0.75 
Isuzu -1.97 -2.04 0.00* -2.88 
Jaguar -1.70 -8.45 4.18 -2.49 
Jeep 0.76 -10.28 8.78 0.81 
Kia -0.44 -0.24 0.00 -0.84 
Land Rover -0.75 -0.72 0.13 -1.21 
Lexus 0.07 0.15 0.00* 0.09 
Lincoln -0.55 -0.67 0.00† -0.84 
Mazda -0.29 -0.10 0.49 -0.58 
Mercedes 0.60 0.59 0.18 0.75 
Mercury -0.46 -0.69 0.77 -0.82 
Mitsubishi -0.85 -0.85 0.45 -1.43 
Nissan 0.38 -28.29 26.79 0.37 
Oldsmobile -1.00 -0.67 0.00* -1.69 
Pontiac 0.06 -0.37 1.82 -0.10 
Porsche 0.30 0.42 0.14 0.53 
Saab -1.21 -1.18 0.00* -1.91 
Saturn 0.10 -20.10 14.82 0.01*** 
Scion -0.29 -1.52 2.33 -0.69 
Subaru -0.17 -5.87 5.11 -0.42 
Suzuki -1.43 -1.17 0.00* -2.40 
Toyota 0.94 -123.46 113.43 1.20 
Volkswagen -0.17 -3.77 3.03 -0.53 
Volvo -0.84 -2.46 2.72 -1.27 
Note: All coefficients are significant at the α=0.01 level unless otherwise indicated 
* Not significant at any level 
** Significant at the α=0.10 level 
*** Significant at the α=0.05 level 
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7.6 Appendix F 
CDFET and actual versus predicted share plots for selected scenarios 1, 4-6 from Table 
3. 

 
In the actual versus predicted scatter plots the solid line represents the space 

where the predicted share would be identical to the actual share, and the vehicles that 

appear in the prediction set but not the estimation set are represented by circles rather 

than crosses. The scatter plots for scenarios 1 and 6 are identical. Scenarios 2 and 3 are 

omitted because of their similarity to scenario 1. All scatter plots are on a log-log scale.
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Table 22 — CDFET by scenario 
Scenario 1 4 
Fit data 2004-2006 2004-2006 

Prediction 
data 

2007 2010 

Market Full market Full market 
CDFET of 

best 
KL/AIC/BIC 

2004-2006 
estimative  

and 
predictive 

logit 

Scatter plot of 
best 

KL/AIC/BIC 
2004-2006 
predictive 

logit 
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Scenario 1 4 
Fit data 2004-2006 2004-2006 

Prediction 
data 

2007 2010 

Market Full market Full market 
CDFET of 
mixed and 

nested logits 
fit to best 

KL/AIC/BIC 
estimative 

logit 
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Scenario 5 6 
Fit data 2004-2006 2004-2006 

Prediction data 2007 2007 
Market Luxury sedan New designs 

CDFET of best fit 
and best 

prediction logit 
specification using 

L/AIC/BIC 

Scatter plot of 
best fit and best 
prediction logit 

specification using 
L/AIC/BIC 

See scenario 1 
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Scenario 5 6 
Fit data 2004-2006 2004-2006 

Prediction data 2007 2007 
Market Luxury sedan New designs 

CDFET of mixed 
logit and nested 

logit using best fit 
logit covariates 
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7.7 Appendix G 
Summary of best vehicle class model specifications and measure comparison 

In Table 23 an “x” indicates that the covariate was included in the best estimative 

model fit to 2004-2006 class level data only. Table 23 compares the average likelihood 

(AL) for models the best estimative models fit to the column heading data and used to 

predict the row heading data. It shows that models fit to specific classes in 2004-2006 

sales data predict 2007 sales in that class better than models fit to the full market in 2004-

2006 (exception: midsize and sport). Further, models fit to specific classes in 2004-2006 

data are frequently better at predicting 2007 sales in that class than models fit directly to 

the full market in 2007 (exceptions for luxury SUV, midsize, and sports). This implies 

that the improvement in fit from modeling a subset of the market can be a larger factor 

influencing prediction accuracy than the differences in sales patterns between 2004-2006 

and 2007. 
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Table 23 — Class level model specification for the class’s best estimative model 

      
com-
pact 

full- 
size 

luxury 
sedan

luxury 
SUV 

mid-
size 

mini-
van 

pick
-up sports SUV van

Cost to consumer                       

Price                         

price    x     x    

price+$/50000mi       x   x  

ln(price)   x  x x x   x  x 

Operating                         

$/mi    x   x      

mi/$   x   x    x   

mpg         x  x x 

gal/mi     x   x     

Performance                       

Acceleration                       

hp/wt             

wt/hp   x x x x x      

f(hp/wt)             

hp        x x x x x 

Size                         

Physical                         

length     x   x   x  

width    x  x x  x    

length-width  x         x 

length*width         x   

Intangibles                         

Style                         

(length*width)/height  x x x x x x x x x  

Luxury                         

a/c std   x x x x x x x x x x 

Transmission                       

automatic std.  x  x  x  x x x  

Manufacturer                       

geographical (US, Asia, Europe)           

brand dummies included x x x x x x x x x x 



151 
 

Table 24 — Average Likelihood (AL) vehicle class model comparison 
 Estimation data 

   2004-2006 data, class only 

2007 
Prediction 

data: 

2004-
2006 
full 

market 

2007 
full 

market com-pact 
full- 
size 

luxury 
sedan 

luxury 
SUV mid-size mini-van pick-up sports SUV van 

full 
market 

0.0058 0.0062           

compact 0.0366 0.0373 0.0378          

fullsize 0.0546 0.0607  0.0639         

luxury 
sedan 

0.0317 0.0323   0.0336        

luxury 
SUV 

0.0688 0.0721    0.0690       

midsize 0.0945 0.1001     0.0913      

minivan 0.0998 0.1106      0.1244     

pickup 0.0713 0.0766       0.0807    

sports 0.0657 0.0692        0.0519   

SUV 0.0181 0.0185         0.0185  

van 0.5935 0.5990          0.6204 
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7.8 Appendix H 
RAL for model scenarios tested on alternate data years 

To verify that our results are not specific to the 2004-2006 timeframe, we estimate 

360 logit models with alternate utility function specifications on 1971-1973 and 1981-

1983 data. We predict 1 year and 4 year forward market shares for each of the estimation 

data sets. We use data from Berry et al. [58] that is posted online as a companion to 

Knittel and Metaxoglou [33]. Due to limited covariate availability we are not able to 

estimate all 9,000 utility functions that were applied to the 2004-2006 data. The 

conclusions from the analysis of 2004-2006 data generally hold for these two historical 

data sets. Specifically: 

 Our accuracy measures are concordant: model specifications that perform well on one 

measure tend to also perform well on other measures for both fit and prediction 

 Even the best DCMs exhibit substantial prediction error, stemming largely from 

limited model fit due to unobserved covariates (more so than the 2004-2006 data 

since the 1971-1987 data does not include class or brand dummies) 

 The static model (share in the forecast year = share in the last available year) 

outperforms all 360 attribute-based models when predicting the full market 1-year-

forward 

 Attribute-based models can predict better for 4-year-forward forecasts or new vehicle 

designs 

 Share predictions are sensitive to the presence of utility covariates but less sensitive 

to covariate form (e.g. miles per gallons versus gallons per mile) 

 Mixed logit specifications do not produce more accurate forecasts  



153 
 

 The 1971-1973 models with best predictions do not necessarily have expected 

coefficient signs, however, the best predictive models in 1981-1983 do have the 

expected coefficient signs 

Table 25 compares the RAL for tested scenarios. Note that the available data set 

does not contain sales data, rather only share is provided. Consequently, sales were 

imputed from the shares and an assumed market size of 100,000,000. This is an 

approximation of the number of US households for each of the years, which is the market 

defined by Berry et al. [58] 

Table 25 — Relative Average Likelihood (RAL) calculated on the prediction data set for select 
model specifications and data sets 

Scenario 1 2 3 4 5 6 
Estimation data 1971-1973 1971-1973 1971-1973 1981-1983 1981-1983 1981-1983
Prediction data 1974 1977 1974 1984 1987 1984 

Market 
Full 

market 
Full 

market 
New 

designs1 
Full 

market 
Full 

market 
New 

designs1 
AL of ideal model (predicted 
shares=actual shares) 

0.0243 0.0179 0.7353 0.0133 0.0119 0.1110 

RAL of no info model 57.2% 58.9% 89.2% 66.6% 58.8% 82.5% 

RAL of static model 83.1% 62.9% 93.0% 77.4% 62.9% 82.4% 

RAL of best logit model for 
likelihood of prediction data 

70.0% 70.0% 98.6% 76.9% 65.1% 89.0% 

RAL of best fit logit model for 
L/AIC/BIC of estimation data  

69.0% 74.3% 98.6% 76.4% 64.3% 88.9% 

RAL of mixed logit with best 
logit estimation fit covariates 

68.8% 73.0% 98.9% 76.5% 62.5% 89.0% 
1 Full market used for estimation, measures assessed for prediction of new vehicles only 
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7.9 Appendix I 
Explicit formulation of the GMM-IV optimization problem 

The optimization problem for GMM-IV estimation as stated in Eq. 19 is: 
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and we specify W=(Z′Z)-1 as the weighting matrix. For execution, we transform the 

optimization problem so that the weighting matrix can be incorporated by singular value 

decomposition, rather than directly using Matlab’s “inverse” function since it is less 

numerically stable, and we rewrite the objective as a simple inner product plus a linear 

constraint which is more computationally efficient for the KNITRO solver. We obtain 

matrices U, D, and V from the singular value decomposition of z such that: 

 =UDV Z   (43) 

U is a (V×V) orthogonal matrix, V is a (K×K) orthogonal matrix, and D is (V×K) matrix 

composed of a stacked diagonal (K×K) matrix with positive entries and a ((V-K) ×K) 

matrix of zeros. We call the diagonal (K×K) upper matrix D*. The product Z′Z can be 

written: 

  *= = =      
2

Z Z VD U UDV VD DV V D V  (44) 

so that W=(Z′Z)-1 can be expressed: 

       = = =  
-12 -2-1 * 2W Z Z V D V V D V   (45) 

We can now rewrite the objective function as a simple quadratic equation with the 

addition of a linear constraint: 
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   (46) 

where h is (L×1). This objective function of Eq. 46 is equivalent to that of Eq. 19 as can 

be seen by substituting in the expression for h in the constraints and using the singular 

value decomposition. 
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7.10 Appendix J 
Synthetic data estimation results 

 
 

Figure 6 — Estimates of population heterogeneous portion of taste parameter price σp
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Figure 5 — Estimates of population mean taste parameter μx 

10% price endog. 40% price endog. 70% price endog.
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Figure 7 — Estimates of population heterogeneous portion of taste parameter technology σt 

10% price endog. 40% price endog. 70% price endog.
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7.11 Appendix K 
Synthetic data prediction results 

    

Table 27 — ENTRANT ONLY case results shown include the mean 
and std. dev. of the RAL of expected share for MLE-C and GMM-IV 

models and the number of data sets for which the MLE-C or GMM-IV 
model had a greater respective RAL (# superior) 

 1-year-forward 5-year-forward 

 None (0) All (1) Neigh. (2) None (0) All (1) Neigh. (2)

10% price-ASC correlation (ρξ)
85% 85% 74% 69% 70% 53% 85% 

0.54% 0.55% 1.49% 0.73% 0.78% 1.22% 0.54% 
87 103 103 92 101 113 87 

83% 80% 64% 66% 65% 40% 83% 
0.67% 0.77% 2.32% 0.78% 0.77% 1.84% 0.67% 

38 22 22 33 24 12 38 
68%   42%   68% 
69%   41%   69% 

40% price-ASC correlation (ρξ)
MLE-C 86% 86% 77% 72% 72% 55% 

(std. dev.) 0.52% 0.55% 0.91% 0.48% 0.50% 0.83% 
# superior 81 107 114 102 104 115 
GMM-IV 84% 81% 67% 68% 67% 41% 
(std. dev.) 0.67% 0.75% 1.87% 0.54% 0.55% 1.56% 
# superior 44 18 11 23 21 10 

Static 72%   48%   
No info 73%   47%   

70% price-ASC correlation (ρξ)
MLE-C 91% 91% 85% 81% 81% 69% 

(std. dev.) 0.20% 0.21% 0.36% 0.20% 0.20% 0.62% 
# superior 112 122 118 120 121 120 
GMM-IV 87% 82% 74% 72% 72% 52% 
(std. dev.) 0.37% 0.58% 1.68% 0.60% 0.56% 2.26% 
# superior 13 3 7 5 4 5 

Static 78%   56%   
No info 77%     56%     

 

Table 26 — INVALID case results shown include the mean and std. 
dev. of the RAL of expected share across 125 data sets for MLE-C and 

GMM-IV models and the number of data sets for which the MLE-C 
or GMM-IV model had a greater respective RAL (# superior) 
 1-year-forward 5-year-forward 

 None (0) All (1) Neigh. (2) None (0) All (1) Neigh. (2)

10% price-ASC correlation (ρξ)
MLE-C 72% 85% 67% 85% 74% 68% 

(std. dev.) (5%) (6%) (8%) (8%) (12%) (8%) 
# superior 100 100 119 123 121 116 
GMM-IV 61% 53% 54% 63% 52% 55% 
(std. dev.) (5%) (4%) (13%) (18%) (20%) (13%) 
# superior 0 0 6 2 4 9 

Static 72%  68%   42% 
No info 42%  38%   39% 

40% price-ASC correlation (ρξ)
MLE-C 72% 86% 78% 71% 72% 56% 

(std. dev.) (6%) (6%) (8%) (6%) (7%) (8%) 
# superior 120 121 119 114 117 121 
GMM-IV 63% 67% 56% 62% 61% 38% 
(std. dev.) (10%) (17%) (19%) (9%) (9%) (15%) 
# superior 5 4 6 11 8 4 

Static 72%   47%   
No info 44%   45%   

70% price-ASC correlation (ρξ)
MLE-C 81% 91% 85% 80% 82% 69% 

(std. dev.) (5%) (4%) (6%) (4%) (4%) (7%) 
# superior 116 124 113 113 117 122 
GMM-IV 76% 81% 71% 76% 76% 53% 
(std. dev.) (7%) (9%) (14%) (6%) (7%) (13%) 
# superior 9 1 12 12 8 3 

Static 76%   56%   
No info 52%     53%     
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7.12 Appendix L 
MLE-C estimated model with brand dummies 

Estimation results 

 

  

Table 28 — MLE-C estimated parameters for a mixed logit model that includes brand dummies 

 Coefficient 
Mean taste 

parameter μ 

Mean taste 
parameter 
(std. err.) 

Heterogeneity 
taste 

parameter σ 

Heterogeneity 
taste parameter 

(std. err.) 
Price ($10,000) -0.9*** (0.001) 0.4141*** (0.001) 

Gallons/mile (gal./100-mi.) 0.1*** (0.002) 0.0027 (0.002) 
Weight/HP (10 lbs/hp) 0.1*** (0.000) 0.0001 (0.000) 
Len. × wid. (100 ft2) 1.4*** (0.005) 1.1885*** (0.006) 

Acura -0.8*** (0.003)   
Cadillac 0.4*** (0.002)   

Chevrolet -0.4*** (0.002)   
Chrysler -1.6*** (0.002)   
Dodge -1.2*** (0.003)   
Ford 0.0*** (0.002)   

Honda 0.5*** (0.002)   
Hyundai -1.9*** (0.002)   
Infiniti 0.2*** (0.003)   

Kia -2.6*** (0.003)   
Lincoln -0.4*** (0.003)   
Mazda -1.5*** (0.002)   

Mercury -1.8*** (0.002)   
Mitsubishi -1.8*** (0.003)   

Nissan 0.1*** (0.002)   
Oldsmobile -1.2*** (0.011)   

Pontiac -0.4*** (0.002)   
Saab -1.9*** (0.005)   

Saturn -2.9*** (0.004)   
Suzuki -3.9*** (0.009)   
Toyota 0.0 (0.002)   

Volkswagen -1.9*** (0.002)   
Volvo -2.1*** (0.004)   

*** Coefficient is significant at the α=0.01 level 
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Prediction results 

 

 

  

Table 29 — RAL(E[share]) comparison of ASC forecasting methods for MLE-C models  
including brand dummies estimated on 2002-2006 midsize sedan sales and used to predict 2007 

and 2011 midsize sedan market shares 
 1-year-forward (2007) forecasts 5-year-forward (2011) forecasts 

Method: 
No ASC 

0 
All 
1 

Near 
neighbor

2 
Brand

3 
Model 

4 
No ASC

0 
All 
1 

Near 
neighbor 

2 
Brand 

3 
Model 

4 
MLE-C 54% 66% 65% 68% 67% 51% 45% 44% 48% 51% 
Static 68%     39%     

No info 32%     42%     
MLE-C 79% 78% 77% 80% 79% 60% 57% 55% 60% 64% 
Static 87%     54%     

No info 87%     62%     
Note: highlighted cells indicate the most accurate model and ASC forecasting method for a given time 
period and means of calculating RAL 

 
(A) 

 
(B) 

Figure 8 — Actual versus predicted shares of midsize sedans predicted by a MLE-estimated 
mixed logit model that includes brand dummies and excludes ASCs in the prediction year for the 

2007 (A) and 2011 (B) markets
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7.13 Appendix M 
Estimated ASC regressions on observed vehicle attributes 

We regress MLE-C and GMM-IV estimated ASCs on six sets of dependent 

variables in order to investigate the (possible) correlation between the ASCs and vehicle 

attributes. Table 30 contains the number of coefficients that are statistically significant at 

the α=0.05 for six linear regression models. The estimated ASC is regressed on: (1) an 

intercept plus vehicle physical attributes (price, gallons/mile, weight/horsepower, and 

(length x width)), (2) geographic dummies for the US, Europe, and Asia, (3) the 

covariates of models (1) and (2) excluding the US dummy for identification, (4) brand 

dummies (e.g. Acura, Ford, etc.), (5) a dummy variable indicating each unique vehicle, 

and (6) a dummy variable for unique vehicles at the aggregate model level (a Toyota 

Camry and Toyota Camry Solara are both assigned a single ID representing a Toyota 

Camry). There are 339 total observations across five estimation data set years but only 

153 unique vehicles since vehicles appear in multiple years. Though we do not include 

brand dummies in the estimated models of Table 8, we include them in the ASC 

regressions as covariates since ASCs and brand are likely related. 

The number of statistically significant coefficients for a given regression is nearly 

identical between the MLE-C and GMM-IV estimated models. For both models, 

regressions 4 and 5 yielded statistically significant coefficients for ~1/3 of the covariates, 

suggesting that the ASCs may be better described as normally distributed about brand or 

vehicle-specific means as opposed to randomly drawn from a mean-zero normal 

distribution. This supports the assumption that the ASC represents unobserved vehicle 

attributes as opposed to functioning only as a mathematical tool (i.e. regression 

residuals). However, GMM-IV estimated ASCs are statistically significantly correlated 
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with non-price vehicle characteristics suggesting that the BLP instruments were, for our 

data, invalid.  

 

  

Table 30 — Regression of MLE-C and GMM-IV estimated ASCs on select dependent variables 

Dependent 
variables 

(regression #) 

Physical 
attributes 

(1) 

Geographic 
dummies 

(2) 

Physical 
attributes + 
geographic 
dummies 

(3) 

Brand 
dummies 

(4) 
Fixed effects 

(5) 

Aggregate 
fixed effects

(6) 
Total covariates 

in regression 
5 3 7 24 153 66 

Number of statistically significant regression coefficients at the α = 0.05 level 
MLE-C 

estimated ASCs 0 0 3 9 52 14 
Significant 
coefficients 

price, gal./mi, 
len. x wid. 

 
gal./mi, len. x 

wid. 
not listed for 

brevity 
not listed for 

brevity 
not listed for 

brevity 
GMM-IV 

estimated ASCs 2 0 2 7 52 15 
Significant 
coefficients 

price, gal./mi.  price, gal./mi.
not listed for 

brevity 
not listed for 

brevity 
not listed for 

brevity 
Note: A constant is excluded in regressions 2, 4, 5, and 6 for identification
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7.14 Appendix N 
Case study prediction results 

Table 31 and Table 32 contain plots of the actual versus predicted shares for the 

1-year-forward and 5-year-forward forecasts of the MLE-C and GMM-IV models using 

all four ASC generation methods. The range for each of the forecasts covers the 2.5%-

97.5% percentile of the simulated shares. Note that the ranges shown are independent of 

one another, meaning that the 2.5% percentile share shown for vehicle 1 may have 

occurred in a different draw of shares than the 2.5% percentile share shown for vehicle 2. 

Since shares of a given vehicle are related to the shares of all the other vehicles, the 

distributions would likely be tighter if the correlation were accounted for.
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Table 31 — Actual versus predicted 2.5-97.5% interval of shares of 1-year-forward predictions for the MLE-C and GMM-IV models using each of the 
ASC generation methods 

 MLE-C GMM-IV 

Actual v. 
predicted 
Method 0 

(None) 

Actual 
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predicted 
Method 1 

(All) 
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Actual 
versus 

predicted 
Method 2 
(Nearest 
neighbor) 

Actual 
versus 

predicted 
Method 3 
(Brand) 
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Actual 
versus 

predicted 
Method 4 
(Make-
Model) 
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Table 32 — Actual versus predicted 2.5-97.5% interval of shares of 5-year-forward predictions for the MLE-C and GMM-IV models using each of the 
ASC generation methods 

 MLE-C GMM-IV 

Actual 
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predicted 
Method 0 

(None) 

Actual 
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predicted 
Method 1 

(All) 
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Actual 
versus 

predicted 
Method 2 
(Nearest 
neighbor) 

Actual 
versus 

predicted 
Method 3 
(Brand) 
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Actual 
versus 

predicted 
Method 4 
(Make-
Model) 
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7.15 Appendix O 
Bayesian estimation specification and algorithm details 

We generally follow the procedure outlined in Jiang et al. [109] for estimation of 

a Bayesian mixed logit model on aggregate data. Our steps are detailed below, and 

interested readers are referred to the source for more information.  

Express utility as: 

 ijt jt jt i ijtu    x   (47) 

where mean utility  and ~ 0, , and rewrite the share equation in 

terms of mean utility as: 

 
 
   

exp

exp
t

jt jt

jt
kt kt

k J

P f d








 y

x y
y y

x y   (48) 

The expected value of predicted share Pjt is obtained by numerical integration. 

Given a value of Σβ, δjt can be obtained by nested fixed point iteration as in Berry et al. 

[58]: 

        1 ln - ln ,k k
t t t t t   s P   (49) 

where δt, st, and Pt are the stacked vectors of mean utility, observed market share, and 

expected predicted market share, respectively, in market t. The nested fixed point 

iteration is terminated when max , and C is a convergence 

tolerance here set equal to 1e-6. Parameterize the covariance matrix Σβ: 
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Define priors: 
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7.15.1 Initialization 

Assess hyperparameters for the full covariance matrix structural specification: 
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 (52) 

where I is the identity matrix. For the independent mixed logit specification there is no 

 or c and: 

 2 1, 1,...,
mmr m K     (53) 

All other hyperparameter values are identical across the independent and full covariance 

matrix structural specifications. Set initial values μ=0, τ2=0, and r=0. 
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7.15.2 Algorithm 

Draw from first set of conditionals: 

  2 2
0 0 01

, , , , , ,
T

t t t
s 


 r s X V   (54) 

by obtaining δ for a given value of r and carrying out Bayesian linear regression: 

  2,   ~ 0,N   x   (55) 

Draw ~ ′ ′ , ′  followed by  

~ , ′ ′ ′  where , and  . 

Draw from second set of conditionals: 

  2 2 2

1
, , , , ,

off mm

T

t t r rt
  


r s X  (56) 

using a Random-Walk (RW) Metropolis chain: 

  2,new old
r rMVN  r r 0 D  (57) 

where  is a scaling constant and Dr is the candidate covariance matrix. We set Dr
 =I 

and =0.1. 

Accept draw of rnew with probability α by calculating the posterior probability: 
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(58) 

under rnew and rold and calculating the ratio: 
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If a randomly drawn number from the uniform interval [0,1] is less than α, then update 

r=rnew, else r=rold. Note: 
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 (60) 

or the determinant of the (V-T)×V matrix with elements: 
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 (61) 

Also note | , , ,  is the implicit share inversion function of 

equation Eq. 54. We run a chain of 100,000 draws and discard 500 burn-in draws to 

obtain the final model parameter posterior distributions. 

7.15.3 Implied Priors 

Monte Carlo simulations of the implied priors on select population taste 

heterogeneity parameters are shown in Figure 9. 
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Figure 9 – Implied prior distributions on select population taste heterogeneity parameters: price 
variance (A), price-gallons/mile correlation (B), and Asia-Europe dummy correlation (C) 
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7.16 Appendix P 
Estimated covariance matrices 

Table 33 contains the correlation matrix of taste parameters for the Bayes model 

with a full covariance matrix. The estimates shown are the posterior estimates implied by 

the posterior distribution of r. 

 

 

 

  

Table 33 — Mean and (standard deviation) of CORRELATION matrix elements for the full 
covariance Bayesian-estimated model 

 Price Gallons/mile Weight/HP Length*width Europe Asia 
Price 1.0 (0.0) 0.2 (0.5) 0.2 (0.4) 0.1 (0.4) -0.3 (0.4) -0.1 (0.3) 

Gallons/mile  1.0 (0.0) 0.2 (0.4) -0.1 (0.3) -0.1 (0.4) 0.3 (0.3) 
Weight/HP   1.0 (0.0) -0.1 (0.4) -0.1 (0.4) 0.1 (0.3) 

Length*width    1.0 (0.0) 0.1 (0.4) 0.0 (0.3) 
Europe     1.0 (0.0) 0.1 (0.3) 

Asia           1.0 (0.0) 
Note: matrix is symmetric, only upper triangular portion shown; zero values are only zero to precision 
shown but are non-zero 
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7.17 Appendix Q 
Trace plots of parameter estimates for the Bayesian-estimated correlated mixed logit 
model 

 

    

 

  

 
Figure 10 — Select trace plots of Bayesian-estimated correlated mixed logit model parameters 
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7.18 Appendix R 
Table 34 — Actual versus predicted 2.5-97.5% interval of shares of 1-year-forward predictions for the Bayesian full and independent models using each 

of the ASC generation methods 
 Bayes full Bayes independent 

Actual v. 
predicted 
Method 0 
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Table 35 — Actual versus predicted 2.5-97.5% interval of shares of 5-year-forward predictions for the Bayesian full and independent models using each 
of the ASC generation methods 
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