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Abstract

The proliferation of electronic devices supporting sensing, actuation, and

wireless communication enables the monitoring and/or control of a variety

of physical systems with digital communication. Such “cyber physical sys-

tems” blur the boundaries of the digital and physical worlds, where correct

information about the physical world is needed for the correct operation

of the digital system. Often in these systems the physical source or desti-

nation of information is as important as the information itself. However,

the omni-directional and invisible nature of wireless communication makes

it difficult to determine communication endpoints. This allows a malicious

party to intercept wireless messages or pose as other entities in the system.

As such, these systems require new protocols to associate the endpoints of

digital communication with physical entities.

Traditional security approaches that associate cryptographic keys with

names can help verify endpoints in static systems where a string accurately

describes the role of a device. In other systems, the role of a device depends

on its physical properties, such as location, which change over time. This

dynamic nature implies that identification of an endpoint based on a static

name is insufficient. Instead, we can leverage devices’ sensing and actua-

tion capabilities to verify the physical properties and determine the physical

endpoints of communication. We investigate three different scenarios where

the physical source and/or destination is important and propose endpoint

verification techniques: verifying the physical endpoints during an exchange

between two smartphones, verifying the receiver of information is in a phys-

ical space to enable location-based access control, and verifying the source

of information to protect Vehicle-to-Vehicle (V2V) applications. We eval-

uate our proposals in these systems and show that our solutions fulfill the

security requirements while utilizing existing hardware.

Exchanging Information Between Smartphones Shake on it (SHOT)

allows users to verify the endpoints during an exchange of information be-

tween two smartphones. In our protocol, the phones use their vibrators

and accelerometers to establish a human-observable communication chan-



v

nel. The users hold the phones together while the phones use this channel

to bootstrap and verify the authenticity of an exchange that occurs over

the higher-bandwidth wireless channel. Users can detect the injection of

information from other devices as additional vibrations, and prevent such

attacks. Our implementation of SHOT for the DROID smartphone is able

to support sender and receiver verification during an exchange between two

smartphones in 15 seconds on average.

Location-Based Access Control We propose using location-based ac-

cess control to protect sensitive files on laptops, without requiring any effort

from the user to provide security. With a purely wireless electronic system,

verifying that a given device is in a physical space is a challenge; either

the definition of the physical space is vague (radio waves can travel beyond

walls) or the solution requires expensive hardware to measure a message’s

time of flight. Instead, we use infrared as a signal that walls can contain. We

develop key derivation protocols that ensure only a receiver in the physical

room with access to the signal can derive the key. We implement a system

that uses the laptop’s webcam to record the infrared signal, derive a key,

and decrypt sensitive files in less than 5 seconds.

Source Verification for V2V Networks A number of V2V applications

use information about nearby vehicles to prevent accidents or reduce fuel

consumption. However, false information about the positioning of vehicles

can cause erroneous behavior, including accidents that would not occur in

the absence of V2V. As such, we need a way to verify which vehicle sent a

message and that the message accurately describes the physical state of that

vehicle. We propose using LED lights on vehicles to broadcast the certificate

a vehicle is currently using. Receivers can use onboard cameras to film the

encoding of the certificate and estimate the relative location of the vehicle.

This visual channel allows a receiver to associate a physical vehicle at a

known location with the cryptographic credentials used to sign a location

claim. Our simulations indicate that even with a pessimistic visual channel,

visual verification of V2V senders provides sufficient verification capabilities

to support the relevant applications.
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Chapter 1

Introduction

The decreasing size, cost, and power consumption of computing and wireless

communication has allowed the addition of sensors, actuators, CPUs, and

antennae to a variety of devices that traditionally operated without com-

munication or computation. These additions have enabled a number of dif-

ferent cyber physical systems “with integrated computational and physical

capabilities” [2]. In addition, to sharing digital information, these systems

may sense properties of the physical world and control actuators to change

the physical state of a system. Examples of cyber physical systems (CPSs)

include:

• Smart Grids to enable more efficient generation and distribution of

energy [2].

• Smartphones to enable games, social networking, and financial ex-

changes with collocated parties [11, 69].

• Location-based access control for digital resources to provide more

intuitive access policies [28].

• Vehicle-to-Vehicle (V2V) communication to enable applications to re-

duce the number of accidents and improve efficiency with more intel-

ligent routing or platooning [3, 6].

• Advanced healthcare systems to enable improved patient monitoring,

medication delivery, and prostheses [2].

1
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For these applications, correct data is necessary for correct operation.

One extreme example is the warning lamp at Three Mile Island which in-

correctly indicated the state of a valve supplying coolant to a nuclear reactor,

resulting in a nuclear accident [107]. When describing the physical world,

often the physical source or destination of the information is very important,

often almost as important as the information itself. For example, the mes-

sage “valve closed” means very different things depending on the physical

configuration of the system and the flow that valve controls. As such, one

of the first steps towards performing as intended is allowing participants in

the system to verify the physical source or destination of messages.

In a system with a fixed topology and a central authority, public key

cryptography allows participants to determine where a message came from

and who is able to receive it. Specifically, the authority generates a certificate

that binds a public key to a name that describes a device’s location and or

role in the system. Once the certificates are known, devices in the system

can determine the source and destination of messages. Digital signatures

allow receivers to determine the physical source of a message. A sender can

use a public key to encrypt a message, defining which physical endpoint can

decrypt and receive the information.

However, in systems where participants move, a certificate that provides

a static description is unable to identify a digital entity as a physical entity

at a specific location in the system. Instead, we need a different way to

determine the physical embodiment of an endpoint. We cannot rely on the

information in a wireless message1 to determine the physical embodiment of

an endpoint since a malicious party can lie about its location. Instead, we

need additional information to verify the endpoint of a message. Distance

bounding [9] and location verification [18, 19, 83, 97] can help verify the

endpoints of communication by verifying the maximum distance between

two devices or the location of a device. However, these schemes require

1In this work, we use the term wireless to mean communication using radio waves.
We will use more specific terms when we discuss any other technology (e.g., infrared,
ultrasonic, or visual light) that supports communication without a physical link (i.e.,
wire) or radio waves.
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high accuracy timers (on the order of nanoseconds) to measure the time-

of-flight of wireless messages or several monitoring devices to triangulate

the location of a device. Instead, we examine how to use devices’ actuators

and sensing capabilities to enable physical interactions between devices in

the system. These interactions allow the establishment of communication

channels with properties which allow the verification of the physical source

and/or destination of messages on that channel. Once we know the physical

endpoints of communication on this secondary channel, we can use cryp-

tographic techniques to verify the endpoints of digital communication on

the wireless channel with existing hardware on devices without a network of

supporting infrastructure.

Thesis Statement Physical interactions can significantly enhance secu-

rity by allowing collocated devices to verify the source and/or destination of

data in a number of scenarios where the name of an entity—a cryptograph-

ically verifiable item—is less important than its physical embodiment.

To validate this thesis, we examine three different cyber physical systems

to determine how endpoint verification helps improve security, present how

to perform endpoint verification in each scenario, and evaluate the proposed

systems. In each of the systems, we leverage a communication channel, other

than the wireless channel, which exhibits properties that enable endpoint

verification. In Chapter 6, we summarize the properties a communication

channel must fulfill to enable endpoint verification with our protocols and

contrast our approaches with related work that use distance bounding or

location verification. General related work is discussed in Chapter 7. We

now provide an overview of the technical chapters of this thesis that are

related to each scenario.

1.1 Information Exchange Between Smartphones

The exchange of information between two smartphones represents a scenario

where identifying the physical source and destination of the exchange is

important. Users with smartphones often want to share information with
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people they meet. This exchange can enable games, social networking, or

even support the exchange of money via third parties like PayPal [69]. When

performing this exchange, the users want to ensure that an unwanted third

party is unable to inject other information as part of a Man-in-the-Middle

(MitM) attack. As such, users want to verify that their phones are the

sources and destinations in the exchange. We analyze the popular exchange

protocol Bump to determine if it accurately verifies the endpoints in an

exchange and to deduce what factors contribute to the popularity of an

exchange protocol. After finding and demonstrating a MitM attack against

Bump, we propose Shake on it (SHOT), a secure replacement for Bump,

that exhibits many of the properties that made Bump popular.

Bump uses the physical act of bumping the phones together to indi-

cate the desired endpoints in an exchange. We identify a vulnerability in

Bump that allows us to perform a MitM attack against the protocol. We

analyze what is necessary to make Bump secure and derive some guidelines

for designers to help increase the security and adoption rate of an exchange

protocol.

Based on these guidelines, we design SHOT. SHOT is the first exchange

protocol to use the phones’ vibrators and accelerometers as part of a human-

observable exchange that does not require secrecy. Specifically, our protocol

verifies that the two phones pressed against each other and vibrating are the

phones involved in the exchange.

In Chapter 2, we present our analysis of Bump and the design, imple-

mentation, and evaluation of SHOT. We discuss prior exchange protocols

for smartphones and other devices in Section 7.1.

1.2 Location-Based Access Control

Location-based access control requires verification that the receiver of a

resource is within a specific physical space. We propose location-based access

control as a way to protect sensitive information on a lost laptop without

requiring user effort (e.g., no password entry, hardware tokens, or biometric

entry). Only a receiver in the correct physical space is able to derive the
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cryptographic key needed to access sensitive files on the laptop.

When a laptop is lost, any information on that laptop may fall into the

wrong hands. Encryption of data can protect that information. However,

users often feel key management is a burden and use weak passwords or

perform other actions which reduce their burden, but subvert the protection

provided by encryption. As such, we need a solution that can protect a

user’s sensitive data, without requiring work from the user.

We propose an approach where the key needed to decrypt sensitive data

is only available when the laptop is in a trusted physical space. As such,

users can access the majority of their information anywhere, but must be in a

specific location to acquire the decryption key needed to access the sensitive

data. We call this Mobile User Location-specific Encryption (MULE). If the

laptop is lost, whoever finds the laptop must break into the trusted space

to access the sensitive data. Given users often keep hard copies of sensitive

data (e.g., print outs or flash drives with backups) in the trusted location,

access to the trusted space allows access to the data, with or without the

laptop.

The challenge here is designing a mechanism that allows the laptop to

determine when it is in a trusted physical space, without requiring the user

to add more hardware to the laptop or perform some action. Our solution

relies on a small computing device that remains in the trusted physical space

and performs some calculations as part of the key derivation process. We

call this device the Trusted Location Device (TLD). The TLD transmits a

secret on a location-limited channel such that only devices in the trusted

space can receive the information. When a user wants to access sensitive

files, the laptop uses the information from the location-limited channel to

generate a key derivation request, which is sent to the TLD. The TLD uses

this request to complete the key derivation process. We design the key

derivation protocol such that the TLD calculations only produce the correct

decryption key if the requesting device has access to the location-limited

channel (i.e., the device is in the trusted space). A request from a device

outside of the trusted location will produce a random value that will fail

to correctly decrypt the sensitive data with high probability. Under this
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design, reception of the file decryption key allows the laptop to verify it

is physically located in the trusted location, enabling location-based access

control in order to improve the security of sensitive files on the laptop,

without requiring any user effort.

In Chapter 3, we describe the design, implementation, and evaluation of

MULE.

1.3 Vehicle-to-Vehicle Applications

In a number of vehicle-to-vehicle (V2V) applications, the location of the

physical source of a message is often just as important as the message. For

example, receiving the message “braking hard” means different things if the

source is a vehicle in front or behind the receiver. If the sender is in front of

the receiver, the receiver should brake to avoid a rear-end collision. If the

sender is behind the receiver, the receiver may even want to accelerate to

avoid being rear-ended. A message can contain the sender’s location, but

malicious senders can lie about their location. Another challenge is how to

detect Sybil [31] vehicles (one physical vehicle using radio messages to claim

to be more than one vehicle on the road). If undetected, Sybil vehicles can

generate false reports of congestion and negatively impact the accuracy of

schemes that try to detect abuses of V2V, which rely on agreement from

multiple vehicles [51, 75]. As such, vehicle-to-vehicle applications require

a way to verify the relative location of a sender and that it is a physical

vehicle. In Chapter 4, we discuss background material on V2V networks

and why existing security solutions fail to provide these properties.

We leverage computer vision and blinking LEDs to associate vehicles

with wireless messages. In addition to digitally signing messages and broad-

casting certificates, each vehicle uses LEDs attached to the front and back of

the vehicle to transmit an encoding of its current public key. A receiver will

film this blinking sequence to visually verify the location of a vehicle and

determine the vehicle’s public key. Based on the information from the visual

channel, the receiver can determine what cryptographic key a given vehicle

is using and if the location in the corresponding wireless message matches
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the physical location of the sender. Once a receiver can map cryptographic

keys to physical vehicles, Sybil attack detection is possible, since the source

of the wireless identities can only be in one physical space at a given time.

We provide background information on vehicle-to-vehicle networks in

Chapter 4. In Chapter 5, we describe the design and simulation of our

vision-based vehicle verification technique.



Chapter 2

Secure Exchange of

Information Between

Smartphones

As the functionality and computing power of smartphones increase, users

are leveraging these devices to perform more of their computing tasks. In

addition to traditional tasks such as email, gaming, banking, and maintain-

ing a schedule, the mobility and ubiquity of smartphones allows people to

use these devices to establish ad hoc associations with people they meet.

For example, people may exchange phone numbers, email addresses, and

social network identities or even use their phones to enable the exchange of

funds via an online service (e.g., PayPal). During these exchanges, phones

typically use the wireless channel to perform the majority of the communi-

cation. The wireless channel makes exchanges easier for users since they do

not have to carry cables to connect the phones. However, users are unable

to observe the endpoints of wireless communication and without a secure

protocol a malicious party can insert themselves into the exchange as part

of a man-in-the-middle (MitM) attack.

Exchange protocols for smartphones require varying levels of user in-

volvement and provide different security guarantees. The widely deployed

Bump [11] and Bluetooth pairing [49] protocols represent distant points in

8
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the spectrum of user involvement and security guarantees. Bump requires

users to only perform a simple gesture, but, as we demonstrate, is vulnerable

to MitM attacks under realistic conditions. Bluetooth pairing [49] is resis-

tant to such attacks, but requires significant user involvement to correctly

compare a checksum across phones.

In the first part of this chapter, we highlight the danger of relying on

popular usable-but-perhaps-not-secure protocols by demonstrating a MitM

attack against Bump. Bump is the most popular exchange protocol for

smartphones1 and claims to provide an excellent user experience while en-

suring security.2 Due to the simplicity of the operation, Bump is used in a

number of applications. For example, PayPal’s mobile app uses Bump to ex-

change account information and send money to nearby friends[69]. Bump’s

security is based on the Bump server’s ability to determine what phones are

physically interacting based on the time, location, and the force with which

the two phones were physically bumped together. Bump provides a very

nice user experience, but is vulnerable to attack. An attacker may be able

to observe when and where users bump their phones together and estimate

the force of the bump. Without any secret information to identify the pair

of phones to the server, an attacker can submit similar information about

a bump to the server. When presented with similar information, the server

may transfer data between the wrong phones. We demonstrate how an at-

tacker under realistic conditions can use this approach to launch a MitM

attack against Bump. In addition to Bump, other works have also sug-

gested using accelerometers or vibrators and accelerometers to facilitate an

information exchange between phones [21, 45, 56, 60, 26, 86]. However, our

attack on Bump and prior work [43] demonstrate that a physically present

attacker may be able to violate the secrecy of this channel, requiring a new

1Popularity is based on data from
http://techcrunch.com/2011/01/19/iphone-ipad-top-app-downloads/ and http://

www.androidapps.com/ which use download count to determine popularity. According
to the Bump blog, over 25 million users have installed Bump.

2According to Bump’s webpage, “With Bump *you* are in control of deciding with
whom you share your information. You don’t have to worry about anyone being able to
get at your information unless you physically bump your phone with theirs.” [11]

http://techcrunch.com/2011/01/19/iphone-ipad-top-app-downloads/
http://www.androidapps.com/
http://www.androidapps.com/


CHAPTER 2. SECURE EXCHANGE FOR SMARTPHONES 10

approach to ensure security.

In the second part of this chapter, we demonstrate how phones can lever-

age accelerometer readings to assist in the secure exchange of information

while maintaining the limited user involvement offered by Bump. We pro-

pose Shake on it (SHOT), a protocol designed specifically for smartphones

that requires little user interaction. The novel idea is to use phones’ vibra-

tion function and accelerometers as an authentic, but not secret, human-

observable communication channel. The phones leverage data exchanged

on the vibration-to-accelerometer channel to verify data exchanged over the

wireless channel. Only when the two phones are in physical contact can they

communicate via the vibration-to-accelerometer channel, providing demon-

strative identification to the users of the devices exchanging information [5].

If a remote party (one not in physical contact) tries to inject information on

the channel, users will notice the additional vibrations (a potential attack)

and stop the exchange. Given attackers can eavesdrop on this channel [43],

the phones use symmetric and asymmetric cryptography to authenticate ex-

changed information and detect active attacks against the wireless channel,

without users having to compare any information. When two people run

SHOT, they only have to perform three simple tasks: select what data is

to be exchanged, hold the phones together until the phones beep to indi-

cate completion, and cancel the exchange if they feel vibrations from devices

other than the two phones. We argue that SHOT occupies a new point on

the spectrum of exchange protocols, providing greater security than compa-

rably convenient protocols, and greater convenience than comparably secure

protocols.

We present an implementation of SHOT on a commodity smartphone

and evaluate its performance. Our analysis and evaluation show that SHOT

provides a secure exchange while requiring the same level of user effort and

execution time as the popular Bump protocol.
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2.1 Problem Definition

The goal of an exchange between smartphones is to provide two people (users

A and B) who meet in person a user-friendly mechanism that allows the

authentic exchange of information (A’s information IA and B’s information

IB) using their phones (PA and PB). After the exchange is complete, PA

will have received IB and PB will have received IA, or PA and PB will both

detect with high probability that an error has occurred and discard the

information.

A user-friendly solution is any exchange that only requires limited user

involvement and can complete execution in a reasonable amount of time.

The exchange should not require the users to type several bytes worth of

information into either phone or compare a checksum (e.g., a string of hex

digits [49, 55, 101], a series of words [38], or a graphical image [70, 57]).

User studies have shown that a redesigned interface [100] or the compari-

son of words or images [54] reduce the number of errors, but still require

non-negligible user involvement. The popularity of Bump indicates that the

desired level of user involvement is a simple action, such as a physical gesture,

that allows the phone to determine the other phone in the exchange. Solu-

tions exist that require the user to take a photograph of the other phone [61],

shake the two phones together [21, 45, 56, 60], or simply point the phones

at each other [5], but each solution has drawbacks that negatively impact

security or operation (see Chapter 7 for a discussion of related work). Given

the wide acceptance of Bump, we consider the execution time of a Bump ex-

change as a reasonable amount of time. Depending on the platform, Bump

takes between 9.4 and 37.8 seconds, from starting the application to receiv-

ing the exchanged data. Section 2.7 has more details on the execution time

of Bump.

During an exchange, a malicious party M may attempt to inject its

own information (IM ) or other data into the exchange such that PA or

PB accept something other than IB or IA, respectively. A secure exchange

allows PA and PB to exchange IA and IB or detect the insertion of any other

information into the exchange with a high probability.
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After discussing our assumptions, we give a detailed description of our

attacker model.

2.1.1 Assumptions

We assume smartphones are equipped with the hardware, software, and

connectivity needed to execute a Bump exchange.

Current smartphones are equipped with a vibrator and an accelerometer

to provide silent notifications to the owner and to allow correct orientation

of an image on a rotatable screen. Smartphones also allow the installation of

generic software that can access the vibrator and accelerometer functionality.

Smartphones also have Internet connectivity the majority of the time via

the cellular network or a local WiFi access point.

2.1.2 Attacker Model

An attacker’s goal during the smartphone exchange between phones PA and

PB is to convince PA or PB to accept information other than IA and IB. We

consider an attacker that may be in the same room as A and B, knows the

value of IA and IB, and has bounded computational capabilities. We also

assume any software on PA and PB is outside of the attacker’s control.

We assume the attacker has control over the wireless channel between

the two phones and is able to intercept, modify, delay, or inject messages.

However, the attacker does not control human-observable channels between

the two phones (i.e., the visual or vibration channel). The attacker can

accurately eavesdrop on these channels. However, users can detect the at-

tacker’s attempts to insert information on a human observable channel (i.e.,

insertion of a third phone into the visual channel or shaking the phones to

inject data onto the vibration channel).

An attacker knows a priori what information the two users want to ex-

change. Given most users are exchanging contact information (e.g., phone

numbers or online account IDs), this information can be found online.

It is infeasible for a computationally bounded attacker to break various

properties of different cryptographic primitives of the appropriate strength.
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Hence, hash functions with sufficiently long outputs are one-way and second

pre-image resistant (i.e., given a hash function h() and a hash output y =

h(x), an attacker is unable to find x or another value x′ such that h(x′) = y).

We also assume digital signatures are secure against selective forgery. This

means that without knowledge of the private key, it is infeasible for the

attacker to create a signature (σ) for an attacker selected message m such

that the corresponding public key verifies the signature message pair (σ, m).

2.2 Bump Exchange Protocol

In this section, we begin by describing the Bump exchange. We then explain

why the exchange is vulnerable and provide an analysis of our attack and

its impact.

2.2.1 The Bump Protocol

The Bump exchange is meant to allow two phones (PA and PB) to exchange

information. During an exchange, the users physically bump PA and PB

together; each phone sends information about the bump and the informa-

tion it wants to exchange, including a user-selected identifier (ID) and some

additional data, to the bump server; the server uses the time, location, and

force of the bumps to determine which phones want to exchange informa-

tion and returns to each phone the other phone’s information; and the user

decides to save the information based on the ID in the information. Based

on information provided on Bump Technology’s webpage (http://www.bu.

mp) and timing of packets sent during a Bump exchange, we were able to

determine approximately how the Bump protocol works. We can divide the

protocol into two main steps: Initialization and Exchange. Figure 2.1 pro-

vides a rough outline of the steps for a single phone involved in a Bump

exchange.

http://www.bu.mp
http://www.bu.mp
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Initialization involves each phone determining its location and connect-

ing to the server. When Bump begins, the phone uses one of many tech-

niques to determine its current location (Step 1). Popular smartphones can

determine their location outdoors using GPS. When indoors, smartphones

use nearby cell tower identifiers or WiFi access point information to esti-

mate the current location. Even in the best case, these location estimations

are within an accuracy of several meters. The phone then connects to the

server via TLS [30] (Step 2). TLS provides secrecy and authenticity of com-

munication with the server.3 During the TLS handshake, the phone verifies

it is communicating with the Bump server and not an attacker imperson-

ating the server. Once established, the communication with the server is

encrypted and authenticated to prevent an attacker from intercepting or

modifying any information the phone exchanges with the server. Once ini-

tialization is complete, the phone knows approximately where it is and that

it is connected to the correct Bump server.

After initialization is complete, the users bump phones together to start

the actual exchange. During the physical bump, the phone’s accelerome-

ter measures the approximate force of the bump (Step 3). Once a bump

has occurred, the phone sends the acceleration associated with the bump,

when the bump occurred, the phone’s current location, and whatever infor-

mation is to be exchanged to the server, including an ID and the data to

be exchanged (Step 4). Using the received information, the server tries to

match the bump with other recent bumps based on force, time, and loca-

tion (Step 5). Because of inaccuracies in the phone’s location finding, clock,

and accelerometer measurements, the server uses approximate matching and

considers any value that is similar a valid match. If no other database entry

has similar bump properties, the server responds indicating their was no

match found (we use ∅ to indicate this). If more than one database entry is

similar, the server asks the phone to bump again. The assumption is that if,

3The Bump FAQ claims the new version of Bump does not use TLS, but is “encrypted
end-to-end”. However, analysis of intercepted traffic between an iPhone and the Bump
server indicates that TLS is still in use. Even if TLS is “phased-out” the server stills needs
to perform the matching task, which we attack to subvert Bump.
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for example, four phones were bumped at approximately the same time and

location with similar forces, a second set of bumps will yield information

that makes the pairs distinct. If a single match exists, the server returns the

identifier from the matching request (Step 6). The server tags the database

entries associated with the match so that the same IDs are not returned to

other requests (not shown in Fig. 2.1 for simplicity). The phone asks the

user to confirm if she wants to exchange information with the ID the server

returned (Step 7). It is important to note that the ID used during this con-

firmation is a value which an attacker can select to mimic a legitimate party

in the exchange (i.e., the server will return the same ID when the exchange

is correct and when under attack). After both users in the pair click “Yes”,

the server returns the data associated with the pair, which the phones then

save. If either user clicks “No”, the server never releases the full data (only

the ID is always sent) and the exchange is cancelled.

2.2.2 Vulnerabilities in Bump and Their Exploitation

Bump is insecure due to three aspects: inaccuracies in the measurement of

the physical aspects of the bump, the ability of a sender to control the ID

used during confirmation, and server flexibility in accepting delayed bump

requests. Given these three items, an attacker is able to successfully launch

a MitM attack.

Sensor Inaccuracies. Given limited sensor accuracy, the phone is unable

to know its exact location or how hard the phone was bumped. Given

inaccuracies in different phones’ clocks, the server is unable to know exactly

when a bump occurred. Without accurate information, the server must use

approximate matching, which can associate bumps that occurred several

meters apart, with different forces, and at slightly different times. We were

able to confirm that the server will match bumps that differed in each of these

three aspects. Unless every user is willing to pay for more accurate sensors

for their phones, the server will be forced to use approximate matching and

maintain this vulnerability.

Without a way to decrypt TLS traffic, we were unable to determine the
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range of acceleration, location, or time values the server would consider as

similar. However, during testing, we were able to bump 2 phones across

the room from each other (∼5 meters apart) with different forces (e.g., slam

one against a table and tap the other) at different times, and still have the

server match the two phones. This vulnerability allows an attacker to block

PB’s bump request and have the server match an attacker’s request with PA.

However, a full MitM attack is not achieved because both the confirmation

question (“Communicate with [ID]?”) and the failure of PB’s request allow

the users to detect the attack.

Spoofable ID. Circumventing the confirmation question such that a MitM

attack goes undetected in Bump is simple. A participant controls the ID

sent to the other phone during an exchange. As such, the attacker can use

the same ID as the victim it is impersonating. This is still a valid attack

because the underlying data is different (e.g., the email or public key the

users accept are the attacker’s). Bump could require users to compare all

of the exchanged data or a hash of the data to remove this vulnerability.

However, that approach would negatively impact usability, resulting in a

protocol similar to the Bluetooth exchange. With spoofable IDs, all that

remains is ensuring that both PA and PB are able to complete exchanges

for the MitM to go undetected.

Acceptance of Delayed Requests. Bump accepts stale requests, but will

try to find a match as soon as possible to provide a better user experience.

Different networks can cause different delays, such that the request from

PA arrives before the request from PB, which arrives long after when PB

claims to have bumped. Given this potential delay, if no matching database

entry exists, the server will wait some period of time before responding to

PA’s request, rather than responding you were the only one to bump. The

server also considers PB’s request with the older bump time valid because

the delay may be network related. However, to improve response times, the

server will associate a phone with a similar bump, rather than waiting until

the correct request arrives.

This acceptance of delayed requests and preference for fast responses

means an attacker can inject her own information into a legitimate exchange
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and allow both victims requests to complete. All the attacker has to do is

delay PB’s request until the server associates PA’s request with an attacker

submitted request. After the server associates PA with the attacker, the

attacker can forward PB’s delayed request and a second attacker generated

request that allows PB’s exchange to complete successfully.

Time

IA

IA

IB

IB

IB

IMB

IMB

IMA

IM
A

Induced
Delay (∆)

PA PBMServer

Figure 2.2: Timing of Packet Exchanges During the Attack on Bump.
(Accelerometer and location information omitted for clarity.)

The Attack. An attacker with the ability to submit similar bumps to

the server, spoof legitimate users’ IDs, and control the wireless channel can

successfully complete the following MitM attack against Bump. Figure 2.2

sketches the attack. After A and B bump phones, the attacker delays PB’s

request containing IB and sends its own request impersonating PB with

information IMB
and similar bump values. The server associates the at-

tacker’s request with PA’s request since no other similar entries exist in the

database. Next, the attacker forwards PB’s delayed request and sends a

request impersonating PA with information IMA
and the same bump values.

In response, the server associates those two requests. Since the phones will

present the correct ID’s to the users, there will be zero indication that an

attack has occurred and that the underlying data is incorrect. Delay ∆, the

duration of time by which the attacker delays the server’s receipt of PB’s

request, is an important parameter in the attack. If ∆ is too short, the

server will correctly associate the legitimate users’ bumps or claim all of the

bumps were too similar and ask the phones to bump again. If ∆ is too large
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(> 3 seconds), the server generates an error and returns ∅ in response to the

delayed request.

In the next subsection, we describe how such an attack can happen in

practice and analyze the probability of a successful attack based on different

values of ∆.

2.2.3 Attack Implementation and Analysis

To successfully perform a man-in-the-middle attack against Bump an at-

tacker must be able to observe the bump and delay packets. A maliciously

controlled access point (AP) provides control of packets. In our attack setup,

we use a MacBook Pro with OS X 10.5 and Dummynet [20] as an AP. The

laptop connects to the Internet via the ethernet port and can forward pack-

ets from the WiFi network to the Internet. In a real attack, the attacker

could trick users into associating with the attacker’s AP by selecting a com-

mon SSID (e.g., “linksys”). By default, a phone will use a WiFi network

with a known SSID, rather than the cellular network.

To evaluate the attack, we use real phones with three different people to

bump the two sets of phones. We use 4 different iPhone4 3G smartphones

running iOS version 4.2.1 and Bump 2.4.0 (1 each for PA and PB and 1

for each of the attacker’s roles, PMA
and PMB

). Two humans bump phones

PA and PB together while another human plays the role of the attacker

and tries to bump phones PMA
and PMB

together at roughly the same time

and with the same force. This is meant to simulate an attacker observing

victims across the room using Bump to exchange phone numbers at a bar

or exchange money to reimburse one user for the other user’s share of a tab.

We configure Dummynet to delay PB’s and PMA
’s requests by ∆ as part of

the attack (see Figure 2.2).

4We use iPhones for our attack because it supports a more recent and reliable version of
Bump. iPhones are able to run Bump version 2.4, while phones with Android are limited
to version 1.3.2. If Bump Technologies secured the application between major revisions,
attacking version 1 would be futile. The Android version of Bump was also much less
stable during our testing. Over the course of 20 exchanges without attacker interference,
the iPhone version was able to exchange data 19 times. However, the Android version was
only able to exchange data 7 out of 20 times.
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To evaluate the attack on Bump, we vary the induced delay (∆) from

0 to 3 seconds in increments of 0.5 seconds and run 10 exchanges for each

setting. During an exchange, a phone can experience one of three potential

outcomes:

SE Successful Exchange: The server returns a potential match and asks

if the user wants to communicate with that ID.

BA Bump Again: The server finds multiple similar entries and asks the

phone to bump again.

OO Only One: The server is unable to find a similar entry in the database.

The server also returns this response if the induced delay is large.

Based on the individual phones’ outcomes, we classify the result of the

attack as one of the following:

• Successful Exchange: PA receives B’s information (SE) and PB

receives A’s information (SE).

• Successful Attack: PA receives the impersonation of B (IMB
) and

PB receives the impersonation of A (IMA
). Both phones have outcome

SE, but receive attacker’s information.

• Detectable Attack: PA receives the impersonation of B (IMB
), but

PB receives bump again or only one. SE for A and BA or OO for B.

• Other: PA and PB receive Bump Again or Only One. Neither phone

experiences outcome SE.

We present a summary of our results in Figure 2.3. These results show

that a MitM attack against Bump is feasible. The optimal induced delay

(∆) is around 2 seconds. With that delay, 70% of the attacks succeed. With

less delay, the server detects multiple similar requests and returns “Bump

Again”. With more delay, the server detects the long delay for PB’s request

and instead of associating the request with IMA
, returns an “Only One”

response. For delays longer than 3 seconds, the attack is detectable; the

server consistently pairs IA and IMB
, but returns “Only One” in response

to IB and IMA
.
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Figure 2.3: Attack Results on Bump with Varying Values of ∆.

2.2.4 Attack Impact

A MitM attack against Bump has varying levels of impact depending on

the application using Bump, including user annoyance, interception and/or

impersonation during personal communication, and theft of money.

Some attacks merely result in user annoyance. For example, smartphone

games such as BumpFour (a version of Connect Four) leverage Bump to

establish a connection between opponents. In the event of a MitM attack,

a malicious party can insert themselves between the two phones and play

against the victims.

When Bump is used to exchange contact information, a MitM attack

threatens the security of any communication that relies on the exchanged

information. The standalone Bump application, which we attack in Sec-

tion 2.2.3, exchanges contact information and creates a new address book

entry with the received data. If the victims send text messages, phone calls,
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emails, or other online communication using the information received dur-

ing a MitM attack, the attacker, rather than the intended user, will receive

the information. In addition, the attacker can impersonate one victim if

the recipient relies on the information received from Bump (e.g., an email

address) to identify the source.

An attacker can exploit Bump to steal money. The PayPal smartphone

application allows users to transfer money and uses Bump to identify the

transfer endpoints. However, a MitM attack against PayPal does not allow

the attacker to empty a user’s account. When using Bump to transfer money,

the party sending the money selects the amount (or at least confirms the

amount) to send. This limits the attacker to stealing only the amount one

user meant to send. In addition, PayPal uses an account’s email addresses as

the ID. Given most users will simply trust the Bump exchange if it does not

fail, an attacker could insert their own email address and steal the money.

However, diligent users may notice the wrong email address and cancel the

exchange. An attacker can create a similar looking email using “typejacking”

to effectively evade detection by all but the most diligent of users [29]. It

is important to note that the onus of detection in such a scenario is on the

users, and Bump itself provides no protection on its own.

Exploitation of Bump provides an attacker with a range of capabilities.

While some attacks only allow the attacker to annoy legitimate users, other

instances of the attack enable interception of personal communication or

money.

In this section, we have analyzed the Bump exchange, demonstrated how

an attacker can successfully launch a man-in-the-middle attack against the

protocol, and discussed the implications of the attack.

2.3 Exchange Guidelines

This section discusses some of the lessons learned and problems encountered

in Bump. Based on these guidelines and challenges, we developed the Shake

on it (SHOT) exchange, described in Section 2.4.
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Server-based Communication: Smartphones are connected to the

Internet the majority of the time via the cellular network or WiFi. By using

a server to exchange information, Bump circumvents some challenges asso-

ciated with trying to establish local communication. For example, iPhones

only allow Bluetooth connections to other iPhones or computers.5 Ad hoc

communication over WiFi is another option, but requires users of Android-

based phones to subvert the OS to enable phone-to-phone WiFi broadcast.6

A server allows smartphones from different vendors to communicate quickly

and easily, without requiring the owner to modify the operating system.

One drawback to using a server to communicate is that the server needs

some information to know which phones are trying to exchange data. With

wireless communication, the phones can assume any broadcast data came

from the other phone. Given all phones using a protocol share the same

server, the server needs a way to differentiate each pair of phones. As such,

before the phones communicate via the server, the phones must agree on

a value we call the “pair identifier” which allows the server to route traffic

from one phone to the other.

Accelerometers as an Authentic Channel: A number of works use

a bump, shake, or gesture to intuitively indicate which phones are to ex-

change data [11, 21, 45, 56, 60]. The accelerometer reading provides a way

to convert the physical interaction into a label which identifies potential end-

points to a server and/or to derive a secret used to detect a MitM attack.

This human observable communication also provides the users demonstra-

tive identification of the endpoints of the exchange.

Unfortunately, a physically present attacker can observe the movements

and leverage real-time motion tracking [58] and high speed cameras to quan-

tify the accelerations during the bump, shake, or gesture. Once the acceler-

ations are known, the information the phones share lacks the secrecy needed

to secure communication. Rather than assuming secrecy, we need a protocol

that can provide security and usability with only authenticity.

Attack Detection on the Phones: Given attackers can observe any

5http://discussions.apple.com/thread.jspa?threadID=1460770
6http://code.google.com/p/android/issues/detail?id=82

http://discussions.apple.com/thread.jspa?threadID=1460770
http://code.google.com/p/android/issues/detail?id=82
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information received by the accelerometer, the phones are unable to present

any information to the server that allows the server to isolate the correct

endpoints in an exchange. Without such a mechanism, the phones may

receive the wrong information, but are unable to detect the error. Increasing

user involvement by comparing the received data would solve the problem,

but reduces usability. Instead, we want a protocol that allows the phones to

detect reception of the wrong information from the server while limiting the

user involvement to something as simple as putting the phones together.

Based on these observations, we need a protocol that begins by estab-

lishing a pair identifier. The phones can use the pair identifier to exchange

information using the server and use authentic information exchanged via

accelerometers to verify the correct phones and data were involved in the

exchange, without requiring secrecy or involving users in the verification.

2.4 The Shake on it (SHOT) Exchange

In this section, we describe SHOT, a secure exchange protocol for smart-

phones that provides a user experience similar to Bump. We leverage the

smartphone’s vibration function to transmit an authentic phone-selected

message from one phone to the other phone’s accelerometer. This allows

the phones to bootstrap communicate via an untrusted server and verify

received data without involving the user. We begin with a discussion to

explain why we made certain design decisions and provide an overview of

the protocol to describe the high level goals of SHOT. Section 2.4.2 contains

a detailed explanation of SHOT. We conclude this section with a security

analysis of SHOT.

The version of SHOT presented here only ensures the integrity of the

exchanged information. If secrecy is desired, the two parties can use SHOT

to authentically exchange public keys, and use those keys to establish a

shared symmetric key for encryption of information.
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2.4.1 SHOT Overview

Based on the guidelines in Section 2.3, we want a protocol that takes advan-

tage of smartphones’ accelerometers for demonstrative identification and

authentic communication. For SHOT, we take this one step further and

leverage the smartphone’s vibration function to send a phone selected mes-

sage to the other phone’s accelerometer. With this capability, the naive

approach would be to have users hold the phones PA and PB together.

Once together, PA would vibrate IA to PB and PB would vibrate IB to PA.

Unfortunately, the vibration to accelerometer channel is too slow for this to

be user-friendly (see Section 2.6 for more details on the bit rate).

Several works explain how two parties can exchange data over an inse-

cure medium (e.g., our server) and use an authentic channel (e.g., human

comparison or vibration) to verify the exchange, using a checksum derived

from the exchanged data [49, 38, 55, 70, 101]. However, these protocols

require the phones to exchange data before they can calculate the check-

sum. If using a server to communicate, the phones need a pair identifier

to communicate via the server, before the phones use the vibration channel

to exchange the checksum. A protocol could use two long vibrations (one

at the beginning to exchange a pair identifier and another to exchange the

checksum), but vibrating all of that information would be slow. Users could

copy a pair identifier from one phone to the other, but that is cumbersome.

Instead SHOT starts by using the vibration channel to send a message

that performs two functions: 1) acts as a pair identifier and 2) acts as a pre-

authenticator to verify the authenticity of data exchanged from one phone

to the other. Much like Talking to Strangers [5] and Seeing-Is-Believing

(SiB) [61], SHOT begins with the exchange of a pre-authenticator over the

authentic channel, which allows verification of subsequent exchanges over

the insecure channel. Unlike these protocols, SHOT provides demonstrative

identification and secure exchange with a single pre-authenticator. After PA

vibrates the pair identifier, the phones exchange data using the server and

confirm the exchange in the following fashion:

1. PB uses the pre-authenticator/pair id to verify a public key from the
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server belongs to the phone pressed against PB.

2. PA digitally signs IA and a copy of the other phone’s information,

which PA received from the server.

3. PB verifies the signature from the server is a valid signature over the

other phones information and its own information (IB). If the signa-

ture is correct, PB vibrates back a positive response to indicate that

the other phone signed a copy of the information PB received and sent.

4. PA uses the vibrated response to determine if it signed its own infor-

mation and the vibrating phone’s information or if an attack occurred.

SHOT does use two vibrated messages. However, one vibration in each direc-

tion is needed to allow each phone to verify the information was exchanged

with the phone physically pressed against itself. If only one vibrated mes-

sage was used, either more human interaction is needed, or there is no way

for the first phone to verify the other phone received its information. The

second vibration is a yes/no response that requires 1 bit of data and can be

quickly transmitted in order to maintain a short execution time.

2.4.2 SHOT Exchange

SHOT provides a user friendly way to exchange information between smart-

phones by leveraging the authentic nature of the vibration to accelerometer

channel, communication via a server, and the phones’ ample computational

capabilities. To minimize computation and communication over the vibra-

tion channel each phone has a different role. For the remainder of this

chapter, rather than PA and PB, we call one phone the Endorser (PE) and

the other phone the Verifier (PV ). After users select what data to exchange

and agree on or are assigned each phone’s role, SHOT consists of 4 phases

to securely exchange data between two smartphones: 1) exchange of the

pair identifier, 2) exchange via the server, 3) signing of the data, and 4)

confirmation of the data. Figure 2.4 contains the steps associated with the

SHOT exchange.

À Exchange of the Pair Identifier During the initial phase, the phones

exchange a pair identifier which bootstraps communication through the
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À Exchange of the Pair Identifier:
1. PE : h = Hash(K+

PE
)

2. PE
acc.
;PV : h

Á Exchange Via the Server
3. PE → S : h, K+

PE
, IE

4. PV → S : h, IV

5. S → PV : h′, K+
PE
′, IE ′, IV ′

6. S → PE : h′, K+
PE
′, IE ′, IV ′

Â Signing of the Data:
7. PE : σ = Sign(K−

PE
, IE ||IV ′)

8. PE → S : h, σ
9. S → PV : h′, σ′
Ã Confirmation of the Data:
10. PV : if(h == Hash(K+

PE
′) and

11. V erify(σ′, K+
PE
′, IE ′||IV ))

result = “yes”
save(IE ′)

else result = “no”

12. PV
acc.
;PE : result

13. PE : if(result == “yes”)
save(IV ′)

14. Ps, PV : Sound Tone

Figure 2.4: SHOT Exchange Between PE and PV Utilizing the Server S.
(X′ is used to indicate a potentially modified value of X that has beentransfered

over the attacker control wireless medium.)

server. In SHOT, this identifier also is a pre-authenticator that allows PV to

verify PE ’s public key (K+
PE

) later in the protocol. When the protocol be-

gins, PE calculates a shortened hash of its public key (Step 1). We truncate

a hash output to 80 bits to balance security and time needed to transmit

the value over the vibration channel. After the users physically place their

phones together, PE vibrates this truncated hash (Step 2). This vibration

demonstrates to PV that the other phone in the exchange has a public key

that hashes to this value. Given that this hash must be unique to PE for

security, we can also use this hash as the pair identifier to help establish
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communication through the server.

Á Exchange via the Server Once the phones know how to identify the

pair to the server, the two phones use the server to exchange the Endorser’s

public key and any other information to be exchanged (PE ’s info IE and

PV ’s info IV ).

During each data transmission (Steps 3 & 4) and data retrieval (Steps 5

& 6), the phone begins the connection by sending the pair identifier (h). The

server uses h to know how to record and retrieve the information associated

with a pair of phones. If at any point a phone receives the wrong information

from the server (e.g., PV finds that IV 6= IV ′ or h′ 6= h), the phone assumes

an attack has occurred and aborts the protocol.

Â Signing of the Data Once IE and IV have been exchanged, the phones

start the process of verifying the data. PE uses its private key (K−
PE

) to

sign the data it believes was exchanged so PV can verify if the server or an

attacker modified the information. Specifically, PE signs the concatenation

of its own information and the potential copy of the Verifier’s information

(Step 7). PE then uses the server to send the signature to PV (Steps 8 & 9).

Once this phase is complete, neither phone has verified any information.

PV has a signature that potentially represents what information the other

phone sent and received.

Ã Confirmation of the Data The final phase has three checks to detect

if the exchange was successful:

• PV verifies the public key it received from the server belongs to the phone

PV is pressed against.

• PV verifies that the owner of the authenticated public key received IV and

sent the information received in Step 5.

• PE verifies that the phone it is pressed against received a valid signature.

A valid signature confirms that the data PE signed in Step 6 matches what

was sent and received by both phones during the exchange.

PV begins by verifying the hash of the received public key matches the

hash it received over the vibration channel (Step 10). This verifies that the

public key PV received belongs to the phone physically pressed against PV .
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Provided PV has the other phone’s public key, PV verifies the signature from

the server (Step 11). If the public key and signature are correct, PV knows

the data it received came from the phone it is pressed against and that that

phone received IV . We could have the users look at the result on PV and

press “success” or “failure” on PE [84], but this is work for the user. A

more user-friendly approach is for PV to use the vibration channel to send

a short confirmation to PE (Step 12). This vibration lets PE know that the

phone it is pressed against received a valid signature (verified using PE ’s

public key) over the exchanged data. As a final step, the phones sound a

tone to indicate that the protocol has completed and users can stop holding

the phones together.

In the next section we describe why SHOT is secure provided some prop-

erties of the underlying cryptographic primitives and authenticity of the

vibration channel.

2.5 Security Analysis of SHOT

For SHOT to securely exchange information the following four properties

are necessary:

• Only PE can send PV a pre-authenticator—a copy of the hash of PE ’s

public key (K+
PE

).

• PV can detect if it received a copy of K+
PE

or the wrong public key.

• PE is the only entity that can generate a signature which K+
PE

verifies.

• Only PV can indicate to PE if the signature it received verifies the

information PV sent and received.

We discuss the properties needed from different cryptographic primitives to

fulfill the second and third properties before discussing the authenticity of

the vibration channel which is needed to fulfill the first and last properties.

2.5.1 Cryptographic Primitives

Assuming the inability of an attacker to inject information onto the vibra-

tion channel (see next subsection), a hash function that is second preimage
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resistant allows PV to detect if it received a copy of PE ’s public key. Given

an authentic copy of PE ’s public key, a signing algorithm that is secure

against selective forgery allows PV to verify PE received PV ’s information

and sent the information PV received.

If an attacker wants PV to accept a different public key, the attacker has

to find a different public key (K+
PM

) such that the truncated hashes are the

same (i.e., Hash(K+
PE

) == Hash(K+
PM

)).7 However, if the hash function

is second-preimage resistant, it is infeasible for an attacker to find such a

public key, even if the hash is truncated to 80-bits [84].

Without a way to convince PV to accept a different public key, an at-

tacker needs to produce a signature over incorrect exchange information

which K+
PE

verifies. If the authentic public key were to verify an attacker

generated signature for the message X||IV , PV would believe the other phone

signed that message, indicating PE sent X instead of IE . However, if the

signature scheme used is secure against selective forgery, it is infeasible for

an attacker to produce such a signature. Without a signature which verifies

these values, PV will reject the signature and thwart the attack.

Provided the hash function is second pre-image resistant and the signa-

ture scheme is secure against selective forgery, the phones will detect any

type of active attack against data exchanged over the wireless channel during

the SHOT exchange. Once the attack is detected, the phones will discard

the information. This fail safe operation does mean an attacker can launch

a Denial-of-Service attack against SHOT. However, DoS attackers are out-

side of the scope of this work since the attacker could also jam the wireless

channel to prevent any wireless communication.

2.5.2 Vibration as an Authentic Channel

For SHOT to be secure, only PE and PV are able to send information on the

vibration to accelerometer channel. If an attacker were to send information

on the channel, a user can detect the vibrations and abort the exchange.

Without a way for attackers to send messages on the channel, only PE is

7We assume the attacker does not know PE ’s keys so K
+

PE
6= K

+

PM
.
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able to send a pre-authenticator of its public key and only PV is able to send

confirmation of a valid signature.

Users can detect when other parties are trying to send information on

the vibration to accelerometer channel. The two users have in mind what

phones are supposed to exchange information, and will detect if some other

device is vibrating against the phones during the exchange. Holding two

phones together is an intuitive way to indicate which phones should exchange

information and should experience a low rate of operator error. Instead, we

have to worry about situations where the attacker tries to remotely induce

vibrations. However, without a way to focus those vibrations precisely on

the phones (some kind of audio version of a laser), the user(s) holding the

phones will notice the additional vibrations and stop the exchange. For

example, consider an attacker which produces a loud tone at a low frequency

in an attempt to vibrate the two phones remotely. The tone needs to be

quite loud to induce vibrations which are comparable to the vibrations from

another phone in direct physical contact.8 Even if the frequency of the

tone is below the human audible range, a tone with this much energy is

perceptible (e.g., the users’ clothes and skin will vibrate). As such, users

can detect the additional vibrations and abort the exchange.

Without a way to break the security properties provided by the un-

derlying cryptographic primitives, an attacker must find a way to inject a

message on the vibration to accelerometer channel to successfully subvert a

SHOT exchange. However, the users can detect attempts to remotely induce

vibrations and thwart such attacks.

2.6 SHOT Implementation

In this section, we describe our implementation of SHOT for the Motorola

DROID smartphone and how we use a java program on a desktop as the

server to simplify non-vibrator to accelerometer communication.

8Audio engineers suggest using accelerometers as “contact microphones” to reduce
pickup from sources that are not in direct physical contact [67].
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2.6.1 SHOT for Android

Our implementation of SHOT is written for and tested on Motorola DROID

smartphones with Android version 2.2. However, the system can be ported

to any mobile phone with a vibration function and accelerometer. If in-

stalled on other phones effective bit rates for the vibrator to accelerometer

may change with different hardware based on access to vibration functions9

or accelerometers. In this section, we describe how we achieve communica-

tion between phones and between phones and the server, what library and

parameters we use to perform cryptographic operations, and how users run

the protocol.

Communication between phones using the vibrator and the accelerome-

ter uses the android.os.Vibrator class to vibrate a phone, the

android.hardware.SensorManager to access the phone’s accelerometer,

and a android.hardware.SensorEventListener to know when the ac-

celerometer has new data. With the DROID, we use a simple on/off keying

and test varying bit lengths from 60ms per bit to 100ms per bit to test

the reliability of the channel (see Section 2.7.2 for comparison of reliability

versus bit rates). For example with 100ms/bit, the phone vibrates for 100

ms to transmit a 1. Given the possibility of errors, we use Reed Solomon to

allow the Verifier to recover from errors during reception of the pair iden-

tifier. We use Reed-Solomon encoding with 8 bit symbols and include 4

error correction symbols. This allows the Verifier to recover from errors in

2 independent bytes. When sending the confirmation, the Verifier transmits

2 bytes of 1s to indicate “yes” or sends 0xC003 (2 ones, 12 zeros, 2 ones)

to indicate “no”. Given the redundancy in the message, the Verifier simply

transmits the two bytes without any error-correction. The Endorser only

considers the confirmation a “yes” if the confirmation contains a series of

several consecutive 1s.

Communication with the server uses TCP sockets. At the beginning of

the protocol the phone connects to the server and maintains a single TCP

9For example, Apple only allows reduced access to the vibrate function if distributing
an application through the App Store.
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connection over the course of the entire protocol.

All of the cryptographic operations use the Bouncy Castle10 Java pack-

age. We use SHA-1 to create the pre-authenticator and to verify the public

key. The implementation uses 1024-bit RSA to sign and verify the exchanged

information. One could generate a new RSA key pair for each exchange. In-

stead, we generate a key pair during the first execution and save the key

pair for future executions to keep subsequent execution times shorter and

more consistent.

To run the protocol, all the users have to do is hold the phones together

back-to-back with one phone facing up and press a button to start the

exchange. This orientation provides good transmission between the phones’

vibrators and accelerometers and allows the phones to automatically assign

Endorser or Verifier roles. Currently, the phone with the screen facing down

becomes the Verifier. Once the exchange is started, the users simply hold

the phones together until the phones beep to indicate completion. Once the

confirmation is complete, the phones play a lighter tone to indicate success

and a harsher sound to indicate a failed exchange. These tones are selected

such that they do not induce a false “yes” or “no” on the vibration channel

during the final confirmation.

2.6.2 Java-Based Server

Instead of using local communication (Bluetooth or ad hoc WiFi), SHOT

uses a server on the Internet to transfer the majority of data between phones.

Our server is a Java program running on a desktop machine that listens for

incoming connections and uses a database to store and lookup information

based on the received hash value.

Currently, the server does not verify if any of the information is correct

(e.g., hash a potential Endorser Key to verify it matches Pair ID). Instead

the server acts as a means to forward information between the two phones.

In the end, the phones perform the final verification.

10http://www.bouncycastle.org/

http://www.bouncycastle.org/
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Platform Connect & 1024 RSA 1024 RSA
Send 1kB Sign Verify

iPhone 90.0 ms 201.5 ms 8.4 ms

DROID 91.2 ms 41.9 ms 7.0 ms

Table 2.1: Network and Cryptographic Performance for the iPhone and
DROID.

Millisecond per bit 60 80 100

Rate of successful transmissions 0.53 0.67 0.94

Table 2.2: Impact of Vibration Time on Transmission Reliability.

2.7 Evaluation

In this section, we evaluate the reliability of the vibration-to-accelerometer

channel used in SHOT, and compare the performance of Bump on both

iPhone and DROID to SHOT on DROID. We also present some microbench-

marks to help explain differences in the execution times.

2.7.1 Microbenchmarks

Table 2.1 shows the average time required to perform network and cryp-

tographic operations on either an iPhone 3G with iOS 4.2.1 or a DROID

with Android 2.2. Each value represents the average from 20 executions of

the operation. We measure the time needed to connect to the Bump server

over WiFi and send a kilobyte of information using TCP without TLS, and

the time needed to sign a random value and verify the signature with 1024-

bit RSA keys. The phones exhibit similar network capabilities and require

roughly 90 ms to establish a connection and send the data. However, the

DROID appears to have greater processing power. Signing is almost five

times faster on the DROID than on the iPhone (41.9 ms versus 201.5 ms).

Verifying is also faster on the DROID (7 ms versus 8.4 ms).
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2.7.2 Reliability of the Vibration Channel

To measure the reliability of the vibration channel, we exchange the

112-bit message consisting of a pre-authenticator and error-correcting code

payload while varying the time needed to communicate one bit from the

vibrating phone to the other phone’s accelerometer from 60 to 100 ms and

measured how often the receiving phone successfully decodes the message.

The results of this test are summarized in Table 2.2. With 60 ms/bit en-

coding, the receiver is able to successfully decode the message 53% of the

time. However, decoding is successful all but one time with 100 ms/bit.

The limiting factor for using vibration and accelerometers for communica-

tion appears to be the scheduling on the DROID. There is a function call

to turn on the vibrator for a set period of time, but multitasking prevents

the system from promptly turning on and off the vibrator for values smaller

than 75ms.

2.7.3 Complete Protocol Execution Times

We measure the execution time of each protocol over the course of 10 suc-

cessful exchanges. During our evaluation, all of the wireless communication

is sent over the WiFi network, as opposed to the cellular network. For Bump,

we measure execution time from when the application is started until the

phone receives the other phone’s information. For SHOT, we measure the

execution time from when the application is started to the tone at the end

of SHOT. Figure 2.5 summarizes the results of our evaluation.

The performance of Bump is highly platform dependent, requiring an

average of 21 seconds on the DROID and almost half of that (10.4 seconds)

on the iPhone. The DROID appears to have faster processing and similar

network performance (see Section 2.7.1), but appears to take longer to deter-

mine its location. Our experiments were performed indoors and the iPhone

appears to quickly switch from trying to use GPS to using WiFi to estimate

its location before connection to the Bump server (total execution time be-

tween 9.4 to 13.5 seconds). However, the DROID version of Bump appears

to spend a variable amount of time trying to use GPS before switching to

using WiFi (total execution between 14.2 to 37.8 seconds).
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Figure 2.5: Average Execution Time for Bump and SHOT.
(1 error bar = one standard deviation.)

With fixed size pre-authenticators and confirmation vibration, SHOT

provides different execution times depending on the encoding used. When

compared to Bump on the iPhone, SHOT provides similar execution times

when using the the less reliable 60ms/b encoding (9.9 to 12.8 seconds).

However, the more reliable version of SHOT with 100ms/b encoding (15.1 to

16.9 seconds) is slower than the version of Bump for the iPhone. Compared

to the DROID version of Bump, SHOT provides faster execution times.

The performance of Bump on DROID may improve with the next release

for DROID (DROID uses v1.3.2 while iPhone uses v2.4). Note that our

implementation of SHOT is not optimized for efficiency, and the purpose of

this evaluation was simply to confirm that SHOT can execute as quickly as

Bump.
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2.8 Summary

The exchange of information between smartphones allows users to play

games, share contact information, and even transfer money. If a malicious

party is able to perform a Man-in-the-Middle (MitM) attack during an ex-

change, she can interfere with games to annoy users, intercept communica-

tion, and even steal money. We present a MitM attack against Bump, the

most popular smartphone exchange protocol, to demonstrate the relevance

of this threat. Our analysis of this attack under realistic conditions shows

that a malicious party can launch a MitM attack against Bump and succeed

70% of the time.

We also present SHOT, a new secure and simple-to-use smartphone ex-

change. SHOT uses the phones’ accelerometers and vibrators to establish a

human-observable channel between two phones that are held together. Since

users can feel the vibrations, this channel provides demonstrative identifi-

cation of the sources and destinations in the exchange, and allows users to

detect if an attack is occurring (e.g., a remote party is trying to vibrate

the phones). SHOT leverages asymmetric cryptography and the authentic

vibration channel to bootstrap authentic communication over the higher-

bandwidth wireless channel.

Our implementation and evaluation of SHOT indicates the protocol can

complete in roughly the same amount of time as Bump, while providing

greater security and placing similar demands on the user. As such, SHOT

represents a new point on the spectrum of exchange protocols, providing

improved verification of the physical source and destination of an exchange

or reduced user involvement when compared to existing solutions.
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Mobile User

Location-specific Encryption

(MULE): Location-Based

Access Control to Protect

Sensitive Data on Lost

Laptops

Lost/stolen laptops are a major cause of leaked data [78, 90]. In previous

years, lost or stolen laptops resulted in the exposure of over 30 million un-

encrypted records [72]. These leaks expose financial account information,

health records, social security numbers, and other crucial data. This issue

is not limited to corporate laptops that contain hundreds or thousands of

records. As financial institutions and the IRS move towards electronic sys-

tems (i.e., e-statements and e-filing), more home users are storing sensitive

data on their personal laptops. The loss of a personal laptop may leak the

owner’s account numbers, social security number, or even health records.

A simple solution to preventing such leaks is to authenticate users and

38
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encrypt sensitive data [63, 87]. However, a recent survey found that only

half of security and privacy professionals indicate their companies encrypt

data[62]. Without access to policies, we cannot know why so few companies

are using encryption. However, without a standard that enforces encryption,

most users view the technology as an unnecessary burden. Company IT

personnel will also see encryption technologies as a burden, similar to the

headache associated with account management. When given the choice,

users often prefer convenience over security and only worry about leaking

data after losing their laptop [77]. What makes securing files on laptops

hard is that users and administrators want a system that “just works” with

little or no actions on their part. However, there is often a tradeoff between

security & user effort.

In this chapter, we examine the extreme case of no user effort and little IT

administration to determine what level of security is possible. Our goal is to

remove user effort associated with encryption technology while achieving the

same or better security compared to traditional password-based approaches.

Prior work by Corner & Noble [25] reduces user overhead associated with

securing files by leveraging a cryptographic token which shares secrets with

the laptop. Provided the token is within radio range of the laptop, the user

can access files. Once the token is out of range, files are encrypted. Such

an approach has the advantage that all of the user’s files are protected, but

requires the user to carry a token to allow access to any of the files. We

lower the threshold and examine how much security one can achieve with

no per laptop secrets on company managed devices and zero user effort (i.e.,

no password entry, biometric entry, or possession of cryptographic tokens)

in the common case.

We observe that only a fraction of the files on users’ laptops are sen-

sitive and most users only access those sensitive files when they are in a

location they feel is difficult for malicious parties to access (e.g., a home

office or a desk at work). Our approach is to encrypt user-specified sensi-

tive files and leave all other files unencrypted and always accessible. Given

the majority of accesses to sensitive files occur in a trusted location, Mobile

User Location-specific Encryption (MULE) uses location-specific informa-
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tion from the trusted location to automatically derive a decryption key and

allow access to the sensitive files. This is one scenario where verification

of the physical destination of messages provides useful security properties:

if the laptop is able to receive the location-specific information it is in the

trusted location and should have access to the sensitive files. Once the user

is inactive, logs off, or puts the computer to sleep, the system automatically

re-encrypts files and deletes the key. In the rare case that a user wants to

access sensitive files outside the trusted locations, the user can enter a sec-

ondary password to gain access. This password-based access also provides

a fail-safe mechanism in case location-specific information or services are no

longer available in a trusted location.

Convenience is the major advantage of MULE. The user can access files

without performing any additional actions in the common case (accessing

non-sensitive files or accessing sensitive files in a trusted location). Ideally,

only in rare cases would MULE require user effort. We could use SHOT (see

Chapter 2) as one potential way to verify the laptop is in the trusted loca-

tion. The system would require a special device in the trusted location that

acts as a key escrow and has an accelerometer and the ability to vibrate.

However, that approach can negatively impact usability and provides more

functionality than necessary. The laptop must have physical contact with

the other device; automatic access to sensitive files is not possible if the lap-

top is on the user’s lap in the trusted location. Another usability drawback

is that SHOT only ensures authenticity of the information devices exchange.

As such, a laptop would first use SHOT to prove presence in the physical

space and exchange ephemeral keys. The devices will use the ephemeral

keys to secure a subsequent exchange of the file decryption key. Instead, we

want a protocol that allows only devices in a physical space to derive the

key.

A malicious entity in possession of the laptop with unconstrained access

to a trusted location could access sensitive data. We propose a new attacker

model, the Outsider Thief (OT), to more accurately reflect the threat of a

laptop thief. We describe this adversary model in more detail in Section 3.1.

Our implementation of MULE is able to acquire the location-dependent
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key is less than 5 seconds depending on the security level, type of location-

specific information, and technique used. Once the key is known, access to

encrypted sensitive files is transparent to applications. Our implementation

also includes the necessary tools to automatically re-encrypt sensitive files

when the system is idle for a set period of time or put to sleep (e.g., the

owner closes the laptop).

We investigate the level of security one can achieve with encrypted sen-

sitive files when no user effort is required. Rather than relying on something

users know, have, or are, we explore using where the user is to perform

access control. We propose two new mechanisms that derive keys based on

location-specific information to allow the laptop to infer that it is physically

located in a trusted location, without proving to any other device that it is

in the trusted location. We evaluate an implementation of our system on

readily available hardware.

3.1 Problem Definition

Users habits indicate the need a system that allows the encryption of sensi-

tive data while requiring minimal administrative effort and zero user effort

during common accesses and moderate effort otherwise. Such encryption

should, with high probability, prevent an adversary who steals the laptop

from accessing files. Minimal administrative effort applies to a corporate

setting and means IT personnel at most have to keep a list of not-yet-

stolen laptops (i.e., there are no per-laptop secrets on a corporate server).

A scheme requires zero user effort, if a user can access sensitive files with-

out entering a password or biometric, carrying around a hardware token, or

adding additional hardware to their laptop. The main challenge is how to

protect the key needed to decrypt sensitive data without requiring user or

administrative effort.

To avoid user effort in the common case, we need a system that allows the

laptop to automatically derive the key based on location-specific information

when in a trusted location (the common accesses). The laptop can use this

location specific key to decrypt sensitive files and provide the user access.
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Location-based access control [27] addresses the different problem of

proving to an outside system that a device/user is in a location and thus

should have access to a resource. Our problem involves a laptop that wants

to prove to itself that it is in a specific location (i.e., retrieve location-specific

information and ultimately a decryption key). The laptop can leverage in-

formation and computation from other devices already in the location to

perform this proof, but the other devices perform no authentication of the

laptop and require no per-laptop secrets.

3.1.1 Assumptions

Sensitive Data Access Patterns. We assume users rarely access sen-

sitive data outside of trusted locations. For example, users will work on

taxes in their home or access customer accounts in the office. This assump-

tion remains true for individuals that travel for work. Companies often

disallow individuals from taking sensitive files out of the office [24]. For ex-

ample, human resource employees often access employee records. However,

while traveling to recruiting events, company policy may dictate that lap-

tops must not contain unencrypted copies of employee records. Some users

rarely access sensitive files in the same location. For example, a consultant

that frequently travels may have no real office. For users without a trusted

location, MULE provides no real advantage.

Available Hardware and Software. We assume laptops are equipped

with a video camera and trusted computing technology, MULE users will

accept the cost of installing a small device in the trusted location, and

corporations that use MULE will have a whitelist of company laptops or a

blacklist of stolen company laptops and a Public Key Infrastructure (PKI)

or at least the means to distribute authentic public keys to their employees.

The majority of commodity laptops have webcams mounted into the

frame around the display and already come equipped with trusted platform

modules (TPMs) [98], an inexpensive coprocessor that enables a number

of security related operations. Extracting keys from the TPM is infeasible

without expensive hardware and extensive time.
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Given the lack of laptop accessible location-identifying information in

home and work offices, we assume users or their companies will install

a Trusted Location Device (TLD) as part of MULE. The TLD provides

location-specific information and responds to any machine that wants to

run the key derivation protocol. Instead of performing location-based ac-

cess control, the TLD performs no authentication of the requesting device.

TLD secrets, location-specific information, and inputs to the key derivation

process form the foundation of the secrecy of location-specific keys in MULE.

The TLD is a spare machine connected to an inexpensive ($20) microcon-

troller to transmit location-specific information. The TLD also requires zero

user effort after plugging it into the trusted location and minor maintenance

in the corporate setting to ensure protection of keys (see Section 3.2 for more

details).

We assume corporations keep track of company owned laptops using

some type of unique identifier that the laptop knows. This could be a value

the company assigns to the laptop (e.g., a network assigned name or IP ad-

dress) or a value found in hardware (e.g., the MAC address of the laptop).

When the laptop is lost/stolen, IT or property management personnel will

remove the laptop from the company whitelist (or add it to a blacklist) of

laptops that are allowed various services (e.g., access to the corporate wire-

less network). We leverage this company assigned unique identifier during

calculations such that, once the laptop is stolen, the calculations fail, but

no authentication of the identifier is performed—as part of MULE.

Any corporation with a secure web-site already uses a PKI to protect

communication with the site. We assume that the company can use this

same PKI to identify TLDs. Otherwise, IT personnel can easily create an

in-house PKI for free using open source software like OpenSSL [66] and man-

ually distribute the necessary credentials (i.e., CA’s public key) to identify

TLDs.
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3.1.2 Outsider Thief (OT) Attacker Model

We propose the Outsider Thief (OT)—a realistic attacker to model a laptop

thief. The thief has complete control over a stolen laptop, may visit a com-

pany office, and can launch attacks on the wireless network, but is unlikely

to break into a user’s home. After the OT steals the laptop, she can install

any software and try to guess the user’s login password. We assume the

laptop has no malware before it is stolen, otherwise any sensitive data the

user accesses could be leaked. Malware defenses are an important problem

that is outside of the scope of this work. We assume fear of legal retribution

prevents an OT from breaking into a home to access a home user’s trusted

location. Corporate trusted locations are publicly accessible, but are pro-

tected by guards and IT personnel which prevent an OT from successfully

compromising devices in the trusted location. An OT can overhear, inter-

cept, and inject messages on the wireless network. However, when outside of

a trusted location, an attacker is unable to access the location’s constrained

channel [52] (e.g., infrared signals that are unable to pass through walls or

sounds in an insulated room). We recognize that stronger attacker mod-

els exist, but we expect that defending against those adversaries requires

additional user effort.

3.1.3 Requirements for Location-Specific Information Used

to Derive Keys

When location-specific information is used for key derivation, the informa-

tion must fulfill the following requirements to ensure successful and secure

operation of MULE.

Easily Accessible. Once the laptop is powered on, placed in a trusted

location, and the user is logged in, the laptop should have access to the

information required for key derivation.

Unique to a Location. If the information is not unique, the laptop may

automatically decrypt a user’s sensitive files while outside of the originally

defined location, an obvious security vulnerability.
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Bounded Range. Location information should only be accessible within

the location. Information accessible from outside of a building will apply to

more than the location the user trusts.

Significant Entropy. Information used to derive the key within a

location needs to have significant entropy so that it is hard to guess. Limited

entropy would enable an attacker to guess the necessary values, spoof the

location, and recover a key.

3.2 MULE Overview

MULE’s goal is to protect sensitive files on mobile devices with zero user

effort in the common case. Standard user login works independent of MULE

and provides a form of weak user authentication. All non-sensitive files

on the laptop are left unencrypted and are always accessible. Only user-

specified sensitive files are encrypted. Figure 3.1 depicts an overview of the

operation of MULE.

When a user tries to access a sensitive file, MULE contacts a Trusted

Location Device (TLD) which helps the laptop derive the key needed to

decrypt sensitive files with zero user effort. The TLD generates a nonce

and transmits it over the constrained channel [52]. We call this TLD gen-

erated nonce a location-specific message (m) because the properties of the

constrained channel ensure that only devices within the trusted location can

access the m associated with the current run of the protocol. A TLD is un-

able to authenticate requesters without per-laptop secrets and will respond

to any key derivation request. However, the key derivation calculations are

such that a TLD produces the wrong output if the requester uses the wrong

m in calculations (e.g., the client is in a different location). After the TLD

has helped derive the key, the user can access sensitive files without hav-

ing performed any extra actions. During the rare occasion when a user

accesses sensitive files outside of a trusted location, MULE will lack the cor-

rect location-specific information and key derivation will fail. In that case,

we sacrifice some usability to preserve security and ask the user to enter

a password as part of a location-independent key derivation scheme. The
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Figure 3.1: Operation of MULE.
User effort is only needed when location-specific key derivation fails.

password allows the TPM on the laptop to decrypt a location-independent

key which can decrypt the files. Once a valid key is available, the sensitive

files are decrypted. When a user is idle for some set period of time, logs off,

or puts the laptop to sleep, the laptop will re-encrypt the files and delete

the key.

In this chapter, we present two location-specific key derivation protocols

that leverage the same implementation of a constrained channel. The reason

we have two protocols is that home and corporate users are willing to accept

different levels of management overhead and use cases. In both protocols,

we use an infrared (IR) LED and the laptop’s webcam to implement a

constrained channel. IR cannot pass through objects (e.g., walls, window
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blinds, or people). If one is viewing sensitive files on the screen, one should

close the blinds to prevent an OT across the street from seeing the display—

and also prevent access to the constrained channel. One downside to this

constrained channel is the limited number of bits the TLD can reliably

transmit to the laptop in a fixed amount of time. Based on the Nyquist

frequency, a camera that captures X frames per second is limited to X/2 bits

per second when using an on/off encoding scheme.1 We could add multiple

LEDs to encode more bits per frame. However, the user would have to pay

careful attention to how the laptop is positioned within a trusted location

to ensure the LEDs are easily differentiable so the laptop can successfully

decode m. Instead, we design key derivation protocols which are secure

despite the use of a 20 to 30 bit long m which changes with each run of the

protocol.

In Section 3.3, we describe the Home Key Derivation (HKD) protocol. In

the home scenario, we assume the user wants to turn an existing computing

device (e.g., old desktop or wireless router) into a TLD, hang the IR LED

over the desk in the office (or other trusted location), and leave the system

alone. Without access to the constrained channel, an OT can sit outside of

the user’s home, intercept all wireless communication, and find it infeasible

to recover the key. If the laptop is ever stolen, the user can feel secure

knowing a thief needs to break into her home to steal the TLD or attack

the location-independent mechanism to recover a key which will decrypt

sensitive files.

In Section 3.4, we describe the Corporate Key Derivation (CKD) proto-

col. In a business setting, malicious parties may surreptitiously gain access

to the office for any number of reasons (e.g., a corporate open house or in-

terview). As such, an OT may access the trusted location with the laptop

in her possession. In that case, we leverage the company’s guards and IT

personnel to maintain the secrecy of the sensitive files. Guards will prevent

an OT from breaking into locked rooms and subverting TLDs.2 The com-

1The LED on is a 1. The LED off is a 0.
2The TLD can be secured behind doors and use a wired connection to send data to

microcontrollers which transmit data over the constrained channel.
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pany’s IT personnel can maintain a simple white-list of valid MULE clients

based on some static unique ID for the laptops (e.g., a network name, IP ad-

dress, or MAC address). During key derivation, the TLD will verify a laptop

supplied name is in the whitelist and use it as input to the key derivation

function. Even though the TLD performs zero authentication that the sup-

plied name belongs to the laptop, this ensures that after a laptop is stolen

and administrators remove the laptop name from the white-list, the thief is

unable to recover the key needed to decrypt the files using the TLD.

Outside of the trusted locations, during designation of a trusted location,

or when automatic key derivation fails, MULE uses a location-independent

key storage and retrieval technique that uses TPMs and a secondary pass-

word (different from the user’s login password) to securely manage a key

that can access the sensitive files (see Section 3.5).

In Section 3.6, we discuss implementation details of the protocols, man-

agement of encryption/decryption of files for application transparency, key

management such that multiple keys can access the files, and management

of the automatic re-encryption of files so that a user does not unknowingly

leak data.

3.3 Home User Scenario

Within the home setting, MULE needs a key derivation technique that “just

works” once the TLD is powered on and in the trusted location. Pairing the

laptop with the TLD could establish a strong shared key which could be used

to secure later key derivations, but requires user effort and is vulnerable to

human error [100]. As such, MULE should perform all of the tasks necessary

once the laptop is in a trusted location. The simplest key derivation protocol

would have the laptop derive a decryption key from a fixed m. Without

access to the constrained channel, an OT will be unable to derive the key.

However, an attacker in possession of the laptop could quickly brute force

the key, given the limited entropy of m. Instead, the TLD can possess

a strong secret to help derive the laptop’s decryption key and use m to

ensure the requesting laptop is in the room and protect communication
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over the wireless network. With Encrypted Key Exchange (EKE) [7], the

TLD and the laptop can leverage m as a weak secret to establish a session

key. The session key can protect the laptop’s subsequent file decryption

key request. Instead of using m to establish a key which is used to protect

the derivation of a different key, we would like a protocol that allows the

laptop with knowledge of m to successfully acquire a file decryption key with

less communication and computation overhead. Since a new m is randomly

generated for each run of the protocol, we can use a more efficient protocol.

With blind-signatures [22], a laptop can store a secret k and use a TLD

signature (kd mod N) as a decryption key, without revealing either value

to the TLD or an eavesdropper. If the signature request is concealed using

symmetric encryption with m as the key, the laptop with the correct m can

derive the key in a single round of communication over the wireless channel.

Provided symmetric encryption functions as a Pseudo-Random Permutation

(PRP), a device with the wrong m (a device outside of the room) will receive

seemingly random output from the TLD.

In the remainder of this section, we describe the key derivation protocol,

how the laptop first associates a key with a trusted location, and an analysis

of our protocol.

3.3.1 Home Key Derivation (HKD)

The HKD protocol consists of 4 main steps: initialization, input hiding, TLD

calculations, and key recovery. During initialization, the laptop verifies it

is interacting with a known TLD.3 At the same time, the TLD generates

random location-specific information (m) for use during this instance of

the protocol and transmits it using the constrained channel. During input

hiding, the laptop multiplies a value stored on the laptop (k) with a random

number to generate a blinded request and uses m to encrypt the blinded

value. The TLD’s calculations include using m to decrypt the ciphertext

and recover the laptop’s blinded message, signing the value, and returning

the result to the laptop. To recover the key needed to decrypt sensitive files

3Section 3.3.2 discusses how the laptop first learns the appropriate TLD and public
key for a trusted location.
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(a signature on k), the laptop unblinds the signature. Figure 3.2 contains

a summary of the HKD protocol. The goal of the protocol is to ensure

that only a device with knowledge of m can successfully retrieve the correct

signed value from the TLD, without revealing the laptop’s long-term value k

or a signature on k. If a client uses an incorrect m (the key for the cipher),

the decryption at the TLD will produce the wrong value and result in a

different signature.
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Initialization When the protocol starts, the TLD sends its RSA public

key (see Step 1 in Figure 3.2 where N is the RSA modulus and e is the

public exponent). At this time, the laptop verifies it is talking to a known

TLD by checking metadata stored with the encrypted sensitive files. If

this TLD is unknown, the laptop considers this an untrusted location and

stops key derivation (see Step 2). At the same time, the TLD randomly

generates the location-specific information m of length ℓ and transmits it

over the constrained channel (see Steps 3 & 4). Since the constrained channel

provides a slow rate of transfer, ℓ is 20 to 30 bits to reduce the transmission

time to a few seconds. Note that here we use infrared as a constrained

channel, but any medium that allows the TLD to confine the transmission

of m to the physical room will work.

Input Hiding After receiving m, the laptop uses a random number R to

blind the laptop’s long term secret k, and uses m to encrypt the result in

Steps 5 to 7. Here, R is a random number relatively prime to N . Blinding the

value hides k and temporarily conceals m. Blinding with the random value

Re prevents the TLD (or any device with knowledge of m) from recovering

k from Re k mod N . Blinding also ensures that the value encrypted is

different for each protocol run. This prevents an entity outside of the room

from intercepting c and recovering m from a brute-force attack. When

testing a potential key for the cipher, the output of decryption appears as

a random value and an attacker cannot verify if the revealed value matches

the laptop’s original message, thus verifying the correctness of a guess of m.

In Step 7, an implementer must select a cipher such that a failed decryption

does not leak information about m. If the size of the blinded value is a

multiple of the cipher’s block size, Electronic Code Book (ECB) mode is

sufficient. However, the addition of deterministic padding to the plaintext

would allow an attacker to recover m based on c (e.g., if padding is a series

of 0s the attacker will try different values of m until decryption results in a

plaintext ending in 0s). If the length of the blinded value is not a multiple

of the cipher block size, a stream cipher or ciphertext stealing can encrypt

the blinded value such that no predictable plaintext is used.
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TLD Calculations After receiving c (Step 8), the TLD uses the correct m

to decrypt the message (Step 9). If c was generated with m, the TLD has a

copy of Re k mod N (or whatever the laptop sent). If c was generated with

a different key, the TLD will have a pseudo-random value that differs from

the laptop’s original input with high probability. After using the private

exponent d to complete the blind signature, the TLD returns the result to

the laptop as σ (Steps 10–11). At this point, m is no longer location-

specific information. An attacker can take c and σ and recover m by

finding the x such that Decryptx{c} == σe mod N . However, learning

this m is useless since the TLD uses a new random m for each run of the

protocol and blinding conceals k and kd.

Key Recovery Once the laptop has the TLD’s response (σ from Step 11),

the laptop will use R−1 mod N to recover the file decryption key/signature

(kd mod N) from the TLD’s response. Provided the laptop and TLD were

using the same value for m, the laptop will now possess a deterministic

signature on k (static across time) which it can use as a decryption key. If

the laptop used incorrect location-specific information (mLaptop 6= mTLD),

the end result will contain a signature on a pseudo-random value—the TLD

signed a different value than the laptop sent—that will fail to decrypt the

sensitive files.

In the remainder of this section, we discuss how our protocol allows TLD

identification with zero user effort and why our protocol is secure against an

OT.

3.3.2 Trusted Location Designation

Before using HKD, a laptop must acquire the correct public key (N, e) as-

sociated with a trusted location. Given the attacker is unable to send or

receive information on the constrained channel, learning the correct pub-

lic key for a trusted location requires zero user effort. When designating

a location as a trusted location, the laptop generates a random 128 bit or

larger k. After performing HKD with the new k and a potential public key,
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the laptop can verify if the device which controls the constrained channel

used the public key the laptop received over the wireless channel. Given an

OT is unable to access the constrained channel, this verification ensures the

TLD—which controls the constrained channel—has the public key the lap-

top received. Once the laptop knows it is interacting with the TLD with the

correct public key, the laptop saves k and the public key (N, e) as metadata

with the encrypted sensitive files so future runs of HKD can access all of the

necessary data. All a user has to do during designation of a new location

is to recover the location-independent key (see Section 3.5) so the sensitive

files can be decrypted using HKD or the location-independent mechanism.

Section 3.6.3 has more details on how we manage sensitive files encrypted

under multiple keys.

After a sample run, the laptop can check if it has the correct public

key by verifying the signature it received from the potential TLD. If the

signature is valid, there is a 1− 2−ℓ chance that the public key used is the

correct public key for this trusted location. There is a small probability

(2−ℓ) an attacker impersonated the TLD and was able to guess m. With

a correct guess of m, the attacker could correctly decrypt c and produce a

valid signature for the claimed public key. For a stronger guarantee, the

laptop could run HKD multiple times before accepting N, e. Given m is

randomly generated independently for each run of the protocol, the laptop

will detect an attack after n runs of the protocol with probability 1− 2−nℓ.

3.3.3 Security Analysis

In this section, we discuss how HKD prevents an attacker from recovering kd

mod N (the value used as the file decryption key). Provided RSA is secure,

blind signatures conceal the original message [22], m and R are random,

and the block cipher used is a good pseudo-random permutation, an OT at-

tempting to discover kd mod N will be unsuccessful. Section 3.3.2 already

discussed why an attacker is unable to pose as a TLD during setup and

generate kd mod N once in possession of the laptop (if the impersonation

was successful, the attacker would know the private key needed to generate
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the signature). The remainder of this section discusses how the key remains

secure when the laptop is still in the user’s possession and after the OT has

stolen the laptop.

While the user still has possession of the laptop, an attacker can eaves-

drop on HKD to try and recover the key from messages from multiple pro-

tocol runs, or try to directly run the protocol with the TLD. After eaves-

dropping on one run of the protocol, an eavesdropper will have a blinded

message (Re
1k) and a blind signature (R1k

d). An attacker that could recover

k or kd from these messages would be able to defeat blind signatures (some-

thing infeasible assuming blind signatures conceal the original message and

the attacker lacks the randomly generated R values). After eavesdropping

on n protocol runs, the attacker will have n messages (Re
1k, Re

2k, ..., Re
nk)

and n signatures (R1k
d, R2k

d, ..., Rnkd). Even with n pairs, the attacker is

still unable to recover k or kd given each Ri is random and the number of

unknowns matches the number of equations. Without knowledge of k, direct

interaction with the TLD provides little information to the attacker. As we

discuss in the next paragraph, it is also infeasible to retrieve the desired

signature without knowledge of the current m.

With possession of the laptop, an attacker will know k and attempt to

recover kd mod N by calculating the signature, deriving the value based

on previously recorded messages, or via interacting with the TLD. If an

attacker were able to generate kd mod N without knowledge of d (or the

factors of N) the attacker can compromise RSA (something infeasible as-

suming RSA is secure). An attacker can try to recover kd using k and

data from previously recorded runs of the protocol (e.g., the n pairs of

messages (Re
1k, Re

2k, ..., Re
nk) and signatures (R1k

d, R2k
d, ..., Rnkd)). Now,

the attacker can recover the various Re
i by multiplying a message with k−1

mod N . However, the attacker is unable to isolate kd from the signatures.

The RSA assumption dictates that given N and Re
i (the values an attacker

has) it is infeasible to recover Ri (the value the attacker needs). As such,

the attacker needs a different approach to learn kd.

If an attacker can submit k to the TLD concealed with the correct m,

the attacker can recover kd and decrypt the user’s sensitive files. However,
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we assume an OT is unable to access the constrained channel and thus lacks

knowledge of m. Instead, the attacker can try to guess m and interact with

the TLD by itself or intercept communication between a legitimate user

and the TLD to recover the current m. On her own, the attacker has a 2−ℓ

chance of guessing the correct m for a given run of the protocol. A geometric

distribution describes the probability of success after x attempts (x − 1

failures followed by one success). As such, an attacker will need 2ℓ attempts

on average to successfully guess m. To make the attack less feasible, the TLD

can rate limit requests, forcing an attacker to invest more time to perform

the large number of attempts. If an attacker wants to leverage information

from a legitimate run of HKD, the attacker must intercept the first message

and try to determine the current m which produces the other user’s blinded

message Re
OkO. However, the block cipher and the random selection of RO

prevent the attacker from verifying if the guess for m was correct. Given the

randomness of Re
O and the pseudo-randomness of the cipher, the majority

of decryptions look like potential legitimate messages. As such, interception

of cO provides little help to an attacker trying to recover the current m.

After the TLD responds, the attacker can recover the last m from cO and

σO, but once the TLD responds it will use a different m for the next run of

the protocol.

Without access to the constrained channel, an attacker is unable to re-

cover the m needed to interact with the TLD and will be unable to recover

the signature needed to decrypt the user’s sensitive files. The best an at-

tacker can do is recover m after the TLD responds. However, at that time

the TLD will expect a different m for the next run of the protocol.

3.4 Corporate User Scenario

In the corporate setting, an OT is able to access the constrained channel. If

HKD was used, an OT could recover file decryption keys for stolen laptops.

The company PKI and an administrator maintained list of company laptops

allow us to design a protocol such that legitimate users can access sensitive

files on a laptop with zero user effort, but an OT in possession of the laptop is
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unable to access the same data. In the remainder of this section, we discuss

why the HKD fails to work in the corporate settings, how the Corporate

Key Derivation (CKD) works, and why CKD is secure.

With access to the office, a malicious party can receive or send data

on the constrained channel and circumvent any security provided by HKD.

With the ability to receive data from the constrained channel, an attacker

could return to the office after stealing a laptop and use the TLD to au-

tomatically derive the file decryption key. With the ability to send on the

constrained channel, an OT could pose as a TLD during initial MULE setup,

trick a laptop into deriving a file decryption key based on the attacker’s RSA

key pair, and generate the file decryption key once in possession of the lap-

top.

The Corporate Key Derivation (CKD) must authenticate the TLD, cease

to work once the laptop is reported stolen, and only succeed when the lap-

top has access to the constrained channel. With a company PKI/trusted

company public key, TLDs possess authority signed certificates to identify

themselves as legitimate. A TLD certificate and Transport Layer Security

(TLS) [30] can prevent an attacker from spoofing the TLD or eavesdrop-

ping on other devices’ communication with the TLD. However, execution of

HKD over TLS is insufficient, because an OT can steal a laptop, return to

the office, and acquire the file decryption key. The TLD could authenticate

laptops and only perform HKD for laptops not yet reported stolen. How-

ever, this means significant administrative overhead with per-laptop secrets

on the TLD, or the addition of laptops to the company PKI and the main-

tenance of a Certificate Revocation List (CRL) to identify stolen laptops.

Instead, the TLD uses the laptop’s long-term secret and a company assigned

laptop identifier (without any authentication the laptop is the one it claims

to be) as input during key derivation, and refuses to derive keys for laptops

that report an identifier not in the company whitelist (or quits if the laptop

is present in a blacklist). The TLD uses a keyed hash/Message Authentica-

tion Code (MAC) as an efficient way to generate an output given a laptop

secret and ID pair, without leaking any information about the key used in

the MAC. To ensure derivation only succeeds for devices in the trusted lo-
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cation, the laptop xors its long-term secret with the location specific m, and

the TLD xors m with the laptop’s input. If a laptop uses an m that differs

by one or more bits, the TLD will use the wrong input to the MAC and

fail to derive the correct key. Encryption/decryption of the input using m

as the key would provide the same results as xor, but requires additional

computation. The Corporate Key Derivation (CKD) can protect sensitive

data from a laptop thief, provided the laptop is reported stolen before an

OT can enter the corporate trusted location.

In the remainder of this section, we describe the CKD protocol and

discuss why it is secure. Trusted location designation within CKD is similar

to designation within HKD, except the laptop can verify the public key for

the TLD via the corporate PKI or a public key distributed manually (e.g.,

IT personnel installs it with other software).

3.4.1 Corporate Key Derivation (CKD)

In the CKD protocol, the TLD uses TLS to prevent attackers from posing as

the TLD or interfering during legitimate key derivation, xors an input with

m to implicitly check if the other device is in the trusted location, and uses a

MAC to derive keys. Figure 3.3 contains the various steps involved in CKD.

The protocol is divided into three main steps: initialization, application of

m, and TLD calculations.
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Initialization The laptop initiates a TLS connection with the TLD and

uses locally stored certificates or public keys to verify the TLD. At the

same time, the TLD generates a random value to use as location-specific

information and transmits it over the constrained channel.

Application of m The laptop xors the location-specific information with

its long-term secret (k) as part of the implicit check that the laptop is in

the trusted location. The laptop sends the result of the xor operation and

the laptop’s ID to the TLD.

TLD Calculations The TLD performs two operations to ensure only

laptops with access to the constrained channel that are on the company

whitelist acquire decryption keys. The TLD xors the received value with

m to recover k and verifies the provided ID is in the whitelist. Provided

the ID is in the whitelist, the TLD uses the TLD key (KTLD) to generate

the MAC of the laptop ID concatenated with k. If the laptop is outside

of the room and uses the wrong m, the TLD will use the wrong k as in-

put to the MAC. With the wrong input, the output will fail to decrypt

sensitive files. If the whitelist indicates the laptop is stolen (i.e., the ID

is absent from the list), the TLD quits the current run of CKD. With a

MAC, the TLD can use the same secret (KTLD) to securely generate dif-

ferent outputs for different IDs. For example, if laptop ID1 is stolen, it

is infeasible for an attacker to recover MACKTLD
(ID1||x) when posing as

ID2 (i.e., a secure MAC ensures the attacker is unable to find y such that

MACKTLD
(ID2||y) == MACKTLD

(ID1||x)).

In Section 3.4.2, we discuss how secrecy of k and the use of a whitelist of

valid IDs ensures attackers are unable to use the CKD to recover the keys

needed to access sensitive files on a stolen laptop.

3.4.2 Security Analysis

The security of the laptop’s decryption key KIDL
relies on the security of

TLS, the secrecy of the laptop’s long-term secret before the laptop is stolen,

and the timely update of the whitelist after the laptop is stolen. We assume
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TLS is secure and laptops are able to correctly identify the TLD based

on secure distribution of public keys (a company CA key or a copy of the

certificate for the TLD). As such we only consider how an attacker can

attack the CKD to recover KIDL
before or after stealing the laptop and how

tunneling of m can cause the decryption of sensitive files while the laptop is

still in the legitimate user’s possession.

Before the laptop is stolen, an attacker is unable to recover KIDL
because

it lacks knowledge of the long-term secret k. Given TLS authenticates the

TLD, an attacker is unable to impersonate the TLD and trick the laptop into

sending k to the attacker. At this time, an attacker can pose as the laptop

and interact with the TLD while using the laptop’s ID. However, without

knowledge of k, the attacker is unable to know what inputs will generate

the correct output from the TLD. Without the encrypted files, the attacker

will be unable to test a potential key and verify the guess was correct. The

attacker can collect a large set of potential keys by sending a large number

of requests to the TLD. However, k is a long sequence of bits (i.e., 128 bits

or more) randomly generated during assignment of the office as a trusted

location. The chance of an attacker correctly guessing k and thus retrieving

the key from the TLD while the user still has possession of the laptop is

negligible.

Once the laptop is stolen, the user will report the theft to the company’s

IT department which will consequently remove the laptop’s ID (IDL) from

the whitelist (or add IDL to a blacklist). Even though the attacker now

knows k and can interact with the TLD, the MAC function and the secrecy of

KTLD ensure the attacker will be unable to acquire the key needed to access

the sensitive files. Once the IDL is removed from the whitelist, an attacker

will be unable to retrieve values from the TLD that are derived using IDL.

To learn KIDL
, the attacker can recover KTLD and derive the key itself or

find different inputs ID2 and k2 which, when sent to the TLD, produce the

same output. Provided the TLD is securely locked up in a physically guarded

room and lacks any software vulnerabilities, the only way to recover KTLD

is to send inputs to the TLD and analyze the responses to recover KTLD.

Provided the MAC function used is secure, this type of attack is infeasible.
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Next an attacker could try to find a still legitimate identifier (ID2) and

an input (k2), such that MACKTLD
(IDL||k) == MACKTLD

(ID2||k2). An

attacker with the ability to discover such an ID2, k2 pair would be able

to perform selective forgery of the MAC function. Assuming the MAC

function is secure, selective forgery is infeasible. The only way an attacker

can successfully acquire KIDL
is to steal the laptop and return to the trusted

location before the theft is reported.

An attacker can cause a laptop still in the legitimate user’s possession,

but outside of a trusted location, to derive the correct key with CKD. Xoring

k with the shorter location-specific information ensures that only devices

with access to the constrained channel can successfully derive keys. If the

laptop xors k with the wrong value, the TLD will xor with m and produce

a different value as input to the MAC. If the laptop is unable to access the

constrained channel the chance of accidentally guessing the correct m is 2−ℓ.

However, an attacker can relay information from the constrained channel in

the trusted location to a location outside of the trusted location. Assuming

users quickly report stolen laptops to the company, this tunneling action

only accidentally reveals sensitive files to legitimate users still in possession

of the laptop; the TLD will refuse to derive the correct key for a reported

stolen laptop.

In this section, we have presented the CKD protocol and discussed why it

allows the secure automatic key derivation without per laptop secrets on the

TLD, provided the laptop is reported stolen before an attacker can access

the trusted location.

3.5 Location-Independent Key

Users outside of a trusted location may need access to sensitive data. Given

these accesses are infrequent, we assume users will accept the solution to

require some interaction and time to maintain a high level of security. When

outside of a trusted location, we use a secondary password – one different

than the user’s login password – to retrieve a location-independent key.

The simplest solution is to use the password itself as the key. However,
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an attacker can brute force a password in a matter of hours. Similar to

Bitlocker [63], we use the laptop’s TPM to bind [98] a key based on the

user’s password. Here we discuss how MULE uses the user’s password and

the TPM to protect the location-independent key.

During installation, MULE generates and encrypts the location-independ-

ent key (KInd) that is later un-bound whenever the user accesses sensitive

files outside of any trusted location. When the user first installs MULE, the

system generates a random KInd and takes as input from the user a sec-

ondary password. Next, MULE asks the TPM to generate a non-migratable

asymmetric key pair (K+
MULE , K−1

MULE) (i.e., the key is only accessible on

this TPM) and require the user’s secondary password to permit operations

which utilize the secret key. The TPM can encrypt KInd without requiring

the password. MULE stores the encrypted KInd in the user’s home directory

until the user tries to access protected files and HKD or CKD fail to derive a

key. At that time, MULE asks the user for the secondary password. MULE

passes the entered password and the encrypted copy of KInd to the TPM.

In response, the TPM will only permit calculations which use K−1
MULE and

decrypt and return KInd when given the correct secondary password.

Without the secondary password, an OT would need to invest a signifi-

cant amount of time (e.g., decades) to access user’s sensitive files. To access

files using the location-independent key, an OT needs to guess the password

or one of the keys. We assume KInd is at least a 128-bit randomly generated

value and the TPM uses a 2048 bit RSA private key so it is computationally

infeasible for attackers to guess either of the keys. If an OT tries to guess

the user’s secondary password, the TPM’s built-in guessing attack defenses

and the fact that only that TPM can use K−1
MULE and decrypt the data (i.e.,

the attack is non-parallelizable) will prevent the attacker from accessing the

files for several decades on average (see Section 3.7.2 for more details about

guessing attacks against the TPM we use in our implementation).
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3.6 Implementation

Our implementation of MULE runs on a HP 6730b with a 2.4 GHz Intel

Core 2 Duo processor and 2GB of RAM running Ubuntu 2.6.28 that uses

EncFS4 to store sensitive data as encrypted filesystems. For a TLD, we use

a Dell Optiplex 755 with a 3.2 GHz Intel Core 2 Duo processor with 4GB

of RAM connected to a Universal Bit Whacker5 with an IR LED (see Fig-

ure 3.4(a)). We use OpenSSL for all of the cryptography in the protocol. We

use AES with a 128 bit key (m prepended to 0s) as a cipher for HKD. HKD

signature generation uses 2048-bit RSA with TLD side blinding to prevent

timing attacks [10]. We use HMAC with SHA1 as the MAC in CKD. TLS in

CKD uses ephemeral Diffie-Hellman with 2048-bit RSA authentication dur-

ing setup with AES256 and SHA1 to protect communication. We use video

for Linux two (V4L2) to directly capture frames from the laptop’s webcam-

era. As a trusted location, we attach the IR transmitter to the underside of

a bookshelf on a desk, pointing towards the back of the desk (see Figure 3.4

(b)). In this setup, the laptop can only see the LED (i.e., be in the trusted

location) while the laptop is open and on the desk. In the remainder of this

section, we discuss how our implementation of MULE transmits data over

the IR channel, manages encrypted copies of sensitive files under multiple

keys, provides automatic access to encrypted files, and protects users who

forget to close sensitive files.

3.6.1 Transmission of Data Over the IR Channel

Our constrained channel uses a simple on/off encoding with two frames per

bit (i.e., LED brightness above a threshold for 2 consecutive frames means

1). The laptop performs 3 steps to capture a message over the constrained

channel: locate the position of the LED, tell the TLD to begin transmission,

and decode the message. When the TLD is not transmitting a message, the

LED repeatedly transmits the sequence 1010 to help the laptop determine

the position of the LED. Once the camera is on, the laptop records six frames

4http://www.arg0.net/encfs
5http://www.schmalzhaus.com/UBW/index.html

http://www.arg0.net/encfs
http://www.schmalzhaus.com/UBW/index.html
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(a) IR transmitter (b) An Example Trusted
Location

Figure 3.4: The IR Transmission Device and the Desk Setup as a Trusted
Location.

and looks for pixels that follow an alternating on-on-off-off pattern. Any

pixels that match the pattern are considered the LED and are used to build

a mask such that any other pixels are ignored. With the mask determined,

the laptop tells the TLD to begin transmission. The TLD generates a 20 bit

random sequence and prepends 0101 as the header. The laptop records the

output from the masked images (i.e., ignoring any non-LED pixels), looking

for the 0101 start sequence followed by 20 bits for m and quitting once the

LED returns to transmitting 1010.

3.6.2 Location Independent Key Implementation

Our laptop includes an Infineon SLB 9635 TT v1.2 TPM which allows our

implementation to protect the RSA decryption key with the user’s pass-

word such that a party needs that TPM and the password to decrypt the

location-independent key. Our implementation uses the TCG Software Stack

(TrouSerS)6 to interact with the TPM and our own code to manage the en-

crypted location-independent key (KInd).

6http://trousers.sourceforge.net

http://trousers.sourceforge.net
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3.6.3 Multiple Keys & Encrypted Filesystems

In MULE, a single encrypted filesystem is protected under the location-

independent key (KInd) and at least one location-dependent key

(KLoc1 , KLoc2 , ...). Knowing one of the keys should grant access, but the

different keys produce different cipher text (thus different values). Storing

multiple copies of the filesystem, each encrypted under a different key, wastes

space and can lead to outdated information when one copy is changed and

the keys needed to access the other copies are unknown. Our approach is to

generate a random filesystem key (KFS) to encrypt the filesystem. MULE

uses OpenSSL to encrypt copies of KFS under the location-independent key

and any relevant location-dependent keys (i.e., {KFS}KInd
, {KFS}KLoc1

,

{KFS}KLoc2
, ...). Once MULE acquires any of the keys, it can decrypt KFS

and mount the sensitive files using EncFS. MULE also stores any location

relevant information (the public key for HKD, the certificate for CKD, and

various long-term secrets) with each encrypted key to simplify key derivation

(e.g., identify the TLD needed to derive the key to decrypt KFS).

3.6.4 Encrypted Filesystem Management

One of the major goals in this work is to reduce user overhead associated

with accessing encrypted files. This includes both mounting the encrypted

filesystem when the user tries to access sensitive files and unmounting the

filesystem to ensure no sensitive information is leaked when the laptop is

lost.

3.6.4.1 Mounting the Filesystem

To make accessing the encrypted filesystem unobtrusive, we replace the

folder that contains the decrypted files (i.e., the mount point of the en-

crypted filesystem) with a MULE script. When a user double clicks on the

“folder”, our script runs, generates a key for EncFS, overwrites the script

with the mounted filesystem, and opens the filesystem in a new window.

When using a terminal, a user must execute the “folder” rather than sim-

ply change directories (i.e., “cd ∼/; ./sensitiveFolder” rather than“cd
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∼/sensitiveFolder”).

3.6.4.2 Unmounting the Filesystem

To protect data, we need to ensure that the encrypted filesystem is un-

mounted before an OT can steal the laptop. If the encrypted filesystem is

left mounted when the laptop is put to sleep, an OT could steal the lap-

top, wake up the system, and access the files without having to discover a

key. We could leave unmounting the filesystem up to the user. However,

it is dangerous to assume a user will remember to unmount a filesystem

that is automatically mounted. To prevent leaks, MULE installs a num-

ber of scripts to automatically unmount the filesystem, re-insert the scripts

which perform automatic mounting, and closes applications accessing sensi-

tive files when the user logs off, has been idle for too long, or the laptop goes

to sleep (e.g., the user closes the laptop and leaves the trusted area). We

recognize that automatically closing applications negatively impacts usabil-

ity. Fortunately, auto-save functionality will help reduce the loss of data due

to unexpected application termination. In addition to a script launched at

log-off, our implementation replaces the Gnome screen-saver with a copy of

our script and places a copy of the script in /usr/lib/pm-utils/sleep.d/.

Respectively, these scripts ensure that, once the screen-saver starts (i.e., the

user has been idle) or the machine sleeps or hibernates, the sensitive files

will be unmounted.

3.7 Evaluation

In this section, we evaluate the performance of our implementation. We first

discuss the amount of time from when a user clicks on an encrypted filesys-

tem and when the filesystem is mounted and displayed in a new window. We

also discuss how our implementation performs when an attacker attempts

to guess the secondary password associated with the location-independent

mechanism.
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Operation Home Corporate Loc-Ind
Average Delay in ms Delay in ms Delay in ms
(Standard Deviation) (σ) (σ) (σ)
Connect to TLD 10.40 140.72 11.71

(3.69) (8.6) (4.671)
Film Sequence 4329.85 4378.99 1671.19

(17.12) (42.781) (39.518)
Decode Sequence 30.24 41.01 —

(5.33) (8.58)
Calculations & Send Data 2.13 1.96 —

(0.05) (0.09)
TLD Operations 47.62 19.54 —

(15.54) (14.45)
Unblind Result 0.06 — —

(0.002)
Close TLS — 5.36 —

(3.48)
TPM-based Decryption — — 981.5

(5.01)
Decrypt KFS 9.57 9.66 9.63

(0.13) (0.18) (0.15)
Mount FS 10.92 10.90 11.1

(0.26) (0.30) (0.25)
Open Window 78.3 79.2 76.8

(2.5) (2.7) (2.3)
Total 4627.6 4803.6 2806.6

Table 3.1: Average Time and Standard Deviation for Various Operations for
HKD, CKD, and the Location Independent Mechanism (After HKD Fails)

3.7.1 Time to Mount an Encrypted FS

Table 3.1 contains the time in milliseconds for various operations associated

with each protocol. The values here represent the average and standard

deviation across 20 runs of each protocol. In the remainder of this section, we

discuss a number of results. The home protocol is faster than the corporate

protocol due to less computation. The location-independent mechanism

provides the fastest key recovery mechanism. The performance is slower

than expected for some operations because we are using a bash script to

call a number of different programs. Finally, our key derivation protocols
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require almost 5 seconds, but our constrained channel limits the potential

speedup.

When comparing the performance of the HKD and CKD protocols we

find that the home protocol is faster due to less computation. The ma-

jor differences are the result of the connection setup and the computation

performed by the TLD. HKD has a faster setup since TLS is not used. How-

ever, HKD requires more computation for the TLD because key derivation

involves signature generation. With our current setup, both the blind signa-

ture and TLS use 2048-bit RSA keys. However, with TLS the keys are used

to sign ephemeral Diffie-Hellman values which are then used to establish

a shared key. This connection setup takes roughly 141ms versus the 10ms

in HKD. During actual key derivation, HKD is slower since the TLD must

generate a signature as opposed to the symmetric operations associated with

TLS and the MAC-based key derivation.

There are two reasons why the location-independent mechanism is fastest:

the constrained channel has long setup times and a slow transmission rate

and we ignore the time associated with entering the password. For the

home and corporate protocols, the majority of the time associated with key

derivation is “Film Sequence” which includes video initialization, detecting

the LED, and capturing the sequence. Video initialization takes on average

1212.8 ms. Once the program is able to capture frames, the system records

11 frames—5 to allow for automatic brightness adjustment and 6 for LED

detection—in 466 ms. The system then takes on average 2706 ms to record

the next 60 frames or 30 bits at 2 bits/frame. After filming these frames

the next 30 ms are used to decode the 20 bit sequence m. In total, the

use of IR and a webcam as a constrained channel consumes almost 4.5 sec-

onds. In comparison, the location-independent mechanism spends 1208 ms

initializing video and 518 ms capturing frames to determine no LED exists

(1.7 of the total 2.8 seconds). During evaluation, our script read the sec-

ondary password from a file to remove human variability from the results.

However, spawning a password entry window and manually entering the

secondary password would add significant time to the location-independent

protocol that is highly dependent on the user’s ability to quickly remember
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and type in the secondary password.

By using a bash script to call a number of separate programs some oper-

ations take longer than expected. Specifically, the script calls our programs

which perform the home or corporate protocol, our TPM-based decryption

program if automatic key derivation fails, the OpenSSL command line tool

to decrypt KFS , EncFS to mount the filesystem, and the file browser Nau-

tilius to open a window with the mounted filesystem. As a result, a number

of generally fast operations contribute considerable overhead. For example,

decrypting KFS requires a single AES decryption, but takes almost 10 ms

in our current implementation.

Overall, the automatic key derivation schemes can provide access to files

in less than 5 seconds. This does seem like an exceptionally long time, but

is only incurred during the first access to a set of sensitive files. Once the

files are mounted, the only additional overhead is a result of using EncFS.

The majority of that time is associated with receiving the location-specific

information. If we were to use a different constrained channel or use an IR

receiver rather than a webcam, we could increase the transmission rate and

speed up the protocol while maintaining the same security level. However,

these other options require additional hardware for the laptop, a requirement

that contradicts some of our initial design goals.

3.7.2 Attacks on the Location-Independent Password

For the location-independent mechanism to remain secure, the TPM must

implement some type of defense against guessing the password. Prior work

indicates that only some TPMs have such a defense [80] so we want to eval-

uate what defenses are present on the Infineon TPM. To test the defenses,

we send a series of decryption requests to the TPM with the wrong pass-

word and measured how long each guess takes. We also periodically send a

correct password to determine how that impacts the defense.

Our test finds that on average testing a wrong password requires 626ms.

After a single wrong password, the TPM enters a lockout period where it re-

fuses to respond to even the correct password for more than 2 minutes. Even
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after removing the battery and power from the laptop, the defense continues

to ignore requests. This represents positives and negatives with respect to

MULE. With such strong TPM defenses, attacking a limited entropy sec-

ondary password will take a long time. For example, consider an attacker

trying to guess the password. An 8 character user-selected password has on

average 24 bits of entropy [13]. Without the TPM, a modern computer that

can perform half a million guesses a second (219) would take 223 guesses on

average or 24 seconds (less than one minute) to recover the password. With

the Infineon TPM, an attacker can only perform roughly one guess every

27 seconds and requires roughly 230 seconds or ≈ 34 years to discover the

secondary password. However, these defenses will also impede a user who

has trouble recalling a password or accidentally mistypes a password.

3.8 Discussion

If we use a non-migratable binding key on the TPM to encrypt a file de-

cryption key, the current TPM is the only TPM that can access the key. If

this TPM were to fail, the user would be unable to access files outside of

trusted locations. Users should back up files in case of laptop loss in a way

that does not rely on the laptop or the laptop’s TPM. With a backup, the

user can copy sensitive files to a new laptop and use the new TPM and a

new location-independent key.

For both HKD and CKD, TLD secrets are needed to derive keys. To

ensure continued operation of the location-based protocols, users or company

IT personnel could copy the secrets onto some other medium. If a TLD

ceases to function, users could copy the secrets to a new TLD. Home users

could simply store the TLD secrets on a USB drive in the trusted location.7

IT personnel could store the data in a company safe behind locked doors so

physical security could prevent unwanted access.

7Without access to the location, an OT is unable to access the contents of the USB
drive.
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3.9 Summary

Users and corporate IT personnel want security solutions that simply work

and want to avoid any schemes that require additional effort or adminis-

trative overhead. In this work, we designed Mobile User Location-specific

Encryption (MULE), a system that requires zero user effort and limited IT

administration in the common case to protect sensitive data on a laptop.

MULE remains secure when facing an Outsider Thief (OT), our model of

a laptop thief. Based on the observation that the majority of accesses to

sensitive documents occur while located in a trusted location, we designed

the Home Key Derivation and Corporate Key Derivation protocols which

allow a laptop to automatically derive the key needed to access sensitive les

based on the physical location of the laptop.

Our implementation of MULE on commodity provides automatic pro-

tection of sensitive les with limited delay during the initial access (i.e., less

than 5 seconds to automatically derive the key and decrypt the les). As

such, MULE represents scenario where verification of the physical receiver

(the laptop receiving location-specific information) helps improve security.



Chapter 4

Background on

Vehicle-to-Vehicle Networks

This thesis presents an approach to verify the physical source of information

in wireless vehicle-to-vehicle (V2V) networks. The purpose of this chapter

is to provide background information on vehicle-to-vehicle communication

and its application (Section 4.1) and the associated standards (Section 4.2).

These standards provide a good foundation for security, but still leave a

number of unfulfilled requirements. After discussing the requirements (Sec-

tion 4.3), we highlight proposed key management schemes meant to fulfill

these requirements in Section 4.4. We discuss additional related work in

Chapter 7.

4.1 Applications of Vehicle-to-Vehicle Communi-

cation

Vehicle-to-Vehicle communication can support safety applications, platoon-

ing, convenience applications, and commercial applications.

In 2009 over 33,000 people in the US were killed in vehicular acci-

dents [65] and transportation consumed 13.27 million barrels of fuel per day

on average [12]. Advanced technology packages with blind spot detection,

73



CHAPTER 4. BACKGROUND ON V2V NETWORKS 74

pre-collision braking, autonomous cruise control, and other capabilities rep-

resent one way to reduce fatalities and fuel consumption.1 However, these

optional packages require radar, lasers, or other expensive sensors, with costs

close to a thousand dollars, and are thus unavailable in economy vehicles.

Wireless vehicle-to-vehicle (V2V) communication represents an inexpensive

alternative to reduce the number of accidents via safety applications and re-

duce fuel consumption via platooning. Vehicular-ad-hoc-network (VANET)

safety applications leverage periodic wireless beacons from nearby vehicles

to alert the driver of dangerous situations. For example, a receiver can use

the position, speed, and acceleration of nearby vehicles from these beacons

to warn the driver of a vehicle in a blind spot or a vehicle further up the

road performing emergency braking [3]. Platooning leverages V2V com-

munication to allow a series of cars to semi-autonomously drive in a tight

formation on a highway, reducing accidents due to driver error and reducing

fuel consumption by as much as 15 to 20% [6, 103].

In addition to the aforementioned applications, Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) communication also support a number

of convenience and commercial applications [3]. However, for the remainder

of this work we will focus on verification of vehicles as senders for the afore-

mentioned platooning the safety applications. Convenience applications al-

low toll payments at high speeds, alert drivers of congestion, or help find

parking lots with available spaces. Commercial applications allow adver-

tisements for nearby services (e.g., nearby restaurants or prices at nearby

stations) or sharing of multimedia. These applications will initially drive

the adoption of V2V, given that safety and platooning applications will not

function properly when legacy vehicles (those without V2V capabilities) are

abundant. For example, if drivers rely on electronic warnings to detect ve-

hicles in blind spots, a drive may fail to notice the presence of a legacy

vehicle and cause an accident. The same is true for platooning since when

the lead vehicle changes lanes, the computers in following vehicles need to

know if the adjacent lane is clear before following the leader and chang-

1http://blog.ford.com/article_display.cfm?article_id=29188 or http://www.

jdpower.com/autos/articles/Adaptive-Cruise-Control/

http://blog.ford.com/article_display.cfm?article_id=29188
http://www.jdpower.com/autos/articles/Adaptive-Cruise-Control/
http://www.jdpower.com/autos/articles/Adaptive-Cruise-Control/
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ing lanes. However, the convenience and commercial applications can work

under sparse deployment (e.g., high speed toll payment only requires the

driver’s vehicle and the toll collection authority to have communication ca-

pabilities). In this work, we focus on the safety applications and platooning

since malicious activity against those applications can cause physical harm

to the drivers. The convenience and commercial applications also require

security (e.g., prevent an impostor from stealing money from a driver’s toll

account money or lying about parking status or gas prices to lure a vehi-

cle). However, authenticating the source of those messages (i.e., the toll

authority, a gas station, or parking lot) is much easier since that is a fixed

identity at a fixed location (Section 4.3 discusses the challenges associated

with key management for vehicles). As such, for the remainder of this work,

we limit our discussion of V2V applications to VANET safety applications

and platooning and their associated challenges.

4.2 Vehicle-to-Vehicle Standards

In this section, we describe the current state of standards as they pertain to

V2V safety and platooning applications.

In 2003, the FCC allocated the 5.850-5.925 GHz band for Dedicated

Short Range Communications (DSRC).2 DSRC allows wireless communi-

cation between vehicles’ On-Board Units (OBUs). The physical and lower

layer standards for this communication are defined in 802.11p [47]. Com-

pared to other 802.11 standards, 802.11p uses a set of parameters selected

to improve performance at vehicular speeds.

V2V safety applications leverage periodic broadcasts to collect infor-

mation about nearby vehicles. Every 100-300ms each OBU broadcasts a

beacon message which contains the OBU’s location, heading, speed, and

acceleration [91]. Receiving vehicles monitor these messages and alert the

driver if the information represents a hazardous situation [16] (e.g., the ve-

hicle is changing lanes but a message reports a vehicle in the blind spot).

Given erroneous messages can cause accidents or convince drivers to ig-

2http://wireless.fcc.gov/services/index.htm?job=about&id=dedicated_src

http://wireless.fcc.gov/services/index.htm?job=about&id=dedicated_src
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nore the system, an IEEE standard exists to secure those messages. IEEE

1609.2 [48] defines the format for an Elliptic Curve Digital Signature Al-

gorithm (ECDSA) signature appended to each message and the format for

periodically broadcasting the certificate that allows receivers to verify the

message. The addition of a Public Key Infrastructure (PKI) to identify valid

sources and digital signatures to detect modified messages is a good start

towards securing V2V. However, these steps only ensure that something

with knowledge of a certified key pair is the source of a message. There

is no guarantee the data in the message is correct or that a vehicle was

the source of the message. The goal of our work on verification for V2V

is to ensure that a vehicle created a message and to verify the content of

the message. In addition to challenges associated with verifying a vehicle

generated a message, broadcasting 10 signed messages a second that contain

a vehicle’s position enables tracking of drivers. Consumers are unlikely to

adopt V2V technology if it violates their privacy. In the next section, we

discuss a number of requirements that remain to ensure proper operation

and successful adoption of VANET.

At this time, vehicle platooning lacks a standard, but could operate

with minor modifications to the VANET standards. Platooning requires

the same information as the safety applications (location, speed, heading,

and acceleration). Different platooning systems have proven successful with

information from only neighboring vehicles in the platoon [89] or the lead

vehicle and the neighboring vehicles [73, 88, 104]. As such, the majority

of platoon operation can use the VANET messages to operate. However, a

new standard is needed to handle platoon formation, a vehicle joining, and a

vehicle leaving. Given the limited set of additional commands needed, only

the addition of a few bits are needed to provide platooning support. For the

remainder of this work, we assume platooning can operate with the same

set of beaconing messages as VANET safety applications and focus on how

to enable sender verification within that standard of operation.
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4.3 Vehicle-to-Vehicle Security Requirements

A PKI and digitally signing every message provide a foundation for securing

V2V applications. However, this fails to fulfill all of the properties needed

for V2V. In this section, we present a summary of the required properties

that were originally proposed in our prior work [96]. The properties are:

sender validity and message integrity, short-term linkability, long-term un-

linkability, and traceability. Prior work on securing VANETs relies on key

management and detection of misbehavior to determine when an authority

should revoke a key. In the next section, we discuss the proposed key man-

agement solutions and if each fulfills the properties. We discuss misbehavior

detection for V2V in Chapter 7.

Sender validity and message integrity. A recipient should be able to

verify that a message came from a valid OBU (i.e., a vehicle). In addition,

the recipient should be able to verify that the message has not been tampered

with in transit.

Sender validity and message integrity often are also referred to as au-

thenticity. Authenticity prevents malicious outsiders (e.g., an attacker with

just a laptop and a radio) from injecting bogus messages that might disrupt

the normal operation of the VANET. It is important to note that authen-

ticity does not imply correctness of the contents of the message; only that

a vehicle sent the message and that its contents were not modified.

Short-term linkability. When the same sender sends two or more mes-

sages within a small time frame, a recipient should be able to verify that

these messages came from the same sender. We would like to enforce short-

term linkability in a way such that a malicious OBU cannot launch a Sybil

attack [31] where a single OBU poses as multiple vehicles. Short-term link-

ability is a desirable property in several VANET applications [37] and nec-

essary for existing misbehavior detection proposals [36, 51, 75].

Short-term linkability does not hurt drivers’ privacy. Vehicles’ mobility

patterns are constrained by roads, other vehicles, and physical limits (e.g.,
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limits on braking, accelerating, or turning). If a vehicle is detected at some

location X at time t, then at t + δt (where δt represents a small time incre-

ment) the vehicle must be in the vicinity of location X. Therefore, being

able to track a vehicle in the short-term does not impact drivers’ privacy.

Long-term unlinkability. A basic privacy requirement is that a wireless

message does not reveal the driver’s name, the vehicle’s license plate number,

or other personally identifying information. This is easy to achieve if the

certificate authority (CA) does include such information in each certificate.

However, an anonymized certificate fails to protect a driver’s privacy. If

each vehicle is assigned a single unique certificate, observation of the same

certificate at different locations at different times allows a receiver to link

those messages and infer that the same vehicle has been at both places at

the times of the observations.

As such, a security solution for V2V should provide long-term unlinka-

bility. With long-term unlinkability, if the same OBU sends two messages

m and m′ more than δt time apart, then an adversary should not be able

to determine if the same sender generated both m and m′ based on message

contents and where the messages were received. An attacker may be able to

use RF fingerprinting [35] or additional information besides for the content

of the wireless messages to track a vehicle. However, preventing privacy

violations based on that information is outside the scope of this work.

Traceability. If an OBU misbehaves, an authority should be able to trace

the identity of the misbehaving OBU from a transcript of the messages sent.

The exact definition of misbehavior depends on the application and can be

detected using various techniques. We discuss misbehavior detection for

V2V in Chapter 7.

The exact response to misbehavior is a policy decision once an author-

ity has identified the misbehaving entity. Fines or other punishments can

help act as a deterrent, punishing the offender and convincing others not

to misbehave. Revocation (removal of the offending identity from the set of

valid participants) prevents future misbehavior from the same identity from
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impacting the V2V network. However, revoking a vehicle means it will be

a physical vehicle on the road that is unable to participate in V2V applica-

tions. This represents the same dangerous situation as a legacy vehicle.

4.4 Proposed Key Management Solutions

Prior work on fulfilling the aforementioned security properties has focused on

proper key management. We present each key management scheme based on

the technique used and discuss if the approach fulfills the properties listed in

Section 4.3. Specifically, we discuss prior techniques that use trusted hard-

ware, linked certificates, sharing of multiple keys, group signatures for every

message, group signatures to generate self-signed certificates, and group sig-

natures to request certificates. We present a summary of this discussion in

Table 4.1.

For this work, we assume that periodically changing keys and certificates

provides long-term unlinkability. Existing work has shown that randomly

changing keys fails to protect a driver’s privacy when facing an adversary

that can eavesdrop on the majority of a vehicle’s beacons [14, 34, 82]. Mix-

zones (areas where multiple vehicles simultaneously change keys) or silent

periods (short intervals without messages) are needed to achieve privacy

when facing attackers with large networks of monitoring hardware. However,

these approaches negatively impact the safety applications [41]. Currently,

there is no solution that provides privacy in all cases with minimal impact on

the applications. As such, we assume access to several keys and the ability

to periodically change keys is sufficient for long-term unlinkability.

This summary indicates that existing schemes are prohibitively expen-

sive, fail to fulfill all of the requirements, or sacrifice availability to fulfill

the requirements, assuming detection of key theft is fast and accurate. The

major issue is that none of the schemes verify that a cryptographic key cor-

responds to a physical vehicle. Instead, the solutions begin by assuming only

vehicles have access to keys and hardware protections or timely detection

and revocation ensure non-vehicle entities are unable to use the keys. As

such, further work is needed to provide an ideal security solution for V2V
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safety applications and platooning.
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4.4.1 Secure Hardware

Raya et al. [76] propose the use of tamper-proof hardware to secure VANETs.

An OBU’s secure hardware stores a large number of ECDSA key pairs and

certificates and computes the digital signatures for the OBU. This ensures

only the intended vehicle has access to the key. Besides for the tamper-proof

hardware, this approach functions like the IEEE standard. Provided key

extraction is infeasible, this approach fulfills the aforementioned properties.

The major drawback is that secure hardware is prohibitively expensive.

Sender validity is guaranteed since extraction of a vehicle’s private keys

is infeasible, limiting V2V participation to vehicles, assuming the tamper

proof hardware can verify it is still in a vehicle. Since only a single vehicle

knows the private key, the signature appended to each message provides

message integrity and traceability. The secure hardware controls when keys

are used, forcing the use of the same key over a short period of time for

short-term linkability. After some interval, the hardware uses a new key

to sign messages to prevent tracking and provide long-term unlinkability.

The authority keeps a record of the keys given to each vehicle and can

use the signature attached to a message to determine the original source of

the message (traceability). The downside to this approach is that secure

hardware is prohibitively expensive. For example, the current state of the

art tamper-proof hardware, the IBM 4764 [46], costs on the order of $9,000.

4.4.2 Linked Certificates

Haas et al. [40] suggests using linked certificates to allow efficient revocation

of certificates. This way quick detection and revocation ensures vehicles are

using keys correctly. Otherwise, the protocol works the same as the IEEE

standard. However, if a vehicle lacks the connectivity to download new

revocation information, a non-vehicle can use a stolen key—one that should

be revoked—to sign messages and violate sender validity.

To make revocation more efficient, all of a given vehicle’s certificates

contain an identifier that conditionally links the certificates. This way an

authority only has to disclose a small piece of information to revoke all of
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a vehicle’s keys. The authority uses a Pseudo-Random Number Generator

(PRNG) with a secret seed to produce a given vehicle’s identifiers. Before

a vehicle is revoked, the randomness of the PRNG ensures that receivers

are unable to tell if two certificates belong to the same vehicle. To revoke

a vehicle, the authority discloses the seed used to generate the identifiers.

With knowledge of this seed, receivers can identify all of the revoked vehicle’s

certificates.

Given that normal computing hardware is used, a vehicle can now use

any key at any time. To ensure short-term linkability and prevent Sybil at-

tacks, the authority provides a vehicle with certificates with non-overlapping

periods of validity; only one certificate is valid at a given time.

This approach provides the same properties as the trusted hardware

scheme at a much lower cost. ECDSA signatures in messages ensure in-

tegrity. Numerous non-overlapping certificates provide short-term and long-

term linkability. Changing to a new certificate (that the authority has not

revoked) prevents tracking. The authority keeps a mapping between vehi-

cles and certificates to trace misbehavior. The drawback with this scheme

is the need for connectivity to receive timely revocation information. If a

receiver has outdated revocation information, a malicious party may extract

keys from a vehicle and use those keys to pose as a vehicle (violating sender

validity).

4.4.3 Shared Keys

With shared keys, multiple vehicles are assigned the same certificates and

ECDSA key pairs [108]. This provides strong privacy properties and is the

only technique that prevents a malicious authority from violating drivers’

privacy [41]. However, it fails to provide any of the other properties.

When using shared keys, the authority assigns the same ECDSA key

pairs and certificates to multiple vehicles. The vehicles use those keys and

certificates to verify messages according to the IEEE standard. The author-

ity begins by generating a large pool of keys and certificates. Whenever,

a vehicle needs keys, the authority randomly selects a subset of the pool,
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gives a copy of those keys and certificates to the vehicle, and records what

keys were assigned to the vehicle. The authors do not suggest the use of

non-overlapping keys to limit when a given certificate is valid.

This approach provides the strongest privacy properties. Vehicles can

periodically change certificates to provide long-term unlinkability. Since

multiple vehicles own the same certificates, even an authority is unable to

track a vehicle’s movements. Both modification of messages and Sybil at-

tacks are possible. If a nearby vehicle knows the same key as a sender,

the two vehicles can impersonate each other to violate short-term linkability

and message integrity. With over-lapping certificates a single vehicle can use

multiple certificates at once to launch a Sybil attack. Finally, if a malicious

party ever extracts a key and tries to use it as a non-vehicle, the authority

must either revoke the key, possibly revoking keys for valid vehicles, or allow

the key to remain, violating sender validity.

4.4.4 Group Signatures

Group signatures are a cryptographic tool that allows members of a group

to anonymously sign a message. Boneh and Shacham proposed using group

signatures with verifier local revocation to secure V2V applications. Under

their approach, a vehicle signs every V2V message with a group signature.

To revoke a vehicle, the authority publishes a revocation token that allows

a receiver to de-anonymize the group signatures from the revoked vehicle.

This way quick detection and revocation ensures only vehicles are generating

messages. The approach provides strong privacy properties, but fails to

ensure sender validity or short term linkability.

A group signature is anonymous in that a receiver verifying a signature

knows a member of the group generated the signature, but is unable to

determine which member of the group generated the signature. A receiver

is only able to isolate a specific group member after the authority has revoked

that sender.

The anonymity of group signatures ensures long-term unlinkability. At

the same time, an authority is able to de-anonymize the group signature to
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trace misbehavior. In addition to requiring connectivity to distribute revo-

cation information (making sender validity a challenge), group signatures

fail to provide short-term linkability. Since a group signature only indicates

a message is from a group member, receivers are unable to link subsequent

messages back to the same vehicle over a short period of time.

4.4.5 Group Signature Signed Certificates

Calandriello et al. [15] proposed using group signatures to generate self-

signed certificates in VANETs. With this approach, a vehicle generates

its own ECDSA key pair and uses a group signature to identify that pair

as valid. This was designed to improve efficiency compared to a purely

group signature approach (group signature operations are over an order of

magnitude slower than ECDSA signatures). However, the scheme is unable

to provide more properties than the basic group signature based scheme.

Since only one vehicle knows the ECDSA key pair, receivers can now

link any messages signed by the private key back to that vehicle. How-

ever, the anonymity of the group signature allows a sender to craft many

certificates at the same time as part of a Sybil attack, violating short-term

unlinkability. Given the need for connectivity to revoke vehicles, periods

without connectivity permit attackers with stolen and revoked certificates

to produce beacons that appear valid.

4.4.6 Group Signatures to Request Certificates

We previously proposed using group signature as a way to request short-

lived certificates from an authority [96]. Once a vehicle’s key is revoked, the

authority will no longer provide a certificate in response to a request. This

fail-safe approach fulfills all of the security requirements, but suffers from a

lack of availability if a vehicle is unable to connect to the authority.

In this approach, a vehicle generates its own ECDSA key pair and uses

a group signature to anonymously request a certificate for that pair from

an authority. If the requester has not been revoked, the authority returns

a certificate that is valid for a short period of time. The vehicle uses the
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certificate and the corresponding ECDSA key pair to broadcast verifiable

messages. If the requester has been revoked, the authority refuses to return

a certificate. We also modified the group signature such that the authority

can detect multiple requests from the same group member within a short

window of time.

This approach provides all of the properties needed, but is too restrictive

and can negatively impact V2V performance if a connection to the authority

is not available. Since a single vehicle is limited to a single certificate at a

time, this approach provides sender validity, message integrity, and short-

term linkability. An attacker is unable to violate sender validity with a

stolen key since the authority can detect the theft and will refuse to return

a certificate for the revoked vehicle. The ability to anonymously acquire

new certificates for random ECDSA keys provides long-term unlinkability.

The authorities ability to de-anonymize group signatures allows tracing of

misbehavior. The drawback to using this approach is that vehicles require

connectivity to request new keys from the authority. If connectivity is not

available, vehicles will be unable to receive new certificates and unable to

send V2V messages. Downloading multiple keys at a time improves avail-

ability, but delays detection of key theft and violates sender validity.



Chapter 5

Using a Visual Channel to

Verify Senders in

Vehicle-to-Vehicle

Applications

For vehicle-to-vehicle safety and platooning applications to work (see Chap-

ter 7 for more details on the applications), a vehicle needs accurate informa-

tion about nearby vehicles. If the vehicle receives incorrect information due

to malevolence or a malfunctioning sensor, the technology may cause more

accidents than it prevents (e.g., a vehicle claims to be accelerating when in

reality it is braking, resulting in a rear end collision).

Existing work on securing V2V communication and verifying messages

(see Section 4.4) focuses on using a PKI and signed messages. However, a

PKI does not ensure that a message corresponds to a physical vehicle. This

is another scenario where the name of the wireless identity is irrelevant, es-

pecially since the certificates are anonymized to prevent privacy violations.

The name in the certificate is a random string. What a receiver needs to ver-

ify is that the messages accurately describe the physical world. A signature

and the certificate merely indicate that a party with knowledge of a not-yet-

87
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revoked private key pair generated a message; a vehicle can still broadcast

false information or some other transmitter that has extracted valid keys

can broadcast a message that is cryptographically valid. Only after such

attacks are detected and reported does a key management scheme provide

any mitigation by revoking the offending keys. In addition, revocation of

keys that have been misused requires connectivity to the authority, which

may be limited in a vehicular network.

In this chapter, we discuss how to verify that wireless messages accu-

rately describe the physical source of the message. Instead of the traditional

detect and response paradigm, our approach is to verify the correctness of

the information to prevent attacks. In addition to fulfilling the security

properties needed for V2V (see Section 4.3), we address two attacks where

malicious parties broadcast messages that inaccurately describe the physical

state of vehicles: ghost vehicles and impersonation attacks. A ghost vehicle

occurs when a malicious party claims there is a vehicle at some coordinates,

but there is no actual vehicle. A vehicle lying about its location or some

other transmitter (e.g., a laptop on the side of the road) claiming to be a

vehicle can create a ghost vehicle. Impersonation occurs when there is a ve-

hicle at some location, but another transmitter broadcasts a beacon claiming

the same location. By detecting these attacks, we also mitigate the threat

of Sybil attacks (one physical vehicle claiming to be multiple vehicles) [31].

Our solution leverages relatively inexpensive cameras1 in the front and

back of the vehicle to monitor the physical world and see nearby vehicles.

When a ghost vehicle attack occurs, the receiver can detect that no vehicle

exists at the claimed location, mitigating the attack by ignoring the associ-

ated messages. However, impersonation attacks are still possible with only a

camera and wireless messages. Specifically, another sender can still claim to

be that vehicle in view. As such, we need a way to verify the physical vehicle

is the source of the data. To achieve this, we leverage existing work on how

to use blinking LEDs on a vehicle and a receiver’s camera to establish a vi-

sual communication channel that also supports ranging and tracking [1, 81].

1These cameras may be standard in the near future (http://articles.latimes.com/
2010/dec/04/business/la-fi-autos-backup-camera-20101204).

http://articles.latimes.com/2010/dec/04/business/la-fi-autos-backup-camera-20101204
http://articles.latimes.com/2010/dec/04/business/la-fi-autos-backup-camera-20101204
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However, we still need to use the wireless channel because inexpensive cam-

eras and long-distance communication limit the bandwidth of the visual

channel. As such, we use the visual channel to help verify information sent

on the wireless channel. Specifically, the LEDs transmit a representation of

the sender’s certificate and are arranged in such a pattern that the receiver

can estimate the relative position of the sender. As such, receivers know

that: 1) a physical vehicle at that location is using a specific key pair, 2)

only messages containing that location correctly describe that sender, and

3) only messages digitally signed using the correct private key were crafted

by that vehicle. A malicious party can still broadcast false information (e.g.,

claim to be braking), but now receivers can attribute it to the correct ve-

hicle on the road. By preventing, rather than responding to the attacks,

our solution operates without requiring frequent connectivity to the author-

ity for key updates [96] or revocation [40, 8, 15]. In addition, verification

that a certificate corresponds to a vehicle, enforces short-term linkability,

and allows the authority to sign certificates with overlapping periods of va-

lidity. Under prior V2V security approaches, overlapping certificates allow

malicious parties to launch Sybil attacks. However, our approach mitigates

these attacks via detection. This means vehicles can use a certificate when-

ever they want. This added flexibility to when vehicles change keys can

help maintain privacy (long-term unlinkability) by using mix-zones [14, 34]

or any future proposals. This also means vehicles require fewer certificates

since the certificates will not simply expire while the vehicle is not in use.

Of course this solution has three significant drawbacks: the visual chan-

nel’s limited bandwidth requires vehicles to be in view for a long time to

be verified, the visual channel limits verification to vehicles in view, and a

verified sender can begin to broadcast false location information once out of

view. We present extensions to our system to address each of these issues

and analyze how they impact security and operation.

We simulate our solution and the various extensions under realistic net-

work and vehicular traffic conditions to determine if vehicles will be able to

verify enough senders to support VANET and platooning applications. We

specifically examine the verification range of vehicles. Verification range
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is the minimum distance between a receiver and a vehicle that has not been

verified. In other words, every vehicle within verification range has been

verified. Related work indicates that a verification range between 20 and

60 meters is necessary for VANET safety applications [39]. Our results in-

dicate that deployment of our solution provides sufficient verification range

to support the V2V applications.

5.1 Problem Definition

A V2V security solution must allow verification of messages while protecting

a driver’s privacy. Here we present a summary of the V2V security require-

ments from Section 4.3.

Sender Validity A vehicle generated a wireless message.

Message Integrity A wireless message was not modified.

Short-term Linkability A receiver can link a series of messages back to

an individual sender over a short period of time. This also means a single

vehicle is unable to pose as multiple senders at the same time.

Long-term Unlinkability Receivers are unable to determine if the same

vehicle generated 2 different messages broadcast at 2 locations at distant

times. Traceability An authority is able to determine which vehicle gen-

erated a message based on a transcript of the messages broadcast.

The goals of these properties is as follows. We must verify that a phys-

ical vehicle (sender validity) broadcast a series of wireless messages (short-

term linkability) that have not been modified by another party (message

integrity). At the same time, protection of drivers’ routes and endpoints

(long-term unlinkability) is needed for privacy and ultimately the adoption

by consumers. In addition to using the prior properties to detect false in-

formation, an authority should be able determine what vehicle broadcast a

message (traceability). Once the authority identifies a party which abuses

V2V communication, punishments can act as deterrents to prevent further

abuse.

Prior work has relied heavily on detection and revocation of invalid par-

ties to ensure messages correctly describe physical vehicles (see Section 4.4).
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These represent reactive solutions where only after an incident negatively

impacts V2V is anything done. This chapter focuses on how to proactively

verify that wireless data originated from and accurately describes a physical

vehicle at a specific location, preventing any type of negative impact from

false information. With this information verified, ghost vehicles and imper-

sonation attacks (i.e., messages that claim to be a specific vehicle on the

road, but are from some other source) are prevented.

In the remainder of this section, we describe the goals and capabilities of

an attacker that is trying to subvert safety or platooning applications and

state any assumptions we make about the system.

5.1.1 Attacker Model

An attacker’s goal is to subvert the performance of a VANET safety or

platooning applications by crafting messages with false information. Specif-

ically, the attacker wants a receiver to believe messages about vehicles that

do not exist (i.e., ghost vehicles) or messages that are impersonating a valid

vehicle (i.e., the attacker claims to be at the physical location of a victim

vehicle). This can result in the generation of false safety alerts (e.g., blind

spot alerts for vehicles that do not exist), erroneous platooning behavior

(e.g., the vehicle slowing down after receiving a braking message from an

impersonating vehicle), or other undesirable and possibly dangerous condi-

tions.

Attacker’s may also want to violate drivers’ privacy by eavesdropping on

wireless messages to track a vehicle. However, for this chapter, we assume

the ability to periodically change between different anonymous certificates

is sufficient to provide long-term unlinkability. See Section 4.4 for more

discussion on this topic.

An attacker can own a legitimate vehicle with all of the necessary wireless

equipment and keying material. An attacker can also build his own wireless

hardware and use keying material extracted from a vehicle. During an im-

personation attack, the attacker does not have the victim’s keying material.

Prior work has shown that once physical access is possible, the attacker can
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remotely control the vehicle [53]. Given full control of the victim’s vehi-

cle, the attacker could force the victim to broadcast arbitrary information,

making key theft unnecessary. As such, protecting the vehicle from physical

attackers and key theft is an important problem, but outside the scope of

this work.

The attacker has sufficient computing power to perform basic crypto-

graphic operations, but is unable to break different cryptographic primitives

in order to forge signatures.

Finally, only a small number of attackers will ever work together to

successfully launch an attack. We analyze how tolerance of more attackers

impacts the operation of our system later in this work.

5.1.2 Assumptions

We make some assumptions about general key management and the hard-

ware available to vehicles.

We assume the basic key distribution according to the IEEE standard [48]

such that each vehicle has a large number of keys and some corresponding

certificates. Unlike prior approaches [40, 96], these certificates can have

overlapping periods of validity, reducing the number of keys per vehicle and

the complexity of the CA’s role.

For VANET and platooning operation, vehicles have a wireless anten-

nae, processing unit, and some means to determine the vehicle’s current lo-

cation. VANET standards use IEEE 802.11p to facilitate vehicle-to-vehicle

communication. Platooning can also use this standard to facilitate wireless

communication. These vehicles also possess some type of processing unit

to generate and process messages. We can leverage this unit to perform

some computation in addition to craft and cryptographically sign or verify

packets. Vehicles must know their current location as part of VANET or

platooning operation. As such, each vehicle will have GPS and some dead

reckoning capabilities (or other means to determine location when GPS sig-

nals are lost).

In addition to the hardware for typical VANET or platooning systems,
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we assume vehicles have cameras and LEDs that can help verify messages in

addition to supporting other useful functions. The installation of cameras

can provide useful functionality in addition to supporting a visual communi-

cation channel. Rear facing cameras help prevent back-over accidents where

vehicles accidentally reverse over unseen people. Forward facing cameras

can be used to help increase visibility at night via night-vision and to help

detect pedestrians and alert drivers. Both cameras can also be used to detect

position in a lane, replacing the need for the installation of magnets on road-

ways for platooning [73]. We use LEDs as the source to complete the visual

channel we need to help verify which vehicle generated a message. Vehicles

are already starting to use LEDs to replace traditional incandescent bulbs,

given LEDs longer lifetime and higher efficiency. With expensive high-speed

cameras, existing LED headlight and taillights can be used to transmit in-

formation without distracting drivers by blinking lights at imperceptible

rates [1]. If inexpensive cameras are used, the blinking rate must be slower

to accommodate the cameras’ slower frame rates. As such, additional LEDs

that operate outside of the visible portion of the spectrum (e.g., IR LEDs)

are needed to prevent driver distraction. Manufacturers can add these LEDs

to the front and back of the vehicle at minimal cost.

5.2 Visual Vehicle Verification

The goal of visual vehicle verification is to allow a receiver to verify the cor-

rectness and physical source of a wireless V2V message as part of a VANET

or platooning application. We leverage both computer vision and cryptogra-

phy to associate a vehicle in video of the road with that vehicle’s messages.

Specifically, the sender uses lights on the vehicle to transmit a representa-

tion of its current certificate. Receivers use frames from the video to decode

the sender’s certificate information and to associate the cryptographic in-

formation with the physical vehicle in the visual frame. This cryptographic

information allows the receiver to associate digital signatures in messages

with that physical vehicle. This allows receivers to verify that a wireless

message originated from a specific physical vehicle on the road. The posi-
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tion and spacing of the lights in the frame also allows the receiver to estimate

the location of the sender, and verify that the claimed location matches the

actual location.

However, this approach has three drawbacks that we must also address:

limited bandwidth of the visual channel, line of sight verification limits the

range of the V2V applications, and verified vehicles can misbehave once out

of view. To address these drawbacks we propose broadcasting a shortened

hash on the visual channel, leveraging visually verified vehicles as witnesses

to report legitimate out-of-view senders, and expiring verification to prevent

already verified vehicles from claiming false information.

In the remainder of this section we discuss how a basic version of our

system works, provide a summary of the drawbacks to the approach, and

how each of our extensions alleviates those drawbacks. In the next section,

we provide an analysis to describe why our system is secure and to provide

guidance on setting important parameters.

5.2.1 Matching Wireless Messages to Vehicles in View

In the naive solution (i.e., without witnesses), communication over the wire-

less channel is unchanged. For VANET applications and platooning, each

vehicle periodically broadcasts signed messages that describe the physical

properties of the car (e.g., location, heading, speed, and acceleration) [16].

At a lower frequency, each vehicle also broadcasts its current certificate to

allow receivers to verify the validity of the signatures. Our protocol only

impacts how receivers verify the validity of a certificate. In addition to ver-

ifying the validity of the signature in the certificate, a receiver also verifies

that the source of the message is a vehicle with the corresponding certifi-

cate, at the location claimed in the message. The sender and receiver have

different tasks to facilitate this verification of the physical entity that corre-

sponds to the wireless message. The sender broadcasts its certificate on the

visual channel. The receiver uses the information from the visual channel to

associate a cryptographic key and a physical vehicle to a wireless message.

In addition to broadcasting information on the wireless channel, a sender
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Figure 5.1: Receiver’s State Diagram for the Verification of a Sender
(Untrusted State Removed for Clarity)

uses pairs of LEDs on the front and back of the vehicle to transmit the

certificate it is currently using on the visual channel. By using a set of LEDs

that are a standardized distance apart, receiving vehicles can use existing

visual ranging techniques to estimate the relative position of the sender [81].

The sender only uses the visual channel to transmit its current certificate

since the wireless channel is used to transmit the majority of VANET and

platooning information.

Receiver operation is the same as traditional VANET or platooning once

a sender has been visually verified. The steps taken to visually verify a sender

with our system help prevent ghost or impersonation attacks. Specifically, a

receiver maintains a database of potential senders (i.e., valid certificates) and

updates the state of a sender based on the transitions in Figure 5.1. During

verification, the sender transitions between six possible states: Unverified,

Visually Unverified, Presence Verified, Sequence Captured, Visu-

ally Verified, and Untrusted. The Untrusted state is the starting state

for any valid certificate and the default state if information is incorrect

or the receiver is unable to complete the task needed to transition to the

subsequent state in the verification process. Only once the sender reaches

the Visually Verified state will the receiver process the messages as valid

VANET or platooning messages.

Untrusted Any certificate that has been received and is valid is first con-

sidered as untrusted. To be valid a certificate must contain a valid signature

from the certificate authority and be not-yet expired. In traditional VANET

security models, a certificate that matches this criteria (and is not on a re-
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vocation list) is considered verified and any messages that are signed with

the corresponding private key are used in the VANET applications. How-

ever, at this time there is no way for the receiver to know if the certificate

corresponds to a valid vehicle on the road or is being abused by a malicious

party.

When checks in the latter state transitions fail or the receiver is unable

to complete the transitions (see subsequent paragraphs for descriptions of

the checks), the sender transitions back to this state. A naive approach

would be to discount a certificate associated with a failed check (i.e., an

indication of misbehavior) and consider the sender as invalid. However,

under that approach framing attacks could negatively impact operation.

For example, a malicious party could repeat a valid certificate, but craft

an invalid signature. The certificate will fail visual verification due to the

invalid signature (Unverified to Visually Unverified transition). Instead,

when one of these checks fail, we consider the certificate as untrusted, but

not definitively malicious.

Unverified After receiving a beacon that is broadcast with a certificate

(or matches a previously received certificate), the sender transitions to the

Unverified state. If a beacon arrives before the receiver has heard the cor-

responding certificate,2 the receiver simply discards the message and makes

no changes to the state of any sender. The receiver’s next step in the veri-

fication process is to check that the signature in the beacon can be verified

using the public key from the certificate. If the signature is invalid, the

sender transitions back to the Untrusted state.

Visually Unverified Once the receiver knows the claimed location of the

sender from the beacon and knows the owner of the corresponding key gen-

erated the message (i.e., the signature on the beacon is valid), the sender

is in the Visually Unverified state. The receiver’s next step in the ver-

ification process is to scan the visual field and determine if the sender’s

2Beacons without certificates include a hash of the corresponding certificate so receivers
can determine what cryptographic information is needed to verify the included signature.
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claimed location corresponds to any of the vehicles in view. If the vehicle

is outside of the receiver’s field of view (blocked by other vehicles, too far

away, or to the side), the sender remains in the Visually Unverified state

for one second. During this time, the receiver may acquire an updated lo-

cation claim from more recent beacons with valid signatures. Each time

this happens, the receiver will remain in the Visually Unverified state

and reset the timer until the claimed location is in view. Eventually, the

sender will exit radio range or the location will come into view. If the sender

exits radio range, the timer will expire and the sender will transition back

to Untrusted. Once the location is in view, the receiver can use ranging

capabilities [81] to confirm that a physical vehicle is at or near the claimed

location. If there is no vehicle at the location, the sender is Untrusted. If

a vehicle is at the claimed location, the receiver has verified the presence

of a sender, removing the possibility of a ghost vehicle attack. However,

an attacker may be launching an impersonation attack, thus there are more

steps to the verification process.

Presence Verified Once the receiver has verified a physical vehicle exists

at the claimed location on the road, the sender has reached the Presence

Verified state. The receiver’s next step is to track the vehicle at the location

to record the sequence from its blinking lights. If the sender drives out of

visual range (due to an occlusion, moving besides the receiver, or driving

too far away), the verification process fails and the sender returns to the

Untrusted state. Occlusions due to other traffic seem short lived on the

human time scale, but are several times longer than the time needed to

record the sequence when using the techniques from Section 5.2.2. As such,

we choose to restart the verification process once the occlusion has ended,

rather than attempt to accommodate the obstruction. Once the receiver has

completed filming the sequence, the sender transitions to the next state.

Sequence Captured A sender remains in the Sequence Captured state

for a very short period of time while the receiver compares the visually

received sequence to the certificate from the wireless channel. If the sequence
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and the certificate differ, this is an indication of an impersonation attack

and the sender is moved to the Untrusted state. If the sequence and the

certificate match, the receiver considers the sender as Visually Verified.

Visually Verified The final state in the verification process is the Visu-

ally Verified state. If a sender has reached this state, the receiver knows

that the physical vehicle in its field-of-view is currently using the certificate

from the wireless channel. The receiver also knows that any message that

contains a signature that can be verified using the public key from that

certificate was generated by that physical vehicle.

Our verification process ensures that the wireless V2V messages accu-

rately describe the vehicles nearby, by using a combination of techniques to

transmit data on the visual channel, track and range vehicles, and crypto-

graphically bind the vehicle in view to the wireless messages it produces.

However, this visual verification technique suffers from drawbacks and

vulnerabilities that negatively impact its performance and could allow ma-

licious parties to successfully perform an attack. As such, the next few sub-

sections describe these drawbacks and the extensions we propose to address

them.

5.2.2 Visual Broadcast of a Shortened Hash

Prior work on using the visual channel for V2V communication assumes high

speed cameras (100 fps or greater) to achieve high bandwidth communication

at long range (100m) [1]. However, when constrained to the slower cameras

with wider fields of view that are part of current cameras on vehicles (20

to 30 fps and 130 degree FoV), the effective bandwidth of the system is

much less. As such, rather than broadcasting the entire certificate, senders

can broadcast a shortened hash of the certificate to reduce the time needed

to broadcast the information. Receivers then hash the certificate from the

corresponding wireless messages and compare the first several bits of the

hash to the sequence from the visual channel. In Section 5.3.2, we discuss

how to select the minimum hash length to prevent attacks.
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5.2.3 Leveraging Witnesses to Verify Out-of-View Senders

Even if only a small amount of information is ever sent on the visual chan-

nel, visual verification still requires the sender to be in the receiver’s field of

view for some period of time. This limitation reduces the efficacy of safety

applications. However, if we remove the requirement of the visual verifi-

cation for vehicles past a certain range, impersonation attacks and ghost

vehicles are possible. Rather than giving up on strict verification for distant

vehicles, receivers can use senders in the Visually Verified state to act as

witnesses and help verify senders that are in the Visually Unverified state

and out-of-view.

This extension is the only part of our system that requires additional

communication on the wireless channel. To act as a witness, a vehicle for-

wards the hash of certificates for any senders that are currently in the Vi-

sually Verified state. By only forwarding senders that have been visually

verified, senders that behave properly help isolate any ghost or imperson-

ation attacks that do occur when W or malicious parties collude (Section 5.3

has more details).

Receivers have to be careful who they use as witnesses and how many

witnesses are needed before trusting a non-visually verified vehicle. For ex-

ample, a visually verified vehicle behaving maliciously could craft a ghost

vehicle or impersonate another sender by claiming one of its keys represents

a supposed vehicle out-of-view. If a trusted, but non-visually verified vehi-

cle is not valid, then using it as a witness is likely to lead to the acceptance

of more attacker controlled ghost or impersonation vehicles. Our solution

is to use only visually verified vehicles as witnesses and to require at least

a threshold number, W , of witnesses before a non-visually verified vehicle

is trusted. Figure 5.2 includes the additions to the sender state machine

to accommodate witness verified vehicles. Once W or more visually ver-

ified witnesses report a sender, the receiver transitions the sender to the

Trusted state. If that sender enters the receiver’s field-of-view, the sender

can move towards the Visually Verified state. However, while a sender is

in the Trusted or Trusted Presence states, a receiver will not consider
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Figure 5.2: Extended State Diagram to Handle Witnesses

the sender as a valid witness. If a vehicle fails the check between states (e.g.,

the claimed location enters view, but no vehicle is there), the sender tran-

sitions to the Untrusted state. When using this extended state diagram,

ghost or impersonation attacks are only possible if W or more real vehicles

are colluding to fool nearby receivers.

One advantage to this technique is that it allows a receiver to trust ve-

hicles that are on different segments of the road (e.g., on intersecting streets

or merging onto the highway). This is very important for VANET safety ap-

plications like intersection collision warning [3]. By leveraging vehicles that

have recently entered the same flow of traffic as the receiver, the receiver

can begin to trust senders on intersecting roads and use V2V to prevent

intersection collisions.

The drawback to requiring multiple witnesses is that in low vehicle den-

sity situations, there may not be enough witnesses present. If traffic density

is high enough, our technique can work on a simple two lane road. With

one lane of traffic in each direction, a receiver can leverage on-coming traffic

as a stream of witnesses. However, if there is very little traffic, a lack of

oncoming vehicles means the receiver will only have the vehicles directly

in front or behind itself to act as witnesses, and is unlikely to have ≥ W

reports.

5.2.4 Verification Expiration to Prevent Attacks

As presented our verification mechanism assumes that once a vehicle is ver-

ified or trusted, it is broadcasting correct information, and will continue to
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broadcast correct information. However, a malicious vehicle could behave

at one time and later broadcast false information. For example, if a visually

verified vehicle leaves the receiver’s field of view, the receiver is unable to

detect if the sender begins to send false information (e.g., claiming a phys-

ical location that is also out-of-view, but does not accurately describe the

sender’s location). A witness verified vehicle could also start sending false

information after it has entered the Trusted state.

To address both of these threats, the receiver can require periodic evi-

dence to support the validity of a sender. For vehicles in view, this means

tracking a vehicle to verify the claimed location continues to match the phys-

ical location of the vehicle. As such, a vehicle will only act as a witness for

a sender, if the witness is able to confirm the physical vehicle is still in the

location from the most recent beacon and that the sender has not begun to

use a new certificate. For vehicles out of view, this means a new report from

a witness, which implies that the witness has verified that the sender out of

view is broadcasting correct information. As such, a receiver sets a timer

for a threshold time τ for each sender once the sender enters the Trusted,

Trusted Presence, or Visually Verified states. Whenever, the receiver

hears a new report from a witness or visually confirms that the sender’s

current location matches the information in a beacon, the timer is reset to

τ . If the timer expires for a sender in any of these states, the sender transi-

tions back to the Visually Unverified state. By requiring constant visual

re-verification or reports to re-assert the validity of a sender, a receiver is

able to detect ghost vehicle or impersonation attacks. This also allows a

receiver to update what certificate is valid when a vehicle changes keys (i.e.,

the blinking sequence will change or witnesses will report new information).

Finally, re-verification prevents Sybil attacks where the sender tries to use

more than one identity at a time (more details in Section 5.3).

In this Section, we presented how visual verification of vehicles can help

ensure that wireless V2V messages accurately describe the physical prop-

erties of nearby vehicles. We also discussed how to accelerate verification

by transmitting a shortened hash on the visual channel. Rather than limit-

ing receivers to senders that pass through the field of view and drastically



CHAPTER 5. VISION-BASED VEHICLE VERIFICATION 102

limiting the range of V2V communication, we also propose using multiple

visually verified witness vehicles to help verify the validity of further away

vehicles. Finally, rather than exposing receivers to attacks by verifying a

sender once and trusting all of the sender’s subsequent messages, we discuss

how using a timer to allow verification to expire. However, the receiver re-

sets that timer whenever new evidence supporting the sender arrives. As

we show in the next two sections, these extensions help maintain security

(detect and prevent different attacks) while allowing receivers to maintain

sufficient communication range for VANET or platooning operation.

5.3 Security Analysis

In this section, we discuss how our solution detects ghost vehicles or imper-

sonation attacks and fulfills the basic security properties needed for V2V.

We begin by discussing how the basic approach detects the attacks, and

what a malicious party may be able to do to violate those properties. After

that we discuss how each extension impacts the verification process and the

attacker’s capabilities. We conclude this section with a discussion on how

visual verification fulfills the V2V requirements from Section 4.3.

5.3.1 Attack Detection with the Basic Solution

Without any of the extensions, a receiver only trusts vehicles that have been

visually verified. The process of visual verification ensures that a receiver

has used its camera to verify that there is a set of LEDs at an estimated

location on the road that are transmitting the certificate that verifies the

corresponding V2V beacons. As such, the only way to circumvent visual

verification and create ghost vehicles or impersonate vehicles is to influ-

ence the location estimation, attach LEDs to non-vehicle bodies, know the

same cryptographic information as a sender, or transmit data on the visual

channel such that it appears to come from the victim. In addition to dis-

cussing more details about these possible attacks and their mitigation, we

also discuss how prevention of ghost and impersonation attacks implies the
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prevention of Sybil attacks.

By verifying that LEDs exist at an estimated location (i.e., the check per-

formed between the Visually Unverified and Presence Verified states),

our technique prevents the majority of ghost vehicle attacks. However, if

an attacker is able to influence visual location estimate or attach LEDs to

non-vehicle objects, additional actions are needed to prevent ghost vehi-

cle attacks. For example, an attacker could move the LEDs further apart

to convince a receiver that the attacker’s vehicle is closer than it really is.

However, a small population of vehicles with additional sensors (e.g., police

with laser ranging as part of speed monitoring technology) could help detect

such abuses. Another way to create a ghost vehicle is to have LEDs where a

vehicle is absent. For example, an attacker could affix the LEDs to roadside

infrastructure or onto the road. In that scenario simple sanity checks will

help detect the false information. For example, maps included with GPS

will let receivers know where the road is and ignore lights that are not on

the road, but claiming to be vehicles that are part of traffic. Policing can

also help detect and remove these lights.

The comparison between the certificate from the wireless messages and

the transmission on the visual channel prevents an attacker from imperson-

ating another vehicle on the road. To circumvent this check and successfully

perform an impersonation attack, the attacker needs to extract the victim’s

key information, which is outside the scope of this work, or try to create

messages on the visual channel that encode the attacker’s certificate, but

appear to come from the victim’s LEDs. One way to impersonate a vehicle

on the visual channel is to reflect light off of the victim. When perform-

ing this attack, the attacker can try to bounce light off of the victim’s own

LEDs or the body of the vehicle. When using a simple on/off encoding (i.e.,

LED on means 1, LED off means 0), the attacker can only flip the victim’s

0s to 1s. Prior work has shown how to encode a certificate such that any

addition of 1s to the message is detectable [17]. If used, the receiver can

detect the additional 1s and simply discard the sequence from the visual

channel. This solution stops the attack, but also prevents the sender from

being verified, since the receiver will discard the sequence from the visual



CHAPTER 5. VISION-BASED VEHICLE VERIFICATION 104

channel. Of course, if attackers want to stop communication, they could jam

the wireless channel. The alternative impersonation attack bounces lights

off of the victim such that the receiver acquires two different sequences from

the same vehicle (one from the victim’s LEDs and another from the reflected

light). In that scenario, the receiver will detect conflicting sequences from

the same physical space and ignore both certificates.

Our solution prevents Sybil attacks (one physical vehicle claiming multi-

ple radio identities) by detecting ghost vehicles and impersonation attacks.

By preventing these attacks, receivers will only accept a wireless identity if

there is a physical vehicle at the corresponding location, broadcasting the

appropriate certificate on the visual channel. Under these constraints an

attacker is unable to convince a receiver to accept more than one wireless

identity. If the attacker broadcasts more than one identity, the attacker must

claim its physical location in both identities’ beacons. As such, receivers will

only believe the identity with a matching certificate on the visual channel,

and discard the other identities, preventing Sybil attacks.

5.3.2 Impact of Using a Shortened Hash

Rather than broadcasting an entire certificate on the visual channel, senders

can broadcast a truncated cryptographic hash of the certificate. This reduces

the amount of time needed to film the sequence from the visual channel,

but increases the chance of impersonation attacks if vehicles possess several

keys. Specifically, if an attacker’s certificate produces the same truncated

hash value as a victim’s certificate, an impersonation attack is possible. As

such, we would like to select a shorter hash to reduce filming time, but keep

it long enough that the chance an attacker’s hash matches the victim’s hash

is small. To further complicate the issue, each vehicle is issued N certificates

at a time for privacy reasons [41]. If the authority assigns certificates such

that each certificate given to an individual vehicle is different, that means the

attacker has N chances to match a victim’s hash. In the remainder of this

subsection, we calculate the probability of an attacker having a matching

hash based on the number of certificates given to each vehicle N and the
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number of different possible truncated hashes (H = 2Length of the Sequence).

When assigning certificates to a vehicle, the authority selects certificates

that produce N different hashes. As such, the authority can assign hashes

to a vehicle in the following number of ways:

(

H

N

)

(5.1)

After the victim is assigned N certificates, the number of possible selections

that leave an attacker without a matching hash is the same as choosing N

hashes from the remaining H −N hashes or :

(

H −N

N

)

(5.2)

The probability that an attacker is unable to impersonate a sender (i.e.,

no matching hashes exists) is simply the fraction of assignments where no

match exists to the the total number of assignments or:

(

H−N
N

)

(

H
N

) =
(H −N)!2

H!(H − 2N)!
(5.3)

The chance of impersonation is simply 1−Eq.5.3. We plot the chance of

impersonation due to overlapping hashes versus hash length in Figure 5.3.

For this plot, we assume vehicles have 512 or 1024 different certificates at

a time. With 30 bits or more, the probability of a successful attack is less

than 0.1%. In addition, this is the probability at least one match exists. If

a victim notices another vehicle in radio range is claiming a certificate with

the same hash value, the victim can change to another one of its certificates

to thwart the impersonation attack, since the probability of having more

than one matching hash is many times smaller. Based on this analysis, a

hash length of 30 bits provides strong protection from impersonation attacks

due to using a shortened sequence on the visual channel.
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Figure 5.3: Probability of Impersonation Attack Due to Hash Collisions

5.3.3 Impact of Using Witnesses

By relying on witnesses to forward information about potential senders, re-

ceivers can begin to accept communication from vehicles that are outside of

their field of view, but are exposed to potentially invalid senders if the wit-

nesses forward information about invalid senders. In this section, we discuss

how requiring W distinct witnesses help protect receivers from parties that

forward information about ghost vehicles or impersonating vehicles. We also

discuss why limiting witnesses to forwarding information about visually ver-

ified vehicles (as opposed to forwarding information from other witnesses)

can help isolate attacks.

When W witnesses are required, a receiver will only begin to trust an

invalid source if ≥W colluding malicious vehicles report the invalid source.

Since visual verification prevents a vehicle from successfully launching a

Sybil attack, this means that≥W actual vehicles on the road have to collude

to successfully fool other vehicles. During a ghost vehicle or impersonation

attack, legitimate senders will not forward information about a vehicle they

have not visually verified. This leaves only colluding malicious vehicles to

disseminate information about invalid vehicles. With one report per physical

vehicle, W or more attackers are needed to convince nearby receivers that

the invalid vehicle is legitimate.



CHAPTER 5. VISION-BASED VEHICLE VERIFICATION 107

L A1

V

A2

A3 G

Visual Verification

Figure 5.4: Isolation of Invalid Vehicles

If legitimate parties only forward reports for vehicles they have visually

verified, we can help isolate the invalid sources colluding attackers support.

Specifically, this forces the requirement of W or more colluding vehicles in

the victim’s field of view, rather than just W in radio range. For example,

consider the scenario in Figure 5.4 where a number of vehicles are driving

together on a road and W = 2. L and V are legitimate vehicles. A1, A2,

and A3 are colluding attackers trying to forward information about the ghost

vehicle G. V has visually verified A2 and A3 and thus accepts their reports

that G actually exists. However, since A1 and V block L’s view of the other

attackers, L has to rely on A1 and V as witnesses. Since V never forwards

information about G, L correctly leaves the ghost vehicle in the Visually

Unverified state, instead of the Trusted state, despite the presence of 3

colluding attackers in radio range.

5.3.4 Impact of Expiring Verification

Expiring verifications help prevent attacks by forcing periodic re-verification,

via visual checks or reports from witnesses. This also addresses the situa-

tion where vehicle’s change certificates, since continuing to trust the old

certificate could enable a Sybil attack. After discussing why requiring re-

verification is necessary to prevent attacks, we provide a discussion about

the appropriate value of τ , the time between the last re-verification of a

sender and the expiration of its validity.

If a receiver were to verify a sender once (via witnesses or visually) and
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trust that sender forever, the sender could easily launch an attack. The

sender would simply wait until it heard W or more witness reports about

itself or a witness report from the desired victim for itself (an indication the

victim verified the attacker) and then begin to broadcast false information.

Once the victim accepts that false information, the attacker could begin

to use a new certificate at the same time as the old one. Once the second

certificate is accepted, the attacker has successfully completed a Sybil attack

and may be able to introduce even more invalid senders into the system if

W is small.

Expiring verification prevents these attacks by having receivers discard

the old identity after the old certificate is used to claim invalid information.

While claiming invalid information, other vehicles will detect that the lo-

cation in the beacon does not match the location of the vehicle. Without

this visual verification, witnesses will stop reporting the certificate is valid.

Without witness reports for the sender and without a way for receivers to vi-

sually verify the sender, the sender’s old certificate will expire. If the sender

simply changed certificates for privacy reasons [41], receivers will expire the

old certificate and begin to verify the new certificate.

When expiring certificates, it is important to select an appropriate value

for τ . If τ is too small, receivers may discard valid vehicle’s information

simply because of lost witness reports or temporary obstructions in the field

of view. However, if τ is too large, an attacker could abuse the infrequent

re-verification to switch between different identities or temporarily claim an

invalid location. Intuitively, a good value for τ is the amount of time needed

to film the hash sequence on the visual channel. With this value, if the

vehicle has changed its current certificate, the old certificate will expire just

as receivers begin to complete verification of the new certificate. However,

if a vehicle tries to constantly switch between multiple certificates, only a

single certificate will be trusted at a given time.
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5.3.5 Fulfillment of V2V Security Requirements

We have discussed how visual verification with various extensions allows a

receiver to verify a vehicle sent a message that contains correct informa-

tion. In this section, we discuss how our solution fulfills the remaining V2V

security requirements of: sender validity, message integrity, short-term link-

ability, long-term unlinkability, and traceability.

Sender Validity Visual verification allows a vehicle to determine which

specific physical vehicle on the road generated a message. This fulfills a

stricter property than sender validity, which implies that the message came

from a vehicle.

Message Integrity The digital signature in a message allows a receiver to

detect if the message has been modified. Given the attacker does not know

the victim’s key, verifying a signature allows a receiver to verify message

integrity.

Short-term Linkability The continued use of a single certificate for some

period of time provides short-term linkability for a well-behaved sender.

However, we also need to ensure that receivers can link several consecutive

messages from a malicious party back to the same vehicle. A malicious party

may try to cycle through certificates, using different keys at different times

to make it appear as though different senders generated different messages,

to violate short-term linkability. However, associating the certificates with

the vehicle allows receivers to link the messages back to the same physical

vehicle. If an attacker tries to rapidly change between multiple certificates,

receivers will be unable to decode the hash from the visual channel. With-

out visual verification, the receivers will never trust any of the certificates

and ignore the messages, preventing the attacker from violating short-term

linkability.

Associating a physical vehicle with a wireless message prevents Sybil

attacks (one vehicle creating multiple simultaneous identities); either the

multiple simultaneous identities are associated with the same vehicle and
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are detected, or the identities are never associated with a physical vehicle

and are ignored.

Long-term Unlinkability Each vehicle is assigned a large number of keys

and certificates and is allowed to change keys at any time. Visual verification

places no limits on when a vehicle changes keys. The vehicle simply stops

using one key and begins to sign messages with the new key and broadcast

the hash of the certificate on the visual channel. This flexibility means a

vehicle can use more advanced privacy techniques like mix-zones [14, 34] or

silent periods [82]. Older schemes with non-overlapping certificates make

use of these techniques difficult since a vehicle can only change certificates

when one certificate expires and the new one becomes valid.

Traceability Under our approach, the certificate authority assigns a set

of unique keys to each vehicle. Even though shortened certificate hashes

may collide, no two vehicles own the same certificates. This means that the

authority can use a database to store key to vehicle mappings and the signa-

ture and certificate from messages to determine which vehicle sent a message.

In this section, we described how visual verification and our different ex-

tensions help detect or prevent the dissemination of false information in

V2V systems and fulfill the basic properties needed for V2V. We also pro-

vided an analysis to describe how various parameters should be set in the

system. In the next section, we use several of those parameters to simulate

visual verification to determine if the system will support VANET safety or

platooning applications.

5.4 Simulation

In this section, we try to determine if our visual verification techniques al-

low a receiver to verify enough nearby vehicles to support V2V applications.

Prior work demonstrates that a visual channel between vehicles can suc-

cessfully communicate, determine the range between vehicles, and support
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tracking [1, 81]. The work of Ashok et al. indicates that a visual channel is

capable of nearly 10 kbps at a distance of 100 meters when using a 1000fps

camera and LEDs. Other work by Saito et al. indicates that LED rear lights

allow tracking, distance estimation with an error of ± 2 meters, and bit error

rates of less than 10−6 in daylight (with better performance at night) [81].

These results provide strong evidence that a visual channel between vehicles

is possible. As such, the focus of our simulations is to determine if vehicles

following realistic traffic patterns are in view long enough to support visual

verification with or without our extensions. We also want to investigate if

the additional bandwidth associated with broadcasting witness reports (the

additional hashes for visually verified vehicles) negatively impacts wireless

network performance.

To answer these questions, we use NS 2.34 simulations [102] and realistic

vehicle traces from the NGSIM project [32]. These traffic traces allow us to

simulate traffic on both one side of 6 lane highways (I-80 in Emeryville, CA

and US-101 in Los Angeles, CA) and city streets with bidirectional traffic

with cross streets (Lankershim Blvd. in Los Angeles, CA and Peachtree St.

in Atlanta, GA).

5.4.1 Simulation Description

The NGSIM data sets provide vehicle traces that we can use in NS2. In ad-

dition to realistic mobility, we used NS2 to accurately model V2V commu-

nication and modified mobile nodes behavior to simulate the visual channel.

For each of the 4 different locations, NGSIM provides multiple vehicle

traces from different times in the day. We summarize the traces we use to

evaluate visual verification in Table 5.1. We concatenate consecutive trace

files to make a single longer trace. For example, we concatenate the 8:30am

- 8:45am and 8:45am to 9:00am traces files for Lankershim Blvd. to generate

a single long trace. For non-consecutive trace files, we present the results

from the trace file with the worst performance, instead of concatenating

unrelated traffic patterns.

We used NS2 with the recent extensions to the physical and MAC layer
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Location Start End Total Vehicles Road
Time Time Vehicles a Minute Length (m)

US-101 7:50am 8:20am 4186 140 640

I-80 5:00pm 5:15pm 1836 122 503

Lankershim Blvd. 8:30am 9:00am 2442 81.4 487

Peachtree St. 4:00pm 4:15pm 1222 81 640

Table 5.1: Vehicle Trace Information

to accurately model V2V communication [23]. To simulate normal VANET

wireless communication, each vehicle broadcasts a signed beacon according

to the IEEE [48] and SAE [91] format standards every 100ms and a copy

of its own certificate in every 10th beacon (i.e., once a second). Without

the certificate, a beacon message is 259 bytes, including the V2V headers,

application data, ECDSA signature, and a digest of the sender’s certificate.

Beacons with a certificate are 368 bytes. This helps simulate realistic V2V

communication and network contention. All broadcasts use 10dBm power.

In scenarios with witnesses, each vehicle will add a maximum of 5 certificate

hashes to a beacon if the owner of the certificate was in view since the last

beacon. We assume SHA-1 hashes are used. Each hash is 20 bytes long, for

a maximum of 100 additional bytes added to a message for witness values.

We made pessimistic assumptions about the visual capabilities of the ve-

hicles to ensure our simulations represented realistic worst case performance.

We assumed each vehicle had 2 cameras (front and back) that operated at

20 frames per second with a 130 degree field of view and were able to re-

ceive information at a rate of 2 frames/bit (10 bps) with a maximum range

of 100m. These values were used to reflect inexpensive low resolutions cam-

eras used for back-up cameras trying to film at long ranges, rather than the

short ranges or more capable cameras used in prior works [1, 81]. Our sim-

ulated LEDs only have a viewing angle of 45 degrees. As such, a receiver’s

camera must be within 22.5 degrees from the center of the LED’s beam to

see the LED. To simulate vehicles as obstructions, we assumed each vehicle

was an orb with a radius of 1.5m. A receiver had to see the entire orb to

receive information on the visual channel and any vehicle between the two
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was considered an obstruction (i.e., we did not assume the ability to see

through the glass of vehicles).

As a metric we consider the average verification range, the distance to

the nearest unverified sender. Prior work by Haas and Hu [39] show that

VANET safety applications require between a 20 and 60 meter communica-

tion range, as such our technique must allow verification to that radius or

more to support those applications. Platooning applications require vehicles

to share information between two adjacent vehicles [89]. With this limited

requirement, we just have to check that receivers are able to verify their

neighbors within a short amount of time.

To determine the impact of our scheme on wireless performance, we

compare the normalized packet reception rate under the different configu-

rations. We consider visual verification without witnesses as baseline per-

formance for packet reception since the vehicles only send normal VANET

traffic. We compare the normalized packet reception rate with witnesses

and with witnesses and verification expiration. To calculate the normalized

packet reception rate, we take the number of packets received under a given

configuration and divide that by the number of packets received under the

baseline configuration (without witnesses). If the reception rate is signifi-

cantly less than 1, that is an indication that our approach causes contention

on the wireless channel.

5.4.2 Simulation Results

We simulate visual verification with and without each of our extensions.

We present the average verification range from these simulations in Fig-

ures 5.5, 5.6, and 5.7. We present the packet reception rate versus distance

in Figure 5.8.

The x-axis of each verification range plot indicates how long a vehicle

has been driving in the simulation and the height of the line indicates how

far away the nearest unverified sender is on average. We truncated the plots

to only the first 100 seconds since most vehicles exit the simulation area

in less than a minute and vehicles that remain longer maintain sufficiently
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Figure 5.5: Impact of Hash Length on Verification Range

large verification ranges. For all of these plots, vehicles start with a small

verification range (i.e., no vehicles visually verified), but the range grows as

a vehicle visually verifies neighbors and uses those vehicles as witnesses to

verify further away vehicles.

Visual Sequence Length Figure 5.5 presents the impact of hash length

on verification range. Instead of simulating the transmission of the entire

certificate (117 bytes or 234 frames), our largest sequence is the SHA-1 hash

of the certificate. In addition to 30 and 40 bit hash lengths, we also simulate

the performance of the system if the visual channel requires a single frame

to transfer the vehicle’s certificate. Such a rapid transfer is unrealistic,

but provides an upper bound on verification range when only direct visual

verification is used.

These results indicate that even if the visual channel supports high band-



CHAPTER 5. VISION-BASED VEHICLE VERIFICATION 115

width communication, vehicles will have insufficient range when first driving.

The results also indicate that a shortened hash significantly increases the

verification range, when compared to visually transmitting the entire 160

bit hash value. Even with the high bandwidth visual channel, only vehicles

in the Peachtree trace were able to visually verify vehicles within 60 me-

ters in less than a minute. Simulation of more realistic bandwidth for the

visual channel also supports the need for witnesses. A full length SHA-1

hash provides very strong protection against impersonation attacks (the au-

thority must generate more than 280 certificates before a collision occurs).

However, our pessimistic visual channel bandwidth of 2 frames per bit more

than halves the range of the application when compared to using a 30- or

40-bit hash that provides sufficient protection. We use a 30-bit hash for the

remainder of the simulations since a 30-bit hash provides sufficient security

and an improved verification range compared to the 40-bit hash.

Number of Witnesses Figure 5.6 contains plots of how the value of W

impacts the verification range when vehicles transmit a 30-bit hash on the

visual channel. Every scenario benefits significantly from using witnesses to

verify vehicles not currently in view. In the highway scenarios with one-way

traffic, the difference in speed between lanes allows passing vehicles to act as

witnesses for vehicles in front of or behind of a receiver. In the city scenarios,

on-coming traffic acts as witnesses for vehicles.

The large difference in vehicle speed between lanes allows vehicles in

the US-101 trace to reap the most benefits from the use of witnesses. On

average, without witnesses, vehicles are only able to verify senders within

32 meters after driving for 20 seconds. However, with witnesses, a vehicle

is able to verify senders within 98 meters in the same time period. The

reason for this gain is the large variance in speed between lanes of traffic

(average speeds of 20mph in one lane and 40mph in another). As vehicles

pass each other new senders enter and exit visual range and are verified.

Once visually verified, these senders can report information about vehicles

further ahead or behind depending on what they saw recently. In the I-80

trace, the difference in lane speed is smaller (15mph versus 30mph), reducing
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Figure 5.6: Impact of Witnesses on Verification Range
(Hash Length = 30 bits)
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Figure 5.7: Impact of Verification Expiration on Verification Range
(Hash Length = 30 bits, W = 2)

the mixing speed of traffic and thus the impact of witnesses.

Witnesses improve the verification range in the city scenarios because

of bi-directional traffic and the mix of traffic at intersections. In addition

to passing traffic, vehicles entering the flow of traffic help receivers verify

senders that were on contributing roads. Peachtree street has better perfor-

mance due to the decreased vehicle density (a 640 meter road versus a 487

meter road segment on Lankershim blvd.).

We choose to use W = 2 for the remainder of the simulations because

it prevents attacks from a single malicious vehicle and provides the greater

verification range. Of course, if colluding vehicles become common, a larger

value of W is needed to handle the increased threat, but will not drastically

impact verification ranges.
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Expiration Timer Figure 5.7 contains plots of how the addition of verifi-

cation expiration impacts range. For these simulations, we tested no expira-

tion (W = 2), τ = 3, and τ = 10. τ = 3 provides the best protection against

attacks and has a limited impact on verification range in the highway set-

tings. However, the city scenarios do suffer more because of the expiration

of the verification of oncoming traffic.

In the highway scenarios, τ = 3 only reduces the range by 15 meters

on average, when compared to no expiration. Given the limited impact, the

average verification range remains large enough to support the relevant V2V

applications. The requirement of only a single report to re-verify a vehicle

and the frequent mix of vehicles limits the impact of verification expiration.

In the city scenarios, τ = 3 has a larger impact on verification range. In

the Peachtree scenario, τ = 3 reduces the verification range by a maximum

of 50 meters. Verification expiration also negatively impacts the verification

range in the Lankershim scenario with a maximum decrease of 24 meters. In

both scenarios, the range is still enough to support the safety applications.

The reason for the larger decrease in verification range for the cities is the

introduction of merging traffic to oncoming traffic. After a vehicle passes

a receiver and has been visually verified, it remains visually verified until

the receiver stops hearing reports about that vehicle from verified traffic.

When a new vehicle joins the oncoming traffic flow, the new vehicle blocks

the visual path between two verified vehicles. Without this visual path, the

two verified vehicles stop reporting each other, the verification expires, and

the receiver’s verification range decreases.

Despite the decrease in verification range, our approach still provides

the 20 to 60 meters of communication range to support the VANET safety

applications and platooning.

Impact on the Wireless Chanel Figure 5.8 summarizes the impact of

broadcasting witness values on the wireless channel. These results indicate

that expiration has little impact on the wireless channel. In the city sce-

narios, vehicle density is low enough that the addition of 100 bytes or less

has little impact on the packet reception rate. However, broadcasting wit-
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Figure 5.8: Impact of Visual Verification on Packet Reception
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ness values causes enough contention and interference to lose 35% of packets

when compared to not using witnesses.

This is a significant impact on the wireless channel and we simulate

different radio and application configurations to determine how to improve

radio performance. To determine if we can alleviate channel contention,

we use two simulation configurations: 1) the lower transmission power of

0dBm and 2) the same transmission power (10dBm), but a reduced beacon

broadcast rate of 5 beacons per second. Our results indicate that to maintain

verification range and improve wireless network performance, reducing the

beacon broadcast rate is the better approach. The lower transmission power

suffers from both shorter verification ranges in all of the scenarios and lower

packet reception rates. The impact of decreased beacon broadcast rates has

a negligible impact on verification range and drastically improves the packet

reception rate. In the US-101 simulation, the normalized packet reception

rate with witnesses and verification expiration at 150 meters improves from

73% to 93%. In the I-80 simulation, rates improve from 65% to 88%.

These results indicate that visual verification with out extensions can

support various V2V applications under realistic traffic patterns with a low

bandwidth visual channel. However, care must be taken to ensure that the

addition of witness values does not negatively impact the already strained

wireless channel.

5.5 Summary

Visual verification of senders helps secure VANET safety and platooning

applications. By using the visual channel to confirm a source’s location

and associate a physical vehicle with cryptographic information, we are able

to prevent a class of attacks against V2V systems that try to disseminate

false information about the physical world and cause false alarms, erroneous

behavior, and even accidents. In addition to direct visual verification of

a source, the system also benefits from the visual broadcast of shortened

hash values, the use of witness vehicles, and verification expiration to ex-

pedite visual verification and extend the range of visual verification, while
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maintaining a high level of security.

Simulations indicate that visual verification and our extensions can sup-

port V2V applications and allow the detection of invalid senders and false

information, without requiring the connectivity needed for timely revoca-

tion.



Chapter 6

Discussion on Endpoint

Verification

This thesis proposes three different protocols to perform endpoint verifica-

tion for three different scenarios. We use devices’ sensors and actuators to

establish a secondary communication channel, one in addition to the wire-

less channel, with physical properties that enable verification of the location

of communication endpoints. For each scenario, we propose the use of hard-

ware that already exists on the devices to establish this channel. However,

endpoint verification is also possible with other hardware that enables dif-

ferent communication channels with the same physical properties. Instead

of using a secondary channel with specific physical properties to solve the

problem of endpoint verification, a number of prior works propose techniques

that use the time-of-flight of messages on the wireless channel to verify the

location of a device.

We begin this chapter with a discussion of the general properties a sec-

ondary channel must provide to enable the use of our protocols for endpoint

verification. We also give some examples of alternative communication chan-

nels that use different hardware to achieve the same goal. We then discuss

existing work that relies solely on the wireless channel to verify the location

of a device and contrast that approach with our solutions.

122
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6.1 Secondary Channel Requirements for Endpoint

Verification

The different scenarios we discuss in this thesis have different requirements

for source and/or destination verification, which require different solutions.

In this work, we constrained ourselves to hardware that is already avail-

able or is likely to be available in the near future on commodity systems.

However, other systems may have similar endpoint verification requirements

with different hardware. For the remainder of this section, we discuss the

basic channel requirements that each of our protocols require. These re-

quirements provide guidelines to facilitate adoption of our protocols to new

settings.

6.1.1 Source and Destination Verification

In SHOT, we use phones’ vibrators and accelerometers as a channel that

allows users to verify that only the two phones in physical contact are com-

municating. Users are able to observe the vibrations and detect if another

device is trying to transmit on this channel. Information exchanged on the

vibration channel allows the phones’ to bootstrap communication through

a server and cryptographically verify that the two phones successfully re-

ceived each others’ information. In general, the protocol requires a channel

between the two phones that:

1. Allows the users to identify the communicating endpoints.

2. Allows detection of an unwanted third party’s attempts to communi-

cate on the channel.

Vibrators and accelerometers are one of many ways to implement such a

channel. In Chapter 7.1.3, we discuss protocols that use cameras to capture

a visual encoding of data (barcodes or sequences of blinking lights) or use

microphones to record information encoded as an audio signal. Such visual

and audio channels fulfill the properties necessary to execute SHOT and

verify the endpoints of the exchange. If Near Field Communication (NFC)

is available and secure, SHOT can use NFC to exchange information and
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verify the endpoints of the exchange. NFC’s limited range of 10 cm or less

allows users to infer that the two devices held together are communicating.

NFC devices in active mode are able to detect attempts to inject data onto

the channel [44]. This ability to detect additional communication with a

nearby device allows automatic detection of attacks, instead of relying on

humans to monitor the communication channel.

6.1.2 Destination Verification

MULE leverages a constrained channel [52] so that only a device within a

trusted physical space is able to receive a decryption key. The inability to

receive messages from the constrained channel when outside of the space

provides the secrecy we leverage to provide location-based access control.

For our implementation of a constrained channel, we use the laptop’s we-

bcam to receive information from an infrared LED. However, any signal

that is contained to a trusted physical space (i.e., unable to pass through

walls or other boundaries that humans use to delineate a physical space) is

a viable constrained channel. In addition to infrared, Kindberg et al. also

suggest using wireless communication in the 60GHZ range or ultrasound as

constrained channels that are unable to pass through walls. Surprisingly,

NFC does not meet the constrained channel requirements. Normal NFC

communication is only possible within tens of cm. However, an attacker’s

ability to eavesdrop on NFC communication from up to 10 meters away [44]

means an attacker outside of the physical space can access the channel.

If a system lacks a constrained channel with secrecy to verify the des-

tination of communication, it is possible to use source verification to verify

the receiver of digital information as part of a multi-step protocol. First,

the system has to verify that the device in question is a source of a public

key within the physical space. After verifying the public key corresponds to

a device within the space, the system can use the public key to encrypt the

important information (e.g., the information controlled with location-based

access control). This encryption ensures that only the device, which was

verified as in the physical space, is able to receive the information.
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6.1.3 Source Verification

We propose the use of LED headlights and tail lights, and cameras to verify

the source of messages in V2V applications. This channel provides two

important properties:

1. Verifies that a device (i.e., vehicle) exists at some position relative to

the receiver.

2. Allows the receiver to associate data with that vehicle.

RADAR or LIDAR, technologies already available in luxury vehicles, are

able to fulfill the first property. However, those technologies fail to fulfill the

second property. Without a way to confirm that a public key corresponds to

a vehicle, the system will expose receivers to impersonation attacks. Sastry

et al. [83] propose using the time of flight of soundwaves to determine the

location of a device. However, ambient sound on the highway would be

too noisy to allow successful communication over an audio channel (audible

frequencies or ultrasound). In addition, their protocol requires multiple

parties to verify the location of a device. With only two devices (the sender

and a receiver trying to verify the location of the sender), the receiver is

only able to determine if the source is within a radius, but lacks a way to

verify the relative direction to the sender. As such, no other communication

channel exists that supports both verification of the presence of a vehicle

and a way to associate digital information with the vehicle.

6.2 Using Wireless Time-of-Flight to Verify End-

points

Instead of using hardware that allows the establishment of an additional

communication channel with some physical properties to verify the source

or destination of communication, a number of prior works propose ways to

use the wireless channel to determine the location of the source of digital

data. After verifying the source of data as some device at a location, we

can use the data from the source to bootstrap secure communication. If

this channel is secret, we are able to verify that only that device at the
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verified location can receive the data. Unfortunately, many of these location

verification solutions require hardware that is unavailable for the scenarios

we address. We begin with a discussion of distance bounding, which allows a

receiver to verify a device is within some radius of the receiver based on the

round trip delay for wireless exchanges. We then discuss location verification

schemes which often use distance bounding from multiple vantage points to

determine the location of a device with respect to multiple .

6.2.1 Distance Bounding

Distance bounding uses the finite speed of wireless messages to determine

the maximum distance to an entity. In these protocols, one radio acts as

a verifier, trying to determine the maximum distance to the prover radio.

When the protocol begins, the prover commits to a series of bits. The verifier

then sends a series of challenges and measures the time the prover needs to

return the response. The time needed to respond to the challenges allows

the verifier to determine the distance between the two devices. Finally,

the verifier compares the responses to the challenges to the commitment to

verify that the prover did not respond to a challenge before receiving the

challenge.

Brand and Chaum were the first to propose using radio messages to per-

form distance bounding [9]. Unfortunately, the delay associated with the

prover receiving, decoding, processing the challenge, and generating a re-

sponse means there is a large potential error in the distance estimate based

on the processing speed of the prover. To address this shortcoming, Ras-

mussen and Capkun propose the use of special hardware to perform the

processing in the analog domain, reducing the time associated with receiv-

ing and responding to the challenge to 1 nanosecond [74]. However, the

widespread deployment of this specialized hardware is unlikely. As such,

a commodity device without the hardware will take additional time to re-

spond and will suffer inflated bounds on distance estimation. If the verifier

assumes the processing is slow, an attacker could use Rasmussen’s special-

ized hardware to appear closer to a verifier than she really is. Other work
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has shown an attacker can generate responses to a verifier’s challenges that

appear valid, but lack redundant symbols at the physical layer encoding to

appear up to 140 meters closer [33].

6.2.2 Location Verification

Location verification allows a group of verifiers to determine the approximate

location of a prover. Existing work uses multiple executions of distance

bounding protocols [83, 97] or packet reception times [18, 19] with multiple

verifies to verify location claims. However, these schemes require multiple

verifiers and without extremely accurate timers or secure underlying distance

bounding protocols, these schemes provide limited accuracy.

Under both approaches, each verifier uses the timing of the prover’s

broadcasts to create a circle that contains all potential locations for the

verifier, with the prover the center. The verifiers take the intersections of

these different circles to determine an overlapping area that represents the

region where the prover is located. Even if multiple verifiers are available,

the location verifications schemes lack accuracy. If the underlying distance

bounding scheme suffers from vulnerabilities, each verifier’s measurement

has a large margin of error, producing inaccurate location verification. In

schemes that compare the reception time of messages, each verifier requires

nanosecond accuracy. This may be possible, but is prohibitively expensive

for location-based access control in the home or V2V networks. Users will

not want to spend the money to deploy multiple verifies with such accuracy

in their home. The need to deploy verifiers along all roadways to detect V2V

sources that broadcast false location information is prohibitively expensive

even for a nation.

6.3 Summary

Work on verifying the physical location of a communication endpoint relies

on either the physical properties of a secondary communication channel or

the time-of-flight of wireless messages. In this thesis, we focus on the for-
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mer approach as an inexpensive way to fulfill the requirements of endpoint

verification with hardware already present on commodity devices. However,

if custom radios with high resolution timers and the deployment of numer-

ous verifiers is feasible, distance bounding and location verification allow

accurate endpoint verification with only the wireless channel.



Chapter 7

Related Work

We now discuss work related to our three different projects on endpoint ver-

ification. We first discuss protocols to exchange information between two

devices (Section 7.1). We discuss alternatives to location based access con-

trol to protect information on stolen laptops in Section 7.2. We conclude

with a discussion of related V2V work which aims to detect false information

(Section 7.3). Background on basic V2V operation or prior key management

schemes is in Chapter 4. We discuss distance bounding and location verifi-

cation protocols in Chapter 6.

7.1 Exchange of Information Between Devices

Exchanging information between two devices, without allowing an unwanted

party to insert additional data, is a long standing problem with numerous

potential solutions. Another solution to this problem is to allow two devices

to establish a secret key, aka device pairing. Once two devices share a sym-

metric key, they can exchange information, without having to worry about

a third party injecting information. In this section, we discuss exchange or

pairing protocols based on the different physical actions performed: human

assisted comparison, the exchange of secrets, or observable communication

between the devices.

129
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7.1.1 Human Assisted Comparison

A number of prior works require the user to perform a comparison after

an exchange or pairing to detect an attack [38, 49, 55, 71, 101]. Given an

attacker is unable to change the output on devices’ screens or the value the

user enters into a device, this technique can successfully detect MitM attacks.

Many works focus on comparing a string of hexadecimal digits [49, 55, 101].

However, Uzun et al. [100] found usability issues with string comparisons

(i.e., users failed to detect attacks or indicated the strings were different

when they were the same). Other works propose encoding the comparison

value into a sentence [38] or image [70] to improve usability. Instead of using

more complex comparison methods, Prasad and Saxena consider how to pair

devices without a display [71]. Their solution is to have users compare a

sequence of beeps or blinking lights from the devices. A difference between

the two devices’ sequences is an indication of an attack, and the user should

press the correct button to abort the pairing. However, all of these schemes

still require users to perform a comparison and are vulnerable to attacks

when users click “Accept” without comparing the strings, sentences, images,

blinking sequence, or beeping sequence.

Soriento et al. propose Button Enabled Device Pairing (BEDA) [92]

as an alternative to the user performing the comparison at the end of an

exchange. Instead, the user presses a button on one device whenever the

other device blinks, beeps, or vibrates. If the user makes an error (e.g.,

pressing the button at the wrong time), the protocol fails and communication

remains safe. The downside to this approach is the protocol requires more

than 50 seconds on average. A variant of BEDA allows the exchange of

secrets between devices, which we discuss in the next section.

7.1.2 Exchange of Secrets

A number of works assume the attacker is unable to observe the users talk-

ing in the room (e.g., sharing a password [49]), pressing buttons on the

devices [92], motion of the phones [21, 45, 56, 60], communication over the

vibration channel [26, 86], or communication over an electrical connection
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between the devices [94]. The threat model from Chapter 2 includes a pow-

erful attacker who may be able to violate the secrecy of all but Stajano and

Anderson’s protocol [94]. Nearby parties can eavesdrop on spoken commu-

nication to recover a password or watch the user to determine the secret

entered into the devices (both the timing and the keys pressed).

If the attacker is unable to see the users, moving the phones together

provides an intuitive way to identify endpoints in an exchange. However,

our attack on Bump demonstrates how attackers can observe and imitate

simple movements of phones. Mayrhofer and Gellersen show that it is pos-

sible to tune these movement-based exchange algorithms to be resistant to

attackers simply watching how users shake devices, but at significant cost

to the usability of the system. Their system experiences a 10% failure rate

for legitimate exchanges, and 16% of participants are unable to ever suc-

cessfully complete the protocols [60]. Beyond sacrificing usability to provide

security against a simple attacker, these protocols may be vulnerable to

more sophisticated attacks, such as those that use high-speed cameras and

real-time motion tracking [58] to reconstruct movements that an unaided

human could not reconstruct.

When the phones’ vibration function is used, user involvement is limited

since users only have to hold the phones together, but it is still possible for

an attacker to eavesdrop on the vibration channel to acquire the secret [43].

Stajano and Anderson use a wire or other electrical connection between

the two devices [94]. In that scenario, the only way an attack will succeed

is if the attacker can control communication on the wire without the users

noticing. The drawback to this approach is that users have to carry around

cables, and possibly adapters, in order to perform the exchange.

7.1.3 Observable Channel Between Devices

Much like SHOT, other works examine the use of a channel between two

devices that allow users to infer which parties are communicating. Prior

works considered using IR [5], sound [93], or light in the visual spectrum [61,

84, 85] as authentic human-observable channels.
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If hardware exists, IR provides a user-friendly way to bootstrap secure

communication between two devices [4]. However, the popularity of IR

is decreasing and often not available on devices. For example, IR is not

available on Blackberry, iPhone, or Android phones, which account for over

75% of all smartphones.1

HAPADEP: Human-Assisted Pure Audio Device Pairing [93] foregoes

the use of wireless communication, and relies on the audio channel to ex-

change cryptographic information and data. Under this approach, a user

simply has to listen for interference. This is a simple task and allows for

timely exchange, but limits use to locations with limited background noise.

Noise can also negatively impact SHOT, but only when it is so loud that

the sound vibrates the phones.

Seeing-is-Believing (SiB) [61] and Saxena’s follow-up work [84, 85] use

the phone’s camera to photograph barcodes or film a blinking light. How-

ever, SiB is a directional exchange, so users have to execute the protocol

twice. Saxena’s protocol allows a complete exchange with a single execu-

tion of the protocol. However, in addition to filming on PA, the user has

to confirm the exchange by pressing a button on PB. SHOT allows phones

to exchange authentic information in both directions, without involving the

users to reposition the phones or press a button.

7.2 Laptop Protection

Encrypting files is a common solution to the stolen laptop problem [25, 63,

87]. The challenge with encrypting information on a laptop is how to store

the key, without burdening the user. If the required user effort is too much,

they will become annoyed with the system and disable the protections. If the

user does not disable a system that requires significant effort, the user may

find a way to reduce the burden that reduces the security of the solution.

The simplest solution to implement is to use a password to derive a file

decryption key. Users are willing to accept the task of password entry to

1http://blog.nielsen.com/nielsenwire/online_mobile/

mobile-snapshot-smartphones-now-28-of-u-s-cellphone-market/

http://blog.nielsen.com/nielsenwire/online_mobile/mobile-snapshot-smartphones-now-28-of-u-s-cellphone-market/
http://blog.nielsen.com/nielsenwire/online_mobile/mobile-snapshot-smartphones-now-28-of-u-s-cellphone-market/
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act as a key, but often use relatively weak passwords. Once a laptop is in

the attacker’s possession, an attacker can brute force passwords to discover

the key. In addition to passwords, prior works on user authentication utilize

what the user is (biometrics) or what the user has (tokens). Once the

laptop has access to sensitive data or the decryption key, another challenge

is removing any traces of that information before the laptop falls into the

wrong hands.

Users cannot forget their biometrics, but most systems require additional

user interaction (e.g., speech or finger prints [64, 99]) and extra hardware for

biometric entry (e.g., fingerprint reader). Some mechanisms also require the

system to store a template used to verify that the appropriate biometric was

entered, rather than deriving a key from the biometric. Often the template

is encrypted on the hard drive and requires an additional key to decrypt the

template [50].

Cryptographic tokens provide greater entropy than user’s passwords [25,

79], but users may keep the token with the laptop to ensure effortless ac-

cess [68]. Once an attacker steals the laptop with the cryptographic token,

the attacker has access to all of the files.

Another approach is to use an online service to store keys for a user [59,

79]. Unlike our CKD, these schemes use per-laptop secrets and require sig-

nificantly more administrative overhead, reducing the chance of widespread

adoption. In addition, when the laptop is offline, for example during a flight,

users cannot access their files.

Related to harddrive encryption is how to securely store and erase keys

such that anyone that later acquires the laptop is unable to recover the key

from a hard drive, memory, or a solid state drive [42, 105]. When a laptop

sleeps or hibernates, the current state of the machine is stored to memory

or the permanent storage (a hard drive or solid state disk), respectively. As

such, the system must delete any un-encrypted copies of sensitive informa-

tion before the laptop sleeps or hibernates. Otherwise a thief can extract

that information. However, memory and solid state drives make the task

more complicated than deleting keys and decrypted files before leaving the

laptop unattended. Halderman et al. [42] show that an attacker can phys-
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ically extract memory from a laptop that a user put to sleep, and recover

any information stored there. Recent work by Wei et al. [105] indicates that

the controllers in current solid state drives fail to truly remove information

when a file is deleted. Based on these results, a complete laptop protection

system must take care to protect any copy of sensitive information that may

reside in memory when the system is put to sleep or hibernates or is ever

swapped out to a drive.

7.3 V2V Related Work

In Chapter 5, we propose visual verification to secure V2V applications.

Section 4.4 contains a summary of related work on how to manage cryp-

tographic identities as part of a V2V security solution. Here we discuss

different schemes which try to detect different types of misbehavior in V2V

including: detecting false information, detecting Sybil attacks in V2V net-

works, or detecting abuses of V2V applications.

Our prior work on weak verification of location claims in VANET [95]

and work by Golle et al. [37] try to answer the same question as our visual

verification of vehicles: where is the source of this message? In our prior

work, we use comparison of beacon reception times from multiple vehicles to

determine an approximate ordering of vehicles on the road. Under such an

approach, a receiver only knows the order of vehicles and not the distance.

This is a significant shortcoming given that our prior approach is unable to

differentiate a braking alert from a sender 50 meters away from a braking

alert for a sender 5 meters away. Multi-path effects can also reduce the

accuracy of this approach. If the radio messages does not travel a straight

line between a source and a destination, the receivers will use the wrong

information to estimate the ordering. Golle et al. [37] assume vehicles have

a way to associate wireless messages to physical vehicles and analyze what

kind of attacks that can detect. However, they never describe exactly how

to perform that binding how network dynamics (i.e., the movement of vehi-

cles) or the limited range of such a binding would impact their misbehavior

detection.
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Xiao et al. [109] propose using signal strength to detect Sybil attacks

in VANETs. The idea is that if the same physical vehicle is broadcasting

messages as different identities, a radio will receive all of those messages

with roughly the same power since the messages will suffer the same path

loss. However, multi-path effects and attackers that vary their transmission

power can negatively influence the accuracy of such an approach.

Other VANET misbehavior detection tries to detect false information

in reports that does not directly relate to the position of a vehicle. These

works often consider wireless reports of ice or debris on the road, a disabled

vehicle on the side of the road, or other information that our proposal is

unable to detect. To provide complete detection of abuses in VANET, a

vehicle can use visual verification to determine the source of a message and

these misbehavior detection systems to evaluate the validity additional in-

formation in the message. Raya et al. [75] consider the scenario where a

vehicle receives multiple, possibly conflicting reports, and uses a framework

with Dempster-Shafer logic to determine the belief in a report based on

the evidence from multiple vehicles. Kim et al. [51, 75] proposes a frame-

work that uses multiple sources of information to determine whether or not

the likelihood or certainty of an event reaches a threshold that indicates if

a driver should be alerted. In addition to multiple vehicles, the multiple

sources include local sensors, road side infrastructure, and the reputation of

the sender to assign a certainty to a given report. Ghosh et al. [36] propose

a system to determine if a notification about a crash on the road is real. The

system assumes a driver will maneuver the vehicle to avoid wreckage on the

road, and uses the driver’s actual response to determine if an accident really

happened. This is helpful when trying to assign reputations to a sender.

However, Ghosh’s system only has value after a vehicle has encountered the

potentially dangerous situation (i.e., an accident on the road), and not be-

fore when an early warning could help the driver change lanes to avoid the

accident site.



Chapter 8

Conclusions and Future

Work

Before discussing opportunities for further investigation, we state the con-

clusions of this thesis.

8.1 Conclusions

The addition of inexpensive sensing, actuation, computing, and communi-

cation to devices enables a broad range of applications in a variety of Cyber

Physical Systems (CPS). For correct operation, these systems need correct

information about the physical world they monitor and control. This means

that the devices need to know the source and destination of information.

In a system where devices’ roles are fixed, deployment of the traditional

security approach of a Public Key Infrastructure to associate a device with

a specific role with a cryptographic value can verify endpoints of communi-

cation. However, in a CPS where devices move and the physical orientation

of devices matters, a static name given to a device fails to describe the rel-

evant physical properties of the device. Instead, the system needs a way

to determine what physical device is the source of a message or to enforce

that only devices with certain physical properties are able to receive some

information. This thesis proposes solutions that allow devices to verify the

136
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physical source and/or destination of wireless messages, with only the use

of inexpensive hardware and the commodity hardware that already exists in

the system. Our solutions enable this type of verification in three different

scenarios: information exchange between smartphones, location-based ac-

cess control for laptops, and verification of vehicles in V2V networks. These

solutions provide useful properties that traditional certificate-based security

solutions are unable to provide, and will hopefully convince other researchers

to investigate new techniques to secure systems that rely on information from

the physical and digital realms.

We have shown how mobile phones can exchange information based on

physical interactions. Our approach prevents Man-in-the-Middle (MitM) at-

tacks where an unwanted third party injects unwanted information into the

exchange. Our solution leverages the vibrators and accelerometers that are

built into the majority of smartphones to establish a human-observable chan-

nel between the two devices. The devices use communication on this human-

observable channel to bootstrap communication via a remote server and to

verify the authenticity of the information that the phones exchange through

this server. A malicious party can remotely vibrate the users’ phones in an

attempt to launch a MitM attack. However, users can detect the additional

vibrations and cancel the exchange, preventing the attack. Without a way

to covertly inject information into the vibration channel, only the two de-

vices held together can exchange information, allowing verification of the

physical source and receiver of the information exchange.

We have shown how to use location-based access control with minimal

setup and maintenance to protect sensitive information on laptops as part

of Mobile User Location-specific Encryption (MULE). MULE uses reception

of a signal from a constrained channel to verify the physical location of the

laptop. The physical properties of the constrained channel ensure that only

devices within a physical space are able to receive the message. Given many

users may keep non-digital copies of sensitive information in the trusted

location, location-based access control allows users to align access policies

for digital and paper copies of their information (i.e., access to the space

implies access to both).
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We have shown that V2V networks can utilize visual verification to de-

termine the validity of a sender and the content of its beacons. Instead

of relying on detection of key theft or abuse and subsequent revocation to

ensure only vehicles produce V2V messages, visual verification allows a re-

ceiver to determine which vehicle generated a wireless message and if the

message accurately describes the position of the vehicle. This reduces the

need for a vehicle to frequently connect to an authority to download revoca-

tion information. This also adds flexibility to how or when a vehicle changes

cryptographic information in order to avoid tracking, compared to prior work

on key verification that requires certificates with fixed non-overlapping life-

times.

It is encouraging that our implementations and implementations in prior

work show that these solutions are able to work with the addition of little or

no new hardware. By leveraging existing sensing capabilities, these devices

are able to verify the physical source or destination of wireless messages.

Endpoint verification is a first step towards ensuring the correct interpreta-

tion of data and, as a result, the correct operation of cyber physical systems.

We hope that our work will provide a reference for how to verify entities in

systems that blend the digital and physical realms. In addition, we hope

to serve as inspiration for other researchers to pursue additional verification

methods that take into account the physical embodiment of a device, instead

of relying on the traditional security approach of a Public Key Infrastructure

where a name is associated with a key.

8.2 Opportunities for Future Work

While this thesis explores several techniques to associate physical entities

with wireless endpoints, there exist some issues that warrant further inves-

tigation. We consider two in particular: user studies and investigation of

more cyber physical systems.
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8.2.1 User Studies

We propose SHOT and MULE as user friendly security solutions that pro-

vide simple to understand security paradigms. For SHOT, the two phones

in physical contact are communicating. For MULE, access to a trusted

location implies access to sensitive files. As security centric researchers,

these ideas seem intuitive and easy to use. However, prior work has shown

that users often fail to successfully complete tasks that designers think are

easy [100, 106]. As such, a formal user study is needed to verify that SHOT

and MULE are beneficial and simple to use.

8.2.2 Verification for Other Cyber Physical Systems

In this work, we limited the hardware we used for endpoint verification to

inexpensive secondary equipment (i.e., a shared server for SHOT or a TLD

for MULE) and sensors or actuators that are readily available on the devices

in the cyber physical system: vibrators and accelerometers on smartphones,

web cameras on laptops, and LEDs and cameras on vehicles. However, a

large number of CPSs exist that have different hardware and/or verifica-

tion requirements. As such, further work is needed to analyze other CPSs

to determine their exact verification requirements and how to fulfill those

requirements based on the hardware that is already available within those

systems.
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